
Bericht 1/90

WRG { ein neuer Generator

f�ur Top-Down-Parser mit
automatischer Fehlerbehandlung

Klaus Lagally

Zusammenfassung

WRG ist ein Parsergenerator, der aus einer EBNF-Beschreibung einer kontextfreien

Grammatik einen \recursive-descent"-Parser in (Turbo-)Pascal erzeugt. Eine Syn-

taxfehlerbehandlung, die notfalls Teile der Eingabe �uberspringt, wird auf Wunsch

automatisch generiert. Die Grammatik kann eine L-Attributierung tragen, die auf

das Parameter-Konzept von Pascal abgebildet wird; ebenso sind semantische Ak-

tionen, lokale Hilfsvariablen und Einsch�ube von Pascal-Deklarationen m�oglich. Ein

\any"-Konstrukt gestattet das bequeme �Uberlesen von Teilen der Eingabe.

Inhaltsverzeichnis

1 �Ubersicht 2

2 Funktionsweise 4

2.1 Aufbau . 4

2.2 Kon
iktbehandlung . 5

2.3 Bedeutung von \any" . 5

3 Praktische Erfahrungen 6

3.1 Stand der Realisierung . 6

3.2 Bewertung . 6

4 Quellen 8

A Benutzungsanleitung 9

A.1 Aufruf des Generators . 9

A.2 Eingabeformat . 10

A.3 Schnittstelle des erzeugten Parsers . 13

B Anwendungsbeispiel 15

1

Kapitel 1

�Ubersicht

WRG (Werkzeug zum �Ubersetzerbau durch Rechnergest�utzte Generierung) ist ein

am Institut f�ur Informatik der Universit�at Stuttgart entwickelter Parser-Generator.

Er akzeptiert eine EBNF-Beschreibung einer kontextfreien Sprache, die den LL(1)-

Bedingungen gen�ugen sollte, und generiert daraus einen \recursive-descent"-Parser

in (Turbo-)Pascal mit automatischer Syntax-Fehlerbehandlung.

Dar�uberhinaus enth�alt WRG folgende Erweiterungen:

� F�ur viele Grammatiken, welche die LL(1)-Bedingungen verletzen, wird dennoch

ein \vern�unftiger" Parser erzeugt, da die Klasse der durch \recursive descent"

analysierbaren Sprachen die Klasse LL(1) echt umfa�t. Die LL(1)-Verletzungen

werden erkannt und gemeldet, aber die Code-Erzeugung wird fortgesetzt; der

Benutzer mu� sich dann selbst durch Inspektion vergewissern, ob der erzeugte

Parser das Gew�unschte leistet. N�aheres dazu unter \Kon
iktbehandlung".

� Die Eingabe von WRG besteht aus einer Folge von Regeln. Jede Regel be-

schreibt eine Produktionenklasse, das sind alle Produktionen mit gleicher linker

Seite. WRG erzeugt aus jeder Produktionenklasse eine Pascal-Pr�ufprozedur,

welche eine aus der linken Seite ableitbare Folge von Terminalsymbolen erkennt.

Bei mehreren m�oglichen Alternativen wird abh�angig vom aktuellen Eingabe-

symbol der erste passende Zweig ausgew�ahlt.

� Innerhalb einer Regel k�onnen, beispielsweise zur Berechnung von Attributen,

an beliebiger Stelle semantische Aktionen eingef�ugt werden; diese werden dann

ausgef�uhrt, wenn sie beim Durchlaufen des betre�enden Zweiges erreicht wer-

den. Sie d�urfen aus beliebigen syntaktisch korrekten Pascal-Anweisungsfolgen

bestehen und werden von WRG nicht �uberpr�uft, sondern unver�andert �ubernom-

men. F�ur die Ablaufsteuerung des erzeugten Parsers sind sie bedeutungslos.

Zu beachten ist dabei, da� eine semantische Aktion, mit der eine Alternative

2

beginnt, nur dann ausgef�uhrt wird, wenn der betre�ende Zweig tats�achlich

durchlaufen wird, auch wenn die daf�ur ma�geblichen Grammatiksymbole erst

weiter hinten stehen!

� Zur �Ubergabe von Attributen kann eine Regel eine Liste von formalen Para-

metern beliebigen Typs besitzen, auf die in semantischen Aktionen zugegrif-

fen werden kann. Diese Liste wird in die erzeugte Pr�ufprozedur unver�andert

�ubernommen und ansonsten nicht �uberpr�uft. Ebenso k�onnen lokale Hilfsvaria-

ble beliebigen Typs deklariert werden, die bei Rekursion automatisch gekellert

werden. Dar�uberhinaus k�onnen semantische Aktionen auch auf globale Gr�o�en

zugreifen.

� Anstelle einer Regel kann auch ein Semantik-Einschub stehen, der aus belie-

bigen syntaktisch korrekten Pascal-Deklarationen bestehen darf. Er wird von

WRG nicht �uberpr�uft, sondern unver�andert �ubernommen. Die so deklarierten

Objekte (Konstanten, Typen, Variablen, Prozeduren und Funktionen) sind glo-

bal sichtbar.

� Das Wortsymbol \eps" bezeichnet das leere Wort. Es dient nur der leichteren

Lesbarkeit und kann genausogut weggelassen werden.

Eine Alternative, die bis auf semantische Aktionen (allenfalls) aus \eps" be-

steht, sollte i.a. der letzte Zweig einer Produktionenklasse sein; dies verbessert

die E�zienz des Parsers und erleichtert bei Grammatiken, die nicht in der

Klasse LL(1) liegen, in der Regel die Kon
iktbehandlung.

� Das Wortsymbol \any" bezeichnet ein beliebiges einzelnes Terminalsymbol.

\any" kann mit Vorteil verwendet werden, um bei einer partiellen Analyse

Teile der Eingabe zu �uberlesen, die im Augenblick nicht interessieren, und wird

nur dann angesprochen, wenn es zum aktuellen Eingabesymbol keine andere

passende Zuordnung gibt.

3

Kapitel 2

Funktionsweise

2.1 Aufbau

WRG besteht aus 4 P�assen:

� Pass 1 liest die Eingabe ein, pr�uft sie auf syntaktische Korrektheit und schreibt

sie auf eine Zwischendatei. F�ur jede Produktionenklasse wird eine \forward"-

Deklaration abgesetzt. Au�erdem wird ein Ge
echt erzeugt, welches die Ab-

laufstruktur des zu erzeugenden Parsers nachbildet.

� Pass 2 analysiert das Ge
echt, berechnet die Anfangs- und Folge-Mengen

der vorkommenden Nichtterminalzeichen, �uberpr�uft die LL(1)-Eigenschaft und

meldet gefundene Kon
ikte. Au�erdem werden Hilfsmengen zur Ablaufsteue-

rung und zur Fehlerbehandlung berechnet. Wahlweise werden die berechneten

Strukturen lesbar ausgegeben.

� Pass 3 liest die Zwischendatei wieder ein und erzeugt aus ihr und den in Pass 2

berechneten Informationen die Parser-Routinen. Dabei werden auch Parame-

ter, lokale Deklarationen und Semantik-Einsch�ube an den passenden Stellen

eingef�ugt.

� Pass 4 erzeugt im Fehlerfall stets und ansonsten auf Wunsch ein Protokoll der

Eingabe, evtl. mit eingestreuten Fehlermeldungen.Wahlweise kann als Testhilfe

die interne Darstellung der Ablaufstruktur mit den Steuermengen in lesbarer

Form ausgegeben werden.

� Pass 2 und 3 werden bei syntaktischen Fehlern nicht aktiviert.

4

2.2 Kon
iktbehandlung

Bei erkannten LL(1)-Kon
ikten geht der erzeugte Parser folgenderma�en vor:

� First-First-Verletzung:

Zwei Alternativen k�onnen mit demselben Terminalsymbol beginnen: die in der

Aufschreibung fr�uhere Alternative wird ausgew�ahlt.

� First-Follow-Verletzung:

Es gibt einen Zweig, aus dem das leere Wort ableitbar ist, und ein Terminalzei-

chen kann sowohl Folgesymbol wie Anfangssymbol desselben Zweiges sein: das

Zeichen wird als Anfangssymbol interpretiert.

2.3 Bedeutung von \any"

� Eine mit \any" beginnende Alternative wird nur dann ausgew�ahlt, falls kein

anderer Zweig auf das aktuelle Eingabezeichen pa�t.

� \any" als einzige Alternative wird demnach immer gew�ahlt.

� \any" innerhalb einer Option oder einer Wiederholung wird nur dann aus-

gew�ahlt, wenn es keinen zur Eingabe passenden Parallelzweig gibt und wenn

das anstehende Eingabezeichen kein legales Folgesymbol ist.

� Beispiel: das Konstrukt "(" { any } ")" �uberliest nach "(" alle Zeichen bis

vor ")".

5

Kapitel 3

Praktische Erfahrungen

3.1 Stand der Realisierung

WRG ist zum Einsatz auf MS-DOS-Rechnern (IBM-PC und Kompatible) gedacht

und ben�otigt f�ur einen vern�unftigen Einsatz einen Hauptspeicher-Ausbau von min-

destens 512 kB.

Die vorliegenden Versionen (ab 1.1) akzeptieren den vollen oben beschriebenen

Sprachumfang. Pass 1 und Pass 3 sind durch Bootstrap aus je einer EBNF-

Grammatik f�ur die Eingabesprache mittels einer Vorversion des Systems erzeugt

worden und k�onnen daher sp�ater leicht modi�ziert werden; die restlichen Teile sind

von Hand in Turbo-Pascal (Version 4) geschrieben. Die erreichte E�zienz ist f�ur den

ersten praktischen Einsatz ausreichend, aber wohl verbesserungsf�ahig.

Als Erweiterung kann ein Parser ohne Fehlerbehandlung erzeugt werden. Ein solcher

Parser hat erheblich geringeren Umfang, l�auft wesentlich schneller und ist interessant

f�ur sp�atere P�asse eines Compilers, welche voraussetzen k�onnen, da� ihre Eingabe

formal korrekt ist.

3.2 Bewertung

Der erzeugte Parser ist durch den Aufwand, den die Prozeduraufrufe mit sich brin-

gen, notwendigerweise weniger e�zient als ein expliziter Kellerautomat. Der Zusatz-

aufwand l�a�t sich durch konsequente Ausnutzung der M�oglichkeiten von EBNF in

vern�unftigen Grenzen halten.

Die automatische Fehlerbehandlung ist nicht billig zu haben, zumal sie sich stark auf

das Mengen-Konstrukt in Pascal abst�utzt, dessen Realisierung in Turbo-Pascal recht

6

aufwendig ist. Die derzeitige Implementierung ist robust, aber nicht optimal. Hier

sind Verbesserungen m�oglich und geplant.

Von einer Nachbearbeitung des generierten Parser-Codes mu�, soweit sie die Ablauf-

steuerung und die Fehlerbehandlung betri�t, wegen derer enger Verzahnung in der

Regel abgeraten werden. Dies gilt nicht f�ur Semantik- Einsch�ube, die aber genausogut

bereits in der Eingabe verbessert werden k�onnen.

7

Kapitel 4

Quellen

WRG baut auf einer Reihe von Vorl�aufern auf; viele Ideen wurden explizit oder

sinngem�a� �ubernommen aus:

� G.Goos: Programm SMG (Syntax Machine Generator), Interner Bericht TU

M�unchen, ca. 1966

� A.C.Hartmann: A Concurrent Pascal Compiler for Minicomputers, Lecture No-

tes in Computer Science 50, Springer Verlag 1977

� P.Rechenberg, H.M�ossenb�ock: Ein Compiler-Generator f�ur Mikrocomputer,

Carl Hanser Verlag 1985

� N.Wirth: Compilerbau, Teubner Verlag 1977

Eine Reihe von weiteren Ideen, deren genaue Quelle sich nicht mehr feststellen l�a�t,

stammen aus der allgemeinen Folklore; auf YACC und �ahnliche Produkte, die nach

dem Bottom-Up-Prinzip arbeiten, haben wir nicht bewu�t zur�uckgegri�en.

Wir haben uns bem�uht, die Schw�achen der uns bekannten Ans�atze (die hier nicht

weiter ausgef�uhrt werden sollen) nach M�oglichkeit zu vermeiden; daf�ur sind mit Si-

cherheit neue Fehler hineingekommen, f�ur deren Mitteilung wir sehr dankbar sind.

8

Anhang A

Benutzungsanleitung

A.1 Aufruf des Generators

Der Parsergenerator wird folgenderma�en aufgerufen:

WRG <name>.<ext> <options>

Die Namenserweiterung .<ext> ist beliebig und darf auch fehlen. Fehlende

Angaben <name>.<ext> und <options> werden interaktiv erfragt.

WRG erzeugt eine Textdatei <name>.INC, welche die generierten Parser-Routinen

enth�alt. Im Fehlerfall und auf Wunsch wird ein Protokoll in die Datei <name>.LST

geschrieben.

Die Dateinamen <name>.IMC, <name>.ERR, <name>.TMP, <name>.GRA werden von

WRG intern verwendet und sind reserviert; die zugeh�origen Dateien sind nach einem

Lauf von WRG normalerweise gel�oscht.

Die Optionenangabe <options> ist eine Zeichenfolge ohne Zwischenraum, deren

Einzelzeichen in beliebiger Reihenfolge stehen d�urfen und m�ogliche Optionen be-

zeichnen. Bislang sind festgelegt:

l Protokollierung auch bei fehlerfreier Ausf�uhrung

q Erzeugung einer schnellen Parser-Version ohne Fehlerbehandlung

s schnellste Parser-Version, die korrekte Eingabe voraussetzt

g kurze lesbare Darstellung des Ge
echts ins Protokoll

d ausf�uhrliche Darstellung des Ge
echts nach <name>.gra

i die Zwischendatei <name>.IMC bleibt erhalten

e die Fehlerdatei <name>.ERR bleibt erhalten

- keine zus�atzlichen Optionen

9

Alle Options-Angaben au�er \l", \q", \s" und \-" sind nur als Testhilfen des Ge-

nerators gedacht und erzeugen sehr umfangreiche Informationen, deren Format hier

nicht beschrieben wird.

Bei katastrophalen internen Fehlern des Generators bleiben alle internen Dateien

erhalten; der Benutzer wird dann aufgefordert, sie sicherzustellen, um die Fehlersuche

zu erleichtern.

Bei Betriebsmittel-Engp�assen k�onnen Pascal-Laufzeitfehler auftreten, insbesondere:

101 �Uberlauf Platte

202 �Uberlauf Halde: zuwenig Hauptspeicher

203 �Uberlauf Stapel: zuwenig Hauptspeicher

Hier kann nur der Benutzer allenfalls Abhilfe scha�en.

A.2 Eingabeformat

Die Eingabe des Generators ist eine kontextfreie Grammatik, die in einer modi�zier-

ten erweiterten Backus-Naur-Form (EBNF) geschrieben ist. Ihre genaue Syntax wird

im folgenden ebenfalls in EBNF beschrieben, dazu kommen verbale Erl�auterungen;

dabei bedeuten:

"X" X muss woertlich so dastehen

<X> verbale Beschreibung von X

(X) Gruppierung Zusammenfassung zusammengehoeriger Teile

[X] Option X kann vorhanden sein oder fehlen

{X} Wiederholung X kann beliebig oft auftreten oder fehlen

X|Y Auswahl genau eines von X und Y muss vorhanden sein

Jede Grammatikregel hat das Format:

<linke Seite> ":" <rechte Seite> "."

Terminalsymbole und Nichtterminalsymbole werden durch vomBenutzer frei gew�ahl-

te Pascal-Bezeichner benannt. Die Terminalsymbole m�ussen au�erhalb des erzeug-

ten Parsers deklariert sein und k�onnen benannte Konstanten oder Elemente eines

Aufz�ahlungstyps sein. Aus den Nichtterminalbezeichnern werden die Namen der er-

zeugten Parser-Routinen abgeleitet.

Folgende Bezeichner sind reserviert:

grammar, eps, any, loc, endloc, sem, endsem

10

Diese Bezeichner m�ussen mit Kleinbuchstaben geschrieben werden.

Kommentare beginnen mit einem Prozent-Zeichen (%) und gehen bis zum Zeilenende.

Leerzeichen, Zeilenenden und Kommentare trennen Bezeichner und sind ansonsten

bedeutungslos, au�er in Semantik-Einsch�uben, die bis auf Kommentare unver�andert

�ubernommen werden.

Die Eingabe mu� folgender Syntax gen�ugen:

ebnf : head { item } .

head : "grammar" name "(" axiom "," endsym ")" .

name : ident .

axiom : ident .

endsym : ident .

ident : <Bezeichner nach Pascal-Syntax, Unterstrich ist

ausser als erstes Zeichen zugelassen> .

item : <folgt weiter unten> .

� Eine Grammatik besteht aus einem Kopf, der globale Informationen enth�alt,

und einer Folge von Grammatikregeln und Einsch�uben (Items).

� \name" bedeutet den Grammatik-Namen, mit dem alle intern erzeugten Be-

zeichner \bez" in der Gestalt \name bez" eindeutig gemacht werden. Das Pr�a�x

\name " sollte also sonst vom Benutzer nicht verwendet werden.

� \axiom" bedeutet das Startsymbol der Grammatik.

� \endsym" bedeutet das letzte Zeichen, das ein lexikalischer Analysator (Scan-

ner) liefern mu�, wenn die Eingabe abgearbeitet ist. Es ist vom Benutzer frei

w�ahlbar.

item : prod | insert .

prod : lhs ":" rhs "." .

lhs : ident [formals] .

rhs : [locals] regex .

11

formals : "(" <Zeichenfolge, die ")" nicht enthaelt> ")" .

locals : "loc"

<Zeichenfolge, die "endloc" nicht enthaelt>

"endloc" .

regex : <folgt weiter unten> .

insert : "sem"

<Zeichenfolge, die "endsem" nicht enthaelt>

"endsem" .

� Zu jedemNichtterminalsymbol der Grammatik geh�ort eine Produktionenklasse,

die in eine Pascal-Pr�ufroutine �ubersetzt wird.

� Nichtterminalsymbole k�onnen mit Attributen versehen werden, die durch Pa-

rameter der zugeh�origen Pr�ufroutinen realisiert werden. Die Zeichenfolgen zwi-

schen \(" und \)" in \formals" m�ussen jeweils eine syntaktisch korrekte formale

Pascal-Parameterliste sein. Dies wird nicht gepr�uft.

� Die Zeichenfolgen zwischen \loc" und \endloc" in \locals" m�ussen jeweils aus

einer syntaktisch korrekten abgeschlossenen Folge von Pascal-Vereinbarungen

bestehen, die lokal zur erzeugten Pr�ufroutine gelten. Dies wird nicht gepr�uft.

� Die Zeichenfolgen zwischen \sem" und \endsem" in \insert" m�ussen jeweils aus

einer syntaktisch korrekten abgeschlossenen Folge von Pascal-Vereinbarungen

bestehen, die globale G�ultigkeit haben. Dies wird nicht gepr�uft.

regex : sequence { "|" sequence } .

sequence : { element [","] } .

element : terminal | nonterminal | "eps" | "any"

| group | option | loop | semant .

terminal : "=" ident .

nonterminal : ident [actuals] .

actuals : "(" <Zeichenfolge, die ")" nicht enthaelt> ")" .

group : "(" regex ")" .

12

option : "[" regex "]" .

loop : "{" regex "}" .

semant : "sem"

<Zeichenfolge, die "endsem" nicht enthaelt>

"endsem" .

� Von den Alternativen in \regex" wird die erste passende in der Reihenfolge der

Aufschreibung ausgew�ahlt, wenn sie nicht ohnehin eindeutig festliegt.

� Die Elemente einer \sequence" werden der Reihe nach gepr�uft.

� Terminalsymbole werden durch vorgestelltes \=" gekennzeichnet.

� Nichtterminalsymbole k�onnen Attribute tragen, die als Parameter der zu-

geh�origen Pr�ufroutinen angegeben werden. Die Zeichenfolgen zwischen \("

und \)" in \actuals" m�ussen jeweils eine syntaktisch korrekte aktuelle Pascal-

Parameterliste sein, die zur entsprechenden formalen Parameterliste pa�t. Dies

wird nicht gepr�uft.

� \eps" bezeichnet das leere Wort und kann auch weggelassen werden.

� \any" bezeichnet ein beliebiges Terminalzeichen, das auf keine andere Alterna-

tive pa�t.

� Die Bedeutung von \group", \option" und \loop" ist oben bereits beschrieben.

� Die Zeichenfolgen zwischen \sem" und \endsem" in \semant" m�ussen jeweils

aus einer syntaktisch korrekten Folge von Pascal-Anweisungen bestehen. Dies

wird nicht gepr�uft.

A.3 Schnittstelle des erzeugten Parsers

Ein von WRG aus einer Grammatik mit dem Kopf

grammar X (Y, Z)

erzeugter Parser setzt folgende Umgebung voraus:

13

� ein lexikalischer Analysator mu� vorhanden sein. Er fa�t die Zeichen der Einga-

be zu Terminal-Symbolen des Typs X_token zusammen, die bei Bedarf mittels

der Prozedur X_nextch abgerufen werden; in der Regel wird dabei noch lexi-

kalische Zusatzinformation in globale Variablen abgelegt, auf die in Semantik-

Einsch�uben zugegri�en werden kann.

� folgende Pascal-Objekte werden verwendet:

type X_token = <Aufzaehlung oder Unterbereich>;

(* evtl. Umbenennung eines vorhandenen Typs *)

const Z: X_token;

(* Eingabe-Ende-Symbol, benannte Konstante *)

var X_ch: X_token;

(* aktuelles Eingabesymbol *)

procedure X_nextch;

(* besetzt X_ch und evtl.

globale Zusatzinformation neu *)

� Im Fehlerfall wird au�erdem aufgerufen:

procedure X_error(s: string);

(* gibt den Fehlertext "s" aus *)

function X_conv(t: X_token): string;

(* liefert eine geeignete externe Darstellung

fuer das Terminalsymbol "t" aus *)

� Alle in der Grammatik verwendeten Terminal-Bezeichner m�ussen als benann-

te Konstanten vom Typ X_token erkl�art sein. Daneben kann in Semantik-

Einsch�uben beliebig auf globale Gr�o�en zugegri�en werden.

Der erzeugte Parser enth�alt eine Prozedur mit dem Kopf:

procedure X_;

Bei ihrem Aufruf geschieht das folgende:

� X_nextch wird aufgerufen und liest das erste Eingabezeichen;

� die dem Startsymbol Y entsprechende Pr�ufprozedur wird aktiviert;

� nach deren Ende wird gepr�uft, ob das Ende-Symbol Z gefunden wurde. An-

dernfalls wird eine Fehlermeldung abgesetzt.

14

Anhang B

Anwendungsbeispiel

% Beispiel fuer die Verwendung von WRG:

% Auswertung arithmetischer 'real'-Ausdruecke

% akzeptiert eine Folge von Ausdruecken

% gibt die Ausdruecke und deren Werte aus

% Annahme: der Scanner besetzt 'ch' und 'k' global

grammar Arith (S, eof)

S :

loc var wert: real; endloc

{ E(wert) sem writeln(' = ', wert:10:5) endsem } .

E(var wert: real) :

loc var wert1: real; op: token; endloc

sem op := plus endsem

[addop(op)]

T(wert)

sem if op = minus then wert := - wert endsem

{ addop(op)

T(wert1)

sem if op = plus then wert := wert + wert1

else wert := wert - wert1 endsem } .

15

addop(var op: token) :

% Annahme: der Scanner liefert fuer '+' und '-'

% deren ASCII-Verschluesselung nach 'ch'

sem op := ch; write(' ', chr(op), ' ') endsem

(=plus

| =minus) .

T(var wert: real) :

% Annahme: bei Division durch 0 wird mit dem Zaehler weitergerechnet,

% eine Fehlermeldung geht ins Eingabeprotokoll

loc var wert1: real; op: token; endloc

F(wert)

{ mulop(op)

F(wert1)

sem if op = mal then wert := wert * wert1

else if wert1 = 0 then error('Division durch Null')

else wert := wert / wert1 endsem } .

mulop(var op: token) :

% Annahme: der Scanner liefert fuer '*' und '/'

% deren ASCII-Verschluesselung nach 'ch'

sem op := ch; write(' ', chr(op), ' ') endsem

(=mal

| =strich) .

F(var wert: real) :

=kla sem write('(') endsem

E(wert)

=klz sem write(')') endsem

| CON(wert) .

CON(var wert: real) :

% Annahme: bei 'intcon' und 'realcon' wird 'k' vom Scanner mit einem

% Schluessel fuer die externe Darstellung der Konstanten besetzt

% 'getstring' liefert diese Darstellung als String aus

% 'val' konvertiert den String in die 'real'-Darstellung

% 'y' und 'z' sind hier bedeutungslos

loc var s: string; y: integer; z: word; endloc

sem getstring(k, s, y); write(s); val(s, wert, z) endsem

(=intcon

| =realcon) .

16

