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Vorwort

Die bisherigen Theorietage “Automaten und Formale Sprachen” fan-
den in Magdeburg (September 1991) und Kiel (Oktober 1992) statt. Im
Oktober 1992 wurde die Tradition im Internationalen Begegnungs- und
Forschungszentrum Schlof3 Dagstuhl fortgesetzt. Es nahmen 32 Teilneh-
mer aus Deutschland, Osterreich und Frankreich teil. Das wissenschaftli-
che Programm bestand aus angemeldeten Beitrigen der Teilnehmer. Sie
bilden einen Beweis fiir vielfiltige Thematik der Vortrége. Die Kurzfas-
sungen der Beitrége sind in diesem Bericht abgedruckt.

Ich danke allen Teilnehmern fiir Ihre interessanten Beitrige und die
Bereitschaft zur wissenschaftlichen Diskussion. Ich danke auch der Uni-
versitdt Stuttgart fiir die Unterstiitzung und dem Schlofl Dagstuhl fiir die
freundliche Aufnahme. Dem n#chsten Theorietag in Miinchen wiinsche
ich viel Erfolg.

Ein besonderer Dank gilt meinem Mitherausgeber Dan Teodosiu fiir
die miihevolle Arbeit, diesen Bericht zu erstellen.

Stuttgart, im Januar 1994 Volker Diekert
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Vortragsprogramm

Donnerstag, 7. Oktober

9.00 -10.30 Uhr Sitzungsleiter: Volker Diekert

Mathias Bull

Stack- und Zihler-Automaten mit Zeigern in Labyrinthen

Holger Petersen

Deterministische Zweiweg-Kellerautomaten: Bemerkungen zu End-
losschleifen

Katja Landskron

Uber die Erzeugung von (un-)endlichen Sprachen bei stochasti-
schen k-limitierten 0L-Systemen

11.00 - 12.15 Uhr Sitzungsleiter: Wolfgang Thomas

Sebastian Seibert

Two-dimensional Picture Languages

Robert Cremanns

Berechnung von Untergruppendarstellungen aus endlichen Auto-
maten

Henner Kroger

Aktivierung zellularer Automaten

14.00 - 15.00 Uhr Fachgruppensitzung mit Wahl der Leitung



16.00 - 18.00 Uhr Sitzungsleiter: Jiirgen Dassow

e Bernd Reichel

Eine Bemerkung iiber Linksableitung indisch paralleler Gramma-
tiken

e Stefan Skalla

Zur Anzahl der aktiven Nichtterminale in kooperierenden Gram-
matiksystemen

e Rudolf Freund

Kooperierende Systeme von Array-Grammatiken

e Torsten Rof3nick

Uber Fragen des Determinismus bei endwachsenden fadenformigen
Systemen

20.00 - 21.30 Uhr Sitzungsleiter: Klaus-Jorn Lange

e Matthias Jantzen

Neue Anwendungen von Ergebnissen iiber Petrinetze auf Matrix-
Sprachen

e Franz J. Brandenburg

The solvability of the Membership Problem for Context-Free
Grammars with Regular Control Sets

Freitag, 8. Oktober

9.00 -10.30 Uhr Sitzungsleiter: Franz J. Brandenburg

o Ludwig Staiger

On Syntactic Congruences for w—languages



e Henning Fernau

Bewertungen regulidrer Ausdriicke, Zusammenhinge mit strenger
Eindeutigkeit regulirer Ausdriicke sowie Anwendungen bei der
Berechnung der Hausdorff-Dimension von Fraktalen, die mit re-
guldiren Ausdriicken beschrieben werden

e Helmut Seidl

Least Solutions of Equations over N/

11.00 - 12.15 Uhr Sitzungsleiter: Volker Diekert

e Gerhard Buntrock

Wachsend kontextsensitive Sprachen und Automaten

e Olaf Burkkart

Pushdown Prozesse: Parallele Komposition und Model-Checking

e Markus Holzer

Das Nichtleerheitsproblem fiir alternierende endliche Automaten

13.00 - 14.00 Uhr Sitzungsleiter: Ludwig Staiger

e Maria Huber

Regulére Grundnormalformsprachen und Lineariesierung von Ter-
mersetzungssystemen

e Dieter Hofbauer

Reduzierbarkeit, Grundreduzierbarkeit und Testmengen



The solvability of the Membership Problem for
Context-Free Grammars with Regular Control Sets

Franz J. Brandenburg

Lehrstuhl fiir Informatik
Universitat Passau

Context-free grammars with regular control sets are well-known systems
of regulated rewriting. They are extensions of context-free grammars and
are equivalent, e.g., to programmed grammars or matrix grammars.

Here we investigate the role of erasing productions and of chain produc-
tions under regular control sets.

By classical proof techniques we obtain the following result.

Lemma For every context-free grammar G and control set C' there exist
finitely many homomorphisms g, h and h;,i = 1,...,n and a (nonerasing,
nonerasing and chain-free or) context-free grammar in Chomsky normal
form G’ such that L(G,C) = L(G',C") where C' = g(h’l(C)ﬁﬂ,;1 (D}))
with the semi-Dyck set over one pair of parenthesis Dj.

Hence, nonerasing and chain-free productions are obtained at the cost of
more complex control sets, which are related to Greibach’s class PBLIND
[G78]. PBLIND is the class of languages accepted by nondeterministic
multitape Turing machines whose worktapes are partially blind counters.
Equivalently, PBLIND is the class of Petri net languages, or is the smal-
lest intersection closed full trio containing the semi-Dyck set Dj. Due to
the decidability of the reachability problem for Petri nets PBLIND is a
class of recursive sets.

Corollary If C is a regular set or if C' is in PBLIND, then C"' is in
PBLIND and L(G, C) is recursive.

Thus we can conclude the decidability of the membership problem for
contextfree grammars with regular control sets, or equivalently of ma-

trix or programmed grammars. This problem is stated open e.g., in the
textbooks by Salomaa [S73] and by Dassow and Paun [DP89].



It has been solved by other methods by Gonczarkowski and Warmuth
[GWT79]. The decidability is implicitly stated in the textbook of Dassow
and Paun [DP 89] as was pointed out by M. Jantzen (see this report).

Theorem The membership problem for context-free grammars with re-
gular control sets is decidable.

As a consequence the corresponding class of matrix languages is not
closed under intersection and complement. Using the machine characte-
rization of languages from the class PBLIND we directly obtain a simu-
lation in terms of grammars with regular control sets. This relates Petri
net language to matrix languages.

Lemma For every language L in PBLIND there is a context-free gram-
mar G and a regular control set R such that L = L(G, R).

Some of the results from above can be generalized. E.g. if G is a no-
nerasing and chain-free context-free grammar and C' is recursive, then
L(G, C) is recursive. This follows from the fact the length of a deriva-
tion of a word w is bounded by 2|w| — 1. However, every recursively
enumerable set can be generated by a nonerasing regular grammar with
a contextsensitive control set.

Moreover, if partially blind multicounter machines are extended by a
single one-reversal pushdown stack, then such machines can be simulated
by context-free grammars with regular control sets. Whether or not this
holds with the extension by an unrestricted stack is open.

Acknowledgement I wish to thank the participants of the Theorietag
and in particular M. Jantzen for pointing out a serious error in an earlier
draft concerning the above open problem.
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Stack- und Z#hler-Automaten mit Zeigern in
Labyrinthen

Mathias Bull

FB Informatik
Universitat Rostock

In der Labyrinth-Theorie wird die Leistungsfihigkeit von Automaten bei
Absuch- und Erkennungsprozessen auf ungerichteten, zusammenhéngen-
den Graphen mit Kompafisystemen (C-Graphen) und Rotationssyste-
men (R-Graphen) untersucht. Eine Charakterisierung erfolgt entweder
durch den Entwurf eines Absuchprozesses/-algorithmus’ oder durch die
Konstruktion eines nicht absuchbaren Graphen, einer sogenannten Falle,
fiir einen Automaten des jeweils betrachteten Automaten- sowie Laby-
rinthtyps.

Seit der Veroffentlichung eines Absuchalgorithmus’ fiir endliche, zweidi-
mensionale C-Graphen durch einen (1-Zeiger, 1-Zihler)-Automaten von
A. Hemmerling (MFCS’86) war die analoge Fragestellung fiir planierte
R-Graphen offen. Fiir Stackautomaten fehlten bisher jegliche Aussagen.

Die folgenden neuen Resultate werden vorgestellt.
Fallenkonstruktionen:

e Zu jedem (1-Zeiger,1-Zihler)-Automaten gibt es eine planierte R-
Falle.

e Zu jedem 1-Stack-Automaten gibt es eine planierte R-Falle.
Absuchprozef/-algorithmus:
e Es gibt einen (1-Zeiger,1-nichtléschenden-Stack)-Automaten, der

alle zusammenhingenden R-Graphen absucht, wobei er auf endli-
chen hilt.
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Wachsend kontextsensitive Sprachen und
Automaten

Gerhard Buntrock

Institut fiir Informatik
Universitdt Wiirzburg

Die Sprachklasse der wachsend kontextsensitiven Sprachen ist definiert
durch Grammatiken, deren Produktionen nur der Einschréinkung unter-
liegen, dafl ihre rechte Seite stets langer als ihre linke ist. Die einzi-
ge Ausnahme ist, wenn links nur das Startsymbol steht; dann darf das
Startsymbol nicht auf der rechten Seite auftauchen. Diese Klasse ist von
besonderer Bedeutung, weil sie ausdrucksstérker als die Klasse der kon-
textfreien Sprachen ist, aber ihr komplexititstheoretischer Abschlufl un-
ter logarithmisch platzbeschrinkten Reduktionen dem der kontextfreien
gleicht.

Verwenden wir die Charakterisierung wachsend kontextsensitiver Spra-
chen durch Grammatiken, die nur beziiglich einer Gewichtung ihrer Sym-
bole wachsen [BL92], 148t sich zeigen, dafl auch eine Verallgemeinerung
des Kellerautomaten diese Klasse charakterisiert. Ahnlich der Gewich-
tung der Grammatiksymbole kann man eine Gewichtung der Symbo-
le, mit denen ein Automat arbeitet (Eingabe- und Arbeitsalphabet so-
wie die Zustinde), vornehmen. Wenn nun die so entstehenden Gewichte
der Konfigurationen stets abnehmen miissen, zeigt sich, dal diese Ein-
schrinkung bei normalen Kellerautomaten keine Auswirkung auf ihre
Leistungsfihigkeit hat. Fiir einen Kellerautomaten mit zwei Kellern be-
deutet das aber, dal er anstelle aller rekursiv aufzihlbaren Sprachen
nur noch wachsend kontextsensitive Sprachen akzeptiert. Darf in jedem
Schritt das Gewicht der Konfigurationen auch gleich bleiben, so kénnen
kontextsensitive Sprachen akzeptiert werden.

Diese Automatencharakterisierung fiithrt zu einer neuen interessanten
Klasse: die der deterministisch wachsend kontextsensitiven Sprachen, die
eine Erweiterung der deterministisch kontextfreien Sprachen sind.
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Pushdown Prozesse: Parallele Komposition und
Model-Checking

Olaf Burkart
Department of Computer Science 11

RWTH-Aachen
(in Zusammenarbeit mit Bernhard Steffen, Universitét
Passau)

In den letzten Jahren hat sich Model Checking als ein niitzliches Werk-
zeug zur Analyse von nebenldufigen Prozessen entwickelt. Wahrend Mo-
del Checking fiir Systeme mit endlicher Zustandsanzahl bereits wohl be-
kannt ist [EL86, Cle90, CS92], ist die Theorie fiir Systeme mit unendli-
chem Zustandsraum ein aktueller Gegenstand der Forschung. Bradfield
und Stirling haben in [Bra91, BS91] ein tableau-basiertes Model-Check
-Verfahren fiir allgemeine Systeme mit unendlicher Zustandsanzahl vor-
gestellt, welches jedoch nicht effektiv ist. Aus diesem Grunde hat sich
viel Arbeit auf die kontext-freien Prozesse, einer Unterklasse der Sy-
steme mit unendlichem Zustandsraum, konzentriert. So wurde in [BS92]
ein iterativer Model-Check Algorithmus entwickelt, welcher den alternie-
rungsfreien Teil des modalen Mu-Kalkiils [Koz83] entscheidet. Weiterhin
wurde in [HS93] gezeigt, wie dies mit tableau-basierten Methoden durch-
gefiihrt werden kann.

Leider sind kontext-freie Prozesse jedoch nicht unter paralleler Kompo-
sition abgeschlossen. So kénnen beliebige Turingmaschinen bereits durch
die parallele Komposition von zwei kontext-freien Prozessen modelliert
werden. Auch die parallele Komposition eines kontext-freien Prozefes
mit einem endlichen System ergibt im allgemeinen keinen kontext-freien
Proze. Kontext-freie Prozesse sind daher nur beschrinkt geeignet fiir
die Konstruktion von verteilten Systemen.

Wir betrachten eine strikte Verallgemeinerung von kontext-freien Prozes-
sen, die Pushdown Prozesse, und zeigen, daf} diese Klasse von Prozessen

e abgeschlossen ist unter paralleler Komposition mit endlichen Sy-
stemen; (Wir stellen eine Art Expansionstheorem im Sinne von



13

Milner [Mil89] vor.)

e mit Hilfe einer Variante des in [BS92] vorgestellten Model Checkers
hoherer Ordnung, welche auf Kellerautomaten arbeitet, automa-
tisch analysiert werden kénnen.

Beide Resultate benutzen eine endliche Beschreibung von Pushdown Pro-
zessen durch Kellerautomaten. Intuitiv besagt unser Expansionstheo-
rem, daf} sich die parallele Komposition eines Pushdown Prozefles mit
einem endlichen System aus der Synchronisation des Kellers mit dem
Produkt aus Zustandskontrolle des zugrundeliegenden Kellerautomaten
und endlichem System ergibt. Wir zeigen, dafl das resultierende Pro-
blem der “Représentationsexplosion” nicht schlimmer als im bekannten
“Zustandsexplosionsproblem” fiir endliche Systeme ist.

Unser iterativer Model Check Algorithmus entscheidet den alternierungs-
freien Teil des modalen Mu-Kalkiils fiir Pushdown Prozesse. Wie im Fall
der kontext-freien Prozesse, basiert der Algorithmus auf einer Variante
“hoherer Ordnung” der Standard Model-Check Techniken. Er bestimmt
property transformer fiir jedes Fragment des Kellerautomaten. Diese be-
schreiben die Menge der Formeln, welche am Startzustand eines Frag-
mentes gelten, relativ zu den Mengen von Formeln, welche an den End-
zustinden des Fragments gelten. Hierbei bestimmt die Anzahl der End-
zusténde eines Fragments, welche identisch mit der Anzahl der Zustéinde
des Kellerautomaten ist, die Stelligkeit des zugehorigen “property trans-
formers”. Dieser Algorithmus stellt daher eine Verallgemeinerung des
Model-Checkers aus [BS92] dar, welcher nur uniire “property transfor-
mer” benutzt. Nach der Bestimmung der “property transformer” wird
das Model-Check Problem einfach dadurch gel6st, daf iberpriift wird,
ob die gegebene Formel in der Menge enthalten ist, die man durch Appli-
kation des mit dem initialen Fragments assoziierten “property transfor-
mers” auf die Mengen von Formeln, welche an den Endzustinden gelten,
erhélt.

Dafl Model-Checking fiir Pushdown Prozesse entscheidbar ist, folgt eben-
falls aus der Entscheidbarkeit der monadischen Logik zweiter Stufe fiir
diese Klasse von Prozessen [MS85], da der modale Mu-Kalkiil in dieser
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Logik ausgedriickt werden kann. Neu ist jedoch die Effizienz des Algo-
rithmus: nur die Grofle der Zustandskontrolle des Kellerautomaten und
der betrachteten Formel sind kritisch.
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Berechnung von Untergruppendarstellungen aus
endlichen Automaten

Robert Cremanns

Fachbereich Mathematik, FG Informatik
Gesamthochschule Kassel

Endliche Wortersetzungssysteme kénnen benutzt werden um Gruppen
darzustellen. Dabei interessieren insbesondere kanonische Worterset-
zungssysteme, denn fiir kanonische Wortersetzungssysteme sind viele
Entscheidungsprobleme entscheidbar, z.B. das Wortproblem.

Wir betrachten das Problem, aus einem endlichen, kanonischen Worter-
setzungssystem, das eine Gruppe G darstellt, und einer endlichen Menge
U von Wortern eine Darstellung fiir die von U erzeugte Untergruppe
H von G zu bestimmen. Wir stellen ein Verfahren zur Losung dieses
Problems vor und wenden es auf verschiedene Klassen von kanonischen
Darstellungen von kontextfreien Gruppen an. Das Verfahren ist in vier
Schritte unterteilt.

Im ersten Schritt wird ein endlicher Automat A konstruiert, der eine
Sprache L C (U) akzeptiert, so daf jedes Element der Untergruppe H
durch mindestens ein Wort in L représentiert wird. Hierbei bezeichnet
(U) die Menge aller Worter, die Elemente in H beschreiben. Sei R das
betrachtete Wortersetzungssystem. Im zweiten Schritt konstruieren wir
einen Kellerautomaten P, der Reduktionen bzgl. R durchfiihrt. Bei Ein-
gabe w ist die Menge der End-Kellerinhalte SCp(w) eine Menge von
R-Nachfolgern von w. Im dritten Schritt wird ein Algorithmus angewen-
det, der bei Eingabe A und P einen endlichen Automaten bestimmt, der
die Sprache SCp(L) der End-Kellerinhalte von P bei Eingaben aus L
akzeptiert. Die von diesem Automaten akzeptierte Sprache erfiillt be-
stimmte Abschlufleigenschaften, so da§ wir im vierten Schritt daraus
eine Darstellung fiir H ableiten kénnen.
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Die Schritte 1, 3 und 4 sind mit polynomialem Zeitaufwand durchfiihr-
bar. Die Zeitkomplexitdt des zweiten Schritts ist von der betrachteten
Klasse von Darstellungen von kontextfreien Gruppen abhéngig.
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Bewertungen reguldrer Ausdriicke, Zusammenhinge
mit strenger Eindeutigkeit reguldrer Ausdriicke
sowie Anwendungen bei der Berechnung der
Hausdorff-Dimension von Fraktalen, die mit
reguliren Ausdriicken beschrieben werden

Henning Fernau

Lehrstuhl fiir Informatik
Universitét Karlsruhe (TH)

Briiggemann-Klein u.a. hat jiingst sogenannte streng eindeutige regulire
Ausdriicke n&her untersucht [1]. Der Begriff der strengen Eindeutig-
keit li8t sich mit Hilfe von Bewertungen kennzeichnen. Bewertungen
B sind Monoidmorphismen von (X%,-,A) nach ((0,00),-,A), die sich
durch B(L) = _,cp B(w) € [0,00] leicht auf Sprachen erweitern las-
sen. Entlang der rekursiven Definition reguliirer Ausdriicke l#8t sich
nun rekursiv die Bewertung von reguliren Ausdriicken (g definieren:

Br(w) = B(w) fiir w € I, Br(R1R2) = Br(R1)Br(R2), Br(F1 U Rs) =
Br(R1) + Br(R2), Br(R}) = > oo (Br(R1))". Ein Ausdruck R ist streng
eindeutig genau dann, wenn fiir eine Bewertung 3 mit Sr(R) < oo die
Zahl Br(R) mit der Bewertung S([R]) der von R beschriebenen Sprache

[R] iibereinstimmt.

Bewertungen sind ein Konzept, das zuniichst als Hilfsmittel zur Bestim-
mung von Hausdorff-Dimensionen von formalsprachlich definierten Frak-
talen eingefiithrt wurde [3, 2]. So 148t sich das obige Ergebnis auch zur
einfachen Dimensionsbestimmung von Fraktalen, die durch streng ein-
deutige regulére Ausdriicke beschrieben werden, benutzen.
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Kooperierende Systeme von Array-Grammatiken

Rudolf Freund
Technische Universitat Wien

Jiirgen Dassow
Fakultat fiir Informatik
Universitdt Magdeburg

Gheorghe Paun !

Institut fiir Mathematik
Rumaénische Akademie der Wissenschaften

Wir untersuchen den Effekt kooperierender Systeme bei der Erzeugung
von Array-Sprachen mittels kontextfreier Array-Grammatiken. Erwar-
tungsgemif ist die Erzeugungskraft kooperierender Systeme kontextfrei-
er Array-Grammatiken (mit einer vorgegebenen festen Anzahl von Ab-
leitungsschritten, mit einer Anzahl von Ableitungsschritten gréfier oder
gleich einer vorgegebenen Zahl oder mit der maximal moéglichen Anzahl
von Ableitungsschritten in der aktivierten Komponente) grofier als die
Erzeugungskraft einfacher kontextfreier Array-Grammatiken. Das glei-
che Resultat erhélt man auch fiir Systeme regulérer Array-Grammatiken,
was im Gegensatz zu den fiir (kooperierende Systeme von) String-
Grammatiken erzielten Ergebnissen steht.

Arrays und Array-Grammatiken

V2% bezeichnet die Menge der zweidimensionalen Arrays iiber dem Al-
phabet V, also die Menge aller Patterns, die man durch Markierung
endlich vieler Einheitsquadrate in der Ebene mit Symbolen aus V erhilt
(die restlichen Einheitsquadrate sind mit dem Blanksymbol # markiert);
Teilmengen von V2% heiflen Array-Sprachen. Eine isometrische Array-
Grammatik ist ein 5-Tupel G = (N, T, S, P,#), wobei N,T disjunkte
Alphabete sind, S € N, # das Blanksymbol und P eine endliche Menge

LGefordert von der Alexander von Humboldt-Stiftung
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von Array-Produktionen o — (3 ist, wobei «a, 3 endliche Patterns iiber
N UT U {#} sind, welche den folgenden Bedingungen geniigen:

1. Die Umrisse von « und (3 sind identisch, i.e. sie sind isometrisch.
2. a enthéilt mindestens ein Symbol aus N (ein Nonterminal).

3. Die Elemente aus T (Terminale), die in a vorkommen, werden in
[ nicht veréndert.

Fiir eine isometrische Array-Grammatik G = (N, T, S, P, #) definieren
wir die Ableitungsrelation © = y folgendermafien:

Fiir z,y € (N UT U {#})*" heifit = ableitbar aus y mittels a — 3 €
P, falls a ein Teil-Pattern in x ist und man y aus z durch Ersetzen des
Teil-Patterns « in « durch 8 (@ und f sind ja isometrisch) erhilt. Die
reflexive und transitive Hiille von = wird mit =—* bezeichnet; die von
G erzeugte Array-Sprache ist definiert durch

LG)={z e T*" | S =" z}.

Eine isometrische Array-Grammatik heifit monoton, falls in allen Array-
Produktionen o — 8 Symbole aus (NUT) in a nicht durch # in 3 ersetzt
werden; G heifit konteztfrei, falls iiberdies in jeder Array-Produktion a
nur aus genau einem Nonterminal und einigen Blanksymbolen # besteht;
sind alle Array-Produktionen von G von einer der folgenden Formen,
dann nennt man G regulir (A, B Nonterminale, a ein Terminal):

# B A a

#A—)Ba,A#—)aB,A—) 0’ #—>B,A—>a.

Bezeichnet man mit TA, M A,CF A, REG A die Familien von Array-Spra-
chen, die von allgemeinen, monotonen, kontextfreien and reguléren iso-
metrischen Array-Grammatiken erzeugt werden, so bilden diese Familien
von Array-Sprachen eine Chomsky-Hierarchie?:

REGACCFAC MA C IA.
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Kooperierende Systeme

Ein kooperierendes System von Array-Grammatiken (vom Typ X, X €
{REGA, CFA}, und vom Grad n, n > 1) ist ein Konstrukt

) :(N5T757P17P23--'7Pn7#)7

wobei N, T disjunkte Alphabete sind, S € N und Py, P, ..., P, endliche
Mengen kontextfreier bzw. regulidrer Array-Produktionen tiber N U T
sind. Fiir jedes i, 1 < i < n, betrachten wir die {ibliche Ableitungsrelation
:>Pi )

x=p, y gdw. . =21 Axo,y = x1222, 21,22 € (NUT)* A = 2z € P,
und definieren beliebige Ableitungen (=%,) sowie, fiir ein gegebenes
k > 1, Ableitungen mit genau k Schritten, (:>]:3ik), mit mindestens be-
ziehungsweise hochstens k Schritten (:>}%ik, :>1§ik), sowie die maximale
Ableitungsrelation,

r =% y gdw. z =}, y und fiir kein z € (NUT)* y =>p, 2.

Sei nun F = {*,t} U{< k,= k,> k | k > 1}. Fiir ein System , and
f € F ist die durch , im Ableitungsmodus f erzeugte Array-Sprache
definiert durch

Le(,) = {wET*|S:>{3i1 T :>£i2 352...:>{3i T =,

m>1,1<i;<n,1<j<m}
Die Familie von Array-Sprachen, die von kooperierenden Systemen von
Array-Grammatiken mit hichstens n bzw. beliebig vielen Komponenten

vom Typ X im Ableitungsmodus f erzeugt werden, bezeichnen wir mit
CD,(X,f),n > 1,bzw. CD(X, f), X e {REGA,CFA}, f€F.

Ergebnisse

1. Firn > 1, f € {x,= 1,> 1} U{< k | £ > 1} und X €
{REGA,CF A} gilt

CDn(X,f) = CD(X, f) = X.
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2. Seik, k' > 1.
i) CD,(REGA,=k) = CD,(REGA,= k) gilt fiir allen > 1.
ii) Ist k' ein Teiler von k, so ist
CD,(REGA,=k) echt enthalten in CD,(REGA,=k').
it1) Ist weder k ein Teiler von k' noch k' ein Teiler von k, so
sind die Familien von Array-Sprachen CD(REGA,= k) und
CD,(REGA, = k') unvergleichbar, aber nicht disjunkt.

3. Firn>1und1 <k' <k gilt

CD,(REGA,> k) C CD,(REGA,> k).

4. Firn>2und fe{=k|k>2}U{>Fk|k>2} gilt

CFA=CD,(CFA,f) C CD,(CFA, f).

5. Seim >2,n > 3. Dann gilt
REGA =CD(REGA,t) C CD2(REGA,t) = CD,,(REGA,t)
und

CFA = CD\(CFA,t) C CDy(CFA,L)
C CD3(CFA,t) = CD,(CFA,t).
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Reduzierbarkeit, Grundreduzierbarkeit und
Testmengen

Dieter Hofbauer

Fachbereich Informatik
TU Berlin

Abstract

In der Theorie der Termersetzung spielen die Baumsprachen
der reduzierbaren bzw. der irreduzierbaren Grundterme eine wich-
tige Rolle. Von besonderem Interesse sind die grundreduzierba-
ren Terme (mit Variablen), also die Terme, deren Grundinstanzen
samtlich reduzierbar sind.

Fir endliche linkslineare Termersetzungssysteme ist die Spra-
che der reduzierbaren Grundterme immer regulér und die Grund-
reduzierbarkeit somit entscheidbar. Aber auch im nichtlinearen
Fall bleibt die Grundreduzierbarkeit entscheidbar. Es wird gezeigt,
dafl immer endliche Testmengen existieren, so daf} ein Term genau
dann grundreduzierbar ist, wenn die — endlich vielen — Instanzi-
ierungen des Terms durch Terme aus der Testmenge reduzierbar
sind.

Grundreduzierbarkeit hat sich als ein Schliisselkonzept bei der Verifika-
tion wichtiger Eigenschaften von Termersetzungssystemen erwiesen, so
etwa fiir die Uberpriifung der vollstiindigen Definiertheit von Operato-
ren beziiglich gegebener Konstruktoren (sufficient completeness) oder fiir
das Beweisen induktiv giiltiger Gleichungen ( “inductionless induction”).

Sei R ein Termersetzungssystem tiber der Signatur . Wir bezeichnen
mit Red(R) die Menge der Grundterme iiber ¥, die mit R reduzierbar
sind, und mit N f(R) die Komplementmenge, also die Grundterme in
Normalform beziiglich R. Ground(t) sei die Menge aller Grundinstanzen
eines Terms ¢ € Tx(X). Ein Term ¢ € Tx(X) ist grundreduzierbar mit
R, wenn alle Grundinstanzen von ¢ mit R reduzierbar sind, d.h. falls



26
Ground(t) C Red(R) gilt.

Fiir linkslineare Systeme R und lineare Terme ¢ ist die Grundreduzier-
barkeit leicht zu entscheiden: in diesem Fall sind sowohl Ground(t) als
auch Red(R) immer reguldre Baumsprachen, Ground(t) C Red(R) also
entscheidbar. Aber auch im nichtlinearen Fall bleibt die Entscheidbarkeit
erhalten, wie Plaisted [13] sowie Kapur, Narendran und Zhang [8] gezeigt
haben. Hierbei wird folgendes Problem gelost:

¢ GEGEBEN: ein endliches System R iiber ¥ und ein Term ¢.

o GESUCHT: eine endliche Menge T' C 7x so, dal ¢ genau dann
grundreduzierbar mit R ist, wenn alle T-Instanzen von ¢ mit R
reduzierbar sind.

Eine T-Instanz von t ist hier ein Term, der aus ¢t durch Substitution aller
Variablen durch Terme aus T entsteht.

Weil der Grundreduzierbarkeitstest damit auf endlich viele Reduzierbar-
keitstests zuriickgefiithrt wird, heifit T auch Testmenge fiir R und ¢. Da
Testmengen im allgemeinen sehr grofl werden kénnen, ist ein Nachteil
dieses Ansatzes, daf die Testmenge vom Term ¢ abhingt, also fiir jeden
Test neu berechnet werden mufl. Nun 148t sich aber tatséichlich eine
Testmenge angeben, die nur von R abhéngt; hierbei enthalten die Terme
der Testmenge im allgemeinen Variablen. Wir zeigen [6, 4, 5], dafl auch
das folgende Problem losbar ist:

e GEGEBEN: ein endliches System R iiber X.

e GESUCHT: eine endliche Menge T' C Tx(X) so, daf ¢ genau dann
grundreduzierbar mit R ist, wenn alle T-Instanzen von ¢ mit R
reduzierbar sind.

Diese Testmengen sind durch Kounalis [5] inspiriert; sein urspriinglicher
Ansatz hat sich allerdings als inkorrekt erwiesen. Nachdem von Huber [6]
gezeigt wurde, wie sich dies reparieren 1483t, hat auch Kounalis eine kor-
rigierte Version vorgestellt [10].
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Allgemeiner zeigen wir, daf} sich alle Mengen 7', die
(1) wollstindig fiir R,
(2) expandiert beziiglich R und
(3) typisch fir R

sind, als Testmengen eignen, und wie solche Mengen berechnet werden
konnen. Dabei ist die Vollstidndigkeit von T (definiert durch Nf(R) C
Ground(T)) fiir die Korrektheit der einen Richtung des Test zusténdig:
Ist t nicht grundreduzierbar, hat t also eine irreduzierbare Grundinstanz
ty, dann existiert auch eine T-Instanz tr, die ¢y als Instanz hat, die
also selber irreduzierbar ist. Die Expandiertheit ist eine eher technische,
leicht zu erfiillende Bedingung.

Dagegen bildet Bedingung (3), die fiir linkslineare Systeme iiberfliissig
ist, den Kernpunkt unseres Ansatzes. Hier wird formuliert, dafl nicht nur
alle irreduzierbaren Grundterme als Instanzen eines Terms in der Test-
menge repriisentiert sind — Bedingung (1) — sondern daf} die Testmenge
dariiber hinaus auch noch die , Nichtlinearitdten“ von R widerspiegelt.

Ein Term ¢ heifdt typisch fiir R, wenn fiir jede Variable z in ¢ eine unendli-
che Menge G, C Ty, existiert, so daf ty € N f(R) fiir alle Substitutionen
v, wobei zy € G, fiir alle Variablen x in ¢t. Entsprechend heifit eine
Menge T typisch fiir R, wenn alle ¢ in T typisch fiir R sind.

Diese Bedingung garantiert nun umgekehrt, daf§ jede irreduzierbare T-
Instanz eines Terms ¢ auch eine irreduzierbare Grundinstanz besitzt. Ter-
me mit irreduzierbaren T'-instanzen kénnen also nicht grundreduzierbar
sein.

Ausfiihrlich gehen wir abschliefend darauf ein, wie sich durch eine ge-
naue Beweisanalyse im allgemeinen deutlich kleinere Testmengen finden
lassen; unter worst-case-Betrachtungen ergeben sich allerdings keine Un-
terschiede in der Gréflenordnung.
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Das Nichtleerheitsproblem fiir alternierende endliche
Automaten 2

Markus Holzer

Institut fiir Informatik
Technische Universitat Miinchen

Jones zeigte im Jahre 1975 [3], da das Nichtleerheitsproblem
fir deterministische und nichtdeterministische endliche Automaten
NSPACE((log n)-vollsténdig ist.

In weiterer Folge wurden Einschrankungen und Verallgemeinerungen
des Nichtleerheitsproblems fiir deterministische und nichtdeterministi-
sche endliche Automaten von Galil [2], Kozen [4] und Lange und Ross-
manith [5] betrachtet. Hierbei gelang es natiirliche vollstédndige Probleme
fiir die Klassen NP, PSPACE und Klassen mit eingschrinktem Nicht-
determinismus anzugeben.

Angesichts der Ergebnisse fiir deterministische und nichtdeterministi-
sche endliche Automaten, stellt sich die Frage welche Komplexitit das
Nichtleerheitsproblem fiir alternierende endliche Automaten [1], einem
Maschinenmodell das ebenfalls die reguliren Sprachen charakterisieren,
hat.

Es ergeben sich natiirliche vollstindige Probleme fiir die Klassen P, AP
und PSPACE. Fiir das Nichtleerheitsproblem fiir alternierende end-
liche Automaten mit unirem Eingabealphabet konnte die Aquivalenz
zum Nichtleerheitsproblem fiir Extended Lindenmayersysteme, kurz EOL
Systeme, bewiesen werden. Erst kiirzlich wurde in [6] die PSPACE-
Vollstandigkeit des Nichtleerheitsproblems fiir EOL Syteme gezeigt.

Auf Grund der Zusammenh#nge zwischen Nichtleerheitsproblemen fiir
alternierende endliche Automaten und Nichtleerheitsproblemen fiir Lin-
denmayersyteme kann gezeigt werden, dal schon sehr eingeschrink-
te Nichtleerheitsproblem fiir alternierende endliche Automaten NP
bzw. PSPACE-vollsténdig sind.

2Gefordert durch die Deutsche Forschungsgemeinschaft unter Projekt DFG-La
618/1-1
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Regulidre Grundnormalformsprachen und
Lineariesierung von Termersetzungssystemen

Maria Huber

CRIN/INRIA Lorraine
Nancy

Abstract

In Termersetzungssystemen lassen sich Regeln, die nicht linksli-
near sind, hiufig durch linkslineare ersetzen ohne die Sprache der
irreduzierbaren Grundterme zu verdndern. Um zu entscheiden, ob
ein Termersetzungssystem in diesem Sinn “linearisierbar” ist, und
um diese Linearisierung gegebenenfalls durchzufiihren, werden wir
geeignete Testmengen — eine endliche Représentation der Grund-
terme in Normalform — benutzen. Wir zeigen, daf diese Linearisie-
rung genau dann moglich ist, wenn die Grundnormalformsprache
eine reguldre Baumsprache bildet.

Endliche Testmengen werden hiufig verwendet, um die Sprache der nicht
reduzierbaren Grundterme zu charakterisieren. So sind sie ein geeignetes
Hilfsmittel um zu entscheiden, ob alle Grundinstanzen eines Terms mit
einem gegebenen Termersetzungssystem reduzierbar sind. Diese Grund-
reduzierbarkeit von Termen wiederum ist zum Beispiel wichtig, um zu
entscheiden, ob ein Symbol vollstindig definiert ist oder ob eine Glei-
chung fiir alle Grundterme gilt. Plaisted [13] und Kapur, Narendran,
Zhang [8], [9] haben gezeigt, dal es ausreicht, eine endliche Menge von
Grundinstanzen eines Terms zu betrachten, um zu entscheiden, ob dieser
Term grundreduzierbar ist. Kleinere Testmengen, die auch Terme mit
Variablen enthalten, wurden spéter u.a. in [7] und [9] fir linkslineare
Termersetzungssysteme verwendet.

Testmengen, die fiir einen Grundreduzierbarkeitstest auch im nichtlinea-
ren Fall verwendet werden konnen, sind sehr viel komplizierter und wur-
den in [10] und [6] genauer untersucht. Comon gibt in [3] bedingte Gram-
matiken an, die die Sprachen der irreduzierbaren Grundterme erzeugen.
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Neuere Ansiitze basieren auf der Konstruktion von Automaten, die genau
die Grundnormalformsprache akzeptieren, und deren Leerheitsproblem
entscheidbar ist. Wihrend Bogaert und Tison [1] Nichtlinearitéten nur
eingeschrinkt erlauben (gleiche Variablen in linken Regelseiten sind nur
direkt unterhalb der Wurzel erlaubt), sind die Automaten von Caron,
Coquide und Dauchet [2] fiir beliebige Termersetzungssysteme verwend-
bar.

Wir zeigen, wie die Testmengen, die in [6] urspriinglich zur Entscheidung
der Grundreduzierbarkeit konzipiert waren, verwendet werden kénnen,
um in linken Regelseiten nichtlineare Variablen durch eine endliche Men-
ge von Grundtermen zu ersetzen, falls dieses moglich ist ohne die Grund-
normalformsprache zu verdndern. Unser Algorithmus wird durch eine
einzige Ableitungsregel beschrieben, die nichtdeterministisch eine nicht-
lineare Regel auswihlt und so Regel fiir Regel linearisiert. Ist die Regel
nicht mehr anwendbar, dann sind entweder alle Regeln linearisiert — es
gibt keine nichtlineare Regel mehr —, oder es gibt keine endliche linea-
re Regelmenge mit der gleichen Grundnormalformsprache. Dazu werden
alle moglichen Instanzen einer nichtlinearen linken Regelseite gebildet,
die durch Substitution der Variablen durch Terme der Testmenge entste-
hen. Von diesen Instanzen werden diejenigen aufbewahrt, die nur an der
Wurzel und zwar nur mit der Regel, die gerade untersucht wird, redu-
zierbar sind. Sind alle diese Instanzen durch Substitution nichtlinearer
Variablen durch Grundterme entstanden, wird in der Regelmenge die ur-
spriingliche Regel durch die entsprechenden Instanzen ersetzt; die Regel
ist linearisiert, ihre nichtlinearen Variablen waren also in gewisser Weise
tiberfliissig. Andernfalls ist diese Regel und damit die gesamte Regel-
menge nicht linearisierbar. Auf diese Weise ersetzt die Ableitungsregel
alle “faulen” Variablen (die Variablen, die iiberfliiig sind, in dem Sinn,
daf endlich viele Grundterme die gleiche Arbeit verrichten) durch ei-
ne endliche Menge von Grundtermen. Der Algorithmus terminiert nach
maximal k vielen Schritten, wobei k& die Anzahl der nicht linkslinearen
Regeln des Termersetzungssystems ist.

Testmengen lassen sich hier verwenden, da sie die irreduzierbaren Grund-
terme zu diesem Zweck ausreichend genau representieren. Jeder irredu-
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zierbare Grundterm ist Instanz eines Terms in der Testmenge. Und je-
der Term mit Variablen in der Testmenge reprisentiert eine unendliche
Menge irreduzierbarer Grundterme. Die Konstruktion von Testmengen
basiert auf einer Pumping-Eigenschaft irreduzierbarer Grundterme. An-
schaulich sind an den Stellen, wo in den Grundtermen gepumpt werden
kann, in den Testmengentermen Variablen zu finden.

Mit Hilfe dieser Pumping-Eigenschaft und dem iiblichen Pumping-
Lemma fiir regulire Baumsprachen 148t sich auch zeigen, daf ein Termer-
setzungssystem genau dann linearisiert werden kann, wenn seine Grund-
normalformsprache eine regulidre Baumsprache bildet. Das wurde bereits
von Kucherov in [11] gezeigt, der allerdings zuniichst die Linearisierbar-
keit nicht entscheiden konnte. Die eine Richtung ist einfach, da zu einer
linkslinearen Regelmenge immer eine reguldre Grammatik konstruiert
werden kann, die die Sprache der reduzierbaren Grundterme erzeugt.
Damit ist auch die Komplementsprache regulér.

Ahnliche Verfahren zur Entscheidung von Linearisierbarkeit und zur
Konstruktion einer Linearisierung wurden unabhingig von Hofbauer und
Huber [4], [5], von Kucherov und Tajine [12] und von Vagvolgyi und
Gilleron [14] angegeben. Alle Ansétze basieren auf der Verwendung von
Pumping-Eigenschaften fiir die Grundnormalformsprache. Nur in [4], [5]
werden Testmengen verwendet, die das Wissen iiber Pumping-Stellen
bereits beinhalten.

Neben der Moglichkeit zu entscheiden, ob ein Term grundreduzierbar ist,
ob die Grundreduzierbarkeit an endlich oder unendlich vielen Grund-
instanzen scheitert etc., hat die Untersuchung der Grundnormalform-
sprachen Auswirkungen auf das Design von Termersetzungssystemen.
Handelt es sich zum Beispiel um ein konstruktorbasiertes System — ein
System, in dem zwischen zu definierenden Operationen und Konstruk-
toroperationen unterschieden wird —, in dem sich Konstruktorterme nur
wieder zu Konstruktortermen ableiten lassen, das auflerdem termierend
und grundkonfluent ist, dann reicht es aus, nichtlineare Variablen in sol-
chen linken Regelseiten zuzulassen, die nur aus Konstruktoren aufgebaut
sind. Zur vollstindigen Definition von Operationen reichen also linksli-
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neare Regeln aus.
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Neue Anwendungen von Ergebnissen iiber
Petrinetze auf Matrix-Sprachen

Matthias Jantzen

FB Informatik
Universitdt Hamburg

Unter Verwendung eines sehr allgemeinen Ergebnisses von Dirk Hau-
schildt (Doktorarbeit, Hamburg 1991) werden u. a. folgende Ergebnisse
erzielt:

1. Matrixsprachen iiber einem einelementigen Alphabet, die ohne
Vorkommenstest erzeugt werden sind, stets regulér.

2. Es ist entscheidbar, ob Matrixgrammatiken ohne Vorkommenstest
a) eine endliche Sprache generieren
b) eine Sprache mit semilinearem Parikh-Bild generieren.

Weitere Ergebnisse folgen aus der Entscheidbarkeit des Erreichbarkeits-
problems und werden kurz diskutiert.
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Aktivierung zellularer Automaten

Henner Kroger

Arbeitsgruppe Informatik
Justus—Liebig-Universitit Gieflen

Extended Abstract: Die auf J. v. Neumann um 1950 zuriickgehen-
den zellularen Rdume, —Automaten und —Algorithmen lassen sich fiir
(1-dimensionale) Spracherkennung und (mehr-dimensionale) Bilder-
kennung sowie fiir Mustertransformation und Simulation von Wachs-
tumsprozessen anwenden. Zellulare Rdume arbeiten mit unendlich vie-
len Zellen, wobei der d—dimensionale Vektorraum iiber den ganzen Zah-
len als Menge von Identifikatoren fiir die Zellen dient und zugleich eine
geographische Nachbarschaft festlegt; die (davon verschiedene) Nachbar-
schaft fiir den Informationsflufl wird jeweils explizit im jeweiligen zellu-
laren Raum festgelegt. Zellulare Automaten arbeiten nur auf einem end-
lichen Teilgebiet des Raumes (sogenannte Retina). Zellulare Algorith-
men bilden eine ,Familie“ zellularer Automaten mit verwandten Retina-
Gebilden und gemeinsamer Uberfiihrungsfunktion.

Derartige Strukturen gewinnen wegen des aktuellen Interesses an
massiv—parallelen Rechnermodellen und wegen des heutigen technischen
Entwicklungsstandes an Bedeutung; zugleich nimmt die Gréflenordnung
solcher Algorithmen zu und erfordert entsprechende Disziplin beim Al-
gorithmenentwurf. In Anlehnung an den Fall sequentieller Algorithmen
sind unsere Untersuchungen vor dem Hintergrund zu sehen, beim Ent-
wurf komplizierter zellularer Algorithmen modulare Kompositionstech-
niken zu nutzen: Entwurf und Korrektheit des gesamten Algorithmus sol-
len auf die korrekte Komposition korrekter Teilalgorithmen abgestiitzt
werden.

Sequentielle Algorithmen und Rechnermodelle wie von—-Neumann—Rech-
ner und Turing—Maschinen haben recht einfache Konzepte des Startens
und des Stoppens einer Rechnung und erlauben dementsprechend in ein-
facher Weise z.B. das Hintereinanderschalten (ALGOL-Semikolon) von
Teil-Algorithmen.
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Zellulare Konzepte dagegen miissen parallele Arbeitsweisen integrieren,
die mit Schlagworten wie Iokal, myopisch, verteilt zu charakterisieren
sind. Zellulare Rdume etc. setzen einen globalen Taktgeber voraus, durch
den die Zellen synchron arbeiten. Es gibt das Konzept der Startkonfi-
guration (zum Zeitpunkt ¢ = 0): wie die Anfangszusténde in die Zellen
technisch eingefiillt werden, bleibt dabei in gewissem Sinne offen oder
auflerhalb der Theorie. Sieht man mal vom Spezialfall von Erkennungs—
Algorithmen mit ausgezeichneten ja/nein—Antwortzellen ab, so dienen
als Endkonfigurationen solche Konfigurationen, die durch die lokale
Uberfiihrungsfunktion in sich selbst iiberfiihrt werden, also fiir einen glo-
balen Betrachter, der sich auflerhalb iiber dem zellularen Raum befindet,
ein stabiles Bild liefern: stabile Konfigurationen. Die Bezeichnung Stop—
Konfiguration ist nicht ganz gliicklich, da die Konfigurationsiibergéinge
im zellularen Raum nicht im eigentlichen Sinne terminieren sondern ge-
gebenenfalls stabil werden. Fiir die nur lokal arbeitenden einzelnen Zellen
zellularer Strukturen ist es daher duflerst knifflig, eine stabile Endkonfi-
guration (der ganzen Retina oder des ganzen Raumes) zu erkennen und
dann als Startkonfiguration eines anzuschlieenden n#chsten Algorith-
mus zu benutzen.

Um von einem Algorithmus P in den néchsten Algorithmus ) umzustei-
gen, wird man in der Regel spezielle Eigenschaften der Algorithmen aus-
nutzen miissen, etwa dafl der Algorithmus P einen FSSP—Mechanismus
auslosen kann und so durch (zeitaufwendige) Synchronisation aller Re-
tinazellen den eigentlich nichsten Algorithmus @) startet.

Die von Bleck und Kroger (1988, 1992) eingefiihrten zeitlich verzerrten
zellularen Algorithmen nutzen aus, daf stabile Endkonfigurationen des
Algorithmus P in der Regel nicht schlagartig in der ganzen Retina er-
reicht werden, sondern daf sich gewisse Teilgebiete bereits vorzeitig sta-
bilisieren; damit ergibt sich die Moglichkeit, den anzuschliefenden Algo-
rithmus @ (beziehungsweise eine entsprechend verzerrte Version @' da-
von) hier vorzeitig zu starten: statt der gleichzeitigen, globalen Aktivie-
rung der ganzen Retina erfordert dies eine schrittweise Aktivierung, aus-
gehend von gewissen vorgegebenen Aktivitdtszentren der Retina. Da die
Zellen und ihre Nachbarn zu unterschiedlichen Taktzeiten aktiviert wer-
den, miissen die Zellen verschiedene Taktzusténde speichern und mehr-
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fach fiir Rechnungen bereitstellen: der verzerrte Algorithmus wird (z.B.
im l1-dimensionalen Fall mit klassischer von-Neumann—Nachbarschaft
um einen Faktor 2) langsamer, so daf} sich gegeniiber einer eingeschobe-
nen FSSP—Synchronisation nur bei speziellen Zeit—Retina—Verhiltnissen
ein zeitlicher Vorteil ergibt, etwa wenn p + (2n — 2) + ¢ grofler als p + 2q
ist, wobei p, ¢ die Laufzeiten der Algorithmen P, @ sind und (2n — 2)
die FSSP-Synchronisation des 1-dimensionalen Retina—Intervalles der
Linge n ist. Bleck und Kroger (1988, 1992) geben an, wie man im 1-
dimensionalen Fall zu vorgegebenem zellularen Algorithmus mit klas-
sischer von—Neumann-Nachbarschaft und vorgegebenen Aktivitéitszen-
tren einen entsprechenden zeitlich verzerrten zellularen Algorithmus ge-
winnt. Becker (1990) hat (weiterhin 1-dimensionale) verallgemeinerte
von-Neumann-Raster H(k,l) = {—k,0,+[} eingefiihrt und hierfiir die
Verzerrungstechnik iibertragen; auflerdem wird dort eine schnellere Va-
riante entwickelt, die sich auf einen Modulo—-3—Zahler stiitzt, wie er bei
der Synchronisation asynchroner zellularer Rdume benutzt wird.

Inzwischen koénnen die Techniken zur Konstruktion zeitlich verzerrter
zellularer Algorithmen auf zellulare Algorithmen beliebiger Dimension
mit beliebiger Nachbarschaft und beliebiger (lokaler) Uberfiihrungsfunk-
tion iibertragen werden, sofern die Retina-Gebilde beziiglich der Nach-
barschaften gewisse ,anstindige Eigenschaften erfiillen. Bei gewissen
yexotischen® Retina-Familien mufl man vom Konzept des zellularen Al-
gorithmus abriicken und sich wieder auf zellulare Automaten mit einzel-
ner Retina zuriickziehen.

Dariiber hinaus lassen sich Algorithmen, die das Wachstum zum Bei-
spiel von Schneeflocken steuern, zur Aktivierung und Steuerung anderer
Algorithmen im obigen Sinne einsetzen.
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Uber die Erzeugung von (un-)endlichen Sprachen
bei stochastischen k-limitierten OL-Systemen
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Abstract

Es werden stochastische k-limitierte unire und propagierende
Lindenmayer-Systeme eingefiithrt. In Abhéngigkeit eines vorgege-
benen Schwellwertes 0 < A < 1 kann die erzeugte Sprache eines ge-
gebenen Systems endlich oder unendlich sein. Das Hauptresultat
ist ein Entscheidbarkeitskriterium, mit dem fiir fast alle Schwell-
werte A entschieden werden kann, ob die erzeugte Sprache endlich
ist oder nicht.

SEIPUOL-Systeme

Stochastische 0L-Systeme sind u.a. von Eichhorst und Ruskey eingefiihrt
worden (s. [ER81]). Bei der von ihnen zugrundegelegten Definition wer-
den die Produktionen der Tafel eines gegebenen OL-Systems K mit
Wahrscheinlichkeiten versehen. Da weiterhin das Axiom eine gewisse
Auftretenswahrscheinlichkeit besitzt, werden alle Worter aus L(K) mit
gewissen Wahrscheinlichkeiten erzeugt. Sie konnten zeigen, daf§ stocha-
stische OL-Systeme, die propagierend und unér sind, nur endliche Spra-
chen erzeugen koénnen, wenn mindestens zwei Produktionen vorhanden
sind, und nur Wérter zur Sprache gehoren, die mit Wahrscheinlichkeiten
erzeugt werden, die echt grofler sind als ein vorgegebener Schwellwert 0 <
A < 1. Im folgenden soll gezeigt werden, daf3 dieses Resultat nicht mehr
giiltig ist, wenn eine beschrinkte Ersetzung vorausgesetzt wird. Dabei
handelt es sich um die von D. Wétjen in [W#88a] Landskroneingefiihrten
k-limitierten Lindenmayersysteme (klOL-Systeme) K = (X, h,w, k) mit
k € IN, bei denen in jedem Ableitungsschritt fiir alle @ € ¥ in dem zu
ersetzenden Wort w genau min{#,w, k} Zeichen ersetzt werden. Dabei
wird auch hier weiterhin vorausgesetzt, daf} die zu betrachtenden Syste-
me propagierend und unér sind (kurz kIPUOL-Systeme). Die erzeugten
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Woérter lassen sich eindeutig tiber ihre Langen charakterisieren. Es reicht
also aus, im folgenden nur die assoziierten kIPUL-Systeme K' = (', 1, k)
zu betrachten, wobei ¢ = |w]| gilt und jede Produktion a — a™ € h des
zugehorigen kIPUOL-Systems in A" durch n ersetzt wird. Fiir solche Sy-
steme 148t sich mit Hilfe der sogenannten Wachstumsmenge angeben,
wie groff das Wachstum in einem Ableitungsschritt ist, wenn k& Zeichen
ersetzt werden. Es sei also K = (h,i,k) ein kKIPUL-System. Dann ist
GE)={glg=>pcnp - (P=1), \p € INo, >, A\p =k} die Wachs-
tumsmenge, deren Elemente fiir propagierende Systeme > 0 sind. Mit
Hilfe der Wachstumselemente ¢ € G(K) 148t sich die von K erzeugte
Sprache L(K) angeben (s. [Wa88b]).

Definition 1 Ein stochastisches kIPUL-System (SkIPUL-System) S =
(h,p,i, k) ist gegeben durch die endliche Menge der Produktionen h =
{h1,... hs} (hj € IN), einer Abbildung p : h — [0,1] mit 3°5_, p(hy) =
1 (Wahrscheinlichkeiten der Produktionen), und durch das Aziom i € IN
mit der Auftretenswahrscheinlichkeit 1 sowie der k-Limitierung k € IN .

Die Wachstumsmenge von S (kurz: G(S)) stimmt mit der Wachstums-
menge des zugrundeliegenden kIPUL-Systems K = (h,i, k) iiberein.

Da das Axiom eine Auftretenswahrscheinlichkeit besitzt, werden auch die
von S erzeugten Worter mit bestimmten Wahrscheinlichkeiten generiert.
Im folgenden werde die Ableitungswahrscheinlichkeit, y aus x (in beliebig
vielen Schritten) abzuleiten, mit P(x,y) bezeichnet. Dabei werden nur
Ableitungen der Form z =* y mit x = wy = w; = ... = W, =
wy, =y und y # w; Vi =0,...,n — 1 betrachtet. In jedem Ableitungs-
schritt w; = w;4+1 werden alle Wahrscheinlichkeiten der angewendeten
Produktionen mit der Wahrscheinlichkeit von P(z,w;) multipliziert (es
gilt P(x,z) = 1). Alle moglichen Ableitungen mit beliebig vielen Schrit-
ten werden betrachtet und deren Wahrscheinlichkeiten aufsummiert. Die
Ableitungswahrscheinlichkeit eines Wortes y wird nun mit P(y) bezeich-
net, und es gilt P(y) = P(i,y).

Definition 2 FEs sei S = (h,p,i,k) ein SkIUL-System, und A € [0,1)
sei ein sogenannter Schwellwert. Dann ist Ly(S) = {y | P(y) > A} die
von S erzeugte Sprache.
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Definition 3 Es sei N = max{h; | j = 1,...,s und p(h;) > 0}.
Die Ein-Schritt-Wahrscheinlichkeit p(n,m) ist definiert durch p(0,0) =
1, p(O,m) = 0 fir m # 0, und fir n > 0 durch p(n,m) =
{ p(k,m —n + k), falls n > k

SN p(G)p(n —1,m—j)  sonst.

Satz 4 Gegeben sei ein SkIPUL-System S = (h,p,i,k) mit G(S) =
{91,---,9r} (9: < g; fiiri < j). Dann ist 2221 p(k,k+g;) = 1. Fiir die
Bestimmung der Ableitungswahrscheinlichkeiten gelten weiterhin die fol-
genden Formeln: P(n,m) = p(n,m) + Z;n:_nl p(n, j)P(j,m) = p(n,m) +
2521 p(n,n + g;)P(n + g;,m). Weiterhin existiert im Fall g1 # 0 ein
Wort ng, so dafs fiir alle n > ng die Ableitungswahrscheinlichkeiten von
n rekursiv definiert sind durch P(n) = 2221 p(n — gj,n)P(n — gj).
1
p(n,n)

17
(p(n,m) + 2;2 p(n,n + g;)P(n + gj,m)), und fir alle n > ng gilt
P(n) = 1=tmmy 2 j=e P(n = gj,n) P(n — gj).

Im Fall g1 = 0 erhdlt man durch Umformungen P(n,m) =

Beispiel 5 S = ({1,3},p,1,k) mit p(1) = 1, p(3) = 2, k = 2 und
P(1) = 1. Es gilt G(S) = {0,2,4}. Mit Hilfe der obigen Formeln lGft
sich P(n) fiir alle n berechnen, z.B. gilt P(1) = P(3) = 1, P(5) = 2,
P(7) = %, usw. Wihlt man als Schwellwert Ay = 0,627, dann erzeugt S
die endliche Sprache Ly, (S) = {1,3,7,11,15,19,23}. Im Fall Ay = 0,62
gilt Ly, (S) = {1,3,7,11,15} U {2n + 1 |n > 9}. Offensichtlich hingt

also die Erzeugungsmdchtigkeit von der Wahl des Schwellwertes ab.
Rekursive Folgen

Satz 6 Es seim € IN, ay,as,...,a, € IR. Firn > m sei die rekursive
FOlge An = q10n—m +q2anfm+1+- -t m-10n—2+@man—1 gegeben’ wober
0<¢ <1(i=1,...,m), >, q =1 gelte. Die Indizes der positiven
Koeffizienten seien iy, .. ., i, und werden threr GrifSe nach geordnet: iy <
Qo < ... <ip. Gilt ggt(ic —i1,... 0 —i1,m+ 1 —i1) =1, dann folgt:

o+ (@te) ot F@at+et.. +am) an

lim a, = <o
nooo m.ql+(m—1)-q2+...+2‘qul+qm
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Beweisidee: Durch Anwendung der Theorie der Differenzengleichungen
und einigen Sdtzen iber stochastische Matrizen kann die Konvergenz
bewiesen werden. Mit Hilfe eines induktiven Beweises wird eine dquiva-
lente Darstellung der Folge nachgewiesen. Durch Anwendung von Grenz-
wertsdtzen fiir Folgen ist hierdurch die explizite Berechnung des Grenz-
wertes maglich.

Satz 7 Gilt in Satz 6 ggt(ia —iy,..., 0 —i1,m+1—1i1) =t > 1, dann
folgt, daf8 die Folge t Hiufungspunkte besitzt und o aus Satz 6 der arith-
metische Mittelwert dieser Haufungspunkte ist.

Beuweisidee: Zerlegung der gegebenen Folge in t konvergente Teilfolgen,
die disjunkt sind und nach Satz 6 konvergieren.

Beispiel 8 (Fortsetzung von Beispiel 5) ap, := P(n). Fiirn > 5 gelte die
rekursive Folge a,, = %an,2 + %an,zl, wobeia; =1,a2 =0,a3 =1, a4 =
0, a5 = % gelte. Die Koeffizienten sind folgendermafen bestimmt worden:

_ p(24) _16.3 _ 2 _ p(26) _16.9 _ 3 . .
=y =i =% und ga = Top(3) = 18°76 = 5 Folglich besitzt

die Folge ggt(4—2,5+1—2) = 2 Hiufungspunkte: Fir die geraden Wérter
ist die Ableitungswahrscheinlichkeit 0, also (a2m)men — 0 (m —
00), und fiir ungerade Worter gilt fir m > 3 asme1 = %agm_1 +

2,6 .
1f2(27)2) Aom—3 = %agm,l + %agm,3 mit den Anfangswerten as =1, as =

%. Es folgt mit Satz 6: (a2m+1)men — 0,625 (m — 00).

Ein Entscheidbarkeitskriterium

Satz 9 Fiir fast alle Schwellwerte 0 < A < 1 ist es entscheidbar, ob
die von einem SkIPUL-System S = (h,p,i,k) erzeugte Sprache Ly(S)
endlich ist oder nicht.

Beweis: Es sei G(S) = {g1,.-.,9r}. Im Fall A = 0 oder r = 1 (also
|h| = 1), ist es trivialerweise entscheidbar, ob Ly (S) endlich ist, n&mlich
genau dann, wenn 1 die einzige Produktion ist. Es sei also nun A > 0, und
in h existieren mindestens 2 Produktionen mit positiver Wahrscheinlich-
keit (also r > 2). Mit Hilfe der Formeln aus Satz 4 wird eine rekursive



45

Folge aufgestellt. Fiir ,,gentiigend” viele Worter, deren Wahrscheinlichkei-
ten den Anfangswerten entsprechen, wird die Ableitungswahrscheinlich-
keit sukzessive mittels der Formel P(i,n) = p(i,n) + 3. —; p(i,§)P(j,n)
bestimmt. Die Koeffizienten der rekursiven Folge sind durch die Ein-
Schritt-Wahrscheinlichkeiten p(k,k + g;) fiir alle Wachstumselemente
g; € G(S) gegeben (vgl. Satz 4). Die Ableitungswahrscheinlichkeiten
der iibrigen Worter lassen sich nun mit Hilfe der rekursiven Folge be-
stimmen. Durch Anwendung der Sétze 7 und 6 werden die endlich vielen
Hiufungspunkte der rekursiven Folge berechnet. Der grofite Haufungs-
punkt sei a;. In Abhéngigkeit von der Wahl des Schwellwertes A gilt
dann:

e A > a;: Ly(S) endlich,

e A < az: Ly(S) unendlich,

e )\ = y: i.a. mit obigem Kriterium keine Aussage moglich.
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Deterministische Zweiweg-Kellerautomaten:
Bemerkungen zu Endlosschleifen

H. Petersen
Fachbereich Informatik

Universitdt Hamburg
(in Zusammenarbeit mit M. Ladermann)

Deterministische Zweiweg-Kellerautomaten (kurz 2-DPDA) wurden in
[8] (dort unter der Bezeichnung ,,off-line“) eingefiihrt und mit Variatio-
nen in [3, 1, 2] untersucht. Dabei erwiesen sich die unterschiedlichen De-
finitionen von Arbeits- und Akzeptierungsmodi als dquivalent—bis auf
ein Detail, dal bis heute ungeltst geblieben ist: Falls ein 2-DPDA auf
einer Eingabe in eine Endlosschleife gelangen darf und dies wie in [3] als
Ablehnung gewertet wird, ist nicht klar, ob solche Schleifen eliminiert
werden koénnen, um den Automaten zum Halten zu bringen (in [8] wur-
de Halten vorausgesetzt, eine unentscheidbare und daher problematische
Forderung.)

Zunichst verdeutlichen wir die Leistungsfihigkeit von 2-DPDA am Bei-
spiel der Berechnung primitiver Wurzeln (Definition in [4]) durch einen
2-DPDA mit einem Eingabekopf. Die Hauptidee ist hier die Anwendung
von Zeichenketten-Vergleich zwischen zwei Kopien der Eingabe (um er-
stes und letztes Zeichen verkiirzt), die auf dem Keller gehalten werden,
und der Eingabe selbst. Die Lénge des verbleibenden Kellerinhaltes kann
dann zur Bestimmung der primitiven Wurzel benutzt werden.

In [5] wurde der Versuch unternommen, die von Sipser [7] im Bereich
der platzbeschrankten deterministischen Turingmaschinen entwickelte
Technik der Riickwirtssimulation auf 2-DPDA zu tibertragen. Der Be-
weis 148t allerdings offen, wie eine der wesentlichen Voraussetzungen der
Sipser-Technik, ndmlich die Endlichkeit des Konfigurationsraumes, bei
2-DPDA gewihrleistet werden kann. Wir verdeutlichen dies an einem
Beispiel, bei dem die Riickwirtssimulation zu einem Kelleriiberlauf fiihrt.

Die Endlosschleifen eines 2-DPDA lassen sich einem der beiden folgenden
Typen zuordnen:
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e Der Automat wiederholt Konfigurationen

e Die Rechnung besteht aus lauter verschiedenen Konfigurationen,
der Keller wéchst unbeschrankt

Unsere Fiillsel-Konstruktion transformiert Schleifen der ersten Art in
solche zweiter Art. Genauer fithren wir ein Hilfs-Kellerbodensymbol und
ein weieteres neues Kellersymbol (das Fiillsel) ein. Jedem Zustand fiigen
wir eine Schleife hinzu, die das Fiillsel 16scht, und ergéinzen Ubergénge,
die nichtleere Zeichenketten in den Keller schreiben so, daf3 vorher ein
Fiillsel geschrieben wird. Eine Argumentation iiber minimale Kellerin-
halte in einer Endlosschleife zeigt, dal Schleifen der ersten Art nun aus-
geschlossen sind.

Es ergeben sich folgende Resultate:

e Zu jedem k-Kopf 2-DPDA gibt es einen #quivalenten 2k-Kopf 2-
DPDA, der immer hilt.

— Ein zweiter Satz Kopfe (mit endlicher Kontrolle) dient als
Tiefenbegrenzung fiir den Keller.

— Zur Vermeidung von Schleifen wird entweder Riickwértssimu-
lation oder

— Fiillsel-Konstruktion durchgefiihrt.

e Jedes Komplement einer k-Kopf 2-DPDA Sprache wird von einem
k-Kopf 2-NPDA erkannt.

— Durch die Fiillsel-Konstruktion kann in Schleifen ein Kel-
leriiberlauf erzwungen werden.
— Der Kelleriiberlauf wird ,,spontan“ mit k Kopfen gepriift.
— Akzeptierende und ablehnende Zustéinde werden vertauscht.
o Folgerungen: Sind 2-NPDA oder 2-DPDA nicht komplementabge-

schlossen, dann sind 2-DPDA weniger michtig als 2-NPDA mit
gleicher Kopfzahl.
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e Zu jedem 2-DPDA gibt es einen #quivalenten 2-DPDA mit schwa-
chem Zghler [6], der immer hilt.

— Die Kellertiefe einer haltenden Rechnung ist polynomiell be-
grenzt, die Anzahl der Schritte daher exponentiell.

— Die Laufzeitschranke kann durch Zihlen im Keller auf dem
schwachen Zihler konstruiert werden.

— In jedem Schritt einer Vorwartssimulation wird der schwache
Zahler erniedrigt.
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Eine Bemerkung iiber Linksableitung indisch
paralleler Grammatiken

Bernd Reichel

Otto-von-Guericke-Universitit
Magdeburg

Indisch parallele Grammatiken sind eine Version der kontextfreien Gram-
matiken mit gesteuerter Ableitung, d.h. Grammatiken mit kontextfrei-
en Produktionen bei nicht-kontextfreier Anwendung. Diese Grammati-
ken wurden eingefiihrt, um bei Verwendung kontextfreier Produktionen
nicht-kontextfreie Sprachen zu erzeugen. Indisch parallele Grammatiken
und Sprachen wurden zuerst in [5] und [6] untersucht.

Linksableitung ist ein interessanter Abspekt der Theorie Formaler Spra-
chen in bezug auf die Erzeugungsmaichtigkeit von Grammatiken. So ist
die erzeugte Sprachklasse der Typ-0-Grammatiken bei Linksableitung
nur die Familie der kontextfreien Sprachen [1], wobei sich bei kontext-
freien Grammatiken bekanntlich die erzeugte Sprachklasse bei Links-
ableitung nicht dndert. Die Erzeugungsmiichtigkeit einiger Arten von
kontextfreien Grammatiken mit gesteuerter Ableitung wurde z.B. in [3],
[4] und [2] untersucht.

Eine indisch parallele Grammatik G ist ein 4-Tupel G = (N, T, P, S),
wobei N das Alphabet der Variablen, T' das Alphabet der Terminale ist
und NNT = ist, es sei NUT = V. P C N x V* ist die endliche Menge
der Produktionen und S € N das Startsymbol.

Ein Wort w, tiber V' erzeugt in G direkt ein Wort ws iiber V' (bezeichnet
als wy = wa, oder w; = wy falls G aus dem Kontext ersichtlich ist)
genau dann, wenn

i) w =70AnA... Ay, mit Ae N, v, € (V\{A}* fiir i =0,1,...,n,
i) we = Yoo a...ay, und

iii) A — ain P ist.

Falls in i) 79 € T™ gilt, sagen wir, dal w; in Linksableitung wo erzeugt
(wir schreiben dafiir w1 = w2), und falls in i) v, € T gilt, sagen wir,
dafl w1 in Rechtsableitung ws erzeugt (bezeichnet als w; = wa).
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Die Sprache, die von einer indisch parallelen Grammatik G erzeugt wird,
ist definiert als L(G) = {w € T*|S == w}, wobei == den reflexiven
und transitiven Abschlufl von = darstellt. Die Sprachen, die von einer
indisch parallelen Grammatik G in Links- und Rechtsableitung erzeugt
werden, definieren wir als Ly, (G) = {w € T*| S :Z> w} bzw. Lr(G) =
{w e T*|S :} w}, wobei wieder :*L> und :} den reflexiven und
transitiven Abschluf} von = bzw. = darstellen. Wir bezeichnen mit
L(IP), L (IP) und Lr(IP) die Familien der Sprachen, die von indisch
parallelen Grammatiken in algemeiner, in Links- bzw. in Rechtsableitung
erzeugt werden.

Dann haben wir das Resultat, dafl die Familien £(IP), £, (IP) und
L r(IP) paarweise unvergleichbar sind.
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Uber Fragen des Determinismus bei endwachsenden
fadenformigen Systemen

Torsten Rofinick

Otto-von-Guericke-Universitat
Magdeburg

Endwachsende fadenformige Systeme (im weiteren kurz als AGFS be-
zeichnet - engl.: apical growth filamentous systems) wurden 1983 von
NIRMAL und KRIHIVASAN als Spezialfall der L-Systeme eingefiihrt.
Dabei wird die parallele Ersetzung auf das &duflerste linke bzw. rechte
Symbol beschrinkt und weiterhin eingeschréankt, daf3 keine Verzweigun-
gen auftreten sollen. BALANESCU, GHEORGHE und PAUN griffen die
Idee auf und erlaubten die parallele Ersetzung der duflersten k Symbo-
le. Als offenes Problem wurde die erzeugende Kraft des Determinismus
genannt.

Bei k-AGFS wird die Regelmenge P als Vereinigung zweier Teilmengen
Py, und P, aufgefait. Dabei sind die Regeln, die auf linke Symbole ange-
wandt werden konnen, in P; enthalten und die fiir rechte Symbole in Ps.
Sind die Mengen P; und P, -jeweils fiir sich betrachtet- deterministisch,
so spreche ich von deterministischen k-AGFS. Ist jedoch die Menge P
deterministisch, so spreche ich von streng deterministischen k-AGFS.
Die deterministischen k-AGFS ergeben fiir konstante k eine zu den nicht-
deterministischen k-AGFS vergleichbare Struktur. Die streng determini-
stischen k-AGFS verhalten sich dhnlich der (nicht)deterministischen k-
AGFS, wobei aber einige Verschiebungen von spracherzeugenden Klassen
zu verzeichnen sind.

Fiir konstantes k und festes X € {F,A}, Y € {F,A} sowie Z € {P,\}
148t sich die Teilmengenbeziehung

D,XYZP(k) C DXYZPEk) C XYZPk)

nachweisen. Die Echtheit der Teilmengenbeziehung zwischen den streng
deterministischen und deterministischen Sprachklassen mit den selben
erzeugenden Bedingungen wird vermutet, ist jedoch noch nicht bewiesen.
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Two-dimensional Picture Languages

Sebastian Seibert
Institut fiir Informatik
Christian-Albrechts-Universitit Kiel

Dora Giammaresi und Antonio Restivo
Universita di Palermo

Wolfgang Thomas

Institut fiir Informatik
Universitat Kiel

Wir betrachten Bilder als zweidimensionale Felder von Buchstaben in
Rechteckform und vergleichen logische Definierbarkeit von Bildsprachen
mit der Beschreibung durch Parkettierungen mit einer endlichen Menge
von Teilbildern, wobei auf jeden Buchstaben ein Zustand gelegt wird.
Als eine natiirliche Erweiterung des Erkennbarkeitsbegriffs von Worten
auf Bilder stellt sich die Parkettierung durch Teilbilder der Gréfie 2 x 2
dar. Wir zeigen, dafl sich damit genau die Bildsprachen erkennen las-
sen, die durch existentielle monadische Logik zweiter Stufe definierbar
sind. Gleichzeitig wird nachgewiesen, dafl Parkettierungen mit grofieren
Teilbildern, bei denen es erlaubt ist, die Anzahl der Vorkommen der
Teilbilder bis zu einer Schranke festzulegen (,threshold counting®), zu
demselben Erkennbarkeitsbegriff fithren.
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Least Solutions of Equations over N/

Helmut Seidl

Fachbereich Informatik
Universitat des Saarlandes

We consider the problem of computing the least solution X;,i =1,...,n,
of a system S of equations z; = f;,4 = 1,...,n, over N, i.e., the naturals
(extended by o), where the right hand sides f; are expressions built up
from constants and variables by operations taken from various sets 2.
Many compile time analyses of programs rely on computations of least
solutions of such systems of equations.

We present efficient algorithms in case where 2 consists of

1

minimum and maximum,;

2) maximum, addition and multiplication;

3) minimum, addition and multiplication; and

(1)
(2)
(3)
(4) minimum, maximum, addition and multiplication.

The algorithms use multiplications only provided S contains multiplica-
tions. Also, we design polynomial time algorithms without multiplications
which compute the set of all ¢ where X; = co. This result is used to de-
cide in polynomial time whether or not the costs of tree automata with

cost functions of a very general form are bounded.
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Zur Anzahl der aktiven Nichtterminale in
kooperierenden Grammatiksystemen

Stefan Skalla

Otto-von-Guericke-Universitit
Magdeburg

Kooperierende Grammatiksysteme stellen ein formales Modell fiir
,blackboard architectures* der kiinstlichen Intelligenz dar, wobei dieses
Tafelmodell im wesentlichen aus

e mehreren verteilten Wissensressourcen/Experten,
e der Tafel, die den aktuellen Stand der Losung enthilt,

e cinem Ordner, der die Reihenfolge der Experten im Losungsprozefl
festlegt,

besteht. Bei derartigen Systemen von Grammatiken entsprechen die ein-
zelnen Grammatiken den Experten, die Satzformen den partiellen Losun-
gen auf der Tafel, die Arbeit des Ordners wird durch Mechanismen zur
Steuerung des Ableitungsprozesses modelliert.

Ein Nichtterminal A heifit aktiv in einer Komponente G;, wenn fiir dieses
Nichtterminal A in dieser Komponente mindestens eine Regel A — w
mit w # A existiert.

Betrachtet werden zunéichst die Hierarchien der Sprachfamilien £, )
(m — maximale Anzahl der Komponenten, n — maximale Anzahl der
aktiven Nichtterminale pro Komponente). Fiir Grammatiksysteme ohne
zuséitzliche Steuerung im *-, < k-, = k-, > k- und t-Modus sowie fiir Hy-
bridsysteme, bei denen jede Komponente in ihrem speziellen Modus ar-
beitet, wird gezeigt, dafl E(mfl,[n]) C E(m,[n]) und E(m,[nfl]) C [,(m’[n]).
Weiterhin wurden Systeme mit Steuerung durch Graphen in verschiede-
nen Ableitungsmodi und Start-und Stopbedingungen verschiedener Ty-
pen untersucht. Auch fiir diese Systeme werden diese hierarchischen Be-
ziehungen nachgewiesen.
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Auflerdem ist die Frage nach oberen Schranken interessant, wenn jeweils
nur einer der beschriebenen Parameter in die Betrachtungen einbezo-
gen wird. Hinsichtlich der Anzahl der Komponenten wurden bereits von
CsUHAJ-VARJU, DASSOW, MITRANA, PAUN und VICOLOV fiir verschie-
dene Arten von Grammatiksystemen derartige Schranken bestimmit.

Hinsichtlich der maximalen Anzahl n der aktiven Nichtterminale pro
Komponente wird flir Systeme ohne eine zusétzliche Steuerung im x-
, < k-, = 1-Modus bewiesen, dal n = 1 eine solche Schranke dar-
stellt. Jedes beliebige System im ¢-Modus kann durch ein System mit
h6chstens vier aktiven Nichtterminalen pro Komponente simuliert wer-
den. Betrachtet man Systeme im *-, < k-, = 1-und ¢-Modus mit Steue-
rung durch Graphen, so erhilt man ebenfalls eine Schranke von n = 1.

Weiterhin wurden Systeme mit Steuerung durch memories untersucht.
Die Regeln dieser Systeme sind in der Lage, an alle Komponenten des
Systems bestimmte Nachrichten zu senden, die von diesen gespeichert
werden, den Speicher der eigenen Komponente auf das Enthaltensein ei-
nes bestimmten checkwords zu testen und vor jedem Zugriff die Satzform
auf das Erfiilltsein von Kontext-Startbedingungen zu tiberpriifen.

Von CSUHAJ-VARJU wurde nachgewiesen, dafl bei Zuldssigkeit von e-
Regeln diese Systeme die Menge der rekursiv aufzihlbaren Sprachen er-
zeugen.

Beziiglich der maximalen Anzahl n der aktiven Nichtterminale pro Kom-
ponente wird gezeigt, dal n < 2 ausreichend ist, wobei diese Aussa-
ge dahingehend verschirft wird, dafl sogar nur zwei Produktionen pro
Komponente geniigen.
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On Syntactic Congruences for w—languages and the
minimization of w-automata

Ludwig Staiger
Lehrstuhl fiir Informatik IT Technische Universitiat Cottbus

Oded Maler
LGI-IMAG (Campus) Grenoble

It is well-known that the minimization problem for w-automata (Muller-
automata) is not as simple as the one for automata accepting languages.
It occurs that an w-language E has more than one minimal automaton
recognizing it (e.g. {a,b}*a*, see [Mu63] or [St83]). Moreover, this same
example shows that, in contrast to the language case, the automaton
derived from the right congruence® ~p does not recognize at all the
w-language E. So there are several possibilities occurring in the w-case:

A.1 The minimal-state automaton Ag isomorphic to the right congru-
ence ~p accepts the w-language E, and is, therefore, the unique
(up to isomorphism) minimal w-automaton accepting E.

A.2 There is a unique (up to isomorphism) minimal w-automaton re-
cognizing E which does not coincide with Apg.

A.3 There are several minimal w-automata recognizing E. Then neces-
sarily none of them coincides with Ag.

In the case of languages W C ¥* the well-known Kleene-Myhill-Nerode
Theorem states that W is regular iff its right congruence ~yy, or equi-
valently its syntactic congruence ~y are of finite index. Moreover these
relations are the coarsest (right) congruences such that W is representa-
ble as a union of congruence classes, and ~yy is isomrphic to the minimal
deterministic automaton accepting W C ¥*.

As pointed out above, in case of w-languages things are more complica-
ted. Though Arnold [Ar85] proved that for regular w-languages E there is

3Definitions may be found e.g. in [MS93]
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a unique coarsest congruence relation g which recognizes E, up to now
no application of this fact to the minimization problem for w-automata
is given.

Thus, several questions arise in connection with this problem:

B.1 If the congruence ~ g derived from ~ g coincides with Arnold’s con-
gruence =g, that is, ~ already recognizes the regular w-language
E, does then the minimal-state automaton Ag accept E, and vice
versa, does ~p = =g hold if Ag accepts E?

B.2 Give a characterization of those (regular) w-languages E for which
the relations ~g and =g coincide, or which are accepted by their
minimal-state automaton Ag.

B.3 Do there exist regular w-languages E which have (including the
choice of the initial state) a unique minimal automaton A # Ag
accepting E? (The w-language (a*bab*)“ has exactly two two-state
automata accepting it which differ only in the choice of the initial
state.)

Concerning B.1 and B.2 it is shown in [St83] that all regular w-languages
FE in the Borel class F, N G are accepted by their minimal-state auto-
maton Ag, but there are regular w-languages E ¢ F, N G5 which are
also accepted by Ag, and in [MS93] it is shown that for the same class
of regular w-languages the relations ~p and ~p coincide. (In [MS93]
both results are derived for the whole class F, N Gy, that is including
w-languages which are not necessarily regular.)

Next we shall give examples that the conditions are likewise independent:

Ex.1 E; := {a,bb}*a* is accepted by Ag, but ~p, # =g, .

Ex.2 For E; := {a,b}*a* Uca® the relations ~p, and =g, coincide, but
Ap, does not accept Es.

Ex.3 The w-language E3 := {a,b}*a® is neither accepted by Ag, nor do
the relations ~g, and =g, coincide
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Moreover in [MS93] an alternative notion of recognition of w-languages
by FORCs (families of right-congruences) is developed. Using this type of
recognition we give a full characterization of those regular w-languages
E which are accepted by their minimal-state automaton Ag.
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GI-Fachgruppe
“Automaten und Formale Sprachen”

Wahl der Fachgruppenleitung

Die Wahl der Leitung der GI-Fachgruppe 0.1.5 wurde am 7.10.1993 im
Rahmen der Fachgruppen-Sitzung auf dem 3. Theorietag “Automaten
und Formale Sprachen” in Schlofl Dagstuhl durchgefiihrt. Anwesend wa-
ren die folgenden Fachgruppen—Mitglieder:

Henning Bordihn (Magdeburg), Franz—J. Brandenburg (Passau), Ma-
thias Bull (Rostock), Gerhard Buntrock (Wiirzburg), Olaf Burkart (Aa-
chen), Jiirgen Dassow (Magdeburg), Volker Diekert (Stuttgart), Henning
Fernau (Karlsruhe), Rudolf Freund (Wien), Markus Holzer (Miinchen),
Matthias Jantzen (Hamburg), Henner Kroger (Gieflen), Katja Landskron
(Braunschweig), Klaus-Jorn Lange (Miinchen), Helmut Lescow (Kiel),
Anca Muscholl (Stuttgart), Friedrich Otto (Kiel), Holger Petersen (Ham-
burg), Bernd Reichel (Magdeburg), Klaus Reinhardt (Stuttgart), Pe-
ter Rossmanith (Miinchen), Torsten Rossnick (Magdeburg), Sebastian
Seibert (Kiel), Helmut Seidl (Saarbriicken), Stefan Skalla (Magdeburg),
Ludwig Staiger (Aachen), Ralf Stiebe (Magdeburg), Wolfgang Thomas
(Kiel).

Zum Wabhlleiter wurde Herr Sebastian Seibert bestimmt. Von den 28
abgegebenen Stimmen waren 27 giiltig. Es wurden gewéhlt

Jiirgen Dassow (Magdeburg), Volker Diekert (Stuttgart), Klaus-Jorn
Lange (Miinchen), Ludwig Staiger (Aachen), Wolfgang Thomas (Kiel).

Alle Gewihlten nahmen die Wahl an. Das Wahlprotokoll wurde verlesen
und genehmigt.

Wahl des Fachgruppensprechers

Die Wahl des Fachgruppensprechers fand ebenfalls am 7.10.1993, in
Schlofl Dagstuhl statt. Anwesend waren alle Mitglieder der neugew&hlten
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Fachgruppenleitung. Herr Thomas erdffnete die Wahlversammlung. Als
Kandidat fiir das Sprechamt wurde J. Dassow, als Kandidat fiir das Amt
des Stellvertreters K.—J. Lange vorgeschlagen. In offener Wahl wurden
J. Dassow als Sprecher der Fachgruppe und K.—J. Lange als stellvertre-
tender Sprecher der Fachgruppe einstimmig gewihlt. Beide nahmen die
Wahl an.
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