Bericht 1/90

WRG - ein neuer Generator

fiir Top-Down-Parser mit
automatischer Fehlerbehandlung

Klaus Lagally

Zusammenfassung

WRG ist ein Parsergenerator, der aus einer EBNF-Beschreibung einer kontextfreien
Grammatik einen “recursive-descent”-Parser in (Turbo-)Pascal erzeugt. Eine Syn-
taxfehlerbehandlung, die notfalls Teile der Eingabe iiberspringt, wird auf Wunsch
automatisch generiert. Die Grammatik kann eine L-Attributierung tragen, die auf
das Parameter-Konzept von Pascal abgebildet wird; ebenso sind semantische Ak-
tionen, lokale Hilfsvariablen und Einschiibe von Pascal-Deklarationen méoglich. Ein
“any”-Konstrukt gestattet das bequeme Uberlesen von Teilen der Eingabe.

Inhaltsverzeichnis

1 Ubersicht 2
2 Funktionsweise 4
2.1 Aufbau. . . .o Lo 4
2.2 Konfliktbehandlung Lo 5
2.3 Bedeutung von “any” Lo 5
3 Praktische Erfahrungen 6
3.1 Stand der Realisierung Lo oo 6
3.2 Bewertung 6
4 Quellen 8
A Benutzungsanleitung 9
A.1 Aufruf des Generators oo 9
A.2 Eingabeformat o 10
A.3 Schnittstelle des erzeugten Parsers 13
B Anwendungsbeispiel 15

Kapitel 1

Ubersicht

WRG (Werkzeug zum Ubersetzerbau durch Rechnergestiitzte Generierung) ist ein
am Institut fir Informatik der Universitat Stuttgart entwickelter Parser-Generator.
Er akzeptiert eine EBNF-Beschreibung einer kontextfreien Sprache, die den LL(1)-
Bedingungen geniigen sollte, und generiert daraus einen “recursive-descent”-Parser
in (Turbo-)Pascal mit automatischer Syntax-Fehlerbehandlung.

Dariiberhinaus enthdlt WRG folgende Erweiterungen:

e Fiir viele Grammatiken, welche die LL(1)-Bedingungen verletzen, wird dennoch
ein “verniinftiger” Parser erzeugt, da die Klasse der durch “recursive descent”
analysierbaren Sprachen die Klasse LL(1) echt umfaft. Die LL(1)-Verletzungen
werden erkannt und gemeldet, aber die Code-Erzeugung wird fortgesetzt; der
Benutzer muf sich dann selbst durch Inspektion vergewissern, ob der erzeugte
Parser das Gewiinschte leistet. Ndheres dazu unter “Konfliktbehandlung”.

e Die Eingabe von WRG besteht aus einer Folge von Regeln. Jede Regel be-
schreibt eine Produktionenklasse, das sind alle Produktionen mit gleicher linker
Seite. WRG erzeugt aus jeder Produktionenklasse eine Pascal-Priifprozedur,
welche eine aus der linken Seite ableitbare Folge von Terminalsymbolen erkennt.
Bei mehreren méglichen Alternativen wird abhingig vom aktuellen Fingabe-
symbol der erste passende Zweig ausgewihlt.

o Innerhalb einer Regel kénnen, beispielsweise zur Berechnung von Attributen,
an beliebiger Stelle semantische Aktionen eingefiigt werden; diese werden dann
ausgefithrt, wenn sie beim Durchlaufen des betreffenden Zweiges erreicht wer-
den. Sie diirfen aus beliebigen syntaktisch korrekten Pascal-Anweisungsfolgen
bestehen und werden von WRG nicht {iberpriift, sondern unverandert tibernom-
men. Fiir die Ablaufsteuerung des erzeugten Parsers sind sie bedeutungslos.

Zu beachten ist dabei, daf} eine semantische Aktion, mit der eine Alternative

beginnt, nur dann ausgefithrt wird, wenn der betreffende Zweig tatsichlich
durchlaufen wird, auch wenn die dafiir mafigeblichen Grammatiksymbole erst
weiter hinten stehen!

Zur Ubergabe von Attributen kann eine Regel eine Liste von formalen Para-
metern beliebigen Typs besitzen, auf die in semantischen Aktionen zugegrif-
fen werden kann. Diese Liste wird in die erzeugte Priifprozedur unverdndert
iibernommen und ansonsten nicht iiberpriift. Ebenso kénnen lokale Hilfsvaria-
ble beliebigen Typs deklariert werden, die bei Rekursion automatisch gekellert
werden. Dartiberhinaus kdnnen semantische Aktionen auch auf globale Grofien
zugreifen.

Anstelle einer Regel kann auch ein Semantik-Einschub stehen, der aus belie-
bigen syntaktisch korrekten Pascal-Deklarationen bestehen darf. Er wird von
WRG nicht iiberpriift, sondern unverdndert iibernommen. Die so deklarierten

Objekte (Konstanten, Typen, Variablen, Prozeduren und Funktionen) sind glo-
bal sichtbar.

Das Wortsymbol “eps” bezeichnet das leere Wort. Es dient nur der leichteren
Lesbarkeit und kann genausogut weggelassen werden.

Eine Alternative, die bis auf semantische Aktionen (allenfalls) aus “eps” be-
steht, sollte i.a. der letzte Zweig einer Produktionenklasse sein; dies verbessert
die Effizienz des Parsers und erleichtert bei Grammatiken, die nicht in der

Klasse LL(1) liegen, in der Regel die Konfliktbehandlung.

Das Wortsymbol “any” bezeichnet ein beliebiges einzelnes Terminalsymbol.
“any” kann mit Vorteil verwendet werden, um bei einer partiellen Analyse
Teile der Eingabe zu iiberlesen, die im Augenblick nicht interessieren, und wird
nur dann angesprochen, wenn es zum aktuellen Eingabesymbol keine andere
passende Zuordnung gibt.

Kapitel 2

Funktionsweilse

2.1 Aufbau

WRG besteht aus 4 Péassen:

o Pass 1 liest die Fingabe ein, priift sie auf syntaktische Korrektheit und schreibt
sie auf eine Zwischendatei. Fiir jede Produktionenklasse wird eine “forward”-
Deklaration abgesetzt. Aulerdem wird ein Geflecht erzeugt, welches die Ab-
laufstruktur des zu erzeugenden Parsers nachbildet.

o Pass 2 analysiert das Geflecht, berechnet die Anfangs- und Folge-Mengen
der vorkommenden Nichtterminalzeichen, iiberpriift die LL(1)-Eigenschaft und
meldet gefundene Konflikte. Auflerdem werden Hilfsmengen zur Ablaufsteue-
rung und zur Fehlerbehandlung berechnet. Wahlweise werden die berechneten
Strukturen lesbar ausgegeben.

o Pass 3 liest die Zwischendatei wieder ein und erzeugt aus ihr und den in Pass 2
berechneten Informationen die Parser-Routinen. Dabei werden auch Parame-
ter, lokale Deklarationen und Semantik-Einschiibe an den passenden Stellen
eingefiigt.

o Pass 4 erzeugt im Fehlerfall stets und ansonsten auf Wunsch ein Protokoll der
Eingabe, evtl. mit eingestreuten Fehlermeldungen. Wahlweise kann als Testhilfe
die interne Darstellung der Ablaufstruktur mit den Steuermengen in lesbarer
Form ausgegeben werden.

e Pass 2 und 3 werden bei syntaktischen Fehlern nicht aktiviert.

2.2 Konfliktbehandlung

Bei erkannten LL(1)-Konflikten geht der erzeugte Parser folgendermafien vor:

o [irst-First-Verletzung:
Zwei Alternativen kénnen mit demselben Terminalsymbol beginnen: die in der
Aufschreibung frithere Alternative wird ausgewihlt.

o [irst-Follow-Verletzung:

Es gibt einen Zweig, aus dem das leere Wort ableitbar ist, und ein Terminalzei-
chen kann sowohl Folgesymbol wie Anfangssymbol desselben Zweiges sein: das
Zeichen wird als Anfangssymbol interpretiert.

2.3 Bedeutung von “any”

e Eine mit “any” beginnende Alternative wird nur dann ausgewahlt, falls kein
anderer Zweig auf das aktuelle Fingabezeichen pafit.

o “any” als einzige Alternative wird demnach immer gewahlt.

e “any” innerhalb einer Option oder einer Wiederholung wird nur dann aus-
gewahlt, wenn es keinen zur Eingabe passenden Parallelzweig gibt und wenn
das anstehende Fingabezeichen kein legales Folgesymbol ist.

o Beispiel: das Konstrukt "(" { any } ")" iiberliest nach " (" alle Zeichen bis
vor ||)||‘

Kapitel 3

Praktische Erfahrungen

3.1 Stand der Realisierung

WRG ist zum Einsatz auf MS-DOS-Rechnern (IBM-PC und Kompatible) gedacht
und benétigt fiir einen verniinftigen Einsatz einen Hauptspeicher-Ausbau von min-

destens 512 kB.

Die vorliegenden Versionen (ab 1.1) akzeptieren den vollen oben beschriebenen
Sprachumfang. Pass 1 und Pass 3 sind durch Bootstrap aus je einer EBNF-
Grammatik fiir die Eingabesprache mittels einer Vorversion des Systems erzeugt
worden und kénnen daher spéter leicht modifiziert werden; die restlichen Teile sind
von Hand in Turbo-Pascal (Version 4) geschrieben. Die erreichte Effizienz ist fiir den
ersten praktischen Einsatz ausreichend, aber wohl verbesserungsfihig.

Als Erweiterung kann ein Parser ohne Fehlerbehandlung erzeugt werden. Ein solcher
Parser hat erheblich geringeren Umfang, lduft wesentlich schneller und ist interessant
fiir spatere Péasse eines Compilers, welche voraussetzen kénnen, dafl ihre Eingabe
formal korrekt ist.

3.2 Bewertung

Der erzeugte Parser ist durch den Aufwand, den die Prozeduraufrufe mit sich brin-
gen, notwendigerweise weniger effizient als ein expliziter Kellerautomat. Der Zusatz-
aufwand 1&8t sich durch konsequente Ausnutzung der Moglichkeiten von EBNF in
verniinftigen Grenzen halten.

Die automatische Fehlerbehandlung ist nicht billig zu haben, zumal sie sich stark auf
das Mengen-Konstrukt in Pascal abstiitzt, dessen Realisierung in Turbo-Pascal recht

aufwendig ist. Die derzeitige Implementierung ist robust, aber nicht optimal. Hier
sind Verbesserungen méglich und geplant.

Von einer Nachbearbeitung des generierten Parser-Codes muf}, soweit sie die Ablauf-
steuerung und die Fehlerbehandlung betrifft, wegen derer enger Verzahnung in der
Regel abgeraten werden. Dies gilt nicht fiir Semantik- Einschiibe, die aber genausogut
bereits in der Eingabe verbessert werden kénnen.

Kapitel 4

Quellen

WRG baut auf einer Reihe von Vorlaufern auf; viele Ideen wurden explizit oder
sinngemaf iibernommen aus:

e G.Goos: Programm SMG (Syntax Machine Generator), Interner Bericht TU
Miinchen, ca. 1966

e A.C.Hartmann: A Concurrent Pascal Compiler for Minicomputers, Lecture No-
tes in Computer Science 50, Springer Verlag 1977

o P.Rechenberg, H.Mossenbock: Ein Compiler-Generator fiir Mikrocomputer,
Carl Hanser Verlag 1985

o N.Wirth: Compilerbau, Teubner Verlag 1977

Eine Reihe von weiteren Ideen, deren genaue Quelle sich nicht mehr feststellen 148t
stammen aus der allgemeinen Folklore; auf YACC und dhnliche Produkte, die nach
dem Bottom-Up-Prinzip arbeiten, haben wir nicht bewufit zuriickgegriffen.

Wir haben uns bemiiht, die Schwéichen der uns bekannten Anséatze (die hier nicht
weiter ausgefithrt werden sollen) nach Moglichkeit zu vermeiden; dafiir sind mit Si-
cherheit neue Fehler hineingekommen, fiir deren Mitteilung wir sehr dankbar sind.

Anhang A

Benutzungsanleitung

A.1 Aufruf des Generators

Der Parsergenerator wird folgendermafien aufgerufen:
WRG <name>.<ext> <options>

Die Namenserweiterung .<ext> ist beliebig und darf auch fehlen. Fehlende
Angaben <name>.<ext> und <options> werden interaktiv erfragt.

WRG erzeugt eine Textdatei <name>.INC, welche die generierten Parser-Routinen
enthalt. Im Fehlerfall und auf Wunsch wird ein Protokoll in die Datei <name>.LST
geschrieben.

Die Dateinamen <name>.IMC, <name>.ERR, <name>.TMP, <name>.GRA werden von
WRG intern verwendet und sind reserviert; die zugehérigen Dateien sind nach einem
Lauf von WRG normalerweise geldscht.

Die Optionenangabe <options> ist eine Zeichenfolge ohne Zwischenraum, deren
Einzelzeichen in beliebiger Reihenfolge stehen diirfen und mogliche Optionen be-
zeichnen. Bislang sind festgelegt:

Protokollierung auch bei fehlerfreier Ausfithrung

Erzeugung einer schnellen Parser-Version ohne Fehlerbehandlung
schnellste Parser-Version, die korrekte Eingabe voraussetzt

kurze lesbare Darstellung des Geflechts ins Protokoll
ausfithrliche Darstellung des Geflechts nach <name>.gra

die Zwischendatei <name>.IMC bleibt erhalten

die Fehlerdatei <name>.ERR bleibt erhalten

keine zuséatzlichen Optionen

D =00k O —

Alle Options-Angaben aufler “17, “q”, “s” und “-”7 sind nur als Testhilfen des Ge-
nerators gedacht und erzeugen sehr umfangreiche Informationen, deren Format hier
nicht beschrieben wird.

Bei katastrophalen internen Fehlern des Generators bleiben alle internen Dateien
erhalten; der Benutzer wird dann aufgefordert, sie sicherzustellen, um die Fehlersuche
zu erleichtern.

Bei Betriebsmittel-Engpéssen kénnen Pascal-Laufzeitfehler auftreten, insbesondere:

101 Uberlauf Platte
202 Uberlauf Halde: zuwenig Hauptspeicher
203 Uberlauf Stapel: zuwenig Hauptspeicher

Hier kann nur der Benutzer allenfalls Abhilfe schaffen.

A.2 Eingabeformat

Die Eingabe des Generators ist eine kontextfreie Grammatik, die in einer modifizier-
ten erweiterten Backus-Naur-Form (EBNF) geschrieben ist. Thre genaue Syntax wird
im folgenden ebenfalls in EBNF beschrieben, dazu kommen verbale Erlauterungen;
dabei bedeuten:

"X X muss woertlich so dastehen

<X> verbale Beschreibung von X

(X) Gruppierung Zusammenfassung zusammengehoeriger Teile
[X] Option X kann vorhanden sein oder fehlen

{X} Wiederholung X kann beliebig oft auftreten oder fehlen
XlY Auswahl genau eines von X und Y muss vorhanden sein

Jede Grammatikregel hat das Format:
<linke Seite> ":" <rechte Seite> "."

Terminalsymbole und Nichtterminalsymbole werden durch vom Benutzer frei gewéahl-
te Pascal-Bezeichner benannt. Die Terminalsymbole miissen auflerhalb des erzeug-
ten Parsers deklariert sein und kénnen benannte Konstanten oder Elemente eines
Aufzédhlungstyps sein. Aus den Nichtterminalbezeichnern werden die Namen der er-
zeugten Parser-Routinen abgeleitet.

Folgende Bezeichner sind reserviert:

grammar, eps, any, loc, endloc, sem, endsem

10

Diese Bezeichner miissen mit Kleinbuchstaben geschrieben werden.

Kommentare beginnen mit einem Prozent-Zeichen (%) und gehen bis zum Zeilenende.
Leerzeichen, Zeilenenden und Kommentare trennen Bezeichner und sind ansonsten
bedeutungslos, aufler in Semantik-Einschiiben, die bis auf Kommentare unveréandert
iibernommen werden.

Die Eingabe muf} folgender Syntax geniigen:
ebnf : head { item } .
head : "grammar" name "(" axiom "," endsym ")"
name : ident
axiom : ident
endsym : ident .

ident : <Bezeichner nach Pascal-Syntax, Unterstrich ist
ausser als erstes Zeichen zugelassen> .

item : <folgt weiter unten> .
e Eine Grammatik besteht aus einem Kopf, der globale Informationen enthélt,
und einer Folge von Grammatikregeln und Einschiiben (Items).
o “name” bedeutet den Grammatik-Namen, mit dem alle intern erzeugten Be-

zeichner “bez” in der Gestalt “name_bez” eindeutig gemacht werden. Das Prifix

Y

“name_” sollte also sonst vom Benutzer nicht verwendet werden.

o “axiom” bedeutet das Startsymbol der Grammatik.

e “endsym” bedeutet das letzte Zeichen, das ein lexikalischer Analysator (Scan-
ner) liefern muf}, wenn die Eingabe abgearbeitet ist. Es ist vom Benutzer frei

wahlbar.

item : prod | insert .
prod : 1lhs ":" rhs "."
lhs : ident [formals]
rhs : [locals] regex .

11

formals : "(" <Zeichenfolge, die ")" nicht enthaelt> ")"

locals : "loc"
<Zeichenfolge, die "endloc" nicht enthaelt>
"endloc" .

regex : <folgt weiter unten> .

insert : '"sem"
<Zeichenfolge, die "endsem" nicht enthaelt>
"endsem" .

Zu jedem Nichtterminalsymbol der Grammatik gehort eine Produktionenklasse,
die in eine Pascal-Priifroutine {ibersetzt wird.

Nichtterminalsymbole kénnen mit Attributen versehen werden, die durch Pa-
rameter der zugehorigen Priifroutinen realisiert werden. Die Zeichenfolgen zwi-
schen “(” und “)” in “formals” miissen jeweils eine syntaktisch korrekte formale
Pascal-Parameterliste sein. Dies wird nicht gepriift.

Die Zeichenfolgen zwischen “loc” und “endloc” in “locals” miissen jeweils aus
einer syntaktisch korrekten abgeschlossenen Folge von Pascal-Vereinbarungen
bestehen, die lokal zur erzeugten Priifroutine gelten. Dies wird nicht gepriift.

Die Zeichenfolgen zwischen “sem” und “endsem” in “insert” miissen jeweils aus
einer syntaktisch korrekten abgeschlossenen Folge von Pascal-Vereinbarungen
bestehen, die globale Giiltigkeit haben. Dies wird nicht gepriift.

regex : sequence { "|" sequence } .
sequence : { element [","] %}

element : terminal | nonterminal | "eps" | "any"
| group | option | loop | semant .

terminal : "=" ident
nonterminal : ident [actuals]
actuals : "(" <Zeichenfolge, die ")'" nicht enthaelt> ")" .

gI‘O'llp . ||(|| regeX ||)||

12

option : "[" regex "]"
1OOP . ||{|| regeX ||}||

semant : "sem"
<Zeichenfolge, die "endsem" nicht enthaelt>
"endsem" .

e Von den Alternativen in “regex” wird die erste passende in der Reihenfolge der
Aufschreibung ausgewahlt, wenn sie nicht ohnehin eindeutig festliegt.

o Die Elemente einer “sequence” werden der Reihe nach gepriift.

o Terminalsymbole werden durch vorgestelltes “=" gekennzeichnet.

e Nichtterminalsymbole kénnen Attribute tragen, die als Parameter der zu-
gehorigen Priifroutinen angegeben werden. Die Zeichenfolgen zwischen “(”
und “)” in “actuals” miissen jeweils eine syntaktisch korrekte aktuelle Pascal-
Parameterliste sein, die zur entsprechenden formalen Parameterliste pafit. Dies
wird nicht gepriift.

[14

o “eps” bezeichnet das leere Wort und kann auch weggelassen werden.

e “any” bezeichnet ein beliebiges Terminalzeichen, das auf keine andere Alterna-
tive pafit.

e Die Bedeutung von “group”, “option” und “loop” ist oben bereits beschrieben.

e Die Zeichenfolgen zwischen “sem” und “endsem” in “semant” miissen jeweils
aus einer syntaktisch korrekten Folge von Pascal-Anweisungen bestehen. Dies
wird nicht gepriift.

A.3 Schnittstelle des erzeugten Parsers

Ein von WRG aus einer Grammatik mit dem Kopf
grammar X (Y, Z)

erzeugter Parser setzt folgende Umgebung voraus:

13

o ein lexikalischer Analysator mufl vorhanden sein. Er fafit die Zeichen der Einga-
be zu Terminal-Symbolen des Typs X_token zusammen, die bei Bedarf mittels
der Prozedur X_nextch abgerufen werden; in der Regel wird dabei noch lexi-
kalische Zusatzinformation in globale Variablen abgelegt, auf die in Semantik-
Einschiiben zugegriffen werden kann.

o folgende Pascal-Objekte werden verwendet:

type X_token = <Aufzaehlung oder Unterbereich>;
(x evtl. Umbenennung eines vorhandenen Typs *)

const Z: X_token;
(* Eingabe-Ende-Symbol, benannte Konstante *)

var X_ch: X_token;
(* aktuelles Eingabesymbol *)

procedure X_nextch;
(*x besetzt X_ch und evtl.
globale Zusatzinformation neu *)

o Im Fehlerfall wird aulerdem aufgerufen:

procedure X_error(s: string);
(* gibt den Fehlertext "s" aus *)

function X_conv(t: X_token): string;
(* liefert eine geeignete externe Darstellung
fuer das Terminalsymbol "t'" aus *)

o Alle in der Grammatik verwendeten Terminal-Bezeichner miissen als benann-
te Konstanten vom Typ X_token erklart sein. Daneben kann in Semantik-
Einschiiben beliebig auf globale Gréflen zugegriffen werden.

Der erzeugte Parser enthélt eine Prozedur mit dem Kopf:
procedure X_;
Bei ihrem Aufruf geschieht das folgende:

o X_nextch wird aufgerufen und liest das erste Eingabezeichen;
o die dem Startsymbol Y entsprechende Priifprozedur wird aktiviert;

e nach deren Ende wird gepriift, ob das Ende-Symbol 7Z gefunden wurde. An-
dernfalls wird eine Fehlermeldung abgesetzt.

14

Anhang B

Anwendungsbeispiel

% Beispiel fuer die Verwendung von WRG:
% Auswertung arithmetischer ’real’-Ausdruecke

% akzeptiert eine Folge von Ausdruecken
% gibt die Ausdruecke und deren Werte aus
% Annahme: der Scanner besetzt ’ch’ und ’k’ global

grammar Arith (S, eof)

loc var wert: real; endloc
{ E(wert) sem writeln(’ = ’, wert:10:5) endsem } .

E(var wert: real)
loc var wertl: real; op: token; endloc
sem op := plus endsem
[addop(op) 1
T(wert)
sem 1f op
{ addop(op)
T(wertl)
sem 1f op

minus then wert := - wert endsem

plus then wert := wert + wertl
else wert wert - wertl endsem } .

15

addop(var op: token)
% Annahme: der Scanner liefert fuer ’+’ und ’-’
% deren ASCII-Verschluesselung nach ’ch’
sem op := ch; write(’ ’, chr(op), ’ ’) endsem
(=plus
| =minus)

T(var wert: real)
% Annahme: bei Division durch O wird mit dem Zaehler weitergerechnet,
% eine Fehlermeldung geht ins Eingabeprotokoll
loc var wertl: real; op: token; endloc
F(wert)
{ mulop(op)
F(wertl)
sem 1f op = mal then wert := wert * wertl
else if wertl = 0 then error(’Division durch Null’)
else wert := wert / wertl endsem }

mulop(var op: token)
% Annahme: der Scanner liefert fuer ’*’ und ’/’
% deren ASCII-Verschluesselung nach ’ch’
sem op := ch; write(’ ’, chr(op), ’ ’) endsem
(=mal
| =strich)

F(var wert: real)
=kla sem write(’ (’) endsem
E(wert)
=klz sem write(’)’) endsem
| CON(wert)

CON(var wert: real)
% Annahme: bei ’intcon’ und ’realcon’ wird ’k’ vom Scanner mit einem
% Schluessel fuer die externe Darstellung der Konstanten besetzt
% ’getstring’ liefert diese Darstellung als String aus
% ’val’ konvertiert den String in die ’real’-Darstellung
% ’y’ und ’z’ sind hier bedeutungslos

loc var s: string; y: integer; z: word; endloc

sem getstring(k, s, y); write(s); val(s, wert, z) endsem
(=intcon
| =realcon)

16

