LR AR
PRAAAARLTS

SR UNIVERSITAT STUTTGART

n;.’.’.’.:.}:f . FAKULTAT INFORMATIK

Proceedings ASMICS Workshop

Infinite Traces
Tibingen, January 23 - 25, 1992

Volker Diekert, Werner Ebinger
(Editors)

Bericht 4/92

Preface

The workshop Infinite Traces was held at Tiibingen, Hotel Hospiz, from
January 23 to 25, 1992. The idea to this workshop was born at the gen-
eral ASMICS meeting at Menaggio. It is the second ASMICS workshop
on Free Parially Commutative Monoids, the first one was held at Kochel
1989. Whereas the Kochel workshop gave an representative overview
over the different activities in the research field, the subject of the new
workshop was restricted to the special theme of infinite traces with the
aim of gathering only few experts.

The workshop was attended by 8 participants from six different Euro-
pean universities and in addition by three guests from the University of
Stuttgart. The scientific programme started with lectures on Thursday,
January 23 and ended at noon of Saturday January 25, 1992. In the af-
ternoon of Saturday there was an excursion to the famous Hohenzollern
castle at Hechingen about 30 km South of Tiibingen.

The good working athmosphere at Hotel Hospiz and the active col-
laboration made this meeting to a successful event. We thank all partic-
ipants for their contribution. We would like to express our gratitude to
ASMICS and the Institut fiir Informatik of the University of Stuttgart
for financial and other support. In paricular, we thank Heike Photien
for local help. Last, but not least we thank Frau Elke Veihelmann from
Hotel Hospiz for the warm and kind reception.

Stuttgart May 5, 1992

Volker Diekert Werner Ebinger

Thursday
9.30 - 9.40
9.45 - 10.30
11.15 - 12.15

16.15 - 17.15

Friday
9.30 - 10.30
11.00 - 12.00

16.00 - 16.30
17.45 - 18.30
19.00 - 20.30

Saturday
9.30 - 10.30
10.30 - 11.00
11.15 - 12.45

14.00 - 17.00

Programme
Workshop Infinite Traces
Tibingen, January 23-25, 1992, Hotel Hospiz

January 23
Volker Diekert,
Giovanni Pighizzini
Paul Gastin

Mike Stannett

January 24
Hendrik Jan Hoogeboom
Werner Ebinger

Mike Stannett
Wojciech Penczek
Volker Diekert (Chair)

January 25
Antoine Petit
Volker Diekert
Hendrik Jan
Hoogeboom (Chair)

Excursion

Opening
Operations on asynchronous automata
Biichi asynchronous cellular automata

Convergence in trace languages

Automata on infinite words
On logical definability of
infinite trace languages

Transfinite traces
Temporal logic in trace systems
Discussion

Poset properties of complex traces
Two extensions of existing models

Open problems session

Contents

Preface 1
Programme of the workshop 2
Participants of the workshop 4

G. Pighizzini: Synthesis of nondeterministic asynchronous automata 5

P. Gastin, A. Petit: Biichi asynchronous cellular automata 29
M. Stannett: Trace Convergence over infinite alphabets I 46
M. Stannett: Trace Convergence over infinite alphabets IT 72
J. Engelfriet, H.J. Hoogeboom: Automata with storage on infi-
nite words 82
W. Ebinger: On logical definability of w-trace languages 106
M. Kwiatowska, M. Stannett: On transfinite traces 123
W. Penczek: On temporal logics on trace systems 158

P. Gastin, A. Petit: Poset properties of complex trace languages 205
V. Diekert: Two extensions of the existing trace model 218

V. Diekert, P. Gastin, A. Petit: Rational and Recognizable Com-
plex Trace Languages 225

Open problems 270

List of participants
Workshop Infinite Traces, Tbhingen, January 23-25,
1992
Hotel Hospiz

Volker Diekert Stuttgart
Werner Ebinger Stuttgart
Hendrik Jan Hoogeboom Leiden
Paul Gastin Paris
Wojtek Penczek Warsaw
Antoine Petit Orsay
Giovanni Pighizzini Milano
Nicoletta Sabadini Milano
Mike Stannett Sheffield
Guests

Siegmar Gerber Stuttgart/Leipzig
Anca Muscholl Stuttgart
Klaus Reinhardt' Stuttgart

INot on the picture, since he took the photograph.

Synthesis of Nondeterministic Asynchronous
Automata

Giovanni Pighizzini T
Dipartimento di Scienze dell’Informazione
Universita degli Studi di Milano

Abstract

In this paper we give an algorithm for building a nondeter-
ministic asynchronous automaton recognizing the trace language
[Maz77] denoted by a given recognizable ezpression. Moreover, we
show that the number of states of the automaton so obtained is
polynomial in the length of the expression.

1 Introduction

Asynchronous Automata were introduced by W. Zielonka [Zie87] as alge-
braic abstactions of distributed systems. This kind of automata is very
interesting since, as shown in [Zie87, CM88], they characterize the class
of recognizable trace languages [BBMS81], that is the class of languages
accepted by finite automata over free partially commutative monoids.

Another characterization of the class of recognizable trace languages
were discovered by E. Ochmariski [Och85], proving that the class of rec-
ognizable trace languages coincides with the minimal class containing
finite trace languages and closed under union, product and a new oper-
ation called concurrent iteration.

In this paper we give an algorithm for building nondeterministic asyn-
chronous automata accepting the union, the product and the concurrent

T Author’s address: Dipartimento di Scienze dell’Informazione, Via Comelico 39,
20135 Milano, Italy — Email: pighizzi@imiucca.csi.unimi.it PP Supported in part by
the ESPRIT Basic Research Action No. 3166: “Algebraic and Syntactic Methods in
Computer Science (ASMICS)” and by MURST 40%.

6 G. Pighizzini

iteration of trace languages accepted by given nondeterministic asyn-
chronous automata. Our constructions are nontrivial generalizations
of the corresponding constructions for finite automata (see for exam-
ple [HopUll67]). The number of states of the resulting automaton is
polynomial in the number of states of the given automata. The algo-
rithm for building the asynchronous automaton accepting the concurrent
iteration of the language accepted by a given asynchronous automaton is
obtained using a new interesting result concerning the iteration of trace
languages. More precisely, we prove that the iteration of a trace language
T can be expressed as finite union of the iterations of suitable languages
Ti,...,T,, such that in every language T;, 1 < ¢ < m, all traces have
ezactly the same set of letters.

2 Traces and trace languages

In this section we briefly recall the basic notions concerning trace lan-
guages.

Definition 2.1 A concurrent alphabet is a pair (A,0), where A is a
finite alphabet and 6 C A x A is a symmetric and irreflezive relation,
called independency relation. If (a,b) € 6 then we will say that a and b
are independent letters; otherwise a and b are dependent. Cliques(A,6)
denotes a (fized) family of cliques covering the complement of 6.

The free partially commutative monoid (fpcm, for short) generated
by (A,0) is defined as the initial object in the category of monoids gen-
erated by A and satisfying, besides the usual monoid azioms, the set of
“commutativity laws” {ab = ba | afb}.

A trace is an element of M(A,0). A trace language is a subset of
M(A,0).

It is well-known that M (A, #) is isomorphic to the quotient structure
A/ =y where =y is the least congruence over A* extending the set of
commutativity laws. Then, a trace is an equivalence class of words. The
equivalence class containing the word w € A* will be denoted as [w]p or
by [w] if € is understood. A trace z is said to be a prefiz (suffiz) of a trace
t if and only if there is a trace z such that ¢ = zz (t = zx, respectively).

Synthesis of nondeterministic asynchronous automata 7

The set of symbols of a trace t € M (A, 6) will be denoted by alph(t),
i.e. alph(e) = 0 and alph(ta) = alph(t) U {a} for t € M(A,6), a € A.
Moreover, alph(T) = U,cp alph(t) for every T C M(A,0). A subset
a C A is said to be connected if for a,b € o we can find ag, ay,...,a, € @
such that ap = a,a, = b and (a;_1,a;) ¢ 6 fori=1,...,n. A trace t is
connected if alph(t) is connected. A language T' is connected if and only
if every trace in T is connected.

A trace u is a component of a trace t if u is connected and there exists
a trace v such that ¢ = wv and alph(u) x alph(v) C 6. The set of all
components of a trace ¢ will be denoted as ¢(t).

We are interested in the usual regular operations (union, product and
iteration, denoted, as usual, with the symbols -, U and *, respectively),
and in the operations on trace languages defined as follows:

Definition 2.2 Let T be a trace language over the fpcm M (A,0), and
a a subset of A. The decomposition of T, denoted by c(T) is the set
of all components of traces in T, i.e. c(T) = Jycr c(t). The concurrent
iteration (coiteration, for short) of T is the language T°~* = ¢(T)*.
The a-restriction of T is the set T, = {t € T | alph(t) = a}. Finally,
the restricted iteration of T is the language T® defined as follows:

70 — T+ if T =T, for some connected set o C A
0 otherwise,

where, as usual, Tt denotes the language T - T*.

The class Reg(A,0) of regular trace languages over (A,60) [Maz77]
is defined as the smallest class containing the languages 0, {[¢]}, {[a]},
for all @ € A, and closed with respect to the regular operations. On
the other hand, the class Rec(A,8) of recognizable trace languages over
(A,0) can be defined in a standard way using the notion of M(A,0)—
automata [BBMS81]. It is known that if the independency relation 6
is not empty then the class Rec(A,0) is properly included in the class
Reg(A,0).

The following characterization of the class Rec(A,f) were obtained
by Ochmariski [Och85]:

8 G. Pighizzini

Theorem 2.1 For every concurrent alphabet (A,), the class Rec(A,0)
of recognizable trace languages over (A,0) is the smallest class of trace
languages containing the languages 0, {[€]}, {[al}, for all a € A, and
closed under union, product and coiteration.

As a consequence of the last theorem, every recognizable trace lan-
guage can be denoted by a recognizable expression, i.e. an expression
involving operators representing the operations of union, product and
coiteration of trace languages.

Given a set S, the family of subsets of S will be denoted as P(S).

Lemma 2.1 Let P C P(A) be a family of subsets of A and T C M (A, 0)
a trace language. If T is recognizable then also the language | T, is
recognizable.

a€eP

As a consequence of this lemma, for every recognizable language T' the
following sets are recognizable: the a-restriction of T (T,, for a C A),
the set of all connected traces in T, the set of all nonconnected traces in
T, theset {t € T |y Calph(t) Ca} =U,cpc,Ta, for y Ca C A.

3 A result on the iteration of trace lan-
guages

In this section we state our main result concerning the iteration of trace
languages.

Given a set o C A, a # (), a composition of « is an ordered partition
of o, i.e. a sequence py,...,ps, s > 1, of nonempty subsets of a whose
union is equal to a and such that p; N p; = 0 for i # j. The set of all
compositions of a will be denoted by II(«).

Theorem 3.1 Given a language T C M(A,0) and a setaw C A, consider
the language Z C M (A, 60) so defined:

7 = [Uiy XVp XVp o Yy, X, if 0 #0;
{[€]}, otherwise,

Synthesis of nondeterministic asynchronous automata 9

where X =z, (T7)g, and Yy, = Uqu;Ca Tg, forj=1,...,s.
Then, (T*)o = Z* and alph(t) = « for every trace t € Z,i.e. Z = Z,.

Proof. Before of proving the Theorem we remark that in the definition
of X the union operation is extended to every subset 3 strictly included
in a.

For a =) the proof is trivial. Then, we suppose a # §.

The inclusion ZT C (T*), can be easily verified. The converse inclusion,
is a consequence of the following lemma:

Lemma 3.1 For every trace u € (T*)y, either u € Z or there are traces
u',u" such that u =u'v", v € Z, |u"| < |u| and u" € (T™),.

Proof. Since u € (T*), and a # 0, we can find traces uq,...,u, € T,
m > 1 such that v = uq ...upm. Since alph(u) = «, there is an index
k, 1 < k < m, such that alph(u; ...ug) = a and alph(ug ... uk—1) # a.
We consider the sequence ay,...,a; of subsets of a such that a; =
alph(u;) <:>U;;11 aj,forj=1,... k.

Clearly, Ule aj =aand o; Nej =0, for i # j.

From the sequence ay,...,a, we extract the subsequence aj,,...,a;,
by eliminating the empty subsets (observe that j; = k). This sequence
is a composition of a and «;, C alph(u;,) C o, for r =1,...,s. Then,
Uj, € Yajr .

By construction, the set 8 = alph(w;,_, 41 ...u;.—1) is strictly included
ina, forr=1,...,s, jo = 0. On the other hand, u;, ,41...uj 1 € T*.
So:

Wi, 1wy, € (T € | (T9)s = X.
BCa

This permits us to conclude that wu;...u; € XYahX...XY% and,
observing that [¢] € X, we have: uy...up € XYy, X ... XY, X C Z.
Now, we set u' = uy ... up and "’ = ug41 ... up. Observe that |u'| > 1
Clearly, alph(u') C «a. If alph(u") = « then v € (T*), and |u"| < |u]
and the statement is proved. On the other hand, if alph(u') # « then
u" € (T*)aiph(wry € X. Recalling that uy...u, € XYy, X... XY, ,
it turns out that u = u'u" € (XY,; X ... XV,;)X C Z. Then u € Z.
This concludes the proof of the lemma. g

10 G. Pighizzini

Now, using the previous lemma, it is possible to show by induction
on the length of traces t € M (A, 0) that t € (T*), implies t € Z*. Then
(T*)a cz + 1

Corollary 3.1 For every trace language T C M(A,0) there are lan-
guages Ty, ..., T, m > 0, such that T* = |J*,(T3)* and for every i
(i=1,...,m) there is a subset a of A for which T; = (T})a.

4 Asynchronous Automata

In this section we briefly recall the definition and some properties of
Asynchronous Automata.

Definition 4.1 A nondeterministic asynchronous automaton (NAA) with
n processes, over the concurrent alphabet (A, 8), is a tuple M = (Pl, vy Py,
{0a}tacar I, F), where:

e fori=1,...,n, P, =(4;,85;) is the ith process, where S; is its set
of local states and A; is its local alphabet, such that {A;,..., Ay} =
Cliques(A,0);

e let Proc ={1,...,n}, and, for a € A, let be Dom(a) = {i € Proc |
a € A;} the set of (indices of) processes that execute a; then 4, :
[Licpom() Si = PULicpom(a) Si) is the local transition function
associated to the letter a;

o let S = [[;cproc Si be the set of global states; then I C S is the set
of the initial states and F' C S is the set of final states.

A global state will be denoted by a boldface letter, as s, while its ith
component as s;; given a global state s € S and a set of (indices of)
processes a = {iy,...,ir} C Proc, we will denote by s, the vector whose
components correspond to local states in a, i.e. 8| = (8, .-, 8i,)-

The global transition function A : S x M(A,0) — P(S) of the au-
tomaton M is defined on the ground of local transition functions as
follows. For every s,u € S, a € A, we have: u € A(s,a) if and only

Synthesis of nondeterministic asynchronous automata 11

if %) pom(a) € da(8|Dom(a)) and U Bomt@) = S[Boma) The extension to
traces can be obtained in a standard way.

The language accepted by the automaton M is defined as the set:
T(M)={te M(A,0) | A(I,t)NF # 0}.

If#1 = 1and # (8, (siy,---,84,)) < lforevery (si;,...,s:,) € [I Si,
i€Dom(a)

a € A, the automaton M is said to be a deterministic asynchronous au-

tomaton (DAA).

It is immediate to verify that to every asynchronous automaton can
be associated a finite state automaton recognizing the same trace lan-
guage. Moreover, given a finite automaton over the the fpcm M (A, 0) it
is possible to construct a DAA with the same concurrent alphabet, ac-
cepting the same language. This result, not at all obvious, were obtained
by W. Zielonka.

Theorem 4.1 [Zie87] The class of languages accepted by deterministic
asynchronous automata over (A,0) coincides with the class Rec(A,0) of
trace languages recognized by M (A, 0)—automata.

Another proof of Theorem 4.1 can be found in [CM88].

From this point on, we consider a fixed concurrent alphabet (4, 6)
with a fixed clique cover Cliques(A,0) = {4;,..., A}, of the depen-
dency relation. For all notations concerning NAA the reader is referred
to this section. When we deal with different NAA M, M' and M", we
always suppose that A; = A} = A and S/ NS}’ = for i € Proc.

4.1 Asynchronous automata with e—moves

Here, we consider an extension of NAA useful in our algorithm. In
the model we will consider every process can change its internal state,
independently from the states of other processes and from the next input
symbol, using an internal transition called e-move. The e-moves are
represented extending every local alphabet with a new symbol. More

12 G. Pighizzini

~

precisely, we consider the concurrent alphabet (/T,) such that A=
AU{ey,...,en}, where {e1,...,e,} N A =10, and

B=0U{(ese;)|i#iU{(ae),(eia)]ac AsAl}.

Then C’liques(g, 5) = {21, ce gn}, where A; = 4; U {e;},i=1,...,n.

To every trace f € M(A, 5) we associate the trace 1) (f) € M(A,8)
obtained erasing from t all letters not belonging to A. Given a language
T C M(A,0) we denote by ¥(T') the set Ut‘e?w(f)'

The following theorem states an important relationship between NAA
over M(A,8) and NAA over M(A,80).

Theorem 4.2 Let T C M(A\, 5) be the language accepted by a NAA M.
Then, there exists a NAA over M(A,0) accepting the language ¥(T).

Proof (outline). The automaton M is defined as follows: S; = S,
1=1,...,n; L A
I={seS|3we M(A,D0) s.t. alph(w) C {e1,...,e,} and s € A(l,w)};
F=F;

for a € A with Dom(a) = {i1,...,ir}, 5 € [Ticpom(a) Si°

(5;(8) = {u S H S; | 33”11,’ €S s.t. s?Dom(a) =s, u?Dom(a) =u,
i€Dom(a)

Jw € M(A,8) st. alph(w) C {ei,, ..., e}, and u' € A(s', aw)}.

It is possible to prove that for t € M (A, §) it holds: A(1,¢) = | A(IL 7).
tey=1(t)

5 Synthesis of Asynchronous Automata

In this section we give an algorithm for building nondeterministic asyn-
chronous automata from recognizable expressions.

First, we observe that asynchronous automata accepting the lan-
guages 0, {[e]} and {[a]},a € A, can be trivially constructed.

Synthesis of nondeterministic asynchronous automata 13

5.1 Union

The construction of a NAA M accepting the union of the languages
accepted by two given NAA M' and M" is trivial. Then, we give it
without any comment.

We define M as follows: S; = S;US/,i=1,...,n; I =I'UI"
F=FUF" fora€ Aand s € [[;cpom() Sit

61’1(5) ifse€ HieDom(a) S;
6“(8) = 61’1,(5) if s € HieDom(a) Sél
0 otherwise.

It is easy to verify that for every global state s € I and for every trace
t € M(A,0) A(s,t) is equal to A'(s,t) (A"(s,t)) if s € I' (s € I",
respectively). So, M can simulate the computations of M’ and M" and
it recognizes the language T'(M") U T (M").

5.2 Product

Given two NAA M’ and M", for every s € S’, let M. be the NAA
M= (P|,...,P;,{0,},ca>I's{s}) and for every s € S" let ;M" be the
NAA M" = (P{,..., P}, {0)}sea> {5}, F"). Then T(M') - T(M") =
Ust,syer s (M, - T'(¢n M'™). This observation permit us of consider-
ing in this section only automata M' and M'" such that #F' = 1 and
#I'" = 1. We will denote by F' = (F{,...,F!) the only final state of
M' and by I" = (I},...,I}!) the only initial state of M"".
We define the following automaton M with e—moves.
e S;=S/uSl'i=1,...,n;
[] I = II’
° F — FII;
o for a € A with Dom(a) = {i1,...,ir}, s5; €Si;, 5 =1,...,k:
5;(Si1,...,sik) ifSijESl{j,lSjSk,
6a(si1,---73ik) = 6;’(81'1,...,8%) if Si; € S{:,l S] < k‘,
] otherwise;

14 G. Pighizzini

e fore=1,...,mn, s €5;:

661’ (Sz) = { {Iz"} if s; = Fz’7

0 otherwise.

Now, we prove that T(M) = T(M"){[e1 ... e, |}T(M").
First, we get the following immediate remarks.
Remarks
(a) For every trace t € M(A,#) (i.e., T does not contain any symbol
corresponding to an e-move) and for every s € S": A(s,t) = A'(s,t);
(b) for every trace t € M(A,0) and for every s € S": A(s,t) =
A"(s,);
(c) A(F',[ey...en)) =1I";
(d) for every t € T (M) every process P; on input ¢ executes exactly
one e-move, i.e. [t|e, = 1.

Now, we can prove the following theorem.
Theorem 5.1 T'(M) =T (M"){ey...e, }T(M")

Proof. The inclusion of T'(M'){[e1 ...ex]}T(M") in T(M) is an imme-
diate consequence of previous remarks. In order to prove the converse
inclusion, we consider a trace t € T(M). From Remark (d), we can find
traces uo, ..., u, € M(A,0) and a permutation (i1,...,i,) of (1,...,n)
such that t = upe;, uire;, ... €;, Up.
Let be 1 < k < n and a € alph(ug). Then uy = vaw for suitable traces
v,w € M(A,0) and t = ug...e;vawe;, ., ...u,. Since M accepts t,
there are global states s', s € S such that:

s'e A(I',up .. .e;v),

s" € A(s',a) and

A(s" wegy,, ... up) NF # 0.
More precisely, we can observe that both local states s; ,sj, belong to
Si,, for j > k, while both s; ,s;, belong to S;\ for j < k. Then,
from the definition of §, and from A(s’,a) # 0 it follows that either
Dom(a) C {ixt1,.-.,in} or Dom(a) C {i1,...,ix}. So, we can decom-
pose uy, as product of two independent traces uj, and uy, s.t. Dom(uj,) C

Synthesis of nondeterministic asynchronous automata 15

{ik+1,- -+ in} and Dom(uy) C {i1,...,ix}. Moreover Dom(uy)NDom(u})
=) for j > k. Then, we can rewrite ¢ as uy, ... u}[e1 ...epluy ... ulr. Fi-
nally, let s € I, g € F" be the states corresponding to the start and to
the end of such an accepting computation. More precisely:

s' € A(s,ug...e;v) and q € A(s",we;, ., - .. up).
It is easy to observe that:

F' e A'(s,ufy...u)) and g € A"(I" uf ... ull).
Then ug ... u), € T(M') and ug ... up € T(M"). g

Finally, applying the construction given in the proof of Theorem 4.2, we
can obtain a NAA accepting the language T'(M")T'(M").

5.3 Concurrent iteration

In this section, we will show how it is possible to construct a NAA rec-
ognizing the coiteration of the language recognized by a given NAA. To
achieve this goal, we will prove that the coiteration T°°~* of a trace lan-
guage T can be expressed by means of the operations of union, product,
decomposition, a-restriction and restricted iteration, applied starting
from T, and we will give algorithms for building asynchronous automata
accepting the decomposition, the a—restriction and the restricted itera-
tion of the language accepted by a given NAA.

First, we recall that T°°7* = (c¢(T))* = U,ca((c(T))*)o and we
prove that every language (T°°*), = ((¢(T))*)s can be expressed in-
ductively from T and (T°° *)g, where § is strictly included in «, using
the above mentioned operations.

For o = 0, we have (T°°*)y = {[¢]}.

Suppose now that a # (). If « is nonconnected, we have (T°°7*), =
((e(T))ay - ((e(T)) "), where the sets ay, . . ., ay are the connected
components of «; then ((¢(T))")a; = (T *)a,;, With o C a, j =
1,... .k

On the other hand, if a is connected, then by Theorem 3.1 we
have: (T°°7*)q = ZF, where Z = U, ema) X¥m XY, ... ¥, X,

Y,

X = Uscale(T))s = Upcal(T™ ")p, and, for j =1,...,s,

pj =

16 G. Pighizzini

UijﬁCa ¢(T)3. Moreover, alph(t) = «, for every trace ¢ € Z. Then
Z% = Z%. This implies that (T¢°~*), = Z9.

As a consequence of this discussion, it is easy to obtain the following
new characterization of the class of recognizable trace languages:

Theorem 5.2 The class Rec(A,0) of recognizable trace languages over
(A, 0) is the smallest class containing the languages O, {[e]}, and {[a]}
(for a € A) and closed with respect to the operations of union, product,
decomposition, restricted iteration and a-restriction.

Now, we have to give the constructions of NAA accepting the a—
restriction, the decomposition and the restricted iteration of the trace
language accepted by a given NAA.

5.3.1 Restriction

Here, we briefly describe how it is possible to build a NAA accepting the
restriction of the language accepted by a given NAA. The idea is essen-
tialy that of keeping in every local state the alphabet of the trace ex-
ecuted so far. More precisely, we consider the set of local states S; = S; x
P(A;), i € Proc, the set of initial global states I' = {((s1,0),. .., (5n,0)) |
s € I}, and the local transition function d,, a € A, such that:

6;((3i15ai1)v B (Slk’alk)) =
{((Uiuah u {a'})v RS (U’ik’aik U {a'})) |

(uil)"‘)uik) € 6ﬂ(si1)--->sik)};

for s;; € S, ai; C Ay, j=1,...,k, where {i1,...,ix} = Dom(a).
It is not difficult to verify that for every trace t € M(A,#), it holds:

A (I, t) = {((s1,alph(t) NV A1), ..., (sn,alph(t) N A,)) | s € A(I,t)}.

We now define two NAAs My, = (P/,..., P, {0.},I', F}), k =1,2.
M, is obtained choosing as set of final states the set:

F1 = {((81,011),...,(Sn,an))|(81,...,8n) € F}

Synthesis of nondeterministic asynchronous automata 17

Of course, the language accepted by M; coincides with the language
accepted by M, ie., T(M,) = T(M). Fixed a set a C A, in order to
recognize the a—restriction of T'(M) we have to accept all traces of T'(M)
whose alphabet is exactly a. This goal can be achieved setting

Fy = {((s1,01),- -, (Sn,an))|(s1,-..,8,) € Fand | J o = a}.

i=1

It is clear that T (Ms) = (T'(M))q4.

5.3.2 Decomposition

The technique above explained for the construction of a NAA accepting
the restriction of the language accepted by a given NAA | can be extended
in order to obtain a NAA for the decomposition.

Given a NAA M, we define the sets of local states S} = S; x P(A;) x
Siy i = 1,...,n, the set of initial global states I'' = {((r1,0,r1),...,
(rn,0,7,)) | 7 € I}, and the local transition function, for a € A, with
Dom(a) = {il,...,ik}, Si;sTi; € Sij; Qi - Aij; i=1..k:

O ((Siyy iy s Tiy)y e vy (Sig Qg s Ty,) =
{((uiy, 1 U{a},ri,), ..., (w4, ar U{a},ri)) |
(Wiyyeno iy,) € 0a(Siyyeny i)}
Then, for every t € M(A,#) and for every r € S:

A"(((r1,0,71), -5 (rn, 0,70)), 1) =
= {((s1,alph(t) N A1,71),. .., (sn,alph(t) N Ap, 1)) | 8 € A(r, 1)}

Let now t be a trace in the language T'(M) = T(M;) and ' a con-
nected component of ¢, i.e., t = t't", alph(t’) is connected and alph(t') x
alph(t") C 6, for some t" € M(A,0). Then t' € ¢(T(M)). Since t
is accepted by M, we can find global states w € F, r € [such that
u € A(r,t). So:

((uy, alph(t) N Ay, 1), . .., (un, alph(t) N Ap, 1)) €
A”(((T’hw,rl), oy (tny 0,70)), 1).

18 G. Pighizzini

Let be , = Dom(t') and, fori =1,...,n:

' N (ul,alph(t) n Ai,ri) if 4 c,,
(Sz; a;, 7‘1) - { (Ti; w’ ri) OtheI‘WiSe-

It is possible to verify that:

((Sl)alarl)a KRR (Sn)anarn)) € A’(((Tl,@,rl), KRR (Trnw:rn)))t’):

the set |J;_, a; = alph(t') is connected and a; x (alph(t) N A;) C 6,
for i € ,, j € Proc<,. Moreover, it turns out that alph(t"') =
alph(t'), t"'t" € T(M) and ¢ € ¢(T(M)), for every trace t" such that
((s1,a1,71); -+, (80, an,) € A (((r1,0,71), ..., (Tn, 0,70)),t").

From this discussion, we can conclude that the NAA M" = (P/, ...,
P! {6}, I", F"), where F" is the set:

F"={((s1,01,71)5- -, (Sn,n,m0)) |
rel, FueF, te M(A,0) st. u e A(r,t),
3, C Procs.t. Vi€, s; =u;,a; =alph(t)N A4;,
Vig, si=rya; =0,

n
the set U «; is connected and
i=1
a; X (alph(t)N A;) CO,fori € ,, j € Proce, },

recognizes the decomposition of T'(M).

Remark

The condition 3t € M (A4,0) s.t. u € A(r,t) is useful to assure that only
connected components of traces of T' (M) are accepted. In fact, it can
happen that there is none trace ¢ such that u € A(r,t), i.e. w is not
reachable from r, but ((s1,1,71),..., (Sn,an,rs)) € A (((r1,0,71), ...,
(rn,0,7)),t") for some t' € M(A,0) <c(T(M)), and the global state
((s1,1,71),. .., (Sn,Qn,Ty)) satisfies the other requirements of the def-
inition of F".

Synthesis of nondeterministic asynchronous automata 19

5.3.3 Restricted iteration

First, we observe that given a NAA M accepting a trace language T' C
M(A,8) we can decide if T = T, for some connected set « C A, by
constructing a finite state automaton M accepting T" and verifying if M
is equivalent to some automaton M, accepting the language T, for a
connected a C A.

Since the asynchronous automaton recognizing the empty language
can be trivially constructed, from this point on we will consider the
problem of building an asynchronous automaton accepting T® = T+,
when T' = T, for some connected alphabet o C A.

Let M be a NAA accepting a trace language T', such that T = Ty,
for some connected set &« C A. There is none loss of generality assuming
that the following conditions hold:

1. a= A4

2. there exists a map ¢ : J;_, Si = P(A) such that if A(I,t) = s
then ¢(s;) = alph(t)NA;, fori=1,...,n,t € M(A,B0) (this means
that the automaton M records the letters of traces. Observe that
if s; is a compontent of some final state p, then ¢(s;) = A;).

Suppose in fact that & C A. From the asynchronous automaton M it is
possible to obtain an automaton M by removing all the processes P; such
that 4; N« = () and all transitions involving letters not belonging to «.
Applying the construction presented below, we will obtain an automaton
M’ over the concurrent alphabet («, §N(« x «)). This automaton can be
easily extended to the concurrent alphabet (A4,), by introducing dummy
processes and null transition functions.

We observe that for the automaton M; defined in Section 5.3.1, the
second condition holds.

For sake of simplicity, first we suppose that #I = #F = 1. Then, we
will denote by I = (I1,...,I,) and by F = (Fy,...,F,) the only initial
and the only final state of M, respectively.

In the classical construction of the finite automaton N' recognizing
the iteration of the language recognized by a given finite automaton NV

20 G. Pighizzini

(see e.g. [HopUll67]), an empty transition from the final state to the ini-
tial state is added to N. In our case, we want to construct an automaton
M’ recognizing all traces of the form ¢1[e;1 ... epltafe1...en]...[e1-. . en)tm
such that m > 0 and t; € T(M), i = 1,...,m. However, as shown in
the following example, the immediate generalization to asynchronous
automata of the strategy used for finite automata does not work.

Example
Let (A, 0) be the concurrent alphabet with:

A ={a,b,c,d}, 0 ={(a,c),(c,a),(a,d),(d,a),(b,d),(d,b)},
and Cliques(A,0) = {41, A, A3}, where 4; = {a,b}, As = {b,c} and

As; = {¢,d}. Let M be the asynchronous automaton represented in
Fig. 1. Tt is not difficult to see that M accepts the set T'(M) = {[acbd]}.

Figure 1: automaton M

Moreover, M satisfies the hypothesis stated above (that is « = A and
there exists the map ¢). Now, if we add, for every i € Proc, a transition
from the component F; of the final state to the component I; of the
initial state, the resulting automaton can recognize a set that properly
includes (T'(M))*. The automaton obtained applying this procedure in
our specific case, is represented in Figure 2. Such an automaton accepts,
for example, the trace [acbadesescbd]. Observe that Dom(b) = {1,2},

Synthesis of nondeterministic asynchronous automata 21

but before the last occurrence of b, the process P> executed one e-move,
while none e-move was execute by P;.

Lfol

Figure 2: automaton constructed introducing an e-move from every com-
ponent of the final state to the corresponding component of the initial
state

We will show that, in order to avoid the problems arising in previous
example, we have to circularly rearrange two isomorphic copies of the
given NAA M.

Formally, we define M’ in the following way:
e SI=5;x{0,1},i=1,...,n;
o I'= {((1170)7 RN (In7 0))}7

o for a € A with Dom(a) = {i1,...,ix}, si; € Si;, j = 1,...,k,
bil)"'7bik 6{0)1}:

6’&((Si1’bi1)’"'?(Sik’bik)) =
= {((uil,b),...,(uik,b)) | (uil,...,uik) € 6a(si17---;3ik)};

22 G. Pighizzini

if there exists b € {0,1} s.t. b;, = ... =b;, =b;
6:1((&'1) bil)) B (Slk)blk)) =0
otherwise.
efori=1,...,n,s €S5;,be{0,1}
') _ {(Ii,1<:>b)} if s; = F;
0c; (50, 0) = { 0 otherwise;
o F'={((F1,b),...,(Fy,b)) | b€ {0,1}}.

In Figure 3, the automaton M’ obtained applying this costruction to the
automaton M of Figure 1, is represented.

(1170) (7‘1,0) (F170)
[a ()

Figure 3: automaton M’

To prove the correctness of the construction, we will show that the
automaton M’ so defined recognizes the set of the traces of the form
t1[61 .. .en]tQ[el .. .en] AN [61 .- .en]tm, where m > 1 and t; € T, 1 =
1,...,m.

It is not difficult to see that every trace of such a form is accepted
by M’. Then, we prove the converse result.

First, we will prove the following remarks:

Synthesis of nondeterministic asynchronous automata 23

Remarks
(a) Between two e-moves of a process P/ in an accepting computation,
there is at least one occurence of every letter of A;.

(b) In every accepting computation of M', before of the execution of
a symbol a there is either at least one e-move of every process in Dom/(a)

or none e-move of processes in Dom(a).

(c) If some process of M’ performs an e-move on an accepted trace
then every process performs an e-move.

Remarks (a),(b) and (c) are consequences of the following lemmas, re-
spectively.

Lemma 5.1 If ¢t € (f/l\, 9\) is accepted by M' and t = toejtie;ts, for
suitable traces to,t1,t2 € (A,0), then A; C alph(ty), A; C alph(tr),
A; C alph(tz).

Proof. We prove that A; C alph(t;). The other proofs are very similar.
First, we suppose that e; ¢ alph(ty). Since t € T(M'), we can find
suitable global states of M’ such that:

((81, bl), . (Sn, bn)) € A’([I,toei),

((ur, b)), .oy (up, b)) € A'(((s1,b1),- .-, (Sn,bn)), t1) and

A" (((u1,0)), -y (un, b)), eita) N F" # .
Since e; ¢ alph(t1), we have b; = b,. Moreover (s;,b;) is reached after
one e-move of the process P;. Then s; = I; and ¢(s;) = 0.
Since de, (u;, b)) # 0, we have u; = F;. Then ¢(u;) = A;. This implies
that Al g alph(tl).

If e; € alph(ty), then there are traces vy,...,v, such that t; =
v1€;V2€; ... €Uy, and e; ¢ alph(v;), 7 = 1,...,m. Using the previous
argument it can be shown that 4; C alph(v;). 1

Lemma 5.2 Lett € M(g, é\) be a trace accepted by the automaton M’',
with t = ue;vaw, for some u,v,w € M(A\, 5), a € A, i € Proc, such that
e; ¢ alph(u), and let j € Proc be an index such that e; ¢ alph(ue;v).
Then {i,j} cannot be a subset of Dom(a).

24 G. Pighizzini

Proof. Since t € T(M'), there are s,s',s" € S, by,...,by,b],...,0,
bi,...,b € {0,1} such that:

((817 b1)7) (STH n)) € AI(((Ila)v) (In,O)),UCi),

((slvbl) (Im n)) (((slvbl) ')(Smbn))vv)v

(S5, B)s . (51, D)) € A(((81,B1), - (51 By)s),

A(((52,B1), . (0, b0)),) (VY £ D,
If both i, j belong to Dom(a) then from A(((s},b}),..., (s}, b.)),a) #0
and from e; ¢ alph(uv), it turns out that b; = b; = 0. On the other
hand, observing that after the e-move of the process P; it holds b; = 1
and s; = I;, we can conclude that e; € alph(v),i.e. v = z'e;2" for suitable
traces z' and z"”. From Lemma 5.1 we have a € alph(z') and |v| # 0.
Then t = ue;viaw,, for suitable traces vy, wy, with |v1| < |v|. We can
iterate the proof for this decomposition. So, we will find a countable
sequence of traces vy,ve,... such that for every k |vg| < |vk—1| and
|vg] # 0. This is contradictory. Then Dom(a) cannot contain both
indices 7 and j. g

Lemma 5.3 Lett € M(A\, 9\) be a trace accepted by the automaton M'.
If there is an index i € Proc such that e; € alph(t), then e; € alph(t),
for every j € Proc.

Proof. First, we prove the result for A; N A; # 0. Since t is accepted,
there exists a global state ((p1,b), ..., (pn,b)) belonging to A'(I',t)NF".
Suppose that e; ¢ alph(t). This means that the component P; does
not perform e-moves and then b = 0. On the other hand e; € alph(t).
Then, this e-move of the component P; changes the last component of
the local state of P; from 0 to 1. So, at least another e-move must be
performed by P; in order to have b = 0. Then, we can decompose ¢
as t = tgejtiejta. As a consequence of Lemma 5.1, for every a letter
a € A; N A;, we have a € alph(t1). From Lemma 5.2, it turns out that
{i,j} cannot be a subset of Dom(a). This is a contradiction. Then we
conclude that e; € alph(t).

To prove the lemma in the general case, we recall that the alphabet
A is connected. Then, we can find a sequence P;,,...,P; of processes
such that i9 = 4, iy, = j and A;,_, NA;, #0, k =1,...,m. The

Synthesis of nondeterministic asynchronous automata 25

proof of the lemma follows applying the previous argument to every pair
(ik—1,0k)- 0

Now, we can prove the correctness of the construction stated here.
Theorem 5.3 Let M' the NAA above defined. Then:

T(MI) = {t1[61 .. .en]t2 .. .tm,1[€1 .. .en]tm |
m>1 andty,...,t, € T(M)}.

Proof. The difficult point is to prove that every trace accepted by the au-
tomaton M’ has the form t1[ey ...eplta ... tm—1]e1 ... enltm, with m > 1,
t; € T,1 =1,...,m. First, we observe that every trace t accepted by
M' without e-moves, i.e. alph(t) C A, is accepted also by the automaton
M. Then, t € T(M)*. Suppose now that t is accepted using at least
one e-move. From Remark (c) it turns out that every process executes
at least one e-move, i.e. e; € alph(t) for every i € Proc. So, we can
decompose t as wupe;, ui€;, . ..€;, u, where (i1,...,i,) is a permutation
of (1,...,n) and e;; ¢ alph(uy,) for k < j.
By Remark (b), either Dom(a) C {i1,...,ir} or Dom(a) C {igt1,..-,0n},
for every letter a € alph(uy), k = 1,...,n. Then, up = uju}, where
Dom(u},) C {ik+1,.--,in} and Dom(uy) C {i1,...,ix}. It is easy to
verify that ¢t = uf ... ul[er...ex]ug ... ul.

Let be t' = uy...u), and t'" = uf ...ul,. We now briefly prove that
t' € T(M) and t"" € T(M'). By definition of M’', we can find b € {0,1}
such that:

((Flv b); R (Fna b)) € A’(((Ilv)>) (In,o))vtl[el s en]t")'
More precisely, observing the definition of J;,, we obtain:

((Flv 0)7 R (Fna 0)) € AI(((Ilv)7 s ([n,O)),t’);

((I1,1),...,(In, 1)) € A'(((F1,0),...,(Fp,0)),[e1 .- en]);

((Flv b); T (Fna b)) € A’(((Ilv)> T (In) 1))7t")'
Since e; ¢ alph(t'), i =1,...,n, it turns out that F € A(I,¢') and then
t' € T(M). Furthermore, from these relationships, we can easily obtain:

((Fi,1b),...,(Fy,1 b)) € A'(((I1,0),...,(I,,0)),t"),
that implies t" € T'(M").

At this point, iterating the previous proof on the trace t” it turns out

26 G. Pighizzini

that ¢ is of the form t1[61 .. .en]t2 .. .tm_1[61 .. .en]tm, with tj € T(M),
j=1,....m.g

Applying Theorem 4.2 to the automaton M’, we can obtain a NAA
accepting the language T'(M)*.

Now, we briefly discuss how it is possible to generalize the previous
construction when there are no restrictions on the cardinality of sets I
and F'.

The idea is very similar to particular case above considered. When a
process P; reaches a component of a final state, it can change its state,
using an e-move, to go in a component of an initial state.

The problem is to assure that all processes chose the same final and
the same initial global state. This problem is solved in this way. At the
start of the computation all processes are synchronized and an initial
state s € I and a final state p € F are chosen. Then, the computa-
tion starts and every process simulates the corresponding process of M,
keeping the pair (s, p) in its local state.

When the process P; arrives to simulate the local state p; of M, it
can perform an empty transition choosing a new pair (s',p') € I x F.

When a symbol a € A is executed, all processes in Dom(a) are syn-
chronized and they compare the pairs of initial and final states contained
in their proper memories. If these pairs do not coincide then none tran-
sition is possible. Since all traces in the language accepted by M are
connected and since the automaton M records the letters of traces, this
method assures that in an accepting computation of M’ all kth empty
transitions of processes correspond to the same initial and to the same
final state. Formally, the automaton M is defined as follows:

e SI=8,xIxFx{0,1},i=1,...,n;
o I'={((s1,8,p,0),...,(sn,8,p,0) | s€l,peF}

o for a € A with Dom(a) = {i1,...,ir}, s; € Si;, j = 1,...,k,
ql)"')quI)ph'")pkeF) bl:"'abke{o)l}:

6(’1((817q17p17b1)7"'7(Skaqkapkabk)) =
= {((ulaqapab)a'"7(uk7q7p7b)) | (U’la'--auk) € 6(1(817"'7816)}7

Synthesis of nondeterministic asynchronous automata 27

if there are ¢ € I, p € F, b € {0,1}, st. ¢, = ... = q, = q,
pPr=...=p,=p,and by = ... =b; =b;

6;((817q1)p1)b1)) D) (Sknqk)pk)bk)) = 0)
otherwise.

efori=1,...,n,5,€8S;,qel,pe F,be {0,1}:

'l _ (g, p 1eb) | d el,p e F} ifsi =p;
Oc, (si,q,p,b) = {@ otherwise;

o I ={((p1,q,p.b),...,(Pn,a,p,b)) | g € I,p € F,b € {0,1}}.

Previous remarks (a), (b) and (c) hold also in this case. The correctness
proof given in Theorem 5.3 can be easily generalized.

6 Conclusion

We conclude the paper with some considerations on the complexity of
asynchronous automata obtained applying our constructions.

It is not difficult to see that all constructions given in the paper
(union, product, restriction, decomposition and restricted iteration) pro-
duce NAAs with a polynomial number of states with respect to the num-
ber of states of the NAAs given as input.

Moreover, it is possible to observe that for a fixed concurrent alpha-
bet (A,#) the coiteration T°°~* of a trace language T' can be denoted
as explained in Section 5.3 using an expression involving operations
of union, product, decomposition, restriction and restricted iteration,
whose length is polynomial in the length of the recognizable expression
given for T'. Then, using the algorithms presented in this paper, for every
recognizable expression it is possible to build a nondeterministic asyn-
chronous automaton recognizing the language denoted by it and whose
number of (global and local) states is polynomial in the length of the
given expression.

28

G. Pighizzini

References

[BBMS81] A. Bertoni, M. Brambilla, G. Mauri, and N. Sabadini. An ap-

[CMSg]

[HU79)

[Maz77]

[Och85]

[Zie87]

plication of the theory of free partially commutative monoids:
asymptotic densities of trace languages. In Proc. 10th MFCS,
Lecture Notes in Computer Science 118, pages 205-215, 1981.

R. Cori and Y. Métivier. Approximation of a trace, asyn-
chronous automata and the ordering of events in a distributed
system. In Proc. 15th ICALP, Lecture Notes in Computer
Science 317, pages 147-161, 1988.

J. Hopcroft and J. Ullman. Introduction to automata theory,
languages and computations. Addison—Wesley, 1979.

A. Mazurkiewicz. Concurrent program schemes and their in-
terpretations. Technical Report DAIMI Rep. PB-78, Aarhus
University, 1977.

E. Ochmanski. Regular behaviour of concurrent systems.
EATCS Bullettin, 27:56-67, 1985.

W. Zielonka. Notes on finite asynchronous automata. RAIRO
Inf. Theor., 21:99-135, 1987.

29

30

P. Gastin, A. Petit

Biichi asynchronous cellular automata

31

32

P. Gastin, A. Petit

Biichi asynchronous cellular automata

33

34

P. Gastin, A. Petit

Biichi asynchronous cellular automata

35

36

P. Gastin, A. Petit

Biichi asynchronous cellular automata

37

38

P. Gastin, A. Petit

Biichi asynchronous cellular automata

39

40

P. Gastin, A. Petit

Biichi asynchronous cellular automata

41

42

P. Gastin, A. Petit

Biichi asynchronous cellular automata

43

44

P. Gastin, A. Petit

Biichi asynchronous cellular automata

45

46

Trace Convergence over infinite alphabets I

47

48

M. Stannett

Trace Convergence over infinite alphabets I

49

50

M. Stannett

Trace Convergence over infinite alphabets I

o1

92

M. Stannett

Trace Convergence over infinite alphabets I

53

o4

M. Stannett

Trace Convergence over infinite alphabets I

39

56

M. Stannett

Trace Convergence over infinite alphabets I

o7

58

M. Stannett

Trace Convergence over infinite alphabets I

99

60

M. Stannett

Trace Convergence over infinite alphabets I

61

62

M. Stannett

Trace Convergence over infinite alphabets I

63

64

M. Stannett

Trace Convergence over infinite alphabets I

65

66

M. Stannett

Trace Convergence over infinite alphabets I

67

68

M. Stannett

Trace Convergence over infinite alphabets I

69

70

M. Stannett

Trace Convergence over infinite alphabets I

71

72

Trace Convergence over infinite alphabets IT

73

74

M. Stannett

Trace Convergence over infinite alphabets IT

75

76

M. Stannett

Trace Convergence over infinite alphabets IT

7

78

M. Stannett

Trace Convergence over infinite alphabets IT

79

80

M. Stannett

Trace Convergence over infinite alphabets IT

81

Automata with Storage on Infinite Words
(Extended Abstract) !

Joost Engelfriet and Hendrik Jan Hoogeboom

Leiden University, Department of Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract. For any storage type X, the w-languages accepted
by X-automata are investigated. Six accepting conditions
(including those introduced by Landweber) are compared for
X-automata. The inclusions between the corresponding six
families of w-languages are essentially the same as for finite
state automata. Apart from unrestricted automata also real-
time and deterministic automata are considered. The main
tools for this investigation are (1) a characterization of the
w-languages accepted by X-automata in terms of (inverse)
X-transductions of finite state w-languages, and (2) the exis-
tence of topological upper bounds on some of the families of
accepted w-languages (independent of the storage type X).

Introduction

An automaton A that is meant to work on finite input words may as
well be given an infinite input word u: it works on u as if u were a ‘very

1This paper was previously presented at ICALP’89 and appeared in
the proceedings of the conference ([EngHoo89]). A full version of the
paper is scheduled to be published in Theoretical Computer Science in
the spring of 1993.

82

Automata with storage on infinite words 83

large’ finite word. The essential difference is in the way that .4 accepts
u; obviously one cannot use acceptance by final state as for finite words.

The first one to use automata to accept infinite words (with a par-
ticular acceptance criterion) was Biichi (in solving a decision problem
in logic, [Biic60]). Another criterion was given by Muller ([Mul63]).A
deterministic finite state automaton A accepts an infinite word u in the
fashion of Muller if the set of states entered by A infinitely often during
its computation on u belongs to a given family of ‘final’ state sets. This
family replaces the usual set of final states. Five criteria for accepting
infinite words were proposed by Landweber in [Lan69], including those
introduced by Biichi and Muller, and he characterized the five corre-
sponding families of infinitary languages accepted by deterministic finite
state automata in a topological setting.

The relative power of these five acceptance criteria was subsequently
compared for (nondeterministic) finite state automata ([Hos72,
StaWag74]), pushdown automata ([Lin76, CohGol77, CohGol78a]), Tur-
ing machines ([WagSta77, CohGol78b]) and Petri nets ([Val83]). If one
compares the results of these investigations, one notices some striking
similarities (see the survey [Sta87]). It seems that the acceptance types
have the same relative power independently of the storage used by the
automaton involved. This observation is the main motivation for the
present paper. Using a general framework we want to explain the sim-
ilarities between the results obtained for the various specific types of
automata (as is done for automata on finite words in [Gin75]). Our ab-
stract model of storage is called a storage type. It describes the storage
configurations together with the tests and transformations that can be
applied to them. Automata equipped with a specific storage X (and a
one-way input-tape) are called X-automata. We study six (rather than
five) families of w-languages that can be accepted by an X-automaton
using six different acceptance criteria on the sequence of states entered
by the automaton during a computation. (It should be noted that accep-
tance can also be defined in terms of the storage configurations rather
than the states, see [Sta77], but this will give quite different results, cf.
[Val83]). A possible approach to comparing the six acceptance criteria
is by giving constructions on automata that show how one acceptance

84 J. Engelfriet, H. J. Hoogeboom

type can be simulated by another. In fact, as observed in [CohGol77,
Val83], it is not too difficult to generalize most of the constructions given
in [Hos72] for finite state automata, simply by ‘adding’ storage instruc-
tions to the transitions. Hence it is not much of a surprise that the
inclusions between the six families for X-automata are similar to those
formed by the families for finite state automata. Of course, this is a
rather boring and time-consuming approach. Also, if one wants to study
X-automata satisfying a particular property (as, e.g., being real-time
or deterministic), it is necessary to check for each of the constructions
whether it preserves the property under consideration (and if not, to
adapt the construction). We use a more efficient way of transferring the
results for finite state automata to arbitrary storages. Our main tool is a
characterization of the w-languages accepted by X-automata in terms of
(infinitary) transductions applied to the w-languages accepted by finite
state automata. Since we do not use the acceptance criteria to define
transductions, this single result can be used to show that the inclusions
that hold between the six families of finite state w-languages are also
valid for X-automata. This of course does not indicate whether or not
an inclusion is strict. We show that the topological upper-bounds on the
complexity of accepted languages as given by Landweber for determin-
istic finite state automata can be generalized to X-automata (as already
suggested in [Lan69]). This implies that for deterministic X-automata
the inclusions are always strict (and the same holds for real-time au-
tomata).

In Section 3 we study both arbitrary and deterministic X-automata.
First we present the above-mentioned characterization of the correspond-
ing families of w-languages (Theorem 3.3). From this we obtain the hi-
erarchy for w-languages accepted by X-automata (Theorem 3.5). For
specific storage types the hierarchy can be strict or it can collapse into a
single family. We give a sufficient condition for such a collapse (Theorem
3.7). Real-time automata are investigated in Section 4. The inclusions
between the families of w-languages accepted by real-time automata are
very similar to those found in Section 3 (see Theorem 4.4). Here however,
the inclusions are always strict. The counter-examples are obtained by
establishing topological upper-bounds that are independent of the stor-

Automata with storage on infinite words 85

age type. We return to deterministic automata in Section 5. Again we
obtain topological upper-bounds on the accepted w-languages. Together
with our basic characterization (given in Section 3) this is used to estab-
lish a proper hierarchy similar to the hierarchy for deterministic finite
state automata (Theorem 5.4). In the final section we study a storage
type of ‘maximal power’. The families of w-languages accepted by au-
tomata of this type belong to the lower levels of the topological hierarchy
of Borel sets (Theorems 6.3 and 6.6). These results are similar to those
obtained in [Arn83] and [Sta84] for transition systems.

1. Preliminaries

We assume the reader to be familiar with the basic notions of infini-
tary languages, e.g., as discussed in one of the following surveys and
introductions: [Eil74, HooRoz86, Sta87, Tho88|.

The symbol C (C) denotes set inclusion (strict set inclusion, respec-
tively); in diagrams we will use = (and —, respectively). We use M to
indicate non-disjointness of sets, i.e., UNV if UNV # (.

As usual, ¥* and X¥ denote the sets of finite words and infinite words
(or w-words) over the alphabet ¥. Their subsets are called (finitary)
languages and infinitary languages (or w-languages), respectively. The
empty word is denoted by A. wu[n] denotes the prefix of length n of a (w-
yword u (when defined), and pref (v) denotes the set of (finite) prefixes
of v. For a (w-)language K, pref (K) = U{pref (u)|u € K}. An infinite
sequence of finite words (a:i)iEN such that each z; is a prefix of x;41
defines a unique element u of ¥* UX¥ by taking the ‘least upper bound’
of the sequence, i.e., the shortest u that has each z; as a prefix. u will
be denoted by lub(z:), N

Let K C ¥* be a finitary language. The w-power of K, denoted by
Kv,is {u € ¥¥u = lub(mi)iEN, where zy € K and z;41 € z; - K for
i € N}, the adherence of K, denoted adh(K), is {u € X¥|pref(u) C
pref (K)}, and the limit of K, denoted lim(K), is {u € X¥|pref (u) N K
is infinite}.

86 J. Engelfriet, H..J. Hoogeboom

¥¢ can be turned into a (compact) metric space by defining the
distance function d(u,v) = 2~ ™ir{nlulnl#vnl} for o £ . We will use
G, and F to denote the family of open, respectively closed, sets in this
topological space. Furthermore, Gs is the family of denumerable intersec-
tions of open sets, and F, is the family of denumerable unions of closed
sets. There is a close correspondence between the w-languages in these
families (that form the lower levels of the Borel hierarchy) and the lan-
guage theoretical operations given above (see, e.g., [Lan69, StaWag74,
BoaNiv80]).

1.1. Proposition. Let L C X, Then

(1) L € Gif and only if L = K - £¢ for some K C ¥*,

(2) L € Fif and only if L = adh(K) for some K C ¥*, and

(3) L € Gy if and only if L = lim(K) for some K C ¥*. m

1.2. Proposition. 0*1-{0,1}¥ € G &F, {0,1}*-1¥ € F, G5, and
0¥ € Gs &F,. m

2. Automata on w-Words: Definitions

For finite words, the general notion of an automaton, using some kind
of storage, was introduced in [HopUll67, Sco67, GinGre69]. The re-
sulting AFA theory (Abstract Families of Automata) provides a useful
framework for a uniform investigation of different types of automata (see
[Gin75]). Here we attempt to set up a similar theory for automata on
infinite words (see also [Sta77]). The particular variation of AFA theory
that we use here is similar to the one in [EngVog87].

2.1. Storage and Automata

A storage type is a 5-tuple X = (C,Cip, P, F,), where C is a set of
(storage) configurations, Ciy, C C is a set of initial (storage) configura-

Automata with storage on infinite words 87

tions, P is a set of predicate symbols, F' is a set of instruction symbols,
PNF =0, and p is a meaning function which assigns to each p € P a
(total) mapping p(p) : C — {true, false}, and to each f € F a partial
function u(f) : C — C. The set of all Boolean expressions over P, using
the Boolean connectives A, V and —, and the constants true and false,
is denoted by BE(P); elements of this set are called tests. The meaning
function is extended to BE(P) in the obvious way. We extend p also
from F to F* by defining u(A) to be the identity on C' and by setting

u(fo) = (@) o pu(f) for ¢ € F* and f € F.

2.1. Example. The storage type push-down, denoted PD, is defined
by PD = (C,Cin, P, F,p), where C = | *, for a fixed infinite set ,
(of push-down symbols), C;,, = ,, P = {top = v|y € , } U {bottom},
F = {push(y)|y € , } U {pop}, and, for ¢ = au with a € , and u €
, %, w(top = y)(¢) = true iff v = a, p(bottom)(c) = true iff u = A,
w(push(y))(c) = ve, u(pop)(c) = u if u # A, and undefined otherwise.

The storage type counter is CTR = (IN, {0}, {zero}, {incr, decr},),
where, for n € N, p(zero)(n) = true iff n =0, p(incr)(n) =n + 1, and
p(decr)(n) =n <1lif n > 1, and undefined if n = 0. m

In the rest of this paper let X = (C,Ci,, P, F,u) be an arbitrary
storage type.

An X-transducer is a construct A = (Q, X, 6, ¢in, Cin, A), where Q is
the finite set of states, X(A) is the input (output) alphabet, ¢;n € Q is the
initial state, ¢y, € Cyy, is the initial storage configuration, and the finite
control ¢ is a finite subset of @ X (XU {A}) x BE(P) x Q x F* x A*, the
elements of which are called transitions.

We say that A is real-time if § C Q x ¥ x BE(P) x @ x F* x A*.

Ais deterministic if, for every two different transitions (q;, a;, 3, ¢}, ¢, i),
i = 1,2, from 0 with ¢ = ¢, either a; # a2 and ai1,a2 # A or
(B A B2)(c) = false for every c € C.

An instantaneous description (ID) of A is an element (g,z,c,y) of
Q x ¥* x C' x A*; it intuitively means that A is in state ¢, has read z
from the input tape, has ¢ as its storage configuration, and has written
y on its output tape. The step relation 4 of A, is the binary relation

88 J. Engelfriet, H..J. Hoogeboom

on @ x ¥* x C' x A* defined by (¢, z,c,y) Fa (¢',2', ¢, y") if there exists
a transition (q,a, 8, ¢, ®,w) € § such that u(8)(c) = true, ¢’ = u(p)(c),
z' = za, and y' = yw. Intuitively this means that if A is in state g and
has the storage configuration ¢, it may use the transition (g, a, 3,q’, ¢, w)
provided c satisfies the test 3, and then it changes its state to ¢, reads a
from its input tape, performs ¢ to the storage configuration, and writes
w on its output tape.

A (infinite) run of A is an infinite sequence r = (7;), 1y of ID’s such
that 70 = (gin, A, Cin, A), and 7; b4 7541 for each i € N; it is a run on
input lub(z;), N, and with output lub(y;), .y where 7; = (i, i, Ci, Yi)-
The sequence (g;), N is called the state sequence of the run r.

The (infinitary) transduction of A, denoted T'(A), is defined as {(u, v)
€ ¥ x A¥| there is a run of A on input u with output v}. If A has
no run on an infinite input word with a finite output word, then A is
called w-preserving. XT (XT,) denotes the family of infinitary trans-
ductions of (w-preserving) X-transducers. The corresponding families of
transductions of deterministic or real-time X-transducers are denoted by
d-XT (d-XT,) and r-XT (r-XT,,), respectively.

2.2. (o0,p)-Accepting Infinite Runs

We will now discuss how an X-transducer A may be used to accept w-
languages. Since, in this case, we are not interested in A’s output, A
is called an X-automaton. We drop the output component from A, and
from its transitions and ID’s.

Let @ be a set and let f be a mapping N — @ (i.e., an infinite
sequence (f(i)),c. N over @). The range of f is the set ran(f) = {q €
Q|f (@) = q for some i € N}; the infinity set of f is the set in(f) = {q €
Q| f (@) = ¢ for infinitely many i € N}.

Let D C 29 be a family of subsets of Q. Let p be one of the relations
C, Mor =, and let o be either ran or in. We say that an infinite sequence
f: N = Qis (o, p)-accepting with respect to D if there exists a set D € D
such that o(f)pD.

The relation between the notation we use (see [StaWag74]) and the

Automata with storage on infinite words 89

five types of ‘i-acceptance’ as originally defined in [Lan69] are given in
the following table, together with a short intuitive name for some of these
types of acceptance. (ran,=)-acceptance, not considered by Landweber,
was first studied in [StaWag74].

(ran,M) l-accepting at least once

(ran,C) 1'-accepting always

(ran,=) —
(in,M) 2-accepting infinitely often (Biichi)
(in,C) 2'-accepting from some moment on
(in,=) 3-accepting (Muller)

Let A = (Q,%,0,qin,cin) be an X-automaton, and let D C 29 be a
family of subsets of Q. A run of A is called (o, p)-accepting with respect
to D if its state sequence is (o, p)-accepting with respect to D.

The w-language (o, p)-accepted by A with respect to D, denoted by
Ly ,(A,D), is the set {u € £¥| there is a run of A on input u that is
(0, p)-accepting with respect to D}. The family of w-languages (o, p)-
accepted by X-automata (with respect to some family of state sets) is
denoted by XL, ,. Again we use the prefixes d- or r- if we restrict our
considerations to deterministic or real-time automata. Finally, for a set
D of states of A, the (finitary) language L.(A, D) accepted by A with
respect to D is the set {x € X*|(¢in, A, cin) F¥ (¢, 2, c) for some ¢ € D
and c € C'}, where % is the reflexive and transitive closure of F 4.

In the literature it is sometimes required that A is ‘total’, e.g., in
the sense that A4 has a run on every input word. We will not consider
totality. Requiring totality changes (in general) the class XL, ,.

A special storage type is used to model finite state automata. The
trivial storage type FS equals ({c0}, {0}, 0, B, #) for some arbitrary object
0. Since (* = {A} the transitions of an FS-automaton can be assumed
to be of the form (g, a, true,q', A).

2.2. Example. Let A be the (deterministic and real-time) FS-automaton

90 J. Engelfriet, H..J. Hoogeboom

with state set @ = {qo,¢1}, input alphabet ¥ = {0, 1}, initial state go,
and transitions (g;, j, true,q;, A) for i,j € {0,1}. Let D = {{q:1}}, and

Q ={Q}. Then
Lran,ﬂ(Aa D) =0"1- {07 l}w
Lran,ﬂ(-Aa Q) = Lmn,g(-Av Q) = {07 l}wﬂ
Lran,g(A; D) = LTan,:(A; D) = w:
Lran,:(Ay Q) =0*1- {0) 1}14)’
Lin,H(Ay D) = (O*I)w)
Lin,l‘l(-Aa Q) = Lm,g(/l, Q) = {07 l}w,
Lin,g(Aa D) = Lin,:(-Av D) = {07 1}* S
Lin=(A, Q) = (0*11*0)“.

It is customary in the literature to define regular w-languages using
real-time finite state automata. It can be shown that this restriction
does not influence the families of (¢, p)-accepted finite state w-languages,
ie., FSL,, = r-FSL, , and d-FSL, , = dr-FSL, ,. Hence we have the
following well-known relationships for these families (see, e.g., [Wag79]
for references). Note that — denotes proper inclusion.

2.3. Proposition.

FSLi,
I
FSLyan,c FSLyann = FSLygn— = FSLyyc FSLjy —
I | I
| d-FSLin,c |
d-FSLyan,c — d-FSLyan — d-FSLyan,= < 3 d-FSLip —
d-FSLiy

Note that when requiring totality the diagram is slightly different,
caused by the fact that FSLyq, n and d-FSLyg, n become smaller.

Finally we need (but do not define formally) the notion of the product

Automata with storage on infinite words 91

of two storage types X; and Xs, denoted by X; xXs. It combines the
power of the two storages X; and X5 working in an independent fashion.
Thus, e.g., the CTRxCTR-~automaton is the well-known two-counter
automaton. The product of n storage types, all equal to X, is denoted by
X™. An X*-automaton is an X"-automaton for some n € N. Thus, e.g.,
each CTR*-automaton has an arbitrary (but fixed) number of counters.

3. The Basic Characterization

In the next lemma we show how to separate an X-automaton in two
phases: a phase in which the input is processed, and an acceptance
phase. The first phase can be realized by an X-transducer (without
acceptance criterion), and the second phase by a finite state automaton.

3.1. Lemma. XL, , C XT_'(d-FSL,,,) and
d-XL, , € d-XT_*(d-FSL, ,).

Proof. Let A4 be an X-automaton with input alphabet ¥ and state set
Q; let D be a family of state sets for 4. Consider the infinitary lan-
guage K (o, p) consisting of the w-words over @) that are (o, p)-accepting
sequences wrt. D. It belongs to d-FSL, , since it is (o, p)-accepted by
the deterministic finite state automaton B = (QU{¢°}, @, 61, ¢°, c0) with
q° ¢ Q and &1 = {(¢', q, true,q,\)|¢' € QU{q°},q € Q}. One easily sees
that for r € ¥, the run 1 of B on r satisfies ran(r,) = ran(r)U{q°} and
in(r1) = in(r). Thus K (o, p) = L, ,(B,D°) with D° = {DU{¢°}|D € D}
if (o, p) equals (ran, =) or (ran, C), and K (o, p) = L, ,(B,D) in the four
remaining cases.

Modify A such that at each step it outputs its state, i.e., take A = @
and replace every transition (q, a, 3, ¢', ¢) by the transition (g, a, 3, ¢, ¢, q).
This gives an (w-preserving) X-transducer M that maps each w-word u
over ¥ onto the state sequences of the runs of A on u. wu is (o,p)-
accepted by A if one of these state sequences belongs to K (o, p). Hence,
Ly ,(A, D) = {u € £°|(u,r) € T(M) for some r € K(o,p)} = T(M)™*
(K(o,p)). m

92 J. Engelfriet, H. J. Hoogeboom

3.2. Lemma. For storage types X; and X, X1 T;'(X2Ls,) C (X; x
XQ)me and d—XlTu_)l(d—XQLmP) - d—(X1 X XQ)Lo-7p.

Proof. Let M be an w-preserving X;-transducer with input alphabet X,
let A be an Xy-automaton with a family of state sets D. The lemma is
proved by constructing an X; x Xs-automaton B that (o, p)-accepts the
w-language T(M) (L, ,(A,D)) = {u € Z¢|(u,v) € T(M) for some
v € Ly ,(A,D)}. Using a straightforward direct product construction
we simulate M and A in two alternating phases: first we simulate M
until it produces some nonempty output and we store this output in the
states of B, then we simulate A4 on this output. Using such a simulation,
arun rg of B on an w-word u can be decomposed into a run of M on u
and an infinite run r4 of A on the output v of M. Here the fact that
M is w-preserving is essential in order to guarantee that v is infinite.
If we restrict the state sequence of rz to the component of the states
corresponding to A4, it is equal (except for possible repetitions) to the
state sequence of 4. This observation can be used to obtain a suitable
family of state sets D' for B. Some care has to be taken: D’ depends on
the acceptance type. m

If we combine these lemma’s we obtain our basic result: a charac-
terization of the families XL, , and d-XL, , in terms of X-transductions
and finite state w-languages.

3.3. Theorem. XL, , = XT_'(FSL, ,) and
d-XL,,, = d-XT"(d-FSL,,)

Proof. For X; = X and Xy, = FS we get XL, , C

C XT_,'(FSL,,,) C
(X x FS)L,,, C XL, ,. =

For some of the acceptance conditions the family FSL, , can be re-
placed by a single w-language. Intuitively this w-language models the
acceptance condition. A similar result was obtained in [WagSta77] for w-
languages accepted by Turing machines, and (implicitly) in [LatTim86]
for regular w-languages.

Automata with storage on infinite words 93

3.4. Theorem. XLy c = XT,'({1%}), XLygpn = XT,'({0*1 -

{0,1}}), XLy, c = XTS ({{0,1}*-1%}), and XL;, 1 = XT* ({(0%1)*}).
Similar equalities hold for d-XL, , and d-XT_".

Proof. For p € {C,M} we may assume that L € XL, , is accepted by
an X-automaton with respect to a family D = {D} (cf. [CohGol78a,
Lemma 4.1.2]). Now (as in the proof of Lemma 3.1) change A into an
X-transducer M that outputs 1 if its state is in D, and 0 otherwise. m

Using Theorem 3.3, we can carry over the known inclusions for the
families FSL,, , (see Proposition 2.3) directly to the families XL, , for ar-
bitrary X, without being forced to generalize the proofs for FS-automata.
Thus we obtain our next main result.

3.5. Theorem. XL,q,,c C XLygn,n = XLpgn,= = XLjpn,c € XLjpn =
XLin,:-]

The corresponding result for deterministic automata will be pre-
sented in Section 5. We cannot conclude that the inclusions are strict
in general like for finite state w-languages (X = FS, Proposition 2.3) or
push-down automata (X = PD, [CohGol77]). In fact, for certain stor-
age types all six families XL, , are equal (e.g., for Turing machines,
see [CohGol78b]). In the remainder of this section we give a sufficient
condition on X for all six families to be equal. It is based on the in-
clusion FSL;;, 1 € PDLygp, c, which was proved in [CohGol77] using the
pushdown as a counter.

The storage type blind counter, denoted by BC, is equal to the storage
type counter (see Example 2.1), except that it has no predicate symbols
(cf. [GreT8] where it is called a partially blind counter).

3.6. Lemma. XL;, 1 C (X x BC)Lyg, .

Proof. By Theorem 3.4, XL;, 7 = XT_ ' ({(0*1)*}), while

XT, (BCLygn,c) C (X X BC)Lygn,c, by Lemma 3.2. Hence it suffices
to show that (0*1)* € BCLy4n,c. We construct a BC-automaton A that
uses its (blind) counter to ensure that during its runs it can read any fi-

94 J. Engelfriet, H. J. Hoogeboom

nite number of consecutive 0’s, but not infinitely many consecutive 0’s. A
has two states go and ¢, and, for ¢ = 0, 1, transitions (g;, 0, true, qo, decr)
and (g;, 1, true, g1, A), and the transition (g1, A, true, ¢i, incr). The ini-
tial state of A is ¢;. Take D = {{qo,q1}}. For each step on the letter 0
A decreases its counter. Whenever A reads the letter 1 it enters state ¢;.
In this state, before reading the next input letter, 4 guesses the number
of 0’s on the tape before the next 1, and increases its counter value by
(at least) this amount. m

Hence, if the storage type X can simulate an additional blind counter,
all XL, , are the same.

3.7. Theorem. If X can simulate XxBC, in the sense that
(XXBC)Lmn’g g Xmeg, then Xmeg = XLin,H-]

Using this result we clearly reobtain the equality of the families of
w-languages (o, p)-accepted by Turing machines ([CohGol78b]).

It is obvious that the storage type BC* can simulate an additional
blind counter. Hence for Petri net w-languages, with acceptance with
respect to bounded markings (cf. [Val83]), and A-labels allowed, the six
families BC*L,, , are all equal. Although these families were not (explic-
itly) compared in the literature, the inclusion r-BC*Lj, .7 € BC*Lygn,c
is known (see [Car88, Theorem 3]).

4. Real-Time Automata

As in Section 3, we obtain a characterization of the families r-XL, , in
terms of X-transductions and finite state w-languages. The proofs are
slight variations of those of Lemma’s 3.1 and 3.2.

4.1. Theorem. r-XL, , = r-XT_' (FSL, ,). =

This allows us, as in Section 3, to transfer the inclusions known for

Automata with storage on infinite words 95

the families FSL, , directly to the families r-XL, ,. Again we investigate
when the remaining two inclusions are equalities and when they are
strict. Perhaps somewhat surprisingly they turn out to be always strict,
as shown next.

4.2. Lemma. Let A be a real-time X-automaton, with state set Q.

Then Lyon,c (A, {Q}) = adh(L.(A,Q)).

Proof. Let L = L,(A, Q). Note that Lq,,c (A, {Q}) is the set of all w-
words on which there exists a run of 4, without additional requirements
on its state sequence. Assume that w € Lyen,c (A, {Q}). This implies
that u[n] € L for each n € N and consequently u € adh(L). To prove
the other inclusion let uw € adh(L). Thus for each n € N A accepts
the prefix u[n] of u. Define the sets E,,, n € N, of ID’s of A that are
reachable from the initial ID after reading u[n]. Since each of these sets
is finite and nonempty, Konig’s Lemma can be used to obtain a run of
Aonu. m

4.3. Lemma. (1) r-XLyg,,c C F and (2) r-XLjpc C Fp.

Proof. Since F and F, are closed under union, it suffices to consider
w-languages (o, p)-accepted with respect to a single state set. Let A =
(Q,%,9, ¢in, cin) be a real-time X-automaton and let D C Q).
Lyon,c (A, {D}) does not change by restricting A to the states from D.
Hence (1) is a consequence of the lemma above.

Each (in, C)-accepting state sequence (w.r.t. {D}) of A falls apart
into an initial part without restrictions, followed by an infinite part that
stays within D. Thus

Lin,g('A’ {D}) = U LT&n,Q(A(vavc)a{D UQ%%C}):

(@in Ascin)b*(g,@,50)

where A(q,z,c) equals A, except that it has a new set of transitions,
leading from a new initial state ¢;, to ¢, reading x from the input,
and transforming c¢;;, into ¢ — these transitions copy the computation
(gin> Ay cin) F% (g,2,¢). Qga,c is the set of states that were added to

96 J. Engelfriet, H..J. Hoogeboom

obtain A(g,z,c). The above union is countable. Hence, by (1), every
w-language in r-XL;, c is a countable union of F-sets, thus an F,-set. m

These topological upper-bounds yield examples to show that the re-
maining two inclusions are strict for every storage type. Thus we obtain
the next main result.

4.4. Theorem. 1-XLyq,,c C 1-XLygp,n = 1-XLygp,= = 1-XLg,c C
I'—XLin’n = I‘—XLin’:.

Proof. According to Proposition 1.2, 0*1 - {0,1}* ¢ F D r-XLyp,c;
however 0*1 - {0,1}*¥ € r-XLy4,n (cf. Example 2.2). In the same way
we have (0*1)* € F, D r-XLj,,c, whereas (0*1)* € r-XLsp, n. m

Perhaps one of the main reasons for obtaining the strict inclusions
above, is that Konig’s Lemma is applicable to real-time automata (Lemma
4.2). This argumentation can be extended to a larger class of automata.
An X-automaton A has finite delay if there is no infinite run of A on
a finite word. All results for real-time automata proved in this section
also hold for automata with finite delay. We use the prefix - to indicate
finite delay.

In general the families f-XL, , and r-XL, , are not equal. The w-
language BIN, = {z - af|z € {0,1}*,0 < k < nr(z)} - ¥ U {0,1}*,
where nr(z) denotes the integer represented by xz € {0,1}* as a bi-
nary number, can be accepted by a BCZ-automaton with finite de-
lay but not by a real-time BC*-automaton. More precisely, BIN,, €
f—BCQLmn,g <1-BC*Lj;, . This example is essentially the one given by
Jantzen ([Jan79]) to show that A-labelled Petri nets are more powerful
than real-time Petri nets (when accepting finitary languages). It is per-
haps interesting to note that Petri nets with finite delay were considered
in the context of w-languages. In [Car84] these nets are called prompt
nets. This paper however focusses on nets that are 1-prompt, i.e., nets in
which A-transitions are allowed, but not two consecutive A-transitions
in a firing sequence (run). From our previous results it now follows that
the following diagram holds for Petri nets (with acceptance with respect

Automata with storage on infinite words 97

to bounded places, see [Val83] for real-time nets). We conjecture that
the indicated inclusion (1) is an equality.

4.5 Theorem.
BC*Lmn,g = BC*Lmn,ﬂ = E"C*Lin,l‘l
f
f ©BC*'Lyan,c — {©BC'Lygyn — {&BCLiyn
T T T

r &BC'Lygn,c — 1r<©BC*Lygpn — 1<oBC'Lj,n

5. Deterministic Automata

In this section we return to deterministic automata. Again we show that
the diagram for d-FSL,,, (Proposition 2.3) holds for arbitrary d-XL,,,.

5.1. Lemma. Let A be a deterministic X-automaton with state set @
and input alphabet ¥, and let D C 29. Then

(1) Lyan.c(A {Q})) = adh(L.(A4,Q)),

(2) Lyan,n(A, D) = L.(A,UD) - 3¢ N adh(L.(A,Q)), and

(3) Lin,n(A,D) = lim(L.(A,UD)). m

The above (simple) result enables us to give topological upper-bounds
on the w-languages that are accepted by deterministic automata. Given
two families K and £, K A £ denotes {K N L|K € K,L € L}, and B(K)
denotes the boolean closure of K.

5.2. Corollary. (1) d-XLyq, c C F,
) Cl'XLmn,l‘l g -7:/\ g,

) d-XLygn,= C B(j:):

) d'XLin,g g -7:07

) d'XLin,!_I g gé: and

)

(2
(3
(4
(5
(6) d-XLj, = C B(F,).

98 J. Engelfriet, H..J. Hoogeboom

Proof. (1,2,5) These are clear from Lemma 5.1.

(4) Can be shown just as the inclusion r-XL;, ¢ C F, in Lemma 4.3.
(3,6) Consider an arbitrary deterministic X-automaton A and a fam-
ily D of state sets for A. Then L, =(A,D) = Upep(Lo,c(A,{D}) &
Lon(A, {Q ©D})). Now d-XLan— C B(F) and d-XLi, - C B(F,)
follow. m

5.3. Lemma. {0,1}¥ <0*1-0 ¢ FAG.

Proof. Assume that K = {0,1}* <0*1- 0% is of the form L - {0,1}*N
adh(L2) for finitary languages Ly and Ly. Since 0¥ € K C Ly - {0,1}¥,
we have 0™ € L; for some n € N. On the other hand 0™10*1 - 0¥ C
K C adh(Ls), so pref(0"10*) C pref(Ls). Consequently 01 - 0¥ €
L, -{0,1}* N adh(Ls) = K; a contradiction. m

We now present the next main result.

5.4. Theorem. The following diagram holds:

d-XLp
d-XLygnc — d-XLpgnn = d-XLpgn— < 3 d-XLip -

Cl‘)(Lin,l‘l

Proof. The inclusions follow from Proposition 2.3 and Theorem 3.3.
Using the topological upper-bounds we have obtained, we find (using
Proposition 1.2 and Lemma 5.3) that 0*1-{0,1}* & d-XLygn,c, {0,1}* <
0*1- 0¥ ¢ d-XLran,n, (0°1)¥ & d-XLjp,c, and {0,1}* - 1¥ ¢ d-XLj, .
However these w-languages are in respectively d-XL,q,,n, d-XLygn,=,
d-XL;, n, and d-XL;y, c, as the reader will easily verify. From these
observations the strictness of the inclusions (and the incomparabilities)
follow. m

For some of the storages studied in the literature it was observed
that the families d-XL;,,c and d-XL;, » are ‘complementary’, i.e., one
contains the complements of the w-languages of the other. This is due to
the fact that automata are often assumed to be ‘total’, i.e., they should

Automata with storage on infinite words 99

have a run on every possible input (this is called the continuity prop-
erty in [CohGol77]). Since we do not have this requirement we cannot
derive such a result for arbitrary X-automata. Instead, we need the fol-
lowing notion which previously has been quite helpful in complementing
the finitary languages accepted by deterministic X-automata (cf. [En-
gVog87]).

5.5. Definition. Let X = (C,C;,, P, F, u) be a storage type. X with
infinite look-ahead, denoted X, 1 4, is the storage type (C, Cyn, P', F, u'),
where P’ = P U {inf(A4)|A4 is an X-automaton}, with pu'(x) = p(z) for
each x € PU F, and p'(inf(A))(¢) = true if and only if there exists an
infinite run of A on A starting from (g, A, ¢), where g¢;, is A’s initial
state. m

5.6. Lemma. Let L C ¥¥.

(1) If L € d-XL, =, then ¥ &L € d-X,r4L, =.

(2) If L € d-XL;p,c then X% &L € d-X,r4Lin n-

(3) If L € d-XL;;, n then ¢ <L € d-X,r4Linc.

Proof. Let A = (Q, X, 0, ¢in, ¢in) be a deterministic X-automaton. For
(in, C) and (in,MN)-acceptance we may assume that we have a single state
set D with respect to which we accept runs. If A has a run on each u
in ¥¥, then ¢ &Ly (A, {D}) = Linc(A,{Q &D}). Similarly, the
complement with respect to ¢ of the w-language L, — (A, D) is equal to
Ly —(A,2° &D), provided that for each w-word u in ¢ there is a run of
A on u. Using infinite look-ahead A may be transformed in such a way
that it satisfies this property. We add a special state grqy to A, with
transitions (qfqir, a,true,gsqir, A) for each a € ¥, to which we will lead
all ‘unsuccessful runs’. There are several possibilities for the behaviour
of A on u to be 'unsuccessful’.

(a) A blocks due to an undefined instruction. We can avoid that by
testing the instruction as follows. For ¢ € F*, consider the X-automaton
B(¢) consisting of two states go and go0p (of which go is initial), and hav-
ing two transitions (qo, A,true,gioop, @) and (Gioop, Astrue,gioop, A). B(@)
has a run on A starting from (go,A,c) if and only if u(¢)(c) is de-
fined. Now replace in A each transition (g¢,a,(,q¢’,¢) by transitions

100 J. Engelfriet, H. J. Hoogeboom

(4,0,8 AE(B(8)), ',) and (q,0, 8 A ~int(B(6)), asait, A).

(b) A has a run on a finite prefix of u. Replace in A each transi-
tion (g,a,3,q', ¢) by transitions (¢, a, BA—inf(A(q)),q', ¢) and (g, a, BA
inf(A(q)), qfair, A), where A(q) is the X-automaton that equals A, except
that its initial state is g.

(c) Finally A may block because in some ID there are no ‘useful’
transitions: the present configuration satisfies none of the tests of the
transitions that start in the present state (with a suitable input). This
case is left to the reader. m

Note that if X, 4 can be simulated by X (and this holds, e.g., for
X = FS and X = PD), then the previous lemma shows that d-XL, = is
closed under complement, and that d-XL;, c and d-XL;, n contain the
complements of each others w-languages. In the next section we need
this property for a specific storage type.

6. A Universal Storage Type

In this section we show the existence of a storage type of ‘maximal
power’.

6.1. Definition. The universal storage type U equals (, *, {A}, P, F,),
where , is a fixed infinite set of symbols, P = {inK|K C X*, for a finite
¥ C,}, F = {store(z)|xz €, *}, and, for ¢ € , *, pu(inK)(c) = true iff
c € K, and u(store(z))(c) =cz. m

6.2. Lemma. For every storage type X, U can simulate X, in the sense
that XL, , C UL, ,, and similarly for d- and r-.

Proof. Let X = (C,Ciy,, P, F,uu) and let A be a X-automaton with
initial configuration ¢;,. We will construct a U-automaton A’ with
the same behaviour. We use the configurations of U to store the se-
quences of instruction symbols that are performed by A and encode
those sequences that lead to configurations in which a given test is sat-

Automata with storage on infinite words 101

isfied in a suitable language. Let F4 be the (finite) subset of F' of
instruction symbols that are used in A. Without restriction we may
assume that F4 is included in , , the alphabet of U. Let, for ¢ € F™*,
Def(¢) = {¢ € Fji|u(¥ - ¢)(cin) is defined} and, for 3 € BE(P), let
True(B) = {¢ € Fii|lc = u()(cin) is defined and pu(3)(c) = true}. Now
A’ is obtained by replacing every transition (¢, a, 3,q',¢) of A by the
transition (g, a, inTrue(B3) A inDef(9), ¢', store(¢)). m

6.3. Theorem. (1) d-ULygp.c = F,

) Cl‘ULmn,I‘I =FA ga

) d-ULygpn = = B(F),

) d‘ULin,g = ‘7:0'7

) d-UL;p.n = Gs, and

) d-UL;p = = B(Fy).

Proof. The inclusions from left to right follow from Corollary 5.2.

(1,5) Let A be the U-automaton with transitions (g;, a, inkK, q1, store(a))
and (g;,a, ~inK, qo, store(a)) for a € X, i € {0,1}, and with initial
state ¢1. For this automaton L, n(A,{{¢i1}}) = lim(K). This shows
Gs C d-ULjpn. If K = pref(K), then Ly, c(A,{{¢:1}}) = adh(K),
which shows F C d-UL g, c.

(2) Let B be the U-automaton with transitions (go, a, =inL, qo, store(a)),
(qo,a,inL,q, store(a)), and (¢1,a, inK, g1, store(a)) for a € X, and with
initial state go. If K = pref(K), then Lyonn(A, {{e1}}) = L-¥“ N
adh(K).

(3) For B(F) C d-ULygp,= it suffices to show, by (1) above, that
d-UL,g, — is closed under complement and union. The closure of d-UL 4y, —
under complement follows from Lemma 5.6 and Lemma 6.2. The clo-
sure of d-UL,,,, — under union can be shown using an easy direct product
construction (using the fact that U can simulate U x U).

(4) F5 C d-UL;y ¢ follows by complementation from (5) above (see
Lemma 5.6).

(6) For B(F,) C d-UL;,, = we use an argumentation analogous to (3)
above. m

(2
3
4
(5
(6

Note that these classes are related by the diagram in Theorem 5.4.

102 J. Engelfriet, H. J. Hoogeboom

Thus in the deterministic case the maximal power of U can be expressed
as a topological family, depending on the acceptance criterion. For fini-
tary languages U is of no interest: every finitary language can be ac-
cepted by a deterministic real-time U-automaton.

6.4. Theorem. (1) dr-UT = d-UT equals the family of continuous
functions with domain in Gs.

(2) dr-UT, = d-UT,, equals the family of continuous functions with
domain in F.

Proof. Recall that the function f : ¥¥ — A¥ is continuous in a word w if
for each m € N there exists n € N such that f(u[n]-3¥) C f(u)[m]-A¥.
If (u,v) € T(M) for some deterministic transducer M, and M outputs
the first m symbols of v on the first n symbols of u, then T(M)(uln] -
¥¢) C v[m] - A¥, where ¥ and A are the input alphabet and output
alphabet of M. Hence T'(M) is continuous. Regarding the domain
of transductions it can be shown that dom(d-UT) = d-UL;,n = Gs,
and dom(d-UT,) = d-ULyen,c = F. We omit the proof of the reverse
inclusions. m

6.5. Theorem. UL, , equals the family of continuous images of Gs-sets.

Proof. By Theorem 3.7 and Lemma 6.2 the UL, , are all equal. It is
easy to see that UL;, n C dr-FST(d-UL;,). Hence each set in UL;p 1
is the continuous image of the intersection of two Gs-sets (the domain
of the transducer and the d-UL;, n set) which again is a Gs-set. The
continuous images of Gs-sets are exactly the ranges of deterministic real-
time U-transductions. The following easy inclusions hold: ran(dr-UT) C
dom (dr-UT 1) C dom(UT,,) C UT," (FSL;,). By Theorem 3.3 this is
ULin,ﬂ-]

Without proof we state the topological characterizations of the fam-
ilies r-UL, , (cf. Lemma 4.3). The same equalities hold for f-.

6.6. Theorem. r-UL,,, c = F, r-UL;, c = F5, and
I'—ULZ'n7|—| = ULin7|—|.]

Automata with storage on infinite words 103

Similar results were obtained by Arnold ([Arn83], cf. [Sta84]) for
the more general framework of transition systems. He discusses the ac-
ceptance types (ran, C), (in, C), and (in,M)—somewhat reformulated to
deal with a possibly infinite number of states—for various kinds of transi-
tion systems. It is not difficult to see that Arnold’s deterministic, finitely
branching, and countably branching transition systems correspond in our
framework closely to automata that are deterministic, have finite delay,
or are unrestricted, respectively. Note that his definitions do not allow
A-transitions, whereas in our framework the number of transitions ap-
plicable to an ID of an automaton is bounded by a constant (depending
on the automaton).

Acknowledgements

We would like to thank dr. Ludwig Staiger for his useful suggestions,
prof. Wolfgang Thomas for several motivating discussions, and prof.
Volker Diekert for his continuous enthousiasm and for organizing this
ACMICS workshop on infinite traces.

References

[Arn83] A. Arnold, Topological characterizations of infinite behaviours
of transition systems, LNCS 154 (1983) 28-38 Springer Verlag,
Berlin.

[BoaNiv80] L. Boasson & N. Nivat, Adherences of languages, J. Comput.
System Sci. 20 (1980) 285-309.

[Biic60] J.R. Biichi, On a decision method in restricted second order
arithmetic, in: Proc. Int. Congr. Logic, Methodology and Phi-
losophy of Sciences 1960, Stanford University Press, Stanford,
CA,1962.

[Car84] H. Carstensen, Fairness in deadlockfree Petri nets with the fi-
nite delay property, Proc 5th European Workshop on appl. and
theory of Petri nets, Aarhus, 1984, pp. 234-253.

104 J. Engelfriet, H. J. Hoogeboom

[Car88] H. Carstensen, Infinite behaviour of deterministic Petri nets,
LNCS 324 (1988) 210-219 Springer Verlag, Berlin.

[CohGol77] R.S. Cohen, A.Y. Gold, Theory of w-languages. II: A study
of various models of w-type generation and recognition, J. Com-
put. System Sci. 15 (1977) 185-208.

[CohGol78a] R.S. Cohen, A.Y. Gold, w-Computations on deterministic
pushdown machines, J. Comput. System Sci. 16 (1978) 275-
300.

[CohGol78b] R.S. Cohen, A.Y. Gold, w-Computations on Turing ma-
chines, Theor. Comput. Sci. 6 (1978) 1-23.

[Eil74] S. Eilenberg, Automata, languages and machines, Ch. XIV: In-
finite behavior of finite automata, Academic Press, New York
and London, 1974.

[EngHoo089] J. Engelfriet, H.J. Hoogebooom, Automata with storage on
infinite words, in “Proceedings ICALP 1989” (G. Ausiello, M.
Dezani-Ciancaglini, S. Ronchi Della Rocca, eds.) LNCS 372
(1989) 389-303, Springer Verlag, Berlin.

[EngVog87] J. Engelfriet, H. Vogler, Look-ahead on pushdowns, Inform.
and Computation 73 (1987) 245-279.

[Gin75] S. Ginsburg, Algebraic and automata-theoretic properties of for-
mal languages, 1975, North-Holland/American Elsevier, Ams-
terdam/New York.

[GinGre69] S. Ginsburg, S.A. Greibach, Abstract families of Languages,
in “Studies in abstract families of languages”, Memoirs of the
Amer.Math. Soc. 87 (1969) 1-32.

[Gre78] S.A. Greibach, Remarks on blind and partially blind one-way
multicounter machines, Theor. Comput. Sci. 7 (1978) 311-324.

[HooRoz86] H.J. Hoogebooom, G. Rozenberg Infinitary languages — ba-
sic theory and applications to concurrent systems, in “Current
trends in concurrency” (J.W. de Bakker, W.P. de Roever, G.
Rozenberg, eds.) LNCS 224 (1986) 266-342, Springer Verlag,
Berlin.

[Hos72] R. Hossley, Finite tree automata and w-automata, MAC Tech-
nical report 102 MIT, summer 1972.

[HopUll67] J.E. Hopcroft, J.D. Ullman, An approach to a unified theory

Automata with storage on infinite words 105

of automata, The Bell System Technical Journal XVLI (1967)
1793-1829.

[Jan79] M. Jantzen, On the hierarchy of Petri net Languages, RAIRO
Inf. Théor. 13 (1979) 19-30.

[Lan69] L.H. Landweber, Decision problems for w-automata, Math. Sys-
tems Theor. 3 (1969) 376-384.

[LatTim86] M. Latteux, E. Timmerman, Two characterizations of ra-
tional adherences, Theor. Comput. Sci. 46 (1986) 101-106.

[Lin76] M. Linna, On w-sets associated with context-free languages, In-
form. and Control 31 (1976) 272-293.

[Mul63] D.E. Muller, Infinite sequences and finite machines, AIEE Proc.
4th ann. symp. switch. circ. th. and log. design, 1963, pp.3-16.

[Sco67] D. Scott, Some definitional suggestions for automata theory, J.
Comput. System Sci. 1 (1967) 187-212.

[Sta77] L. Staiger, Empty-storage-acceptance of w-languages, LNCS 56
(1977) 516-521, Springer Verlag, Berlin.

[Sta84] L. Staiger, Projection lemmas for w-languages, Theor. Comput.
Sci. 32 (1984) 331-337.

[Sta87] L. Staiger, Research in the theory of w-languages, EIK 23 (1987)
415-439.

[StaWag74] L. Staiger, K. Wagner, Automatentheoretische und auto-
matenfreie Characterisierungen topologischer Klassen requlaerer
Folgenmengen, EIK 10 (1974) 379-392.

[Tho88] W. Thomas, Automata on infinite objects, in “Handbook for
Theoretical Computer Science” (J. van Leeuwen, ed.), North-
Holland, 1991.

[Val83] R. Valk, Infinite behaviour of Petri nets, Theor. Comput. Sci.
25 (1983) 311-341.

[Wag79] K. Wagner, On w-regular sets, Inform. and Control 43 (1979)
123-177.

[WagSta77] K. Wagner, L. Staiger, Recursive w-languages, LNCS 56
(1977) 532-537, Springer Verlag, Berlin, see also: Rekursive Fol-
genmengen I, Zeitschr. math. Logik Grundlagen Math., 24
(1978) 523-528.

On logical definability of w-trace languages '

Werner Ebinger
Universitét Stuttgart
Institut fir Informatik
Breitwiesenstr. 20—-22

D 7000 Stuttgart 80

ebinger@informatik.uni-stuttgart.de

April 1992

Abstract

Our main result is the equivalence of monadic second order
logic and recognizability for languages of infinite traces. This is
a generalization of the work of Thomas [Tho90b]. We propose
a logical characterization that is independent of any special sort
of trace automata. For another approach we use standard con-
structions and Biichi asynchronous cellular automata defined by
Gastin and Petit [GP91].

1 Introduction

The theory of w-trace languages is a generalization of the theory of w-
word languages [Tho90b, for an overview] and of the theory of trace
languages [Maz77]. Both theories are well studied. w-trace languages
need some extra investigation, because there are new difficulties. The
basic definitions of trace languages are explained well in other papers in

TThis research has been supported by the EBRA working group No. 3166 ASMICS.

106

On logical definability of w-trace languages 107

these proceedings. So we only mention some important notions in this
section.

In the second section we will give a short introduction to monadic sec-
ond order logic. In the third section we will prove equivalence of monadic
second order logic and recognizability for w-trace languages. This is a
generalization of the corresponding results for w-words [Tho90a, for an
overview| and finite traces [Tho90b]. We will provide a new proof that
does not depend on any special sort of automata for infinite traces. In
the fourth section we will recall the definition of the Biichi asynchronous
automata of Gastin and Petit [GP91] and give a more classical proof of
the equivalence of monadic second order logic and automata for w-trace
languages. In the fifth section we want to give some remarks on first
order logic on w-traces and star-free sets. Similar ideas have been pro-
posed independently by Hoogeboom and Thomas. However, they never
were worked out extensively.

We assume that the reader is familiar with the following notions
of trace languages that can be found in other papers in this proceed-
ings. In order to extend the free partially commutative monoid M(X, D)
[Maz77, Die90] over a dependence alphabet (X, D) to the infinite case, it
is convenient to consider dependence graphs. In the monoid G(X, D) of
infinite dependence graphs we consider the subset R(X, D) of real traces
where every node has a finite past, and the submonoid C(X, D) which is
the quotient of G(X, D) by the coarsest congruence which preserves real
traces [Die91]. We will use M and R as abbreviations for M(X, D) and
R(X, D).

A language of real traces is called recognizable if it is recognized by
some morphism 7 : M — S into a finite monoid. A real trace language
R € R is recognized by 7 if for any sequence (r;), r; € M we have

rirars... € R= g7 () 0 (n(r2)) n~ ((rs)) ... C R
The connection between recognizability for infinite traces and infinite
words is given by [Gas91]
R € Rec(R) <= ¢ '(R) € Rec(E%),

where ¢ : ¥*° — R(X, D) is the extension of the canonical mapping to
the infinite case.

108 W. Ebinger

2 Monadic second order logic over w-traces

We can represent a real trace t € R(X, D) as a labeled partial order
(V,<,¥). Logical formulae can be defined over a structure with signature
(V,<,(Pa)aex). We use first order variables z, y, z, ... ranging over V
and monadic second order variables X, Y, Z, ... ranging over P(V).
Formulae are defined inductively:

e Predicates: First order predicates of the form z < y, P,(z) and
monadic second order predicates of the form X (z) are formulae for
arbitrary variables x,y, X and all a € X.

e Logical operations: If ¢ and ¢ are formulae, then (p Av), (¢ V),
and (—¢p) are formulae, too.

o Quantifiers: If ¢ is a formula, then Jzp, Vry, IXp, and VX ¢ are
formulae, too.

This monadic second order logic is called MSOL. We will also write
z € X instead of X (z) and freely use abbreviations like X C Y. Of
course, we can also express £ = y and X =Y in MSOL.

Example 1 We can express the property “t begins with b” by the for-
mula
Jx(Py(x) AVy(zr =y Ve <y)).
O

In monadic second order the power of the logic does not depend on the
difference between the <-relation and the edge relation of the Hasse
diagram of (V, <), which constitutes some kind of successor relation.
The edge relation E of the Hasse diagram of (V, <) is expressible by <
(even in first order logic):

zEy iff z<yA-Tz(z<zAz<y),

and vice versa (in monadic second order logic):

r<y iff ~z=yA

On logical definability of w-trace languages 109

VX(z € XAVNZ(2€ XAz EZ — 2 € X)

If a node is in X, then

all <-greater nodes are in X, too.

—yeX)

Now we are free to use both, the <-relation and the edge relation E in
monadic second order formulae.

Example 2
a a a

b/ \b/ \b/ ~ ...
\c/ \c/ \c/

Traces of the language T' = (bac)® over the dependence alphabet D :
a — b — ¢ are described by the following formula. The parts in quotes
can be easily replaced by a proper formula (even in first order).

“There is exactly one minimal node, labeled b.”
A “Every b-node has two successors, labeled a and ¢”
A “Every b-node except the minimal one has
two predecessors, labeled a and ¢”
A “Every a-node has exactly one predecessor and
one successor, both labeled b”
A “Every c-node has exactly one predecessor and

one successor, both labeled b”

O

In the fifth section we will go from formula to automata. These con-
structions can be simplified if we first reduce the logic MSOL to the
restricted monadic second order logic MSOLy. The logic MSOLy is the
logic MSOL with the restriction, that there are no first order variables.
Instead of first order predicates we use only second order predicates of
the form X; C X, X; < X, and X; C P,. Here X; < X; means X and
Y are singleton sets and the element of X is smaller than the element of

110 W. Ebinger

Y. As formulae grow really huge using only these basic predicates, we
give the following abbreviations:

X=Y for XCYAYCX
X#Y for =X =Y
“proper subset”
Sing(X) for FY (Y CXAY #XA
SAZ(ZCXNZ#XNZ#Y))

“exactly one”

We now describe how to eliminate first order variables by giving an
example. A formula like

Ve Y (z € Y Az(x < 2 A Py(2))

is expressed as
VX (Sing(X) = Y(X CY AIZ(Sing(Z)NX < ZNZ CP,)).

3 Equivalence of recognizability and logic

In this section we prove the equivalence of recognizability and logic. Our
proof is independent of any special automata model for (infinite) traces.
In the proof we will use c-rational trace languages [Och85, GPZ91] (also
called co-rational). c-rational languages are defined inductively:

o All finite trace languages A C M of finite traces are c-rational.

e f ACM, BC M, and C C R are c-rational, then the concatena-
tion AB and A C is c-rational.

e If A C M is crational, then the concurrent iteration A°* (called
coiteration by Ochmansky) and the concurrent w-iteration A% are
c-rational. For the concurrent iteration independent (connected)
parts are iterated concurrently. This means A®* (A“) in the usual
star (omega) iteration over C(A) = { ¢t € M | t is a connected
component of some s € A }.

On logical definability of w-trace languages 111

We can also use a constraint version of c-iteration were only connected
parts may be iterated. This gives the same class of c-rational languages.

Theorem 3 A trace language T C R(X, D) is recognizable if and only
if T is definable in monadic second order logic.

Proof: The following figure shows what we have to prove. | JT denotes
the union of all traces ¢t € T, that is the word language that contains
all members of traces in T'. For the canonical mapping ¢ : ¥*° — R we
have JT = o= 1(T).

UTis UT is

definable (Eu:c}:y) recog-
L in MSOL nizable (&%

T is T is
definable recog-
in MSOL nizable

& T is [Ggl]
c-rational

(1): We can not use the same formula for both, traces and words, as
the underlying interpretation of the order is different. For example the
formula

Az,y,z Po(x) ANP.(Y) ANPy(2) Nz < zAy<zA(x <yVy<zx)

over the dependence alphabet D : a — b — ¢ 1is not true for the trace
ach, but it is true for both words in this trace. But it suffices to express
the partial order on the traces by the linear order on the words. This can
be done by one single first order formula, but in order to render it easier
to follow, we proceed in two steps. We can first express the partial order
by the edge relation E of the Hasse diagram of the dependence graph.
This was described in the section on monadic second order logic. Then
we express the edge relation E by the linear order on the words: z E y
if and only if

V (Qu@) AQuy) Az <y

(a,b)eD

112 W. Ebinger

AVz(z<2zAz<y— /\ =Q.(2))).-
¢ with
(a,¢) € D or
(b,c) € D
Now if a trace t satisfies a formula (, then all words w in the trace satisfy
the new formula ', which we obtained by replacing the predicates = E y
by the formula above. And vice versa if a word w € t satisfies the new
formula ¢, then all words w' € t in the same trace satisfy this new
formula ¢', and the trace t containing this word w satisfies the original
formula . We can formalize this using |= as abbreviation of “is a model
for”
tEe <<= JwetwEy <= YwetwlEy'.
(2): For this implication of the diagram we perform an induction over
the construction of concurrent rational (c-rational) expressions.

o A is a finite set of traces: We give a formula ; for every single
word in A and combine them in a disjunction

YA = \/‘Pt-

teA

o AU B for c-rational sets A and B: Combine the formulae ¢4 and
pp for A and B to
PAuB = YAV QB-

e A- B for c-rational sets A and B: For the formulae ¢4 and pp we
define formulae with restricted quantification. p4|x for some set
X is the formula ¢4 where we replace every subformula Jzi by
Jz (z € XAY),Vzyp by Vo (z € X — o), Y by FY (V C X A),
and VY9 by 3Y (Y € X — ¢). The formula p4.p is defined as

possible \/ \/ Ell'al . EkL’ak EkL’bl . Ell'bl
max./min. {a17"'7ak}{b17"'7bl}
elements cs cw
of A/B = =
incomparable (/\ (—| Ta; < To; N Tp; < l‘bj) A
1<i<k
1<j<k

iF]

On logical definability of w-trace languages 113

nothing /\ -z (:L‘al. <zAz< :L’bj) A

between 1<i<k

A and B 1<j<1
every node Vz \/ (z <To;, V2=, Vap, <zVap = z) A
belongs to 1<i<k
a trace 1<j<1

(pA|{:t| V zgzal}/\(pB|{z| \ :tb.gz}>
<<t

1<i<k

o A A for a c-rational set A, where only connected parts are
iterated: The logical definability of A®* was already claimed by
Thomas [Tho90b]. We define ¢ e+ and pgew as

3)(mina)(maac
For every Vo (\/ \/ dz,, ... 3xe, ATy, ... Ty,
node z find {
ap, .- ar}{br,..., b}
borders of
cx cx
subtrace = =
<1‘a1 € Xmin Ao . ANZq, € Xinin A
starting/ending
nodes of the Ty, € Xaz N ... A Ty, € Xmaz N
subtrace are “Tg, - .- Tq, are a maximal antichain in X,
incomparable . ,
and maximal (g, - .- Zq, are incomparable and there’s no node
such sets in X,,in, that is incomparable to z,, ... 24,)" A
“xp, . ..xp, are a maximal antichain in X,,q,” A
subtrace /\ To; KT A /\ x <y, Adz
around z 1Sl§k 1§j§l

well bounded

(((z<a:/\ V 2o <2)VE@<za \/ z<m;)) A

1<i<k 1<j<i

(Z € szn Vze Xmaz)) A

114 W. Ebinger

Apply v4 ¢A|>{wai},<{wbj}>> A

to subtrace

Va(“z minimal in the whole trace”) — © € Xpin) A

for A°*: Vz(“r maximal in the whole trace”) = = € Xpaz) A
\/ (Fzq ... x; YV \/ z < z;)
1<i<|x] 1<j<i
for A: Vedy x <y
O

4 Biichi Asynchronous Cellular Automata and equiv-
alence to logic

Biichi asynchronous automata and Biichi asynchronous cellular automata
were defined by Gastin and Petit [GP91]. These are generalizations
of Biichi automata on infinite words and asynchronous (cellular) au-
tomata defined by Zielonka [Zie87]. The recognition power of Biichi
asynchronous automata is equal to the recognition power of Biichi asyn-
chronous cellular automata, like it is equal in the finite case for asyn-
chronous automata and asynchronous cellular automata. In this pa-
per we restrict ourselves to Biichi asynchronous cellular automata. The
proofs are almost the same for Biichi asynchronous automata, and some
details might be even easier.

Definition 4 A Biichi asynchronous cellular automaton A is a tuple

A=((Qu)aes; (02)aes, S, F, R) where Q, is the local state set for process

a, 0q 1[I Qi = P(Q.) is the local transition function for process a,
ieD(A)

S C [laes Qa is the set of starting states, F' C [[,cx Qa s the set of

accepting states for finite traces and R C [[,cx P(Qa) is the acceptance

table for infinite traces.

In order to define runs of such an automaton we consider a trace t €
R(X, D) as a labeled partial order (V,<,f) with £ : V. — A. A run

On logical definability of w-trace languages 115

r of Aontis a function r : VU {vo} = (U,ex Qa) U S, where vg is
an additional <-minimal node vy, that is labeled with a starting state
r(vo) € S, and for all v € V:

T'(’l)) € 6l(v)((T(’U:naz))iED(l(v))):

where v?, ... is the <-maximal node labeled i before v. The set of locally

repeated states is defined as
fa(r) = {q€Q.]|F: () =anr(v) =q)
V Fo(~Fw(v < wAl(w) =a) Ar(v) =q) }. (1)

IT £ (2)

a€EX

f(r)

is the tuple of repeated states. The run r accepts t if f(r(t)) 2 R for
some R € R or if the maximal nodes of a finite run form a state in F.
The accepted trace language of A is

T(A) = {t| there exists an accepting run r }.

Gastin and Petit [GP91] proved, that Biichi asynchronous cellular
automata accept exactly the recognizable w-trace languages. These lan-
guages are closed under intersection N, union U, complement ~ and the
concurrent star operation °*.

Example 5 The dependence graphs of traces in the language T =
(b*bac)*b* with the dependence alphabet D : a—b— ¢ look similar
to the following one.

a a

An automaton that accepts T is A = ((Qq)acs, (04)aes, S, F, R) with
Q. =1{0,1}, @y ={0,1,2}, Q. = {0,1}, and the transition function

b b——b——b

0o (0,1) = {1} &: (0,0,0) — {1,2}
(1,0) = {0} (0,1,0) = {1}

dc: (L,0) = {1} (1,1,1) = {0,2}
0,1) ~ {0} (1,0,1) ~ {0}
(0,2,0) ~ {2}

(1,2,1) — {2}

0

0

116 W. Ebinger

There are two possibilities to define the acceptance table: R =

{({0},{2},{0}), ({1}, {2}, {11} or R" = {(V,{2},0)}. An example for a

run is given below.

a a
b Sy 3, b b
\c(\c/
|
1 0
—1—1//7&0—0—0/ T~ 2 2
yl/ \0/

| global state (1,1,0)

O

The equivalence of automata and logic is a consequence of the equiva-
lence of recognizability and logic, since Biichi asynchronous cellular au-
tomata accept exactly the recognizable languages. In this section we
will use the classical approach and provide an independent proof. We
use standard techniques and some special constructions for Biichi asyn-
chronous cellular automata. Since the case of finite traces has already
been solved [Tho90b] we restrict ourselves to the case of infinite traces.

Theorem 6 A trace language T C R(X, D) is accepted by some Biichi
asynchronous cellular automaton if and only if T is definable in monadic
second order logic.

Proof: “=7: Let A = ((Qa)aes, (0a)aes, S, F = 0,R) with Q, =
{0,...,m,} be a Biichi asynchronous cellular automaton which accepts
T. Every trace t is considered as a structure (V,<,f). A computation
r corresponds to a starting state s € S and sets Y,0, Ya1,. .., Yom, (for
every a € X), where Y,; ={v €V | {(v) =aAr(v) =i} contains all
nodes that are labeled a and have the state ¢ in the run r. The formula
is given as follows.

existence
of a \/ EiYvalO o Eiyvalmt11

computation seS

On logical definability of w-trace languages 117

every node
gets at most
one state

labeling
according to
transition table

find
preceding
state

or the
starting
state

choose an
element

of the
acceptance
table

infinite
repetition

only finitely
many a

) NI)

(“disjunct sets” A

Vv \/ P,(v) ANv €Yy A

(p,a, q)
q € da(p)

/\ (Elw (Py(w) Aw <vA
beD(a)
—Ju (w <uAu<vAPy(u)) A
)/bﬁb(p) (w)) \4
(mFw (Py(w) Aw < v) A

(EIX(“X is infinite.” A X C Yaq,) V

v e Yy AN Jw (v < w/\Pa(w))>

“<”: Let ¢ be a second order formula that is in the restricted form
of MSOL, . Without loss of generality we have to consider predicates
X CY,X <Y,and X C P,. We are going to perform induction over the
construction of formulae. As there appear formulae with free variables
in this induction we have to consider formulae p(X7,...,X,,) with free

variables X, ..

with

., Xy, over the dependence alphabet (¥ x {0,1}", D,)

(a'a')Dn (b,) iff aDb.

118 W. Ebinger

Induction foundation: We are working with formulae ¢(X,Y") with two
free variables X, Y. In this case we use an alphabet ¥ x {0, 1}2. The first
additional digit indicates membership in X and the second additional
digit indicates membership in Y. The generalization to arbitrary many
free variables is easy. For all z € ¥ we consider processes 00, 01, 210,
and z11. That gives a number of 4|X| processes.

e X C Y: Thisis a very simple automaton with only one global state
0%l € S. The processes 200, 201, and z11 continue and stay in
the local state 0, if they read a node labeled z00, 01, and z11.
These are nodes that are in Y if they are in X. The processes 210
stop, because they read nodes that are in X, but not in Y. The
acceptance table is R = ({0}, ...,{0}).

5200 (0P = {0}
5,01 (0PE00)) = {0}
5u1 (0PG) = {0}

8,10(0P@00)) 0 forallz €

e X < Y: Again we start out with the global starting state 0**!.
The local state 0 indicates a process not having any information.
1 indicates a process suggesting that it has read the first node in
X, 2 means that there was a node in X somewhere, and 3 stands
for reading a node in Y after there has been a node somewhere in
X. Every process z00 remains in state 0, if all dependent states
are still in state 0. Every process £10 waits until it is active and
then changes its local state to 1, if all dependent processes are still
in state 0. Now the automaton has read a node that is in X but
not in Y. Every process 00 that sees a 1 or 2 in a dependent state
and is still in state 0 changes its own state to 2. In doing this they
spread the news that there has been a node in X. A process 01
that sees a 1 or 2 in a dependent state changes its own state to
3, to indicate that it has read a node in Y that is <-greater than
the first node that was in X. R = { [[,cx | |Ra| = 1foralla €
¥ and exactly once R, = {1} and exactly once R, = {3} }.

On logical definability of w-trace languages 119

6I00(0D(100)) — {0}
Sa00({0,1,2}P000) = {2}
some 1 or 2, gzoo0 =0
8,10(0PE) = 1}
oo (- {0,1,2}P000) = {3}
some 1 or 2, gzo1 =0
8200({0,1,2,3}7") = {q} q€{1,2,3}

e X C P,: Now we have only one free variable and we start from
02*l € S. All processes z0 (for all # € ¥) and the process al
continue and stay in the local state 0. All other processes stop.
The acceptance table is R = {{0},...,{0}}.

020(0,...,0) = {0} forallzeX
921(0,...,0) = {0}

Induction step:

e Closure under conjunction A and disjunction V: Cartesian product
of automata [GP91].

e Closure under complement —: Biichi asynchronous automata rec-
ognize exactly the recognizable languages [GP91] and these are
closed under complement.

e Closure under quantification (projection) of variables 3 (V may be
expressed by — and 3): The automaton for a formula X (X) (we
can easily add more free variables, that are not quantified in this
step) over the alphabet ¥ x {0,1} is built taking the automaton
for p(X). We melt every pair of processes 0, z1. The new process
x has state set Q; = Q.0 X Q1 and guesses nondeterministically
whether a node is in X or not and then performs a transition either
in the component (o or in the component Q1. |

120 W. Ebinger

If we had a construction of a complement automaton, our proof would be
completely constructive. A complementation construction similar to the
standard complementation construction for Biichi automata does work.
But we are looking for a more constructive complementation.

5 Star-free w-trace languages and first order logic

In the case of finite traces [GRS91], finite words, and w-words [Tho90a,
for an overview] star-free languages are exactly the first order definable
ones. In order to investigate star-free w-trace languages we first have to
give a definition of star-free w-trace languages. One possibility is to use
star-free expressions with only boolean operations and concatenation,
where the complement can be taken with respect to A* in order to get
star-free sets of finite traces and with respect to A* and A% in order to
get star-free sets of infinite traces. We can perform a part of the proof
of the equivalence of recognizability and logic in the case of star-free
languages and first order logic:

UT is
’ definable
g ‘n FO[<] Ladne<r,:T>homas
T is UT is
definable star-
in FO[<] free
2 T is jeal
star-free

For the implication (1') we have to express the <-relation on the traces
directly by a first order formula using the <-relation on the words: x < y
in the partial order on the traces if and only if

\/ Fwo ... Fwi—1 (Qay (@) A Qg (T2) A ...

(a1,a2)ED

(az,a3)€ED A Qal—l (1‘171) A Qal (y)

: /\:U<:n2<...<a:l_1<y)
(aj—1,a1)€ED
{a1,...,a;}CA

[{az,...,ar}|=l-1

On logical definability of w-trace languages 121

For the implication (2') we replace the boolean operations by the corre-
sponding logical operations. For concatenation we can use the first order
formula that we gave in the proof of equivalence of logic and recogniz-
ability. The remaining direction (3') will be shown in a forthcoming joint
work with V. Diekert and A. Muscholl.

Acknowledgements

The author wants to thank Volker Diekert, Paul Gastin, Hendrik Jan
Hoogeboom, Anca Muscholl, Antoine Petit, and Wolfgang Thomas for
many helpful discussions, corrections, and suggestions.

References

[Die90] V. Diekert. Combinatorics on Traces. Number 454 in Lecture
Notes in Computer Science. Springer, Berlin-Heidelberg-New
York, 1990.

[Die91] V. Diekert. On the concatenation of infinite traces. In Choffrut
C. et al., editors, Proceedings of the 8th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’91), Ham-
burg 1991, number 480 in Lecture Notes in Computer Science,
pages 105—-117. Springer, Berlin-Heidelberg-New York, 1991.

[Gas91] P. Gastin. Recognizable and rational trace languages of finite
and infinite traces. In Choffrut C. et al., editors, Proceed-
ings of the 8th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’91), Hamburg 1991, number 480 in
Lecture Notes in Computer Science, pages 89—104. Springer,
Berlin-Heidelberg-New York, 1991.

[GP91] Paul Gastin and Antoine Petit. Asynchronous automata for
infinite traces. Rapport de Recherche 707, Université de Paris-
Sud, 1991. To appear in ICALP 1992, also this volume, pages
29-45.

122

[GPZ91]

[GRS91]

[Maz77]

[Och85]

[Tho90a

[Tho90b]

[Zie87]

W. Ebinger

P. Gastin, A. Petit, and W. Zielonka. A Kleene theorem
for infinite trace languages. In J. Leach Albert et al., ed-
itors, Proceedings of the 18th International Colloquium on
Automata Languages and Programming (ICALP’91), Madrid
(Spain) 1991, number 510 in Lecture Notes in Computer Sci-
ence, pages 254-266. Springer, Berlin-Heidelberg-New York,
1991.

Giovanna Guaiana, Antonio Restivo, and Sergio Salemi. On
aperiodic trace languages. In Choffrut C. et al., editors, Pro-
ceedings of the 8th Annual Symposium on Theoretical Aspects
of Computer Science (STACS’91), Hamburg 1991, number 480
in Lecture Notes in Computer Science, pages 76-88. Springer,
Berlin-Heidelberg-New York, 1991.

A. Mazurkiewicz. Concurrent program schemes and their in-
terpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus,
1977.

E. Ochmanski. Regular behaviour of concurrent systems. Bul-
letin of the European Association for Theoretical Computer
Science (EATCS), 27:56-67, Oct 1985.

Wolfgang Thomas. Automata on infinite objects. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science,
chapter 4, pages 133-191. Elsevier Science Publishers B. V.,
1990.

Wolfgang Thomas. On logical definability of trace languages.
In V. Diekert, editor, Proceedings of a workshop of the ES-
PRIT Basic Research Action No 3166: Algebraic and Syntac-
tic Methods in Computer Science (ASMICS), Kochel am See,
Bavaria, FRG (1989), Report TUM-19002, Technical Univer-
sity of Munich, pages 172-182, 1990.

W. Zielonka. Notes on finite asynchronous automata.
R.A.I.R.O.-Informatique Théorique et Applications, 21:99—
135, 1987.

123

124 M. Kwiatowska, M. Stannett

On transfinite traces 125

126 M. Kwiatowska, M. Stannett

On transfinite traces 127

128 M. Kwiatowska, M. Stannett

On transfinite traces 129

130 M. Kwiatowska, M. Stannett

On transfinite traces 131

132 M. Kwiatowska, M. Stannett

On transfinite traces 133

134 M. Kwiatowska, M. Stannett

On transfinite traces 135

136 M. Kwiatowska, M. Stannett

On transfinite traces 137

138 M. Kwiatowska, M. Stannett

On transfinite traces 139

140 M. Kwiatowska, M. Stannett

On transfinite traces 141

142 M. Kwiatowska, M. Stannett

On transfinite traces 143

144 M. Kwiatowska, M. Stannett

On transfinite traces 145

146 M. Kwiatowska, M. Stannett

On transfinite traces 147

148 M. Kwiatowska, M. Stannett

On transfinite traces 149

150 M. Kwiatowska, M. Stannett

On transfinite traces 151

152 M. Kwiatowska, M. Stannett

On transfinite traces 153

154 M. Kwiatowska, M. Stannett

On transfinite traces 155

156 M. Kwiatowska, M. Stannett

On transfinite traces 157

On Temporal Logics for Trace Systems

Wojciech Penczek*
Institute of Computer Science, Polish Academy of Sciences
00-901 Warsaw, PKiN, P.O. Box 22, Poland

March 1992

Abstract

We investigate an extension of CTL (Computation Tree Logic)
by past modalities, called CTLp, interpreted over Mazurkiewicz’s
trace systems. The logic is powerfull enough to express most of
the partial order properties of distributed systems like serializ-
ability of database transactions, snapshots, parallel execution of
program segments, or inevitability under concurrency fairness as-
sumption. We show that a model checking problem for the logic
is NP-hard, even if past modalities cannot be nested. Then, we
give a one exponential time model checking algorithm for the logic
without nested past modalities. We show that all the interesting
partial order properties can be model checked using our algorithm.
Then, we show that it is possible to extend the model checking al-
gorithm to cover the whole language and its extension to CTL*p.
At the end, we prove that the logic is undecidable and we discuss
consequences of our results on using propositional versions of par-
tial order temporal logics to synthesis of concurrent systems from
their specifications.

Keywords: Concurrency; Trace Systems; Partial Order
Temporal Logics; Automated Verification.

*This research has been partly supported by the Netherlands grant NWO NF
3/62 - 500 and a grant from The Wolfson Research Awards Scheme in The United
Kingdom.

158

On temporal logics on trace systems 159

1 Introduction

Linear time [1] and branching time [2] temporal logics are usually ap-
plied for specifying and proving properties of concurrent systems and
programs. Lately, several attempts have been made to use also logics
interpreted over partial order structures [3 - 14]. The main motivation
for defining these logics was to express properties inherent in the partial
order interpretations, more specifically to distinguish concurrency from
non-determinism.

There are two approaches to extend linear and branching time tem-
poral logics to partial order logics on global states. Either run modalities
are introduced (see QISTL [5], ISTL [5,6], CCTL [9,15], Petri Net Log-
ics [11,12]), or past operators over partial order semantics are defined
(see POL [14], PN-logics [11,12], and [13, 16]). Temporal logics over
partial order semantics allow for expressing properties not expressible
in logics over interleaving semantics. These properties are: inevitability
under concurrency fairness assumption [17,18], serializability of database
transactions [13, 16], causal successor [11, 12, 14], or the parallel execu-
tion of program segments [13, 14].

Model checking is one of the main methods of automated verification
of concurrent systems [38]. It has been intensively studied for linear-time
temporal logics [19, 20], branching-time temporal logics [21 - 26], and
modal p-calculi [25,27]. Model checking has been also applied to prove
properties of systems, represented by partial orders of local states [3, 4].
Methods for making it applicable to very large systems and of avoiding
the state explosion problem have been proposed in [28 - 31].

As far no one has tried to investigate whether and how logics with
partial order past operators, interpreted over global state models, can be
used for automated verification of concurrent systems. Since Hennessy
and Stirling [32] introduced backward modalities to program logics, all
the work has concentrated around the induced equivalences [33,34], ex-
pressiveness issues [11,12,14,32,33], and proof systems [13,16]. In this
paper we fill this gap. Moreover, our results explain why it is so difficult
to deal with partial order logics, what is a common observation.

We start with defining a logic CTLp, which is a simple extension of

160 W. Penczek

CTL by past modalities. In fact, the language of CTLp is a restriction of
that, considered in [3,4,13,16], and it is an extension of the language of
Hennessy-Milner logic with past modalities [32]. Our choice is motivated
by the following observations. CTL has proved to be a very usefull logic
for automated verification. Model checking for CTL is linear in the size
of a model and linear in the lenght of the formula [21], and the com-
plexity of checking satisfiability is deterministic exponential in the size
of a tested formula [35], whereas the complexity of model checking for
CTL* is PSPACE-complete [22], and checking satisfiability is determin-
istic double exponential [36]. It turned out that it is possible to extend
CTL to fair CTL (FCTL) [24] or to model check CTL formulas over
fair paths [26] without changing the complexity of CTL model checking.
Moreover, different methods dealing with the state explosion problem
have been given [28,29].

We would be quite happy with these results, if the logic could distin-
guish concurrency from non-determinism and consequently, properties of
partial order executions could be expressed. Unfortunately, this is not
the case. Therefore, it seems very natural to consider a minimal exten-
sion of CTL s.t. properties of partial orders can be specified and proved.
This can be done by introducing past modalities to the language. Then,
our logic has to be interpreted over partial order models rather than over
trees. Again, we select the simplest and the most frequently used partial
order structures of global states, namely, Mazurkiewicz’s trace systems
(see [13,17,18,37,46]). In this paper we investigate consequences of our
extension. Firstly, we show that for proving all the interesting partial
order properties for finite state systems we can restrict ourselves to a
model checking algorithm for the language without nested past modali-
ties, call it CTLp_. Then, we prove that model checking for CTLp_ is
NP-hard. Consequently, we give a one exponential time model checking
algorithm for this restricted language and show how it can be extended
(if ever needed) to cover the whole logic. Our model checking algorithm
requires a new technique, not applied before to model checking for CTL
or CTL*. Secondly, we turn to the problem of determining satisfiabil-
ity for CTLp formulas. To our surprise, we show that even CTLp_ is
not decidable. Since this result can be extended as well on other par-

On temporal logics on trace systems 161

tial order temporal logics, interpreted over trace systems, like ISTL [13],
or the logic, defined in [16], therefore we show an important limitation
in applying partial order logics to synthesis of concurrent systems from
their specifications.

The rest of this paper is organized as follows. In section 2 trace
systems are introduced. EN - systems and trace semantics is defined
in section 3. Then, in section 4 the logic CTLp and its semantics is
presented. Acceptors for finite state trace systems and model generators
are defined in section 5. Section 6 contains the proof of NP-hardness
of CTLp model checking and section 7 shows a model checking algo-
rithm for CTLp_ and its possible extensions. Undecidability of CTLp
is proved in section 8 and then, in section 9, CTLp is compared with
other temporal logics. Final remarks are given in section 10.

2 Trace Systems

We start with introducing notions of traces and trace systems from [17].

By an independence alphabet we mean any ordered pair (X, I), where
¥ is a finite set of symbols (action names) and I C ¥ x ¥ is a symmetric
and irreflexive binary relation in ¥ (the independence relation). Let
(X, 1) be an independence alphabet. Define = as the least congruence in
the (standard) string monoid (X*, o, €) such that (a,b) € I = ab = ba, for
all a,b € ¥ i.e., w =w, if there is a finite sequence of strings wy, ..., wy
s.t. wy = w, w, = w', and for each i < n, w; = wabv, w;11; = ubav, for
some (a,b) € I and u,v € £*. Equivalence classes of = are called traces
over (¥,I). The trace generated by a string w is denoted by [w]. We
use the following notations:

. [EE}*] ={[w] [we ¥}, [EF] = {[w] | w € £¥}, and [X] = {[a] | a €

Concatenation of traces [w], [v], denoted [w][v], is defined as [wv]. For
more deatails about traces see [17].

Now, let T' be the set of all traces over (X, I). The successor relation
— in T is defined as follows: [w;] — [ws] iff there is a € ¥ such that
[wi][a] = [w2]. The prefiz relation < in T is defined as a reflexive and

162 W. Penczek

transitive closure of the successor relation i.e., < = (—=)*. By < we mean
< &idp. Let 7 € T and @ C T. We use the following notations:

e lr={reT|7<thtr={eT|r<7'},

¢ 1Q=Ueo{m €T |7 <711 Q=U,cofr €T |7 <7'}.

We say that a subset @ of T dominates another subset Rof T, if R C | Q.
Two traces are consistent, if there is a trace in 7' dominating both of
them and inconsistent otherwise. A set R of traces is said to be proper,
if any two of its consistent traces are dominated by a trace in R, and
directed, if arbitrary two traces in R are dominated by a trace in R. A
set of traces () is said to be prefiz-closed, if Q = | Q.

By a trace system T over (X,I) we mean any prefix-closed and
proper trace language over (X,1); traces Tr(7) in a trace system 7T is
called states of T .

A trace together with its prefixes represents a partial execution of
the system. Maximal (w.r.t. the inclusion ordering) directed subsets
R of Tr(T) is called runs of 7. A run represents a single maximal
execution of the system 7. By a path in R C Tr(7) we mean a maximal
sequence T = TpGgT101 - - - in R such that 7;[a;] = 7,41 for all ¢ > 0. For
convenience, we write also ¢ = 1971 Let e ={r € Tr(T) |7 <7,
for ¢ > 0} be a set of traces dominated by a path z. By an observation
of arun R in 7 we mean any path z in R such that R = | x; we say also
that z is an observation (of 7). Notice that an observation is such a path
that is cofinal with some run. Thus, it carries the information about all
actions executed in the run. A suffix 7;a;7;41a:41 ... of an observation
x is said to be an observation starting at ;.

Lemma 2.1 A path © = rpapmia1 ... in Tr(T) is an observation iff
(Va €)(Vi € IN)(3j > i)(5[a]l € Tr(T) or (a,a;) ¢ I).
Proof can be found in [13] or in [39].

Obviously, the above lemma holds for suffixes of observations. The com-
parison between the notion of an observation and the notion of a juste

On temporal logics on trace systems 163

computation can be found in [18]. In fact, each juste path is an obser-
vation, but not the other way round.

A subset @ C T'r(T) is said to be inevitable, if each observation of
T contains a state in (). Inevitability is an important property for trace
systems, discussed in [17,18].

Since one of the aims of this paper is to show a method of proving
properties of trace systems by model checking, the finitely representable
trace systems are of interest. They are called finite state trace systems.

Definition 2.1 A trace system T is said to be finite state, if there is
an equivalence relation EQ C Tr(T) x Tr(T) in the set of traces of T
satisfying the following two conditions:

1. EQ has a finite inder,

2. (Vr,7" € Tr(T))Va € [X]) ((r EQ T and Ta € Tr(T)) =
(ta EQ 7'a)).

The above definition says that 7 contains a finite number of traces “dis-
tinguishable w.r.t. their continuations in 7. It should be noticed that
T may have infinitely many traces with different histories i.e., | 7 £} 7/,
for infinitely many 7,7’ € Tr(T).

Examples of trace systems and of accompanying notions are given in
the next section. Trace systems are commonly used for giving semantics
to Elementary Net Systems [17] and finite state programs. In [13] trace
systems were used for giving semantics to a wider class of concurrent
programs, namely those for which equivalence classes are associated with
first order interpretations. Below, EN-systems are defined and it is shown
how to define their trace semantics. EN-systems serve us as examples of
finite state concurrent systems.

3 EN-systems and trace semantics

Now, a subclass of Petri Nets, called EN-systems, is introduced.

164 W. Penczek

Definition 3.1 (EN-system) A EN-system is an ordered quadruple
N = (B,E,F,cy), where B and E are finite, disjoint, nonempty sets
of places and transitions, resp., ' C B x EUFE x B is the flow relation,
with dom(F) Udom(F) = BUE, and ¢o C B is the initial case.

Any subset ¢ of B is called a case. Nets are illustrated graphically using
lines for representing transitions, circles for places, and arrows for the
flow relation.

Definition 3.2 Let N be a EN-system. For each x € BUE, the follow-
ing sets are defined:

e Pre(z) ={y| (y,z) € F},
o Post(z) ={y | (z,y) € F},
e Proz(x) = Pre(z) U Post(z).

Definition 3.3 (firing sequence) We say that a transition t is fire-
able at a case ¢ and leads to the case ¢’ (written c[t > '), if Pre(t) C c,
Post(t) C ¢, and c & Pre(t) = ¢ &Post(t).

A finite sequence of transitions w = toty ...t, is said to be a firing
sequence of N, if there is a sequence of cases ci,...,Cpt1 S.t. Ci[ti> Cit1,
for i < mn. This is denoted by co[w > ciy1. The case cpy1 is said to be
reachable.

Definition 3.4 A EN-system N is said to be contact-free iff for each
reachable case ¢ and for all t € E, the following condition holds:

o Pre(t) C ¢ implies Post(t) N (c < Pre(t)) = 0.

Therefore, for contact-free nets a transiton ¢ is fireable at ¢, if Pre(t) C c.
All the EN-systems, used in the examples in the paper, are contact-free.
Next, it is shown how trace systems give semantics to EN-systems.

Definition 3.5 (trace semantics) The trace system T over (X,I)
represents behaviour of a EN-system N = (B, E,F,cp), if the follow-
ing conditions hold:

On temporal logics on trace systems 165

e X =F,
e (a,b) € I iff Proz(a) N Prox(b) =0, and
o Tr(T) ={w] € [X*] | w is a firing sequence of transitions in N}.

Example 3.1 Notice that trace systems giving a semantics to EN-
systems are finite state. Let N = (B, E, F,cy) be a EN-system and T be
the trace system representing behaviour of N. T is finite-state and EQ
can be defined as follows:

(V[w], [w'] € Tr(T))(Ve C B) [w] EQ [w'] iff (colw> ¢ & colw' > ¢).

To allow the comparison of the approach presented here with that of
Peled and Pnueli, all the examples shown below are taken from their
paper [13].

Example 3.2 (inevitability) Below, EN-system N together with its
trace system semantics T1 is presented.

IONIONE

Figure 1: EN-system N;

The EN-system Ny = (By, E1, Fi,c}), where

166 W. Penczek

Bl = {17 27 3747 5}7

E, ={a,b,c,d},
Fi ={(1,a),(a,2),(1,b),(b,4),(3,b),(3,¢),(c,5),(5,d), (d,3)},

cs = {1,3}.

[cdb]

e

[ed] — [edd]

[a] — [ac) — J[eda] — J[edeca] —
Figure 2: Trace Semantics 71 of System N;
The independence alphabet (¥,1) is defined as follows:
b E = {a7 b7 c’ d}7
o I= {(av C), (Cv a)) (av d): (dv a)}

There are infinitely many finite runs R; and one infinite run R in the
trace system 7i:

e R; =] [(ed)'], for i >0,
o R=UZ, Ll(cdid

Every path in Tr(71) except for z = [€][c][cd][cdc]... is an observation of
Ti.

The following is an example of an inevitability property:

On temporal logics on trace systems 167

e INEVITABILITY: Either a or b will be eventually executed.
(i.e., cases containing 2 or 4 will be reached inevitably).

One could be estonished that either a or b is inevitable as there is an
infinite path z = [€][c][cd][cdc] . .. in which neither a nor b is executed.
But this path is not an observation and according to the definition, a
property is inevitable if it holds for each observation.

Example 3.3 (serializability) Below, EN-system N and its trace se-
mantics is presented. Then, an example of a serializability property is

given.
() Ok

1@ Ok
1@ O

() () s

Figure 3: EN-system N»

168

[a1a2a

301b2] [b1b2

[a1a2a3b1babs]

[b1b2bsar azas]

W. Penczek

bsaias]

Figure 4: Trace Semantics 7> of Ny

The EN-system N = (Ba, Ea, F,c3) is defined as follows:

L4 B2 = {1)273)

o By ={ai,as,

47 5)67 7)87 9})
a2, bl: b2> b3})

o Fr = {(1,&1), (a173)7 (3,&2), (a275)7 (5,&3), (a377)7 (0,3,9), (9,(12),
(9,02),(2,b1), (b1,4), (4,02), (b2, 6), (6,b3), (b3,9), (b3, 8)},

On temporal logics on trace systems 169

o 2 ={1,2,9}.

The trace system 75 contains two runs, marked by the thin and the thick
lines.

e SERIALIZABILITY:

The net N can be thought of as implementing a database with two
transactions 71 = {a1,a2,a3} and To = {b1,b2,b3}. Each transition
can represent database read or write operation. An implementation is
correct, if transactions are serializable. Serializability of T7 and T5 [13]
in terms of trace semantics is as follows: In every run, there exists an
observation in which either all the operations of T appear before those
of T5, or the other way round, i.e., there is an observation, which behaves
in a serial manner. One can check that indeed in each run there is an
observation satisfying the above requirement, namely:

[] [6] [a,l][alag][a1a20,3][a102a3b1][a1(120,3b1b2][0,1(12&3()11)2()3] in the
“thick” line marked run, and

[] [6] [bl][blbg][bl b2b3][b1b2b3a,1][b1b2b30,1a2][bl b2b3a1a2a3] in the “thin”
line marked run.

In the next part of the paper it is shown how to express the mentioned
properties in the logic and then how to prove them by model checking.
4 Logic CTLp and its semantics

Next, the language of CTLp is defined and then semantics is presented.

4.1 Syntax of CTLp

Let X be a fixed set of action names. Now, we define the set of state and
path formulas of CTLp.
Let PV be a set of propositional variables.

1. Each p € PV is a state formula,

170 W. Penczek

2. if ¢ and 1 are state formulas, then so are p A 9, ¢,
3. if p is a state formula, then so are Y, (for a € ¥), and Hy,

4. if ¢ is a state formula, then X,p (for a € X), Gy, and U are
path formulas,

5. if ¢ is a path formula, then Ey is a state formula.

The symbol E can be called an observation quantifier (it corresponds to

path quantifiers in CTL). The other symbols have the following intuitive

meaning: X, - next step "along” a, U - Until, G - always in the future,

Y, - backward step "along” a, H - always in the past. Path formulas are

interpreted over observations and state formulas are evaluated at states

of models. Formulas of the form Y,p, Hy are called past formulas.
The following abbreviations are used:

o oV E S(mp Ay,

o true w V -, for any ¢,

c =0 pvy,
o Fop = truelUp,
o Po e <H-y,
o« ExXp™

e Yo déf

wes EXop, AXp & ~EX o,

VaEE Ya(p)

[] AG(p déf —|EF—|(10’

o ApUv) H ~(B(-pU(~p A=) V BG(-0)).
The lack of symmetry between backward and forward operators stems
from the fact that the past of a state is conflict-free whereas the future
may not.
In this paper we also consider a logic CTLp_, which is a restriction
of CTLp s.t. past formulas cannot be nested.

On temporal logics on trace systems 171

4.2 Semantics of CTLp

Now, we define formally the semantics of CTLp.

Definition 4.1 A frame (for a trace system T over (X,I)) is a triple
Fy, = (W,—,v), where W = Tr(T) is the set of traces of the trace
system T, =C W x ¥ x W is a labelled transition relation s.t. T = 7'
iff T = 1[a], and vy = [€].

Definition 4.2 A model (for a trace system T over (X,I)) is an ordered
pair M = (F,,,V), where F,, = (W, —,uvo) is a frame for T and V :
W & 2PV is a valuation function.

The notion of ¢ruth in M is defined by the relation = as follows:
1. M,wy Epiff p € V(wyp), for p € PV,
2. if o, 9 are state formulas,
M,wo E —p iff not M,wp |= ¢,
M,wo Ep A ff M,wo = and M,wy |= 1,
3. M,wy = Hy iff M,w' = ¢, for all w' : w' < wy,
M, wy |= Yy iff M,w' |= ¢, for some w' : w' % wy,
4. if x = woapwiay - .. is an observation starting at wg, then
M,z = X, iff M,w; E ¢ and a9 = a,
M,z |= Gy ifft M,w; |= ¢ for all i > 0,

M,z = U iff there is k > 0 s.t. M,wy, |= 1, and for all 0 < i <
k: Mawi |: 2

5. if ¢ is a path formula, then

M,wy = Ep iff M,z |= ¢, for some observation z starting at wp.

172 W. Penczek

We say that a formula ¢ is valid in a model M (written M |= o), if
M,vp |= ¢. Such notion of validity in model is sometimes called the
anchored validity. A formula ¢ is said to be wvalid, if M = ¢, for all
models M.

The language of CTLp contains all the CTL formulas (with slightly
different semantics, tuned to observations) and moreover the formulas
with the past modalities H and Y.

Since our logic needs to be able to speak about actions, we have
defined labelled next and backward step operators. However, we have
done that only for simplicity. To show that we could have avoided intro-
ducing labelled operators we give the following example of a valuation
function, which encodes labels of transitions. Then, labelled operators
are expressible using their unlabelled versions.

Example 4.1 Let PVy = {p, | a € £} C PV and let V satisfy the
following condition:

o p, € V(1) iff to(7) is odd, (1.(7) is the number of occurrences of
ainT).

Then, EXyp would be equivalent to a formula (p, = EX(—pg A p)) A
(=pa = EX(pa A p)) and Yo would be equivalent to a formula (p, =

Y (=pa A @) A (mpa = Y (pa A 9))-

4.3 Expressiveness of CTLp

We give several examples of expressiveness of CTLp. Then, we convince
the reader that for finite state models, if we can express properties of
partial executions and runs, then we can specify serializability. Let M =
(Fyy, V) be a model for a trace system 7.

e M,ug E AGp — @ is an invariant in T,

e M,vy |E AFp — ¢ is inevitable in 7, (under a concurrency fairness
assumption),

e M,ug E EFp — ¢ is possible in T,

On temporal logics on trace systems 173

e M,ug = EF(Hyp A @) — there is a partial execution in 7 s.t. ¢
holds at all its states,

e M,vo = EG(Hp A @) — there is a run in 7 s.t. ¢ holds at all its
states,

e M,ug = AF(Pyp V @) — ¢ holds at some state of each run in T,

e M,ug E EF(Y,(true)AY;(true)) — actions a and b are independent
in T,

e M,vy |E AG(p = P) — always if ¢ holds, ¢ held in the past; this
formula allows for specifying snapshots of concurrent programs [13,
16], (¢ and ¢ do not contain temporal formulas).

Assume now that the trace system 7 is finite state and given an equiv-
alence relation EQ in Tr(T) s.t. |EQ| = n. Moreover, we require that
a valuation function of equivalent states is the same i.e., V(r) = V(7'),
if 7 EQ 7. Now, we show how serializability of two transactions 77 and
T, can be specified.

Obviously, we consider here a simplified version of serializability
without taking into account aborts and any consistency conditions of
specific operations of transactions. All these requirements could be also
specified by translating first order formulas, defined in [16], into their
propositional versions. Here, we concentrate our attention on specifying
that transactions can be serialized.

Let M = (F,,,V) be a model for 7. Firstly, assume that transac-
tions are executed only once. Denote by before; and after; the asser-
tions meaning that control is before or after the execution of transaction
T;, respectively. Then, serializability of T} and T can be expressed as
follows:

1. (before; A befores) = AFP((beforer A afters) V (befores A
aftery)),

2. AG(((befores A afters) V (befores A afteri)) = AF(P(after; A
afters) V (after: A afters))).

174 W. Penczek

The first formula expresses that each run contains a state at which either
control is before the execution of 77 and after the execution of T5, or
the other way round. The second formula says that each run contains a
state at which control is after the execution of T} and T5.

Secondly, we assume that 77 and T, are executed infinitely many
times. We denote by ”quiescent;” and “active;” the assertions meaning
that a transaction 7; has already terminated or has not yet started, and
that T} is active, respectively. Moreover, we assume that we have a set of
assertions {61, ...,68,}, identyfing uniquely states belonging to different
equivalence classes of E() i.e., at each state exactly one 6; holds and at
states belonging to the same equivalence class the same 6; holds. Then,
serializability of T1 and Ty can be expressed as follows:

SER1: AG[AJ_, ((6; A /\Z | quiescent;) = AF(/\ 1 P(active; A P(6;)))]
SER2: [(/\ _,((8 /\\/ _, active;) = AFP((/\?:1 quiescent; A P(6;)))]

SER3: AG[AJ_, ((6; A /\Z | quiescent;) =
((/\2 1 (quiescent; A P(active; AP (8;))) = P(/\ _, quiescent; A\

P(6;))))]
The formula SER1 expresses that if at some state s transactions 77 and
T, are quiescent, then for each run in the future of s transactions 77 and
T will become active. The formula P(6;) is used in order to guarantee
that the transactions become active in the future of s. The formula SER2
says that if at some state s the transactions 77 and 75 are active, then for
each run at some state in the future of s the transactions 77 and T5 will
become quiescent. We have to add also the third formula. Informally
saying, the formula SER3 expresses that for each trace ”starting” and
”ending” at a state, where 77 and 7> are quiescent, but were active at
some its prefix, there is a linearisation, which behaves in a serial manner.

Example 4.2 Now, it is shown how the properties, we have discussed
in the former examples, can be formally expressed by CTLp formulas.
Firstly, models are defined. Let PV; = {py | b € B;}, where B; is the set
of places of EN-system N;, fori € {1,2}. The valuation function assigns
to each state these propositions which correspond to marked places.

On temporal logics on trace systems 175

The model M; = (F[le],Vl), for the trace system 77 is defined as follows:
o Fy = (Wi, —1,[e]) is the frame for Ty,

o Vi : W, & 2PV g4,
— py € Vi([w]) iff py € ¢, for the case ¢ s.t. cjlw> cin Ny.

In the following way, the property, discussed in Example 3.2, can be
expressed by CTLp formulas:

o INEVITABILITY: p; A p3s = AF(p2 V p4),
The model My = (F‘[QE],‘/Q) for the trace system 75 is defined as follows:
o I = (Wa,—2,[€]) is the frame for T,

o V5 : Wy o 2872 g g,
— pp € Va([w]) iff b € ¢, for the case ¢ s.t. c[w> cin Ns.

In this case T} and T5 can occur only once. Thus, our specification is sim-
pler. In terms of propositional variables, the property can be expressed
as:

o SERIALIZABILITY:

1. p1 Ap2 Apy = AFP((pr Ap2 Apo) V (P1 A ps ADpy)),

2. AG[((pr Ap2Apo) V (p1 Aps Apy)) = AF(P(pr Aps Apo) V (pr A
P8 A po))].

In the following sections, it is shown how to prove the above property
by model checking.

5 Acceptors for finite state trace systems
and model generators

Firstly, we define formally a notion of a finite state model for CTLp.

176 W. Penczek

Definition 5.1 A model M = (F,,,V) (for a trace system T) is said to
be finite state, if there is an equivalence relation EQ C Tr(T) x Tr(T)
in the set of traces of T satisfying the conditions of the Definition 2.1
and

3. for each 7,7 € Tr(T), if 7 EQ T', then V(1) = V(7') (EQ re-
spects V).

Then, we show how to represent finite state models in a finite way. First,
we show how to represent frames by a special kind of labelled transition
systems.

Now, the definitions of labelled transition systems and concurrent
transition systems are given, and related to trace systems. Concurrent
transition systems have been introduced in [40] and investigated by many
authors (see [41, 42]).

Definition 5.2 (labelled transition system) A labelled transition
system (1ts) is a triple
F = (W,Z,—) such that:

1. W is a non-empty, countable set of states,
2. ¥ is a non-empty, countable set of actions,

3. — CW x X x W is a transition relation; we write w — w' instead
Of (w7 a’ wl) E%‘7

The following notation is also used:
o w— w,if thereis a € ¥ s.t. w = w',

e w —* w', it there is a sequence of states wo,...,w, s.t. w = wo,
w' = wy, and w; = w1 for 0 < i < n.

Definition 5.3 (concurrent transition system) A concurrent tran-
sition system (cts) is a 4-tuple
F=W,X,—,I) such that:

1. (W, X, =) is a labelled transition system,

On temporal logics on trace systems 177

2. (%,1) is an independence alphabet,

3. (Vw,w',w" € W)(Va,b € £) : (w 3 ' 5w and (a,b) € I)
; ; m b m "
implies Jw"": w — w'"" = w",

4. (Yw,w',w" € W)(Va,b € £): (w5 w' and w 5w and (a,b) €
1) implies Fw"": w' bow™ and w' % w',

5. (Vw,w',w" € W)(Va €): (w3 w' and w 5 w") implies w' =
w'.

Condition 3) requires that independent actions can commute, condition
4) is called a ”diamond property”. Condition 5) expresses unambiguity.
In our case, this condition does not introduce any limitation, but it is
convenient for using sequences of actions to denote paths.

Definition 5.4 Let F = (W,X,—,I) be a concurrent transition system
and wg € W.

o Fy, = (W, %, —,1,wy) is said to be a rooted concurrent transition
system - rcts, for short.

e A path in F,, is any finite or infinite sequence © = woaow1a - . .
st w; B Wiy, for i > 0.

e en(wg) = {a € X | Fw € W) : wy > w} is the set of all the
actions enabled at wy.

The following notations are used. Let z = wpapwia; ... be a path in
Fy,-

e z/¥ =apa ...,
o Tr(Fy,) = {[z/X] | = is a finite path in F,},

e F,, is said to accept a trace system T over (X,I), if Tr(T) =
Tr(Fy,)-

178 W. Penczek
e A path z is said to be an observation in Fy,, if [€][ao][aoai]-. . is
an observation in Tr(Fy,).

o A suffix w;a;w;y1a:41 ... of an observation z is said to be an ob-
servation starting at w;.

Next, it is shown that rooted concurrent transition systems accept trace
systems.

Fact 5.1 Let F,, be a rooted concurrent transition system. Then,
Tr(Fy,) over (X,1) is a trace system.

Proof. It is easy to show that condition 4 in the defini-
tion of cts implies that Tr(Fy,) is proper and condition 3
guarantees that Tr(F,,) is prefix-closed.

Moreover, all trace systems have got their acceptors.

Fact 5.2 Let T be any trace system. Then, there exists a rooted con-
current transition system Fy, s.t. Tr(Fy,) =Tr(T).

Proof. Clearly, Fy,, = (Tr(T),%,—,1,[€]) is a rooted
concurrent transition system, accepting 7, where 7 = 7' iff
7' = Ta], for a € X.

If a trace system 7 is finite state and E() is an equivalence relation in
Tr(T), as described in the Definition 2.1, then there exists a finite rooted
concurrent transition system accepting 7.

Definition 5.5 The quotient structure of Tr(T) by EQ is a 5-tuple
Fuy = (W, 2, =,I,w), where:

o W ={[r]lgq | T€Tr(T)} is a set of states,
e (X,1) is an independence alphabet,

o — C WxExW is a transition relation such that [T|gg ~ [7'|gq, if
there are traces 1 € [T|gq, T € [T'|EQ, and a € X s.t. 7[a] = 1,

On temporal logics on trace systems 179

* wo = [e]Eq-

It is easy to check that Fy,, is a rooted concurrent transition system
accepting 7. Therefore, if a trace system 7 and an equivalence relation
EQ in Tr(T) is given, then Definition 5.5 shows how to define the finite
rcts accepting 7T .

Example 5.1 (acceptors for trace systems) Below, we show the
definitions of finite acceptors for the trace systems T, and Ts of the
Ezamples 3.2 and 3.3.

d

d
Figure 5: The rcts F; accepting the trace system 7;

The rcts F!, = (Wi,%1,—1, 11, w)) accepting the trace system 7y
0
is defined as follows:

o W = {{173}7{155}7{4}5{253}5{255}}7
e ¥ ={a,b,c,d},
o —1={({1,3},b,{4}), ({1, 3},a,{2,3}), ({1, 3}, ¢, {1,5}),

({1,5},d,{1,3}), {1,5},0,{2,5}),
({2,5},d,{2,3}), ({2,3}, ¢, {2,5})},

e I} ={(a,0),(c,a),(d,a),(a,d)},

180 W. Penczek

e w) ={1,3}.

One can easily notice that, in this case, FUIJ1 is the sequential case graph

0]
of Ny, extended by the dependence relation. The trace system 7T itself
defines the finite rcts F2, = (Wa, Xa, =2, [o, w), where:
0

o Wy =Tr(T2),
e Yo = {aj,az,as3,b1,bq,bs3},
o 735 7 iff [a] = 7,
o I =35 x ¥y &({az, a3, bz, b3}V
{(a1,a1), (b1, b1), (a1, az), (az,a1), (b1, b2), (b2,b1)}),

o wl =[e].

Now, let Fy, = (W, X, —, I, w) be a rcts. Define an acceptance function
AC : Tr(Fy) & W assigning to each trace from T'r(F,) the state of Fy,
which accepts this trace, i.e., AC(7) = w' iff there is a finite path z from
w to w' s.t. [x/X] = 7. Thanks to the conditions 4) and 5) in Definition
5.3, AC is defined correctly. In the standard way AC is extended on
subsets of Tr(F,): AC(P)={AC(r) |t € P}, for P C Tr(Fy).

Now, we define the notion of a model generator for a finite state
model for a trace system 7 .

Definition 5.6 Let M = (F,,,V) be a finite state model for a trace
system T, and let EQ be an equivalence relation in Tr(T) respecting V.
Then, a model generator for M is defined as Mg = (Fy,, V), where Fy,
is the quotient structure of Tr(T) by EQ and Vg : [Tr(T)]eg &~ 2PV
s.t. Va([t]leq) =V (1), for any 7 € Tr(T).

We say that a formula ¢ is true in a model generator Mg at wo (written
Mg, wy £ @), if M,v |= .

Before discussing a model checking algorithm for CTLp, we show
that, in fact, we can restrict ourselves to give an algorithm for CTLp_ -
the restriction of CTLp without nested past modalities and still we can

On temporal logics on trace systems 181

check all the properties we are interested in. The only property, we have
discussed, which required nested past operators, was serializability. But
we show that for checking serializability, we can use a model checking
algorithm for CTLp_. This follows from the following observation. Let
M be a restriction of the model M to states T+ 7NTr(T) ie., M, is a
submodel of M, generated by 7. Let 6 be a proposition which holds only
at the beginning state of each model M, i.e., 8 = H false. Notice that:

e M = SER1 AN SER2 A SER3 iff for each 7 € Tr(T): M: E
SER1' ASER2' AN SER3', where

SER1" (/\?:1 quiescent;) = AF(/\?:1 P(active;))
SER2" (\/?:1 active;) = AFP(/\?:1 quiescent;)

SER3'" (/\?:1 quiescent;) = AG((/\?:1 (quiescent; A P(active;)) =
P(/\?:1 quiescent; A =)

Since M is a finite state model, then there are at most |EQ| non-
isomorphic submodels M,. Let Mg = (Fy,, Vi), where F,,, = (W, %, —
,I,wo) be a model generator for M and let MY = (F,,VY) be a
model generator for M,, where AC(r) = w € W. Consequently,
M E SERIANSER2ASER3 it M¥,w |E SERI' ASER2' ASER3, for
each w € W.

Therefore, fortunately we can give a model checking algorithm for
CTLp_ and we can still verify all the properties, discussed so far.

Unfortunately, as we show in the next section, model checking for
CTLp_ is NP-hard.

6 NP-hardness of CTLp model checking

In this section we show that model checking for CTLp_, and therefore
for CTLp is NP-hard. Our problem has the following formulation: given
a model generator Mg = (F,,, V) and a formula ¢, is ¢ true in Mg at
Wo ?

We prove that 3-SAT problem is polynomialy reducible to deter-
mining whether Mg, wp = ¢, for some CTLp formula .

182 W. Penczek

Let ¥ = c¢1 A ... A ¢y be a boolean formula in 3-CNF, where ¢; =
liy VI, Vi, for 1 <i <m,l;; =z or -z, for some k s.t. 1 <k < n,
z1,---,Ty are the propositional variables appearing in .

Let Mg = (Fy,,Va) be a model generator (see the figure below),
defined as follows:

elet X ={z;|1<i<n}U{z}]|1<i<n},Y={y;|]0<i<n},
o Fy, = (W, %, —,1,wg), where
e W=XUY,S=XxYUY x X, =0,

* == {(yifla (yiflv mi): mi): (yifl) (yiflv :L’;), :L’;),
(mia (xlayl)ayl)7 (Qf;, (méayl)ayz) | 1 S i S ’I’L},

¢ Wo = Yo,

e PV ={c; |1 <i<m},

o V(x;) = {c; | x; appears as a literal in ¢;},
o V(}) = {c; | ~z; appears as a literal in ¢;},

o V(y)=0,for0<i<m.

T T2 Tp
Y1 Y2 Yn—1
Y [Yn
Ty Ty T,

Figure 8: The structure Fy,, of the model generator Mq

The following equivalence holds:

*) 1) is satisfiable iff Mg, wo |= EF(Pcy A...A Pey,).

On temporal logics on trace systems 183

The above follows from the fact that since the dependence relation I = (),
therefore the model, generated by Mg, is a tree. Therefore, all ¢; must
be true somewhere at the same path, which represents one of the possible
valuations of propositional variables z;. This reduction is polynomial.
Hence, model checking for CTLp is NP-hard.

In fact we have proved even more. Namely, that model checking is
NP-hard, even if past modalities cannot be nested, i.e., model checking
for CTLp_ is NP-hard.

The next part of this paper is devoted for defining a model checking
algorithm for CTLp_ and then, it is shown how our method can be
extended to cover the whole language of CTLp.

7 Model checking for CTLp.

Altough, CTLp_ seems to be a very mild extension of CT L, it turns out
that using a model checking algorithm for CTLp_ we can check all the
partial order properties, we have discussed so far. Therefore, a model
checking method for CTLp_ is of interest. Because of NP-hardness,
we can hardly believe in a polynomial time model checking algorithm.
Thus, the best we can offer is an algorithm of one exponential complexity.
Moreover, as we show later, as soon as we know how to check CTLp_
formulas we can apply this method to the whole language of CTLp and
its extension to CTLp.

Unfortunately, any of the known methods for model checking, ap-
plied to CTL or CTL*, cannot be used in the case of CTLp_. Showing
why all these methods fail is going to be a good introduction to our
method of model checking.

Let Mg = (Fu,, Va) be a model generator for M (we assume that
the set PV of propositional variables is finite) and 1) be a CTL p_ formula
to be checked over. Firstly, let’s try to apply a method, used for CTL
[21]. Immediately we find an obstacle. We do not know how to label
states of a model generator Mg with subformulas of ¢ containing past
operators. This problem stems from the fact that it may happen that
for some 7,7 € Tr(Fy,): AC(r) = AC(7') = w in Mg and for some
Hyp € Subformulas(vy), M,7 = Hp and M, 7' = ~Hep.

184 W. Penczek

Secondly, let’s try to apply a method, used for LTTL [19] and CTL*
[24]. Define a cross product of Mg with all subsets of Subformulas(y)U
PV. Then, we can obtain a structure which is not a concurrent transition
system. In fact, it can violate all the conditions, but that, which cannot
be repaired is a diamond property. It may happen that for some trace 7,
two different states w and w' in the new structure accept it. Since, w and
w' may have been assigned different formulas, therefore our construction
fails.

Looking at automata theoretic constructions [20] we realize that the
same problems appear as in the former case. Therefore, we need a new
technique. The general idea is to unwind Mg s.t. we can assign past
formulas to states of a new structure and then use the most efficient
method of CTL model checking, tunned to observations.

Let Fy, = W,%,—,1,wp) be arcts, w € W, W C W, and 7 €
[X*]. The following notations are used:

e X(1) = {a € ¥ | 7 = 71[a]m, for some T, € [E*]} is the set of
action names “occurring” in the trace 7.

o en(w,W') = {a €| (Fw € W): w5 w'} defines actions,
enabled at w and leading to the states from W',

e Xy ={a€eX| (€ (ab) € I} is the set of actions for wich
there is at least one independent action,

e I(X)={Y'CX|(Fa€eX): {a} x X' CT}U{X} is the family of
sets of actions ¥’ s.t. there is at least one action independent with
all its elements or ¥/ = X..

We need the following lemmas.
Lemma 7.1 A mazimal path © = woapwia; ... is an observation in Fy,
iff

(Va € X)(Vi € IN)(Fj > i)(a & en(wjor ((a,a;) & I))

Proof follows directly from Lemma 2.1.

On temporal logics on trace systems 185

Obviously, the above lemma holds also for observations starting at any
weW.

The next lemma is a special case of Levi’s Lemma for traces [17].
We present it with a short proof.

Lemma 7.2 For each 1,71,7 € [*] and a € [X] the following condition
holds:

Tao =172 iff
1) »=7"a and 7" = 7, for some " € [Z*] or

2) 1 =7a, {a} x B(r) C I, and 7'y = 7, for some 7' € [X*] and
[a] = a.

Proof.(<=) Obvious.
(=>) Let w be any linearisation of 7. Then w must be of the
following form w = w'aw"”, where [w'w"] = 7, [a] = a, and
{a} x Z([w"]) C I, (where {a} x) = (). Now, if we represent
w by concatenation of two strings wi,ws s.t. w = wiws,
then the following cases are possible:

e w; = w] and ws = whaw", where w' = wjw}, or

e w; = w'aw] and wy = wh, where w"” = wi'wj.

Now, let Ta = 7 7. Therefore, either 7 = [w}]] and
T = [whaw"], where w' = wjw) and {a} x E([w"]) C I,
or = [waw!] and 7» = [wY], where w" = w{w} and
{a} x Z([w"]) € I. This implies that either 7, = [w}] and
7> = 7"[a], where 7" = [whw"], m 7" = [W]whw"] = [w'w"] =
T,or 1 = 7'[a], {a} x B([w§]) C I, and 1o = [w]], where
7= [ww"], 'r = [wWwwl] = [ww'] =T.

Let Mg = (Fu,,Va) be a model generator, where Fy,, = (W,%,—
,I,wp), and let AC be the acceptance function for F,,. Let ¢ be a
formula to be checked over the model, generated by M. The general

idea of our algorithm consists in defining a new model generator M, for
which AC'(r) = AC'(7') implies

186

The

W. Penczek

AC(l 1) =AC(} "), and

for each a s.t. Yy € Subformulas(), if 7 = 1 [a], then 7' = 7{[a]
and AC(r) = AC(r]), for some 71,7 € [E*].

model generator M, is built around the rects accepting T'r(Fy,), be-

ing the quotient structure of T'r(Fy,) by the relation EQ. This relation
is defined below.

The

Let 7,7" € Tr(Fy,) and A C X. We define:
Iy(2) =I(Z) U {{a} C 2| Y,p € Subformulas(v)},
a function ~ : 2% &= I,(Z) s.t. A=A if A € [,(%), A =%, if
A g Iy (%),

a function p : [*] & {tt, ff} s.t. p(r') =tt, if |[7'| =1, p(7') =
FEAE|T#1,

a function Rep : [£*] & 2WxTu(E)AthS I} (1 stands for true and
ff stands for false) s.t.

Rep(r) = {(AC(11), 5(72),p(72)) | 172 = 7},
T EQ 7' iff Rep(1) = Rep(7'),
[Tleq ={7" € Tr(Fu,) | T EQ 7'},

states(t) = {w € W | (w,A,q) € Rep(r), for any non-empty
A C Y and any q € {tt, ff}}.

Intuitively speaking, states(7) gives the set of all states in W ac-
cepting strict prefixes of T,

pred(t) = {(w, A, q) € Rep(7) | ¢ = tt},

Intuitively speaking, pred(r) is the set of all states in W accepting
predecessors of 7.

definition of Rep(T) gives rise to the equivalence relation satisfying

the conditions of Definition 2.1 and carrying information about the past
and predecessors of traces. The interested reader can check that Rep(7),

On temporal logics on trace systems 187

defined as {AC(7") | 7' <1} or {AC(7") | " — 7} wouldn’t give rise to
an equivalence relation as required.

Next, it is shown that EQ is indeed an equivalence relation, which
can be used for defining a new finite representation of T'r(Fy,).

Lemma 7.3 The following conditions hold:
i) T EQ 7' implies AC(r) = AC(1'"),
ii) EQ satisfies the conditions of the Definition 2.1,
iii) T EQ 7' implies states(t) = states(r") and pred(r) = pred(r').

Proof.
i) Assume that 7 EQ 7'. From the definition of Rep(7),
it follows that AC(r) = w for (w,0,ff) € Rep(r) (it is
exactly one element in Rep(7) of the form (w,0, ff)). As
Rep(t) = Rep(t'), it follows that AC(7) = AC(7').

ii) The index of EQ is obviously finite and moreover, it
can be shown to be smaller than 22*IW[xTe(=)],

Then, we prove that 7 EQ 7' and 7a € T'r(Fy,) implies
Ta EQ T'a, for each a € [X]. To this end we show that
Rep(ra) can be defined in terms of Rep(7), a, and (X, I). We
need the following notation: for each w € W and a € en(w),
by w(a) we denote the state w’ € W s.t. w = w'.

Now, we come back to the proof of ii). Let o = [a].

e Rep(ta) = (by definition) {(AC(m),%E(m),p(r)) |

1172 = Ta} = (by Lemma 7.2)

e {(AC(n),E(r"a),p(r"@)) [7" = T}U
{(AC(T'a), X(72),p(12)) | 7’72 = 7 and {a} xX(m2) C I}
= (by definition of Rep(r))

o {(w,AU{a},emp(A)) | (w,A,q) € Rep(r)}U
{(w(a),A,q) | (w,A,q) € Rep(r) and {a} x A C I},
where emp(A) = tt, if A = (), and emp(A) = ff, oth-
erwise.

188 W. Penczek

Notice that, Rep(ra) = Rep(r'a), if Rep(T) = Rep(7').
iii) It follows directly from the definitions of EQ, states(r)
and pred(T).

Let F‘Lé = (W', 2, =',I,w}) be the quotient structure of Tr(F,,) by the
equivalence relation EQ s.t. elements of W' are of the form Rep(r) for
T € Tr(Fy,) rather than [T]pg. We show now that Féj{) can be defined

directly from Fy,.
The following notions simplify the rest of the construction.

We define:
e a function last : W' &= W, s.t. last(w') = w, if (w,0, ff) € v,

e REP(w'a) = {(w,AU{a},emp(d)) | (w,A,q) € w'} U
{(w(a),A,q) | (w,A,q) € w and {a} x A C I}, for any w’ € W’
and a € en(last(w')),

(intuitively speaking, REP(w'a) defines the next state in W',
reached after executing a at w'),

The construction of F, is performed inductively, in stages.

Let F!, = (W{?E,@,I,w{)), where W] = {w{} and w} =
{(wo,w,ff)}o. Now, for each node w' of W/ < W/ ; (with W} = 0)
we add all its successors in W' and extend —}, respectively. Let
Fi, = W,E =} Luwy) and W) = W] & W/ . Then, Ft =
(Wi, B, =i, I, wp), where

(3

o W/, =W/ U{REP(w'a) |w' € W), a € en(last(w'))},

(3

o =i == U{(w',a, REP(w'a)) | w' € W2, a € en(last(w'))}.

(3

The construction stops at the least m, when F‘ZZ = FZ?H. It is easy to
0
see that ng is isomorphic to Féjé.
Then, the new model generator M(, = (F,,,V") is defined as follows:
0

b Fllut’) = (Wlazy_)lajawIO)v

On temporal logics on trace systems 189

o V) : W' &> 2PV is a valuation function satisfying the following
condition:

— pe Vi(w') iff p € Vg(last(w')), for p € PV.

7.1 Improving the algorithm

In order to decrease the number of elements of W' we may require that:
o if (w,A,tt) € Rep(r), then (w, A, ff) & Rep(r),
. i(;u,ﬁ,ff) € Rep(t), then (w,A’, ff) & Rep(r), for A C A’ and

The definition of Rep(7) with these changes remains correct. To estimate
the complexity of the algorithm we have to assess how much it does cost
to build M/,. Therefore, notice that:

° |W’| < 22><|W\><\I¢(Z)\‘

e Checking whether {a} xA C I, for all a € L7 and for all A € I,;(X)
costs |Zr| x |1y ()] x |Xf] x |I].

e Checking whether A U {a} ¢ I,(X), for all « € ¥; and for all
A € I;(X) costs |Zr| x |Iy(Z)] x |X1] x |I], since for each a € X
and A € I;(X) the algorithm can check whether ({a} x Con(A))N
I # 0, where Con(A) = {a’ € £ | {a'} x A C I} (Con(A) has
been already computed by the algorithm while checking whether
{a} x A C I, for all a € ¥1), which costs at most |X;| x |I.

e At each state w' of W' the cost of calculating the next states is
O(|W| x |Ix(X)|) for each a € en(last(w')) i.e., O(] = | x [I(X)]).
Thus, for all states w' € W' it is O(] — | x|, (X)|x 22<IWIxITe (),

Therefore, the complexity of building M, is:
O] = | x Ty (B)] x 22X 1e(2),

Notice that for each subformula ¢ of ¢ and for each 7,7" € Tr(Fy,),
it AC'(r) = AC'(1"), then M, 1 |= ¢ ifft M,7" = ¢. Therefore, we

190 W. Penczek

label w' € W' with ¢ (written M/, w' |= @), it M, 7 |= ¢, for some 7:
AC' (1) = w'.

Obviously, for each subformula ¢ without past operators, for each
7,7 € Tr(Fy,), if AC(r) = AC(7'), then M,7 | ¢ iff M,7" E o.
Therefore, we label w € W with ¢ (written Mq,w |= @), if M,7 E ¢,
for some 7: AC(1) = w.

We write Mq | @, if Mg, w [¢, for all w € W.

Next, we show model checking algorithms. The method is inductive
i.e., given a formula 1, starting from its shortest and most deeply nested
subformula ¢ the algorithm labels these states of M/, with ¢, which
accept traces, at which ¢ holds. Therefore, in case of checking a less
nested subformula, it can be assumed that the states have just been
labelled with all its subformulas.

Firstly, we label states of Mg with all the subformulas of v, which
do not contain past subformulas. Then, we label states of M/, with all
the subformulas of ¢. Below, we give algorithms for labelling states of
M(,. These algorithms can be as well applied for labelling states of M.

We show how to label states of M, with formulas of the form p,
-, o Ay, Yop, Hp, EX,p, EGe, and E(pU7y).

7.2 Model checking for p, ~¢, p Ay
There is not a lot to do in the case of checking formulas of the form:
e pc PV,
¢~y
e YA~Y.
Notice, that:
1. M, w' Epiff pe Vi(w'), for p € PV,
2. if ¢, v are state formulas,
M{,w' = —p iff not Mf,w' = o,
ML, w' EpAyift ML, w' =@ and M, w' = 1.

On temporal logics on trace systems 191

Therefore, in the first case we check whether p is an element of Vi (w'),
in the second case we check whether w’ has been labelled with ¢ and
in the third case we check whether w' has been labelled with ¢ and ~.
The complexity of checking a formula of the above form over all states
is O(|W')).

Now, we define algorithms for checking formulas of the form Y, ¢y,
Hy, EXy,p, E(pU~), and EGp.

7.3 Model checking for Y,¢

Observe that M{,,w' |= Yoo iff there is (w, {a},tt) € w’ s.t. Ma,w = ¢.
The complexity of labelling states of M{, with Y, is O(|W'| x |[W] x
1Ly (B)))-

7.4 Model checking for Hy

Observe that M[,w' |= Hy iff for all (w,A,q) € w' if A # (), then
Mg,w = ¢. The complexity of labelling states of M/, with Hey is
O(IW'| x W] x [Iy(%)]).

7.5 Model checking for FX,p

Observe that M}, w' & EX,p iff there is w” € W' s.t. w' % w" and
M{,w" E ¢. Therefore, the algorithm finds all the states at which ¢
holds and labels all its a-predecessors with EX,p. The complexity of
labelling states of M, with EX,¢ is O(|W'| + | —=').

7.6 Model checking for F(oU~)

Observe that M/, w' |= E(pU~) iff there is a state w” € W' and a
sequence of states w(,...,w, € W' st. w' =wj - ... > w), = w'" and
MG, w" Ev, ML, w, = efor0<i<n.

The above follows from the following lemma:

Lemma 7.4 FEvery finite path in FIIU(’) can be extended to an observation
in F, .
0

192 W. Penczek

Proof follows from the fact that every finite path in
Tr(FI’U(,)) can be extended to an observation in Tr(Féjé) (see

[17)).

Firstly, all the states at which v holds are labelled with E(pU~). Sec-
ondly, the algorithm goes backwards using the relation —'~! and labels
all states at which ¢ holds with E(pU~). The complexity of labelling
states with E(oU7) is O(JW'| +| =" |).

7.7 Model checking for EGy

We assume that I # (. Observe that M/,,w' = EGy iff there is an
observation z starting at w' s.t. M{,w" = ¢, for each w' on z. The
model checking algorithm uses Lemma 7.1.

Let W), = {w' € W' | Mg, w" | ¢} be the subset of W', labelled
with . Firstly, the subset Wé) of W' is selected. By a strongly connected
component in W/, we mean any subset W" C W satisfying one of the
following conditions:

o (Ywy,wy € W"): wy =" wy and wy =™ wy, or

e W' contains only one state w" s.t. w" does not have any successor
in W'

Secondly, all the maximal strongly connected components in Wé are
selected. Notice that they are disjoint. Next, the states of W' are labelled
according to the following theorem:

Theorem 7.1 Mg, wy = EGy iff wy € W/, and there is a mazimal
strongly connected component W' in W, reachable from wy by a path
contained in W, and (*): (Va € £)(Fw" € W") a € en(w') or {a} x
en(w' , W'") ¢ I.

Proof. (=>). If M{,,w; = EGy, then there is an ob-
servation starting at wy, say £ = wyaowiay ..., s.t. (Vi >
0) M{,w; = ¢. If is finite, then the last state of z is a
maximal strongly connected component in W, satisfying (*).

On temporal logics on trace systems 193

Thus, let’s assume that z is infinite. Let w'” be the first state
on z s.t. each w’ € W' either doesn’t appear on x after w'” or
appears infinitely many times. Then, the set W" of all states
appearing on z after w” is a strongly connected component.
It follows from Lemma 7.1 that W' satisfies the required
property. If W" is not a maximal strongly connected com-
ponent, then it can be extended to it and the property in
question is preserved.

(<=). If W" contains only one state without any suc-
cessor in W', then obviously M(,,w; = EGyp. So, assume
that this is not true. Take any path z = wjaowia; ... s.t.

a
(Vi > 0) w; € W), and (Vw',w" € W") if w" —' w", then for
infinitly many i: w; = w', wj,; = w", and a; = a. Clearly,
by the assumption and by Lemma 7.1, it follows that z is an
observation and by construction z |= G.

Selecting W/ and maximal strongly connected components costs
O(|[W'|+] ="]) (see [21]). Then, components satisfying the property (*)
in the Theorem 7.1 are labelled. This may cost O((JW'|+| —=' |)x|Z|x
[1]). If wg is in W, and there is a path from wg to a labelled component
in W, then Mg, wy | EGy, otherwise Mg, wy = —~EGg. Therefore,
the complexity of checking EGp is O(|Z| x |I| x (|W'| +] ="1))-

7.7.1 Improving the algorithm

Now, it is shown how to improve the algorithm. The above algorithm
will be more efficient, if instead of checking for all a € X, it will check
only for those a, for which it exists at least one independent action i.e.,
a€Xr Ifag ¥y, then {a} x en(w',W'") € I, so this does not need to
be checked. Finding the set ¥ costs O(|I]). Therefore, the complexity
of the improved algorithm is

O(Zs] x I x (W' +] ="1)).

It was assumed that I # (. In the other case, each path is an observa-
tion, so to prove that EGy holds does not require to check any property

194 W. Penczek

about maximal strongly connected components. Then, the complexity
is O(W'|+ | =").

7.8 Complexity of CTLp model checking

In order to handle an arbitrary CTLp_ formula %, the state-labelling
algorithm is applied to the subformulas of ¢ starting with the shortest
and most deeply nested one. Since |X;| x |I]| < |I(X)| and | =" | <
| = | x [W'|, then each pass does not take more time than O(| —
| X I, (Z)] x 22XIWIXI1(E)) - and since ¢ contains at most lenght (i)
different subformulas, the algorithm requires time

O(lenght(y)) x | = | x [T (E)] x 22X WIxITu (X)),

Example 7.1 (proving serializability) Below, it is shown how to
prove serializability of the trace system Ts.

We have to check whether:
1. Ms,[e] = p1 Ap2 Apy = AFP((pr Ap2 Apg) V (p1 Aps Apy)),

2. My, [e] E AG[((pr Ap2 Aps) V (p1 Aps Apg)) = AF(P(pr Aps A
Po) V (pr A ps A po))l.

Fortunately, in this case M is equall to its model generator. Therefore,
we can carry out all the proofs over Ms. The only difficult thing is to
label states of M5 with the formulas:

1. AFP((pr Ap2Apo)V (p1 Aps Apg)),

2. AF(P(pr ANps Apy) V (p7 Aps Apg)).

It is shown how to do that for the formula 1. First notice that:
AFP((pr Apa Apg) V (p1 Aps A py)) = "EGHp, where ¢ = (=pr V
—pa V —pg) A (=p1 V —pg V —pg). Next, states of My are labelled with
EGHyp. Notice that ¢ € Va(r), if 7 € {[a1az2as3],[b1b2b3]}. Therefore,
M2,7' |: H(p lff T € (T [alagag]u T [blbgbg]) <:>([a1a2a3] U [blbgbg]) NOW,
using the algorithm for EGy in M,, we find that Mo, [e] = EGHep.
Thus, M, [e] E AFP((pr Ap2 Apy) V (p1 Aps A py)). Consequently, we
get Moy, [e] = p1 Ap2 Apg = AFP((pr Ap2 Apo) V (p1 Aps Apg)).

On temporal logics on trace systems 195

7.9 Extending model checking to CTLp and CTL}
Our method of model checking can be easily extended s.t.:
1. past formulas can be nested - (model checking for CTLp),

2. future formulas are those of CTL* [47] (CTL with nested path
formulas) -

(model checking for CTL*p_),
3. all the above extensions together - (model checking for CTL*p).

For 1), we define a sequence of unfoldings My, ..., M, where M; = M,
n is the maximal depth of nested past formulas in ¢, M;;; is obtained
from M; in the same way as M/, was obtained from Mg. Then, we
inductively label states of M; with subformulas of ¢ containing nested
past formulas of depth at most i. Then, M,[e] = ¢ iff the beginning
state of M, is labelled with . In the worst case we can arrive at the
complexity exp, (2 x |W| x |I(X)]).

In this case, the meaning of our result is only theoretical, but, at
least, we have shown that it is decidable whether any CTLp formula is
true in a finite state trace model. This result seems to be interesting on
its own, especially in comparison with the result of chapter 9.

For 2), after unwinding the model generator, we treat past formulas
as fresh propositions and apply the standard methods for CTL* model
checking [24]. Then, we arrive at the complexity exponential in the
number of states and exponential in the number of subformulas of .

For 3), we combine the methods of 1) and 2).

8 Undecidability of CTLp

We now turn to the problem of determining the satisfiability of CTLp
formulas. This problem may be stated as: Given a CTLp formula ¢, is
there a model M = (F,,,V) s.t. M,vp = ¢. If ¢ is true at vy of M,
M is said to be a model of ¢. Note also that the CTLp formula ¢ is
satisfiable iff - is not valid, hence exhibiting a decision procedure for
satisfiability amounts to deciding the validity problem.

196 W. Penczek

Unfortunately, to our big surprise we have to report a negative re-
sult. CTLp is not decidable ! It turns out that we can encode a grid
using our language.

Consider a Petri Net N, composed of two independent transitions
a and b, each of them can be executed infinitely many times. The trace
system 7T giving the semantics to IV is composed of all the traces be-
longing to the language [A*], where A = {a,b} and I = A x A 4da. A
frame for 7 is defined as Fjq = ([A*], —, [¢]), It is possible to characterize
this frame up to isomorphism. But, then one can encode the following
recurring tiling problem, which has been shown to be undecidable in [43].
Below, we follow the definition of [44] and [45].

Let , be a finite set of types of tiles such that for each T" € |
each side - North, East, South and West - is assigned a number (N(T),
E(T), S(T), and W(T), resp.). Let Co C ,* be a set of colors such
that ¢ = (Tl,T2,T3,T4) € Co iff S(Tl) = N(Tg), E(Tl) = W(T2),
N(Ty) = S(Tz), and W (Ty) = E(T5) (see the picture below).

Ty T

T3 | Ty

For each ¢ = (T1,1,15,Ty) € Co let U(c), R(c) C Co, where U
stands for Up and R stands for Right, with U(c) = {¢' € Co | ¢ =
(T, T',T1,T>), for some T,T'}, R(c) = {¢ € Co | ¢ = (T2, T,T4,T"),
for some T,T'}. Let Ty, Ty € , be two special types. The problem
is to find a coloring ¢ : IN x IN <= Co such that for all i,j € N,
c(i,j) € Co, ¢(0,0) € {¢ € Co | =(T,T',Tp,T"), for some T,T',T"},
e(i,j+1) € U(c(i,j)), and c(i+1, j) € R(c(3,j)), and there are infinitely

On temporal logics on trace systems 197

many colors in the leftmost column, which contain the tile type 7. The
above formulation means that one has to exhibit a coloring of the lattice
points in the plane such that if a point has a color ¢, then the point just
above has a color from the set U(c) and the point to the right has a color
from the set R(c), the beginning has a color of a given subset of C'o and
the given tile type Ty occurs infinitely often in the leftmost column.

Let PV = {C; | ¢; € Co}. Now, it is possible to give a set of
formulas of CTLp_ s.t. its conjunction is satisfiable iff the recurring
tiling problem has a solution. Firstly, we give formulas encoding the
grid:

(A):

1. AG(EX, true N EXptrue)
2. AG(/\ceE—{a,b} -EX true),
3. EF(Y,true A Yytrue)

1) expresses that two actions a and b are executed at each state. Since
our model is a partially ordered set, therefore it contains infinitely many
states. It follows from 2) that each of them has exactly two successors. 3)
specifies that a and b are independent at some state. Thus, by definition
of trace systems a and b are independent at each state. So, the frame is
a grid representing a trace system [{a, b}*].

Now, we give formulas describing the tiling:

(B):
1. V{Ci| i = (T, T",Tp,T"), for some T,T",T"},
2. AG(V({Ci | ci € Co}) A(N{Ci = =Cj | i #j})),
(A{Ci = EX.(V{Cj | ¢; € U(ci)}) | ci € Co})),
(A{Ci = EXy(V{Cj | ¢; € R(ci)}) | ci € Co})),
5. AG(=Yytrue = EF(-YytrueA\{C; | type Ty occurs in color ¢;})).

3. AG
4. AG

1) expresses that the tile type T at the beginning is Tp. 2) enforces
exactly one color at each point of the grid. 3) and 4) ensures that

198 W. Penczek

successors have the right color. 5) requires that the tile type Ty occurs
infinitely often in the leftmost column.

The recurring tiling problem has a solution iff the conjunction of our
formulas A) and B) is satisfiable. As in [44], it follows that the validity
problem for CTLp_ is m} <hard.

It can be easily shown that our logic remains undecidable, even if it
does not contain backward step operators, next step operators are not
labelled, but a valuation function encodes labelling as shown in Example
4.1. Then, the formulas 1), 2) in A) and 3), 4) in B) can use unlabelled
versions of next step operators (see Example 4.1), the formulas 3) in A)
and 5) in B) can be replaced by:

3. EXEX (pa Aps A P(pa A=) A P(py A—pa)),

5. AG(H(—py) N—py = EF(H(—py) A—ps AN\N{C; | type Ty occurs in
color ¢;})).

The undecidability result explains why we couldn’t use any standard
methods for model checking.

9 Comparing CTLp with other logics

CTLp contains CTL and, as it was said before, it can be seen as a re-
stricted version of the logic, defined in [16]. The language of CTLp is
an extension of that of Hennessy-Milner logic with backward modali-
ties and a restriction of the language of POTL [3, 4]. CTLp resembles
also the partial order logic (P.O.-logic), introduced by A. Sinachopoulos
[14], which, however, does not contain path quantifiers. A similar logic,
but with run operators (PN-logic), has been also defined by Reisig in
[11,12]. CTLp differs from ISTL [13] in the definition of a frame; ISTL
is interpreted on runs of trace systems.

Our results on undecidability of checking satisfiability as well as
the method of model checking can be easily extended on propositional
versions of the following logics: Hennessy-Milner logic with backward
modalities [32], ISTL [13], P.O.-logic [14], and the logic defined in [16],
interpreted over trace systems.

On temporal logics on trace systems 199

10 Final remarks

The presented approach to model checking for a partial order logic with
past modalities over structures of global states is the first one, known
from the literature. In [4] model checking for a similar logic, interpreted
over local state models has been investigated. Our paper is also the
first one showing how to prove properties of partial order executions,
of serializability, and snapshots by model checking. Therefore, it is not
possible to compare the complexity of the model checking algorithm with
others.

Our method can be viewed as an extension and refinement of the
method of Clarke and al. [21] to cover also partial order properties. The
alternative approach would be to apply automata-theoretic techniques
in the style of [20] or [31]. This, however, cannot be done immediately
as it is not clear how to build automata accepting CTLp formulas.

We have proved that model checking becomes NP-hard as soon as
we have introduced backward modalities. Moreover, unfortunately, the
best algorithm we could give is of exponential complexity in the number
of states of a model and linear in the lenght of a formula. Therefore, our
algorithm can be applied for systems with not too many states. It seems
to be impossible to define an algorithm linear in the number of states of
a model (and, obviously, exponential in the lenght of a formula).

Our undecidability result shows that in general it is not possible
to synthesise systems from their specifications in CTLp_, or any similar
logic, e.g., defined in [13], [16]. Therefore, altough, serializability and run
properties can be proved by model checking, they cannot be imposed on
systems, synthesised from their specifications.

ACKNOWLEDGEMENTS: The author wishes to thank dr. Ruurd
Kuiper for improving the language of the paper. Special thanks are
directed to my wife Agnieszka for the help in designing the figures.

11 References

[1]: Manna, Z., Pnueli, A., The Anchored Version of the Temporal

200

[2]:

[3]:

[7]:

[8]:

[10]:

[11]:

[12]:

W. Penczek

Framework, LNCS 354, 1988.

Emerson, E.A., Srinivasan, J., Branching Time Temporal Logic,
LNCS 354, 1988.

Pinter, S.S., Wolper,P., A Temporal Logic for Reasoning about
Partially Ordered Computations, Proc. 3rd Symp. on Principles
of Distributed Computing, pp. 28-37, Vancouver 1984.

Kornatzky, Y., Pinter, S.S., A Model Checker for Partial Order
Temporal Logic, EE Pub n. 597, Department of Electrical
Engineering, Technion - Israel Institute of Technology, 1986.

Katz, S., Peled, D., Interleaving Set Temporal Logic, 6th ACM
Symposium on Principles of Distributed Computing, Vancouver
Canada, pp. 178-190, 1987.

Katz, S., Peled, D., An Efficient Verification Method for Parallel
and Distributed Programs, LNCS 354, 1988.

Lodaya, K., Thiagarajan, P.S., A Modal Logic for a Subclass of
Event Structures, LNCS 267, pp. 290-303, 1987.

Penczek, W., A Temporal Logic for The Local Specification of
Concurrent, Systems, Information Processing, pp. 857-862, IFIP,
1989.

Penczek, W., A Concurrent Branching Time Temporal Logic,
Proceedings of the Workshop on Computer Science Logic,
Kaiserslautern, LNCS 440, pp. 337-354, 1990.

Mukund, M., Thiagarajan, P.S., An Axiomatization of Event
Structures, LNCS 405, 1989.

Reisig, W., Temporal Logic and Causality in Concurrent
Systems, LNCS 335, 1988.

Reisig, W., Towards a Temporal Logic of Causality and Choice in
Distributed Systems, LNCS 354, pp. 606-627, 1989.

On temporal logics on trace systems 201

[13]:

[14]:

[15]:

[16]:

[17]:

[18]:

[19]:

[20]:

[21]:

Peled, D., Pnueli, A., Proving Partial Order Liveness Properties,
Proc. of ICALP, pp. 553-571, 1990.

Sinachopoulos A, Partial Order Logics for Elementary Net
Systems: State- and Event - approches, Proc. of CONCUR’90,
1990.

Penczek, W., Proving Partial Order Properties Using CCTL,
manuscript, 1991.

Peled, D., Katz, S., and Pnueli, A., Specifying and Proving
Serializability in Temporal Logic, Proc. of LICS, 1991.

Magzurkiewicz, A., Basic Notions of Trace Theory, LNCS 354, pp.
285-363, 1988.

Mazurkiewicz, A., Ochmanski, E., Penczek, W., Concurrent
Systems and Inevitability, TCS 64, pp. 281-304, 1989.

Lichtenstein, O., and Pnueli, A., Checking that Finite State
Concurrent Programs Satisfy their Linear Specification. Proc. of
the 12th ACM Symposium on Principles of Programming
Languages, pp. 97-107, New Orleans, 1985.

Vardi, M.Y., Wolper. P., An Automata-Theoretic Approach to
Automatic Program Verification, Proc. of LICS, pp. 322-331,
1986.

Clarke, E.M., Emerson, E.A., Sistla, A.P., Automatic Verification
of Finite State Concurrent Systems Using Temporal Logic
Specifications: A Practical Approach, Proc. 10th Annual ACM
Symp. on Principles of Programming Languages, Austin, pp.
117-126, 1983, and ACM Transactions on Programming
Languages and Systems, 8(2), pp. 244-263, 1986.

: Sistla, A.P., Clarke, E., The Complexity of Propositional

Temporal Logic, 14th ACM Symposium on Theory of
Computing, May 1982, pp. 159-167.

202

[23]:

[24]:

[25]:

[26]:

[27]:

[28]:

[29]:

[30]:

[31]:

[32]:

[33]:

W. Penczek

Emerson, E.A., Clarke, E.M., Using Branching Time Logic to
Synthesize Synchronization Skeletons, Science of Computer
Programming, vol. 2, pp. 241-266, 1982.

Emerson, E.A., Lei, C.L., Modalities for Model Checking;:
Branching Time Logics Strikes Back, Science of Comp.
Programming, vol. 8, pp. 275 - 306, 1987.

Emerson, E.A., Lei, C.L., Efficient Model Checking in Fragments
of the Propositional u-calculus, Proc. of LICS, 1986.

Emerson, E.A., Lei, C.L., Temporal Reasoning Under
Generalized Fairness Constraints, LNCS 210, pp. 21-36, 1986.

Stirling, C., Walker, A General Tableau Technique for Verifying
Temporal Properties of Concurrent Programs, in Semantics for

Concurrency, eds. M.Z. Kwiatkowska, M.W. Shields, and R.M.

Thomas, pp. 1-15, Leicester 1990.

Burch, J.R., Clarke E.M., McMillan, K.L., Dill, D.L., and Hwang
L.J., Symbolic Model Checking: 10?° States and Beyond. Proc.
of LICS, 1990.

Clarke, E.M., and Grumberg, O., Avoiding the State Explosion
Problem in Temporal Logic Model-Checking Algorithms. Proc of
5th ACM Symposium on Principles of Distributed Computing,
pp. 293-303, 1987.

Valmari, A., A Stubborn Attack on State Explosion, Proc. of
Workshop on Computer Aided Verification, Rutgers, 1990.

Godefroid, P., Wolper, P.; A Partial Approach to Model
Checking, Proc. of LICS, 1991.

Hennessy, M., and Stirling, C., The Power of the Future Perfect
in Program Logics, Information and Control 67, pp. 23-52, 1985.

de Nicola, R., Vaandrager, F., Three Logics for Branching
Bisimulation, Proc. of LICS, 1990.

On temporal logics on trace systems 203

[34]:

[35]:

[36]:

[37]:

[38]:

[39]:

[40]:

[41]:

[42]:

[43]:

[44]:

[45]:

de Nicola, R., Montanari, U., and Vaandrager, F., Back and
Forth Bisimulations, Proc. of CONCUR’90, 1990.

Emerson, E.A., Halpern, J.Y., Decision Procedures and
Expressiveness in the Temporal Logic of Branching Time, Journal
of Computer and System Sciences 30, pp. 1-24, 1985.

Courcoubetis, C., Vardi, M.Y., and Wolper, P., Reasoning about
Fair Concurrent Programs, Proc. of the 18th Annual ACM
Symp. on Theory on Computing, pp. 283-294, 1986.

Godefroid, P., Using Partial Orders to Improve Automatic
Verification Methods, Proc. of Computer-Aided Verification
Workshop, Rutgers, New Jersey, 1990.

Wolper, P., On the Relation of Programs and Computations to
Models of Temporal Logic, LNCS 398, pp. 75 -123, 1987.

Kwiatkowska, M., Fairness for Non-Interleaving Concurrency,
PhD Thesis, University of Leicester, 1989.

Bednarczyk, M., Categories of Asynchronous Transition Systems,
Ph.d. thesis, University of Sussex, 1987.

Droste M., Concurrency, Automata and Domains, LNCS 443, pp.
195 - 208, 1990.

Stark, E.W., Concurrent Transition Systems, TCS 64, pp.
221-269, 1989.

Harel, D., Recurring Dominoes: Making the Highly Undecidable
Highly Understandable, Annals of discrete mathematics, 24, pp.
51 - 72, 1985.

Parikh, R., Decidability and Undecidability in Distributed
Transition Systems, A perspective in theoretical computer
science, Vol. 16, 1988.

Paech, B., Concurrency as a Modality, Ph. d. thesis, Munchen
University, 1991.

204

[46]:

[47]:

W. Penczek

Aalbersberg I.J., Rozenberg G., Theory of traces, TCS 60, pp. 1-
82, 1988.

Emerson, E.A., Halpern, J.Y., Sometimes and “Not Never”
Revisited: On Branching versus Linear Time Temporal Logic,
Journal of the ACM 33 (1), pp. 151-178, 1986.

205

206 P. Gastin, A. Petit

Poset properties of complex trace languages 207

208 P. Gastin, A. Petit

Poset properties of complex trace languages 209

210 P. Gastin, A. Petit

Poset properties of complex trace languages 211

212 P. Gastin, A. Petit

Poset properties of complex trace languages 213

214 P. Gastin, A. Petit

Poset properties of complex trace languages 215

216 P. Gastin, A. Petit

Poset properties of complex trace languages 217

Two extensions of the existing trace model

(Abstract)

Volker Diekert

Institut fir Iré/ormatik
Universitat Stuttgart
Breitwiesenstr. 20 - 22
D-7000 Stuttgart 80

April 1, 1992

The aim of this abstract is to sketch some ideas how to extend the
existing trace model in two different directions. Although not done here,
we would like to emphasize that both extensions could be combined
from a quite general viewpoint. We will give neither proofs nor other
details. This will be done in a forthcomming paper. For references we
use standard references on traces, semi-traces and partial order sematics
without any explicit citation. The related work can be found elsewhere.

1 Philosophy

One of the drawbacks of the existing trace model is that we are not able
to express dynamic concurrency. A possible solution is to use pomsets (=
partial words = labelled partial orders) for a description of a concurrent
process. This enlarges of course the expressive power, but we pay this by
loosing many nice algebraic and combinatorial properties of traces. so we
risk to loose what make this model attractive and feasable. The original
idea of Mazurkiewicz is collecting different sequential observations (or
runs) into a single trace. However, this can be applied to pomsets, too.

218

Two extensions of the existing trace model 219

At first glance this seems to be even a more complicated model than
pomsets; but since the model becomes more abstract, we obtain in fact
a simplification.

2 Formality

Our starting point is a fixed (finite) semi-dependence alphabet (X, D).
This corresponds to the static independence relation which is known,
say from the given net topology of a concurrent system. For example,
if a concurrent system is specified by a Petri net (place/transition net)
then we obtain a semi-dependency between transitions a and b soon as
one output place of a is an input place of b. On the other hand, if
a # b and there is no such place, then we know that any sequential
observation uabv would give rise to another possible execution ubav, or
more precisely, the execution of ¢ and b has been concurrently. (N.b.
that concurrency does not mean at the same time.)

The difference between a semi-dependence relation and a dependence
(without the prefix semi-) relation is simply that we do not require sym-
metry of D. However, we will keep the usual technical restriction that
D is a reflexive relation. Given (X, D), the set of semi-traces is the set
of finite acyclic labelled graphs [V, E, A\] where V' = {1,...,n} is the set
of vertices, A : V' — E is the labelling and edges are from ¢ to j if and
only if i < j and (A(7), A\(j)) € D.

Since the static dependency does not reflect the full concurrent be-
haviour, it may happen that in the modelized process i and j were in-
dependent, although i < j and (A(7), A(j)) € D. Thus, we will consider
the following. The objects are labelled acyclic graphs [V, E, A] as above;
but we require ony that an edge from i to j implies (A(i), A(j)) € D and
that edges are always between vertices with the same label. We call such
a graph a partial trace over (X, D). Moreover, we identify such a graph
with its induced partial order. Therefore, partial traces form a subset
of those pom-sets over ¥ where identically labelled vertices are totally
ordered (= semi-words over). However, instead of thinking of subsets,
the much better viewpoint is to think of a partial trace as an equivalence
class of semi-words. This equivalence is obtained by a forget operator

220 V. Diekert

which simply forgets the ordering between actions a and b if (a,b) ¢ D.

On the set of partial traces we have at least three useful operations.
The most basic one is the concatenation or maybe better: composition.
We define [Vi, Eq, A1][Va, Ea2, A2] by the disjoint union of labelled graphes
with new edges from i € V4 to j € V» whenever (A(7), A(j)) € D. This
defines a monoid of partial traces P(X, D) where the neutral element is
the empty graph [0, 0,].

The second important operation is derivation: Given a partial trace
[V, E, \] we are allowed to introduce a new edge from i to j if (A(i), A(j)) €
D and if in addition the resulting graph rests acyclic. This corresponds
to a linearization operator or to a weakening of the concurrency.

The third operation is synchronization. Here we use essentially the
assumption that vertices with the same label are totally ordered. We
can synchronize partial traces [Vi, E1, \1] and [Va, Es, Az]only if for all
a € A1 (V1) N Aa(V2) the number of vertices with label a is equal. Then
we can identify these vertices according to their ordering and we demand
that the union of the graphs rests acyclic.

In order to see that the concept above is useful, assume that (X, D) is
specified through a P/T-system. Then one can define whether a pomset
over ¥ is enabled and in this case its execution is defined. The basic
property, which becomes crucial here, is that one can speak of an enabled
partial trace since one can show that no or all representing pomsets are
enabled. It is also easy to see that the set of enabled partial traces
is closed with respect to derivation. Furthermore, the synchronization
operator for nets corresponds to the synchronization of partial traces.

In fact, synchronization can be viewed as another motivation to gen-
eralize the semi-trace model. Indeed, contrary to traces, semi-traces are
not closed with respect to synchronization. The synchronization of two
semi-traces may yield a partial trace which is no semi-trace anymore.
This can be seen from the following example.

Two extensions of the existing trace model 221

The synchronization of the two semi-traces s; = [cabd} and sy =
[bdca} yields the partial trace

S1 || 52 =

The reader may verify that this is no semi-trace anymore. It is also
a simple exercise to give a Petri net interpretation for this phenomenon.

3 Functoriality

In the following let us analyse some algebraic properties of partial traces.
The key observation is that partial traces have a length and that one can
prove Levi’s lemma. Hence by a well-known result of Christine Duboc
partial traces form a free partially commutative monoid. Thus, although
considering much more general objects than traces, we stay still inside
the theory of free partially commutative monoids. There is only one
additional difficulty. We have to consider infinitely generated monoids,
in general.

Using functorial properties this can be avoided to some extent. There
is an embedding of the monoid of partial traces into a finite directed
product of free monoids which are generated by at most two letters,

222 V. Diekert

only. This can be explained as follows. First, we define a morphism
between semi-dependence alphabets h : (X',D') &= (X,D) to be a
mapping h : ¥’ — ¥ such that (a,b) € D' implies (h(a), h(b)) € D. This
yields a contra-variant functor, since h defines a monoid homomorphism
h*: P(¥,D) & P(X',D') in the following way.

Given [V, E,\] € P(X, D) the partial trace h*([V, E, \]) is obtained
by replacing each vertex a by the set h~!(a) without any edge, (thus by a
step). For a’ € h™'(a) and b’ € h~!(b) an edge is introduced if and only
if (a’,b") € D' and there has been an edge from the corresponding a to b
in [V, E, A]. The interesting fact (and main theorem on this construction)
is that A* is injective if and only if h is surjective on vertices and edges.

Now, let (X, D) be any semi-dependence alphabet. Then (X, D) can
be covered by the disjoint union of directed edges and some isolated
points. This covering can be expressed by a surjective morphism between
semi-dependence alphabets. The functorial game above then yields an
embedding of P(X, D) into a finite directed product of monoids which
are either of type P(a — b) (i.e. of type P({a, b}, {(a,b)})) or isomorphic
to a*. Thus, it is enough to have a closer look at P(a — b) for two letters
a,b.

It turns out that P(a — b) is isomorphic to {a,b}*, the free monoid
on two letters. The derivation becomes a semi-Thue system. Again we
leave this as an exercise as well as to show that P(a <b), where the
dependence relation is symmetric, is an infinitely generated free monoid.
Thus, P(a <b) is definitely not isomorphic to {a,b}*

This functorial approach can be viewed as a synchronization and we
obtain that any partial trace is the synchronization of a tuple of words.
The translation to P/T systems yields that a process which is described
by a partial trace is exactly the synchronization of certain sequences
which are recorded locally at places.

4 Compositionality

For the rest of this abstract we briefly indicate a possible extension of
the existing trace model to capture some aspects of non-terminating
processes.

Two extensions of the existing trace model 223

We restrict ourselves to the classical case of traces over a symmetric
dependence relation D C ¥ x ¥. This restriction is in fact not necessary
and a more general theory over partial traces would be possible. How-
ever, since anyhow we sketch ideas only, full generality does not seem to
be appropriate here.

We consider infinite (real) traces. They are approximated by their
finite prefixes, or what is the same, we consider infinite directed sets
(with respect to prefix ordering) of finite traces. It is well-known that a
meaningfull concatenation is not possible for such objects and this led
to the notion of complex trace. A (a<) complex trace is roughly a pair
(r,A) where 7 is a real trace (i.e. a finite or infinite trace) and A is a
subset of ¥.. Not every set A is allowed, basically we will demand that
A contains all letters which appear infinitely often in r.

The semantical idea is that the (finite) set A represents the smallest
set of actions we always have to wait for before we can terminate the
process r. Thus, for r infinite we have A # () and of course we can never
terminate. However, what is possible is that if action b is independent
of A then we can perform b in parallel to r after some finite time. This
leads to the following calculus

(r,A)(s,B) = (r-pa(s),AUBUoca(s))

where p4(s) is the maximal prefix of s which is independent of A and
o4(s) is the alphabet of the suffix pa(s) 's.

Using prefix ordering on complex traces we obtain a Scott domain.
However, as it is known from words, the concatenation is not continuous.
This is not surprising, since if 7' < r and s’ < s then we can not expect
that r's’ is a prefix of rs. So, in some sense it gives no information
about the process rs we are interested in. The idea to solve this problem
can be explained with the help of complex traces. Let us assume that
we describe a process by a complex trace (r, A). What we will do is
to approximate (r, A) by a sequence (r;, A;);>1 where r; < r is a finite
prefix and A; is the alphabetic information about the future, is A; =
alphabet(r_17) N A. Now, it is not realistic to assume that the exact
information about A; is available all the time (or at any time).

The question is whether we should be content with a larger or smaller

224 V. Diekert

set than the actual A;. A first guess might be smaller. We claim that
this is false for the application we have in mind. Consider simply the
extreme case: without knowing explicitly that a process has terminated
we should wait. Something might still happen and we should not start
a second process, if it depends on the result of the first one. Thus,
the solution larger is more safe. This leads to the following ordering:
(r,A) < (s, B) if and only if r < s and (B U alphabet(r~1s)) C A.

This ordering looks asymmetric, but in the interpretation of the sec-
ond component as wait for these possible actions, it is clear that if r is
a finite process and A C B, then (r, A) is a better approximation of r
than (r, B). The pair (r,() is the exact information about r including
the explicit information about termination.

The mathematical counterpart to this somewhat philosophical rea-
sons to study such objects is that we obtain a complex-like domain where
concatenation is continuous. In particular, if (r', A") < (r, A),(s",B’) <
(s, B) in this new ordering, then the complex product (r'par,(s'), A’ U
B'Uo 4/ (s")) is a better approximation of the composed process (r, A)(s, B)
than (r, A), in general.

5 Reality

Whether or not the ideas sketched above will rest a mathematical game
or will lead to a useful formalism with realistic applications is open for
the moment. We hopefully think that this question will have a positive
answer and that this will become more clear, once this abstract will have
been transformed into a complete paper.

Rational and Recognizable Complex Trace

Languages™
Volker Diekert Paul Gastin
Universitat Stuttgart Université Paris 6
Institut fiir Informatik LITP, Institut Blaise Pascal
Breitwiesenstr. 20-22 4, place Jussieu
D-7000 Stuttgart 80 F-75252 Paris Cedex 05

Antoine Petit
Université Paris Sud
LRI, URA CNRS 410

Bat. 490
F-91405 Orsay Cedex

April 1992

Abstract

Mazurkiewicz defined traces as an algebraic model of finite
concurrent processes. In order to modelize non-terminating pro-
cesses a good notion of infinite trace was needed, which finally led
to the notion of complex trace. For complex traces an associative
concatenation and an w-iteration are defined.

This paper defines and investigates rational and recognizable
complex trace languages. We prove various closure results such as
the closure under boolean operations (for recognizable languages),

*This research has been supported by the ESPRIT Basic Research Actions
No. 3166 ASMICS and No. 3148 DEMON.

225

226 V. Diekert, P. Gastin, A. Petit

concatenation, and left and right quotients by recognizable sets.
Then we study sufficient conditions ensuring the recognizability of
the finite and infinite iterations of complex trace languages. We
introduce a generalization of the notion of concurrent iteration
which leads to the main result of the paper: the generalization of
Kleene’s and Ochmanski’s theorems to complex trace languages.

0 Introduction

The concept of traces has been introduced by A. Mazurkiewicz [Maz77]
as a suitable semantics for non-sequential processes. Let us refer, for
instance, surveys [Maz87, ARS8, Per89] or the monograph [Die90]. Also,
in these references, an extensive bibliography on the subject is given.

There are at least two possible ways to see a trace. A trace can be
considered as the set of all possible sequential observations of a concur-
rent process. The semantics of each sequential observation is given, in a
classical way, by a finite word. Hence, a trace is an equivalence class of
words. From a different viewpoint, we may see a trace as a finite labeled
acyclic graph where edges represent the (causal) dependency of actions.
Such a graph is called a dependence graph and the semantics is that
an execution has to respect the induced partial order. In this way, the
process is modeled as a labeled partial order with an explicit description
of concurrency.

Whatever the approach chosen, there is a natural definition of the
concatenation of two traces and the set of traces forms a monoid. In fact,
this monoid has been introduced and studied independently by Cartier
and Foata in combinatorics [CF69].

Recognizable languages describe the behavior of finite state systems
and hence form one of the basic families of a monoid. For trace monoids,
this family is closed under boolean operations and concatenation, [F1i74,
CP85], but it turns out that a trace language T' may be recognizable
whereas T* is not. The family of recognizable languages is in fact strictly
included in the family of rational trace languages which is the smallest
family of trace languages containing the finite languages and which is
closed under union, concatenation, and star-iteration. In order to gen-

Rational and Recognizable Complex Trace Languages 227

eralize Kleene’s theorem to trace languages it was then necessary to find
a new operation instead of star-iteration. In a first step, Métivier and
Ochmanski, [Mét86, Och85], proved independently that T* is recogniz-
able if T is recognizable and consists of connected traces, only. This
led Ochmanski to introduce a concurrent version of the star-iteration,
called the c-star in the following. The c-star of T' is the usual star taken
over all connected components of traces in 7'. Replacing simply the star
by the c-star operation, Ochmanski obtains the equality of recognizable
and c-rational trace languages [Och85]. Let us mention that the search
for sufficient conditions ensuring the recognizability of T* is an ongoing
work, [Sak87, Och90, MRI1].

In order to describe non-sequential processes which never terminate,
e.g. distributed operating systems, the notion of infinite trace was
needed. It seems that the first explicit definition of infinite traces was
given by Mazurkiewicz [Maz87]. He defines an (infinite) trace as an (in-
finite) prefix closed directed subset of finite traces. This is the same
as an (infinite) dependence graph where each vertex has finitely many
predecessors only, [Maz87, Thm.13]. In the following these objects are
called here real traces. At least implicitly, real traces occur already in
[FR82], but a systematic study began only recently and several papers
are devoted to this subject, [BMP90, Kwi90, Gas90, Gas91, GR91]. One
can show that there can be no convenient associative concatenation on
real traces, contrary to the set of all (say countable) dependence graphs.
However, since the complement of real traces in the monoid of all de-
pendence graphs forms an ideal, one can smash all non-real dependence
graphs into a single zero element. In this way, Gastin obtains a monoid
which consists of all real traces with only one additional zero element. In
this monoid, rational and recognizable languages can be defined in a nat-
ural way, [Gas90]. These families are closed under the usual operations,
but similarly to the case of finite traces, recognizable sets are not closed
neither under star-iteration nor under w-iteration. In [GPZ91] Gastin,
Petit and Zielonka gave sufficient conditions which ensure the recogniz-
ability of 7" and T“. However, substantially they used some finiteness
properties due to simplifications by the concatenation with zero.

One of the main drawback of this concatenation is that a¥a = 0 #

228 V. Diekert, P. Gastin, A. Petit

a”, contrary to the word case. Diekert proposed another solution to
the problem of concatenation and defined the notion of complex trace
[Die91]. A possible way to see a complex trace is to start with an arbi-
trary dependence graph. From this graph we remember in a first com-
ponent its maximal real prefix and in a second component we remember
those letters which depend on actions occurring either infinitely often or
in the transfinite part of the graph. Thus, a complex trace is simply a real
trace together with a second component which is some finite alphabetic
information. Therefore, complex traces are slightly less abstract than
real traces. The advantage is that the concatenation and w-iteration are
fully defined for complex traces. In particular we have a“a = a“ for
all letters a. Furthermore, in the special case of a full (empty respec-
tively) dependence relation we just reobtain the usual construct of finite
or infinite words (vectors respectively).

The aim of this paper is to define in a proper way rational and recog-
nizable complex trace languages and to investigate their basic properties.
We show various closure properties such as closure under boolean oper-
ations (for recognizable languages), concatenation, and left and right
quotients by recognizable sets. Then we give sufficient conditions en-
suring the recognizability of T* and T*. Contrary to the concatenation
with zero, in the complex calculation of T* (T“ respectively) an un-
bounded (infinite respectively) number of factors of infinite traces may
be relevant. Therefore, we have to develop new techniques, which help
to analyze these iterated products. In a next step we introduce the con-
current iterations c-* and c-w for complex trace languages. For this we
define connected components of complex traces and the c-iterations are
the usual iterations over all connected components of elements of a given
language. This leads to the family of c-rational complex trace languages.
Our main result is the generalization of Kleene’s and Ochmanski’s the-
orems to complex trace languages. It states that c-rational languages
are the same as recognizable languages. This result is a proper general-
ization of Kleene’s theorem for finite words, Biichi’s theorem for infinite
words and Ochmanski’s theorem for finite traces.

The paper is organized as follows: In Section 1 we recall some defini-
tions and facts about dependence graphs, real and complex traces, and

Rational and Recognizable Complex Trace Languages 229

rational and recognizable languages. The section on rational and recog-
nizable real trace languages (Section 2) contains all basic material which
is crucial for the following. This section contains new results as well as
previously known results where, however, different proofs are presented
in most cases. The corresponding section for complex trace languages
(Section 3) generalizes the results on real traces to complex traces. In
the final section (Section 4) we define connected components of complex
traces and the concurrent iteration which leads to our main result.

An Extended Abstract of a preliminary version of this paper appeared
at MFCS’91, [DGP91].

1 Preliminaries

1.1 Dependence graphs

Let (X, D) be a finite dependence alphabet, i.e., X is a finite alphabet
with a reflexive and symmetric relation D C X x X which is called
the dependence relation. The complement I = X x X \ D is called the
independence relation. The quotient monoid M(X, D) = X*/{ab = ba |
(a,b) € I} is the monoid of (finite) traces.

It is possible to introduce infinite traces using an equivalence rela-
tion on infinite words, the definition of infinite traces is however more
natural using dependence graphs. A dependence graph (over (X, D)) is
(an isomorphism class of) a labeled acyclic graph [V, E, A\] where V is a
countable set of vertices, E C V' x V is the set of arcs, A : V' — X is the
labeling and it holds

e edges are between dependent vertices : Vz,y € V,
(AMz),A\y)) e D<= x=yor (z,y) e Eor (y,x) € E

e the induced partial order (V, E*) is well-founded : there does not
exist an infinite sequence (z;) C V such that (z;11,2;) € E for all
1.

The set of dependence graphs is denoted by G(X, D). Note that,
in a dependence graph, any subset of vertices with the same label is

230 V. Diekert, P. Gastin, A. Petit

well-ordered. This allows to think of dependence graphs by standard
representation where the vertices are pairs (a,i) with ¢ € X and 7 is
a countable ordinal. The restriction to countable sets is not essential
here, we simply need any upper bound on the cardinality in order to
stay inside set-theory.

For g = [V, E, \] € G(X, D) the cardinality of V is called the length
of g, denoted by |g|. For U C V, let Ul= {p € V | (p,p') € E*
for some p’ € U} be the downward closure of U. The restriction of g
to U | is a dependence graph. The set of minimal elements of g is
min(g) = {p € V| pl= {p}}. Since min(g) = min(g)|, it may be viewed
as a dependence graph which is finite since the alphabet is finite.

The set G(X, D) is a monoid by the concatenation [Vi, Eq, A1]-[Va, Es,
Xo] = [V, E, A], where [V, E,] is the disjoint union of [Vi, E1, \;] and
[Va, Ea, A2] together with new arcs (py,p2) for all p; € Vi, ps € V3 such
that (A1(p1),A2(p2)) € D. The neutral element is the empty graph
1=10,0,0]

The concatenation generalizes immediately to an infinite product.
Let (g;) be any sequence of dependence graphs, then g = g1g2... €
G(X, D) is defined as the disjoint union of the graphs (g;) with new arcs
from vertices of g; to vertices of g; whenever ¢ < j and the vertices
have dependent labels. Thus, for any set L C G(X, D), the w-iteration
LY ={g192...| gi € Lfori >1} C G(X, D) is defined. (In fact, we can
define in the same way L® for any countable ordinal «.)

Using these products, we define the canonical mapping ¢ from the
free monoid of finite and infinite words X into the monoid of depen-
dence graphs G(X, D) by ¢(a) = [{p},0,p — a] for all @ € X and
plaras...) = plar)p(as)... for all word ajas... € X*°. In other
words, the dependence graph ¢(ajas ...) has vertices pi,ps,. .. labeled
by a1,as, ... and edges from p; to p; if and only if ¢ < j and (a;,a;) € D.
The congruence induced by ¢ on X* is exactly the congruence generated
by {ab = ba | (a,b) € I'}. Therefore, the monoid of finite traces M(X, D)
can be identified with the submonoid of finite dependence graphs and
we have M(X, D) C G(X, D).

The image ¢(X*°) C G(X, D) is called the set of real traces and is
denoted by R(X, D). The set of real traces can be characterized as those

Rational and Recognizable Complex Trace Languages 231

dependence graphs where every vertex p has a finite downward closure
pl. This is a proper subset of G(X, D).

The main disadvantage of R(X, D) is that there is a convenient no-
tion of concatenation only if D is transitive, i.e., when M(X,D) =
X{x---x X} is a direct product of free monoids. In this case, R(X, D) =
X{°x---xX2°. However, even in this case, the concatenation will be dif-
ferent from the (natural) concatenation of G(X, D). In fact, (for X #)
the set R(X, D) is never a submonoid of G(X, D). Consider any pair
(a,b) € D. Then a¥b € G(X, D) is not real, since the vertex with label
b depends on infinitely many vertices. In particular, the canonical map-
ping ¢ : X*° — G(X, D) is not a morphism. It neither commutes with
the concatenation nor with the w-iteration, in general. More precisely,
let L, K C X then we have o(L-K) # ¢(L)-p(K) and p(L¥) # p(L)¥
as soon as L contains an infinite word and K contains a nonempty word.

1.2 Complex traces

Every dependence graph g = [V, E, A] € G(X, D) splits into its real part
Re(g) = {p € V| p| is finite} and its transfinite part Tr(g) = {p € V' | pl
is infinite}. Of course, Re(g), Tr(g) are viewed as dependence graphs
by restricting E and A correspondingly. Note that for all g € G(X, D)
it holds g = Re(g) - Tr(g). The mapping Re : G(X, D) — R(X, D) does
not define a congruence of G(X, D). However, we can define the coarsest
congruence of G(X, D) such that any two congruent dependence graphs
g and ¢' verify Re(g) = Re(g'). Dependence graphs falling in the same
congruence class are called practically undistinguishable and the quotient
of G(X, D) by this congruence is the monoid of complez traces C(X, D),
[Die91].

In order to give an explicit description of C(X,D) we need a few
more notations. For a dependence graph g € G(X, D) the alphabet of g,
denoted by alph(g), is the set A=!(V). Hence, alph(g) is the set of letters
occurring in g. The alphabet at infinity of g denoted by alphinf(g), is the
set of letters occurring infinitely often in g together with alph(7Tr(g)).
For a subset A C X we denote the set of letters depending on A by
D(A)={be X |Ja € A: (a,b) € D}, and the set of letters independent

232 V. Diekert, P. Gastin, A. Petit

of Aby I(A) = X\ D(A) ={be X | Va € A: (a,b) € I'}. Finally, for
a dependence graph g € G(X, D), we define its imaginary part Im(g) by
Im(g) = D(alphinf(g)).

Using these notations, the coarsest congruence of G(X, D) which re-
spects real parts admits the following characterization. Two dependence
graphs ¢g and ¢’ are congruent (or practically undistinguishable) if and
only if Re(g) = Re(g') and I'm(g) = Im(g'). Therefore, a complex trace
is a pair (Re(g), Im(g)) for some dependence graph g € G(X, D). Of-
ten, we denote a complex trace by (r, D(A)) where r € R(X, D) and
A C X. Note that the real part r is uniquely defined by the complex
trace whereas the subset A C X is not known, in general. (It is only
D(A) which is given by the complex trace.)

The concatenation of C(X, D) is inherited from G(X,D), but of
course it is convenient to have an explicit formula. For this purpose,
we introduce the p-notation. Let ¢ € G(X, D) be a dependence graph
and A C X be any subset. Then p4(g) € R(X, D) is the maximal real
prefix of g containing letters from I(A), only. Thus, for g = [V, E,],
the prefix pa(g) is the restriction of g to {p € V | pl is finite and
alph(p}) C I(A)}. Note that, for g € G(X,D) and A C X, we have
ua(g) = pa(Re(g)). Hence the p-notation is also well-defined for com-
plex traces. Since G(X, D) is left-cancellative, [Die91], there is a unique
dependence graph Suff 4(g) such that g = pa(g) - Suff 4(g). With these
notations the concatenation in C(X, D) becomes [Die91]:

(r, D(A)) - (s, D(B)) = (r - pa(s), D(AU B U alph(Suff 4(s))))

This formula is of first importance for the calculus on complex traces
and will be used throughout.

It turns out that the coarsest congruence on G(X, D) which respects
real parts is also a “congruence” for the w-product on G(X, D). There-
fore, the w-iteration L“ of a complex trace language L is well-defined.
Note that, following the general definition of the w-product for depen-
dence graphs, we have L¥ = L* U (L \ {1})“ if 1 € L.

In the remainder, we identify a real trace r with the complex trace
(r, D(alphinf(r))) = (r, Im(r)). Thus, we have M(X,D) C R(X,D) C
C(X,D) and C(X, D) is a quotient monoid of G(X,D). For a subset

Rational and Recognizable Complex Trace Languages 233

A C X and a language L C C(X,D) (L C R(X, D) respectively, L C
G(X, D) respectively) we define Ly = {z € L | Im(z) = D(A)}. Note
that R(X,D)g = C(X,D)y = G(X,D)y = M(X, D). A language L is
called finitary if L = Ly, i.e., L C M(X, D).

The link between real and complex trace languages can be done using
concatenations by finite shift-traces. A finite trace s4,p is called a shift
trace from D(A) to D(B) if for some complex trace (r, D(A)) we have
(r,D(A)) - sa,g = (r,D(B)). In this case, we have (¢t,D(A)) - sa.B =
(t, D(B)) for all complex traces (t,D(A)). A shift trace s4 p satisfies
pra(sa,p) =1 (i.e,, min(sa,p) C D(A) and D(AUalph(sa,p)) = D(B)).
Shift traces from D(A) to D(B) do not exist for all pairs (4, B). The
necessary and sufficient condition is that there exists a sequence of letters
ai,...,a such that a; € D(A U {a1,...,a;—1}) for 1 < i < k and
D(B) = D(AU{ay,...,ar}). We simply write A shift B in this case.
If A shift B then some shift trace s4 g can be chosen of length at most
|D(B)|.

It is easy to see that every complex trace language L C C(X, D) can
be written as a finite union of real trace languages concatenated by shift
traces:

L= |J (Re(Ls)NR(X,D)a) 545 (3)
A shift B

Let us point out that the word monoid X with right-absorbent
concatenation z-y = x for z € X is just the special case of the complex
trace monoid C(X, D) for a full dependence relation D = X x X. In
fact, if the independence relation is empty then the imaginary part is
redundant. For a word z we have Im(z) = 0 if z is finite and Im(z) = X
otherwise (i.e., if z is an infinite word). Furthermore, the partition
X% = X*U XY is the partition of X into (X*°)y and (X*°)x.

In the remainder, we will study rational and recognizable complex
trace languages. As it becomes clear from Equation (3), the overall
strategy is to transfer results from real trace languages. Since R(X, D) =
p(X), a basic technique used here to obtain results on real traces is
to work with representing words. The next section briefly recalls some
well-known properties of word languages.

234 V. Diekert, P. Gastin, A. Petit

1.3 Regular languages

We have (at least) two possibilities to define regular subsets of the
monoid of finite and infinite words X°°. We can use either rational ex-
pressions or finite state acceptors. This leads to the families of rational
and recognizable languages respectively.

The family of rational word languages, Rat(X), is defined as the
smallest family of subsets of X°° which contains all finite languages of
finite words and which is closed under the operations union, concatena-
tion, x-iteration, and w-iteration. From the definition of the concatena-
tion in X, it is clear that we may restrict the operations of concatena-
tion L - K, of Kleene-* L*, and of w-iteration L* to the case of finitary
languages L C X*. Thus, we are never forced to use the right-absorbent
concatenation x -y = x with x € X%,

We define recognizable word languages using non-deterministic Biichi
automata. There are several equivalent possibilities to give acceptance
conditions. For technical reasons we use here acceptance by transitions.
This allows in particular to construct automata which accept languages
from X without separation of the finitary part. Moreover, this ac-
ceptance type is very convenient for our purposes since from the set of
transitions which occur infinitely often in a path, we can deduce directly
the alphabet at infinity of its label. To be precise, we define a Biichi
automaton to be a tuple (@, 0, qo, A) where @ is the finite set of states,
0 CQx(XU{l1}) x @ is a finite set of labeled arcs called transitions,
go € @ is the initial state, and A C ¢ is the set of final transitions. An
infinite path is a sequence qo, 1, q1, T2, g2, . . . where (g;—1,x;,q;) € 0 for
all 7 > 0 and its label is the word zi25--- € X°°. A finite or infinite
word z is accepted if there exists an infinite path labeled by =z, start-
ing in gy and repeating some transition from A infinitely often. Note
that, finite words can be accepted by infinite loops of 1-transitions. A
language L C X is called recognizable if it is accepted by some Biichi
automaton.

Another equivalent definition for recognizable languages is to use
recognizing morphisms. Let n : X* — S be a morphism to a finite
monoid S. We say that n recognizes a language L C X if for any
finite or infinite sequence (x;) € X*, we have xiz2... € L implies

Rational and Recognizable Complex Trace Languages 235

n~in(x)n~n(zy) ... € L. Using Ramsey factorization, one can show
that any recognizable language can be written as a finite union

L= |J X.x¢ (4)
(s,e)eP

where X, =n1(s), Xc =n(e) and P = {(s,e) e Sx S |se=s, €2 =
e, X;X“NL#0D}.

Biichi’s classical theorem asserts that for X > the families of rational
languages and of recognizable languages coincide. We can therefore use
the term regular languages without any ambiguity if it refers to word lan-
guages which are rational (recognizable respectively.) A detailed study
of regular word languages can be found in [PP91].

1.4 Ramsey factorization

Let n : M < S be a morphism from an arbitrary monoid M to a finite
monoid S and let ug,u1,... be an infinite sequence of elements of M.
There exist an infinite increasing sequence of integers ip < i; < ... and
s,e € S such that se = s, € =€, n(ug ... u;,) = s and P(ur4y; ... uz,) =
e for all 0 < j < k. This is called a Ramsey factorization of the infinite
sequence g, Uy, . - . .

The existence of a Ramsey factorization is one of the fundamental
principles used in this paper. A simple and direct proof of this result
can be found in [PP91]. It is also a trivial application of Ramsey’s
Theorem [Gra81].

2 Rational and recognizable real trace lan-
guages

Recall that in a general monoid M, the family Rat(M) is the least family
which contains the finite sets and which is closed under union, product
and Kleene’s iteration. This definition applies in particular for the free
monoid X* and the finitary trace monoid M(X, D). In order to define

236 V. Diekert, P. Gastin, A. Petit

the family Rat(X), we start with finite sets of finite words and the
closure under w-iteration is required, too. Since there is no concatenation
defined for real traces in general, we use restricted operations, only.

Definition: The family of rational real trace languages, Rat(R(X, D)),
is the smallest family satisfying the following conditions:

i) Every finite set of finite traces is rational.
ii) If K,L C R(X, D) are rational, then the union K U L is rational.

iii) If K, L C R(X, D) are rational and if in addition K C M(X, D),
then K - L, K*, and K% are rational.

This definition is consistent with the definitions of Rat(X*°) and
Rat(M(X, D)) since Rat(R(X,D)) = Rat(X*°) when D = X x X
is the full dependence relation and for L € M(X,D) we have L €
Rat(R(X, D)) if and only if L € Rat(M(X, D)).

Note that the canonical mapping ¢ : X*° — R(X, D) commutes with
these restricted operations. This is used in the next proposition which
gives several equivalent characterizations of the family Rat(R(X, D)).

Proposition 2.1 Let L C R(X, D) be any real trace language. Then
the following assertions are equivalent.

i) The language L is rational, i.e., L € Rat(R(X, D))

ii) The language L is the image of a regular word language, i.e., L =
p(L") for some L' € Rat(X°).

iti) The language L can be written as a finite union
L= U M;N¥
1<i<k
where M;, N; are finitary rational trace languages for all 1 < i < k.

Proof: i) = ii): First, assume that L is a finite set of finite traces.
We have L = p(p~!(L)) and ¢~ (L) is rational since it is finite. Now,

Rational and Recognizable Complex Trace Languages 237

for K',L' C X we have p(K' UL') = ¢o(K') U ¢(L") and if more-
over K' C X* then o(K' - L") = p(K') - (L"), p(K"™) = p(K')* and
p(K™) = p(K')¥. Therefore, the result follows by induction on the
rational expression defining L.
ii) = iii): Using Equation (4) we obtain L' = J,.,«, M - N;* where
M!,N] € Rat(X*) for 1 < i < k. Since ¢ commutes with these oper-
ations, we obtain L = {J; ;< ¢(M]) - ¢(N;)¥. Using again the same
property of ¢ we deduce that the languages p(M]), p(N/) are finitary
rational trace languages, which concludes this part.
iii) = i): trivial. O

Recall that we have defined recognizable word languages by Biichi
automata. In order to define recognizable real trace languages we will
consider automata which accept closed languages. A word language
L C X is said to be closed (with respect to (X, D)) if L = ¢~ 1¢(L)
for the canonical mapping ¢ : X*° — R(X, D). If a Biichi automaton
accepts a closed language then there is no ambiguity in saying which real
traces are accepted. Moreover we will see that it is decidable whether a
Biichi automaton accepts a closed language or not. This approach leads
to the following definition.

Definition: A language L C R(X, D) is called recognizable if p=" (L)
is a (closed) regular word language. The family of recognizable real trace
languages is denoted by Rec(R(X, D)).

Remark 2.2 Since the family Rec(X*°) is a boolean algebra, it follows
directly from this definition that the family of recognizable real trace
languages forms a boolean algebra, too. It is closed under union, inter-
section, and complementation.

Another possible way to define recognizable languages is, exactly as
in the word case, by recognizing morphisms. Let n : M(X,D) — S be
a morphism to a finite monoid S. We say that n recognizes a language
L C R(X,D), if for any finite or infinite sequence (z;) C M(X, D),
T1Z2 ... € L implies n~ n(z1)p~tn(zz) ... € L. We could also use the
generalization to trace languages of the syntactic congruence defined by

238 V. Diekert, P. Gastin, A. Petit

Arnold for word languages [Arn85]. Given L C R(X, D), two finite
traces x, y are syntactically congruent if and only if:

Vu,v e M(X,D) : u(zv) € LS u(yv)? € L
Vu,v,w € M(X,D) : wuzvw* € L & uyvw® € L

We denote the syntactic congruence of L by = and we obtain a
canonical morphism n;, : M(X, D) — M(X, D)/ =;. In general, neither
M(X, D)/ =, is finite nor does 1, recognize L. This is true however
if L is recognizable. We have the following proposition, stating that all
approaches are equivalent.

Proposition 2.3 ([Gas91]) A language L C R(X, D) is recognizable
if and only if any of the following equivalent definitions is satisfied.

i) The language L is the image of a closed regular word language.

ii) There exists a morphism n form M(X, D) to a finite monoid S
recognizing L.

iii) The syntactic congruence =y, is of finite index in M (X, D) and the
syntactic morphism ny, recognizes L.

From Propositions 2.1 and 2.3, it is clear that every recognizable
language is rational. The converse holds for strings by Biichi’s Theorem.
However, as soon as there is a pair (a,b) € I of independent letters, we
find a finitary rational language, e.g., L = p(ab)* € M(X, D), which is
rational but not recognizable (since ¢ ~!(L) = {w € {a,b}* | |w|, = |w|s}
is not a recognizable word language).

An example of an w-language L C R(X, D) \ M(X, D) which is ra-
tional but not recognizable, can be constructed on three letters, say a,
b, ¢ where there is at least one pair of independent letters, say (a,b) € I.
Then the rational language L = ¢(ab)* - p(c)* is not recognizable since
the projection of ¢~!(L) to {a,b}>* is {w € {a,b}* | |w|s = |w|s}-

We leave it as an exercise to the reader to show that no such two
letters example exists.

Rational trace languages are not closed under intersection, in gen-
eral. For example, let (X,D) = a b — ¢ then p(ab)*p(c)* N

Rational and Recognizable Complex Trace Languages 239

pb)*plac)* = {p(a™b™c™) | n > 0}, which is not rational since the
projection to {b,c}* yields the non rational language {b"c" | n > 0} C
{b,c}*. However we have the following observation. It is stated as a
lemma since we will use it throughout.

Lemma 2.4 Let K C R(X, D) be rational and L C R(X, D) be recog-
nizable. Then the intersection K N L is rational.

Proof: Let K',L' C X be regular word languages such that o(K') =
K, o(L'")y =L and L' is closed. Then K'N L' is a regular word language
and we have p(K' N L") = KN L. Hence, by Proposition 2.1, K N L is
rational. O

The following combinatorial lemma becomes important below.

Lemma 2.5 Let t = t1ty..., 2 = z122... € X be two factorizations
for t,z € X°° with t;,z; € X*. Then we have ¢(t) = ¢(z) € R(X, D)
if and only if there are sequences of integers 0 = mg < my < mo < ...,
0=mnp <ni <ns < ..., and finite words 1 = yo,x1,Y1,%2,Y2,.-- € X*
such that it holds for all i > 1:

eYim1zi) = @titmi - -tm;)
@(miyi) = @(Zl+ni—1 s Zm)

A rough picture of the situation described in the lemma above is
given in the following picture.

@(t) = @(tl U tm1) (p(tlerl T tmz) @(t1+m2 T tma)
= pn) P(y1z2) P(y223)
p(z1y1) p(22y2) p(z3ys3)
= ()0(21 T an) (p(zl-i-nl T Zn2) ()0(21+n2 e Zn3)
= o(2)

Double factorization of two words representing the same real trace

Proof: It is clear that the conditions imply ¢(t) = ¢(yox1y1Z2y2 ...) =
©(z). Therefore it is enough to show the other direction and we may as-
sume p(t) = ¢(z). Let yo = 1, 1 = t; and my = 1. Then we may assume

240 V. Diekert, P. Gastin, A. Petit

by induction that for some k > 1 we found indices 0 = mg < ... < my

and 0 = ng < ... < ng—1 and finite words 1 = yg,x1,-.-,Yr—1,Tx such
that
oyi—1zi) = ©t14mi_y---tm;) for1<i<k
o(xyi) = ©(z14ni_, ---2n;) for 1 <i<kel

Since p(yox1 - - - Yk—12k) is a finite prefix of p(t) = ¢(z) and p(yox1 - - -
Tp—1Yk—1) = ©(21...2n,_,) it follows from the left-cancellativity of
R(X, D) that ¢(z) is a finite prefix of ¢(z14n,_,224n,_, ---)- Hence
we find some ny > ng_; such that p(zy) is a prefix of Y(z14n,_; - - Zng)5
ie., p(zryr) = ©(Z14n,_; - - - 2n,,) for some yr € X*. A symmetric argu-
ment yields that for some my41 > my there exists ;1 € X* such that
O(YrTrt1) = @(t14my - - -tmy,,)- This concludes the proof of the lemma.
O

A first application of the lemma above shows that it is decidable
whether a regular word language is closed by computing its syntactic
congruence. If a language L C X °° is closed, then obviously its syntactic
congruence =y, verifies ab =y, ba for all (a,b) € I. The converse is easy
for finitary languages. The next theorem states that the converse is true,
in general. The decidability result follows since the syntactic congruence
of a regular word language is computable [PP91].

Theorem 2.6 A regular language L C X is closed (i.e., L = ¢ 1¢(L))
if and only if we have ab =y, ba for all (a,b) € I.

Proof: We have to show that ab =5 ba for all (a,b) € I implies
L = p7lp(L). Let t € L and z € X such that o(t) = ¢(z). Ap-
plying Lemma 2.5 to the trivial factorizations ¢ = ajas... and z =
biby ... with a;,b; € X U{1}, we find two new factorizations ¢t = t1t5 ...
and z = z125... with #;,2; € X* and a sequence of finite words 1 =
Yo, T1,Y1,%2,Y2,- .- € X* such that p(y;—12;) = p(t;) and p(z;y;) =
p(z;) for i > 1.

Let n;, : X* — X*/ =L be the syntactic morphism of L. Since
ab =y, ba for all (a,b) € I we have n(t;) = n(y;—1x;) for i > 1. Since

Rational and Recognizable Complex Trace Languages 241

n recognizes L this implies yox1y1x2 ... € L. In the same way, n(z;) =
n(z;y;) for i > 1, whence z € L. O

However, the main interest in Lemma 2.5 results from the fact that
it yields a simplified proof for the following result.

Theorem 2.7 ([GPZ91]) Let L C M(X, D) be a finitary recognizable
trace language such that L = L*. Then L C R(X, D) is recognizable,
too.

Proof: Let (Q,J,qo, F) be a classical finite deterministic word automa-
ton recognizing ¢~ (L) by final states, i.e., F C @ and a finite path is
accepted if its initial state is go and its final state is in F'.

We now construct a Biichi automaton recognizing ¢ ~1(L¥) as follows.
The set of states is x @ X P(X) and the initial state is (go, qo,). For
each letter a € X and state (¢,q',4) € @ x Q x P(X) we define the
transition

(0,4, A) &= (q,6(¢',a), AU {a})

and if a € I(A) then additionally another transition

(0,4, A) & (5(q,a),¢', A)

Furthermore, if ¢ € F, we add a final 1-transition:

(qaqla A) <:;_> (qI7QOa Q)

Such a non-deterministic jump signifies that a member of p~!(L) has
been computed in the first component.

Note that, if we have a path (p,p’, A) & (¢,q', B) without 1-
transition in this automaton then there exist z,y € X* such that ¢(z) =
p(zy), ¢ = d(p,x), ¢ =6(p',y) and B = AU alph(y). (The converse is
trivially true.)

According to the definition of Section 1.3 this automaton accepts
all finite or infinite words which are labelings of infinite paths using
infinitely many final 1-transitions. By definition, the accepted language
is recognizable. Thus, we have to show only that the accepted language
is o L(L¥).

242 V. Diekert, P. Gastin, A. Petit

First, let z € X be an accepted word. Marking the final transitions
in its accepted path, we obtain the factorization:

Z1

(QO7q07®) <:);_> (qlaqiaAl)
1 * 22
A (QQ,QO,@) A (q27qé)A2)

& (ghao.0) S
with z = Z12223 - . -

Using the remark above, we find a sequence or finite words z1, y1, T2,
Y2,... € X* such that, with ¢j = qo, we have v(z;) = o(x¥;), ¢; =
0(q}_1,x;) and ¢} = 6(qo, y;) for all ¢ > 1. Thus, with yo = 1, we obtain
for all i > 1 6(qo,yi_17:) = q; € F, ie., y;_17; € ¢ *(L). Hence, we
have ¢(2) = (z1y1)p(@2y2) . .. = @(yor1)p(y122) ... € L*.

For the other direction let z = biby... € X*> be any word in
@ 1(L¥). Then we have p(z) = @(t) for some t = tity... € X with
t; € p~1(L) for alli > 1. Using Lemma 2.5, we obtain a sequence of finite
words 1 = yo, 1, ¥y1,Z2,Y2,--- € X* and two factorizations z = z125 ...
and t = (t1...tmy) (f14my - - - tmy) - - - such that for all i > 1 we have

©(zi) = p(ziy:) and p(yi—12:) = e(ti4m_y - -tm;) €L =L
Therefore, we find an accepting path for z as follows:

* 21

(90, 90, 0) < (6(qo,1),6(q0,y1),alph(y1))

! = (5(q0, ¥172), (g0, y2), alph(ys))

A (5(%7211),%;@) <:;_>
1 * 23

< (6(q07y2)7QO7®) <

The main application of the theorem above is when L is connected. A
finite trace is called connected if it is connected as a dependence graph or
what is the same if its alphabet induces a connected subgraph of (X, D).
A finitary language is called connected if all its elements are connected.
Due to independent works by Métivier [Mét86] and Ochmanski [Och85],
it is known that L* (and hence L%) is recognizable if L is recognizable
and connected. Therefore we have the following corollary.

Rational and Recognizable Complex Trace Languages 243

Corollary 2.8 Let L C M(X, D) be recognizable and connected. Then
L¥ is recognizable.

Proof: We have L¥ = (L*)~. O

Note that in G(X, D) the concatenation zy of two real traces is real
if and only if alphinf(z) x alph(y) C I. Therefore, even if the concate-
nation K - L, as a rational operation on real trace languages, has been
defined only when K is finitary, it can clearly be extended to the case
where alphinf(z) x alph(y) C I for all z € K and y € L. The reason
that the rational operation was defined in a more restricted way was to
maintain commutation with the canonical mapping ¢ : X*° — R(X, D).
This property is not important for the closure under concatenation of
Rec(R(X, D)). It was proved by Gastin [Gas91] that the family of rec-
ognizable real trace languages is closed under this extension of the real
concatenation. The key to the proof of this result is the following lemma
which introduces the I-shuffle and for which we give a new proof using
non-deterministic Biichi automata.

For the sake of simplicity, we write (z,y) € I if two words or real
traces ¢ and y are fully independent, i.e., if alph(z) x alph(y) C I.

Lemma 2.9 Let K',L' C X* be reqular. Then the following I-shuffle
is regqular, too.

K’LU[LI = {U1U1U2’U2...€Xoo|
uus ... € K'vjvy... € L' and (v;,uj) € I for all i < j}

Proof: For i = 1,2, let A; = (Qi,0i,9i0,2A;) be Biichi automata
accepting K’ and L' respectively. We may assume that for i = 1,2,
(¢i,1,q;) € §; for all ¢; € Q;. We construct an automaton A for K'LLI; L'
as follows. The set of states is Q1 x Q2 x P(X) x P({1,2}) and the
initial state is (¢1,0,92,0,0,0). We define simultaneously the transitions
of A and their projections on A; and A,.

o Ift1 = (q1,%,q]) € 61 and alph(z) x A C I then

(q17QQ7A7B) <:§_> (Q17q27AaBl)

244

V. Diekert, P. Gastin, A. Petit

with B' = BU {1} if t; € Ay and B’ = B otherwise.
Moreover, the projections of this transition are ¢; and (g2,1,¢2)
respectively.
If t5 = (g2, 2,¢5) € 2 then
(Q1,Q2a A) B) <:§_> (ql: ql2) AU alph(m), B’)
with B’ = BU {2} if t, € Ay and B' = B otherwise.
Moreover, the projections of this transition are (q1,1,q) and ts
respectively.

Finally, we add the final 1-transitions

(q17q27A7 {172}) <:;_> (ql:‘,ZQaA:w)

whose projections are (gi1,1,¢1) and (g2, 1, g2) respectively.

Let us show that the language accepted by this automaton is K’ LIy

L'. Let P be an accepted path of A with label w. Clearly, the projections
P, and P, of P are paths of A; and As. Let u and v be the labels of P;
and P,. From the definition of the transitions, we can easily verify that
w € ullLr v. Moreover, between two final transitions of P there must
be at least one final transition in the corresponding parts of P, and Ps.
Therefore, P; and P, are accepted paths and w € K' LLi; L'.

Conversely, let w € K' Ly L'. We have w = ujviusvy ... with

U=uUs... € K',v=vivy... € L' and (v;,u;) € I for all i < j. Let

* UL * U2 * U3
qi,0 =pPo == P17 P22 P3...

be an accepting path in A; for u and let

* Ul x U2 * U3
@20 =4qo <> (12 @<=+ q3...

Rational and Recognizable Complex Trace Languages 245

be an accepting path in As for v. We construct an accepting path for w
in A as follows:

(o, g0, 0, 0) & (p1,qo, 0, By)
& (praualph(n), BY) & (o alph(v), BY)
S (p2, q1,alph(vy), Bs) S (p2, g2, alph(vivs), BS)
; i (p2, 2, alph(viv2), BY) &5 (p3, g2, alph(v1v2), By)
=g .

with for all 4 > 1, B} =0 if B} = {1,2} and B}’ = B} otherwise. O

Proposition 2.10 ([Gas91]) Let K,L C R(X, D) be recognizable (ra-
tional respectively) real trace languages such that for all x € K, y € L
it holds alphinf(z) x alph(y) C I. Then K - L is recognizable (rational
respectively).

Proof: Consider the canonical mapping ¢ : X*° — R(X, D). First,
observe that for u,v € X°°, ulLl;v is not empty if and only if alphinf(u) %
alph(v) C I. Moreover, in this case, p(w) = p(u)-@(v) for all w € ullljv.
Now, there exist regular languages K', L' C X* such that p(K') = K
and p(L") = L. By the observation above, we have p(K'LLI; L") = K- L.
Hence, by Lemma 2.9 and Proposition 2.1, K - L is rational.

Finally, if K and L are recognizable, we may assume that K’ =
¢ HK) and L' = ¢~!(L) are closed (Proposition 2.3). We claim that
in this case, K'LLIy L' is closed too, i.e., K' L L' = ¢ (K - L), which
proves that K - L is recognizable.

Let w € o o(K' LW L') = ¢~ Y(K - L) then p(w) = z - y for some
z € K and y € L. We denote by w; the i-th letter of w or 1 if |w| < i.
For a letter a and a word (or a real trace) z we denote by |z|, the number
of occurrences of a in . We construct two sequences uy,v1, Uz, Vs, ... €
X U {1} as follows: u; = w;, v; = 1if |@|w, > |wy ... wi|w, and u; = 1,
v; = w; otherwise.

Clearly, w = uiv1usvs Let u = wjuy ... and v = vyvs.... From
o(w) =z -y we deduce that ¢(u) = z, p(v) = y and (v;,u;) € I for all

246 V. Diekert, P. Gastin, A. Petit

i <j. Hence,u € o " (K) =K', ve o (L) =L and w € K' LLi; L'
which proves the claim. O

Remark that Proposition 2.10 states that the family Rat(R(X, D))
is closed under this extended concatenation. Hence, we may have re-
placed the concatenation restricted to finitary languages on the left by
this extended one without changing the family Rat(R(X, D)).

As stated in Proposition 2.1, a real trace language L is rational if
and only if it can be written as a finite union of sets of the form M - N¥
where M, N C M(X, D) are rational. For recognizable languages this
can be strengthened to the following normal form result.

Proposition 2.11 ([GPZ91]) A real trace language L C R(X, D) is
recognizable if and only if it can be written as a finite union of sets of the
form M-Ny --- Ny = M-(Ny --- Ni,)* where M,Nq,...,N, C M(X,D)
are recognizable languages such that all traces in N; are connected and
have the same alphabet A; with A; x A; C 1 fori #j.

Proof: First, it is clear by Remark 2.2, Corollary 2.8 and Proposi-
tion 2.10 that every such finite union is recognizable.

The original proof [GPZ91] for the other direction uses Mezei’s The-
orem. Here we simply use Ramsey factorization.

Let n' : M(X,D) — S’ be a morphism recognizing L C R(X, D).
We define the direct product S = S’ x P(X) where the operation on
the power set P(X) is union and the morphism 7 : M(X,D) — S by
n(z) = (n'(x),alph(z)) for all z € M(X, D). Note that 7 recognizes L,
too. Moreover, for s € S, the second projection alph(s) is well-defined
and satisfies alph(z) = alph(n(z)) for all z € M(X, D). This property
will be used in the remainder of the proof.

Using Ramsey factorization, recall that we obtain [Gas91]:

_ —1 o1 w
L—U(S’e)epn (s)-n—"(e)

where P = {(s,e) € S x S | se = s,e? = eand n7'(s) 7' (e)* N L #
0}. For each (s,e) € P, we decompose the alphabet A = alph(e) into

Rational and Recognizable Complex Trace Languages 247

connected components, A = Ule A; such that A; is not empty and
connected and A; x A; C I for all ¢ # j. Moreover, we define the finite
set

E ={(e1,...,ex) | e=e1 e and alph(e;) = 4;, for all 1 <i <k}
We claim that

n e = e T e T (e

which conclude the proof. Note that, in the definition of E, we could
require in addition that se; = s and e% = ¢; but this is not necessary for
the proof of this proposition.

From the alphabetic property of n, we obtain

n He)? o Hew) = (nHer) o (er))”

Moreover, 1 (e;) -+ -n~(ex) € n~L(e), hence one inclusion is clear.

Conversely, we define a morphism 1 : 7! (e) — E as follows. Let z
be in n~(e). Since alph(z) = alph(e) = A, z admits a unique decom-
position in connected components & = x; - - -) such that alph(z;) = A;
for all 1 <i < k. Then we set ¢¥(x) = (n(z1),...,n(z)).

Now, let zomiz2... € 7 (s)n~1(e)¥ with zp € n~1(s) and z; €
n~t(e) for all i > 1. Using Ramsey factorization, we obtain an infinite
sequence of integers 0 < i1 < i2 < i3 < ... and a tuple (e1,...,ex) € E
such that ¢ (z1yi; ...25,) = (€1,...,ex) for all 1 < j < k. Hence,
Tigi; - Ty, €0 t(er)---n t(ex) forall j > 1 and we obtain @14, T244, T34, ... €
(n=er) - n7 er))® = n7t(e1)* - n~(er)“. This proves the claim
since n(xoxy ... ;) =se---e=se=s. O

Corollary 2.12 The family of recognizable real languages is the smallest
family which contains finite sets of finite traces and which is closed un-
der union, concatenation restricted to finitary languages on the left, and
Kleene % and w-iteration both restricted to finitary connected languages.

The final results of this section show the closure of rational and rec-
ognizable languages by left and right quotient. These results will become

248 V. Diekert, P. Gastin, A. Petit

crucial in the next section.

Theorem 2.13 Let K C R(X,D) be arbitrary and L C R(X,D) be
recognizable. Then the following left and right quotients are recognizable,
too:

KL = {yeR(X,D)]|

zy € L for some x € K with alphinf(z) x alph(y) C I'}
L-K' = {zeR(X,D)|

xy € L for some y € K with alphinf(z) x alph(y) C I'}

If, in addition, K C R(X, D) is recognizable, then the quotients are
effectively computable.

Proof: Let n : M(X,D) & S be a morphism onto a finite monoid
S which recognizes L and let X, = n~1(s) for s € S. As in the proof
of Proposition 2.11, we may also assume that alph(s) is well-defined for
s € S and alph(z) = alph(s) for all x € Xs. For s,t € S, we write
(s,t) € I if alph(s) x alph(t) C I. Since recognizable languages are
closed under union, we may assume that L = X, X for some r,d € S
with rd = r and d®> = d. Using Theorem 2.7 and Proposition 2.10, the
result follows from the claim:

K~'-L= |J xxy
(1.)eQ

where

Q={tfleSxS| tf=t,f>=fand X, X“NK #
for some (s,e) € S x S
with se = s,e? =e,r = st,d = ef,
and (e, tf) € I'}.

Note that the computation of @ is effective as soon as K is recognizable.
Let y € X; X¢ for (¢, f) € Q. Choose z € X; X N K accordingly to
the definition of (). Then we have

vy € X, XE X, X¥ = X, X, (X Xp)* C X, XY =L

Rational and Recognizable Complex Trace Languages 249

Hence, one inclusion of the claim is trivial.

For the other direction, let y € K~' - L and choose x € K such
that ¢y € L with alphinf(z) x alph(y) C I. Then we can write zy =
2122 ... with z; € X, and z; € X4 for i > 2. Hence, there exist
T1,%2,...,Y1,Y2,... such that z; = x;y; for i > 1,20 = zy20...,y =
y1y2 ..., and (y;,2;) € I for i < j. Ramsey factorization applied to the
sequence r = x> ... shows that we may assume z; € X,,z; € X, for
i > 2 and some s,e € S such that se = s and e> = e. In the next
step, applying the same argument to the sequence y = y1y5 ..., we may
assume y; € X;,y; € Xy for i > 2 and some ¢, f € S with tf =t and
f? = f. Since alphinf(z) = alph(e) and alph(y) = alph(tf), we have
(e,tf) € I. Hence (t, f) € Q. This shows the other inclusion. The proof
for L - K—! is symmetric. O

For rational languages such a general result does not hold. We have
the following counter example.

Example: Let M(X, D) = {a,b}* x{c,d}* x{e}* be a direct product of
three free monoids. Consider the following two rational sets: K = (ae)*b
and L = (ac)*b(de)*. Then we have K~'L C {c,d}* x {e}*. The
projection of K 'L to {c,d}* yields the non-rational set {w € {c,d}* |
|lwle < |w|q}. In order to have an example of w- languages, simply

substitute b by b“.

However, the quotient of a rational language by a recognizable lan-
guage is effectively rational. This is stated in the next Theorem.

Theorem 2.14 Let K C R(X, D) be recognizable and L C R(X, D)
be rational. Then the following left and right quotients are effectively
computable and rational, too:

KL = {yeR(X,D)]|
zy € L for some x € K with alphinf(z) x alph(y) C I'}
L - K-' = {zeR(X,D)|

xy € L for some y € K with alphinf(z) x alph(y) C I}

Proof: We give the proof for K~! - L only. The other case L - K~!
is obtained analogously. Let K' = ¢~ !(K) and L' C X be a regular

250 V. Diekert, P. Gastin, A. Petit

language such that ¢(L') = L. Let X;,Xs be two copies of X and
let X = X; UX,. Define three morphisms h,pi,ps from X in X
by h(a;) = a, pi(a;) = a and pj(a;) = 1 for i,j = 1,2 with ¢ # j.
Finally, define the regular language W C X by its complement W =
U(mb)eDX*ng*alXoo.

Since regular word languages are closed under morphism, inverse
morphism and intersection, the language N’ = py(p; " (K')Nh~' (L") NW)
is regular, too. Moreover, it is easy to verify that

N' = {’1}11)2... € X | Juius ... € K' with U1VLUVS . . . el
and (v;,u;) € I for all i < j}
= {veX>|(urv)NL #0 for some u € K'}

We claim that o(N') = K~!- L which proves that K ~'-L is rational.

Let v be in N'. There exists w € (u Ly v) N L' for some u € K'. In
the proof of Proposition 2.10 we have shown that o(w) = ¢(u) - ¢(v).
Therefore, p(v) € K1 - L.

Conversely, let y be in K~! - L. There exists z € K such that
alphinf(z) x alph(y) € I and 2 = zy € L. Let w € ¢~ (2)NL. In
the proof of Proposition 2.10 we have shown that ¢ ~!(zy) = ¢~ (x) LLs
©~(y). Hence, there exist u € p~!(z) and v € ¢~ !(y) such that w €
u LUy v, whence (u LUy v) N L' # 0. Since u € o~ }(z) C ¢ 1K) = K',
we obtain v € N'. O

3 Rational and recognizable complex trace
languages

Recall the following notations. Let L C C(X,D) be a complex trace
language and A C X be a subset of the alphabet. We denote by L4 =
{z € L | Im(z) = D(A)} and pa(L) = {pa(z) | z € L} where pa(z)
is the maximal real prefix of Re(z) containing letters independent of A,
only. It will be useful to have a finer partition. Let L C C(X, D) and
A,B C X. We define Lyp = {2 € L | Im(yz) = D(B) for some y €
C(X,D)4}. Note that in the definition above the existential “for some”

Rational and Recognizable Complex Trace Languages 251

can be replaced by “for all”. The reason to introduce L4 g is that if
we concatenate any complex trace y € C(X, D)4 with some x € L such
that yz € C(X,D)g, then in fact # € Ly p. Note that in this case
Re(yz) = Re(y)pa(z), therefore, we are also interested in the language
pa,p(L) which is defined by pa (L) = pa(La,B).

The formulae given in the next lemma will be useful throughout.

Lemma 3.1 Let K,L C C(X, D) be complex trace languages and B C
X. Then the following formulae hold:

i) Lp =Ly
i) L =Uccx Lp,c
i) pe(L) = chx ps,c(L)
w) (KL)p =Uacx KaLap
v) Re((KL)p) = UAgX Re(Ka)pa,p(L)

Proof: i) is obvious. ii) Let € L and y € C(X, D)p. Then, D(B) C
Im(yz) = D(C) for some C' C X. Therefore z € Lp . iii) follows
since pa4 commutes with union. iv) We have (KL)p = J 4c x (KaL)p =
Uacx(KaLa p). At last, for any © € K4 and any y € L4 g, Re(zy) =
Re(z)pa(y) and v) follows from iv). O

Finally, we define v4(L) = pa,a(L). Each trace in v4(L) is finite
since alph(u) C I(A) and Im(u) C D(A) implies Im(u) = @. Note also
that vg(L) is just the finitary part Ly = L N IM(X, D). Later, we will
introduce finite components, which could be characterized as the union
of va(L) over A C X. For the moment we are interested in the v4(L),
because we have the following formula.

Lemma 3.2 Let L C C(X,D) be a complex trace language and T €
{*,w}. Let A be the finite set of sequences A = {(Ao,...,Ar) | 0 =
D(Ao)i ;D(Ak) C X}. Then the language L' is the finite union

L= U(A07---,Ak)EA vao (L) Lag,ay - va,_y (L) La_y 4,04, (L)

252 V. Diekert, P. Gastin, A. Petit

Proof: The proof uses in a crucial way the observation that, if z,y €
C(X,D) and Im(xz) = Im(zy) = D(A) then pa(y) = va(y) and zy =
2vA(y).

Let = 2125 ... € Lt, 2; € L. Eventually, the sequence of alphabets
Im(xz1) C Im(z122) C - - becomes stationary. Therefore, there exist an
integer k, a sequence of integers 0 = ip < i1 < ... < i < lpp1 = W
and a sequence (Ay,...,Ar) € A such that Im(z,...2,) = D(4;) for
all ij <n < ij41 and 0 < j < k. Define now the sequence (yn)n>1 by
Yn = va;(xn) € va, (L) if i < n < ijyy for some 0 < j < k and by
Yn = Tn € La;_, a; if n =1i; for some 1 < j < k. From the observation
above, it follows x1 ...z, = y1 ...y, for alln and thus . = y1y2 .. . yn - - .-
Therefore,

T € V4, (L)*LAmAl e VAk—l(L)*LAk—lyAkVAk (L)T
Conversely, we show by induction on k that va,(L)*La,,a, ---Va,_, (L)*
La, ,.Ava, (D)T C LY, for any (Ay,...,A) € A. For k = 0 this for-
mula becomes vy(L)t = L% C L' which is clear. Assume that, for any

(Ao, ..., Ar) € A, the inclusion holds and let (Ag,...,Ag+1) € A. By
induction hypothesis applied to (Ao, ..., Ax), we have in particular:

VAO(L)*LAOyAl . ‘VAk—l(L)*LAk—hAkVAk (L)* crr (5)

Since all the complex traces belonging to the left hand side of Equa-
tion (5) have clearly D(A}) as imaginary part, it follows:

VAo (L)*LA07A1 s VA, (L)*LAk—hAk VA, (L)* - (L*)Ak

Therefore the inclusion for (Ao, ..., Ag41) follows since (L*) 4, LAy, Ay, C
(L*)a,,, and, from the observation above, (L*)4,,,v4,,, (L) C L' for
t € {xw} O

We are now ready to define rational and recognizable complex trace
languages. There will be various equivalent characterizations for these
notions which justify the following definition.

Definition: A complex trace language L
tional (recognizable respectively) if for all A

C(X,D) is called ra-

-
C X the real language

Rational and Recognizable Complex Trace Languages 253

Re(L 4) is rational (recognizable respectively). The families are denoted
by Rat(C(X, D)) and Rec(C(X, D)) respectively.

Proposition 3.3 The family Rec(C(X, D)) is a boolean algebra : it
is closed under union, intersection, and complementation. The family
Rat(C(X, D)) is closed under union.

Proof: Since Re : C(X,D) — R(X, D) commutes with union, it fol-
lows from results of Section 2 on real traces that Rat(C(X, D)) and
Rec(C(X, D)) are closed under union. The closure of Rec(C(X, D))
under intersection and complementation follows from Remark 2.2 and
the formulae: for all K,L C C(X,D) and A C X, Re(Kq N Ly) =
Re(K4) NRe(La) and Re((C(X,D) \ K)a) = Re(C(X,D)4) \ Re(K4).
O

For any real trace language L C R(X, D) and any subset A C X it
holds Re(L4) ={r € L |Im(r)} = D(A)} = LNR(X, D) 4. Since

¢ ' (R(X,D)a) = \, o € X [alphinf(z) = B}

U{BgX|D(B):D(A
the set R(X, D)4 is a recognizable real trace language. Therefore if
L is a rational (recognizable respectively) real trace language, then so
is Re(La) for any A C X. Hence L is also a rational (recognizable
respectively) complex trace language. More precisely, we have (as ex-
pected) Rat(R(X,D)) = {L € R(X,D) | L € Rat(C(X,D))} and
Rec(R(X,D)) ={L CR(X,D) | L € Rec(C(X,D))}. At last, note that
since Re(L) = |, x Re(L 4), we have also the inclusionsRe(Rat(C(X, D)))
C Rat(R(X, D)) and Re(Rec(C(X, D))) C Rec(R(X, D)). The situation
is summarized in the following figure.

Rec(R(X,D)) C Rec(C(X,D)) &% Rec(R(X,D))

n N N

Rat(R(X, D)) Rat(C(X,D)) &% Rat(R(X,D))

N

Before we continue the reader should be convinced that it makes no
sense to define a language L C C(X, D) to be rational (recognizable re-
spectively) if the projection Re(L) C R(X, D) is rational (recognizable

254 V. Diekert, P. Gastin, A. Petit

respectively). Both classes of languages would be uncountable. (Note
that the families of rational and recognizable complex trace languages
are countable. Indeed, a complex trace language is entirely defined by
the languages L4 for A C X and the family of rational real trace lan-
guages is countable since it is defined by rational expressions.) For
instance, if (X,D) = a — b — ¢, for any P C N, the language
Lp = {(e(b)/0(a)*, D(a)) | j € P}U {(¢(b)p(a)*, D(a,b) | j & P}
verifies ™1 (Re(Lp)) = a*b* and would be therefore recognizable. Note
also that the family of recognizable languages would not be closed un-
der intersection. Namely if (X,D) =a —b—c¢c—dand L =
p(ac)*p(b)*p(c) U {p(a), ¢(c)}*0(b)*, Re(L) = {p(a), p(e)}*p(b)* is a
recognizable real trace language whereas Ly, . = LNC(X, D)y .y is not
recognizable since Re(Ly; .3) = ¢(ac)*@(b)¥. Similarly, since the canon-
ical mapping ¢ : X*>° — C(X, D) is not surjective, it cannot be used
neither to define a language L C C(X, D) to be recognizable. For exam-
ple, simply asking that o1 (L) C X has to be regular would yield that
any language not containing real traces is recognizable. (Of course, ac-
cording to our definition, L € Rec(C(X, D)) implies that p=*(L) C X
is regular.)

Lemma 3.4 Let L C C(X,D) be rational (recognizable respectively)
and A,B C X. Then the languages La g C C(X,D) and pa (L) C
R (X, D) are rational (recognizable respectively).

Proof: First, we show the assertion for L4 p. Note that (La,)c =
(Lc)a,p for all C C X. Thus,

Re((La,p)c) =Re((Lc)a,n)
=Re({z € L¢ | Im(yz) = D(B) for some y € C(X,D)a})
={r € Re(L¢) | Im(yr) U D(C) = D(B)
for some y € C(X, D)4}
= Re(Lo) N K

where K = {r ¢ R(X,D) | D(AUC USuff4(r)) = D(B)}.
Using Remark 2.2 and Lemma 2.4, we are reduced to prove that the
language K is recognizable. Indeed, it is easy to verify that the language

Rational and Recognizable Complex Trace Languages 255

¢ 1(K) is accepted by the following deterministic Biichi automaton.
The set of states is P(X), the initial state is A and for all ¢ € P(X)
and a € X we have the transition (g, a,q’) where ¢ = qU {a} if a €
D(q) and ¢' = q otherwise. A transition (g,a,q') is final if and only if
D(AuCUgq)=D(B).

For pa. (L) we have pa (L) = pa(La,p) by definition. Hence it is
enough to show the assertion for pa(L). Since pa(L) = pa(Re(L)), we
are reduced to consider real trace language L C R(X, D).

For L C R(X, D) we have pa(L) = MN(L-Suff ;") where M = {z €
R(X, D) | alph(z) C I(A)} and

Suff4 = {r € R(X, D) | min(r) C D(4)} = R(X, D)\UaeI(A) aR(X, D)
Since M and Suff 4 are recognizable, the results follow from Lemma 2.4,
Theorems 2.13, and 2.14. O

So far, we have allowed as rational operation on real traces the con-
catenation K - L, only if K is finitary. This was motivated by the fact
that R(X, D) is not a monoid. For complex traces such a restriction is
obviously not adequate and our first result underlines this. It follows
directly from Lemma 3.1, v), Proposition 2.10 and Lemma 3.4.

Theorem 3.5 Let K, L € C(X, D) be rational (recognizable respectively).
Then the concatenation K - L has the same property.

We can now extend Proposition 2.1 and Proposition 2.11 and give
normal forms for rational and recognizable complex trace languages.

Corollary 3.6 i) A language L C C(X, D) is rational if and only if
it can be written as a finite union of sets of the form M N“s where
M,N C M(X, D) are finitary and rational and s € M(X, D) is a
finite (shift-)trace.

ii) A language L C C(X, D) is recognizable if and only if it can be
written as a finite union of sets of the form M Ny ... N;s where
M,Ny,...,Ni, CM(X, D) are finitary and recognizable, each trace
in N; has the same connected alphabet A;, A; x A; C I fori # j,
and s € M(X, D) is a finite (shift-)trace.

256 V. Diekert, P. Gastin, A. Petit

Proof: We have seen in the preliminaries every complex trace language
L C C(X, D) can be written as a finite union:

L= UA i 5 Re(LB) NR(X, D) a)sa,p

where s4 g is some finite shift trace from D(A) to D(B). Hence if
L is rational (recognizable respectively), Proposition 2.1 (Proposition
2.11 respectively) applied to languages Re(Lg) N R(X, D)4 yield the
only-if parts of the corollary. The if-parts come from the inclusions
Rat(R(X, D)) C Rat(C(X, D)) (Rec(R(X, D)) C Rec(C(X, D)) respec-
tively) and the closures under concatenation, Theorem 3.5. O

Since the concatenation and the w-product are fully defined in C(X, D),
the x-iteration and the w-iteration should be allowed as rational opera-
tions, in full generality. The next theorem states that this is indeed the
case.

Theorem 3.7 Let L € Rat(C(X, D)) be a rational complex trace lan-
guage. Then L* and L* are rational.

Proof: If L is a rational complex trace language, from Lemma 3.4, we
deduce in particular that v4(L) C M(X, D) is a finitary rational trace
language for all A C X. Hence, for all A C X, va(L)* and va(L)¥
are rational real trace languages, too. Thus, the theorem follows from
Lemma 3.2, Proposition 3.3 and Theorem 3.5. O

From closure under union, Theorems 3.5, 3.7 and Corollary 3.6, we
obtain the following characterization which could also be used for a con-
venient definition of rational complex trace languages.

Corollary 3.8 The family of rational complex trace languages is the
smallest family which contains all finitary rational trace languages and
which is closed under union, concatenation, Kleene-x, and w-iteration.

Of course, we cannot expect that recognizable languages are closed
under Kleene-* or w-iteration, in general. However, let L be a recogniz-
able complex trace language such that v4(L)* C M(X, D) is recogniz-
able for all A C X. From Theorem 2.7, we deduce that, for all A C X,

Rational and Recognizable Complex Trace Languages 257

va(L)¥ is recognizable, too. Hence, from Lemma 3.2 and closures un-
der union and concatenation we obtain the following corollary. It is our
strongest result concerning the question when the star- and w-iteration
of a recognizable complex trace language is recognizable.

Corollary 3.9 Let L C C(X,D) be a recognizable complex trace lan-
guage such that va(L)* C M(X, D) is recognizable for all A C X. Then
L* and L* are recognizable complex trace languages, too. O

We finish this section by an extension of Theorems 2.13 and 2.14 to
complex trace languages.

Theorem 3.10 Let K C C(X, D) be arbitrary (recognizable respectively)
and L C C(X, D) be recognizable (rational respectively). Then the fol-
lowing left and right quotients are recognizable (rational respectively),
too:

L-K7! = {2e€C(X,D)|xy €L forsomey € K}
K'-L = {yeCX,D)|zye€ L for somez € K}

If K is recognizable, then the quotients are effectively computable.

Proof: First we consider Re((L - K~1)4) for some A C X. We have

(L-Ka={J. _ (Ls-KHa={]

(Lp-K3p)a

BCX BCX

Hence, it remains to prove that Re((Lp - K;}B) A) is a recognizable (ra-
tional respectively) real trace language. We have

Re((Lp- K, 3)a) ={r€Re(C(X,D)a)|r-paly) € Re(Lp)
for some y € K4 g}
= Re(C(X, D)) NRe(Lp) - (na,p(K))™"

Hence, the results follow from Remark 2.2, Lemma 2.4, Theorems 2.13,
2.14 and Lemma 3.4.

258 V. Diekert, P. Gastin, A. Petit

The calculus for K ~'-L is slightly different. First, note that K ~'-L =
UAngszl - Lg. Then we have

K' Lp ={yeC(X,D)ap|rpaly) € Re(Lp) for some r € Re(K4)}
=C(X,D)a,s N{y € C(X,D) | paly) € Re(K4)~" - Re(Lp)}

Since by Theorems 2.13 and 2.14, Re(K4) ! - Re(Lp) is recognizable
(rational respectively) the results follow from the claim:

Claim: Let R C R(X, D) be rational (recognizable respectively) then
M ={y e C(X,D) | ua(y) € R} is rational (recognizable respectively).

For all B C X, we have Re(Mp) = Re(C(X,D)g) N {r € R(X,D) |
wa(r) € R}. Therefore, the claim follow directly from

{r e R(X,D) | pa(r) € R} = ({r € R(X, D) | alph(r) C I(A)}NR)-Suff 4
where Suff 4 is the recognizable set defined in Lemma 3.4. O

In the section below we will introduce connected and finitary con-
nected components and we will extend Kleene’s and Ochmanski’s theo-
rems to complex trace languages.

4 C-rational complex trace languages

In order to define concurrent iterations for complex trace languages, we
need first a notion of connectedness for complex traces. Intuitively, a
trace is connected if it cannot be split into two non-empty independent
traces. Thus, let us introduce the notion of independence. This notion
is clear in G(X,D): two graphs f and g are independent if alph(f) x
alph(g) C I. Unfortunately, we cannot use this definition in C(X, D)
since the alphabet of a complex trace is not well-defined. Nevertheless,
it is easy to verify that the independence relation in G(X, D) factorizes
to complex traces. Hence the independence relation in C(X, D) is well-
defined and can be characterized as follows. Two complex traces z =
(u, D(A)), y = (v,D(B)) € C(X, D) are independent if (alph(u) U 4) x

Rational and Recognizable Complex Trace Languages 259

(alph(v) U B) C I, in this case we will simply write (z,y) € I. Note
that this is well-defined since D(B) = D(B') implies (alph(u) U A) x
(alph(v) U B) C I < (alph(u) U A) N D(alph(v) U B) = () < (alph(u) U
A) N D(alph(v) U B") = 0 & D(alph(u) U A) N (alph(v) U B') = (This
leads to the following definition.

Definition: A complex trace z is called connected if for all factorization
z = xy where x, y are independent, either t = 1 or y = 1. A trace x is
called a connected component of z € C(X, D) if either x =z =1 or x is
a non-empty connected trace such that z = xy for some y independent
of x. The trace z is said to be finitary connected if it admits at most
one finite connected component.

For any non-empty trace z, we will denote by C(z) (respectively
FC(z) = C(z) N M(X, D)) the set of connected components (respec-
tively finite connected components) of z. These notations are as usual
extended to languages. A language is said to be connected (respectively
finitary connected) if all its elements are connected (respectively finitary
connected).

Note that a direct translation of the above definition can be used
to define connectedness notions on dependence graphs as well. These
notions coincide with the natural notion of connectedness in G(X, D):
a dependence graph is connected if and only if so is its underlying
undirected graph. Unfortunately, this natural notion does not factor-
ize to complex traces. The same complex trace might have connected
as well as disconnected representing dependence graphs. For example
let (X,D) = a — b —— c¢. Then the complex trace z = ((ac)¥,X)
is represented by the connected dependence graph (ac)“b as well as by
the disconnected graph a“c*. This explains why we define the notion
of connected traces through the independence relation. For finitary con-
nectedness the situation is simpler. A trace x € M(X, D) is a finite
connected component of z € C(X,D) if and only if z is finite and a
connected component of any representing dependence graph of z. The
following proposition precises the links between the two notions of con-
nectedness in G(X, D) and C(X, D).

260 V. Diekert, P. Gastin, A. Petit

Proposition 4.1 Let x € C(X, D) be a complex trace.

i) x is connected if and only if all its representatives in G(X, D) are
connected.

i) Let f € G(X,D) be any representative of x and let {f1,..., fr}
be the set of finite connected components of f. Then FC(z) =

{fi,-- - fr}-

Proof: i) Let f be a representative of z in G(X,D). Suppose that
f = gh with alph(g) x alph(h) C I. Let y, z be the complex traces rep-
resented by g, h respectively. Hence x = yz with (y,z) € I. Since z is
connected, we get y =1 or z = 1 and thus ¢ = 1 or h = 1. Therefore f
is connected.

Conversely, suppose that z = yz with (y,z) € I. Let g, h be representa-
tives in G(X, D) of the complex traces y, z respectively. Hence gh is a
representative of x and (g,h) € I. Thus g=1or h =1, hence y =1 or
z =1 and z is connected.

ii) Let g be a finite connected component of f, f = gh for some h €
G(X, D) with alph(g) x alph(h) C I. Let y be the complex trace repre-
sented by h. Since g is finite, we get x = gy with (g,y) € I. Moreover g
is a connected complex trace from i). Hence g € FC(x).

Conversely, let y € FC(z). Then x = yz for some complex trace z such
that (y,z) € I. Since G(X, D) is left cancellative [Die91], the depen-
dence graph y ! f is well-defined and is a representative of the complex
trace z. Hence y is a finite connected component of f = y(y~1f). O

In order to generalize Biichi’s and Ochmanski’s Theorems to com-
plex traces, we need a link to the language v4(L) defined above. For
a complex trace z, any non-empty product over pairwise independent
finite connected components of x is called a finite component of x. For
a language L C C(X, D), the set of finite components of the elements of
L is denoted by FinComp(L).

Lemma 4.2 Let L C C(X, D) be recognizable. Then the following as-
sertions hold.

Rational and Recognizable Complex Trace Languages 261

i) FinComp(L) = U 4cx va(L)

ii) FC(L) and C(L) are recognizable

Proof: i) Let t € va(L). By definition, we have alph(t) C I(A) and
Im(t) € D(A), hence Im(¢) = () and thus ¢ is finite. Moreover, there
exists some © € Ly 4 such that ¢ = pa(z). Hence z = ¢ - (r,Im(z))
and, since x € L4, 4, we have (D(alph(r)) UIm(z)) C D(A). Thus, from
alph(t) C I(A4), (¢, (r,Im(z))) € I. Therefore ¢ € FinComp(La,4) C
FinComp(L).

Conversely, let ¢ € FinComp(L), there exist some u € L and v €
C(X, D) such that u = tv with (t,v) € I. Let B = alph(t) and A = I(B),
note that B C I(A). We claim that t = pa(u) and v € Ly 4 whence
t € va(L). Let v = (r,D(C)), since (t,v) € I, we have by definition
B x (alph(r) U C) C I, and thus (alph(r) UC) C I(B) = A. Hence
alph(r) C A, in particular alph(r) N I(A4) = 0 and then pa(u) =t. We
get also C C A, hence u € L4 4 and the claim is proved.

ii) Let NC be the set of non-connected complex traces. It is easy
to verify that NC' = U aup)xpurycr K (4, B) - K(E, F) where, for all
A,BCX,K(A,B)={zeC(X,D)p\ {1}]| alph(Re(z)) = A}. Now, it
turns out that

CL) = (U(AUB) x(EUF)CI

Clearly, for all A, B C X, the set K(A, B) is recognizable. From Propo-
sition 3.3 and Theorems 3.5 and 3.10, we deduce that NC and C(L) are
recognizable. Thus the set FC(L) = C(L) N M(X, D) is recognizable,
too.O

(K(A,B) ' L)NK(E,F))n(C(X,D)\ NC)

Theorem 4.3 Let L C C(X, D) be recognizable. If L is finitary-connected
(in particular if L is connected) or if FC(L) C L*, then L* and L* are
recognizable.

Proof: If L is finitary connected, then FinComp(L) is connected and
from Lemma 4.2 i), it holds that v4(L) is connected for all A C X.

262 V. Diekert, P. Gastin, A. Petit

Since by Lemma 3.4 v4(L) is also recognizable, v4(L)* is recognizable
by [Mét86, Och85]. Hence L* and L“ are recognizable by Corollary 3.9.

Assume that FC(L) C L*. We will also show that v4(L)* is rec-
ognizable for all A C X. For this purpose, we claim that va(L)* =
va(FC(L))*.

Remark first that if ¢ is a finite connected trace, from Lemma 4.2 i)
applied to L = {t}, we get that, for any A C X, either vy (t) = {¢t} if
alph(t) C I(A) or v4(t) = B otherwise.

Let now ¢ be in v4(L) and {¢1, ..., } be the connected components
of t. From Lemma 4.2 i), we have {t1,...,t;} C C(FinComp(L)) =
FC(L). From the remark above, for all 1 <i < k, we get {t;} = va(t;)
and thus t; € v4(FC(L)). Hence v4(L) C va(FC(L))*, and va(L)* C
va(FC(L))*, too.

Conversely, since FC(L) C L*, we have v4(FC(L)) C FinComp(FC(L))
=FC(L) C L*. Let t € v4(FC(L)) C L*, in particular alph(t) C I(A)
and t =ty ...t with ¢; € Ly and alph(t;) C I(A) for 1 < i < k. From
the remark above, {t;} = va(t;) C va(L), for 1 < i < k. Therefore
t € va(L)* and va(FC(L)) C va(L)*. Finally va(L)* = va(FC(L))*
and the claim is proved.

Since v4(FC(L)) is connected, we obtain from [Mét86, Och85] that
va(L)* is recognizable. O

Corollary 4.4 Let L C C(X, D) be a recognizable, then (FC(L)U L)*
and (FC(L) U L)¥ are recognizable, too.

Proof: This is immediate from the theorem above and the observation
that we have FC(FC(L)U L) = FC(L). O

Beside its own interest, Corollary 4.4 yields a simple proof of the
following result which is surprising, since the %-iteration of a single trace
is not recognizable, in general.

Corollary 4.5 Let © € C(X,D) be a recognizable complez trace, i.e.,
{z} € Rec(C(X, D)), then z¥ is recognizable.

Rational and Recognizable Complex Trace Languages 263

Proof: Choose A C X such that D(A) = Im(z*¥). Then we claim that
{29} = (FC({z}) U{z})*)a

One inclusion is obvious. Conversely, let z € ((FC({z})U{z})“)4. Since
Im(z) = Im(2¥) = D(alph(Re(z))) U Im(z), we deduce that z = zz =
zz*. Now, let FC({z}) = {z1,...,7} and let y = (z1...74)" ' - =
From the definition of connected components, it holds that x1,...,z,y
are pairwise independent. Therefore z = g} ™™ x;‘*”’“ y™ for some

0<ni,...,np,n <w, z¥ =z ...z y" and hence zz* =2z*. O

Now, we extend the concurrent iteration of Ochmanski [Och85] to
complex traces.

Definition: Let L C C(X, D). Then the concurrent iterations of L are
defined by L°~* = (C(L))* and L*~% = (C(L))“.

Since C(L) is connected, we obtain from Lemma 4.2 and Theorem
4.3:

Corollary 4.6 Let L C C(X, D) be recognizable. Then L°~* and L¢¥
are recognizable.

Definition: The family of c-rational complex trace languages,c <Rat(
C(X,D)), is the smallest family which contains all finite sets of finite
traces and which is closed under the operations union, concatenation
and concurrent iterations c-x and c-w.

We are now ready to state our main result.

Theorem 4.7 Rec(C(X, D)) = c <Rat(C(X, D))

Proof: We have seen that Rec(C(X, D)) is a boolean algebra closed
under concatenation (Theorem 3.5) and concurrent iterations (Corollary
4.6). Hence c &Rat(C(X, D)) C Rec(C(X,D)). Conversely, we have
seen (Corollary 3.6) that every recognizable language can be written as a
finite union over languages of type M Ny ... N;’s where M, Ny,...,N; C
M(X, D) are recognizable and s € M(X, D) is a finite trace. Moreover all

264 V. Diekert, P. Gastin, A. Petit

traces in N; have the same connected alphabet and hence N¥ = N/ “.
From Ochmanski’s theorem [Och85], the recognizable finitary languages
M and Ny, for 1 < ¢ < k, are in ¢ ©Rat(C(X, D)). Therefore L is also
in c &Rat(C(X,D)). O

Remark 4.8 i) Every recognizable complex trace language has ef-
fectively a c-rational expression where the concurrent iterations are
allowed only for finitary languages which are connected. (Hence
where the concurrent iterations become the usual Kleene-x* and
w-iteration.)

ii) We could have defined the finitary concurrent iteration of a lan-
guage L as L=t = (FC(L) U L)' for f € {*,w}. An analogue of
Theorem 4.7 with a suitable definition of fc ©Rat(C(X, D)) also
holds in this case.

5 Conclusion

In this paper we have studied the families of rational and recognizable
languages of complex traces. We showed that classical results on finite
and infinite words and finite traces have a natural extension to complex
traces. In our investigations we followed mainly an algebraic viewpoint
with the final goal to establish the Kleene-Ochmanki-Theorem.

Of course, other characterizations of the recognizable languages are
of high interest. For instance, word languages can be defined by monadic
second order logic [Biic62]. The equivalent work for finite traces can be
found in [Tho90] and for for real traces in [Ebi92]. Its generalization
to complex traces seems to be without any additional difficulty. Be-
sides, the most well-known characterizations of recognizable languages
use the notion of finite automata. Recognizable word languages are lan-
guages which are accepted by (non-deterministic) Biichi automata or
by deterministic Muller automata. Asynchronous (cellular) automata
[Zie87, Zie89] provide distributed acceptors for recognizable languages
of finite traces. With a suitable Biichi like condition, non-deterministic

Rational and Recognizable Complex Trace Languages 265

asynchronous (cellular) automata accept exactly the recognizable lan-
guages of real traces [GP92] and may be easily extended to accept com-
plex trace languages. Hence, the main open problem in this field is to
obtain a characterization of recognizable languages of infinite traces with
an appropriate model of finite deterministic automata.

Acknowledgements: We thank Anca Muscholl for fruitful discus-
sions and for the simple example before Theorem 2.14.

References

[ARSS]

[Arn85]

[BMP90]

[Biic62]

[CF69)

[CPS85]

[DGP91]

[.J. Aalbersberg and G. Rozenberg. Theory of traces. Theoret.
Comput. Sci., 60:1-82, 1988.

A. Arnold. A syntactic congruence for rational w-languages.
Theoret. Comput. Sci., 39:333-335, 1985.

P. Bonizzoni, G. Mauri, and G. Pighizzini. About infinite
traces. In V. Diekert, editor, Proceedings of the ASMICS work-
shop Free Partially Commutative Monoids, Kochel am See
(Germany) 1989, Report TUM-19002, Technical University of
Munich, pages 1-10, 1990.

R. Biichi. On a decision method in restricted second order
arithmetic. In Proc. Internat. Congress on Logic, Methodology
and Philosophy, pages 1-11. Standford University Press, 1962.

P. Cartier and D. Foata. Problémes combinatoires de commu-
tation et réarrangements. Lecture Notes in Mathematics 85.
Springer, Berlin-Heidelberg-New York, 1969.

R. Cori and D. Perrin. Automates et commutations partielles.
R.A.I.R.O.-Informatique Théorique et Applications, 19:21-32,
1985.

V. Diekert, P. Gastin, and A. Petit. Recognizable complex
trace languages. In A. Tarlecki, editor, Proceedings of the
16th Symposium on Mathematical Foundations of Computer

266

[Die90]

[Die91]

[Ebi92]

[Fli74]

[FR82]

[Gas90]

[Gas91]

V. Diekert, P. Gastin, A. Petit

Science (MFCS’91), Kazimierz Dolny (Poland) 1991, Lec-
ture Notes in Computer Science 520, pages 131-140. Springer,
Berlin-Heidelberg-New York, 1991.

V. Diekert. Combinatorics on Traces. Lecture Notes in
Computer Science 454. Springer, Berlin-Heidelberg-New York,
1990.

V. Diekert. On the concatenation of infinite traces. In C. Chof-
frut et al., editors, Proceedings of the 8th Annual Symposium
on Theoretical Aspects of Computer Science (STACS’91),
Hamburg (Germany) 1991, Lecture Notes in Computer Science
480, pages 105-117. Springer, Berlin-Heidelberg-New York,
1991.

W. Ebinger. On logical definability of infinite trace lan-
guages. In V. Diekert et al., editors, Proceedings ASMICS
Workshop Infinite Traces, Tibingen (Germany) 1992, Bericht
4/92, Fakultdt Informatik, Universitat Stuttgart, 1992. This
volume pages 106—122.

M. Fliess. Matrices de Hankel. J. Math. Pures et Appl.,
53:197-224, 1974.

M.P. Flé and G. Roucairol. On the serializability of iterated
transactions. In Proceedings ACM SIGACT-SIGOPS, Sympo-
sium on Principles of Distr. Comp., Ottawa (Canada) 1982,
pages 194-200, 1982.

P. Gastin. Infinite traces. In I. Guessarian, editor, Proceedings
of the Spring School of Theoretical Computer Science on Se-
mantics of Systems of Concurrent Processes, Lecture Notes
in Computer Science 469, pages 277-308. Springer, Berlin-
Heidelberg-New York, 1990.

P. Gastin. Recognizable and rational trace languages of finite
and infinite traces. In C. Choffrut et al., editors, Proceedings

Rational and Recognizable Complex Trace Languages 267

[GP92]

[GPZ91]

[GRO1]

[Gra81]

[Kwi90)]

[Maz77]

[Maz87]

of the 8th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS’91), Hamburg (Germany))1991, Lec-
ture Notes in Computer Science 480, pages 89—104. Springer,
Berlin-Heidelberg-New York, 1991.

P. Gastin and A. Petit. Asynchronous cellular automata for
infinite traces. In W. Kuich, editor, Proceedings of the 19th
International Colloguium on Automata Languages and Pro-
gramming (ICALP’92), Vienna (Austria) 1992, Lecture Notes
in Computer Science. Springer, Berlin-Heidelberg-New York,
1992. Also available as Tech. Rep. 91-68, LITP, Université
Paris 6, France, 1991.

P. Gastin, A. Petit, and W. Zielonka. A Kleene theorem
for infinite trace languages. In J. Leach Albert et al., ed-
itors, Proceedings of the 18th International Colloquium on
Automata Languages and Programming (ICALP’91), Madrid
(Spain) 1991, Lecture Notes in Computer Science 510, pages
254-266. Springer, Berlin-Heidelberg-New York, 1991.

P. Gastin and B. Rozoy. The poset of infinitary traces. Techni-
cal Report, LITP 91.24, Université de Paris 6, 1991. To appear
in Theoret. Comp. Sci.

R. Graham. Rudiments of Ramsey theory. Regional Confer-
ence Series in Mathematics 45, 1981.

M. Kwiatkowska. A metric for traces. Imform. Proc. Letters,
35:129-135, 1990.

A. Mazurkiewicz. Concurrent program schemes and their in-
terpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus,
1977.

A. Mazurkiewicz. Trace theory. In W. Brauer et al., editors,
Petri Nets, Applications and Relationship to other Models of
Concurrency, Lecture Notes in Computer Science 255, pages
279-324. Springer, Berlin-Heidelberg-New York, 1987.

268

[Mét36]

[MRO1]

[Och85]

[Och90]

[Per89]

[PPY1]

[Sak87]

[Tho90]

[Zie87]

V. Diekert, P. Gastin, A. Petit

Y. Métivier. Une condition suffisante de reconnaissabilité
dans un monoide partiellement commutatif. R.A.ILR.O.-
Informatique Théorique et Applications, 20:121-127, 1986.

Y. Métivier and B. Rozoy. On the star operation in free par-
tially commutative monoids. International Journal of Foun-
dations of Computer Science, 2:257-265, 1991.

E. Ochmanski. Regular behaviour of concurrent systems. Bull.
of the European Association for Theoretical Computer Science
(EATCS), 27:56-67, Oct 1985.

E. Ochmanski. Notes on a star mystery. Bull. of the Euro-
pean Association for Theoretical Computer Science (EATCS),
40:252-257, Feb 1990.

D. Perrin. Partial commutations. In G. Ausiello et al., ed-
itors, Proceedings of the 16th International Colloquium on
Automata, Languages and Programming (ICALP’89), Stresa
(Italy) 1989, Lecture Notes in Computer Science 372, pages
637-651. Springer, Berlin-Heidelberg-New York, 1989.

D. Perrin and J.E. Pin. Mots Infinis. Technical Report, LITP
91.06, Université de Paris 6, 1991.

J. Sakarovitch. On regular trace languages. Theoret. Comput.
Sci., 52:59-75, 1987.

W. Thomas. On logical definability of trace languages. In
V. Diekert, editor, Proceedings of the ASMICS workshop
Free Partially Commutative Monoids, Kochel am See, Okto-
ber 1989, Report TUM-19002, Technical University of Munich,
pages 1-10, 1990.

W. Zielonka. Notes on finite asynchronous automata.
R.A.I.R.O.-Informatique Théorique et Applications, 21:99—
135, 1987.

Rational and Recognizable Complex Trace Languages 269

[Zie89]

W. Zielonka. Safe executions of recognizable trace languages
by asynchronous automata. In A. R. Mayer et al., editors, Pro-
ceedings Symposium on Logical Foundations of Computer Sci-
ence, Logic at Botik '89, Pereslavl-Zalessky (USSR) 1989, Lec-
ture Notes in Computer Science 363, pages 278-289. Springer,
Berlin-Heidelberg-New York, 1989.

270

Open problems 271

Open problems in trace theory
proposed by
Giovanni Pighizzini and Nicoletta Sabadini

1 Determinization of asynchronous automata

A very surprising result obtained by W. Zielonka [Zie87] is the solution
of the following problem:

Problem 1 Given a deterministic automaton over the free partially com-
mutative monoid find a deterministic asynchronous automaton accepting
the same trace language.

The proof given by Zielonka is rather complicated and it seems diffi-
cult to simplify it, despite all efforts, e.g. [CM88].

The characterization of the class of recognizable trace languages given
by Ochmariski [Och85] suggests a different approch to Problem 1 simi-
lar to the usual proof of Kleene’s Theorem [Pig92]. Unfortunately, the
automaton so obtained is nondeterministic. Even if the possibility of
obtaining an equivalent deterministic asynchronous automaton is a con-
sequence of Zielonka’s result, up to date there is not any direct construc-
tion.

Thus, we state the following problem:

Open problem 1 Find a “new” strategy to transform nondeterministic
asynchronous automata in deterministic asynchronous automata, with-
out using Zielonka’s proof.

272

Open problems 273

We briefly point out that the main difficult of Zielonka’s result is to
obtain a distributed automaton starting from a monoid automaton, in
such a way that there is a link between their states.

Our open problem seems to be easier since the input is already a
distributed automaton; in spite of this, similar technical problems arise.

Similar considerations can be formulated for asynchronous cellular
automata.

2 Probabilistic asynchronous automata

As a second open problem, we still propose the generalization of Zielonka’s
Theorem to probabilistic asynchronous automata.

Probabilistic asynchronous automata were introduced in [MS89]. In
[JPS90], the following problem were positively solved in the case of con-
current, alphabets with acyclic dependency graph.

Open problem 2 Given a concurrent alphabet (X,C), does the class
of behaviours of F(X,C)-probabilistic asynchronous automata coincide
with the class of behaviours of probabilistic asynchronous automata over

(x,0) #

In the general case this problem is still open.

3 Extensions of the notion of infinite trace

An extension of the notion of finite traces was recently proposed by
A. Arnold [Arn91], by considering pomsets without self-concurrency. In
this extension the concurrency relation is not fixed a priori. A similar ex-
tension in the infinite case could be useful to describe infinite behaviours
of concurrent systems. So, we state the following problem:

Open problem 3 Eztend the theory of infinite traces to pomsets with-
out self-concurrency, giving a suitable notion of recognizing devices.

274

4 The equivalence and the inclusion prob-
lems for k—ambiguous regular trace lan-
guages

The equivalence problem (inclusion problem, resp.) for a class C of trace
languages consists in deciding if L' = L" (L' C L", resp.), where L' and
L" are languages in the class C.

Let Ri(X,C) denotes the class of regular trace languages over the
concurrent alphabet (X,) with degree of ambiguity & [BMS82b] and
Ry(X,C) the class of recognizable trace languages. We briefly recall
that

where R(X, C) is the class of regular trace languages over (X, C).

It is known that for the class Ro(X,C) the equivalence problem
is decidable for all concurrent alphabets, while for the class R(X,C)
it is decidable if and only if the concurrency relation C' is transitive
[BMS82a, AH87]. In [BPS88], it was proved that there exists a concur-
rent alphabet (X, C') with nontransitive concurrency relation such that
the equivalence problem for R; (X, C) is decidable. This result has been
recently extended in [Var91] proving that for every concurrent alphabet
(2, C), the equivalence problem for Ry (X, C) is decidable.

Up to date, there is none result concerning the classes Ry (X, C) for
k> 2.

Open problem 4 For every k > 2, characterize the class of concurrent
alphabets (X, C) such that the equivalence problem for trace languages in
Ri(%,C) is decidable.

For the class R(X, C) of regular trace languages, the inclusion prob-
lem is decidable if and only if the independency relation C' is transitive
[Sak90]. Moreover, the same problem for Ry(%, C) is decidable for every
concurrent alphabet.

None result is known for the class R; (X, C) of unambiguous regular
trace languages and for k—ambiguous regular trace languages.

Open problems 275

Open problem 5 For every k > 1, characterize the class of concurrent
alphabets (X, C) such that the inclusion problem for trace languages in
Ri(%,C) is decidable.

References

[AHS7]

[Arn91]

[BMS82a]

[BMS82b)

[BPS8S]

[CMSg]

[JPS90]

IJ. Aalbersberg and H. Hoogeboom. Decision problems for
regular trace languages. In Proc. 14th ICALP, Lecture Notes
in Computer Science 267, pages 251-259, 1987.

A. Arnold. An extension of the notions of traces and of asyn-
chronous automata. RAIRO Inf. Theor., 25:355-393, 1991.

A. Bertoni, G. Mauri, and N. Sabadini. Equivalence and
membership problems for regular trace languages. In Proc.
9th ICALP, Lecture Notes in Computer Science 140, pages
61-71, 1982.

A. Bertoni, G. Mauri, and N. Sabadini. A hierarchy of regular
trace languages and some combinatorial applications. In Proc.
2nd World Conference on Mathematics at the Service of Men,
pages 146-153, Las Palmas, 1982.

D. Bruschi, G. Pighizzini, and N. Sabadini. On the existence
of the minimum asynchronous automaton and on decision
problems for unambiguous regular trace languages. In Proc.
5th STACS, Lecture Notes in Computer Science 294, pages
334-346, 1988. To appear in Information and Computation.

R. Cori and Y. Métivier. Approximation of a trace, asyn-
chronous automata and the ordering of events in a distributed
system. In Proc. 15th ICALP, Lecture Notes in Computer
Science 317, pages 147-161, 1988.

S. Jesi, G. Pighizzini, and N. Sabadini. Probabilistic asyn-
chronous automata. In Proceedings of the workshop: Free par-

tially commutative monoids, Institiit fiir Informatic — Technis-
che Universitat Miinchen — TUM-19002, pages 99-114, 1990.

276

[MS89]

[Och85]

[Pig92]

[Sak90]

[Var91]

[Zie87]

P. Massazza and N. Sabadini. Some applications and tech-
niques for generating functions. In Proc. CAAP 89, Lecture
Notes in Computer Science 351, pages 321-336, 1989.

E. Ochmanski. Regular behaviour of concurrent systems.
EATCS Bullettin, 27:56-67, 1985.

G. Pighizzini. Synthesis of nondeterministic asynchronous
automata. 1992. These proceedings.

J. Sakarovitch. The “last” decision problem on rational trace
languages. In Proceedings of the workshop: Free partially
commutative monoids, Institiit fiir Informatic — Technische
Universitdt Miinchen — TUM-19002, pages 168-171, 1990.

S. Varricchio. On the decidability of the equivalence prob-
lem for partially commutative rational power series, 1991.
Manuscript.

W. Zielonka. Notes on finite asynchronous automata. RAIRO
Inf. Theor., 21:99-135, 1987.

