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Abstract

Synchronization plays an important role in multimedia systems at various levels of

abstraction. In this paper, we propose a set of powerful abstractions for controlling

and synchronizing continuous media streams in distributed environments. The pro-

posed abstractions are based on a very general computation model, which allows

media streams to be processed (i.e. produced, consumed or transformed) by arbitra-

rily structured networks of linked components. Further, compound components can

be composed from existing ones to provide higher levels of abstractions.

The clock abstraction is provided to control individual media streams, i.e. streams

can be started, paused or scaled by issuing the appropriate clock operations. Clock

hierarchies are used to hierarchically group related streams, where each clock in the

hierarchy identifies and controls a certain (sub)group of streams. Control and syn-

chronization requirements can be expressed in a uniform manner by associating

group members with control or sync attributes. An important property of the con-

cept of clock hierarchies is that it can be combined in a natural way with component

nesting.
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1 INTRODUCTION

Powerful programming abstractions are a prerequisite for an effective and efficient application

development. Application-specific abstractions are typically provided by development plat-

forms, often referred to as middle ware. In the context of multimedia, those platforms close the

gap between the operating system and the communication system on the one hand and the speci-

fic needs of distributed multimedia applications on the other hand. The CINEMA (Configurable

INtEgrated Multimedia Architecture) system [RBH94], which is under development at the Uni-

versity of Stuttgart, is a platform providing system services for the configuration of distributed

multimedia applications and the communication and synchronization of multimedia informa-

tion in distributed environments.

Multimedia synchronization can be considered at different levels of abstraction [MeES93]. In

this paper, we will focus on the control and synchronization of  groups of continuous media

streams, such as digital video and audio streams. Media streams themselves may be regarded at

different abstraction levels. At the transport level, a stream usually originates at a single source

and ends at one or more sinks. Further, sinks and sources are adjacent in the sense that each

sink of the stream consumes the data produced by the stream’s source. Therefore, at the trans-

port level end-to-end relationships are defined between adjacent entities connected by a trans-

port connection. If streams are considered at the application level instead, sources and sinks

need not be adjacent at all. In general, a stream may be processed by a network of linked com-

ponents, it may have multiple sources as well as multiple sinks, and each path leading from a

source to a sink may involve several intermediate components. Consequently, at the applica-

tion level an end-to-end relationship may cover any number of intermediate components as

well as several transport connections at a lower level of abstraction.

This paper proposes programming abstractions for grouping, controlling and synchronizing

application-level streams in distributed environments. Media clocks provide the basic abstrac-

tion for controlling the flow of media streams, i.e. by issuing clock operations the controlled

streams can be started, paused or scaled as required. Related streams can be hierarchically

grouped by building up so-called clock hierarchies, where each clock controls either an indi-

vidual stream or a group of streams. Within clock hierarchies, two types of relationships can be

defined for the members of a stream group, a control or sync relationship. If the control rela-

tionship is specified, the members of the groups are controlled collectively without synchroni-

zation of the streams. If the sync relationship is defined instead, the members of this group are

processed (e.g. played out) synchronously.
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A great advantage of the concept of clock hierarchies is that it can be combined with compo-

nent nesting in a natural way. In order to provide higher levels of abstractions, more complex

components, so-called compound components, can be composed from existing ones. The inter-

nal processing of a compound component is controlled and synchronized by means of included

clock hierarchies, which are an integral part of the compound components. It is important to

stress that this paper describes programming abstraction rather than the protocols and mecha-

nisms implementing them. For a description of the underlying protocols we refer to a compan-

ion paper [RoHe94].

The remainder of the paper is structured as follows. The next section gives a brief overview of

related work, and then the computation model the proposed abstractions are based upon is

described in Sec. 3. We introduce the concept of a media clock in Sec. 4 and show how it can

be used to control individual streams. The concept of a clock hierarchy, which provides the

means for controlling and synchronizing groups of media streams, is presented in Sec. 5.

While this section mainly considers clocks attached to sink components, Sec. 6 motivates and

treats clocks attached to sources. In Sec. 7, we discuss how the proposed abstractions can be

applied in the context of component nesting. Finally, we conclude with a brief summary.

2 RELATED WORK

As stated above, streams can be considered at different levels of abstraction. Abstractions for

grouping and controlling transport-level streams are provided by the orchestration service

[CCGH92]. This service allows for grouping streams and coordinating the flow of (flat) groups

of streams. In particular, the streams of a group can be started and stopped collectively, while

the flow rate of the streams is regulated individually. The orchestration service itself does not

guarantee stream synchronization but offers a general regulation mechanism that can be used

at higher layers to implement different synchronization policies.

Various abstractions for controlling groups of application-level streams have been proposed in

the literature. Some of these proposals apply to non-distributed environments only (e.g. Quick-

Time [Appl91] or IBM’s Multimedia presentation manager [IBM92]), and others are tailored

to specific configurations (e.g. ACME [AnHo91] and Tactus [DNNR92]). ACME, for exam-

ple, is an extension of a network window system supporting streams of digital audio and video

data. The clients of the ACME server use the abstraction of a logical time system to control

and synchronize the output of a (flat) group of ropes.
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The Multimedia System Services proposed by the Interactive Multimedia Association (IMA)

[IMA93] are based on a very general computation model and provide a rich set of abstractions

for grouping and controlling media streams. The purpose of these services is to provide an

environment in which a heterogeneous set of multimedia computing platforms cooperates to

support distributed, interactive multimedia applications dealing with synchronized, time-based

media. In this environment, the abstraction of a group is used to group related media streams.

Group objects, which may include other group objects, provide an interface for controlling the

streams belonging to this group. This means that an entire group of streams can be started,

paused or scaled by issuing single operation at the group interface. However, the streams of a

group are not synchronized. In the current proposal, stream synchronization is not yet inte-

grated in the group mechanism. Moreover, component nesting is not supported.

3 COMPUTATION MODEL

In this section, we briefly sketch the computation model ofCINEMA (for more details see

[RBH94]). The major concepts of this model are media streams, components, ports, links, ses-

sions and clocks.

A continuousmedia stream is defined to be a sequence of data units, each of which is associ-

ated with a media time stamp (e.g. see [Herr91]).Components are active entities that process

continuous media streams in various ways. We distinguish between source components, which

produce media streams, sink components, which consume media streams, and intermediate

components, which act as both producers and consumers. Components are associated with

typedports. While a producer writes stream data to its output ports, a consumer reads stream

items from its input ports.

Applications are configured by defininglinks between input and output ports of components.

An example configuration consisting of one intermediate component and three source and sink

components is shown in Fig. 1. This configuration mechanism has proven to be powerful and

hence can be found in various other architectures as well (e.g. Conic project [MKS89], IMA

[IMA93], Quicktime [Appl91], SUMO project [CBRS93]).

While link objects are applied to define the topology of applications,sessions are the abstrac-

tion for resource allocation. Media streams can be processed and communicated only after the

corresponding sessions have been established. A session may comprise multiple sink and

source components and any number of intermediate components. QoS of a session is specified
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at the session end points, i.e. at the sink components. For controlling the flow of media streams

an extra abstraction, so-calledmedia clocks, is provided. Media clocks are used to start, pause,

or scale media streams.

CINEMA supports the nesting of components. In other words, basic components can be com-

posed to build more complex components, called compound components. Compound compo-

nents may again be constituents of other components, i.e. arbitrary levels of nesting are

possible. Compound components provide the means for building higher levels of abstraction

on the basis of existing components.

The computation model described above is rather general and has various similarities with

other architectures (e.g. IMA [IMA93] or SUMO [CBRS93]). Therefore, the concepts pre-

sented in the remainder of the paper are not only relevant in the CINEMA context but are applica-

ble in a rather broad scope.

4 MEDIA CLOCKS

The temporal dimension of continuous media streams is defined by so-called media time sys-

tems. The media time system associated with a stream is the temporal framework to determine

the media time of the stream’s data units. InCINEMA, media time systems are provided by media

clocks (or clocks for short). A clockC is defined as follows:

C ::= ( R, M, T, S )

The clock attributes have the following meaning:

Figure 1 : An Example Application

Component

Link
Session
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• R determines the ratio between real time and media time:R time units in media time corre-

spond to 1 second in real time.

• M is the start value of the clock in media time, i.e. the value of the clock at the first clock

tick.

• T is the start time of the clock in real time, i.e. the real time of the first clock tick.

• S determines the speed of the clock:S*R time units in media time correspond to one second

in real time. Consequently, media time progresses in normal speed ifS equals 1. A speed

greater than 1 causes the clock to move faster, a speed less than 1 causes it to progress slo-

wer, and a negative speed causes it to move backwards.

It should be noted that the temporal dimension of stored media is inherently bound, i.e. there

exists a lower and upper bound given by the media time of the first and last stream data unit. In

other words, media time for a given stream is only defined in a certain interval. The mecha-

nisms required to ensure that clock values stay within the defined time range are beyond the

scope of this paper.

Media time systems are a general concept to dimension media time in arbitrary ways. For the

following example, assume a (stored) video stream with a rate of 25 data units per second. If

ratio R = 25, media time corresponds to a frame sequence number, e.g. ifM = 5, then stream

processing is started with the 5th frame in the stream provided the lower bound of its temporal

dimension is 1. If media time is counted in milliseconds instead,R is set to 1000. In each case,

ratio R defines the “normal” speed of media time, while attributeS can be used to speed up or

slow down the progress of media time.

A clock relates media time to real time as shown in Fig. 2. Therefore, after a clock has been

started, media time (m) can be derived from real time (t):

Clocks are the basic abstraction for controlling the flow of media streams. As will be seen

below, clock objects provide methods for starting, pausing, or scaling streams. InCINEMA,

clocks may be attached to source and sink components, but never to intermediate ones. As in

CINEMA stream processing can take place in arbitrary networks of interconnected components, a

stream may consist of a number of substreams and may originate form multiple sources and

m M S R t T–( )⋅+=
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end at multiple sinks. Those complex streams are controlled by manipulating the clocks at the

sinks and sources.

While clocks at source components are optional, they are mandatory at sink components. A

clock attached to a sink component controls the temporal progress of all data streams pro-

cessed (e.g. played out) by this component. This is expressed more precisely by the so-called

clock condition: a data unit having media timem is processed at real timet only if the control-

ling clock is ticking and its value equals m at timet. Conceptually, this means that the presen-

tation of a stream is started, paused or scaled when the controlling clock is started, halted or the

clock speed is changed, respectively. The semantics of clocks at source components will be

introduced later.

As pointed out above, media time progresses relative to real time. InCINEMA, real time is taken

either from a local system clock, a global clock (e.g. see NTP [Mill89]) or is derived from the

temporal behavior of a given output device. Clearly, a media clock based on the timing of an

output device advances in conformance with the device’s natural rate. Those clocks are called

master clocks.

Below, the most important clock operations for controlling streams are listed. A clock may

enter two states,ticking (and thus advancing) orsilent (and thus not advancing). The only

clock operations that cause state transitions areStart  andHalt . The former moves the clock

from silent to ticking, while the latter causes the reverse state transition.

Start(M) This operation starts the clock at media timeM. By starting the clock the con-

trolled stream(s) are started. (Clock attributeT is set to the real time at which

the clock is actually started).

Halt(M) This operation halts the clock when it reaches clock valueM, i.e. the

Figure 2 : Mapping Media Time To Real Time

media time

real time
1 sec

1/R
M

T
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stream(s) controlled by this clock are paused. A halted clock can be started

again by operationStart .

Prepare(M) This operation prepares the event of starting the clock at media timeM. After

Prepare  has been performed, the clock can be started immediately when

Start  is issued. To achieve this,Prepare  preloads the buffers along the

communication paths of the controlled stream(s). If this operation is not

invoked, preloading is done implicitly as part ofStart .

Clear() This operation clears the internal buffers associated with the controlled

stream(s).

Scale(M,S) The default value of the clock speed equals1. This operation changes the

speed of the clock toS when media time M  is reached, i.e. it scales the

stream(s) controlled by the clock.

Lock(O) This operation locks the clock for propagated operations of typeO. This

operation is only applied in the context of clock hierarchies.

Unlock(O) This operation unlocks the clock for propagated operations of typeO.

In the simple scenario shown in Fig. 3, clockC controls the presentation of a 25 frames/sec

video stream.

1 C.Start(15)

2 C.Scale(3000,2)

3 C.Halt(5000)

If we assume that clock attributeR equals 25, then play out is started with frame 15, the play

out rate is doubled when the presentation reaches frame 3000, and the presentation is halted

after frame 5000 has been played out.

Figure 3 : Controlling a Video Stream

C
video stream

video
source

video
sink
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5 CLOCK HIERARCHIES

In this section, we will introduce the notion of a clock hierarchy, which is the basic abstraction

for grouping media streams, controlling groups of streams, and stream synchronization. The

principle idea of this concept has been introduced in [RoDe92].

Related media streams may be grouped by linking clocks in a hierarchical fashion. Remember

that a clock attached to a component controls all streams processed by this component. A num-

ber of streams can be grouped by linking their controlling clocks to a common clock, which

then controls the entire group. Stream groups can be grouped again to groups at a higher level

simply by linking their controlling clocks to the same clock. In the example given in Fig. 4,

clock C6 controls streamsS1 and S2, while C7 controlsS4 andS5. C8 controls the subgroups

represented byC6 andC7 as well as streamS3, and thus all streams in the given scenario can be

started, halted or scaled collectively by means of this clock. SinceCINEMA supports arbitrarily

structured clock hierarchies, any type of hierarchical grouping of media streams is possible.

A clock operation issued at a clock not only affects this clock but the entire (sub)hierarchy of

this clock. Conceptually, an operation called at a clock ispropagated in a root-to-leaf direc-

tion through the clock’s (sub)hierarchy, where it is performed at every clock in this hierarchy.

That is, an operation invoked at a clock is not only performed at this clock but also at every

descendant clock in the hierarchy. In general, clock operations can be issued at every level of

the clock hierarchy. If operationStart  is issued atC6 in the example depicted in Fig. 4, this

operation is propagated toC1 andC2, which causes streams S1 and S2 to be started. All streams

Figure 4 : Grouping Streams

C1
S1

C2
S2

C3
S3

C4
S4

C5
S5

C6

C8
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in the depicted scenario are started ifStart  is invoked atC8 instead. As will be seen in Sec.

7, propagation is a prerequisite for component nesting. Compound components may contain

clock subhierarchies which are invisible for the component’s outside world.

In some scenarios, it is desirable to lock clock subhierarchies in order to prevent propagation.

For that purpose, clocks may be locked and unlocked. If a clock is locked, propagation of oper-

ations issued at ancestor clocks does not take place in the clock’s (sub)hierarchy. Note that

only operations propagated from a locked clock’s ancestors are locked out, while all operations

issued at the locked clock itself or one of its descendant clocks are performed and affect the

hierarchy in the usual way. Propagation is enabled again only when the clock is unlocked.

Locking is done in an operation-specific manner. Each lock is associated with a certain type of

clock operation and only locks out operations of this type. In other words, a lock defines an

operation-specific filter.

Locking is especially useful in those scenarios, where multiple users are involved in the same

application and hence clock hierarchies typically cover several user domains. Here, locking

provides a means to shield clock subhierarchies located in a given user domain from propa-

gated clock operations originated in some other user domain. Consequently, by locking clocks

a user can dynamically control which types of propagated operations may influence the data

streams in his or her domain.

Clocks may be linked in two different ways: a link may establish either acontrol or asynchro-

nization relationship between two clocks. A control relationship between two clocks enables

the propagation of clock operations without synchronizing the two clocks. Typically, control

relationships are defined in settings, where groups of streams are to be controlled collectively

and a rather loose temporal coupling of the grouped streams is sufficient. A synchronization

relationship goes a step further. In addition to propagation, it ensures that the involved clocks

progress in a synchronized manner.

In CINEMA, stream synchronization is specified by means of sync relationships between clocks.

From the clock condition introduced in the previous section directly follows that two streams

are synchronized if their controlling clocks are synchronized. In the example shown in Fig. 4,

streamsS1 andS2 are played out synchronously ifC1 andC2 are synchronized. This synchroni-

zation requirement can be specified by a sync relationship between C1 andC6 as well as one

betweenC2 andC6. An alternative way to express the same is to define a sync relationship

directly betweenC1 andC2.
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Clocks provide individual media time systems, which may relate to each other in various ways.

Clock synchronization and propagation of clock operations (as will be seen below) is done on

the basis of so-calledreference points. A reference point defines the temporal relationship of

two media time systems. More precisely, reference point [C1 : P1, C2 : P2] defines that media

time P1 in C1’s time system corresponds to media timeP2 in C2’s time system, which means

that P1 andP2 relate to the same point in real time (see Fig. 5). Given this reference point,

media time can be transformed from one to the other time system as follows:

After having introduced the basic principles, we can now take a closer look at clock hierar-

chies. A clock hierarchy is a directed tree structure, where the nodes are clocks and the edges

represent control or sync relationships between clocks. The same hierarchy may contain con-

trol as well sync edges. Eachedge is associated with the following attributes:

• Type of the edge, which is either control or sync.

• A reference point which defines the temporal relationship between the clocks linked by this

edge.

• A delay attribute that specifies how long an operation propagated along this edge is to be

delayed. In the example shown in Fig. 4 streamsS4 andS5 are started 3 seconds later than

the other streams if theStart  operation is delayed by 3 seconds while propagated from

C8 to C7. Obviously, the provision of this delay attribute enhances the flexibility of our

scheme substantially. For the sake of simplicity, we will assume a zero delay in the follo-

wing examples.

Figure 5 : Transforming Media Time
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Before describing the semantics of control and sync edges more precisely, we have to intro-

duce functionTrans(Ci, Cj, mi). In a given clock hierarchy, this function transforms media time

mi from Ci’s to Cj’s time system according to the equation above.

5.1  Control Relationship

The semantics of a control edge that is directed from a clock, sayC1, to another clock, say C2,

and is associated with a reference pointRP is defined by the following rules:

1. Each clock operation issued atC1 is propagated toC2’s subhierarchy providedC2 is

unlocked1.

2. Whenever a clock operation is propagated, its media time arguments are automatically

transformed fromC1’s to C2’s media time according to reference pointRP. That is, argu-

ment m in a propagated operation is transformed toTrans(C1, C2, m)

3. Each clock operation can be issued at any clock in the control hierarchy.

4. A Start  operation issued at clockC2 may be performed immediately independent ofC1’s

value or state (ticking or silent). That is,C2.Start (m) startsC2 immediately with initial

clock valuem.

It is important to point out that control hierarchies only allow for a very loose coupling of

streams. Although a control hierarchy includes reference points defining the temporal relation-

ship between streams, this information is not used to keep the controlled streams synchronized.

Reference point information is considered only when clock operations are propagated. In par-

ticular, it is used to automatically transform operation arguments from one to another media

time system. For example, when a group of streams is started, the stream’s media start times

conform to the reference points defined in the corresponding control hierarchy. However, after

a hierarchy has been started, its clocks may drift out of synchronization in an uncontrolled

manner. Clocks in a hierarchy may drift, for example, if they are based on different physical

time systems (e.g. system clocks or device-internal clocks). Moreover, in control hierarchies,

each clock may be manipulated without considering the state and value of the parent clock. For

1No guarantee is given that a clock operation and its propagated ones are performed at the same point in
real time. However, they are performed at “approximately” the same time; what this means in practice
mainly depends on the underlying implementation of the control mechanism.
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example, two different subhierarchies of the same hierarchy may be scaled in different ways,

or clocks in the hierarchy may be halted and continued at any later time with arbitrary start val-

ues.

Due to the fact of potentially drifting clocks, for operationsHalt  andScale  different seman-

tics are conceivable. If, for example,C.Halt (Now) is performed, then all streams controlled

by the clocks in C’s subhierarchy are halted immediately becauseNow - per definition - corre-

sponds to the current time in each media time system. IfC.Halt (30) is specified instead, the

different clocks may reach the equivalent of 30 in their media time systems at different points

in real time. One reasonable semantic of the operation is to pause all streams when the first

clock reaches the given halting time. Due to space limitations, a detailed discussion of this sub-

ject is out of the scope of this paper.

5.2  Sync Relationship

The semantics of a sync edge that is directed from a clock, sayC1, to another clock, sayC2,

and that is associated with a reference pointRP is defined by the following rules:

1. Each clock operation issued atC1 is propagated toC2’s subhierarchy providedC2 is

unlocked.

2. If C2 is ticking, both clocks C1 andC2 are progressing in a synchronized manner, where the

sync relationship is defined by reference pointRP. More precisely: Assume thatISet

denotes the set of real time intervals during whichC2 is in theticking state. ThenC1 and

C2 are defined to be synchronized1 if

∀ Ι ∈ ISet∀ t ∈ I : C2(t) = m2 ⇒ C1(t) = Trans(C2, C1, m2),

whereC(t) denotes the value ofC at timet.

3. ExceptScale  each clock operation can be issued at every clock in the sync hierarchy.

Scale  can be issued at the root clock only, i.e. only the entire hierarchy can be scaled.

4. OperationStart  can be issued atC2 only if C1 is in the ticking state. In order to ensure

clock synchronization, the start of C2 has to be synchronized with the progress ofC1’s

1Of course, in practice, clocks can and need not be synchronized exactly. Thus, inCINEMA an upperbound
for a tolerable skew can be specified at each sync edge.
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media time:C2.Start (m) is delayed untilC1’s clock value equalsTrans(C2 ,C1, m). An

alternative way of startingC2 is to specify start timeNow in operationStart . In this case

C2 is started immediately, say at real timet, with clock valueTrans(C1, C2, m1), wherem1

is C1’s clock value at timet.

5. A sync hierarchy may contain at most one master clock, which must be the root of the hier-

archy.

Sync hierarchies are a general and very powerful concept to specify arbitrary synchronization

requirements between media streams. The structure of the sync hierarchy specifies which

streams have to be synchronized, while the reference points in the hierarchy define how

streams have to synchronized, i.e. how the temporal dimension of the streams relate to each

other.

The system guarantees that all streams controlled by the clocks in the sync hierarchy are pro-

cessed (e.g. played out) in a synchronous manner. Processing is started by issuing operation

Start  at the root clock of the sync hierarchy. A locked subhierarchy can be started later by

issuingStart at the subhierarchy’s root clock. The start of this subhierarchy is performed in

conformance with the temporal constraints specified by the entire sync hierarchy. The same

holds if a subhierarchy is halted and started once again at a later point in time. As will be seen

later, sync (and control) hierarchies may dynamically grow and shrink even if clocks aretick-

ing. This feature together with the capability of locking, halting and starting individual subhi-

erarchies is very important in interactive applications, especially in those, where multiple users

with their individual needs participate in the same (CSCW) application.

5.3  Example

Fig. 6 shows a simple tele cooperation scenario with two users. Subject to the cooperation is an

experiment shown on videoV2. We assume that there exist extra speech channels that allow the

users to talk to each other. The two users commonly viewV2 and discuss the experiment while

they follow the presentation. To ensure that both users see the same information at the same

time, V2 must be played out synchronously at both user sites. BesidesV2, user 1 views video

V1, which shows the same experiment from a different perspective. Consequently, V1 andV2

are to be synchronized. User 2 additionally views videoV3, which shows a similar experiment.

Since the two experiments roughly correspond to each other in their temporal dimension,V1
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andV3 are grouped by a control relationship.We assume that media time 500 inV3 corresponds

to media time 5 inV2.

The presentation of all video streams can be started by issuingStart  at clockC5. Moreover,

this clock can be used to collectively scale, pause and restart the entire configuration. User 1

may pauseV1 or V2 by haltingC1 or C2, respectively. Halted clocks may be continued in a syn-

chronized fashion, i.e. after restart ofC2, for example, the presentation ofV2 is not only syn-

chronized withV1 but also withV2’s presentation at the site of user 2.

SinceC3 andC4 are linked with a control edge,V3 can be scaled, paused and restarted at any

position independent ofV1’s andV2’s state of the presentation. So, the presentationV3 can be

adjusted manually as needed. At user site 2, haltingC3 implies pausingV3’s presentation. If

this is to be avoided,C4 has to be locked forHalt  operations. Note thatScale  operations

issued atC5, for instance, are then still propagated toC4.

If another user desires to join the scenario while cooperation already takes place between user

1 and user 2, the clock hierarchy has to be extended dynamically. Assume that the new user

needs to viewV2 only. After the corresponding session has been established, the clock, sayC6,

controlling V2’s presentation at the site of the new user is linked by means of a sync edge to

clock C5. When the new user is ready to participate in the cooperation, it issues C 6.Start (-

Now) to startV2’s presentation synchronous to the ongoing presentations at the other sites.

Figure 6 : A Simple Telecooperation Scenario
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When a user desires to leave the scenario, the clocks controlling his or her streams have to be

removed from the clock hierarchy.

6 CLOCKS AT SOURCE COMPONENTS

So far, we only considered clocks attached to sink components. The mixer scenario illustrated

in Fig. 7 gives the motivation for having clocks attached to source components also. In general,

substreamsS1, S2 andS3 may have individual start values. For example, if three different sub-

sequences of a stored video clip are to be mixed together, the start values differ from sequence

to sequence. However, with a clock at the sink component only, it is impossible to specify indi-

vidual start values for multiple sources. The solution to this problem is obvious, a clock is

attached to each source component, which then can be started with an individual start value.

As mentioned earlier, clocks at source components are optional. In a configuration without

source clocks, start of processing of source components is implicitly triggered by starting the

corresponding sink clock, where the start value is determined at the sink clock. However, as

soon as a clock is attached to a source component, processing must be enabled explicitly by

starting the attached clock. It is important to point out, thatStart  issued at a source clock

only enables start of processing rather than starting the clock immediately. The time when the

clock is actually started is mainly determined by the underlying control and communication

protocols.

Figure 7 : Clocks at Source Components
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Like sink clocks, source clocks may be nodes in clock hierarchies. In contrast to sink clocks,

however, source clocks may never be involved in a sync relationship. This is due to the fact

that synchronizing a source clock with some other clock makes no sense with regard to stream

synchronization or even is impossible in various cases.

In the scenario of Fig. 7, clockC4 is the root of the control hierarchy. WhenStart  is issued at

C4, this operation is propagated to clocksC1 andC2. During propagation, the specified start

value is transformed according to the reference points associated with the control edges. If the

start value specified atC4 is 0, clocksC1 andC2 are started with values 20 and 80, respectively.

Since clockC3 is not part of the control hierarchy, it has to be started explicitly. For example, it

may be started later when the application decides to add S3.

The scenario in Fig. 8 combines sync and control edges. Assume that streamsS1, S2 andS3 are

(stored) video streams with a rate of 25 frames/sec and that clock attributeR = 25 for each

clock. Further assume that media times 20, 80 and 100 ofS1, S2 andS3, respectively, corre-

spond to the same point in real time. The depicted configuration mixesS1 andS2 and synchro-

nizes the output of the mixer withS3. The entire configuration is controlled by clockC3, i.e.

the whole processing can be started, paused, scaled by issuing the corresponding operations at

clockC3.

1 C3. Start (0)

2 C3.Scale (2000,-2)

3 C3.Halt (0)

Figure 8 : A Scenario with Control and Sync Edges
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The presentation is started at media time 0, which corresponds to start values 20, 80 and 100 at

C1, C2 andC4, respectively. After 2000 frames have been played out, the presentation is con-

tinued in reverse order and double speed.

Looking at the above scenario we can indicate two points in the configuration, where stream

synchronization is required. Not onlyS3 andS4 have to be synchronized but also S1 andS2 as

mixing must be done on the basis of matching media times. That is, the media time systems of

S1 andS2 must be related to the time system ofS4, and the mixer must preserve this relation-

ship in order to enable synchronization ofS3 andS4. Depending on the type of intermediate

component, the time systems of its input and output streams may or may not be related. This

subject is discussed in more detail in a longer version of this paper.

7 NESTING OF COMPONENTS

In many areas, nesting has turned out to be a very powerful concept for building higher levels

of abstractions. As mentioned earlier, inCINEMA more complex components can be composed

from other components just by linking input and output ports. Compound components again

may be used to build other compound components on even higher levels of abstraction, i.e.

arbitrary nesting levels are supported.

In the context of synchronization, nesting means that clock hierarchies may be defined within

compound components and thus remain invisible for the components’ outside world. A clock

hierarchy of a compound component is defined at the time the component is composed and

specifies synchronization and control relationships between the streams processed by this com-

ponent. In particular, the internal clock hierarchy of a component specifies sync and control

edges between the clocks defined within this component. In addition to the clocks attached to

its internal components, a compound component may also contain unattached clocks.

A compound component may contain one or more clock hierarchies. (Note that a hierarchy can

consist of a single clock only.) The roots of the internal clock hierarchies are exported and thus

become visible to the component’s outside world. The exported clocks are attached to the com-

ponent and are used to control the component’s stream processing, i.e. they are used to start,

pause or scale the streams processed by the component. Of course, exported clocks may again

be involved in clock hierarchies at higher levels of abstraction.
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The compound component shown in Fig. 9 provides the abstraction of a television set, capable

of playing out a video stream and two audio streams in a synchronized fashion. The shown

component contains two basic components, a video decompression component (D) and sink

component implementing a video output window (W). In addition, it includes another com-

pound component, which consists of two filter components (F) and two speaker components

(S). The nested compound component provides the abstraction of an audio output device,

whose operation is controlled by clockC2. The TV component exports clockC1, which is used

to start, pause or scale the audio-visual output.

In summary, compound components may contain arbitrary complex clock hierarchies, which

are invisible from the user’s point of view. The operations issued at an exported clock are prop-

agated through the clock hierarchy and thereby control the internal processing of the exporting

component.

8 SUMMARY

The abstractions proposed in this paper provide for controlling and synchronizing groups of

continuous media streams. Clock hierarchies can be used to specify nested groups of streams,

where each clock in the hierarchy identifies and controls a certain (sub)group of streams. By

means of control and sync edges in clock hierarchies, an application can specify its individual

control and synchronization needs in an uniform way. The capability of locking subhierarchies

as well as the possibility of dynamically growing and shrinking clock hierarchies are important

features in the context of interactive applications, especially in those supporting collaborative

Figure 9 : Nested Components
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work. Clock hierarchies in conjunction with component nesting provide a powerful means for

the simple composition of complex components at higher levels of abstraction. As the compu-

tation model underlying the proposed abstractions is very general and has various similarities

with others, the results reported in this paper are applicable in a rather broad scope.

The reported work has been conducted in the context of theCINEMA project. The implementa-

tion of CINEMA is in progress, and an early version of a synchronization manager, supporting a

limited set of configurations, is already operational. Future work will be to complete this

implementation.

Finally, we need to gain more practical experience with the proposed abstractions. Although

the abstractions have been applied to model a great variety of application scenarios, we need to

conduct extensive experimentation with applications in the field to verify the practical value of

the work reported here.
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