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Vorwort

Die bisherigen Theorietage \Automaten und Formale Sprachen" fan-

den in Magdeburg (September 1991) und Kiel (Oktober 1992) statt. Im

Oktober 1992 wurde die Tradition im Internationalen Begegnungs- und

Forschungszentrum Schlo� Dagstuhl fortgesetzt. Es nahmen 32 Teilneh-

mer aus Deutschland, �Osterreich und Frankreich teil. Das wissenschaftli-

che Programm bestand aus angemeldeten Beitr�agen der Teilnehmer. Sie

bilden einen Beweis f�ur vielf�altige Thematik der Vortr�age. Die Kurzfas-

sungen der Beitr�age sind in diesem Bericht abgedruckt.

Ich danke allen Teilnehmern f�ur Ihre interessanten Beitr�age und die

Bereitschaft zur wissenschaftlichen Diskussion. Ich danke auch der Uni-

versit�at Stuttgart f�ur die Unterst�utzung und dem Schlo� Dagstuhl f�ur die

freundliche Aufnahme. Dem n�achsten Theorietag in M�unchen w�unsche

ich viel Erfolg.

Ein besonderer Dank gilt meinem Mitherausgeber Dan Teodosiu f�ur

die m�uhevolle Arbeit, diesen Bericht zu erstellen.

Stuttgart, im Januar 1994 Volker Diekert
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Vortragsprogramm

Donnerstag, 7. Oktober

9.00 -10.30 Uhr Sitzungsleiter: Volker Diekert

� Mathias Bull

Stack- und Z�ahler-Automaten mit Zeigern in Labyrinthen

� Holger Petersen

Deterministische Zweiweg-Kellerautomaten: Bemerkungen zu End-

losschleifen

� Katja Landskron

�Uber die Erzeugung von (un-)endlichen Sprachen bei stochasti-

schen k-limitierten 0L-Systemen

11.00 - 12.15 Uhr Sitzungsleiter: Wolfgang Thomas

� Sebastian Seibert

Two-dimensional Picture Languages

� Robert Cremanns

Berechnung von Untergruppendarstellungen aus endlichen Auto-

maten

� Henner Kr�oger

Aktivierung zellularer Automaten

14.00 - 15.00 Uhr Fachgruppensitzung mit Wahl der Leitung
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16.00 - 18.00 Uhr Sitzungsleiter: J�urgen Dassow

� Bernd Reichel

Eine Bemerkung �uber Linksableitung indisch paralleler Gramma-

tiken

� Stefan Skalla

Zur Anzahl der aktiven Nichtterminale in kooperierenden Gram-

matiksystemen

� Rudolf Freund

Kooperierende Systeme von Array-Grammatiken

� Torsten Ro�nick

�Uber Fragen des Determinismus bei endwachsenden fadenf�ormigen

Systemen

20.00 - 21.30 Uhr Sitzungsleiter: Klaus-J�orn Lange

� Matthias Jantzen

Neue Anwendungen von Ergebnissen �uber Petrinetze auf Matrix-

Sprachen

� Franz J. Brandenburg

The solvability of the Membership Problem for Context-Free

Grammars with Regular Control Sets

Freitag, 8. Oktober

9.00 -10.30 Uhr Sitzungsleiter: Franz J. Brandenburg

� Ludwig Staiger

On Syntactic Congruences for !�languages
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� Henning Fernau

Bewertungen regul�arer Ausdr�ucke, Zusammenh�ange mit strenger

Eindeutigkeit regul�arer Ausdr�ucke sowie Anwendungen bei der

Berechnung der Hausdor�-Dimension von Fraktalen, die mit re-

gul�aren Ausdr�ucken beschrieben werden

� Helmut Seidl

Least Solutions of Equations over N

11.00 - 12.15 Uhr Sitzungsleiter: Volker Diekert

� Gerhard Buntrock

Wachsend kontextsensitive Sprachen und Automaten

� Olaf Burkkart

Pushdown Prozesse: Parallele Komposition und Model-Checking

� Markus Holzer

Das Nichtleerheitsproblem f�ur alternierende endliche Automaten

13.00 - 14.00 Uhr Sitzungsleiter: Ludwig Staiger

� Maria Huber

Regul�are Grundnormalformsprachen und Lineariesierung von Ter-

mersetzungssystemen

� Dieter Hofbauer

Reduzierbarkeit, Grundreduzierbarkeit und Testmengen
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The solvability of the Membership Problem for
Context-Free Grammars with Regular Control Sets

Franz J. Brandenburg
Lehrstuhl f�ur Informatik
Universit�at Passau

Context-free grammars with regular control sets are well-known systems

of regulated rewriting. They are extensions of context-free grammars and

are equivalent, e.g., to programmed grammars or matrix grammars.

Here we investigate the role of erasing productions and of chain produc-

tions under regular control sets.

By classical proof techniques we obtain the following result.

Lemma For every context-free grammarG and control set C there exist

�nitely many homomorphisms g; h and hi; i = 1; : : : ; n and a (nonerasing,

nonerasing and chain-free or) context-free grammar in Chomsky normal

form G0 such that L(G;C) = L(G0; C 0) where C 0 = g(h�1(C)\
T
�1
hi
(D01))

with the semi-Dyck set over one pair of parenthesis D01.

Hence, nonerasing and chain-free productions are obtained at the cost of

more complex control sets, which are related to Greibach's class PBLIND

[G78]. PBLIND is the class of languages accepted by nondeterministic

multitape Turing machines whose worktapes are partially blind counters.

Equivalently, PBLIND is the class of Petri net languages, or is the smal-

lest intersection closed full trio containing the semi-Dyck set D01. Due to

the decidability of the reachability problem for Petri nets PBLIND is a

class of recursive sets.

Corollary If C is a regular set or if C is in PBLIND, then C 0 is in

PBLIND and L(G;C) is recursive.

Thus we can conclude the decidability of the membership problem for

contextfree grammars with regular control sets, or equivalently of ma-

trix or programmed grammars. This problem is stated open e.g., in the

textbooks by Salomaa [S73] and by Dassow and Paun [DP89].
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It has been solved by other methods by Gonczarkowski and Warmuth

[GW79]. The decidability is implicitly stated in the textbook of Dassow

and Paun [DP 89] as was pointed out by M. Jantzen (see this report).

Theorem The membership problem for context-free grammars with re-

gular control sets is decidable.

As a consequence the corresponding class of matrix languages is not

closed under intersection and complement. Using the machine characte-

rization of languages from the class PBLIND we directly obtain a simu-

lation in terms of grammars with regular control sets. This relates Petri

net language to matrix languages.

Lemma For every language L in PBLIND there is a context-free gram-

mar G and a regular control set R such that L = L(G;R).

Some of the results from above can be generalized. E.g. if G is a no-

nerasing and chain-free context-free grammar and C is recursive, then

L(G;C) is recursive. This follows from the fact the length of a deriva-

tion of a word w is bounded by 2jwj � 1. However, every recursively

enumerable set can be generated by a nonerasing regular grammar with

a contextsensitive control set.

Moreover, if partially blind multicounter machines are extended by a

single one-reversal pushdown stack, then such machines can be simulated

by context-free grammars with regular control sets. Whether or not this

holds with the extension by an unrestricted stack is open.

Acknowledgement I wish to thank the participants of the Theorietag

and in particular M. Jantzen for pointing out a serious error in an earlier

draft concerning the above open problem.
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Stack- und Z�ahler-Automaten mit Zeigern in
Labyrinthen

Mathias Bull
FB Informatik

Universit�at Rostock

In der Labyrinth-Theorie wird die Leistungsf�ahigkeit von Automaten bei

Absuch- und Erkennungsprozessen auf ungerichteten, zusammenh�angen-

den Graphen mit Kompa�systemen (C-Graphen) und Rotationssyste-

men (R-Graphen) untersucht. Eine Charakterisierung erfolgt entweder

durch den Entwurf eines Absuchprozesses/-algorithmus' oder durch die

Konstruktion eines nicht absuchbaren Graphen, einer sogenannten Falle,

f�ur einen Automaten des jeweils betrachteten Automaten- sowie Laby-

rinthtyps.

Seit der Ver�o�entlichung eines Absuchalgorithmus' f�ur endliche, zweidi-

mensionale C-Graphen durch einen (1-Zeiger, 1-Z�ahler)-Automaten von

A. Hemmerling (MFCS'86) war die analoge Fragestellung f�ur planierte

R-Graphen o�en. F�ur Stackautomaten fehlten bisher jegliche Aussagen.

Die folgenden neuen Resultate werden vorgestellt.

Fallenkonstruktionen:

� Zu jedem (1-Zeiger,1-Z�ahler)-Automaten gibt es eine planierte R-

Falle.

� Zu jedem 1-Stack-Automaten gibt es eine planierte R-Falle.

Absuchproze�/-algorithmus:

� Es gibt einen (1-Zeiger,1-nichtl�oschenden-Stack)-Automaten, der

alle zusammenh�angenden R-Graphen absucht, wobei er auf endli-

chen h�alt.
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Wachsend kontextsensitive Sprachen und
Automaten

Gerhard Buntrock
Institut f�ur Informatik
Universit�at W�urzburg

Die Sprachklasse der wachsend kontextsensitiven Sprachen ist de�niert

durch Grammatiken, deren Produktionen nur der Einschr�ankung unter-

liegen, da� ihre rechte Seite stets l�anger als ihre linke ist. Die einzi-

ge Ausnahme ist, wenn links nur das Startsymbol steht; dann darf das

Startsymbol nicht auf der rechten Seite auftauchen. Diese Klasse ist von

besonderer Bedeutung, weil sie ausdrucksst�arker als die Klasse der kon-

textfreien Sprachen ist, aber ihr komplexit�atstheoretischer Abschlu� un-

ter logarithmisch platzbeschr�ankten Reduktionen dem der kontextfreien

gleicht.

Verwenden wir die Charakterisierung wachsend kontextsensitiver Spra-

chen durch Grammatiken, die nur bez�uglich einer Gewichtung ihrer Sym-

bole wachsen [BL92], l�a�t sich zeigen, da� auch eine Verallgemeinerung

des Kellerautomaten diese Klasse charakterisiert. �Ahnlich der Gewich-

tung der Grammatiksymbole kann man eine Gewichtung der Symbo-

le, mit denen ein Automat arbeitet (Eingabe- und Arbeitsalphabet so-

wie die Zust�ande), vornehmen. Wenn nun die so entstehenden Gewichte

der Kon�gurationen stets abnehmen m�ussen, zeigt sich, da� diese Ein-

schr�ankung bei normalen Kellerautomaten keine Auswirkung auf ihre

Leistungsf�ahigkeit hat. F�ur einen Kellerautomaten mit zwei Kellern be-

deutet das aber, da� er anstelle aller rekursiv aufz�ahlbaren Sprachen

nur noch wachsend kontextsensitive Sprachen akzeptiert. Darf in jedem

Schritt das Gewicht der Kon�gurationen auch gleich bleiben, so k�onnen

kontextsensitive Sprachen akzeptiert werden.

Diese Automatencharakterisierung f�uhrt zu einer neuen interessanten

Klasse: die der deterministisch wachsend kontextsensitiven Sprachen, die

eine Erweiterung der deterministisch kontextfreien Sprachen sind.
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Pushdown Prozesse: Parallele Komposition und
Model-Checking

Olaf Burkart
Department of Computer Science II

RWTH-Aachen
(in Zusammenarbeit mit Bernhard Ste�en, Universit�at

Passau)

In den letzten Jahren hat sich Model Checking als ein n�utzliches Werk-

zeug zur Analyse von nebenl�au�gen Prozessen entwickelt. W�ahrend Mo-

del Checking f�ur Systeme mit endlicher Zustandsanzahl bereits wohl be-

kannt ist [EL86, Cle90, CS92], ist die Theorie f�ur Systeme mit unendli-

chem Zustandsraum ein aktueller Gegenstand der Forschung. Brad�eld

und Stirling haben in [Bra91, BS91] ein tableau-basiertes Model-Check

-Verfahren f�ur allgemeine Systeme mit unendlicher Zustandsanzahl vor-

gestellt, welches jedoch nicht e�ektiv ist. Aus diesem Grunde hat sich

viel Arbeit auf die kontext-freien Prozesse, einer Unterklasse der Sy-

steme mit unendlichem Zustandsraum, konzentriert. So wurde in [BS92]

ein iterativer Model-Check Algorithmus entwickelt, welcher den alternie-

rungsfreien Teil des modalen Mu-Kalk�uls [Koz83] entscheidet. Weiterhin

wurde in [HS93] gezeigt, wie dies mit tableau-basierten Methoden durch-

gef�uhrt werden kann.

Leider sind kontext-freie Prozesse jedoch nicht unter paralleler Kompo-

sition abgeschlossen. So k�onnen beliebige Turingmaschinen bereits durch

die parallele Komposition von zwei kontext-freien Prozessen modelliert

werden. Auch die parallele Komposition eines kontext-freien Proze�es

mit einem endlichen System ergibt im allgemeinen keinen kontext-freien

Proze�. Kontext-freie Prozesse sind daher nur beschr�ankt geeignet f�ur

die Konstruktion von verteilten Systemen.

Wir betrachten eine strikte Verallgemeinerung von kontext-freien Prozes-

sen, die Pushdown Prozesse, und zeigen, da� diese Klasse von Prozessen

� abgeschlossen ist unter paralleler Komposition mit endlichen Sy-

stemen; (Wir stellen eine Art Expansionstheorem im Sinne von
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Milner [Mil89] vor.)

� mit Hilfe einer Variante des in [BS92] vorgestellten Model Checkers

h�oherer Ordnung, welche auf Kellerautomaten arbeitet, automa-

tisch analysiert werden k�onnen.

Beide Resultate benutzen eine endliche Beschreibung von Pushdown Pro-

zessen durch Kellerautomaten. Intuitiv besagt unser Expansionstheo-

rem, da� sich die parallele Komposition eines Pushdown Proze�es mit

einem endlichen System aus der Synchronisation des Kellers mit dem

Produkt aus Zustandskontrolle des zugrundeliegenden Kellerautomaten

und endlichem System ergibt. Wir zeigen, da� das resultierende Pro-

blem der \Repr�asentationsexplosion" nicht schlimmer als im bekannten

\Zustandsexplosionsproblem" f�ur endliche Systeme ist.

Unser iterativer Model Check Algorithmus entscheidet den alternierungs-

freien Teil des modalen Mu-Kalk�uls f�ur Pushdown Prozesse. Wie im Fall

der kontext-freien Prozesse, basiert der Algorithmus auf einer Variante

\h�oherer Ordnung" der Standard Model-Check Techniken. Er bestimmt

property transformer f�ur jedes Fragment des Kellerautomaten. Diese be-
schreiben die Menge der Formeln, welche am Startzustand eines Frag-

mentes gelten, relativ zu den Mengen von Formeln, welche an den End-

zust�anden des Fragments gelten. Hierbei bestimmt die Anzahl der End-

zust�ande eines Fragments, welche identisch mit der Anzahl der Zust�ande

des Kellerautomaten ist, die Stelligkeit des zugeh�origen \property trans-

formers". Dieser Algorithmus stellt daher eine Verallgemeinerung des

Model-Checkers aus [BS92] dar, welcher nur un�are \property transfor-

mer" benutzt. Nach der Bestimmung der \property transformer" wird

das Model-Check Problem einfach dadurch gel�ost, da� �uberpr�uft wird,

ob die gegebene Formel in der Menge enthalten ist, die man durch Appli-

kation des mit dem initialen Fragments assoziierten \property transfor-

mers" auf die Mengen von Formeln, welche an den Endzust�anden gelten,

erh�alt.

Da� Model-Checking f�ur Pushdown Prozesse entscheidbar ist, folgt eben-

falls aus der Entscheidbarkeit der monadischen Logik zweiter Stufe f�ur

diese Klasse von Prozessen [MS85], da der modale Mu-Kalk�ul in dieser
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Logik ausgedr�uckt werden kann. Neu ist jedoch die E�zienz des Algo-

rithmus: nur die Gr�o�e der Zustandskontrolle des Kellerautomaten und

der betrachteten Formel sind kritisch.
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Berechnung von Untergruppendarstellungen aus
endlichen Automaten

Robert Cremanns
Fachbereich Mathematik, FG Informatik

Gesamthochschule Kassel

Endliche Wortersetzungssysteme k�onnen benutzt werden um Gruppen

darzustellen. Dabei interessieren insbesondere kanonische Worterset-

zungssysteme, denn f�ur kanonische Wortersetzungssysteme sind viele

Entscheidungsprobleme entscheidbar, z.B. das Wortproblem.

Wir betrachten das Problem, aus einem endlichen, kanonischen Worter-

setzungssystem, das eine Gruppe G darstellt, und einer endlichen Menge

U von W�ortern eine Darstellung f�ur die von U erzeugte Untergruppe

H von G zu bestimmen. Wir stellen ein Verfahren zur L�osung dieses

Problems vor und wenden es auf verschiedene Klassen von kanonischen

Darstellungen von kontextfreien Gruppen an. Das Verfahren ist in vier

Schritte unterteilt.

Im ersten Schritt wird ein endlicher Automat A konstruiert, der eine

Sprache L � hUi akzeptiert, so da� jedes Element der Untergruppe H

durch mindestens ein Wort in L repr�asentiert wird. Hierbei bezeichnet

hUi die Menge aller W�orter, die Elemente in H beschreiben. Sei R das

betrachtete Wortersetzungssystem. Im zweiten Schritt konstruieren wir

einen Kellerautomaten P , der Reduktionen bzgl. R durchf�uhrt. Bei Ein-

gabe w ist die Menge der End-Kellerinhalte SCP (w) eine Menge von

R-Nachfolgern von w. Im dritten Schritt wird ein Algorithmus angewen-

det, der bei Eingabe A und P einen endlichen Automaten bestimmt, der

die Sprache SCP (L) der End-Kellerinhalte von P bei Eingaben aus L

akzeptiert. Die von diesem Automaten akzeptierte Sprache erf�ullt be-

stimmte Abschlu�eigenschaften, so da� wir im vierten Schritt daraus

eine Darstellung f�ur H ableiten k�onnen.
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Die Schritte 1, 3 und 4 sind mit polynomialem Zeitaufwand durchf�uhr-

bar. Die Zeitkomplexit�at des zweiten Schritts ist von der betrachteten

Klasse von Darstellungen von kontextfreien Gruppen abh�angig.
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Bewertungen regul�arer Ausdr�ucke, Zusammenh�ange
mit strenger Eindeutigkeit regul�arer Ausdr�ucke
sowie Anwendungen bei der Berechnung der
Hausdor�-Dimension von Fraktalen, die mit
regul�aren Ausdr�ucken beschrieben werden

Henning Fernau
Lehrstuhl f�ur Informatik

Universit�at Karlsruhe (TH)

Br�uggemann-Klein u.a. hat j�ungst sogenannte streng eindeutige regul�are

Ausdr�ucke n�aher untersucht [1]. Der Begri� der strengen Eindeutig-

keit l�a�t sich mit Hilfe von Bewertungen kennzeichnen. Bewertungen

� sind Monoidmorphismen von (��n; �; �) nach ((0;1); �; �), die sich

durch �(L) =
P

w2L �(w) 2 [0;1] leicht auf Sprachen erweitern las-

sen. Entlang der rekursiven De�nition regul�arer Ausdr�ucke l�a�t sich

nun rekursiv die Bewertung von regul�aren Ausdr�ucken �R de�nieren:

�R(w) = �(w) f�ur w 2 ��n, �R(R1R2) = �R(R1)�R(R2), �R(R1 [R2) =

�R(R1)+�R(R2), �R(R
�

1) =
P
1

i=0(�R(R1))
i. Ein Ausdruck R ist streng

eindeutig genau dann, wenn f�ur eine Bewertung � mit �R(R) < 1 die

Zahl �R(R) mit der Bewertung �([R]) der von R beschriebenen Sprache

[R] �ubereinstimmt.

Bewertungen sind ein Konzept, das zun�achst als Hilfsmittel zur Bestim-

mung von Hausdor�-Dimensionen von formalsprachlich de�nierten Frak-

talen eingef�uhrt wurde [3, 2]. So l�a�t sich das obige Ergebnis auch zur

einfachen Dimensionsbestimmung von Fraktalen, die durch streng ein-

deutige regul�are Ausdr�ucke beschrieben werden, benutzen.
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Kooperierende Systeme von Array-Grammatiken

Rudolf Freund
Technische Universit�at Wien

J�urgen Dassow
Fakult�at f�ur Informatik
Universit�at Magdeburg

Gheorghe P�aun 1

Institut f�ur Mathematik
Rum�anische Akademie der Wissenschaften

Wir untersuchen den E�ekt kooperierender Systeme bei der Erzeugung

von Array-Sprachen mittels kontextfreier Array-Grammatiken. Erwar-

tungsgem�a� ist die Erzeugungskraft kooperierender Systeme kontextfrei-

er Array-Grammatiken (mit einer vorgegebenen festen Anzahl von Ab-

leitungsschritten, mit einer Anzahl von Ableitungsschritten gr�o�er oder

gleich einer vorgegebenen Zahl oder mit der maximal m�oglichen Anzahl

von Ableitungsschritten in der aktivierten Komponente) gr�o�er als die

Erzeugungskraft einfacher kontextfreier Array-Grammatiken. Das glei-

che Resultat erh�alt man auch f�ur Systeme regul�arer Array-Grammatiken,

was im Gegensatz zu den f�ur (kooperierende Systeme von) String-

Grammatiken erzielten Ergebnissen steht.

Arrays und Array-Grammatiken

V 2+ bezeichnet die Menge der zweidimensionalen Arrays �uber dem Al-

phabet V, also die Menge aller Patterns, die man durch Markierung

endlich vieler Einheitsquadrate in der Ebene mit Symbolen aus V erh�alt

(die restlichen Einheitsquadrate sind mit dem Blanksymbol # markiert);

Teilmengen von V 2+ hei�en Array-Sprachen. Eine isometrische Array-
Grammatik ist ein 5-Tupel G = (N;T; S; P;#), wobei N;T disjunkte

Alphabete sind, S 2 N , # das Blanksymbol und P eine endliche Menge

1Gef�ordert von der Alexander von Humboldt-Stiftung
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von Array-Produktionen � ! � ist, wobei �; � endliche Patterns �uber

N [ T [ f#g sind, welche den folgenden Bedingungen gen�ugen:

1. Die Umrisse von � und � sind identisch, i.e. sie sind isometrisch.

2. � enth�alt mindestens ein Symbol aus N (ein Nonterminal).

3. Die Elemente aus T (Terminale), die in � vorkommen, werden in

� nicht ver�andert.

F�ur eine isometrische Array-Grammatik G = (N;T; S; P;#) de�nieren

wir die Ableitungsrelation x =) y folgenderma�en:

F�ur x; y 2 (N [ T [ f#g)2+ hei�t x ableitbar aus y mittels � ! � 2
P , falls � ein Teil-Pattern in x ist und man y aus x durch Ersetzen des

Teil-Patterns � in x durch � (� und � sind ja isometrisch) erh�alt. Die

re
exive und transitive H�ulle von =) wird mit =)� bezeichnet; die von

G erzeugte Array-Sprache ist de�niert durch

L(G) = fx 2 T 2+ j S =)� xg:

Eine isometrische Array-Grammatik hei�t monoton, falls in allen Array-

Produktionen �! � Symbole aus (N[T ) in � nicht durch # in � ersetzt

werden; G hei�t kontextfrei, falls �uberdies in jeder Array-Produktion �

nur aus genau einem Nonterminal und einigen Blanksymbolen # besteht;

sind alle Array-Produktionen von G von einer der folgenden Formen,

dann nennt man G regul�ar (A;B Nonterminale, a ein Terminal):

# A! B a; A #! a B;
#

A
!

B

a
;
A

#
!

a

B
;A! a:

Bezeichnet man mit IA;MA;CFA;REGA die Familien von Array-Spra-

chen, die von allgemeinen, monotonen, kontextfreien and regul�aren iso-

metrischen Array-Grammatiken erzeugt werden, so bilden diese Familien

von Array-Sprachen eine Chomsky-Hierarchie2:

REGA � CFA �MA � IA:
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Kooperierende Systeme

Ein kooperierendes System von Array-Grammatiken (vom Typ X , X 2
fREGA, CFAg, und vom Grad n, n � 1) ist ein Konstrukt

� = (N;T; S; P1; P2; : : : ; Pn;#);

wobei N;T disjunkte Alphabete sind, S 2 N und P1; P2; : : : ; Pn endliche

Mengen kontextfreier bzw. regul�arer Array-Produktionen �uber N [ T

sind. F�ur jedes i, 1 � i � n, betrachten wir die �ubliche Ableitungsrelation

=)Pi ,

x =)Pi y gdw. x = x1Ax2; y = x1zx2; x1; x2 2 (N [ T )�; A! z 2 Pi;

und de�nieren beliebige Ableitungen (=)�

Pi
) sowie, f�ur ein gegebenes

k � 1, Ableitungen mit genau k Schritten, (=)=k
Pi
), mit mindestens be-

ziehungsweise h�ochstens k Schritten (=)
�k
Pi
;=)�k

Pi
), sowie die maximale

Ableitungsrelation,

x =)t
Pi
y gdw. x =)�

Pi
y und f�ur kein z 2 (N [ T )� y =)Pi z:

Sei nun F = f�; tg [ f� k;= k;� k j k � 1g: F�ur ein System � and

f 2 F ist die durch � im Ableitungsmodus f erzeugte Array-Sprache

de�niert durch

Lf (�) = fx 2 T � j S =)f
Pi1

x1 =)
f
Pi2

x2 : : : =)
f
Pim

xm = x;

m � 1; 1 � ij � n; 1 � j � mg:

Die Familie von Array-Sprachen, die von kooperierenden Systemen von

Array-Grammatiken mit h�ochstens n bzw. beliebig vielen Komponenten

vom Typ X im Ableitungsmodus f erzeugt werden, bezeichnen wir mit

CDn(X; f); n � 1; bzw. CD(X; f), X 2 fREGA;CFAg; f 2 F .

Ergebnisse

1. F�ur n � 1, f 2 f�;= 1;� 1g [ f� k j k � 1g und X 2
fREGA;CFAg gilt

CDn(X; f) = CD(X; f) = X:
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2. Sei k; k0 � 1.
i) CDn(REGA;= k) = CD1(REGA;= k) gilt f�ur alle n � 1.
ii) Ist k0 ein Teiler von k, so ist
CD1(REGA;= k) echt enthalten in CD1(REGA;= k0).
iii) Ist weder k ein Teiler von k0 noch k0 ein Teiler von k, so
sind die Familien von Array-Sprachen CD1(REGA;= k) und
CD1(REGA;= k0) unvergleichbar, aber nicht disjunkt.

3. F�ur n � 1 und 1 � k0 < k gilt

CDn(REGA;� k) � CDn(REGA;� k0):

4. F�ur n � 2 und f 2 f= k j k � 2g [ f� k j k � 2g gilt

CFA = CD1(CFA; f) � CDn(CFA; f):

5. Sei m � 2; n � 3. Dann gilt

REGA = CD1(REGA; t) � CD2(REGA; t) = CDm(REGA; t)

und

CFA = CD1(CFA; t) � CD2(CFA; t)

� CD3(CFA; t) = CDn(CFA; t):
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Reduzierbarkeit, Grundreduzierbarkeit und
Testmengen

Dieter Hofbauer
Fachbereich Informatik

TU Berlin

Abstract

In der Theorie der Termersetzung spielen die Baumsprachen

der reduzierbaren bzw. der irreduzierbaren Grundterme eine wich-

tige Rolle. Von besonderem Interesse sind die grundreduzierba-

ren Terme (mit Variablen), also die Terme, deren Grundinstanzen

s�amtlich reduzierbar sind.

F�ur endliche linkslineare Termersetzungssysteme ist die Spra-

che der reduzierbaren Grundterme immer regul�ar und die Grund-

reduzierbarkeit somit entscheidbar. Aber auch im nichtlinearen

Fall bleibt die Grundreduzierbarkeit entscheidbar. Es wird gezeigt,

da� immer endliche Testmengen existieren, so da� ein Term genau

dann grundreduzierbar ist, wenn die { endlich vielen { Instanzi-

ierungen des Terms durch Terme aus der Testmenge reduzierbar

sind.

Grundreduzierbarkeit hat sich als ein Schl�usselkonzept bei der Veri�ka-

tion wichtiger Eigenschaften von Termersetzungssystemen erwiesen, so

etwa f�ur die �Uberpr�ufung der vollst�andigen De�niertheit von Operato-

ren bez�uglich gegebener Konstruktoren (su�cient completeness) oder f�ur
das Beweisen induktiv g�ultiger Gleichungen (\inductionless induction").

Sei R ein Termersetzungssystem �uber der Signatur �. Wir bezeichnen

mit Red(R) die Menge der Grundterme �uber �, die mit R reduzierbar

sind, und mit Nf(R) die Komplementmenge, also die Grundterme in

Normalform bez�uglich R. Ground(t) sei die Menge aller Grundinstanzen

eines Terms t 2 T�(X). Ein Term t 2 T�(X) ist grundreduzierbar mit
R, wenn alle Grundinstanzen von t mit R reduzierbar sind, d.h. falls
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Ground(t) � Red(R) gilt.

F�ur linkslineare Systeme R und lineare Terme t ist die Grundreduzier-

barkeit leicht zu entscheiden: in diesem Fall sind sowohl Ground(t) als

auch Red(R) immer regul�are Baumsprachen, Ground(t) � Red(R) also

entscheidbar. Aber auch im nichtlinearen Fall bleibt die Entscheidbarkeit

erhalten, wie Plaisted [13] sowie Kapur, Narendran und Zhang [8] gezeigt

haben. Hierbei wird folgendes Problem gel�ost:

� Gegeben: ein endliches System R �uber � und ein Term t.

� Gesucht: eine endliche Menge T � T� so, da� t genau dann

grundreduzierbar mit R ist, wenn alle T -Instanzen von t mit R

reduzierbar sind.

Eine T -Instanz von t ist hier ein Term, der aus t durch Substitution aller

Variablen durch Terme aus T entsteht.

Weil der Grundreduzierbarkeitstest damit auf endlich viele Reduzierbar-

keitstests zur�uckgef�uhrt wird, hei�t T auch Testmenge f�ur R und t. Da

Testmengen im allgemeinen sehr gro� werden k�onnen, ist ein Nachteil

dieses Ansatzes, da� die Testmenge vom Term t abh�angt, also f�ur jeden

Test neu berechnet werden mu�. Nun l�a�t sich aber tats�achlich eine

Testmenge angeben, die nur von R abh�angt; hierbei enthalten die Terme

der Testmenge im allgemeinen Variablen. Wir zeigen [6, 4, 5], da� auch

das folgende Problem l�osbar ist:

� Gegeben: ein endliches System R �uber �.

� Gesucht: eine endliche Menge T � T�(X) so, da� t genau dann

grundreduzierbar mit R ist, wenn alle T -Instanzen von t mit R

reduzierbar sind.

Diese Testmengen sind durch Kounalis [5] inspiriert; sein urspr�unglicher

Ansatz hat sich allerdings als inkorrekt erwiesen. Nachdem von Huber [6]

gezeigt wurde, wie sich dies reparieren l�a�t, hat auch Kounalis eine kor-

rigierte Version vorgestellt [10].
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Allgemeiner zeigen wir, da� sich alle Mengen T , die

(1) vollst�andig f�ur R,

(2) expandiert bez�uglich R und

(3) typisch f�ur R

sind, als Testmengen eignen, und wie solche Mengen berechnet werden

k�onnen. Dabei ist die Vollst�andigkeit von T (de�niert durch Nf(R) �
Ground(T )) f�ur die Korrektheit der einen Richtung des Test zust�andig:

Ist t nicht grundreduzierbar, hat t also eine irreduzierbare Grundinstanz

t
, dann existiert auch eine T -Instanz t� , die t
 als Instanz hat, die

also selber irreduzierbar ist. Die Expandiertheit ist eine eher technische,

leicht zu erf�ullende Bedingung.

Dagegen bildet Bedingung (3), die f�ur linkslineare Systeme �uber
�ussig

ist, den Kernpunkt unseres Ansatzes. Hier wird formuliert, da� nicht nur

alle irreduzierbaren Grundterme als Instanzen eines Terms in der Test-

menge repr�asentiert sind { Bedingung (1) { sondern da� die Testmenge

dar�uber hinaus auch noch die
"
Nichtlinearit�aten\ von R widerspiegelt.

Ein Term t hei�t typisch f�ur R, wenn f�ur jede Variable x in t eine unendli-
che Menge Gx � T� existiert, so da� t
 2 Nf(R) f�ur alle Substitutionen


, wobei x
 2 Gx f�ur alle Variablen x in t. Entsprechend hei�t eine

Menge T typisch f�ur R, wenn alle t in T typisch f�ur R sind.

Diese Bedingung garantiert nun umgekehrt, da� jede irreduzierbare T -

Instanz eines Terms t auch eine irreduzierbare Grundinstanz besitzt. Ter-

me mit irreduzierbaren T -instanzen k�onnen also nicht grundreduzierbar

sein.

Ausf�uhrlich gehen wir abschlie�end darauf ein, wie sich durch eine ge-

naue Beweisanalyse im allgemeinen deutlich kleinere Testmengen �nden

lassen; unter worst-case-Betrachtungen ergeben sich allerdings keine Un-

terschiede in der Gr�o�enordnung.
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Das Nichtleerheitsproblem f�ur alternierende endliche
Automaten 2

Markus Holzer
Institut f�ur Informatik

Technische Universit�at M�unchen

Jones zeigte im Jahre 1975 [3], da� das Nichtleerheitsproblem

f�ur deterministische und nichtdeterministische endliche Automaten

NSPACE (logn)-vollst�andig ist.

In weiterer Folge wurden Einschr�ankungen und Verallgemeinerungen

des Nichtleerheitsproblems f�ur deterministische und nichtdeterministi-

sche endliche Automaten von Galil [2], Kozen [4] und Lange und Ross-

manith [5] betrachtet. Hierbei gelang es nat�urliche vollst�andige Probleme

f�ur die Klassen NP , PSPACE und Klassen mit eingschr�anktem Nicht-

determinismus anzugeben.

Angesichts der Ergebnisse f�ur deterministische und nichtdeterministi-

sche endliche Automaten, stellt sich die Frage welche Komplexit�at das

Nichtleerheitsproblem f�ur alternierende endliche Automaten [1], einem

Maschinenmodell das ebenfalls die regul�aren Sprachen charakterisieren,

hat.

Es ergeben sich nat�urliche vollst�andige Probleme f�ur die Klassen P , NP
und PSPACE . F�ur das Nichtleerheitsproblem f�ur alternierende end-

liche Automaten mit un�arem Eingabealphabet konnte die �Aquivalenz

zum Nichtleerheitsproblem f�ur Extended Lindenmayersysteme, kurz E0L

Systeme, bewiesen werden. Erst k�urzlich wurde in [6] die PSPACE-
Vollst�andigkeit des Nichtleerheitsproblems f�ur E0L Syteme gezeigt.

Auf Grund der Zusammenh�ange zwischen Nichtleerheitsproblemen f�ur

alternierende endliche Automaten und Nichtleerheitsproblemen f�ur Lin-

denmayersyteme kann gezeigt werden, da� schon sehr eingeschr�ank-

te Nichtleerheitsproblem f�ur alternierende endliche Automaten NP
bzw. PSPACE-vollst�andig sind.

2Gef�ordert durch die Deutsche Forschungsgemeinschaft unter Projekt DFG-La

618/1-1
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Regul�are Grundnormalformsprachen und
Lineariesierung von Termersetzungssystemen

Maria Huber
CRIN/INRIA Lorraine
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Abstract

In Termersetzungssystemen lassen sich Regeln, die nicht linksli-

near sind, h�au�g durch linkslineare ersetzen ohne die Sprache der

irreduzierbaren Grundterme zu ver�andern. Um zu entscheiden, ob

ein Termersetzungssystem in diesem Sinn \linearisierbar" ist, und

um diese Linearisierung gegebenenfalls durchzuf�uhren, werden wir

geeignete Testmengen { eine endliche Repr�asentation der Grund-

terme in Normalform { benutzen. Wir zeigen, da� diese Linearisie-

rung genau dann m�oglich ist, wenn die Grundnormalformsprache

eine regul�are Baumsprache bildet.

Endliche Testmengen werden h�au�g verwendet, um die Sprache der nicht

reduzierbaren Grundterme zu charakterisieren. So sind sie ein geeignetes

Hilfsmittel um zu entscheiden, ob alle Grundinstanzen eines Terms mit

einem gegebenen Termersetzungssystem reduzierbar sind. Diese Grund-

reduzierbarkeit von Termen wiederum ist zum Beispiel wichtig, um zu

entscheiden, ob ein Symbol vollst�andig de�niert ist oder ob eine Glei-

chung f�ur alle Grundterme gilt. Plaisted [13] und Kapur, Narendran,

Zhang [8], [9] haben gezeigt, da� es ausreicht, eine endliche Menge von

Grundinstanzen eines Terms zu betrachten, um zu entscheiden, ob dieser

Term grundreduzierbar ist. Kleinere Testmengen, die auch Terme mit

Variablen enthalten, wurden sp�ater u.a. in [7] und [9] f�ur linkslineare

Termersetzungssysteme verwendet.

Testmengen, die f�ur einen Grundreduzierbarkeitstest auch im nichtlinea-

ren Fall verwendet werden k�onnen, sind sehr viel komplizierter und wur-

den in [10] und [6] genauer untersucht. Comon gibt in [3] bedingte Gram-

matiken an, die die Sprachen der irreduzierbaren Grundterme erzeugen.
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Neuere Ans�atze basieren auf der Konstruktion von Automaten, die genau

die Grundnormalformsprache akzeptieren, und deren Leerheitsproblem

entscheidbar ist. W�ahrend Bogaert und Tison [1] Nichtlinearit�aten nur

eingeschr�ankt erlauben (gleiche Variablen in linken Regelseiten sind nur

direkt unterhalb der Wurzel erlaubt), sind die Automaten von Caron,

Coquide und Dauchet [2] f�ur beliebige Termersetzungssysteme verwend-

bar.

Wir zeigen, wie die Testmengen, die in [6] urspr�unglich zur Entscheidung

der Grundreduzierbarkeit konzipiert waren, verwendet werden k�onnen,

um in linken Regelseiten nichtlineare Variablen durch eine endliche Men-

ge von Grundtermen zu ersetzen, falls dieses m�oglich ist ohne die Grund-

normalformsprache zu ver�andern. Unser Algorithmus wird durch eine

einzige Ableitungsregel beschrieben, die nichtdeterministisch eine nicht-

lineare Regel ausw�ahlt und so Regel f�ur Regel linearisiert. Ist die Regel

nicht mehr anwendbar, dann sind entweder alle Regeln linearisiert { es

gibt keine nichtlineare Regel mehr {, oder es gibt keine endliche linea-

re Regelmenge mit der gleichen Grundnormalformsprache. Dazu werden

alle m�oglichen Instanzen einer nichtlinearen linken Regelseite gebildet,

die durch Substitution der Variablen durch Terme der Testmenge entste-

hen. Von diesen Instanzen werden diejenigen aufbewahrt, die nur an der

Wurzel und zwar nur mit der Regel, die gerade untersucht wird, redu-

zierbar sind. Sind alle diese Instanzen durch Substitution nichtlinearer

Variablen durch Grundterme entstanden, wird in der Regelmenge die ur-

spr�ungliche Regel durch die entsprechenden Instanzen ersetzt; die Regel

ist linearisiert, ihre nichtlinearen Variablen waren also in gewisser Weise

�uber
�ussig. Andernfalls ist diese Regel und damit die gesamte Regel-

menge nicht linearisierbar. Auf diese Weise ersetzt die Ableitungsregel

alle \faulen" Variablen (die Variablen, die �uber
�u�ig sind, in dem Sinn,

da� endlich viele Grundterme die gleiche Arbeit verrichten) durch ei-

ne endliche Menge von Grundtermen. Der Algorithmus terminiert nach

maximal k vielen Schritten, wobei k die Anzahl der nicht linkslinearen

Regeln des Termersetzungssystems ist.

Testmengen lassen sich hier verwenden, da sie die irreduzierbaren Grund-

terme zu diesem Zweck ausreichend genau representieren. Jeder irredu-
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zierbare Grundterm ist Instanz eines Terms in der Testmenge. Und je-

der Term mit Variablen in der Testmenge repr�asentiert eine unendliche

Menge irreduzierbarer Grundterme. Die Konstruktion von Testmengen

basiert auf einer Pumping-Eigenschaft irreduzierbarer Grundterme. An-

schaulich sind an den Stellen, wo in den Grundtermen gepumpt werden

kann, in den Testmengentermen Variablen zu �nden.

Mit Hilfe dieser Pumping-Eigenschaft und dem �ublichen Pumping-

Lemma f�ur regul�are Baumsprachen l�a�t sich auch zeigen, da� ein Termer-

setzungssystem genau dann linearisiert werden kann, wenn seine Grund-

normalformsprache eine regul�are Baumsprache bildet. Das wurde bereits

von Kucherov in [11] gezeigt, der allerdings zun�achst die Linearisierbar-

keit nicht entscheiden konnte. Die eine Richtung ist einfach, da zu einer

linkslinearen Regelmenge immer eine regul�are Grammatik konstruiert

werden kann, die die Sprache der reduzierbaren Grundterme erzeugt.

Damit ist auch die Komplementsprache regul�ar.

�Ahnliche Verfahren zur Entscheidung von Linearisierbarkeit und zur

Konstruktion einer Linearisierung wurden unabh�angig von Hofbauer und

Huber [4], [5], von Kucherov und Tajine [12] und von V�agv�olgyi und

Gilleron [14] angegeben. Alle Ans�atze basieren auf der Verwendung von

Pumping-Eigenschaften f�ur die Grundnormalformsprache. Nur in [4], [5]

werden Testmengen verwendet, die das Wissen �uber Pumping-Stellen

bereits beinhalten.

Neben der M�oglichkeit zu entscheiden, ob ein Term grundreduzierbar ist,

ob die Grundreduzierbarkeit an endlich oder unendlich vielen Grund-

instanzen scheitert etc., hat die Untersuchung der Grundnormalform-

sprachen Auswirkungen auf das Design von Termersetzungssystemen.

Handelt es sich zum Beispiel um ein konstruktorbasiertes System { ein

System, in dem zwischen zu de�nierenden Operationen und Konstruk-

toroperationen unterschieden wird {, in dem sich Konstruktorterme nur

wieder zu Konstruktortermen ableiten lassen, das au�erdem termierend

und grundkon
uent ist, dann reicht es aus, nichtlineare Variablen in sol-

chen linken Regelseiten zuzulassen, die nur aus Konstruktoren aufgebaut

sind. Zur vollst�andigen De�nition von Operationen reichen also linksli-
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neare Regeln aus.
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Neue Anwendungen von Ergebnissen �uber
Petrinetze auf Matrix-Sprachen

Matthias Jantzen
FB Informatik

Universit�at Hamburg

Unter Verwendung eines sehr allgemeinen Ergebnisses von Dirk Hau-

schildt (Doktorarbeit, Hamburg 1991) werden u. a. folgende Ergebnisse

erzielt:

1. Matrixsprachen �uber einem einelementigen Alphabet, die ohne

Vorkommenstest erzeugt werden sind, stets regul�ar.

2. Es ist entscheidbar, ob Matrixgrammatiken ohne Vorkommenstest

a) eine endliche Sprache generieren

b) eine Sprache mit semilinearem Parikh-Bild generieren.

Weitere Ergebnisse folgen aus der Entscheidbarkeit des Erreichbarkeits-

problems und werden kurz diskutiert.
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Aktivierung zellularer Automaten

Henner Kr�oger
Arbeitsgruppe Informatik

Justus{Liebig{Universit�at Gie�en

Extended Abstract: Die auf J. v. Neumann um 1950 zur�uckgehen-

den zellularen R�aume, {Automaten und {Algorithmen lassen sich f�ur

(1{dimensionale) Spracherkennung und (mehr{dimensionale) Bilder-

kennung sowie f�ur Mustertransformation und Simulation von Wachs-

tumsprozessen anwenden. Zellulare R�aume arbeiten mit unendlich vie-

len Zellen, wobei der d{dimensionale Vektorraum �uber den ganzen Zah-

len als Menge von Identi�katoren f�ur die Zellen dient und zugleich eine

geographische Nachbarschaft festlegt; die (davon verschiedene) Nachbar-

schaft f�ur den Informations
u� wird jeweils explizit im jeweiligen zellu-

laren Raum festgelegt. Zellulare Automaten arbeiten nur auf einem end-

lichen Teilgebiet des Raumes (sogenannte Retina). Zellulare Algorith-

men bilden eine
"
Familie\ zellularer Automaten mit verwandten Retina-

Gebilden und gemeinsamer �Uberf�uhrungsfunktion.

Derartige Strukturen gewinnen wegen des aktuellen Interesses an

massiv{parallelen Rechnermodellen und wegen des heutigen technischen

Entwicklungsstandes an Bedeutung; zugleich nimmt die Gr�o�enordnung

solcher Algorithmen zu und erfordert entsprechende Disziplin beim Al-

gorithmenentwurf. In Anlehnung an den Fall sequentieller Algorithmen

sind unsere Untersuchungen vor dem Hintergrund zu sehen, beim Ent-

wurf komplizierter zellularer Algorithmen modulare Kompositionstech-

niken zu nutzen: Entwurf und Korrektheit des gesamten Algorithmus sol-

len auf die korrekte Komposition korrekter Teilalgorithmen abgest�utzt

werden.

Sequentielle Algorithmen und Rechnermodelle wie von{Neumann{Rech-

ner und Turing{Maschinen haben recht einfache Konzepte des Startens

und des Stoppens einer Rechnung und erlauben dementsprechend in ein-

facher Weise z.B. das Hintereinanderschalten (ALGOL{Semikolon) von

Teil{Algorithmen.



38

Zellulare Konzepte dagegen m�ussen parallele Arbeitsweisen integrieren,

die mit Schlagworten wie lokal, myopisch, verteilt zu charakterisieren

sind. Zellulare R�aume etc. setzen einen globalen Taktgeber voraus, durch

den die Zellen synchron arbeiten. Es gibt das Konzept der Startkon�-

guration (zum Zeitpunkt t = 0): wie die Anfangszust�ande in die Zellen

technisch eingef�ullt werden, bleibt dabei in gewissem Sinne o�en oder

au�erhalb der Theorie. Sieht man mal vom Spezialfall von Erkennungs{

Algorithmen mit ausgezeichneten ja/nein{Antwortzellen ab, so dienen

als Endkon�gurationen solche Kon�gurationen, die durch die lokale
�Uberf�uhrungsfunktion in sich selbst �uberf�uhrt werden, also f�ur einen glo-

balen Betrachter, der sich au�erhalb �uber dem zellularen Raum be�ndet,

ein stabiles Bild liefern: stabile Kon�gurationen. Die Bezeichnung Stop{

Kon�guration ist nicht ganz gl�ucklich, da die Kon�gurations�uberg�ange

im zellularen Raum nicht im eigentlichen Sinne terminieren sondern ge-

gebenenfalls stabil werden. F�ur die nur lokal arbeitenden einzelnen Zellen

zellularer Strukturen ist es daher �au�erst kni�ig, eine stabile Endkon�-

guration (der ganzen Retina oder des ganzen Raumes) zu erkennen und

dann als Startkon�guration eines anzuschlie�enden n�achsten Algorith-

mus zu benutzen.

Um von einem Algorithmus P in den n�achsten Algorithmus Q umzustei-

gen, wird man in der Regel spezielle Eigenschaften der Algorithmen aus-

nutzen m�ussen, etwa da� der Algorithmus P einen FSSP{Mechanismus

ausl�osen kann und so durch (zeitaufwendige) Synchronisation aller Re-

tinazellen den eigentlich n�achsten Algorithmus Q startet.

Die von Bleck und Kr�oger (1988, 1992) eingef�uhrten zeitlich verzerrten

zellularen Algorithmen nutzen aus, da� stabile Endkon�gurationen des

Algorithmus P in der Regel nicht schlagartig in der ganzen Retina er-

reicht werden, sondern da� sich gewisse Teilgebiete bereits vorzeitig sta-

bilisieren; damit ergibt sich die M�oglichkeit, den anzuschlie�enden Algo-

rithmus Q (beziehungsweise eine entsprechend verzerrte Version Q0 da-

von) hier vorzeitig zu starten: statt der gleichzeitigen, globalen Aktivie-

rung der ganzen Retina erfordert dies eine schrittweise Aktivierung, aus-

gehend von gewissen vorgegebenen Aktivit�atszentren der Retina. Da die

Zellen und ihre Nachbarn zu unterschiedlichen Taktzeiten aktiviert wer-

den, m�ussen die Zellen verschiedene Taktzust�ande speichern und mehr-
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fach f�ur Rechnungen bereitstellen: der verzerrte Algorithmus wird (z.B.

im 1{dimensionalen Fall mit klassischer von{Neumann{Nachbarschaft

um einen Faktor 2) langsamer, so da� sich gegen�uber einer eingeschobe-

nen FSSP{Synchronisation nur bei speziellen Zeit{Retina{Verh�altnissen

ein zeitlicher Vorteil ergibt, etwa wenn p+(2n� 2)+ q gr�o�er als p+2q

ist, wobei p, q die Laufzeiten der Algorithmen P , Q sind und (2n � 2)

die FSSP{Synchronisation des 1{dimensionalen Retina{Intervalles der

L�ange n ist. Bleck und Kr�oger (1988, 1992) geben an, wie man im 1{

dimensionalen Fall zu vorgegebenem zellularen Algorithmus mit klas-

sischer von{Neumann-Nachbarschaft und vorgegebenen Aktivit�atszen-

tren einen entsprechenden zeitlich verzerrten zellularen Algorithmus ge-

winnt. Becker (1990) hat (weiterhin 1{dimensionale) verallgemeinerte

von{Neumann{Raster H(k; l) = f�k; 0;+lg eingef�uhrt und hierf�ur die

Verzerrungstechnik �ubertragen; au�erdem wird dort eine schnellere Va-

riante entwickelt, die sich auf einen Modulo{3{Z�ahler st�utzt, wie er bei

der Synchronisation asynchroner zellularer R�aume benutzt wird.

Inzwischen k�onnen die Techniken zur Konstruktion zeitlich verzerrter

zellularer Algorithmen auf zellulare Algorithmen beliebiger Dimension

mit beliebiger Nachbarschaft und beliebiger (lokaler) �Uberf�uhrungsfunk-

tion �ubertragen werden, sofern die Retina{Gebilde bez�uglich der Nach-

barschaften gewisse
"
anst�andige\ Eigenschaften erf�ullen. Bei gewissen

"
exotischen\ Retina-Familien mu� man vom Konzept des zellularen Al-

gorithmus abr�ucken und sich wieder auf zellulare Automaten mit einzel-

ner Retina zur�uckziehen.

Dar�uber hinaus lassen sich Algorithmen, die das Wachstum zum Bei-

spiel von Schnee
ocken steuern, zur Aktivierung und Steuerung anderer

Algorithmen im obigen Sinne einsetzen.
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�Uber die Erzeugung von (un-)endlichen Sprachen
bei stochastischen k-limitierten 0L-Systemen

Katja Landskron
Institut f�ur Theoretische Informatik

Technische Universit�at Braunschweig

Abstract

Es werden stochastische k-limitierte un�are und propagierende

Lindenmayer-Systeme eingef�uhrt. In Abh�angigkeit eines vorgege-

benen Schwellwertes 0 � � < 1 kann die erzeugte Sprache eines ge-

gebenen Systems endlich oder unendlich sein. Das Hauptresultat

ist ein Entscheidbarkeitskriterium, mit dem f�ur fast alle Schwell-

werte � entschieden werden kann, ob die erzeugte Sprache endlich

ist oder nicht.

SklPU0L-Systeme

Stochastische 0L-Systeme sind u.a. von Eichhorst und Ruskey eingef�uhrt

worden (s. [ER81]). Bei der von ihnen zugrundegelegten De�nition wer-

den die Produktionen der Tafel eines gegebenen 0L-Systems K mit

Wahrscheinlichkeiten versehen. Da weiterhin das Axiom eine gewisse

Auftretenswahrscheinlichkeit besitzt, werden alle W�orter aus L(K) mit

gewissen Wahrscheinlichkeiten erzeugt. Sie konnten zeigen, da� stocha-

stische 0L-Systeme, die propagierend und un�ar sind, nur endliche Spra-

chen erzeugen k�onnen, wenn mindestens zwei Produktionen vorhanden

sind, und nur W�orter zur Sprache geh�oren, die mit Wahrscheinlichkeiten

erzeugt werden, die echt gr�o�er sind als ein vorgegebener Schwellwert 0 <

� < 1. Im folgenden soll gezeigt werden, da� dieses Resultat nicht mehr

g�ultig ist, wenn eine beschr�ankte Ersetzung vorausgesetzt wird. Dabei

handelt es sich um die von D. W�atjen in [W�a88a] Landskroneingef�uhrten

k-limitierten Lindenmayersysteme (kl0L-Systeme) K = (�; h; !; k) mit

k 2 IN , bei denen in jedem Ableitungsschritt f�ur alle a 2 � in dem zu

ersetzenden Wort w genau minf#aw; kg Zeichen ersetzt werden. Dabei

wird auch hier weiterhin vorausgesetzt, da� die zu betrachtenden Syste-

me propagierend und un�ar sind (kurz klPU0L-Systeme). Die erzeugten
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W�orter lassen sich eindeutig �uber ihre L�angen charakterisieren. Es reicht

also aus, im folgenden nur die assoziierten klPUL-Systeme K 0 = (h0; i; k)

zu betrachten, wobei i = j!j gilt und jede Produktion a ! an 2 h des

zugeh�origen klPU0L-Systems in h0 durch n ersetzt wird. F�ur solche Sy-

steme l�a�t sich mit Hilfe der sogenannten Wachstumsmenge angeben,

wie gro� das Wachstum in einem Ableitungsschritt ist, wenn k Zeichen

ersetzt werden. Es sei also K = (h; i; k) ein klPUL-System. Dann ist

G(K) = f g j g =
P

p2h �p � (p� 1); �p 2 IN0;
P

p2h �p = k g die Wachs-
tumsmenge, deren Elemente f�ur propagierende Systeme � 0 sind. Mit

Hilfe der Wachstumselemente g 2 G(K) l�a�t sich die von K erzeugte

Sprache L(K) angeben (s. [W�a88b]).

De�nition 1 Ein stochastisches klPUL-System (SklPUL-System) S =

(h; �; i; k) ist gegeben durch die endliche Menge der Produktionen h =

fh1; : : : ; hsg (hj 2 IN), einer Abbildung � : h! [0; 1] mit
Ps

j=1 �(hj) =

1 (Wahrscheinlichkeiten der Produktionen), und durch das Axiom i 2 IN

mit der Auftretenswahrscheinlichkeit 1 sowie der k-Limitierung k 2 IN .

Die Wachstumsmenge von S (kurz: G(S)) stimmt mit der Wachstums-

menge des zugrundeliegenden klPUL-Systems K = (h; i; k) �uberein.

Da das Axiom eine Auftretenswahrscheinlichkeit besitzt, werden auch die

von S erzeugten W�orter mit bestimmten Wahrscheinlichkeiten generiert.

Im folgenden werde die Ableitungswahrscheinlichkeit, y aus x (in beliebig
vielen Schritten) abzuleiten, mit P (x; y) bezeichnet. Dabei werden nur

Ableitungen der Form x )� y mit x = w0 ) w1 ) : : : ) wn�1 )
wn = y und y 6= wi 8i = 0; : : : ; n � 1 betrachtet. In jedem Ableitungs-

schritt wj ) wj+1 werden alle Wahrscheinlichkeiten der angewendeten

Produktionen mit der Wahrscheinlichkeit von P (x;wj) multipliziert (es

gilt P (x; x) = 1). Alle m�oglichen Ableitungen mit beliebig vielen Schrit-

ten werden betrachtet und deren Wahrscheinlichkeiten aufsummiert. Die

Ableitungswahrscheinlichkeit eines Wortes y wird nun mit P (y) bezeich-

net, und es gilt P (y) = P (i; y).

De�nition 2 Es sei S = (h; �; i; k) ein SklUL-System, und � 2 [0; 1)

sei ein sogenannter Schwellwert. Dann ist L�(S) = fy j P (y) > �g die
von S erzeugte Sprache.
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De�nition 3 Es sei N = maxfhj j j = 1; : : : ; s und �(hj) > 0g.
Die Ein-Schritt-Wahrscheinlichkeit p(n;m) ist de�niert durch p(0; 0) =
1, p(0;m) = 0 f�ur m 6= 0, und f�ur n > 0 durch p(n;m) =�

p(k;m� n+ k); falls n > kPN

j=0 �(j)p(n� 1;m� j) sonst.

Satz 4 Gegeben sei ein SklPUL-System S = (h; �; i; k) mit G(S) =

fg1; : : : ; grg (gi < gj f�ur i < j). Dann ist
Pr

j=1 p(k; k+ gj) = 1. F�ur die
Bestimmung der Ableitungswahrscheinlichkeiten gelten weiterhin die fol-
genden Formeln: P (n;m) = p(n;m)+

Pm�1
j=n p(n; j)P (j;m) = p(n;m)+Pr

j=1 p(n; n + gj)P (n + gj ;m): Weiterhin existiert im Fall g1 6= 0 ein
Wort n0, so da� f�ur alle n � n0 die Ableitungswahrscheinlichkeiten von
n rekursiv de�niert sind durch P (n) =

Pr

j=1 p(n � gj ; n)P (n � gj).

Im Fall g1 = 0 erh�alt man durch Umformungen P (n;m) = 1
1�p(n;n)

��
p(n;m) +

Pr

i=2 p(n; n + gj)P (n + gj ;m)
�
, und f�ur alle n � n0 gilt

P (n) = 1
1�p(n;n)

Pn

j=2 p(n� gj ; n)P (n� gj).

Beispiel 5 S = (f1; 3g; �; 1; k) mit �(1) = 1
4
, �(3) = 3

4
, k = 2 und

P (1) = 1. Es gilt G(S) = f0; 2; 4g. Mit Hilfe der obigen Formeln l�a�t
sich P (n) f�ur alle n berechnen, z.B. gilt P (1) = P (3) = 1, P (5) = 2

5
,

P (7) = 19
25
, usw. W�ahlt man als Schwellwert �1 = 0; 627, dann erzeugt S

die endliche Sprache L�1(S) = f1; 3; 7; 11; 15; 19; 23g. Im Fall �2 = 0; 62

gilt L�2(S) = f1; 3; 7; 11; 15g [ f2n + 1 j n � 9g. O�ensichtlich h�angt
also die Erzeugungsm�achtigkeit von der Wahl des Schwellwertes ab.

Rekursive Folgen

Satz 6 Es sei m 2 IN , a1; a2; : : : ; am 2 IR. F�ur n > m sei die rekursive
Folge an = q1an�m+q2an�m+1+: : :+qm�1an�2+qman�1 gegeben, wobei
0 � qi � 1 (i = 1; : : : ;m),

Pm

i=1 qi = 1 gelte. Die Indizes der positiven
Koe�zienten seien i1; : : : ; ir und werden ihrer Gr�o�e nach geordnet: i1 <
i2 < : : : < ir: Gilt ggt(i2 � i1; : : : ; ir � i1;m+ 1� i1) = 1; dann folgt:

lim
n!1

an =
q1 � a1 + (q1 + q2) � a2 + : : :+ (q1 + q2 + : : :+ qm) � am

m � q1 + (m� 1) � q2 + : : :+ 2 � qm�1 + qm
<1:
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Beweisidee: Durch Anwendung der Theorie der Di�erenzengleichungen
und einigen S�atzen �uber stochastische Matrizen kann die Konvergenz
bewiesen werden. Mit Hilfe eines induktiven Beweises wird eine �aquiva-
lente Darstellung der Folge nachgewiesen. Durch Anwendung von Grenz-
werts�atzen f�ur Folgen ist hierdurch die explizite Berechnung des Grenz-
wertes m�oglich.

Satz 7 Gilt in Satz 6 ggt(i2 � i1; : : : ; ir � i1;m+ 1� i1) = t > 1; dann
folgt, da� die Folge t H�aufungspunkte besitzt und � aus Satz 6 der arith-
metische Mittelwert dieser H�aufungspunkte ist.

Beweisidee: Zerlegung der gegebenen Folge in t konvergente Teilfolgen,
die disjunkt sind und nach Satz 6 konvergieren.

Beispiel 8 (Fortsetzung von Beispiel 5) an := P (n). F�ur n > 5 gelte die
rekursive Folge an = 2

5
an�2+

3
5
an�4, wobei a1 = 1, a2 = 0, a3 = 1, a4 =

0, a5 =
2
5
gelte. Die Koe�zienten sind folgenderma�en bestimmt worden:

q4 =
p(2;4)

1�p(2;2)
= 16

15
� 3
8
= 2

5
und q2 =

p(2;6)
1�p(2;2)

= 16
15
� 9
16

= 3
5
. Folglich besitzt

die Folge ggt(4�2; 5+1�2) = 2 H�aufungspunkte: F�ur die geraden W�orter
ist die Ableitungswahrscheinlichkeit 0, also (a2m)m2IN �! 0 (m !

1), und f�ur ungerade W�orter gilt f�ur m � 3 a2m+1 =
p(2;4)

1�p(2;2)
a2m�1 +

p(2;6)

1�p(2;2)
a2m�3 =

2
5
a2m�1+

3
5
a2m�3 mit den Anfangswerten a3 = 1; a5 =

2
5
. Es folgt mit Satz 6: (a2m+1)m2IN �! 0; 625 (m!1):

Ein Entscheidbarkeitskriterium

Satz 9 F�ur fast alle Schwellwerte 0 � � < 1 ist es entscheidbar, ob
die von einem SklPUL-System S = (h; �; i; k) erzeugte Sprache L�(S)

endlich ist oder nicht.

Beweis: Es sei G(S) = fg1; : : : ; grg. Im Fall � = 0 oder r = 1 (also

jhj = 1), ist es trivialerweise entscheidbar, ob L�(S) endlich ist, n�amlich

genau dann, wenn 1 die einzige Produktion ist. Es sei also nun � > 0, und

in h existieren mindestens 2 Produktionen mit positiver Wahrscheinlich-

keit (also r � 2). Mit Hilfe der Formeln aus Satz 4 wird eine rekursive
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Folge aufgestellt. F�ur
"
gen�ugend\ viele W�orter, deren Wahrscheinlichkei-

ten den Anfangswerten entsprechen, wird die Ableitungswahrscheinlich-

keit sukzessive mittels der Formel P (i; n) = p(i; n)+
Pn�1

j=i p(i; j)P (j; n)

bestimmt. Die Koe�zienten der rekursiven Folge sind durch die Ein-

Schritt-Wahrscheinlichkeiten p(k; k + gj) f�ur alle Wachstumselemente

gj 2 G(S) gegeben (vgl. Satz 4). Die Ableitungswahrscheinlichkeiten

der �ubrigen W�orter lassen sich nun mit Hilfe der rekursiven Folge be-

stimmen. Durch Anwendung der S�atze 7 und 6 werden die endlich vielen

H�aufungspunkte der rekursiven Folge berechnet. Der gr�o�te H�aufungs-

punkt sei �t. In Abh�angigkeit von der Wahl des Schwellwertes � gilt

dann:

� � > �t: L�(S) endlich,

� � < �t: L�(S) unendlich,

� � = �t: i.a. mit obigem Kriterium keine Aussage m�oglich.
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Deterministische Zweiweg-Kellerautomaten:
Bemerkungen zu Endlosschleifen

H. Petersen
Fachbereich Informatik
Universit�at Hamburg

(in Zusammenarbeit mit M. Ladermann)

Deterministische Zweiweg-Kellerautomaten (kurz 2-DPDA) wurden in

[8] (dort unter der Bezeichnung
"
o�-line\) eingef�uhrt und mit Variatio-

nen in [3, 1, 2] untersucht. Dabei erwiesen sich die unterschiedlichen De-

�nitionen von Arbeits- und Akzeptierungsmodi als �aquivalent|bis auf

ein Detail, da� bis heute ungel�ost geblieben ist: Falls ein 2-DPDA auf

einer Eingabe in eine Endlosschleife gelangen darf und dies wie in [3] als

Ablehnung gewertet wird, ist nicht klar, ob solche Schleifen eliminiert

werden k�onnen, um den Automaten zum Halten zu bringen (in [8] wur-

de Halten vorausgesetzt, eine unentscheidbare und daher problematische

Forderung.)

Zun�achst verdeutlichen wir die Leistungsf�ahigkeit von 2-DPDA am Bei-

spiel der Berechnung primitiver Wurzeln (De�nition in [4]) durch einen

2-DPDA mit einem Eingabekopf. Die Hauptidee ist hier die Anwendung

von Zeichenketten-Vergleich zwischen zwei Kopien der Eingabe (um er-

stes und letztes Zeichen verk�urzt), die auf dem Keller gehalten werden,

und der Eingabe selbst. Die L�ange des verbleibenden Kellerinhaltes kann

dann zur Bestimmung der primitiven Wurzel benutzt werden.

In [5] wurde der Versuch unternommen, die von Sipser [7] im Bereich

der platzbeschr�ankten deterministischen Turingmaschinen entwickelte

Technik der R�uckw�artssimulation auf 2-DPDA zu �ubertragen. Der Be-

weis l�a�t allerdings o�en, wie eine der wesentlichen Voraussetzungen der

Sipser-Technik, n�amlich die Endlichkeit des Kon�gurationsraumes, bei

2-DPDA gew�ahrleistet werden kann. Wir verdeutlichen dies an einem

Beispiel, bei dem die R�uckw�artssimulation zu einem Keller�uberlauf f�uhrt.

Die Endlosschleifen eines 2-DPDA lassen sich einem der beiden folgenden

Typen zuordnen:
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� Der Automat wiederholt Kon�gurationen

� Die Rechnung besteht aus lauter verschiedenen Kon�gurationen,

der Keller w�achst unbeschr�ankt

Unsere F�ullsel-Konstruktion transformiert Schleifen der ersten Art in

solche zweiter Art. Genauer f�uhren wir ein Hilfs-Kellerbodensymbol und

ein weieteres neues Kellersymbol (das F�ullsel) ein. Jedem Zustand f�ugen

wir eine Schleife hinzu, die das F�ullsel l�oscht, und erg�anzen �Uberg�ange,

die nichtleere Zeichenketten in den Keller schreiben so, da� vorher ein

F�ullsel geschrieben wird. Eine Argumentation �uber minimale Kellerin-

halte in einer Endlosschleife zeigt, da� Schleifen der ersten Art nun aus-

geschlossen sind.

Es ergeben sich folgende Resultate:

� Zu jedem k-Kopf 2-DPDA gibt es einen �aquivalenten 2k-Kopf 2-

DPDA, der immer h�alt.

{ Ein zweiter Satz K�opfe (mit endlicher Kontrolle) dient als

Tiefenbegrenzung f�ur den Keller.

{ Zur Vermeidung von Schleifen wird entweder R�uckw�artssimu-

lation oder

{ F�ullsel-Konstruktion durchgef�uhrt.

� Jedes Komplement einer k-Kopf 2-DPDA Sprache wird von einem

k-Kopf 2-NPDA erkannt.

{ Durch die F�ullsel-Konstruktion kann in Schleifen ein Kel-

ler�uberlauf erzwungen werden.

{ Der Keller�uberlauf wird
"
spontan\ mit k K�opfen gepr�uft.

{ Akzeptierende und ablehnende Zust�ande werden vertauscht.

� Folgerungen: Sind 2-NPDA oder 2-DPDA nicht komplementabge-

schlossen, dann sind 2-DPDA weniger m�achtig als 2-NPDA mit

gleicher Kopfzahl.



48

� Zu jedem 2-DPDA gibt es einen �aquivalenten 2-DPDA mit schwa-

chem Z�ahler [6], der immer h�alt.

{ Die Kellertiefe einer haltenden Rechnung ist polynomiell be-

grenzt, die Anzahl der Schritte daher exponentiell.

{ Die Laufzeitschranke kann durch Z�ahlen im Keller auf dem

schwachen Z�ahler konstruiert werden.

{ In jedem Schritt einer Vorw�artssimulation wird der schwache

Z�ahler erniedrigt.
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Eine Bemerkung �uber Linksableitung indisch
paralleler Grammatiken

Bernd Reichel
Otto-von-Guericke-Universit�at

Magdeburg

Indisch parallele Grammatiken sind eine Version der kontextfreien Gram-

matiken mit gesteuerter Ableitung, d.h. Grammatiken mit kontextfrei-

en Produktionen bei nicht-kontextfreier Anwendung. Diese Grammati-

ken wurden eingef�uhrt, um bei Verwendung kontextfreier Produktionen

nicht-kontextfreie Sprachen zu erzeugen. Indisch parallele Grammatiken

und Sprachen wurden zuerst in [5] und [6] untersucht.

Linksableitung ist ein interessanter Abspekt der Theorie Formaler Spra-

chen in bezug auf die Erzeugungsm�achtigkeit von Grammatiken. So ist

die erzeugte Sprachklasse der Typ-0-Grammatiken bei Linksableitung

nur die Familie der kontextfreien Sprachen [1], wobei sich bei kontext-

freien Grammatiken bekanntlich die erzeugte Sprachklasse bei Links-

ableitung nicht �andert. Die Erzeugungsm�achtigkeit einiger Arten von

kontextfreien Grammatiken mit gesteuerter Ableitung wurde z.B. in [3],

[4] und [2] untersucht.

Eine indisch parallele Grammatik G ist ein 4-Tupel G = (N;T; P; S),

wobei N das Alphabet der Variablen, T das Alphabet der Terminale ist

und N \T = ; ist, es sei N [T = V . P � N �V � ist die endliche Menge

der Produktionen und S 2 N das Startsymbol.

Ein Wort !1 �uber V erzeugt in G direkt ein Wort !2 �uber V (bezeichnet

als !1 =)
G

!2, oder !1 =) !2 falls G aus dem Kontext ersichtlich ist)

genau dann, wenn

i) !1 = 
0A
1A : : :A
n mit A 2 N , 
i 2 (V n fAg)� f�ur i = 0; 1; : : : ; n,

ii) !2 = 
0�
1� : : : �
n und

iii) A �! � in P ist.

Falls in i) 
0 2 T � gilt, sagen wir, da� !1 in Linksableitung !2 erzeugt

(wir schreiben daf�ur !1 =)
L

!2), und falls in i) 
n 2 T � gilt, sagen wir,

da� !1 in Rechtsableitung !2 erzeugt (bezeichnet als !1 =)
R

!2).
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Die Sprache, die von einer indisch parallelen Grammatik G erzeugt wird,

ist de�niert als L(G) = fw 2 T � jS
�

=) wg, wobei
�

=) den re
exiven

und transitiven Abschlu� von =) darstellt. Die Sprachen, die von einer

indisch parallelen Grammatik G in Links- und Rechtsableitung erzeugt

werden, de�nieren wir als LL(G) = fw 2 T � jS
�

=)
L

wg bzw. LR(G) =

fw 2 T � jS
�

=)
R

wg, wobei wieder
�

=)
L

und
�

=)
R

den re
exiven und

transitiven Abschlu� von =)
L

bzw. =)
R

darstellen. Wir bezeichnen mit

L(IP), LL(IP) und LR(IP) die Familien der Sprachen, die von indisch

parallelen Grammatiken in algemeiner, in Links- bzw. in Rechtsableitung

erzeugt werden.

Dann haben wir das Resultat, da� die Familien L(IP), LL(IP) und

LR(IP) paarweise unvergleichbar sind.
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�Uber Fragen des Determinismus bei endwachsenden
fadenf�ormigen Systemen

Torsten Ro�nick
Otto-von-Guericke-Universit�at

Magdeburg

Endwachsende fadenf�ormige Systeme (im weiteren kurz als AGFS be-

zeichnet - engl.: apical growth �lamentous systems) wurden 1983 von

NIRMAL und KRIHIVASAN als Spezialfall der L-Systeme eingef�uhrt.

Dabei wird die parallele Ersetzung auf das �au�erste linke bzw. rechte

Symbol beschr�ankt und weiterhin eingeschr�ankt, da� keine Verzweigun-

gen auftreten sollen. B�AL�ANESCU, GHEORGHE und P�AUN gri�en die

Idee auf und erlaubten die parallele Ersetzung der �au�ersten k Symbo-

le. Als o�enes Problem wurde die erzeugende Kraft des Determinismus

genannt.

Bei k-AGFS wird die Regelmenge P als Vereinigung zweier Teilmengen

P1 und P2 aufgefa�t. Dabei sind die Regeln, die auf linke Symbole ange-

wandt werden k�onnen, in P1 enthalten und die f�ur rechte Symbole in P2.

Sind die Mengen P1 und P2 -jeweils f�ur sich betrachtet- deterministisch,

so spreche ich von deterministischen k-AGFS. Ist jedoch die Menge P

deterministisch, so spreche ich von streng deterministischen k-AGFS.

Die deterministischen k-AGFS ergeben f�ur konstante k eine zu den nicht-

deterministischen k-AGFS vergleichbare Struktur. Die streng determini-

stischen k-AGFS verhalten sich �ahnlich der (nicht)deterministischen k-

AGFS, wobei aber einige Verschiebungen von spracherzeugendenKlassen

zu verzeichnen sind.

F�ur konstantes k und festes X 2 fF; �g, Y 2 fF; �g sowie Z 2 fP; �g
l�a�t sich die Teilmengenbeziehung

DsXY Z P(k) � DXY Z P(k) � XY Z P(k)

nachweisen. Die Echtheit der Teilmengenbeziehung zwischen den streng

deterministischen und deterministischen Sprachklassen mit den selben

erzeugenden Bedingungen wird vermutet, ist jedoch noch nicht bewiesen.
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Two-dimensional Picture Languages

Sebastian Seibert
Institut f�ur Informatik

Christian-Albrechts-Universit�at Kiel

Dora Giammaresi und Antonio Restivo
Universit�a di Palermo

Wolfgang Thomas
Institut f�ur Informatik
Universit�at Kiel

Wir betrachten Bilder als zweidimensionale Felder von Buchstaben in

Rechteckform und vergleichen logische De�nierbarkeit von Bildsprachen

mit der Beschreibung durch Parkettierungen mit einer endlichen Menge

von Teilbildern, wobei auf jeden Buchstaben ein Zustand gelegt wird.

Als eine nat�urliche Erweiterung des Erkennbarkeitsbegri�s von Worten

auf Bilder stellt sich die Parkettierung durch Teilbilder der Gr�o�e 2� 2

dar. Wir zeigen, da� sich damit genau die Bildsprachen erkennen las-

sen, die durch existentielle monadische Logik zweiter Stufe de�nierbar

sind. Gleichzeitig wird nachgewiesen, da� Parkettierungen mit gr�o�eren

Teilbildern, bei denen es erlaubt ist, die Anzahl der Vorkommen der

Teilbilder bis zu einer Schranke festzulegen (
"
threshold counting\), zu

demselben Erkennbarkeitsbegri� f�uhren.
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Least Solutions of Equations over N

Helmut Seidl
Fachbereich Informatik

Universit�at des Saarlandes

We consider the problem of computing the least solutionXi; i = 1; : : : ; n,

of a system S of equations xi = fi, i = 1; : : : ; n, overN , i.e., the naturals

(extended by 1), where the right hand sides fi are expressions built up

from constants and variables by operations taken from various sets 
.

Many compile time analyses of programs rely on computations of least

solutions of such systems of equations.

We present e�cient algorithms in case where 
 consists of

(1) minimum and maximum;

(2) maximum, addition and multiplication;

(3) minimum, addition and multiplication; and

(4) minimum, maximum, addition and multiplication.

The algorithms use multiplications only provided S contains multiplica-

tions. Also, we design polynomial time algorithms without multiplications
which compute the set of all i where Xi =1. This result is used to de-

cide in polynomial time whether or not the costs of tree automata with

cost functions of a very general form are bounded.
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Zur Anzahl der aktiven Nichtterminale in
kooperierenden Grammatiksystemen

Stefan Skalla
Otto-von-Guericke-Universit�at

Magdeburg

Kooperierende Grammatiksysteme stellen ein formales Modell f�ur

"
blackboard architectures\ der k�unstlichen Intelligenz dar, wobei dieses

Tafelmodell im wesentlichen aus

� mehreren verteilten Wissensressourcen/Experten,

� der Tafel, die den aktuellen Stand der L�osung enth�alt,

� einem Ordner, der die Reihenfolge der Experten im L�osungsproze�

festlegt,

besteht. Bei derartigen Systemen von Grammatiken entsprechen die ein-

zelnen Grammatiken den Experten, die Satzformen den partiellen L�osun-

gen auf der Tafel, die Arbeit des Ordners wird durch Mechanismen zur

Steuerung des Ableitungsprozesses modelliert.

Ein Nichtterminal A hei�t aktiv in einer Komponente Gi, wenn f�ur dieses

Nichtterminal A in dieser Komponente mindestens eine Regel A ! w

mit w 6= A existiert.

Betrachtet werden zun�achst die Hierarchien der Sprachfamilien L(m;[n])

(m { maximale Anzahl der Komponenten, n { maximale Anzahl der

aktiven Nichtterminale pro Komponente). F�ur Grammatiksysteme ohne

zus�atzliche Steuerung im �-, � k-, = k-, � k- und t-Modus sowie f�ur Hy-

bridsysteme, bei denen jede Komponente in ihrem speziellen Modus ar-

beitet, wird gezeigt, da� L(m�1;[n]) � L(m;[n]) und L(m;[n�1]) � L(m;[n]).

Weiterhin wurden Systeme mit Steuerung durch Graphen in verschiede-

nen Ableitungsmodi und Start-und Stopbedingungen verschiedener Ty-

pen untersucht. Auch f�ur diese Systeme werden diese hierarchischen Be-

ziehungen nachgewiesen.
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Au�erdem ist die Frage nach oberen Schranken interessant, wenn jeweils

nur einer der beschriebenen Parameter in die Betrachtungen einbezo-

gen wird. Hinsichtlich der Anzahl der Komponenten wurden bereits von

Csuhaj-Varju, Dassow, Mitrana, P�aun und Vicolov f�ur verschie-

dene Arten von Grammatiksystemen derartige Schranken bestimmt.

Hinsichtlich der maximalen Anzahl n der aktiven Nichtterminale pro

Komponente wird f�ur Systeme ohne eine zus�atzliche Steuerung im �-
, � k-, = 1-Modus bewiesen, da� n = 1 eine solche Schranke dar-

stellt. Jedes beliebige System im t-Modus kann durch ein System mit

h�ochstens vier aktiven Nichtterminalen pro Komponente simuliert wer-

den. Betrachtet man Systeme im �-, � k-, = 1-und t-Modus mit Steue-

rung durch Graphen, so erh�alt man ebenfalls eine Schranke von n = 1.

Weiterhin wurden Systeme mit Steuerung durch memories untersucht.
Die Regeln dieser Systeme sind in der Lage, an alle Komponenten des

Systems bestimmte Nachrichten zu senden, die von diesen gespeichert

werden, den Speicher der eigenen Komponente auf das Enthaltensein ei-

nes bestimmten checkwords zu testen und vor jedem Zugri� die Satzform

auf das Erf�ulltsein von Kontext-Startbedingungen zu �uberpr�ufen.

Von Csuhaj-Varju wurde nachgewiesen, da� bei Zul�assigkeit von "-

Regeln diese Systeme die Menge der rekursiv aufz�ahlbaren Sprachen er-

zeugen.

Bez�uglich der maximalen Anzahl n der aktiven Nichtterminale pro Kom-

ponente wird gezeigt, da� n � 2 ausreichend ist, wobei diese Aussa-

ge dahingehend versch�arft wird, da� sogar nur zwei Produktionen pro

Komponente gen�ugen.
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On Syntactic Congruences for !�languages and the
minimization of !-automata

Ludwig Staiger
Lehrstuhl f�ur Informatik II Technische Universit�at Cottbus

Oded Maler
lgi-imag (Campus) Grenoble

It is well-known that the minimization problem for !-automata (Muller-

automata) is not as simple as the one for automata accepting languages.

It occurs that an !-language E has more than one minimal automaton

recognizing it (e.g. fa; bg�a!, see [Mu63] or [St83]). Moreover, this same

example shows that, in contrast to the language case, the automaton

derived from the right congruence3 �E does not recognize at all the

!-language E. So there are several possibilities occurring in the !-case:

A.1 The minimal-state automaton AE isomorphic to the right congru-

ence �E accepts the !-language E, and is, therefore, the unique

(up to isomorphism) minimal !-automaton accepting E.

A.2 There is a unique (up to isomorphism) minimal !-automaton re-

cognizing E which does not coincide with AE .

A.3 There are several minimal !-automata recognizing E. Then neces-

sarily none of them coincides with AE .

In the case of languagesW � �� the well-known Kleene{Myhill{Nerode

Theorem states that W is regular i� its right congruence �W , or equi-

valently its syntactic congruence 'W are of �nite index. Moreover these

relations are the coarsest (right) congruences such that W is representa-

ble as a union of congruence classes, and �W is isomrphic to the minimal

deterministic automaton accepting W � ��.

As pointed out above, in case of !-languages things are more complica-

ted. Though Arnold [Ar85] proved that for regular !-languagesE there is

3De�nitions may be found e.g. in [MS93]
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a unique coarsest congruence relation �=E which recognizes E, up to now

no application of this fact to the minimization problem for !-automata

is given.

Thus, several questions arise in connection with this problem:

B.1 If the congruence'E derived from�E coincides with Arnold's con-

gruence �=E , that is, 'E already recognizes the regular !-language

E, does then the minimal-state automaton AE accept E, and vice

versa, does 'E = �=E hold if AE accepts E?

B.2 Give a characterization of those (regular) !-languages E for which

the relations 'E and �=E coincide, or which are accepted by their

minimal{state automaton AE .

B.3 Do there exist regular !-languages E which have (including the

choice of the initial state) a unique minimal automaton A 6= AE

accepting E? (The !-language (a�bab�)! has exactly two two-state

automata accepting it which di�er only in the choice of the initial

state.)

Concerning B.1 and B.2 it is shown in [St83] that all regular !-languages

E in the Borel class F� \ G� are accepted by their minimal-state auto-

maton AE , but there are regular !-languages E 62 F� \ G� which are

also accepted by AE , and in [MS93] it is shown that for the same class

of regular !-languages the relations 'E and �E coincide. (In [MS93]

both results are derived for the whole class F� \ G�, that is including

!-languages which are not necessarily regular.)

Next we shall give examples that the conditions are likewise independent:

Ex.1 E1 := fa; bbg�a! is accepted by AE1
but 'E1

6= �=E1
.

Ex.2 For E2 := fa; bg�a! [ ca! the relations 'E2
and �=E2

coincide, but

AE2
does not accept E2.

Ex.3 The !-language E3 := fa; bg�a! is neither accepted by AE3
nor do

the relations 'E3
and �=E3

coincide
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Moreover in [MS93] an alternative notion of recognition of !-languages

by forcs (families of right-congruences) is developed. Using this type of

recognition we give a full characterization of those regular !-languages

E which are accepted by their minimal-state automaton AE .
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GI{Fachgruppe

\Automaten und Formale Sprachen"

Wahl der Fachgruppenleitung

Die Wahl der Leitung der GI{Fachgruppe 0.1.5 wurde am 7.10.1993 im

Rahmen der Fachgruppen{Sitzung auf dem 3. Theorietag \Automaten

und Formale Sprachen" in Schlo� Dagstuhl durchgef�uhrt. Anwesend wa-

ren die folgenden Fachgruppen{Mitglieder:

Henning Bordihn (Magdeburg), Franz{J. Brandenburg (Passau), Ma-

thias Bull (Rostock), Gerhard Buntrock (W�urzburg), Olaf Burkart (Aa-

chen), J�urgen Dassow (Magdeburg), Volker Diekert (Stuttgart), Henning

Fernau (Karlsruhe), Rudolf Freund (Wien), Markus Holzer (M�unchen),

Matthias Jantzen (Hamburg), Henner Kr�oger (Gie�en), Katja Landskron

(Braunschweig), Klaus{J�orn Lange (M�unchen), Helmut Lescow (Kiel),

Anca Muscholl (Stuttgart), Friedrich Otto (Kiel), Holger Petersen (Ham-

burg), Bernd Reichel (Magdeburg), Klaus Reinhardt (Stuttgart), Pe-

ter Rossmanith (M�unchen), Torsten Rossnick (Magdeburg), Sebastian

Seibert (Kiel), Helmut Seidl (Saarbr�ucken), Stefan Skalla (Magdeburg),

Ludwig Staiger (Aachen), Ralf Stiebe (Magdeburg), Wolfgang Thomas

(Kiel).

Zum Wahlleiter wurde Herr Sebastian Seibert bestimmt. Von den 28

abgegebenen Stimmen waren 27 g�ultig. Es wurden gew�ahlt

J�urgen Dassow (Magdeburg), Volker Diekert (Stuttgart), Klaus{J�orn

Lange (M�unchen), Ludwig Staiger (Aachen), Wolfgang Thomas (Kiel).

Alle Gew�ahlten nahmen die Wahl an. Das Wahlprotokoll wurde verlesen

und genehmigt.

Wahl des Fachgruppensprechers

Die Wahl des Fachgruppensprechers fand ebenfalls am 7.10.1993, in

Schlo� Dagstuhl statt. Anwesend waren alle Mitglieder der neugew�ahlten
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Fachgruppenleitung. Herr Thomas er�o�nete die Wahlversammlung. Als

Kandidat f�ur das Sprechamt wurde J. Dassow, als Kandidat f�ur das Amt

des Stellvertreters K.{J. Lange vorgeschlagen. In o�ener Wahl wurden

J. Dassow als Sprecher der Fachgruppe und K.{J. Lange als stellvertre-

tender Sprecher der Fachgruppe einstimmig gew�ahlt. Beide nahmen die

Wahl an.
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