
Universität Stuttgart
Fakultät Informatik

Fakultät Informatik
Institut für Parallele und

Verteilte Höchstleistungsrechner
Universität Stuttgart

Breitwiesenstraße 20 - 22
D-70565 Stuttgart

CINEMA - An Architecture for
Configurable Distributed Multimedia

Applications

Kurt Rothermel, Ingo Barth, Tobias Helbig

CINEMA - An Architecture for
Configurable Distributed Multimedia

Applications
Kurt Rothermel, Ingo Barth, Tobias Helbig

CR-Klassifikation: C.2.4, D.2.2, H.5.1

Fakultätsbericht 3/1994
Technical Report

April 1994

Abstract

Distributed multimedia applications combine the advantage of distributed compu-

ting with the capability of processing discrete and continuous media in an integrated

fashion. The development of multimedia applications in distributed environments

requires specific abstractions and services, which are usually not provided by gene-

ric operating systems. Those services are typically realized by software compo-

nents, often referred to as middleware.

TheCINEMA (Configurable INtEgrated Multimedia Architecture) project aims at the

development of powerful abstractions for multimedia processing in distributed

environments. This paper presents a flexible mechanism for the dynamic configura-

tion of applications. The proposed mechanism allows for the definition of arbitrary

complex flow graphs connecting various types of multimedia processing elements.

Further, processing elements can simply be composed from other ones to provide

higher levels of abstraction. We also propose the abstraction of a clock hierarchy to

permit grouping, controlling, and synchronization of media streams. An appealing

property of this abstraction is that it harmonizes well with component nesting.

1 INTRODUCTION 2

1 INTRODUCTION

Advances in the computer and communication technology have stimulated the integration of

digital audio and video with computing, leading to the development of distributed multimedia

systems. This class of systems combines the advantages of distributed computing with the cap-

ability of processing discrete media, such as text or images, and continuous media, such as audio

or video, in an integrated fashion. The capability of integrated multimedia processing not only

enhances conventional application environments, but also opens the door for new and innova-

tive applications. A major advantage of multimedia computing in distributed environments is

the possibility of sharing resources among applications and users, where shared resources may

be data objects such as multimedia titles, special processing elements such as compression

modules, or special devices such as professional VCRs.

The processing and communication of media streams requires specific system services. In gen-

eral, media streams are associated with a certain quality that has to be maintained by the under-

lying system. To be able to guarantee the required stream quality, system services for

allocating and reserving system resources, such as CPU cycles or network bandwidth, are

needed. Moreover, applications need to control the flow of streams, i.e. they should be able to

start, pause, continue or scale individual streams. In many scenarios, it is desirable to group

related streams and to control groups of streams rather than individual streams. Finally, power-

ful services to synchronize multiple streams are required. Those services should permit appli-

cations to specify which streams are to be synchronized and how these streams temporally

relate to each other.

Generic operating systems usually do not provide those specific multimedia services. The gap

between the functionality offered by operating systems and the specific needs of distributed

multimedia applications is closed by software components often referred to as middleware.

The CINEMA (Configurable INtEgrated Multimedia Architecture) system, which is currently

under development at the University of Stuttgart, belongs to this system category. It provides

abstractions for the dynamic configuration of distributed multimedia applications. Clients may

define arbitrary data flow graphs, connecting various processing elements called components.

Moreover, component nesting is supported to achieve higher levels of abstractions by simply

composing more complex components from already existing ones. The abstraction of a session

allows for atomic resource allocation and reservation for any group of connected components.

CINEMA provides the concept of a clock hierarchy for grouping and controlling streams and

groups of streams. The same abstraction permits to express arbitrary complex stream synchro-

nization requirements.

2 RELATED WORK 3

The remainder of the paper is organized as follows. In the next section, a brief overview of

related work is given. Then, in Section 3, the way how applications are configured inCINEMA is

described in some detail. This section also introduces the concept of component nesting. The

abstractions for grouping, controlling and synchronizing media streams and groups of streams

are presented in Section 4. Finally, we conclude with a brief summary.

2 RELATED WORK

The multitude of problems that arise when integrating multimedia processing into conven-

tional computer systems and attempting to develop distributed multimedia applications are

addressed in several projects, which lay emphasis on different issues. In the SUMO project

[CBRS93], the Chorus [RAA+90] micro-kernel is extended to support continuous media. This

is done by using the real-time features of Chorus and adding stream-based data transfer and

quality of service control inside the operating system. The features are accessible by a low-

level API. The focus of this work lies on operating system issues like scheduling but not on

providing a universal platform and high-level abstractions for developing and configuring dis-

tributed multimedia applications. The problem of configuring distributed applications by using

software components that are interconnected by linked ports is addressed by Conic [KrMa85]

and its follow-up project REX [MKSD90]. Conic offers languages for programming compo-

nents and configuring applications without supporting multimedia data handling. The configu-

ration process is centralized in a configuration manager which accepts change specifications

for altering configurations.

Specific abstractions for controlling multimedia data streams have been proposed as well.

Some of them apply to non-distributed environments only (e.g. QuickTime [Appl91] or IBM’s

Multimedia Presentation Manager [IBM92]), while others are tailored to specific configura-

tions (e.g. ACME [AGH90] and Tactus [DNNR92]), and essentially are extensions of network

window systems to support streams of digital audio and video data. General requirements that

should be met by architectures supporting distributed multimedia applications are specified in

the Request for Technology [IMA92] of the Interactive Multimedia Association (IMA). A

response to this request contributed by some companies [Hewl93] proposes abstractions to

structure and control distributed multimedia environments while using multi-vendor process-

ing equipment. The proposal assumes generic multimedia processing elements producing and

consuming multimedia data via ports that are associated with formats. However, the nesting of

processing elements is not supported and, although grouping is used to handle resource acqui-

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 4

sition, stream control and the specification of end-to-end quality of service, no means to spec-

ify synchronization relationships between data streams are provided.

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS

In order to build large software systems it is necessary to decompose a system into modules

each of which can be separately programmed and tested. The system is then composed as a

configuration of these software components. Component programming and component config-

uration are separate activities which have been referred to as “programming-in-the-small” and

“programming-in-the-large”, respectively [DeKr75].

Configuration may be static or dynamic. In the first approach to system building, all compo-

nents of the system are configured at the same time. If a modification of the system is required,

the complete system has to be stopped and rebuilt according to the new configuration specifica-

tion. Obviously, static configuration is not a feasible approach in the context of distributed

multimedia systems, in which configurations often depend on the available resources and the

quality of service the user asks for at run time. Moreover, multimedia applications are often

highly dynamic in the sense that users may join and leave the application during run time. Usu-

ally, each change in the user community implies a modification of the configuration. Examples

for those applications can be found in the area of video conference systems or CSCW systems.

Consequently, for multimedia systems the ability to extend and modify a system while it is

running definitely is required. The approach of dynamic configuration provides this ability:

new components can be introduced, existing ones may be replaced and the interconnection of

components can be modified at run time.

In CINEMA, an application consists of at least one client and a set of data flow graphs. In a data

flow graph, the nodes represent so-called components, while the edges are communication

links interconnecting the components. A component provides the basic abstractions for the

processing of continuous media streams, such as video or audio streams. A continuous media

stream is defined to be a sequence of data units, each of which is associated with a media time

(for a detailed definition e.g. see [Herr91]). The nature of a component’s processing depends

on the type of the component. We distinguish between source components, which produce (e.g.

capture) data streams, sink components that consume (e.g. play out) streams, and intermediate

components acting as both consumers and producers (e.g. filters or mixers). Media streams

may originate at multiple sources, traverse a number of intermediate components and end at

multiple sinks.

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 5

A client is a software entity that - by using theCINEMA services - defines data flow graphs and

controls the flow of data within these graphs during run time. It configures (its portion of) an

application just by naming the components to be used and interconnecting them according to

the application logic that has to be achieved. Further, it may dynamically change the initial

configuration during run time as needed. A data flow graph may be arbitrarily distributed over

several nodes of a distributed system. As will be seen below, components are configuration

independent, which means that their internal logic is independent of the configuration they are

used in. Thus, from the client’s point of view, there is no conceptual difference whether two

adjacent components run either on the same node interconnected by a local link or on different

nodes connected by a remote link.

A client may only control the flow of streams in the flow graphs defined by itself. In particular,

a client may start, halt or scale data streams only in its so-calledapplication domain, which is

defined to be the set of data flow graphs specified by this client. Depending on the type of

application, one or more clients may participate in the process of configuring the application. If

multiple clients participate, the application is structured into several application domains, one

for each participant. Each client only knows and controls the objects in its domain. When shar-

ing components between clients, their domains overlap. The overlapping portions contain the

shared components. Clearly, shared components may be controlled by multiple clients. For

example, consider the simple conferencing scenario depicted in Figure 1. In this scenario, the

application consists of several domains, each of which links two components - a virtual micro-

phone and speaker of a given user - to a shared mixer component. Whenever a new user joins

the application, a new domain linking the new user’s (virtual) microphone and speaker to the

shared mixer is added.

Figure 1: Application Domains in a Conferencing Scenario

microphone speaker

mixer

microphone speaker

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 6

After this brief overview of the process of configuration inCINEMA, we can now take a closer

look at the concepts provided for defining flow graphs, which are components, ports and links.

3.1 Components and Ports

The processing of continuous media data streams is done by software and hardware modules,

called devices. Devices may be e.g. microphones or speakers having specific hardware inter-

faces and software drivers. InCINEMA, the processing functionality is abstracted by components

which at least cover one device. When creating a component, a client specifies the devices that

are to be used. Components consume data units of streams reading from their input ports and

produce data by writing to their output ports. To build up data flow graphs, components are

interconnected by links between the components’ ports.

From the client’s point of view, a component offers different interfaces to control and manipu-

late its behavior, the component control interface, the port interface, and the clock interface.

Thecomponent control interface is used to access state information of a component and alter

its stream handling behavior. It is specific in the sense that it depends on the processing func-

tionality performed by the component. For example, the interface of a component abstracting

from a speaker device may provide a method to adjust the volume of the presentation.

The port interface is used by components to send stream data to other components that are

interconnected by links or to receive data from them. This decouples the multimedia process-

ing from the transmission of data units between processing stages and allows the usage of the

same component in scenarios having local as well as remote communication. To be able to

check mismatching connections, each port is associated with a stream type. If a component

handles multiple stream types, a new stream type containing the others may be defined. In Fig-

ure 3, we show an example of a stream type hierarchy. In this example, a port of type "video"

Figure 2: The Component’s Interfaces

component po
rt

po
rt

component
controlclockstream

data
stream
data

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 7

can be connected to either one of type "video", "video-grey", or "video-color". In a stream type

hierarchy, the descendents of a node are specializations of this node.

Theclock interface is optional for sources and mandatory for sinks and is used to control the

flow of data units. A detailed description of clocks and the interface to control them is given in

Section 4.

The interfaces described above are used by clients to control components and to connect them

to build up data flow graphs. In theCINEMA system, components are managed by additional

interfaces. An example for such an internal interface is the resource allocation interface, that is

used to negotiate the quality of service and to reserve the required resources to ensure the

negotiated quality of service.

After looking at the interfaces provided by the components, we now focus on the definition of

components. Configuration independence [KrMa85] is a major property to build up compo-

nents that can be used in a dynamically configured distributed system. This makes it possible

to use a component in arbitrary configurations without having to change its processing func-

tionality.

Configuration independence is achieved by developing components using a special program-

ming language and compiling and linking them to independent objects. InCINEMA, we use an

object-oriented programming language, the Component Programming Language (CPL) that is

based on C++, to program components. All methods of a component can only access local

objects. A component exchanges stream data by reading data from its local input ports and

writing data to its local output ports, i.e. components need not know their neighbours in the

data flow graph.

Programming components in an object-oriented programming language enables the creation of

a class hierarchy with inheritance to build up specialized component classes out of existing

Figure 3: Stream Type Hierarchy

video

video-grey video-color

root

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 8

ones. The following example shows the programming of a microphone component in the Com-

ponent Programming Language.

COMPONENT microphone
:: SOURCE // class to derive from

MAP (device MICRO); // device parameter
dev_name = MICRO; // handle the device parameter

ENDMAP
INIT (int sensitivity); // specific client-IF

dev = open(dev_name,"r"); // open the device
dev_set_samplerate(dev, 8000); // rate = 8000 Hz
dev_set_sensitivity(dev, sensitivity); //set value

ENDINIT
// 8KHz_Audio is a specialized form of Audio

TYPE 8kHz_Audio :: Audio; // stream-type definition
// a port named audio is defined

OUTPORT audio 8kHz_Audio;
// the interface provides a method to adjust
// the sensitivity of the microphone

METHOD int sensitivity_adjust(int sensitivity)
dev_set_sensitivity(dev, sensitivity); // set value
result = dev_get_sensitivity(dev); // get value
return result; // return old value

ENDMETHOD
// the stream-handling function

ACTION // manipulate data units
data = dev_get_data(dev); // get audio samples
audio->put(data); // put samples to output port

ENDACTION
ENDCOMPONENT

In theCINEMA system, the code segments of a component are executed in different threads. The

stream handling segment, defined in theACTION clause, is periodically executed in a real-time

thread, whereas the methods of the component control interface are executed in a non-real-

time thread. The resource requirements of the real-time thread are calculated when a session is

established (see Section 4.1).

3.2 Creation of Data Flow Graphs

So far, we have introduced the definition of the components, the functional building blocks. In

this section, we will describe how a client builds up data flow graphs by connecting the compo-

nents’ ports by means of links.

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 9

To build an application, a client first establishes the processing functionality by creating the

appropriate components. This is done by using a library with a set of functions and classes that

is provided by theCINEMA system. No specialized configuration language is needed which

offers the advantage to expand and shrink applications dynamically at run time depending on

actual requirements. Moreover, it allows the integration of multimedia processing functionality

into existing (non-multimedia) applications. Creating and accessing components does not dif-

fer from accessing normal C++-objects. It is done by using appropriate object methods.

As shown above, components may be shared by multiple clients, if more than one client partic-

ipates in the configuration of an application. InCINEMA, shared components are associated with

a globally unique identifier. All clients sharing a given component create this component in

their application domain by providing the component’s global identifier. Of course, only the

create operation issued first establishes the component, while all succeeding ones just enable

the callers to access the (already existing) component.

The following code fragment shows the creation of the component objects in the conferencing

example illustrated in Figure 1. The mixer component is defined as a shared component using

the global identifierconference .

micro = COMPONENT("microphone",micro_dev);
mixer = COMPONENT("audio_mixer",NULL,"conference");
speaker = COMPONENT("speaker",speaker_dev);

For component initialization, each component provides a method called "init ". The code

example below initializes the microphone and the speaker component and specifies the sensi-

tivity to 50 and the volume to 40. The initialization has to be done before defining a session

(see Section 4.1).

micro->init("sensitivity",50); // initialization
speaker->init("volume",40);

After component objects have been created, they can be connected by creating links between

their ports. The component’s port objects are accessed by using the methodport in connec-

tion with the port identifier. In our code fragment, we link the output port of the microphone

component (namedaudio) and the input port of the mixer component (namedaudio_in).

A second link is established between the output port of the mixer component (audio_out)

and the input port of the speaker component (audio).

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 10

link(micro->port("audio"),mixer->port("audio_in"));
link(mixer->port("audio_out"),speaker->port("audio"));

It is important to mention that building up a data flow graph only describes the topology of an

application. Linking components does not imply the reservation of resources. To enable com-

munication, so-called sessions have to be established, which are the abstraction for atomic

resource reservation (see Section 4.1.).

3.3 Nesting Components

In many areas, nesting has turned out to be a very powerful concept for building higher levels

of abstractions. InCINEMA, more complex components, calledcompound components, can be

composed from other components. Compound components contain a part of a data flow graph.

They are used like non-nested, basic components, i.e. from the client’s point of view, there is

no difference in using basic or compound components since the internal structure of a com-

pound component is hidden.

Constructing compound components from existing ones is straightforward. Instead of pro-

gramming anACTION clause, a part of a data flow graph is defined using already existing

components. The component control interfaces of the nested components are accessed through

a common interface provided by the compound component. The mapping of these interfaces

must be defined when building a compound component.

Compound components have noACTION clause. Instead, the components used to build the

compound component must be declared (in theUSE clause) and the way they are intercon-

Figure 4: Compound Component

stereo-
microphone

po
rt

component
control

po
rt

microphone

microphone

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 11

nected by links is defined (in theLINK clause). The interface methods are declared in the same

manner as for basic components.

As an example for the programming of a compound component (see Figure 4), we show the

definition of a component representing a stereo microphone component. This component uses

two components of class microphone as they were declared in Section 3.1.

COMPONENT stereo_micro
MAP (device MICRO_l, device MICRO_r);

dev_MICRO_l = MICRO_l; // handle the device param
dev_MICRO_r = MICRO_r; // handle the device param

ENDMAP
INIT (int sensitivity);

// initialize the contained components with the
// provided parameters

micro_l->init(sensitivity); // initialize mirco_l
micro_r->init(sensitivity); // initialize mirco_r

ENDINIT
// define the ports of the compound component

OUTPORT audio_l 8kHz_Audio ;
OUTPORT audio_r 8kHz_Audio ;
USE

// create component objects
micro_l = COMPONENT("microphone",dev_MICRO_l);
micro_r = COMPONENT("microphone",dev_MICRO_r);

ENDUSE
LINK

// build up flow graph with links
// use "this" to refer to compound component

link(micro_l->port("audio"),this->port("audio_l"));
link(micro_r->port("audio"),this->port("audio_r"));

ENDLINK
// map the specific interfaces

METHOD int sensitivity_adjust(int sensitivity)
// use the interfaces of the used components

result = micro_l->sensitivity_adjust(sensitivity);
result = micro_r->sensitivity_adjust(sensitivity);
return result; // return value

ENDMETHOD
ENDCOMPONENT

4 COMMUNICATION AND SYNCHRONIZATION 12

4 COMMUNICATION AND SYNCHRONIZATION

Multimedia data streams are transmitted in arbitrarily structured flow graphs of interconnected

components. Determining their temporal properties, controlling them at run time, and guaran-

teeing a certain stream quality arises a multitude of requirements that need to be fulfilled by the

abstractions of a multimedia platform. Usually, multimedia data streams are designed to be

consumed by human users. Thus, their quality is determined by the sensitivity of human

senses. Ensuring a satisfying stream quality over long periods of time while using current com-

puter and network equipment makes the reservation of resources inevitable.

Due to the temporal dimension of time dependent data streams, there is a need to specify and

control temporal properties of streams. Setting initial parameters like data rate or start values

has to be enabled as well as scaling (i.e. changing speed or direction) at presentation time. The

appropriate control interface inCINEMA is the media clock. However, an interface that only

allows to handle individual data streams is insufficient. Due to tight relationships between dif-

ferent streams, they need to be grouped together and be handled as a unit. This facilitates the

control over complex scenarios and is a prerequisite for specifying synchronization relation-

ships between data streams. Especially, the latter is essential in a multimedia system where the

quality of a presentation of time dependent data streams strongly depends on observing given

synchronization requirements (e.g. lip synchronization of audio and video where the tolerable

skew is in the range of 80 ms [StEn93]). The grouping of data streams has to be supported by

concepts that are adaptive to the dynamics of interactive and cooperative multimedia applica-

tions where at any time new users enter running applications (e.g. teleconferencing) and others

leave. InCINEMA, the means to group control interfaces, to handle them as a unit and to specify

synchronization relationships is given by the concept of clock hierarchies. In the following, the

abstractions to fulfil the requirements are explained in detail.

4.1 Session

In CINEMA, a session is the abstraction of resource reservation. It is associated with a set of qual-

ity of service parameters. By creating a session, a client causes theCINEMA system to reserve the

resources that are needed to guarantee the specified quality of service requirements. This is

done in an all-or-nothing fashion. After a session has been established, the transmission and

processing of multimedia data may be started.

4 COMMUNICATION AND SYNCHRONIZATION 13

A session encompasses parts of the flow graph which is defined by a client. Its actual extension

is defined by specifying a set of source and sink components. Intermediate components and

interconnecting data paths are determined from the data flow graph by theCINEMA system. For

example, a point-to-point audio session may be created by the following statement. It describes

the components and their ports that are part of the session as well as desired quality of service

parameters:

create_session(micro ->port("audio"),
speaker->port("audio"),
QoS(Rate(min = 8000, max = 44100),

SampleSize(min = 8, max = 16),
Delay(min = 50, max = 150));

The success or failure of the establishment of a session determines whether a given application

can be started and maintained according to the specified quality of service. Thus, creating a

session is the prerequisite to transmit and process data units. Based on this, the following sec-

tions describe how temporal properties of streams are specified and data streams are controlled

at run time.

4.2 Clocks

The temporal dimension of continuous media streams is defined by so-called media time sys-

tems. The media time system associated with a stream is the temporal framework to determine

the media time of the stream’s data units. InCINEMA, media time systems are provided by media

clocks (or clocks for short). A clockC is defined as follows:

C ::= (R, M, T, S)

The clock attributes have the following meaning: R determines the ratio between real-time and

media time.R time units in media time correspond to 1 second in real-time. M is the start value

of the clock in media time, i.e. the value of the clock at the first clock tick. T is the start time of

the clock in real-time. S determines the speed of the clock:S*R time units in media time corre-

spond to one second in real-time. Consequently, media time progresses in normal speed ifS

equals 1. A speed greater than 1 causes the clock to move faster, a speed less than 1 causes it to

progress slower, and a negative speed causes it to move backwards. A clock relates media time

4 COMMUNICATION AND SYNCHRONIZATION 14

to real-time. It “ticks” after it has been started and media time (m) can be derived from real-

time (t):

Clocks are the basic abstraction for clients to control the flow of media streams. They may be

attached to source and sink components, but never to intermediate ones. A clock attached to a

sink component controls the temporal progress of all data streams processed by this compo-

nent. This is expressed more precisely by theclock condition: a data unit having media timem

is processed at real-timet only if the controlling clock is ticking and its value equals m at time

t. Conceptually, this means that the presentation of a stream is started, paused or scaled when

the controlling clock is started, halted or the clock speed is changed, respectively. Clocks

attached to source components are typically required in flow graphs where multiple sources

contribute data to a given sink (e.g. in a mixer scenario). Here, source clocks are needed to

individually start sources and to determine their start values. For more details on source clocks

refer to [RoHe94].

The most important clock operations for controlling streams are the following. The operation

Start(M) starts the clock at media timeM, by doing this it starts the controlled stream(s) as

well. The clock attributeT is set to the real-time at which the clock is actually started.

Halt(M) halts the clock when it reaches clock valueM, i.e. the stream(s) controlled by this

clock are paused.Prepare(M) prepares the starting of the clock at media timeM by preload-

ing the buffers along the communication paths of the controlled stream(s). AfterPrepare has

been performed, the clock can be started immediately whenStart is issued.Clear() clears

the internal buffers associated with the controlled stream(s).Scale(M,S) changes the speed

of the clock toS when media timeM is reached, i.e. it scales the stream(s) controlled by the

clock.

In the simple scenario shown in Figure 5 clockC controls the presentation of a video stream.

The play out is started with frame 15. The play out rate is doubled when the presentation

reaches frame 3000, and the presentation is halted when reaching frame 5000.

Figure 5: Controlling a Video Stream

m M S R t T–()⋅+=

C C.Start(15)
C.Scale(3000,2)
C.Halt(5000)

video
source

video
sink

video
stream

4 COMMUNICATION AND SYNCHRONIZATION 15

4.3 Clock Hierarchies

In this section, we will introduce the notion of a clock hierarchy, which is the basic abstraction

for grouping media streams, controlling groups of streams, and stream synchronization.

Remember that a clock attached to a component controls all streams processed by this compo-

nent. A number of streams can be grouped by linking their controlling clocks in a hierarchical

fashion to a common clock, which then controls the entire group. Stream groups can be

grouped again to groups at a higher level. In the example given in Figure 6, clockC6 controls

streamsS1 and S2, while C7 controlsS4 andS5. C8 controls the subgroups represented byC6

andC7 as well as streamS3, and thus all streams in the given scenario can be started, halted or

scaled collectively by means of this clock.

A clock operation issued at a clock not only affects this clock but the entire (sub)hierarchy of

this clock. Conceptually, an operation called at a clock ispropagated in a root-to-leaf direc-

tion through the clock’s (sub)hierarchy, where it is performed at every clock in this hierarchy.

In general, clock operations can be issued at every level of the clock hierarchy.

Additionally, clock hierarchies may dynamically grow and shrink even if clocks are ticking.

This feature together with the capability of halting and starting individual subhierarchies is

very important in interactive applications, especially in those where multiple users with their

individual needs participate in the same application.

Clocks provide individual media time systems which may relate to each other in various ways.

Clock synchronization and propagation of clock operations is done on the basis of so-called

reference points. A reference point defines the temporal relationship of two media time sys-

Figure 6: Grouping Streams

C1S1

C2
S2

C3
S3

C4
S4

C5
S5

C6

C8

C7

4 COMMUNICATION AND SYNCHRONIZATION 16

tems. More precisely, reference point [C1 : P1, C2 : P2] defines that media time P1 in C1’s time

system corresponds to media timeP2 in C2’s time system, which means thatP1 andP2 relate to

the same point in real-time (see Figure 7). Given this reference point, media time can be trans-

formed from one to the other time system as follows:

Clocks may be linked in two different ways: a link may establish either acontrol or asynchro-

nization relationship between two clocks. A control relationship between two clocks enables

the propagation of clock operations without synchronizing them. Typically, control relation-

ships are defined in settings where groups of streams are to be controlled collectively and a

rather loose temporal coupling of the grouped streams is sufficient. Although control hierar-

chies include reference points, this information is considered only when clock operations are

propagated to automatically transform the operation’s arguments. However, after a hierarchy

has been started, its clocks may drift out of synchronization and may be manipulated arbi-

trarily. For example, two different subhierarchies of the same hierarchy may be scaled in dif-

ferent ways, or clocks in the hierarchy may be halted and continued at any later time with

arbitrary start values.

A synchronization relationship goes a step further. In addition to propagation, it ensures that

the involved clocks progress synchronously. From the clock condition introduced in the previ-

ous section it can be concluded that two streams are synchronized if their controlling clocks are

synchronized. Thus,synchronization hierarchies are a general and very powerful concept to

specify arbitrary synchronization requirements between media streams. The structure of the

synchronization hierarchy specifies which streams have to be synchronized, while the refer-

ence points in the hierarchy define how the temporal dimensions of the streams relate to each

other. The system guarantees that all streams controlled by the clocks of the hierarchy are pro-

cessed synchronously. When a subhierarchy is halted and started once again at a later point in

time, this is performed in conformance with the temporal constraints.

Figure 7: Transforming Media Time

m2 m1 P1–()
R2

R1
------ P2+⋅=

C1

C2

P1

P2

[C1: P1, C2 : P2]

4 COMMUNICATION AND SYNCHRONIZATION 17

4.3.1 Example

Figure 8 shows a simple telecooperation scenario with two users. Subject to the cooperation is

an experiment shown on videoV2. We assume that extra speech channels exist which allow the

users to talk to each other. The two users commonly viewV2. To ensure that both see the same

information at the same time,V2 must be played out synchronously. BesidesV2, user 1 views

video V1, which shows the same experiment from a different perspective. Consequently, V1

and V2 are to be synchronized. User 2 additionally views videoV3, which shows a similar

experiment. Since the two experiments roughly correspond to each other in their temporal

dimension,V1 andV3 are grouped by a control relationship. We assume that media time 500 in

V3 corresponds to media time 5 inV2.

The presentation of all video streams can be started by issuingStart at clockC5. Moreover,

this clock can be used to collectively scale, pause and restart the entire configuration. User 1

may pauseV1 or V2 by haltingC1 or C2, respectively. Halted clocks may be continued in a syn-

chronized fashion, i.e. after restart ofC2, for example, the presentation ofV2 is not only syn-

chronized withV1 but also withV2’s presentation at the site of user 2. SinceC3 andC4 are

linked with a control edge,V3 can be scaled, paused and restarted at any position independent

of V1’s andV2’s state of the presentation. So, the presentationV3 can be adjusted manually as

needed.

If another user desires to join the scenario, the clock hierarchy has to be extended dynamically.

After the corresponding session has been established, the clock controllingV2’s presentation at

the new user’s site is linked by a sync edge to clockC5. By issuing the start operation,V2’s pre-

sentation is started synchronously to the ongoing presentations.

Figure 8: A Simple Telecooperation Scenario

C1

C2

C3

C4

V1

V2

V3

sync [5,5]

sync [5,5]

sync [5,5]

ctrl[5,500]

User1

User2

C5

5 SUMMARY 18

4.4 Clock Hierarchies and Nesting

In the context of synchronization, nesting means that arbitrary complex clock hierarchies may

be defined within compound components and thus remain invisible for the components’ out-

side world. A clock hierarchy of a compound component is defined at the time the component

is composed and specifies internal synchronization and control relationships between the

clocks defined within this component. Only the root of internal clock hierarchies is exported

and thus becomes visible to the components’ outside world. The operations issued at an

exported clock are propagated through the clock hierarchy and thereby control the internal pro-

cessing. Exported clocks may again be involved in clock hierarchies at higher levels of

abstraction.

The compound component shown in Figure 9 provides the abstraction of a television set, capa-

ble of playing out a video stream and two audio streams in a synchronized fashion. The com-

ponent shown contains two basic components, a video decompression component (D) and sink

component implementing a video output window (W). In addition, it includes another com-

pound component, which consists of two filter components (F) and two speaker components

(S). The nested compound component provides the abstraction of an audio output device,

whose operation is controlled by clockC2. The TV component exports clockC1, which is used

to start, pause or scale the audio-visual output.

5 SUMMARY

The efficient development of distributed multimedia applications requires abstractions and ser-

vices that are provided by a specialized software layer.CINEMA is such a development platform.

It uses the functionality of given transport and operating systems, adds the necessary features

Figure 9: Nested Components

C2

C1
Video

Audio 1

Audio 2

D

F

F

W

S

S

sync

sync

6 REFERENCES 19

to support the processing of multimedia data in distributed environments and makes them

accessible by appropriate abstractions. The abstractions ofCINEMA and their usage were pre-

sented in this paper. We described components that provide multimedia processing functional-

ity and produce, respectively consume, units of data streams via typed ports. To facilitate the

reusability of software and to achieve higher levels of functional abstractions components may

be nested.

Distributed multimedia applications are created by interconnecting the components’ ports with

links which allows the definition of arbitrary flow graphs. Before starting the flow of data units,

the creation of sessions allows the specification of quality of service requirements and results

in the reservation of system resources that are needed to ensure the requirements. Having

established an application, the need for controlling its behavior (i.e. the flow of data units)

arises. With media clocks and clock hierarchies we proposed abstractions to control individual

data streams as well as groups of streams. We discussed the usage of clock hierarchies to spec-

ify synchronization relationships between data streams and showed how they may be used to

handle the requirements of highly dynamic, interactive and cooperative multimedia applica-

tions. Finally, it was outlined how clock hierarchies are used to control the propagation of

operations in compound components.

Currently, the implementation ofCINEMA is in progress. A first prototype is working. It supports

a restricted set of the functionality described in this paper. For example, it is possible to estab-

lish applications in a distributed environment and to control and to synchronize the flow of data

units in limited configurations. Our future work is directed at completing our prototype. By

experimenting with applications, we aim at gaining more experience in using the abstractions.

This will enable us to verify their practical usefulness.

6 REFERENCES

[AGH90] David P. Anderson, Ramesh Govindan, George Homsy. Abstractions for
Continuous Media in a Network Window System.Report No. UCB/CSD 90/596,
Computer Science Division (EECS), University of California, Berkeley, CA, 11
1990.

[Appl91] Apple Computer Inc., Cupertino, CA, USA.QuickTime Developer’s Guide, 1991.

[CBRS93] Geoff Coulson, Gordon S. Blair, Philippe Robin, Doug Shepherd. Extending the
Chorus Micro-Kernel to support continuous media applications. InProceedings of
the 4th International Workshop on Network and Operating Systems Support for
Digital Audio and Video, pp. 49–60, 11 1993.

6 REFERENCES 20

[DeKr75] F. DeRemer, H. Kron. Programming-in-the-large versus programming-in-the-
small. InProceedings of the Conference on Reliable Software, pp. 114–121, 1975.

[DNNR92] Roger B. Dannenberg, Tom Neuendorffer, Joseph M. Newcomer, Dean Rubine.
Tactus: Toolkit-Level Support for Synchronized Interactive Multimedia. In3nd
International Workshop on Network and Operating System Support for Digital
Audio and Video, 11 1992.

[Herr91] Ralf Guido Herrtwich. Time Capsules: An Abstraction for Access to Continuous-
Media Data.The Journal of Real-Time Systems, Kluwer Academic Publishers, pp.
355–376, 3 1991.

[Hewl93] Hewlett-Packard Company and International Business Machines Corporation and
SunSoft Inc.Multimedia System Services, Version 1.0, available via ftp from
ibminet.awdpa.ibm.com, 7 1993.

[IBM92] IBM Corporation.Multimedia Presentation Manager Programming Reference and
Programming Guide 1.0, IBM Form: S41G-2919-00 and S41G-2920-00, 3 1992.

[IMA92] Interactive Multimedia Association, Compatibility Project, Annapolis, MD, USA.
Request for Technology: Multimedia System Services, Version 2.0, available via ftp
from ibminet.awdpa.ibm.com, 11 1992.

[KrMa85] Jeff Kramer, Jeff Magee. Dynamic Configuration for Distributed Systems.IEEE
Transaction on Software Engineering, SE-11(4):424–436, 4 1985.

[MKSD90] Jeff Magee, Jeff Kramer, Morris Sloman, Naranker Dulay. An Overview of the
REX Software Architecture. In2nd IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systems, 10 1990.

[RAA+90] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont,
F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, W. Neuhauser. Overview of the
Chorus Distributed Operating System.Chorus Systémes CS/TR-90-25, 4 1990.

[RoHe94] Kurt Rothermel, Tobias Helbig. Clock Hierarchies: An Abstraction for Grouping
and Controlling Media Streams.Technical Report 2/94, University of Stuttgart, 4
1994.

[StEn93] Ralf Steinmetz, Clemens Engler. Human Perception of Media Synchronization.
Technical Report 43.9310, IBM ENC, Heidelberg, Germany, 1993.

