
�
����

����

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��

�

�

��

�

�

��

�

�

��

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

UNIVERSIT�AT STUTTGART

FAKULT�AT INFORMATIK

Proceedings ASMICS Workshop
In�nite Traces

T�ubingen, January 23 - 25, 1992

Volker Diekert, Werner Ebinger
(Editors)

Bericht 4/92

Preface

The workshop In�nite Traces was held at T�ubingen, Hotel Hospiz, from
January 23 to 25, 1992. The idea to this workshop was born at the gen-
eral ASMICS meeting at Menaggio. It is the second ASMICS workshop
on Free Parially Commutative Monoids, the �rst one was held at Kochel
1989. Whereas the Kochel workshop gave an representative overview
over the di�erent activities in the research �eld, the subject of the new
workshop was restricted to the special theme of in�nite traces with the
aim of gathering only few experts.

The workshop was attended by 8 participants from six di�erent Euro-
pean universities and in addition by three guests from the University of
Stuttgart. The scienti�c programme started with lectures on Thursday,
January 23 and ended at noon of Saturday January 25, 1992. In the af-
ternoon of Saturday there was an excursion to the famous Hohenzollern
castle at Hechingen about 30 km South of T�ubingen.

The good working athmosphere at Hotel Hospiz and the active col-
laboration made this meeting to a successful event. We thank all partic-
ipants for their contribution. We would like to express our gratitude to
ASMICS and the Institut f�ur Informatik of the University of Stuttgart
for �nancial and other support. In paricular, we thank Heike Photien
for local help. Last, but not least we thank Frau Elke Veihelmann from
Hotel Hospiz for the warm and kind reception.

Stuttgart May 5, 1992

Volker Diekert Werner Ebinger

2

Programme

Workshop In�nite Traces

T�ubingen, January 23-25, 1992, Hotel Hospiz

Thursday January 23
9.30 { 9.40 Volker Diekert Opening
9.45 { 10.30 Giovanni Pighizzini Operations on asynchronous automata
11.15 { 12.15 Paul Gastin B�uchi asynchronous cellular automata

16.15 { 17.15 Mike Stannett Convergence in trace languages

Friday January 24
9.30 { 10.30 Hendrik Jan Hoogeboom Automata on in�nite words
11.00 { 12.00 Werner Ebinger On logical de�nability of

in�nite trace languages

16.00 { 16.30 Mike Stannett Trans�nite traces
17.45 { 18.30 Wojciech Penczek Temporal logic in trace systems
19.00 { 20.30 Volker Diekert (Chair) Discussion

Saturday January 25
9.30 { 10.30 Antoine Petit Poset properties of complex traces
10.30 { 11.00 Volker Diekert Two extensions of existing models
11.15 { 12.45 Hendrik Jan

Hoogeboom (Chair) Open problems session

14.00 { 17.00 Excursion

3

Contents

Preface 1

Programme of the workshop 2

Participants of the workshop 4

G. Pighizzini: Synthesis of nondeterministic asynchronous automata 5

P. Gastin, A. Petit: B�uchi asynchronous cellular automata 29

M. Stannett: Trace Convergence over in�nite alphabets I 46

M. Stannett: Trace Convergence over in�nite alphabets II 72

J. Engelfriet, H. J. Hoogeboom: Automata with storage on in�-
nite words 82

W. Ebinger: On logical de�nability of !-trace languages 106

M. Kwiatowska, M. Stannett: On trans�nite traces 123

W. Penczek: On temporal logics on trace systems 158

P. Gastin, A. Petit: Poset properties of complex trace languages 205

V. Diekert: Two extensions of the existing trace model 218

V. Diekert, P. Gastin, A. Petit: Rational and Recognizable Com-
plex Trace Languages 225

Open problems 270

4

List of participants

Workshop In�nite Traces, Tbingen, January 23-25,
1992

Hotel Hospiz

Volker Diekert Stuttgart
Werner Ebinger Stuttgart
Hendrik Jan Hoogeboom Leiden
Paul Gastin Paris
Wojtek Penczek Warsaw
Antoine Petit Orsay
Giovanni Pighizzini Milano
Nicoletta Sabadini Milano
Mike Stannett She�eld

Guests

Siegmar Gerber Stuttgart/Leipzig
Anca Muscholl Stuttgart
Klaus Reinhardt1 Stuttgart

1Not on the picture, since he took the photograph.

Synthesis of Nondeterministic Asynchronous

Automata

Giovanni Pighizzini y

Dipartimento di Scienze dell'Informazione

Universit�a degli Studi di Milano

Abstract

In this paper we give an algorithm for building a nondeter-

ministic asynchronous automaton recognizing the trace language

[Maz77] denoted by a given recognizable expression. Moreover, we

show that the number of states of the automaton so obtained is

polynomial in the length of the expression.

1 Introduction

Asynchronous Automata were introduced by W. Zielonka [Zie87] as alge-
braic abstactions of distributed systems. This kind of automata is very
interesting since, as shown in [Zie87, CM88], they characterize the class
of recognizable trace languages [BBMS81], that is the class of languages
accepted by �nite automata over free partially commutative monoids.

Another characterization of the class of recognizable trace languages
were discovered by E. Ochma�nski [Och85], proving that the class of rec-
ognizable trace languages coincides with the minimal class containing
�nite trace languages and closed under union, product and a new oper-
ation called concurrent iteration.

In this paper we give an algorithm for building nondeterministic asyn-
chronous automata accepting the union, the product and the concurrent

yAuthor's address: Dipartimento di Scienze dell'Informazione, Via Comelico 39,

20135 Milano, Italy { Email: pighizzi@imiucca.csi.unimi.it PP Supported in part by

the ESPRIT Basic Research Action No. 3166: \Algebraic and Syntactic Methods in

Computer Science (ASMICS)" and by MURST 40%.

5

6 G. Pighizzini

iteration of trace languages accepted by given nondeterministic asyn-
chronous automata. Our constructions are nontrivial generalizations
of the corresponding constructions for �nite automata (see for exam-
ple [HopUll67]). The number of states of the resulting automaton is
polynomial in the number of states of the given automata. The algo-
rithm for building the asynchronous automaton accepting the concurrent
iteration of the language accepted by a given asynchronous automaton is
obtained using a new interesting result concerning the iteration of trace
languages. More precisely, we prove that the iteration of a trace language
T can be expressed as �nite union of the iterations of suitable languages
T1; : : : ; Tm such that in every language Ti, 1 � i � m, all traces have
exactly the same set of letters.

2 Traces and trace languages

In this section we brie
y recall the basic notions concerning trace lan-
guages.

De�nition 2.1 A concurrent alphabet is a pair (A; �), where A is a

�nite alphabet and � � A � A is a symmetric and irre
exive relation,

called independency relation. If (a; b) 2 � then we will say that a and b
are independent letters; otherwise a and b are dependent. Cliques(A; �)
denotes a (�xed) family of cliques covering the complement of �.

The free partially commutative monoid (fpcm, for short) generated

by (A; �) is de�ned as the initial object in the category of monoids gen-

erated by A and satisfying, besides the usual monoid axioms, the set of

\commutativity laws" fab = ba j a�bg.
A trace is an element of M(A; �). A trace language is a subset of

M(A; �).

It is well{known thatM(A; �) is isomorphic to the quotient structure
A= �� where �� is the least congruence over A� extending the set of
commutativity laws. Then, a trace is an equivalence class of words. The
equivalence class containing the word w 2 A� will be denoted as [w]� or
by [w] if � is understood. A trace x is said to be a pre�x (su�x) of a trace
t if and only if there is a trace z such that t = xz (t = zx, respectively).

Synthesis of nondeterministic asynchronous automata 7

The set of symbols of a trace t 2M(A; �) will be denoted by alph(t),
i.e. alph(�) = ; and alph(ta) = alph(t) [fag for t 2 M(A; �), a 2 A.
Moreover, alph(T) =

S
t2T alph(t) for every T � M(A; �). A subset

� � A is said to be connected if for a; b 2 � we can �nd a0; a1; : : : ; an 2 �
such that a0 = a; an = b and (ai�1; ai) =2 � for i = 1; : : : ; n. A trace t is
connected if alph(t) is connected. A language T is connected if and only
if every trace in T is connected.

A trace u is a component of a trace t if u is connected and there exists
a trace v such that t = uv and alph(u) � alph(v) � �. The set of all
components of a trace t will be denoted as c(t).

We are interested in the usual regular operations (union, product and
iteration, denoted, as usual, with the symbols �, [and �, respectively),
and in the operations on trace languages de�ned as follows:

De�nition 2.2 Let T be a trace language over the fpcm M(A; �), and
� a subset of A. The decomposition of T , denoted by c(T) is the set

of all components of traces in T , i.e. c(T) =
S
t2T c(t). The concurrent

iteration (coiteration, for short) of T is the language T co�� = c(T)�.
The �{restriction of T is the set T� = ft 2 T j alph(t) = �g. Finally,

the restricted iteration of T is the language T� de�ned as follows:

T� =

�
T+ if T = T� for some connected set � � A
; otherwise,

where, as usual, T+ denotes the language T � T �.

The class Reg(A; �) of regular trace languages over (A; �) [Maz77]
is de�ned as the smallest class containing the languages ;, f[�]g, f[a]g,
for all a 2 A, and closed with respect to the regular operations. On
the other hand, the class Rec(A; �) of recognizable trace languages over
(A; �) can be de�ned in a standard way using the notion of M(A; �){
automata [BBMS81]. It is known that if the independency relation �
is not empty then the class Rec(A; �) is properly included in the class
Reg(A; �).

The following characterization of the class Rec(A; �) were obtained
by Ochma�nski [Och85]:

8 G. Pighizzini

Theorem 2.1 For every concurrent alphabet (A; �), the class Rec(A; �)
of recognizable trace languages over (A; �) is the smallest class of trace

languages containing the languages ;, f[�]g, f[a]g, for all a 2 A, and
closed under union, product and coiteration.

As a consequence of the last theorem, every recognizable trace lan-
guage can be denoted by a recognizable expression, i.e. an expression
involving operators representing the operations of union, product and
coiteration of trace languages.

Given a set S, the family of subsets of S will be denoted as P(S).

Lemma 2.1 Let P � P(A) be a family of subsets of A and T �M(A; �)
a trace language. If T is recognizable then also the language

S
�2P T� is

recognizable.

As a consequence of this lemma, for every recognizable language T the
following sets are recognizable: the �{restriction of T (T�, for � � A),
the set of all connected traces in T , the set of all nonconnected traces in
T , the set ft 2 T j
 � alph(t) � �g =

S

���� T�, for
 � � � A.

3 A result on the iteration of trace lan-

guages

In this section we state our main result concerning the iteration of trace
languages.

Given a set � � A, � 6= ;, a composition of � is an ordered partition
of �, i.e. a sequence p1; : : : ; ps, s � 1, of nonempty subsets of � whose
union is equal to � and such that pi \ pj = ; for i 6= j. The set of all
compositions of � will be denoted by �(�).

Theorem 3.1 Given a language T �M(A; �) and a set � � A, consider
the language Z �M(A; �) so de�ned:

Z =

�S
(p1;:::;ps)2�(�)

XYp1XYp2 : : : YpsX; if � 6= ;;

f[�]g; otherwise,

Synthesis of nondeterministic asynchronous automata 9

where X =
S
���(T

�)�, and Ypj =
S
pj����

T�, for j = 1; : : : ; s.

Then, (T �)� = Z+ and alph(t) = � for every trace t 2 Z,i.e. Z = Z�.

Proof. Before of proving the Theorem we remark that in the de�nition
of X the union operation is extended to every subset � strictly included
in �.
For � = ; the proof is trivial. Then, we suppose � 6= ;.

The inclusion Z+ � (T �)� can be easily veri�ed. The converse inclusion,
is a consequence of the following lemma:

Lemma 3.1 For every trace u 2 (T �)�, either u 2 Z or there are traces

u0; u00 such that u = u0u00, u0 2 Z, ju00j < juj and u00 2 (T �)�.

Proof. Since u 2 (T �)� and � 6= ;, we can �nd traces u1; : : : ; um 2 T ,
m � 1 such that u = u1 : : : um. Since alph(u) = �, there is an index
k, 1 � k � m, such that alph(u1 : : : uk) = � and alph(u1 : : : uk�1) 6= �.
We consider the sequence �1; : : : ; �k of subsets of � such that �i =
alph(ui)�

Si�1
j=1 �j , for j = 1; : : : ; k.

Clearly,
Sk
j=1 �j = � and �i \ �j = ;, for i 6= j.

From the sequence �1; : : : ; �k, we extract the subsequence �j1 ; : : : ; �js
by eliminating the empty subsets (observe that js = k). This sequence
is a composition of � and �jr � alph(ujr) � �, for r = 1; : : : ; s. Then,
ujr 2 Y�jr .
By construction, the set � = alph(ujr�1+1 : : : ujr�1) is strictly included
in �, for r = 1; : : : ; s, j0 = 0. On the other hand, ujr�1+1 : : : ujr�1 2 T

�.
So:

ujr�1+1 : : : ujr�1 2 (T �)� �
[
���

(T �)� = X:

This permits us to conclude that u1 : : : uk 2 XY�j1X : : :XY�js and,
observing that [�] 2 X , we have: u1 : : : uk 2 XY�j1X : : :XY�jsX � Z:
Now, we set u0 = u1 : : : uk and u

00 = uk+1 : : : um. Observe that ju
0j > 1

Clearly, alph(u00) � �. If alph(u00) = � then u00 2 (T �)� and ju00j < juj
and the statement is proved. On the other hand, if alph(u00) 6= � then
u00 2 (T �)alph(u00) � X . Recalling that u1 : : : uk 2 XY�j1X : : :XY�js ,
it turns out that u = u0u00 2 (XY�j1X : : :XY�js)X � Z. Then u 2 Z.
This concludes the proof of the lemma.

10 G. Pighizzini

Now, using the previous lemma, it is possible to show by induction
on the length of traces t 2M(A; �) that t 2 (T �)� implies t 2 Z+. Then
(T �)� � Z+.

Corollary 3.1 For every trace language T � M(A; �) there are lan-

guages T1; : : : ; Tm, m � 0, such that T � =
Sm
i=1(Ti)

� and for every i
(i = 1; : : : ;m) there is a subset � of A for which Ti = (Ti)�.

4 Asynchronous Automata

In this section we brie
y recall the de�nition and some properties of
Asynchronous Automata.

De�nition 4.1 A nondeterministic asynchronous automaton (NAA) with
n processes, over the concurrent alphabet (A; �), is a tupleM =

�
P1; : : : ; Pn;

f�aga2A; I; F
�
, where:

� for i = 1; : : : ; n, Pi = (Ai; Si) is the ith process, where Si is its set
of local states and Ai is its local alphabet, such that fA1; : : : ; Ang =
Cliques(A; �);

� let Proc = f1; : : : ; ng, and, for a 2 A, let be Dom(a) = fi 2 Proc j
a 2 Aig the set of (indices of) processes that execute a; then �a :Q
i2Dom(a) Si ! P(

Q
i2Dom(a) Si) is the local transition function

associated to the letter a;

� let S =
Q
i2Proc Si be the set of global states; then I � S is the set

of the initial states and F � S is the set of �nal states.

A global state will be denoted by a boldface letter, as s, while its ith
component as si; given a global state s 2 S and a set of (indices of)
processes � = fi1; : : : ; ikg � Proc, we will denote by sj� the vector whose
components correspond to local states in �, i.e. sj� = (si1 ; : : : ; sik).

The global transition function � : S �M(A; �) ! P(S) of the au-
tomaton M is de�ned on the ground of local transition functions as
follows. For every s;u 2 S, a 2 A, we have: u 2 �(s; a) if and only

Synthesis of nondeterministic asynchronous automata 11

if ujDom(a) 2 �a(sjDom(a)) and u
jDom(a)

= s
jDom(a)

. The extension to

traces can be obtained in a standard way.

The language accepted by the automaton M is de�ned as the set:

T (M) = ft 2M(A; �) j �(I; t) \ F 6= ;g:

If #I = 1 and # (�a(si1 ; : : : ; sik)) � 1 for every (si1 ; : : : ; sik) 2
Q

i2Dom(a)

Si,

a 2 A, the automaton M is said to be a deterministic asynchronous au-
tomaton (DAA).

It is immediate to verify that to every asynchronous automaton can
be associated a �nite state automaton recognizing the same trace lan-
guage. Moreover, given a �nite automaton over the the fpcm M(A; �) it
is possible to construct a DAA with the same concurrent alphabet, ac-
cepting the same language. This result, not at all obvious, were obtained
by W. Zielonka.

Theorem 4.1 [Zie87] The class of languages accepted by deterministic

asynchronous automata over (A; �) coincides with the class Rec(A; �) of
trace languages recognized by M(A; �){automata.

Another proof of Theorem 4.1 can be found in [CM88].

From this point on, we consider a �xed concurrent alphabet (A; �)
with a �xed clique cover Cliques(A; �) = fA1; : : : ; Ang, of the depen-
dency relation. For all notations concerning NAA the reader is referred
to this section. When we deal with di�erent NAA M , M 0 and M 00, we
always suppose that Ai = A0i = A00i and S0i \ S

00
i = ; for i 2 Proc.

4.1 Asynchronous automata with �{moves

Here, we consider an extension of NAA useful in our algorithm. In
the model we will consider every process can change its internal state,
independently from the states of other processes and from the next input
symbol, using an internal transition called �{move. The �{moves are
represented extending every local alphabet with a new symbol. More

12 G. Pighizzini

precisely, we consider the concurrent alphabet (bA; b�) such that bA =
A [fe1; : : : ; eng, where fe1; : : : ; eng \A = ;, and

b� = � [f(ei; ej) j i 6= jg [f(a; ei); (ei; a) j a 2 A�Aig:

Then Cliques(bA; b�) = f bA1; : : : ; bAng, where bAi = Ai [feig, i = 1; : : : ; n.

To every trace t̂ 2 M(bA; b�) we associate the trace (t̂) 2 M(A; �)
obtained erasing from t̂ all letters not belonging to A. Given a languagebT �M(bA; b�) we denote by (bT) the set S

t̂2bT (t̂).
The following theorem states an important relationship between NAA

over M(bA; b�) and NAA over M(A; �).

Theorem 4.2 Let bT �M(bA; b�) be the language accepted by a NAA cM .

Then, there exists a NAA over M(A; �) accepting the language (bT).
Proof (outline). The automaton M is de�ned as follows: Si = bSi,
i = 1; : : : ; n;
I = fs 2 S j 9w 2M(bA; b�) s:t: alph(w) � fe1; : : : ; eng and s 2 b�(bI; w)g;
F = bF ;
for a 2 A with Dom(a) = fi1; : : : ; ikg, s 2

Q
i2Dom(a) Si:

�0a(s) = fu 2
Y

i2Dom(a)

Si j 9s
0;u0 2 bS s:t: s0jDom(a) = s; u0jDom(a) = u;

9w 2M(bA; b�) s:t: alph(w) � fei1 ; : : : ; eikg; and u0 2 b�(s0; aw)g:
It is possible to prove that for t 2M(A; �) it holds: �(I; t) =

S
t̂2 �1(t)

b�(I; t̂).

5 Synthesis of Asynchronous Automata

In this section we give an algorithm for building nondeterministic asyn-
chronous automata from recognizable expressions.

First, we observe that asynchronous automata accepting the lan-
guages ;, f[�]g and f[a]g; a 2 A, can be trivially constructed.

Synthesis of nondeterministic asynchronous automata 13

5.1 Union

The construction of a NAA M accepting the union of the languages
accepted by two given NAA M 0 and M 00 is trivial. Then, we give it
without any comment.

We de�ne M as follows: Si = S0i [S
00
i , i = 1; : : : ; n; I = I 0 [I 00;

F = F 0 [F 00; for a 2 A and s 2
Q
i2Dom(a) Si:

�a(s) =

8<
:
�0a(s) if s 2

Q
i2Dom(a) S

0
i

�00a (s) if s 2
Q
i2Dom(a) S

00
i

; otherwise.

It is easy to verify that for every global state s 2 I and for every trace
t 2 M(A; �) �(s; t) is equal to �0(s; t) (�00(s; t)) if s 2 I 0 (s 2 I 00,
respectively). So, M can simulate the computations of M 0 and M 00 and
it recognizes the language T (M 0) [T (M 00).

5.2 Product

Given two NAA M 0 and M 00, for every s 2 S0, let M 0
s be the NAA

M 0
s = (P 01; : : : ; P

0
n; f�

0
aga2A; I

0; fsg) and for every s 2 S00 let sM
00 be the

NAA sM
00 = (P 001 ; : : : ; P

00
n ; f�

00
aga2A; fsg; F

00). Then T (M 0) � T (M 00) =
[(s0;s00)2F 0�I00T (M

0
s0 � T (s00M

00). This observation permit us of consider-
ing in this section only automata M 0 and M 00 such that #F 0 = 1 and

#I 00 = 1. We will denote by F 0 = (F 01; : : : ; F
0
n) the only �nal state of

M 0 and by I 00 = (I 001 ; : : : ; I
00
n) the only initial state of M 00.

We de�ne the following automaton M with �{moves.

� Si = S0i [S
00
i , i = 1; : : : ; n;

� I = I 0;

� F = F 00;

� for a 2 A with Dom(a) = fi1; : : : ; ikg, sij 2 Sij , j = 1; : : : ; k:

�a(si1 ; : : : ; sik) =

8<
:
�0a(si1 ; : : : ; sik) if sij 2 S

0
ij
; 1 � j � k;

�00a (si1 ; : : : ; sik) if sij 2 S
00
ij
; 1 � j � k;

; otherwise;

14 G. Pighizzini

� for i = 1; : : : ; n, si 2 Si:

�ei(si) =

�
fI 00i g if si = F 0i ;
; otherwise.

Now, we prove that T (M) = T (M 0)f[e1 : : : en]gT (M
00).

First, we get the following immediate remarks.

Remarks

(a) For every trace t 2M(A; �) (i.e., T does not contain any symbol
corresponding to an �{move) and for every s 2 S0: �(s; t) = �0(s; t);

(b) for every trace t 2 M(A; �) and for every s 2 S00: �(s; t) =
�00(s; t);

(c) �(F 0; [e1 : : : en]) = I 00;
(d) for every t 2 T (M) every process Pi on input t executes exactly

one �-move, i.e. jtjei = 1.

Now, we can prove the following theorem.

Theorem 5.1 T (M) = T (M 0)fe1 : : : engT (M
00)

Proof. The inclusion of T (M 0)f[e1 : : : en]gT (M
00) in T (M) is an imme-

diate consequence of previous remarks. In order to prove the converse
inclusion, we consider a trace t 2 T (M). From Remark (d), we can �nd
traces u0; : : : ; un 2 M(A; �) and a permutation (i1; : : : ; in) of (1; : : : ; n)
such that t = u0ei1u1ei2 : : : einun.
Let be 1 � k � n and a 2 alph(uk). Then uk = vaw for suitable traces
v; w 2 M(A; �) and t = u0 : : : eikvaweik+1 : : : un. Since M accepts t,
there are global states s0; s00 2 S such that:

s0 2 �(I 0; u0 : : : eikv),
s00 2 �(s0; a) and
�(s00; weik+1 : : : un) \ F 6= ;.

More precisely, we can observe that both local states s0ij ; s
00
ij
belong to

S0ij , for j > k, while both s0ij ; s
00
ij

belong to S00ij for j � k. Then,

from the de�nition of �a and from �(s0; a) 6= ; it follows that either
Dom(a) � fik+1; : : : ; ing or Dom(a) � fi1; : : : ; ikg. So, we can decom-
pose uk as product of two independent traces u

0
k and u

00
k , s.t. Dom(u0k) �

Synthesis of nondeterministic asynchronous automata 15

fik+1; : : : ; ing andDom(u00k) � fi1; : : : ; ikg. MoreoverDom(u00k)\Dom(u0j)
= ; for j > k. Then, we can rewrite t as u00 : : : u

0
n[e1 : : : en]u

00
0 : : : u

00
n. Fi-

nally, let s 2 I 0, q 2 F 00 be the states corresponding to the start and to
the end of such an accepting computation. More precisely:

s0 2 �(s; u0 : : : eikv) and q 2 �(s00; weik+1 : : : un).
It is easy to observe that:

F 0
2 �0(s; u00 : : : u

0
n) and q 2 �00(I 00; u000 : : : u

00
n).

Then u00 : : : u
0
n 2 T (M

0) and u000 : : : u
00
n 2 T (M

00).

Finally, applying the construction given in the proof of Theorem 4.2, we
can obtain a NAA accepting the language T (M 0)T (M 00).

5.3 Concurrent iteration

In this section, we will show how it is possible to construct a NAA rec-
ognizing the coiteration of the language recognized by a given NAA. To
achieve this goal, we will prove that the coiteration T co�� of a trace lan-
guage T can be expressed by means of the operations of union, product,
decomposition, �{restriction and restricted iteration, applied starting
from T , and we will give algorithms for building asynchronous automata
accepting the decomposition, the �{restriction and the restricted itera-
tion of the language accepted by a given NAA.

First, we recall that T co�� = (c(T))� =
S
��A((c(T))

�)� and we

prove that every language (T co��)� = ((c(T))�)� can be expressed in-
ductively from T and (T co��)� , where � is strictly included in �, using
the above mentioned operations.

For � = ;, we have (T co��); = f[�]g.
Suppose now that � 6= ;. If � is nonconnected, we have (T co��)� =
((c(T))+)�1 �: : :�((c(T))

+)�k , where the sets �1; : : : ; �k are the connected
components of �; then ((c(T))+)�j = (T co��)�j , with �j � �, j =
1; : : : ; k.

On the other hand, if � is connected, then by Theorem 3.1 we
have: (T co��)� = Z+, where Z =

S
(p1;:::;ps)2�(�)

XYp1XYp2 : : : YpsX ,

X =
S
���((c(T))

�)� =
S
���(T

co��)� , and, for j = 1; : : : ; s, Ypj =

16 G. Pighizzini

S
pj����

c(T)� . Moreover, alph(t) = �, for every trace t 2 Z. Then

Z+ = Z�. This implies that (T co��)� = Z�.

As a consequence of this discussion, it is easy to obtain the following
new characterization of the class of recognizable trace languages:

Theorem 5.2 The class Rec(A; �) of recognizable trace languages over
(A; �) is the smallest class containing the languages ;, f[�]g, and f[a]g
(for a 2 A) and closed with respect to the operations of union, product,

decomposition, restricted iteration and �{restriction.

Now, we have to give the constructions of NAA accepting the �{
restriction, the decomposition and the restricted iteration of the trace
language accepted by a given NAA.

5.3.1 Restriction

Here, we brie
y describe how it is possible to build a NAA accepting the
restriction of the language accepted by a given NAA. The idea is essen-
tialy that of keeping in every local state the alphabet of the trace ex-
ecuted so far. More precisely, we consider the set of local states S0i = Si�
P(Ai), i 2 Proc, the set of initial global states I

0 = f((s1; ;); : : : ; (sn; ;)) j
s 2 Ig, and the local transition function �a, a 2 A, such that:

�0a((si1 ; �i1); : : : ; (sik ; �ik)) =

f((ui1 ; �i1 [fag); : : : ; (uik ; �ik [fag)) j

(ui1 ; : : : ; uik) 2 �a(si1 ; : : : ; sik)g;

for sij 2 Sij , �ij � Aij , j = 1; : : : ; k, where fi1; : : : ; ikg = Dom(a).

It is not di�cult to verify that for every trace t 2M(A; �), it holds:

�0(I 0; t) = f((s1; alph(t) \A1); : : : ; (sn; alph(t) \ An)) j s 2 �(I; t)g:

We now de�ne two NAAs Mk = (P 01; : : : ; P
0
n; f�

0
ag; I

0; Fk), k = 1; 2.
M1 is obtained choosing as set of �nal states the set:

F1 = f((s1; �1); : : : ; (sn; �n))j(s1; : : : ; sn) 2 Fg:

Synthesis of nondeterministic asynchronous automata 17

Of course, the language accepted by M1 coincides with the language
accepted by M , i.e., T (M1) = T (M). Fixed a set � � A, in order to
recognize the �{restriction of T (M) we have to accept all traces of T (M)
whose alphabet is exactly �. This goal can be achieved setting

F2 = f((s1; �1); : : : ; (sn; �n))j(s1; : : : ; sn) 2 F and

n[
i=1

�i = �g:

It is clear that T (M2) = (T (M))�.

5.3.2 Decomposition

The technique above explained for the construction of a NAA accepting
the restriction of the language accepted by a given NAA, can be extended
in order to obtain a NAA for the decomposition.

Given a NAA M , we de�ne the sets of local states S0i = Si�P(Ai)�
Si, i = 1; : : : ; n, the set of initial global states I 00 = f((r1; ;; r1); : : : ;
(rn; ;; rn)) j r 2 Ig, and the local transition function, for a 2 A, with
Dom(a) = fi1; : : : ; ikg, sij ; rij 2 Sij , �ij � Aij , j = 1; : : : ; k:

�00a ((si1 ; �i1 ; ri1); : : : ; (sik ; �ik ; rik)) =

f((ui1 ; �1 [fag; ri1); : : : ; (uik ; �k [fag; rik)) j

(ui1 ; : : : ; uik) 2 �a(si1 ; : : : ; sik)g:

Then, for every t 2M(A; �) and for every r 2 S:

�00(((r1; ;; r1); : : : ; (rn; ;; rn)); t) =

= f((s1; alph(t) \A1; r1); : : : ; (sn; alph(t) \ An; rn)) j s 2 �(r; t)g:

Let now t be a trace in the language T (M) = T (M1) and t0 a con-
nected component of t, i.e., t = t0t00, alph(t0) is connected and alph(t0)�
alph(t00) � �, for some t00 2 M(A; �). Then t0 2 c(T (M)). Since t
is accepted by M , we can �nd global states u 2 F , r 2 I such that
u 2 �(r; t). So:

((u1; alph(t) \ A1; r1); : : : ; (un; alph(t) \ An; rn)) 2

�00(((r1; ;; r1); : : : ; (rn; ;; rn)); t):

18 G. Pighizzini

Let be � = Dom(t0) and, for i = 1; : : : ; n:

(si; �i; ri) =

�
(ui; alph(t) \ Ai; ri) if i 2 �,
(ri; ;; ri) otherwise.

It is possible to verify that:

((s1; �1; r1); : : : ; (sn; �n; rn)) 2 �0(((r1; ;; r1); : : : ; (rn; ;; rn)); t
0);

the set
Sn
i=1 �i = alph(t0) is connected and �i � (alph(t) \ Aj) � �,

for i 2 �, j 2 Proc � �. Moreover, it turns out that alph(t000) =
alph(t0), t000t00 2 T (M) and t000 2 c(T (M)); for every trace t000 such that
((s1; �1; r1); : : : ; (sn; �n; rn)) 2 �00(((r1; ;; r1); : : : ; (rn; ;; rn)); t

000).

From this discussion, we can conclude that the NAA M 00 = (P 001 ; : : : ;
P 00n ; f�

00
ag; I

00; F 00), where F 00 is the set:

F 00 = f((s1; �1; r1); : : : ; (sn; �n; rn)) j

r 2 I; 9 u 2 F; t 2M(A; �) s:t: u 2 �(r; t);

9� � Proc s:t: 8i 2 � si = ui; �i = alph(t) \ Ai;

8i =2 � si = ri; �i = ;;

the set

n[
i=1

�i is connected and

�i � (alph(t) \ Aj) � �; for i 2 �; j 2 Proc � �g;

recognizes the decomposition of T (M).

Remark

The condition 9t 2M(A; �) s.t. u 2 �(r; t) is useful to assure that only
connected components of traces of T (M) are accepted. In fact, it can
happen that there is none trace t such that u 2 �(r; t), i.e. u is not
reachable from r, but ((s1; �1; r1); : : : ; (sn; �n; rn)) 2 �0(((r1; ;; r1); : : : ;
(rn; ;; rn)); t

0) for some t0 2 M(A; �) � c(T (M)), and the global state
((s1; �1; r1); : : : ; (sn; �n; rn)) satis�es the other requirements of the def-
inition of F 00.

Synthesis of nondeterministic asynchronous automata 19

5.3.3 Restricted iteration

First, we observe that given a NAA M accepting a trace language T �

M(A; �) we can decide if T = T� for some connected set � � A, by
constructing a �nite state automatonM accepting T and verifying if M
is equivalent to some automaton M� accepting the language T� for a
connected � � A.

Since the asynchronous automaton recognizing the empty language
can be trivially constructed, from this point on we will consider the
problem of building an asynchronous automaton accepting T� = T+,
when T = T� for some connected alphabet � � A.

Let M be a NAA accepting a trace language T , such that T = T�,
for some connected set � � A. There is none loss of generality assuming
that the following conditions hold:

1. � = A;

2. there exists a map � :
Sn
i=1 Si ! P(A) such that if �(I ; t) = s

then �(si) = alph(t)\Ai, for i = 1; : : : ; n, t 2M(A; �) (this means
that the automaton M records the letters of traces. Observe that
if si is a compontent of some �nal state p, then �(si) = Ai).

Suppose in fact that � � A. From the asynchronous automaton M it is
possible to obtain an automaton fM by removing all the processes Pi such
that Ai \ � = ; and all transitions involving letters not belonging to �.
Applying the construction presented below, we will obtain an automatonfM 0 over the concurrent alphabet (�; �\(���)). This automaton can be
easily extended to the concurrent alphabet (A; �), by introducing dummy
processes and null transition functions.
We observe that for the automaton M1 de�ned in Section 5.3.1, the
second condition holds.

For sake of simplicity, �rst we suppose that #I = #F = 1. Then, we
will denote by I = (I1; : : : ; In) and by F = (F1; : : : ; Fn) the only initial
and the only �nal state of M , respectively.

In the classical construction of the �nite automaton N 0 recognizing
the iteration of the language recognized by a given �nite automaton N

20 G. Pighizzini

(see e.g. [HopUll67]), an empty transition from the �nal state to the ini-
tial state is added to N . In our case, we want to construct an automaton
M 0 recognizing all traces of the form t1[e1 : : : en]t2[e1 : : : en] : : : [e1 : : : en]tm
such that m > 0 and ti 2 T (M), i = 1; : : : ;m. However, as shown in
the following example, the immediate generalization to asynchronous
automata of the strategy used for �nite automata does not work.

Example

Let (A; �) be the concurrent alphabet with:

A = fa; b; c; dg; � = f(a; c); (c; a); (a; d); (d; a); (b; d); (d; b)g;

and Cliques(A; �) = fA1; A2; A3g, where A1 = fa; bg, A2 = fb; cg and
A3 = fc; dg. Let M be the asynchronous automaton represented in
Fig. 1. It is not di�cult to see that M accepts the set T (M) = f[acbd]g.

n n n
n n n
n n n

- - � �

- -

@@

��

���

@@R

-
-

@@

��

���

@@R

-
-

I1 r1 F1

I2 r2 F2

I3 r3 F3

a a

b

c

d

Figure 1: automaton M

Moreover, M satis�es the hypothesis stated above (that is � = A and
there exists the map �). Now, if we add, for every i 2 Proc, a transition
from the component Fi of the �nal state to the component Ii of the
initial state, the resulting automaton can recognize a set that properly
includes (T (M))+. The automaton obtained applying this procedure in
our speci�c case, is represented in Figure 2. Such an automaton accepts,
for example, the trace [acbade2e3cbd]. Observe that Dom(b) = f1; 2g,

Synthesis of nondeterministic asynchronous automata 21

but before the last occurrence of b, the process P2 executed one �{move,
while none �{move was execute by P1.

n n n
n n n
n n n

- - � �

- -

@@

��

���

@@R

-
-

@@

��

���

@@R

-
-

I1 r1 F1

I2 r2 F2

I3 r3 F3

a a

b

c

d

�

-

�

-

�

-

e1

e3

e2

Figure 2: automaton constructed introducing an �{move from every com-
ponent of the �nal state to the corresponding component of the initial
state

We will show that, in order to avoid the problems arising in previous
example, we have to circularly rearrange two isomorphic copies of the
given NAA M .

Formally, we de�ne M 0 in the following way:

� S0i = Si � f0; 1g, i = 1; : : : ; n;

� I 0 = f((I1; 0); : : : ; (In; 0))g;

� for a 2 A with Dom(a) = fi1; : : : ; ikg, sij 2 Sij , j = 1; : : : ; k,
bi1 ; : : : ; bik 2 f0; 1g:

�0a((si1 ; bi1); : : : ; (sik ; bik)) =

= f((ui1 ; b); : : : ; (uik ; b)) j (ui1 ; : : : ; uik) 2 �a(si1 ; : : : ; sik)g;

22 G. Pighizzini

if there exists b 2 f0; 1g s.t. bi1 = : : : = bik = b;

�0a((si1 ; bi1); : : : ; (sik ; bik)) = ;

otherwise.

� for i = 1; : : : ; n, si 2 Si, b 2 f0; 1g:

�0ei(si; b) =

�
f(Ii; 1� b)g if si = Fi
; otherwise;

� F 0 = f((F1; b); : : : ; (Fn; b)) j b 2 f0; 1gg.

In Figure 3, the automatonM 0 obtained applying this costruction to the
automaton M of Figure 1, is represented.

n n n
n n n
n n n

- - � �

- -

@@

��

���

@@R

-
-

@@

��

���

@@R

-
-

(I1;0) (r1;0) (F1;0)

(I2;0) (r2;0) (F2;0)

(I3;0) (r3;0) (F3;0)

a a

b

c

d

n n n
n n n
n n n

- - � �

- -

@@

��

���

@@R

-
-

@@

��

���

@@R

-
-

(I1;1) (r1;1) (F1;1)

(I2;1) (r2;1) (F2;1)

(I3;1) (r3;1) (F3;1)

a a

b

c

d

- -

- -

- -

e1

e2

e3

�

-

�

-

�

-

e1

e3

e2

Figure 3: automaton M 0

To prove the correctness of the construction, we will show that the
automaton M 0 so de�ned recognizes the set of the traces of the form
t1[e1 : : : en]t2[e1 : : : en] : : : [e1 : : : en]tm, where m � 1 and ti 2 T , i =
1; : : : ;m.

It is not di�cult to see that every trace of such a form is accepted
by M 0. Then, we prove the converse result.

First, we will prove the following remarks:

Synthesis of nondeterministic asynchronous automata 23

Remarks

(a) Between two �{moves of a process P 0i in an accepting computation,
there is at least one occurence of every letter of Ai.

(b) In every accepting computation of M 0, before of the execution of
a symbol a there is either at least one �{move of every process in Dom(a)
or none �{move of processes in Dom(a).

(c) If some process of M 0 performs an �{move on an accepted trace
then every process performs an �{move.

Remarks (a),(b) and (c) are consequences of the following lemmas, re-
spectively.

Lemma 5.1 If t 2 (bA; b�) is accepted by M 0 and t = t0eit1eit2, for

suitable traces t0; t1; t2 2 (bA; b�), then Ai � alph(t0), Ai � alph(t1),
Ai � alph(t2).

Proof. We prove that Ai � alph(t1). The other proofs are very similar.
First, we suppose that ei =2 alph(t1). Since t 2 T (M 0), we can �nd
suitable global states of M 0 such that:

((s1; b1); : : : ; (sn; bn)) 2 �0(I 0; t0ei),
((u1; b

0
1); : : : ; (un; b

0
n)) 2 �0(((s1; b1); : : : ; (sn; bn)); t1) and

�0(((u1; b
0
1); : : : ; (un; b

0
n)); eit2) \ F

0 6= ;.
Since ei =2 alph(t1), we have bi = b0i. Moreover (si; bi) is reached after
one �{move of the process Pi. Then si = Ii and �(si) = ;.
Since �ei(ui; b

0
i) 6= ;, we have ui = Fi. Then �(ui) = Ai. This implies

that Ai � alph(t1).

If ei 2 alph(t1), then there are traces v1; : : : ; vm such that t1 =
v1eiv2ei : : : eivm and ei =2 alph(vj), j = 1; : : : ;m. Using the previous
argument it can be shown that Ai � alph(vj).

Lemma 5.2 Let t 2M(bA; b�) be a trace accepted by the automaton M 0,

with t = ueivaw, for some u; v; w 2M(bA; b�), a 2 A, i 2 Proc, such that

ei =2 alph(u), and let j 2 Proc be an index such that ej =2 alph(ueiv).
Then fi; jg cannot be a subset of Dom(a).

24 G. Pighizzini

Proof. Since t 2 T (M 0), there are s; s0; s00 2 S, b1; : : : ; bn; b
0
1; : : : ; b

0
n;

b001 ; : : : ; b
00
n 2 f0; 1g such that:

((s1; b1); : : : ; (sn; bn)) 2 �0(((I1; 0); : : : ; (In; 0)); uei);
((s01; b

0
1); : : : ; (s

0
n; b

0
n)) 2 �0(((s1; b1); : : : ; (sn; bn)); v);

((s001 ; b
00
1); : : : ; (s

00
n; b

00
n)) 2 �0(((s01; b

0
1); : : : ; (s

0
n; b

0
n)); a);

�0(((s001 ; b
00
1); : : : ; (s

00
n; b

00
n)); w) \ F

0 6= ;:
If both i; j belong to Dom(a) then from �(((s01; b

0
1); : : : ; (s

0
n; b

0
n)); a) 6= ;

and from ej =2 alph(uv), it turns out that b0i = b0j = 0. On the other
hand, observing that after the �{move of the process Pi it holds bi = 1
and si = Ii, we can conclude that ei 2 alph(v), i.e. v = z0eiz

00 for suitable
traces z0 and z00. From Lemma 5.1 we have a 2 alph(z0) and jvj 6= 0.
Then t = ueiv1aw1, for suitable traces v1; w1, with jv1j < jvj. We can
iterate the proof for this decomposition. So, we will �nd a countable
sequence of traces v1; v2; : : : such that for every k jvkj < jvk�1j and
jvkj 6= 0. This is contradictory. Then Dom(a) cannot contain both
indices i and j.

Lemma 5.3 Let t 2M(bA; b�) be a trace accepted by the automaton M 0.

If there is an index i 2 Proc such that ei 2 alph(t), then ej 2 alph(t),
for every j 2 Proc.

Proof. First, we prove the result for Ai \ Aj 6= ;. Since t is accepted,
there exists a global state ((p1; b); : : : ; (pn; b)) belonging to �

0(I 0; t)\F 0.
Suppose that ej =2 alph(t). This means that the component Pj does
not perform �{moves and then b = 0. On the other hand ei 2 alph(t).
Then, this �{move of the component Pi changes the last component of
the local state of Pi from 0 to 1. So, at least another �{move must be
performed by Pi in order to have b = 0. Then, we can decompose t
as t = t0eit1eit2. As a consequence of Lemma 5.1, for every a letter
a 2 Ai \ Aj , we have a 2 alph(t1). From Lemma 5.2, it turns out that
fi; jg cannot be a subset of Dom(a). This is a contradiction. Then we
conclude that ei 2 alph(t).

To prove the lemma in the general case, we recall that the alphabet
A is connected. Then, we can �nd a sequence Pi0 ; : : : ; Pim of processes
such that i0 = i, im = j and Aik�1 \ Aik 6= ;, k = 1; : : : ;m. The

Synthesis of nondeterministic asynchronous automata 25

proof of the lemma follows applying the previous argument to every pair
(ik�1; ik).

Now, we can prove the correctness of the construction stated here.

Theorem 5.3 Let M 0 the NAA above de�ned. Then:

T (M 0) = ft1[e1 : : : en]t2 : : : tm�1[e1 : : : en]tm j

m � 1 and t1; : : : ; tm 2 T (M)g:

Proof. The di�cult point is to prove that every trace accepted by the au-
tomatonM 0 has the form t1[e1 : : : en]t2 : : : tm�1[e1 : : : en]tm, with m � 1,
ti 2 T , i = 1; : : : ;m. First, we observe that every trace t accepted by
M 0 without �-moves, i.e. alph(t) � A, is accepted also by the automaton
M . Then, t 2 T (M)+. Suppose now that t is accepted using at least
one �-move. From Remark (c) it turns out that every process executes
at least one �-move, i.e. ei 2 alph(t) for every i 2 Proc. So, we can
decompose t as u0ei1u1ei2 : : : einun where (i1; : : : ; in) is a permutation
of (1; : : : ; n) and eij =2 alph(uk) for k < j.
By Remark (b), eitherDom(a) � fi1; : : : ; ikg orDom(a) � fik+1; : : : ; ing,
for every letter a 2 alph(uk), k = 1; : : : ; n. Then, uk = u0ku

00
k , where

Dom(u0k) � fik+1; : : : ; ing and Dom(u00k) � fi1; : : : ; ikg. It is easy to
verify that t = u00 : : : u

0
n[e1 : : : en]u

00
0 : : : u

00
n.

Let be t0 = u00 : : : u
0
n and t00 = u000 : : : u

00
n. We now brie
y prove that

t0 2 T (M) and t00 2 T (M 0). By de�nition of M 0, we can �nd b 2 f0; 1g
such that:

((F1; b); : : : ; (Fn; b)) 2 �0(((I1; 0); : : : ; (In; 0)); t
0[e1 : : : en]t

00):
More precisely, observing the de�nition of �0ei , we obtain:

((F1; 0); : : : ; (Fn; 0)) 2 �0(((I1; 0); : : : ; (In; 0)); t
0);

((I1; 1); : : : ; (In; 1)) 2 �0(((F1; 0); : : : ; (Fn; 0)); [e1 : : : en]);
((F1; b); : : : ; (Fn; b)) 2 �0(((I1; 1); : : : ; (In; 1)); t

00).
Since ei =2 alph(t

0), i = 1; : : : ; n, it turns out that F 2 �(I ; t0) and then
t0 2 T (M). Furthermore, from these relationships, we can easily obtain:

((F1; 1� b); : : : ; (Fn; 1� b)) 2 �0(((I1; 0); : : : ; (In; 0)); t
00),

that implies t00 2 T (M 0).

At this point, iterating the previous proof on the trace t00 it turns out

26 G. Pighizzini

that t is of the form t1[e1 : : : en]t2 : : : tm�1[e1 : : : en]tm, with tj 2 T (M),
j = 1; : : : ;m.

Applying Theorem 4.2 to the automaton M 0, we can obtain a NAA
accepting the language T (M)+.

Now, we brie
y discuss how it is possible to generalize the previous
construction when there are no restrictions on the cardinality of sets I
and F .

The idea is very similar to particular case above considered. When a
process Pi reaches a component of a �nal state, it can change its state,
using an �{move, to go in a component of an initial state.

The problem is to assure that all processes chose the same �nal and
the same initial global state. This problem is solved in this way. At the
start of the computation all processes are synchronized and an initial
state s 2 I and a �nal state p 2 F are chosen. Then, the computa-
tion starts and every process simulates the corresponding process of M ,
keeping the pair (s;p) in its local state.

When the process Pi arrives to simulate the local state pi of M , it
can perform an empty transition choosing a new pair (s0;p0) 2 I � F .

When a symbol a 2 A is executed, all processes in Dom(a) are syn-
chronized and they compare the pairs of initial and �nal states contained
in their proper memories. If these pairs do not coincide then none tran-
sition is possible. Since all traces in the language accepted by M are
connected and since the automaton M records the letters of traces, this
method assures that in an accepting computation of M 0 all kth empty
transitions of processes correspond to the same initial and to the same
�nal state. Formally, the automaton M is de�ned as follows:

� S0i = Si � I � F � f0; 1g, i = 1; : : : ; n;

� I 0 = f((s1; s;p; 0); : : : ; (sn; s;p; 0)) j s 2 I;p 2 Fg;

� for a 2 A with Dom(a) = fi1; : : : ; ikg, sj 2 Sij , j = 1; : : : ; k,
q1; : : : ; qk 2 I , p1; : : : ;pk 2 F , b1; : : : ; bk 2 f0; 1g:

�0a((s1; q1;p1; b1); : : : ; (sk; qk;pk; bk)) =

= f((u1; q;p; b); : : : ; (uk; q;p; b)) j (u1; : : : ; uk) 2 �a(s1; : : : ; sk)g;

Synthesis of nondeterministic asynchronous automata 27

if there are q 2 I , p 2 F , b 2 f0; 1g, s.t. q1 = : : : = qk = q,
p1 = : : : = pk = p, and b1 = : : : = bk = b;

�0a((s1; q1;p1; b1); : : : ; (sk; qk;pk; bk)) = ;;

otherwise.

� for i = 1; : : : ; n, si 2 Si, q 2 I , p 2 F , b 2 f0; 1g:

�0ei(si; q;p; b) =

�
f(q0i; q

0;p0; 1� b) j q0 2 I;p0 2 Fg if si = pi
; otherwise;

� F 0 = f((p1; q;p; b); : : : ; (pn; q;p; b)) j q 2 I;p 2 F; b 2 f0; 1gg.

Previous remarks (a), (b) and (c) hold also in this case. The correctness
proof given in Theorem 5.3 can be easily generalized.

6 Conclusion

We conclude the paper with some considerations on the complexity of
asynchronous automata obtained applying our constructions.

It is not di�cult to see that all constructions given in the paper
(union, product, restriction, decomposition and restricted iteration) pro-
duce NAAs with a polynomial number of states with respect to the num-
ber of states of the NAAs given as input.

Moreover, it is possible to observe that for a �xed concurrent alpha-
bet (A; �) the coiteration T co�� of a trace language T can be denoted
as explained in Section 5.3 using an expression involving operations
of union, product, decomposition, restriction and restricted iteration,
whose length is polynomial in the length of the recognizable expression
given for T . Then, using the algorithms presented in this paper, for every
recognizable expression it is possible to build a nondeterministic asyn-
chronous automaton recognizing the language denoted by it and whose
number of (global and local) states is polynomial in the length of the
given expression.

28 G. Pighizzini

References

[BBMS81] A. Bertoni, M. Brambilla, G. Mauri, and N. Sabadini. An ap-
plication of the theory of free partially commutative monoids:
asymptotic densities of trace languages. In Proc. 10th MFCS,
Lecture Notes in Computer Science 118, pages 205{215, 1981.

[CM88] R. Cori and Y. M�etivier. Approximation of a trace, asyn-
chronous automata and the ordering of events in a distributed
system. In Proc. 15th ICALP, Lecture Notes in Computer
Science 317, pages 147{161, 1988.

[HU79] J. Hopcroft and J. Ullman. Introduction to automata theory,

languages and computations. Addison{Wesley, 1979.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their in-
terpretations. Technical Report DAIMI Rep. PB{78, Aarhus
University, 1977.

[Och85] E. Ochma�nski. Regular behaviour of concurrent systems.
EATCS Bullettin, 27:56{67, 1985.

[Zie87] W. Zielonka. Notes on �nite asynchronous automata. RAIRO
Inf. Theor., 21:99{135, 1987.

29

30 P. Gastin, A. Petit

B�uchi asynchronous cellular automata 31

32 P. Gastin, A. Petit

B�uchi asynchronous cellular automata 33

34 P. Gastin, A. Petit

B�uchi asynchronous cellular automata 35

36 P. Gastin, A. Petit

B�uchi asynchronous cellular automata 37

38 P. Gastin, A. Petit

B�uchi asynchronous cellular automata 39

40 P. Gastin, A. Petit

B�uchi asynchronous cellular automata 41

42 P. Gastin, A. Petit

B�uchi asynchronous cellular automata 43

44 P. Gastin, A. Petit

B�uchi asynchronous cellular automata 45

46

Trace Convergence over in�nite alphabets I 47

48 M. Stannett

Trace Convergence over in�nite alphabets I 49

50 M. Stannett

Trace Convergence over in�nite alphabets I 51

52 M. Stannett

Trace Convergence over in�nite alphabets I 53

54 M. Stannett

Trace Convergence over in�nite alphabets I 55

56 M. Stannett

Trace Convergence over in�nite alphabets I 57

58 M. Stannett

Trace Convergence over in�nite alphabets I 59

60 M. Stannett

Trace Convergence over in�nite alphabets I 61

62 M. Stannett

Trace Convergence over in�nite alphabets I 63

64 M. Stannett

Trace Convergence over in�nite alphabets I 65

66 M. Stannett

Trace Convergence over in�nite alphabets I 67

68 M. Stannett

Trace Convergence over in�nite alphabets I 69

70 M. Stannett

Trace Convergence over in�nite alphabets I 71

72

Trace Convergence over in�nite alphabets II 73

74 M. Stannett

Trace Convergence over in�nite alphabets II 75

76 M. Stannett

Trace Convergence over in�nite alphabets II 77

78 M. Stannett

Trace Convergence over in�nite alphabets II 79

80 M. Stannett

Trace Convergence over in�nite alphabets II 81

Automata with Storage on In�nite Words
(Extended Abstract) 1

Joost Engelfriet and Hendrik Jan Hoogeboom

Leiden University, Department of Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract. For any storage type X, the !-languages accepted
by X-automata are investigated. Six accepting conditions
(including those introduced by Landweber) are compared for
X-automata. The inclusions between the corresponding six
families of !-languages are essentially the same as for �nite
state automata. Apart from unrestricted automata also real-
time and deterministic automata are considered. The main
tools for this investigation are (1) a characterization of the
!-languages accepted by X-automata in terms of (inverse)
X-transductions of �nite state !-languages, and (2) the exis-
tence of topological upper bounds on some of the families of
accepted !-languages (independent of the storage type X).

Introduction

An automaton A that is meant to work on �nite input words may as
well be given an in�nite input word u: it works on u as if u were a `very

1This paper was previously presented at ICALP'89 and appeared in
the proceedings of the conference ([EngHoo89]). A full version of the
paper is scheduled to be published in Theoretical Computer Science in
the spring of 1993.

82

Automata with storage on in�nite words 83

large' �nite word. The essential di�erence is in the way that A accepts
u; obviously one cannot use acceptance by �nal state as for �nite words.

The �rst one to use automata to accept in�nite words (with a par-
ticular acceptance criterion) was B�uchi (in solving a decision problem
in logic, [B�uc60]). Another criterion was given by Muller ([Mul63]):A
deterministic �nite state automaton A accepts an in�nite word u in the
fashion of Muller if the set of states entered by A in�nitely often during
its computation on u belongs to a given family of `�nal' state sets. This
family replaces the usual set of �nal states. Five criteria for accepting
in�nite words were proposed by Landweber in [Lan69], including those
introduced by B�uchi and Muller, and he characterized the �ve corre-
sponding families of in�nitary languages accepted by deterministic �nite
state automata in a topological setting.

The relative power of these �ve acceptance criteria was subsequently
compared for (nondeterministic) �nite state automata ([Hos72,
StaWag74]), pushdown automata ([Lin76, CohGol77, CohGol78a]), Tur-
ing machines ([WagSta77, CohGol78b]) and Petri nets ([Val83]). If one
compares the results of these investigations, one notices some striking
similarities (see the survey [Sta87]). It seems that the acceptance types
have the same relative power independently of the storage used by the
automaton involved. This observation is the main motivation for the
present paper. Using a general framework we want to explain the sim-
ilarities between the results obtained for the various speci�c types of
automata (as is done for automata on �nite words in [Gin75]). Our ab-
stract model of storage is called a storage type. It describes the storage
con�gurations together with the tests and transformations that can be
applied to them. Automata equipped with a speci�c storage X (and a
one-way input-tape) are called X-automata. We study six (rather than
�ve) families of !-languages that can be accepted by an X-automaton
using six di�erent acceptance criteria on the sequence of states entered
by the automaton during a computation. (It should be noted that accep-
tance can also be de�ned in terms of the storage con�gurations rather
than the states, see [Sta77], but this will give quite di�erent results, cf.
[Val83]). A possible approach to comparing the six acceptance criteria
is by giving constructions on automata that show how one acceptance

84 J. Engelfriet, H. J. Hoogeboom

type can be simulated by another. In fact, as observed in [CohGol77,
Val83], it is not too di�cult to generalize most of the constructions given
in [Hos72] for �nite state automata, simply by `adding' storage instruc-
tions to the transitions. Hence it is not much of a surprise that the
inclusions between the six families for X-automata are similar to those
formed by the families for �nite state automata. Of course, this is a
rather boring and time-consuming approach. Also, if one wants to study
X-automata satisfying a particular property (as, e.g., being real-time
or deterministic), it is necessary to check for each of the constructions
whether it preserves the property under consideration (and if not, to
adapt the construction). We use a more e�cient way of transferring the
results for �nite state automata to arbitrary storages. Our main tool is a
characterization of the !-languages accepted by X-automata in terms of
(in�nitary) transductions applied to the !-languages accepted by �nite
state automata. Since we do not use the acceptance criteria to de�ne
transductions, this single result can be used to show that the inclusions
that hold between the six families of �nite state !-languages are also
valid for X-automata. This of course does not indicate whether or not
an inclusion is strict. We show that the topological upper-bounds on the
complexity of accepted languages as given by Landweber for determin-
istic �nite state automata can be generalized to X-automata (as already
suggested in [Lan69]). This implies that for deterministic X-automata
the inclusions are always strict (and the same holds for real-time au-
tomata).

In Section 3 we study both arbitrary and deterministic X-automata.
First we present the above-mentioned characterization of the correspond-
ing families of !-languages (Theorem 3.3). From this we obtain the hi-
erarchy for !-languages accepted by X-automata (Theorem 3.5). For
speci�c storage types the hierarchy can be strict or it can collapse into a
single family. We give a su�cient condition for such a collapse (Theorem
3.7). Real-time automata are investigated in Section 4. The inclusions
between the families of !-languages accepted by real-time automata are
very similar to those found in Section 3 (see Theorem 4.4). Here however,
the inclusions are always strict. The counter-examples are obtained by
establishing topological upper-bounds that are independent of the stor-

Automata with storage on in�nite words 85

age type. We return to deterministic automata in Section 5. Again we
obtain topological upper-bounds on the accepted !-languages. Together
with our basic characterization (given in Section 3) this is used to estab-
lish a proper hierarchy similar to the hierarchy for deterministic �nite
state automata (Theorem 5.4). In the �nal section we study a storage
type of `maximal power'. The families of !-languages accepted by au-
tomata of this type belong to the lower levels of the topological hierarchy
of Borel sets (Theorems 6.3 and 6.6). These results are similar to those
obtained in [Arn83] and [Sta84] for transition systems.

1. Preliminaries

We assume the reader to be familiar with the basic notions of in�ni-
tary languages, e.g., as discussed in one of the following surveys and
introductions: [Eil74, HooRoz86, Sta87, Tho88].

The symbol � (�) denotes set inclusion (strict set inclusion, respec-
tively); in diagrams we will use) (and !, respectively). We use u to
indicate non-disjointness of sets, i.e., U u V if U \ V 6= ;.

As usual, �� and �! denote the sets of �nite words and in�nite words
(or !-words) over the alphabet �. Their subsets are called (�nitary)
languages and in�nitary languages (or !-languages), respectively. The
empty word is denoted by �. u[n] denotes the pre�x of length n of a (!-
)word u (when de�ned), and pref (v) denotes the set of (�nite) pre�xes
of v. For a (!-)language K, pref (K) = [fpref (u)ju 2 Kg. An in�nite
sequence of �nite words hxiii2N such that each xi is a pre�x of xi+1
de�nes a unique element u of �� [�! by taking the `least upper bound'
of the sequence, i.e., the shortest u that has each xi as a pre�x. u will
be denoted by lubhxiii2N.

Let K � �� be a �nitary language. The !-power of K, denoted by
K!, is fu 2 �!ju = lubhxiii2N, where x0 2 K and xi+1 2 xi � K for
i 2 Ng, the adherence of K, denoted adh(K), is fu 2 �!jpref (u) �
pref (K)g, and the limit of K, denoted lim(K), is fu 2 �!jpref (u) \K
is in�niteg.

86 J. Engelfriet, H. J. Hoogeboom

�! can be turned into a (compact) metric space by de�ning the
distance function d(u; v) = 2�minfnju[n]6=v[n]g for u 6= v. We will use
G, and F to denote the family of open, respectively closed, sets in this
topological space. Furthermore, G� is the family of denumerable intersec-
tions of open sets, and F� is the family of denumerable unions of closed
sets. There is a close correspondence between the !-languages in these
families (that form the lower levels of the Borel hierarchy) and the lan-
guage theoretical operations given above (see, e.g., [Lan69, StaWag74,
BoaNiv80]).

1.1. Proposition. Let L � �!. Then

(1) L 2 G if and only if L = K ��! for some K � ��,

(2) L 2 F if and only if L = adh(K) for some K � ��, and

(3) L 2 G� if and only if L = lim(K) for some K � ��.

1.2. Proposition. 0�1 � f0; 1g! 2 G � F , f0; 1g� � 1! 2 F� � G�, and
(0�1)! 2 G� �F�.

2. Automata on !-Words: De�nitions

For �nite words, the general notion of an automaton, using some kind
of storage, was introduced in [HopUll67, Sco67, GinGre69]. The re-
sulting AFA theory (Abstract Families of Automata) provides a useful
framework for a uniform investigation of di�erent types of automata (see
[Gin75]). Here we attempt to set up a similar theory for automata on
in�nite words (see also [Sta77]). The particular variation of AFA theory
that we use here is similar to the one in [EngVog87].

2.1. Storage and Automata

A storage type is a 5-tuple X = (C;Cin; P; F; �), where C is a set of
(storage) con�gurations, Cin � C is a set of initial (storage) con�gura-

Automata with storage on in�nite words 87

tions, P is a set of predicate symbols, F is a set of instruction symbols,
P \ F = ;, and � is a meaning function which assigns to each p 2 P a
(total) mapping �(p) : C ! ftrue; falseg, and to each f 2 F a partial
function �(f) : C ! C. The set of all Boolean expressions over P , using
the Boolean connectives ^, _ and :, and the constants true and false,
is denoted by BE(P); elements of this set are called tests. The meaning
function is extended to BE(P) in the obvious way. We extend � also
from F to F � by de�ning �(�) to be the identity on C and by setting
�(f�) = �(�) � �(f) for � 2 F � and f 2 F .

2.1. Example. The storage type push-down, denoted PD, is de�ned
by PD = (C;Cin; P; F; �), where C = �+, for a �xed in�nite set �
(of push-down symbols), Cin = �, P = ftop =
j
 2 �g [fbottomg,
F = fpush(
)j
 2 �g [fpopg, and, for c = au with a 2 � and u 2

��, �(top =
)(c) = true i�
 = a, �(bottom)(c) = true i� u = �,
�(push(
))(c) =
c, �(pop)(c) = u if u 6= �, and unde�ned otherwise.

The storage type counter is CTR = (N; f0g; fzerog; fincr ; decrg; �),
where, for n 2 N, �(zero)(n) = true i� n = 0, �(incr)(n) = n + 1, and
�(decr)(n) = n� 1 if n � 1, and unde�ned if n = 0.

In the rest of this paper let X = (C;Cin; P; F; �) be an arbitrary
storage type.

An X-transducer is a construct A = (Q;�; �; qin; cin;�), where Q is
the �nite set of states, �(�) is the input (output) alphabet, qin 2 Q is the
initial state, cin 2 Cin is the initial storage con�guration, and the �nite
control � is a �nite subset of Q� (�[f�g)�BE(P)�Q�F ����, the
elements of which are called transitions.

We say that A is real-time if � � Q��� BE(P)�Q� F � ���.

A is deterministic if, for every two di�erent transitions (qi; ai; �i; q
0
i; �i; wi),

i = 1; 2, from � with q1 = q2, either a1 6= a2 and a1; a2 6= � or
�(�1 ^ �2)(c) = false for every c 2 C.

An instantaneous description (ID) of A is an element (q; x; c; y) of
Q � �� � C ���; it intuitively means that A is in state q, has read x
from the input tape, has c as its storage con�guration, and has written
y on its output tape. The step relation `A of A, is the binary relation

88 J. Engelfriet, H. J. Hoogeboom

on Q����C ��� de�ned by (q; x; c; y) `A (q0; x0; c0; y0) if there exists
a transition (q; a; �; q0; �; w) 2 � such that �(�)(c) = true, c0 = �(�)(c),
x0 = xa, and y0 = yw. Intuitively this means that if A is in state q and
has the storage con�guration c, it may use the transition (q; a; �; q0; �; w)
provided c satis�es the test �, and then it changes its state to q0, reads a
from its input tape, performs � to the storage con�guration, and writes
w on its output tape.

A (in�nite) run of A is an in�nite sequence r = h�iii2N of ID's such
that �0 = (qin;�; cin;�), and �i `A �i+1 for each i 2 N; it is a run on

input lubhxiii2N, and with output lubhyiii2N where �i = (qi; xi; ci; yi).
The sequence hqiii2N is called the state sequence of the run r.

The (in�nitary) transduction of A, denoted T (A), is de�ned as f(u; v)
2 �! � �! j there is a run of A on input u with output vg. If A has
no run on an in�nite input word with a �nite output word, then A is
called !-preserving. XT (XT!) denotes the family of in�nitary trans-
ductions of (!-preserving) X-transducers. The corresponding families of
transductions of deterministic or real-time X-transducers are denoted by
d-XT (d-XT!) and r-XT (r-XT!), respectively.

2.2. (�,�)-Accepting In�nite Runs

We will now discuss how an X-transducer A may be used to accept !-
languages. Since, in this case, we are not interested in A's output, A
is called an X-automaton. We drop the output component from A, and
from its transitions and ID's.

Let Q be a set and let f be a mapping N ! Q (i.e., an in�nite
sequence hf(i)i

i2N over Q). The range of f is the set ran(f) = fq 2
Qjf(i) = q for some i 2 Ng; the in�nity set of f is the set in(f) = fq 2
Qjf(i) = q for in�nitely many i 2 Ng.

Let D � 2Q be a family of subsets of Q. Let � be one of the relations
�, u or =, and let � be either ran or in. We say that an in�nite sequence
f : N! Q is (�; �)-accepting with respect to D if there exists a set D 2 D

such that �(f)�D.

The relation between the notation we use (see [StaWag74]) and the

Automata with storage on in�nite words 89

�ve types of `i-acceptance' as originally de�ned in [Lan69] are given in
the following table, together with a short intuitive name for some of these
types of acceptance. (ran ;=)-acceptance, not considered by Landweber,
was �rst studied in [StaWag74].

(ran;u) 1-accepting at least once
(ran;�) 10-accepting always
(ran;=) |
(in;u) 2-accepting in�nitely often (B�uchi)
(in ;�) 20-accepting from some moment on
(in ;=) 3-accepting (Muller)

Let A = (Q;�; �; qin; cin) be an X-automaton, and let D � 2Q be a
family of subsets of Q. A run of A is called (�; �)-accepting with respect

to D if its state sequence is (�; �)-accepting with respect to D.

The !-language (�; �)-accepted by A with respect to D, denoted by
L�;�(A;D), is the set fu 2 �!j there is a run of A on input u that is
(�; �)-accepting with respect to Dg. The family of !-languages (�; �)-
accepted by X-automata (with respect to some family of state sets) is
denoted by XL�;�. Again we use the pre�xes d- or r- if we restrict our
considerations to deterministic or real-time automata. Finally, for a set
D of states of A, the (�nitary) language L�(A; D) accepted by A with

respect to D is the set fx 2 ��j(qin;�; cin) `
�
A (q; x; c) for some q 2 D

and c 2 Cg, where `�A is the re
exive and transitive closure of `A.

In the literature it is sometimes required that A is `total', e.g., in
the sense that A has a run on every input word. We will not consider
totality. Requiring totality changes (in general) the class XL�;�.

A special storage type is used to model �nite state automata. The
trivial storage type FS equals (fc0g; fc0g; ;; ;; ;) for some arbitrary object
c0. Since ;� = f�g the transitions of an FS-automaton can be assumed
to be of the form (q; a; true; q0;�).

2.2. Example. LetA be the (deterministic and real-time) FS-automaton

90 J. Engelfriet, H. J. Hoogeboom

with state set Q = fq0; q1g, input alphabet � = f0; 1g, initial state q0,
and transitions (qi; j; true; qj ;�) for i; j 2 f0; 1g. Let D = ffq1gg, and
Q = fQg. Then

Lran;u(A;D) = 0�1 � f0; 1g!

Lran;u(A;Q) = Lran;�(A;Q) = f0; 1g!,
Lran;�(A;D) = Lran;=(A;D) = ;,

Lran;=(A;Q) = 0�1 � f0; 1g!,
Lin;u(A;D) = (0�1)!,

Lin;u(A;Q) = Lin;�(A;Q) = f0; 1g!,
Lin;�(A;D) = Lin;=(A;D) = f0; 1g� � 1!,

Lin;=(A;Q) = (0�11�0)!.

It is customary in the literature to de�ne regular !-languages using
real-time �nite state automata. It can be shown that this restriction
does not in
uence the families of (�; �)-accepted �nite state !-languages,
i.e., FSL�;� = r-FSL�;� and d-FSL�;� = dr-FSL�;�. Hence we have the
following well-known relationships for these families (see, e.g., [Wag79]
for references). Note that ! denotes proper inclusion.

2.3. Proposition.

FSLin;u

k

FSLran;� FSLran;u = FSLran;= = FSLin;� FSLin;=

k k k

k d-FSLin;� k

d-FSLran;� ! d-FSLran;u ! d-FSLran;=
%
&

&
% d-FSLin;=

d-FSLin;u

Note that when requiring totality the diagram is slightly di�erent,
caused by the fact that FSLran;u and d-FSLran;u become smaller.

Finally we need (but do not de�ne formally) the notion of the product

Automata with storage on in�nite words 91

of two storage types X1 and X2, denoted by X1�X2. It combines the
power of the two storages X1 and X2 working in an independent fashion.
Thus, e.g., the CTR�CTR-automaton is the well-known two-counter
automaton. The product of n storage types, all equal to X, is denoted by
Xn. An X�-automaton is an Xn-automaton for some n 2 N. Thus, e.g.,
each CTR�-automaton has an arbitrary (but �xed) number of counters.

3. The Basic Characterization

In the next lemma we show how to separate an X-automaton in two
phases: a phase in which the input is processed, and an acceptance
phase. The �rst phase can be realized by an X-transducer (without
acceptance criterion), and the second phase by a �nite state automaton.

3.1. Lemma. XL�;� � XT�1! (d-FSL�;�) and
d-XL�;� � d-XT�1! (d-FSL�;�).

Proof. Let A be an X-automaton with input alphabet � and state set
Q; let D be a family of state sets for A. Consider the in�nitary lan-
guage K(�; �) consisting of the !-words over Q that are (�; �)-accepting
sequences wrt. D. It belongs to d-FSL�;� since it is (�; �)-accepted by
the deterministic �nite state automaton B = (Q[fqog; Q; �1; q

o; c0) with
qo 62 Q and �1 = f(q0; q; true; q;�)jq0 2 Q[fqog; q 2 Qg. One easily sees
that for r 2 Q!, the run r1 of B on r satis�es ran(r1) = ran(r)[fqog and
in(r1) = in(r). ThusK(�; �) = L�;�(B;D

o) withDo = fD[fqogjD 2 Dg

if (�; �) equals (ran;=) or (ran ;�), and K(�; �) = L�;�(B;D) in the four
remaining cases.

Modify A such that at each step it outputs its state, i.e., take � = Q
and replace every transition (q; a; �; q0; �) by the transition (q; a; �; q0; �; q).
This gives an (!-preserving) X-transducerM that maps each !-word u
over � onto the state sequences of the runs of A on u. u is (�; �)-
accepted by A if one of these state sequences belongs to K(�; �). Hence,
L�;�(A;D) = fu 2 �!j(u; r) 2 T (M) for some r 2 K(�; �)g = T (M)�1

(K(�; �)).

92 J. Engelfriet, H. J. Hoogeboom

3.2. Lemma. For storage types X1 and X2, X1T
�1
! (X2L�;�) � (X1 �

X2)L�;� and d-X1T
�1
! (d-X2L�;�) � d-(X1 �X2)L�;�.

Proof. LetM be an !-preserving X1-transducer with input alphabet �,
let A be an X2-automaton with a family of state sets D. The lemma is
proved by constructing an X1 �X2-automaton B that (�; �)-accepts the
!-language T (M)�1(L�;�(A;D)) = fu 2 �!1 j(u; v) 2 T (M) for some
v 2 L�;�(A;D)g. Using a straightforward direct product construction
we simulate M and A in two alternating phases: �rst we simulate M
until it produces some nonempty output and we store this output in the
states of B, then we simulate A on this output. Using such a simulation,
a run rB of B on an !-word u can be decomposed into a run of M on u
and an in�nite run rA of A on the output v of M. Here the fact that
M is !-preserving is essential in order to guarantee that v is in�nite.
If we restrict the state sequence of rB to the component of the states
corresponding to A, it is equal (except for possible repetitions) to the
state sequence of rA. This observation can be used to obtain a suitable
family of state sets D0 for B. Some care has to be taken: D0 depends on
the acceptance type.

If we combine these lemma's we obtain our basic result: a charac-
terization of the families XL�;� and d-XL�;� in terms of X-transductions
and �nite state !-languages.

3.3. Theorem. XL�;� = XT�1! (FSL�;�) and
d-XL�;� = d-XT�1! (d-FSL�;�)

Proof. For X1 = X and X2 = FS we get XL�;� � XT�1! (FSL�;�) �
(X� FS)L�;� � XL�;�.

For some of the acceptance conditions the family FSL�;� can be re-
placed by a single !-language. Intuitively this !-language models the
acceptance condition. A similar result was obtained in [WagSta77] for !-
languages accepted by Turing machines, and (implicitly) in [LatTim86]
for regular !-languages.

Automata with storage on in�nite words 93

3.4. Theorem. XLran;� = XT�1! (f1!g), XLran;u = XT�1! (f0�1 �
f0; 1g!g), XLin;� = XT�1! (ff0; 1g��1!g), and XLin;u = XT�1! (f(0�1)!g).

Similar equalities hold for d-XL�;� and d-XT�1! .

Proof. For � 2 f�;ug we may assume that L 2 XL�;� is accepted by
an X-automaton with respect to a family D = fDg (cf. [CohGol78a,
Lemma 4.1.2]). Now (as in the proof of Lemma 3.1) change A into an
X-transducer M that outputs 1 if its state is in D, and 0 otherwise.

Using Theorem 3.3, we can carry over the known inclusions for the
families FSL�;� (see Proposition 2.3) directly to the families XL�;� for ar-
bitrary X, without being forced to generalize the proofs for FS-automata.
Thus we obtain our next main result.

3.5. Theorem. XLran;� � XLran;u = XLran;= = XLin;� � XLin;u =
XLin ;=.

The corresponding result for deterministic automata will be pre-
sented in Section 5. We cannot conclude that the inclusions are strict
in general like for �nite state !-languages (X = FS, Proposition 2.3) or
push-down automata (X = PD, [CohGol77]). In fact, for certain stor-
age types all six families XL�;� are equal (e.g., for Turing machines,
see [CohGol78b]). In the remainder of this section we give a su�cient
condition on X for all six families to be equal. It is based on the in-
clusion FSLin;u � PDLran;�, which was proved in [CohGol77] using the
pushdown as a counter.

The storage type blind counter, denoted by BC, is equal to the storage
type counter (see Example 2.1), except that it has no predicate symbols
(cf. [Gre78] where it is called a partially blind counter).

3.6. Lemma. XLin;u � (X� BC)Lran;�.

Proof. By Theorem 3.4, XLin;u = XT�1! (f(0�1)!g), while
XT�1! (BCLran;�) � (X � BC)Lran;�, by Lemma 3.2. Hence it su�ces
to show that (0�1)! 2 BCLran;�. We construct a BC-automaton A that
uses its (blind) counter to ensure that during its runs it can read any �-

94 J. Engelfriet, H. J. Hoogeboom

nite number of consecutive 0's, but not in�nitely many consecutive 0's. A
has two states q0 and q1 and, for i = 0; 1, transitions (qi; 0; true; q0; decr)
and (qi; 1; true; q1;�), and the transition (q1;�; true; q1; incr). The ini-
tial state of A is q1. Take D = ffq0; q1gg. For each step on the letter 0
A decreases its counter. Whenever A reads the letter 1 it enters state q1.
In this state, before reading the next input letter, A guesses the number
of 0's on the tape before the next 1, and increases its counter value by
(at least) this amount.

Hence, if the storage type X can simulate an additional blind counter,
all XL�;� are the same.

3.7. Theorem. If X can simulate X�BC, in the sense that
(X�BC)Lran ;� � XLran;�, then XLran;� = XLin;u.

Using this result we clearly reobtain the equality of the families of
!-languages (�; �)-accepted by Turing machines ([CohGol78b]).

It is obvious that the storage type BC� can simulate an additional
blind counter. Hence for Petri net !-languages, with acceptance with
respect to bounded markings (cf. [Val83]), and �-labels allowed, the six
families BC�L�;� are all equal. Although these families were not (explic-
itly) compared in the literature, the inclusion r-BC�Lin;u � BC�Lran;�

is known (see [Car88, Theorem 3]).

4. Real-Time Automata

As in Section 3, we obtain a characterization of the families r-XL�;� in
terms of X-transductions and �nite state !-languages. The proofs are
slight variations of those of Lemma's 3.1 and 3.2.

4.1. Theorem. r-XL�;� = r-XT�1! (FSL�;�).

This allows us, as in Section 3, to transfer the inclusions known for

Automata with storage on in�nite words 95

the families FSL�;� directly to the families r-XL�;�. Again we investigate
when the remaining two inclusions are equalities and when they are
strict. Perhaps somewhat surprisingly they turn out to be always strict,
as shown next.

4.2. Lemma. Let A be a real-time X-automaton, with state set Q.

Then Lran;�(A; fQg) = adh(L�(A; Q)).

Proof. Let L = L�(A; Q). Note that Lran;�(A; fQg) is the set of all !-
words on which there exists a run of A, without additional requirements
on its state sequence. Assume that u 2 Lran;�(A; fQg). This implies
that u[n] 2 L for each n 2 N and consequently u 2 adh(L). To prove
the other inclusion let u 2 adh(L). Thus for each n 2 N A accepts
the pre�x u[n] of u. De�ne the sets En, n 2 N, of ID's of A that are
reachable from the initial ID after reading u[n]. Since each of these sets
is �nite and nonempty, K�onig's Lemma can be used to obtain a run of
A on u.

4.3. Lemma. (1) r-XLran;� � F and (2) r-XLin;� � F�.

Proof. Since F and F� are closed under union, it su�ces to consider
!-languages (�; �)-accepted with respect to a single state set. Let A =
(Q;�; �; qin; cin) be a real-time X-automaton and let D � Q.
Lran;�(A; fDg) does not change by restricting A to the states from D.
Hence (1) is a consequence of the lemma above.

Each (in ;�)-accepting state sequence (w.r.t. fDg) of A falls apart
into an initial part without restrictions, followed by an in�nite part that
stays within D. Thus

Lin;�(A; fDg) =
[

(qin;�;cin)`�(q;x;c)

Lran;�(A(q; x; c); fD [Qq;x;cg);

where A(q; x; c) equals A, except that it has a new set of transitions,
leading from a new initial state qin to q, reading x from the input,
and transforming cin into c | these transitions copy the computation
(qin;�; cin) `

�
A (q; x; c). Qq;x;c is the set of states that were added to

96 J. Engelfriet, H. J. Hoogeboom

obtain A(q; x; c). The above union is countable. Hence, by (1), every
!-language in r-XLin;� is a countable union of F-sets, thus an F�-set.

These topological upper-bounds yield examples to show that the re-
maining two inclusions are strict for every storage type. Thus we obtain
the next main result.

4.4. Theorem. r-XLran;� � r-XLran;u = r-XLran;= = r-XLin;� �

r-XLin ;u = r-XLin;=:

Proof. According to Proposition 1.2, 0�1 � f0; 1g! 62 F � r-XLran;�;
however 0�1 � f0; 1g! 2 r-XLran;u (cf. Example 2.2). In the same way
we have (0�1)! 62 F� � r-XLin;�, whereas (0

�1)! 2 r-XLin;u.

Perhaps one of the main reasons for obtaining the strict inclusions
above, is that K�onig's Lemma is applicable to real-time automata (Lemma
4.2). This argumentation can be extended to a larger class of automata.
An X-automaton A has �nite delay if there is no in�nite run of A on
a �nite word. All results for real-time automata proved in this section
also hold for automata with �nite delay. We use the pre�x f- to indicate
�nite delay.

In general the families f-XL�;� and r-XL�;� are not equal. The !-
language BIN! = fx � akjx 2 f0; 1g�; 0 � k � nr(x)g � b! [f0; 1g!,
where nr(x) denotes the integer represented by x 2 f0; 1g� as a bi-
nary number, can be accepted by a BC2-automaton with �nite de-
lay but not by a real-time BC�-automaton. More precisely, BIN! 2

f-BC2Lran;� � r-BC�Lin;u. This example is essentially the one given by
Jantzen ([Jan79]) to show that �-labelled Petri nets are more powerful
than real-time Petri nets (when accepting �nitary languages). It is per-
haps interesting to note that Petri nets with �nite delay were considered
in the context of !-languages. In [Car84] these nets are called prompt

nets. This paper however focusses on nets that are 1-prompt, i.e., nets in
which �-transitions are allowed, but not two consecutive �-transitions
in a �ring sequence (run). From our previous results it now follows that
the following diagram holds for Petri nets (with acceptance with respect

Automata with storage on in�nite words 97

to bounded places, see [Val83] for real-time nets). We conjecture that
the indicated inclusion (*) is an equality.

4.5 Theorem.

BC�Lran;� = BC�Lran;u = BC�Lin;u

*

f � BC�Lran;� ! f � BC�Lran;u ! f � BC�Lin;u

" " "

r� BC�Lran;� ! r� BC�Lran;u ! r� BC�Lin;u

5. Deterministic Automata

In this section we return to deterministic automata. Again we show that
the diagram for d-FSL�;� (Proposition 2.3) holds for arbitrary d-XL�;�.

5.1. Lemma. Let A be a deterministic X-automaton with state set Q
and input alphabet �, and let D � 2Q. Then
(1) Lran;�(A; fQg)) = adh(L�(A; Q)),
(2) Lran;u(A;D) = L�(A;[D) ��

! \ adh(L�(A; Q)), and
(3) Lin;u(A;D) = lim(L�(A;[D)).

The above (simple) result enables us to give topological upper-bounds
on the !-languages that are accepted by deterministic automata. Given
two families K and L, K ^ L denotes fK \ LjK 2 K; L 2 Lg, and B(K)
denotes the boolean closure of K.

5.2. Corollary. (1) d-XLran;� � F ,
(2) d-XLran;u � F ^ G,
(3) d-XLran;= � B(F),
(4) d-XLin ;� � F� ,
(5) d-XLin ;u � G� , and
(6) d-XLin ;= � B(F�).

98 J. Engelfriet, H. J. Hoogeboom

Proof. (1,2,5) These are clear from Lemma 5.1.

(4) Can be shown just as the inclusion r-XLin;� � F� in Lemma 4.3.

(3,6) Consider an arbitrary deterministic X-automaton A and a fam-
ily D of state sets for A. Then L�;=(A;D) =

S
D2D(L�;�(A; fDg) �

L�;u(A; fQ � Dg)). Now d-XLran;= � B(F) and d-XLin;= � B(F�)
follow.

5.3. Lemma. f0; 1g! � 0�1 � 0! 62 F ^ G.

Proof. Assume that K = f0; 1g! � 0�1 � 0! is of the form L1 � f0; 1g
!\

adh(L2) for �nitary languages L1 and L2. Since 0
! 2 K � L1 � f0; 1g

!,
we have 0n 2 L1 for some n 2 N. On the other hand 0n10�1 � 0! �

K � adh(L2), so pref (0n10�) � pref (L2). Consequently 0n1 � 0! 2

L1 � f0; 1g
! \ adh(L2) = K; a contradiction.

We now present the next main result.

5.4. Theorem. The following diagram holds:

d-XLin;�

d-XLran;� ! d-XLran;u ! d-XLran;=
%
&

&
% d-XLin;=

d-XLin;u

Proof. The inclusions follow from Proposition 2.3 and Theorem 3.3.
Using the topological upper-bounds we have obtained, we �nd (using
Proposition 1.2 and Lemma 5.3) that 0�1 �f0; 1g! 62 d-XLran;�, f0; 1g

!�

0�1 � 0! 62 d-XLran;u, (0
�1)! 62 d-XLin;�, and f0; 1g

� � 1! 62 d-XLin;u.
However these !-languages are in respectively d-XLran;u, d-XLran;=,
d-XLin ;u, and d-XLin;�, as the reader will easily verify. From these
observations the strictness of the inclusions (and the incomparabilities)
follow.

For some of the storages studied in the literature it was observed
that the families d-XLin;� and d-XLin;u are `complementary', i.e., one
contains the complements of the !-languages of the other. This is due to
the fact that automata are often assumed to be `total', i.e., they should

Automata with storage on in�nite words 99

have a run on every possible input (this is called the continuity prop-

erty in [CohGol77]). Since we do not have this requirement we cannot
derive such a result for arbitrary X-automata. Instead, we need the fol-
lowing notion which previously has been quite helpful in complementing
the �nitary languages accepted by deterministic X-automata (cf. [En-
gVog87]).

5.5. De�nition. Let X = (C;Cin; P; F; �) be a storage type. X with

in�nite look-ahead, denoted X!LA, is the storage type (C;Cin; P
0; F; �0),

where P 0 = P [finf(A)jA is an X-automatong, with �0(x) = �(x) for
each x 2 P [F , and �0(inf(A))(c) = true if and only if there exists an
in�nite run of A on � starting from (qin;�; c), where qin is A's initial
state.

5.6. Lemma. Let L � �!.

(1) If L 2 d-XL�;=, then �! � L 2 d-X!LAL�;=.
(2) If L 2 d-XLin;� then �! � L 2 d-X!LALin;u.
(3) If L 2 d-XLin;u then �! � L 2 d-X!LALin;�.

Proof. Let A = (Q;�; �; qin; cin) be a deterministic X-automaton. For
(in ;�) and (in ;u)-acceptance we may assume that we have a single state
set D with respect to which we accept runs. If A has a run on each u
in �!, then �! � Lin;u(A; fDg) = Lin;�(A; fQ � Dg). Similarly, the
complement with respect to �! of the !-language L�;=(A;D) is equal to
L�;=(A; 2

Q�D), provided that for each !-word u in �! there is a run of
A on u. Using in�nite look-ahead A may be transformed in such a way
that it satis�es this property. We add a special state qfail to A, with
transitions (qfail; a,true,qfail;�) for each a 2 �, to which we will lead
all `unsuccessful runs'. There are several possibilities for the behaviour
of A on u to be 'unsuccessful'.

(a) A blocks due to an unde�ned instruction. We can avoid that by
testing the instruction as follows. For � 2 F �, consider the X-automaton
B(�) consisting of two states q0 and qloop (of which q0 is initial), and hav-
ing two transitions (q0;�,true,qloop; �) and (qloop;�,true,qloop;�). B(�)
has a run on � starting from (q0;�; c) if and only if �(�)(c) is de-
�ned. Now replace in A each transition (q; a; �; q0; �) by transitions

100 J. Engelfriet, H. J. Hoogeboom

(q; a; � ^ inf(B(�)); q0; �) and (q; a; � ^ : inf(B(�)); qfail;�).

(b) A has a run on a �nite pre�x of u. Replace in A each transi-
tion (q; a; �; q0; �) by transitions (q; a; �^: inf(A(q)); q0; �) and (q; a; �^
inf(A(q)); qfail ;�), whereA(q) is the X-automaton that equalsA, except
that its initial state is q.

(c) Finally A may block because in some ID there are no `useful'
transitions: the present con�guration satis�es none of the tests of the
transitions that start in the present state (with a suitable input). This
case is left to the reader.

Note that if X!LA can be simulated by X (and this holds, e.g., for
X = FS and X = PD), then the previous lemma shows that d-XL�;= is
closed under complement, and that d-XLin;� and d-XLin;u contain the
complements of each others !-languages. In the next section we need
this property for a speci�c storage type.

6. A Universal Storage Type

In this section we show the existence of a storage type of `maximal
power'.

6.1. De�nition. The universal storage type U equals (��; f�g; P; F; �),
where � is a �xed in�nite set of symbols, P = finKjK � ��, for a �nite
� � �g, F = fstore(x)jx 2 ��g, and, for c 2 ��, �(inK)(c) = true i�
c 2 K, and �(store(x))(c) = cx.

6.2. Lemma. For every storage type X, U can simulate X, in the sense
that XL�;� � UL�;�, and similarly for d- and r-.

Proof. Let X = (C;Cin; P; F; �) and let A be a X-automaton with
initial con�guration cin. We will construct a U-automaton A0 with
the same behaviour. We use the con�gurations of U to store the se-
quences of instruction symbols that are performed by A and encode
those sequences that lead to con�gurations in which a given test is sat-

Automata with storage on in�nite words 101

is�ed in a suitable language. Let FA be the (�nite) subset of F of
instruction symbols that are used in A. Without restriction we may
assume that FA is included in �, the alphabet of U. Let, for � 2 F �,
Def(�) = f 2 F �Aj�(� �)(cin) is de�nedg and, for � 2 BE(P), let
True(�) = f 2 F �Ajc = �()(cin) is de�ned and �(�)(c) = trueg. Now
A0 is obtained by replacing every transition (q; a; �; q0; �) of A by the
transition (q; a; inTrue(�) ^ inDef(�); q0; store(�)).

6.3. Theorem. (1) d-ULran;� = F ,
(2) d-ULran;u = F ^ G,
(3) d-ULran;= = B(F),
(4) d-ULin ;� = F� ,
(5) d-ULin ;u = G� , and
(6) d-ULin ;= = B(F�).

Proof. The inclusions from left to right follow from Corollary 5.2.
(1,5) Let A be the U-automaton with transitions (qi; a; inK; q1; store(a))
and (qi; a; :inK; q0; store(a)) for a 2 �, i 2 f0; 1g, and with initial
state q1. For this automaton Lin;u(A; ffq1gg) = lim(K). This shows
G� � d-ULin;u. If K = pref (K), then Lran;�(A; ffq1gg) = adh(K),
which shows F � d-ULran;�.
(2) Let B be the U-automaton with transitions (q0; a;:inL; q0; store(a)),

(q0; a; inL; q1; store(a)), and (q1; a; inK; q1; store(a)) for a 2 �, and with
initial state q0. If K = pref (K), then Lran;u(A; ffq1gg) = L � �! \
adh(K).
(3) For B(F) � d-ULran;= it su�ces to show, by (1) above, that

d-ULran;= is closed under complement and union. The closure of d-ULran;=

under complement follows from Lemma 5.6 and Lemma 6.2. The clo-
sure of d-ULran;= under union can be shown using an easy direct product
construction (using the fact that U can simulate U�U).
(4) F� � d-ULin;� follows by complementation from (5) above (see

Lemma 5.6).
(6) For B(F�) � d-ULin;= we use an argumentation analogous to (3)

above.

Note that these classes are related by the diagram in Theorem 5.4.

102 J. Engelfriet, H. J. Hoogeboom

Thus in the deterministic case the maximal power of U can be expressed
as a topological family, depending on the acceptance criterion. For �ni-
tary languages U is of no interest: every �nitary language can be ac-
cepted by a deterministic real-time U-automaton.

6.4. Theorem. (1) dr-UT = d-UT equals the family of continuous
functions with domain in G� .

(2) dr-UT! = d-UT! equals the family of continuous functions with
domain in F .

Proof. Recall that the function f : �! ! �! is continuous in a word u if
for each m 2 N there exists n 2 N such that f(u[n] ��!) � f(u)[m] ��! .
If (u; v) 2 T (M) for some deterministic transducer M, and M outputs
the �rst m symbols of v on the �rst n symbols of u, then T (M)(u[n] �
�!) � v[m] � �!, where � and � are the input alphabet and output
alphabet of M. Hence T (M) is continuous. Regarding the domain
of transductions it can be shown that dom(d-UT) = d-ULin;u = G� ,
and dom(d-UT!) = d-ULran;� = F . We omit the proof of the reverse
inclusions.

6.5. Theorem. UL�;� equals the family of continuous images of G�-sets.

Proof. By Theorem 3.7 and Lemma 6.2 the UL�;� are all equal. It is
easy to see that ULin;u � dr-FST(d-ULin;u). Hence each set in ULin;u

is the continuous image of the intersection of two G�-sets (the domain
of the transducer and the d-ULin;u set) which again is a G�-set. The
continuous images of G�-sets are exactly the ranges of deterministic real-
time U-transductions. The following easy inclusions hold: ran(dr-UT) �
dom(dr-UT�1) � dom(UT!) � UT�1! (FSLin;u). By Theorem 3.3 this is
ULin ;u.

Without proof we state the topological characterizations of the fam-
ilies r-UL�;� (cf. Lemma 4.3). The same equalities hold for f-.

6.6. Theorem. r-ULran;� = F , r-ULin;� = F�, and
r-ULin ;u = ULin;u.

Automata with storage on in�nite words 103

Similar results were obtained by Arnold ([Arn83], cf. [Sta84]) for
the more general framework of transition systems. He discusses the ac-
ceptance types (ran;�), (in ;�), and (in ;u)|somewhat reformulated to
deal with a possibly in�nite number of states|for various kinds of transi-
tion systems. It is not di�cult to see that Arnold's deterministic, �nitely
branching, and countably branching transition systems correspond in our
framework closely to automata that are deterministic, have �nite delay,
or are unrestricted, respectively. Note that his de�nitions do not allow
�-transitions, whereas in our framework the number of transitions ap-
plicable to an ID of an automaton is bounded by a constant (depending
on the automaton).

Acknowledgements

We would like to thank dr. Ludwig Staiger for his useful suggestions,
prof. Wolfgang Thomas for several motivating discussions, and prof.
Volker Diekert for his continuous enthousiasm and for organizing this
ACMICS workshop on in�nite traces.

References

[Arn83] A. Arnold, Topological characterizations of in�nite behaviours

of transition systems, LNCS 154 (1983) 28-38 Springer Verlag,
Berlin.

[BoaNiv80] L. Boasson & N. Nivat, Adherences of languages, J. Comput.
System Sci. 20 (1980) 285-309.

[B�uc60] J.R. B�uchi, On a decision method in restricted second order

arithmetic, in: Proc. Int. Congr. Logic, Methodology and Phi-
losophy of Sciences 1960, Stanford University Press, Stanford,
CA; 1962:

[Car84] H. Carstensen, Fairness in deadlockfree Petri nets with the �-

nite delay property, Proc 5th European Workshop on appl. and
theory of Petri nets, Aarhus, 1984, pp. 234-253.

104 J. Engelfriet, H. J. Hoogeboom

[Car88] H. Carstensen, In�nite behaviour of deterministic Petri nets,
LNCS 324 (1988) 210-219 Springer Verlag, Berlin.

[CohGol77] R.S. Cohen, A.Y. Gold, Theory of !-languages. II: A study

of various models of !-type generation and recognition, J. Com-
put. System Sci. 15 (1977) 185-208.

[CohGol78a] R.S. Cohen, A.Y. Gold, !-Computations on deterministic

pushdown machines, J. Comput. System Sci. 16 (1978) 275-
300.

[CohGol78b] R.S. Cohen, A.Y. Gold, !-Computations on Turing ma-

chines, Theor. Comput. Sci. 6 (1978) 1-23.
[Eil74] S. Eilenberg, Automata, languages and machines, Ch. XIV: In-

�nite behavior of �nite automata, Academic Press, New York
and London, 1974.

[EngHoo89] J. Engelfriet, H.J. Hoogebooom, Automata with storage on

in�nite words, in \Proceedings ICALP 1989" (G. Ausiello, M.
Dezani-Ciancaglini, S. Ronchi Della Rocca, eds.) LNCS 372
(1989) 389-303, Springer Verlag, Berlin.

[EngVog87] J. Engelfriet, H. Vogler, Look-ahead on pushdowns, Inform.
and Computation 73 (1987) 245-279.

[Gin75] S. Ginsburg, Algebraic and automata-theoretic properties of for-
mal languages, 1975, North-Holland/American Elsevier, Ams-
terdam/New York.

[GinGre69] S. Ginsburg, S.A. Greibach, Abstract families of Languages,
in \Studies in abstract families of languages", Memoirs of the
Amer.Math. Soc. 87 (1969) 1-32.

[Gre78] S.A. Greibach, Remarks on blind and partially blind one-way

multicounter machines, Theor. Comput. Sci. 7 (1978) 311-324.
[HooRoz86] H.J. Hoogebooom, G. Rozenberg In�nitary languages { ba-

sic theory and applications to concurrent systems, in \Current
trends in concurrency" (J.W. de Bakker, W.P. de Roever, G.
Rozenberg, eds.) LNCS 224 (1986) 266-342, Springer Verlag,
Berlin.

[Hos72] R. Hossley, Finite tree automata and !-automata, MAC Tech-
nical report 102 MIT, summer 1972.

[HopUll67] J.E. Hopcroft, J.D. Ullman, An approach to a uni�ed theory

Automata with storage on in�nite words 105

of automata, The Bell System Technical Journal XVLI (1967)
1793-1829.

[Jan79] M. Jantzen, On the hierarchy of Petri net Languages, RAIRO
Inf. Th�eor. 13 (1979) 19-30.

[Lan69] L.H. Landweber, Decision problems for !-automata, Math. Sys-
tems Theor. 3 (1969) 376-384.

[LatTim86] M. Latteux, E. Timmerman, Two characterizations of ra-

tional adherences, Theor. Comput. Sci. 46 (1986) 101-106.
[Lin76] M. Linna, On !-sets associated with context-free languages, In-

form. and Control 31 (1976) 272-293.
[Mul63] D.E. Muller, In�nite sequences and �nite machines, AIEE Proc.

4th ann. symp. switch. circ. th. and log. design, 1963, pp.3-16.
[Sco67] D. Scott, Some de�nitional suggestions for automata theory, J.

Comput. System Sci. 1 (1967) 187-212.
[Sta77] L. Staiger, Empty-storage-acceptance of !-languages, LNCS 56

(1977) 516-521, Springer Verlag, Berlin.
[Sta84] L. Staiger, Projection lemmas for !-languages, Theor. Comput.

Sci. 32 (1984) 331-337.
[Sta87] L. Staiger, Research in the theory of !-languages, EIK 23 (1987)

415-439.
[StaWag74] L. Staiger, K. Wagner, Automatentheoretische und auto-

matenfreie Characterisierungen topologischer Klassen regulaerer

Folgenmengen, EIK 10 (1974) 379-392.
[Tho88] W. Thomas, Automata on in�nite objects, in \Handbook for

Theoretical Computer Science" (J. van Leeuwen, ed.), North-
Holland, 1991.

[Val83] R. Valk, In�nite behaviour of Petri nets, Theor. Comput. Sci.
25 (1983) 311-341.

[Wag79] K. Wagner, On !-regular sets, Inform. and Control 43 (1979)
123-177.

[WagSta77] K. Wagner, L. Staiger, Recursive !-languages, LNCS 56
(1977) 532-537, Springer Verlag, Berlin, see also: Rekursive Fol-
genmengen I, Zeitschr. math. Logik Grundlagen Math., 24
(1978) 523-528.

On logical de�nability of !-trace languages y

Werner Ebinger
Universit�at Stuttgart

Institut f�ur Informatik

Breitwiesenstr. 20{22

D 7000 Stuttgart 80

ebinger@informatik.uni-stuttgart.de

April 1992

Abstract

Our main result is the equivalence of monadic second order

logic and recognizability for languages of in�nite traces. This is

a generalization of the work of Thomas [Tho90b]. We propose

a logical characterization that is independent of any special sort

of trace automata. For another approach we use standard con-

structions and B�uchi asynchronous cellular automata de�ned by

Gastin and Petit [GP91].

1 Introduction

The theory of !-trace languages is a generalization of the theory of !-
word languages [Tho90b, for an overview] and of the theory of trace
languages [Maz77]. Both theories are well studied. !-trace languages
need some extra investigation, because there are new di�culties. The
basic de�nitions of trace languages are explained well in other papers in

yThis research has been supported by the EBRA working group No. 3166 ASMICS.

106

On logical de�nability of !-trace languages 107

these proceedings. So we only mention some important notions in this
section.

In the second section we will give a short introduction to monadic sec-
ond order logic. In the third section we will prove equivalence of monadic
second order logic and recognizability for !-trace languages. This is a
generalization of the corresponding results for !-words [Tho90a, for an
overview] and �nite traces [Tho90b]. We will provide a new proof that
does not depend on any special sort of automata for in�nite traces. In
the fourth section we will recall the de�nition of the B�uchi asynchronous
automata of Gastin and Petit [GP91] and give a more classical proof of
the equivalence of monadic second order logic and automata for !-trace
languages. In the �fth section we want to give some remarks on �rst
order logic on !-traces and star-free sets. Similar ideas have been pro-
posed independently by Hoogeboom and Thomas. However, they never
were worked out extensively.

We assume that the reader is familiar with the following notions
of trace languages that can be found in other papers in this proceed-
ings. In order to extend the free partially commutative monoid IM(�; D)
[Maz77, Die90] over a dependence alphabet (�; D) to the in�nite case, it
is convenient to consider dependence graphs. In the monoid G(�; D) of
in�nite dependence graphs we consider the subset IR(�; D) of real traces
where every node has a �nite past, and the submonoid C(�; D) which is
the quotient of G(�; D) by the coarsest congruence which preserves real
traces [Die91]. We will use IM and IR as abbreviations for IM(�; D) and
IR(�; D).

A language of real traces is called recognizable if it is recognized by
some morphism � : IM ! S into a �nite monoid. A real trace language
R 2 IR is recognized by � if for any sequence (ri), ri 2 IM we have

r1 r2 r3 : : : 2 R) ��1(�(r1)) �
�1(�(r2)) �

�1(�(r3)) : : : � R

The connection between recognizability for in�nite traces and in�nite
words is given by [Gas91]

R 2 Rec(IR) () '�1(R) 2 Rec(�1);

where ' : �1 ! IR(�; D) is the extension of the canonical mapping to
the in�nite case.

108 W. Ebinger

2 Monadic second order logic over !-traces

We can represent a real trace t 2 IR(�; D) as a labeled partial order
(V;<; `). Logical formulae can be de�ned over a structure with signature
(V;<; (Pa)a2�). We use �rst order variables x, y, z, : : : ranging over V
and monadic second order variables X , Y , Z, : : : ranging over P(V).
Formulae are de�ned inductively:

� Predicates: First order predicates of the form x < y, Pa(x) and
monadic second order predicates of the form X(x) are formulae for
arbitrary variables x; y;X and all a 2 �.

� Logical operations: If ' and are formulae, then ('^), ('_),
and (:') are formulae, too.

� Quanti�ers: If ' is a formula, then 9x', 8x', 9X', and 8X' are
formulae, too.

This monadic second order logic is called MSOL. We will also write
z 2 X instead of X(z) and freely use abbreviations like X � Y . Of
course, we can also express x = y and X = Y in MSOL.

Example 1 We can express the property \t begins with b" by the for-
mula

9x(Pb(x) ^ 8y(x = y _ x < y)):

2

In monadic second order the power of the logic does not depend on the
di�erence between the <-relation and the edge relation of the Hasse
diagram of (V;<), which constitutes some kind of successor relation.
The edge relation E of the Hasse diagram of (V;<) is expressible by <
(even in �rst order logic):

x E y i� x < y ^ :9z(x < z ^ z < y);

and vice versa (in monadic second order logic):

x < y i� :x = y ^

On logical de�nability of !-trace languages 109

8X(x 2 X ^ 8z8z0(z 2 X ^ z E z0 ! z0 2 X)| {z }
If a node is in X, then

all <-greater nodes are in X, too.

! y 2 X)

Now we are free to use both, the <-relation and the edge relation E in
monadic second order formulae.

Example 2

b

a

c

���
PPP

aaa
���

b

a

c

���
PPP

aaa
���

b

a

c

���
PPP

aaa
���

: : :

Traces of the language T = (bac)! over the dependence alphabet D :
a | b | c are described by the following formula. The parts in quotes
can be easily replaced by a proper formula (even in �rst order).

\There is exactly one minimal node, labeled b."

^ \Every b-node has two successors, labeled a and c"

^ \Every b-node except the minimal one has

two predecessors, labeled a and c"

^ \Every a-node has exactly one predecessor and

one successor, both labeled b"

^ \Every c-node has exactly one predecessor and

one successor, both labeled b"

2

In the �fth section we will go from formula to automata. These con-
structions can be simpli�ed if we �rst reduce the logic MSOL to the
restricted monadic second order logic MSOL0. The logic MSOL0 is the
logic MSOL with the restriction, that there are no �rst order variables.
Instead of �rst order predicates we use only second order predicates of
the form Xi � Xj , Xi < Xj , and Xi � Pa. Here Xi < Xj means X and
Y are singleton sets and the element of X is smaller than the element of

110 W. Ebinger

Y . As formulae grow really huge using only these basic predicates, we
give the following abbreviations:

X = Y for X � Y ^ Y � X

X 6= Y for :X = Y

Sing(X) for 9Y (

\proper subset"z }| {
Y � X ^ Y 6= X ^

:9Z(Z � X ^ Z 6= X ^ Z 6= Y)| {z }
\exactly one"

)

We now describe how to eliminate �rst order variables by giving an
example. A formula like

8x 9Y (x 2 Y ^ 9z(x < z ^ Pa(z))

is expressed as

8X(Sing(X)! 9Y (X � Y ^ 9Z(Sing(Z) ^ X < Z ^ Z � Pa)):

3 Equivalence of recognizability and logic

In this section we prove the equivalence of recognizability and logic. Our
proof is independent of any special automata model for (in�nite) traces.
In the proof we will use c-rational trace languages [Och85, GPZ91] (also
called co-rational). c-rational languages are de�ned inductively:

� All �nite trace languages A � IM of �nite traces are c-rational.

� If A � IM, B � IM, and C � IR are c-rational, then the concatena-
tion AB and AC is c-rational.

� If A � IM is c-rational, then the concurrent iteration Ac� (called
coiteration by Ochmansky) and the concurrent !-iteration Ac! are
c-rational. For the concurrent iteration independent (connected)
parts are iterated concurrently. This means Ac� (Ac!) in the usual
star (omega) iteration over C(A) = f t 2 IM j t is a connected
component of some s 2 A g.

On logical de�nability of !-trace languages 111

We can also use a constraint version of c-iteration were only connected
parts may be iterated. This gives the same class of c-rational languages.

Theorem 3 A trace language T � IR(�; D) is recognizable if and only

if T is de�nable in monadic second order logic.

Proof: The following �gure shows what we have to prove.
S
T denotes

the union of all traces t 2 T , that is the word language that contains
all members of traces in T . For the canonical mapping ' : �1 ! IR we
have

S
T = '�1(T).S

T is
S
T is

de�nable
(B�uchi)
() recog-

(1)
=) in MSOL nizable

[Gas91]
()

T is T is
de�nable recog-
in MSOL nizable

(2)
(= T is

[GPZ91]
()

c-rational

(1): We can not use the same formula for both, traces and words, as
the underlying interpretation of the order is di�erent. For example the
formula

9x; y; z Pa(x) ^ Pc(y) ^ Pb(z) ^ x < z ^ y < z ^ (x < y _ y < x)

over the dependence alphabet D : a | b | c is not true for the trace
acb, but it is true for both words in this trace. But it su�ces to express
the partial order on the traces by the linear order on the words. This can
be done by one single �rst order formula, but in order to render it easier
to follow, we proceed in two steps. We can �rst express the partial order
by the edge relation E of the Hasse diagram of the dependence graph.
This was described in the section on monadic second order logic. Then
we express the edge relation E by the linear order on the words: x E y
if and only if _

(a;b)2D

�
Qa(x) ^Qb(y) ^ x < y

112 W. Ebinger

^ 8z (x < z ^ z < y !
^

c with

(a; c) 2 D or

(b; c) 2 D

:Qc(z))
�
:

Now if a trace t satis�es a formula ', then all words w in the trace satisfy
the new formula '0, which we obtained by replacing the predicates x E y
by the formula above. And vice versa if a word w 2 t satis�es the new
formula '0, then all words w0 2 t in the same trace satisfy this new
formula '0, and the trace t containing this word w satis�es the original
formula '. We can formalize this using j= as abbreviation of \is a model
for"

t j= ' () 9w 2 t w j= '0 () 8w 2 t w j= '0:

(2): For this implication of the diagram we perform an induction over
the construction of concurrent rational (c-rational) expressions.

� A is a �nite set of traces: We give a formula 't for every single
word in A and combine them in a disjunction

'A =
_
t2A

't:

� A [B for c-rational sets A and B: Combine the formulae 'A and
'B for A and B to

'A[B = 'A _ 'B :

� A �B for c-rational sets A and B: For the formulae 'A and 'B we
de�ne formulae with restricted quanti�cation. 'AjX for some set
X is the formula 'A where we replace every subformula 9x by
9x (x 2 X^), 8x by 8x (x 2 X !), 9Y by 9Y (Y � X^),
and 8Y by 9Y (Y � X !). The formula 'A�B is de�ned as

possible

max./min.

elements

of A/B

_
fa1; : : : ; akg

� �

_
fb1; : : : ; blg

� �

9xa1 : : : 9xak9xb1 : : :9xbl

incomparable

� ^
1 � i � k

1 � j � k

i 6= j

(: xai < xaj ^ : xbi < xbj) ^

On logical de�nability of !-trace languages 113

nothing

between

A and B

^
1 � i � k

1 � j � l

:9z (xai < z ^ z < xbj) ^

every node

belongs to

a trace

8z
_

1 � i � k

1 � j � l

�
z < xai _ z = xai _ xbj < z _ xbj = z

�
^

'Ajfxj _
1�i�k

x�xaig
^ 'B jfxj _

1�j�l

xbj�xg

�

� Ac�, Ac! for a c-rational set A, where only connected parts are
iterated: The logical de�nability of Ac� was already claimed by
Thomas [Tho90b]. We de�ne 'Ac� and 'Ac! as

9Xmin9Xmax

For every

node x �nd

borders of

subtrace

8x

 _
fa1; : : : ; akg

� �

_
fb1; : : : ; blg

� �

9xa1 : : : 9xak9xb1 : : : 9xbl

�
xa1 2 Xmin ^ : : : ^ xak 2 Xmin ^

xb1 2 Xmax ^ : : : ^ xbl 2 Xmax ^
starting/ending

nodes of the

subtrace are

incomparable

and maximal

such sets

\xa1 : : : xak are a maximal antichain in Xmin

(xa1 : : : xak are incomparable and there's no node

in Xmin, that is incomparable to xa1 : : : xak)" ^

\xb1 : : : xbl are a maximal antichain in Xmax" ^

subtrace

around x

well bounded

^
1�i�k

xai � x ^
^

1�j�l

x � xbj ^ :9z

��
(z < x ^

_
1�i�k

xai < z) _ (x < z ^
_

1�j�l

z < xbj)
�
^

(z 2 Xmin _ z 2 Xmax)
�
^

114 W. Ebinger

Apply 'A
to subtrace

'Aj�fxaig;�fxbj g

�!
^

8x(\x minimal in the whole trace")! x 2 Xmin) ^

for Ac�: 8x(\x maximal in the whole trace")! x 2 Xmax) ^_
1�i�j�j

(9x1 : : :9xi 8x
_

1�j�i

x � xj)

for Ac!: 8x9y x < y

2

4 B�uchi Asynchronous Cellular Automata and equiv-
alence to logic

B�uchi asynchronous automata and B�uchi asynchronous cellular automata
were de�ned by Gastin and Petit [GP91]. These are generalizations
of B�uchi automata on in�nite words and asynchronous (cellular) au-
tomata de�ned by Zielonka [Zie87]. The recognition power of B�uchi
asynchronous automata is equal to the recognition power of B�uchi asyn-
chronous cellular automata, like it is equal in the �nite case for asyn-
chronous automata and asynchronous cellular automata. In this pa-
per we restrict ourselves to B�uchi asynchronous cellular automata. The
proofs are almost the same for B�uchi asynchronous automata, and some
details might be even easier.

De�nition 4 A B�uchi asynchronous cellular automaton A is a tuple

A = ((Qa)a2�; (�a)a2�; S; F;R) where Qa is the local state set for process
a, �a :

Q
i2D(A)

Qi ! P(Qa) is the local transition function for process a,

S �
Q
a2�Qa is the set of starting states, F �

Q
a2�Qa is the set of

accepting states for �nite traces and R �
Q
a2� P(Qa) is the acceptance

table for in�nite traces.

In order to de�ne runs of such an automaton we consider a trace t 2
IR(�; D) as a labeled partial order (V;<; `) with ` : V ! A. A run

On logical de�nability of !-trace languages 115

r of A on t is a function r : V [fv0g ! (
S
a2�Qa) [S, where v0 is

an additional <-minimal node v0, that is labeled with a starting state
r(v0) 2 S, and for all v 2 V :

r(v) 2 �`(v)((r(v
i
max))i2D(`(v)));

where vimax is the <-maximal node labeled i before v. The set of locally
repeated states is de�ned as

fa(r) := f q 2 Qa j 9
!v : (`(v) = a ^ r(v) = q)

_ 9v(:9w(v < w ^ `(w) = a) ^ r(v) = q) g: (1)

f(r) :=
Y
a2�

fa(r) (2)

is the tuple of repeated states . The run r accepts t if f(r(t)) � R for
some R 2 R or if the maximal nodes of a �nite run form a state in F .
The accepted trace language of A is

T (A) = f t j there exists an accepting run r g:

Gastin and Petit [GP91] proved, that B�uchi asynchronous cellular
automata accept exactly the recognizable !-trace languages. These lan-
guages are closed under intersection \, union [, complement and the
concurrent star operation c�.

Example 5 The dependence graphs of traces in the language T =
(b�bac)�b! with the dependence alphabet D : a | b| c look similar
to the following one.

b b

a

c
baaa

!!! aaa
!!!

b b

a

c
baaa

!!! aaa
!!!

b b : : :

An automaton that accepts T is A = ((Qa)a2�; (�a)a2�; S; F;R) with
Qa = f0; 1g, Qb = f0; 1; 2g, Qc = f0; 1g, and the transition function

�a : (0; 1) 7! f1g �b : (0; 0; 0) 7! f1; 2g
(1; 0) 7! f0g (0; 1; 0) 7! f1g

�c : (1; 0) 7! f1g (1; 1; 1) 7! f0; 2g
(0; 1) 7! f0g (1; 0; 1) 7! f0g

(0; 2; 0) 7! f2g
(1; 2; 1) 7! f2g

116 W. Ebinger

There are two possibilities to de�ne the acceptance table: R =
f(f0g; f2g; f0g); (f1g; f2g; f1g)g or R0 = f(;; f2g; ;)g. An example for a
run is given below.

1 1

1

1

0aaa
!!!

!!!
0 0

0

0

2aaa
!!! aaa

!!!
2 2 : : :

b b

a

c
baaa

!!! aaa
!!!

b b

a

c
baaa

!!! aaa
!!!

b b : : :

0
0
0

global state (1; 1; 0)

aaa��
��

��

2

The equivalence of automata and logic is a consequence of the equiva-
lence of recognizability and logic, since B�uchi asynchronous cellular au-
tomata accept exactly the recognizable languages. In this section we
will use the classical approach and provide an independent proof. We
use standard techniques and some special constructions for B�uchi asyn-
chronous cellular automata. Since the case of �nite traces has already
been solved [Tho90b] we restrict ourselves to the case of in�nite traces.

Theorem 6 A trace language T � IR(�; D) is accepted by some B�uchi

asynchronous cellular automaton if and only if T is de�nable in monadic

second order logic.

Proof: \)": Let A = ((Qa)a2�; (�a)a2�; S; F = ;;R) with Qa =
f0; : : : ;mag be a B�uchi asynchronous cellular automaton which accepts
T . Every trace t is considered as a structure (V;<; `). A computation
r corresponds to a starting state s 2 S and sets Ya0; Ya1; : : : ; Yama (for
every a 2 �), where Yai = f v 2 V j `(v) = a ^ r(v) = i g contains all
nodes that are labeled a and have the state i in the run r. The formula
is given as follows.

existence

of a

computation

_
s2S

9Ya10 : : : 9Ya1ma1

On logical de�nability of !-trace languages 117

...

9Yan0 : : :9Yanman

every node

gets at most

one state

\disjunct sets" ^

labeling

according to

transition table

8v
_

(p; a; q)

q 2 �a(p)

�
Pa(v) ^ v 2 Yaq ^

�nd

preceding

state

^
b2D(a)

�
9w
�
Pb(w) ^ w < v ^

:9u (w < u ^ u < v ^ Pb(u)) ^

Yb�b(p)(w)
�
_

or the

starting

state

�
:9w (Pa(w) ^ w < v) ^

\�b(s) = �b(p)"
���

^

choose an

element

of the

acceptance

table

_
R=
Q
a2�

Ra2R

^
a2�

l̂

i=1

Ra=fq1;:::;qlg

in�nite

repetition

�
9X(\X is in�nite." ^X � Yaqi) _

only �nitely

many a
9v v 2 Yaqi ^ :9w (v < w ^ Pa(w)

�!

\(": Let ' be a second order formula that is in the restricted form
of MSOL0 . Without loss of generality we have to consider predicates
X � Y ,X < Y , andX � Pa. We are going to perform induction over the
construction of formulae. As there appear formulae with free variables
in this induction we have to consider formulae '(X1; : : : ; Xn) with free
variables X1; : : : ; Xn over the dependence alphabet (� � f0; 1gn; Dn)
with

(a; �) Dn (b; �) i� a D b:

118 W. Ebinger

Induction foundation: We are working with formulae '(X;Y) with two
free variablesX , Y . In this case we use an alphabet ��f0; 1g2. The �rst
additional digit indicates membership in X and the second additional
digit indicates membership in Y . The generalization to arbitrary many
free variables is easy. For all x 2 � we consider processes x00, x01, x10,
and x11. That gives a number of 4j�j processes.

� X � Y : This is a very simple automaton with only one global state
04j�j 2 S. The processes x00, x01, and x11 continue and stay in
the local state 0, if they read a node labeled x00, x01, and x11.
These are nodes that are in Y if they are in X . The processes x10
stop, because they read nodes that are in X , but not in Y . The
acceptance table is R = (f0g; : : : ; f0g).

�x00(0
D(x00)) = f0g

�x01(0
D(x00)) = f0g

�x11(0
D(x00)) = f0g

�x10(0
D(x00)) = ; for all x 2 �

� X < Y : Again we start out with the global starting state 04j�j.
The local state 0 indicates a process not having any information.
1 indicates a process suggesting that it has read the �rst node in
X , 2 means that there was a node in X somewhere, and 3 stands
for reading a node in Y after there has been a node somewhere in
X . Every process x00 remains in state 0, if all dependent states
are still in state 0. Every process x10 waits until it is active and
then changes its local state to 1, if all dependent processes are still
in state 0. Now the automaton has read a node that is in X but
not in Y . Every process x00 that sees a 1 or 2 in a dependent state
and is still in state 0 changes its own state to 2. In doing this they
spread the news that there has been a node in X . A process x01
that sees a 1 or 2 in a dependent state changes its own state to
3, to indicate that it has read a node in Y that is <-greater than
the �rst node that was in X . R = f

Q
a2� j jRaj = 1 for all a 2

� and exactly once Ra = f1g and exactly once Ra = f3g g.

On logical de�nability of !-trace languages 119

�x00(0
D(x00)) = f0g

�x00(f0; 1; 2gD(x00)| {z }
some 1 or 2, qx00 = 0

) = f2g

�x10(0
D(x00)) = f1g

�x01(f0; 1; 2gD(x00)| {z }
some 1 or 2, qx01 = 0

) = f3g

�x00(f0; 1; 2; 3g
D(x00)| {z }

qx00 = q

) = fqg q 2 f1; 2; 3g

� X � Pa: Now we have only one free variable and we start from
02j�j 2 S. All processes x0 (for all x 2 �) and the process a1
continue and stay in the local state 0. All other processes stop.
The acceptance table is R = ff0g; : : : ; f0gg.

�x0(0; : : : ; 0) = f0g for all x 2 �

�a1(0; : : : ; 0) = f0g

Induction step:

� Closure under conjunction ^ and disjunction _: Cartesian product
of automata [GP91].

� Closure under complement :: B�uchi asynchronous automata rec-
ognize exactly the recognizable languages [GP91] and these are
closed under complement.

� Closure under quanti�cation (projection) of variables 9 (8 may be
expressed by : and 9): The automaton for a formula 9X'(X) (we
can easily add more free variables, that are not quanti�ed in this
step) over the alphabet � � f0; 1g is built taking the automaton
for '(X). We melt every pair of processes x0; x1. The new process
x has state set Qx = Qx0 �Qx1 and guesses nondeterministically
whether a node is in X or not and then performs a transition either
in the component Qx0 or in the component Qx1. 2

120 W. Ebinger

If we had a construction of a complement automaton, our proof would be
completely constructive. A complementation construction similar to the
standard complementation construction for B�uchi automata does work.
But we are looking for a more constructive complementation.

5 Star-free !-trace languages and �rst order logic

In the case of �nite traces [GRS91], �nite words, and !-words [Tho90a,
for an overview] star-free languages are exactly the �rst order de�nable
ones. In order to investigate star-free !-trace languages we �rst have to
give a de�nition of star-free !-trace languages. One possibility is to use
star-free expressions with only boolean operations and concatenation,
where the complement can be taken with respect to A� in order to get
star-free sets of �nite traces and with respect to A� and A! in order to
get star-free sets of in�nite traces. We can perform a part of the proof
of the equivalence of recognizability and logic in the case of star-free
languages and �rst order logic:S

T is
de�nable

(10)
=) in FO[<]

Ladner, Thomas
()

T is
S
T is

de�nable star-
in FO[<] free

(20)
(= T is

(30)
(=

star-free

For the implication (10) we have to express the <-relation on the traces
directly by a �rst order formula using the <-relation on the words: x < y
in the partial order on the traces if and only if_

(a1;a2)2D

(a2;a3)2D

.

.

.

(al�1;al)2D

fa1;:::;alg�A

jfa2;:::;algj=l�1

9x2 : : : 9xl�1
�
Qa1(x) ^Qa2(x2) ^ : : :

: : : ^Qal�1(xl�1) ^Qal(y)

^ x < x2 < : : : < xl�1 < y
�

On logical de�nability of !-trace languages 121

For the implication (20) we replace the boolean operations by the corre-
sponding logical operations. For concatenation we can use the �rst order
formula that we gave in the proof of equivalence of logic and recogniz-
ability. The remaining direction (30) will be shown in a forthcoming joint
work with V. Diekert and A. Muscholl.

Acknowledgements

The author wants to thank Volker Diekert, Paul Gastin, Hendrik Jan
Hoogeboom, Anca Muscholl, Antoine Petit, and Wolfgang Thomas for
many helpful discussions, corrections, and suggestions.

References

[Die90] V. Diekert. Combinatorics on Traces. Number 454 in Lecture
Notes in Computer Science. Springer, Berlin-Heidelberg-New
York, 1990.

[Die91] V. Diekert. On the concatenation of in�nite traces. In Cho�rut
C. et al., editors, Proceedings of the 8th Annual Symposium on

Theoretical Aspects of Computer Science (STACS'91), Ham-

burg 1991, number 480 in Lecture Notes in Computer Science,
pages 105{117. Springer, Berlin-Heidelberg-New York, 1991.

[Gas91] P. Gastin. Recognizable and rational trace languages of �nite
and in�nite traces. In Cho�rut C. et al., editors, Proceed-
ings of the 8th Annual Symposium on Theoretical Aspects of

Computer Science (STACS'91), Hamburg 1991, number 480 in
Lecture Notes in Computer Science, pages 89{104. Springer,
Berlin-Heidelberg-New York, 1991.

[GP91] Paul Gastin and Antoine Petit. Asynchronous automata for
in�nite traces. Rapport de Recherche 707, Universit�e de Paris-
Sud, 1991. To appear in ICALP 1992, also this volume, pages
29{45.

122 W. Ebinger

[GPZ91] P. Gastin, A. Petit, and W. Zielonka. A Kleene theorem
for in�nite trace languages. In J. Leach Albert et al., ed-
itors, Proceedings of the 18th International Colloquium on

Automata Languages and Programming (ICALP'91), Madrid

(Spain) 1991, number 510 in Lecture Notes in Computer Sci-
ence, pages 254{266. Springer, Berlin-Heidelberg-New York,
1991.

[GRS91] Giovanna Guaiana, Antonio Restivo, and Sergio Salemi. On
aperiodic trace languages. In Cho�rut C. et al., editors, Pro-
ceedings of the 8th Annual Symposium on Theoretical Aspects

of Computer Science (STACS'91), Hamburg 1991, number 480
in Lecture Notes in Computer Science, pages 76{88. Springer,
Berlin-Heidelberg-New York, 1991.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their in-
terpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus,
1977.

[Och85] E. Ochmanski. Regular behaviour of concurrent systems. Bul-
letin of the European Association for Theoretical Computer

Science (EATCS), 27:56{67, Oct 1985.

[Tho90a] Wolfgang Thomas. Automata on in�nite objects. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science,
chapter 4, pages 133{191. Elsevier Science Publishers B. V.,
1990.

[Tho90b] Wolfgang Thomas. On logical de�nability of trace languages.
In V. Diekert, editor, Proceedings of a workshop of the ES-

PRIT Basic Research Action No 3166: Algebraic and Syntac-

tic Methods in Computer Science (ASMICS), Kochel am See,

Bavaria, FRG (1989), Report TUM-I9002, Technical Univer-
sity of Munich, pages 172{182, 1990.

[Zie87] W. Zielonka. Notes on �nite asynchronous automata.
R.A.I.R.O.-Informatique Th�eorique et Applications, 21:99{
135, 1987.

123

124 M. Kwiatowska, M. Stannett

On trans�nite traces 125

126 M. Kwiatowska, M. Stannett

On trans�nite traces 127

128 M. Kwiatowska, M. Stannett

On trans�nite traces 129

130 M. Kwiatowska, M. Stannett

On trans�nite traces 131

132 M. Kwiatowska, M. Stannett

On trans�nite traces 133

134 M. Kwiatowska, M. Stannett

On trans�nite traces 135

136 M. Kwiatowska, M. Stannett

On trans�nite traces 137

138 M. Kwiatowska, M. Stannett

On trans�nite traces 139

140 M. Kwiatowska, M. Stannett

On trans�nite traces 141

142 M. Kwiatowska, M. Stannett

On trans�nite traces 143

144 M. Kwiatowska, M. Stannett

On trans�nite traces 145

146 M. Kwiatowska, M. Stannett

On trans�nite traces 147

148 M. Kwiatowska, M. Stannett

On trans�nite traces 149

150 M. Kwiatowska, M. Stannett

On trans�nite traces 151

152 M. Kwiatowska, M. Stannett

On trans�nite traces 153

154 M. Kwiatowska, M. Stannett

On trans�nite traces 155

156 M. Kwiatowska, M. Stannett

On trans�nite traces 157

On Temporal Logics for Trace Systems

Wojciech Penczek�

Institute of Computer Science, Polish Academy of Sciences
00-901 Warsaw, PKiN, P.O. Box 22, Poland

March 1992

Abstract

We investigate an extension of CTL (Computation Tree Logic)

by past modalities, called CTLP , interpreted over Mazurkiewicz's

trace systems. The logic is powerfull enough to express most of

the partial order properties of distributed systems like serializ-

ability of database transactions, snapshots, parallel execution of

program segments, or inevitability under concurrency fairness as-

sumption. We show that a model checking problem for the logic

is NP-hard, even if past modalities cannot be nested. Then, we

give a one exponential time model checking algorithm for the logic

without nested past modalities. We show that all the interesting

partial order properties can be model checked using our algorithm.

Then, we show that it is possible to extend the model checking al-

gorithm to cover the whole language and its extension to CTL*P .

At the end, we prove that the logic is undecidable and we discuss

consequences of our results on using propositional versions of par-

tial order temporal logics to synthesis of concurrent systems from

their speci�cations.

Keywords: Concurrency; Trace Systems; Partial Order
Temporal Logics; Automated Veri�cation.

�This research has been partly supported by the Netherlands grant NWO NF

3/62 - 500 and a grant from The Wolfson Research Awards Scheme in The United

Kingdom.

158

On temporal logics on trace systems 159

1 Introduction

Linear time [1] and branching time [2] temporal logics are usually ap-
plied for specifying and proving properties of concurrent systems and
programs. Lately, several attempts have been made to use also logics
interpreted over partial order structures [3 - 14]. The main motivation
for de�ning these logics was to express properties inherent in the partial
order interpretations, more speci�cally to distinguish concurrency from
non-determinism.

There are two approaches to extend linear and branching time tem-
poral logics to partial order logics on global states. Either run modalities
are introduced (see QISTL [5], ISTL [5,6], CCTL [9,15], Petri Net Log-
ics [11,12]), or past operators over partial order semantics are de�ned
(see POL [14], PN-logics [11,12], and [13, 16]). Temporal logics over
partial order semantics allow for expressing properties not expressible
in logics over interleaving semantics. These properties are: inevitability
under concurrency fairness assumption [17,18], serializability of database
transactions [13, 16], causal successor [11, 12, 14], or the parallel execu-
tion of program segments [13, 14].

Model checking is one of the main methods of automated veri�cation
of concurrent systems [38]. It has been intensively studied for linear-time
temporal logics [19, 20], branching-time temporal logics [21 - 26], and
modal �-calculi [25,27]. Model checking has been also applied to prove
properties of systems, represented by partial orders of local states [3, 4].
Methods for making it applicable to very large systems and of avoiding
the state explosion problem have been proposed in [28 - 31].

As far no one has tried to investigate whether and how logics with
partial order past operators, interpreted over global state models, can be
used for automated veri�cation of concurrent systems. Since Hennessy
and Stirling [32] introduced backward modalities to program logics, all
the work has concentrated around the induced equivalences [33,34], ex-
pressiveness issues [11,12,14,32,33], and proof systems [13,16]. In this
paper we �ll this gap. Moreover, our results explain why it is so di�cult
to deal with partial order logics, what is a common observation.

We start with de�ning a logic CTLP , which is a simple extension of

160 W. Penczek

CTL by past modalities. In fact, the language of CTLP is a restriction of
that, considered in [3,4,13,16], and it is an extension of the language of
Hennessy-Milner logic with past modalities [32]. Our choice is motivated
by the following observations. CTL has proved to be a very usefull logic
for automated veri�cation. Model checking for CTL is linear in the size
of a model and linear in the lenght of the formula [21], and the com-
plexity of checking satis�ability is deterministic exponential in the size
of a tested formula [35], whereas the complexity of model checking for
CTL* is PSPACE-complete [22], and checking satis�ability is determin-
istic double exponential [36]. It turned out that it is possible to extend
CTL to fair CTL (FCTL) [24] or to model check CTL formulas over
fair paths [26] without changing the complexity of CTL model checking.
Moreover, di�erent methods dealing with the state explosion problem
have been given [28,29].

We would be quite happy with these results, if the logic could distin-
guish concurrency from non-determinism and consequently, properties of
partial order executions could be expressed. Unfortunately, this is not
the case. Therefore, it seems very natural to consider a minimal exten-
sion of CTL s.t. properties of partial orders can be speci�ed and proved.
This can be done by introducing past modalities to the language. Then,
our logic has to be interpreted over partial order models rather than over
trees. Again, we select the simplest and the most frequently used partial
order structures of global states, namely, Mazurkiewicz's trace systems
(see [13,17,18,37,46]). In this paper we investigate consequences of our
extension. Firstly, we show that for proving all the interesting partial
order properties for �nite state systems we can restrict ourselves to a
model checking algorithm for the language without nested past modali-
ties, call it CTLP�. Then, we prove that model checking for CTLP� is
NP-hard. Consequently, we give a one exponential time model checking
algorithm for this restricted language and show how it can be extended
(if ever needed) to cover the whole logic. Our model checking algorithm
requires a new technique, not applied before to model checking for CTL
or CTL*. Secondly, we turn to the problem of determining satis�abil-
ity for CTLP formulas. To our surprise, we show that even CTLP� is
not decidable. Since this result can be extended as well on other par-

On temporal logics on trace systems 161

tial order temporal logics, interpreted over trace systems, like ISTL [13],
or the logic, de�ned in [16], therefore we show an important limitation
in applying partial order logics to synthesis of concurrent systems from
their speci�cations.

The rest of this paper is organized as follows. In section 2 trace
systems are introduced. EN - systems and trace semantics is de�ned
in section 3. Then, in section 4 the logic CTLP and its semantics is
presented. Acceptors for �nite state trace systems and model generators
are de�ned in section 5. Section 6 contains the proof of NP-hardness
of CTLP model checking and section 7 shows a model checking algo-
rithm for CTLP� and its possible extensions. Undecidability of CTLP
is proved in section 8 and then, in section 9, CTLP is compared with
other temporal logics. Final remarks are given in section 10.

2 Trace Systems

We start with introducing notions of traces and trace systems from [17].
By an independence alphabet we mean any ordered pair (�; I), where

� is a �nite set of symbols (action names) and I � ��� is a symmetric
and irre
exive binary relation in � (the independence relation). Let
(�; I) be an independence alphabet. De�ne � as the least congruence in
the (standard) string monoid (��; �; �) such that (a; b) 2 I) ab � ba, for
all a; b 2 � i.e., w � w0, if there is a �nite sequence of strings w1; : : : ; wn
s.t. w1 = w, wn = w0, and for each i < n, wi = uabv, wi+1 = ubav, for
some (a; b) 2 I and u; v 2 ��. Equivalence classes of � are called traces

over (�; I). The trace generated by a string w is denoted by [w]. We
use the following notations:

� [��] = f[w] j w 2 ��g, [�+] = f[w] j w 2 �+g, and [�] = f[a] j a 2
�g.

Concatenation of traces [w]; [v], denoted [w][v], is de�ned as [wv]. For
more deatails about traces see [17].

Now, let T be the set of all traces over (�; I). The successor relation
! in T is de�ned as follows: [w1] ! [w2] i� there is a 2 � such that
[w1][a] = [w2]. The pre�x relation � in T is de�ned as a re
exive and

162 W. Penczek

transitive closure of the successor relation i.e., � = (!)�. By < we mean
� � idT . Let � 2 T and Q � T . We use the following notations:

� # � = f� 0 2 T j � 0 � �g, " � = f� 0 2 T j � � � 0g,

� # Q =
S
�2Qf�

0 2 T j � 0 � �g, " Q =
S
�2Qf�

0 2 T j � � � 0g.

We say that a subsetQ of T dominates another subset R of T , if R � # Q.
Two traces are consistent, if there is a trace in T dominating both of
them and inconsistent otherwise. A set R of traces is said to be proper,
if any two of its consistent traces are dominated by a trace in R, and
directed, if arbitrary two traces in R are dominated by a trace in R. A
set of traces Q is said to be pre�x-closed, if Q = # Q.

By a trace system T over (�; I) we mean any pre�x-closed and
proper trace language over (�; I); traces Tr(T) in a trace system T is
called states of T .

A trace together with its pre�xes represents a partial execution of
the system. Maximal (w.r.t. the inclusion ordering) directed subsets
R of Tr(T) is called runs of T . A run represents a single maximal
execution of the system T . By a path in R � Tr(T) we mean a maximal
sequence x = �0a0�1a1 : : : in R such that �i[ai] = �i+1 for all i � 0. For
convenience, we write also x = �0�1 : : :. Let # x = f� 2 Tr(T) j � � �i,
for i � 0g be a set of traces dominated by a path x. By an observation

of a run R in T we mean any path x in R such that R = # x; we say also
that x is an observation (of T). Notice that an observation is such a path
that is co�nal with some run. Thus, it carries the information about all
actions executed in the run. A su�x �iai�i+1ai+1 : : : of an observation
x is said to be an observation starting at �i.

Lemma 2.1 A path x = �0a0�1a1 : : : in Tr(T) is an observation i�

(8a 2 �)(8i 2 IN)(9j � i)(�j [a] 62 Tr(T) or (a; aj) 62 I):

Proof can be found in [13] or in [39].

Obviously, the above lemma holds for su�xes of observations. The com-
parison between the notion of an observation and the notion of a juste

On temporal logics on trace systems 163

computation can be found in [18]. In fact, each juste path is an obser-
vation, but not the other way round.

A subset Q � Tr(T) is said to be inevitable, if each observation of
T contains a state in Q. Inevitability is an important property for trace
systems, discussed in [17,18].

Since one of the aims of this paper is to show a method of proving
properties of trace systems by model checking, the �nitely representable
trace systems are of interest. They are called �nite state trace systems.

De�nition 2.1 A trace system T is said to be �nite state, if there is

an equivalence relation EQ � Tr(T) � Tr(T) in the set of traces of T

satisfying the following two conditions:

1. EQ has a �nite index,

2. (8�; � 0 2 Tr(T))(8� 2 [�]) ((� EQ � 0 and �� 2 Tr(T)))

(�� EQ � 0�)).

The above de�nition says that T contains a �nite number of traces \dis-
tinguishable w.r.t. their continuations in T ". It should be noticed that
T may have in�nitely many traces with di�erent histories i.e., # � 6=# � 0,
for in�nitely many �; � 0 2 Tr(T).

Examples of trace systems and of accompanying notions are given in
the next section. Trace systems are commonly used for giving semantics
to Elementary Net Systems [17] and �nite state programs. In [13] trace
systems were used for giving semantics to a wider class of concurrent
programs, namely those for which equivalence classes are associated with
�rst order interpretations. Below, EN-systems are de�ned and it is shown
how to de�ne their trace semantics. EN-systems serve us as examples of
�nite state concurrent systems.

3 EN-systems and trace semantics

Now, a subclass of Petri Nets, called EN-systems, is introduced.

164 W. Penczek

De�nition 3.1 (EN-system) A EN-system is an ordered quadruple

N = (B;E; F; c0), where B and E are �nite, disjoint, nonempty sets

of places and transitions, resp., F � B�E [E �B is the
ow relation,

with dom(F) [dom(F) = B [E, and c0 � B is the initial case.

Any subset c of B is called a case. Nets are illustrated graphically using
lines for representing transitions, circles for places, and arrows for the

ow relation.

De�nition 3.2 Let N be a EN-system. For each x 2 B[E, the follow-
ing sets are de�ned:

� Pre(x) = fy j (y; x) 2 Fg,

� Post(x) = fy j (x; y) 2 Fg,

� Prox(x) = Pre(x) [Post(x).

De�nition 3.3 (�ring sequence) We say that a transition t is �re-
able at a case c and leads to the case c0 (written c[t> c0), if Pre(t) � c,
Post(t) � c0, and c� Pre(t) = c0 � Post(t).

A �nite sequence of transitions w = t0t1 : : : tn is said to be a �ring
sequence of N , if there is a sequence of cases c1; : : : ; cn+1 s.t. ci[ti> ci+1,
for i � n. This is denoted by c0[w> ci+1. The case cn+1 is said to be

reachable.

De�nition 3.4 A EN-system N is said to be contact-free i� for each

reachable case c and for all t 2 E, the following condition holds:

� Pre(t) � c implies Post(t) \ (c� Pre(t)) = ;.

Therefore, for contact-free nets a transiton t is �reable at c, if Pre(t) � c.
All the EN-systems, used in the examples in the paper, are contact-free.

Next, it is shown how trace systems give semantics to EN-systems.

De�nition 3.5 (trace semantics) The trace system T over (�; I)
represents behaviour of a EN-system N = (B;E; F; c0), if the follow-

ing conditions hold:

On temporal logics on trace systems 165

� � = E,

� (a; b) 2 I i� Prox(a) \ Prox(b) = ;, and

� Tr(T) = f[w] 2 [��] j w is a �ring sequence of transitions in Ng.

Example 3.1 Notice that trace systems giving a semantics to EN-

systems are �nite state. Let N = (B;E; F; c0) be a EN-system and T be

the trace system representing behaviour of N . T is �nite-state and EQ
can be de�ned as follows:

(8[w]; [w0] 2 Tr(T))(8c � B) [w] EQ [w0] iff (c0[w> c, c0[w
0> c):

To allow the comparison of the approach presented here with that of
Peled and Pnueli, all the examples shown below are taken from their
paper [13].

Example 3.2 (inevitability) Below, EN-system N1 together with its

trace system semantics T1 is presented.

��
��

��
��

��
��

��
��

��
��s s

?

? ?

?

?

@
@
@
@
@R

�
�

�
�
�	

�
�
�
�
��
@

@
@

@
@I

2

1

4 5

3

a b c d

Figure 1: EN-system N1

The EN-system N1 = (B1; E1; F1; c
1
0), where

166 W. Penczek

� B1 = f1; 2; 3; 4; 5g,

� E1 = fa; b; c; dg,

� F1 = f(1; a); (a; 2); (1; b); (b; 4); (3; b); (3; c); (c; 5); (5; d); (d; 3)g,

� c10 = f1; 3g.

- - - -

- - - -

? ? ? ?

�
�
�
�
��

�
�
�
�
��

[a] [ac] [cda] [cdca]

[�] [c] [cd] [cdc]

[b] [cdb]

Figure 2: Trace Semantics T1 of System N1

The independence alphabet (�; I) is de�ned as follows:

� � = fa; b; c; dg,

� I = f(a; c); (c; a); (a; d); (d; a)g.

There are in�nitely many �nite runs Ri and one in�nite run R in the
trace system T1:

� Ri =# [(cd)
ib], for i � 0,

� R =
S1
i=1 # [(cd)

ia]

Every path in Tr(T1) except for x = [�][c][cd][cdc]::: is an observation of
T1.
The following is an example of an inevitability property:

On temporal logics on trace systems 167

� INEVITABILITY: Either a or b will be eventually executed.

(i.e., cases containing 2 or 4 will be reached inevitably).

One could be estonished that either a or b is inevitable as there is an
in�nite path x = [�][c][cd][cdc] : : : in which neither a nor b is executed.
But this path is not an observation and according to the de�nition, a
property is inevitable if it holds for each observation.

Example 3.3 (serializability) Below, EN-system N2 and its trace se-

mantics is presented. Then, an example of a serializability property is

given.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��s s

s

? ?

? ?

? ?

? ?

? ?

? ?

��
��

��
��*

HH
HH

HH
HHY

HH
HH

HH
HHY

��
��

��
��*

9

7 8

a3 b3

5 6

a2 b2

3 4

a1 b1

1 2

Figure 3: EN-system N2

168 W. Penczek

? ?

? ?

@
@
@R

�
�
�	

@
@
@R

�
�
�	

�
�
�	

@
@
@R

�
�
�	

@
@
@R

�
�
�	

@
@
@R

�
�
�	

@
@
@R

�
�
�	

@
@
@R

�
�
�	

@
@
@R

@
@

@
@

@
@

@
@

@
@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

�
�
�
�
�
�
��

@
@
@
@
@

@
@@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�

[a1a2a3b1b2b3] [b1b2b3a1a2a3]

[a1a2a3b1b2] [b1b2b3a1a2]

[a1a2a3b1] [b1b2b3a1]

[a1a2a3] [a1a2b1] [b1b2a1] [b1b2b3]

[a1a2] [a1b1] [b1b2]

[a1] [b1]

[�]

Figure 4: Trace Semantics T2 of N2

The EN-system N2 = (B2; E2; F2; c
2
0) is de�ned as follows:

� B2 = f1; 2; 3; 4; 5; 6; 7; 8; 9g,

� E2 = fa1; a2; a2; b1; b2; b3g,

� F2 = f(1; a1); (a1; 3); (3; a2); (a2; 5); (5; a3); (a3; 7); (a3; 9); (9; a2);

(9; b2); (2; b1); (b1; 4); (4; b2); (b2; 6); (6; b3); (b3; 9); (b3; 8)g,

On temporal logics on trace systems 169

� c20 = f1; 2; 9g.

The trace system T2 contains two runs, marked by the thin and the thick
lines.

� SERIALIZABILITY:

The net N2 can be thought of as implementing a database with two
transactions T1 = fa1; a2; a3g and T2 = fb1; b2; b3g. Each transition
can represent database read or write operation. An implementation is
correct, if transactions are serializable. Serializability of T1 and T2 [13]
in terms of trace semantics is as follows: In every run, there exists an
observation in which either all the operations of T1 appear before those
of T2, or the other way round, i.e., there is an observation, which behaves
in a serial manner. One can check that indeed in each run there is an
observation satisfying the above requirement, namely:

� [�][a1][a1a2][a1a2a3][a1a2a3b1][a1a2a3b1b2][a1a2a3b1b2b3] in the
\thick" line marked run, and

� [�][b1][b1b2][b1b2b3][b1b2b3a1][b1b2b3a1a2][b1b2b3a1a2a3] in the \thin"
line marked run.

In the next part of the paper it is shown how to express the mentioned
properties in the logic and then how to prove them by model checking.

4 Logic CTLP and its semantics

Next, the language of CTLP is de�ned and then semantics is presented.

4.1 Syntax of CTLP

Let � be a �xed set of action names. Now, we de�ne the set of state and
path formulas of CTLP .

Let PV be a set of propositional variables.

1. Each p 2 PV is a state formula,

170 W. Penczek

2. if ' and are state formulas, then so are ' ^ , :',

3. if ' is a state formula, then so are Ya' (for a 2 �), and H',

4. if ' is a state formula, then Xa' (for a 2 �), G', and 'U are
path formulas,

5. if ' is a path formula, then E' is a state formula.

The symbol E can be called an observation quanti�er (it corresponds to
path quanti�ers in CTL). The other symbols have the following intuitive
meaning: Xa - next step "along" a, U - Until, G - always in the future,
Ya - backward step "along" a, H - always in the past. Path formulas are
interpreted over observations and state formulas are evaluated at states
of models. Formulas of the form Ya', H' are called past formulas.

The following abbreviations are used:

� ' _
def
= :(:' ^ :),

� true
def
= ' _ :', for any ',

� ')
def
= :' _ ,

� F'
def
= trueU',

� P'
def
= :H:',

� EX'
def
=
W
a2�EXa', AX'

def
= :EX:',

� Y '
def
=
W
a2� Ya',

� AG'
def
= :EF:',

� A('U)
def
= :(E(: U(:' ^ :)) _EG(:)).

The lack of symmetry between backward and forward operators stems
from the fact that the past of a state is con
ict-free whereas the future
may not.

In this paper we also consider a logic CTLP�, which is a restriction
of CTLP s.t. past formulas cannot be nested.

On temporal logics on trace systems 171

4.2 Semantics of CTLP

Now, we de�ne formally the semantics of CTLP .

De�nition 4.1 A frame (for a trace system T over (�; I)) is a triple

Fv0 = (W;!; v0), where W = Tr(T) is the set of traces of the trace

system T , !� W � � �W is a labelled transition relation s.t. �
a
! � 0

i� � 0 = � [a], and v0 = [�].

De�nition 4.2 A model (for a trace system T over (�; I)) is an ordered

pair M = (Fv0 ; V), where Fv0 = (W;!; v0) is a frame for T and V :
W �! 2PV is a valuation function.

The notion of truth in M is de�ned by the relation j= as follows:

1. M;w0 j= p i� p 2 V (w0), for p 2 PV ,

2. if '; are state formulas,

M;w0 j= :' i� not M;w0 j= ',

M;w0 j= ' ^ i� M;w0 j= ' and M;w0 j= ,

3. M;w0 j= H' i� M;w0 j= ', for all w0 : w0 < w0,

M;w0 j= Ya' i� M;w0 j= ', for some w0 : w0
a
! w0,

4. if x = w0a0w1a1 : : : is an observation starting at w0, then

M;x j= Xa' i� M;w1 j= ' and a0 = a,

M;x j= G' i� M;wi j= ' for all i � 0,

M;x j= 'U i� there is k � 0 s.t. M;wk j= , and for all 0 � i <
k: M;wi j= ',

5. if ' is a path formula, then

M;w0 j= E' i� M;x j= ', for some observation x starting at w0.

172 W. Penczek

We say that a formula ' is valid in a model M (written M j= '), if
M; v0 j= '. Such notion of validity in model is sometimes called the

anchored validity. A formula ' is said to be valid, if M j= ', for all
models M .

The language of CTLP contains all the CTL formulas (with slightly
di�erent semantics, tuned to observations) and moreover the formulas
with the past modalities H and Ya.

Since our logic needs to be able to speak about actions, we have
de�ned labelled next and backward step operators. However, we have
done that only for simplicity. To show that we could have avoided intro-
ducing labelled operators we give the following example of a valuation
function, which encodes labels of transitions. Then, labelled operators
are expressible using their unlabelled versions.

Example 4.1 Let PV� = fpa j a 2 �g � PV and let V satisfy the

following condition:

� pa 2 V (�) i�]a(�) is odd, (]a(�) is the number of occurrences of

a in �).

Then, EXa' would be equivalent to a formula (pa) EX(:pa ^ ')) ^
(:pa) EX(pa ^ ')) and Ya' would be equivalent to a formula (pa)
Y (:pa ^ ')) ^ (:pa) Y (pa ^ ')).

4.3 Expressiveness of CTLP

We give several examples of expressiveness of CTLP . Then, we convince
the reader that for �nite state models, if we can express properties of
partial executions and runs, then we can specify serializability. LetM =
(Fv0 ; V) be a model for a trace system T .

� M; v0 j= AG' { ' is an invariant in T ,

� M; v0 j= AF' { ' is inevitable in T , (under a concurrency fairness
assumption),

� M; v0 j= EF' { ' is possible in T ,

On temporal logics on trace systems 173

� M; v0 j= EF (H' ^ ') { there is a partial execution in T s.t. '
holds at all its states,

� M; v0 j= EG(H' ^ ') { there is a run in T s.t. ' holds at all its
states,

� M; v0 j= AF (P' _ ') { ' holds at some state of each run in T ,

� M; v0 j= EF (Ya(true)^Yb(true)) { actions a and b are independent
in T ,

� M; v0 j= AG(') P) { always if ' holds, held in the past; this
formula allows for specifying snapshots of concurrent programs [13,
16], (' and do not contain temporal formulas).

Assume now that the trace system T is �nite state and given an equiv-
alence relation EQ in Tr(T) s.t. jEQj = n. Moreover, we require that
a valuation function of equivalent states is the same i.e., V (�) = V (� 0),
if � EQ � 0. Now, we show how serializability of two transactions T1 and
T2 can be speci�ed.

Obviously, we consider here a simpli�ed version of serializability
without taking into account aborts and any consistency conditions of
speci�c operations of transactions. All these requirements could be also
speci�ed by translating �rst order formulas, de�ned in [16], into their
propositional versions. Here, we concentrate our attention on specifying
that transactions can be serialized.

Let M = (Fv0 ; V) be a model for T . Firstly, assume that transac-
tions are executed only once. Denote by beforei and afteri the asser-
tions meaning that control is before or after the execution of transaction
Ti, respectively. Then, serializability of T1 and T2 can be expressed as
follows:

1. (before1 ^ before2)) AFP ((before1 ^ after2) _ (before2 ^
after1)),

2. AG(((before1 ^ after2) _ (before2 ^ after1))) AF (P (after1 ^
after2) _ (after1 ^ after2))).

174 W. Penczek

The �rst formula expresses that each run contains a state at which either
control is before the execution of T1 and after the execution of T2, or
the other way round. The second formula says that each run contains a
state at which control is after the execution of T1 and T2.

Secondly, we assume that T1 and T2 are executed in�nitely many
times. We denote by "quiescenti" and \activei" the assertions meaning
that a transaction Ti has already terminated or has not yet started, and
that Ti is active, respectively. Moreover, we assume that we have a set of
assertions f�1; : : : ; �ng, identy�ng uniquely states belonging to di�erent
equivalence classes of EQ i.e., at each state exactly one �i holds and at
states belonging to the same equivalence class the same �j holds. Then,
serializability of T1 and T2 can be expressed as follows:

SER1: AG[
Vn
j=1((�j ^

V2
i=1 quiescenti)) AF (

V2
i=1 P (activei ^ P (�j)))]

SER2: AG[(
Vn
j=1((�j ^

W2
i=1 activei)) AFP ((

V2
i=1 quiescenti^P (�j)))]

SER3: AG[
Vn
j=1((�j ^

V2
i=1 quiescenti))

AG((
V2
i=1(quiescenti^P (activei^P (�j)))) P (

V2
i=1 quiescenti^

P (�j))))]

The formula SER1 expresses that if at some state s transactions T1 and
T2 are quiescent, then for each run in the future of s transactions T1 and
T2 will become active. The formula P (�j) is used in order to guarantee
that the transactions become active in the future of s. The formula SER2
says that if at some state s the transactions T1 and T2 are active, then for
each run at some state in the future of s the transactions T1 and T2 will
become quiescent. We have to add also the third formula. Informally
saying, the formula SER3 expresses that for each trace "starting" and
"ending" at a state, where T1 and T2 are quiescent, but were active at
some its pre�x, there is a linearisation, which behaves in a serial manner.

Example 4.2 Now, it is shown how the properties, we have discussed

in the former examples, can be formally expressed by CTLP formulas.

Firstly, models are de�ned. Let PVi = fpb j b 2 Big, where Bi is the set
of places of EN-system Ni, for i 2 f1; 2g. The valuation function assigns

to each state these propositions which correspond to marked places.

On temporal logics on trace systems 175

The model M1 = (F 1
[�]; V1), for the trace system T1 is de�ned as follows:

� F 1
[�] = (W1;!1; [�]) is the frame for T1,

� V1 :W1 �! 2PV1 s.t.

{ pb 2 V1([w]) i� pb 2 c, for the case c s.t. c
1
0[w> c in N1.

In the following way, the property, discussed in Example 3.2, can be
expressed by CTLP formulas:

� INEVITABILITY: p1 ^ p3) AF (p2 _ p4),

The model M2 = (F 2
[�]; V2) for the trace system T2 is de�ned as follows:

� F 2
[�] = (W2;!2; [�]) is the frame for T2,

� V2 :W2 �! 2PV2 s.t.

{ pb 2 V2([w]) i� b 2 c, for the case c s.t. c
2
0[w> c in N2.

In this case T1 and T2 can occur only once. Thus, our speci�cation is sim-
pler. In terms of propositional variables, the property can be expressed
as:

� SERIALIZABILITY:

1. p1 ^ p2 ^ p9) AFP ((p7 ^ p2 ^ p9) _ (p1 ^ p8 ^ p9)),

2. AG[((p7 ^ p2 ^ p9) _ (p1 ^ p8 ^ p9))) AF (P (p7 ^ p8 ^ p9) _ (p7 ^
p8 ^ p9))].

In the following sections, it is shown how to prove the above property
by model checking.

5 Acceptors for �nite state trace systems

and model generators

Firstly, we de�ne formally a notion of a �nite state model for CTLP .

176 W. Penczek

De�nition 5.1 A model M = (Fv0 ; V) (for a trace system T) is said to

be �nite state, if there is an equivalence relation EQ � Tr(T)� Tr(T)
in the set of traces of T satisfying the conditions of the De�nition 2.1

and

3. for each �; � 0 2 Tr(T), if � EQ � 0, then V (�) = V (� 0) (EQ re-
spects V).

Then, we show how to represent �nite state models in a �nite way. First,
we show how to represent frames by a special kind of labelled transition
systems.

Now, the de�nitions of labelled transition systems and concurrent
transition systems are given, and related to trace systems. Concurrent
transition systems have been introduced in [40] and investigated by many
authors (see [41, 42]).

De�nition 5.2 (labelled transition system) A labelled transition
system (lts) is a triple

F = (W;�;!) such that:

1. W is a non-empty, countable set of states,

2. � is a non-empty, countable set of actions,

3. ! �W ���W is a transition relation; we write w
a
! w0 instead

of (w; a; w0) 2!,

The following notation is also used:

� w ! w0, if there is a 2 � s.t. w
a
! w0,

� w !� w0, it there is a sequence of states w0; : : : ; wn s.t. w = w0,
w0 = wn, and wi ! wi+1 for 0 � i < n.

De�nition 5.3 (concurrent transition system) A concurrent tran-
sition system (cts) is a 4-tuple

F = (W;�;!; I) such that:

1. (W;�;!) is a labelled transition system,

On temporal logics on trace systems 177

2. (�; I) is an independence alphabet,

3. (8w;w0; w00 2 W)(8a; b 2 �) : (w
a
! w0

b
! w00 and (a; b) 2 I)

implies 9w000: w
b
! w000

a
! w00,

4. (8w;w0; w00 2 W)(8a; b 2 �) : (w
a
! w0 and w

b
! w00 and (a; b) 2

I) implies 9w000: w0
b
! w000 and w00

a
! w000,

5. (8w;w0; w00 2 W)(8a 2 �): (w
a
! w0 and w

a
! w00) implies w0 =

w00.

Condition 3) requires that independent actions can commute, condition
4) is called a "diamond property". Condition 5) expresses unambiguity.
In our case, this condition does not introduce any limitation, but it is
convenient for using sequences of actions to denote paths.

De�nition 5.4 Let F = (W;�;!; I) be a concurrent transition system

and w0 2 W .

� Fw0 = (W;�;!; I; w0) is said to be a rooted concurrent transition
system - rcts, for short.

� A path in Fw0 is any �nite or in�nite sequence x = w0a0w1a1 : : :

s.t. wi
ai
! wi+1, for i � 0.

� en(w0) = fa 2 � j (9w 2 W) : w0
a
! wg is the set of all the

actions enabled at w0.

The following notations are used. Let x = w0a0w1a1 : : : be a path in
Fw0 .

� x=� = a0a1 : : :,

� Tr(Fw0) = f[x=�] j x is a �nite path in Fw0g,

� Fw0 is said to accept a trace system T over (�; I), if Tr(T) =
Tr(Fw0).

178 W. Penczek

� A path x is said to be an observation in Fw0 , if [�][a0][a0a1] : : : is
an observation in Tr(Fw0).

� A su�x wiaiwi+1ai+1 : : : of an observation x is said to be an ob-
servation starting at wi.

Next, it is shown that rooted concurrent transition systems accept trace
systems.

Fact 5.1 Let Fw0 be a rooted concurrent transition system. Then,

Tr(Fw0) over (�; I) is a trace system.

Proof. It is easy to show that condition 4 in the de�ni-
tion of cts implies that Tr(Fw0) is proper and condition 3
guarantees that Tr(Fw0) is pre�x-closed.

Moreover, all trace systems have got their acceptors.

Fact 5.2 Let T be any trace system. Then, there exists a rooted con-

current transition system Fw0 s.t. Tr(Fw0) = Tr(T).

Proof. Clearly, Fw0 = (Tr(T);�;!; I; [�]) is a rooted

concurrent transition system, accepting T , where �
a
! � 0 i�

� 0 = � [a], for a 2 �.

If a trace system T is �nite state and EQ is an equivalence relation in
Tr(T), as described in the De�nition 2.1, then there exists a �nite rooted
concurrent transition system accepting T .

De�nition 5.5 The quotient structure of Tr(T) by EQ is a 5-tuple

Fw0 = (W;�;!; I; w0), where:

� W = f[�]EQ j � 2 Tr(T)g is a set of states,

� (�; I) is an independence alphabet,

� ! �W���W is a transition relation such that [�]EQ
a
! [� 0]EQ, if

there are traces �1 2 [�]EQ; �
0
1 2 [� 0]EQ, and a 2 � s.t. �1[a] = � 01,

On temporal logics on trace systems 179

� w0 = [�]EQ.

It is easy to check that Fw0 is a rooted concurrent transition system
accepting T . Therefore, if a trace system T and an equivalence relation
EQ in Tr(T) is given, then De�nition 5.5 shows how to de�ne the �nite
rcts accepting T .

Example 5.1 (acceptors for trace systems) Below, we show the

de�nitions of �nite acceptors for the trace systems T1 and T2 of the

Examples 3.2 and 3.3.

��
��

��
��

��
��

��
��

��
��

�

-

-

�

? ?

�
�

�
�

�
�

��	
4 2,3 2,5

1,3 1,5

d

c

c

d

b a a

Figure 5: The rcts F1 accepting the trace system T1

The rcts F 1
w1
0

= (W1;�1;!1; I1; w
1
0) accepting the trace system T1

is de�ned as follows:

� W1 = ff1; 3g; f1; 5g; f4g; f2; 3g; f2; 5gg,

� �1 = fa; b; c; dg,

� !1= f(f1; 3g; b; f4g); (f1; 3g; a; f2; 3g); (f1; 3g; c; f1; 5g);

(f1; 5g; d; f1; 3g); (f1; 5g; a; f2; 5g);

(f2; 5g; d; f2; 3g); (f2; 3g; c; f2; 5g)g,

� I1 = f(a; c); (c; a); (d; a); (a; d)g,

180 W. Penczek

� w1
0 = f1; 3g.

One can easily notice that, in this case, F 1
w1
0

is the sequential case graph

of N1, extended by the dependence relation. The trace system T2 itself
de�nes the �nite rcts F 2

w2
0

= (W2;�2;!2; I2; w
2
0), where:

� W2 = Tr(T2),

� �2 = fa1; a2; a3; b1; b2; b3g,

� �
a
!2 �

0 i� � [a] = � 0,

� I2 = �2 ��2 � (fa2; a3; b2; b3g
2[

f(a1; a1); (b1; b1); (a1; a2); (a2; a1); (b1; b2); (b2; b1)g),

� w2
0 = [�].

Now, let Fw = (W;�;!; I; w) be a rcts. De�ne an acceptance function

AC : Tr(Fw) �!W assigning to each trace from Tr(Fw) the state of Fw
which accepts this trace, i.e., AC(�) = w0 i� there is a �nite path x from
w to w0 s.t. [x=�] = � . Thanks to the conditions 4) and 5) in De�nition
5.3, AC is de�ned correctly. In the standard way AC is extended on
subsets of Tr(Fw): AC(P) = fAC(�) j � 2 Pg, for P � Tr(Fw).

Now, we de�ne the notion of a model generator for a �nite state
model for a trace system T .

De�nition 5.6 Let M = (Fv0 ; V) be a �nite state model for a trace

system T , and let EQ be an equivalence relation in Tr(T) respecting V .
Then, a model generator forM is de�ned asMG = (Fw0 ; VG), where Fw0
is the quotient structure of Tr(T) by EQ and VG : [Tr(T)]EQ �! 2PV

s.t. VG([�]EQ) = V (�), for any � 2 Tr(T).

We say that a formula ' is true in a model generatorMG at w0 (written
MG; w0 j= '), if M; v0 j= '.

Before discussing a model checking algorithm for CTLP , we show
that, in fact, we can restrict ourselves to give an algorithm for CTLP� -
the restriction of CTLP without nested past modalities and still we can

On temporal logics on trace systems 181

check all the properties we are interested in. The only property, we have
discussed, which required nested past operators, was serializability. But
we show that for checking serializability, we can use a model checking
algorithm for CTLP�. This follows from the following observation. Let
M� be a restriction of the model M to states " � \ Tr(T) i.e., M� is a
submodel ofM , generated by � . Let � be a proposition which holds only
at the beginning state of each model M� i.e., � � Hfalse. Notice that:

� M j= SER1 ^ SER2 ^ SER3 i� for each � 2 Tr(T): M� j=
SER10 ^ SER20 ^ SER30, where

SER10: (
V2
i=1 quiescenti)) AF (

V2
i=1 P (activei))

SER20: (
W2
i=1 activei)) AFP (

V2
i=1 quiescenti)

SER30: (
V2
i=1 quiescenti)) AG((

V2
i=1(quiescenti ^ P (activei)))

P (
V2
i=1 quiescenti ^ :�))

Since M is a �nite state model, then there are at most jEQj non-
isomorphic submodels M� . Let MG = (Fw0 ; VG), where Fw0 = (W;�;!
; I; w0) be a model generator for M and let Mw

G = (Fw; V
w
G) be a

model generator for M� , where AC(�) = w 2 W . Consequently,
M j= SER1^SER2^SER3 i� Mw

G ; w j= SER10^SER20 ^SER30, for
each w 2W .

Therefore, fortunately we can give a model checking algorithm for
CTLP� and we can still verify all the properties, discussed so far.

Unfortunately, as we show in the next section, model checking for
CTLP� is NP-hard.

6 NP-hardness of CTLP model checking

In this section we show that model checking for CTLP�, and therefore
for CTLP is NP-hard. Our problem has the following formulation: given
a model generatorMG = (Fw0 ; VG) and a formula ', is ' true in MG at
w0 ?

We prove that 3-SAT problem is polynomialy reducible to deter-
mining whether MG; w0 j= ', for some CTLP formula '.

182 W. Penczek

Let = c1 ^ : : : ^ cm be a boolean formula in 3-CNF, where ci =
li1 _ li2 _ li3 , for 1 � i � m, lij = xk or :xk for some k s.t. 1 � k � n,
x1; : : : ; xn are the propositional variables appearing in .

Let MG = (Fw0 ; VG) be a model generator (see the �gure below),
de�ned as follows:

� let X = fxi j 1 � i � ng [fx0i j 1 � i � ng, Y = fyi j 0 � i � ng,

� Fw0 = (W;�;!; I; w0), where

� W = X [Y , � = X � Y [Y �X , I = ;,

� != f(yi�1; (yi�1; xi); xi); (yi�1; (yi�1; x
0
i); x

0
i);

(xi; (xi; yi); yi); (x
0
i; (x

0
i; yi); yi) j 1 � i � ng,

� w0 = y0,

� PV = fci j 1 � i � mg,

� V (xi) = fcj j xi appears as a literal in cjg,

� V (x0i) = fcj j :xi appears as a literal in cjg,

� V (yi) = ;, for 0 � i � n.

s
s

s
s

s

s
s s

s

s
s��

��
�*

HHHHHj��
��
�*

HHHHHj��
��
�*

HHHHHj��
��
�*

HHHHHj q q q q q q����
�*

HHHHHj��
��
�*

HHHHHjy0

x1

x01

y1

x2

x02

y2 yn�1

xn

x0n

yn

Figure 8: The structure Fw0 of the model generator MG

The following equivalence holds:

*) is satis�able i� MG; w0 j= EF (Pc1 ^ : : : ^ Pcm).

On temporal logics on trace systems 183

The above follows from the fact that since the dependence relation I = ;,
therefore the model, generated by MG, is a tree. Therefore, all ci must
be true somewhere at the same path, which represents one of the possible
valuations of propositional variables xi. This reduction is polynomial.
Hence, model checking for CTLP is NP-hard.

In fact we have proved even more. Namely, that model checking is
NP-hard, even if past modalities cannot be nested, i.e., model checking
for CTLP� is NP-hard.

The next part of this paper is devoted for de�ning a model checking
algorithm for CTLP� and then, it is shown how our method can be
extended to cover the whole language of CTLP .

7 Model checking for CTLP�

Altough, CTLP� seems to be a very mild extension of CTL, it turns out
that using a model checking algorithm for CTLP� we can check all the
partial order properties, we have discussed so far. Therefore, a model
checking method for CTLP� is of interest. Because of NP-hardness,
we can hardly believe in a polynomial time model checking algorithm.
Thus, the best we can o�er is an algorithm of one exponential complexity.
Moreover, as we show later, as soon as we know how to check CTLP�
formulas we can apply this method to the whole language of CTLP and
its extension to CTL�P .

Unfortunately, any of the known methods for model checking, ap-
plied to CTL or CTL*, cannot be used in the case of CTLP�. Showing
why all these methods fail is going to be a good introduction to our
method of model checking.

Let MG = (Fw0 ; VG) be a model generator for M (we assume that
the set PV of propositional variables is �nite) and be a CTLP� formula
to be checked over. Firstly, let's try to apply a method, used for CTL
[21]. Immediately we �nd an obstacle. We do not know how to label
states of a model generator MG with subformulas of containing past
operators. This problem stems from the fact that it may happen that
for some �; � 0 2 Tr(Fw0): AC(�) = AC(� 0) = w in MG and for some
H' 2 Subformulas(), M; � j= H' and M; � 0 j= :H'.

184 W. Penczek

Secondly, let's try to apply a method, used for LTTL [19] and CTL*
[24]. De�ne a cross product ofMG with all subsets of Subformulas()[
PV . Then, we can obtain a structure which is not a concurrent transition
system. In fact, it can violate all the conditions, but that, which cannot
be repaired is a diamond property. It may happen that for some trace � ,
two di�erent states w and w0 in the new structure accept it. Since, w and
w0 may have been assigned di�erent formulas, therefore our construction
fails.

Looking at automata theoretic constructions [20] we realize that the
same problems appear as in the former case. Therefore, we need a new
technique. The general idea is to unwind MG s.t. we can assign past
formulas to states of a new structure and then use the most e�cient
method of CTL model checking, tunned to observations.

Let Fw0 = (W;�;!; I; w0) be a rcts, w 2 W , W 0 � W , and � 2
[��]. The following notations are used:

� �(�) = fa 2 � j � = �1[a]�2, for some �1; �2 2 [��]g is the set of
action names \occurring" in the trace � .

� en(w;W 0) = fa 2 � j (9w0 2 W 0) : w
a
! w0g de�nes actions,

enabled at w and leading to the states from W 0,

� �I = fa 2 � j (9b 2 �) (a; b) 2 Ig is the set of actions for wich
there is at least one independent action,

� I(�) = f�0 � � j (9a 2 �) : fag ��0 � Ig [f�g is the family of
sets of actions �0 s.t. there is at least one action independent with
all its elements or �0 = �.

We need the following lemmas.

Lemma 7.1 A maximal path x = w0a0w1a1 : : : is an observation in Fw0
i�

(8a 2 �)(8i 2 IN)(9j � i)(a 62 en(wjor ((a; aj) 62 I))

Proof follows directly from Lemma 2.1.

On temporal logics on trace systems 185

Obviously, the above lemma holds also for observations starting at any
w 2W .

The next lemma is a special case of Levi's Lemma for traces [17].
We present it with a short proof.

Lemma 7.2 For each �; �1; �2 2 [��] and � 2 [�] the following condition
holds:

�� = �1�2 i�

1) �2 = � 00� and �1�
00 = � , for some � 00 2 [��] or

2) �1 = � 0�, fag � �(�2) � I, and � 0�2 = � , for some � 0 2 [��] and
[a] = �.

Proof.(<=) Obvious.
(=>) Let w be any linearisation of ��. Then w must be of the
following form w = w0aw00, where [w0w00] = � , [a] = �, and
fag��([w00]) � I , (where fag�; = ;). Now, if we represent
w by concatenation of two strings w1; w2 s.t. w = w1w2,
then the following cases are possible:

� w1 = w01 and w2 = w02aw
00, where w0 = w01w

0
2, or

� w1 = w0aw001 and w2 = w002 , where w
00 = w001w

00
2 .

Now, let �� = �1�2. Therefore, either �1 = [w01] and
�2 = [w02aw

00], where w0 = w01w
0
2 and fag � �([w00]) � I ,

or �1 = [w0aw001] and �2 = [w002], where w
00 = w001w

00
2 and

fag � �([w00]) � I . This implies that either �1 = [w01] and
�2 = � 00[a], where � 00 = [w02w

00], �1�
00 = [w01w

0
2w

00] = [w0w00] =
� , or �1 = � 0[a], fag � �([w002]) � I , and �2 = [w002], where
� 0 = [w0w00], � 0�2 = [w0w001w

00
2] = [w0w00] = � .

Let MG = (Fw0 ; VG) be a model generator, where Fw0 = (W;�;!
; I; w0), and let AC be the acceptance function for Fw0 . Let be a
formula to be checked over the model, generated by MG. The general
idea of our algorithm consists in de�ning a new model generatorM 0

G for
which AC 0(�) = AC 0(� 0) implies

186 W. Penczek

� AC(# �) = AC(# � 0), and

� for each a s.t. Ya' 2 Subformulas(), if � = �1[a], then �
0 = � 01[a]

and AC(�1) = AC(� 01), for some �1; �
0
1 2 [��].

The model generatorM 0
G is built around the rcts accepting Tr(Fw0), be-

ing the quotient structure of Tr(Fw0) by the relation EQ. This relation
is de�ned below.

Let �; � 0 2 Tr(Fw0) and � � �. We de�ne:

� I (�) = I(�) [ffag � � j Ya' 2 Subformulas()g,

� a function � : 2� �! I (�) s.t. � = �, if � 2 I (�), � = �, if
� 62 I (�),

� a function p : [��] �! ftt; ffg s.t. p(� 0) = tt, if j� 0j = 1, p(� 0) =
ff , if j� 0j 6= 1,

� a function Rep : [��] �! 2W�I (�)�ftt;ffg (tt stands for true and
ff stands for false) s.t.

� Rep(�) = f(AC(�1);�(�2); p(�2)) j �1�2 = �g,

� � EQ � 0 i� Rep(�) = Rep(� 0),

� [�]EQ = f� 0 2 Tr(Fw0) j � EQ � 0g,

� states(�) = fw 2 W j (w;�; q) 2 Rep(�), for any non-empty
� � � and any q 2 ftt; ffgg.

Intuitively speaking, states(�) gives the set of all states in W ac-
cepting strict pre�xes of � ,

� pred(�) = f(w;�; q) 2 Rep(�) j q = ttg,

Intuitively speaking, pred(�) is the set of all states in W accepting
predecessors of � .

The de�nition of Rep(�) gives rise to the equivalence relation satisfying
the conditions of De�nition 2.1 and carrying information about the past
and predecessors of traces. The interested reader can check that Rep(�),

On temporal logics on trace systems 187

de�ned as fAC(� 0) j � 0 � �g or fAC(� 0) j � 0 ! �g wouldn't give rise to
an equivalence relation as required.

Next, it is shown that EQ is indeed an equivalence relation, which
can be used for de�ning a new �nite representation of Tr(Fw0).

Lemma 7.3 The following conditions hold:

i) � EQ � 0 implies AC(�) = AC(� 0),

ii) EQ satis�es the conditions of the De�nition 2.1,

iii) � EQ � 0 implies states(�) = states(� 0) and pred(�) = pred(� 0).

Proof.
i) Assume that � EQ � 0. From the de�nition of Rep(�),
it follows that AC(�) = w for (w; ;; ff) 2 Rep(�) (it is
exactly one element in Rep(�) of the form (w; ;; ff)). As
Rep(�) = Rep(� 0), it follows that AC(�) = AC(� 0).

ii) The index of EQ is obviously �nite and moreover, it
can be shown to be smaller than 22�jW j�jI (�)j.

Then, we prove that � EQ � 0 and �� 2 Tr(Fw0) implies
�� EQ � 0�, for each � 2 [�]. To this end we show that
Rep(��) can be de�ned in terms of Rep(�), �, and (�; I). We
need the following notation: for each w 2W and a 2 en(w),

by w(a) we denote the state w0 2 W s.t. w
a
! w0.

Now, we come back to the proof of ii). Let � = [a].

� Rep(��) = (by de�nition) f(AC(�1);�(�2); p(�2)) j

�1�2 = ��g = (by Lemma 7.2)

� f(AC(�1);�(� 00�); p(�
00�)) j �1�

00 = �g[

f(AC(� 0�);�(�2); p(�2)) j �
0�2 = � and fag��(�2) � Ig

= (by de�nition of Rep(�))

� f(w;� [fag; emp(�)) j (w;�; q) 2 Rep(�)g[

f(w(a);�; q) j (w;�; q) 2 Rep(�) and fag � � � Ig,
where emp(�) = tt, if � = ;, and emp(�) = ff , oth-
erwise.

188 W. Penczek

Notice that, Rep(��) = Rep(� 0�), if Rep(�) = Rep(� 0).
iii) It follows directly from the de�nitions of EQ, states(�)
and pred(�).

Let F 0
w0
0

= (W 0;�;!0; I; w00) be the quotient structure of Tr(Fw0) by the

equivalence relation EQ s.t. elements of W 0 are of the form Rep(�) for
� 2 Tr(Fw0) rather than [�]EQ. We show now that F 0w0

0

can be de�ned

directly from Fw0 .
The following notions simplify the rest of the construction.

We de�ne:

� a function last : W 0 �!W , s.t. last(w0) = w, if (w; ;; ff) 2 w0,

� REP (w0a) = f(w;� [fag; emp(�)) j (w;�; q) 2 w0g [

f(w(a);�; q) j (w;�; q) 2 w0 and fag �� � Ig, for any w0 2 W 0

and a 2 en(last(w0)),
(intuitively speaking, REP (w0a) de�nes the next state in W 0,
reached after executing a at w0),

The construction of F 0w0
0

is performed inductively, in stages.

Let F 1
w0
0

= (W 0
1;�; ;; I; w

0
0), where W 0

1 = fw00g and w00 =

f(w0; ;; ff)g. Now, for each node w0 of W 0
i � W 0

i�1 (with W 0
0 = ;)

we add all its successors in W 0 and extend !0
i, respectively. Let

F iw0
0

= (W 0
i ;�;!

0
i; I; w

0
0) and W ;

i = W 0
i � W 0

i�1. Then, F i+1
w0
0

=

(W 0
i+1;�;!

0
i+1; I; w

0
0), where

� W 0
i+1 =W 0

i [fREP (w
0a) j w0 2W ;

i ; a 2 en(last(w
0))g,

� !0
i+1=!

0
i [f(w

0; a; REP (w0a)) j w0 2 W ;
i ; a 2 en(last(w

0))g.

The construction stops at the least m, when Fmw0
0

= Fm+1
w0
0

. It is easy to

see that Fmw0
0

is isomorphic to F 0w0
0

.

Then, the new model generator M 0
G = (F 0w0

0

; V 0) is de�ned as follows:

� F 0w0
0

= (W 0;�;!0; I; w00),

On temporal logics on trace systems 189

� V 0G : W 0 �! 2PV is a valuation function satisfying the following
condition:

{ p 2 V 0G(w
0) i� p 2 VG(last(w

0)), for p 2 PV .

7.1 Improving the algorithm

In order to decrease the number of elements of W 0 we may require that:

� if (w;�; tt) 2 Rep(�), then (w;�; ff) 62 Rep(�),

� if (w;�; ff) 2 Rep(�), then (w;�0; ff) 62 Rep(�), for � � �0 and
� 6= �0.

The de�nition of Rep(�) with these changes remains correct. To estimate
the complexity of the algorithm we have to assess how much it does cost
to build M 0

G. Therefore, notice that:

� jW 0j � 22�jW j�jI (�)j.

� Checking whether fag�� � I , for all a 2 �I and for all � 2 I (�)
costs j�I j � jI (�)j � j�I j � jI j.

� Checking whether � [fag 62 I (�), for all a 2 �I and for all
� 2 I (�) costs j�I j � jI (�)j � j�I j � jI j, since for each a 2 �I
and � 2 I (�) the algorithm can check whether (fag�Con(�))\
I 6= ;, where Con(�) = fa0 2 � j fa0g � � � Ig (Con(�) has
been already computed by the algorithm while checking whether
fag �� � I , for all a 2 �I), which costs at most j�I j � jI j.

� At each state w0 of W 0 the cost of calculating the next states is
O(jW j� jI (�)j) for each a 2 en(last(w

0)) i.e., O(j ! j� jI (�)j).
Thus, for all states w0 2W 0 it is O(j ! j�jI (�)j�2

2�jW j�jI (�)j).

Therefore, the complexity of building M 0
G is:

O(j ! j � jI (�)j � 22�jW j�jI (�)j):

Notice that for each subformula ' of and for each �; � 0 2 Tr(Fw0),
if AC 0(�) = AC 0(� 0), then M; � j= ' i� M; � 0 j= '. Therefore, we

190 W. Penczek

label w0 2 W 0 with ' (written M 0
G; w

0 j= '), if M; � j= ', for some � :
AC 0(�) = w0.

Obviously, for each subformula ' without past operators, for each
�; � 0 2 Tr(Fw0), if AC(�) = AC(� 0), then M; � j= ' i� M; � 0 j= '.
Therefore, we label w 2 W with ' (written MG; w j= '), if M; � j= ',
for some � : AC(�) = w.

We write MG j= ', if MG; w j= ', for all w 2 W .
Next, we show model checking algorithms. The method is inductive

i.e., given a formula , starting from its shortest and most deeply nested
subformula ' the algorithm labels these states of M 0

G with ', which
accept traces, at which ' holds. Therefore, in case of checking a less
nested subformula, it can be assumed that the states have just been
labelled with all its subformulas.

Firstly, we label states of MG with all the subformulas of , which
do not contain past subformulas. Then, we label states of M 0

G with all
the subformulas of . Below, we give algorithms for labelling states of
M 0
G. These algorithms can be as well applied for labelling states of MG.
We show how to label states of M 0

G with formulas of the form p,
:', ' ^
, Ya', H', EXa', EG', and E('U
).

7.2 Model checking for p, :', ' ^

There is not a lot to do in the case of checking formulas of the form:

� p 2 PV ,

� :',

� ' ^
.

Notice, that:

1. M 0
G; w

0 j= p i� p 2 V 0G(w
0), for p 2 PV ,

2. if ';
 are state formulas,

M 0
G; w

0 j= :' i� not M 0
G; w

0 j= ',

M 0
G; w

0 j= ' ^
 i� M 0
G; w

0 j= ' and M 0
G; w

0 j=
.

On temporal logics on trace systems 191

Therefore, in the �rst case we check whether p is an element of V 0G(w
0),

in the second case we check whether w0 has been labelled with ' and
in the third case we check whether w0 has been labelled with ' and
.
The complexity of checking a formula of the above form over all states
is O(jW 0j).

Now, we de�ne algorithms for checking formulas of the form Ya',
H', EXa', E('U
), and EG'.

7.3 Model checking for Ya'

Observe thatM 0
G; w

0 j= Ya' i� there is (w; fag; tt) 2 w0 s.t. MG; w j= '.
The complexity of labelling states of M 0

G with Ya' is O(jW 0j � jW j �

jI (�)j).

7.4 Model checking for H'

Observe that M 0
G; w

0 j= H' i� for all (w;�; q) 2 w0 if � 6= ;, then
MG; w j= '. The complexity of labelling states of M 0

G with H' is
O(jW 0j � jW j � jI (�)j).

7.5 Model checking for EXa'

Observe that M 0
G; w

0 j= EXa' i� there is w00 2 W 0 s.t. w0
a
! w00 and

M 0
G; w

00 j= '. Therefore, the algorithm �nds all the states at which '
holds and labels all its a-predecessors with EXa'. The complexity of
labelling states of M 0

G with EXa' is O(jW 0j+ j !0 j).

7.6 Model checking for E('U
)

Observe that M 0
G; w

0 j= E('U
) i� there is a state w00 2 W 0 and a
sequence of states w00; : : : ; w

0
n 2 W

0 s.t. w0 = w00 ! : : :! w0n = w00 and
M 0
G; w

00 j=
, M 0
G; w

0
i j= ' for 0 � i < n.

The above follows from the following lemma:

Lemma 7.4 Every �nite path in F 0w0
0

can be extended to an observation

in F 0w0
0

.

192 W. Penczek

Proof follows from the fact that every �nite path in
Tr(F 0w0

0

) can be extended to an observation in Tr(F 0w0
0

) (see

[17]).

Firstly, all the states at which
 holds are labelled with E('U
). Sec-
ondly, the algorithm goes backwards using the relation !0�1 and labels
all states at which ' holds with E('U
). The complexity of labelling
states with E('U
) is O(jW 0j+ j !0 j).

7.7 Model checking for EG'

We assume that I 6= ;. Observe that M 0
G; w

0 j= EG' i� there is an
observation x starting at w0 s.t. M 0

G; w
00 j= ', for each w00 on x. The

model checking algorithm uses Lemma 7.1.
Let W 0

' = fw0 2 W 0 j M 0
G; w

0 j= 'g be the subset of W 0, labelled
with '. Firstly, the subsetW 0

' ofW 0 is selected. By a strongly connected
component in W 0

' we mean any subset W 00 � W 0
' satisfying one of the

following conditions:

� (8w1; w2 2W
00): w1 !

0� w2 and w2 !
0� w1, or

� W 00 contains only one state w00 s.t. w00 does not have any successor
in W 0.

Secondly, all the maximal strongly connected components in W 0
' are

selected. Notice that they are disjoint. Next, the states ofW 0 are labelled
according to the following theorem:

Theorem 7.1 M 0
G; w

0
0 j= EG' i� w00 2 W 0

' and there is a maximal

strongly connected component W 00 in W 0
' reachable from w00 by a path

contained in W 0
' and (*): (8a 2 �)(9w0 2 W 00) a 62 en(w0) or fag �

en(w0;W 00) 6� I.

Proof. (=>). If M 0
G; w

0
0 j= EG', then there is an ob-

servation starting at w00, say x = w00a0w
0
1a1 : : :, s.t. (8i �

0) M 0
G; w

0
i j= '. If x is �nite, then the last state of x is a

maximal strongly connected component inW 0
' satisfying (*).

On temporal logics on trace systems 193

Thus, let's assume that x is in�nite. Let w00 be the �rst state
on x s.t. each w0 2 W 0 either doesn't appear on x after w00 or
appears in�nitely many times. Then, the setW 00 of all states
appearing on x after w00 is a strongly connected component.
It follows from Lemma 7.1 that W 00 satis�es the required
property. If W 00 is not a maximal strongly connected com-
ponent, then it can be extended to it and the property in
question is preserved.

(<=). If W 00 contains only one state without any suc-
cessor in W 0, then obviously M 0

G; w
0
0 j= EG'. So, assume

that this is not true. Take any path x = w00a0w
0
1a1 : : : s.t.

(8i � 0) w0i 2 W
0
' and (8w0; w00 2 W 00) if w0

a

!0 w00, then for
in�nitly many i: w0i = w0, w0i+1 = w00, and ai = a. Clearly,
by the assumption and by Lemma 7.1, it follows that x is an
observation and by construction x j= G'.

Selecting W 0
' and maximal strongly connected components costs

O(jW 0j+ j !0 j) (see [21]). Then, components satisfying the property (*)
in the Theorem 7.1 are labelled. This may cost O((jW 0j+j !0 j)�j�j�
jI j). If w00 is in W

0
' and there is a path from w00 to a labelled component

in W 0
', then M

0
G; w

0
0 j= EG', otherwise M 0

G; w
0
0 j= :EG'. Therefore,

the complexity of checking EG' is O(j�j � jI j � (jW 0j+ j !0 j)).

7.7.1 Improving the algorithm

Now, it is shown how to improve the algorithm. The above algorithm
will be more e�cient, if instead of checking for all a 2 �, it will check
only for those a, for which it exists at least one independent action i.e.,
a 2 �I . If a 62 �I , then fag � en(w0;W 00) 6� I , so this does not need to
be checked. Finding the set �I costs O(jI j). Therefore, the complexity
of the improved algorithm is

O(j�I j � jI j � (jW 0j+ j !0 j)):

It was assumed that I 6= ;. In the other case, each path is an observa-
tion, so to prove that EG' holds does not require to check any property

194 W. Penczek

about maximal strongly connected components. Then, the complexity
is O(jW 0j+ j !0 j).

7.8 Complexity of CTLP� model checking

In order to handle an arbitrary CTLP� formula , the state-labelling
algorithm is applied to the subformulas of starting with the shortest
and most deeply nested one. Since j�I j � jI j � jI (�)j and j !

0 j �

j ! j � jW 0j, then each pass does not take more time than O(j !
j � jI (�)j � 22�jW j�jI (�)j), and since contains at most lenght()
di�erent subformulas, the algorithm requires time

O(lenght()� j ! j � jI (�)j � 22�jW j�jI (�)j):

Example 7.1 (proving serializability) Below, it is shown how to

prove serializability of the trace system T2.

We have to check whether:

1. M2; [�] j= p1 ^ p2 ^ p9) AFP ((p7 ^ p2 ^ p9) _ (p1 ^ p8 ^ p9)),

2. M2; [�] j= AG[((p7 ^ p2 ^ p9) _ (p1 ^ p8 ^ p9))) AF (P (p7 ^ p8 ^
p9) _ (p7 ^ p8 ^ p9))].

Fortunately, in this case M2 is equall to its model generator. Therefore,
we can carry out all the proofs over M2. The only di�cult thing is to
label states of M2 with the formulas:

1. AFP ((p7 ^ p2 ^ p9) _ (p1 ^ p8 ^ p9)),

2. AF (P (p7 ^ p8 ^ p9) _ (p7 ^ p8 ^ p9)).

It is shown how to do that for the formula 1. First notice that:
AFP ((p7 ^ p2 ^ p9) _ (p1 ^ p8 ^ p9)) � :EGH', where ' = (:p7 _
:p2 _ :p9) ^ (:p1 _ :p8 _ :p9). Next, states of M2 are labelled with
EGH'. Notice that ' 2 V2(�), if � 62 f[a1a2a3]; [b1b2b3]g. Therefore,
M2; � j= H' i� � 62 (" [a1a2a3][" [b1b2b3])� ([a1a2a3] [[b1b2b3]). Now,
using the algorithm for EG' in M2, we �nd that M2; [�] 6j= EGH'.
Thus, M2; [�] j= AFP ((p7 ^ p2 ^ p9) _ (p1 ^ p8 ^ p9)). Consequently, we
get M2; [�] j= p1 ^ p2 ^ p9) AFP ((p7 ^ p2 ^ p9) _ (p1 ^ p8 ^ p9)).

On temporal logics on trace systems 195

7.9 Extending model checking to CTLP and CTL�

P

Our method of model checking can be easily extended s.t.:

1. past formulas can be nested - (model checking for CTLP),

2. future formulas are those of CTL* [47] (CTL with nested path
formulas) -

(model checking for CTL*P�),

3. all the above extensions together - (model checking for CTL*P).

For 1), we de�ne a sequence of unfoldingsM1; : : : ;Mn, whereM1 =M 0
G,

n is the maximal depth of nested past formulas in , Mi+1 is obtained
from Mi in the same way as M 0

G was obtained from MG. Then, we
inductively label states of Mi with subformulas of containing nested
past formulas of depth at most i. Then, M; [�] j= i� the beginning
state of Mn is labelled with . In the worst case we can arrive at the
complexity expn(2� jW j � jI (�)j).

In this case, the meaning of our result is only theoretical, but, at
least, we have shown that it is decidable whether any CTLP formula is
true in a �nite state trace model. This result seems to be interesting on
its own, especially in comparison with the result of chapter 9.

For 2), after unwinding the model generator, we treat past formulas
as fresh propositions and apply the standard methods for CTL* model
checking [24]. Then, we arrive at the complexity exponential in the
number of states and exponential in the number of subformulas of .

For 3), we combine the methods of 1) and 2).

8 Undecidability of CTLP

We now turn to the problem of determining the satis�ability of CTLP
formulas. This problem may be stated as: Given a CTLP formula ', is
there a model M = (Fv0 ; V) s.t. M; v0 j= '. If ' is true at v0 of M ,
M is said to be a model of '. Note also that the CTLP formula ' is
satis�able i� :' is not valid, hence exhibiting a decision procedure for
satis�ability amounts to deciding the validity problem.

196 W. Penczek

Unfortunately, to our big surprise we have to report a negative re-
sult. CTLP is not decidable ! It turns out that we can encode a grid
using our language.

Consider a Petri Net N , composed of two independent transitions
a and b, each of them can be executed in�nitely many times. The trace
system T giving the semantics to N is composed of all the traces be-
longing to the language [��], where � = fa; bg and I = ���� id�. A
frame for T is de�ned as F[�] = ([��];!; [�]), It is possible to characterize
this frame up to isomorphism. But, then one can encode the following
recurring tiling problem, which has been shown to be undecidable in [43].
Below, we follow the de�nition of [44] and [45].

Let � be a �nite set of types of tiles such that for each T 2 �
each side - North, East, South and West - is assigned a number (N(T),
E(T), S(T), and W(T), resp.). Let Co � �4 be a set of colors such
that c = (T1; T2; T3; T4) 2 Co i� S(T1) = N(T3), E(T1) = W (T2),
N(T4) = S(T2), and W (T4) = E(T3) (see the picture below).

T3

T1

T4

T2

For each c = (T1; T2; T3; T4) 2 Co let U(c); R(c) � Co, where U
stands for Up and R stands for Right, with U(c) = fc0 2 Co j c0 =
(T; T 0; T1; T2), for some T; T

0g, R(c) = fc0 2 Co j c0 = (T2; T; T4; T
0),

for some T; T 0g. Let T0; Tf 2 � be two special types. The problem
is to �nd a coloring c : IN � IN �! Co such that for all i; j 2 N ,
c(i; j) 2 Co, c(0; 0) 2 fc0 2 Co j c0 = (T; T 0; T0; T

00), for some T; T 0; T 00g,
c(i; j+1) 2 U(c(i; j)), and c(i+1; j) 2 R(c(i; j)), and there are in�nitely

On temporal logics on trace systems 197

many colors in the leftmost column, which contain the tile type Tf . The
above formulation means that one has to exhibit a coloring of the lattice
points in the plane such that if a point has a color c, then the point just
above has a color from the set U(c) and the point to the right has a color
from the set R(c), the beginning has a color of a given subset of Co and
the given tile type Tf occurs in�nitely often in the leftmost column.

Let PV = fCi j ci 2 Cog. Now, it is possible to give a set of
formulas of CTLP� s.t. its conjunction is satis�able i� the recurring
tiling problem has a solution. Firstly, we give formulas encoding the
grid:

(A):

1. AG(EXatrue ^ EXbtrue)

2. AG(
V
c2��fa;bg :EXctrue),

3. EF (Yatrue ^ Ybtrue)

1) expresses that two actions a and b are executed at each state. Since
our model is a partially ordered set, therefore it contains in�nitely many
states. It follows from 2) that each of them has exactly two successors. 3)
speci�es that a and b are independent at some state. Thus, by de�nition
of trace systems a and b are independent at each state. So, the frame is
a grid representing a trace system [fa; bg�].

Now, we give formulas describing the tiling:
(B):

1.
W
fCi j ci = (T; T 0; T0; T

00), for some T; T 0; T 00g,

2. AG(
W
(fCi j ci 2 Cog) ^ (

V
fCi) :Cj j i 6= jg)),

3. AG(
V
(fCi) EXa(

W
fCj j cj 2 U(ci)g) j ci 2 Cog)),

4. AG(
V
(fCi) EXb(

W
fCj j cj 2 R(ci)g) j ci 2 Cog)),

5. AG(:Ybtrue) EF (:Ybtrue^
W
fCi j type Tf occurs in color cig)).

1) expresses that the tile type T at the beginning is T0. 2) enforces
exactly one color at each point of the grid. 3) and 4) ensures that

198 W. Penczek

successors have the right color. 5) requires that the tile type Tf occurs
in�nitely often in the leftmost column.

The recurring tiling problem has a solution i� the conjunction of our
formulas A) and B) is satis�able. As in [44], it follows that the validity
problem for CTLP� is �11 � hard.

It can be easily shown that our logic remains undecidable, even if it
does not contain backward step operators, next step operators are not
labelled, but a valuation function encodes labelling as shown in Example
4.1. Then, the formulas 1), 2) in A) and 3), 4) in B) can use unlabelled
versions of next step operators (see Example 4.1), the formulas 3) in A)
and 5) in B) can be replaced by:

3'. EXEX(pa ^ pb ^ P (pa ^ :pb) ^ P (pb ^ :pa)),

5'. AG(H(:pb)^:pb) EF (H(:pb)^:pb ^
W
fCi j type Tf occurs in

color cig)).

The undecidability result explains why we couldn't use any standard
methods for model checking.

9 Comparing CTLP with other logics

CTLP contains CTL and, as it was said before, it can be seen as a re-
stricted version of the logic, de�ned in [16]. The language of CTLP is
an extension of that of Hennessy-Milner logic with backward modali-
ties and a restriction of the language of POTL [3, 4]. CTLP resembles
also the partial order logic (P.O.-logic), introduced by A. Sinachopoulos
[14], which, however, does not contain path quanti�ers. A similar logic,
but with run operators (PN-logic), has been also de�ned by Reisig in
[11,12]. CTLP di�ers from ISTL [13] in the de�nition of a frame; ISTL
is interpreted on runs of trace systems.

Our results on undecidability of checking satis�ability as well as
the method of model checking can be easily extended on propositional
versions of the following logics: Hennessy-Milner logic with backward
modalities [32], ISTL [13], P.O.-logic [14], and the logic de�ned in [16],
interpreted over trace systems.

On temporal logics on trace systems 199

10 Final remarks

The presented approach to model checking for a partial order logic with
past modalities over structures of global states is the �rst one, known
from the literature. In [4] model checking for a similar logic, interpreted
over local state models has been investigated. Our paper is also the
�rst one showing how to prove properties of partial order executions,
of serializability, and snapshots by model checking. Therefore, it is not
possible to compare the complexity of the model checking algorithm with
others.

Our method can be viewed as an extension and re�nement of the
method of Clarke and al. [21] to cover also partial order properties. The
alternative approach would be to apply automata-theoretic techniques
in the style of [20] or [31]. This, however, cannot be done immediately
as it is not clear how to build automata accepting CTLP formulas.

We have proved that model checking becomes NP-hard as soon as
we have introduced backward modalities. Moreover, unfortunately, the
best algorithm we could give is of exponential complexity in the number
of states of a model and linear in the lenght of a formula. Therefore, our
algorithm can be applied for systems with not too many states. It seems
to be impossible to de�ne an algorithm linear in the number of states of
a model (and, obviously, exponential in the lenght of a formula).

Our undecidability result shows that in general it is not possible
to synthesise systems from their speci�cations in CTLP�, or any similar
logic, e.g., de�ned in [13], [16]. Therefore, altough, serializability and run
properties can be proved by model checking, they cannot be imposed on
systems, synthesised from their speci�cations.

ACKNOWLEDGEMENTS: The author wishes to thank dr. Ruurd
Kuiper for improving the language of the paper. Special thanks are
directed to my wife Agnieszka for the help in designing the �gures.

11 References

[1]: Manna, Z., Pnueli, A., The Anchored Version of the Temporal

200 W. Penczek

Framework, LNCS 354, 1988.

[2]: Emerson, E.A., Srinivasan, J., Branching Time Temporal Logic,
LNCS 354, 1988.

[3]: Pinter, S.S., Wolper,P., A Temporal Logic for Reasoning about
Partially Ordered Computations, Proc. 3rd Symp. on Principles
of Distributed Computing, pp. 28-37, Vancouver 1984.

[4]: Kornatzky, Y., Pinter, S.S., A Model Checker for Partial Order
Temporal Logic, EE Pub n. 597, Department of Electrical
Engineering, Technion - Israel Institute of Technology, 1986.

[5]: Katz, S., Peled, D., Interleaving Set Temporal Logic, 6th ACM
Symposium on Principles of Distributed Computing, Vancouver
Canada, pp. 178-190, 1987.

[6]: Katz, S., Peled, D., An E�cient Veri�cation Method for Parallel
and Distributed Programs, LNCS 354, 1988.

[7]: Lodaya, K., Thiagarajan, P.S., A Modal Logic for a Subclass of
Event Structures, LNCS 267, pp. 290-303, 1987.

[8]: Penczek, W., A Temporal Logic for The Local Speci�cation of
Concurrent Systems, Information Processing, pp. 857-862, IFIP,
1989.

[9]: Penczek, W., A Concurrent Branching Time Temporal Logic,
Proceedings of the Workshop on Computer Science Logic,
Kaiserslautern, LNCS 440, pp. 337-354, 1990.

[10]: Mukund, M., Thiagarajan, P.S., An Axiomatization of Event
Structures, LNCS 405, 1989.

[11]: Reisig, W., Temporal Logic and Causality in Concurrent
Systems, LNCS 335, 1988.

[12]: Reisig, W., Towards a Temporal Logic of Causality and Choice in
Distributed Systems, LNCS 354, pp. 606-627, 1989.

On temporal logics on trace systems 201

[13]: Peled, D., Pnueli, A., Proving Partial Order Liveness Properties,
Proc. of ICALP, pp. 553-571, 1990.

[14]: Sinachopoulos A, Partial Order Logics for Elementary Net
Systems: State- and Event - approches, Proc. of CONCUR'90,
1990.

[15]: Penczek, W., Proving Partial Order Properties Using CCTL,
manuscript, 1991.

[16]: Peled, D., Katz, S., and Pnueli, A., Specifying and Proving
Serializability in Temporal Logic, Proc. of LICS, 1991.

[17]: Mazurkiewicz, A., Basic Notions of Trace Theory, LNCS 354, pp.
285-363, 1988.

[18]: Mazurkiewicz, A., Ochmanski, E., Penczek, W., Concurrent
Systems and Inevitability, TCS 64, pp. 281-304, 1989.

[19]: Lichtenstein, O., and Pnueli, A., Checking that Finite State
Concurrent Programs Satisfy their Linear Speci�cation. Proc. of
the 12th ACM Symposium on Principles of Programming
Languages, pp. 97-107, New Orleans, 1985.

[20]: Vardi, M.Y., Wolper. P., An Automata-Theoretic Approach to
Automatic Program Veri�cation, Proc. of LICS, pp. 322-331,
1986.

[21]: Clarke, E.M., Emerson, E.A., Sistla, A.P., Automatic Veri�cation
of Finite State Concurrent Systems Using Temporal Logic
Speci�cations: A Practical Approach, Proc. 10th Annual ACM
Symp. on Principles of Programming Languages, Austin, pp.
117-126, 1983, and ACM Transactions on Programming
Languages and Systems, 8(2), pp. 244-263, 1986.

[22]: Sistla, A.P., Clarke, E., The Complexity of Propositional
Temporal Logic, 14th ACM Symposium on Theory of
Computing, May 1982, pp. 159-167.

202 W. Penczek

[23]: Emerson, E.A., Clarke, E.M., Using Branching Time Logic to
Synthesize Synchronization Skeletons, Science of Computer
Programming, vol. 2, pp. 241-266, 1982.

[24]: Emerson, E.A., Lei, C.L., Modalities for Model Checking:
Branching Time Logics Strikes Back, Science of Comp.
Programming, vol. 8, pp. 275 - 306, 1987.

[25]: Emerson, E.A., Lei, C.L., E�cient Model Checking in Fragments
of the Propositional �-calculus, Proc. of LICS, 1986.

[26]: Emerson, E.A., Lei, C.L., Temporal Reasoning Under
Generalized Fairness Constraints, LNCS 210, pp. 21-36, 1986.

[27]: Stirling, C., Walker, A General Tableau Technique for Verifying
Temporal Properties of Concurrent Programs, in Semantics for
Concurrency, eds. M.Z. Kwiatkowska, M.W. Shields, and R.M.
Thomas, pp. 1-15, Leicester 1990.

[28]: Burch, J.R., Clarke E.M., McMillan, K.L., Dill, D.L., and Hwang
L.J., Symbolic Model Checking: 1020 States and Beyond. Proc.
of LICS, 1990.

[29]: Clarke, E.M., and Grumberg, O., Avoiding the State Explosion
Problem in Temporal Logic Model-Checking Algorithms. Proc of
5th ACM Symposium on Principles of Distributed Computing,
pp. 293-303, 1987.

[30]: Valmari, A., A Stubborn Attack on State Explosion, Proc. of
Workshop on Computer Aided Veri�cation, Rutgers, 1990.

[31]: Godefroid, P., Wolper, P., A Partial Approach to Model
Checking, Proc. of LICS, 1991.

[32]: Hennessy, M., and Stirling, C., The Power of the Future Perfect
in Program Logics, Information and Control 67, pp. 23-52, 1985.

[33]: de Nicola, R., Vaandrager, F., Three Logics for Branching
Bisimulation, Proc. of LICS, 1990.

On temporal logics on trace systems 203

[34]: de Nicola, R., Montanari, U., and Vaandrager, F., Back and
Forth Bisimulations, Proc. of CONCUR'90, 1990.

[35]: Emerson, E.A., Halpern, J.Y., Decision Procedures and
Expressiveness in the Temporal Logic of Branching Time, Journal
of Computer and System Sciences 30, pp. 1-24, 1985.

[36]: Courcoubetis, C., Vardi, M.Y., and Wolper, P., Reasoning about
Fair Concurrent Programs, Proc. of the 18th Annual ACM
Symp. on Theory on Computing, pp. 283-294, 1986.

[37]: Godefroid, P., Using Partial Orders to Improve Automatic
Veri�cation Methods, Proc. of Computer-Aided Veri�cation
Workshop, Rutgers, New Jersey, 1990.

[38]: Wolper, P., On the Relation of Programs and Computations to
Models of Temporal Logic, LNCS 398, pp. 75 -123, 1987.

[39]: Kwiatkowska, M., Fairness for Non-Interleaving Concurrency,
PhD Thesis, University of Leicester, 1989.

[40]: Bednarczyk, M., Categories of Asynchronous Transition Systems,
Ph.d. thesis, University of Sussex, 1987.

[41]: Droste M., Concurrency, Automata and Domains, LNCS 443, pp.
195 - 208, 1990.

[42]: Stark, E.W., Concurrent Transition Systems, TCS 64, pp.
221-269, 1989.

[43]: Harel, D., Recurring Dominoes: Making the Highly Undecidable
Highly Understandable, Annals of discrete mathematics, 24, pp.
51 - 72, 1985.

[44]: Parikh, R., Decidability and Undecidability in Distributed
Transition Systems, A perspective in theoretical computer
science, Vol. 16, 1988.

[45]: Paech, B., Concurrency as a Modality, Ph. d. thesis, Munchen
University, 1991.

204 W. Penczek

[46]: Aalbersberg I.J., Rozenberg G., Theory of traces, TCS 60, pp. 1-
82, 1988.

[47]: Emerson, E.A., Halpern, J.Y., Sometimes and \Not Never"
Revisited: On Branching versus Linear Time Temporal Logic,
Journal of the ACM 33 (1), pp. 151-178, 1986.

205

206 P. Gastin, A. Petit

Poset properties of complex trace languages 207

208 P. Gastin, A. Petit

Poset properties of complex trace languages 209

210 P. Gastin, A. Petit

Poset properties of complex trace languages 211

212 P. Gastin, A. Petit

Poset properties of complex trace languages 213

214 P. Gastin, A. Petit

Poset properties of complex trace languages 215

216 P. Gastin, A. Petit

Poset properties of complex trace languages 217

Two extensions of the existing trace model

(Abstract)

Volker Diekert
Institut f�ur Informatik
Universit�at Stuttgart

Breitwiesenstr. 20 - 22
D-7000 Stuttgart 80

April 1, 1992

The aim of this abstract is to sketch some ideas how to extend the
existing trace model in two di�erent directions. Although not done here,
we would like to emphasize that both extensions could be combined
from a quite general viewpoint. We will give neither proofs nor other
details. This will be done in a forthcomming paper. For references we
use standard references on traces, semi-traces and partial order sematics
without any explicit citation. The related work can be found elsewhere.

1 Philosophy

One of the drawbacks of the existing trace model is that we are not able
to express dynamic concurrency. A possible solution is to use pomsets (=
partial words = labelled partial orders) for a description of a concurrent
process. This enlarges of course the expressive power, but we pay this by
loosing many nice algebraic and combinatorial properties of traces. so we
risk to loose what make this model attractive and feasable. The original
idea of Mazurkiewicz is collecting di�erent sequential observations (or
runs) into a single trace. However, this can be applied to pomsets, too.

218

Two extensions of the existing trace model 219

At �rst glance this seems to be even a more complicated model than
pomsets; but since the model becomes more abstract, we obtain in fact
a simpli�cation.

2 Formality

Our starting point is a �xed (�nite) semi-dependence alphabet (�; D).
This corresponds to the static independence relation which is known,
say from the given net topology of a concurrent system. For example,
if a concurrent system is speci�ed by a Petri net (place/transition net)
then we obtain a semi-dependency between transitions a and b soon as
one output place of a is an input place of b. On the other hand, if
a 6= b and there is no such place, then we know that any sequential
observation uabv would give rise to another possible execution ubav, or
more precisely, the execution of a and b has been concurrently. (N.b.
that concurrency does not mean at the same time.)

The di�erence between a semi-dependence relation and a dependence
(without the pre�x semi-) relation is simply that we do not require sym-
metry of D. However, we will keep the usual technical restriction that
D is a re
exive relation. Given (�; D), the set of semi-traces is the set
of �nite acyclic labelled graphs [V;E; �] where V = f1; : : : ; ng is the set
of vertices, � : V ! E is the labelling and edges are from i to j if and
only if i < j and (�(i); �(j)) 2 D.

Since the static dependency does not re
ect the full concurrent be-
haviour, it may happen that in the modelized process i and j were in-
dependent, although i < j and (�(i); �(j)) 2 D. Thus, we will consider
the following. The objects are labelled acyclic graphs [V;E; �] as above;
but we require ony that an edge from i to j implies (�(i); �(j)) 2 D and
that edges are always between vertices with the same label. We call such
a graph a partial trace over (�; D). Moreover, we identify such a graph
with its induced partial order. Therefore, partial traces form a subset
of those pom-sets over � where identically labelled vertices are totally
ordered (= semi-words over �). However, instead of thinking of subsets,
the much better viewpoint is to think of a partial trace as an equivalence
class of semi-words. This equivalence is obtained by a forget operator

220 V. Diekert

which simply forgets the ordering between actions a and b if (a; b) =2 D.

On the set of partial traces we have at least three useful operations.
The most basic one is the concatenation or maybe better: composition.
We de�ne [V1; E1; �1][V2; E2; �2] by the disjoint union of labelled graphes
with new edges from i 2 V1 to j 2 V2 whenever (�(i); �(j)) 2 D. This
de�nes a monoid of partial traces P (�; D) where the neutral element is
the empty graph [;; ;; ;].

The second important operation is derivation: Given a partial trace
[V;E; �] we are allowed to introduce a new edge from i to j if (�(i); �(j)) 2
D and if in addition the resulting graph rests acyclic. This corresponds
to a linearization operator or to a weakening of the concurrency.

The third operation is synchronization. Here we use essentially the
assumption that vertices with the same label are totally ordered. We
can synchronize partial traces [V1; E1; �1] and [V2; E2; �2]only if for all
a 2 �1(V1) \ �2(V2) the number of vertices with label a is equal. Then
we can identify these vertices according to their ordering and we demand
that the union of the graphs rests acyclic.

In order to see that the concept above is useful, assume that (�; D) is
speci�ed through a P/T-system. Then one can de�ne whether a pomset
over � is enabled and in this case its execution is de�ned. The basic
property, which becomes crucial here, is that one can speak of an enabled
partial trace since one can show that no or all representing pomsets are
enabled. It is also easy to see that the set of enabled partial traces
is closed with respect to derivation. Furthermore, the synchronization
operator for nets corresponds to the synchronization of partial traces.

In fact, synchronization can be viewed as another motivation to gen-
eralize the semi-trace model. Indeed, contrary to traces, semi-traces are
not closed with respect to synchronization. The synchronization of two
semi-traces may yield a partial trace which is no semi-trace anymore.
This can be seen from the following example.

Two extensions of the existing trace model 221

(�; D) =

c

a

d

b

�

-

6

?

The synchronization of the two semi-traces s1 = [cabdg and s2 =
[bdcag yields the partial trace

s1 k s2 =

c

a

d

b

�

-

The reader may verify that this is no semi-trace anymore. It is also
a simple exercise to give a Petri net interpretation for this phenomenon.

3 Functoriality

In the following let us analyse some algebraic properties of partial traces.
The key observation is that partial traces have a length and that one can
prove Levi's lemma. Hence by a well-known result of Christine Duboc
partial traces form a free partially commutative monoid. Thus, although
considering much more general objects than traces, we stay still inside
the theory of free partially commutative monoids. There is only one
additional di�culty. We have to consider in�nitely generated monoids,
in general.

Using functorial properties this can be avoided to some extent. There
is an embedding of the monoid of partial traces into a �nite directed
product of free monoids which are generated by at most two letters,

222 V. Diekert

only. This can be explained as follows. First, we de�ne a morphism
between semi-dependence alphabets h : (�0; D0) �! (�; D) to be a
mapping h : �0 ! � such that (a; b) 2 D0 implies (h(a); h(b)) 2 D. This
yields a contra-variant functor, since h de�nes a monoid homomorphism
h� : P (�; D) �! P (�0; D0) in the following way.

Given [V;E; �] 2 P (�; D) the partial trace h�([V;E; �]) is obtained
by replacing each vertex a by the set h�1(a) without any edge, (thus by a
step). For a0 2 h�1(a) and b0 2 h�1(b) an edge is introduced if and only
if (a0; b0) 2 D0 and there has been an edge from the corresponding a to b
in [V;E; �]. The interesting fact (and main theorem on this construction)
is that h� is injective if and only if h is surjective on vertices and edges.

Now, let (�; D) be any semi-dependence alphabet. Then (�; D) can
be covered by the disjoint union of directed edges and some isolated
points. This covering can be expressed by a surjective morphism between
semi-dependence alphabets. The functorial game above then yields an
embedding of P (�; D) into a �nite directed product of monoids which
are either of type P (a! b) (i.e. of type P (fa; bg; f(a; b)g)) or isomorphic
to a�. Thus, it is enough to have a closer look at P (a! b) for two letters
a; b.

It turns out that P (a ! b) is isomorphic to fa; bg�; the free monoid
on two letters. The derivation becomes a semi-Thue system. Again we
leave this as an exercise as well as to show that P (a � b), where the
dependence relation is symmetric, is an in�nitely generated free monoid.
Thus, P (a� b) is de�nitely not isomorphic to fa; bg�

This functorial approach can be viewed as a synchronization and we
obtain that any partial trace is the synchronization of a tuple of words.
The translation to P/T systems yields that a process which is described
by a partial trace is exactly the synchronization of certain sequences
which are recorded locally at places.

4 Compositionality

For the rest of this abstract we brie
y indicate a possible extension of
the existing trace model to capture some aspects of non-terminating
processes.

Two extensions of the existing trace model 223

We restrict ourselves to the classical case of traces over a symmetric
dependence relation D � ���. This restriction is in fact not necessary
and a more general theory over partial traces would be possible. How-
ever, since anyhow we sketch ideas only, full generality does not seem to
be appropriate here.

We consider in�nite (real) traces. They are approximated by their
�nite pre�xes, or what is the same, we consider in�nite directed sets
(with respect to pre�x ordering) of �nite traces. It is well-known that a
meaningfull concatenation is not possible for such objects and this led
to the notion of complex trace. A (��) complex trace is roughly a pair
(r; A) where r is a real trace (i.e. a �nite or in�nite trace) and A is a
subset of �. Not every set A is allowed, basically we will demand that
A contains all letters which appear in�nitely often in r.

The semantical idea is that the (�nite) set A represents the smallest
set of actions we always have to wait for before we can terminate the
process r. Thus, for r in�nite we have A 6= ; and of course we can never
terminate. However, what is possible is that if action b is independent
of A then we can perform b in parallel to r after some �nite time. This
leads to the following calculus

(r; A)(s;B) = (r � �A(s); A [B [�A(s))

where �A(s) is the maximal pre�x of s which is independent of A and
�A(s) is the alphabet of the su�x �A(s)

�1s.
Using pre�x ordering on complex traces we obtain a Scott domain.

However, as it is known from words, the concatenation is not continuous.
This is not surprising, since if r0 � r and s0 � s then we can not expect
that r0s0 is a pre�x of rs. So, in some sense it gives no information
about the process rs we are interested in. The idea to solve this problem
can be explained with the help of complex traces. Let us assume that
we describe a process by a complex trace (r; A). What we will do is
to approximate (r; A) by a sequence (ri; Ai)i�1 where ri � r is a �nite
pre�x and Ai is the alphabetic information about the future, is Ai =
alphabet(r�1r) \ A. Now, it is not realistic to assume that the exact
information about Ai is available all the time (or at any time).

The question is whether we should be content with a larger or smaller

224 V. Diekert

set than the actual Ai. A �rst guess might be smaller. We claim that
this is false for the application we have in mind. Consider simply the
extreme case: without knowing explicitly that a process has terminated
we should wait. Something might still happen and we should not start
a second process, if it depends on the result of the �rst one. Thus,
the solution larger is more safe. This leads to the following ordering:
(r; A) � (s;B) if and only if r � s and (B [alphabet(r�1s)) � A.

This ordering looks asymmetric, but in the interpretation of the sec-
ond component as wait for these possible actions, it is clear that if r is
a �nite process and A � B, then (r; A) is a better approximation of r
than (r; B). The pair (r; ;) is the exact information about r including
the explicit information about termination.

The mathematical counterpart to this somewhat philosophical rea-
sons to study such objects is that we obtain a complex-like domain where
concatenation is continuous. In particular, if (r0; A0) � (r; A); (s0; B0) �
(s;B) in this new ordering, then the complex product (r0�A0 ; (s

0); A0 [
B0[�A0(s

0)) is a better approximation of the composed process (r; A)(s;B)
than (r; A), in general.

5 Reality

Whether or not the ideas sketched above will rest a mathematical game
or will lead to a useful formalism with realistic applications is open for
the moment. We hopefully think that this question will have a positive
answer and that this will become more clear, once this abstract will have
been transformed into a complete paper.

Rational and Recognizable Complex Trace

Languages�

Volker Diekert
Universit�at Stuttgart
Institut f�ur Informatik
Breitwiesenstr. 20-22
D-7000 Stuttgart 80

Paul Gastin
Universit�e Paris 6

LITP, Institut Blaise Pascal
4, place Jussieu

F-75252 Paris Cedex 05

Antoine Petit
Universit�e Paris Sud
LRI, URA CNRS 410

Bât. 490
F-91405 Orsay Cedex

April 1992

Abstract

Mazurkiewicz de�ned traces as an algebraic model of �nite

concurrent processes. In order to modelize non-terminating pro-

cesses a good notion of in�nite trace was needed, which �nally led

to the notion of complex trace. For complex traces an associative

concatenation and an !-iteration are de�ned.

This paper de�nes and investigates rational and recognizable

complex trace languages. We prove various closure results such as

the closure under boolean operations (for recognizable languages),

�This research has been supported by the ESPRIT Basic Research Actions

No. 3166 ASMICS and No. 3148 DEMON.

225

226 V. Diekert, P. Gastin, A. Petit

concatenation, and left and right quotients by recognizable sets.

Then we study su�cient conditions ensuring the recognizability of

the �nite and in�nite iterations of complex trace languages. We

introduce a generalization of the notion of concurrent iteration

which leads to the main result of the paper: the generalization of

Kleene's and Ochmanski's theorems to complex trace languages.

0 Introduction

The concept of traces has been introduced by A. Mazurkiewicz [Maz77]
as a suitable semantics for non-sequential processes. Let us refer, for
instance, surveys [Maz87, AR88, Per89] or the monograph [Die90]. Also,
in these references, an extensive bibliography on the subject is given.

There are at least two possible ways to see a trace. A trace can be
considered as the set of all possible sequential observations of a concur-
rent process. The semantics of each sequential observation is given, in a
classical way, by a �nite word. Hence, a trace is an equivalence class of
words. From a di�erent viewpoint, we may see a trace as a �nite labeled
acyclic graph where edges represent the (causal) dependency of actions.
Such a graph is called a dependence graph and the semantics is that
an execution has to respect the induced partial order. In this way, the
process is modeled as a labeled partial order with an explicit description
of concurrency.

Whatever the approach chosen, there is a natural de�nition of the
concatenation of two traces and the set of traces forms a monoid. In fact,
this monoid has been introduced and studied independently by Cartier
and Foata in combinatorics [CF69].

Recognizable languages describe the behavior of �nite state systems
and hence form one of the basic families of a monoid. For trace monoids,
this family is closed under boolean operations and concatenation, [Fli74,
CP85], but it turns out that a trace language T may be recognizable
whereas T � is not. The family of recognizable languages is in fact strictly
included in the family of rational trace languages which is the smallest
family of trace languages containing the �nite languages and which is
closed under union, concatenation, and star-iteration. In order to gen-

Rational and Recognizable Complex Trace Languages 227

eralize Kleene's theorem to trace languages it was then necessary to �nd
a new operation instead of star-iteration. In a �rst step, M�etivier and
Ochmanski, [M�et86, Och85], proved independently that T � is recogniz-
able if T is recognizable and consists of connected traces, only. This
led Ochmanski to introduce a concurrent version of the star-iteration,
called the c-star in the following. The c-star of T is the usual star taken
over all connected components of traces in T . Replacing simply the star
by the c-star operation, Ochmanski obtains the equality of recognizable
and c-rational trace languages [Och85]. Let us mention that the search
for su�cient conditions ensuring the recognizability of T � is an ongoing
work, [Sak87, Och90, MR91].

In order to describe non-sequential processes which never terminate,
e.g. distributed operating systems, the notion of in�nite trace was
needed. It seems that the �rst explicit de�nition of in�nite traces was
given by Mazurkiewicz [Maz87]. He de�nes an (in�nite) trace as an (in-
�nite) pre�x closed directed subset of �nite traces. This is the same
as an (in�nite) dependence graph where each vertex has �nitely many
predecessors only, [Maz87, Thm.13]. In the following these objects are
called here real traces. At least implicitly, real traces occur already in
[FR82], but a systematic study began only recently and several papers
are devoted to this subject, [BMP90, Kwi90, Gas90, Gas91, GR91]. One
can show that there can be no convenient associative concatenation on
real traces, contrary to the set of all (say countable) dependence graphs.
However, since the complement of real traces in the monoid of all de-
pendence graphs forms an ideal, one can smash all non-real dependence
graphs into a single zero element. In this way, Gastin obtains a monoid
which consists of all real traces with only one additional zero element. In
this monoid, rational and recognizable languages can be de�ned in a nat-
ural way, [Gas90]. These families are closed under the usual operations,
but similarly to the case of �nite traces, recognizable sets are not closed
neither under star-iteration nor under !-iteration. In [GPZ91] Gastin,
Petit and Zielonka gave su�cient conditions which ensure the recogniz-
ability of T � and T!. However, substantially they used some �niteness
properties due to simpli�cations by the concatenation with zero.

One of the main drawback of this concatenation is that a!a = 0 6=

228 V. Diekert, P. Gastin, A. Petit

a!, contrary to the word case. Diekert proposed another solution to
the problem of concatenation and de�ned the notion of complex trace
[Die91]. A possible way to see a complex trace is to start with an arbi-
trary dependence graph. From this graph we remember in a �rst com-
ponent its maximal real pre�x and in a second component we remember
those letters which depend on actions occurring either in�nitely often or
in the trans�nite part of the graph. Thus, a complex trace is simply a real
trace together with a second component which is some �nite alphabetic
information. Therefore, complex traces are slightly less abstract than
real traces. The advantage is that the concatenation and !-iteration are
fully de�ned for complex traces. In particular we have a!a = a! for
all letters a. Furthermore, in the special case of a full (empty respec-
tively) dependence relation we just reobtain the usual construct of �nite
or in�nite words (vectors respectively).

The aim of this paper is to de�ne in a proper way rational and recog-
nizable complex trace languages and to investigate their basic properties.
We show various closure properties such as closure under boolean oper-
ations (for recognizable languages), concatenation, and left and right
quotients by recognizable sets. Then we give su�cient conditions en-
suring the recognizability of T � and T!. Contrary to the concatenation
with zero, in the complex calculation of T � (T! respectively) an un-
bounded (in�nite respectively) number of factors of in�nite traces may
be relevant. Therefore, we have to develop new techniques, which help
to analyze these iterated products. In a next step we introduce the con-
current iterations c-� and c-! for complex trace languages. For this we
de�ne connected components of complex traces and the c-iterations are
the usual iterations over all connected components of elements of a given
language. This leads to the family of c-rational complex trace languages.
Our main result is the generalization of Kleene's and Ochmanski's the-
orems to complex trace languages. It states that c-rational languages
are the same as recognizable languages. This result is a proper general-
ization of Kleene's theorem for �nite words, B�uchi's theorem for in�nite
words and Ochmanski's theorem for �nite traces.

The paper is organized as follows: In Section 1 we recall some de�ni-
tions and facts about dependence graphs, real and complex traces, and

Rational and Recognizable Complex Trace Languages 229

rational and recognizable languages. The section on rational and recog-
nizable real trace languages (Section 2) contains all basic material which
is crucial for the following. This section contains new results as well as
previously known results where, however, di�erent proofs are presented
in most cases. The corresponding section for complex trace languages
(Section 3) generalizes the results on real traces to complex traces. In
the �nal section (Section 4) we de�ne connected components of complex
traces and the concurrent iteration which leads to our main result.

An Extended Abstract of a preliminary version of this paper appeared
at MFCS'91, [DGP91].

1 Preliminaries

1.1 Dependence graphs

Let (X;D) be a �nite dependence alphabet, i.e., X is a �nite alphabet
with a re
exive and symmetric relation D � X � X which is called
the dependence relation. The complement I = X �X nD is called the
independence relation. The quotient monoid IM(X;D) = X�=fab = ba j
(a; b) 2 Ig is the monoid of (�nite) traces.

It is possible to introduce in�nite traces using an equivalence rela-
tion on in�nite words, the de�nition of in�nite traces is however more
natural using dependence graphs. A dependence graph (over (X;D)) is
(an isomorphism class of) a labeled acyclic graph [V;E; �] where V is a
countable set of vertices, E � V �V is the set of arcs, � : V ! X is the
labeling and it holds

� edges are between dependent vertices : 8x; y 2 V ,

(�(x); �(y)) 2 D () x = y or (x; y) 2 E or (y; x) 2 E

� the induced partial order (V;E�) is well-founded : there does not
exist an in�nite sequence (xi) � V such that (xi+1; xi) 2 E for all
i.

The set of dependence graphs is denoted by G(X;D). Note that,
in a dependence graph, any subset of vertices with the same label is

230 V. Diekert, P. Gastin, A. Petit

well-ordered. This allows to think of dependence graphs by standard
representation where the vertices are pairs (a; i) with a 2 X and i is
a countable ordinal. The restriction to countable sets is not essential
here, we simply need any upper bound on the cardinality in order to
stay inside set-theory.

For g = [V;E; �] 2 G(X;D) the cardinality of V is called the length
of g, denoted by jgj. For U � V , let U #= fp 2 V j (p; p0) 2 E�

for some p0 2 Ug be the downward closure of U. The restriction of g
to U # is a dependence graph. The set of minimal elements of g is
min(g) = fp 2 V j p#= fpgg. Since min(g) = min(g)#, it may be viewed
as a dependence graph which is �nite since the alphabet is �nite.

The setG(X;D) is a monoid by the concatenation [V1; E1; �1]�[V2; E2;
�2] = [V;E; �], where [V;E; �] is the disjoint union of [V1; E1; �1] and
[V2; E2; �2] together with new arcs (p1; p2) for all p1 2 V1, p2 2 V2 such
that (�1(p1); �2(p2)) 2 D. The neutral element is the empty graph
1 = [;; ;; ;].

The concatenation generalizes immediately to an in�nite product.
Let (gi) be any sequence of dependence graphs, then g = g1g2 : : : 2
G(X;D) is de�ned as the disjoint union of the graphs (gi) with new arcs
from vertices of gi to vertices of gj whenever i < j and the vertices
have dependent labels. Thus, for any set L � G(X;D), the !-iteration
L! = fg1g2 : : : j gi 2 L for i � 1g �G(X;D) is de�ned. (In fact, we can
de�ne in the same way L� for any countable ordinal �.)

Using these products, we de�ne the canonical mapping ' from the
free monoid of �nite and in�nite words X1 into the monoid of depen-
dence graphs G(X;D) by '(a) = [fpg; ;; p 7! a] for all a 2 X and
'(a1a2 : : :) = '(a1)'(a2) : : : for all word a1a2 : : : 2 X1. In other
words, the dependence graph '(a1a2 : : :) has vertices p1; p2; : : : labeled
by a1; a2; : : : and edges from pi to pj if and only if i < j and (ai; aj) 2 D.
The congruence induced by ' on X� is exactly the congruence generated
by fab = ba j (a; b) 2 Ig. Therefore, the monoid of �nite traces IM(X;D)
can be identi�ed with the submonoid of �nite dependence graphs and
we have IM(X;D) �G(X;D).

The image '(X1) � G(X;D) is called the set of real traces and is
denoted by IR(X;D). The set of real traces can be characterized as those

Rational and Recognizable Complex Trace Languages 231

dependence graphs where every vertex p has a �nite downward closure
p#. This is a proper subset of G(X;D).

The main disadvantage of IR(X;D) is that there is a convenient no-
tion of concatenation only if D is transitive, i.e., when IM(X;D) =
X�
1�� � ��X

�
k is a direct product of free monoids. In this case, IR(X;D) =

X1
1 �� � ��X1

k . However, even in this case, the concatenation will be dif-
ferent from the (natural) concatenation of G(X;D). In fact, (for X 6= ;)
the set IR(X;D) is never a submonoid of G(X;D). Consider any pair
(a; b) 2 D. Then a!b 2 G(X;D) is not real, since the vertex with label
b depends on in�nitely many vertices. In particular, the canonical map-
ping ' : X1 ! G(X;D) is not a morphism. It neither commutes with
the concatenation nor with the !-iteration, in general. More precisely,
let L;K � X1 then we have '(L �K) 6= '(L) �'(K) and '(L!) 6= '(L)!

as soon as L contains an in�nite word and K contains a nonempty word.

1.2 Complex traces

Every dependence graph g = [V;E; �] 2G(X;D) splits into its real part
Re(g) = fp 2 V j p# is �niteg and its trans�nite part Tr(g) = fp 2 V j p#
is in�niteg. Of course, Re(g), Tr(g) are viewed as dependence graphs
by restricting E and � correspondingly. Note that for all g 2 G(X;D)
it holds g = Re(g) � Tr(g). The mapping Re : G(X;D)! IR(X;D) does
not de�ne a congruence of G(X;D). However, we can de�ne the coarsest
congruence of G(X;D) such that any two congruent dependence graphs
g and g0 verify Re(g) = Re(g0). Dependence graphs falling in the same
congruence class are called practically undistinguishable and the quotient
of G(X;D) by this congruence is the monoid of complex traces C(X;D),
[Die91].

In order to give an explicit description of C(X;D) we need a few
more notations. For a dependence graph g 2G(X;D) the alphabet of g,
denoted by alph(g), is the set ��1(V). Hence, alph(g) is the set of letters
occurring in g. The alphabet at in�nity of g denoted by alphinf(g), is the
set of letters occurring in�nitely often in g together with alph(Tr(g)).
For a subset A � X we denote the set of letters depending on A by
D(A) = fb 2 X j 9a 2 A : (a; b) 2 Dg, and the set of letters independent

232 V. Diekert, P. Gastin, A. Petit

of A by I(A) = X nD(A) = fb 2 X j 8a 2 A : (a; b) 2 Ig. Finally, for
a dependence graph g 2G(X;D), we de�ne its imaginary part Im(g) by
Im(g) = D(alphinf(g)).

Using these notations, the coarsest congruence of G(X;D) which re-
spects real parts admits the following characterization. Two dependence
graphs g and g0 are congruent (or practically undistinguishable) if and
only if Re(g) = Re(g0) and Im(g) = Im(g0). Therefore, a complex trace
is a pair (Re(g); Im(g)) for some dependence graph g 2 G(X;D). Of-
ten, we denote a complex trace by (r;D(A)) where r 2 IR(X;D) and
A � X . Note that the real part r is uniquely de�ned by the complex
trace whereas the subset A � X is not known, in general. (It is only
D(A) which is given by the complex trace.)

The concatenation of C(X;D) is inherited from G(X;D), but of
course it is convenient to have an explicit formula. For this purpose,
we introduce the �-notation. Let g 2 G(X;D) be a dependence graph
and A � X be any subset. Then �A(g) 2 IR(X;D) is the maximal real
pre�x of g containing letters from I(A), only. Thus, for g = [V;E; �],
the pre�x �A(g) is the restriction of g to fp 2 V j p # is �nite and
alph(p#) � I(A)g. Note that, for g 2 G(X;D) and A � X , we have
�A(g) = �A(Re(g)). Hence the �-notation is also well-de�ned for com-
plex traces. Since G(X;D) is left-cancellative, [Die91], there is a unique
dependence graph Su�A(g) such that g = �A(g) � Su�A(g). With these
notations the concatenation in C(X;D) becomes [Die91]:

(r;D(A)) � (s;D(B)) = (r � �A(s); D(A [B [alph(Su�A(s))))

This formula is of �rst importance for the calculus on complex traces
and will be used throughout.

It turns out that the coarsest congruence on G(X;D) which respects
real parts is also a \congruence" for the !-product on G(X;D). There-
fore, the !-iteration L! of a complex trace language L is well-de�ned.
Note that, following the general de�nition of the !-product for depen-
dence graphs, we have L! = L� [(L n f1g)! if 1 2 L.

In the remainder, we identify a real trace r with the complex trace
(r;D(alphinf(r))) = (r; Im(r)). Thus, we have IM(X;D) � IR(X;D) �
C(X;D) and C(X;D) is a quotient monoid of G(X;D). For a subset

Rational and Recognizable Complex Trace Languages 233

A � X and a language L � C(X;D) (L � IR(X;D) respectively, L �

G(X;D) respectively) we de�ne LA = fx 2 L j Im(x) = D(A)g. Note
that IR(X;D); = C(X;D); = G(X;D); = IM(X;D). A language L is
called �nitary if L = L;, i.e., L � IM(X;D).

The link between real and complex trace languages can be done using
concatenations by �nite shift-traces. A �nite trace sA;B is called a shift

trace from D(A) to D(B) if for some complex trace (r;D(A)) we have
(r;D(A)) � sA;B = (r;D(B)). In this case, we have (t;D(A)) � sA;B =
(t;D(B)) for all complex traces (t;D(A)). A shift trace sA;B satis�es
�A(sA;B) = 1 (i.e., min(sA;B) � D(A) and D(A[alph(sA;B)) = D(B)).
Shift traces from D(A) to D(B) do not exist for all pairs (A;B). The
necessary and su�cient condition is that there exists a sequence of letters
a1; : : : ; ak such that ai 2 D(A [fa1; : : : ; ai�1g) for 1 � i � k and
D(B) = D(A [fa1; : : : ; akg). We simply write A shift B in this case.
If A shift B then some shift trace sA;B can be chosen of length at most
jD(B)j.

It is easy to see that every complex trace language L �C(X;D) can
be written as a �nite union of real trace languages concatenated by shift
traces:

L =
[

A shift B

(Re(LB) \ IR(X;D)A) � sA;B (3)

Let us point out that the word monoid X1 with right-absorbent
concatenation x �y = x for x 2 X! is just the special case of the complex
trace monoid C(X;D) for a full dependence relation D = X � X . In
fact, if the independence relation is empty then the imaginary part is
redundant. For a word x we have Im(x) = ; if x is �nite and Im(x) = X
otherwise (i.e., if x is an in�nite word). Furthermore, the partition
X1 = X� [X! is the partition of X1 into (X1); and (X1)X .

In the remainder, we will study rational and recognizable complex
trace languages. As it becomes clear from Equation (3), the overall
strategy is to transfer results from real trace languages. Since IR(X;D) =
'(X1), a basic technique used here to obtain results on real traces is
to work with representing words. The next section brie
y recalls some
well-known properties of word languages.

234 V. Diekert, P. Gastin, A. Petit

1.3 Regular languages

We have (at least) two possibilities to de�ne regular subsets of the
monoid of �nite and in�nite words X1. We can use either rational ex-
pressions or �nite state acceptors. This leads to the families of rational
and recognizable languages respectively.

The family of rational word languages, Rat(X1), is de�ned as the
smallest family of subsets of X1 which contains all �nite languages of
�nite words and which is closed under the operations union, concatena-
tion, �-iteration, and !-iteration. From the de�nition of the concatena-
tion in X1, it is clear that we may restrict the operations of concatena-
tion L �K, of Kleene-� L�, and of !-iteration L! to the case of �nitary
languages L � X�. Thus, we are never forced to use the right-absorbent
concatenation x � y = x with x 2 X!.

We de�ne recognizable word languages using non-deterministic B�uchi
automata. There are several equivalent possibilities to give acceptance
conditions. For technical reasons we use here acceptance by transitions.
This allows in particular to construct automata which accept languages
from X1 without separation of the �nitary part. Moreover, this ac-
ceptance type is very convenient for our purposes since from the set of
transitions which occur in�nitely often in a path, we can deduce directly
the alphabet at in�nity of its label. To be precise, we de�ne a B�uchi
automaton to be a tuple (Q; �; q0;�) where Q is the �nite set of states,
� � Q � (X [f1g)� Q is a �nite set of labeled arcs called transitions,
q0 2 Q is the initial state, and � � � is the set of �nal transitions. An
in�nite path is a sequence q0; x1; q1; x2; q2; : : : where (qi�1; xi; qi) 2 � for
all i > 0 and its label is the word x1x2 � � � 2 X1. A �nite or in�nite
word x is accepted if there exists an in�nite path labeled by x, start-
ing in q0 and repeating some transition from � in�nitely often. Note
that, �nite words can be accepted by in�nite loops of 1-transitions. A
language L � X1 is called recognizable if it is accepted by some B�uchi
automaton.

Another equivalent de�nition for recognizable languages is to use
recognizing morphisms. Let � : X� ! S be a morphism to a �nite
monoid S. We say that � recognizes a language L � X1 if for any
�nite or in�nite sequence (xi) � X�, we have x1x2 : : : 2 L implies

Rational and Recognizable Complex Trace Languages 235

��1�(x1)�
�1�(x2) : : : � L. Using Ramsey factorization, one can show

that any recognizable language can be written as a �nite union

L =
[

(s;e)2P

XsX
!
e (4)

where Xs = ��1(s), Xe = ��1(e) and P = f(s; e) 2 S�S j se = s; e2 =
e; XsX

!
e \ L 6= ;g.

B�uchi's classical theorem asserts that for X1 the families of rational
languages and of recognizable languages coincide. We can therefore use
the term regular languages without any ambiguity if it refers to word lan-
guages which are rational (recognizable respectively.) A detailed study
of regular word languages can be found in [PP91].

1.4 Ramsey factorization

Let � :M �! S be a morphism from an arbitrary monoid M to a �nite
monoid S and let u0; u1; : : : be an in�nite sequence of elements of M .
There exist an in�nite increasing sequence of integers i0 < i1 < : : : and
s; e 2 S such that se = s, e2 = e, �(u0 : : : ui0) = s and �(u1+ij : : : uik) =
e for all 0 � j < k. This is called a Ramsey factorization of the in�nite
sequence u0; u1; : : : .

The existence of a Ramsey factorization is one of the fundamental
principles used in this paper. A simple and direct proof of this result
can be found in [PP91]. It is also a trivial application of Ramsey's
Theorem [Gra81].

2 Rational and recognizable real trace lan-

guages

Recall that in a general monoidM , the family Rat(M) is the least family
which contains the �nite sets and which is closed under union, product
and Kleene's iteration. This de�nition applies in particular for the free
monoid X� and the �nitary trace monoid IM(X;D). In order to de�ne

236 V. Diekert, P. Gastin, A. Petit

the family Rat(X1), we start with �nite sets of �nite words and the
closure under !-iteration is required, too. Since there is no concatenation
de�ned for real traces in general, we use restricted operations, only.

De�nition: The family of rational real trace languages, Rat(IR(X;D)),
is the smallest family satisfying the following conditions:

i) Every �nite set of �nite traces is rational.

ii) If K;L � IR(X;D) are rational, then the union K [L is rational.

iii) If K;L � IR(X;D) are rational and if in addition K � IM(X;D),
then K � L, K�, and K! are rational.

This de�nition is consistent with the de�nitions of Rat(X1) and
Rat(IM(X;D)) since Rat(IR(X;D)) = Rat(X1) when D = X � X
is the full dependence relation and for L � IM(X;D) we have L 2

Rat(IR(X;D)) if and only if L 2 Rat(IM(X;D)).
Note that the canonical mapping ' : X1 ! IR(X;D) commutes with

these restricted operations. This is used in the next proposition which
gives several equivalent characterizations of the family Rat(IR(X;D)).

Proposition 2.1 Let L � IR(X;D) be any real trace language. Then

the following assertions are equivalent.

i) The language L is rational, i.e., L 2 Rat(IR(X;D))

ii) The language L is the image of a regular word language, i.e., L =
'(L0) for some L0 2 Rat(X1).

iii) The language L can be written as a �nite union

L =
[

1�i�k

MiN
!
i

whereMi, Ni are �nitary rational trace languages for all 1 � i � k.

Proof: i)) ii): First, assume that L is a �nite set of �nite traces.
We have L = '('�1(L)) and '�1(L) is rational since it is �nite. Now,

Rational and Recognizable Complex Trace Languages 237

for K 0; L0 � X1 we have '(K 0 [L0) = '(K 0) ['(L0) and if more-
over K 0 � X� then '(K 0 � L0) = '(K 0) � '(L0), '(K 0�) = '(K 0)� and
'(K 0!) = '(K 0)!. Therefore, the result follows by induction on the
rational expression de�ning L.
ii)) iii): Using Equation (4) we obtain L0 =

S
1�i�kM

0
i � N

0!
i where

M 0
i ; N

0
i 2 Rat(X�) for 1 � i � k. Since ' commutes with these oper-

ations, we obtain L =
S
1�i�k '(M

0
i) � '(N

0
i)
!. Using again the same

property of ' we deduce that the languages '(M 0
i); '(N

0
i) are �nitary

rational trace languages, which concludes this part.
iii)) i): trivial. 2

Recall that we have de�ned recognizable word languages by B�uchi
automata. In order to de�ne recognizable real trace languages we will
consider automata which accept closed languages. A word language
L � X1 is said to be closed (with respect to (X;D)) if L = '�1'(L)
for the canonical mapping ' : X1 ! IR(X;D). If a B�uchi automaton
accepts a closed language then there is no ambiguity in saying which real
traces are accepted. Moreover we will see that it is decidable whether a
B�uchi automaton accepts a closed language or not. This approach leads
to the following de�nition.

De�nition: A language L � IR(X;D) is called recognizable if '�1(L)
is a (closed) regular word language. The family of recognizable real trace

languages is denoted by Rec(IR(X;D)).

Remark 2.2 Since the family Rec(X1) is a boolean algebra, it follows
directly from this de�nition that the family of recognizable real trace
languages forms a boolean algebra, too. It is closed under union, inter-
section, and complementation.

Another possible way to de�ne recognizable languages is, exactly as
in the word case, by recognizing morphisms. Let � : IM(X;D) ! S be
a morphism to a �nite monoid S. We say that � recognizes a language
L � IR(X;D), if for any �nite or in�nite sequence (xi) � IM(X;D),
x1x2 : : : 2 L implies ��1�(x1)�

�1�(x2) : : : � L. We could also use the
generalization to trace languages of the syntactic congruence de�ned by

238 V. Diekert, P. Gastin, A. Petit

Arnold for word languages [Arn85]. Given L � IR(X;D), two �nite
traces x, y are syntactically congruent if and only if:

8u; v 2 IM(X;D) : u(xv)! 2 L, u(yv)! 2 L
8u; v; w 2 IM(X;D) : uxvw! 2 L, uyvw! 2 L

We denote the syntactic congruence of L by �L and we obtain a
canonical morphism �L : IM(X;D)! IM(X;D)= �L. In general, neither
IM(X;D)= �L is �nite nor does �L recognize L. This is true however
if L is recognizable. We have the following proposition, stating that all
approaches are equivalent.

Proposition 2.3 ([Gas91]) A language L � IR(X;D) is recognizable

if and only if any of the following equivalent de�nitions is satis�ed.

i) The language L is the image of a closed regular word language.

ii) There exists a morphism � form IM(X;D) to a �nite monoid S
recognizing L.

iii) The syntactic congruence �L is of �nite index in IM(X;D) and the
syntactic morphism �L recognizes L.

From Propositions 2.1 and 2.3, it is clear that every recognizable
language is rational. The converse holds for strings by B�uchi's Theorem.
However, as soon as there is a pair (a; b) 2 I of independent letters, we
�nd a �nitary rational language, e.g., L = '(ab)� � IM(X;D), which is
rational but not recognizable (since '�1(L) = fw 2 fa; bg� j jwja = jwjbg
is not a recognizable word language).

An example of an !-language L � IR(X;D) n IM(X;D) which is ra-
tional but not recognizable, can be constructed on three letters, say a,
b, c where there is at least one pair of independent letters, say (a; b) 2 I .
Then the rational language L = '(ab)� � '(c)! is not recognizable since
the projection of '�1(L) to fa; bg1 is fw 2 fa; bg� j jwja = jwjbg.

We leave it as an exercise to the reader to show that no such two
letters example exists.

Rational trace languages are not closed under intersection, in gen-
eral. For example, let (X;D) = a b c then '(ab)�'(c)� \

Rational and Recognizable Complex Trace Languages 239

'(b)�'(ac)� = f'(anbncn) j n � 0g, which is not rational since the
projection to fb; cg� yields the non rational language fbncn j n � 0g �
fb; cg�. However we have the following observation. It is stated as a
lemma since we will use it throughout.

Lemma 2.4 Let K � IR(X;D) be rational and L � IR(X;D) be recog-

nizable. Then the intersection K \ L is rational.

Proof: Let K 0; L0 � X1 be regular word languages such that '(K 0) =
K, '(L0) = L and L0 is closed. Then K 0 \L0 is a regular word language
and we have '(K 0 \ L0) = K \ L. Hence, by Proposition 2.1, K \ L is
rational. 2

The following combinatorial lemma becomes important below.

Lemma 2.5 Let t = t1t2 : : :, z = z1z2 : : : 2 X1 be two factorizations

for t; z 2 X1 with ti; zi 2 X�. Then we have '(t) = '(z) 2 IR(X;D)
if and only if there are sequences of integers 0 = m0 < m1 < m2 < : : :,
0 = n0 < n1 < n2 < : : :, and �nite words 1 = y0; x1; y1; x2; y2; : : : 2 X

�

such that it holds for all i � 1:

'(yi�1xi) = '(t1+mi�1 : : : tmi)
'(xiyi) = '(z1+ni�1 : : : zni)

A rough picture of the situation described in the lemma above is
given in the following picture.

'(t) = '(t1 � � � tm1
) '(t1+m1

� � � tm2
) '(t1+m2

� � � tm3
) : : :

= '(x1) '(y1x2) '(y2x3) : : :
= '(x1y1) '(x2y2) '(x3y3) : : :
= '(z1 � � � zn1) '(z1+n1 � � � zn2) '(z1+n2 � � � zn3) : : :
= '(z)

Double factorization of two words representing the same real trace

Proof: It is clear that the conditions imply '(t) = '(y0x1y1x2y2 : : :) =
'(z). Therefore it is enough to show the other direction and we may as-
sume '(t) = '(z). Let y0 = 1, x1 = t1 andm1 = 1. Then we may assume

240 V. Diekert, P. Gastin, A. Petit

by induction that for some k � 1 we found indices 0 = m0 < : : : < mk

and 0 = n0 < : : : < nk�1 and �nite words 1 = y0; x1; : : : ; yk�1; xk such
that

'(yi�1xi) = '(t1+mi�1 : : : tmi) for 1 � i � k
'(xiyi) = '(z1+ni�1 : : : zni) for 1 � i � k � 1:

Since '(y0x1 : : : yk�1xk) is a �nite pre�x of '(t) = '(z) and '(y0x1 : : :
xk�1yk�1) = '(z1 : : : znk�1) it follows from the left-cancellativity of
IR(X;D) that '(xk) is a �nite pre�x of '(z1+nk�1z2+nk�1 : : :). Hence
we �nd some nk > nk�1 such that '(xk) is a pre�x of '(z1+nk�1 : : : znk),
i.e., '(xkyk) = '(z1+nk�1 : : : znk) for some yk 2 X

�. A symmetric argu-
ment yields that for some mk+1 > mk there exists xk+1 2 X

� such that
'(ykxk+1) = '(t1+mk : : : tmk+1). This concludes the proof of the lemma.
2

A �rst application of the lemma above shows that it is decidable
whether a regular word language is closed by computing its syntactic
congruence. If a language L � X1 is closed, then obviously its syntactic
congruence �L veri�es ab �L ba for all (a; b) 2 I . The converse is easy
for �nitary languages. The next theorem states that the converse is true,
in general. The decidability result follows since the syntactic congruence
of a regular word language is computable [PP91].

Theorem 2.6 A regular language L � X1 is closed (i.e., L = '�1'(L))
if and only if we have ab �L ba for all (a; b) 2 I.

Proof: We have to show that ab �L ba for all (a; b) 2 I implies
L = '�1'(L). Let t 2 L and z 2 X1 such that '(t) = '(z). Ap-
plying Lemma 2.5 to the trivial factorizations t = a1a2 : : : and z =
b1b2 : : : with ai; bi 2 X [f1g, we �nd two new factorizations t = t1t2 : : :
and z = z1z2 : : : with ti; zi 2 X� and a sequence of �nite words 1 =
y0; x1; y1; x2; y2; : : : 2 X� such that '(yi�1xi) = '(ti) and '(xiyi) =
'(zi) for i � 1.

Let �L : X� ! X�= �L be the syntactic morphism of L. Since
ab �L ba for all (a; b) 2 I we have �(ti) = �(yi�1xi) for i � 1. Since

Rational and Recognizable Complex Trace Languages 241

� recognizes L this implies y0x1y1x2 : : : 2 L. In the same way, �(zi) =
�(xiyi) for i � 1, whence z 2 L. 2

However, the main interest in Lemma 2.5 results from the fact that
it yields a simpli�ed proof for the following result.

Theorem 2.7 ([GPZ91]) Let L � IM(X;D) be a �nitary recognizable

trace language such that L = L+. Then L! � IR(X;D) is recognizable,
too.

Proof: Let (Q; �; q0; F) be a classical �nite deterministic word automa-
ton recognizing '�1(L) by �nal states, i.e., F � Q and a �nite path is
accepted if its initial state is q0 and its �nal state is in F .

We now construct a B�uchi automaton recognizing '�1(L!) as follows.
The set of states is Q�Q�P(X) and the initial state is (q0; q0; ;). For
each letter a 2 X and state (q; q0; A) 2 Q � Q � P(X) we de�ne the
transition

(q; q0; A)
a
�! (q; �(q0; a); A [fag)

and if a 2 I(A) then additionally another transition

(q; q0; A)
a
�! (�(q; a); q0; A)

Furthermore, if q 2 F , we add a �nal 1-transition:

(q; q0; A)
1
�! (q0; q0; ;):

Such a non-deterministic jump signi�es that a member of '�1(L) has
been computed in the �rst component.

Note that, if we have a path (p; p0; A)
�
�!

z
(q; q0; B) without 1-

transition in this automaton then there exist x; y 2 X� such that '(z) =
'(xy), q = �(p; x), q0 = �(p0; y) and B = A [alph(y). (The converse is
trivially true.)

According to the de�nition of Section 1.3 this automaton accepts
all �nite or in�nite words which are labelings of in�nite paths using
in�nitely many �nal 1-transitions. By de�nition, the accepted language
is recognizable. Thus, we have to show only that the accepted language
is '�1(L!).

242 V. Diekert, P. Gastin, A. Petit

First, let z 2 X1 be an accepted word. Marking the �nal transitions
in its accepted path, we obtain the factorization:

(q0; q0; ;)
�
�!

z1
(q1; q

0
1; A1)

1
�! (q01; q0; ;)

�
�!

z2
(q2; q

0
2; A2)

1
�! (q02; q0; ;)

�
�!

z3
: : :

with z = z1z2z3 : : :.
Using the remark above, we �nd a sequence or �nite words x1; y1; x2;

y2; : : : 2 X� such that, with q00 = q0, we have '(zi) = '(xiyi), qi =
�(q0i�1; xi) and q

0
i = �(q0; yi) for all i � 1. Thus, with y0 = 1, we obtain

for all i � 1 �(q0; yi�1xi) = qi 2 F , i.e., yi�1xi 2 '�1(L). Hence, we
have '(z) = '(x1y1)'(x2y2) : : : = '(y0x1)'(y1x2) : : : 2 L

!.
For the other direction let z = b1b2 : : : 2 X1 be any word in

'�1(L!). Then we have '(z) = '(t) for some t = t1t2 : : : 2 X1 with
ti 2 '

�1(L) for all i � 1. Using Lemma 2.5, we obtain a sequence of �nite
words 1 = y0; x1; y1; x2; y2; : : : 2 X� and two factorizations z = z1z2 : : :
and t = (t1 : : : tm1

)(t1+m1
: : : tm2

) : : : such that for all i � 1 we have

'(zi) = '(xiyi) and '(yi�1xi) = '(t1+mi�1 : : : tmi) 2 L
� = L

Therefore, we �nd an accepting path for z as follows:

(q0; q0; ;)
�
�!

z1
(�(q0; x1); �(q0; y1); alph(y1))

1
�! (�(q0; y1); q0; ;)

�
�!

z2
(�(q0; y1x2); �(q0; y2); alph(y2))

1
�! (�(q0; y2); q0; ;)

�
�!

z3
: : :

2

The main application of the theorem above is when L is connected. A
�nite trace is called connected if it is connected as a dependence graph or
what is the same if its alphabet induces a connected subgraph of (X;D).
A �nitary language is called connected if all its elements are connected.
Due to independent works by M�etivier [M�et86] and Ochmanski [Och85],
it is known that L� (and hence L+) is recognizable if L is recognizable
and connected. Therefore we have the following corollary.

Rational and Recognizable Complex Trace Languages 243

Corollary 2.8 Let L � IM(X;D) be recognizable and connected. Then

L! is recognizable.

Proof: We have L! = (L+)!. 2

Note that in G(X;D) the concatenation xy of two real traces is real
if and only if alphinf(x) � alph(y) � I . Therefore, even if the concate-
nation K � L, as a rational operation on real trace languages, has been
de�ned only when K is �nitary, it can clearly be extended to the case
where alphinf(x) � alph(y) � I for all x 2 K and y 2 L. The reason
that the rational operation was de�ned in a more restricted way was to
maintain commutation with the canonical mapping ' : X1 ! IR(X;D).
This property is not important for the closure under concatenation of
Rec(IR(X;D)). It was proved by Gastin [Gas91] that the family of rec-
ognizable real trace languages is closed under this extension of the real
concatenation. The key to the proof of this result is the following lemma
which introduces the I-shu�e and for which we give a new proof using
non-deterministic B�uchi automata.

For the sake of simplicity, we write (x; y) 2 I if two words or real
traces x and y are fully independent, i.e., if alph(x)� alph(y) � I .

Lemma 2.9 Let K 0; L0 � X1 be regular. Then the following I-shu�e

is regular, too.

K 0 ttI L
0 = fu1v1u2v2 : : : 2 X

1 j

u1u2 : : : 2 K
0; v1v2 : : : 2 L

0 and (vi; uj) 2 I for all i < jg

Proof: For i = 1; 2, let Ai = (Qi; �i; qi;0;�i) be B�uchi automata
accepting K 0 and L0 respectively. We may assume that for i = 1; 2,
(qi; 1; qi) 2 �i for all qi 2 Qi. We construct an automaton A forK 0ttIL

0

as follows. The set of states is Q1 � Q2 � P(X) � P(f1; 2g) and the
initial state is (q1;0; q2;0; ;; ;). We de�ne simultaneously the transitions
of A and their projections on A1 and A2.

� If t1 = (q1; x; q
0
1) 2 �1 and alph(x)�A � I then

(q1; q2; A;B)
x
�! (q01; q2; A;B

0)

244 V. Diekert, P. Gastin, A. Petit

with B0 = B [f1g if t1 2 �1 and B
0 = B otherwise.

Moreover, the projections of this transition are t1 and (q2; 1; q2)
respectively.

� If t2 = (q2; x; q
0
2) 2 �2 then

(q1; q2; A;B)
x
�! (q1; q

0
2; A [alph(x); B0)

with B0 = B [f2g if t2 2 �2 and B
0 = B otherwise.

Moreover, the projections of this transition are (q1; 1; q1) and t2
respectively.

� Finally, we add the �nal 1-transitions

(q1; q2; A; f1; 2g)
1
�! (q1; q2; A; ;)

whose projections are (q1; 1; q1) and (q2; 1; q2) respectively.

Let us show that the language accepted by this automaton is K 0 ttI
L0. Let P be an accepted path of A with label w. Clearly, the projections
P1 and P2 of P are paths of A1 and A2. Let u and v be the labels of P1
and P2. From the de�nition of the transitions, we can easily verify that
w 2 u ttI v. Moreover, between two �nal transitions of P there must
be at least one �nal transition in the corresponding parts of P1 and P2.
Therefore, P1 and P2 are accepted paths and w 2 K 0 ttI L

0.

Conversely, let w 2 K 0 ttI L
0. We have w = u1v1u2v2 : : : with

u = u1u2 : : : 2 K
0, v = v1v2 : : : 2 L

0 and (vi; uj) 2 I for all i < j. Let

q1;0 = p0
�
�!

u1
p1

�
�!

u2
p2

�
�!

u3
p3 : : :

be an accepting path in A1 for u and let

q2;0 = q0
�
�!

v1
q1

�
�!

v2
q2

�
�!

v3
q3 : : :

Rational and Recognizable Complex Trace Languages 245

be an accepting path in A2 for v. We construct an accepting path for w
in A as follows:

(p0; q0; ;; ;)
�
�!

u1
(p1; q0; ;; B1)

�
�!

v1
(p1; q1; alph(v1); B

0
1)

1
�! (p1; q1; alph(v1); B

00
1)

�
�!

u2
(p2; q1; alph(v1); B2)

�
�!

v2
(p2; q2; alph(v1v2); B

0
2)

1
�! (p2; q2; alph(v1v2); B

00
2)

�
�!

u3
(p3; q2; alph(v1v2); B3)

�
�!

v3
: : :

with for all i � 1, B00i = ; if B0i = f1; 2g and B00i = B0i otherwise. 2

Proposition 2.10 ([Gas91]) Let K;L � IR(X;D) be recognizable (ra-

tional respectively) real trace languages such that for all x 2 K, y 2 L
it holds alphinf(x) � alph(y) � I. Then K � L is recognizable (rational

respectively).

Proof: Consider the canonical mapping ' : X1 ! IR(X;D). First,
observe that for u; v 2 X1, uttIv is not empty if and only if alphinf(u)�
alph(v) � I . Moreover, in this case, '(w) = '(u)�'(v) for all w 2 uttIv.
Now, there exist regular languages K 0; L0 � X1 such that '(K 0) = K
and '(L0) = L. By the observation above, we have '(K 0ttI L

0) = K �L.
Hence, by Lemma 2.9 and Proposition 2.1, K � L is rational.

Finally, if K and L are recognizable, we may assume that K 0 =
'�1(K) and L0 = '�1(L) are closed (Proposition 2.3). We claim that
in this case, K 0 ttI L

0 is closed too, i.e., K 0 ttI L
0 = '�1(K �L), which

proves that K � L is recognizable.

Let w 2 '�1'(K 0 ttI L
0) = '�1(K � L) then '(w) = x � y for some

x 2 K and y 2 L. We denote by wi the i-th letter of w or 1 if jwj < i.
For a letter a and a word (or a real trace) x we denote by jxja the number
of occurrences of a in x. We construct two sequences u1; v1; u2; v2; : : : 2
X [f1g as follows: ui = wi, vi = 1 if jxjwi � jw1 : : : wijwi and ui = 1,
vi = wi otherwise.

Clearly, w = u1v1u2v2 : : :. Let u = u1u2 : : : and v = v1v2 : : :. From
'(w) = x � y we deduce that '(u) = x, '(v) = y and (vi; uj) 2 I for all

246 V. Diekert, P. Gastin, A. Petit

i < j. Hence, u 2 '�1(K) = K 0, v 2 '�1(L) = L0 and w 2 K 0 ttI L
0

which proves the claim. 2

Remark that Proposition 2.10 states that the family Rat(IR(X;D))
is closed under this extended concatenation. Hence, we may have re-
placed the concatenation restricted to �nitary languages on the left by
this extended one without changing the family Rat(IR(X;D)).

As stated in Proposition 2.1, a real trace language L is rational if
and only if it can be written as a �nite union of sets of the form M �N!

where M;N � IM(X;D) are rational. For recognizable languages this
can be strengthened to the following normal form result.

Proposition 2.11 ([GPZ91]) A real trace language L � IR(X;D) is
recognizable if and only if it can be written as a �nite union of sets of the

form M �N!
1 � � �N

!
k =M �(N1 � � �Nk)

! where M;N1; : : : ; Nk � IM(X;D)
are recognizable languages such that all traces in Ni are connected and

have the same alphabet Ai with Ai �Aj � I for i 6= j.

Proof: First, it is clear by Remark 2.2, Corollary 2.8 and Proposi-
tion 2.10 that every such �nite union is recognizable.

The original proof [GPZ91] for the other direction uses Mezei's The-
orem. Here we simply use Ramsey factorization.

Let �0 : IM(X;D) ! S0 be a morphism recognizing L � IR(X;D).
We de�ne the direct product S = S0 � P(X) where the operation on
the power set P(X) is union and the morphism � : IM(X;D) ! S by
�(x) = (�0(x); alph(x)) for all x 2 IM(X;D). Note that � recognizes L,
too. Moreover, for s 2 S, the second projection alph(s) is well-de�ned
and satis�es alph(x) = alph(�(x)) for all x 2 IM(X;D). This property
will be used in the remainder of the proof.

Using Ramsey factorization, recall that we obtain [Gas91]:

L =
[

(s;e)2P
��1(s) � ��1(e)!

where P = f(s; e) 2 S � S j se = s; e2 = e and ��1(s) � ��1(e)! \ L 6=
;g. For each (s; e) 2 P , we decompose the alphabet A = alph(e) into

Rational and Recognizable Complex Trace Languages 247

connected components, A =
Sk
i=1 Ai such that Ai is not empty and

connected and Ai � Aj � I for all i 6= j. Moreover, we de�ne the �nite
set

E = f(e1; : : : ; ek) j e = e1 � � � ek and alph(ei) = Ai; for all 1 � i � kg

We claim that

��1(s)��1(e)! =
[

(e1;:::;ek)2E
��1(s)��1(e1)

! � � � ��1(ek)
!

which conclude the proof. Note that, in the de�nition of E, we could
require in addition that sei = s and e2i = ei but this is not necessary for
the proof of this proposition.

From the alphabetic property of �, we obtain

��1(e1)
! � � � ��1(ek)

! = (��1(e1) � � � �
�1(ek))

!

Moreover, ��1(e1) � � � �
�1(ek) � ��1(e), hence one inclusion is clear.

Conversely, we de�ne a morphism : ��1(e) ! E as follows. Let x
be in ��1(e). Since alph(x) = alph(e) = A, x admits a unique decom-
position in connected components x = x1 � � �xk such that alph(xi) = Ai
for all 1 � i � k. Then we set (x) = (�(x1); : : : ; �(xk)).

Now, let x0x1x2 : : : 2 ��1(s)��1(e)! with x0 2 ��1(s) and xi 2
��1(e) for all i � 1. Using Ramsey factorization, we obtain an in�nite
sequence of integers 0 < i1 < i2 < i3 < : : : and a tuple (e1; : : : ; ek) 2 E
such that (x1+ij : : : xik) = (e1; : : : ; ek) for all 1 � j < k. Hence,
x1+ij � � �xij+1 2 �

�1(e1) � � � �
�1(ek) for all j � 1 and we obtain x1+i1x2+i1x3+i1 : : : 2

(��1(e1) � � � �
�1(ek))

! = ��1(e1)
! � � � ��1(ek)

! . This proves the claim
since �(x0x1 : : : xi1) = se � � � e = se = s. 2

Corollary 2.12 The family of recognizable real languages is the smallest

family which contains �nite sets of �nite traces and which is closed un-

der union, concatenation restricted to �nitary languages on the left, and

Kleene � and !-iteration both restricted to �nitary connected languages.

The �nal results of this section show the closure of rational and rec-
ognizable languages by left and right quotient. These results will become

248 V. Diekert, P. Gastin, A. Petit

crucial in the next section.

Theorem 2.13 Let K � IR(X;D) be arbitrary and L � IR(X;D) be

recognizable. Then the following left and right quotients are recognizable,

too:

K�1 � L = fy 2 IR(X;D) j
xy 2 L for some x 2 K with alphinf(x)� alph(y) � Ig

L �K�1 = fx 2 IR(X;D) j
xy 2 L for some y 2 K with alphinf(x) � alph(y) � Ig

If, in addition, K � IR(X;D) is recognizable, then the quotients are

e�ectively computable.

Proof: Let � : IM(X;D) �! S be a morphism onto a �nite monoid
S which recognizes L and let Xs = ��1(s) for s 2 S. As in the proof
of Proposition 2.11, we may also assume that alph(s) is well-de�ned for
s 2 S and alph(x) = alph(s) for all x 2 Xs. For s; t 2 S, we write
(s; t) 2 I if alph(s) � alph(t) � I . Since recognizable languages are
closed under union, we may assume that L = XrX

!
d for some r; d 2 S

with rd = r and d2 = d. Using Theorem 2.7 and Proposition 2.10, the
result follows from the claim:

K�1 � L =
[

(t;f)2Q

XtX
!
f

where

Q = f(t; f) 2 S � S j tf = t; f2 = f and XsX
!
e \K 6= ;

for some (s; e) 2 S � S
with se = s; e2 = e; r = st; d = ef;
and (e; tf) 2 Ig:

Note that the computation of Q is e�ective as soon as K is recognizable.
Let y 2 XtX

!
f for (t; f) 2 Q. Choose x 2 XsX

!
e \K accordingly to

the de�nition of Q. Then we have

xy 2 XsX
!
e XtX

!
f = XsXt(XeXf)

! � XrX
!
d = L

Rational and Recognizable Complex Trace Languages 249

Hence, one inclusion of the claim is trivial.
For the other direction, let y 2 K�1 � L and choose x 2 K such

that xy 2 L with alphinf(x) � alph(y) � I . Then we can write xy =
z1z2 : : : with z1 2 Xr and zi 2 Xd for i � 2. Hence, there exist
x1; x2; : : : ; y1; y2; : : : such that zi = xiyi for i � 1; x = x1x2 : : : ; y =
y1y2 : : : ; and (yi; xj) 2 I for i < j. Ramsey factorization applied to the
sequence x = x1x2 : : : shows that we may assume x1 2 Xs; xi 2 Xe for
i � 2 and some s; e 2 S such that se = s and e2 = e. In the next
step, applying the same argument to the sequence y = y1y2 : : :, we may
assume y1 2 Xt; yi 2 Xf for i � 2 and some t; f 2 S with tf = t and
f2 = f . Since alphinf(x) = alph(e) and alph(y) = alph(tf), we have
(e; tf) 2 I . Hence (t; f) 2 Q. This shows the other inclusion. The proof
for L �K�1 is symmetric. 2

For rational languages such a general result does not hold. We have
the following counter example.

Example: Let IM(X;D) = fa; bg��fc; dg��feg� be a direct product of
three free monoids. Consider the following two rational sets: K = (ae)�b
and L = (ac)�b(de)�. Then we have K�1L � fc; dg� � feg�. The
projection of K�1L to fc; dg� yields the non-rational set fw 2 fc; dg� j
jwjc � jwjdg. In order to have an example of !- languages, simply
substitute b by b!.

However, the quotient of a rational language by a recognizable lan-
guage is e�ectively rational. This is stated in the next Theorem.

Theorem 2.14 Let K � IR(X;D) be recognizable and L � IR(X;D)
be rational. Then the following left and right quotients are e�ectively

computable and rational, too:

K�1 � L = fy 2 IR(X;D) j
xy 2 L for some x 2 K with alphinf(x)� alph(y) � Ig

L �K�1 = fx 2 IR(X;D) j
xy 2 L for some y 2 K with alphinf(x) � alph(y) � Ig

Proof: We give the proof for K�1 � L only. The other case L � K�1

is obtained analogously. Let K 0 = '�1(K) and L0 � X1 be a regular

250 V. Diekert, P. Gastin, A. Petit

language such that '(L0) = L. Let X1; X2 be two copies of X and
let X̂ = X1 [X2. De�ne three morphisms h; p1; p2 from X̂1 in X1

by h(ai) = a, pi(ai) = a and pj(ai) = 1 for i; j = 1; 2 with i 6= j.

Finally, de�ne the regular language W � X̂1 by its complement W =
[(a;b)2DX̂

�b2X̂
�a1X̂

1.

Since regular word languages are closed under morphism, inverse
morphism and intersection, the languageN 0 = p2(p

�1
1 (K 0)\h�1(L0)\W)

is regular, too. Moreover, it is easy to verify that

N 0 = fv1v2 : : : 2 X
1 j 9u1u2 : : : 2 K

0 with u1v1u2v2 : : : 2 L
0

and (vi; uj) 2 I for all i < jg
= fv 2 X1 j (u ttI v) \ L

0 6= ; for some u 2 K 0g

We claim that '(N 0) = K�1 �L which proves that K�1 �L is rational.

Let v be in N 0. There exists w 2 (u ttI v) \ L
0 for some u 2 K 0. In

the proof of Proposition 2.10 we have shown that '(w) = '(u) � '(v).
Therefore, '(v) 2 K�1 � L.

Conversely, let y be in K�1 � L. There exists x 2 K such that
alphinf(x) � alph(y) � I and z = xy 2 L. Let w 2 '�1(z) \ L0. In
the proof of Proposition 2.10 we have shown that '�1(xy) = '�1(x)ttI
'�1(y). Hence, there exist u 2 '�1(x) and v 2 '�1(y) such that w 2

u ttI v, whence (u ttI v) \ L
0 6= ;. Since u 2 '�1(x) � '�1(K) = K 0,

we obtain v 2 N 0. 2

3 Rational and recognizable complex trace

languages

Recall the following notations. Let L � C(X;D) be a complex trace
language and A � X be a subset of the alphabet. We denote by LA =
fx 2 L j Im(x) = D(A)g and �A(L) = f�A(x) j x 2 Lg where �A(x)
is the maximal real pre�x of Re(x) containing letters independent of A,
only. It will be useful to have a �ner partition. Let L � C(X;D) and
A;B � X . We de�ne LA;B = fx 2 L j Im(yx) = D(B) for some y 2
C(X;D)Ag. Note that in the de�nition above the existential \for some"

Rational and Recognizable Complex Trace Languages 251

can be replaced by \for all". The reason to introduce LA;B is that if
we concatenate any complex trace y 2 C(X;D)A with some x 2 L such
that yx 2 C(X;D)B , then in fact x 2 LA;B. Note that in this case
Re(yx) = Re(y)�A(x), therefore, we are also interested in the language
�A;B(L) which is de�ned by �A;B(L) = �A(LA;B).

The formulae given in the next lemma will be useful throughout.

Lemma 3.1 Let K;L � C(X;D) be complex trace languages and B �

X. Then the following formulae hold:

i) LB = L;;B

ii) L =
S
C�X LB;C

iii) �B(L) =
S
C�X �B;C(L)

iv) (KL)B =
S
A�X KALA;B

v) Re((KL)B) =
S
A�X Re(KA)�A;B(L)

Proof: i) is obvious. ii) Let x 2 L and y 2 C(X;D)B . Then, D(B) �
Im(yx) = D(C) for some C � X . Therefore x 2 LB;C . iii) follows
since �A commutes with union. iv) We have (KL)B =

S
A�X(KAL)B =S

A�X(KALA;B). At last, for any x 2 KA and any y 2 LA;B , Re(xy) =
Re(x)�A(y) and v) follows from iv). 2

Finally, we de�ne �A(L) = �A;A(L). Each trace in �A(L) is �nite
since alph(u) � I(A) and Im(u) � D(A) implies Im(u) = ;. Note also
that �;(L) is just the �nitary part L; = L \ IM(X;D). Later, we will
introduce �nite components, which could be characterized as the union
of �A(L) over A � X . For the moment we are interested in the �A(L),
because we have the following formula.

Lemma 3.2 Let L � C(X;D) be a complex trace language and y 2

f�; !g. Let A be the �nite set of sequences A = f(A0; : : : ; Ak) j ; =
D(A0)

�
6=
� � �

�
6=
D(Ak) � Xg. Then the language Ly is the �nite union

Ly =
[

(A0;:::;Ak)2A
�A0(L)

�LA0;A1 : : : �Ak�1(L)
�LAk�1;Ak�Ak(L)

y

252 V. Diekert, P. Gastin, A. Petit

Proof: The proof uses in a crucial way the observation that, if x; y 2
C(X;D) and Im(x) = Im(xy) = D(A) then �A(y) = �A(y) and xy =
x�A(y).

Let x = x1x2 : : : 2 L
y, xi 2 L. Eventually, the sequence of alphabets

Im(x1) � Im(x1x2) � � � � becomes stationary. Therefore, there exist an
integer k, a sequence of integers 0 = i0 < i1 < : : : < ik < ik+1 = !
and a sequence (A0; : : : ; Ak) 2 A such that Im(x1 : : : xn) = D(Aj) for
all ij � n < ij+1 and 0 � j � k. De�ne now the sequence (yn)n�1 by
yn = �Aj (xn) 2 �Aj (L) if ij < n < ij+1 for some 0 � j � k and by
yn = xn 2 LAj�1;Aj if n = ij for some 1 � j � k. From the observation
above, it follows x1 : : : xn = y1 : : : yn for all n and thus x = y1y2 : : : yn : : :.
Therefore,

x 2 �A0(L)
�LA0;A1 : : : �Ak�1(L)

�LAk�1;Ak�Ak(L)
y

Conversely, we show by induction on k that �A0(L)
�LA0;A1 : : : �Ak�1(L)

�

LAk�1;Ak�Ak (L)
y � Ly, for any (A0; : : : ; Ak) 2 A. For k = 0 this for-

mula becomes �;(L)
y = Ly

;
� Ly which is clear. Assume that, for any

(A0; : : : ; Ak) 2 A, the inclusion holds and let (A0; : : : ; Ak+1) 2 A. By
induction hypothesis applied to (A0; : : : ; Ak), we have in particular:

�A0(L)
�LA0;A1 : : : �Ak�1(L)

�LAk�1;Ak�Ak(L)
� � L� (5)

Since all the complex traces belonging to the left hand side of Equa-
tion (5) have clearly D(Ak) as imaginary part, it follows:

�A0(L)
�LA0;A1 : : : �Ak�1(L)

�LAk�1;Ak�Ak (L)
� � (L�)Ak

Therefore the inclusion for (A0; : : : ; Ak+1) follows since (L
�)AkLAk;Ak+1 �

(L�)Ak+1 and, from the observation above, (L�)Ak+1�Ak+1(L)
y � Ly for

y 2 f�; !g. 2

We are now ready to de�ne rational and recognizable complex trace
languages. There will be various equivalent characterizations for these
notions which justify the following de�nition.

De�nition: A complex trace language L � C(X;D) is called ra-

tional (recognizable respectively) if for all A � X the real language

Rational and Recognizable Complex Trace Languages 253

Re(LA) is rational (recognizable respectively). The families are denoted
by Rat(C(X;D)) and Rec(C(X;D)) respectively.

Proposition 3.3 The family Rec(C(X;D)) is a boolean algebra : it

is closed under union, intersection, and complementation. The family

Rat(C(X;D)) is closed under union.

Proof: Since Re : C(X;D) ! IR(X;D) commutes with union, it fol-
lows from results of Section 2 on real traces that Rat(C(X;D)) and
Rec(C(X;D)) are closed under union. The closure of Rec(C(X;D))
under intersection and complementation follows from Remark 2.2 and
the formulae: for all K;L � C(X;D) and A � X , Re(KA \ LA) =
Re(KA) \ Re(LA) and Re((C(X;D) nK)A) = Re(C(X;D)A) n Re(KA).
2

For any real trace language L � IR(X;D) and any subset A � X , it
holds Re(LA) = fr 2 L j Im(r)g = D(A)g = L \ IR(X;D)A. Since

'�1(IR(X;D)A) =
[

fB�XjD(B)=D(A)g
fx 2 X1 j alphinf(x) = Bg

the set IR(X;D)A is a recognizable real trace language. Therefore if
L is a rational (recognizable respectively) real trace language, then so
is Re(LA) for any A � X . Hence L is also a rational (recognizable
respectively) complex trace language. More precisely, we have (as ex-
pected) Rat(IR(X;D)) = fL � IR(X;D) j L 2 Rat(C(X;D))g and
Rec(IR(X;D)) = fL � IR(X;D) j L 2 Rec(C(X;D))g. At last, note that
since Re(L) =

S
A�X Re(LA), we have also the inclusionsRe(Rat(C(X;D)))

� Rat(IR(X;D)) and Re(Rec(C(X;D))) � Rec(IR(X;D)). The situation
is summarized in the following �gure.

Rec(IR(X;D)) � Rec(C(X;D))
Re
�! Rec(IR(X;D))

\ \ \

Rat(IR(X;D)) � Rat(C(X;D))
Re
�! Rat(IR(X;D))

Before we continue the reader should be convinced that it makes no
sense to de�ne a language L � C(X;D) to be rational (recognizable re-
spectively) if the projection Re(L) � IR(X;D) is rational (recognizable

254 V. Diekert, P. Gastin, A. Petit

respectively). Both classes of languages would be uncountable. (Note
that the families of rational and recognizable complex trace languages
are countable. Indeed, a complex trace language is entirely de�ned by
the languages LA for A � X and the family of rational real trace lan-
guages is countable since it is de�ned by rational expressions.) For
instance, if (X;D) = a b c, for any P � IN, the language
LP = f('(b)j'(a)! ; D(a)) j j 2 Pg [f('(b)j'(a)! ; D(a; b)) j j 62 Pg
veri�es '�1(Re(LP)) = a�b! and would be therefore recognizable. Note
also that the family of recognizable languages would not be closed un-
der intersection. Namely if (X;D) = a b c d and L =
'(ac)�'(b)!'(c) [f'(a); '(c)g�'(b)! , Re(L) = f'(a); '(c)g�'(b)! is a
recognizable real trace language whereas Lfb;cg = L\C(X;D)fb;cg is not
recognizable since Re(Lfb;cg) = '(ac)�'(b)!. Similarly, since the canon-
ical mapping ' : X1 ! C(X;D) is not surjective, it cannot be used
neither to de�ne a language L �C(X;D) to be recognizable. For exam-
ple, simply asking that '�1(L) � X1 has to be regular would yield that
any language not containing real traces is recognizable. (Of course, ac-
cording to our de�nition, L 2 Rec(C(X;D)) implies that '�1(L) � X1

is regular.)

Lemma 3.4 Let L � C(X;D) be rational (recognizable respectively)

and A;B � X. Then the languages LA;B � C(X;D) and �A;B(L) �
IR(X;D) are rational (recognizable respectively).

Proof: First, we show the assertion for LA;B. Note that (LA;B)C =
(LC)A;B for all C � X . Thus,

Re((LA;B)C) = Re((LC)A;B)
= Re(fx 2 LC j Im(yx) = D(B) for some y 2 C(X;D)Ag)
= fr 2 Re(LC) j Im(yr) [D(C) = D(B)

for some y 2 C(X;D)Ag
= Re(LC) \K

where K = fr 2 IR(X;D) j D(A [C [Su�A(r)) = D(B)g.
Using Remark 2.2 and Lemma 2.4, we are reduced to prove that the

languageK is recognizable. Indeed, it is easy to verify that the language

Rational and Recognizable Complex Trace Languages 255

'�1(K) is accepted by the following deterministic B�uchi automaton.
The set of states is P(X), the initial state is A and for all q 2 P(X)
and a 2 X we have the transition (q; a; q0) where q0 = q [fag if a 2
D(q) and q0 = q otherwise. A transition (q; a; q0) is �nal if and only if
D(A [C [q) = D(B).

For �A;B(L) we have �A;B(L) = �A(LA;B) by de�nition. Hence it is
enough to show the assertion for �A(L). Since �A(L) = �A(Re(L)), we
are reduced to consider real trace language L � IR(X;D).

For L � IR(X;D) we have �A(L) =M \(L �Su��1A) whereM = fx 2
IR(X;D) j alph(x) � I(A)g and

Su�A = fr 2 IR(X;D) j min(r) � D(A)g = IR(X;D)n
[

a2I(A)
a�IR(X;D)

Since M and Su�A are recognizable, the results follow from Lemma 2.4,
Theorems 2.13, and 2.14. 2

So far, we have allowed as rational operation on real traces the con-
catenation K � L, only if K is �nitary. This was motivated by the fact
that IR(X;D) is not a monoid. For complex traces such a restriction is
obviously not adequate and our �rst result underlines this. It follows
directly from Lemma 3.1, v), Proposition 2.10 and Lemma 3.4.

Theorem 3.5 LetK;L 2 C(X;D) be rational (recognizable respectively).
Then the concatenation K � L has the same property.

We can now extend Proposition 2.1 and Proposition 2.11 and give
normal forms for rational and recognizable complex trace languages.

Corollary 3.6 i) A language L � C(X;D) is rational if and only if

it can be written as a �nite union of sets of the form MN!s where
M;N � IM(X;D) are �nitary and rational and s 2 IM(X;D) is a
�nite (shift-)trace.

ii) A language L � C(X;D) is recognizable if and only if it can be

written as a �nite union of sets of the form MN!
1 : : : N

!
k s where

M;N1; : : : ; Nk � IM(X;D) are �nitary and recognizable, each trace
in Ni has the same connected alphabet Ai, Ai � Aj � I for i 6= j,
and s 2 IM(X;D) is a �nite (shift-)trace.

256 V. Diekert, P. Gastin, A. Petit

Proof: We have seen in the preliminaries every complex trace language
L �C(X;D) can be written as a �nite union:

L =
[

A shift B
(Re(LB) \ IR(X;D)A)sA;B

where sA;B is some �nite shift trace from D(A) to D(B). Hence if
L is rational (recognizable respectively), Proposition 2.1 (Proposition
2.11 respectively) applied to languages Re(LB) \ IR(X;D)A yield the
only-if parts of the corollary. The if-parts come from the inclusions
Rat(IR(X;D)) � Rat(C(X;D)) (Rec(IR(X;D)) � Rec(C(X;D)) respec-
tively) and the closures under concatenation, Theorem 3.5. 2

Since the concatenation and the !-product are fully de�ned inC(X;D),
the �-iteration and the !-iteration should be allowed as rational opera-
tions, in full generality. The next theorem states that this is indeed the
case.

Theorem 3.7 Let L 2 Rat(C(X;D)) be a rational complex trace lan-

guage. Then L� and L! are rational.

Proof: If L is a rational complex trace language, from Lemma 3.4, we
deduce in particular that �A(L) � IM(X;D) is a �nitary rational trace
language for all A � X . Hence, for all A � X , �A(L)

� and �A(L)
!

are rational real trace languages, too. Thus, the theorem follows from
Lemma 3.2, Proposition 3.3 and Theorem 3.5. 2

From closure under union, Theorems 3.5, 3.7 and Corollary 3.6, we
obtain the following characterization which could also be used for a con-
venient de�nition of rational complex trace languages.

Corollary 3.8 The family of rational complex trace languages is the

smallest family which contains all �nitary rational trace languages and

which is closed under union, concatenation, Kleene-�, and !-iteration.

Of course, we cannot expect that recognizable languages are closed
under Kleene-� or !-iteration, in general. However, let L be a recogniz-
able complex trace language such that �A(L)

� � IM(X;D) is recogniz-
able for all A � X . From Theorem 2.7, we deduce that, for all A � X ,

Rational and Recognizable Complex Trace Languages 257

�A(L)
! is recognizable, too. Hence, from Lemma 3.2 and closures un-

der union and concatenation we obtain the following corollary. It is our
strongest result concerning the question when the star- and !-iteration
of a recognizable complex trace language is recognizable.

Corollary 3.9 Let L � C(X;D) be a recognizable complex trace lan-

guage such that �A(L)
� � IM(X;D) is recognizable for all A � X. Then

L� and L! are recognizable complex trace languages, too. 2

We �nish this section by an extension of Theorems 2.13 and 2.14 to
complex trace languages.

Theorem 3.10 LetK �C(X;D) be arbitrary (recognizable respectively)
and L � C(X;D) be recognizable (rational respectively). Then the fol-

lowing left and right quotients are recognizable (rational respectively),

too:

L �K�1 = fx 2 C(X;D) j xy 2 L for some y 2 Kg
K�1 � L = fy 2C(X;D) j xy 2 L for some x 2 Kg

If K is recognizable, then the quotients are e�ectively computable.

Proof: First we consider Re((L �K�1)A) for some A � X . We have

(L �K�1)A =
[

B�X
(LB �K

�1)A =
[

B�X
(LB �K

�1
A;B)A

Hence, it remains to prove that Re((LB �K
�1
A;B)A) is a recognizable (ra-

tional respectively) real trace language. We have

Re((LB �K
�1
A;B)A) = fr 2 Re(C(X;D)A) j r � �A(y) 2 Re(LB)

for some y 2 KA;Bg

= Re(C(X;D)A) \ Re(LB) � (�A;B(K))�1

Hence, the results follow from Remark 2.2, Lemma 2.4, Theorems 2.13,
2.14 and Lemma 3.4.

258 V. Diekert, P. Gastin, A. Petit

The calculus forK�1�L is slightly di�erent. First, note thatK�1�L =
[A�B�XK

�1
A � LB . Then we have

K�1
A � LB = fy 2 C(X;D)A;B j r�A(y) 2 Re(LB) for some r 2 Re(KA)g

=C(X;D)A;B \ fy 2C(X;D) j �A(y) 2 Re(KA)
�1 � Re(LB)g

Since by Theorems 2.13 and 2.14, Re(KA)
�1 � Re(LB) is recognizable

(rational respectively) the results follow from the claim:

Claim: Let R � IR(X;D) be rational (recognizable respectively) then
M = fy 2 C(X;D) j �A(y) 2 Rg is rational (recognizable respectively).

For all B � X , we have Re(MB) = Re(C(X;D)B) \ fr 2 IR(X;D) j
�A(r) 2 Rg. Therefore, the claim follow directly from

fr 2 IR(X;D) j �A(r) 2 Rg = (fr 2 IR(X;D) j alph(r) � I(A)g\R)�Su�A

where Su�A is the recognizable set de�ned in Lemma 3.4. 2

In the section below we will introduce connected and �nitary con-
nected components and we will extend Kleene's and Ochmanski's theo-
rems to complex trace languages.

4 C-rational complex trace languages

In order to de�ne concurrent iterations for complex trace languages, we
need �rst a notion of connectedness for complex traces. Intuitively, a
trace is connected if it cannot be split into two non-empty independent
traces. Thus, let us introduce the notion of independence. This notion
is clear in G(X;D): two graphs f and g are independent if alph(f) �
alph(g) � I . Unfortunately, we cannot use this de�nition in C(X;D)
since the alphabet of a complex trace is not well-de�ned. Nevertheless,
it is easy to verify that the independence relation in G(X;D) factorizes
to complex traces. Hence the independence relation in C(X;D) is well-
de�ned and can be characterized as follows. Two complex traces x =
(u;D(A)), y = (v;D(B)) 2 C(X;D) are independent if (alph(u) [A) �

Rational and Recognizable Complex Trace Languages 259

(alph(v) [B) � I , in this case we will simply write (x; y) 2 I . Note
that this is well-de�ned since D(B) = D(B0) implies (alph(u) [A) �
(alph(v) [B) � I , (alph(u) [A) \D(alph(v) [B) = ; , (alph(u) [
A) \D(alph(v) [B0) = ; , D(alph(u) [A) \ (alph(v) [B0) = ; This
leads to the following de�nition.

De�nition: A complex trace z is called connected if for all factorization
z = xy where x, y are independent, either x = 1 or y = 1. A trace x is

called a connected component of z 2 C(X;D) if either x = z = 1 or x is

a non-empty connected trace such that z = xy for some y independent

of x. The trace z is said to be �nitary connected if it admits at most

one �nite connected component.

For any non-empty trace z, we will denote by C(z) (respectively
FC(z) = C(z) \ IM(X;D)) the set of connected components (respec-
tively �nite connected components) of z. These notations are as usual
extended to languages. A language is said to be connected (respectively
�nitary connected) if all its elements are connected (respectively �nitary
connected).

Note that a direct translation of the above de�nition can be used
to de�ne connectedness notions on dependence graphs as well. These
notions coincide with the natural notion of connectedness in G(X;D):
a dependence graph is connected if and only if so is its underlying
undirected graph. Unfortunately, this natural notion does not factor-
ize to complex traces. The same complex trace might have connected
as well as disconnected representing dependence graphs. For example
let (X;D) = a b c. Then the complex trace x = ((ac)!; X)
is represented by the connected dependence graph (ac)!b as well as by
the disconnected graph a!c!. This explains why we de�ne the notion
of connected traces through the independence relation. For �nitary con-
nectedness the situation is simpler. A trace x 2 IM(X;D) is a �nite
connected component of z 2 C(X;D) if and only if x is �nite and a
connected component of any representing dependence graph of z. The
following proposition precises the links between the two notions of con-
nectedness in G(X;D) and C(X;D).

260 V. Diekert, P. Gastin, A. Petit

Proposition 4.1 Let x 2 C(X;D) be a complex trace.

i) x is connected if and only if all its representatives in G(X;D) are
connected.

ii) Let f 2 G(X;D) be any representative of x and let ff1; : : : ; fkg
be the set of �nite connected components of f . Then FC(x) =
ff1; : : : ; fkg.

Proof: i) Let f be a representative of x in G(X;D). Suppose that
f = gh with alph(g)� alph(h) � I . Let y; z be the complex traces rep-
resented by g; h respectively. Hence x = yz with (y; z) 2 I . Since x is
connected, we get y = 1 or z = 1 and thus g = 1 or h = 1. Therefore f
is connected.
Conversely, suppose that x = yz with (y; z) 2 I . Let g; h be representa-
tives in G(X;D) of the complex traces y; z respectively. Hence gh is a
representative of x and (g; h) 2 I . Thus g = 1 or h = 1, hence y = 1 or
z = 1 and x is connected.
ii) Let g be a �nite connected component of f , f = gh for some h 2

G(X;D) with alph(g)� alph(h) � I . Let y be the complex trace repre-
sented by h. Since g is �nite, we get x = gy with (g; y) 2 I . Moreover g
is a connected complex trace from i). Hence g 2 FC(x).
Conversely, let y 2 FC(x). Then x = yz for some complex trace z such
that (y; z) 2 I . Since G(X;D) is left cancellative [Die91], the depen-
dence graph y�1f is well-de�ned and is a representative of the complex
trace z. Hence y is a �nite connected component of f = y(y�1f). 2

In order to generalize B�uchi's and Ochmanski's Theorems to com-
plex traces, we need a link to the language �A(L) de�ned above. For
a complex trace x, any non-empty product over pairwise independent
�nite connected components of x is called a �nite component of x. For
a language L �C(X;D), the set of �nite components of the elements of
L is denoted by FinComp(L).

Lemma 4.2 Let L � C(X;D) be recognizable. Then the following as-

sertions hold.

Rational and Recognizable Complex Trace Languages 261

i) FinComp(L) =
S
A�X �A(L)

ii) FC(L) and C(L) are recognizable

Proof: i) Let t 2 �A(L). By de�nition, we have alph(t) � I(A) and
Im(t) � D(A), hence Im(t) = ; and thus t is �nite. Moreover, there
exists some x 2 LA;A such that t = �A(x). Hence x = t � (r; Im(x))
and, since x 2 LA;A, we have (D(alph(r))[Im(x)) � D(A). Thus, from
alph(t) � I(A), (t; (r; Im(x))) 2 I . Therefore t 2 FinComp(LA;A) �
FinComp(L).

Conversely, let t 2 FinComp(L), there exist some u 2 L and v 2
C(X;D) such that u = tv with (t; v) 2 I . Let B = alph(t) and A = I(B),
note that B � I(A). We claim that t = �A(u) and u 2 LA;A whence
t 2 �A(L). Let v = (r;D(C)), since (t; v) 2 I , we have by de�nition
B � (alph(r) [C) � I , and thus (alph(r) [C) � I(B) = A. Hence
alph(r) � A, in particular alph(r) \ I(A) = ; and then �A(u) = t. We
get also C � A, hence u 2 LA;A and the claim is proved.

ii) Let NC be the set of non-connected complex traces. It is easy
to verify that NC =

S
(A[B)�(E[F)�I K(A;B) �K(E;F) where, for all

A;B � X , K(A;B) = fx 2 C(X;D)B n f1g j alph(Re(x)) = Ag. Now, it
turns out that

C(L) = (
[

(A[B)�(E[F)�I
(K(A;B)�1 �L)\K(E;F))\ (C(X;D) nNC)

Clearly, for all A;B � X , the set K(A;B) is recognizable. From Propo-
sition 3.3 and Theorems 3.5 and 3.10, we deduce that NC and C(L) are
recognizable. Thus the set FC(L) = C(L) \ IM(X;D) is recognizable,
too.2

Theorem 4.3 Let L �C(X;D) be recognizable. If L is �nitary-connected

(in particular if L is connected) or if FC(L) � L�, then L� and L! are

recognizable.

Proof: If L is �nitary connected, then FinComp(L) is connected and
from Lemma 4.2 i), it holds that �A(L) is connected for all A � X .

262 V. Diekert, P. Gastin, A. Petit

Since by Lemma 3.4 �A(L) is also recognizable, �A(L)
� is recognizable

by [M�et86, Och85]. Hence L� and L! are recognizable by Corollary 3.9.

Assume that FC(L) � L�. We will also show that �A(L)
� is rec-

ognizable for all A � X . For this purpose, we claim that �A(L)
� =

�A(FC(L))
�.

Remark �rst that if t is a �nite connected trace, from Lemma 4.2 i)
applied to L = ftg, we get that, for any A � X , either �A(t) = ftg if
alph(t) � I(A) or �A(t) = ; otherwise.

Let now t be in �A(L) and ft1; : : : ; tkg be the connected components
of t. From Lemma 4.2 i), we have ft1; : : : ; tkg � C(FinComp(L)) =
FC(L). From the remark above, for all 1 � i � k, we get ftig = �A(ti)
and thus ti 2 �A(FC(L)). Hence �A(L) � �A(FC(L))

�, and �A(L)
� �

�A(FC(L))
�, too.

Conversely, since FC(L) � L�, we have �A(FC(L)) � FinComp(FC(L))
= FC(L) � L�. Let t 2 �A(FC(L)) � L�, in particular alph(t) � I(A)
and t = t1 : : : tk with ti 2 L; and alph(ti) � I(A) for 1 � i � k. From
the remark above, ftig = �A(ti) � �A(L), for 1 � i � k. Therefore
t 2 �A(L)

� and �A(FC(L)) � �A(L)
�. Finally �A(L)

� = �A(FC(L))
�

and the claim is proved.

Since �A(FC(L)) is connected, we obtain from [M�et86, Och85] that
�A(L)

� is recognizable. 2

Corollary 4.4 Let L � C(X;D) be a recognizable, then (FC(L) [L)�

and (FC(L) [L)! are recognizable, too.

Proof: This is immediate from the theorem above and the observation
that we have FC(FC(L) [L) = FC(L). 2

Beside its own interest, Corollary 4.4 yields a simple proof of the
following result which is surprising, since the �-iteration of a single trace
is not recognizable, in general.

Corollary 4.5 Let x 2 C(X;D) be a recognizable complex trace, i.e.,

fxg 2 Rec(C(X;D)), then x! is recognizable.

Rational and Recognizable Complex Trace Languages 263

Proof: Choose A � X such that D(A) = Im(x!). Then we claim that

fx!g = ((FC(fxg) [fxg)!)A

One inclusion is obvious. Conversely, let z 2 ((FC(fxg)[fxg)!)A. Since
Im(z) = Im(x!) = D(alph(Re(x))) [Im(x), we deduce that z = zx =
zx!. Now, let FC(fxg) = fx1; : : : ; xkg and let y = (x1 : : : xk)

�1 � x.
From the de�nition of connected components, it holds that x1; : : : ; xk; y
are pairwise independent. Therefore z = xn+n11 : : : xn+nkk yn for some
0 � n1; : : : ; nk; n � !, x! = x!1 : : : x

!
k y

! and hence zx! = x! . 2

Now, we extend the concurrent iteration of Ochmanski [Och85] to
complex traces.

De�nition: Let L �C(X;D). Then the concurrent iterations of L are

de�ned by Lc�� = (C(L))� and Lc�! = (C(L))! .

Since C(L) is connected, we obtain from Lemma 4.2 and Theorem
4.3:

Corollary 4.6 Let L � C(X;D) be recognizable. Then Lc�� and Lc�!

are recognizable.

De�nition: The family of c-rational complex trace languages,c�Rat(
C(X;D)), is the smallest family which contains all �nite sets of �nite

traces and which is closed under the operations union, concatenation

and concurrent iterations c-� and c-!.

We are now ready to state our main result.

Theorem 4.7 Rec(C(X;D)) = c�Rat(C(X;D))

Proof: We have seen that Rec(C(X;D)) is a boolean algebra closed
under concatenation (Theorem 3.5) and concurrent iterations (Corollary
4.6). Hence c�Rat(C(X;D)) � Rec(C(X;D)). Conversely, we have
seen (Corollary 3.6) that every recognizable language can be written as a
�nite union over languages of typeMN!

1 : : : N
!
k s whereM;N1; : : : ; Nk �

IM(X;D) are recognizable and s 2 IM(X;D) is a �nite trace. Moreover all

264 V. Diekert, P. Gastin, A. Petit

traces in Ni have the same connected alphabet and hence N!
i = Nc�!

i .
From Ochmanski's theorem [Och85], the recognizable �nitary languages
M and Ni, for 1 � i � k, are in c�Rat(C(X;D)). Therefore L is also
in c�Rat(C(X;D)). 2

Remark 4.8 i) Every recognizable complex trace language has ef-
fectively a c-rational expression where the concurrent iterations are
allowed only for �nitary languages which are connected. (Hence
where the concurrent iterations become the usual Kleene-� and
!-iteration.)

ii) We could have de�ned the �nitary concurrent iteration of a lan-
guage L as Lfc�y = (FC(L) [L)y for y 2 f�; !g. An analogue of
Theorem 4.7 with a suitable de�nition of fc�Rat(C(X;D)) also
holds in this case.

5 Conclusion

In this paper we have studied the families of rational and recognizable
languages of complex traces. We showed that classical results on �nite
and in�nite words and �nite traces have a natural extension to complex
traces. In our investigations we followed mainly an algebraic viewpoint
with the �nal goal to establish the Kleene-Ochmanki-Theorem.

Of course, other characterizations of the recognizable languages are
of high interest. For instance, word languages can be de�ned by monadic
second order logic [B�uc62]. The equivalent work for �nite traces can be
found in [Tho90] and for for real traces in [Ebi92]. Its generalization
to complex traces seems to be without any additional di�culty. Be-
sides, the most well-known characterizations of recognizable languages
use the notion of �nite automata. Recognizable word languages are lan-
guages which are accepted by (non-deterministic) B�uchi automata or
by deterministic Muller automata. Asynchronous (cellular) automata
[Zie87, Zie89] provide distributed acceptors for recognizable languages
of �nite traces. With a suitable B�uchi like condition, non-deterministic

Rational and Recognizable Complex Trace Languages 265

asynchronous (cellular) automata accept exactly the recognizable lan-
guages of real traces [GP92] and may be easily extended to accept com-
plex trace languages. Hence, the main open problem in this �eld is to
obtain a characterization of recognizable languages of in�nite traces with
an appropriate model of �nite deterministic automata.

Acknowledgements: We thank Anca Muscholl for fruitful discus-
sions and for the simple example before Theorem 2.14.

References

[AR88] I.J. Aalbersberg and G. Rozenberg. Theory of traces. Theoret.
Comput. Sci., 60:1{82, 1988.

[Arn85] A. Arnold. A syntactic congruence for rational !-languages.
Theoret. Comput. Sci., 39:333{335, 1985.

[BMP90] P. Bonizzoni, G. Mauri, and G. Pighizzini. About in�nite
traces. In V. Diekert, editor, Proceedings of the ASMICS work-

shop Free Partially Commutative Monoids, Kochel am See

(Germany) 1989, Report TUM-I9002, Technical University of
Munich, pages 1{10, 1990.

[B�uc62] R. B�uchi. On a decision method in restricted second order
arithmetic. In Proc. Internat. Congress on Logic, Methodology

and Philosophy, pages 1{11. Standford University Press, 1962.

[CF69] P. Cartier and D. Foata. Probl�emes combinatoires de commu-
tation et r�earrangements. Lecture Notes in Mathematics 85.
Springer, Berlin-Heidelberg-New York, 1969.

[CP85] R. Cori and D. Perrin. Automates et commutations partielles.
R.A.I.R.O.-Informatique Th�eorique et Applications, 19:21{32,
1985.

[DGP91] V. Diekert, P. Gastin, and A. Petit. Recognizable complex
trace languages. In A. Tarlecki, editor, Proceedings of the

16th Symposium on Mathematical Foundations of Computer

266 V. Diekert, P. Gastin, A. Petit

Science (MFCS'91), Kazimierz Dolny (Poland) 1991, Lec-
ture Notes in Computer Science 520, pages 131{140. Springer,
Berlin-Heidelberg-New York, 1991.

[Die90] V. Diekert. Combinatorics on Traces. Lecture Notes in
Computer Science 454. Springer, Berlin-Heidelberg-New York,
1990.

[Die91] V. Diekert. On the concatenation of in�nite traces. In C. Chof-
frut et al., editors, Proceedings of the 8th Annual Symposium

on Theoretical Aspects of Computer Science (STACS'91),

Hamburg (Germany) 1991, Lecture Notes in Computer Science
480, pages 105{117. Springer, Berlin-Heidelberg-New York,
1991.

[Ebi92] W. Ebinger. On logical de�nability of in�nite trace lan-
guages. In V. Diekert et al., editors, Proceedings ASMICS

Workshop In�nite Traces, T�ubingen (Germany) 1992, Bericht
4/92, Fakult�at Informatik, Universit�at Stuttgart, 1992. This
volume pages 106{122.

[Fli74] M. Fliess. Matrices de Hankel. J. Math. Pures et Appl.,
53:197{224, 1974.

[FR82] M.P. Fl�e and G. Roucairol. On the serializability of iterated
transactions. In Proceedings ACM SIGACT-SIGOPS, Sympo-

sium on Principles of Distr. Comp., Ottawa (Canada) 1982,
pages 194{200, 1982.

[Gas90] P. Gastin. In�nite traces. In I. Guessarian, editor, Proceedings
of the Spring School of Theoretical Computer Science on Se-

mantics of Systems of Concurrent Processes, Lecture Notes
in Computer Science 469, pages 277{308. Springer, Berlin-
Heidelberg-New York, 1990.

[Gas91] P. Gastin. Recognizable and rational trace languages of �nite
and in�nite traces. In C. Cho�rut et al., editors, Proceedings

Rational and Recognizable Complex Trace Languages 267

of the 8th Annual Symposium on Theoretical Aspects of Com-

puter Science (STACS'91), Hamburg (Germany))1991, Lec-
ture Notes in Computer Science 480, pages 89{104. Springer,
Berlin-Heidelberg-New York, 1991.

[GP92] P. Gastin and A. Petit. Asynchronous cellular automata for
in�nite traces. In W. Kuich, editor, Proceedings of the 19th

International Colloquium on Automata Languages and Pro-

gramming (ICALP'92), Vienna (Austria) 1992, Lecture Notes
in Computer Science. Springer, Berlin-Heidelberg-New York,
1992. Also available as Tech. Rep. 91-68, LITP, Universit�e
Paris 6, France, 1991.

[GPZ91] P. Gastin, A. Petit, and W. Zielonka. A Kleene theorem
for in�nite trace languages. In J. Leach Albert et al., ed-
itors, Proceedings of the 18th International Colloquium on

Automata Languages and Programming (ICALP'91), Madrid

(Spain) 1991, Lecture Notes in Computer Science 510, pages
254{266. Springer, Berlin-Heidelberg-New York, 1991.

[GR91] P. Gastin and B. Rozoy. The poset of in�nitary traces. Techni-
cal Report, LITP 91.24, Universit�e de Paris 6, 1991. To appear
in Theoret. Comp. Sci.

[Gra81] R. Graham. Rudiments of Ramsey theory. Regional Confer-
ence Series in Mathematics 45, 1981.

[Kwi90] M. Kwiatkowska. A metric for traces. Imform. Proc. Letters,
35:129{135, 1990.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their in-
terpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus,
1977.

[Maz87] A. Mazurkiewicz. Trace theory. In W. Brauer et al., editors,
Petri Nets, Applications and Relationship to other Models of

Concurrency, Lecture Notes in Computer Science 255, pages
279{324. Springer, Berlin-Heidelberg-New York, 1987.

268 V. Diekert, P. Gastin, A. Petit

[M�et86] Y. M�etivier. Une condition su�sante de reconnaissabilit�e
dans un mono��de partiellement commutatif. R.A.I.R.O.-

Informatique Th�eorique et Applications, 20:121{127, 1986.

[MR91] Y. M�etivier and B. Rozoy. On the star operation in free par-
tially commutative monoids. International Journal of Foun-

dations of Computer Science, 2:257{265, 1991.

[Och85] E. Ochmanski. Regular behaviour of concurrent systems. Bull.
of the European Association for Theoretical Computer Science

(EATCS), 27:56{67, Oct 1985.

[Och90] E. Ochmanski. Notes on a star mystery. Bull. of the Euro-

pean Association for Theoretical Computer Science (EATCS),
40:252{257, Feb 1990.

[Per89] D. Perrin. Partial commutations. In G. Ausiello et al., ed-
itors, Proceedings of the 16th International Colloquium on

Automata, Languages and Programming (ICALP'89), Stresa

(Italy) 1989, Lecture Notes in Computer Science 372, pages
637{651. Springer, Berlin-Heidelberg-New York, 1989.

[PP91] D. Perrin and J.E. Pin. Mots In�nis. Technical Report, LITP
91.06, Universit�e de Paris 6, 1991.

[Sak87] J. Sakarovitch. On regular trace languages. Theoret. Comput.
Sci., 52:59{75, 1987.

[Tho90] W. Thomas. On logical de�nability of trace languages. In
V. Diekert, editor, Proceedings of the ASMICS workshop

Free Partially Commutative Monoids, Kochel am See, Okto-

ber 1989, Report TUM-I9002, Technical University of Munich,
pages 1{10, 1990.

[Zie87] W. Zielonka. Notes on �nite asynchronous automata.
R.A.I.R.O.-Informatique Th�eorique et Applications, 21:99{
135, 1987.

Rational and Recognizable Complex Trace Languages 269

[Zie89] W. Zielonka. Safe executions of recognizable trace languages
by asynchronous automata. In A. R. Mayer et al., editors, Pro-
ceedings Symposium on Logical Foundations of Computer Sci-

ence, Logic at Botik '89, Pereslavl-Zalessky (USSR) 1989, Lec-
ture Notes in Computer Science 363, pages 278{289. Springer,
Berlin-Heidelberg-New York, 1989.

270

Open problems 271

Open problems in trace theory

proposed by

Giovanni Pighizzini and Nicoletta Sabadini

1 Determinization of asynchronous automata

A very surprising result obtained by W. Zielonka [Zie87] is the solution
of the following problem:

Problem 1 Given a deterministic automaton over the free partially com-

mutative monoid �nd a deterministic asynchronous automaton accepting

the same trace language.

The proof given by Zielonka is rather complicated and it seems di�-
cult to simplify it, despite all e�orts, e.g. [CM88].

The characterization of the class of recognizable trace languages given
by Ochma�nski [Och85] suggests a di�erent approch to Problem 1 simi-
lar to the usual proof of Kleene's Theorem [Pig92]. Unfortunately, the
automaton so obtained is nondeterministic. Even if the possibility of
obtaining an equivalent deterministic asynchronous automaton is a con-
sequence of Zielonka's result, up to date there is not any direct construc-
tion.

Thus, we state the following problem:

Open problem 1 Find a \new" strategy to transform nondeterministic

asynchronous automata in deterministic asynchronous automata, with-

out using Zielonka's proof.

272

Open problems 273

We brie
y point out that the main di�cult of Zielonka's result is to
obtain a distributed automaton starting from a monoid automaton, in
such a way that there is a link between their states.

Our open problem seems to be easier since the input is already a
distributed automaton; in spite of this, similar technical problems arise.

Similar considerations can be formulated for asynchronous cellular
automata.

2 Probabilistic asynchronous automata

As a second open problem, we still propose the generalization of Zielonka's
Theorem to probabilistic asynchronous automata.

Probabilistic asynchronous automata were introduced in [MS89]. In
[JPS90], the following problem were positively solved in the case of con-
current alphabets with acyclic dependency graph.

Open problem 2 Given a concurrent alphabet (�; C), does the class

of behaviours of F (�; C){probabilistic asynchronous automata coincide

with the class of behaviours of probabilistic asynchronous automata over

(�; C) ?

In the general case this problem is still open.

3 Extensions of the notion of in�nite trace

An extension of the notion of �nite traces was recently proposed by
A. Arnold [Arn91], by considering pomsets without self{concurrency. In
this extension the concurrency relation is not �xed a priori. A similar ex-
tension in the in�nite case could be useful to describe in�nite behaviours
of concurrent systems. So, we state the following problem:

Open problem 3 Extend the theory of in�nite traces to pomsets with-

out self{concurrency, giving a suitable notion of recognizing devices.

274

4 The equivalence and the inclusion prob-

lems for k{ambiguous regular trace lan-

guages

The equivalence problem (inclusion problem, resp.) for a class C of trace
languages consists in deciding if L0 = L00 (L0 � L00, resp.), where L0 and
L00 are languages in the class C.

Let Rk(�; C) denotes the class of regular trace languages over the
concurrent alphabet (�; C) with degree of ambiguity k [BMS82b] and
R0(�; C) the class of recognizable trace languages. We brie
y recall
that

R0(�; C) � R1(�; C) � : : : � Rk(�; C) � : : : � R(�; C);

where R(�; C) is the class of regular trace languages over (�; C).

It is known that for the class R0(�; C) the equivalence problem
is decidable for all concurrent alphabets, while for the class R(�; C)
it is decidable if and only if the concurrency relation C is transitive
[BMS82a, AH87]. In [BPS88], it was proved that there exists a concur-
rent alphabet (�; C) with nontransitive concurrency relation such that
the equivalence problem for R1(�; C) is decidable. This result has been
recently extended in [Var91] proving that for every concurrent alphabet
(�; C), the equivalence problem for R1(�; C) is decidable.

Up to date, there is none result concerning the classes Rk(�; C) for
k � 2.

Open problem 4 For every k � 2, characterize the class of concurrent
alphabets (�; C) such that the equivalence problem for trace languages in

Rk(�; C) is decidable.

For the class R(�; C) of regular trace languages, the inclusion prob-
lem is decidable if and only if the independency relation C is transitive
[Sak90]. Moreover, the same problem for R0(�; C) is decidable for every
concurrent alphabet.

None result is known for the class R1(�; C) of unambiguous regular
trace languages and for k{ambiguous regular trace languages.

Open problems 275

Open problem 5 For every k � 1, characterize the class of concurrent
alphabets (�; C) such that the inclusion problem for trace languages in

Rk(�; C) is decidable.

References

[AH87] IJ. Aalbersberg and H. Hoogeboom. Decision problems for
regular trace languages. In Proc. 14th ICALP, Lecture Notes
in Computer Science 267, pages 251{259, 1987.

[Arn91] A. Arnold. An extension of the notions of traces and of asyn-
chronous automata. RAIRO Inf. Theor., 25:355{393, 1991.

[BMS82a] A. Bertoni, G. Mauri, and N. Sabadini. Equivalence and
membership problems for regular trace languages. In Proc.

9th ICALP, Lecture Notes in Computer Science 140, pages
61{71, 1982.

[BMS82b] A. Bertoni, G. Mauri, and N. Sabadini. A hierarchy of regular
trace languages and some combinatorial applications. In Proc.
2nd World Conference on Mathematics at the Service of Men,
pages 146{153, Las Palmas, 1982.

[BPS88] D. Bruschi, G. Pighizzini, and N. Sabadini. On the existence
of the minimum asynchronous automaton and on decision
problems for unambiguous regular trace languages. In Proc.

5th STACS, Lecture Notes in Computer Science 294, pages
334{346, 1988. To appear in Information and Computation.

[CM88] R. Cori and Y. M�etivier. Approximation of a trace, asyn-
chronous automata and the ordering of events in a distributed
system. In Proc. 15th ICALP, Lecture Notes in Computer
Science 317, pages 147{161, 1988.

[JPS90] S. Jesi, G. Pighizzini, and N. Sabadini. Probabilistic asyn-
chronous automata. In Proceedings of the workshop: Free par-
tially commutative monoids, Instit�ut f�ur Informatic { Technis-
che Universit�at M�unchen { TUM{I9002, pages 99{114, 1990.

276

[MS89] P. Massazza and N. Sabadini. Some applications and tech-
niques for generating functions. In Proc. CAAP 89, Lecture
Notes in Computer Science 351, pages 321{336, 1989.

[Och85] E. Ochma�nski. Regular behaviour of concurrent systems.
EATCS Bullettin, 27:56{67, 1985.

[Pig92] G. Pighizzini. Synthesis of nondeterministic asynchronous
automata. 1992. These proceedings.

[Sak90] J. Sakarovitch. The \last" decision problem on rational trace
languages. In Proceedings of the workshop: Free partially

commutative monoids, Instit�ut f�ur Informatic { Technische
Universit�at M�unchen { TUM{I9002, pages 168{171, 1990.

[Var91] S. Varricchio. On the decidability of the equivalence prob-
lem for partially commutative rational power series, 1991.
Manuscript.

[Zie87] W. Zielonka. Notes on �nite asynchronous automata. RAIRO
Inf. Theor., 21:99{135, 1987.

