S Universitat Stuttgart
Fakultat Informatik

Clock Hierarchies:
An Abstraction for Grouping and
Controlling Media Streams

Kurt Rothermel, Tobias Helbig

CR-Klassifikation: C.2.4, D.2.2, H.5.1

Clock Hierarchies:
An Abstraction for Grouping and
Controlling Media Streams

Kurt Rothermel, Tobias Helbig

Fakultatsbericht 2/1994
Technical Report
April 1994

Fakultat Informatik
Institut fur Parallele und
Verteilte Hochstleistungsrechner
Universitat Stuttgart
Breitwiesenstral3e 20 - 22
D-70565 Stuttgart

Abstract

Synchronization plays an important role in multimedia systems at various levels of
abstraction. In this paper, we propose a set of powerful abstractions for controlling
and synchronizing continuous media streams in distributed environments. The pro-
posed abstractions are based on a very general computation model, which allows
media streams to be processed (i.e. produced, consumed or transformed) by arbitra-
rily structured networks of linked components. Further, compound components can
be composed from existing ones to provide higher levels of abstractions.

The clock abstraction is provided to control individual media streams, i.e. streams
can be started, paused or scaled by issuing the appropriate clock operations. Clock
hierarchies are used to hierarchically group related streams, where each clock in the
hierarchy identifies and controls a certain (sub)group of streams. Control and syn-
chronization requirements can be expressed in a uniform manner by associating
group members with control or sync attributes. An important property of the con-
cept of clock hierarchies is that it can be combined in a natural way with component
nesting.

1 INTRODUCTION 2

1 INTRODUCTION

Powerful programming abstractions are a prerequisite for an effective and efficient application
development. Application-specific abstractions are typically provided by development plat-
forms, often referred to as middle ware. In the context of multimedia, those platforms close the
gap between the operating system and the communication system on the one hand and the speci-
fic needs of distributed multimedia applications on the other handCifikea (Configurable
INtEgrated Multimedia Architecture) system [RBH94], which is under development at the Uni-
versity of Stuttgart, is a platform providing system services for the configuration of distributed
multimedia applications and the communication and synchronization of multimedia informa-
tion in distributed environments.

Multimedia synchronization can be considered at different levels of abstraction [MeES93]. In
this paper, we will focus on the control and synchronization of groups of continuous media
streams, such as digital video and audio streams. Media streams themselves may be regarded at
different abstraction levels. At the transport level, a stream usually originates at a single source
and ends at one or more sinks. Further, sinks and sources are adjacent in the sense that each
sink of the stream consumes the data produced by the stream’s source. Therefore, at the trans-
port level end-to-end relationships are defined between adjacent entities connected by a trans-
port connection. If streams are considered at the application level instead, sources and sinks
need not be adjacent at all. In general, a stream may be processed by a network of linked com-
ponents, it may have multiple sources as well as multiple sinks, and each path leading from a
source to a sink may involve several intermediate components. Consequently, at the applica-
tion level an end-to-end relationship may cover any number of intermediate components as
well as several transport connections at a lower level of abstraction.

This paper proposes programming abstractions for grouping, controlling and synchronizing
application-level streams in distributed environments. Media clocks provide the basic abstrac-
tion for controlling the flow of media streams, i.e. by issuing clock operations the controlled
streams can be started, paused or scaled as required. Related streams can be hierarchically
grouped by building up so-called clock hierarchies, where each clock controls either an indi-
vidual stream or a group of streams. Within clock hierarchies, two types of relationships can be
defined for the members of a stream group, a control or sync relationship. If the control rela-
tionship is specified, the members of the groups are controlled collectively without synchroni-
zation of the streams. If the sync relationship is defined instead, the members of this group are
processed (e.g. played out) synchronously.

2 RELATED WORK 3

A great advantage of the concept of clock hierarchies is that it can be combined with compo-
nent nesting in a natural way. In order to provide higher levels of abstractions, more complex
components, so-called compound components, can be composed from existing ones. The inter-
nal processing of a compound component is controlled and synchronized by means of included
clock hierarchies, which are an integral part of the compound components. It is important to
stress that this paper describes programming abstraction rather than the protocols and mecha-
nisms implementing them. For a description of the underlying protocols we refer to a compan-
ion paper [RoHe94].

The remainder of the paper is structured as follows. The next section gives a brief overview of
related work, and then the computation model the proposed abstractions are based upon is
described in Sec. 3. We introduce the concept of a media clock in Sec. 4 and show how it can
be used to control individual streams. The concept of a clock hierarchy, which provides the
means for controlling and synchronizing groups of media streams, is presented in Sec. 5.
While this section mainly considers clocks attached to sink components, Sec. 6 motivates and
treats clocks attached to sources. In Sec. 7, we discuss how the proposed abstractions can be
applied in the context of component nesting. Finally, we conclude with a brief summary.

2 RELATED WORK

As stated above, streams can be considered at different levels of abstraction. Abstractions for
grouping and controlling transport-level streams are provided by the orchestration service
[CCGH92]. This service allows for grouping streams and coordinating the flow of (flat) groups

of streams. In particular, the streams of a group can be started and stopped collectively, while
the flow rate of the streams is regulated individually. The orchestration service itself does not
guarantee stream synchronization but offers a general regulation mechanism that can be used
at higher layers to implement different synchronization policies.

Various abstractions for controlling groups of application-level streams have been proposed in
the literature. Some of these proposals apply to non-distributed environments only (e.g. Quick-
Time [Appl91] or IBM’s Multimedia presentation manager [IBM92]), and others are tailored
to specific configurations (e.g. ACME [AnH091] and Tactus [DNNR92]). ACME, for exam-
ple, is an extension of a network window system supporting streams of digital audio and video
data. The clients of the ACME server use the abstraction of a logical time system to control
and synchronize the output of a (flat) group of ropes.

3 COMPUTATION MODEL 4

The Multimedia System Services proposed by the Interactive Multimedia Association (IMA)
[IMA93] are based on a very general computation model and provide a rich set of abstractions
for grouping and controlling media streams. The purpose of these services is to provide an
environment in which a heterogeneous set of multimedia computing platforms cooperates to
support distributed, interactive multimedia applications dealing with synchronized, time-based
media. In this environment, the abstraction of a group is used to group related media streams.
Group objects, which may include other group objects, provide an interface for controlling the
streams belonging to this group. This means that an entire group of streams can be started,
paused or scaled by issuing single operation at the group interface. However, the streams of a
group are not synchronized. In the current proposal, stream synchronization is not yet inte-
grated in the group mechanism. Moreover, component nesting is not supported.

3 COMPUTATION MODEL

In this section, we briefly sketch the computation modeCeEva (for more details see
[RBH94]). The major concepts of this model are media streams, components, ports, links, ses-
sions and clocks.

A continuousmedia streamis defined to be a sequence of data units, each of which is associ-
ated with a media time stamp (e.g. see [Herr@lgmponentsare active entities that process
continuous media streams in various ways. We distinguish between source components, which
produce media streams, sink components, which consume media streams, and intermediate
components, which act as both producers and consumers. Components are associated with
typedports. While a producer writes stream data to its output ports, a consumer reads stream
items from its input ports.

Applications are configured by definifigks between input and output ports of components.

An example configuration consisting of one intermediate component and three source and sink
components is shown in Fig. 1. This configuration mechanism has proven to be powerful and
hence can be found in various other architectures as well (e.g. Conic project [MKS89], IMA
[IMA93], Quicktime [Appl91], SUMO project [CBRS93]).

While link objects are applied to define the topology of applicateessionsare the abstrac-

tion for resource allocation. Media streams can be processed and communicated only after the
corresponding sessions have been established. A session may comprise multiple sink and
source components and any number of intermediate components. QoS of a session is specified

4 MEDIA CLOCKS S)

(C]
4:|w<:°|:I
%ponent cl%l

(C)
d]

b

Session
Figure 1 : An Example Application

Link

at the session end points, i.e. at the sink components. For controlling the flow of media streams
an extra abstraction, so-callegkdia clocks is provided. Media clocks are used to start, pause,
or scale media streams.

Cinema supports the nesting of components. In other words, basic components can be com-
posed to build more complex components, called compound components. Compound compo-
nents may again be constituents of other components, i.e. arbitrary levels of nesting are
possible. Compound components provide the means for building higher levels of abstraction
on the basis of existing components.

The computation model described above is rather general and has various similarities with
other architectures (e.g. IMA [IMA93] or SUMO [CBRS93]). Therefore, the concepts pre-
sented in the remainder of the paper are not only relevant @nthe context but are applica-

ble in a rather broad scope.

4 MEDIA CLOCKS

The temporal dimension of continuous media streams is defined by so-called media time sys-
tems. The media time system associated with a stream is the temporal framework to determine
the media time of the stream’s data unitsCikema, media time systems are provided by media
clocks (or clocks for short). A clodR is defined as follows:

C:=(R,M,T,S)

The clock attributes have the following meaning:

4 MEDIA CLOCKS 6

R determines the ratio between real time and media Rtime units in media time corre-
spond to 1 second in real time.

« M is the start value of the clock in media time, i.e. the value of the clock at the first clock
tick.

* Tis the start time of the clock in real time, i.e. the real time of the first clock tick.

» Sdetermines the speed of the clo8kRtime units in media time correspond to one second
in real time. Consequently, media time progresses in normal sp8edyufals 1. A speed
greater than 1 causes the clock to move faster, a speed less than 1 causes it to progress slo-
wer, and a negative speed causes it to move backwards.

It should be noted that the temporal dimension of stored media is inherently bound, i.e. there
exists a lower and upper bound given by the media time of the first and last stream data unit. In
other words, media time for a given stream is only defined in a certain interval. The mecha-

nisms required to ensure that clock values stay within the defined time range are beyond the
scope of this paper.

Media time systems are a general concept to dimension media time in arbitrary ways. For the
following example, assume a (stored) video stream with a rate of 25 data units per second. If
ratio R = 25, media time corresponds to a frame sequence number,M.g. % then stream
processing is started with the 5th frame in the stream provided the lower bound of its temporal
dimension is 1. If media time is counted in milliseconds insteaslset to 1000. In each case,

ratio R defines the “normal” speed of media time, while attrilian be used to speed up or
slow down the progress of media time.

A clock relates media time to real time as shown in Fig. 2. Therefore, after a clock has been
started, media timar{) can be derived from real timg:(

m= M+SOR(& T

Clocks are the basic abstraction for controlling the flow of media streams. As will be seen
below, clock objects provide methods for starting, pausing, or scaling streai@sienn,

clocks may be attached to source and sink components, but never to intermediate ones. As in
CiNema stream processing can take place in arbitrary networks of interconnected components, a
stream may consist of a number of substreams and may originate form multiple sources and

4 MEDIA CLOCKS 7

end at multiple sinks. Those complex streams are controlled by manipulating the clocks at the
sinks and sources.

M | i — L
¢ media time
} ' i } - .
T - P real time
1 sec

Figure 2 : Mapping Media Time To Real Time

While clocks at source components are optional, they are mandatory at sink components. A
clock attached to a sink component controls the temporal progress of all data streams pro-
cessed (e.g. played out) by this component. This is expressed more precisely by the so-called
clock condition: a data unit having media timeis processed at real timenly if the control-

ling clock is ticking and its value equatsat timet. Conceptually, this means that the presen-
tation of a stream is started, paused or scaled when the controlling clock is started, halted or the
clock speed is changed, respectively. The semantics of clocks at source components will be
introduced later.

As pointed out above, media time progresses relative to real tilBewehm, real time is taken

either from a local system clock, a global clock (e.g. see NTP [Mill89]) or is derived from the
temporal behavior of a given output device. Clearly, a media clock based on the timing of an
output device advances in conformance with the device’s natural rate. Those clocks are called
master clocks.

Below, the most important clock operations for controlling streams are listed. A clock may
enter two statedjcking (and thus advancing) ailent (and thus not advancing). The only
clock operations that cause state transitionStag andHalt . The former moves the clock
from silentto ticking, while the latter causes the reverse state transition.

Start(M) This operation starts the clock at media tivh®y starting the clock the con-
trolled stream(s) are started. (Clock attribliie set to the real time at which
the clock is actually started).

Halt(M) This operation halts the clock when it reaches clock value.e. the

4 MEDIA CLOCKS 8

Prepare(M)

Clear()

Scale(M,S)

Lock(O)

Unlock(O)

stream(s) controlled by this clock are paused. A halted clock can be started
again by operatioStart

This operation prepares the event of starting the clock at mediditiAfeer
Prepare has been performed, the clock can be started immediately when
Start is issued. To achieve thiBrepare preloads the buffers along the
communication paths of the controlled stream(s). If this operation is not
invoked, preloading is done implicitly as partQifrt

This operation clears the internal buffers associated with the controlled
stream(s).

The default value of the clock speed equaldhis operation changes the
speed of the clock t& when media timeM is reached, i.e. it scales the
stream(s) controlled by the clock.

This operation locks the clock for propagated operations of @pEhis
operation is only applied in the context of clock hierarchies.

This operation unlocks the clock for propagated operations ofQype

In the simple scenario shown in Fig. 3, cldClcontrols the presentation of a 25 frames/sec

video stream.

C
video stream @
video video
source sink

Figure 3 : Controlling a Video Stream

1 C.Start(15)

2 CScale(3000,2)
3 CHalt(5000)

If we assume that clock attribuReequals 25, then play out is started with frame 15, the play
out rate is doubled when the presentation reaches frame 3000, and the presentation is halted
after frame 5000 has been played out.

5 CLOCK HIERARCHIES 9

5 CLOCK HIERARCHIES

In this section, we will introduce the notion of a clock hierarchy, which is the basic abstraction
for grouping media streams, controlling groups of streams, and stream synchronization. The
principle idea of this concept has been introduced in [RoDe92].

Related media streams may be grouped by linking clocks in a hierarchical fashion. Remember
that a clock attached to a component controls all streams processed by this component. A num-
ber of streams can be grouped by linking their controlling clocks to a common clock, which
then controls the entire group. Stream groups can be grouped again to groups at a higher level
simply by linking their controlling clocks to the same clock. In the example given in Fig. 4,
clock Cg controls stream$§,; andS,, while C; controlsS, andS;. Cg controls the subgroups
represented b§g andC; as well as streai®;, and thus all streams in the given scenario can be
started, halted or scaled collectively by means of this clock. &lineea supports arbitrarily
structured clock hierarchies, any type of hierarchical grouping of media streams is possible.

S5 @ C7

Figure 4 : Grouping Streams

A clock operation issued at a clock not only affects this clock but the entire (sub)hierarchy of
this clock. Conceptually, an operation called at a clogkopagatedin a root-to-leaf direc-

tion through the clock’s (sub)hierarchy, where it is performed at every clock in this hierarchy.
That is, an operation invoked at a clock is not only performed at this clock but also at every
descendant clock in the hierarchy. In general, clock operations can be issued at every level of
the clock hierarchy. If operatidtart is issued aCgq in the example depicted in Fig. 4, this
operation is propagated @ andC,, which causes strear§gandS, to be started. All streams

5 CLOCK HIERARCHIES 10

in the depicted scenario are starte8tért is invoked aCqg instead. As will be seen in Sec.
7, propagation is a prerequisite for component nesting. Compound components may contain
clock subhierarchies which are invisible for the component’s outside world.

In some scenarios, it is desirable to lock clock subhierarchies in order to prevent propagation.
For that purpose, clocks may be locked and unlocked. If a clock is locked, propagation of oper-
ations issued at ancestor clocks does not take place in the clock’s (sub)hierarchy. Note that
only operations propagated from a locked clock’s ancestors are locked out, while all operations
issued at the locked clock itself or one of its descendant clocks are performed and affect the
hierarchy in the usual way. Propagation is enabled again only when the clock is unlocked.

Locking is done in an operation-specific manner. Each lock is associated with a certain type of
clock operation and only locks out operations of this type. In other words, a lock defines an
operation-specific filter.

Locking is especially useful in those scenarios, where multiple users are involved in the same
application and hence clock hierarchies typically cover several user domains. Here, locking
provides a means to shield clock subhierarchies located in a given user domain from propa-
gated clock operations originated in some other user domain. Consequently, by locking clocks
a user can dynamically control which types of propagated operations may influence the data
streams in his or her domain.

Clocks may be linked in two different ways: a link may establish eitben@ol or asynchro-

nization relationship between two clocks. A control relationship between two clocks enables
the propagation of clock operations without synchronizing the two clocks. Typically, control
relationships are defined in settings, where groups of streams are to be controlled collectively
and a rather loose temporal coupling of the grouped streams is sufficient. A synchronization
relationship goes a step further. In addition to propagation, it ensures that the involved clocks
progress in a synchronized manner.

In Cinema, stream synchronization is specified by means of sync relationships between clocks.
From the clock condition introduced in the previous section directly follows that two streams
are synchronized if their controlling clocks are synchronized. In the example shown in Fig. 4,
streamsS; andS; are played out synchronouslydf andC, are synchronized. This synchroni-
zation requirement can be specified by a sync relationship betesmdCg as well as one
betweenC, andCg. An alternative way to express the same is to define a sync relationship
directly betweerC, andC,.

5 CLOCK HIERARCHIES 11

Clocks provide individual media time systems, which may relate to each other in various ways.
Clock synchronization and propagation of clock operations (as will be seen below) is done on
the basis of so-calle@ference points A reference point defines the temporal relationship of
two media time systems. More precisely, reference pGint P4, C, : P,] defines that media

time P; in C;’s time system corresponds to media tiRjein C,’s time system, which means

that P, andP, relate to the same point in real time (see Fig. 5). Given this reference point,
media time can be transformed from one to the other time system as follows:

R
m, = (m—P,) O=2+P
2 1 1[k_1 2

After having introduced the basic principles, we can now take a closer look at clock hierar-
chies. A clock hierarchy is a directed tree structure, where the nodes are clocks and the edges
represent control or sync relationships between clocks. The same hierarchy may contain con-
trol as well sync edges. Eaellgeis associated with the following attributes:

» Type of the edge, which is either control or sync.

* Areference point which defines the temporal relationship between the clocks linked by this
edge.

* A delay attribute that specifies how long an operation propagated along this edge is to be
delayed. In the example shown in Fig. 4 stre&asndS; are started 3 seconds later than
the other streams if tifétart operation is delayed by 3 seconds while propagated from
Cg to C,. Obviously, the provision of this delay attribute enhances the flexibility of our
scheme substantially. For the sake of simplicity, we will assume a zero delay in the follo-
wing examples.

Py
: o : : —m Cg
; [C1:Pq, Co 1 Pyl
— —tt——p G
)

Figure 5 : Transforming Media Time

5 CLOCK HIERARCHIES 12

Before describing the semantics of control and sync edges more precisely, we have to intro-
duce functionilrangC;j, G, m). In a given clock hierarchy, this function transforms media time
m; from Ci's to Cj's time system according to the equation above.

5.1 Control Relationship

The semantics of a control edge that is directed from a clockG;s&y another clock, sa@,,
and is associated with a reference pBiRtis defined by the following rules:

1. Each clock operation issued @} is propagated t&€,'s subhierarchy provide®, is
unlocked.

2. Whenever a clock operation is propagated, its media time arguments are automatically
transformed fronC,’s to C,’s media time according to reference pdRR That is, argu-
mentmin a propagated operation is transformediremgC,, C,, m)

3. Each clock operation can be issued at any clock in the control hierarchy.

4. AStart operation issued at clo€k may be performed immediately independer@gé
value or stateticking or silenj. That is,C,.Start (m) startsC, immediately with initial
clock valuem.

It is important to point out that control hierarchies only allow for a very loose coupling of
streams. Although a control hierarchy includes reference points defining the temporal relation-
ship between streams, this information is not used to keep the controlled streams synchronized.
Reference point information is considered only when clock operations are propagated. In par-
ticular, it is used to automatically transform operation arguments from one to another media
time system. For example, when a group of streams is started, the stream’s media start times
conform to the reference points defined in the corresponding control hierarchy. However, after
a hierarchy has been started, its clocks may drift out of synchronization in an uncontrolled
manner. Clocks in a hierarchy may drift, for example, if they are based on different physical
time systems (e.g. system clocks or device-internal clocks). Moreover, in control hierarchies,
each clock may be manipulated without considering the state and value of the parent clock. For

INo guarantee is given that a clock operation and its propagated ones are performed at the same point in
real time. However, they are performed at “approximately” the same time; what this means in practice
mainly depends on the underlying implementation of the control mechanism.

5 CLOCK HIERARCHIES 13

example, two different subhierarchies of the same hierarchy may be scaled in different ways,
or clocks in the hierarchy may be halted and continued at any later time with arbitrary start val-
ues.

Due to the fact of potentially drifting clocks, for operatibtedt andScale different seman-

tics are conceivable. If, for exampl@Halt (Now) is performed, then all streams controlled

by the clocks in C’s subhierarchy are halted immediately bed®dmse per definition - corre-
sponds to the current time in each media time syste@HHIt (30) is specified instead, the
different clocks may reach the equivalent of 30 in their media time systems at different points
in real time. One reasonable semantic of the operation is to pause all streams when the first
clock reaches the given halting time. Due to space limitations, a detailed discussion of this sub-
ject is out of the scope of this paper.

5.2 Sync Relationship

The semantics of a sync edge that is directed from a clockC,sdyg another clock, sa§,,
and that is associated with a reference pRfis defined by the following rules:

1. Each clock operation issued @} is propagated t&€,'s subhierarchy provide, is
unlocked.

2. If C,isticking, both clocksC, andC, are progressing in a synchronized manner, where the
sync relationship is defined by reference pdit More precisely: Assume th&Bet
denotes the set of real time intervals during wi@ghs in theticking state. TherC; and
C, are defined to be synchroniZei

U1 HI1Setl t L1 : Cy(t) =my O Cy(t) = TrangCy, Cq, M),
whereC(t) denotes the value &f at timet.

3. ExceptScale each clock operation can be issued at every clock in the sync hierarchy.
Scale can be issued at the root clock only, i.e. only the entire hierarchy can be scaled.

4. OperatiorStart can be issued &, only if C; is in the ticking state. In order to ensure
clock synchronization, the start 6 has to be synchronized with the progres€g$

10f course, in practice, clocks can and need not be synchronized exactly. Thwssian upperbound
for a tolerable skew can be specified at each sync edge.

5 CLOCK HIERARCHIES 14

media time:C,.Start (m) is delayed untiC;’s clock value equal$rangC, ,C;, m). An
alternative way of startinG, is to specify start timdlowin operatiorStart . In this case
C, is started immediately, say at real timwith clock valueTrangC,, C,, my), wheremy
is C;'s clock value at time.

5. A sync hierarchy may contain at most one master clock, which must be the root of the hier-
archy.

Sync hierarchies are a general and very powerful concept to specify arbitrary synchronization

requirements between media streams. The structure of the sync hierarchy specifies which
streams have to be synchronized, while the reference points in the hierarchy define how

streams have to synchronized, i.e. how the temporal dimension of the streams relate to each
other.

The system guarantees that all streams controlled by the clocks in the sync hierarchy are pro-
cessed (e.g. played out) in a synchronous manner. Processing is started by issuing operation
Start at the root clock of the sync hierarchy. A locked subhierarchy can be started later by
issuingStart at the subhierarchy’s root clock. The start of this subhierarchy is performed in
conformance with the temporal constraints specified by the entire sync hierarchy. The same
holds if a subhierarchy is halted and started once again at a later point in time. As will be seen
later, sync (and control) hierarchies may dynamically grow and shrink even if clodkskare

ing. This feature together with the capability of locking, halting and starting individual subhi-
erarchies is very important in interactive applications, especially in those, where multiple users
with their individual needs participate in the same (CSCW) application.

5.3 Example

Fig. 6 shows a simple tele cooperation scenario with two users. Subject to the cooperation is an
experiment shown on vidég. We assume that there exist extra speech channels that allow the
users to talk to each other. The two users commonly Vigand discuss the experiment while

they follow the presentation. To ensure that both users see the same information at the same
time, V, must be played out synchronously at both user sites. Bégjdeaser 1 views video

V4, which shows the same experiment from a different perspective. ConsequgiatiyV,

are to be synchronized. User 2 additionally views vigavhich shows a similar experiment.

Since the two experiments roughly correspond to each other in their temporal dimegpsion,

5 CLOCK HIERARCHIES 15

andV3 are grouped by a control relationship.We assume that media time 890arresponds
to media time 5 V5.

C]@ sync [5,5] i

IV:i>] Cs| Usen
1 C

©

d]sync[5,9]
%lo Cs sync [5,5]

e il

(i:l cntr[5,500] User,
[P]
V3 -

Figure 6 : A Simple Telecooperation Scenario

The presentation of all video streams can be started by isStarg at clockCs. Moreover,

this clock can be used to collectively scale, pause and restart the entire configuration. User 1
may pausé/, orV, by haltingC, or C,, respectively. Halted clocks may be continued in a syn-
chronized fashion, i.e. after restart@f, for example, the presentation\df is not only syn-
chronized withv; but also withV,’s presentation at the site of user 2.

SinceCz andC, are linked with a control edg¥z can be scaled, paused and restarted at any
position independent of;’s andV,’s state of the presentation. So, the presentatioran be
adjusted manually as needed. At user site 2, hatijngnplies pausing/s's presentation. If
this is to be avoided;, has to be locked fdfalt operations. Note th&cale operations
issued aCs, for instance, are then still propagatejo

If another user desires to join the scenario while cooperation already takes place between user
1 and user 2, the clock hierarchy has to be extended dynamically. Assume that the new user
needs to view, only. After the corresponding session has been established, the cloCk, say
controlling V,’s presentation at the site of the new user is linked by means of a sync edge to
clock Cs. When the new user is ready to participate in the cooperation, it €sp8tart (-

Now) to startV,’s presentation synchronous to the ongoing presentations at the other sites.

6 CLOCKS AT SOURCE COMPONENTS 16

When a user desires to leave the scenario, the clocks controlling his or her streams have to be
removed from the clock hierarchy.

6 CLOCKS AT SOURCE COMPONENTS

So far, we only considered clocks attached to sink components. The mixer scenario illustrated
in Fig. 7 gives the motivation for having clocks attached to source components also. In general,
substream§,;, S, andS; may have individual start values. For example, if three different sub-
sequences of a stored video clip are to be mixed together, the start values differ from sequence
to sequence. However, with a clock at the sink component only, it is impossible to specify indi-
vidual start values for multiple sources. The solution to this problem is obvious, a clock is
attached to each source component, which then can be started with an individual start value.

cntr [0,20]

cntr [20,80] S,
C, o
Ch 2o bod]
Cs source
S3
sinks

Figure 7 : Clocks at Source Components

As mentioned earlier, clocks at source components are optional. In a configuration without
source clocks, start of processing of source components is implicitly triggered by starting the
corresponding sink clock, where the start value is determined at the sink clock. However, as
soon as a clock is attached to a source component, processing must be enabled explicitly by
starting the attached clock. It is important to point out, 8tatt issued at a source clock

only enables start of processing rather than starting the clock immediately. The time when the
clock is actually started is mainly determined by the underlying control and communication
protocols.

6 CLOCKS AT SOURCE COMPONENTS 17

Like sink clocks, source clocks may be nodes in clock hierarchies. In contrast to sink clocks,

however, source clocks may never be involved in a sync relationship. This is due to the fact
that synchronizing a source clock with some other clock makes no sense with regard to stream
synchronization or even is impossible in various cases.

In the scenario of Fig. 7, clo€k, is the root of the control hierarchy. Whstart is issued at

C4, this operation is propagated to clocksandC,. During propagation, the specified start
value is transformed according to the reference points associated with the control edges. If the
start value specified &l is 0, clocksC,; andC, are started with values 20 and 80, respectively.
Since clockC; is not part of the control hierarchy, it has to be started explicitly. For example, it
may be started later when the application decides t&add

cntr [0,20]

C1
cntr [20,80] |:|o\i1
C

S4
g b—»d |
|:|Q/S(2 sync [0,100]
Cy
S3
[P >]

Figure 8 : A Scenario with Control and Sync Edges

The scenario in Fig. 8 combines sync and control edges. Assume that SyegnandS; are

(stored) video streams with a rate of 25 frames/sec and that clock atRibugs for each

clock. Further assume that media times 20, 80 and 1&), & andS;, respectively, corre-

spond to the same point in real time. The depicted configuration Bjxe®lS, and synchro-

nizes the output of the mixer wit. The entire configuration is controlled by cloC; i.e.

the whole processing can be started, paused, scaled by issuing the corresponding operations at
clock Cs.

1 Cs. Start (0)
2 Cs.Scale (2000,-2)
3 Cs.Halt (0)

7 NESTING OF COMPONENTS 18

The presentation is started at media time 0, which corresponds to start values 20, 80 and 100 at
C,, C, andCy, respectively. After 2000 frames have been played out, the presentation is con-
tinued in reverse order and double speed.

Looking at the above scenario we can indicate two points in the configuration, where stream
synchronization is required. Not orfB§ andS, have to be synchronized but alSpandS, as

mixing must be done on the basis of matching media times. That is, the media time systems of
S; andS, must be related to the time systenfSgfand the mixer must preserve this relation-

ship in order to enable synchronizationSgfandS,. Depending on the type of intermediate
component, the time systems of its input and output streams may or may not be related. This
subject is discussed in more detail in a longer version of this paper.

7 NESTING OF COMPONENTS

In many areas, nesting has turned out to be a very powerful concept for building higher levels
of abstractions. As mentioned earlierGmeva more complex components can be composed
from other components just by linking input and output ports. Compound components again
may be used to build other compound components on even higher levels of abstraction, i.e.
arbitrary nesting levels are supported.

In the context of synchronization, nesting means that clock hierarchies may be defined within
compound components and thus remain invisible for the components’ outside world. A clock
hierarchy of a compound component is defined at the time the component is composed and
specifies synchronization and control relationships between the streams processed by this com-
ponent. In particular, the internal clock hierarchy of a component specifies sync and control
edges between the clocks defined within this component. In addition to the clocks attached to
its internal components, a compound component may also contain unattached clocks.

A compound component may contain one or more clock hierarchies. (Note that a hierarchy can
consist of a single clock only.) The roots of the internal clock hierarchies are exported and thus
become visible to the component’s outside world. The exported clocks are attached to the com-
ponent and are used to control the component’s stream processing, i.e. they are used to start,
pause or scale the streams processed by the component. Of course, exported clocks may again
be involved in clock hierarchies at higher levels of abstraction.

8 SUMMARY 19

The compound component shown in Fig. 9 provides the abstraction of a television set, capable
of playing out a video stream and two audio streams in a synchronized fashion. The shown
component contains two basic components, a video decompression compgremd Gink
component implementing a video output winddw).(In addition, it includes another com-
pound component, which consists of two filter compondftsad two speaker components

(9. The nested compound component provides the abstraction of an audio output device,
whose operation is controlled by clo€k. The TV component exports clo€k, which is used

to start, pause or scale the audio-visual output.

Video

Audio 1

Audio 2
— PO

Figure 9 : Nested Components

In summary, compound components may contain arbitrary complex clock hierarchies, which
are invisible from the user’s point of view. The operations issued at an exported clock are prop-
agated through the clock hierarchy and thereby control the internal processing of the exporting
component.

8 SUMMARY

The abstractions proposed in this paper provide for controlling and synchronizing groups of
continuous media streams. Clock hierarchies can be used to specify nested groups of streams,
where each clock in the hierarchy identifies and controls a certain (sub)group of streams. By
means of control and sync edges in clock hierarchies, an application can specify its individual
control and synchronization needs in an uniform way. The capability of locking subhierarchies
as well as the possibility of dynamically growing and shrinking clock hierarchies are important
features in the context of interactive applications, especially in those supporting collaborative

9 REFERENCES 20

work. Clock hierarchies in conjunction with component nesting provide a powerful means for
the simple composition of complex components at higher levels of abstraction. As the compu-
tation model underlying the proposed abstractions is very general and has various similarities
with others, the results reported in this paper are applicable in a rather broad scope.

The reported work has been conducted in the context @itiaea project. The implementa-

tion of Cinema is in progress, and an early version of a synchronization manager, supporting a
limited set of configurations, is already operational. Future work will be to complete this
implementation.

Finally, we need to gain more practical experience with the proposed abstractions. Although
the abstractions have been applied to model a great variety of application scenarios, we need to
conduct extensive experimentation with applications in the field to verify the practical value of
the work reported here.

9 REFERENCES

[Appl91] Apple Computer Inc., Cupertino, CA, USRQuick Time Developer’s Guide
1991.

[AnHO091] Anderson, D.P.; Homsy, G.: A continuous media i/o server and its synchroniza-
tion mechanism. In: IEEE Computer, 24 (10), pp. 51 -57, October 1991.

[CBRS93] Coulson, G.; Blair, G.S.; Robin, Ph.; Shepherd, Bxtending the Chorus
Micro-Kernel To Support Continuous Media Applicatiolms Proc. 4th Interna-
tional Workshop on Network and Operating System Support for Digital Audio
and Video, November 1993.

[CCGH92] Campbell, A.; Coulson, Garcia, F.; Hutchinson,AOContinuous Media Trans-
port and Orchestration Servicen: Proc. SIGCOMM ‘92, August 1992.

[DNNR92] Dannenberg, R.B.; Neuendorffer, T.; Newcomer, J.M.; Rubine,Tactus:
Toolkit-Level Support for Synchronized Interactive Multimebfia3rd Interna-
tional Workshop on Network and Operating System Support for Digital Auido
and Video, November 1992.

[Herr91] Herrtwich, R.G.:Time Capsules: An Abstraction for Access to Continuous
Media Data In: The Journal of Real-Time Systems, Kluwer Acadamic Publish-
ers, 1991, pp. 355 - 376.

[IBM92] IBM Corporation: Multimedia Presentation Manager Programming Reference
and Programming Guide 1.0BM Form: S41G-2919-00 and S41G-2920-00,

9 REFERENCES 21

[IMA93]

[MeES93]

[Mill89]

[MKS89]

[RBH94]

[RoDe92]

[RoHe94]

March 1992.

IMA Multimedia System Services, Version (contributors: Hewlett-Packard
Comanpy, International Business Machines Corporation and SunSoft Inc.),
available via ftp from ibminet.awdpa.ibm.com, July 1992.

Meyer, Th.; Effelsberg, W.; Steinmetz, R.Taxonomy on Multimedia Synchro-
nization In: 4th International Workshop on Future Trends of Distributed Com-
puting Systems, September 1993.

Mills, D.L.; Internet Time Synchronization: The Network Time Protdooér-

net Requests for Comments No. 1129 PiFC/1129, 1989.

Magee, J.; Kramer, J.; Sloman, Monstructing Distributed Systems in Canic
In: IEEE Transactions on Software Engineering, Vol. 15, No. 6, June 1989.

Rothermel, K.; Barth, I.; Helbig, TCinema: An Architecture for Configurable
Distributed Multimedia ApplicationsTechnical Report 3/94, University of
Stuttgart, April 1994.

Rothermel, K.; Dermler, GSynchronization in Joint-Viewing Environments
In: Proc. 3rd International Workshop on Network and Operating System Sup-
port for Digital Audio and Video, November 1992.

Rothermel, K.; Helbig, T.Protocols for Synchronizing Application-Level
StreamsTechnical Report, University of Stuttgart, 1994 (in preparation).

