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1 Das HiCon Projekt
Dieser Bericht stellt einen Ansatz zur dynamischen Lastbalancierung paralleler und verteilter Pro-
gramme vor. Im ersten Kapitel wird das Projekt anhand der betrachteten Anwendungen, Rechner-
systeme und Lastbalancierungsverfahren charakterisiert. Das Balancierungsprinzip wird in
Kapitel 2 ausführlich erklärt, während Kapitel 3 Realisierungen und Ergebnisse des Modells vor-
stellt.Kapitel 3.2.6 gibt schließlich eine abschließende Betrachtung.

1.1  Motivation

In der Vielzahl in der Literatur existierender Untersuchungen zur Lastbalancierung zeichnen sich
einige grundsätzliche Probleme ab, von denen wir einige durch den in diesem Bericht vorgestell-
ten Ansatz bewältigen wollen. Die Realität stellt Lastbalancierungsverfahren vor ein bestehendes
System, dessen Struktur und Schnittstellen meist für eine automatische Lastverteilung schlecht
geeignet sind. Es besteht kaum Information über das zu erwartende Verhalten von Anwendungen,
Betriebssystemschnittstellen schränken die Funktionalität und Effizienz der Lastbalancierung ein
und zwischen den einzelnen Schichten der Software findet kein Informationsaustausch statt. Die
transparente Verteilung von Abläufen und Daten ist ein wesentlicher Fortschritt für Programmie-
rer, Lastbalancierungsverfahren müssen jedoch um den damit verbundenen Synchronisations- und
Nachrichtenaufwand wissen.

Wir haben daher ein Verarbeitungsmodell entwickelt, das dem Programmierer transparente Ver-
teilung und Replikation paralleler Ausführungen und Daten in heterogenen Systemen ermöglicht,
dem Lastbalancierungsmechanismus aber eine Kostenabschätzung erlaubt. Die explizite Integra-
tion von Datenbeständen im Konzept erlaubt nunmehr eine Balancierung aufgrund der drei rele-
vanten Faktoren - des Rechenaufwandes, der Datenlokalität und des Kommunikationsbedarfs.
Unter dem Gesichtspunkt der mehrschichtigen Lastbalancierung kann der Zusammenhang zwi-
schen den Ebenen (grob differenziert etwa in Konfiguration, Auftragszuweisung, Datenverteilung
und Nachrichten-Routing) genutzt werden. Die Kontextverwaltung (siehe unten) ermöglicht wei-
terhin sowohl die dynamische Migration und Replikation von Daten als auch die Migration von
Servern bzw. laufenden kooperierenden Teilausführungen in heterogenen Architekturen auf einer
höheren Ebene.

Das hier vorgestellte Lastbalancierungskonzept zeichnet sich vor allem dadurch aus, daß es
sowohl eine vollständigere Menge relevanter Faktoren und Größen berücksichtigt als auch einen
komplexeren Zuweisungsmechanismus benutzt. Dadurch kann eine breitere Klasse von Applika-
tionen und Systemkonfigurationen durch ein anwendungsunabhängiges automatisches Lastbalan-
cierungsverfahren effizient betrieben werden.

An dieser Stelle wollen wir in einer kurzen Entwicklung von Lastbalancierungsverfahren zeigen,
daß in der Tat ein Bedarf an fortgeschrittenen Methoden besteht:

Primitive Balancierungsverfahren arbeiten ohne Messung des Systemverhaltens und ohne Vor-
wissen über die Aufträge. Die wichtigsten Beispiele sind das Random- sowie das Round
Robin-Verfahren, die sich in der Realität bewähren (siehe etwa [Trippner92]). Sie basieren auf
der Annahme, Aufträge und Rechner seien völlig homogen. Weitere implizite Annahmen wer-
den wir im folgenden noch sehen. Diese Verfahren versagen bereits bei einer schwankenden
Grundlast auf dem System (Mehrbenutzerbetrieb).
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Bessere Verfahren berücksichtigen das Systemverhalten. Üblicherweise mißt man die Run
Queue Length der Prozessoren (siehe [Ferrari86]). Sind mehr Prozessoren (bzw. Server) frei
als Aufträge anstehen, so bevorzugt man Prozessoren mit kurzer Run Queue, andernfalls gibt
man den Auftrag dem ersten Server, der sich frei meldet (erfolgreicher Einsatz etwa imSuper-
visor [Schiele91], auf dem dasHiCon-Projekt aufbaut). Auch hier unterstellt man unter ande-
rem allen Aufträgen denselben Aufwand. Verfahren dieser Kategorie geraten in
Schwierigkeiten, wenn man etwa datenintensive Berechnungen betrachtet. Der erhebliche Auf-
wand zum Heranschaffen der Daten bzw. die Beauftragung des dortigen Servers zerstört oft die
geplante Lastverteilung.

Zieht man außer der Systemlast auch noch Wissen über die Aufträge in Betracht, so erhält man
günstigere theoretische Ergebnisse. Das HiCon Modell betrachtet neben der Länge der Server-
Warteschlangen und der Sekundärlast auch den Rechenumfang und Datenbedarf der Aufträge.
In der Praxis stößt man jedoch auf massive Probleme (Aufwand der Balancierung selbst, Unge-
nauigkeit der Angaben). Man ignoriert hier Reihenfolgeabhängigkeiten und Kommunikation
zwischen Aufträgen. Diese Verfahren zeigen ihre Schwäche bei Anwendungen, die nebst
Parallelität einen kritischen sequentiellen Pfad enthalten und in Fällen intensiv kooperierender
paralleler Teilaufträge.

Balancierungsalgorithmen, die auch diese Situationen meistern, findet man in der Praxis nicht.
Jedoch existieren, vor allem im Bereich der statischen Planung (Scheduling, siehe etwa
[Ma82], [Blazewicz86], [Thomasian86], [Towsley86], [Li90] oder [Kanet91]), Ansätze für
Teilprobleme. Hier zwingt der große, exponentiell mit Aufträgen und Rechnern wachsende
Balancierungs-Overhead zu sehr einfachen Heuristiken.

1.2  Anwendungsgebiete

Im HiCon Projekt untersuchen wir im wesentlichen datenintensive Berechnungen. Darunter fallen
der Bereich der Verwaltung großer Datenmengen (Informationssysteme) sowie Applikationen,
die umfangreiche Transformationen auf relativ stabilen, globalen Datenstrukturen durchführen,
an. Diese Charakterisierung soll die betrachtete Domäne einerseits von Datenflußanwendungen
abgrenzen, bei welchen man typischerweise kleine Datenmengen durch eine Reihe von Bearbei-
tungsfunktionen schleust, und andererseits von stark dialogorientierten Applikationen trennen, die
viele sehr kurze, unvermittelt auftretende Verarbeitungsschritte aufweisen.

Weiterhin sollen hauptsächlich mäßige bis grobe Parallelisierungen betrachtet werden. Das
bedeutet, daß die sequentiellen Teiloperationen sowohl einen gewissen Rechenumfang haben als
auch eine größere Menge von Daten bearbeiten. In unserem Umfeld ist es daher nicht das Ziel, die
maximal mögliche Parallelität eines Problems zu nutzen; oft ist es sinnvoller, Algorithmen anzu-
wenden, die ein relativ grobes Granulat aufweisen und somit besser auf die Fähigkeiten der
betrachteten Hardware und auf die Methoden der Lastbalancierung abgestimmt sind.

Die Auswahl des Anwendungsgebietes bzw. der Algorithmenklasse hat Einfluß auf das gewählte
Ausführungsmodell sowie auf die Klasse der zu untersuchenden Lastbalancierungsmethoden. So
sind neben der Rechenkapazität die Verfügbarkeit und der Lagerort von Daten relevante Faktoren.
Aufwendige, zentralisierte Ansätze zur Lastbalancierung sind erfolgversprechend.
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1.3  Die Rechnerumgebung

Heutige Rechensysteme verfügen typischerweise über sehr starke zentrale Rechenleistung und
vergleichsweise langsame und aufwendige Kommunikationsmöglichkeiten. Massiv parallele
Architekturen sind (Software-seitig) äußerst schwer zu beherrschen und werden sich langfristig in
Richtung der zentralen Prozessoren mit leistungsfähiger Vektor- und Pipeline-Unterstützung
bewegen. Diese Überlegungen und der oben gewählte Fokus betrachteter Applikationen lassen es
sinnvoll erscheinen, ein Rechnermodell bestehend aus relativ wenigen, sehr starken und über
eigene Ressourcen verfügenden, lose gekoppelten Prozessoren zugrunde zu legen. Die Entschei-
dung für dieses Modell schließt die Einbindung anderer Architekturen in HiCon nicht aus, jedoch
wird die Lastbalancierungsstruktur andere Systeme (z.B. SIMD oder Shared Memory) nicht opti-
mal nutzen.

1.4  Das Ausführungsmodell

Applikationen nutzen die Parallelverarbeitung, indem der Algorithmus auf mehrere kooperie-
rende Prozesse verteilt wird. Das Granulat der Aufteilung in Teilberechnungen sowie die Koope-
rationsform zwischen diesen wird durch die jeweilige Anwendung eingeschränkt und sollte
außerdem auf die verwendete Rechenumgebung angepaßt werden.

Eine automatische Lastbalancierung benötigt aber neben dem Wissen über das Verhalten der
Hardware auch Wissen über die Struktur und den Ablauf der Anwendungen. Wir wollen uns
bewußt nicht darauf beschränken, Prozesse unbekannten Verhaltens bezüglich ihrer Rechenarbeit,
des Kommunikationsverhaltens und ihrer Datenzugriffe zu balancieren. Solche Vorabschätzungen
können über die Beschreibung einzelner sequentieller Einheiten hinaus auch die Kooperations-
form, die gegenseitigen Abhängigkeiten zwischen diesen oder Ablaufhäufigkeiten der Einzelbe-
rechnungen umfassen.

Im HiCon Projekt entwickeln wir ein Programmier- und Ablaufmodell, das eine auf die Hardware
angepaßte, relativ flexible Implementierung von Algorithmen erlaubt und der Lastbalancierung
entscheidende Informationen zur günstigen Abwicklung zur Verfügung stellen kann. Eine
Anwendung gliedert sich in Teilfunktionen, die durch je eine Serverklasse modelliert werden.
Diese Funktionen können sich beliebig gegenseitig Nachrichten bzw. Aufrufe und Resultate
zusenden. Die Funktionalität einer Serverklasse wird durch mehrere Serverinstanzen realisiert,
die als je ein Prozeß auf einem Prozessor statisch aufgesetzt werden. Obwohl Serverinstanzen zur
Laufzeit generiert und gelöscht werden können, liegt hier der Gedanke einer statischen Server-
Konfiguration zugrunde. Diese Entscheidung ergibt sich aus den auf heutigen Betriebssystemen
hohen Prozeßstartkosten, aus dem relativ groben Granulat der Parallelität (Verwendung von Klas-
sen- und Instanz-Warteschlangen; maßvolle Parallelarbeit erweist sich als effektiv) sowie aus dem
nicht zu vernachlässigenden Datenbestand der Serverinstanzen (siehe unten). Die Anzahl und
Verteilung der Serverinstanzen ist für den Programmierer nicht sichtbar, wohl aber die Existenz
einzelner Instanzen. So können Nachrichten an eine Funktion (Klasse) oder an eine spezielle
Instanz gerichtet werden (Resultatrückgabe oder stehende Verbindung zum Zwecke intensiver
Kommunikation).

Wir betrachten keine Prozeßmigration auf Betriebssystem-Ebene, obwohl dies in einigen Projek-
ten erfolgreich angewandt wird (siehe etwa [Ezzat86], [Douglis91]), da unser Lastbalancierungs-
modell zum einen für heterogene Systeme ausgelegt ist, zwischen denen es in absehbarer Zeit
noch keinen Standard geben wird, welcher das Verschicken der Prozeßkontrollblöcke sowie die
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transparente ‘Verlängerung’ von I/O-Verbindungen erlaubt; zum anderen ist Prozeßmigration
hauptsächlich in Modellen mit dynamischer Prozeßerzeugung interessant (Migrationskosten
bewegen sich in der Größenordnung eines Prozeßstarts). In Client-Server Umgebungen sind Pro-
zeßstart und -stopp längerfristige Rekonfigurationsoperationen der Server-Struktur.

Durch den im folgenden vorgestellten Kontext der Serverklassen ist jedoch eine Migration auf
höherer Ebene durch ‘Sessions’ möglich (die Aufspaltung langlaufender Funktionen unter Wei-
terverwendung der Daten verlangt hier keine feste Bindung an eine Serverinstanz).

Funktionen sind im HiCon Modell nicht notwendigerweise kontextfrei, sondern jede Funktion
(Serverklasse) verfügt über einen statischen, lokalen Datenbestand. Der Datenbestand einer Funk-
tion kann sich aus mehreren Partitionen zusammensetzen. Hier kann der Programmierer die
daten-parallele Ausführung von Funktionen ermöglichen, denn er kann Partitionen zum Zugriff
sperren und nach Abschluß eines kritischen bzw. zusammengehörigen Abschnittes wieder freige-
ben. Die Verteilung, Duplizierung und Konsistenterhaltung der Datenpartitionen ist für den Pro-
grammierer nicht zu sehen, sondern wird vom Laufzeitsystem unter Mitarbeit der
Lastbalancierung abgewickelt. Der - im weiteren auch mit Kontext bezeichnete - Datenbestand
einer Funktion umfaßt beliebige Datenstrukturen im Hauptspeicher und auf dem jeweils lokalen
Plattenspeicher (flüchtige und nichtflüchtige Daten) und wird von den Instanzen einer Klasse als
gemeinsamer Kontextspeicher betrachtet.

Das prozedurale Programmiermodell wird durch gegenseitige Aufrufe von Serverklassen unter-
stützt, wobei die Interaktion zwischen Client und Server im Prinzip nicht auf die Aufrufparameter
und das Resultat beschränkt ist. Das inFortran bzw. im Datenbankbereich übliche Arbeiten auf
globalen Datenstrukturen ist im HiCon Modell nur eingeschränkt möglich: die zunehmend allge-
mein akzeptierten objektorientierten Konzepte verlangen, daß Datenstrukturen in Objekte gekap-
selt werden und nur über die dort vorhandenen Methoden (durch das Objekt) bearbeitet werden
können. Im HiCon Modell wird eine Datenstruktur (in Gestalt des Kontextes) durch eine Server-
klasse mit deren Aufrufinterface gekapselt. Parallelarbeit wird durch Replikation von Serverin-
stanzen erreicht, auf die auch die Daten verteilt sind.

1.5  Der Lastbalancierungsansatz - Konzept und Klassifikation

Im HiCon Projekt untersuchen wir globale zentrale Lastbalancierungsverfahren. Dabei können
die Entscheidungsträger der Balancierung durchaus in Form einer hierarchischen Struktur über
das Rechnersystem verteilt sein. Unter den oben umrissenen Vorgaben und Bedingungen
erscheint eine Zentralstelle zur Verwaltung der Zustandsinformation und der darauf basierenden
Entscheidungsfindung sinnvoll. Um zu vermeiden, daß diese einen Engpaß bildet, ist eine Ein-
schränkung ihres Wirkungsbereiches notwendig. Lokale Balancierungskomponenten koordinie-
ren sich auf einer abstrakteren Ebene. Offensichtlich kann das Ziel der global optimalen
Lastverteilung in unserer Umgebung aufgrund des Aufwandes für die Lastbalancierung selbst
nicht vollständig erreicht werden.

Ein zentraler Balancierungsansatz ist nicht selbstverständlich, zumal sich in der Literatur viele
erfolgversprechende dezentrale Verfahren finden (siehe etwa [Barak85], [Eager85], [Eager86],
[Hsu86], [Lin87], [Kale88], [Cybenko89], [Hosseini90] und [Kuchen90]). Im MIMD-Bereich
werden Nachrichten durch schnell wachsende lokale Prozessorleistung und sehr beschränkt stei-
gende Kommunikationsgeschwindigkeit immer teurer. Das erfordert eine eher grobgranulare
Parallelisierung der Anwendungen. Bei der Balancierung größerer Einheiten lohnt es sich jedoch,
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genauere Informationen über Aufträge und Systemzustand einzusetzen, was durch einen (logisch)
zentralisierten Ansatz ermöglicht wird (siehe auch Kapitel 2.4).

Für SIMD-Systeme sowie Vektor- und Pipeline-Einheiten ist automatische dynamische Lastba-
lancierung weniger relevant, da man weder Mehrbenutzerbetrieb noch funktionale Parallelität
beobachtet. Die auftretende massive Datenparallelität wird derzeit am besten durch einfache, sta-
tische Algorithmen balanciert.

Die Aufgabe der Lastbalancierung besteht im wesentlichen darin, Teilaufgaben bestimmten
Instanzen zur Ausführung zuzuordnen. Die Verteilung von Daten steht nicht unter dem unmittel-
baren Zugriff der Balancierung, wird aber bei der Zuweisungsentscheidung berücksichtigt und
damit durch die Plazierung der Teilaufgaben in vorhersehbarer Weise beeinflußt (siehe Kapitel
3.2.2). Die zu balancierenden Objekte sind hier sowohl einzelne Aufrufe zwischen Servern als
auch ganze Gruppen von Aufrufen, d.h. die Ausführung komplexer Funktionen.

Das Optimierungskriterium der Lastbalancierung ist die im Mittel möglichst schnelle Ausführung
(Antwortzeit) aller im System ablaufenden Aufträge. Das bedeutet, daß ein neuer Auftrag nicht
isoliert betrachtet wird, sondern so in das aktuelle Systemgeschehen eingebunden wird, daß seine
Laufzeit einschließlich der Laufzeitzunahme der übrigen Aufträge kleinstmöglich ausfällt (soziale
Lastbalancierung). Bei der Balancierung von Auftragsgruppen wird lediglich die Antwortzeit des
Hauptauftrages minimiert, da die anderen zugehörigen Teilaufgaben als Unteraufträge angesehen
werden, deren einzelne Laufzeit nicht interessiert (die Ausführung der Unteraufträge wird also
auf schnellstmögliche Bearbeitungszeit des Hauptauftrages ausgelegt).

Das Balancierungsverfahren agiert dynamisch, d.h. mißt zur Laufzeit Ressourcenbelastung und
Antwortzeitverhalten berücksichtigt diese im weiteren Vorgehen. Wir denken befassen uns hinge-
gen weniger mit adaptiven Verfahren, die aufgrund von Laufzeitauswertungen dynamisch ihre
Balancierungsstrategie (d.h. nicht nur die Parameter der Entscheidungsfunktion sondern den
Algorithmus selbst) ändern. Die Grenzen dieser Aufgliederung sind jedoch fließend.

1.6  Literaturüberblick

Wegen der Vielzahl veröffentlichter Studien zur Lastbalancierung im weiten Sinne beschränken
wir uns auf komplexere zentrale Verfahren im Bereich datenintensiver Anwendungen. Für eine
allgemeinere Einführung sei auf [Becker92], [Casavant88] oder [He89] verwiesen.

Yu, Balsamo, Ciciani, Dias, Lee und Leff stellen in [Yu86], [Ciciani88] und [Yu91] Verfahren vor,
um Transaktionen an verteilte Datenbank-Server zuzuweisen. Die eigentliche Datenzugriffe wer-
den vom Server am Ort der Daten durchgeführt. Lastbalancierung besteht hier in der Abwägung
zwischen Ausnutzung der Rechenkapazitäten und dem Aufwand für Remote-Datenzugriffe.

Copeland, Alexander, Boughter und Keller [Copeland88] betrachten die Partitionierung und Ver-
teilung von Daten über Platten in Anwendungen mit exzessiven Datenzugriffen. Sie gehen davon
aus, daß Operationen direkt am Ort der Daten durchzuführen sind. Gavish und Sheng [Gavish90]
geben einen Überblick diverser Datei-Allokationsverfahren.

Varadarajan und Ma [Varadarajan88] untersuchen Datei-Migration in verteilten Datenbanken.
Anhand der Datenverteilung und Zugriffsmuster wird erwogen, ob Datenmigration oder Ausfüh-
rung des Auftrages am Ort der Daten günstiger ist. Dabei werden Daten nur zwischen und Auf-
träge nur innerhalb von Regionen bewegt. Innerhalb einer Region wird der Auftrag bzw. der
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Datenzugriff am Ort der Daten durchgeführt. Optimierungskriterium ist die Minimierung der
Migrationskosten, wobei die Ausführungszeiten ein Zeitlimit einhalten müssen.

Smith beschreibt in [Smith80] ein komplexes Verfahren der Interaktion zwischen Clienten und
Servern zur optimalen Lastverteilung. Es ist eine Variante des allgemeinen Bidding-Ansatzes
(siehe [He89], Kapitel 2.2.A und 2.2.B).

Thomasian [Thomasian86] analysiert den Verlauf von Anwendungen, die durch Ressourcenbe-
darf und Reihenfolgebeziehungen charakterisiert werden, auf dem Modell eines verteilten Rech-
nersystems anhand des Queueing Network Ansatzes.

2 Die Lastbalancierung im HiCon Modell
Dieses Kapitel gibt eine detaillierte Beschreibung der Struktur und Funktionsweise des im HiCon
Projekt entwickelten Lastbalancierungsverfahrens.

2.1  Auftragsbeschreibung

Ohne eine statische Voreinschätzung des Verhaltens eines Auftrages muß die Lastbalancierungss-
trategie ein festes Standardprofil für alle Aufträge annehmen, was oft zu gravierenden Fehlent-
scheidungen führt. Dennoch begnügen sich nahezu alle bekannten Verfahren damit, weil in den
meisten Anwendungen keine exakten Vorhersagen über das Laufzeitverhalten möglich sind; sie
hängen stark von aktuellen Laufzeitdaten ab. Statische Profile werden vor allem in Scheduling-
Verfahren für Produktionsplanung und Batch-Betrieb verwendet. Für dynamische Lastbalancie-
rung sollte das Profil eines Auftrages so spät wie möglich, d.h. erst unmittelbar bei seiner Zuwei-
sung, festgestellt und genutzt werden. Zu diesem Zeitpunkt sind relative verläßliche
Abschätzungen über die Ressourcenbedürfnisse möglich. Im HiCon Modell kann ein Aufrufer
beim Versenden eines Unterauftrags das Profil durch folgende Größen charakterisieren:

• Ein Maß für die benötigte CPU-Rechenzeit sowie die Anzahl der notwendigen Plattenzugriffe.
Unser Modell kennt dazu keine weiteren Aufgliederungen, da eine Serverinstanz auf einem
Prozessor arbeitet, nicht migriert und ausschließlich auf lokale Platten zugreift. Eine explizite
Unterscheidung zwischen mehreren lokalen Platten wurde unterlassen, da solche auf längere
Sicht in Form von Disk-Arrays als eine logische Platte organisiert werden.

Anhand dieser beiden Größen kann man neben absoluten Laufzeitabschätzungen anhand des
Verhältnisses zwischen Rechenzeit und Zugriffswartezeit auch die Auslastung der Platte sowie
die prozentuale Prozessorauslastung bestimmen. Dabei sind allerdings noch synchronisations-
bedingte Wartezeiten zu beachten.

• Eine nach lesendem und änderndem Zugriff differenzierte Auflistung der angefaßten Daten-
sätze. Während es in einer allgemeinen Programmierumgebung nahezu unmöglich ist, dies in
einheitlicher Form zu beschreiben, können diese Angaben im HiCon Modell relativ einfach
ermittelt werden, da jede Serverklasse über einen eigenen Datenbestand verfügt und nur auf
diesen zugreift (siehe Kapitel 1.4). Der Datensatz einer Klasse ist in eine ‘überschaubare’
Anzahl von Partitionen aufgeteilt, die einzeln spezifiziert werden können und gleichzeitig im
Ausführungsmodell die Einheiten der Kontextsynchronisation darstellen. Die Betrachtung ein-
zelner Partitionen setzt ein relativ grobes Granulat voraus, bei feinerer Aufspaltung der Daten
sind statistische Angaben sinnvoller.
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• Eine Abschätzung der Unteraufträge, die während der Auftragsbearbeitung entstehen werden.
Dabei ist nicht allein interessant, wieviel Aufrufe an welche Serverklassen gehen, sondern
auch die zeitliche Verteilung der Unteraufrufe und die zu erwartenden Profile. Bei synchronen
Unteraufrufen ist die dadurch entstehende Abhängigkeit zu vermerken.

• Die Genauigkeit bzw. Sicherheit der statischen Vorabschätzung. Das ermöglicht der Lastbalan-
cierung, die Profile entsprechend ihrer Relevanz zu berücksichtigen (siehe Kapitel 2.3).

Aufgrund dieser Angaben kann der Balancierungsmechanismus Zuweisungsentscheidungen tref-
fen.

Eigentlich sollte nicht der Aufrufer (Client), sondern der aufgerufene Server diese Vorabschätzun-
gen an die Lastbalancierung liefern, denn für ihn ist es leichter, aus den aktuellen Aufrufparame-
tern den vermutlichen Bearbeitungsaufwand zu ersehen. Zum Aufrufzeitpunkt steht die
Serverinstanz jedoch noch nicht fest, sodaß in einer Art Ausschreibung alle Instanzen befragt
werden müßten. Das ist ein erheblicher Zeit- und Nachrichtenaufwand (siehe etwa [Smith80]).

Mit den oben vorgestellten Größen lassen sich Reihenfolgebeziehungen oder Schleifen (Wieder-
holungen) innerhalb eines Aufrufes nur schlecht ausdrücken. Solche Angaben müssen jeweils für
ganze Auftragsgruppen spezifiziert werden. Beziehungen zwischen Aufträgen können sehr
wesentlich sein und werden daher im HiCon Modell berücksichtigt:

• Zu einem Auftrag können die bei der Abarbeitung involvierten Unteraufträge in Form einer
Menge von Teilaufträgen angegeben werden. Wir verwenden im HiCon Modell jedoch keine
hierarchische Aufrufkette sondern eine ‘flache’ Menge kooperierender Teilaufträge. Zu jedem
Teilauftrag wird daher die Intensität der Kooperation (die Anzahl und Häufigkeit der Nachrich-
ten) zwischen den verschiedenen Teilaufträgen sowie die entstehende Parallelität abgeschätzt.
Zusätzlich können Reihenfolgeabhängigkeiten zwischen den Teilaufträgen spezifiziert werden.
All diese Angaben sind abgekoppelt von der tatsächlichen Synchronisation durch die Serverin-
stanzen zur Laufzeit; es sind lediglich Vermutungen, welche die Lastbalancierung unterstützen.

Offensichtlich eignet sich diese Beschreibungsform nicht für jede Struktur und jedes Granulat
in parallelen und verteilten Algorithmen. An dieser Stelle fehlt uns bislang die notwendige
Vielfalt an realisierten Anwendungen, sodaß wir die Profilangaben zunächst auf die Bedürf-
nisse des Balancierungsverfahrens zugeschnitten haben.

Eine Beschreibung von Auftragsgruppen kann zur Laufzeit vor Absendung der einzelnen Auf-
träge geschehen. Daraufhin reserviert der Balancierungsalgorithmus entsprechende Kapazitäten
(Rekonfiguration der Serverinstanzen) und nimmt eine vorläufige grobe Zuweisung der Einzel-
aufträge vor. Oft wird auf die Information über Abhängigkeiten, Kooperation und Parallelität
innerhalb von Auftragsgruppen verzichtet, um die Komplexität und die Selbstkosten der Balan-
cierung gering zu halten. Diese Angaben sind ohnehin nur wertvoll, wenn sie eine gewisse
Genauigkeit und Wahrscheinlichkeit aufweisen.

2.2  Lastmessung

Dynamische Lastbalancierungsverfahren messen zur Laufzeit die Auslastung ihrer Ressourcen
(Prozessoren, Platten und Verbindungsnetze bzw. -Busse) und benutzen diese Information zur
Umverteilung laufender, zur Zuweisung neuer Aufträge und zur Verteilung der Daten. Im HiCon
Modell werden prinzipiell keine in Bearbeitung befindlichen Aufträge mehr migriert und Daten
werden implizit durch Auftragszuweisung verschoben (diskutiert in Kapitel 1.4).
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Für die Lastbalancierung ist weder die maximale Leistung einer Ressource noch die Systemlast
von primärem Interesse, sondern die Zeit, die eine Instruktion (bzw. eine Nachricht, eine I/O) der-
zeit auf der Ressource in Anspruch nehmen würde.

Der Aufwand zur Messung des aktuellen Zustandes während des laufenden Betriebes ist eine
Zusatzbelastung sowohl für die Ressourcen als auch für den zentralen Balancierungsagenten,
sodaß man sich auf die notwendigen Messungen beschränken muß. So verzichten wir etwa
bewußt auf die Messung der durch einzelne Serverinstanzen induzierten Ressourcenbelastung
(Lastmessung einzelner Prozesse). Üblicherweise wird die Zahl der ausführbaren Prozesse auf
einem Prozessor (Run Queue Length) als einzig entscheidender Lastfaktor angesehen (siehe [Fer-
rari86]), während die ‘CPU Busy Time’, die Plattencontrollerauslastung sowie die Belastung des
Netzwerkes für dynamische Lastbalancierung weniger relevant scheint: Für eine Lastbalancie-
rungsentscheidung ist die Leistung interessant, die ein Prozessor dem neuen Auftrag zur Verfü-
gung stellen kann (beachte dabei das Konzept der sozialen Lastbalancierung, Kapitel 3.2.1). Bei
CPU-gebundenen Aufträgen kann man dazu die Prozessorleistung durch die Anzahl der aktiven
Aufträge (Run Queue Length) dividieren.

Üblicherweise läuft auf jedem Prozessor ein Messprozeß, der den lokalen Systemzustand peri-
odisch zum Lastbalancierer sendet. Um das Nachrichtenaufkommen zu minimieren sendet er nur
im Falle einer signifikanten Laständerung. Alternativ ist denkbar, daß die Serverinstanzen jeder
Nachricht lokale Lastinformationen beifügen, was aber komplexer ist und starke Schwankung der
Messintervalllänge zur Folge hat.

Im HiCon Modell verfügen wir über eine relativ statische Konfiguration von ‘single threaded’
Serverinstanzen, sodaß deren aktueller Arbeitszustand zu berücksichtigen ist. Aufträge erzeugen
weder einen neuen Prozeß noch einen neuen Thread, sondern werden einer Serverinstanz zuge-
wiesen, die ihn bearbeitet, sobald sie ihren derzeitigen und alle schon in ihrer Warteschlange
befindlichen Aufträge erledigt hat. Der Zustand einer Serverinstanz hängt mit der aktuellen und
zu erwartenden Prozessor- und Plattenauslastung zusammen, wird aber getrennt aufgenommen
und versandt. Die Ressourcen-Lastmessung dient hier zur Korrektur der vom Lastbalancierer aus
dem Anwendungsprofil vermuteten Auslastungen.

Jede Serverklasse hat einen Kontext, der in Partitionen auf die Instanzen verteilt ist und zur Lauf-
zeit durch Zugriffsanforderungen zwischen den Instanzen ausgetauscht und kopiert wird. Der
aktuelle Lagerort der Kontextpartitionen stellt damit eine weitere dynamische Systemzustandsbe-
schreibung dar. Da im derzeitigen Modell alle Nachrichten den Lastbalancierer passieren, ist die
Balancierungsinstanz stets über die aktuelle Datenverteilung informiert; es sind keine zusätzli-
chen Nachrichten zur Übermittlung der Instanzenzustände oder der Kontextlokationen notwen-
dig.

2.3  Die Planungs- und Zuweisungsstrategie

Im HiCon Projekt geschieht Lastbalancierung bislang in Form eines zentralen Prozesses, der
sowohl die Zuweisung (Ort und Zeitpunkt) als auch die Einplanung von Auftragsgruppen (Server-
Konfiguration, Reservierung) durchführt. Dieser Prozeß soll später physisch verteilt werden
(siehe Kapitel 2.4). Der Lastbalancierer hat einen Eingangspuffer in welchen er neu entstandene
Aufträge, Ergebnisse und Kontextverschiebungen gesendet bekommt. Darunter laufen auch Mit-
teilungen über den aktuellen Systemzustand ein. Anhand seines Systemfahrplanes (siehe unten)
schätzt er die Eignung der verfügbaren Serverinstanzen zur Übernahme des Auftrages ab. Der
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Auftrag wird daraufhin in den Puffer der Serverklasse abgelegt, wo er verbleibt bis er an eine Ser-
verinstanz verschickt wird. Ein neuer Auftrag muß nicht unmittelbar fest an eine Instanz vergeben
werden, braucht andererseits aber auch nicht zu warten, bis die gewünschte Serverinstanz frei
wird. Die Serverinstanzen verwalten einen Puffer anstehender Aufträge, den sie sequentiell abar-
beiten. Die Prozeßstruktur einer Anwendung ist im folgenden Bild noch einmal veranschaulicht.

Das häufig praktizierte Verfahren, bei dem sich ein Server frei meldet und daraufhin einen neuen
Auftrag bekommt, hat den Vorteil, daß die endgültige Festlegung der Serverinstanz so spät als
möglich stattfindet, bringt aber das Problem mit sich, daß die Serverinstanz nach Abarbeitung des
Auftrages stets solange Leerlauf hat, bis die Lastbalancierung mit Sendung eines weiteren Auftra-
ges reagiert. Das ist nur erträglich, solange auf jedem Prozessor ständig mehrere Aufträge parallel
bearbeitet werden, da diese in der Wartezeit der einen Instanz die Knotenleistung nutzen können.
In jedem Falle müßte der Lastbalancierer die Leerlaufzeiten berücksichtigen.

Die Warteschlangen an den einzelnen Instanzen bieten weiterhin die Möglichkeit, Aufträge grup-
penweise zu behandeln. Der Lastbalancierer kann jeweils einen Puffer voll von Aufträgen am
Stück an eine Serverinstanz senden. Diese Optimierung wird oft bei hoher Parallelität und feinem
Auftragsgranulat verwendet (siehe etwa [Schiele91]), wenn die Nachrichtenkosten sowie der Ver-
waltungsaufwand pro Auftrag durch den zentralen Scheduling-Prozeß relativ hoch sind. Es ist
offensichtlich eine Vergröberung des von der Anwendung vorgegebenen Granulats. Da im HiCon
Konzept das Granulat vollständig dem Anwender überlassen bleibt, wird diese Optimierung der-
zeit nicht angewandt.

Zentrale Klassen-Auftragswarteschlangen ermöglichen es dem Lastbalancierer, die Parallelität zu
kontrollieren: Rekursive Anwendungen erzeugen oft eine exponentiell wachsende Anzahl parallel
ablauffähiger Aufträge. Die Bereitstellung bzw. dynamische Erzeugung einer entsprechenden
Anzahl von Serverinstanzen wäre ineffizient und unrealistisch (großer Prozeßwechselaufwand,
Hauptspeicherüberlastung/Swapping, Nachrichtenfluten, Überlastung des Lastbalancierers). Die
sofortige Zuweisung entstehender Aufträge an Instanzen führt zu langen lokalen Warteschlangen,
was dem Balancierungsprinzip der möglichst späten Zuweisung widerspricht. Bis nämlich der
Auftrag zur Bearbeitung an die Reihe kommt, ist die Instanz evtl. nicht mehr optimal für ihn.

Der Lastbalancierungsmechanismus benutzt eine Tabelle (Systemfahrplan), um die Systembela-
stung durch laufende und geplante Aufträge zu verwalten. Das Hauptproblem einer zentralen
Datenbasis besteht darin, die unterschiedlichen, aber nicht unabhängigen Objekte wie Aufträge,
Serverinstanzen, Datenbestände und Ressourcen geeignet darzustellen sowie die verschiedenen
Zustandsübergänge wie Zeitintervalle, Auftragsbearbeitungsdurchlauf und logische Reihenfolge-
abhängigkeiten möglichst auf eine Achse abzubilden.

Lastbalancierung

Server-Aufruf

System-
Fahrplan

Serverklasse
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Im HiCon Modell basiert der Systemfahrplan primär auf den Dimensionen Server, Ressourcen
und Aufträgen (siehe Bild).

Für jede Serverinstanz gibt es eine Liste von anstehenden Aufträgen, versehen mit einer Beschrei-
bung ihrer verursachten Last. Dabei ist zu unterscheiden, ob der Auftrag bereits an eine Serverin-
stanz abgeschickt wurde, d.h. in deren Warteschlange liegt, ob er noch in der zentralen
Warteschlange steht oder ob er lediglich eingeplant ist. Im dritten Fall kann es passieren, daß die-
ser Auftrag nie Wirklichkeit wird, oder aber daß er mit anderen Lastparametern entsteht.

Man beachte, daß sich die Serverinstanzen in unserem Modell nicht notwendigerweise beim Last-
balancierer zurückmelden, wenn sie einen Auftrag abgeschlossen haben (Resultatsendungen wer-
den vom Lastbalancierer identifiziert, genaueres siehe Kapitel 3.2.1). Vielmehr beginnen sie
unmittelbar mit der Bearbeitung des nächsten Auftrages in ihrer Warteschlange. Dieser Ablauf ist
notwendig, da ein zentraler Lastbalancierer ansonsten eine große Leerlaufzeitspanne verursachen
würde. Serverinstanzen können jedoch dem Balancierer am Ende einer Bearbeitung eine freiwil-
lige Zustandsmitteilung senden.

Genaue Vorab-Informationen sind nur für größere Aufträge sinnvoll. Zukünftig eventuell auftre-
tende Aufträge (im Rahmen der Vorplanung einer Auftragsgruppe) werden überhaupt nur einge-
tragen, falls sie eine Mindestgröße und eine Mindestsicherheit an geschätztem Bedarf aufweisen
oder eine Reihenfolge-Vorbedingung für andere, eingetragene Aufträge sind.

Für die Bewertungsfunktion (siehe unten) der Lastbalancierungsstrategie ist es sinnvoll, die durch
laufende Aufträge hervorgerufene Auslastung pro Ressource aufzuaddieren. Das erlaubt weiter-
hin eine Korrektur (Neuskalierung) der Lastangaben von Aufträge durch Messungen, die in unse-
rem Modell auf Ressourcenebene durchgeführt werden. Die Lastmessung einzelner Prozesse
würde zu einer erheblichen Grundlast auf dem System führen.

Im HiCon Lastbalancierungscerfahren unterscheiden wir drei Vorgänge (Balancierungsebenen),
die Einplanung von Auftragsgruppen, die Zuweisung einzelner Aufträge und die Verteilung von
Datensätzen.

Instanz 1
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Auftrag
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Instanz 2

Auftrag

Instanz 3

Auftrag

Prozessor P Prozessor RProzessor Q Prozessor S

Disk Disk

Kanal K

Auftrag (Nr. 1406):
vorauss. noch 45000 msec aktiv
erzeugt 80% CPU-Auslastung,

2% Disk-Auslastung
1% Last Kanal-K

Lesezugriff auf Partitionen 1-6
keine abhängigen Folgeaufträge

 (Kooperation mit 1388)
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2.3.1  Die Ebene der Auftragsplazierung

Jeder Aufruf, den eine Serverinstanz an eine Serverklasse durchführt, wird vom Lastbalancie-
rungssystem einer bestimmten Instanz zugewiesen. In der hier vorgestellten Version wird jede
Nachricht über die zentrale Balancierungskomponente abgewickelt. Das ist offensichtlich für
große Mengen kleiner Aufträge nicht sinnvoll, da dort die zentrale Komponente überlastet wird
und jede Nachricht allein durch die Zwischenstation die doppelte Laufzeit benötigt. Der Last-
balancierer könnte in solchen Fällen im Rahmen der statischen Vorplanung (siehe unten) fein-
körnige Aufträge zur dezentralen Balancierung freigeben. Daraufhin vergibt der Aufrufende
die Aufträge nach einem einfachen Verteilungsverfahren direkt an die Instanzen der Klasse.
Man beachte, daß dazu Verbindungen zwischen allen Instanzen der beteiligten Klassen beste-
hen müssen. Für große Systeme wird der Balancierer hierarchisch verteilt (Kapitel 2.4).

Der zentrale Balancierer reiht den ankommenden Auftrag zunächst in die Warteschlange der
Zielklasse ein. Dort befinden sich alle Aufträge für diese Serverklasse, bis sie fest einer Instanz
zugewiesen und dorthin abgesandt werden. Der Zeitpunkt der Zuweisung ist beliebig (wie
oben besprochen), er kann durch die Ankunft eines neuen Auftrages, durch die Zustandsände-
rung einer Serverinstanz oder durch einenTimeout angestoßen werden.

Jeder Auftrag in der Warteschlange bekommt (vorläufig bei seiner Ankunft) eine Bewertung,
welche Instanz zu seiner Bearbeitung in welchem Maße geeignet ist. Diese Bewertungsfunk-
tion wird unten genauer erläutert. Der Balancierungsmechanismus versucht, die Klassen-Auf-
tragsschlange beginnend beim ältesten Auftrag abzuarbeiten. Er weist den Auftrag einer
Serverinstanz zu, sobald er sicher ist, daß sie aus derzeitiger Sicht den Auftrag am ‘besten’
bearbeitet. Dabei ist im Prinzip die Antwortzeit unter der momentan verfügbaren Rechenlei-
stung entscheidend. Die genaue Bewertungsfunktion wird unten erläutert. ‘Sicher sein’ bedeu-
tet, ausreichend genaue Angaben zu haben, daß die Instanz innerhalb eines Toleranzbereiches
die bestgeeignete ist.

Das Verfahren verlangt einen Kompromiß zwischen möglichst später Zuweisung und mög-
lichst geringer Verzögerung zwischen Aufruf und Beginn der Bearbeitung. Die verfrühte Bin-
dung eines Auftrages an eine Instanz kann dazu führen, daß diese Instanz, bis sie tatsächlich
mit der Abarbeitung dieses Auftrages beginnt, nicht mehr optimal ist. Verzögert man die
Zuweisung lange (im Extremfall verbleibt der Auftrag in der zentralen Warteschlange bis die
bevorzugte Instanz frei ist), so haben die Server zwischen zwei Bearbeitungen viel Leerlauf. Es
verlangt außerdem sehr zuverlässiges Wissen über Auftrag und Instanzenzustand, will man
freie Instanzen verschmähen, um weiter auf die optimale zu warten.

Die Fähigkeit zur Migration laufender Aufträge erlaubt es, Aufträge mit relativ geringer Vor-
planung zuzuweisen und Fehlplanungen später durch Migration zu korrigieren. Das würde obi-
ges Problem entschärfen; Auftragsmigration wird jedoch im HiCon Modell nicht unterstützt,
da sie in heterogenen Systemen sehr aufwendig ist und durch die Kontextverwaltung innerhalb
von Serverklassen auf einer höheren Ebene vollzogen werden kann (feineres Auftragsgranulat
mit kontextsensitiven Server-Aufrufen).

Die Bewertungsfunktion bestimmt für einen gegebenen Auftrag und eine zur Bearbeitung in
Frage kommende Serverinstanz, wie geeignet die Instanz sein wird, den Auftrag abzuwickeln.
Als Kriterium gilt hier zweifellos die minimale Antwortzeit, man muß jedoch unterscheiden,
ob die Lastbalancierung den Auftrag isoliert betrachtet oder die Gesamtheit der unter ihrer
Regie laufenden Aufträge berücksichtigt (soziale Balancierung). Im ersten Fall liefert die
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Bewertungsfunktion die vermutete Antwortzeit für diese Instanz zurück, im zweiten Fall eine
Linearkombination der Antwortzeit auf dieser Instanz und der dabei entstehenden Verzögerun-
gen, die anderen Aufträgen durch Benutzung derselben Ressourcen entstehen (wir sprechen
hier noch nicht von Reihenfolgeabhängigkeiten). Die Summanden können nach der Priorität
der Aufträge gewichtet werden.

Im HiCon Modell betrachten wir soziale Lastbalancierungsansätze, denn nur diese garantieren,
daß bereits zugewiesene Aufträge weiterhin einen gewissen Ressourcenanteil erhalten und
nicht zugunsten neu ankommender Aufträge beliebig ‘ausgebremst’ werden. Der Systemfahr-
plan ist dahingehend ausgelegt, die Bewertungsfunktion mit geringem Aufwand durchführen
zu können: wir addieren die vermutete neue Last zur jeweiligen Ressourcenlast. Bei Überla-
stung (Lasteintrag übersteigt 100%) werden die betroffenen Aufträge entsprechend abgebremst
und dieser Zeitverzug in der Bewertungsfunktion berücksichtigt. Selbstverständlich modifiziert
die Bewertungsfunktion den Systemfahrplan nicht wirklich.

Der Aufwand zur Bewertung eines Auftrages steigt linear mit der Instanzenzahl der Server-
klasse und bei hoher Auslastung im Extremfall linear mit der Anzahl der in Arbeit befindlichen
Aufträge, wächst aber nicht exponentiell mit den Skalierungsfaktoren paralleler Systeme (Res-
sourcen und Aufträge). Die Abschätzung gilt für die Einplanung einzelner Aufträge; die
Behandlung von Auftragsgruppen wird unten detailliert untersucht.

Der Zuweisungszeitpunkt ist im Prinzip unabhängig von der Ankunft eines neuen Auftrages
oder der Freimeldung einer Serverinstanz. Dennoch geben diese Ereignisse Anlaß, die Auf-
tragswarteschlange der Klasse daraufhin zu überprüfen, ob nun Aufträge fest an eine Instanz
gebunden werden können. Unter der Voraussetzung, daß sowohl der geschätzte Ressourcenbe-
darf eines Auftrages als auch der Zustand einer Serverinstanz mit Ungenauigkeiten behaftet
sind, wird der Auftrag zugewiesen, sobald der Balancierer eine Instanz findet, deren restliche
Beschäftigungsdauer ein gewisses Maximum nicht überschreitet und im Rahmen der Ungenau-
igkeiten die für den Auftrag Bestgeeignete sein kann. Durch diese Strategie nutzen wir die Vor-
teile der späten Zuweisung (eine zentrale Warteschlange wird oft als die ideale
Lastbalancierungstechnik betrachtet) als auch die ununterbrochene Auslastung des Systems
durch nichtleere lokale Warteschlangen bei den Instanzen.

Der ideale Zuweisungszeitpunkt muß also nicht mit der Ankunft weiterer Aufträge oder der
expliziten Zustandsänderungsmeldung einer Instanz zusammenfallen. Der Balancierer hat im
Systemfahrplan Abschätzungen über den Verlauf der Bearbeitung, sodaß er den Zeitpunkt vor-
bestimmen kann, an dem ein Auftrag an eine bestimmte Instanz zu vergeben ist (sofern keine
abweichenden Informationen aus dem laufenden Betrieb gemeldet werden). Das läßt sich bei-
spielsweise durchTimeouts realisieren. Im HiCon System beschränken wir uns vorerst auf ein
einfaches Verfahren: bei Ankunft eines Auftrags, Zustandsänderung einer Instanz oder wenn
für eine Serverklasse eine Zeit lang keine Änderungen eintraten, wird grundsätzlich eine Auf-
tragszuweisung der vorrätigen Aufträge versucht.

Bei Sender-initiierten Lastbalancierungstechniken versucht der Empfänger eines Auftrags bei
Überlastung einen Teil seiner Bürde an minderbelastete Instanzen abzugeben, in etwas allge-
meineren Verfahren gibt er Aufträge an Nachbarn ab, sobald er feststellt, daß sie weniger bela-
stet ist als er. Bei Empfänger-initiierten Strategien übernimmt ein Server, wenn er einen
Auftrag erledigt hat und andere höher belastet sind, Aufträge von Nachbarn. Man kann diese
Verfahren leider nicht unmittelbar mit dem des HiCon Modells verglichen, da sie dezentral
sind.
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2.3.2  Die Ebene der Datenverteilung

Obwohl der vorgestellte Balancierungsalgorithmus nur die Verteilung der Funktionsausführun-
gen direkt beeinflußt, berücksichtigt und steuert er indirekt den Ort und die Verteilung der
benötigten Kontextdaten. Der Lastbalancierung bleiben auf der Datenebene zwei Freiheiten:
Wenn eine Instanz eine Daten-Partition lesen möchte, so kann sie eine Kopie erhalten (das ist
der Normalfall) oder aber das Original. Das ist vorteilhaft, wenn die Wahrscheinlichkeit für
einen nachfolgenden Schreibzugriff hoch ist. Hat eine Instanz auf einer Kopie gearbeitet und
kaum Aussichten, sie in naher Zukunft noch einmal zu verwenden, so kann sie die Kopie sofort
(freiwillig) invalidieren. Beide Optimierungen mindern den Aufwand der Datenverwaltung,
falls die Vorabschätzungen des Lastbalancierers zutreffen. Das Konzept der Datenkapselung
durch Serverklassen erlaubt die einfache Integration beider Aspekte (funktionale Parallelität
und Datenparallelität) im HiCon Lastbalancierungsverfahren.

Zuletzt soll noch die Möglichkeit der ungleichen Lastaufteilung innerhalb einer Ressource
erwähnt werden, den wir im derzeitigen Modell noch nicht explizit nutzen. Serverinstanzen
können, je nach Wichtigkeit ihres aktuellen Auftrages (siehe unten) mit unterschiedlichen Pro-
zeßprioritäten ablaufen. Um einen eiligen Auftrag durchzusetzen, auf den etwa viele andere
warten, kann es sinnvoll sein, andere laufende Aufträge zu bremsen bzw. warten zu lassen. Bis-
lang teilen sich im HiCon Konzept alle laufenden Aufträge die gemeinsamen Ressourcen
gleichmäßig untereinander auf. Der Lastbalancierer kann jedoch wichtigere Aufträge vorran-
gig bzw. an ‘schnellere’ Instanzen vergeben, oder er kann Prozessoren, welche wichtige Auf-
träge abwickeln, von weiteren Aufträgen verschonen.

2.3.3  Vorplanung von Auftragsgruppen - die Konfigurationsebene

Neben der oben vorgestellten Aufgabe der Lastbalancierung bietet das HiCon System die
Möglichkeit, zur Laufzeit zusammenhängende Gruppen von Aufträgen (Anwendungen) anzu-
melden. Durch Reservierung und Bereitstellung von Ressourcen und einer vorläufigen Zuwei-
sung der einzelnen Aufträge unter Ausnutzung des Wissens über den Gesamtablauf der Gruppe
können wir wichtige Aspekte wie wiederholte bzw. parallele Aufrufe einer Serverklasse, Loka-
lität in aufeinanderfolgenden Datenzugriffen sowie Reihenfolgeabhängigkeiten in die Balan-
cierung einbeziehen, was bei der isolierten Betrachtung einzelner Aufrufe (siehe oben) noch
nicht möglich ist.

Die Probleme dieses Ansatzes liegen zum einen bei der Beschreibung der Auftragsgruppe, die
möglichst kompakt und einfach, aber dennoch komplexen Anwendungen verschiedenen Gra-
nulats gerecht werden soll, zum anderen in den hohen Laufzeitkosten für den Vorgang der Ein-
planung an sich. Diese Grenzen sind aus dem Gebiet des statischen Scheduling hinreichend
bekannt. Wir beschränken uns auf die Spezifikation weniger Zusammenhänge, die von beson-
derem Interesse für die Lastbalancierung sind, d.h. streben keine Programmiersprachen-ähnli-
che filigrane Ablaufbeschreibung (wie etwa für parallelisierende Compiler) an. Daher
betrachten wir zunächst, welche Charakteristiken einer Anwendung, die über einzelne, isolierte
Auftragsprofile hinausgehen, für eine Vorausplanung wesentlich sein können:

• Die in Petrinetz- und Datenflußbeschreibungen bekannten Reihenfolge-Abhängigkeitsgra-
phen erscheinen im prozeduralen Modell als Wartezeiten auf synchrone Aufrufe. Interessant
ist zu wissen, in welchem Maße die Ausführungszeit des (Haupt-) Auftrages von der Bear-
beitungszeit eines Unteraufrufes bzw. von der Geschwindigkeit eines Kooperationspartners
abhängt. Daraus kann der Balancierer die notwendigen relativen Verarbeitungszeiten (und
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damit Prioritäten, sobald der Auftrag zugewiesen wurde) abschätzen. In der statischen Last-
balancierung ist derBottleneck-Path-Algorithmus ein bekanntes Verfahren (siehe [Bok-
hari81], [Iqbal86] und [Towsley86]). Diese Reihenfolgebeziehungen können freilich nur für
kleinere Gruppen diskreter Aufträge genutzt werden, nicht für gesamte komplexe Anwen-
dungen, die zumeist Schleifen, Rekursionen und Verzweigungen enthalten.

• Für größere Mengen anstehender Aufträge kann Lastbalancierung die Anzahl von und das
Verhältnis zwischen Lese- und Änderungszugriffen auf Kontext (-Partitionen) ausnutzen,
um einen Kompromiß zwischen Parallelität und Kontextverwaltungsaufwand zu finden.
Genauere Datenzugriffs-Angaben können jedoch meist erst zum Aufrufzeitpunkt gemacht
werden.

• Wenn für eine Serverklasse innerhalb der Auftragsgruppe der vermutlich entstehende Grad
an möglicher Parallelität abgeschätzt werden kann, so hat der Balancierer die Möglichkeit,
die Server-Konfiguration diesen Anforderungen anzupassen. Mit möglicher Parallelität ist
damit die Anzahl der Aufträge einer Klasse gemeint, die tatsächlich zugleich ausführungs-
bereit sind.

• Die Angabe des Nachrichtenaufkommens (Dauer und Intensität) zwischen einzelnen Teil-
aufträgen bzw. zwischen zwei Serverklassen schlechthin erlaubt die Berücksichtigung von
schnellen Kommunikationsverbindungen bei der Instanzenauswahl bzw. bei der Server-
Konfiguration (siehe [Ma82], [Berger87], [Bowen88], [Lo88] und [Lo88/2]).

Um die Beschreibung derartiger Informationen über Auftragsgruppen einfach zu halten, ver-
zichten wir auf hierarchisch verschachtelte Auftragsgruppen sowie auf die explizite Behand-
lung von Schleifen. Eine Auftragsgruppe ist eine flache Gruppe von Auftragstypen, zu denen
die Anzahl gegenseitiger Aktivierungen (Aufrufe) samt Kommunikationsintensität und Rei-
henfolgebeziehungen angegeben ist.

Diese Angaben bewirken lediglich eine vorläufige Einplanung der zu erwartenden Aufträge
sowie Änderungen der Server-Konfiguration. Die endgültige Zuweisung der Aufträge
geschieht nach wie vor erst zum tatsächlichen Aufrufzeitpunkt. Wir folgen damit dem in der
dynamischen Balancierung wichtigen Prinzip der möglichst späten Zuordnung und können
außerdem Fehler und Ungenauigkeiten in den Profilangaben tolerieren.

Das Optimierungskriterium des hier vorgestellten Balancierungsmechanismus ist die möglichst
schnelle Ausführung eines Gesamtauftrages (unter Rücksicht auf andere unabhängige Aufträge,
‘soziale Balancierung’, siehe oben). Daher ist nur die Antwortzeit des Hauptauftrags zu minimie-
ren; alle Teilaufträge sind unkritisch und ihre Dringlichkeit ergibt sich allein aus den Abhängig-
keitsbeziehungen zum Hauptauftrag.

Auf der Balancierungsebene der Server-Konfiguration spielen nicht nur Profile von Auftragsgrup-
pen eine Rolle. Konfigurationsänderungen können auch durch längerfristige Beobachtungen
aggregierter Daten ausgelöst werden. Wir wollen es hier nur anhand zweier Beispiele motivieren:

• Wenn die Klassen-Auftragswarteschlange ständig sehr lang ist, sollten evtl. neue Instanzen
aufgesetzt werden. Umgekehrt können Instanzen gelöscht werden, wenn die mittlere Wartezeit
auf einen neuen Auftrag groß ist.
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• Wenn die Wartezeit auf Daten im Verhältnis zur eigentlichen Rechenzeit der Instanzen zu groß
ist, so scheint das Anlegen von Lesekopien aufgrund des hohen Anteils an Schreibzugriffen
unwirtschaftlich (siehe [Weinmann92]) oder die Balancierung achtet bei der Auftragszuwei-
sung zu wenig auf die Datenlokalität. Im Zweifelsfall empfiehlt sich eine Reduktion der Serve-
rinstanzen.

2.4  Hierarchisch verteilte Lastverwaltung

In völlig dezentralen Lastbalancierungsverfahren sprechen die Server die Auftragsverteilung
selbstständig untereinander ab. Der Server, welcher neue Unteraufträge hat oder überlastet ist,
versucht Aufträge an andere Server abzugeben. Unterbelastete Server sind bestrebt, von anderen
Aufträge zu übernehmen. Man unterscheidet oft (siehe [Casavant88], [Lin92]), ob nur diese Ent-
scheidung dezentral ist oder auch die Zustandsinformationen über die Server verteilt sind (ein
Server kennt nur die Lastsituation seiner Nachbarn). Im HiCon Modell wird sowohl die Zustands-
information als auch die Entscheidung in einer Komponente zentralisiert.

Eine zentrale Informations- und Entscheidungsstelle bietet den Vorteil einer global optimalen
Balancierung. Dezentrale Verfahren optimieren nur lokal und basieren auf relativ einfachen Meß-
und Entscheidungsgrößen; die einzelnen Instanzen sind nicht in der Lage, komplexere Zusam-
menhänge zu erfassen (etwa Reihenfolgebeziehungen, soziale Lastverteilung). Die Verwaltung
zentraler Auftragsschlangen ermöglicht späte Zuweisung ohne zugeteilte oder laufende Aufträge
migrieren zu müssen.

Zentrale Balancierung hat aber den Nachteil, selbst zum Engpaß zu werden. Die Balancierungs-
komponente muß sehr schnell viele Informations- und Auftragsnachrichten bearbeiten; wenn sie
überfordert ist, arbeitet sie mit veralteten Informationen bzw. zögert die Auftragsbearbeitungen
hinaus, da sie nicht schnell genug Zuweisungsentscheidungen treffen kann. Auch aus Gründen
der Fehlertoleranz ist eine zentralisierte Lösung bedenklich.

In großen Systemen ist also, sofern man einen logisch zentralen Ansatz favorisiert, eine hierarchi-
sche Abstraktion der Lastbalancierung notwendig. Lokale Komponenten balancieren autonom ein
(sinnvollerweise physisch zusammenhängendes) Teilsystem. Sie betrachten den übergeordneten
Balancierer als eine weitere Komponente ihres Teilsystems, der eine abstrakte Sicht seines
Zuständigkeitsbereichs zeigt. Eine Balancierungskomponente kann also von ihrer übergeordneten
wie von einer Unterkomponente Aufträge und Lastinformationen erhalten und an diese abgeben.

Die Abstraktion erfolgt auf Ebene der Instanzen. Ein Balancierer bietet Anderen eine Instanz pro
Serverklasse, deren Leistung dem Mittel- oder Bestwert seiner lokalen Instanzen entspricht. Das
Teilsystem (Hardware) und die lokalen Aufträge verbirgt er vollständig.

Hierarchische Balancierung funktioniert nur dann effektiv, wenn eine gewisse Lokalität vorliegt
und von der Balancierung berücksichtigt wird. Lastbalancierer verteilen Aufträge (und damit
auch Daten) möglichst lokal. Die ‘Pseudo’-Instanz des übergeordneten Balancierers muß daher
um einiges besser sein, damit sie gewählt wird. Wenn aufgrund der Anwendung keinerlei Lokali-
tät in den Datenzugriffen vorhanden ist und sich auch nicht durch Datenmigration oder Replika-
tion einstellt, so ist die hierarchische Balancierung ungünstig (das Bild zeigt solch einen Fall).
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Allgemein lassen sich Änderungsoperationen auf einem gemeinsamen Datensatz nicht beliebig
verteilen und die Lastbalancierung sollte dies auf höherer Ebene feststellen.

Alternativ zur oben vorgestellten homogenen Hierarchie bietet es sich an, die unteren Ebenen
dezentral zu balancieren und für die höheren Ebenen zentrale Balancierungskomponenten einzu-
setzen. Beispielsweise könnten die Instanzen die Datenverwaltung direkt untereinander, ohne den
Umweg über eine Balancierungsinstanz, regeln. Der für Auftragszuweisung verantwortliche
Balancierer hat dann aber kein vollständiges Wissen mehr über die Datenverteilung und kann sie
entsprechend schlecht einbeziehen. Zudem legt man sich durch die Trennung nach Ebenen auf
eine bestimmte Systemgröße fest, während die homogene Hierarchie - eine gewisse Lokalität in
der Anwendung vorausgesetzt - beliebig skalierbar bleibt.

3 Realisierung und Ergebnisse
Eine Lastbalancierungsumgebung nach dem HiCon Modell wurde als Prototyp realisert; daneben
wurde ein Simulator entwickelt, der uns eine schnellere und einfachere Evaluierung der vorge-
schlagenen Konzepte ermöglicht. Wir werden diese Implementierungen im folgenden kurz
betrachten.

3.1  Simulation des HiCon Modells

Um die prinzipielle Tauglichkeit der entwickelten Lastbalancierungsverfahren zu untersuchen
und ein Gefühl für die verschiedenen Faktoren, ihr Zusammenspiel und ihre Auswirkungen zu
bekommen, wurde ein Simulator zur Nachbildung des HiCon-Ausführungsmodells entwickelt
(siehe [Staib92]). Nach Definition eines Systems, einer Server-Konfiguration und einer Anwen-
dung (Auftragsprofile für die Serverinstanzen) sowie der Auswahl von Lastbalancierungsverfah-
ren für zwei Eingriffspunkte (die Entstehung eines Auftrags und die Zustandsänderung einer
Serverinstanz) kann man die Bearbeitung mitverfolgen und erhält eine abschließende Gesamtaus-
wertung. Während der Simulation wird der Verlauf der Anwendung (Abarbeitung der Funktions-
ausführung, Unteraufrufe und Datenzugriffe) sowie die Auslastung aller Ressourcen detailliert
graphisch dargestellt (siehe Bild). In einem Anwendungsbeispiel mit relativ feinkörniger Paralle-
lität, der Suche nach einem kürzesten Weg in einem Graphen (siehe dazu auch Kapitel 3.2.5),
zeigte [Staib92] bereits positive Resultate für einfache Lastbalancierungstechniken nach dem

Aufruf mit
Zugriff auf
Daten
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HiCon-Konzept. Wir wollen jedoch nicht hier, sondern im Rahmen desLoadman-Prototyps näher
auf diese Experimente eingehen.

3.2  Loadman - Prototyp eines Lastbalancierers nach dem HiCon Modell

Die LastbalancierungsumgebungLoadman ist eine Realisierung der in diesem Bericht vorgestell-
ten Ansätze, um ein weites Spektrum datengestützter Anwendungen effizient auf heterogenen
parallelen und verteilten Systemen zu bearbeiten. Dazu beschreiben wir kurz das Design, die bis-
her implementierten Balancierungsverfahren und vorläufige Messungen.

3.2.1  Systemstruktur und Anwendungsschnittstelle

Wie im Bild veranschaulicht besteht die Balancierungskomponente (Systemlast-Informationsver-
waltung und Balancierungsentscheidung) derzeit aus einem zentralen Prozeß und einem Lastmes-
sungsagenten auf jedem teilnehmenden Prozessor. Sie wird in späteren Versionen nach dem in
Kapitel 2.4 beschriebenen Konzept verteilt sein. Die Anwendung ist durch einen Prozeß pro Ser-
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verinstanz auf das System verteilt und verkehrt über angebundene Libraries mit der Balancie-
rungskomponente.

Die eigentliche Interprozeß-Kommunikation wird mittels angebundener Funktionen dercoin-
Library durchgeführt. Diese Library wählt automatisch das schnellste verfügbare Nachrichtenpro-
tokoll. So werden Nachrichten innerhalb eines Hauptspeichers (UNIX-Workstation oder shared
memory Multiprozessor) überpipes, innerhalb von Parallelrechnern durch proprietäre Mechanis-
men (etwaGuardians Kommunikationssystem) und zwischen verschiedenen Rechnern mithilfe
desTCP Protokolls versandt. Die transparente Nutzung dieser verschiedenen Nachrichtensysteme
ist für die Lastbalancierung in heterogenen Systemen unerläßlich, da unterschiedlich effiziente
Kommunikationswege (nicht prinzipielle Beschränkung auf ein allgemeines, langsames Medium
wie TCP) und damit verschiedene ‘Entfernungen’ zwischen Prozessen einen wesentlichen Faktor
für die Lastverteilung darstellen.

Loadman ermöglicht derzeit verteilte Anwendungen auf einer aus Sun-, DEC-, HP840- UNIX
Workstations, Sequent shared-memory-Multiprozessoren sowie Tandem shared-nothing-Parallel-
rechnern beliebig gemischten Basis. Multiprozessoren mit gemeinsamem Hauptspeicher werden
vonLoadman derzeit als je ein Prozessor betrachtet, da die Lastbalancierung imHiCon Modell
relativ grobgranular konzipiert ist und auf verteilten Ressourcen basiert, sodaß man hier besser
die vorhandenen Scheduling-Strategien (meist gemeinsame Run-Queue) nutzt.

Dynamische Lastmessung erfolgt auf UNIX-Systemen durch Ablesen bestimmter Datenstruktu-
ren aus dem Betriebssystemkern, aufGuardian-Rechnern durch dasMeasure-Subsystem. Die sta-
tische Beschreibung des Systems (Prozessorleistungen, Platten, Netzstruktur und -Leistung) wird
in einer Konfigurationsdatei spezifiziert.

Die Loadman-Library stellt den Server-Programmen eine komfortable Schnittstelle zur Verfü-
gung, die asynchrone Serverklassen-Aufrufe sowie Zugriffs- und Konsistenzschutz-Operationen
auf Klassenkontexte ermöglicht:

• LoadmanInit (connectionDataToLoadman, directoryForLogging, timeout)

Loadman

Host A

Measure

Server Class 1
Instance 3

Host D
Measure

Host C
Measure

Host B MeasureLoadman Lib

Server Class 2
Instance 1

Loadman Lib

Server Class 1
Instance 1

Loadman Lib

Server Class 1
Instance 4

Loadman Lib

Server Class 2
Instance 2

Loadman Lib

Server Class 1
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Loadman Lib

Aufrufe, Resultate.
Kontextverwaltung
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Mit diesem Aufruf meldet sich die Serverinstanz beiLoadman an.Loadman setzt die in einer
Datei spezifizierte Server-Konfiguration auf und teilt jeder Instanz beim Prozeßstart ihre
Instanzennummer sowie ihre Datei-Zugriffspfade mit.

•  LoadmanCall (class, parameter, expectedCpuInstructions, expectedUsedPartitions, timeout)

Die Serverinstanz setzt einen Aufruf an eine Serverklasse ab. Dabei kann sie den vermutlichen
Ressourcenbedarf für diesen Aufruf angeben. Die Spezifikation beschränkt sich bislang auf
den Rechenaufwand und die benötigten Kontextpartitionen, jeweils versehen mit der Wahr-
scheinlichkeit für schreibenden Zugriff. Man beachte, daß diese Angaben unabhängig von Pro-
zessor und Instanz sind, die den Auftrag einmal ausführen werden. Die Vor- und Nachteile der
Ressourcenabschätzung am Aufrufzeitpunkt durch den Aufrufer wurden in Kapitel 2.1 disku-
tiert.

• LoadmanResult ( class, instance, parameter, serverState, timeout)

Die Serverinstanz schickt ein Resultat an den Aufrufer zurück. Dieser Aufruf kann auch von
Client und Server innerhalb einer ‘Session’ verwendet werden, wo ja die Zielinstanz feststeht.
Der Server sendet lediglich Zwischenergebnisse, der Aufrufer gibt daraufhin evtl. weitere
Parameter. Durch den ParameterserverState kann der Server die Lastbalancierung informie-
ren, welchen Anteil des Gesamtauftrages er mit Sendung des Resultats erledigt hat. DieLoad-
man-Library fügt als weitere Information die momentane Länge der Auftragswarteschlange
der Instanz bei. Weiterhin kann eine Instanz bei langlaufenden Aufträgen Zustandsinformatio-
nen abgeben, indem sie eine Resultats-Nachricht ohne Zielklasse und -instanz schickt.

• LoadmanRecv (class, instance, parameter, timeout)

Die Serverinstanz wartet auf einen Auftrag oder ein Resultat. Dabei kann sie eine spezielle
Klasse und / oder Instanz vorgeben.

• SlockContext (partition, timeout)

Die Serverinstanz meldet Lesezugriffe auf eine Kontext-Partition an. Dabei bekommt sie über
die Library evtl. eine Kopie oder das Original dieser Partition von der Instanz gesandt, welche
diese Partition momentan besitzt. Kapitel 3.2.2 geht näher auf die Kontextverwaltung ein.

• XlockContext (partition, timeout)

Die Serverinstanz möchte Änderungsoperationen an dem Kontext-Datensatz durchführen. In
der vorläufigen Realisierung wird sie dadurch gleichzeitig zum neuen Besitzer und Verwalter
dieser Partition (siehe Kapitel 3.2.2).

• UnlockContext (partition, timeout)

Die Serverinstanz gibt eine zuvor gesperrte Partition nach Durchführung einiger Zugriffe wie-
der frei.

Loadman kann wahlweise mit oder ohne graphischer Oberfläche (siehe Bild) ablaufen. Die gra-
phische Darstellung informiert zur Laufzeit über den Verarbeitungszustand: die Server-Konfigu-
ration, die Längen der Klassen- und Instanzen-Auftragswarteschlangen, die Verteilung der
Kontextpartitionen und deren Replikate sowie die Auslastung der Ressourcen. Diese Darstellung
bewährte sich, um Anwendungen bezüglich ihres Kontext- und Auftragsgranulats zu justieren,
geeignete Server-Konfigurationen zu ermitteln und die Auswirkungen verschiedener Balancie-
rungsstrategien zu beobachten. Für exakte Zeitmessungen verzichtet man freilich auf das graphi-
sche Interface, weil es gewisse Störungen und Verzerrungen verursacht. Während oder nach
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Ablauf einer Anwendung kann der Benutzer statistische Informationen über das Verhalten der
Serverklassen abrufen (die mittlere Leerlaufzeit der Instanzen einer Klasse zwischen zwei Auf-
tragsbearbeitungen, die mittlere Bearbeitungszeit eines Auftrags ohne Datenverwaltungskosten
und der mittlere Zeitbedarf für Datenverwaltung).

3.2.2  Verwaltung und Synchronisation der Klassenkontexte

Im HiCon Modell besitzt jede Klasse einen Kontext, der nach Partitionen aufgetrennt wird. Die
Datenstrukturen und Einteilung in Partitionen wird durch die Anwendung bestimmt; ein Kontext
kann sich beispielsweise aus Hauptspeichervariablen und Dateien zusammensetzen. Die Konver-
tierung der Daten von einem bzw. in ein über Nachrichten verschickbares Format geschieht durch
von der Anwendung zur Verfügung gestellte Rückrufprozeduren:

SendContext (partition, contextMessage, size), RecvContext (partition, contextMessage, size)

Eine Partition ist zugleich die Einheit der Synchronisation, der Migration und der Replikation.
Die Serverinstanzen einer Klasse betrachten den Kontext als gemeinsamen Speicher (man spricht
daher von einershared memory bzw.shared disk Semantik).

Zugriffen auf eine Kontextpartition muß stets eine Sperranforderung vorangehen. Zugleich mit
dem Erwerb der Sperre wird bei Bedarf die Partition bzw. eine Kopie von der Instanz besorgt,
welche momentan diese Partition verwaltet (besitzt). Im derzeitigen Prototyp übernimmt eine
Instanz mit Anforderung einer Exklusivsperre auch die Verwaltung der Partition, bei Anforderung
einer Lesesperre erhält sie lediglich eine Kopie. Ohne Lastbalancierung, welche die Kopien und
den Aufwand für diese Kontextverwaltung miteinbezieht, ist diese Entscheidung nicht generell
vorteilhaft (siehe etwa die Untersuchungen von [Weinmann92]). Im HiCon Modell kann das Wis-
sen über die Verwaltungsstrategie erfolgreich zur Lastbalancierung genutzt werden.

Um eine Exklusivsperre durchzusetzen schickt dieLoadman-Library selbstständig Invalidie-
rungsnachrichten an die Kopienbesitzer. Änderungen an dieser Partition durch irgendeine Instanz
der Klasse werden erst nach Freigabe dieser Sperre wieder zugelassen. Da der Freigabezeitpunkt
durch die Anwendung bestimmt wird, sind verschiedene Stufen der Konsistenzerhaltung möglich
(z.B. Operationssperren, Cursor-Stabilität oder serialisierbare Transaktionen).
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Dieses Konzept zur Synchronisation des Zugriffs auf globale Daten und der Verteilung globaler
Daten in heterogenen Systemen ermöglicht die Balancierung datenintensiver Anwendungen und
erfüllt die von der Objektorientierung geforderte Kapselung von Daten durch Serverklassen.

3.2.3  Fehlerbehandlung

In parallelen und verteilten Systemen besteht verstärkter Bedarf an Fehlerbehandlungsmechanis-
men und Unterstützung bei der Fehlersuche. Gegenüber sequentiellen Programmen erhält man
weitere Fehlerquellen durch Rechnerausfall, Prozeßabsturz, Nachrichtenprobleme und Synchro-
nisations- bzw. Protokollfehler. Da wir im HiCon Modell den Schwerpunkt auf Lastbalancierung
setzen, bieten wir lediglich zwei Konzepte zur Fehlererkennung an:Timeouts und Protokollda-
teien.

Jeder Aufruf einerLoadman-Library-Funktion kann mit einemTimeout versehen werden. Dies ist
die einfachste und häufig eingesetzte Methode, um Protokollfehler und Ausfälle in der Anwen-
dung zu erkennen. Allerdings sind die Funktionsaufrufe nicht atomar; dieTimeout-Spezifikation
wird beim Senden und Empfang von Nachrichten verwandt und die Funktionsausführung wird im
Fehlerfall an dieser Stelle abgebrochen.

Alle am Ablauf teilnehmenden Prozesse schreiben in Protokolldateien. Dabei benutzt eine Serve-
rinstanz ihre Protokolldatei, in die also auch Anwendungsinformation geschrieben werden kann,
gemeinsam mit derLoadman-Library und der darunterliegendencoin-Nachrichten-Library. Nach
Ablauf der Anwendung lassen sich Fehler durch Vergleiche der Protokolldateien feststellen. In
Fehlerfällen fügen die Library-Funktionen grundsätzlich neben Rückgabe des Fehlercodes eine
textuelle Fehlerbeschreibung in die Protokolldatei.

3.2.4  Verfügbare Strategien

Wir haben zunächst nur einfache Strategien, die jeweils auf maximal einer dynamischen Meß-
größe basieren, untersucht. Derzeit sind folgende Verfahren aufLoadman verfügbar:

• Round Robin: in jeder Serverklasse werden die Aufträge reihum verteilt. Dabei sollen die
Auftragswarteschlangen der Instanzen möglichst bis zu einer festen Länge gefüllt sein. Grund-
sätzlich wird der älteste Auftrag in der Klassenwarteschlange zuerst zugewiesen. Wenn in einer
Klasse viel mehr Aufträge anfallen als die Serverinstanzen abarbeiten können, d.h. die Klas-
sen-Warteschlange lang ist, wird der älteste Auftrag der Instanz zugeordnet, die als erste wie-
der Platz in ihrer Warteschlange hat. Das entspricht nicht mehr der reinen Reihum-Verteilung
sondern eher der dritten Strategie, ist jedoch sehr lukrativ. Unter der Annahme gleicher Auf-
tragsgrößen und Prozessorleistungen und Mißachtung sonstiger Einflußfaktoren (siehe Kapitel
1.1) realisiert dieses Verfahren Lastbalancierung zugunsten minimaler Auftragsausführungs-
zeit.

• Daten-Lokalität : Aufträge werden stets an die Instanz abgegeben, welche die ‘meisten’ der
benötigten Daten bereits lokal verfügbar hat. Für Lesezugriffe genügen Kopien, für Änderung-
soperationen bedarf es der Originaldaten. Beim Aufruf werden Wahrscheinlichkeiten für
Änderungsoperationen angegeben, nach denen das Verfahren die Kontext-Beschaffungskosten
gewichtet. Man beachte, daß jeder Auftrag auch dann wartet, bis seine bevorzugte Instanz
genügend Raum in ihrer lokalen Warteschlange aufweist, wenn andere Instanzen arbeitslos
sind (im Gegensatz zu der im Round Robin Verfahren gewählten Lösung). Die Entscheidung
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für eine bestimmte Instanz erfolgt aber nicht bei der Entstehung des Auftrages; vielmehr wird,
sobald eine Instanz verfügbar wird, überprüft, ob sie für Aufträge aus der Klassen-Warte-
schlange die bestgeeignete ist. Diese späte Zuweisung ist notwendig, da sich die Datenlokatio-
nen ständig ändern. Grundsätzlich wird der älteste Auftrag, welcher diese Instanz beansprucht,
zuerst abgegeben. Wie alle hier betrachteten Verfahren wird hier die Ausführungszeit der Ein-
zelaufträge unter Mißachtung weiterer Faktoren minimiert.

• Kürzeste Auftrage-Warteschlange: der älteste Auftrag wird an die Instanz verwiesen, die
gerade die wenigsten Aufträge in ihrer Warteschlange hat. Wie bei allen anderen Strategien
werden auch hier die Warteschlangen der Instanzen nur bis zu einem festen Maximalwert
gefüllt. Die Motivation hierfür sind nicht begrenzte Pufferfähigkeiten der Instanzen sondern
die möglichst späte Bindung eines Auftrages an eine feste Instanz sowie die Kontrolle der ent-
stehenden Parallelität (siehe Kapitel 2.3 bzw. 2.3.1).

Beim Verfahren ‘kürzeste Auftrage-Warteschlange’ muß man einen Kompromiß zwischen
häufiger Zusendung der aktuellen Schlangenlängen und der Abschätzung durch den Lastbalan-
cierer selbst finden. Wenn Instanzen nach oder mehrmals während der Abarbeitung eines Auf-
trages Zustandsnachrichten an den Balancierer schicken entsteht großer Zusatzaufwand. Wenn
der Balancierer hingegen allein aus den Aufruf-Angaben und der Rechnerbelastung (Fremdlast
und bekannte Last durch weitere arbeitende Instanzen) den Abarbeitungszustand vermutet,
kann es sehr schnell zu Fehleinschätzungen und dadurch zu Fehlentscheidungen kommen. Im
derzeitigen Prototyp bleibt die Entscheidung dem Anwender überlassen; Server können zu
beliebigen Zeitpunkten Zustandsinformation senden. Bei Rücksendung eines Resultates wird
sie stets automatisch beigefügt.

• Leistungsfähigste Instanz: die momentane Leistungsfähigkeit eines Prozessors wird abge-
schätzt, indem man seine Maximalleistung durch die Zahl der aktiven Prozesse (Run Queue
Length) - zuzüglich dem gerade zu vergebenden - teilt. Der älteste Auftrag wird an eine der
Instanzen auf diesem Prozessor vergeben, wenn ihre lokale Auftragsschlange nicht zu voll ist.

Offensichtlich wurden bisher nur sehr primitve Methoden implementiert. DerLoadman Prototyp
soll auf längere Sicht über eine Strategie verfügen, die unter anderem obige Einzelaspekte inte-
griert. Dazu ist es jedoch notwendig, zunächst die Relevanz der verschiedenen Größen und Ver-
fahren isoliert zu untersuchen, um sie geeignet kombinieren und gewichten zu können.

3.2.5  Evaluierung eines Anwendungsbeispiels

Für eine erste Validierung des Lastbalancierungsprinzips durch den PrototypLoadman wurde
eine Wegesuche als Anwendung gewählt. Sie findet den kürzesten Weg zwischen zwei vorgege-
benen Knoten in einem gerichteten Graphen mit gewichteten Kanten. Da in Client-Server Archi-
tekturen durch synchrone rekursive Aufrufe binnen kurzer Zeit alle Instanzen belegt wären
(nämlich auf die Ergebnisse ihrer rekursiven Aufrufe warten würden - im HiCon Modell verzich-
ten wir gewöhnlich auf Multi-Threading, obwohl auch ‘multi-threaded’ Instanzen teilnehmen
können), müssen die Aufrufe asynchron und ohne Resultatrückgabe abgesetzt werden. Das hier-
bei auftretende Terminierungsproblem wird gelöst, indem eine Serverklasse (unter anderem) die
Zahl der noch zu untersuchenden Knoten bzw. die Zahl der noch zu bearbeitenden Suchaufträge
verwaltet. DerSupervisor [Schiele91] stellt dazu im zentralen Fall das Konzept des Klassen-
Events zur Verfügung.

Die Wegesuche wurde in Gestalt dreier Serverklassen realisiert (siehe auch im Bild):
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• gclient: führt die Benutzerinteraktion durch, startet die Suche und verfolgt an deren Ende den
kürzesten Weg zurück.

• gfind: bekommt im Aufruf jeweils eine Menge von Startknoten (aus derselben Partition). Sie
sucht im Graph alle zugehörigen Folgeknoten samt Kosten heraus, eliminiert bei Duplikaten
den teureren Weg. Sie teilt die Menge der gefundenen Zielknoten nach Partitionen auf und ver-
schickt jeweils die Knoten einer Partition als Auftrag an die Klassegreach. Die Graphenbe-
schreibung ist in Form je einer Datei pro Partition abgelegt.

• greach: verwaltet die Liste der bisher erreichten Knoten. Sie bekommt im Aufruf jeweils eine
Liste neu erreichter Knoten und trägt die Neuigkeiten bzw. Verbesserungen in ihrer Liste ein.
Die anderen Knoten eliminiert sie aus der Aufrufliste. Dann schickt sie die Restliste als Aufruf
an die Klassegfind. Die Klasse verwaltet dabei auch die Zahl der noch zu untersuchenden
Knoten (die Zählung ist nicht trivial, da sie nicht weiß, wieviel Folgeaufträge einegfind-
Instanz aus einem Aufruf von einergreach-Instanz generieren wird). Der Datensatz zur Termi-
nierungszählung stellt sich als ‘Hot Spot’-Kontextpartition heraus, da er bei jedem Aufruf
modifiziert wird.

Wenn man die Partitionierungsfunktion der Knoten des Graphen für die Serverklassen unter-
schiedlich wählt (d.h. der Knotenbereich einergfind-Partition entspricht nicht dem einergre-
ach-Partition), so mußgreach im allgemeinen einige Partitionen pro Aufruf anfassen (und
dabei häufig auch aktualisieren). Man sieht anhand der Wartezeiten zwischen Aufträgen und
der Kontextverwaltungskosten, daßgreach deshalb bei (sowohl bezüglich Auftragsgröße als
auch der Größe einer Partition) feinerem Granulat zum Engpaß der Anwendung wird. Bei grö-
ßeren Graphen werden diegfind-Instanzen zum Engpaß, d.h. zum bestimmenden Faktor.

Die Ressourcenbedürfnisse (hier nur Prozessorleistung) der Serverklassen-Aufrufe wurden stati-
stisch ermittelt; sie hängen in erster Näherung linear von der Anzahl der Eingabeknoten und der
Größe des Graphen ab. Die ‘Zahl der Instruktionen’ ist dabei architekturunabhängig und nur auf
die in Benchmarks übliche Leistungskenngröße MIPS (Millionen Instruktionen pro Sekunde)
bezogen. Die Plattenzugriffe und Kommunikationskosten wurden außer Acht gelassen:

gfind: #Instruktionen = 182755 + #Kanten * 26 + #Startknoten * 30000

greach: #Instruktionen = 6808 + #Kanten * 2 + #Erreichte_Knoten * 16200

Die Aufrufe an die Klassengreach undgfind beziehen sich stets nur auf einegfind-Partition.
Diese Entscheidung wurde getroffen, weilgfind’s Partitionen große Dateien sind und neben dem
Zugriff auch die Replikation und Migration sehr aufwendig machen. Da es sich jedoch aus-
schließlich um Lesezugriffe handelt, verschwindet der Verwaltungsaufwand im Verlaufe der
Anwendung (die Instanzen sind mit Kopien versorgt).

gclient
gfindgfind gfind

Suche

greach greach

Rückverfolgen
des Weges

Fertigmeldung/
Rückwegschritt

Liste von Startknoten

Liste gefundener Knoten
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Im folgenden betrachten wir Messungen der Wegesuche in einem kleinen und in einem relativ
großen Graphen, wobei sowohl die Anzahl der Instanzen je Serverklasse als auch die Balancie-
rungsstrategien variiert werden. Der kleine Graph besteht aus 500 Knoten und 10000 Kanten.
Letztere sind auf 10 Kontext-Partitionen der Klassegfind und damit auf Dateien der mittleren
Größe von 6 KB verteilt. Der Graph weist eine Lokalität von 95% auf (Lokalität bezeichnet hier
den Anteil der Kanten, die zwei Knoten derselben Partition verbinden). Das Bild zeigt die maxi-
mal verwendete Server-Konfiguration, die Ergebnisse sind in der nachfolgenden Tabelle aufge-
führt.

Das Instanzenverhalten schlüsselt die Zeitanteile einer Auftragsbearbeitung einer Serverinstanz
auf. Sie sind jeweils über die Instanzen einer Klasse und über deren bearbeitete Aufträge gemit-
telt. Die Angabe „busy / context / idle“ gibt die Zeit, welche die Instanz für den Auftrag gerechnet
hat (ohne Kontextwartezeiten), die Zeit, die sie auf Kontextpartitionen gewartet hat und die Zeit,
welche sie nach Ende eines Auftrags bis zum Erhalt des nächsten warten mußte, wieder. Die
obere Zeile bezieht sich jeweils auf die Klassegfind, die untere aufgreach. Die Zeilen der Tabelle
sind jeweils gemittelte Werte aus mehreren gleichartigen Messreihen.

Instanzen
je Klasse

statische
Balancierung

dynamische
Balancierung

Laufzeit
 [sec]

Instanzenverhalten [msec] Engpaß

busy context idle

1 gleichgültig
gleichgültig

(Round Robin)
15.2

61 0 0
gfind.0

2 0 16

2

Data
Distribution

Data Locality 9.9
67 0 6

loadman
* 2 3 6

Run Queue Length 13.5
66 8 56 gfind.0 / .

gfind.1* 2 2 23
Instance Queue

Length
45.9

67 6 368
greach.0-1

2 95 3

Round Robin 48.0
62 7 277

greach.0-1
2 93 4

None Round Robin 49.9
84 # 12 284

greach.0-1

# die Kontextwartezeiten entstanden nur bei Instanz 1
+ Wartezeiten entstanden nur bei Instanz 0

* nur Instanz 0 wurde genutzt

Loadman

18 MIPS

34 MIPS

gfind

gclient

34 MIPS

gfind

23 MIPS

gfind

28 MIPS

greach

28 MIPS

greach

28 MIPS

greach

0.5 msec/Nachricht
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Die zweite Tabelle enthält die Ergebnisse bei Durchsuchung eines relativ großen Graphen, beste-
hend aus 100000 Kanten, die auf 30 Partitionen zu je 20 KB verteilt sind. Die übrigen Eigenschaf-
ten entsprechen denen des kleinen Graphen.

Je nach Strategie und Granulat wird die Klassegfind bwz. die Klassegreach zum kritischen Fak-
tor, d.h. Engpaß (eine eher ausgewogene Belastung deutet auf relativ starke Auslastung des Last-
balancierersLoadman hin). Man erkennt dies auch leicht an den durchschnittlichen Wartezeiten.
Der Balancierer selbst wird - ohne Verwendung der graphische Anzeige - lediglich zu 5..20%
beansprucht (für die Messungen wurde er gemeinsam mitgclientauf einem separaten Prozessor
konfiguriert). Das Abschneiden der unterschiedlichen Strategien in den verschiedenen Situationen
wollen wir nicht genauer betrachten, da sie nur Teilaspekte berücksichtigen. Die Messungen sol-
len im wesentlichen die Einsatzfähigkeit des Lastbalancierungsprototyps belegen und ihn damit
für zukünftige Realisierungen des HiCon-Konzeptes qualifizieren. Wichtig ist uns die Abschät-
zung, inwiefern die zentrale Balancierungskomponente in der Lage ist, auch bei relativ feinem
Auftragsgranulat den Durchsatz bei Erhöhung der Parallelität zu steigern ohne selbst ein Engpaß
zu werden. Ein optimalerSpeedup ist bei Operationen auf gemeinsamen Daten durch die resultie-
renden Reihenfolgeabhängigkeiten, Konsistenzbedingungen und Kommunikationskosten (die
Grenzen der Parallelisierung) ohnehin nicht erreichbar. Deshalb verzichten wir an dieser Stelle
auch auf genauere Auswertungen und auf Optimierung der Beispielanwendung bzw. der Balan-
cierungsvarianten.

Instanzen
je Klasse

statische
Balancierung

dynamische
Balancierung

Laufzeit
 [sec]

Instanzenverhalten [msec] Engpaß

busy context idle

1 gleichgültig
gleichgültig

(Round Robin)
127.5

156 0 0
gfind.0

4 0 40

2

Data
Distribution

Run Queue Length 105.7
213 22 44

gfind.0
4 61 30

Data Locality 109.8
212 0 41

gfind.1
* 4 2 31

None Round Robin 124.1
209 # 18 92

greach.0-1
4 86 2

Data
Distribution

Instance Queue
Length

127.3
213 23 107

greach.0-1
4 86 2

Round Robin 131.4
215 21 79

greach.0-1
4 85 2

3

Data
Distribution

Data Locality 98.7
230 0 + 81

gfind.1-2
* 4 2 23

Run Queue Length 132.1
227 49 231

greach.0
5 84 32

Instance Queue
Length

155.0
266 47 316

greach.0-2
4 156 2

None Round Robin 157.1
227 38 284

greach.0-2
4 157 3

Data
Distribution

Round Robin 164.0
261 41 232

greach.0-2
4 157 3

# die Kontextwartezeiten entstanden nur bei Instanz 1
+ Wartezeiten entstanden nur bei Instanz 0

* nur Instanz 0 wurde genutzt
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3.2.6  Ausblick

Zur Einschätzung des Anwendungsspektrums, für welches das vorgestellte Modell zur dynami-
schen Lastbalancierung geeignet ist, sind sicherlich noch weitere Applikationen zu untersuchen.
Der nächste Schritt zur Realisierung des bisher entwickelten Balancierungsverfahrens besteht in
der Kombination der oben betrachteten Einzelmethoden, wobei die Schwierigkeit vor allem in der
geeigneten Gewichtung der diversen Größen zueinander liegt. Als weitere Schritte stehen die
genaue Definition und Realisierung der Balancierungshierarchie (siehe Kapitel 2.4) sowie die
Konkretisierung der Planungskomponente für Auftragsgruppen (siehe Kapitel 2.3.3) an. Von wei-
tergehender Optimierung unseres Prototyps wie etwaigen Verkürzungen von Nachrichtenwegen
oder der Nutzung niedrigerer Software-Ebenen sehen wir derzeit ab. Stattdessen werden wir tie-
fergehende Untersuchungen prinzipieller Design-Alternativen genauer erwägen: die Einführung
einer Balancierungsinstanz je Serverklasse verspricht Vereinfachungen im Modell, bereitet jedoch
Schwierigkeiten bei auftragsübergreifender Einplanung. Ebenso ist eine inhaltliche Dezentralisie-
rung der Komponente, wie etwa die lokale Zuweisung kurzer, unwichtiger oder vom Profil her
unbekannter Aufträge zu erwägen. Schließlich ist das derzeit gewählte Programmiermodell in sei-
nen Vorzügen und Nachteilen mit Varianten zu vergleichen. So werden häufig (unter anderem im
Supervisor [Schiele91]) Petrinetze zur Spezifikation und Synchronisation paralleler Abläufe
bevorzugt; weiterhin kann man ‘multi-threaded’ Serverinstanzen (siehe Kapitel 2.2) in das Balan-
cierungsmodell aufnehmen oder in Anlehnung an Datenbanksysteme globale Datensätze einfüh-
ren. Schließlich läßt sich die Palette der bisher beleuchteten Lastbalancierungsfaktoren noch um
Berücksichtigung der Verzögerungen durch Datensperren oder um Beachtung des verfügbaren
Hauptspeicherplatzes bereichern.
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