
EuroTEX 92 | September 14{18, Prague, Czechoslovakia

ArabTEX | Typesetting Arabic with

Vowels and Ligatures

Klaus Lagally

Universit�at Stuttgart

Institut f�ur Informatik

Breitwiesenstra�e 20-22

D-7000 Stuttgart 80, Germany

lagally@informatik.uni-stuttgart.de

Abstract

We present a TEX macro package for generating the arabic writing from a

standardized ASCII input notation. It can handle partial or full vocalization,

and generates automatically most of the common ligatures. There is limited
support for Farsi, Urdu, and Pashto. ArabTEX is compatible with Plain TEX

and also most LaTEX environments; arabic and other material can be mixed
freely. For special purposes the standard transliteration can be additionally

generated.

ArabTEX uses no preprocessor and thus should be compatible with any
TEX implementation that allows dynamic loading of additional macro �les

and fonts.

Key words: Arabic, transliteration, vocalization, ligatures.

1 Introduction

This is a personal story. The author, interested in the arabic language since

he was a young boy, some time ago by accident found out about an evening

course on Arabic at a local school, and decided to join in. The course was

designed for people wishing to visit an arabic country with some knowledge

of Arabic, and as the teacher would not recommend any suitable and easily

a�ordable textbook for that purpose, he handed out his own handwritten

notes. This intrigued the author, and so he bought an arabic grammar book

from a renowned publisher [Fischer87]. Upon closer inspection the arabic

examples looked somewhat strange, and after contacting the author of the

book it turned out that the latter had added the vowel signs to the arabic

examples on the printing plates by hand!

1

Klaus Lagally

This came as a great surprise, especially when considering the fact

that the underlying printed arabic text looked beautiful. Apparently there

remained some unsolved problems in the printers' business, and knowing the

power of TEX[Knuth84], the author decided to try doing something about

it.

The result of that e�ort is now called ArabTEX, a system consisting of a

large macro package and several fonts.

2 Design goals

The typical user of ArabTEX, as we imagine her/him,

� knows some Arabic,

� is interested in high quality writing,

� has little money to spare,

� cannot a�ord specialized equipment,

� is willing to learn some simple rules, but:

� is not, and is not willing to become, a TEX expert.

This description �ts well onto several linguists we know. Alas, not every one

of them can even a�ord a simple PC.

From this projected user pro�le follow some requirements for the system:

� it should be inexpensive,

� it should not require specialized equipment,

� it should be easily portable,

� it should be su�ciently powerful to generate any reasonable arabic text

with high quality,

� it should, after some training, be usable by a person who is not a

computer expert.

However,

� it need not be extremely e�cient,

2

ArabTEX | Typesetting Arabic with Vowels and Ligatures

� it need not support everyday o�ce use,

� it need not be interactive.

As it happens, our starting point was TEX (in fact, LaTEX[Lamport86]),

and we noticed that there are two quite di�erent populations of TEX users:

� the experts, in full control of all specialized features, constantly �nding

new applications, and

� the everyday users, getting their work done by �lling in some forms

designed by a expert, and letting TEX do the rest.

Our hypothetical user de�nitely belongs to the second category.

Therefore, for him it is extremely important to have a convenient user

interface. Devising such an interface turned out to be a major task.

3 Characteristics of the Arabic script

The arabic script, like the scripts for all semitic languages, runs from right

to left. This fact, whereas leading to some complications in connection with

line-breaking whenever we want to mix arabic and non-arabic texts, turned

out to be an absolutely minor problem in comparison with the fact that

the arabic script is a cursive style, extremely well adapted to hand-writing.

As far as we know, this has always been so [Endress82b], and contrary to

common belief the script is very easy to write; even a motivated beginner can

acquire a fair hand-writing style within a few weeks. Calligraphic excellence,

of course, is a di�erent matter [Schimmel70].

In a cursive hand, we do not assemble character after character on a

common baseline, but try to join adjacent letters into a softly
owing curve.

This makes for ease of writing, and also for aesthetic beauty, but has the

consequence that the script, although still arranging the individual words in

a horizontal sequence, is essentially two-dimensional. Another consequence

is that the form of a letter depends on the context, and if adjacent letters are

combined into ligatures a surprising manifold of di�erent forms may emerge.

Most of these are not mandatory, but their omission will lead to a serious

loss of quality that can easily be noticed even by an outsider, and quality

has always been considered very important.

A script of that characteristic is not very convenient to print, and indeed

the arabic script has resisted mechanization for a long time [Endress82a].

3

Klaus Lagally

The �rst attempts to print Arabic with movable type were undertaken

about 1500 A.D., surprisingly in central Europe, but the printing tradition

of Arabic seriously started in 1727 when the \Ottoman printing agency"

in Istanbul was founded. It had the types made in the Netherlands where

the technology existed, and for several decades only o�cial documents and

scienti�c works were allowed to be printed. Religious works like the Qur'an

and its commentaries still were reproduced by hand-writing, and later by

lithography from hand-written originals; thus the risk of misprints in the

Holy Scriptures was avoided. A second o�cial printing agency was founded

1821 in Cairo; others followed, and in 1906 a new typeface standard was

adopted, with remarkably good results, that is still in use today.

Of the several di�erent writing styles that exist, Naskhi was adopted

for printing as it is very easily readable, and mostly adheres to the baseline.

Still, even printing Naskhi is a formidable task; whereas a european printer's

box contains less than 100 di�erent letter forms including capitals, digits,

and special characters, you need far more than 500 di�erent forms for good

quality arabic printing.

The situation improved in the 1970's when photo-typesetting equipment

became available and the �rst computer programs to typeset Arabic were

developped [MacKay77]. Now also other writing styles like Nasta`liq, as

used mainly in Iran and the adjacent countries, could be handled, and

many new typefaces, e.g. for newspapers, were developped. But you can still

�nd headlines which have obviously been reproduced from a hand-written

original. The calligrapher's profession is still alive (see, e.g., [H�a�sim80]).

Even if the technology for printing arabic texts nowadays exists, some

problems remain. In the Arabic language, as in all semitic languages,

the main information resides in the consonants and the long vowels, and

usually only these are written explicitly. Short vowels, the doubling of a

consonant, and the like are either not indicated at all or expressed by

diacritical marks placed above or below the characters. A native speaker

generally does not need this additional information as he can deduce it

from the context; it is only required when introducing new words, for

resolving ambiguities, and in religious texts where the exact pronunciation is

considered important. Considering the already very large number of di�erent

letter forms in a printer's box, also storing all the possible combinations

would be prohibitively expensive, and thus manual corrections are necessary.

This is awkward and expensive, so it is avoided whenever possible, and thus

the religious texts we have seen all have been reproduced from manuscripts.

4

ArabTEX | Typesetting Arabic with Vowels and Ligatures

3.1 Transcription and Transliteration

If we want to generate the arabic writing of a given text automatically,

we have to denote the text in a way that can readily be processed by our

computer. There exists no standard suitable for our purpose, so we have

to invent one; and since linguists always had related problems and also are

among our prospective users, we try to imitate their solutions as closely as

possible. In this context there exist two concepts that are closely related

(and therefore frequently confused): transcription and transliteration.

\Transcription" means: representing the sounds of the given language

as closely as possible. This can even be done in the language itself, e.g.,

transcribing the sound of the english word \enough" as \enu�"; on the

other hand there exists a language independent standard, the International

Phonetic Alphabet.

\Transliteration" on the other hand means: representing the writing of the

given language by using a di�erent set of characters. In theory, just a unique

representation is needed; in practice it is also required that the transliteration

be easily readable, and also give some indication of the sounds. Therefore

some compromises are usually made, with the consequence that deducing the

writing from the transliteration requires some knowledge of the language in

question.

For Arabic and some other languages using the arabic script, there

exist two nearly identical international standards [DIN31635, ISO/R233] for

transliteration in the given loose sense. As there are more arabic letters than

in the Latin alphabet, these conventions make heavy use of diacritical marks,

and so we cannot use them directly for our purpose.

3.2 Input notation

If we want to typeset arabic texts with TEX, we have two possibilities:

� either have a preprocessor transform our input text into some

intermediate notation that can be processed by TEX,

� or enhancing the power of TEX by adding suitable macros so that it

can process our input text directly.

The �rst possibility is extremely
exible, as far as the possible input

codings are concerned, and can be made very e�cient. It has been used

5

Klaus Lagally

in some existing systems, e.g. ScholarTEX [Haralambous91]. However, every

user now needs a version of the preprocessor tailored to her/his computer

system and cooperating well with the local TEX implementation. Thus

we may run into portability and maintenance problems, and possibly a

complicated installation procedure.

The second possibility, which we adopted, by itself is as portable as TEX

itself is; but, writing the needed algorithms in TEX macro language is no easy

task, and the macros might not run as e�ciently as a preprocessor system.

Like everywhere, here also is a tradeo� between generality and speed.

If, as we did, we choose the macro solution then TEX must be able

to read our input notation directly, therefore we should better use only

the standard 7-bit ASCII characters (there are extensions to TEX using 8-

bit characters but these are in no way standardised so we could run into

severe compatibility problems). We want to keep the input notation easily

readable, but we have the problem that we need about 30 di�erent letters,

and some of them sound very much alike. Even when also using the capital

letters for coding (Arabic needs no capitals), we could not �nd a one-to-one

correspondence between ASCII characters and arabic sounds that is easy to

read and remember.

The solution we �nally found was to use both one-character and two-

character encodings, and to adhere closely to the standard transliteration.

The rules are simple:

� whenever the transliteration uses just a single letter, we also use that

letter;

� whenever the transliteration uses a letter with a diacritical mark, we

use the same letter and precede it with the punctuation mark most

closely resembling the diacritic.

This is easily remembered, fairly readable, and works well because

punctuation marks (except hyphen) never occur within a word.

Using this coding scheme we get an additional bonus: if, for some reason,

we want to also typeset the standard transliteration of an arabic word, we

have to code the diacritical marks used; and whereas this can be done in TEX

using existing commands, these look awkward and are not easy to learn and

remember. On the other hand it turned out not to be too di�cult to derive

the transliteration from our coding scheme, and so we can use it for both

6

ArabTEX | Typesetting Arabic with Vowels and Ligatures

purposes, thereby avoiding the danger of constantly confusing two closely

related, but di�erent, notations.

In fact, the description we gave is somewhat oversimpli�ed. There

are some (fortunately rare) exceptions to the transliteration rules, and

sometimes words written di�erently are transcribed identically, so in these

cases we have to code additional information.

4 Processing Arabic Text

In the following we give a general overview of the tasks our system has

to perform when typesetting Arabic. We discuss this in the context of a

simpli�ed model: viz., that a text as seen by TEX is a sequence of paragraphs,

each of which is a sequence of words. TEX will transform each word into an

internal representation and will arrange these word images into lines. The

sequence of lines thus generated will be broken up into pages which will be

sent to a device-independent output �le, later to be viewed or printed by a

device-dependent driver program. There is indeed much more to it but the

details are not relevant to our exposition.

4.1 Overall structure: Quotations, Paragraphs

If we want to typeset a document containing arabic text, we will distinguish

two di�erent cases:

� short arabic quotations inside a line of text in some european language,

� longer arabic passages consisting of one or several paragraphs.

An in-line quotation is handled as a whole. We process the arabic

words in reverse order, one word at a time, and insert the results into

the normal output. This could lead to problems if a quotation would be

split across a line boundary, because in that case the two parts should

be individually reversed. We ought to do the line-breaking �rst and the

reversal afterwards, but we know of no easy way of doing that with TEX. To

handle this problem, an extension of TEX, TEX{XET, has been proposed

[Knuth and MacKay87], but it is not generally available, and also not

compatible with the standard printer driver programs. So we have to forbid

line-breaking within a quotation, and for technical reasons quotations have

to be very short anyway.

7

Klaus Lagally

Longer arabic passages are handled di�erently. Here we process the

individual words in their natural order, arrange the results in reverse order,

and do the line-breaking ourselves. Inside an arabic paragraph we can again

have insertions, e.g., short quotations (now of non-arabic text), or even in-

line mathematical formulas. For the same reasons as above, we have again

to forbid line-breaks inside an insertion.

In both cases we have to take care of the fact that numbers in Arabic

are written like in the european languages, i.e., the sequence of digits is

not reversed. We could have put the responsibility for indicating what is

considered to be a number on the user; however we decided just to de�ne a

number as a sequence of characters starting with a digit and ending with a

space, and to typeset this sequence in the natural order.

4.2 Numbers, Words, Subwords

As we saw, every arabic word or number is processed individually, and

the result is a description of its graphical representation given in terms of

symbols from a given font arranged in a two-dimensional pattern. There

is no unique correspondence between these symbols and arabic characters;

a character image might be built up from several symbols, and it also

sometimes happens that a symbol represents more than one character. The

reason behind this is that the arabic characters may be collected into several

classes whose members are closely related and di�er only in a few features

that can be separated out. Fortunately the same is true for the ligatures, and

we can also handle the vocalization by the same mechanism, so that a single

font of less than 256 characters is su�cient for expressing a much larger set

of graphical symbols and combinations.

When we want to typeset a number in the arabic script, we just arrange

the isolated graphical symbols corresponding to the digits from left to right

and we are done.

Typesetting a word of text is more involved. Logically, a written word

consists of a sequence of character images connected to each other as far

as possible, and possibly changing their shape depending on the context.

In addition, these character images may carry diacritical marks. Not all

characters can be joined to their successors (probably because the writing

would become ambiguous otherwise), and thus we can consider a word being

a sequence of subwords, whose characters are all connected. To each subword

corresponds a graphical representation, and these are arranged side by side.

8

ArabTEX | Typesetting Arabic with Vowels and Ligatures

In this step they are possibly displaced vertically such that their last (i.e.

leftmost) character has its normal position on the baseline, and horizontally

such that their spacing looks pleasant.

�
è�PA�&Ôg� �ð A

�
m
�
c

Figure 1: Character assembly with components shown.

4.3 Characters, ties, diacritics

Depending on its position in a subword, a character might take on one of

several shapes: the isolated, initial, medial, and �nal shape. This forms might

still be modi�ed if the character enters into a ligature. Fortunately, as far

as ligatures are concerned all characters of a class perform alike, thus the

number of di�erent cases, although large, remains manageable.

When we process a word, we perform the following steps:

� we sequentially process the input representation to break it up into a

sequence of individual characters, each with accompanying diacritical

information;

� we process this sequence in reverse order to determine the shape of

each character depending on its position in the subword and on the

surrounding characters;

� starting on the baseline, we position these character shapes so that they

join smoothly, either directly or by means of connecting strokes. To each

character, we add the appropriate diacritical marks (there may be none

or even more than one per character). For an example, see Figure 1.

� Whenever the next character considered (this is the preceding one,

when writing by hand!) cannot be joined to its logical successor, we

have reached a subword boundary; we reposition this character so it

will again sit on the baseline, and add suitable spacing.

9

Klaus Lagally

The resulting graphical representation of the word is passed back to the

caller to be inserted into the output.

5 User Interface

In the following we shall only describe the main features; for more details,

see the ArabTEX documentation [Lagally92].

5.1 Activating ArabTEX

To use the ArabTEX package with a �le to be processed by Plain TEX, load

it via \input arabtex; with LaTEX, include arabtex as a document style

option. In both cases, several additional �les and the default font will be

installed.

5.2 Mode control

As there are several language-dependent writing conventions, you have

to select a language by one of the commands \setarab, \setfarsi,

\seturdu, \setpashto, or \setverb (no special processing in this case).

There are three di�erent modes of handling short vowels:

� \vocalize: short vowels written in the input will be indicated in the

output by diacritical marks;

� \fullvocalize: also the absence of a short vowel will be indicated;

� \novocalize: short vowels will show up in the transliteration, but will

be omitted in the arabic writing. You can locally override this feature.

By \arabtrue, \arabfalse, \transtrue, \transfalse you can switch

on and o� the generation of the arabic writing and/or the standard

transliteration. By default, the arabic writing is on, and the transliteration

is o�.

Bold-face can be selected by \setbold; \setnormal will revert to normal.

5.3 Arabic text

Short arabic quotations in normal text are included in angle brackets. These

thus have a special signi�cance (outside of mathematical mode) and can no

10

ArabTEX | Typesetting Arabic with Vowels and Ligatures

more be used for other purposes, e.g., for normal text or in local macros. This

special behaviour is switched on by language selection, and can be switched

o� again by \setnormal.

An arabic paragraph is started by the command\begin{arabtext} and

ends with \end{arabtext}. This looks like, and nearly operates like, a LaTEX

environment even when working with Plain TEX. However, neither displayed

mathematical text nor other LaTEX environments may be nested in an arabic

paragraph.

Inside an arabic paragraph we can have non-arabic quotations delimited

by angle brackets, and in-line mathematical formulas delimited by single

dollar signs. These insertions must �t on one output line.

5.4 Input coding

Table 1: Coding of arabic characters

a @ a b H. b p H� p t �H t

_t �H t
�

^g ` �g .h h h. _h p h
�

c

h c ^c x �c ,c

�h �c d X d

_d
	X d

�
r P r z R z ^z T �z

s � s ^s � �s .s � s. .d � d.

.t t. .z ¤ z. ` ¨ , .g
	̈

_g

f ò f q ô q v ö v k ¼ k

g À g l È l m Ð m n 	à n

h è h w ð w y ø
 y T
�è t

The input notation, the arabic writing in the isolated form, and the

transliteration of the characters used for Arabic and Persian are given in

Table 1. For Urdu, Pashto, and for special purposes there are some additional

codings. Note also the following:

� <T> is tah marbouta, <N> is tanwin, <Y> is alif maqsoura.

� <A>, <I>, <U> denote the long vowels, <a>, <i>, <u> the short

vowels if required.

11

Klaus Lagally

� <'> (right quote) is hamza (glottal stop). After \setarab, its carrier

will be determined by the context according to the full hamza rules,

otherwise by a following short vowel.

� <'A> generates madda.

� Doubled consonants are written twice (shadda).

� <|> will break unwanted ligatures, <-> joins two words and will only

show up in the transliteration, and <--> will elongate the connection

between two adjacent letters (kashida).

� The de�nite article is always written <al-> (with hyphen), even if it

precedes a (double) \sun letter".

5.5 Special features

For Farsi, Urdu, Pashto and some other languages using the arabic script,

the coding conventions are slightly di�erent, and not described here.

Furthermore, the language-speci�c processing may be locally overridden,

and there is also a verbatim mode capable of representing unusual or archaic

ways of writing. Mode-changing commands may also occur inside an arabic

paragraph thus allowing local mode changes.

6 Implementation

The ArabTEX system consists of a large number of macros, and their

interaction is surprisingly complex. They are grouped into several packages,

each devoted to a separate task. As ArabTEX can be considered a translator,

we imitate the usual modularization of a compiler. In that view, ArabTEX

consists of a Driver Module calling a number of auxiliary modules for

specialized tasks, and �nally passing the output back to the normal

TEX paragraph mechanism. Thus arabic text can also appear inside most

LaTEX environments, including moving arguments. However, LaTEX is no

prerequisite for running ArabTEX.

6.1 The Driver Module

The Driver Module, arabtex.sty, is loaded by LaTEX or by a small Loader

Module, arabtex.tex, when using Plain TEX. The latter module simulates

the (few) LaTEX features used by ArabTEX.

12

ArabTEX | Typesetting Arabic with Vowels and Ligatures

The Driver Module, when executed, de�nes and initializes some common

variables and loads the remaining �les constituting ArabTEX. It also

implements the mode-changing commands, and contains several local

submodules:

� the Insertion Processor for arabic quotations,

� the Paragraph Processor for arabic paragraphs,

� the Output Processor,

� the Word Processor.

Both the Insertion Processor and the Paragraph Processor pass single

arabic words to the Word Processor to generate the graphical representation

(and/or possibly the transliteration) and process the resulting output

further.

The Insertion Processor breaks up short quotations into individual words

and feeds both the resulting arabic representation and the transliteration

into the normal output stream.

The Paragraph Processor also breaks up the input into individual words;

the output of the Word Processor, however, is now handled di�erently. The

transliteration, if generated, is fed into the normal output stream; the arabic

representation is passed to the Output Processor.

The Output Processor lines up the arabic representations from right to

left in a local bu�er. Whenever a line is completed, it is interleaved with

the normal output, if any. At the end of an arabic paragraph, the bu�er

is
ushed, and the paragraph is �nished by the normal TEX paragraphing

mechanism. For an example, see Figure 4.

The Word Processor passes the input to the Scanner Module, ascan.sty,

to generate a standardized internal representation independent of the

external coding. This internal representation is then passed to the

Transliteration Module, atrans.sty, if the transliteration is wanted.

Otherwise, or additionally, it is passed to the Parser Module, aparse.sty,

to isolate the individual graphical components. The output of the Parser

Module is further processed by the Assembly Module, awrite.sty, to

generate the arabic representation.

13

Klaus Lagally

6.2 The Scanner Module

The main task of the Scanner Module is to break up the input stream

into tokens denoting individual arabic characters; should the input notation

be changed, then only the Scanner Module would have to be adapted

accordingly. There is one case handled in a special way: for hamza the

character preceding it is repeated after it to ease further processing.

6.3 The Transliteration Module

This module has to transform the sequence of tokens into the external

representation of the standard transliteration. As the transliteration does

not always follow the arabic writing closely, some special cases have to be

considered, e.g., in connection with endings and with the de�nite article

whose spelling depends on the �rst consonant of the following word. Also

sometimes an initial vowel has to be suppressed (wasla).

�guh.�a wa-h. im�aruhu

-at�a s.ad��qun -il�a �guh.�a yat.lubu minhu h. im�arahu li-yarkabahu f�� safratin qas.��-

ratin wa-q�ala lahu: sawfa -u ,��duhu -ilayka f�� 'l-mas�a-i , wa--adfahu laka

-u�gratan.fa-q�ala �guh.�a: -an�a -�asifun �giddan -ann�� l�a -astat.�� ,u -an -uh.aqqiqa

laka ra_gbataka, fa-'lh.im�aru laysa hun�a 'l-yawma.wa-qabla -an yutimmu �guh.�a

kal�amahu bada-a 'l-h.im�aru yanhaqu f�� 's.t.ablihi.fa-q�ala lahu s.ad��quhu: -inn��

-asma ,u h. im�araka y�a �guh.�a yanhaqu.fa-q�ala lahu �guh.�a: _gar��bun -amruka y�a

s.ad��q��! -atus.addiqu 'l-h.im�ara wa-tukad
�
d
�
ibun��?

Figure 2: Arabic transliteration.

6.4 The Parser Module

The Parser Module has to break up the token sequence into a backward

sequence of \writing syllables". A \writing syllable" is not to be confused

with a syllable in the usual sense, but consists of a single consonant or

long vowel with additional diacritical information denoting e.g., a short

vowel, consonant doubling, tanwin and hamza. Whereas the basic algorithm

is straightforward, there is a surprisingly large number of special cases

since the various languages supported by ArabTEX have di�erent notational

conventions, and there are also some options (not described here) to locally

modify the writing. A typical example is the handling of hamza, the glottal

stop. Whereas denoting a distinctive sound, it is not considered a letter, and

14

ArabTEX | Typesetting Arabic with Vowels and Ligatures

thus a carrier for it has to be determined which depends on the context in a

rather complicated way.

�è�P > �äk� �ð A�m
�c

: �é
�
Ë
�
ÈA
��̄ �ð �è�

�Q�
��
��̄ �è� �Q

	® �� ú

	̄
�
�é�J.
�
»Q��
Ë�

�è�P > �äk�
�é	JÓ� �I.

�
Ê¢��
 A�m

�c ú
�
Í@
�

�
õK
Y�

�� ú
��G
�

@

.
��è�Qc

�

@
�
½
�
Ë �é

�	̄ X
�

@�ð , Z� A ��

�ÜÏ @ ú

	̄
�

�
½J

�
Ë @
�

�è �YJ
«�
�

@

�
òñ ��

: A�m
�c �

ÈA
��®
�	̄

. �Ðñ�J
Ë @ A
�	J �ë ���

�
Ë �P > �äm�

Ì' A
�	̄ ,

�
½��J�J.

	« �P
�
½
�
Ë
�
õ
���® �k

�

@ 	à

�

@ �©J
¢�

��J�
�

@ B

�
B ú

��	G
�

@ @

��Yg.�
�
ó��

�
@ A�	K

�

@

. é�Ê�J.
�
¢�@ ú

	̄
�

�
õ�î 	D�K
 �P > �äm�

Ì' @
�

@ �Y�K.

�é�ÓC
�
C
�
¿ A�m

�c ��Õ �æ�
�K
 	à

�

@
�
ÉJ.

��̄ �ð

: �é
��®K
Y�

�� �é
�
Ë
�
ÈA
��®
�	̄

.
�
õ�î 	D�K
 A�m

�c A�K

�
¼�P > �äk� �© �ÜÞ�

�

@ ú

��	G @
�
: A�m

�c �é
�
Ë
�
ÈA
��®
�	̄

? ú

	æ�
�K.
��	Y
�
º��K �ð �P> �äm�

Ì' @
�
ô
��Y ��

���
�

@ ! ù

�®� K
Y�
�� A�K

�
¼�QÓ

�

@ �I. K
 Q�

�	«

Figure 3: Vocalized Arabic text.

6.5 The Assembly Module

Finally, from the reversed sequence of \writing syllables" produced by the

Parser Module, the graphical representation is determined. Every \writing

syllable" consists of a basic character and diacritical information. Every

character belongs to a character class, represented by a \skeleton", and is

locally identi�ed by a \modi�er" (usually a pattern of dots).

The further processing of a \writing syllable" proceeds in several steps:

� The skeleton and the modi�er are determined.

� Depending on context, the appropriate joining form of the skeleton

(isolated, initial, medial, �nal) is determined.

� Also depending on the context, the skeleton may take part in a ligature

and thus get a di�erent shape. Generally, and with very few exceptions,

ligature generation is optional; and since it is also complicated (though

not di�cult), it has been delegated to a separate Ligature Module,

aligs.sty.

15

Klaus Lagally

� After the de�nite form of the skeleton has been determined, it is

positioned in the output. If it is an isolated or �nal shape, it is generally

put on the baseline with suitable spacing to its left neighbour, if any.

Otherwise it is joined to its left neighbour, either directly or by means

of a connecting stroke whose form depends on the partners. As the

connection point of its left neighbour need not be on the baseline, the

skeleton possibly must be vertically adjusted, and a new connection

point for its right neighbour, if that exists, will be determined.

� After positioning the skeleton, the modi�er will be added to identify

the character in question.

� Finally, the diacritical information is added.

6.6 The Ligature Module

This module is called by the Assembly Module for each character. It will

receive as input information a description of a skeleton shape and the

shape of its right neighbour, and will return a possibly changed skeleton

shape, a possibly changed shape of the right neighbour, and frequently

also a connecting stroke. With the exception of very few, but important,

cases where ligatures are mandatory, the Ligature Module might return its

input information unchanged, and indeed there is an option to switch most

ligatures o�. However, the art of forming ligatures evolved gradually during

many centuries of writing, and their inclusion will greatly improve the quality

of the result; and whereas a good many cases are handled already, there is

still room for improvement.

7 Experiences

One of the reasons for implementing ArabTEX this way was to test the

power of TEX on a large example. We found that it could be done, but

we drastically underestimated the amount of work involved. The techniques

used in the described modules are comparatively straightforward; even the

full power of context-free language analysis is rarely needed. However, due

to the great number of special cases the complexity is considerable, and the

macro technique used is extremely vulnerable to trivial coding errors whose

e�ects will propagate throughout the system very quickly, and frequently

will lead to very puzzling results. Thus systematic structuring is a must, and

16

ArabTEX | Typesetting Arabic with Vowels and Ligatures

�è�P > �äk� �ð A�m
�c �guh.�a wa-h. im�aruhu

-at�a s.ad��qun -il�a �guh.�a yat.lubu minhu h.im�arahu li-yarkabahu f�� safratin qas.��-

ratin wa-q�ala lahu:

: �é
�
Ë
�
ÈA
��̄ �ð �è�

�Q�
��
��̄ �è� �Q

	® �� ú

	̄
�
�é�J.
�
»Q��
Ë�

�è�P > �äk�
�é	JÓ� �I.

�
Ê¢��
 A�m

�c ú
�
Í@
�

�
õK
Y�

�� ú
��G
�

@

sawfa -u ,��duhu -ilayka f�� 'l-mas�a-i , wa--adfahu laka -u�gratan.

.
��è�Qc

�

@
�
½
�
Ë �é

�	̄ X
�

@�ð , Z� A ��

�ÜÏ @ ú

	̄
�

�
½J

�
Ë @
�

�è �YJ
«�
�

@

�
òñ ��

fa-q�ala �guh.�a:

: A�m
�c �

ÈA
��®
�	̄

-an�a -�asifun �giddan -ann�� l�a -astat.�� ,u -an -uh.aqqiqa laka ra_gbataka, fa-'lh. im�aru

laysa hun�a 'l-yawma.

. �Ðñ�J
Ë @ A
�	J �ë ���

�
Ë �P > �äm�

Ì' A
�	̄ ,

�
½��J�J.

	« �P
�
½
�
Ë
�
õ
���® �k

�

@ 	à

�

@ �©J
¢�

��J�
�

@ B

�
B ú

��	G
�

@ @

��Yg.�
�
ó��

�
@ A�	K

�

@

wa-qabla -an yutimmu �guh.�a kal�amahu bada-a 'l-h.im�aru yanhaqu f�� 's.t.ablihi.

. é�Ê�J.
�
¢�@ ú

	̄
�

�
õ�î 	D�K
 �P > �äm�

Ì' @
�

@ �Y�K.

�é�ÓC
�
C
�
¿ A�m

�c ��Õ �æ�
�K
 	à

�

@
�
ÉJ.

��̄ �ð
fa-q�ala lahu s.ad��quhu:

: �é
��®K
Y�

�� �é
�
Ë
�
ÈA
��®
�	̄

-inn�� -asma ,u h. im�araka y�a �guh.�a yanhaqu.

.
�
õ�î 	D�K
 A�m

�c A�K

�
¼�P > �äk� �© �ÜÞ�

�

@ ú

��	G @
�
fa-q�ala lahu �guh.�a:

: A�m
�c �é

�
Ë
�
ÈA
��®
�	̄

_gar��bun -amruka y�a s.ad��q��! -atus.addiqu 'l-h.im�ara wa-tukad
�
d
�
ibun��?

? ú

	æ�
�K.
��	Y
�
º��K �ð �P> �äm�

Ì' @
�
ô
��Y ��

���
�

@ ! ù

�®� K
Y�
�� A�K

�
¼�QÓ

�

@ �I. K
 Q�

�	«

Figure 4: Arabic text with transliteration.

a complete redesign after having a working prototype payed o� very well

and led to a considerable increase of stability. There are still some errors in

the system, but they seem to be well hidden, and show up at a surprisingly

low rate.

Furter plans, besides correcting errors, are: designing a Nasta`liq font

that looks better for Persian, and generally improving on the still very

rudimentary support for non-arabic languages using the same script.

17

Klaus Lagally

Acknowledgments

The development of ArabTeX would not have been possible without the

assistance of many people. Apart from my local team, helpful advice came

among others from Ivan Derzhansky, Wolfdietrich Fischer, Ahmed El-Hadi,

Abdelsalam Heddaya, Iqbal Khan, Tom Koornwinder, Eberhard Krueger,

Asif Lakehsar, Jan Lodder, Richard Lorch, Eberhard Mattes, and Bernd

Raichle. I also have to thank the many users who sent bug reports and

comments.

References

[DIN31635] DIN 31 635: Umschrift des Arabischen Alphabets, Deutsches

Institut f�ur Normung e.V., 1982.

[Endress82a] Gerhard Endress, Die Arabische Schrift, in [Fischer82],

p. 165 �.

[Endress82b] Gerhard Endress, Handschriftenkunde, in [Fischer82], p. 271 �.

[Fischer82] Wolfdietrich Fischer (ed.),Grundri� der ArabischenPhilologie,

Band 1: Sprachwissenschaft, Dr. Ludwig Reichert Verlag,

Wiesbaden 1982.

[Fischer87] Wolfdietrich Fischer, Grammatik des Klassischen Arabisch,
2. Auflage, Verlag Otto Harrassowitz, Wiesbaden 1987.

[Haralambous91] Yannis Haralambous, \TEX and Those Other Languages",

TUGboat, Volume 12 (1991), pp. 539{548.

[H�a�sim80] �ú
 G. QªË@
�
¡uÌ' @ Y«@ñ�̄ , �HA

�
¢uÌ' @ Y�Ôm× Õæ�Aë (H�a�sim Muh.ammad al-

H
�
at.t. �at. , Qaw�a`id al-H

�
at.t.i al-`Arab��), Maktaba an-Nahd. a,

Baghdad; D�ar al-Qalam, Beirut, 1400/1980.

[ISO/R233] ISO/R 233 - 1961: International System for the Transliteration

of Arabic Characters, International Standards Institution, 1961.

[Knuth84] Donald E. Knuth, The TEXbook, Volume A of Computers &

Typesetting, Addison-Wesley, Reading, Mass., 1984.

[Knuth and MacKay87] Donald E. Knuth and Pierre A. MacKay, \Mixing right-to-
left texts with left-to-right texts", TUGboat, Volume 8 (1987),

pp. 14{25.

[Lagally92] Klaus Lagally, ArabTEX, a System for Typesetting Arabic,

User manual. Report 6/92, Fakult�at Informatik, Universit�at
Stuttgart, 1992.

18

ArabTEX | Typesetting Arabic with Vowels and Ligatures

[Lamport86] Leslie Lamport, LaTEX, a Document Preparation System,

Addison-Wesley, Reading, Mass., 1986.

[MacKay77] Pierre MacKay, The KATIB System, a revolutionary advance-

ment in Arabic Script Typesetting by means of the Computer,

in Scholarly Publishing 8,2 (Toronto 1977) pp. 142{150.

[Schimmel70] Annemarie Schimmel, Islamic Calligraphy, E.J.Brill, Leiden,
Netherlands 1970.

Appendix

Installing ArabTEX

ArabTEX uses no preprocessor and thus should be compatible with any TEX

implementation that allows dynamic loading of additional macro �les and

fonts.

The ArabTEX distribution consists of the following components:

� TEX macro �les with extensions .sty and .tex: these �les are installed

on the TEX input path for source �les.

� Font metric �les (extension .tfm) and compressed pixel �les (extension

.pk) for the fonts nash14 and nash14bf at several common

magni�cation steps. Installation of these �les is strongly system

dependent; in case that they cannot be used, the METAFONT sources

are also available (extension .mf) to rebuild the fonts locally.

� installation notes, user manual, answers to questions, demos, and the

like: ASCII and/or TEX �les for local printing.

The system is available from the author's institution (anonymous FTP

from ifi.informatik.uni-stuttgart.de, directory pub/arabtex) and

from many other common servers. At the time of this writing, version 2.02

is current. The old version 1 should no more be used.

ArabTEX is copyrighted, but free use for scienti�c, experimental and other

strictly private, noncommercial purposes is granted.

Space and time requirements are not negligible; however, ArabTEX

has been used frequently and successfully even on a PC XT standard

con�guration.

19

