FuroTEX 92 — September 14-18, Prague, Czechoslovakia

ArabTgX — Typesetting Arabic with
Vowels and Ligatures

Klaus LAGALLY

Universitat Stuttgart

Institut fur Informatik
Brewtwiesenstrafle 20-22
D-7000 Stuttgart 80, Germany

lagally@informatik.uni-stuttgart.de

Abstract

We present a TEX macro package for generating the arabic writing from a
standardized ASCII input notation. It can handle partial or full vocalization,
and generates automatically most of the common ligatures. There is limited
support for Farsi, Urdu, and Pashto. ArabTEX is compatible with Plain TEX
and also most INTpX environments; arabic and other material can be mixed
freely. For special purposes the standard transliteration can be additionally
generated.

ArabTEX uses no preprocessor and thus should be compatible with any
TEX implementation that allows dynamic loading of additional macro files
and fonts.

Key words: Arabic, transliteration, vocalization, ligatures.

1 Introduction

This is a personal story. The author, interested in the arabic language since
he was a young boy, some time ago by accident found out about an evening
course on Arabic at a local school, and decided to join in. The course was
designed for people wishing to visit an arabic country with some knowledge
of Arabic, and as the teacher would not recommend any suitable and easily
affordable textbook for that purpose, he handed out his own handwritten
notes. This intrigued the author, and so he bought an arabic grammar book
from a renowned publisher [Fischer87]. Upon closer inspection the arabic
examples looked somewhat strange, and after contacting the author of the
book it turned out that the latter had added the vowel signs to the arabic
examples on the printing plates by hand!

Klaus LAGALLY

This came as a great surprise, especially when considering the fact
that the underlying printed arabic text looked beautiful. Apparently there
remained some unsolved problems in the printers’ business, and knowing the
power of TEX[Knuth84], the author decided to try doing something about
it.

The result of that effort is now called ArabTEX, a system consisting of a
large macro package and several fonts.

2 Design goals

The typical user of ArabTgX, as we imagine her/him,

e knows some Arabic,

¢ is interested in high quality writing,

e has little money to spare,

e cannot afford specialized equipment,

¢ is willing to learn some simple rules, but:

¢ is not, and is not willing to become, a TEX expert.

This description fits well onto several linguists we know. Alas, not every one
of them can even afford a simple PC.

From this projected user profile follow some requirements for the system:
e it should be inexpensive,

e it should not require specialized equipment,

e it should be easily portable,

¢ it should be sufficiently powerful to generate any reasonable arabic text
with high quality,

e it should, after some training, be usable by a person who is not a
computer expert.

However,

e it need not be extremely efficient,

ArabTEX — Typesetting Arabic with Vowels and Ligatures

e it need not support everyday office use,

e it need not be interactive.

As it happens, our starting point was TEX (in fact, INTpX[Lamport86]),
and we noticed that there are two quite different populations of TEX users:

o the experts, in full control of all specialized features, constantly finding
new applications, and

o the everyday users, getting their work done by filling in some forms
designed by a expert, and letting TEX do the rest.

Our hypothetical user definitely belongs to the second category.
Therefore, for him it is extremely important to have a convenient user
interface. Devising such an interface turned out to be a major task.

3 Characteristics of the Arabic script

The arabic script, like the scripts for all semitic languages, runs from right
to left. This fact, whereas leading to some complications in connection with
line-breaking whenever we want to mix arabic and non-arabic texts, turned
out to be an absolutely minor problem in comparison with the fact that
the arabic script is a cursive style, extremely well adapted to hand-writing.
As far as we know, this has always been so [Endress82b], and contrary to
common belief the script is very easy to write; even a motivated beginner can
acquire a fair hand-writing style within a few weeks. Calligraphic excellence,
of course, is a different matter [Schimmel70].

In a cursive hand, we do not assemble character after character on a
common baseline, but try to join adjacent letters into a softly flowing curve.
This makes for ease of writing, and also for aesthetic beauty, but has the
consequence that the script, although still arranging the individual words in
a horizontal sequence, is essentially two-dimensional. Another consequence
is that the form of a letter depends on the context, and if adjacent letters are
combined into ligatures a surprising manifold of different forms may emerge.
Most of these are not mandatory, but their omission will lead to a serious
loss of quality that can easily be noticed even by an outsider, and quality
has always been considered very important.

A script of that characteristic is not very convenient to print, and indeed
the arabic script has resisted mechanization for a long time [Endress82a].

Klaus LAGALLY

The first attempts to print Arabic with movable type were undertaken
about 1500 A.D., surprisingly in central Europe, but the printing tradition
of Arabic seriously started in 1727 when the “Ottoman printing agency”
in Istanbul was founded. It had the types made in the Netherlands where
the technology existed, and for several decades only official documents and
scientific works were allowed to be printed. Religious works like the Qur’an
and its commentaries still were reproduced by hand-writing, and later by
lithography from hand-written originals; thus the risk of misprints in the
Holy Scriptures was avoided. A second official printing agency was founded
1821 in Cairo; others followed, and in 1906 a new typeface standard was
adopted, with remarkably good results, that is still in use today.

Of the several different writing styles that exist, Naskhi was adopted
for printing as it is very easily readable, and mostly adheres to the baseline.
Still, even printing Naskhi is a formidable task; whereas a european printer’s
box contains less than 100 different letter forms including capitals, digits,
and special characters, you need far more than 500 different forms for good
quality arabic printing.

The situation improved in the 1970’s when photo-typesetting equipment
became available and the first computer programs to typeset Arabic were
developped [MacKay77]. Now also other writing styles like Nasta‘liq, as
used mainly in Iran and the adjacent countries, could be handled, and
many new typefaces, e.g. for newspapers, were developped. But you can still
find headlines which have obviously been reproduced from a hand-written
original. The calligrapher’s profession is still alive (see, e.g., [Hasim80]).

Even if the technology for printing arabic texts nowadays exists, some
problems remain. In the Arabic language, as in all semitic languages,
the main information resides in the consonants and the long vowels, and
usually only these are written explicitly. Short vowels, the doubling of a
consonant, and the like are either not indicated at all or expressed by
diacritical marks placed above or below the characters. A native speaker
generally does not need this additional information as he can deduce it
from the context; it is only required when introducing new words, for
resolving ambiguities, and in religious texts where the exact pronunciation is
considered important. Considering the already very large number of different
letter forms in a printer’s box, also storing all the possible combinations
would be prohibitively expensive, and thus manual corrections are necessary.
This is awkward and expensive, so it is avoided whenever possible, and thus
the religious texts we have seen all have been reproduced from manuscripts.

ArabTEX — Typesetting Arabic with Vowels and Ligatures

3.1 Transcription and Transliteration

If we want to generate the arabic writing of a given text automatically,
we have to denote the text in a way that can readily be processed by our
computer. There exists no standard suitable for our purpose, so we have
to invent one; and since linguists always had related problems and also are
among our prospective users, we try to imitate their solutions as closely as
possible. In this context there exist two concepts that are closely related
(and therefore frequently confused): transcription and transliteration.

“Transcription” means: representing the sounds of the given language
as closely as possible. This can even be done in the language itself, e.g.,
transcribing the sound of the english word “enough” as “enuff”; on the
other hand there exists a language independent standard, the International
Phonetic Alphabet.

“Transliteration” on the other hand means: representing the writing of the
given language by using a different set of characters. In theory, just a unique
representation is needed; in practice it is also required that the transliteration
be easily readable, and also give some indication of the sounds. Therefore
some compromises are usually made, with the consequence that deducing the
writing from the transliteration requires some knowledge of the language in
question.

For Arabic and some other languages using the arabic script, there
exist two nearly identical international standards [DIN31635, ISO/R233] for
transliteration in the given loose sense. As there are more arabic letters than
in the Latin alphabet, these conventions make heavy use of diacritical marks,
and so we cannot use them directly for our purpose.

3.2 Input notation
If we want to typeset arabic texts with TEX, we have two possibilities:

e cither have a preprocessor transform our input text into some
intermediate notation that can be processed by TEX,

e or enhancing the power of TEX by adding suitable macros so that it
can process our input text directly.

The first possibility is extremely flexible, as far as the possible input
codings are concerned, and can be made very eflicient. It has been used

Klaus LAGALLY

in some existing systems, e.g. ScholarTEpX [Haralambous91]. However, every
user now needs a version of the preprocessor tailored to her/his computer
system and cooperating well with the local TpX implementation. Thus
we may run into portability and maintenance problems, and possibly a
complicated installation procedure.

The second possibility, which we adopted, by itself is as portable as TEX
itself is; but, writing the needed algorithms in TEX macro language is no easy
task, and the macros might not run as efficiently as a preprocessor system.
Like everywhere, here also is a tradeoff between generality and speed.

If, as we did, we choose the macro solution then TEX must be able
to read our input notation directly, therefore we should better use only
the standard 7-bit ASCII characters (there are extensions to TEX using 8-
bit characters but these are in no way standardised so we could run into
severe compatibility problems). We want to keep the input notation easily
readable, but we have the problem that we need about 30 different letters,
and some of them sound very much alike. Even when also using the capital
letters for coding (Arabic needs no capitals), we could not find a one-to-one
correspondence between ASCII characters and arabic sounds that is easy to
read and remember.

The solution we finally found was to use both one-character and two-
character encodings, and to adhere closely to the standard transliteration.
The rules are simple:

o whenever the transliteration uses just a single letter, we also use that
letter;

e whenever the transliteration uses a letter with a diacritical mark, we
use the same letter and precede it with the punctuation mark most
closely resembling the diacritic.

This is easily remembered, fairly readable, and works well because
punctuation marks (except hyphen) never occur within a word.

Using this coding scheme we get an additional bonus: if, for some reason,
we want to also typeset the standard transliteration of an arabic word, we
have to code the diacritical marks used; and whereas this can be done in TEX
using existing commands, these look awkward and are not easy to learn and
remember. On the other hand it turned out not to be too difficult to derive
the transliteration from our coding scheme, and so we can use it for both

ArabTEX — Typesetting Arabic with Vowels and Ligatures

purposes, thereby avoiding the danger of constantly confusing two closely
related, but different, notations.

In fact, the description we gave is somewhat oversimplified. There
are some (fortunately rare) exceptions to the transliteration rules, and
sometimes words written differently are transcribed identically, so in these
cases we have to code additional information.

4 Processing Arabic Text

In the following we give a general overview of the tasks our system has
to perform when typesetting Arabic. We discuss this in the context of a
simplified model: viz., that a text as seen by TEX is a sequence of paragraphs,
each of which is a sequence of words. TEX will transform each word into an
internal representation and will arrange these word images into lines. The
sequence of lines thus generated will be broken up into pages which will be
sent to a device-independent output file, later to be viewed or printed by a
device-dependent driver program. There is indeed much more to it but the
details are not relevant to our exposition.

4.1 Overall structure: Quotations, Paragraphs

If we want to typeset a document containing arabic text, we will distinguish
two different cases:

e short arabic quotations inside a line of text in some european language,

¢ longer arabic passages consisting of one or several paragraphs.

An in-line quotation is handled as a whole. We process the arabic
words in reverse order, one word at a time, and insert the results into
the normal output. This could lead to problems if a quotation would be
split across a line boundary, because in that case the two parts should
be individually reversed. We ought to do the line-breaking first and the
reversal afterwards, but we know of no easy way of doing that with TgX. To
handle this problem, an extension of TEX, TEX—XFT, has been proposed
[Knuth and MacKay87], but it is not generally available, and also not
compatible with the standard printer driver programs. So we have to forbid
line-breaking within a quotation, and for technical reasons quotations have
to be very short anyway.

Klaus LAGALLY

Longer arabic passages are handled differently. Here we process the
individual words in their natural order, arrange the results in reverse order,
and do the line-breaking ourselves. Inside an arabic paragraph we can again
have insertions, e.g., short quotations (now of non-arabic text), or even in-
line mathematical formulas. For the same reasons as above, we have again
to forbid line-breaks inside an insertion.

In both cases we have to take care of the fact that numbers in Arabic
are written like in the european languages, i.e., the sequence of digits is
not reversed. We could have put the responsibility for indicating what is
considered to be a number on the user; however we decided just to define a
number as a sequence of characters starting with a digit and ending with a
space, and to typeset this sequence in the natural order.

4.2 Numbers, Words, Subwords

As we saw, every arabic word or number is processed individually, and
the result is a description of its graphical representation given in terms of
symbols from a given font arranged in a two-dimensional pattern. There
is no unique correspondence between these symbols and arabic characters;
a character image might be built up from several symbols, and it also
sometimes happens that a symbol represents more than one character. The
reason behind this is that the arabic characters may be collected into several
classes whose members are closely related and differ only in a few features
that can be separated out. Fortunately the same is true for the ligatures, and
we can also handle the vocalization by the same mechanism, so that a single
font of less than 256 characters is sufficient for expressing a much larger set
of graphical symbols and combinations.

When we want to typeset a number in the arabic script, we just arrange
the isolated graphical symbols corresponding to the digits from left to right
and we are done.

Typesetting a word of text is more involved. Logically, a written word
consists of a sequence of character images connected to each other as far
as possible, and possibly changing their shape depending on the context.
In addition, these character images may carry diacritical marks. Not all
characters can be joined to their successors (probably because the writing
would become ambiguous otherwise), and thus we can consider a word being
a sequence of subwords, whose characters are all connected. To each subword
corresponds a graphical representation, and these are arranged side by side.

ArabTEX — Typesetting Arabic with Vowels and Ligatures

In this step they are possibly displaced vertically such that their last (i.e.
leftmost) character has its normal position on the baseline, and horizontally
such that their spacing looks pleasant.

Figure 1: Character assembly with components shown.

4.3 Characters, ties, diacritics

Depending on its position in a subword, a character might take on one of
several shapes: the isolated, initial, medial, and final shape. This forms might
still be modified if the character enters into a ligature. Fortunately, as far
as ligatures are concerned all characters of a class perform alike, thus the
number of different cases, although large, remains manageable.

When we process a word, we perform the following steps:

e we sequentially process the input representation to break it up into a
sequence of individual characters, each with accompanying diacritical
information;

e we process this sequence in reverse order to determine the shape of
each character depending on its position in the subword and on the
surrounding characters;

¢ starting on the baseline, we position these character shapes so that they
join smoothly, either directly or by means of connecting strokes. To each
character, we add the appropriate diacritical marks (there may be none
or even more than one per character). For an example, see Figure 1.

e Whenever the next character considered (this is the preceding one,
when writing by hand!) cannot be joined to its logical successor, we
have reached a subword boundary; we reposition this character so it
will again sit on the baseline, and add suitable spacing.

Klaus LAGALLY

The resulting graphical representation of the word is passed back to the
caller to be inserted into the output.

5 User Interface

In the following we shall only describe the main features; for more details,
see the ArabTEX documentation [Lagally92].

5.1 Activating ArabTEX

To use the ArabTEX package with a file to be processed by Plain TEX, load
it via \input arabtex; with IATiX, include arabtex as a document style
option. In both cases, several additional files and the default font will be
installed.

5.2 Mode control

As there are several language-dependent writing conventions, you have
to select a language by one of the commands \setarab, \setfarsi,
\seturdu, \setpashto, or \setverb (no special processing in this case).

There are three different modes of handling short vowels:

e \vocalize: short vowels written in the input will be indicated in the
output by diacritical marks;

e \fullvocalize: also the absence of a short vowel will be indicated;

e \novocalize: short vowels will show up in the transliteration, but will
be omitted in the arabic writing. You can locally override this feature.

By \arabtrue, \arabfalse, \transtrue, \transfalse you can switch
on and off the generation of the arabic writing and/or the standard
transliteration. By default, the arabic writing is on, and the transliteration

is off.

Bold-face can be selected by \setbold; \setnormal will revert to normal.

5.3 Arabic text

Short arabic quotations in normal text are included in angle brackets. These
thus have a special significance (outside of mathematical mode) and can no

10

ArabTEX — Typesetting Arabic with Vowels and Ligatures

more be used for other purposes, e.g., for normal text or in local macros. This
special behaviour is switched on by language selection, and can be switched
off again by \setnormal.

An arabic paragraph is started by the command\begin{arabtext} and
ends with \end{arabtext}. This looks like, and nearly operates like, a INTRpX
environment even when working with Plain TEX. However, neither displayed
mathematical text nor other IANTRpX environments may be nested in an arabic
paragraph.

Inside an arabic paragraph we can have non-arabic quotations delimited
by angle brackets, and in-line mathematical formulas delimited by single
dollar signs. These insertions must fit on one output line.

5.4 Input coding

Table 1: Coding of arabic characters

a blall b o] b P I o |t
St St Te g | -h d h|l h C h
c é c| “c g ¢l ,c é ¢ d > | d
_d S|dl|l r Sl oz y z | "z 512
S AR RENE AR s | e | s d | 2| d
etz | B2 ¢ A g C
£l fllqg | Slellv | &S] vl k)
Slgl1 Jl | m p | m| O | n
o | h|l w s|lw|y S|y|T 3|t

The input notation, the arabic writing in the isolated form, and the
transliteration of the characters used for Arabic and Persian are given in
Table 1. For Urdu, Pashto, and for special purposes there are some additional
codings. Note also the following:

e <T> is tah marbouta, <N> is tanwin, <Y> is alif magsoura.

e <A>, <I>, <U> denote the long vowels, <a>, <i>, <u> the short
vowels if required.

11

Klaus LAGALLY

e <> (right quote) is hamza (glottal stop). After \setarab, its carrier
will be determined by the context according to the full hamza rules,
otherwise by a following short vowel.

e <’A> generates madda.
¢ Doubled consonants are written twice (shadda).

o <|> will break unwanted ligatures, <=> joins two words and will only
show up in the transliteration, and <--> will elongate the connection
between two adjacent letters (kashida).

o The definite article is always written <al-> (with hyphen), even if it
precedes a (double) “sun letter”.

5.5 Special features

For Farsi, Urdu, Pashto and some other languages using the arabic script,
the coding conventions are slightly different, and not described here.
Furthermore, the language-specific processing may be locally overridden,
and there is also a verbatim mode capable of representing unusual or archaic
ways of writing. Mode-changing commands may also occur inside an arabic
paragraph thus allowing local mode changes.

6 Implementation

The ArabTgX system consists of a large number of macros, and their
interaction is surprisingly complex. They are grouped into several packages,
each devoted to a separate task. As ArabTEX can be considered a translator,
we imitate the usual modularization of a compiler. In that view, ArabTEX
consists of a Driver Module calling a number of auxiliary modules for
specialized tasks, and finally passing the output back to the normal
TEX paragraph mechanism. Thus arabic text can also appear inside most
IATRX environments, including moving arguments. However, IATRX is no
prerequisite for running ArabTgX.

6.1 The Driver Module
The Driver Module, arabtex.sty, is loaded by INTRpX or by a small Loader

Module, arabtex.tex, when using Plain TEX. The latter module simulates
the (few) IATRX features used by ArabTgX.

12

ArabTEX — Typesetting Arabic with Vowels and Ligatures

The Driver Module, when executed, defines and initializes some common
variables and loads the remaining files constituting ArabTpX. It also
implements the mode-changing commands, and contains several local
submodules:

e the Insertion Processor for arabic quotations,
o the Paragraph Processor for arabic paragraphs,
e the Output Processor,

o the Word Processor.

Both the Insertion Processor and the Paragraph Processor pass single
arabic words to the Word Processor to generate the graphical representation
(and/or possibly the transliteration) and process the resulting output
further.

The Insertion Processor breaks up short quotations into individual words
and feeds both the resulting arabic representation and the transliteration
into the normal output stream.

The Paragraph Processor also breaks up the input into individual words;
the output of the Word Processor, however, is now handled differently. The
transliteration, if generated, is fed into the normal output stream; the arabic
representation is passed to the Output Processor.

The Output Processor lines up the arabic representations from right to
left in a local buffer. Whenever a line is completed, it is interleaved with
the normal output, if any. At the end of an arabic paragraph, the buffer
is flushed, and the paragraph is finished by the normal TEX paragraphing
mechanism. For an example, see Figure 4.

The Word Processor passes the input to the Scanner Module, ascan.sty,
to generate a standardized internal representation independent of the
external coding. This internal representation is then passed to the
Transliteration Module, atrans.sty, if the transliteration is wanted.
Otherwise, or additionally, it is passed to the Parser Module, aparse.sty,
to isolate the individual graphical components. The output of the Parser
Module is further processed by the Assembly Module, awrite.sty, to
generate the arabic representation.

13

Klaus LAGALLY

6.2 The Scanner Module

The main task of the Scanner Module is to break up the input stream
into tokens denoting individual arabic characters; should the input notation
be changed, then only the Scanner Module would have to be adapted
accordingly. There is one case handled in a special way: for hamza the
character preceding it is repeated after it to ease further processing.

6.3 The Transliteration Module

This module has to transform the sequence of tokens into the external
representation of the standard transliteration. As the transliteration does
not always follow the arabic writing closely, some special cases have to be
considered, e.g., in connection with endings and with the definite article
whose spelling depends on the first consonant of the following word. Also
sometimes an initial vowel has to be suppressed (wasla).

gJuha wa-himarvhu
ata sadiqun ila guha yatlubu minhu himarahu li-yarkabahu fi safratin qasi-
ratin wa-qala lohu: sawfa >uaduhu ilayke fi l-masat , wa-cadfahu laka
wwgratan.fa-qala guha: cana casifun giddan canni la castatiou can cuhaqgiga
laka ragbataka, fa-’lhimaru laysa huna “l-yawma.wa-qabla >an yutimmu guha
kalamahu badaca ’l-himaru yanhaqu fv “stablihi.fa-qala lahu sadiqubu: inni
qasmacu himaraka ya guha yanhaqu.fa-qala lohu guha: garibun amruka ya
sadiqi! >atusaddiqu “l-himara wa-tukaddibuni?

Figure 2: Arabic transliteration.

6.4 The Parser Module

The Parser Module has to break up the token sequence into a backward
sequence of “writing syllables”. A “writing syllable” is not to be confused
with a syllable in the usual sense, but consists of a single consonant or
long vowel with additional diacritical information denoting e.g., a short
vowel, consonant doubling, tanwin and hamza. Whereas the basic algorithm
is straightforward, there is a surprisingly large number of special cases
since the various languages supported by ArabTEX have different notational
conventions, and there are also some options (not described here) to locally
modify the writing. A typical example is the handling of hamza, the glottal
stop. Whereas denoting a distinctive sound, it is not considered a letter, and

14

ArabTEX — Typesetting Arabic with Vowels and Ligatures

thus a carrier for it has to be determined which depends on the context in a
rather complicated way.

Slas =

- . . » 2 PR s
By s Brin 3 ST Sl b 2l B) Gial !
A - A

z-

&
S Gl 5B e I R8Ol a0 Tk Gl
Cbl e st T @R G ol (s
3 B G e g)
JC N+
i

?g;iﬁ:;;[;%& Gaail !l (mas b el 2y 2

Figure 3: Vocalized Arabic text.

6.5 The Assembly Module

Finally, from the reversed sequence of “writing syllables” produced by the
Parser Module, the graphical representation is determined. Every “writing
syllable” consists of a basic character and diacritical information. Every
character belongs to a character class, represented by a “skeleton”, and is
locally identified by a “modifier” (usually a pattern of dots).

The further processing of a “writing syllable” proceeds in several steps:

o The skeleton and the modifier are determined.

¢ Depending on context, the appropriate joining form of the skeleton
(isolated, initial, medial, final) is determined.

o Also depending on the context, the skeleton may take part in a ligature
and thus get a different shape. Generally, and with very few exceptions,
ligature generation is optional; and since it is also complicated (though
not difficult), it has been delegated to a separate Ligature Module,
aligs.sty.

15

Klaus LAGALLY

o After the definite form of the skeleton has been determined, it is
positioned in the output. If it is an isolated or final shape, it is generally
put on the baseline with suitable spacing to its left neighbour, if any.
Otherwise it is joined to its left neighbour, either directly or by means
of a connecting stroke whose form depends on the partners. As the
connection point of its left neighbour need not be on the baseline, the
skeleton possibly must be vertically adjusted, and a new connection
point for its right neighbour, if that exists, will be determined.

o After positioning the skeleton, the modifier will be added to identify
the character in question.

e Finally, the diacritical information is added.

6.6 The Ligature Module

This module is called by the Assembly Module for each character. It will
receive as input information a description of a skeleton shape and the
shape of its right neighbour, and will return a possibly changed skeleton
shape, a possibly changed shape of the right neighbour, and frequently
also a connecting stroke. With the exception of very few, but important,
cases where ligatures are mandatory, the Ligature Module might return its
input information unchanged, and indeed there is an option to switch most
ligatures off. However, the art of forming ligatures evolved gradually during
many centuries of writing, and their inclusion will greatly improve the quality
of the result; and whereas a good many cases are handled already, there is
still room for improvement.

7 Experiences

One of the reasons for implementing ArabTpX this way was to test the
power of TEX on a large example. We found that it could be done, but
we drastically underestimated the amount of work involved. The techniques
used in the described modules are comparatively straightforward; even the
full power of context-free language analysis is rarely needed. However, due
to the great number of special cases the complexity is considerable, and the
macro technique used is extremely vulnerable to trivial coding errors whose
effects will propagate throughout the system very quickly, and frequently
will lead to very puzzling results. Thus systematic structuring is a must, and

16

ArabTEX — Typesetting Arabic with Vowels and Ligatures

th’ej €S Juha wa-himaruhu
ata sadiqun *ila guha yatlubu minhu himarahu li-yarkabahu fi safratin qasi-
ratin wa-qala lahU'
dbjoMoj.a_&ueJJonbuvﬁm\su”w j‘
sawfa ucaduhu ilayka fi l-masai , wa- >adfahu lak‘a ugratan.
. oJ>‘ & 4.93‘54 sladd ue J.J‘ o.,\.._c‘ uj.w
fa-qala guha:
S EIFH
qana *asifun giddan *anni la castaticu 2an uhagqiqa laka ragbataka, fa-"thimaru
laysa huna “l-yawma.
Sl G g Sl dies 3 3T of pae Y Tk Gurd
wa- qabla an yutimmau guha kalamahu badaa ’I- hzmaru yanhaqu fo stablzhz.
-%ﬂ‘ddﬂ)h\i”v\f %@“ﬁéu‘yj

fa-qala lahu sadiquhu:

Gaz § (6
nni casmacu himaraka ya guha yanhaqu.
S B G Sl sl)

fa-qala lahu guha:

garibun >amruka ya sadigr! >atu$addz'qu I-himara wa-tukaddibuni?

N 3Ky et GAL Ral! aas bl 2y f

Figure 4: Arabic text with transliteration.

a complete redesign after having a working prototype payed off very well
and led to a considerable increase of stability. There are still some errors in
the system, but they seem to be well hidden, and show up at a surprisingly
low rate.

Furter plans, besides correcting errors, are: designing a Nasta‘liq font
that looks better for Persian, and generally improving on the still very
rudimentary support for non-arabic languages using the same script.

17

Klaus LAGALLY

Acknowledgments

The development of ArabTeX would not have been possible without the

assistance of many people. Apart from my local team, helpful advice came
among others from Ivan Derzhansky, Wolfdietrich Fischer, Ahmed El-Hadi,
Abdelsalam Heddaya, Igbal Khan, Tom Koornwinder, Eberhard Krueger,
Asif Lakehsar, Jan Lodder, Richard Lorch, Eberhard Mattes, and Bernd
Raichle. T also have to thank the many users who sent bug reports and

comments.

References

[DIN31635]
[Endress82a]

[Endress82b]

[Fischer82]

[Fischer87]

[Haralambous91]

[Hasim80]

[1SO/R233]
[Knuth84]

[Knuth and MacKay87]

[Lagally92]

18

DIN 31 635: Umschrift des Arabischen Alphabets, Deutsches
Institut fir Normung e. V., 1982.

Gerhard ENDREsS, Die Arabische Schrift, in [Fischer82],
p. 165 ff.

Gerhard ENDRESS, Handschriftenkunde,in [Fischer82], p. 271 ff.

Wolfdietrich FiscHER (ed.), Grundriff der Arabischen Philologie,
Band 1: Sprachwissenschaft, Dr. Ludwig Reichert Verlag,
Wiesbaden 1982.

Wolfdietrich FiscHER, Grammatik des Klassischen Arabisch,
2. Auflage, Verlag Otto Harrassowitz, Wiesbaden 1987.

Yannis HararamBous, “TEX and Those Other Languages”,
TUGboat, Volume 12 (1991), pp. 539-548.

23! L) Aslgd olld) # f\'bu(HASIM MUHAMMAD AL-

HATTAT, Qawa‘d al-Hatti al-‘Arabi), Maktaba an-Nahda,
Baghdad; Dar al-Qalam, Beirut, 1400/1980.

ISO/R 233 - 1961: International System for the Transliteration
of Arabic Characters, International Standards Institution, 1961.

Donald E. KNutH, The TpXbook, Volume A of Computers &
Typesetting, Addison-Wesley, Reading, Mass., 1984.

Donald E. KNUTH and Pierre A. MacKay, “Mixing right-to-
left texts with left-to-right texts”, TUGboat, Volume 8 (1987),
pp- 14-25.

Klaus LAaGALLy, ArabTpX, a System for Typesetting Arabic,
User manual. Report 6/92, Fakultat Informatik, Universitat
Stuttgart, 1992.

ArabTEX — Typesetting Arabic with Vowels and Ligatures

[Lamport86] Leslie Lamport, IATRX, a Document Preparation System,
Addison-Wesley, Reading, Mass., 1986.

[MacKay77] Pierre MacKay, The KATIB System, a revolutionary advance-
ment in Arabic Script Typesetting by means of the Computer,
in Scholarly Publishing 8,2 (Toronto 1977) pp. 142-150.

[Schimmel 70] Annemarie SCHIMMEL, Islamic Calligraphy, E.J.Brill, Leiden,
Netherlands 1970.

Appendix

Installing ArabTEX

ArabTgX uses no preprocessor and thus should be compatible with any TEX
implementation that allows dynamic loading of additional macro files and
fonts.

The ArabTEX distribution consists of the following components:

o TEX macro files with extensions .sty and .tex: these files are installed
on the TEX input path for source files.

e Font metric files (extension .tfm) and compressed pixel files (extension
.pk) for the fonts nashi4 and nash14bf at several common
magnification steps. Installation of these files is strongly system
dependent; in case that they cannot be used, the METAFONT sources
are also available (extension .mf) to rebuild the fonts locally.

e installation notes, user manual, answers to questions, demos, and the

like: ASCII and/or TgX files for local printing.

The system is available from the author’s institution (anonymous FTP
from ifi.informatik.uni-stuttgart.de, directory pub/arabtex) and
from many other common servers. At the time of this writing, version 2.02
is current. The old version 1 should no more be used.

ArabTgX is copyrighted, but free use for scientific, experimental and other
strictly private, noncommercial purposes is granted.

Space and time requirements are not negligible; however, ArabTEX
has been used frequently and successfully even on a PC XT standard
configuration.

19

