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Das HiCon Projekt

1 Das HiCon Projekt

Dieser Bericht stellt einen Ansatz zur dynamischen Lastbalancierung paralleler und verteilter Pro-
gramme vor. Im ersten Kapitel wird das Projekt anhand der betrachteten Anwendungen, Rechner-
systeme und Lastbalancierungsverfahren charakterisiert. Das Balancierungsprinzip wird in
Kapitel 2 ausfuhrlich erklart, wahrend Kapitel 3 Realisierungen und Ergebnisse des Modells vor-
stellt.Kapitel 3.2.6 gibt schlie3lich eine abschliel3ende Betrachtung.

1.1 Motivation

In der Vielzahl in der Literatur existierender Untersuchungen zur Lastbalancierung zeichnen sich
einige grundsétzliche Probleme ab, von denen wir einige durch den in diesem Bericht vorgestell-
ten Ansatz bewaltigen wollen. Die Realitat stellt Lastbalancierungsverfahren vor ein bestehendes
System, dessen Struktur und Schnittstellen meist fur eine automatische Lastverteilung schlecht
geeignet sind. Es besteht kaum Information tber das zu erwartende Verhalten von Anwendungen,
Betriebssystemschnittstellen schranken die Funktionalitdt und Effizienz der Lastbalancierung ein
und zwischen den einzelnen Schichten der Software findet kein Informationsaustausch statt. Die
transparente Verteilung von Ablaufen und Daten ist ein wesentlicher Fortschritt fir Programmie-
rer, Lastbalancierungsverfahren missen jedoch um den damit verbundenen Synchronisations- und
Nachrichtenaufwand wissen.

Wir haben daher ein Verarbeitungsmodell entwickelt, das dem Programmierer transparente Ver-
teilung und Replikation paralleler Ausfihrungen und Daten in heterogenen Systemen ermdoglicht,
dem Lastbalancierungsmechanismus aber eine Kostenabschéatzung erlaubt. Die explizite Integra-
tion von Datenbestédnden im Konzept erlaubt nunmehr eine Balancierung aufgrund der drei rele-
vanten Faktoren - des Rechenaufwandes, der Datenlokalitat und des Kommunikationsbedarfs.
Unter dem Gesichtspunkt der mehrschichtigen Lastbalancierung kann der Zusammenhang zwi-
schen den Ebenen (grob differenziert etwa in Konfiguration, Auftragszuweisung, Datenverteilung
und Nachrichten-Routing) genutzt werden. Die Kontextverwaltung (siehe unten) erméglicht wei-
terhin sowohl die dynamische Migration und Replikation von Daten als auch die Migration von
Servern bzw. laufenden kooperierenden Teilausfiihrungen in heterogenen Architekturen auf einer
héheren Ebene.

Das hier vorgestellte Lastbalancierungskonzept zeichnet sich vor allem dadurch aus, dal3 es
sowohl eine vollstdndigere Menge relevanter Faktoren und Grof3en bertcksichtigt als auch einen
komplexeren Zuweisungsmechanismus benutzt. Dadurch kann eine breitere Klasse von Applika-
tionen und Systemkonfigurationen durch ein anwendungsunabhéngiges automatisches Lastbalan-
cierungsverfahren effizient betrieben werden.

An dieser Stelle wollen wir in einer kurzen Entwicklung von Lastbalancierungsverfahren zeigen,
daR in der Tat ein Bedarf an fortgeschrittenen Methoden besteht:

Primitive Balancierungsverfahren arbeiten ohne Messung des Systemverhaltens und ohne Vor-
wissen uber die Auftrage. Die wichtigsten Beispiele sind das Random- sowie das Round
Robin-Verfahren, die sich in der Realitat bewéhren (siehe etwa [Trippner92]). Sie basieren auf
der Annahme, Auftrdge und Rechner seien vollig homogen. Weitere implizite Annahmen wer-
den wir im folgenden noch sehen. Diese Verfahren versagen bereits bei einer schwankenden
Grundlast auf dem System (Mehrbenutzerbetrieb).
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Bessere Verfahren beriicksichtigen das Systemverhalten. Ublicherweise mi3t man die Run
Queue Length der Prozessoren (siehe [Ferrari86]). Sind mehr Prozessoren (bzw. Server) frei
als Auftrage anstehen, so bevorzugt man Prozessoren mit kurzer Run Queue, andernfalls gibt
man den Auftrag dem ersten Server, der sich frei meldet (erfolgreicher Einsatz waen

visor [Schiele91], auf dem dd&$iCon-Projekt aufbaut). Auch hier unterstellt man unter ande-

rem allen Auftragen denselben Aufwand. Verfahren dieser Kategorie geraten in
Schwierigkeiten, wenn man etwa datenintensive Berechnungen betrachtet. Der erhebliche Auf-
wand zum Heranschaffen der Daten bzw. die Beauftragung des dortigen Servers zerstort oft die
geplante Lastverteilung.

Zieht man aul3er der Systemlast auch noch Wissen Uber die Auftrage in Betracht, so erhalt man
gunstigere theoretische Ergebnisse. Das HiCon Modell betrachtet neben der Lange der Server-
Warteschlangen und der Sekundéarlast auch den Rechenumfang und Datenbedarf der Auftrage.
In der Praxis st6f3t man jedoch auf massive Probleme (Aufwand der Balancierung selbst, Unge-
nauigkeit der Angaben). Man ignoriert hier Reihenfolgeabh&ngigkeiten und Kommunikation
zwischen Auftragen. Diese Verfahren zeigen ihre Schwache bei Anwendungen, die nebst
Parallelitat einen kritischen sequentiellen Pfad enthalten und in Fallen intensiv kooperierender
paralleler Teilauftrage.

Balancierungsalgorithmen, die auch diese Situationen meistern, findet man in der Praxis nicht.
Jedoch existieren, vor allem im Bereich der statischen Planung (Scheduling, siehe etwa
[Ma82], [Blazewicz86], [Thomasian86], [Towsley86], [Li90] oder [Kanet91]), Ansétze flr
Teilprobleme. Hier zwingt der grol3e, exponentiell mit Auftragen und Rechnern wachsende
Balancierungs-Overhead zu sehr einfachen Heuristiken.

1.2 Anwendungsgebiete

Im HiCon Projekt untersuchen wir im wesentlichen datenintensive Berechnungen. Darunter fallen
der Bereich der Verwaltung grof3er Datenmengen (Informationssysteme) sowie Applikationen,
die umfangreiche Transformationen auf relativ stabilen, globalen Datenstrukturen durchfihren,
an. Diese Charakterisierung soll die betrachtete Doméne einerseits von DatenfluBanwendungen
abgrenzen, bei welchen man typischerweise kleine Datenmengen durch eine Reihe von Bearbei-
tungsfunktionen schleust, und andererseits von stark dialogorientierten Applikationen trennen, die
viele sehr kurze, unvermittelt auftretende Verarbeitungsschritte aufweisen.

Weiterhin sollen hauptsachlich mafige bis grobe Parallelisierungen betrachtet werden. Das
bedeutet, dal? die sequentiellen Teiloperationen sowohl einen gewissen Rechenumfang haben als
auch eine gréRere Menge von Daten bearbeiten. In unserem Umfeld ist es daher nicht das Ziel, die
maximal mogliche Parallelitat eines Problems zu nutzen; oft ist es sinnvoller, Algorithmen anzu-
wenden, die ein relativ grobes Granulat aufweisen und somit besser auf die Fahigkeiten der
betrachteten Hardware und auf die Methoden der Lastbalancierung abgestimmt sind.

Die Auswahl des Anwendungsgebietes bzw. der Algorithmenklasse hat Einflu3 auf das gewahlte
Ausfuhrungsmodell sowie auf die Klasse der zu untersuchenden Lastbalancierungsmethoden. So
sind neben der Rechenkapazitat die Verfiigbarkeit und der Lagerort von Daten relevante Faktoren.
Aufwendige, zentralisierte Ansatze zur Lastbalancierung sind erfolgversprechend.
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1.3 Die Rechnerumgebung

Heutige Rechensysteme verfiigen typischerweise tber sehr starke zentrale Rechenleistung und
vergleichsweise langsame und aufwendige Kommunikationsmdglichkeiten. Massiv parallele
Architekturen sind (Software-seitig) aul3erst schwer zu beherrschen und werden sich langfristig in
Richtung der zentralen Prozessoren mit leistungsfahiger Vektor- und Pipeline-Unterstitzung
bewegen. Diese Uberlegungen und der oben gewéhlte Fokus betrachteter Applikationen lassen es
sinnvoll erscheinen, ein Rechnermodell bestehend aus relativ wenigen, sehr starken und tber
eigene Ressourcen verfiigenden, lose gekoppelten Prozessoren zugrunde zu legen. Die Entschei-
dung fir dieses Modell schlief3t die Einbindung anderer Architekturen in HiCon nicht aus, jedoch
wird die Lastbalancierungsstruktur andere Systeme (z.B. SIMD oder Shared Memory) nicht opti-
mal nutzen.

1.4 Das Ausfuhrungsmodell

Applikationen nutzen die Parallelverarbeitung, indem der Algorithmus auf mehrere kooperie-
rende Prozesse verteilt wird. Das Granulat der Aufteilung in Teilberechnungen sowie die Koope-
rationsform zwischen diesen wird durch die jeweilige Anwendung eingeschrankt und sollte
auRerdem auf die verwendete Rechenumgebung angepalit werden.

Eine automatische Lastbalancierung bendtigt aber neben dem Wissen Uber das Verhalten der
Hardware auch Wissen Uber die Struktur und den Ablauf der Anwendungen. Wir wollen uns
bewul(3t nicht darauf beschranken, Prozesse unbekannten Verhaltens bezulglich ihrer Rechenarbeit,
des Kommunikationsverhaltens und ihrer Datenzugriffe zu balancieren. Solche Vorabschatzungen
konnen Uber die Beschreibung einzelner sequentieller Einheiten hinaus auch die Kooperations-
form, die gegenseitigen Abhangigkeiten zwischen diesen oder Ablaufhaufigkeiten der Einzelbe-
rechnungen umfassen.

Im HiCon Projekt entwickeln wir ein Programmier- und Ablaufmodell, das eine auf die Hardware
angepalite, relativ flexible Implementierung von Algorithmen erlaubt und der Lastbalancierung
entscheidende Informationen zur ginstigen Abwicklung zur Verfiigung stellen kann. Eine
Anwendung gliedert sich in Teilfunktionen, die durch je eine Serverklasse modelliert werden.
Diese Funktionen kénnen sich beliebig gegenseitig Nachrichten bzw. Aufrufe und Resultate
zusenden. Die Funktionalitat einer Serverklasse wird durch mehrere Serverinstanzen realisiert,
die als je ein Prozel3 auf einem Prozessor statisch aufgesetzt werden. Obwohl Serverinstanzen zur
Laufzeit generiert und geldscht werden kdnnen, liegt hier der Gedanke einer statischen Server-
Konfiguration zugrunde. Diese Entscheidung ergibt sich aus den auf heutigen Betriebssystemen
hohen Prozel3startkosten, aus dem relativ groben Granulat der Parallelitat (Verwendung von Klas-
sen- und Instanz-Warteschlangen; maf3volle Parallelarbeit erweist sich als effektiv) sowie aus dem
nicht zu vernachlassigenden Datenbestand der Serverinstanzen (siehe unten). Die Anzahl und
Verteilung der Serverinstanzen ist fur den Programmierer nicht sichtbar, wohl aber die Existenz
einzelner Instanzen. So kénnen Nachrichten an eine Funktion (Klasse) oder an eine spezielle
Instanz gerichtet werden (Resultatriickgabe oder stehende Verbindung zum Zwecke intensiver
Kommunikation).

Wir betrachten keine ProzelRmigration auf Betriebssystem-Ebene, obwohl dies in einigen Projek-
ten erfolgreich angewandt wird (siehe etwa [Ezzat86], [Douglis91]), da unser Lastbalancierungs-
modell zum einen fur heterogene Systeme ausgelegt ist, zwischen denen es in absehbarer Zeit
noch keinen Standard geben wird, welcher das Verschicken der Prozel3kontrollblécke sowie die
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transparente ‘Verlangerung’ von I/O-Verbindungen erlaubt; zum anderen ist Prozel3migration
hauptséachlich in Modellen mit dynamischer ProzelR3erzeugung interessant (Migrationskosten
bewegen sich in der GroRenordnung eines Prozel3starts). In Client-Server Umgebungen sind Pro-
zel3start und -stopp langerfristige Rekonfigurationsoperationen der Server-Struktur.

Durch den im folgenden vorgestellten Kontext der Serverklassen ist jedoch eine Migration auf
héherer Ebene durch ‘Sessions’ méglich (die Aufspaltung langlaufender Funktionen unter Wei-
terverwendung der Daten verlangt hier keine feste Bindung an eine Serverinstanz).

Funktionen sind im HiCon Modell nicht notwendigerweise kontextfrei, sondern jede Funktion
(Serverklasse) verflugt Uber einen statischen, lokalen Datenbestand. Der Datenbestand einer Funk-
tion kann sich aus mehreren Partitionen zusammensetzen. Hier kann der Programmierer die
daten-parallele Ausfihrung von Funktionen erméglichen, denn er kann Partitionen zum Zugriff
sperren und nach Abschlul3 eines kritischen bzw. zusammengehdrigen Abschnittes wieder freige-
ben. Die Verteilung, Duplizierung und Konsistenterhaltung der Datenpartitionen ist fur den Pro-
grammierer nicht zu sehen, sondern wird vom Laufzeitsystem unter Mitarbeit der
Lastbalancierung abgewickelt. Der - im weiteren auch mit Kontext bezeichnete - Datenbestand
einer Funktion umfal3t beliebige Datenstrukturen im Hauptspeicher und auf dem jeweils lokalen
Plattenspeicher (flichtige und nichtflichtige Daten) und wird von den Instanzen einer Klasse als
gemeinsamer Kontextspeicher betrachtet.

Das prozedurale Programmiermodell wird durch gegenseitige Aufrufe von Serverklassen unter-
stutzt, wobei die Interaktion zwischen Client und Server im Prinzip nicht auf die Aufrufparameter
und das Resultat beschrénkt ist. DaBontran bzw. im Datenbankbereich tbliche Arbeiten auf
globalen Datenstrukturen ist im HiCon Modell nur eingeschrankt mdglich: die zunehmend allge-
mein akzeptierten objektorientierten Konzepte verlangen, dal3 Datenstrukturen in Objekte gekap-
selt werden und nur Gber die dort vorhandenen Methoden (durch das Objekt) bearbeitet werden
konnen. Im HiCon Modell wird eine Datenstruktur (in Gestalt des Kontextes) durch eine Server-
klasse mit deren Aufrufinterface gekapselt. Parallelarbeit wird durch Replikation von Serverin-
stanzen erreicht, auf die auch die Daten verteilt sind.

1.5 Der Lastbalancierungsansatz - Konzept und Klassifikation

Im HiCon Projekt untersuchen wir globale zentrale Lastbalancierungsverfahren. Dabei kdnnen
die Entscheidungstrager der Balancierung durchaus in Form einer hierarchischen Struktur tber
das Rechnersystem verteilt sein. Unter den oben umrissenen Vorgaben und Bedingungen
erscheint eine Zentralstelle zur Verwaltung der Zustandsinformation und der darauf basierenden
Entscheidungsfindung sinnvoll. Um zu vermeiden, dal3 diese einen Engpal} bildet, ist eine Ein-
schrankung ihres Wirkungsbereiches notwendig. Lokale Balancierungskomponenten koordinie-
ren sich auf einer abstrakteren Ebene. Offensichtlich kann das Ziel der global optimalen
Lastverteilung in unserer Umgebung aufgrund des Aufwandes fur die Lastbalancierung selbst
nicht vollstandig erreicht werden.

Ein zentraler Balancierungsansatz ist nicht selbstverstandlich, zumal sich in der Literatur viele
erfolgversprechende dezentrale Verfahren finden (siehe etwa [Barak85], [Eager85], [Eager86],
[Hsu86], [Lin87], [Kale88], [Cybenko89], [Hosseini90] und [Kuchen90]). Im MIMD-Bereich
werden Nachrichten durch schnell wachsende lokale Prozessorleistung und sehr beschrankt stei-
gende Kommunikationsgeschwindigkeit immer teurer. Das erfordert eine eher grobgranulare
Parallelisierung der Anwendungen. Bei der Balancierung groéf3erer Einheiten lohnt es sich jedoch,
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genauere Informationen Uber Auftrage und Systemzustand einzusetzen, was durch einen (logisch)
zentralisierten Ansatz ermdglicht wird (siehe auch Kapitel 2.4).

Fur SIMD-Systeme sowie Vektor- und Pipeline-Einheiten ist automatische dynamische Lastba-
lancierung weniger relevant, da man weder Mehrbenutzerbetrieb noch funktionale Parallelitat
beobachtet. Die auftretende massive Datenparallelitat wird derzeit am besten durch einfache, sta-
tische Algorithmen balanciert.

Die Aufgabe der Lastbalancierung besteht im wesentlichen darin, Teilaufgaben bestimmten
Instanzen zur Ausfiihrung zuzuordnen. Die Verteilung von Daten steht nicht unter dem unmittel-
baren Zugriff der Balancierung, wird aber bei der Zuweisungsentscheidung bertcksichtigt und
damit durch die Plazierung der Teilaufgaben in vorhersehbarer Weise beeinfluf3t (siehe Kapitel
3.2.2). Die zu balancierenden Objekte sind hier sowohl einzelne Aufrufe zwischen Servern als
auch ganze Gruppen von Aufrufen, d.h. die Ausfihrung komplexer Funktionen.

Das Optimierungskriterium der Lastbalancierung ist die im Mittel méglichst schnelle Ausfiihrung
(Antwortzeit) aller im System ablaufenden Auftrage. Das bedeutet, dal3 ein neuer Auftrag nicht
isoliert betrachtet wird, sondern so in das aktuelle Systemgeschehen eingebunden wird, dal3 seine
Laufzeit einschlief3lich der Laufzeitzunahme der tbrigen Auftrége kleinstmdglich ausfallt (soziale
Lastbalancierung). Bei der Balancierung von Auftragsgruppen wird lediglich die Antwortzeit des
Hauptauftrages minimiert, da die anderen zugehorigen Teilaufgaben als Unterauftrdge angesehen
werden, deren einzelne Laufzeit nicht interessiert (die Ausfiihrung der Unterauftrage wird also

auf schnellstmogliche Bearbeitungszeit des Hauptauftrages ausgeleqgt).

Das Balancierungsverfahren agiert dynamisch, d.h. mif3t zur Laufzeit Ressourcenbelastung und
Antwortzeitverhalten bericksichtigt diese im weiteren Vorgehen. Wir denken befassen uns hinge-
gen weniger mit adaptiven Verfahren, die aufgrund von Laufzeitauswertungen dynamisch ihre
Balancierungsstrategie (d.h. nicht nur die Parameter der Entscheidungsfunktion sondern den
Algorithmus selbst) dndern. Die Grenzen dieser Aufgliederung sind jedoch flieRend.

1.6 Literaturiiberblick

Wegen der Vielzahl veroéffentlichter Studien zur Lastbalancierung im weiten Sinne beschranken
wir uns auf komplexere zentrale Verfahren im Bereich datenintensiver Anwendungen. FUr eine
allgemeinere Einfuhrung sei auf [Becker92], [Casavant88] oder [He89] verwiesen.

Yu, Balsamo, Ciciani, Dias, Lee und Leff stellen in [Yu86], [Ciciani88] und [Yu91] Verfahren vor,
um Transaktionen an verteilte Datenbank-Server zuzuweisen. Die eigentliche Datenzugriffe wer-
den vom Server am Ort der Daten durchgefiihrt. Lastbalancierung besteht hier in der Abwéagung
zwischen Ausnutzung der Rechenkapazitaten und dem Aufwand fir Remote-Datenzugriffe.

Copeland, Alexander, Boughter und Keller [Copeland88] betrachten die Partitionierung und Ver-
teilung von Daten Uber Platten in Anwendungen mit exzessiven Datenzugriffen. Sie gehen davon
aus, dald Operationen direkt am Ort der Daten durchzufiihren sind. Gavish und Sheng [Gavish90]
geben einen Uberblick diverser Datei-Allokationsverfahren.

Varadarajan und Ma [Varadarajan88] untersuchen Datei-Migration in verteilten Datenbanken.
Anhand der Datenverteilung und Zugriffsmuster wird erwogen, ob Datenmigration oder Ausfiih-
rung des Auftrages am Ort der Daten gunstiger ist. Dabei werden Daten nur zwischen und Auf-
trdge nur innerhalb von Regionen bewegt. Innerhalb einer Region wird der Auftrag bzw. der
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Datenzugriff am Ort der Daten durchgefiihrt. Optimierungskriterium ist die Minimierung der
Migrationskosten, wobei die Ausfihrungszeiten ein Zeitlimit einhalten mussen.

Smith beschreibt in [Smith80] ein komplexes Verfahren der Interaktion zwischen Clienten und
Servern zur optimalen Lastverteilung. Es ist eine Variante des allgemeinen Bidding-Ansatzes
(siehe [He89], Kapitel 2.2.A und 2.2.B).

Thomasian [Thomasian86] analysiert den Verlauf von Anwendungen, die durch Ressourcenbe-
darf und Reihenfolgebeziehungen charakterisiert werden, auf dem Modell eines verteilten Rech-
nersystems anhand des Queueing Network Ansatzes.

2 Die Lastbalancierung im HiCon Modell

Dieses Kapitel gibt eine detaillierte Beschreibung der Struktur und Funktionsweise des im HiCon
Projekt entwickelten Lastbalancierungsverfahrens.

2.1 Auftragsbeschreibung

Ohne eine statische Voreinschéatzung des Verhaltens eines Auftrages mul3 die Lastbalancierungss-
trategie ein festes Standardprofil fur alle Auftrage annehmen, was oft zu gravierenden Fehlent-
scheidungen fuhrt. Dennoch begnigen sich nahezu alle bekannten Verfahren damit, weil in den
meisten Anwendungen keine exakten Vorhersagen Uber das Laufzeitverhalten méglich sind; sie
hangen stark von aktuellen Laufzeitdaten ab. Statische Profile werden vor allem in Scheduling-
Verfahren fir Produktionsplanung und Batch-Betrieb verwendet. Fir dynamische Lastbalancie-
rung sollte das Profil eines Auftrages so spat wie mdglich, d.h. erst unmittelbar bei seiner Zuwei-
sung, festgestellt und genutzt werden. Zu diesem Zeitpunkt sind relative verlafiliche
Abschatzungen Uber die Ressourcenbedirfnisse moaglich. Im HiCon Modell kann ein Aufrufer
beim Versenden eines Unterauftrags das Profil durch folgende GréRen charakterisieren:

» Ein Mal fur die bendtigte CPU-Rechenzeit sowie die Anzahl der notwendigen Plattenzugriffe.
Unser Modell kennt dazu keine weiteren Aufgliederungen, da eine Serverinstanz auf einem
Prozessor arbeitet, nicht migriert und ausschlief3lich auf lokale Platten zugreift. Eine explizite
Unterscheidung zwischen mehreren lokalen Platten wurde unterlassen, da solche auf langere
Sicht in Form von Disk-Arrays als eine logische Platte organisiert werden.

Anhand dieser beiden Grol3en kann man neben absoluten Laufzeitabschatzungen anhand des
Verhéltnisses zwischen Rechenzeit und Zugriffswartezeit auch die Auslastung der Platte sowie

die prozentuale Prozessorauslastung bestimmen. Dabei sind allerdings noch synchronisations-
bedingte Wartezeiten zu beachten.

* Eine nach lesendem und &nderndem Zugriff differenzierte Auflistung der angefal3ten Daten-
satze. Wahrend es in einer allgemeinen Programmierumgebung nahezu unmdéglich ist, dies in
einheitlicher Form zu beschreiben, kdnnen diese Angaben im HiCon Modell relativ einfach
ermittelt werden, da jede Serverklasse Uber einen eigenen Datenbestand verfugt und nur auf
diesen zugreift (siehe Kapitel 1.4). Der Datensatz einer Klasse ist in eine ‘Uberschaubare’
Anzahl von Partitionen aufgeteilt, die einzeln spezifiziert werden kdnnen und gleichzeitig im
Ausfuhrungsmodell die Einheiten der Kontextsynchronisation darstellen. Die Betrachtung ein-
zelner Partitionen setzt ein relativ grobes Granulat voraus, bei feinerer Aufspaltung der Daten
sind statistische Angaben sinnvoller.
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» Eine Abschatzung der Unterauftrage, die wahrend der Auftragsbearbeitung entstehen werden.
Dabei ist nicht allein interessant, wieviel Aufrufe an welche Serverklassen gehen, sondern
auch die zeitliche Verteilung der Unteraufrufe und die zu erwartenden Profile. Bei synchronen
Unteraufrufen ist die dadurch entstehende Abhangigkeit zu vermerken.

» Die Genauigkeit bzw. Sicherheit der statischen Vorabschatzung. Das ermdglicht der Lastbalan-
cierung, die Profile entsprechend ihrer Relevanz zu berucksichtigen (siehe Kapitel 2.3).

Aufgrund dieser Angaben kann der Balancierungsmechanismus Zuweisungsentscheidungen tref-
fen.

Eigentlich sollte nicht der Aufrufer (Client), sondern der aufgerufene Server diese Vorabschétzun-
gen an die Lastbalancierung liefern, denn fr ihn ist es leichter, aus den aktuellen Aufrufparame-
tern den vermutlichen Bearbeitungsaufwand zu ersehen. Zum Aufrufzeitpunkt steht die
Serverinstanz jedoch noch nicht fest, sodaf3 in einer Art Ausschreibung alle Instanzen befragt
werden mufdten. Das ist ein erheblicher Zeit- und Nachrichtenaufwand (siehe etwa [Smith80]).

Mit den oben vorgestellten Gréf3en lassen sich Reihenfolgebeziehungen oder Schleifen (Wieder-
holungen) innerhalb eines Aufrufes nur schlecht ausdricken. Solche Angaben mussen jeweils fur
ganze Auftragsgruppen spezifiziert werden. Beziehungen zwischen Auftragen kénnen sehr
wesentlich sein und werden daher im HiCon Modell berticksichtigt:

» Zu einem Auftrag kbnnen die bei der Abarbeitung involvierten Unterauftrage in Form einer
Menge von Teilauftrdgen angegeben werden. Wir verwenden im HiCon Modell jedoch keine
hierarchische Aufrufkette sondern eine ‘flache’ Menge kooperierender Teilauftrage. Zu jedem
Teilauftrag wird daher die Intensitat der Kooperation (die Anzahl und Haufigkeit der Nachrich-
ten) zwischen den verschiedenen Teilauftrdgen sowie die entstehende Parallelitat abgeschéatzt.
Zusatzlich kénnen Reihenfolgeabhangigkeiten zwischen den Teilauftrdgen spezifiziert werden.
All diese Angaben sind abgekoppelt von der tatsachlichen Synchronisation durch die Serverin-
stanzen zur Laufzeit; es sind lediglich Vermutungen, welche die Lastbalancierung unterstitzen.

Offensichtlich eignet sich diese Beschreibungsform nicht fur jede Struktur und jedes Granulat
in parallelen und verteilten Algorithmen. An dieser Stelle fehlt uns bislang die notwendige
Vielfalt an realisierten Anwendungen, sodald wir die Profilangaben zunachst auf die Bedurf-
nisse des Balancierungsverfahrens zugeschnitten haben.

Eine Beschreibung von Auftragsgruppen kann zur Laufzeit vor Absendung der einzelnen Auf-
trage geschehen. Daraufhin reserviert der Balancierungsalgorithmus entsprechende Kapazitaten
(Rekonfiguration der Serverinstanzen) und nimmt eine vorlaufige grobe Zuweisung der Einzel-
auftrage vor. Oft wird auf die Information Gber Abhangigkeiten, Kooperation und Parallelitat
innerhalb von Auftragsgruppen verzichtet, um die Komplexitat und die Selbstkosten der Balan-
cierung gering zu halten. Diese Angaben sind ohnehin nur wertvoll, wenn sie eine gewisse
Genauigkeit und Wahrscheinlichkeit aufweisen.

2.2 Lastmessung

Dynamische Lastbalancierungsverfahren messen zur Laufzeit die Auslastung ihrer Ressourcen
(Prozessoren, Platten und Verbindungsnetze bzw. -Busse) und benutzen diese Information zur
Umverteilung laufender, zur Zuweisung neuer Auftrage und zur Verteilung der Daten. Im HiCon
Modell werden prinzipiell keine in Bearbeitung befindlichen Auftrage mehr migriert und Daten
werden implizit durch Auftragszuweisung verschoben (diskutiert in Kapitel 1.4).
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Fur die Lastbalancierung ist weder die maximale Leistung einer Ressource noch die Systemlast
von primarem Interesse, sondern die Zeit, die eine Instruktion (bzw. eine Nachricht, eine 1/O) der-
zeit auf der Ressource in Anspruch nehmen wurde.

Der Aufwand zur Messung des aktuellen Zustandes wahrend des laufenden Betriebes ist eine
Zusatzbelastung sowohl fiir die Ressourcen als auch fur den zentralen Balancierungsagenten,
sodald man sich auf die notwendigen Messungen beschranken muf3. So verzichten wir etwa
bewul3t auf die Messung der durch einzelne Serverinstanzen induzierten Ressourcenbelastung
(Lastmessung einzelner Prozesse). Ublicherweise wird die Zahl der ausfilhrbaren Prozesse auf
einem Prozessor (Run Queue Length) als einzig entscheidender Lastfaktor angesehen (siehe [Fer-
rari86]), wahrend die ‘CPU Busy Time’, die Plattencontrollerauslastung sowie die Belastung des
Netzwerkes fur dynamische Lastbalancierung weniger relevant scheint: Fir eine Lastbalancie-
rungsentscheidung ist die Leistung interessant, die ein Prozessor dem neuen Auftrag zur Verfi-
gung stellen kann (beachte dabei das Konzept der sozialen Lastbalancierung, Kapitel 3.2.1). Bei
CPU-gebundenen Auftragen kann man dazu die Prozessorleistung durch die Anzahl der aktiven
Auftrage (Run Queue Length) dividieren.

Ublicherweise lauft auf jedem Prozessor ein MessprozeR, der den lokalen Systemzustand peri-
odisch zum Lastbalancierer sendet. Um das Nachrichtenaufkommen zu minimieren sendet er nur
im Falle einer signifikanten Lastdnderung. Alternativ ist denkbar, dald die Serverinstanzen jeder
Nachricht lokale Lastinformationen beifiigen, was aber komplexer ist und starke Schwankung der
Messintervalllange zur Folge hat.

Im HiCon Modell verfigen wir tber eine relativ statische Konfiguration von ‘single threaded’
Serverinstanzen, sodal’ deren aktueller Arbeitszustand zu beriicksichtigen ist. Auftrage erzeugen
weder einen neuen Prozel3 noch einen neuen Thread, sondern werden einer Serverinstanz zuge-
wiesen, die ihn bearbeitet, sobald sie ihren derzeitigen und alle schon in ihrer Warteschlange
befindlichen Auftrage erledigt hat. Der Zustand einer Serverinstanz hangt mit der aktuellen und
zu erwartenden Prozessor- und Plattenauslastung zusammen, wird aber getrennt aufgenommen
und versandt. Die Ressourcen-Lastmessung dient hier zur Korrektur der vom Lastbalancierer aus
dem Anwendungsprofil vermuteten Auslastungen.

Jede Serverklasse hat einen Kontext, der in Partitionen auf die Instanzen verteilt ist und zur Lauf-
zeit durch Zugriffsanforderungen zwischen den Instanzen ausgetauscht und kopiert wird. Der
aktuelle Lagerort der Kontextpartitionen stellt damit eine weitere dynamische Systemzustandsbe-
schreibung dar. Da im derzeitigen Modell alle Nachrichten den Lastbalancierer passieren, ist die
Balancierungsinstanz stets tber die aktuelle Datenverteilung informiert; es sind keine zusatzli-
chen Nachrichten zur Ubermittlung der Instanzenzustiande oder der Kontextlokationen notwen-
dig.

2.3 Die Planungs- und Zuweisungsstrategie

Im HiCon Projekt geschieht Lastbalancierung bislang in Form eines zentralen Prozesses, der
sowohl die Zuweisung (Ort und Zeitpunkt) als auch die Einplanung von Auftragsgruppen (Server-
Konfiguration, Reservierung) durchfiihrt. Dieser Prozel3 soll spéater physisch verteilt werden
(siehe Kapitel 2.4). Der Lastbalancierer hat einen Eingangspuffer in welchen er neu entstandene
Auftrage, Ergebnisse und Kontextverschiebungen gesendet bekommt. Darunter laufen auch Mit-
teilungen Uber den aktuellen Systemzustand ein. Anhand seines Systemfahrplanes (siehe unten)
schatzt er die Eignung der verfligbaren Serverinstanzen zur Ubernahme des Auftrages ab. Der
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Auftrag wird daraufhin in den Puffer der Serverklasse abgelegt, wo er verbleibt bis er an eine Ser-
verinstanz verschickt wird. Ein neuer Auftrag muf3 nicht unmittelbar fest an eine Instanz vergeben
werden, braucht andererseits aber auch nicht zu warten, bis die gewtinschte Serverinstanz frei
wird. Die Serverinstanzen verwalten einen Puffer anstehender Auftrage, den sie sequentiell abar-
beiten. Die Prozel3struktur einer Anwendung ist im folgenden Bild noch einmal veranschaulicht.

Server-Aufruf

Serverklasse

Das haufig praktizierte Verfahren, bei dem sich ein Server frei meldet und daraufhin einen neuen
Auftrag bekommt, hat den Vorteil, dal? die endgultige Festlegung der Serverinstanz so spat als
maoglich stattfindet, bringt aber das Problem mit sich, dal? die Serverinstanz nach Abarbeitung des
Auftrages stets solange Leerlauf hat, bis die Lastbalancierung mit Sendung eines weiteren Auftra-
ges reagiert. Das ist nur ertraglich, solange auf jedem Prozessor standig mehrere Auftréage parallel
bearbeitet werden, da diese in der Wartezeit der einen Instanz die Knotenleistung nutzen kdnnen.
In jedem Falle muif3te der Lastbalancierer die Leerlaufzeiten beriicksichtigen.

Die Warteschlangen an den einzelnen Instanzen bieten weiterhin die Moglichkeit, Auftrage grup-
penweise zu behandeln. Der Lastbalancierer kann jeweils einen Puffer voll von Auftrégen am
Stlick an eine Serverinstanz senden. Diese Optimierung wird oft bei hoher Parallelitdt und feinem
Auftragsgranulat verwendet (siehe etwa [Schiele91]), wenn die Nachrichtenkosten sowie der Ver-
waltungsaufwand pro Auftrag durch den zentralen Scheduling-Prozel3 relativ hoch sind. Es ist
offensichtlich eine Vergréberung des von der Anwendung vorgegebenen Granulats. Da im HiCon
Konzept das Granulat vollstandig dem Anwender tberlassen bleibt, wird diese Optimierung der-
zeit nicht angewandt.

Zentrale Klassen-Auftragswarteschlangen ermoglichen es dem Lastbalancierer, die Parallelitat zu
kontrollieren: Rekursive Anwendungen erzeugen oft eine exponentiell wachsende Anzahl parallel
ablauffahiger Auftrage. Die Bereitstellung bzw. dynamische Erzeugung einer entsprechenden
Anzahl von Serverinstanzen ware ineffizient und unrealistisch (grof3er Prozel3wechselaufwand,
Hauptspeicheriiberlastung/Swapping, Nachrichtenfluten, Uberlastung des Lastbalancierers). Die
sofortige Zuweisung entstehender Auftrage an Instanzen fihrt zu langen lokalen Warteschlangen,
was dem Balancierungsprinzip der mdglichst spaten Zuweisung widerspricht. Bis namlich der
Auftrag zur Bearbeitung an die Reihe kommt, ist die Instanz evtl. nicht mehr optimal fur ihn.

Der Lastbalancierungsmechanismus benutzt eine Tabelle (Systemfahrplan), um die Systembela-
stung durch laufende und geplante Auftradge zu verwalten. Das Hauptproblem einer zentralen
Datenbasis besteht darin, die unterschiedlichen, aber nicht unabhangigen Objekte wie Auftrage,
Serverinstanzen, Datenbestdnde und Ressourcen geeignet darzustellen sowie die verschiedenen
Zustandsubergange wie Zeitintervalle, Auftragsbearbeitungsdurchlauf und logische Reihenfolge-
abhéangigkeiten moglichst auf eine Achse abzubilden.
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Im HiCon Modell basiert der Systemfahrplan primar auf den Dimensionen Server, Ressourcen
und Auftragen (siehe Bild).

Auftrag (Nr. 1406):
vorauss. noch 45000 msec aktiv
Instanz 1 Instanz 2 erzeugt 80% CPU-Auslastung,

A 2% Disk-Auslastung
uftrag Auftrag Auftrag 1% Last Kanal-K
(Kooperation mit 1388)
Lesezugriff auf Partitionen 1-6

keine abhangigen Folgeauftrdge

Klasse A

Instanz 1 Instanz 2 Stanz
w
@ Auftrag Auftrag Auftrag
3
~
Prozessor P Prozessor Q Prozessor R Prozessor S
2t b | R | BB | e i

Fur jede Serverinstanz gibt es eine Liste von anstehenden Auftragen, versehen mit einer Beschrei-
bung ihrer verursachten Last. Dabei ist zu unterscheiden, ob der Auftrag bereits an eine Serverin-
stanz abgeschickt wurde, d.h. in deren Warteschlange liegt, ob er noch in der zentralen
Warteschlange steht oder ob er lediglich eingeplant ist. Im dritten Fall kann es passieren, dal3 die-
ser Auftrag nie Wirklichkeit wird, oder aber daf} er mit anderen Lastparametern entsteht.

Man beachte, dalf3 sich die Serverinstanzen in unserem Modell nicht notwendigerweise beim Last-
balancierer zurickmelden, wenn sie einen Auftrag abgeschlossen haben (Resultatsendungen wer-
den vom Lastbalancierer identifiziert, genaueres siehe Kapitel 3.2.1). Vielmehr beginnen sie
unmittelbar mit der Bearbeitung des nachsten Auftrages in ihrer Warteschlange. Dieser Ablauf ist
notwendig, da ein zentraler Lastbalancierer ansonsten eine grol3e Leerlaufzeitspanne verursachen
wurde. Serverinstanzen kénnen jedoch dem Balancierer am Ende einer Bearbeitung eine freiwil-
lige Zustandsmitteilung senden.

Genaue Vorab-Informationen sind nur fur gréRere Auftrage sinnvoll. Zukunftig eventuell auftre-
tende Auftrage (im Rahmen der Vorplanung einer Auftragsgruppe) werden tberhaupt nur einge-
tragen, falls sie eine MindestgrofRe und eine Mindestsicherheit an geschatztem Bedarf aufweisen
oder eine Reihenfolge-Vorbedingung fur andere, eingetragene Auftrage sind.

Fur die Bewertungsfunktion (siehe unten) der Lastbalancierungsstrategie ist es sinnvoll, die durch
laufende Auftrage hervorgerufene Auslastung pro Ressource aufzuaddieren. Das erlaubt weiter-
hin eine Korrektur (Neuskalierung) der Lastangaben von Auftrage durch Messungen, die in unse-
rem Modell auf Ressourcenebene durchgefiihrt werden. Die Lastmessung einzelner Prozesse
wurde zu einer erheblichen Grundlast auf dem System fihren.

Im HiCon Lastbalancierungscerfahren unterscheiden wir drei Vorgange (Balancierungsebenen),
die Einplanung von Auftragsgruppen, die Zuweisung einzelner Auftrage und die Verteilung von
Datensatzen.
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2.3.1 Die Ebene der Auftragsplazierung

Jeder Aufruf, den eine Serverinstanz an eine Serverklasse durchftihrt, wird vom Lastbalancie-
rungssystem einer bestimmten Instanz zugewiesen. In der hier vorgestellten Version wird jede
Nachricht Gber die zentrale Balancierungskomponente abgewickelt. Das ist offensichtlich fur
grol3e Mengen kleiner Auftrdge nicht sinnvoll, da dort die zentrale Komponente tberlastet wird
und jede Nachricht allein durch die Zwischenstation die doppelte Laufzeit benétigt. Der Last-
balancierer kénnte in solchen Fallen im Rahmen der statischen Vorplanung (siehe unten) fein-
kornige Auftrage zur dezentralen Balancierung freigeben. Daraufhin vergibt der Aufrufende

die Auftrage nach einem einfachen Verteilungsverfahren direkt an die Instanzen der Klasse.
Man beachte, dal3 dazu Verbindungen zwischen allen Instanzen der beteiligten Klassen beste-
hen mussen. Fur grofRe Systeme wird der Balancierer hierarchisch verteilt (Kapitel 2.4).

Der zentrale Balancierer reiht den ankommenden Auftrag zunachst in die Warteschlange der
Zielklasse ein. Dort befinden sich alle Auftrage fur diese Serverklasse, bis sie fest einer Instanz
zugewiesen und dorthin abgesandt werden. Der Zeitpunkt der Zuweisung ist beliebig (wie
oben besprochen), er kann durch die Ankunft eines neuen Auftrages, durch die Zustandsénde-
rung einer Serverinstanz oder durch eilegneoutangestof3en werden.

Jeder Auftrag in der Warteschlange bekommt (vorlaufig bei seiner Ankunft) eine Bewertung,
welche Instanz zu seiner Bearbeitung in welchem Mal3e geeignet ist. Diese Bewertungsfunk-
tion wird unten genauer erlautert. Der Balancierungsmechanismus versucht, die Klassen-Auf-
tragsschlange beginnend beim altesten Auftrag abzuarbeiten. Er weist den Auftrag einer
Serverinstanz zu, sobald er sicher ist, dal3 sie aus derzeitiger Sicht den Auftrag am ‘besten’
bearbeitet. Dabei ist im Prinzip die Antwortzeit unter der momentan verfiigbaren Rechenlei-
stung entscheidend. Die genaue Bewertungsfunktion wird unten erlautert. ‘Sicher sein’ bedeu-
tet, ausreichend genaue Angaben zu haben, dal3 die Instanz innerhalb eines Toleranzbereiches
die bestgeeignete ist.

Das Verfahren verlangt einen Kompromif3 zwischen moéglichst spater Zuweisung und mog-
lichst geringer Verzogerung zwischen Aufruf und Beginn der Bearbeitung. Die verfrihte Bin-
dung eines Auftrages an eine Instanz kann dazu fuhren, daf? diese Instanz, bis sie tatsachlich
mit der Abarbeitung dieses Auftrages beginnt, nicht mehr optimal ist. Verzégert man die
Zuweisung lange (im Extremfall verbleibt der Auftrag in der zentralen Warteschlange bis die
bevorzugte Instanz frei ist), so haben die Server zwischen zwei Bearbeitungen viel Leerlauf. Es
verlangt auRerdem sehr zuverlassiges Wissen tber Auftrag und Instanzenzustand, will man
freie Instanzen verschmahen, um weiter auf die optimale zu warten.

Die Fahigkeit zur Migration laufender Auftrage erlaubt es, Auftrage mit relativ geringer Vor-
planung zuzuweisen und Fehlplanungen spater durch Migration zu korrigieren. Das wirde obi-
ges Problem entschéarfen; Auftragsmigration wird jedoch im HiCon Modell nicht unterstitzt,

da sie in heterogenen Systemen sehr aufwendig ist und durch die Kontextverwaltung innerhalb
von Serverklassen auf einer héheren Ebene vollzogen werden kann (feineres Auftragsgranulat
mit kontextsensitiven Server-Aufrufen).

Die Bewertungsfunktion bestimmt fir einen gegebenen Auftrag und eine zur Bearbeitung in
Frage kommende Serverinstanz, wie geeignet die Instanz sein wird, den Auftrag abzuwickeln.
Als Kriterium gilt hier zweifellos die minimale Antwortzeit, man muf3 jedoch unterscheiden,

ob die Lastbalancierung den Auftrag isoliert betrachtet oder die Gesamtheit der unter ihrer
Regie laufenden Auftrage berlcksichtigt (soziale Balancierung). Im ersten Fall liefert die
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Bewertungsfunktion die vermutete Antwortzeit flr diese Instanz zuriick, im zweiten Fall eine
Linearkombination der Antwortzeit auf dieser Instanz und der dabei entstehenden Verzégerun-
gen, die anderen Auftragen durch Benutzung derselben Ressourcen entstehen (wir sprechen
hier noch nicht von Reihenfolgeabhangigkeiten). Die Summanden kénnen nach der Prioritéat
der Auftrage gewichtet werden.

Im HiCon Modell betrachten wir soziale Lastbalancierungsansatze, denn nur diese garantieren,
dal bereits zugewiesene Auftrage weiterhin einen gewissen Ressourcenanteil erhalten und
nicht zugunsten neu ankommender Auftrage beliebig ‘ausgebremst’ werden. Der Systemfahr-
plan ist dahingehend ausgelegt, die Bewertungsfunktion mit geringem Aufwand durchfihren
zu koénnen: wir addieren die vermutete neue Last zur jeweiligen Ressourcenlast. Bei Uberla-
stung (Lasteintrag ubersteigt 100%) werden die betroffenen Auftradge entsprechend abgebremst
und dieser Zeitverzug in der Bewertungsfunktion berticksichtigt. Selbstverstandlich modifiziert
die Bewertungsfunktion den Systemfahrplan nicht wirklich.

Der Aufwand zur Bewertung eines Auftrages steigt linear mit der Instanzenzahl der Server-
klasse und bei hoher Auslastung im Extremfall linear mit der Anzahl der in Arbeit befindlichen
Auftrage, wachst aber nicht exponentiell mit den Skalierungsfaktoren paralleler Systeme (Res-
sourcen und Auftrage). Die Abschatzung gilt fir die Einplanung einzelner Auftrage; die
Behandlung von Auftragsgruppen wird unten detailliert untersucht.

Der Zuweisungszeitpunkt ist im Prinzip unabh&ngig von der Ankunft eines neuen Auftrages
oder der Freimeldung einer Serverinstanz. Dennoch geben diese Ereignisse AnlaR, die Auf-
tragswarteschlange der Klasse daraufhin zu Gberprifen, ob nun Auftrage fest an eine Instanz
gebunden werden kdnnen. Unter der Voraussetzung, dal3 sowohl der geschatzte Ressourcenbe-
darf eines Auftrages als auch der Zustand einer Serverinstanz mit Ungenauigkeiten behaftet
sind, wird der Auftrag zugewiesen, sobald der Balancierer eine Instanz findet, deren restliche
Beschaftigungsdauer ein gewisses Maximum nicht Gberschreitet und im Rahmen der Ungenau-
igkeiten die fur den Auftrag Bestgeeignete sein kann. Durch diese Strategie nutzen wir die Vor-
teile der spaten Zuweisung (eine zentrale Warteschlange wird oft als die ideale
Lastbalancierungstechnik betrachtet) als auch die ununterbrochene Auslastung des Systems
durch nichtleere lokale Warteschlangen bei den Instanzen.

Der ideale Zuweisungszeitpunkt muf3 also nicht mit der Ankunft weiterer Auftrage oder der
expliziten Zustandsédnderungsmeldung einer Instanz zusammenfallen. Der Balancierer hat im
Systemfahrplan Abschatzungen Uber den Verlauf der Bearbeitung, sodal’ er den Zeitpunkt vor-
bestimmen kann, an dem ein Auftrag an eine bestimmte Instanz zu vergeben ist (sofern keine
abweichenden Informationen aus dem laufenden Betrieb gemeldet werden). Das laf3t sich bei-
spielsweise durchimeoutgealisieren. Im HiCon System beschranken wir uns vorerst auf ein
einfaches Verfahren: bei Ankunft eines Auftrags, Zustandsanderung einer Instanz oder wenn
fur eine Serverklasse eine Zeit lang keine Anderungen eintraten, wird grundsatzlich eine Auf-
tragszuweisung der vorratigen Auftrage versucht.

Bei Sender-initilerten Lastbalancierungstechniken versucht der Empfanger eines Auftrags bei
Uberlastung einen Teil seiner Biirde an minderbelastete Instanzen abzugeben, in etwas allge-
meineren Verfahren gibt er Auftrage an Nachbarn ab, sobald er feststellt, dal? sie weniger bela-
stet ist als er. Bei Empfanger-initilerten Strategien Ubernimmt ein Server, wenn er einen
Auftrag erledigt hat und andere hoher belastet sind, Auftrdge von Nachbarn. Man kann diese
Verfahren leider nicht unmittelbar mit dem des HiCon Modells verglichen, da sie dezentral

sind.
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2.3.2 Die Ebene der Datenverteilung

Obwohl der vorgestellte Balancierungsalgorithmus nur die Verteilung der Funktionsausfihrun-
gen direkt beeinfluf3t, berticksichtigt und steuert er indirekt den Ort und die Verteilung der
bendtigten Kontextdaten. Der Lastbalancierung bleiben auf der Datenebene zwei Freiheiten:
Wenn eine Instanz eine Daten-Partition lesen mdchte, so kann sie eine Kopie erhalten (das ist
der Normalfall) oder aber das Original. Das ist vorteilhaft, wenn die Wahrscheinlichkeit far
einen nachfolgenden Schreibzugriff hoch ist. Hat eine Instanz auf einer Kopie gearbeitet und
kaum Aussichten, sie in naher Zukunft noch einmal zu verwenden, so kann sie die Kopie sofort
(freiwillig) invalidieren. Beide Optimierungen mindern den Aufwand der Datenverwaltung,

falls die Vorabschatzungen des Lastbalancierers zutreffen. Das Konzept der Datenkapselung
durch Serverklassen erlaubt die einfache Integration beider Aspekte (funktionale Parallelitat
und Datenparallelitat) im HiCon Lastbalancierungsverfahren.

Zuletzt soll noch die Mdglichkeit der ungleichen Lastaufteilung innerhalb einer Ressource
erwahnt werden, den wir im derzeitigen Modell noch nicht explizit nutzen. Serverinstanzen
konnen, je nach Wichtigkeit ihres aktuellen Auftrages (siehe unten) mit unterschiedlichen Pro-
zelRprioritaten ablaufen. Um einen eiligen Auftrag durchzusetzen, auf den etwa viele andere
warten, kann es sinnvoll sein, andere laufende Auftrage zu bremsen bzw. warten zu lassen. Bis-
lang teilen sich im HiCon Konzept alle laufenden Auftrage die gemeinsamen Ressourcen
gleichmafdig untereinander auf. Der Lastbalancierer kann jedoch wichtigere Auftrage vorran-
gig bzw. an ‘schnellere’ Instanzen vergeben, oder er kann Prozessoren, welche wichtige Auf-
trage abwickeln, von weiteren Auftrdgen verschonen.

2.3.3 Vorplanung von Auftragsgruppen - die Konfigurationsebene

Neben der oben vorgestellten Aufgabe der Lastbalancierung bietet das HiCon System die
Moglichkeit, zur Laufzeit zusammenhangende Gruppen von Auftragen (Anwendungen) anzu-
melden. Durch Reservierung und Bereitstellung von Ressourcen und einer vorlaufigen Zuwei-
sung der einzelnen Auftrage unter Ausnutzung des Wissens uber den Gesamtablauf der Gruppe
konnen wir wichtige Aspekte wie wiederholte bzw. parallele Aufrufe einer Serverklasse, Loka-
litat in aufeinanderfolgenden Datenzugriffen sowie Reihenfolgeabhangigkeiten in die Balan-
cierung einbeziehen, was bei der isolierten Betrachtung einzelner Aufrufe (siehe oben) noch
nicht maglich ist.

Die Probleme dieses Ansatzes liegen zum einen bei der Beschreibung der Auftragsgruppe, die
madglichst kompakt und einfach, aber dennoch komplexen Anwendungen verschiedenen Gra-
nulats gerecht werden soll, zum anderen in den hohen Laufzeitkosten fur den Vorgang der Ein-
planung an sich. Diese Grenzen sind aus dem Gebiet des statischen Scheduling hinreichend
bekannt. Wir beschranken uns auf die Spezifikation weniger Zusammenhange, die von beson-
derem Interesse fur die Lastbalancierung sind, d.h. streben keine Programmiersprachen-ahnli-
che filigrane Ablaufbeschreibung (wie etwa fur parallelisierende Compiler) an. Daher
betrachten wir zunachst, welche Charakteristiken einer Anwendung, die Uber einzelne, isolierte
Auftragsprofile hinausgehen, fur eine Vorausplanung wesentlich sein kénnen:

» Die in Petrinetz- und Datenflul3beschreibungen bekannten Reihenfolge-Abhéngigkeitsgra-
phen erscheinen im prozeduralen Modell als Wartezeiten auf synchrone Aufrufe. Interessant
ist zu wissen, in welchem Mal3e die Ausfiihrungszeit des (Haupt-) Auftrages von der Bear-
beitungszeit eines Unteraufrufes bzw. von der Geschwindigkeit eines Kooperationspartners
abhangt. Daraus kann der Balancierer die notwendigen relativen Verarbeitungszeiten (und
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damit Prioritaten, sobald der Auftrag zugewiesen wurde) abschatzen. In der statischen Last-
balancierung ist deBottleneck-PatkAlgorithmus ein bekanntes Verfahren (siehe [Bok-

hari81], [Igbal86] und [Towsley86]). Diese Reihenfolgebeziehungen kdnnen freilich nur fur
kleinere Gruppen diskreter Auftrage genutzt werden, nicht fir gesamte komplexe Anwen-
dungen, die zumeist Schleifen, Rekursionen und Verzweigungen enthalten.

Fur grol3ere Mengen anstehender Auftrage kann Lastbalancierung die Anzahl von und das
Verhaltnis zwischen Lese- und Anderungszugriffen auf Kontext (-Partitionen) ausnutzen,
um einen Kompromif3 zwischen Parallelitat und Kontextverwaltungsaufwand zu finden.
Genauere Datenzugriffs-Angaben kénnen jedoch meist erst zum Aufrufzeitpunkt gemacht
werden.

Wenn fir eine Serverklasse innerhalb der Auftragsgruppe der vermutlich entstehende Grad
an moglicher Parallelitat abgeschatzt werden kann, so hat der Balancierer die Moglichkeit,
die Server-Konfiguration diesen Anforderungen anzupassen. Mit méglicher Parallelitat ist
damit die Anzahl der Auftrage einer Klasse gemeint, die tatsachlich zugleich ausfiihrungs-
bereit sind.

Die Angabe des Nachrichtenaufkommens (Dauer und Intensitat) zwischen einzelnen Teil-
auftragen bzw. zwischen zwei Serverklassen schlechthin erlaubt die Berticksichtigung von
schnellen Kommunikationsverbindungen bei der Instanzenauswahl bzw. bei der Server-
Konfiguration (siehe [Ma82], [Berger87], [Bowen88], [Lo88] und [Lo88/2]).

Um die Beschreibung derartiger Informationen tber Auftragsgruppen einfach zu halten, ver-
zichten wir auf hierarchisch verschachtelte Auftragsgruppen sowie auf die explizite Behand-
lung von Schleifen. Eine Auftragsgruppe ist eine flache Gruppe von Auftragstypen, zu denen
die Anzahl gegenseitiger Aktivierungen (Aufrufe) samt Kommunikationsintensitat und Rei-
henfolgebeziehungen angegeben ist.

Diese Angaben bewirken lediglich eine vorlaufige Einplanung der zu erwartenden Auftrage
sowie Anderungen der Server-Konfiguration. Die endgiltige Zuweisung der Auftrage
geschieht nach wie vor erst zum tatsachlichen Aufrufzeitpunkt. Wir folgen damit dem in der
dynamischen Balancierung wichtigen Prinzip der mdglichst spaten Zuordnung und kdnnen
aulRerdem Fehler und Ungenauigkeiten in den Profilangaben tolerieren.

Das Optimierungskriterium des hier vorgestellten Balancierungsmechanismus ist die moglichst
schnelle Ausfihrung eines Gesamtauftrages (unter Rucksicht auf andere unabhéngige Auftrage,
‘soziale Balancierung’, siehe oben). Daher ist nur die Antwortzeit des Hauptauftrags zu minimie-
ren; alle Teilauftrdge sind unkritisch und ihre Dringlichkeit ergibt sich allein aus den Abhangig-
keitsbeziehungen zum Hauptauftrag.

Auf der Balancierungsebene der Server-Konfiguration spielen nicht nur Profile von Auftragsgrup-
pen eine Rolle. Konfigurationsanderungen kénnen auch durch langerfristige Beobachtungen
aggregierter Daten ausgelost werden. Wir wollen es hier nur anhand zweier Beispiele motivieren:

* Wenn die Klassen-Auftragswarteschlange standig sehr lang ist, sollten evtl. neue Instanzen
aufgesetzt werden. Umgekehrt kbnnen Instanzen geldscht werden, wenn die mittlere Wartezeit
auf einen neuen Auftrag grof3 ist.
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» Wenn die Wartezeit auf Daten im Verhaltnis zur eigentlichen Rechenzeit der Instanzen zu grof3
ist, so scheint das Anlegen von Lesekopien aufgrund des hohen Anteils an Schreibzugriffen
unwirtschaftlich (siehe [Weinmann92]) oder die Balancierung achtet bei der Auftragszuwei-
sung zu wenig auf die Datenlokalitat. Im Zweifelsfall empfiehlt sich eine Reduktion der Serve-
rinstanzen.

2.4 Hierarchisch verteilte Lastverwaltung

In vOllig dezentralen Lastbalancierungsverfahren sprechen die Server die Auftragsverteilung
selbststandig untereinander ab. Der Server, welcher neue Unterauftrage hat oder Uberlastet ist,
versucht Auftrage an andere Server abzugeben. Unterbelastete Server sind bestrebt, von anderen
Auftrage zu Ubernehmen. Man unterscheidet oft (siehe [Casavant88], [Lin92]), ob nur diese Ent-
scheidung dezentral ist oder auch die Zustandsinformationen Gber die Server verteilt sind (ein
Server kennt nur die Lastsituation seiner Nachbarn). Im HiCon Modell wird sowohl die Zustands-
information als auch die Entscheidung in einer Komponente zentralisiert.

Eine zentrale Informations- und Entscheidungsstelle bietet den Vorteil einer global optimalen
Balancierung. Dezentrale Verfahren optimieren nur lokal und basieren auf relativ einfachen Mel3-
und EntscheidungsgréfRen; die einzelnen Instanzen sind nicht in der Lage, komplexere Zusam-
menhange zu erfassen (etwa Reihenfolgebeziehungen, soziale Lastverteilung). Die Verwaltung
zentraler Auftragsschlangen ermdglicht spate Zuweisung ohne zugeteilte oder laufende Auftrage
migrieren zu massen.

Zentrale Balancierung hat aber den Nachteil, selbst zum Engpald zu werden. Die Balancierungs-
komponente mul3 sehr schnell viele Informations- und Auftragsnachrichten bearbeiten; wenn sie
Uberfordert ist, arbeitet sie mit veralteten Informationen bzw. zégert die Auftragsbearbeitungen
hinaus, da sie nicht schnell genug Zuweisungsentscheidungen treffen kann. Auch aus Grinden
der Fehlertoleranz ist eine zentralisierte Losung bedenklich.

In grol3en Systemen ist also, sofern man einen logisch zentralen Ansatz favorisiert, eine hierarchi-
sche Abstraktion der Lastbalancierung notwendig. Lokale Komponenten balancieren autonom ein
(sinnvollerweise physisch zusammenhéngendes) Teilsystem. Sie betrachten den Gbergeordneten
Balancierer als eine weitere Komponente ihres Teilsystems, der eine abstrakte Sicht seines
Zustandigkeitsbereichs zeigt. Eine Balancierungskomponente kann also von ihrer Ubergeordneten
wie von einer Unterkomponente Auftrage und Lastinformationen erhalten und an diese abgeben.

Die Abstraktion erfolgt auf Ebene der Instanzen. Ein Balancierer bietet Anderen eine Instanz pro
Serverklasse, deren Leistung dem Mittel- oder Bestwert seiner lokalen Instanzen entspricht. Das
Teilsystem (Hardware) und die lokalen Auftrage verbirgt er vollstandig.

Hierarchische Balancierung funktioniert nur dann effektiv, wenn eine gewisse Lokalitat vorliegt
und von der Balancierung berlcksichtigt wird. Lastbalancierer verteilen Auftrage (und damit
auch Daten) moglichst lokal. Die ‘Pseudo’-Instanz des tibergeordneten Balancierers muf3 daher
um einiges besser sein, damit sie gewahlt wird. Wenn aufgrund der Anwendung keinerlei Lokali-
tat in den Datenzugriffen vorhanden ist und sich auch nicht durch Datenmigration oder Replika-
tion einstellt, so ist die hierarchische Balancierung ungunstig (das Bild zeigt solch einen Fall).
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Allgemein lassen sich Anderungsoperationen auf einem gemeinsamen Datensatz nicht beliebig
verteilen und die Lastbalancierung sollte dies auf héherer Ebene feststellen.

Aufruf mit
Zugriff auf
Datenp

Alternativ zur oben vorgestellten homogenen Hierarchie bietet es sich an, die unteren Ebenen
dezentral zu balancieren und fur die hoheren Ebenen zentrale Balancierungskomponenten einzu-
setzen. Beispielsweise kdnnten die Instanzen die Datenverwaltung direkt untereinander, ohne den
Umweg Uber eine Balancierungsinstanz, regeln. Der fur Auftragszuweisung verantwortliche
Balancierer hat dann aber kein vollstdndiges Wissen mehr tber die Datenverteilung und kann sie
entsprechend schlecht einbeziehen. Zudem legt man sich durch die Trennung nach Ebenen auf
eine bestimmte SystemgroR3e fest, wahrend die homogene Hierarchie - eine gewisse Lokalitat in
der Anwendung vorausgesetzt - beliebig skalierbar bleibt.

3 Realisierung und Ergebnisse

Eine Lastbalancierungsumgebung nach dem HiCon Modell wurde als Prototyp realisert; daneben
wurde ein Simulator entwickelt, der uns eine schnellere und einfachere Evaluierung der vorge-
schlagenen Konzepte ermdglicht. Wir werden diese Implementierungen im folgenden kurz
betrachten.

3.1 Simulation des HiCon Modells

Um die prinzipielle Tauglichkeit der entwickelten Lastbalancierungsverfahren zu untersuchen
und ein Gefuhl fur die verschiedenen Faktoren, ihr Zusammenspiel und ihre Auswirkungen zu
bekommen, wurde ein Simulator zur Nachbildung des HiCon-Ausfiihrungsmodells entwickelt
(siehe [Staib92]). Nach Definition eines Systems, einer Server-Konfiguration und einer Anwen-
dung (Auftragsprofile fur die Serverinstanzen) sowie der Auswahl von Lastbalancierungsverfah-
ren fur zwei Eingriffspunkte (die Entstehung eines Auftrags und die Zustandsanderung einer
Serverinstanz) kann man die Bearbeitung mitverfolgen und erhélt eine abschlieRende Gesamtaus-
wertung. Wahrend der Simulation wird der Verlauf der Anwendung (Abarbeitung der Funktions-
ausfuhrung, Unteraufrufe und Datenzugriffe) sowie die Auslastung aller Ressourcen detailliert
graphisch dargestellt (siehe Bild). In einem Anwendungsbeispiel mit relativ feinkdrniger Paralle-
litat, der Suche nach einem kiirzesten Weg in einem Graphen (siehe dazu auch Kapitel 3.2.5),
zeigte [Staib92] bereits positive Resultate fur einfache Lastbalancierungstechniken nach dem
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HiCon-Konzept. Wir wollen jedoch nicht hier, sondern im Rahmeri.dadmanPrototyps naher
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3.2 Loadman - Prototyp eines Lastbalancierers nach dem HiCon Modell

Die Lastbalancierungsumgebubgadmanist eine Realisierung der in diesem Bericht vorgestell-

ten Ansatze, um ein weites Spektrum datengestutzter Anwendungen effizient auf heterogenen
parallelen und verteilten Systemen zu bearbeiten. Dazu beschreiben wir kurz das Design, die bis-
her implementierten Balancierungsverfahren und vorlaufige Messungen.

3.2.1 Systemstruktur und Anwendungsschnittstelle

Wie im Bild veranschaulicht besteht die Balancierungskomponente (Systemlast-Informationsver-
waltung und Balancierungsentscheidung) derzeit aus einem zentralen Prozel3 und einem Lastmes-
sungsagenten auf jedem teilnehmenden Prozessor. Sie wird in spateren Versionen nach dem in
Kapitel 2.4 beschriebenen Konzept verteilt sein. Die Anwendung ist durch einen Prozel} pro Ser-
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verinstanz auf das System verteilt und verkehrt Gber angebundene Libraries mit der Balancie-
rungskomponente.

Host A

Loadman
Server Class 1
Instance 3

| Loadman Lib |

Server Class 2
Instance 1

| Loadman Lib |

Server Class 2
Instance 2

Loadman Lib

Server Class 1
Instance 4

Loadman Lib

Server Class 1
Instance 1

Loadman Lib

Server Class 1
Instance 2
Loadman Lib

Die eigentliche Interprozef3-Kommunikation wird mittels angebundener Funktioneaider

Library durchgeftuhrt. Diese Library wahlt automatisch das schnellste verfligbare Nachrichtenpro-
tokoll. So werden Nachrichten innerhalb eines Hauptspeichers (UNIX-Workstation oder shared
memory Multiprozessor) ubg@ipes innerhalb von Parallelrechnern durch proprietare Mechanis-
men (etwaGuardiars Kommunikationssystem) und zwischen verschiedenen Rechnern mithilfe
desTCP Protokolls versandt. Die transparente Nutzung dieser verschiedenen Nachrichtensysteme
ist fir die Lastbalancierung in heterogenen Systemen unerlaf3lich, da unterschiedlich effiziente
Kommunikationswege (nicht prinzipielle Beschrankung auf ein allgemeines, langsames Medium
wie TCP) und damit verschiedene ‘Entfernungen’ zwischen Prozessen einen wesentlichen Faktor
fur die Lastverteilung darstellen.

-4 Aufrufe, Resultate.
Kontextverwaltung
—®  Zustandsinformation

Loadmanermdglicht derzeit verteilte Anwendungen auf einer aus Sun-, DEC-, HP840- UNIX
Workstations, Sequent shared-memory-Multiprozessoren sowie Tandem shared-nothing-Parallel-
rechnern beliebig gemischten Basis. Multiprozessoren mit gemeinsamem Hauptspeicher werden
von Loadmanderzeit als je ein Prozessor betrachtet, da die Lastbalancierui@an Modell

relativ grobgranular konzipiert ist und auf verteilten Ressourcen basiert, sodaf3 man hier besser
die vorhandenen Scheduling-Strategien (meist gemeinsame Run-Queue) nutzt.

Dynamische Lastmessung erfolgt auf UNIX-Systemen durch Ablesen bestimmter Datenstruktu-
ren aus dem Betriebssystemkern, @uairdianRechnern durch dadeasureSubsystem. Die sta-

tische Beschreibung des Systems (Prozessorleistungen, Platten, Netzstruktur und -Leistung) wird
in einer Konfigurationsdatei spezifiziert.

Die LoadmanLibrary stellt den Server-Programmen eine komfortable Schnittstelle zur Verfu-
gung, die asynchrone Serverklassen-Aufrufe sowie Zugriffs- und Konsistenzschutz-Operationen
auf Klassenkontexte ermdglicht:

» Loadmanlnit (connectionDataToLoadman, directoryForLogging, timeout)
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Mit diesem Aufruf meldet sich die Serverinstanz lbedmanan.Loadmansetzt die in einer
Datei spezifizierte Server-Konfiguration auf und teilt jeder Instanz beim Prozel3start ihre
Instanzennummer sowie ihre Datei-Zugriffspfade mit.

LoadmanCall (class, parameter, expectedCpulnstructions, expectedUsedPartitions, timeout)

Die Serverinstanz setzt einen Aufruf an eine Serverklasse ab. Dabei kann sie den vermutlichen
Ressourcenbedarf fur diesen Aufruf angeben. Die Spezifikation beschrankt sich bislang auf
den Rechenaufwand und die bendtigten Kontextpartitionen, jeweils versehen mit der Wahr-
scheinlichkeit fur schreibenden Zugriff. Man beachte, daf’ diese Angaben unabhéngig von Pro-
zessor und Instanz sind, die den Auftrag einmal ausfiihren werden. Die Vor- und Nachteile der
Ressourcenabschatzung am Aufrufzeitpunkt durch den Aufrufer wurden in Kapitel 2.1 disku-
tiert.

LoadmanResult ( class, instance, parameter, serverState, timeout)

Die Serverinstanz schickt ein Resultat an den Aufrufer zurlick. Dieser Aufruf kann auch von
Client und Server innerhalb einer ‘Session’ verwendet werden, wo ja die Zielinstanz feststeht.
Der Server sendet lediglich Zwischenergebnisse, der Aufrufer gibt daraufhin evtl. weitere
Parameter. Durch den ParamederverStat&kann der Server die Lastbalancierung informie-

ren, welchen Anteil des Gesamtauftrages er mit Sendung des Resultats erledigtladDie
martLibrary fligt als weitere Information die momentane Lange der Auftragswarteschlange
der Instanz bei. Weiterhin kann eine Instanz bei langlaufenden Auftragen Zustandsinformatio-
nen abgeben, indem sie eine Resultats-Nachricht ohne Zielklasse und -instanz schickt.

LoadmanRecv (class, instance, parameter, timeout)

Die Serverinstanz wartet auf einen Auftrag oder ein Resultat. Dabei kann sie eine spezielle
Klasse und / oder Instanz vorgeben.

SlockContext (partition, timeout)

Die Serverinstanz meldet Lesezugriffe auf eine Kontext-Partition an. Dabei bekommt sie tGber
die Library evtl. eine Kopie oder das Original dieser Partition von der Instanz gesandt, welche
diese Partition momentan besitzt. Kapitel 3.2.2 geht naher auf die Kontextverwaltung ein.

XlockContext (partition, timeout)

Die Serverinstanz mochte Anderungsoperationen an dem Kontext-Datensatz durchfiihren. In
der vorlaufigen Realisierung wird sie dadurch gleichzeitig zum neuen Besitzer und Verwalter
dieser Partition (siehe Kapitel 3.2.2).

UnlockContext (partition, timeout)

Die Serverinstanz gibt eine zuvor gesperrte Partition nach Durchfiihrung einiger Zugriffe wie-
der frei.

Loadmankann wahlweise mit oder ohne graphischer Oberflache (siehe Bild) ablaufen. Die gra-
phische Darstellung informiert zur Laufzeit Gber den Verarbeitungszustand: die Server-Konfigu-
ration, die Langen der Klassen- und Instanzen-Auftragswarteschlangen, die Verteilung der
Kontextpartitionen und deren Replikate sowie die Auslastung der Ressourcen. Diese Darstellung
bewdahrte sich, um Anwendungen bezuglich ihres Kontext- und Auftragsgranulats zu justieren,
geeignete Server-Konfigurationen zu ermitteln und die Auswirkungen verschiedener Balancie-
rungsstrategien zu beobachten. Fur exakte Zeitmessungen verzichtet man freilich auf das graphi-
sche Interface, weil es gewisse Storungen und Verzerrungen verursacht. Wahrend oder nach
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Ablauf einer Anwendung kann der Benutzer statistische Informationen tUber das Verhalten der
Serverklassen abrufen (die mittlere Leerlaufzeit der Instanzen einer Klasse zwischen zwei Auf-
tragsbearbeitungen, die mittlere Bearbeitungszeit eines Auftrags ohne Datenverwaltungskosten
und der mittlere Zeitbedarf fir Datenverwaltung).
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3.2.2 Verwaltung und Synchronisation der Klassenkontexte

Im HiCon Modell besitzt jede Klasse einen Kontext, der nach Partitionen aufgetrennt wird. Die
Datenstrukturen und Einteilung in Partitionen wird durch die Anwendung bestimmt; ein Kontext
kann sich beispielsweise aus Hauptspeichervariablen und Dateien zusammensetzen. Die Konver-
tierung der Daten von einem bzw. in ein Gber Nachrichten verschickbares Format geschieht durch
von der Anwendung zur Verfiigung gestellte Ruckrufprozeduren:

SendContext (partition, contextMessage, size), RecvContext (partition, contextMessage, size)

Eine Partition ist zugleich die Einheit der Synchronisation, der Migration und der Replikation.
Die Serverinstanzen einer Klasse betrachten den Kontext als gemeinsamen Speicher (man spricht
daher von eineshared memorpzw. shared diskSemantik).

Zugriffen auf eine Kontextpartition muf? stets eine Sperranforderung vorangehen. Zugleich mit
dem Erwerb der Sperre wird bei Bedarf die Partition bzw. eine Kopie von der Instanz besorgt,
welche momentan diese Partition verwaltet (besitzt). Im derzeitigen Prototyp Gdbernimmt eine
Instanz mit Anforderung einer Exklusivsperre auch die Verwaltung der Partition, bei Anforderung
einer Lesesperre erhalt sie lediglich eine Kopie. Ohne Lastbalancierung, welche die Kopien und
den Aufwand fur diese Kontextverwaltung miteinbezieht, ist diese Entscheidung nicht generell
vorteilhaft (siehe etwa die Untersuchungen von [Weinmann92]). Im HiCon Modell kann das Wis-
sen Uber die Verwaltungsstrategie erfolgreich zur Lastbalancierung genutzt werden.

Um eine Exklusivsperre durchzusetzen schicktL.d@dmanLibrary selbststandig Invalidie-
rungsnachrichten an die Kopienbesitzer. Anderungen an dieser Partition durch irgendeine Instanz
der Klasse werden erst nach Freigabe dieser Sperre wieder zugelassen. Da der Freigabezeitpunkt
durch die Anwendung bestimmt wird, sind verschiedene Stufen der Konsistenzerhaltung moglich
(z.B. Operationssperren, Cursor-Stabilitat oder serialisierbare Transaktionen).
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Dieses Konzept zur Synchronisation des Zugriffs auf globale Daten und der Verteilung globaler
Daten in heterogenen Systemen ermdglicht die Balancierung datenintensiver Anwendungen und
erfillt die von der Objektorientierung geforderte Kapselung von Daten durch Serverklassen.

3.2.3 Fehlerbehandlung

In parallelen und verteilten Systemen besteht verstarkter Bedarf an Fehlerbehandlungsmechanis-
men und Unterstitzung bei der Fehlersuche. Gegenuber sequentiellen Programmen erhélt man
weitere Fehlerquellen durch Rechnerausfall, ProzelRabsturz, Nachrichtenprobleme und Synchro-
nisations- bzw. Protokollfehler. Da wir im HiCon Modell den Schwerpunkt auf Lastbalancierung
setzen, bieten wir lediglich zwei Konzepte zur Fehlererkennungirmeoputsund Protokollda-

teien.

Jeder Aufruf einetoadmanLibrary-Funktion kann mit einemimeoutversehen werden. Dies ist

die einfachste und haufig eingesetzte Methode, um Protokollfehler und Ausfalle in der Anwen-
dung zu erkennen. Allerdings sind die Funktionsaufrufe nicht atomarFinde®utSpezifikation

wird beim Senden und Empfang von Nachrichten verwandt und die Funktionsausfiihrung wird im
Fehlerfall an dieser Stelle abgebrochen.

Alle am Ablauf teilnehmenden Prozesse schreiben in Protokolldateien. Dabei benutzt eine Serve-
rinstanz ihre Protokolldatei, in die also auch Anwendungsinformation geschrieben werden kann,
gemeinsam mit ddroadmanLibrary und der darunterliegendeain-Nachrichten-Library. Nach

Ablauf der Anwendung lassen sich Fehler durch Vergleiche der Protokolldateien feststellen. In
Fehlerfallen figen die Library-Funktionen grundséatzlich neben Rickgabe des Fehlercodes eine
textuelle Fehlerbeschreibung in die Protokolldatei.

3.2.4 Verfugbare Strategien

Wir haben zunéachst nur einfache Strategien, die jeweils auf maximal einer dynamischen Mel3-
grol3e basieren, untersucht. Derzeit sind folgende Verfahreroadmanverfiigbar:

* Round Robin: in jeder Serverklasse werden die Auftrage reihum verteilt. Dabei sollen die
Auftragswarteschlangen der Instanzen moglichst bis zu einer festen Lange gefillt sein. Grund-
satzlich wird der alteste Auftrag in der Klassenwarteschlange zuerst zugewiesen. Wenn in einer
Klasse viel mehr Auftrage anfallen als die Serverinstanzen abarbeiten kénnen, d.h. die Klas-
sen-Warteschlange lang ist, wird der alteste Auftrag der Instanz zugeordnet, die als erste wie-
der Platz in ihrer Warteschlange hat. Das entspricht nicht mehr der reinen Reihum-Verteilung
sondern eher der dritten Strategie, ist jedoch sehr lukrativ. Unter der Annahme gleicher Auf-
tragsgrofRen und Prozessorleistungen und Mif3achtung sonstiger Einflul3faktoren (siehe Kapitel
1.1) realisiert dieses Verfahren Lastbalancierung zugunsten minimaler Auftragsausfihrungs-
zeit.

» Daten-Lokalitat: Auftrdge werden stets an die Instanz abgegeben, welche die ‘meisten’ der
bendtigten Daten bereits lokal verfiigbar hat. Fur Lesezugriffe gentigen Kopien, fur Anderung-
soperationen bedarf es der Originaldaten. Beim Aufruf werden Wahrscheinlichkeiten fur
Anderungsoperationen angegeben, nach denen das Verfahren die Kontext-Beschaffungskosten
gewichtet. Man beachte, dal3 jeder Auftrag auch dann wartet, bis seine bevorzugte Instanz
genugend Raum in ihrer lokalen Warteschlange aufweist, wenn andere Instanzen arbeitslos
sind (im Gegensatz zu der im Round Robin Verfahren gewahlten Lésung). Die Entscheidung
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fur eine bestimmte Instanz erfolgt aber nicht bei der Entstehung des Auftrages; vielmehr wird,
sobald eine Instanz verflugbar wird, Gberprift, ob sie flr Auftrage aus der Klassen-Warte-
schlange die bestgeeignete ist. Diese spate Zuweisung ist notwendig, da sich die Datenlokatio-
nen standig andern. Grundséatzlich wird der alteste Auftrag, welcher diese Instanz beansprucht,
zuerst abgegeben. Wie alle hier betrachteten Verfahren wird hier die Ausfiihrungszeit der Ein-
zelauftrage unter MiRachtung weiterer Faktoren minimiert.

» Kirzeste Auftrage-Warteschlange der alteste Auftrag wird an die Instanz verwiesen, die
gerade die wenigsten Auftrage in ihrer Warteschlange hat. Wie bei allen anderen Strategien
werden auch hier die Warteschlangen der Instanzen nur bis zu einem festen Maximalwert
geflllt. Die Motivation hierfur sind nicht begrenzte Pufferfahigkeiten der Instanzen sondern
die moglichst spate Bindung eines Auftrages an eine feste Instanz sowie die Kontrolle der ent-
stehenden Parallelitat (siehe Kapitel 2.3 bzw. 2.3.1).

Beim Verfahren ‘kirzeste Auftrage-Warteschlange’ muf3 man einen Kompromif3 zwischen
haufiger Zusendung der aktuellen Schlangenlangen und der Abschatzung durch den Lastbalan-
cierer selbst finden. Wenn Instanzen nach oder mehrmals wéhrend der Abarbeitung eines Auf-
trages Zustandsnachrichten an den Balancierer schicken entsteht grof3er Zusatzaufwand. Wenn
der Balancierer hingegen allein aus den Aufruf-Angaben und der Rechnerbelastung (Fremdlast
und bekannte Last durch weitere arbeitende Instanzen) den Abarbeitungszustand vermutet,
kann es sehr schnell zu Fehleinschatzungen und dadurch zu Fehlentscheidungen kommen. Im
derzeitigen Prototyp bleibt die Entscheidung dem Anwender Uberlassen; Server kbnnen zu
beliebigen Zeitpunkten Zustandsinformation senden. Bei Riicksendung eines Resultates wird
sie stets automatisch beigefugt.

» Leistungsfahigste Instanz die momentane Leistungsfahigkeit eines Prozessors wird abge-
schatzt, indem man seine Maximalleistung durch die Zahl der aktiven Prozesse (Run Queue
Length) - zuzlglich dem gerade zu vergebenden - teilt. Der alteste Auftrag wird an eine der
Instanzen auf diesem Prozessor vergeben, wenn ihre lokale Auftragsschlange nicht zu voll ist.

Offensichtlich wurden bisher nur sehr primitve Methoden implementiertL@etmanPrototyp

soll auf langere Sicht Uber eine Strategie verfiigen, die unter anderem obige Einzelaspekte inte-
griert. Dazu ist es jedoch notwendig, zunéchst die Relevanz der verschiedenen Grol3en und Ver-
fahren isoliert zu untersuchen, um sie geeignet kombinieren und gewichten zu kénnen.

3.2.5 Evaluierung eines Anwendungsbeispiels

Fur eine erste Validierung des Lastbalancierungsprinzips durch den Piatatypanwurde

eine Wegesuche als Anwendung gewahlt. Sie findet den kirzesten Weg zwischen zwei vorgege-
benen Knoten in einem gerichteten Graphen mit gewichteten Kanten. Da in Client-Server Archi-
tekturen durch synchrone rekursive Aufrufe binnen kurzer Zeit alle Instanzen belegt waren
(néamlich auf die Ergebnisse ihrer rekursiven Aufrufe warten wirden - im HiCon Modell verzich-
ten wir gewohnlich auf Multi-Threading, obwohl auch ‘multi-threaded’ Instanzen teilnehmen
kdnnen), mussen die Aufrufe asynchron und ohne Resultatriickgabe abgesetzt werden. Das hier-
bei auftretende Terminierungsproblem wird geldst, indem eine Serverklasse (unter anderem) die
Zahl der noch zu untersuchenden Knoten bzw. die Zahl der noch zu bearbeitenden Suchauftrage
verwaltet. DeiSupervisofSchiele91] stellt dazu im zentralen Fall das Konzept des Klassen-
Events zur Verfligung.

Die Wegesuche wurde in Gestalt dreier Serverklassen realisiert (siehe auch im Bild):
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» gclient fuhrt die Benutzerinteraktion durch, startet die Suche und verfolgt an deren Ende den
kirzesten Weg zuriick.

» gfind bekommt im Aufruf jeweils eine Menge von Startknoten (aus derselben Partition). Sie
sucht im Graph alle zugehdrigen Folgeknoten samt Kosten heraus, eliminiert bei Duplikaten
den teureren Weg. Sie teilt die Menge der gefundenen Zielknoten nach Partitionen auf und ver-
schickt jeweils die Knoten einer Partition als Auftrag an die Klgesach Die Graphenbe-
schreibung ist in Form je einer Datei pro Partition abgelegt.

» greach verwaltet die Liste der bisher erreichten Knoten. Sie bekommt im Aufruf jeweils eine
Liste neu erreichter Knoten und tragt die Neuigkeiten bzw. Verbesserungen in ihrer Liste ein.
Die anderen Knoten eliminiert sie aus der Aufrufliste. Dann schickt sie die Restliste als Aufruf
an die Klassgfind Die Klasse verwaltet dabei auch die Zahl der noch zu untersuchenden
Knoten (die Zahlung ist nicht trivial, da sie nicht weil3, wieviel Folgeauftragegéme
Instanz aus einem Aufruf von eingneachinstanz generieren wird). Der Datensatz zur Termi-
nierungszahlung stellt sich als ‘Hot Spot’-Kontextpartition heraus, da er bei jedem Aufruf
modifiziert wird.

Wenn man die Partitionierungsfunktion der Knoten des Graphen fiir die Serverklassen unter-
schiedlich wahlt (d.h. der Knotenbereich eigénd-Partition entspricht nicht dem eingre-
ach-Partition), so mul@reachim allgemeinen einige Partitionen pro Aufruf anfassen (und

dabei haufig auch aktualisieren). Man sieht anhand der Wartezeiten zwischen Auftragen und
der Kontextverwaltungskosten, dgféachdeshalb bei (sowohl bezlglich AuftragsgréRe als

auch der Grol3e einer Partition) feinerem Granulat zum Engpald der Anwendung wird. Bei gro-
Reren Graphen werden djénd-Instanzen zum Engpal3, d.h. zum bestimmenden Faktor.

Liste von Startknote
[o] gclient_graphic.sparc & I @
{Hhich way do on Toz

Ruckverfolg
des Weges

Die Ressourcenbedurfnisse (hier nur Prozessorleistung) der Serverklassen-Aufrufe wurden stati-
stisch ermittelt; sie hangen in erster Naherung linear von der Anzahl der Eingabeknoten und der
GroflRe des Graphen ab. Die ‘Zahl der Instruktionen’ ist dabei architekturunabhangig und nur auf
die in Benchmarks ubliche Leistungskenngréf3e MIPS (Millionen Instruktionen pro Sekunde)
bezogen. Die Plattenzugriffe und Kommunikationskosten wurden auf3er Acht gelassen:

gfind #Instruktionen = 182755 + #Kanten * 26 + #Startknoten * 30000
greach #Instruktionen = 6808 + #Kanten * 2 + #Erreichte_Knoten * 16200

Die Aufrufe an die Klassegreachundgfind beziehen sich stets nur auf egfand-Partition.

Diese Entscheidung wurde getroffen, wgihds Partitionen grol3e Dateien sind und neben dem
Zugriff auch die Replikation und Migration sehr aufwendig machen. Da es sich jedoch aus-
schlief3lich um Lesezugriffe handelt, verschwindet der Verwaltungsaufwand im Verlaufe der
Anwendung (die Instanzen sind mit Kopien versorgt).
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Im folgenden betrachten wir Messungen der Wegesuche in einem kleinen und in einem relativ
grol3en Graphen, wobei sowohl die Anzahl der Instanzen je Serverklasse als auch die Balancie-
rungsstrategien variiert werden. Der kleine Graph besteht aus 500 Knoten und 10000 Kanten.
Letztere sind auf 10 Kontext-Partitionen der Klaged und damit auf Dateien der mittleren

Grol3e von 6 KB verteilt. Der Graph weist eine Lokalitat von 95% auf (Lokalitat bezeichnet hier
den Anteil der Kanten, die zwei Knoten derselben Partition verbinden). Das Bild zeigt die maxi-
mal verwendete Server-Konfiguration, die Ergebnisse sind in der nachfolgenden Tabelle aufge-
fahrt.

18 MIPS

28 MIPS

Instanzer statische dynamische |LaufzeitInstanzenverhalten [msec] Engpaf
je Klasse|Balancierung  Balancierung [sec] | busy | context idle
L gleichgultig 61 0 0 .
1 gleichguiltig (Round Robin) 15.2 5 0 16 gfind.0
. 67 0 6
Data Locality 9.9 5 3 6 loadman
66 8 56 gfind.0/.
[
Data Run Queue Length 135— 5 5 23 gfind.1
Distribution | Instance Queue 67 6 369
2 Length 45. 5 95 3 greach.0-1
. 62 7 271
Round Robin 48. > 93 Y] greach.0-1
None Round Robin 4919 84 # 124 284greach.O-l

# die Kontextwartezeiten entstanden nur bei Instanz 1
+ Wartezeiten entstanden nur bei Instanz 0
* nur Instanz 0 wurde genutzt

Das Instanzenverhalten schlisselt die Zeitanteile einer Auftragsbearbeitung einer Serverinstanz
auf. Sie sind jeweils Uber die Instanzen einer Klasse und Uber deren bearbeitete Auftrage gemit-
telt. Die Angabe husy / context / idfegibt die Zeit, welche die Instanz fiir den Auftrag gerechnet
hat (ohne Kontextwartezeiten), die Zeit, die sie auf Kontextpartitionen gewartet hat und die Zeit,
welche sie nach Ende eines Auftrags bis zum Erhalt des n&chsten warten mufite, wieder. Die
obere Zeile bezieht sich jeweils auf die KlagBed, die untere aujreach Die Zeilen der Tabelle

sind jeweils gemittelte Werte aus mehreren gleichartigen Messreihen.
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Die zweite Tabelle enthélt die Ergebnisse bei Durchsuchung eines relativ grol3en Graphen, beste-
hend aus 100000 Kanten, die auf 30 Partitionen zu je 20 KB verteilt sind. Die tbrigen Eigenschaf-
ten entsprechen denen des kleinen Graphen.

Instanzen] statische dynamische |Laufzeit Instanzenverhalten [msec] Engpalf3
je Klasse|Balancierung Balancierung [sec] | busy | context idle
L gleichgultig 156 0 0 .
1 gleichguiltig (Round Robin) 127.5 7 0 70 gfind.0
213 22 44
S
Data Run Queue Length 105+ Z 61 el gfind.0
Distribution Data Locality 109.8 2*15 20 ;1] gfind.1
D
2 None Round Robin 1241 202 #Slé 92"greach.0-1
Instance Queue 213 23 107
Data Length 127. Z 86 5 greach.0-1
o "
Distribution Round Robin 1314 212 gg 72" greach.0-1
Data Locality 98.] 2*32 20 +283? gfind.1-2
Data 44 227 49 231
Distribution Run Queue Length  13Z:% £ a4 37 greach.0
Instance Queue 266 47 316
3 Length 155. 7 156 5 greach.0-2
None Round Robin 1574 221 1;’; 28,:1greach.0-2
Data . 261 41 232
Distribution Round Robin 1640 7 157 3 greach.0-2

# die Kontextwartezeiten entstanden nur bei Instanz 1
+ Wartezeiten entstanden nur bei Instanz 0
* nur Instanz 0 wurde genutzt

Je nach Strategie und Granulat wird die Klagsel bwz. die Klassgreachzum kritischen Fak-

tor, d.h. Engpal} (eine eher ausgewogene Belastung deutet auf relativ starke Auslastung des Last-
balanciereréoadmanhin). Man erkennt dies auch leicht an den durchschnittlichen Wartezeiten.
Der Balancierer selbst wird - ohne Verwendung der graphische Anzeige - lediglich zu 5..20%
beansprucht (fir die Messungen wurde er gemeinsacihi@htauf einem separaten Prozessor
konfiguriert). Das Abschneiden der unterschiedlichen Strategien in den verschiedenen Situationen
wollen wir nicht genauer betrachten, da sie nur Teilaspekte berticksichtigen. Die Messungen sol-
len im wesentlichen die Einsatzfahigkeit des Lastbalancierungsprototyps belegen und ihn damit
fur zukUnftige Realisierungen des HiCon-Konzeptes qualifizieren. Wichtig ist uns die Abschat-
zung, inwiefern die zentrale Balancierungskomponente in der Lage ist, auch bei relativ feinem
Auftragsgranulat den Durchsatz bei Erhéhung der Parallelitat zu steigern ohne selbst ein Engpaf3
zu werden. Ein optimalépeedupst bei Operationen auf gemeinsamen Daten durch die resultie-
renden Reihenfolgeabh&ngigkeiten, Konsistenzbedingungen und Kommunikationskosten (die
Grenzen der Parallelisierung) ohnehin nicht erreichbar. Deshalb verzichten wir an dieser Stelle
auch auf genauere Auswertungen und auf Optimierung der Beispielanwendung bzw. der Balan-
cierungsvarianten.
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3.2.6 Ausblick

Zur Einschatzung des Anwendungsspektrums, fir welches das vorgestellte Modell zur dynami-
schen Lastbalancierung geeignet ist, sind sicherlich noch weitere Applikationen zu untersuchen.
Der nachste Schritt zur Realisierung des bisher entwickelten Balancierungsverfahrens besteht in
der Kombination der oben betrachteten Einzelmethoden, wobei die Schwierigkeit vor allem in der
geeigneten Gewichtung der diversen Grol3en zueinander liegt. Als weitere Schritte stehen die
genaue Definition und Realisierung der Balancierungshierarchie (siehe Kapitel 2.4) sowie die
Konkretisierung der Planungskomponente flr Auftragsgruppen (siehe Kapitel 2.3.3) an. Von wei-
tergehender Optimierung unseres Prototyps wie etwaigen Verkirzungen von Nachrichtenwegen
oder der Nutzung niedrigerer Software-Ebenen sehen wir derzeit ab. Stattdessen werden wir tie-
fergehende Untersuchungen prinzipieller Design-Alternativen genauer erwégen: die Einfuhrung
einer Balancierungsinstanz je Serverklasse verspricht Vereinfachungen im Modell, bereitet jedoch
Schwierigkeiten bei auftragstbergreifender Einplanung. Ebenso ist eine inhaltliche Dezentralisie-
rung der Komponente, wie etwa die lokale Zuweisung kurzer, unwichtiger oder vom Profil her
unbekannter Auftrage zu erwéagen. Schliellich ist das derzeit gewahlte Programmiermodell in sei-
nen Vorzigen und Nachteilen mit Varianten zu vergleichen. So werden haufig (unter anderem im
SupervisofSchiele91]) Petrinetze zur Spezifikation und Synchronisation paralleler Ablaufe
bevorzugt; weiterhin kann man ‘multi-threaded’ Serverinstanzen (siehe Kapitel 2.2) in das Balan-
cierungsmodell aufnehmen oder in Anlehnung an Datenbanksysteme globale Datensatze einfih-
ren. Schliel3lich laf3t sich die Palette der bisher beleuchteten Lastbalancierungsfaktoren noch um
Beruicksichtigung der Verzogerungen durch Datensperren oder um Beachtung des verfligbaren
Hauptspeicherplatzes bereichern.
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