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1 Einleitung

Dieser Bericht erarbeitet zunéchst allgemein das Gebiet der Lastbalancierung. Dabei werden Anforderungen, Grun-
delemente und Verfahren gesammelt. Im zweiten Teil (Kapitel 7) wird das Grundkonzept unseres Lastbalancierungs-

35

35
36

37

38
38
39
41
43
45

46

systemsKliCon) vorgestellt. HiCon besteht aus Komponenten, die in heterogenen Client-Server Architekturen

dynamische Lastbalancierung durchfiihren.

1.1 Mogliche Parallelarbeit in Anwendungen

Viele Anwendungen kann man beschleunigen, indem man die Parallelitat, die in ihnen steckt, ausnutzt. Man betrach-
tet die einzelnen Operationen der Anwendung und legt deren notwendige Reihenfolgebeziehungen fest. Ein System,
das eine solche Anwendung ausfihrt, kann dann die einzelnen Operationen in beliebiger Reihenfolge, an beliebigem

Ort und auch parallel durchfuihren; es muf3 lediglich die vorgegebenen Reihenfolgebeziehungen einhalten.

Gewohnlich unterscheidet man zwei Arten der Parallelarbeit:

« Funktionale Parallelitat besteht darin, verschiedene Funktionen zugleich auszufihren, die voneinander reihen-
folge-unabhangig sind. Das hangt von den Daten ab, die eventuell von beiden Funktionen gelesen oder gedndert
(bzw. erzeugt) werden. Das Bild zeigt ein Beispiel. Abhangigkeiten zwischen Funktionsausfihrungen sind durch
Pfeile dargestellt. Jede Funktion kann ablaufen, sobald die Daten, die sie benétigt, vorhanden (bzw. im benétigten

Bearbeitungszustand) sind.

Berechnung der Werte xx, =
-b+ SQRT(H- 4 *a*c)

2*a
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» Daten-Parallelitét nutzt man, indem man eine Funktion parallel auf verschiedene Daten ansetzt. Diese Ausfuh-
rungen mussen reihenfolge-unabhéngig sein. Im Bild werden zwei Matrizen multipliziert; man kann dabei die
eine Funktioryj, =a 1 *x 1x +a j» *X ¢ +a i3 *X 3¢ auf verschiedene Matrixelemente parallel anwenden.
Die Pfeile deuten den Datenfluf3 an.

Y11 Y12 Y13

Y21 >¢22 y

Y31 Y,

identische Operationen

‘
Yik = 81™X1k + 82Xk t 83 * X3

Prinzipiell kénnen beide Formen der Parallelitat zugleich eingesetzt werden. Die Unterscheidung zwischen funktio-
naler Parallelitdt und Parallelitéat in den Daten entféllt, wenn man verschiedene Ausfiihrungen derselben Funktion
auch als verschiedene Objekte ansieht, d.h. genauso als wéren dies Ausfiihrungen verschiedener Funktionen gewe-
sen.

Reihenfolge-Unabhéngigkeibn Daten beziglich einiger Funktionsanwendungen bedeutet, dal} das Ergebnis der
Funktionsablaufe auf diesen Daten unabhangig von deren Reihenfolge und eventueller Parallelarbeit richtig ist (es
muf nicht unbedingt identisch, aber im Sinne der Anwendung korrekt sein).

Beispiell: Berechnung von D = B-2*A. A =2*A D=B-A
D =B-A A =2*A
richtiges Ergebnis falsches Ergebnis
Beispiel2: Berechnung von A = A+B+C. A=A+B A=A+C
A=A+C A=A+B

Die Reihenfolge ist beliebig, nur parallel sollten die Operationen nicht ablaufen (das ist typisch fir Datenbankan-
wendungen).

Man kann Anwendungen unterschiedlich fein in Grundfunktionen (die jeweils in sich sequentiell ablaufen) und Date-
nobjekte (die nicht weiter aufgegliedert werden) zerlegen. Das Granulat ist ein entscheidender Faktor fir den Nutzen
der Parallelisierung.

1.2 Parallele und verteilte Rechnersysteme

Lastbalancierung ist bereits auf zentralen Systemen mdglich, sie kommt jedoch erst auf parallelen und verteilten
Rechnersystemen entscheidend zum Tragen. Zeitgewinn bringende Parallelarbeit wird durch folgende Phadnomene
moglich:

» Programmausfuhrungen beinhali®artezeitenDas Programm kann oft erst fortgesetzt werden, wenn bestimmte
Daten zur Verfligung stehen. Diese Daten miissen von langsamen Geraten (Platten, Benutzerterminals) geladen
oder von anderen Funktionsausfiihrungen erzeugt werden. In der Zwischenzeit kann auf dem Prozessor eine
andere Funktion durchgefiihrt werden.

» Mehrprozessorsystenkénnen auf allen Prozessoren gleichzeitig arbeiten. SIMD-Rechner kénnen eine Operation
gleichzeitig auf verschiedene Daten anwenden, MIMD-Rechner kdnnen sogar unterschiedliche Operationen auf
verschiedene Daten zugleich anwenden.

* Viele Anwendungen, vor allem im Datenbankbereich, greifen intensiv auf Daten zu, die auf stabilen Speicherme-
dien (Platten) gespeichert sind. Hat man mehrere solcher Medien, so kann man die Daten dartiber verstreuen und
dadurch parallel auf dighysisch verteilten Daterugreifen.
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Wie weit man parallele Hardware tatsachlich fir parallele Ablaufe nutzen kann, héngt nicht allein von der prinzipiell

in der Anwendung steckenden Parallelitéat ab. Je nachdem, wie zeitaufwendig der Transport von Daten zwischen den
Prozessoren (bzw. zwischen den Funktionen auf den Prozessoren) ist, wird der Geschwindigkeitsgewinn des paralle-
len Rechnens durch die Wartezeiten wahrend Datentransporten beeintrachtigt. Ein wichtiger Faktor sind dabei die
Verbindungen (Busse, Netzwerke) zwischen den verschiedenen Prozessoren und Datentragern (siehe Kapitel 3.1).

1.3 Beschreibung paralleler und verteilter Anwendungen

In sequentiellen Programmen benutzt man einen Ablaufplan und eine Datenbeschreibung. In der allgemeinsten Form
paralleler Programmierung geht man mit Funktionsausfiihrungen und Datenversionen um; dazu gibt es eine Ablauf-
beschreibung, die angibt, welche Funktionsausfihrung auf welche Daten (in welchem Bearbeitungszustand der
Daten) angewendet werden soll. Daten und Funktionen sind keine festen Objekte mehr, denn unterschiedliche Versio-
nen eines Datenobjekts kénnen gleichzeitig an verschiedenen Orten existieren und mehrere Ausfihrungen einer
Funktion finden gleichzeitig an verschiedenen Orten statt.

Auf der untersten Ebene paralleler und verteilter Anwendungen laufen (sequentielle) Prozesse parallel ab und versen-
den untereinander Nachrichten. Die Nachrichten dienen zum Datenaustausch sowie zur Synchronisation (auf zentra-
len oder speichergekoppelten Systemen kann beides auch mithilfe globaler Variablen geschehen). Darauf aufbauende
héhere Ebenen bieten tbersichtlichere Programmiermodelle an:

DatenfluRsprachen, Petri-Netze und Pradikat-Transitionsnetze ermdglichen die Beschreibung von Einzeloperationen
und deren gegenseitigen Abhangigkeiten ohne dafl? man die genauen Synchronisationsvorgéange oder die Verteilung
der Funktionen und Daten spezifizieren muf3. Diese Modelle stellen Reihenfolgebeziehungen sehr klar heraus (in
DatenfluRsprachen beschreibt man sogar die eigentlichen Datenabhangigkeiten), sind aber flr Iterationen und Rekur-
sionen schlecht geeignet.

Das Modell delRemote Procedure Calit eine Erweiterung der prozeduralen Programmierung. Ein Prozeduraufruf
muf3 nicht lokal, sondern kann irgendwo im System ausgefiihrt werden. Parallelitat erreicht man durch asynchrone
Aufrufe; man muf die Ausfiihrung eines Funktionsaufrufs nicht sofort abwarten, sondern kann (parallel) weiterrech-
nen, bis man die Ergebnisse der Funktionsausfiihrung bendtigt.

Im Client-Server Modell stehen einige Dienste (Server) zur Verfigung, die von Anwendungen (Clients) aufgerufen
werden kdnnen; dabei kbnnen mehrere Server denselben Dienst anbieten. Die Aufrufe geschehen nach dem Prinzip
desRemote Procedure Call

In diesen Modellen muf3 der Programmierer selbst Reihenfolgebeziehungen in Aufrufsequenzen umsetzen; anderer-
seits kann man viele Vorteile der zentralen sequentiellen Programmierung Gbernehmen (hierarchische Abstraktion
von Datentypen, hierarchische Abstraktion des Kontrollflusses durch Unterprozeduren und Fehlerbehandlung). Der
Datenfluf’ wird nicht explizit angegeben, jede Operation tibernimmt die Daten in dem Zustand, in dem sie sich gerade
befinden.

Als Beispiel asynchroner Funktionsaufrufe soll obige Formelberechnung in diesem Modell beschrieben werden
(siehe Bild). Man bekommt beim Aufruf einer Funktion eine Nummer. Mit dieser Nummer kann man spater die
Funktionsergebnisse abholen (bzw. abwarten).

call 1 =SQR(b)

call , =MULT(4, a)
call 3 =MINUS(O, b)
call 4, =MULT(2, a)

call g =MULT(result(call 2), C)

call g =MINUS(result(call 1), result(call 5))
call ; = SQRT(result(call 6))

bm = result(call 3)

s = result(call 7)

call g =PLUS(bm, s)
call g =MINUS(bm, s)
n = result(call 4)
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call 19 = DIVIDE(result(call g), N)
call 1; = DIVIDE(result(call 9), N)
X, = result(call 10)
X, = result(call 11)

Um dieselbe Machtigkeit wie Datenflu3sprachen zu erreichen, muf3 der Programmierer auch auf die Vollendung
irgendeiner laufenden Ausfuhrung warten kénnen (siehe Bild).

Datenabhangigkeiten: Beschreibung durch

e @ asynchrone Aufrufe: !( = result(F2call)
y = result(F3call)
y @ ab = result(&any)
X b if any=F1call then
a call 5 = F5(ab,x,y)
b = result(F4call)
call g =F6(b,x,y)
else
@ call g =F6(ab,x,y)

a = result(Flcall)
call 5=F5(ax.y)

1.4 Replikation und Partitionierung von Daten

Datenparallelitat benutzt man, um durch parallele Bearbeitung von Daten auf verschiedenen Prozessoren die Bearbei-
tungsgeschwindigkeit zu steigern. Dazu kann man einen Datensatz iber die Prozessoren Rafteiteriefung

oder Kopien des Datensatzes auf die Prozessoren veridplik@atior). Dazwischen sind einige Mischformen mog-

lich. Das Bild zeigt einige gebréauchliche Verfahren (die Symbole werden in Kapitel 3.1 erklart).

=P I -
zentrale Datenhaltung Replikation

v

_‘_

q ¥ =

Partitionierung Pufferverwaltung

Das Problem der Partitionierung liegt darin, dal3 Zugriffe nur auf diejenige Partition der Daten billiger sind, die lokal
auf dem Prozessor liegt. Bei der Replikation hat man hingegen das Problem, daR eine Anderung an einer Kopie sofort
in allen anderen Kopien nachvollzogen werden muf3. Dazu sind Sperrverfahren notwendig. Allgemein lohnt sich Par-
titionierung bei einer gewissen Lokalitat der Datenzugriffe, wahrend Replikation bei einer relativ gro3en Haufigkeit

von Lesezugriffen Gewinn bringt.

1.5 Lastbalancierung

Lastbalancierung soll Auftrage so geschickt verteilen und zur richtigen Zeit bearbeiten lassen, daRR sie moglichst
schnell erledigt werden. Dazu versucht man, die Hardware-Ressourcen voll zu nutzen und Engpésse zu vermeiden.

Der Lastbalancierer verfugt Gber einige Arbeitskré®eryej, die ihm Auftrage Runktionen) ausfihren kénnen.

Die Arbeiter, welche dieselbe Funktion ausfiihren kénnen, falt man durch die BezeiBhngrglasseusammen.

Der Lastbalancierer kann beliebig viele Kopien eines Serlrestaizerder Serverklasse) erzeugen und beschéfti-

gen, soweit genug Betriebsmittel verfligbar sind. Da aber die Rechenkapazitaten fur die Arbeiter begrenzt sind und

8



Lastbalancierung in heterogenen Client-Server Architekturen Aufgaben und Ziele der Lastbalancierung

die notwendige Absprache zwischen den Arbeitern irgendwann stérker wéchst als die Produktivitat, muf3 ein Lastba-
lancierer ein sinnvolles Malf3 fur ihre Anzahl finden.

Auftrage verlangen, dal3 die Funktionen bestimmb#ten bearbeiten. Prinzipiell kann man sich (im Rahmen der
vorhandenen Betriebsmittel) beliebig viele Kopien der Datenséatze herskdiglikation). Doch der Speicherplatz

sowie der wachsende Aufwand, um die Kopien der Daten untereinander in Ubereinstimmung zu halten, zwingt zu
einer angemessenen Anzahl von Datenkopien.

2 Aufgaben und Ziele der Lastbalancierung

2.1 Welche Dienste erwartet man von der Lastbalancierung?

Wir zeigen eine Sammlung von Aufgaben, die mit der Lastbalancierung im Zusammenhang stehen:

» Funktionsausfiihrungs-Management Der Lastbalancierer soll Funktionsausfiihnrungen starten, stoppen, fortset-
zen, verlagernnjigrierer), beschleunigen und abbremsen. Er bekommt (im allgemeinsten Fall) von den Anwen-
dungen Gruppen von Funktionsaufrufen, die unter bestimRe#renfolgebeziehungabzuarbeiten sind. Seine
Menge von bereitstehenden Funktionen muf3 er nun so einsetzen, daf3 er, mit Ruicksicht auf weitere Anwendungen
und andere Funktionen, die dieselben Ressourcen benutzen, alle geforderten Aufrufe in minimaler Zeit abwickelt.

Auf Betriebssystemebene bedeutet das die Verwaltung der Prozesse, die zur Ausfiihrung von Funktionen bereit-
stehen; die Zuweisung von Auftragen, Einstellung der Prozel3prioritdten und das Stoppen sowie Fortsetzen von
Prozessen.

In Echtzeitanwendungen mussen oft Zeitlimits eingehalten werden. Hier ist das Kriterium nicht unbedingt mog-
lichst schnelle, sondern die fristgerechte Ausfihrung der Auftrage.

» Funktions-Management Der Lastbalancierer hélt sich eine Menge von FunktioBervérinstanzendie tber
das System verteilt bereitstehen. Jede Funktion kann mit der Durchfiihrung eines Aufrufes beauftragt werden; sie
steht dann wieder zur Verfigung, sobald sie diesen Aufruf abgearbeitet hat (bei Server-Multitasking verkorpert
ein Server entsprechend mehrere Instanzen). Der Lastbalancierer soll seine Funktionen stets in geeigneter Anzahl
auf geeigneten Prozessoren verfligbar halten, um eine schnelle Bearbeitung aller Auftrage durch optimale Ausnut-
zung der Ressourcen zu garantieren. Dabei sind die Ressourcen zu berlcksichtigen, die das Bereithalten einer
Funktion erfordert sowie der Aufwand, um gemeinsame Daten zwischen den Funktionen einer Klasse konsistent
zu halten.

Das Bereithalten von Funktionen ist nicht prinzipiell notwendig, aber der Aufwand, um eine Funktion wegen
eines einzelnen Aufrufs zu installieren und danach wieder abzubauen, ist meist unrentabel grof3 (Prozelstartzei-
ten, Verbindungsaufbauzeiten sowie das Kopieren der Daten und Kontexte von anderen Instanzen der Klasse).

» Durchsatz- und Systemlastmessundper Lastbalancierer sollte die Ausflihrungszeiten der Auftrage messen und
daran die Wirkung seiner Strategien bewerten. Weiterhin muf3 er die Belastung der Funktionen und Ressourcen
messen, um Uberlastung einzelner Komponenten (Server, Prozessoren, Datensétze, Platten und &hnliches) abzu-
fangen und Auftrage geschickt an unbelastete Ressourcen zu verteilen. Aus statistischen MeRRreihen kdnnte er
selbststandig seine Strategie verbessern.

» Beobachtung der Hardware-Konfiguration. Der Lastbalancierer sollte stets Uiber die aktuelle Konfiguration sei-
nes Systems informiert sein, damit er bei Umkonfigurierung und Komponentenausféllen seine Funktionen, Daten
und Funktionsausfiihrungen entsprechend umplanen kann. Die Erhéhung der Systemverfugbarkeit ist sehr eng mit
der Lastbalancierung verbunden, wobei ein Auftrag nicht nur grundsétzlich, sondern sogar méglichst schnell erle-
digt werden soll.

» Ablaufuberwachung. Der Lastbalancierer soll die Durchfiihrung der Funktionsaufrufe kontrollieren und Fehler
sowie Ausfélle behandeln (in einer fir die Anwendung madglichst transparenten Weise). Bei wichtigen, langlebi-
gen Daten (wie Datenbanksétzen) sollte er Konsistenz garantieren (atomare Funktionsausfuhrungen). Bei langlau-
fenden Anwendungen sollte er dui€heckpointslie Ausmalle der durch Fehler und Ausfélle verlorenen Arbeit
klein halten.
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* Wahl des Funktionsgranulats Wie gut der Lastbalancierer die Auftrége auf sein System anpassen kann, hangt
davon ab, in wieviel unabhé&ngige Funktionen eine Anwendung aufgegliedert wird. Prinzipiell sind feinere Granu-
late leichter zu balancieren. Andererseits wirkt der zunehmende Aufwand fir Verwaltung und Kommunikation
dem Leistungsgewinn der Parallelarbeit entgegen. Der Lastbalancierer kdnnte das jeweils beste Granulat bestim-
men.

* Wahl des Datengranulats Da ein Datenobjekt meist nur von einer Funktionsausfilhrung zugleich bearbeitet (vor
allem modifiziert) werden kann, entstehen Engpasse durch andere Funktionsausfihrungen, die auf das Objekt
zugreifen méchten. Wenn Funktionen nur Teile des Objekts bendtigen, erlaubt eine Zerteilung des Objekts, dal® an
den Einzelteilen parallel gearbeitet werden kann. Der Lastbalancierer kdnnte entscheiden, welches Datengranulat
geeignet ist.

* Replikation und Verteilung der Daten (Daten-Management). Der Lastbalancierer sollte Daten und Kopien bzw.
Ausschnittskopien (Puffer) von Daten so geschickt Giber das System verteilen, daf? die Funktionen mdglichst lokal
auf die Daten zugreifen kénnen, wahrend der Aufwand, um die Datenkopien konsistent zu erhalten, gering bleibt.

« Kommunikations-Management Der Lastbalancierer soll daftir sorgen, daf3 Nachrichten mdglichst effizient ver-
schickt werden. Dazu kann er daguting(Bestimmung der Pfade durch das System), die Paketverpackung und
Bindelung der Nachrichten tibernehmen bzw. geeignet einstellen. Darliber hinaus kdnnte er stehende Verbindun-
gen Uberwachen und in Fehlerfallen bzw. nach Umkonfigurierungen wiederherstellen.

» Ortstransparenz. Da der Lastbalancierer die ZuordnuiMppping von Auftragen zu Prozessoren, Prozessen
und Platten Gbernimmt, sollten Anwendungen unabhangig von der Systemkonfiguration formuliert werden koén-
nen. Der Ausflihrungsort von Funktionen, der Ort der Daten und der Zielort von Nachrichten sollte also fiir den
Anwender transparent sein (er stellt sich ein zentrales System vor).

Dies alles sind nur Méglichkeiten; kein Lastbalancierer wird alles in Form einer Komponente lbernehmen. Eventuell
werden Teilaufgaben von separaten Komponenten erledigt. Alle Vorgange und Informationen aber, welche die Balan-
cierungsstrategie berticksichtigt, sollten zumindest an ihr vorbeilaufen, nicht Uber sie hinweg verarbeitet werden.

2.2 Was kann der ideale Lastbalancierer?

Der ideale Lastbalancierer verarbeitet alle Auftrage so, daf? im Mittel die Summe aller Ausfiihrungszeiten der Auf-
trage minimal ist. Bei der Summation kann er die Auftrage nach ihrer Prioritat gewichten. Die Ausflihrungszeit eines
Auftrages startet, sobald der Benutzer den Auftragswunsch zur sofortigen Ausfiihrung auRert und endet mit der letz-
ten dazu notwendigen Funktionsausfiihrung.

Der ideale Lastbalancierer verfiigt stets tber alle aktuellen Informationen; er weif3 sie sogar im voraus. Genau gesagt,
weil3 er bereits beim Start des Rechnersystems, welche Anwendungen wann laufen werden. Er kann daher jede
Anwendung statisch (nicht bei der Ubersetzung des Programms, aber bei jedem Start der Anwendung) aufgliedern
und den Komponenten (nicht den Funktionen, aber jeder Funktionsausfiihrung) und Daten feste Orte auf dem System
sowie feste Aktivierungszeitpunkte zuweisen.

Da der ideale Lastbalancierer zudem beliebig schnell planen kann, geht er folgendermaf3en vor: Er bildet zun&chst
alle Auftrage fest und zur friihest moglichen Zeit auf das System ab. Fur diesen Plan kann er ja die Ausfihrungszeit je
Auftrag berechnen und damit auch die Summe aller Ausfiihrungszeiten. Nun variiert er sowohl das Granulat der Auf-
tragszerlegung (samt Replikation und Partitionierung) als auch die Zuordnung (der Funktionsausfiihrungen zu Pro-
zessoren mit Prioritdten und der stabilen Daten zu den Platten) als auch die Zeitpunkte der Funktionsausfuihrungen.
Zu jeder Variante berechnet er die Summe der Laufzeiten, und am Ende wahlt er die Variante, bei der die Summe
minimal ist.

Reale Lastbalancierdraben ein schwierigeres Leben. Einerseits wissen sie die zukinftigen Auftrage nicht im vor-
aus, haben bereits einige Auftrage am Laufen und bekommen zu neuen Auftrdgen nur ungenaue Information tber
deren Bedirfnisse. Daher sollten sie das System wahrend der Laufzeit beobachten, zur Laufzeit Funktionsaufrufe und
Daten zuweisen und notfalls auch die Zuordnung laufender Aktivitaten korrigieren. Andererseits kdnnen sie nicht
beliebig schnell planen, ihre Denkzeit sowie auch das Sammeln von Laufzeitinformationen beansprucht die Res-
sourcen, die ihnen zur Bearbeitung der Auftrage zur Verfiigung stehen.

10
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Die Kunst der Lastbalancierung besteht nunmehr darin, statisch maglichst viel Wissen Uber die Auftrage zu erwerben
und viele der ‘Drehknopfe’ der Lastbalancierung bereits gut einzustellen. Zur Laufzeit ist es dagegen wichtig, anhand
weniger kritischer MeR3groRen wenige ‘Drehkndpfe’ geschickt nachzuregeln und so aus der Situation das Beste zu
machen.

3 Elemente und Grél3en in der Lastbalancierung

Wie sieht der Lastbalancierer das System, die Daten und die Auftrdge, mit denen er zu tun hat? Im folgenden sam-
meln wir einige Elemente und ihre Eigenschaften.

3.1 Physische Ressourcen

Die physischen Ressourcen, mit denen der Lastbalancierer arbeitet, sind die Hardware-Komponenten des Systems.
Dazu gehdren Prozessoren (CPUs), Hauptspeicher, Ein-/Ausgabegerate (Platten, Bandlaufwerke), Busse, Netzwerke
(Kanale) und eventuell Steuereinheiten (Controller). In heterogenen Systemen ist es wichtig, dal® der Lastbalancierer
ein einheitliches Modell zur Beschreibung der Ressourcen kennt.

Um ein Rechnersystem optimal ausnutzen zu kénnen, braucht der Balancierer mdglichst detaillierte Informationen;
andererseits sollte die Systembeschreibung mdéglichst einfach sein, um die Lastbalancierungsstrategie schnell und
einfach zu halten. Die Wahl einer geeigneten Abstraktionsstufe fir das Systemmodell ist daher wichtig.

Wir wollen uns auf die Elemente Prozessoren, E/A-Geréate und Kanale im Systemmodell beschrénken. Das Bild zeigt
die verwendeten Symbole und Kombinationsméglichkeiten. Kanéle verbinden nur Prozessoren untereinander, E/A-
Gerate sind direkt (ohne Kanal) an einen Prozessor gebunden.

_Q@

Kanal N
N

Prozessor + E/A-Gerate
Hauptspeicher

Beispielsystem

QP D
O ‘ /@@

"
g

Das Systemmaodell weist folgende Merkmale auf:

» Es gibt keine explizite Darstellung von gemeinsamem Speicher zwischen Prozessoren. Das muld man durch einen
sehr schnellen Kanal zwischen diesen Prozessoren nachbilden. Wie realistisch das ist, hangt unter anderem davon
ab, wie grof3 die lokalen Pufferspeicher der Prozessoren sind.

e SIMD-Architekturen und Pipeline-Rechner kann man nicht adaquat modellieren.

» Es gibt keine expliziten Steuereinheiten, Adapter, Hilfsprozessoren, DMA-Einheiten oder Bus-Umschalter,
obwohl man diese bei der Lastbalancierung einbeziehen kénnte, da das Systemmaodell fiir den Lastbalancierer
sonst zu kompliziert wirde.

» Geréate, die an mehrere Prozessoren angeschlossen sind (EwwdemSystemen) sind schlecht zu modellieren.

» Busse und Netzverbindungen werden nicht unterschieden. Sie tauchen entweder gar nicht (etwa Busse zwischen
Prozessoren und ihrem Hauptspeicher oder ihren Platten) oder als Kanal auf (etwa Busse zwischen Prozessoren
oder Leitungen zwischen Knoten).

» Kanéle kdnnen mehrere Prozessoren untereinander verbinden (nicht nur Punkt zu Punkt Verbindungen).

e Eine Verbindung zur ‘Au3enwelt’, fir die man kein genaues Systembild hat, muf3 man durch ein Gerat oder einen
Prozessor (oder beides) modellieren, wenn sie in der Lastbalancierung beriicksichtigt wird.
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Die Ressourcen haben statische (bauartbedingte) und dynamische Eigenschaften. Die Tabelle listet mogliche Eigen-
schaften fir Ressourcen auf:

Ressouce-Typ
Prozessor

E/A-Gerat

Kanal

statische Eigenschaften

Geschwindigkeit
Betriebssystem-Typ
Multitasking / Queueing
max. Anzahl an Prozessen
Verfligbarkeit
Hauptspeichergrofe
zugehoriger virtueller Speicher

Geratetyp
Geschwindigkeit
BlockgroRe
Speicherplatz
Verfligbarkeit
Prozessorlast pro Zugriff
Geschwindigkeit
PaketgréRRe
Verfligbarkeit

dynamische Eigenschaften
laufende / wartende Prozesse
Auslastunigusy-time
Hauptspeicherbeleg8wgappingRate

wartende Prozesse
Auslastungp@sy-time

Auslastungysy-time
Lange der Nachrichtenwarteschlangen

Zu diesen Daten fur die einzelnen Komponenten gehért natdrlich noch eine Verbindungstabelle. Sie ist statisch,
solange sie keine schaltbaren Kanale enthalt oder haufig Elemente zu- und abgeschaltet werden.

Wir stellen einige Rechnersysteme als Beispiele in diesem Ressourcenmodell dar:

1 Controller

1 Controller

IBM 370/168 MP

T

System Catalo
Swap Space
Spool Volume

shared
memory

 —

Q» —

IBM 379/168 AP

Ethernet
X.25 Netz

Q

Q

10 Prozessoren
shared memory

Sequent Symmetry Multiprozessor
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Tandem TXP Rechnersystem

3.2 Datenobjekte der Anwendungen

Die Ressourcen beherbergen Datenobjekte, mit denen die Anwendungen umgehen. Da man normalerweise nicht eine
Platte oder den gesamten Hauptspeicher eines Prozessors als ein Datenobjekt betrachtet, und genausowenig die
Gesamtmenge der Daten, mit denen eine Anwendung umgeht, als atomaren Datensatz behandeln will, gibt es eine
Ebene Uber den physischen Ressourcen die Datenobjekte (siehe Bild, die gestrichelten Linien deuten Datenzugriffe
an).

Datensatz |

Datensatz

e Datensatz 2 ( Anwendun
e S (R - Teil 3

_ ] Datensatz #

Aus Programmiersprachen kennt man die hierarchische Abstraktion und Zusammenfassung von Daten durch Typen.
Es gibt Daten mit unterschiedlichen Sichtbarkeits- und Gultigkeitsbereichen. Dabei unterscheidet man auch flichtige
Daten, die solange wie die Anwendung leben und meist im Hauptspeicher gehalten werden, von nichtfliichtigen, die
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ewig leben und gewdhnlich auf einer Platte gespeichert sind. Oft haben Daten auch Zugriffs- und Konsistenzbedin-
gungen, die von den Anwendungen beachtet werden missen.

Fur die Lastbalancierung interessiert vor allem der Ort undulgsffsverhalten auf die Daten. Entscheidend fur

die Zugriffskosten ist die Nahe der Daten; daher legt man KoRigplikate) oder Puffer (Teil-Replikate) der Daten

an verschiedene Orte (siehe auch Kapitel 1.4). Prinzipiell verbessern Replikate die Performance bei parallelen Lese-
zugriffen und beeintrachtigen sie bei parallelen Anderungsoperationen.

Weiterhin ist dassranulat der Daten fiir die Lastbalancierung entscheidend. Je feiner die Daten aufgeschliisselt wer-
den kdnnen, um so gréRer wird die potentibigenparallelitat. Die Konsistenthaltung replizierter Daten verursacht
dann aber in der Regel hoheren Aufwand (kleine Puffer, viele Nachrichten, viele kleine Sperren).

Daten haben (wie Ressourcen) statische und dynamische Eigenschaften:

statische Eigenschaften dynamische Eigenschaften
Speicherbedarf Ort der Daten, Ort von Kopien und Puffern
Zugriffsverfahren/ -Pfade Zugriffshaufigkeit und -art (Lesen / Anderungen)

Konsistenzbedingungen
geforderte Verfugbarkeit

3.3 Kommunikation

Das Nachrichtenaufkommen zwischen Prozessen und Prozessoren (auf h6herer Ebene zwischen Funktionen) ist far
die Lastbalancierung interessant, da die Kanéle zum Engpald werden kdnnen und Kommunikations-Wartezeiten bei
der Ausfiihrungsdauer von Auftrégen mit einzurechnen sind.

Nachrichten werden oft paketweise in gebiindelter Form verschickt. Wesentlich ist daneben, ob es nur Punkt-zu-
Punkt Verbindungen oder auch einen effizienten Multicast- bzw. Broadcast-Mechanismus gibt. Der Lastbalancierer
sollte eventuell auch wissen, ob Nachrichten verbindungsorientiert verschickt werden, denn meist ist dort die mehr-
malige Wiederbenutzung einer stehenden Verbindung schneller als der stindige Neuaufbau nach dem Umschalten auf
einen anderen Partner.

Der Lastbalancierer kann Wissen uber die Semantik der Nachrichten ausnutzen. Beispielsweise wartet der Aufrufer
eines synchronen Prozeduraufrufs solange, bis er die Ergebnisnachricht erhalt. Wenn Nachrichten semantisch ‘call by
reference’ Daten Ubertragen, so entstehen dadurch nebenbei Sperren, Synchronisationsaufwand zwischen Aufrufer
und Bearbeiter.

Auch die Kommunikation zwischen Funktionen hat statische und dynamische Eigenschaften:

statische Eigenschaften dynamische Eigenschaften
geforderte Geschwindigkeit bestehende Verbindungen
verbindungsorientiert? Nachrichtenaufkommen (Menge, Haufigkeit)

unidirektional / abwechselnd / duplex Warteschlangen beim Sender / Empfanger
geforderte Verfligharkeit

3.4 Auftrage

Die Auftrage sind das Optimierungskriterium der Lastbalancierung; sie sollen im Mittel schnellstmdglich ausgefiihrt
werden. Ein Auftrag besteht gewéhnlich aus vielen kooperierenden Teilaufgaben. Fir die Lastbalancierung interes-
sieren die Bedurfnisse der Teilaufgaben und deren gegenseitige Abhangigkeiten. Man méchte wissen, wann welcher
Teilauftrag ablaufen soll und welche Reihenfolgebeziehungen zu beachten bzw. auszunutzen sind. Ein Lastbalancie-
rer, der keinerlei Vorabinformation tiber die Auftrage hat (weder Uber die einzelnen noch Uber Auftragsgruppen),
kann numreaktivwirken (siehe Kapitel 4.2).

Wir betrachten alkastprofile von Einzelauftragen Angaben, zwischen denen wir keine Reihenfolgebeziehungen
mehr unterscheiden (siehe auch Kapitel 3.6). Lastprofile sind Abschatzungen tber den typischen Ressourcenbedarf
von Einzelauftragen (Funktionsausfiihrungen).
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Die tatsachliche Last und Kommunikation steht erst zur Laufzeit fest (aktuelle Daten und Benutzereingaben sind
mafRgeblich), aber die Grolenordnung IaRt sich im voraus abschétzen. Dazu kann man, wie in der Komplexitatstheo-
rie Ublich, die Menge (L&nge) der Eingabedaten betrachten oder die mittleren Kosten eines beispielhaften Programm-
laufs (wahrscheinlichster Pfad) berechnen. In Datenbankanwendungen kann man anhand des Schemas der
verwendeten Relationen die entstehende Last kalkulieren. Abweichungen werden Laufzeit festgestellt und die Balan-
cierung kann entsprechend die statischen Entscheidungen korrigieren.

Entscheidend sind das Granulat, die Einheiten und die Genauigkeit (bzw. statistische Relevanz) der Profile. Die fol-
gende Tabelle gibt einige Eigenschaften, die ein Lastprofil fir einen einzelnen Auftrag enthalten kann (Attribute von
Auftrégen, nicht von einzelnen Auftragsausfiihrungen):

statische Eigenschaften dynamische Eigenschaften

mittlerer Rechenzeitbedarf, Varianz Zahl und Ort der ausfiihrenden Instanzen
maximal zuldssige Laufzeit Zahl und Frequenz der Ausfiihrungen
Hauptspeicherbedarf Zustande/Auslastung der ausfiihrenden Instanzen
Menge der lokalen Daten Zustand und Verteilung ihrer lokalen Daten
E/A-Zugriffe auf feste Gerate (+ Lese / Schreibverhaltnis) bisherige Datenzugriffe

Zugriffe auf feste Datensétze (+ Lese / Schreibverhaltnis) bisherige Kommunikation mit anderen
geforderte Verfligharkeit bisherige Unteraufrufe

Startzeitpunkte der Auftrage mittlere Ausfihrungszeit

maximale Parallelitat genutzte Parallelitat

Die Kooperation zwischen einzelnen Teilauftragen kann man, auf3er durch Reihenfolgeabhangigkeiten, auch durch
Verzweigungen, Iterationen, Aufrufbeziehungen und Sessions in beliebig komplexer Form spezifizieren (bis hin zu
eigenen Programmiersprachen). Uber das LastverhalteAuftragsgruppen sind (neben den obigen Eigenschaf-

ten fur Einzelauftrage) folgende Informationen wissenswert:

statische Eigenschaften dynamische Eigenschaften
Graph (mdglicher) gegenseitiger Aufrufe bisherige Kooperation (Menge, Frequenz)

Reihenfolgebeziehungen
Geschwindigkeits-Abhangigkeiten
synchrone / asynchrone Aufrufe
Kommunikationsaufwand pro Aufruf
Haufigkeit der Aufrufe
Dauer/Kontextgrof3e von Sessions

Die Beschreibung der Auftragsbeziehungen enthélt teilweise noch Probleme: Man kann komplexe prozedurale
Ablaufe (Schleifen, Verzweigungen, Rekursionen) kaum einfacher darstellen, ohne wesentliche Informationen zu
verlieren (siehe etwa [Thomasian86] bzw. Kapitel 3.4). Die meisten Beschreibungsmodelle eignen sich fir diskrete,
grobkornige Auftragsstrukturen (langlaufende, sequentielle Funktionen, links im Bild), weniger fur rekursive, stark
verzweigende Auftrége (rechts im Bild). Letztere lassen sich eher durch die maximale Parallelitat, den Aufspaltungs-

grad und Periodizitat charakterisieren.
O
OO~
O OO Oﬁ@ =
253

Bedeutung@-’ ‘A ruft B auf’ (oder ‘A aktiviert B’)
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3.5 Verarbeitungsmodell

Die Lastbalancierung basiert auf einem bestimmten Modell der Auftragsbearbeitung auf dem System. Wir betrachten
hier lediglich ein fir heutige Systeme typisches Verarbeitungsmodell:

» Auf einem Prozessor kdnnen mehrere Funktionen bereitstehen und auch quasi-parallel, d.h. im Zeitscheibenwech-
sel nach Prioritaten gewichtet oder durch Wechsel bei I/0-Wartezeiten, ablaufen. Das entspricht nicht dem klassi-
schen Warteschlangenmodell ([Thomasian86] bzw. Kapitel 3.4), da unter Einhaltung der Reihenfolgebeziehungen
alle Auftrage gleichzeitig bearbeitet werden.

» Laufende Funktionsausfiihrungen kann man nicht vom derzeitigen auf einen anderen Prozessor verlagern, son-
dern mul3 sie komplett auf einem Prozessor abwickeln. Man kann aber laufende Funktionsausfiihrungen voriber-
gehend stoppen und spéter fortsetieca{ preemptive scheduliig

» Funktionen kénnen auf Prozessoren bereit stehen und benétigen keine Ressourcen (zumindest keine Rechenzeit,
eventuell Hauptspeicherplatz), solange sie keinen Auftrag durchfiihren.

3.6 Bearbeitungszeit von Auftragen

Um die Zeit auszurechnen, die ein gegebener Satz von Auftragen (Teile eines Gesamtauftrages) auf einem bestimm-
ten System bendétigt, mufl man einiges beachten. Ein einfacher Awstdeneck pathbesteht darin, pro Ressource

alle Auftrags-Anforderungen zu summieren und damit die erforderliche Zeit auszurechnen. Die Bearbeitungszeit
ergibt sich dann als Maximum dieser Zeiten:

Bearbeitungszeit = MAXResourcen r(Kosten([r] * ZAuﬁrége a(Bedarfla, 1)) (Kostenmodell J)

Das setzt aber implizit beliebig feinkdrnige Parallelitat der Auftrage und das Fehlen jeglicher Abhangigkeiten zwi-
schen Auftragen und zwischen den Ressource-Bedirfnissen eines Auftrags voraus. Wir wollen daher ein System mit
den oben beschriebenen Modellen fur Ressourcen, Auftrédge (Funktionsausfiihrungen) und Verarbeitung betrachten:

» Die Prozessoren, Gerate und Kanale sind charakterisiert durch ihre Zeitkosten, d.h. die Kehrwerte der Leistungen
(Prozessorkosten in sec/Mill.Instruktionen, Geratekosten in sec/Block, Kanalkosten in sec/Nachricht). Gerate sind
fest jeweils einem Prozessor zugeordnet, ebenso sind die Verbindungskanéle zwischen den Prozessoren festgelegt.

« Funktionen sind charakterisiert durch ihre Ressourcenbedurfnisse, d.h. den Rechenzeitbedarf (Mill.Instruktionen),
Geratebedarf (Blocke) und Kooperationsbedarf (Nachrichten).

« Als Ausloser einer Menge von Funktionsausfiihrungen wird eine Funktionsausfiihrung (Auftrag) angefordert.

» SchlieB3lich muf festgelegt werden, welche Funktionsausfiihrung auf welchem Prozessor ablauft und wo sich die
Daten befinden (das ist eine der Aufgaben statischer oder dynamischer Lastbalancierung).

» Sollen mehrere Instanzen zur Ausfilhrung einer Funktion eingesetzt werden, so miif3te der Synchronisationsauf-
wand zwischen den Instanzen bericksichtigt werden, um ihren gemeinsamen Kontext (Zustand und Daten) konsi-
stent zu erhalten. Wir vernachlassigen es an dieser Stelle, da sich ein entsprechendes Kostenmodell derzeit noch in
Entwicklung befindet.

» Die Hauptspeichergrof3e wird hier nicht beachtet. Durch die virtuelle Speicherverwaltung kénnen erhebliche Ver-
zbgerungen entstehen.

» Die verschiedenen Ressourcen-Bediirfnisse eines Einzelauftrags werden tiber dessen gesamte Laufzeit ‘ver-
schmiert’. Er hat also zu Beginn alle Bedurfnisse, nach einer gewissen Zeit noch jeweils 80% der anfénglichen
Bedurfnisse und irgendwann hat er genau alle Anforderungen erhalten. Man kann also nicht etwa zuerst alle Plat-
tenzugriffe, dann alle Rechenzeit und schlie3lich alle Kommunikation eines Auftrags erledigen. Das ist notwen-
dig, da wir Reihenfolgebeziehungen innerhalb einzelner Auftrage nicht weiter auflésen.

* Aus demselben Grunde sind die Zeitpunkte, zu denen Unteraufrufe (Kooperation) getétigt werden, gleichmafiig
Uber die gesamte Bearbeitungszeit des Auftrages verteilt. Die Ausfiihrungen eines Auftrags teilen die Unterauf-
rufe gleichmafiig untereinander auf. Wir schrénken hier Kooperation auf Unterfunktionsaufrufe ein (siehe Kapitel
7.1).
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* Wir nehmen an, daf® gentigend Funktionen zur parallelen Ausfihrung bereitstehen (also tberall beliebig viele Ser-
verinstanzen warten). Funktionsinstanzen werden nicht explizit modelliert. Auch das soll in einem spéateren
Kostenmodell beriicksichtigt werden.

Unter diesen Vorgaben berechnet der folgende Algorithmus die Gesamtausfilhrungszeit der Auftrage. Wir betrachten
jeweils kurze Zeitabschnitte t, in denen die Last als feststehend angenommen wird:

wiederhole bis alle Ausfuhrungen erledigt sind: (je ein Zeitschritt)

wiederhole einige Male: (je eine Iteration)

die Ressourcen teilen ihre in diesem Zeitraum noch Ubrige Leistung unter die
anfordernden Auftrage auf (gleichmaRig bzw. bei Prozessoren nach Prioritaten)

die Auftrage verbrauchen von den angebotenen Leistungen soviel, wie das
schlechteste Angebot einer Ressource erlaubt (wegen der ‘verschmierten
Bearbeitung, siehe oben)

es bleiben Ressource-Leistungen (brig, die in weiteren Iterationen noch
verteilt werden kénnen

die Ausfuihrungen werden fortgesetzt entsprechend der Ressourcen,
die sie erhalten haben
dabei werden anstehende Unteraufrufe angestof3en

Die Bearbeitungszeit ergibt sich dann aus der Zahl der Zeitschritte:
Bearbeitungszeit = Anzahl_Zeitschritte * Zeitschrittdauer (Kostenmodell 2

Diese Berechnungsvorschrift wurde auch als Simulationsprogramm realisiert (siehe Kapitel 7.4). Bei [Ferrari86] fin-
det man eine Untersuchung geeigneter Mel3gré3en zur Lastbalancierung; siehe dazu Kapitel 6.8.

4 Organisation und Techniken der Lastbalancierung

4.1 Ebenen der Lastbalancierung

Schichtenmodelle erméglichen es, immer komplexere Anwendungen zu realisieren. Eine Schicht stellt eine
bestimmte Funktionalitat zur Verfiigung, auf der man aufbaut, ohne sich um die Realisierung des darunterliegenden
zu kiimmern. Wichtige Beispiele sind die Netzwerkprotokolle Nistwvork File Systenie virtuelle Speicherver-

waltung und die héheren Programmiersprachen. Der Programmierer erhalt auf héheren Ebenen ein immer einfache-
res Modell des Systems, kimmert sich immer weniger um Lagerorte und Struktur der Daten, Ausfiihrungsorte und
Arbeitsweise von Funktionen oder Fehlerbehandlung.

Fur die Lastbalancierung werden solche Schichtenarchitekturen zum Problem, wenn zwischen den einzelnen Schich-
ten keine Informationen tber das Lastverhalten ausgetauscht werden kdnnen. So sollte beispielsweise ein Lastbalan-
cierer, der Uber den Ausfuhrungsort von Funktionen entscheidet, wissen, wo die zur Durchfiihrung der Funktionen
notwendigen Daten liegen. Wenn er auf einer Schicht basiert, die verteilte Daten auf transparente Weise lokal zur Ver-
fligung stellt, so kann er nicht wissen, wieviel Sekundarlast eine Funktionsausfiihrung auf anderen Knoten verur-
sacht, um an die entfernt liegenden Daten zu kommen.

Umgekehrt kdnnen Lastbalancierungsmechanismen auf unteren Ebenen aufgrund einzelner isolierter Anforderungen
schlecht wirken, ohne den gréReren Zusammenhang zu kennen. Zum Beispiel bendtigt man, um zu entscheiden ob
sich eine lokale Datenkopie lohnt, eine Vorabinformation Uber das weitere Zugriffsverhalten auf diese Daten.

Im Prinzip wére eine ‘flache’ Lastbalancierung optimal, d.h. ein Algorithmus, der tber alle Informationen verfugt
und alle Entscheidungen trifft. Nur ist ein solcher Ansatz so komplex, daf3 er weder in kurzer Zeit Entscheidungen
treffen kdnnte (siehe Kapitel 5.7) noch fir Programmierer Uberschaubar wére. Daher erscheint es sinnvoll, Lastbalan-
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cierung gemeinsam mit den Softwareebenen zu schichten, wobei zwischen den Ebenen Informationen ausgetauscht
werden mussen (siehe Bild).

Sequenzen und ParaIIeIi?/
von Funktionsausfiihrung
Lokalitat und

Lese- / Schreibverhalt
von Datenzugriffen

momentane Auslastu
der Ressourcen

momentane Verteilun
von Daten

Software - Schichten

J

4.2 Statische und dynamische Lastbalancierung

Statische Lastbalancierunggeschieht bei der Ubersetzung einer Anwendung oder unmittelbar vor dem Start der
Anwendung. Der statische Lastbalancierer betrachtet die auszufihrenden Auftrage und die dazu notwendigen Res-
sourcen. Auf der anderen Seite betrachtet er die ihm zur Verfligung stehende Hardware. Nun verteilt er Auftrége und
Daten derart, daf3 die mittlere Ausfuhrungsdauer der Auftrdge minimal wird. Er kann entweder Funktionen und Daten
an feste Orte (Prozessoren, Platten) binden oder einen Plan erstellen, welche Funktionsaufrufe wo durchgefiihrt und
wann sich die Daten an welchen Orten befinden sollen. Neben der Plazierung der Auftrdge und Daten kann er auch
die Reihenfolgen bzw. Zeitpunkte der einzelnen Auftragsbearbeitungen festlegen (freilich im Rahmen der vom Pro-
grammierer festgelegten Reihenfolge-Beziehungen, d.h. er flgt nur zusétzliche Beziehungen ein).

Zur Plazierung von Funktionsausfiihrungen gehért die Bereitstellung replizierter Funktionsserver in geeigneter
Anzabhl; die Plazierung der Daten beinhaltet geeignete Partitionierung und Replikation von Datenobjekten.

Wenn statische Lastbalancierung lediglich Yarbereitung der dynamischen Lastbalancierdient, so wird der

statische Balancierer wenige Alternativen bestimmen, zwischen denen der dynamische Balancierer zur Laufzeit wah-
len kann. AuBerdem kann er die kritischen Grof3en festlegen, die der dynamische Balancierer beobachten und zur
Entscheidung heranziehen soll. Eine andere Méglichkeit besteht darin, dal3 der statische Balancierer eine feste Plazie-
rung und einen festen Ablaufplan bestimmt, den der dynamische Balancierer zur Laufzeit modifiziert (auf die tatsach-
liche Situation hin optimiert).

Dynamische Lastbalancierungindet zur Laufzeit der Anwendungen statt. Der Balancierer bekommt zur Laufzeit

neue Auftradge oder Auftragsgruppen. Diese Funktionsaufrufe weist er, der Situation angepal3t, geeigneten Serverin-
stanzen zu. Dazu muf} er Uber den aktuellen Zustand seiner Ressourcen und Serverinstanzen informiert sein. Ein
dynamischer Balancierer kann auch die Plazierung bzw. Partitionierung von Daten und Serverinstanzen &ndern, wenn
dies sinnvoll ist, oder sogar laufende Funktionsausfilhrungen auf andere Prozessoren wagegeaT)

4.3 Zentrale und dezentrale Lastbalancierung

Fir statische Lastbalancierung ist es unwesentlich, ob sie von einer zentralen Komponente durchgefihrt wird oder
auf mehrere verteilt ist. Der Balancierer mufd das gesamte System tberblicken und mdéglichst grof3e Gruppen von
Auftragen im Zusammenhang einplanen. Der Geschwindigkeitsgewinn (der Balancierung selbst, nicht der Auftrags-
durchfiihrung) durch physische Aufteilung ist gewéhnlich nicht gefragt.

Im dynamischen Fall hat entstehen bei der zentralen Lastbalancierung folgende Probleme:

« Der Balancierer verbraucht selbst einen Teil der Ressourcen, die ihm eigentlich fiir die Durchfiihrung der Auf-
trage zur Verfliigung stehen.

« Die Zeit, die verstreicht bis er fir einen Auftrag den geeigneten Ort berechnet hat, zahlt bereits mit zur Ausfih-
rungsdauer.
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» Esist sehr aufwendig, sténdig die aktuellen Informationen Uibers Gesamtsystem an eine Stelle zusammenzutragen.

» Der zentrale Balancierer wird zum Engpal3, wenn sehr viele Auftrage kommen, da alles durch seine Hande gehen
muf3.

Daher ist es in sehr groBen Systemen und in Anwendungen mit relativ feinkdrnigen Auftrégen notwendig, die Auf-
gabe der Lastbalancierung zumindest physisch, wenn nicht sogar logisch Uber die Prozessoren zu verteilen.

Physisch dezentrale LastbalancierungAuftrage werden von einer lokalen Komponente entgegengenommen.

Diese abstrahiert den Auftrag sowie ihren lokalen Systemzustand (Ressourcenbelastung) und gibt das an die ihr tber-
geordneten Komponente. Der Balancierer an der Spitze der Hierarchie entscheidet nun tber die Plazierung des Auf-
trags oder er entscheidet eine abstrakte Plazierung, die dann auf dem Abwartsweg durch die Balancierer-Hierarchie
prazisiert wird.

Diese Struktur hat den Vorteil, daf3 nicht alle Informationen und Auftrége in jeder Einzelheit zur zentralen Kompo-
nente gebracht werden brauchen, sondern lokal vorverarbeitet werden. Durch die letztlich globale Entscheidung hat
man immer noch eine systemglobale Lastbalancierung, was prinzipiell optimal ist (gabe es nicht die oben erwéhnten
Probleme).

Logisch dezentrale LastbalancierungAuftrage werden lokal entgegengenommen und méglichst lokal verteilt. Die
Lastbalancierer kooperieren auch hier (hierarchisch oder auf einer Ebene), d.h. tauschen Informationen tber lokale
Systemzustande aus. Ein Balancierer kann auch Auftrdge an Partner abgeben oder ihnen Last abnehmen.

In groReren Systemen hat Lastbalancierung notwendigerweise diese Struktur; ohne weitgehend dezentrale Uberwa-
chung und Entscheidung wiirden Engpéasse entstehen. Man verzichtet dabei allerdings (durch lokale Entscheidungen
und abstrakte Systemsicht) auf global optimale Lastbalancierung, die offensichtlich ab einer gewissen Systemgréi3e
nicht mehr maoglich ist.

Heuristische Verfahren

Da die allgemeine Lastbalancierung ein komplexes Problem ist (sie ist NP-vollstdndig, d.h. der Aufwand steigt expo-
nentiell mit der Zahl der Elemente wie Ressourcen und Auftrage), werden oft vereinfachte Verfahren entwickelt. Sie
beschranken sich auf spezielle Hardwarestrukturen oder Anwendungsklassen, betrachten nur eine kleine Auswabhl
relevanter Lastinformationen oder nehmen nur einen kleinen Teil der Funktionen wahr, die eine Lastbalancierung
durchfiihren kénnte (siehe Kapitel 2.1): man hat nur Auftrdge ohne Reihenfolgebeziehungen, man vernachlassigt die
Orte von Daten, vernachlassigt den Kommunikationsaufwand, besitzt nur Prozessoren gleicher Leistung, vernachlas-
sigt Beziehungen zwischen Auftragen (Sekundarlast, Unteraufrufe, Kooperation) oder nimmt fur alle Auftrage glei-
chen Ressourcenbedarf an. In Kapitel 6 werden einige solcher Verfahren vorgestellt.

Anwendungsklassen mit charakteristischem Verhalten der Auftrdge sind etwa Datenbanksysteme, numerische
Berechnungen, graphische Applikationen oder Echtzeitprobleme. Auch Such- und Sortieralgorithmen weisen
bestimmte Lastmuster auf. Allgemein unterscheiden sich die Anwendungsklassen durch das Granulat der Parallelitat
und anhand des Lastschwerpunktestt{eneck resourgeder auf der Rechenzeit, auf den Datenzugriffen oder auf der
Kommunikation liegt CPU bound, Disk boundManche Anwendungsbereiche weisen reguldre, vorhersehbare Ver-
haltensmuster auf, andere lassen sich lediglich statistisch erfassen.

5 Probleme der Lastbalancierung

Wir betrachten typische Schwierigkeiten, mit denen Lastbalancierer konfrontiert werden.

5.1 Vorhersage von Auftragen

Der Lastbalancierer benutzt bei der Einplanung von Auftragen Annahmen ber deren Laufzeitverhalten. Dazu z&hlen
GrolRen wie Rechenzeitbedarf und weitere Last (Sekundarlast), welche die Auftrdge induzieren. Differenzen zwi-
schen den Prognosen und dem tatsdchlichen Lastverhalten bewirken, daR die Lastbalancierung nur noch statistisch
gute Resultate ergibt.
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Da man meist nur sehr grobe statische Bedarfsabschatzungen machen kann, ist dynamische Lastbalancierung sehr
wichtig. Diese kann zur Laufzeit auf das tatsachliche Verhalten der Auftrdge reagieren und die Lastverteilung korri-
gieren oder zumindest die Plazierung weiterer Auftradge auf die momentane reale Situation anpassen.

5.2 Schnelle Schwankungen der Systemlast

Wenn grol3ere Auftrage zu Ende gehen, viele neue Auftrage starten oder einige Auftrége ihr Lastverhalten &ndern
(etwa Wechsel zwischen E/A-Phase und Rechenphase), so sind die Auftrage auf dem bisher gut balancierten System
normalerweise jetzt ungunstig verteilt. Darauf muf3 ein Lastbalancierer reagieren:

« Wenn er laufende Auftrage migrieren kann, so sollte er solche Auftrage, die wohl noch langer laufen werden, auf
unbelastete Prozessoren verlegen. In manchen Fallen kann er auch laufende Ausfiihrungen abbrechen und an bes-
serer Stelle erneut starten. Dabei sind jedoch Konsistenzbedingungen zu beachten (eventuell das bisher berech-
nete rickgangig machen oder die Idempotenz des Auftrags prufen).

« Bei feinkérnig parallelen Anwendungen gibt es keine allzu lang laufenden Auftrage. Der Lastbalancierer braucht
nur weitere Auftrage der neuen Situation angepal3t zu verteilen, dann wird sich die Situation innerhalb kurzer Zeit
entscharfen. Kurze Lastspitzen sind ohnehin kaum vermeidbar.

« Wenn der Balancierer mit statistischen Daten arbeitet oder die Auftragsprofile statistisch ermittelt, so kann er die
Schwankungen aufzeichnen, um diese Auftrage beim nachsten Mal von vornherein richtig einzuschéatzen.

5.3 Kurzfristige Systemuberlastung

Durch Ausfall von Knoten oder plétzlichen Auftragsansturm kénnen einige Knoten Uberlastet werden. Zusatzlich zur
hohen Last machen sich dann die haufigen Prozel3wechsel und die Aus- und Einlagerung von Speicherblécken nega-
tiv bemerkbar. Die Zahl der Fehler und Programmabbriiche erhdht sich erfahrungsgeman und erzeugt weitere Last in
Form von ProzelRende-, Prozel3start- und Recovery-Aktionen.

Ein Balancierer kann versuchen, unwichtige Auftrage voriibergehend zu stoppen und neu hinzukommende zurlickzu-
weisen. Dabei ist zu beachten, daf} dadurch nicht auch wichtige Auftrage lahmgelegt werden (durch Stoppen einer
Funktion, auf die sie warten oder Stoppen einer Ausfuhrung, die wichtige Daten gesperrt halt).

In solchen Situationen ist weniger die Vollbeschaftigung der Prozessoren, sondern mehr die Hauptspeicherausnut-
zung, Anzahl der Prozesse je Prozessor und die Prioritat von Auftréagen fir die Lastbalancierung maRRgeblich.

5.4 Momentan freier Knoten wird im ndchsten Augenblick tberlastet

Ein Knoten, der zur Zeit als unterbeschéaftigt angesehen wird, ist das bevorzugte Ziel von neuen Auftragen, die ja
nicht auf andere, stark belastete Knoten geladen werden sollen. Dadurch passiert es oft, daf} er kurz darauf tiberlastet
ist. Dies ist vor allem bei (logisch) dezentralen Verfahren der Lastbalancierung (siehe Kapitel 4.3) ein Problem.

Ein zentraler Lastbalancierer vermeidet so etwas, indem er, wenn er einem Prozessor einen Auftrag erteilt, sogleich
die momentane Lastangabe dieses Prozessors um die neue (zu erwartende) Last erh6ht. Dezentrale Verfahren kénnen
das Problem etwas mildern, indem sie nicht alle Auftrage zum am wenigsten belasteten Knoten schicken, sondern
statistisch an alle Knoten Auftrage vergeben, wobei die Wahrscheinlichkeiten nach der jeweiligen Belastung der
Knoten gewichtet sind (siehe [Hsu86]).

5.5 Notwendigkeit einer globalen Reorganisation

Dynamische Lastbalancierer passen neue Auftrdge gemal der momentanen Situation gut in das System ein. Was bis-
her lauft, wird so belassen, obwohl einige Auftrage ‘einst’ unter einer vollig anderen Situation eingeplant wurden. Oft
kénnte man, wenn man jetzt alles noch einmal erneut verteilen wiirde, eine viel bessere Systemnutzung erreichen.
Der Lastbalancierer sollte also erkennen, was eine globale Reorganisation bringen wiirde und ob sich der Aufwand
lohnt. Unter globaler Reorganisation versteht man etwa die Migration von Dateien, die Repatrtitionierung von Daten

20



Lastbalancierung in heterogenen Client-Server Architekturen Probleme der Lastbalancierung

oder die Umverteilung von Serverinstanzen. Es ist offensichtlich, daf? solche Aktionen die Systemlast voriibergehend
stark erhhen und man hofft, daf3 die Verteilung hinterher auch wirklich besser ist.

Wenn Lastbalancierungsentscheidungen lokal getroffen werden (bei dezentraler Lastbalancierung, siehe Kapitel 4.3),
so kann der lokale Balancierer einfach die Kontrolle an eine zentralere Instanz abgeben, die globale Aktionen zentral
Uberblicken und durchfiihren kann. Das kann der lokale Balancierer tun, wenn die Last in seinem lokalen System
einen gewissen Schwellwert Ubersteigt oder wenn er feststellt, dal3 er seit langerem gegeniiber anderen (lokalen)
Systemen sehr stark (bzw. sehr wenig) belastet ist.

5.6 Gegensatz Parallelarbeit und Kommunikationsbedarf

Ein Problem, warum man in parallelen Systemen keinen proportionalen Speedup erreicht, ist die mangelnde Paralle-
litdt in den Anwendungen. Das andere Problem ist die teure Kommunikation zwischen Prozessoren. Je feiner das
Granulat der Parallelitat, umso grof3er wird die Menge der Nachrichten, die zwischen den einzelnen Funktionen und
damit oft zwischen verschiedenen Prozessoren ausgetauscht werden.

Der Lastbalancierer muf3 also den Kommunikationsaufwand bei der Verteilung berlcksichtigen. Er kann zwar
gewohnlich das ProzeR3granulat nicht &ndern, aber da Nachrichten zwischen Prozessen auf demselben Prozessor rela-
tiv billig sind, sollten Funktionen, die stark kooperieren, eventuell auf demselben Prozessor laufen (obwohl das keine
echte Parallelitat ergibt).

5.7 Overhead durch Lastbalancierung

Dynamische Lastbalancierer beanspruchen das System durch ihre haufigen Lastmessungen, durch ihre Kommunika-
tion und durch ihre eigentlichen Balancierungsberechnungen. Die Lastbalancierer verstéandigen sich untereinander,
sammeln Informationen von Lastmessungsprozessen und Funktionsaufrufe gehen den Umweg Uber einen Lastbalan-
cierer zur Serverinstanz. Die Uberlegungen des Lastbalancierers zur Verteilung der Auftrage brauchen nicht nur
Rechenzeit, sondern zégern auch die eigentliche Funktionsbearbeitung hinaus.

Der Vorteil der Lastbalancierung wird dadurch wieder verringert, in ungiinstigen Fallen kdnnen die Verarbeitungszei-
ten auch gréRer werden als im unbalancierten Ablauf. Daher muf3 bei dynamischer Lastbalancierung folgendes
beachtet werden:

+ Der Uberwachungs- und MeRaufwand sollte so klein wie mdglich sein; man muR die wenigen entscheidenden
Daten und Gréf3en im System herausfinden und sich auf diese beschrénken.

» Die Lastbalancierung sollte mdglichst dezentral abgewickelt werden. Dadurch verringert man einerseits den
Nachrichtenverkehr, andererseits sind die Balancierungsalgorithmen schon wegen der Grol3e der lokalen Systeme
einfacher und schneller.

« Der Aufwand fur die Balancierung sollte zum Nutzen proportional sein. So lohnt sich fur grol3e, langlaufende Pro-
zesse ein viel hdherer Planungsaufwand als fur feinkérnig parallele Auftrage. Bei gut verteilter, hoher Systemlast
sollten die Lastbalancierer wenig tun (und damit wenig stéren); Planungen kénnen dagegen auf wenig belasteten
Knoten durchgefihrt werden.

« Die MelRperioden und Zyklen fir Umstrukturierungen der Lastbalancierer miissen gut mit den Lastwechselzyklen
der Auftrage lbereinstimmen, damit nicht zu viel gemessen und umverteilt wird, aber noch rechtzeitig auf Bela-
stungswechsel reagiert werden kann.

» Optimale Zuweisungsalgorithmen sind NP-vollstéandig, haben also exponentielle Laufzeit. Daher miissen geeig-
nete heuristische Verfahren angewandt werden, die annéhernd optimale Lésungen liefern.

5.8 Einbindung in bestehende Systeme

Lastbalancierungsverfahren werden meistens in vorhandene Betriebssysteme oder Anwendungsprogramme einge-
baut. Dabei fehlen geeignete Schnittstellen zur effizienten Messung und Regelung des Systems. Das Hauptproblem
aber liegt darin, daR das Betriebssystem und die Software vielschichtig aufgebaut sind. Jede Schicht bietet eine
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abstraktere Sicht auf das darunterliegende System. Auf h6heren Schichten kimmert man sich unter anderem nicht
mehr um die Lagerorte der Daten oder die Ausfilhrungsorte von Funktionen. Das vereinfacht und vereinheitlicht die
Programmierung sehr, aber man verliert den Uberblick tiber die tatsachlichen Kosten der Datenzugriffe und Operatio-
nen. Beispiele sind das Network File System, die virtuelle Speicherverwaltung und Pufferverwaltung im allgemeinen
(siehe auch Kapitel 4.1).

5.9 Geeignete Beschreibung paralleler Anwendungen

« Anwendungen, die als langlaufende, komplexe, sequentielle Prozesse realisiert sind, Gber deren Lastverhalten
nichts bekannt ist, sind der Normalfall. Fur die Lastbalancierung waren aber kurze, kleine Prozesse ideal, deren
Kommunikation und externe Datenzugriffe explizit angegeben sind (siehe Bild). Die Lastprofile sollten das Gra-
nulat haben, mit dem die Lastbalancierung arbeitet. Gré3ere Anwendungen sollten als Kette vieler kurzer Funk-

tionen oder als Netz kooperierender Funktionen realisiert sein.

ey

Sequentielle Programme kann man teilweise durch parallelisierende Compiler aufgliedern, Lastprofile kann man
durch Messungen von Testlaufen erhalten oder vom Programmierer bzw. Benutzer abschétzen lassen. Gewdhnlich
lassen sich sequentielle Anwendungen relativ gut statisch einplanen, sofern man ihren Ressourcenbedarf kennt.

« Auch das andere Extrem verursacht der Lastbalancierung Probleme: Anwendungen, die auf eine ganz spezielle
Systemkonfiguration zugeschnitten sind und nur dort effizient ablaufen. Numerische Verfahren sind oft fir eine
Prozessor- oder Verbindungstopologie geeignet (im Bild ist eine finite-Elemente-Anwendung auf ein Mehrprozes-
sorsystem zu verteilen). Wenn der Lastbalancierer sie aufgrund von Lasterwagungen anders verteilt als der Algo-
rithmus voraussetzt, sinkt die Ablaufgeschwindigkeit sehr stark und der Kommunikationsbedarf wachst unnétig

Ry ‘di % i

Man kann das Problem angehen, indem man solche Topologien explizit in Lastprofilen darstellt. Vorteilhaft ist es,
gemeinsame Lastprofile jeweils flr Gruppen kooperierender Prozesse zu erstellen. Solch komplexe Planungen
sollten nur statisch durchgefiihrt werden, siehe etwa Vorschlage in [Bowen88, Lo88] bzw. Kapitel 6.2 und 6.3.

5.10 Veraltete Last- und Zustandsinformation

Wenn sich die Lastsituation auf dem System schnell &ndert, dann erhalten die Lastbalancierer veraltete, falsche Daten
Uber die Lastverteilung im System. Damit werden sie auch falsche Entscheidungen treffen. Andererseits wirde eine
schnelle und haufige Informationsverteilung das System so sehr abbremsen, daf3 sich die Lastbalancierung nicht mehr
lohnt (siehe Kapitel 5.2). Wie balanciert man grolRe, sich schnell &ndernde Systeme?

» Die Lastbalancierungsentscheidungen missen mdéglichst lokal getroffen werden, ohne globale Informationen oder
eine zentrale Planungsinstanz einzubeziehen. Dazu braucht man eine geeignete, auf das System angepalite Hierar-
chie an Balancierungskomponenten.
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* Lastinformationen missen auf ein Minimum reduziert werden und mdoglichst gebiindelt und zu glinstiger Zeit
Ubers Netz ausgetauscht werden, um den Ablauf der Anwendungen nicht zu bremsen. Die Lange der MeRinter-
valle sollte in derselben GréRenordnung sein wie die Wechselperioden der Last im System (d.h. proportional zum
Auftragsgranulat).

» Durch geeignete statische Prognosen oder Anwendungswissen aus héheren Ebenen der Lastbalancierung kann
man sich einige Messungen ersparen und Entscheidungen vorbereiten.

5.11 Haufige Zugriffe auf zentrale Datenobjekte

Viele Funktionen arbeiten mit einem Datenobjekt, auf das sie alle oft &ndernd zudieif&potDaten). Beispiele

sind Sperrentabellen und Protokolldateien. Wenn man das Datenobjekt auf die vorhandenen Ressourcen verteilt,
gewinnt man meist keine Geschwindigkeit, denn die Konsistenzbedingungen der Daten erfordern eine zentrale Syn-
chronisation und die Ubereinstimmung aller Kopien. Die Verwaltung verteilter Kopien lohnt sich ja nur dann, wenn
relativ viel lesend zugegriffen wird oder die Zugriffe so rechenintensiv sind, dal3 die Kosten fir den Sperrenerwerb
und das verteilen der Anderungen durch den Gewinn der verteilten Berechnung aufgefangen werden.

Hier kann die Lastbalancierung wenig helfen. Das Problem sollte auf Anwendungsebene geldst werden, indem ent-
weder die zentralen Daten feiner aufgegliedert werden, die Konsistenzanforderungen aufgeweicht werden oder spezi-
elle Sperrstrategien angewandt werden (siehe dazu [Peinl88]). Ein Lastbalancierer kann hdchstens entscheiden,
inwiefern sich eine Replikation solcher Daten lohnt. Die Funktionen, die solch zentrale Zugriffe ausfuhren, sollten

auf jeden Fall mit hoher Prioritat bearbeitet werden ([Borr90] beschreil@liga-Server Priority Inversiofro-

blem, siehe Kapitel 6.10).

6 Existierende Ansatze zur Lastbalancierung

Wir sehen uns einige interessante Ansétze zur Lastbalancierung aus der Literatur an. Dabei versuchen wir, sie anhand
folgender Kriterien zu charakterisieren:

» Sind die vorgeschlagen@&trategien statisch oder dynamisch; sind sie zentral oder verteilt?
* WelchesGranulat an Parallelitat wird betrachtet, mit welcher Art von parallelen Systemen wird gearbeitet?

» WelcheLastinformationen werden berticksichtigt (Prozessorlast, Ressourcen-Belastung, Kommunikation, Rei-
henfolgebeziehungen, einzelne Lastprofile / Profile von Auftragsgruppen, Datenobjekte oder Serverklassen)?

» WelcheAufgaben bzw. Fahigkeiten hat die Lastbalancierung (Auftragszuweisung, Proze3migration, Ressource-
Migration, Replikation von Funktionen / Daten, Daten-Partitionierung)?

6.1 Preemptive Scheduling
Strateqie: statisches Verfahren, parallelisiert.

Granulat: nicht festgelegt; nur Simulation.

Lastinformation: statisch vorgegebene Rechenzeitanforderungen und Prozessorleistungen.
Aufgaben: Plazierung, Stoppen, Migration und Fortsetzung von Auftragen.

[Gonzalez78] beschreibt einen Algorithmus, der eine Anzahl von Auftrdgen mit vorgegebenen Rechenzeitbedirfnis-
sen auf eine Menge von gleichartigen Prozessoren so verteilt, dal3 die méglichst schnell abgearbeitet werden. Dieser
Algorithmus wird in [Martel88] parallelisiert.

Gegeben sind #a Auftrdge mit den Rechenbedurfnisserda#p Prozessoren mit den LeistungeiDpe Auftrage

sollen so verteilt werden, dal3 die Zeit, bis der letzte fertig ist, minimal wird. Dabei kann jeder Auftrag zerteilt werden
und die Teile kdnnen irgendwann auf irgendwelchen Prozessoren ablarefemftive Schedulipgnur nicht paral-

lel. Das Stoppen, Migrieren und Fortsetzen von Auftragen wird als kostenlos angenommen. Die Auftrége und Prozes-
soren seien absteigend sortief®=.. 2a;, und p2p,2.. 2pyp). A =21 @ istdie Summe der groRten
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Anforderungen un@® = 2-; ; p; die Leistung dei schnellsten Prozessoren. Die minimale Gesamtlaufzeit betragt
dann

t min=MAX(@1/p 1,8 2/P 2,y @  #p-1 /P #p-1.2 #alP #p) -
Wir betrachten nun das folgende Bild mit verfigbaren Rechenleistungen, in das die Auftrdge eingeplant werden sollen.

P1
3 s
g P
4
N P3 & _
o

S4 Auftrage

5

0 - Zeit

tmin

Im ersten Schritt werden nun dip-1 grofl3en Auftrége nach der Reihe eingeplant, jeder so, daf3 er maxjmal
Laufzeit hat und mdglichst langsame Prozessoren benutzt. Dazu setzt man den Auftrag lingsmbeigschiebt ihn
solange nach rechts (er rutscht dannsihipein, u.s.w.), bis er sich tber,,;, erstreckt. Die folgenden Bilder zeigen
die Einplanung der beiden gro3ten Auftrage.

P1 P1
P2 P2
P3 P3
Ps P4
Ps Ps
- Zeit i
0 trin 0 tmin> Zeit

Im zweiten Schritt werden die restlichen Auftrdge nach demselben Prinzip eingeplant. Der Algorithmus zur Plazierung
der gro3en Auftrage ist von der Komplexitat O(#p*log(#p)), zur Einplanung der Kleinen bedarf es O(#a). Der von
[Martel88] auf #p Prozessoren parallelisierte Algorithmus hat eine Zeitkomplexitat der GroR3e O"(#p’)bagnd
O(#a/#p*log(#a)).

6.2 Statische hierarchische Auftragsverteilung
Strategie: statisches, zentrales Verfahren.
Granulat: parallele Prozesse.

Lastinformation: Kommunikationsaufwand pro ProzeRRlauf und Haufigkeit des Prozel3ablaufs wird zu einer Kenngrole
gemischt. Die vermutlich anfallende Prozessorlast je Prozel3 wird zur Einhaltung der Mindest- und Hochstlastgrenzen
der Prozessoren benutzt.

Aufgaben: Die Prozesse werden auf die Prozessoren verteilt.

[Bowen88] beschreibt ein statisches Lastbalancierungsverfahren, das eine Gruppe von Auftragen unter Beriicksichti-
gung der Kommunikation zwischen den Auftragen auf ein System verteilt. Dabei soll der Kommunikationsgraph der
Auftrage moglichst gut auf den Verbindungsgraph der Prozessoren angepal3t werden. Man erreicht, dald Auftrage, die
stark kooperieren, Uber schnelle Kommunikationskanale verbunden sind.

Man sucht also die Verteilurassign[a]  fur die Auftrdgea auf Prozessoren, bei der die Gesamtkommunikationsko-
sten minimal sind:

MIN assig,(ZAuﬂrége ;Auﬁrége {Kommunikationsbedarf[a,b] * Kommunikationskosten[assign[a],assign[b]])).
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Als Randbedingung ist zu beachten, daf3 die Last auf einem Prozessor innerhalb gewisser Grenzen bleibt, damit kein
Knoten uberlastet wird und die Last nicht vollig ungleich verteilt ist. Man hat damit das Problgoadestic assi-
gnment das sehr aufwendig zu l6sen ist. [Bowen88] schlagt deshalb folgenden heuristischen Algorithmus vor:

» Der Auftragsgraph (und véllig analog der Prozessorgraph) wird in einen Baum umgewandelt. Dabei sind Auftrage
die Blatter; sie werden schrittweise durch Zwischenknoten zusammengefalit, die dann wieder als ein Auftrag
betrachtet werden. Fir einen Schritt der Zusammenfassung nimmt man sich den Auftrag mit der dicksten Kante
(d.h. dem gréRRten Kommunikationsbedarf zu einem Nachbar) und faf3t ihn mit den Auftragen zusammen, mit
denen er stark verbunden ist (eventuell noch mit deren Nachbarn, zu denen diese stark verbunden sind, u.s.w.).
Dann berechnet man neue Kantenstéarken zu den Nachbarn des zusammengefal3ten Knotens. Das Bild zeigt, wie
solch eine Umwandlung stattfinden konnte.

» Der Auftragsgraph wird auf den Prozessorgraph angepalf3t. Dabei beginnt man mit dem Vergleich der Wurzeln und
paf3t dann rekursiv die TeilbAume einander an. In jedem Schritt ist eine Menge von Auftrdgen auf eine Menge von
Prozessoren zu verteilen:

(B
:

Die Auftrage bzw. Prozessoren sind eventuell nur Zwischenknoten (d.h. keine Blatter), aber man kennt fir jeden
Auftragsknoten die Gesamtlast und fur jeden Prozessorknoten das gesamte Lastminimum und -maximum sowie
die bisher dort angehaufte Last. Man teilt nun dem Prozessor, der fur seine Verhaltnisse am wenigsten Last hat,
den Auftrag zu, der am meisten Last beinhaltet. So verteilt man alle Auftrage (dieser Stufe) auf die Prozessoren
(dieser Stufe). Die auf diese Weise an Prozessorgruppen verteilten Auftragsgruppen werden rekursiv genauer
zugeordnet (auf der nachsten Stufe).

* Im Beispiel ist bei der Verteilung der Auftrage D-F und C auf die Prozessoren 3, 4 undP®eEi@peration not-
wendig, da sonst einer der Prozessoren keinen Auftrag erhielte (und damit seine Minimallast nicht erreichen
wirde). Grundsétzlich wird, falls auf einer Stufe keine Zuweisung méglich ist, der Auftrag, der die meiste Last
beinhaltet, aufgegliederPOP); danach wird noch einmal eine Zuweisung versucht.
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[Bowen88] stellt typische Auftragsgraphen vor, sie sind im Bild kurz erlautert. Mit Interferenz sind vor allem ato-
mare Aktionen (z.B. Setzen und Freigabe von Sperren) gemeint, wahrend deren Durchfiihrung der Prozel3 alle ande-

OO O O

Pipeline-Verarbeitung /Ci

zentraler Server Interferenz

6.3 Statische Auftragszuweisung in Broadcast-Netzen

Strategie: statisches, zentrales Verfahren.
Granulat: parallele Prozesse, Kommunikation tUber Ethernet-Medium.

Lastinformation: Kommunikationsintensitat zwischen Prozessen. Durch Beschrankung der Prozesse je Prozessor
begrenzt man die Last.

Aufgaben: Die Prozesse werden zu Gruppen zusammengefalt, die je auf irgendeinem Prozessor laufen kénnen.

Die beiden Verfahren von [Lo88] plazieren Auftrage auf Prozessoren so, dal3 die InterprozeBkommunikation minimal
wird. Hier wird ein Broadcast-Medium vorausgesetzt (z.B. Ethernet). Dadurch ist die Kommunikation zwischen allen
Prozessoren gleich teuer und jede Nachricht zwischen zwei Prozessoren belastet das gesamte Verbindungsnetz. Das
Problem beschrankt sich darauf, die Auftrage geeignet in Gruppen zusammenzufassen, sodafd die Summe aller Nach-
richten zwischen allen Gruppen am geringsten ist. Diese Gruppen kénnen dann beliebig auf je einen Prozessor ver-
teilt werden. Der Lastbalancierung wird Rechnung getragen, indem man die Zahl der Prozesse je Prozessor begrenzt.
Wir betrachten kurz die beiden Verfahren:

» Das erste Verfahren lauft in polynomieller Zeit und ergibt die optimale Losung, solange kein Prozessor mehr als
zwei Auftrage erhalten darf. Man konstruiert zuerst ein maxinMégshingauf dem Graph der Auftrage, d.h.
eine Menge von Kanten, die keinen Knoten gemeinsam haben (das maMatehiengist die Kantenmenge, bei
der die Summe der Kantengewichte am gréR3ten ist). [Lo88] nimmt alle Kommunikation als gleich an, d.h. hier
enthalt das maximalgatchingam meisten Kanten. Das Bild (links) zeigt Batching(bestehend aus den brei-
ten Kanten). Man packt nun die Matchingverbundenen Auftrage je auf einen Prozessor, wie im Bild (rechts)
dargestellt. Die Ubrigen Auftrage verteilt man dann je zu zweit auf die freien Prozessoren.

» Der zweite Algorithmus verteilt in polynomieller Zeit auch mehr als zwei Auftrage je Prozessor, garantiert aller-
dings kein optimales Ergebnis. Der Auftragsgraph wird so weit zusammengeschrumpft (indem man mehrere Auf-
trdge zu je einem Knoten zusammenfaf3t), dal’ er nur noch aus zwei Auftragen je Prozessor besteht; darauf kann
der erste Algorithmus angesetzt werden.

Beim Zusammenfassen sucht man immer wieder die Kante mit dem gréf3ten Gewicht und vereinigt die beiden
Knoten (sofern sie zusammen nicht mehr Auftrage haben, als je Prozessor erlaubt ist). Das Kantengewicht zwi-
schen zwei Auftragsgruppen ist die Summe der Einzelkantengewichte zwischen ihnen.

6.4 Ressourcen-Migration

Strategie: statisches, zentrales Verfahren.
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Granulat: Datenbankanfragen (Queries).

Lastinformation: die Standorte der Auftrage, ihre Ressourcenzugriffe und die anfangliche Verteilung der Ressourcen
sind bekannt. Beachtet wird Migrationsaufwand, Aufwand zur Konsistenthaltung von Kopien und Kommunikations-
aufwand bei Remote-Zugriffen auf Ressourcen.

Aufgaben: Umverteilung der Ressourcen.

[Varadarajan88] stellt ein statisches Lastbalancierungsverfahren vor, das Ressourcen zu den Auftrdgen migriert, die
diese bendtigen. Es migriert keine Auftrage, beriicksichtigt dafir die KostBehateZugriffe auf Ressourcen, die

nicht auf ihren Prozessor gebracht wurden. Die Lastbalancierungsaufgabe besteht fir [Varadarajan88] darin, die
gesamten Migrationskosten zu minimieren, wobei die Ausflihrungszeit der Auftrdge in einem gewissen Zeitlimit
bleiben muf3.

Als Anwendung wird die Migration von Dateien in Datenbankanwendungen betrachtet. Man will eine feste Anzahl
von Kopien je Datei méglichst geschickt auf die Prozessoren verteilen. Der Aufwand zur Konsistenthaltung der
Kopien wird implizit in den Migrationskosten mitberticksichtigt. Da man annimmt, dal3 Dateien zwischen verschie-
denen Prozessorpaaren parallel migriert werden kénnen, wird der Migrationsaufwand desjenigen Prozessorpaares
minimiert, bei dem er maximal ist.

Da dieses Problem bereits NP-vollstandig ist, wird ein heuristisches Verfahren vorgestellt. Dabei werden nur Grup-
pen von Prozessoren betrachtet; Prozessoren, deren Auftrage &hnliche Ressourcenbedirfnisse haben, kommen
jeweils zusammen in eine Gruppe. Dateien werden nur zwischen Gruppen migriert. Da die Auftrage einer Gruppe
ahnliche Ressourcenbeddrfnisse haben, geht man davon aBerdaf@Zugriffe auf Ressourcen innerhalb der

Gruppe bleiben. Der Lastbalancierer soll nun die optimale Migrationsvorschrift fiir die Dateien finden, d.h.:

minimiereMAXsyppen g, h ~ (Migrationskosten[g->h]) ,
wobei in jeder Gruppa gelten muf3

#Auftrage[a] * Rechenzeit_pro_Auftrag

#nach_a_zu_migrierende_Kopien < Zeitlimit

Nachrichtenkosten[a] +

Dazu hat man Naherungsformeln fir die Migrationskosten und die Nachrichtenkosten.

Die Simulationen ergeben bei geeigneter Gruppenbildung Ergebnisse, die sehr dicht an der Ideallésung liegen.

6.5 Vier Strategien im Vergleich
Strategie: statische und dynamische, zentrale Verfahren.
Granulat: kurze Berechnungen mit Pipeline-Struktur. Es werden Pipeline-Topologien betrachtet.

Lastinformation: die statischen Strategien kennen Reihenfolgebeziehungen und Rechenzeitbedarf. Die dynamische
Strategie berlcksichtigt einzelne Datenabhéngigkeiten zwischen Teilschritten von Auftragen und den momentanen
Bearbeitungszustand der Auftrage.

Aufgaben: Zuweisung von Auftrdgen an Prozessoren. Das dynamische Verfahren kann laufende Auftrage umvertei-
len.

[IgbalB86] vergleicht durch Simulation drei statische Lastbalancierungsverfahren und ein dynamisches Verfahren, wel-
ches Reihenfolgebeziehungen zwischen Auftrdgen ausnutzt. Dabei betrachtet man kettenartige Auftrage (Pipeline-
Verarbeitung), die auf einer Kette von Prozessoren ablaufen sollen. Es folgen die Verfahren:

1. Der Algorithmus erzeugt eine optimale, statische Zuweisung einer Auftragskette auf eine Prozessorkette. Dazu
werden Teilketten so auf je einen Prozessor gelegt, dal? die Last des am stérksten beladenen Prozessors minimal
wird. Dazu schreibt man alle Mdglichkeiten der Auftragsverteilung neben die Prozessoren; man rechnet fur jede
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Auftragsgruppe auf einem Prozessor die erzeugte Prozessorlast aus. Dann sucht man die Kombination heraus, bei
der die groR3te Prozessorlast minimal ist. Im Bild ist eine Kette von 9 Auftrdgen auf eine Kette von 4 Prozessoren
zu verteilen.

O» 2 » G ) » = —»(9) Reihenfolgebeziehungen der Auftrage

Die dick eingezeichnete Kombination bezeichnet diese Verteilu «> > <>
i ‘_lo 2 ko k&)

2. Diese Heuristik teilt die Auftragskette in zwei Teile auf, sodal die Differenz zwischen den beiden Ausfiihrungs-
zeitsummen maoglichst klein wird. Diese Halften werden rekursiv weiter halbiert. Das Verfahren eignet sich fur
Systeme mit einer Kette vof! Prozessoren.

3. Man gibt sich eine Grenze fiir das maximale Ungleichgewicldr Last zwischen zwei Prozessoren vor. Dann
tastet man sich mit binarer Suche so nahe man will an das kleinstmégliche u heran, fiir das dieAfobktion
noch eine Zuweisung findet. Die Funktion lauft folgendermalRen ab:

function PROBE (a Auftrage p  Prozessoren Ungleichgewichi): boolean;
begin
i=1,j=1
for each processor:
repeat j++ until j=p or Gewicht der Kettdi..j]>u
if j=m then return TRUE (alle Prozesse sind zugewiesen)
assign Kette[i..j] to current processor
i=j;
next processor
return FALSE  (es sind Prozesse Ubrig geblieben)
end

4. Die mogliche Arbeit soll bei allen Prozessoren etwa gleich sein. Wenn ein Prozessor (im Vergleich zu seinen
Nachbarn) zuwenig mogliche Arbeit hat, so Gbernimmt er einen Auftrag von seinem héchstbeladenen Nachbarn.
Der Lastunterschied muR3 so grof3 sein, dal3 sich die Migration des Auftrages lohnt. Die mdgliche Arbeit eines Pro-
zessors ist die Zeit, die er braucht um all seine Auftrdge soweit zu erledigen, wie momentan die Daten dazu ver-
flgbar sind.

Zur Bestimmung der mdglichen Arbeit eines Prozessors hat man die Auftrage jeweils in Schritte unterteilt. Zu
jedem Schritt kennt man die Daten, die er bendétigt. Er kann ausgefiihrt werden, sobald die Schritte der anderen
Auftrage, die diese Daten produzieren, beendet sind. So kann man aufsummieren, wieviele Schritte der Prozessor
in seinen Auftrédgen jetzt bearbeiten kann. Der Wert muf3 jedesmal, wenn Daten ankommen oder ein Auftrag ver-
schoben wurde, aktualisiert werden.

Die Simulationsergebnisse zeigen, dal? die dynamische Strategie wesentlich erfolgreicher arbeitet, wenn sie auf
einer statisch lastbalancierten Zuordnung startet. Man kann sie als Verfeinerung der statischen Strategien einset-
zen.
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6.6 Warteschlangenmodelle

Strategie: dynamische, zentrale Verfahren kdnnen eingebaut werden.
Granulat: nicht festgelegt, reine Simulation.

Lastinformation: Rechenzeitbedarf, Bedarf an passiven Ressourcen, Kommunikationsmenge und Reihenfolgebezie-
hungen (deterministische und nichtdeterministische). Auftragslaufzeiten exponentialverteilt.

Aufgaben: Die Auftrage werden zur Laufzeit Prozessoren zugewiesen.

[Thomasian86] analysiert Antwortzeiten von Auftragen mithilfe von Zustands-Wahrscheinlichkeiten. Das Computer-
system wird durch die Geschwindigkeiten der Prozessoren, Kanale und Platten beschrieben. Dazu spezifiziert man
eine Menge von Auftragen, die abzuarbeiten sind, mit ihren Ressourcenbedurfnissen. Die wirklich von bestimmten
Geraten beanspruchte Zeit wird berechnet, sobald der Auftrag diesen Geréaten zugewiesen wurde. Die Zuweisung

fuhrt einSchedulezur Laufzeit aus, dessen Strategie austauschbar ist.

In der Auftragsbeschreibung kénnen Reihenfolgebeziehungen zwischen Aufirédgenhilistischangegeben wer-

den: zu jedem Auftrag gibt man eine Liste von Folgeauftrdgen mit Wahrscheinlichkeiten an. Ist der Auftrag beendet,
so werden alle Folgeauftrage, unter der jeweils angegebenen Wahrscheinlichkeit, gestartet. Danebersied auch
ministischeReihenfolgebeziehungen erlaubt; man spezifiziert zum Auftrag eine Liste von Auftrdgen, auf deren \oll-
endung er warten muf3.

Der Simulator baut nun schrittweise (nicht in Zeitschritten!) einen Zustandsdapko(/-Ketté auf. In jedem

Schritt berechnet er die mdéglichen Ablaufzustdnde samt der Wahrscheinlichkeit, mit der sie auftreten und der Zeit,

um sie zu erreichen. Ein Ablaufzustand besteht einfach aus einer Menge von Auftrdgen, die gerade bearbeitet wer-
den. Aus den Zustanden eines Schrittes berechnet er die Zustdnde des néchsten Schrittes: die laufenden Auftrage wer-
den mit exponentialverteilter Wahrscheinlichkeit fertig und starten dadurch Folgeauftrage.

Das Bild zeigt links die (deterministische) Reihenfolgeabhangigkeiten zwischen Tasks und rechts die Markovkette,
die der Simulator daraus erzeugt. In den Zustanden stehen jeweils die Auftrdge, die derzeit laufen

Start D ist ferti?,
o ABD A,B,E und Flaufe
A ist langst fertid
B ist fertig,
C startet BD AD ABEF
E B @@
CD| | BEF AEF AB AB
2 B B
D CEF| | BF A BE|| AB AE
Ende
C wartet auf A und B, EF| | CF CE B
E wartet auf D
F E C
Ende

6.7 Dynamische Lastbalancierung in Datenbankanwendungen

Strategie: dynamisches, zentrales Verfahren.

Granulat: Transaktionen auf Datenbankrechnern, eingeteilt in Ressourcenzugriffe.

Lastinformation: genaue statistische Lastprofile, die Rechenzeit und Datenbankzugriffe auf bestimmte Datenbanken
enthalten. Last wird anhand der Kosten gemessen, welche die laufenden Transaktionen durch Rechenzeit und Kom-
munikation erzeugen.
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Aufgaben: Zuweisung von Transaktionen an je einen Datenbankrechner.

[Yu86] stellt vier dynamische Strategien vor, die den Ausfiihrungsort von Transaktionen in Datenbankanwendungen
bestimmen. Die Transaktionen greifen dabei auf mehrere verteilte Datenbanken zu (siehe Bild). Ein Front-End Rech-
ner nimmt Auftrdge entgegen und weist sie je einem Datenbankrechner zu, der sie ausfuhrt und das Ergebnis an den
Front-End Rechner zurtickgibt.

AL
Fron/ B
\

C

End
—J

o)

Die einzelnen Datenbankzugriffe werden jedoch immer von dem lokalen Datenbankrechner durchgefihrt (unabh&n-
gig davon, welcher Rechner die Transaktion bearbeitet). Die vier Strategien funktionieren folgendermafien:

1.

Ein ankommender Auftrag wird an den Knoten geschickt, bei dem gerade am wenigsten Auftrage laufen. Dabei
werden Auftrage, die auf I/O warten, nicht mitgerechnet, sondern nur solche, die derzeit Rechenleistung in
Anspruch nehmen. Das Verfahren eignet sich gut, falls die Auftrdge hauptsachlich lokal auf dem einen Prozessor
abgearbeitet werden.

Diese Strategie schatzt fir den ankommenden Auftrag die zu erwartenden Antwortzeiten der verschiedenen Kno-
ten ab und sendet den Auftrag zu dem Knoten mit der kiirzesten Antwortzeit. Eine Transaktionsverarbeitung wird
hier modelliert durch ein Anwendungsprogramm, das hin und wieder Datenbankzugriffe tatigt. Die Datenbankzu-
griffe bestehen aus einem Teil Rechenzeit des lokalen Datenbankrechners und aus einem Teil Platten-Wartezeit. In
diesem Modell kann man die Antwortzeit folgendermalRen abschatzten:

Antwortzeit(Transaktionstyp k auf Knoten i Brozessornaistung/Last()

#DB_Zugriffe(k, j) i’)( lokale_Zugriffskosten(k, 1)9

- + Kommunikationskosten(k,
T Z Prozessorleistung/Last(l) \ , Kommunikationskostengk, j

DBsj
+ Z #DB_Zugriffe(k, j) * I/O_Wartezeit_pro_Zugriff
DBsj

Dabei sind die Kommunikationskosten = 0, falls j=i, d.h. der Zugriff lokal geschieht.

Nun hangt die Antwortzeit davon ab, welches malR man fur die Last der Prozessoren verwendet. In der zweiten
Strategie wird hier (wie in der ersten Strategie) die Zahl der laufenden Auftrage verwendet.

Die dritte und auch die vierte Strategie verwenden dieselbe, oben beschriebene, Formel zur Abschéatzung der Ant-
wortzeit. Das dritte Verfahren schéatzt aber die momentane Last eines Prozessors anders ab: als Mal3 summiert man
die diesem Prozessor von allen derzeit (irgendwo) laufenden Transaktionen drohende Arbeit auf. Analog zur obi-
gen Formel summiert man den Anwendungsbedarf sowie den Aufwand der lokalen DB-Zugriffe auf fir die Tran-
saktionen, die lokal laufen; dazu addiert man die Kommunikationskosten und den Aufwand der DB-Zugriffe far

alle Transaktionen, die anderswo ablaufen.

In der vierten Strategie wird (gegentber der dritten) nicht die Arbeit aufsummiert, welche die derzeitigen Auf-
trage dem Prozessor wohl aufhalsen, sondern die Zeit, die diese Auftrage in dem einen Prozessor zubringen.

Die Simulationsergebnisse stellen die beiden letzten Strategien als am erfolgreichsten heraus; meist sind alle vier
Strategien besser als eine optimale statische Zuweisung.
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6.8 Mel3grofl3en fur die Knotenbelastung
Strategie: dynamisches, zentrales Verfahren.

Granulat: UNIX-Prozesse.

Lastinformation: zu erwartende Antwortzeiten aufgrund momentaner Knotenlasten. Dabei werden verschiedene
Auftragstypen und alle Ressourcen der Knoten bertcksichtigt.

Aufgaben: Zuweisung eines neuen Auftrages an einen Knoten.

[Ferrari86] untersucht verschiedene Grél3en, die in der Lastbalancierung verwendet werden, um die Last der Knoten
zu bestimmen. Als Grundelemente nennt er die Prozessor-Nutausgt{me, die Zahl der ausfiihrbaren Prozesse

(Run Queue Lengthund den Streck-Faktor (Verhaltnis der Ausflihrungszeit auf dem belasteten Knoten zur Zeit auf
demselben Knoten, wenn er frei ist).

Dabei werden Auftrage nur fir sich alleine betrachtet (keine Beziehungen zwischen Auftragen). Als Mald fiur die
Bearbeitungsgeschwindigkeit wird die Antwortzeit des Auftrags gewahlt (und nicht der mittlere Durchsatz aller Auf-
trage). [Ferrari86] leitet ein Mal zur Abschéatzung der Knotenlast her. Man gibt einen Aufoag TypTyp(A)

vor und erfahrtum wieviel die Antwortzeit fiir Auftrag(bei allen momentan auf dem Knoten laufenden Auftr&@yen
samt unserem neueg)oRRer ist als die Antwortzeit fié , wenn der Knoten frei war®ie Knotenlast héangt also

davon ab, welchen Auftragstyp man starten méchte:

#Ressourcen_Zugriffe(Typy, r))

Antwortzeit (A allein auf dem Knoten) > (* Bearbeitungszeit(Ty@). )

Ressourcen r

#Ressourcen_Zugriffe(Tygy, r)
Antwortzeit (A und B auf dem Knoten) 3 (* Bearbeitungszeit(Tyg), r) )
+ 1)

Ressourcen - (Mittlere_Schlangenlange_an_Ressource(r)

Dabei wurden die mittleren Schlangenlangen im laufenden System gemessen, d.h. durch die Auftrage B verursacht.
Knotenlast (Typ(A)) = Antwortzeit (A undB auf dem Knoten) Antwortzeit (A allein auf dem Knoten)

Die Ressourcen eines Knotens sind hauptsachlich der Prozessor (bzw. die Prozessoren bei Multiprozessorknoten), die
Platten und die Kanéle. In der Praxis sind die meisten Anwendungen an eine Ressource géBuhbenr(d sel-

tenDisk bound, sodal? man nicht immer die Summe Uber alle Ressourcen der Knoten bilden muf3. Wenn man auch
noch die unterschiedlich groRen Ressourcenbedirfnisse der Auftragstypen vernachlassigt, so erhalt man die oft ver-
wendete Zahl der laufenden Auftradrub Queue Leng}lals Mal? fur die Belastung eines Knotens.

Die Messungen bestéatigen das, zeigen aber auch das Problem, daf3 die momentanen Schlangenlangen sich sehr
schnell &ndern und daher nicht besonders représentativ sind.

6.9 Lastbalancierung im PROSPECT-Projekt

Strategie: dynamisches, zentrales Verfahren.

Granulat: Server-Aufrufe. Es wird ein busgekoppekbsared-nothindMiehrprozessorsystem benutzt.
Lastinformation: momentane Prozessorlast, freie Serverinstanzen.

Aufgaben: Zuweisung eines Aufrufs an eine Serverinstanz.

DasPROSPECProjekt [Reuter86, Duppel87, Duppel87b, Duppel88, Duppel88b, Duppel89, Duppel89b, Reuter90]
befafl3t sich mit der Organisation von transaktionsinterner Parallelitéat. Die Schwerpunkte liegen auf parallelen Join-
Algorithmen, parallelen deduktiven Datenbanksystemen, Behandlung komplexer Objekte und der dynamischen Last-
balancierung. Als Beschreibungsmittel und Laufzeitumgebung paralleler Ablaufe wutshedtuleentwickelt.
Anwendungen werden in Aktionen zerlegt und durch Ereignisse synchronisiert; der Scheduler bietet Ortstransparenz
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sowie Parallelitéat durch Serverklassenverwaltung und Nachrichten-Routing. Fir den Einsatz in groRen Systemen
kann der Scheduler in Form hierarchisch vernetzter, kooperierender Komponenten konfiguriert werden.

Lastbalancierung wird irBchedulerealisiert, indem er die Instanzen einer Serverklasse jeweils reihum benutzt oder
indem er jeweils eine freie Instanz auf dem am wenigsten belasteten Prozessor wahlt.

6.10 Lastbalancierung in lose gekoppelten Systemen
Strategie: dynamische Verfahren.

Granulat: Server-Aufrufe. Es wird ein busgekoppekbsayed-nothingMehrprozessorsystem benutzt.
Lastinformation: momentane Prozessorlast, freie Serverinstanzen.
Aufgaben: Zuweisung eines Aufrufs an eine Serverinstanz.

[Borr90] beschreibt die Probleme der Lastbalancierung von Systemen, deren Knoten keine gemeinsamen Ressourcen
besitzen und die Uber Nachrichten kommunizieren. In solchen Systemen laf3t sich keine gerReindQueueeca-

lisieren und die Migration laufender Prozesse ist sehr aufwendig. Wegen den Kosten fur Zugriffe auf nicht-lokale
Ressourcen ist es oft wichtiger, die Auftrdge zu den Ressourcen zu legen, als die Prozessoren gleichmafig zu bela-
den.

Da ein Prozel3start sehr teuer ist, werden fir die Auftrage Serverklassen (eine Serverklasse je Auftragstyp) bereitge-
stellt. Ein Aufruf besteht dann nur noch aus einer Nachricht an eine bereits wartende Instanz der Serverklasse. Die
Zahl der Instanzen einer Serverklasse begrenzt allerdings die Zahl der parallel ablaufenden Auftrage dieses Typs.

Man st63t auf da€lient-Server Priority InversiofProblem: ein Server, der einen stark benutzten Datensatz bedient,
l&uft mit sehr hoher Prioritéat, da alle anderen Server, die auf die Daten zugreifen, standig auf ihn warten mussen.
Ansonsten wirde dieser Server zum Engpal3. Leider bedient er auch die Server, welche sehr niedrige Prioritat besit-
zen, mit hoher Prioritat und bremst dadurch andere wichtige Ablaufe auf demselben Prozessor.

Als Ausweg schlagt [Borr90] vor, dal? dieser Server unwichtige Zugriffe zurlickstellt, wenn wichtigere warten, bzw.
seine Prioritat senkt, wenn er durch einen unwichtigen Zugriff einen wichtigeren Prozel3 auf seinem Prozessor aus-
bremst. Auftrége an den Server sollten sehr kurz sein, sodal3 er schReibawyf InversionSituationen reagieren

kann.

Wenn sich mehrere Instanzen einer Serverklasse auf einem Prozessor befinden, so kann man zumindest fir diese eine
gemeinsam®un Queueealisieren, um die Last unter diesen Instanzen optimal zu verteilen.

6.11 Lastbalancierungsprobleme im Datenbankbereich

Strategie: dynamisches, hierarchisches Verfahren (es wird aber keines vorgestellt).

Granulat: Datenbankanwendungen.

Lastinformation: der Schwerpunkt liegt auf der Beachtung von parallelen Zugriffen auf gemeinsame Datenobjekte.
Aufgaben: nicht genau spezifiziert.

[Harder87] erlautert unter anderem die speziell in Datenbankanwendungen auftretenden Schwierigkeiten bei der
Lastbalancierung. Viele Auftrage greifen auf wenige gemeinsame Datenobjekte zu; das schréankt die Parallelarbeit
einerseits durch den zentralen Ort der Daten und andererseits durch die Synchronisation der Zugriffe (logische Kon-
sistenzbedingungen der Daten) stark ein.

Man mufl3 einen geeigneten Grad an Parallelitét finden: zu wenig Parallelarbeit nutzt die Ressourcen des Systems (vor
allem die Prozessorkapazitéten) nicht aus; bei wenig Parallelitét erreicht man die besten mittleren Bearbeitungszei-
ten; zu hohe Parallelarbeit fuhrt zu grof3en Zeitverlusten sowie Verklemmungen durch die Sperrprotokolle und damit
zu unndtig haufigem Abbruch von Transaktionen.
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{Harder87] schlagt fir gro3e Systeme eine hierarchische Lastbalancierer-Struktur vor. Globale Entscheidungen sol-
len auf hoher Ebene getroffen und in den niedrigeren Ebenen verfeinert und angepal3t werden.

6.12 Dynamische, verteilte Lastbalancierung
Strategie: dynamisches, verteiltes Verfahren.
Granulat: Prozesse auf vernetzten Workstations.

Lastinformation: bei der momentanen Prozessorauslastung wird die Zahl der laufenden Prozesse sy mie
bericksichtigt. Der Aufwand zur Migration eines Prozesses wird beachtet.

Aufgaben: Weitergabe ankommender Auftragerfiote ExecutiQrund Migration laufender Auftrage.

[Ezzat86] beschreibt ein dynamisches, verteiltes Lastbalancierungsverfahren. Jeder Knoten mif3t periodisch seinen
Lastzustand und sendet diesen, falls er sich stark gedndert hat, den Lastbalancierern der anderen Knoten zu. Auf diese
Weise ist jeder Knoten Uber die aktuelle Last der anderen informiert und kann entscheiden, wann seine Last so weit
Uber dem Durchschnitt liegt, daB sich die Migration eines Auftrages zu dem am wenigsten belasteten Knoten lohnt
(ProzeRmigration). Vor allem kann er, sobald er einen neuen Auftrag erhalt, entscheiden, ob er diesen selbst ausfiihrt
oder sofort an einen anderen abgibt (durch eRemote-Shekufruf).

Die Last eines Knotens wird anhand der Zahl der laufenden Prozesse sowie anbasy-tievebeurteilt:
lokale_Last=f 1 (#laufende_Prozesse) + f >(#laufende_Prozesse/busy_time_Anteil)

6.13 Globale Lastbalancierung auf Broadcast-Systemen
Strategie: dynamisches, dezentrales Verfahren.

Granulat: Prozesse. Betrachtet werden vernetzte Workstations.
Lastinformation: momentane Prozessorauslastung (Auftragsschlangenlange).
Aufgaben: Migration von Auftragen.

[Baumgartner88] untersucht eine globale, dynamische Lastbalancierungsstrategie. Auf einem System mit Broadcast-
Bus (vernetzte Workstations) ermitteln die Prozessoren den Knoten mit minimaler sowie den mit maximaler Last.

Der hochstbelastete gibt dann einen Auftrag aus seiner Warteschlange (kein Multitasking) an den am wenigsten bela-
denen Prozessor ab. Als Lastmal wird die Lange der Warteschlange verwendet. Das Problem besteht nun darin, die
Knoten mit maximaler und minimaler Last effizient zu ermitteln.

Solange man unbeschéftigte Knoten im Netz hat, ist es wichtig, den Auftrag des héchstbelasteten Knotens sofort an
einen unbelasteten zu senden, damit der direkt mit der Bearbeitung beginnen kann. Sind alle Knoten beschéftigt, so
landet der migrierte Auftrag sowieso in einer Warteschlange. Dann kann die Minimum-Maximum Suche mit héherer
Prioritat ablaufen. Die Suche nach dem Lastminimum verlauft folgendermalfien (analog die Suche nach dem Maxi-
mum):

Alle Knoten kennen das Intervall, in dem sich die minimale Last befindet. Zudem wissen sie, ob sich ein Knoten
in diesem Intervall befindet. Das Intervall wird solange eingeschréankt, bis der Knoten mit minimaler Last fest-
steht. Jedesmal, nachdem einer die neuen Intervallgrenzen bestimmt hat, versuchen alle diejenigen, die noch in
diesem Intervall liegen, sich zu melden, d.h. ihre Last und die nachsten Intervallgrebhmadzastenin Ether-
net-Netzen (Kollisionserkennung) kommt dabei genau einer durch, die anderen kollidieren oder empfangen schon
vorher die Broadcast-Nachricht des schnellsten Knotens. Die Nachricht des ersten Knotens ist damit fr alle gil-
tig.

Jeder Knoten durchlauft also folgenden Algorithmus:

Intervall_I= 0; Intervall_r= 1; found= false

repeat
Intervall_r?= (Intervall_| + Intervall_r) /2 /*versuche die linke Halfte des Intervalls*/
if Last < Intervall_r? then /*Knoten ist selbst noch in der linken Halfte*/
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try_broadcast(Last)

if not any_broadcast() then /*niemand ist mehr in der linken Intervallhalfte*/
Intervall_I= Intervall_r? /*Minimum muf3 in der rechten Halfte liegen*/
else [*jemand ist noch in der linken Halfte. Sein Wert wird als neue rechte Grenze benutzt*/
Intervall_r=read_broadcast() [*das kann der eigene Lastwert oder der eines anderen sein*/
if Intervall_|=Intervall_r then found= true
until found

Die Migration von Auftréagen ist billig, solange alle Knoten auf denselben Sekundérspeicher zugreifen. Das ist bei
Workstations mit zentralem Plattenserver der Fall. Eine Auftragsmigration wird realisiert, indem der Quellknoten
durch ein Remote-Shell Kommando den Auftrag auf dem Zielknoten ausfihren IaRt.

6.14 Die dynamische, dezentrale Gradientenmethode
Strategie: dynamisches, dezentrales Verfahren.

Granulat: nicht festgelegt, reine Simulation.

Lastinformation: momentane Prozessorauslastung.

Aufgaben: Migration von Auftragen.

[Lin87] stellt ein Verfahren vor, bei dem die Prozessoren nur die lokale Last sowie die ihrer Nachbarn kennen. Aller-
dings pflanzt sich die Lastinformation durch das Netz fort, sodal3 im Laufe der Zeit eine globale Gleichverteilung der
Last erreicht wird.

Jeder Prozessor ist entweder wenig, mittel oder stark belastet. Die Idee besteht darin, dal ein stark belasteter Prozes-
sor einen Auftrag in Richtung des néchsten wenig beladenen Prozessors schickt. Der Auftrag wird solange weiterge-
geben, bis er auf einem leicht beladenen Prozessor ankommt, der ihn dann behélt. Dazu hat jeder Prozessor ein Mal3
fur seinen Abstand zum né&chsten leicht belasteten Prozessor.

Wenn das System voll belastet ist, d.h. kein wenig belasteter Prozessor existiert, so werden auch keine Auftrage mehr
migriert. Dies wird durch einen Maximalabstand realisiert. Ein Knoten, der Maximalabstand als Entfernungsmalf hat,
weil3 keinen Weg zu einem leicht beladenen Knoten.

Die Berechnung bzw. Aktualisierung der Abstandsmalf3e geschieht wie folgt: Periodisch senden die Prozessoren allen
Nachbarn ihre aktuellen EntfernungsmafR3e. Ein Knoten, der wenig belastet ist, hat den Lastwert Null. Jeder andere
Knoten nimmt als Lastwert den kleinsten seiner Nachbarn und erhdht ihn um Eins. Im Bild sind dieRduratéh

wenig belastet, alle anderen mittel oder schwer:

Mit dem Versenden des Lastwertes Null signalisiert der Knoten zugleich die Bereitschaft, Auftrdge von anderen zu
Ubernehmen. Da Uberbelastete Prozessoren einen Auftrag an den Nachbarn mit dem kleinsten Lastwert abgeben,
wandert der automatisch auf einen wenig belasteten Knoten zu.

[Lin87] untersucht auch die Probleme, die bei Anwendung des Algorithmus auf heterogene Systeme entstehen. Dabei
stof3t er auf drei interessante Punkte:
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1. Nicht jeder Auftrag kann auf jedem Prozessor ablaufen. Wenn also ein Prozessor einen Auftrag erhélt, der einen
anderen Maschinentyp verlangt, so muf3 er ihn ins Netz zuriickgeben. Eine Alternative besteht darin, fir die ver-
schiedenen Prozessortypen separate Lastwerte anzulegen.

2. Wenn die Prozessoren unterschiedliche Leistung haben, so miissen sie verschiedene Malf3e fur leichte, mittlere und
schwere Belastung verwenden.

3. In heterogenen Netzen sind oft die Verbindungen zwischen den Prozessoren ungleich schnell. Daher sollte ein
Prozessor nicht einfach den kleinsten Lastwert seiner Nachbarn um Eins inkrementieren, sondern ein Maf3 fir die
Verbindungskosten zu diesem Nachbarn zuaddieren (dadurch kann evtl. ein Nachbar mit héherem Lastwert attrak-
tiver werden).

6.15 Vergleich dreier dynamischer Strategien
Strategie: dynamische, dezentrale Verfahren.
Granulat: Teile von Prozessen. Betrachtet wird eine Hypercube-Architektur, ist aber nicht Voraussetzung.

Lastinformation: Lastzustande der Nachbarknoten (nicht nur direkt verbundene, sondern in einem gewissen Radius).
Last wird an der Zahl der laufenden Prozesse gemessen.

Aufgaben: Migration von laufenden Auftragen.

[Hwang87] stellt drei dynamische, dezentrale Lastbalanicerungsalgorithmen vor und vergleicht sie beziiglich Skalier-
barkeit, Granulat der Auftrage und der Wahl der Aktivierungsschwelle. Die Strategien verfahren wie folgt:

Ein separater Prozel3 je Prozessor vergleicht periodisch seine Lastsituation mit denen der Nachbarn (nicht unbedingt
nur diejenigen, mit denen er direkt verbunden ist). Jeder Prozessor ist entweder wenig, mittel oder stark belastet.
Stark belastete Prozessoren kénnen laufende Auftrdge an wenig belastete Prozessoren abgeben. Die drei Verfahren
unterscheiden sich in der Initiative:

1. Beim ersten Verfahren I6st ein unterbelasteter Knoten eine Lastbalancierungsakteceates fnitiatedl, indem
er seine Nachbarn nach ihrem genauen Lastzustand fragt (als Mal3 verwendet man hier die Zahl der aktiven Pro-
zesse). Vom héchstbeladenen Nachbarn fordert er dann einen Prozel3 an. Dieses Verfahren zeigt bei allgemein
hoher Systemlast gute Ergebnisse. Ein Auftrag kann hier nur einmal migrieren; so verhindert man, dal3 er endlos
im Kreise herum gereicht wird.

2. Umgekehrt I6sen beisender initiated/erfahren die tberlasteten Knoten Lastbalancierungsaktionen aus. Das
Verfahren ist die in [Lin87] vorgestellte Gradientenmethode (siehe auch Kapitel 6.14): Uberbelastete Prozessoren
geben einen Prozeld an den Nachbarn mit dem kleinsten Lastwert ab; so wandert der Prozel3 automatisch auf einen
wenig belasteten Knoten zu.Die Strategie ist bei leicht beladenen Systemen erfolgreich.

3. Das dritte Verfahren benutzt die Sender-initiierte Methode bei leichter Last und die Empfanger-initiierte Methode
bei hoher Systemlast. Jeder Knoten arbeitet nach dem Verfahren, das aufgrund der Last seiner Umgebung ange-
messen scheint. Die Knoten arbeiten also auch zusammen, wenn sie gerade mit verschiedenen Strategien operie-
ren.

6.16 Partnerwahl bei verteilter Lastbalancierung

Strategie: dynamisches, dezentrales Verfahren.

Granulat: sehr kleine Auftrage, keine Prozesse im Sinne von UNIX. Betrachtet werden Hypercubes.
Lastinformation: momentane Prozessorauslastung.

Aufgaben: Migration von Auftragen.

In [Hosseini90] werden zwei dynamische, verteilte Lastbalancierungsalgorithmen vorgestellt, wobei die Kommuni-
kationspartner der Prozessoren nach der Methode der Graphenfarbung gewéhlt werden. Das Verfahren basiert auf
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einem synchronen System, verfligt also Uber einen zentralen Takt fur alle Prozessoren. Als Vereinfachung wird die
Gesamtlast auf dem System als konstant angenommen.

Zunachst wird statisch bestimmt, welcher Prozessor wann mit welchem anderen Lastinformationen austauscht und
bei Bedarf Last Ubernimmt bzw. abgibt. Dazu betrachtet man den Graph des Systems (siehe Bild)k dgHatris&n

vor und farbt nun die Kanten so ein, daf} kein Knoten zwei gleichfarbige Kanten erhalt. Zur Laufzeit spricht jeder
Prozessor zum Zeitpunktmit dem Kollege, mit dem er Uber eine Kante der Farbe@ k ) verbunden ist. Pro
Zeitschritt unterhalt sich also jeder mit maximal einem Partner, nach jéw@&dgschritten hat sich jeder mit allen

seinen Nachbarn ausgetauscht.

I Lastaustausch bei t=0, 4, 8, 12,...
I Lastaustausch beit=1, 5, 9, 13,...
Lastaustausch bei t= 2, 6, 10, 14,...

I Lastaustausch bei t= 3, 7, 11, 15,...

Der Lastaustausch zwischerundj erfolgt nach der Formélast ; (t+1) = (Last i () + Last j ()2
Das garantiert, bei gleichbleibender Gesamtlast, die Konvergenz aller Einzellasten gegen den Durchschnitt. Durch
GewichtungsfaktoreaLast ; ()+(1- a)Last ;(f) kann man die Konvergenzgeschwindigkeit beeinflussen.

Das zweite Verfahren tragt der Tatsache Rechnung, dal? man Last nicht beliebig fein aufteilen kann, weil sie aus
unzerteilbaren Auftragen endlicher Gré3e besteht. Man betrachtetdaher(t) als ganzzahlige GréRRe. Der
Lastaustausch sieht nun folgendermaf3enlaast: ; (t+1) = [{Last ; (t)+ Last j ()2  [beiProzessgr

wird entsprechend abgerundet. Auch hierfir kann man Konvergenz nachweisen. Die Konvergenzgeschwindigkeit
hangt naturlich von der Verbindungsstruktur ab; gute Ergebnisse wurden mit Hypercubes erzielt.

6.17 Probabilistische dynamische Lastbalancierung

Strategie: dynamisches, dezentrales Verfahren.
Granulat: nicht festgelegt, ebensowenig ein bestimmtes System; reine Simulation.

Lastinformation: Auftragsankunft und Bearbeitungszeit nach einer Wahrscheinlichkeitsverteilung. Abschatzung der
Restlast bzw. Betrachtung der Zahl der anliegenden Auftrage.

Aufgaben: Ankommende Auftrage werden zugewiesen.

[Hsu86] untersucht drei dynamische, dezentrale Lastbalancierungsverfahren. Jeder Knoten veréffentlicht periodisch
seinen Lastzustan@foadcas}t und vergleicht ihn mit den Zustanden der anderen. Aus den Differenzen berechnet er
die Wahrscheinlichkeit, mit der er einen ankommenden Auftrag an einen der Partner weitergibt. In dem verwendeten
Simulationsmodell werden die Kosten fir das Verschicken eines Auftrags zwischen Knoten mitberticksichtigt.

1. Als Maf fir die Last eines Knotens wird die derzeit noch anstehende Arbeit verwenfleteSanteil, zu dem
ein Knoten einen Auftrag pro Zeitschritt abarbeiten kann (man nimmt an, alle Auftrage haben dieselbe Laufzeit).
Dann berechnet sich die durchschnittliche Bearbeitungbzhit Auftrdge des Knotens im Zeitabschnitt t als
T(t) = f*Rechenzeit(t)/Zahl_der_beendeten_Auftrage(t) + (1-f)*T(t-1)
Die noch anstehende Arbeit im Knoten ergibt sich zu
Arbeit(t) = T(t)*Zahl_der_wartenden_Auftrage(t)
Trifft nun ein Auftrag ein, so prift der Knoten, ob er Giberdurchschnittlich belastet ist (abzuglich eines Schwell-
wertes). Wenn das der Fall ist, so wahlt er zuféllig einen anderen Knoten, an den er den Auftrag weitergibt (falls
dieser unterbelastet ist). Falls er nach einigen Versuchen keinen unterbelasteten Kollegen erwischt hat, behalt er
den Auftrag bei sich.
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2. Die Last der Knoten wird zunachst wie im obigen Verfahren bestimmt. Der Knoten berechnet nun die Wahr-
scheinlichkeiten, mit denen er ankommende Auftrdge an andere weitergibt, proportional zu den Lastdifferenzen.
Kommt ein Auftrag an, so bestimmt er wie oben zufallig einen Kollegen, der den Auftrag bekommt. Allerdings ist
der Zufall nach den Wahrscheinlichkeiten gewichtet.

Um zu vermeiden, dal momentan unterbelastete Knoten mit Auftrdgen tlberschwemmt werden, verringert der
Knoten jeweils die Wahrscheinlichkeit des Kollegen, nachdem er einen Auftrag in ihn abgeschoben hat.

3. Um den Overhead zur Berechnung der noch anstehenden Arbeit zu verringern, nimmt man die durchschnittliche
Bearbeitungszeil der Auftrage als konstant an. Die Last wird also nur anhand der momentanen Anzahl anstehen-
der Auftrdge gemessen.

6.18 Vergleich zweier dynamischer Verfahren
Strategie: dynamisches, dezentrales Verfahren.
Granulat: kurze Berechnungen als Prozesse. Man betrachtet in Gitterstrukturen verbundene Prozessoren.

Lastinformation: lokale Prozessorauslastung (gering/mittel/hoch) und Entfernung zum néchsten gering belasteten
Prozessor.

Aufgaben: Abgabe von Prozessen, die in der lokalen Warteschlange stehen.
[Kale88] stellt zwei dynamische, verteilte Lastbalancierungsalgorithmen vor und vergleicht Simulationsergebnisse:

1. Jeder Prozessor kennt die momentane Last seiner Nachbarn. Sobald auf einem Prozessor ein neuer Auftrag ent-
steht, schickt er ihn an seinen am wenigsten beladenen Nachbarn. Dieser gibt ihn wiederum an seinen am wenig-
sten belasteten Nachbarn ab. Das setzt sich fort, bis der Auftrag in einem (lokalen) Minimum der Last angelangt
ist und dort angenommen wird (siehe Bild). Naturlich ist die Zahl der Schritte, die ein Auftrag weitergegeben wer-
den kann, begrenzt, da er sonst zuviel Nachrichtenlast erzeugen und sein Start verzégert wiirde. Andererseits setzt
man auch eine Mindestanzahl an Schritten fest, damit der Auftrag tUber lokale Minima hinaus zu besseren Minima
gelangen kann.

aximalwan cke

Minimalstrecke

Prozessorlast

2. Das andere Verfahren ist die in [Lin87] vorgestellte Gradientenmethode (siehe auch Kapitel 6.14). Ankommende
Auftrage werden in eine Warteschlange eingereiht, bis sie bearbeitet werden kénnen (kein Multitasking). Es wer-
den auch nur Auftrage aus Warteschlangen verschickt.

Die Simulation der Verfahren bertcksichtigt Prozessorlasten und Kommunikationskosten. Als Verbindungstopolo-
gien wurden ein zweidimensionales Gitter und ein doppelt vernetztes Gitter gewahlt. Als Anwendung wurden die
Fibonacci-Zahlen nach d&ivide and ConqueMethode berechnet.
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7 DasHiCon System

HiCon unterstutzt Lastbalancierung paralleler und verteilter Anwendungen. Ein Anwendungsprogamm wird in Funk-
tionen (bzw. Module) aufgespalten, die jeweils als eigener Pr&azf3efklasserealisiert werden (siehe Bild). Die
Funktionen kooperieren unter Verwendung ¥€on-Libraryfunktionen. Der Programmierer gibt zu jeder Anwen-
dung eine globale AblaufbeschreibuBkiip) sowie eine Abschétzung des Lastverhaltens jeder Funkistpfo-

fil) an.

main —» Funktionsaufruf
Cmain 3
qunction_ I
C‘function_ ¢ @- @a
g function_c Serverklassen

Ein HiCon Werkzeug gewinnt aus dem Skript eine geeignete Startkonfiguration und statische Informationen fur die
dynamische Lastbalancierung. Der Ablauf der Anwendung wird durchHé@an Scheduling-Komponente und die
an die Server gebundenen Libraryfunktionen gesteuert.

7.1 DasHiCon Programmiermodell

HiCon verwendet das Modell asynchroner Funktionsaufrufe. Die als Serverklassen realisierten Funktionen rufen ein-
ander auf und erwarten bei passender Gelegenheit die Resultate. Es gibt kein Ereigniskonzept; Funktionsaufrufe sind
das einzige Mittel zur Ablaufsteuerung einer Anwendung. Das ModeRelaote Procedure Callsetet viele der

Vorziige sequentieller Programmiersprachen (etwa Aufrufparameter, Ergebnisriickgabe, Fehlerbehandlung, Rekur-
sion und hierarchische Abstraktion des Kontrollflusses, siehe Kapitel 1.3).

Gewohnlich versteht man das Client-Server Modell als flache Struktur (siehe Bild). Wir lassen jedoch auch hierarchi-
sche Aufrufstrukturen samt Rekursion zu. Natirlich werden durch synchrone rekursive Aufrufe bereits ohne Paralle-
larbeit Serverinstanzen belegt gehalten und kdnnen nicht zur Bearbeitung ihrer eigenen rekursiven Aufrufe benutzt
werden (sie warten nicht auf neue Auftradge sondern auf das Resultat des rekursiven AiafeServerinstanzen

kennen kein automatischi®hiltithreading.

Clients
D) O server
Das HiCon System stellt fur jede Serverklasse (Funktion) einige Instanzen zur Verfigung. Fur den Programmierer
spielt es keine Rolle, an welche Instanz der adressierten Serverklasse der Aufruf g@bariodell gilt dies
auch fur kontextsensitive Aufruf&éssions da die Instanzen einer Klasse ihre gemeinsamen Daten untereinander
konsistent halten. Ob eine Sequenz von Aufrufen innerhalb einer Session stets zur selben Serverinstanz geleitet wird,

ist allein eine Lastbalancierungsentscheidung. Da jeder Datensatz grundséatzlich durch eine Serverfunktion gekapselt
wird, geniigt die Synchronisation der Instanzen je einer Klasse untereinander (siehe Kapitel 1.4).

Aus der Sicht dekliCon System sind der Zustand eines Servers, der Kontext eines Servers und die Daten, die ein
Server verwaltet, dasselbe; der Lastbalancierer kennt nur Server mit ihren Daten. Auch Dateien sind lokale Daten des
Servers, der sie verwaltet. Dieser Ansatz vereinfacht und vereinheitlicht den Umgang mit Kopien von Daten, Server-
klassen und Kontexten.

Dieses Modell ermdglicht es, die Zuweisung eines (kontextsensisitven) Aufrufes an eine spezielle Serverinstanz als
reinen Lastbalancierungsaspekt zu betrachten. Es entstehen keine Bindungen durch Kontexte auf Seiten des Clienten
oder des Servers.
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Eine Funktionsausfihrung muf3 an einer einzigen Stelle ablaufen, da die Funktion das Granulat der Parallelitat dar-
stellt (und keine Migration laufender Ausfihrungen maglich ist). Auf3erdem wird in einer Ausfuhrung ausschlief3lich
auf die lokalen Daten der Funktion zugegriffen. Das ist keine Einschrankung, denn die Ausfiihrung kann andere
Funktionen aufrufen (die eventuell woanders laufen) und auf diese Weise Zugriffe auf externe Daten durchfihren.

7.2 Die Struktur der HiCon Lastbalancierung

Wir unterscheiden drei Ebenen der Lastbalancierung, die untereinander Informationen austauschen (siehe auch Kapi-
tel 4.1):

1. Skriptebene Gegeben ist eine Ablaufbeschreibung des Gesamtauftrages als Kooperation der Einzelfunktionen
(siehe Bild). Die Aufgabe der (statischen) Lastbalancierung besteht darin, sequentiellod®fe¢k pathsn
der Ausfiihrung zu erkennen, die maximale Parallelitat einzelner Funktionen abzuschatzen sowie die Lokalitat,
Frequenz und Charakteristik von Datenzugriffen festzustellen. Daraus kann man die Zeitgrenzen einzelner Aus-
fuhrungspfade und die erforderliche Anzahl und Plazierung von Serverinstanzen gewinnen.

AuRRerdem werden diese Informationen an die dynamische Balancierung der unteren Ebenen weitergegeben:
Abschéatzungen tber die zu erwartende Sekundarlast (Unteraufrufe) einzelner Funktionsaufrufe und das weitere
Zugriffsverhalten auf Daten.

/ =

Skript

O

2. Aufrufebene: Zur Laufzeit werden Funktionsaufrufe gepuffert und Serverinstanzen zugewiesen (siehe Bild).
Dazu wird jeweils das Lastprofil des Auftrages und die momentane Auslastung der bengtigten Ressourcen bei den
Instanzen betrachtet. AuRerdem sind (von der Skriptebene gegebene) Sekundarlasten und erforderliche Kontext-
migrationen innerhalb der Serverklasse zu berlcksichtigen. Bei Bedarf werden Instanzen gel6scht, migriert oder

erzeugt.
Lastbalancierg

5

Dazu fuhrt die Lastbalancierungskomponente einen Systemfahrplan (siehe Bild), worin die Auftrage und die entste-
hende Ressourcenbelastung geplant wird. Diese Tabelle wird anhand periodischer Lastmessungen korrigiert.

‘ Auftrag_a I
s CPU_ Auftrag_b[——]
(&)

3 CPU Auftrag_c I
: _

(0]

X Platte_.

Kanal__)’ 1 Zeit .

jetzt
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Da eine zentrale Instanz auf grof3en Systemen zum Engpal3 wird, sollen die Komponenten dieser Balancierungse-
bene hierarchisch strukturiert werden. Lokale Komponenten treffen weitmdglichst autonome Entscheidungen und
nutzen die Hierarchie nur in Féllen grof3er Auftrdge oder stark ungleicher Systembelastung.

3. Kontextebene Wird eine Serverinstanz mit einer Funktionsausfihrung beauftragt, so muf3 sie den Kontext ihrer
Klasse mit den tbrigen Instanzen konsistent halten. Fir die Lastbalancierung ist es wichtig, anhand der (von
hdheren Ebenen) prognostizierten langerfristigen Zugriffsmustern (Lese-/ Schreibverhdltnis, Wiederverwendung
derselben Instanz) zu entscheiden, welche Teile des Kontextes bei welcher Instanz liegen sollen und wieviel
Kopien wo sinnvoll sind (siehe Bild bzw. Kapitel 1.4).

4\—/;') —3/ -

zentrale Datenhaltung Replikation
Partitionierung Pufferverwaltung

Das folgende Bild zeigt noch einmal die Lastbalancierungsstruktur im Zusammenhang:
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7.3 DerHiCon Simulator

Um die theoretischen Mdglichkeiten und Grenzen des Lastbalancierungsmodells zu erforschen wurde ein Simulati-
onsprogramm realisiert, das den Ablauf von Anwendungen anhand ihrer Skriptbeschreibungen, Lastprofile und eines
Systemmodells durchspielt. Es implementiert das zweite in Kapitel 3.6 vorgestellte Kostenmodell. Der Verlauf der
Simulation laf3t sich graphisch aufbereiten. Wir wollen im folgenden den Simulator anhand einer Beispielanwendung
vorstellen.

Das Bild zeigt die Skript-Beschreibung der Anwendung und das Modell des verfugbaren Systems:

4 Aufrufe
; 90 Nachr./sec 95 Nachr./sec
Funktion_ Sse%léﬁ?gﬁ” Funktion_ T 5
4 Mill. Instr. y 2.5 Mill. Instr. ———C e 3

8 Blocke Plattenzugri

kein Plattenzugrif

a 2 Nachrichte 0.6 MIPS  |[0.8MIPS 1MIPS
8 Aufrufe
6 ’%IAL;]fr_ufh asynchron 22 ms/Block | 29 ms/Block
4 6 Nachrichte 4 ; -— -—
synchron a 1 Nachricht .g

Funktion_

8 Mill. Instr.
kein Plattenzugrif

parallel, asynchro

Funktion_4

_3 Mill. Instr. _
Blocke Plattenzugr,

18 Aufrufe

das Systemmodell

die Auftragsbeschreibung

» Die Anwendung wird durch Aufruf der Funktion 1 aktiviert.

» Die Anzahlen der Funktionsaufrufe sind absolute Angaben und nicht pro Ausfihrung der rufenden Funktion
gemeint. Auf diese Art kann man auch rekursive Aufrufe beschreiben ohne Verzweigungen oder Abbruchkriterien
modellieren zu mussen.

« Da es inHiConkeine ‘losen’ Daten gibt (sie sind jeweils durch einen lokalen Server gekapselt) beziehen sich die
Plattenzugriffe jeweils auf eine lokale Platte.

* In den Lastprofilen und den Aufrufen werden bisher keine verschiedenen Aufruftypen unterschieden. In der Rea-
litat kann ein Server verschiedene Auftrage durchfuhren, deren Lastprofile differieren.

Verschiedene Methoden der Lastbalancierung und Asynchronitat der Verarbeitung ergeben folgendes:

1. Ohne Lastbalancierung die Anwendung lauft nur auf Prozessor 1. Wir wahlen Zeitschritte der Grof3e 0.1 sec.
Der Zeitbedarf zur Ausfihrung von Funktion_1 ergibt sic28.5s (im Bild sieht man das Ablaufverhalten und
die Ressourcenauslastung).

Funktion_1

Funktion_3
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2. Einfache statische Verteilung die Funktionen werden fest je einem Prozessor zugeordnet, wie im Bild darge-
stellt. Funktion 4 lauft wegen der Plattenzugriffe auf Prozessor_2. Wir erhalten eine Laufzeit3/88 fdas
untere Bild zeigt wiederum den Ablauf und die Belastung).

. 2 I 3
Funktion Funktion

Die Verteilung der Funktionen ergibt also bereits eine Beschleunigung um den Faktor 3.24 (ein Speedup von 4

ware aufgrund der Prozessor-Leistungen mdglich). Die Prozessoren 2 und 3 stellen sich zeitweise als Engpasse
heraus.

3. Waren alle Aufrufe synchron, d.h. keine Parallelarbeit méglich, so erhielte man (bei der einfachen statischen Ver-

teilung) eine Laufzeit vo64.8s (siehe Bild). Konnte man alle Aufrufe asynchron realisieren, so ergabe sich eine
Zeit von72.1s (zweites Bild).

Karal _Y

Funktion_1

unktion_ 2
Funktion_3

Karal _Y
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Funktion_1

Funktion_3

Einfache dynamische Balancierungjede Funktionsausfiihrung wird auf dem Prozessor gestartet, der gerade am
wenigsten belastet ist (Funktionen, welche Plattenzugriffe beinhalten, dirfen nur auf Prozessoren ablaufen, die
Uber Platten verfugen). Weiterhin erhdht man den Belastungswert eines Prozessors, nachdem man ihm eine Aus-
fuhrung zugewiesen hat. Das vermeidet, daf3 einem unbelasteten Prozessor auf einen Schlag viele Ausfiihrungen
zugedacht werden. Wir erreichen eine Bearbeitungsze®4@s (siehe Bild).

Der Simulator soll auf das vollstandiggCon Verarbeitungsmodell hin erweitert werden. Das verlangt einerseits die
explizite Modellierung von Serverinstanzen und andererseits die Berticksichtigung gemeinsamer Daten (Kontexte)
innerhalb von Serverklassen.

7.4 Die Realisierung de#liCon Systems

In ‘bottom up’ Vorgehensweise wurde als Basis eine Nachrichtenschnittstelle COthhiunicationiNterface)
geschaffen, mittels derer Prozesse in heterogenen, verteilten Systemen durch Nachrichten kooperieren kénnen.
Dieses Interface ermdglicht die ProzelRerzeugung tber Knotengrenzen hinweg in uniformer Weise. Sie erlaubt
auch die Verarbeitung asynchron eintreffender Nachrichten. Die COIN Schnittstelle basiert auf unterschiedlichen
Nachrichtenmechanismen, die Betriebssysteme zur Verfiigung stellen. Daher werden Konstrukte wie Verbindun-
gen, Ports und File-Handles durch die COIN Library verdeckt. Der Anwendungsprogrammierer benutzt lediglich
abstrakte ProzeR3-Identifikatoren der Partner, anhand derer die COIN Schnittstelle automatisch das gulinstigste (pro-
prietare) Kommunikationsmedium wahlt. Derzeit werden UNIX Pipes, Guardian Messages und das TCP Proto-
koll unterstutzt.

Die COIN Schnittstelle verbindet verschiedene Hardware- und Betriebssystem-Plattformen, derzeit vernetzte
UNIX-Workstations von SUN und DEC, einshared memorultiprozessor Sequent Symmetry S27, zwei
UNIX Rechner HP845 und einahared nothingVultiprozessor Tandem TXP.

Auf dieser Basis wurde eine Scheduling-Komponenbadmarn implementiert, die das HiCon Betriebsmodell
realisiert. Sie Ubernimmt die Pufferung und Verteilung von Aufrufen an Serverinstanzen, die Riickgabe von
Resultaten und unterstutzt die Kontextverwaltung der Serverinstanzen einer Kdasteanverwaltet die Ser-
verklassen, die dynamisch von Serverinstanzen aus rekonfiguriert werden kdnnen. Zur Vereinfachung der Pro-
grammierung von Servern wurde eine C-Library geschaffen, die asynékeomzte Procedure Caldds
Funktionsaufrufe anbietet.

Derzeit istLoadmaneine zentrale Komponente, die in Zukunft (entsprechend der in Kapitel 7.2 vorgestellten
Struktur) verteilt werden soll.

Loadmankennt Serverklassen-Kontexte, d.h. Datensatze, die die Instanzen einer Serverklasse gemeinsam benut-
zen. Der Kontext einer Serverklasse kann beziiglich der Synchronisation in Partitionen aufgespalten werden.
Loadman und die Library-Funktionen verwalten die Orte, die Verteilung der Partitionen und bieten dem Server-
Programmierer durch Lese-/Schreibsperraufrufe einen sehr einfachen ortstransparenten Zugriff auf Kontextteile
an.
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* Als Anwendungsbeispiel wurde untsvadmaneine verteilte Wegesuche in gewichteten Graphen implementiert.
Dabei haben wir auch kontextsensitive Serverfunktionen repliziert, die zentrale Daten gemeinsam verwalten. Das
Bild zeigt die Serverstruktur der Anwendung:

Loadman

Hier werden asynchrone rekursive Aufrufe eingesetzt, da fadgrerzu einem Knoten die direkten Folgeknoten
ermittelt und die Reststrecke von dort rekursiv suchen lafdt. Synchrone Aufrufe wiirden schnell alle Instanzen
blockieren (siehe Kapitel 7.1). Daher verwa#iktive Suchedie Zahl der arbeitenden Instanzen und erkennt die
Terminierung der Suche. Die Serverklasgeichte Orteverwaltet die bisher im Graphen erreichten Knoten.

Alle Serverklassen kénnen ohne Anderung der Instanzen-Programme beliebig repliziert auf das heterogene
System verteilt werden. Die Gro3e der Kontextpartitionen kann durch einfache Modifikation von Konstanten
angepalit werden. Das folgende Bild stellt die graphische Oberflacheatdisanvahrend einer Wegesuche vor.
Dabei werden Instanzen durch Ellipsen, deren Kontext durch Rechtecke symbolisiert:

recvd NR-task for class 3 from [1,0]
| Trace on Error | HoTrace | luit

class 0

|lass 1

class 2

class 3

Die Klasse 0 ist hier der Client, die Serverklasse 1 die Suchprozeduren, die Klasse 2 verwaltet die Liste der bisher
erreichten Orte und die letzte Klasse die Zahl der aktiven Sucher. Der Kontext der Sucher-Klasse besteht aus der
Graphenbeschreibung. Dies ist je Partition eine Datei, die einige Kanten enthalt. Im Beispiel mit finf Partitionen
und einem 100 Knoten enthaltenden Graphen befinden sich in der ersten Partition alle Kanten, die von den Knoten
1 bis 20 starten. Eine schwarz eingezeichnete Partition gibt an, daR die Instanz derzeit das Original dieser Partition
besitzt, ein Rahmen stellt eine Kopie der Partition dar.

Im Beispiel legen sich die Sucher lediglich Kopien der Graphenbeschreibung an (physische Kopien der Dateien
auf ihre lokalen Platten), da sie diese Kontextdaten nur lesen. Bei den Verwaltern der erreichten Orte (Klasse 2)
beobachtet man hingegen ein standiges Wechseln der Originalpartitionen , da die Verwalter die Liste modifizieren.
Selbstverstandlich kann man auch die Klasse 3 durch mehrere Instanzen realisieren, ohne deren Programmcode zu
modifizieren. Der Kontext besteht hier aus einer einzigen Zahl, der Anzahl der zur Zeit aktiven Sucher-Instanzen.,

Eine schwarz gefiillte Instanz fuhrt gerade einen Aufruf durch; bei synchronen Aufrufen wird eine Linie zum
(wartenden) Aufrufer eingezeichnet. Instanzen, die gerade auf die Zusendung einer Kontextpartition (entweder
einer Kopie oder aber des Originales) warten, sind durch ein weisses Rechteck markiert. Der die Klassennummer
verdeckende Balken ist ein MaR fiir die Zahl der anstehenden Funktionsaufrufe an diese Klasse.

Eine Komponente zur statischen Planung auf Skriptebene wurde bislang noch nicht realisiert.
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7.5 DieHiCon Nachrichten- und RPC-Schnittstellen

AbschlieRendbetrachten wir kurz die Definitionentd&on Libraryfunktionen um die Klarheit und Einfachheit des
Programmiermodells unserer Lastbalancierungsumgebung herauszustellen. Serverfunktionen sollten nur diese RPC
Library verwenden, die automatisch mit der Schedulingkomponente kooperiert. Alle Funktionen liefern als Ergebnis
einen Fehlercode.

Der Client macht einen Funktionsaufruf an eine Serverklasse. Das Resultat wird im Aufrufstring zurtickgegeben:

intloadman_  call (int class (in),
int tag (in),
char *param_result (in),
int param_size (in),
int max_result_size (in),
int  timeout (in))

Der Client ruft eine Funktion auf, ohne je deren Ausflihrung abzuwarten (dies erméglicht die Verwendung von
Ereignissen wie in Petrinetzen):

intloadman_  call_no_result (int class (in),
char *params (in),
int param_size (in),
int timeout (in))
Der Server wartet auf einen Auftrag:
intloadman_ await call (int  *tag (out),
char *params (out),
int  *param_size (in-out),
int  timeout (in))
Der Server sendet das Resultat an den Aufrufer zurtick:
intloadman_  result (int tag (in),
char *result (in),
int result_size  (in),
int  timeout (in))

Der Client wartet auf Abarbeitung des Aufrufes und Ergebnisriickgaltag ishdefiniert, so erwartet man das
Resultat eines beliebigen Aufrufs:

intloadman_  await_result (int  *tag (in-out),
char *result (out),
int  *result_size (out),
int  timeout (in))

Der Server mdchte die Kontext-Partition lesen. Dazu sperrt er sie und bekommt sie, falls notwendig, kopiert. Der
Aufruf wartet, bis die Sperre gewahrt wurde:
int  slock_context ( int partition (in),

int  timeout (in))

Der Server mdchte die Kontext-Partition andern. Dazu sperrt er sie und bekommt sie, falls notwendig, geschickt.
Der Aufruf kehrt zurtick, sobald die Sperre gewahrt wurde:
int  xlock_context  ( int partition  (in),

int  timeout (in))

Der Server hat die (im Sinne einer Transaktion) zusammengehdrigen Zugriffe auf die Kontext-Partition abge-
schlossen und gibt sie wieder frei:
int unlock _context (int partition (in),

int timeout (in))

Das Programm einer Serverinstanz muf3 folgende Funktioa#backd bereitstellen, die die Aufgabe eines Stubs
realisieren, d.h. die Kontextpartition in einen Nachrichtenstring verpacken und eine Nachricht entsprechend wieder
auszupacken. DieoadmanLibrary ruft diese Funktionen auf, um Kontextpartitionen zwischen den Instanzen einer
Klasse auszutauschen:
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send_context(partition, context, size) und
recv_context(partition, context, size)

Serverkontexte kdnnen daher beliebige Datenstrukturen wie etwa verkettete Listen oder auf Platte abgelegte Dateien
sein; sie sind nicht auf einen zusammenhangenden Speicherblock beschrankt.

Die LoadmanLibrary baut auf der COIN Nachrichtenschnittstelle auf, die folgende Funktionalitéat bereitstellt:
» Erzeuge einen Prozel3 auf einem Hostrechner mit einer Kommadozeile:

intcoin_  create_process (char *host (in),
int processor (in),
char *program (in),
char *options (in),
coin_pid *son_process_id (out)
int timeout (in))

» Sende eine Nachricht zum Partnerprozel3. Der Aufruf ist asynchron in dem Sinne, dal3 er bereits zuriickkehrt,
wenn die Nachricht in einem Puffer aufgezeichnet ist. Der Partnerprozel3 muf3 sie noch nicht unbedingt gelesen
haben:

intcoin_  send (coin_pid partner_process_id (in),
char *msg (in),
int msg_len (in),
int timeout (in))
» Warte auf eine Nachricht vom Partner (oder von irgendeinem Partner, wenn kein Partner angegeben ist):
intcoin_  recv (coin_pid  *partner_process_id (in-out),
char *msg (out),
int *msg_len (in-out),
int timeout (in))
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