S Universitat Stuttgart
Fakultat Informatik

CINEMA - An Architecture for
Configurable Distributed Multimedia
Applications

Kurt Rothermel, Ingo Barth, Tobias Helbig

CR-Klassifikation: C.2.4, D.2.2, H.5.1

CINEMA - An Architecture for
Configurable Distributed Multimedia
Applications

Kurt Rothermel, Ingo Barth, Tobias Helbig

Fakultatsbericht 3/1994
Technical Report
April 1994

Fakultat Informatik
Institut fur Parallele und
Verteilte Hochstleistungsrechner
Universitat Stuttgart
Breitwiesenstral3e 20 - 22
D-70565 Stuttgart

Abstract

Distributed multimedia applications combine the advantage of distributed compu-
ting with the capability of processing discrete and continuous media in an integrated
fashion. The development of multimedia applications in distributed environments
requires specific abstractions and services, which are usually not provided by gene-
ric operating systems. Those services are typically realized by software compo-
nents, often referred to as middleware.

The Cinema (Configurable INtEgrated Multimedia Architecture) project aims at the
development of powerful abstractions for multimedia processing in distributed
environments. This paper presents a flexible mechanism for the dynamic configura-
tion of applications. The proposed mechanism allows for the definition of arbitrary
complex flow graphs connecting various types of multimedia processing elements.
Further, processing elements can simply be composed from other ones to provide
higher levels of abstraction. We also propose the abstraction of a clock hierarchy to
permit grouping, controlling, and synchronization of media streams. An appealing
property of this abstraction is that it harmonizes well with component nesting.

1 INTRODUCTION 2

1 INTRODUCTION

Advances in the computer and communication technology have stimulated the integration of
digital audio and video with computing, leading to the development of distributed multimedia
systems. This class of systems combines the advantages of distributed computing with the cap-
ability of processing discrete media, such as text or images, and continuous media, such as audio
or video, in an integrated fashion. The capability of integrated multimedia processing not only
enhances conventional application environments, but also opens the door for new and innova-
tive applications. A major advantage of multimedia computing in distributed environments is
the possibility of sharing resources among applications and users, where shared resources may
be data objects such as multimedia titles, special processing elements such as compression
modules, or special devices such as professional VCRs.

The processing and communication of media streams requires specific system services. In gen-
eral, media streams are associated with a certain quality that has to be maintained by the under-
lying system. To be able to guarantee the required stream quality, system services for
allocating and reserving system resources, such as CPU cycles or network bandwidth, are
needed. Moreover, applications need to control the flow of streams, i.e. they should be able to
start, pause, continue or scale individual streams. In many scenarios, it is desirable to group
related streams and to control groups of streams rather than individual streams. Finally, power-
ful services to synchronize multiple streams are required. Those services should permit appli-
cations to specify which streams are to be synchronized and how these streams temporally
relate to each other.

Generic operating systems usually do not provide those specific multimedia services. The gap
between the functionality offered by operating systems and the specific needs of distributed
multimedia applications is closed by software components often referred to as middleware.
The Cinema (Configurable INtEgrated Multimedia Architecture) system, which is currently
under development at the University of Stuttgart, belongs to this system category. It provides
abstractions for the dynamic configuration of distributed multimedia applications. Clients may
define arbitrary data flow graphs, connecting various processing elements called components.
Moreover, component nesting is supported to achieve higher levels of abstractions by simply
composing more complex components from already existing ones. The abstraction of a session
allows for atomic resource allocation and reservation for any group of connected components.
Cinema provides the concept of a clock hierarchy for grouping and controlling streams and
groups of streams. The same abstraction permits to express arbitrary complex stream synchro-
nization requirements.

2 RELATED WORK 3

The remainder of the paper is organized as follows. In the next section, a brief overview of
related work is given. Then, in Section 3, the way how applications are config@eemvnis
described in some detail. This section also introduces the concept of component nesting. The
abstractions for grouping, controlling and synchronizing media streams and groups of streams
are presented in Section 4. Finally, we conclude with a brief summary.

2 RELATED WORK

The multitude of problems that arise when integrating multimedia processing into conven-
tional computer systems and attempting to develop distributed multimedia applications are
addressed in several projects, which lay emphasis on different issues. In the SUMO project
[CBRS93], the Chorus [RA?0] micro-kernel is extended to support continuous media. This

is done by using the real-time features of Chorus and adding stream-based data transfer and
quality of service control inside the operating system. The features are accessible by a low-
level API. The focus of this work lies on operating system issues like scheduling but not on
providing a universal platform and high-level abstractions for developing and configuring dis-
tributed multimedia applications. The problem of configuring distributed applications by using
software components that are interconnected by linked ports is addressed by Conic [KrMa85]
and its follow-up project REX [MKSD90]. Conic offers languages for programming compo-
nents and configuring applications without supporting multimedia data handling. The configu-
ration process is centralized in a configuration manager which accepts change specifications
for altering configurations.

Specific abstractions for controlling multimedia data streams have been proposed as well.
Some of them apply to non-distributed environments only (e.g. QuickTime [Appl91] or IBM’s
Multimedia Presentation Manager [IBM92]), while others are tailored to specific configura-
tions (e.g. ACME [AGH90] and Tactus [DNNR92]), and essentially are extensions of network
window systems to support streams of digital audio and video data. General requirements that
should be met by architectures supporting distributed multimedia applications are specified in
the Request for Technology [IMA92] of the Interactive Multimedia Association (IMA). A
response to this request contributed by some companies [Hewl93] proposes abstractions to
structure and control distributed multimedia environments while using multi-vendor process-
ing equipment. The proposal assumes generic multimedia processing elements producing and
consuming multimedia data via ports that are associated with formats. However, the nesting of
processing elements is not supported and, although grouping is used to handle resource acqui-

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 4

sition, stream control and the specification of end-to-end quality of service, no means to spec-
ify synchronization relationships between data streams are provided.

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS

In order to build large software systems it is necessary to decompose a system into modules
each of which can be separately programmed and tested. The system is then composed as a
configuration of these software components. Component programming and component config-
uration are separate activities which have been referred to as “programming-in-the-small” and
“programming-in-the-large”, respectively [DeKr75].

Configuration may be static or dynamic. In the first approach to system building, all compo-
nents of the system are configured at the same time. If a modification of the system is required,
the complete system has to be stopped and rebuilt according to the new configuration specifica-
tion. Obviously, static configuration is not a feasible approach in the context of distributed
multimedia systems, in which configurations often depend on the available resources and the
quality of service the user asks for at run time. Moreover, multimedia applications are often
highly dynamic in the sense that users may join and leave the application during run time. Usu-
ally, each change in the user community implies a modification of the configuration. Examples
for those applications can be found in the area of video conference systems or CSCW systems.
Consequently, for multimedia systems the ability to extend and modify a system while it is
running definitely is required. The approach of dynamic configuration provides this ability:
new components can be introduced, existing ones may be replaced and the interconnection of
components can be modified at run time.

In Cinema, an application consists of at least one client and a set of data flow graphs. In a data
flow graph, the nodes represent so-called components, while the edges are communication
links interconnecting the components. A component provides the basic abstractions for the
processing of continuous media streams, such as video or audio streams. A continuous media
stream is defined to be a sequence of data units, each of which is associated with a media time
(for a detailed definition e.g. see [Herr91]). The nature of a component’s processing depends
on the type of the component. We distinguish between source components, which produce (e.g.
capture) data streams, sink components that consume (e.g. play out) streams, and intermediate
components acting as both consumers and producers (e.g. filters or mixers). Media streams
may originate at multiple sources, traverse a number of intermediate components and end at
multiple sinks.

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 5

A client is a software entity that - by using fB&ema services - defines data flow graphs and
controls the flow of data within these graphs during run time. It configures (its portion of) an
application just by naming the components to be used and interconnecting them according to
the application logic that has to be achieved. Further, it may dynamically change the initial
configuration during run time as needed. A data flow graph may be arbitrarily distributed over
several nodes of a distributed system. As will be seen below, components are configuration
independent, which means that their internal logic is independent of the configuration they are
used in. Thus, from the client’s point of view, there is no conceptual difference whether two
adjacent components run either on the same node interconnected by a local link or on different
nodes connected by a remote link.

it

7 microphone

speaker/

o \\\\\}&
spea er§

5
CRRR A XXX ALK
DO G0 0.0.8.9.9.9

Figure 1: Application Domains in a Conferencing Scenario

A client may only control the flow of streams in the flow graphs defined by itself. In particular,

a client may start, halt or scale data streams only in its so-eglfgdation domain, which is

defined to be the set of data flow graphs specified by this client. Depending on the type of
application, one or more clients may participate in the process of configuring the application. If
multiple clients participate, the application is structured into several application domains, one
for each participant. Each client only knows and controls the objects in its domain. When shar-
ing components between clients, their domains overlap. The overlapping portions contain the
shared components. Clearly, shared components may be controlled by multiple clients. For
example, consider the simple conferencing scenario depicted in Figure 1. In this scenario, the
application consists of several domains, each of which links two components - a virtual micro-
phone and speaker of a given user - to a shared mixer component. Whenever a new user joins
the application, a new domain linking the new user’s (virtual) microphone and speaker to the
shared mixer is added.

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 6

After this brief overview of the process of configuratiorCikema, we can now take a closer
look at the concepts provided for defining flow graphs, which are components, ports and links.

3.1 Components and Ports

The processing of continuous media data streams is done by software and hardware modules,
called devices. Devices may be e.g. microphones or speakers having specific hardware inter-
faces and software drivers. Gnewa, the processing functionality is abstracted by components
which at least cover one device. When creating a component, a client specifies the devices that
are to be used. Components consume data units of streams reading from their input ports and
produce data by writing to their output ports. To build up data flow graphs, components are
interconnected by links between the components’ ports.

From the client’s point of view, a component offers different interfaces to control and manipu-
late its behavior, the component control interface, the port interface, and the clock interface.
Thecomponent control interfaceis used to access state information of a component and alter
its stream handling behavior. It is specific in the sense that it depends on the processing func-
tionality performed by the component. For example, the interface of a component abstracting
from a speaker device may provide a method to adjust the volume of the presentation.

componen

data data
e component

Figure 2: The Component’s Interfaces

The port interface is used by components to send stream data to other components that are
interconnected by links or to receive data from them. This decouples the multimedia process-
ing from the transmission of data units between processing stages and allows the usage of the
same component in scenarios having local as well as remote communication. To be able to
check mismatching connections, each port is associated with a stream type. If a component
handles multiple stream types, a new stream type containing the others may be defined. In Fig-
ure 3, we show an example of a stream type hierarchy. In this example, a port of type "video"

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 7

can be connected to either one of type "video", "video-grey", or "video-color". In a stream type
hierarchy, the descendents of a node are specializations of this node.

root
video/\

video-grey video-color
/\ /\

Figure 3: Stream Type Hierarchy

Theclock interface is optional for sources and mandatory for sinks and is used to control the
flow of data units. A detailed description of clocks and the interface to control them is given in
Section 4.

The interfaces described above are used by clients to control components and to connect them
to build up data flow graphs. In tli&\nema system, components are managed by additional
interfaces. An example for such an internal interface is the resource allocation interface, that is
used to negotiate the quality of service and to reserve the required resources to ensure the
negotiated quality of service.

After looking at the interfaces provided by the components, we now focus on the definition of
components. Configuration independence [KrMa85] is a major property to build up compo-
nents that can be used in a dynamically configured distributed system. This makes it possible
to use a component in arbitrary configurations without having to change its processing func-
tionality.

Configuration independence is achieved by developing components using a special program-
ming language and compiling and linking them to independent objed@sevs, we use an
object-oriented programming language, the Component Programming Language (CPL) that is
based on C++, to program components. All methods of a component can only access local
objects. A component exchanges stream data by reading data from its local input ports and
writing data to its local output ports, i.e. components need not know their neighbours in the
data flow graph.

Programming components in an object-oriented programming language enables the creation of
a class hierarchy with inheritance to build up specialized component classes out of existing

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 8

ones. The following example shows the programming of a microphone component in the Com-
ponent Programming Language.

COMPONENT microphone
:: SOURCE // class to derive from
MAP (device MICRO); // device parameter
dev_name = MICRO; // handle the device parameter
ENDMAP
INIT (int sensitivity); // specific client-IF
dev = open(dev_name,"r"); // open the device
dev_set _samplerate(dev, 8000); // rate = 8000 Hz
dev_set_sensitivity(dev, sensitivity); //set value
ENDINIT
/l 8KHz_Audio is a specialized form of Audio
TYPE 8kHz_Audio :: Audio; // stream-type definition
I/l a port named audio is defined
OUTPORT audio 8kHz_Audio;
/Il the interface provides a method to adjust
Il the sensitivity of the microphone
METHOD int sensitivity _adjust(int sensitivity)
dev_set_sensitivity(dev, sensitivity); // set value
result = dev_get_sensitivity(dev); /I get value
return result; // return old value
ENDMETHOD
Il the stream-handling function
ACTION /I manipulate data units
data = dev_get_data(dev); // get audio samples
audio->put(data); // put samples to output port
ENDACTION
ENDCOMPONENT

In the Cinema system, the code segments of a component are executed in different threads. The
stream handling segment, defined inA@TION clause, is periodically executed in a real-time
thread, whereas the methods of the component control interface are executed in a non-real-
time thread. The resource requirements of the real-time thread are calculated when a session is
established (see Section 4.1).

3.2 Creation of Data Flow Graphs
So far, we have introduced the definition of the components, the functional building blocks. In

this section, we will describe how a client builds up data flow graphs by connecting the compo-
nents’ ports by means of links.

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 9

To build an application, a client first establishes the processing functionality by creating the
appropriate components. This is done by using a library with a set of functions and classes that
is provided by theCinema system. No specialized configuration language is needed which
offers the advantage to expand and shrink applications dynamically at run time depending on
actual requirements. Moreover, it allows the integration of multimedia processing functionality
into existing (non-multimedia) applications. Creating and accessing components does not dif-
fer from accessing normal C++-objects. It is done by using appropriate object methods.

As shown above, components may be shared by multiple clients, if more than one client partic-
ipates in the configuration of an applicationCGiRema, shared components are associated with

a globally unique identifier. All clients sharing a given component create this component in
their application domain by providing the component’s global identifier. Of course, only the
create operation issued first establishes the component, while all succeeding ones just enable
the callers to access the (already existing) component.

The following code fragment shows the creation of the component objects in the conferencing
example illustrated in Figure 1. The mixer component is defined as a shared component using
the global identifieconference

micro = COMPONENT("microphone",micro_dev);
mixer = COMPONENT ("audio_mixer",NULL,"conference");
speaker = COMPONENT ("speaker”,speaker_dev);

For component initialization, each component provides a method calied *. The code
example below initializes the microphone and the speaker component and specifies the sensi-
tivity to 50 and the volume to 40. The initialization has to be done before defining a session
(see Section 4.1).

micro->init("sensitivity",50); // initialization
speaker->init("volume",40);

After component objects have been created, they can be connected by creating links between
their ports. The component’s port objects are accessed by using the pathoth connec-

tion with the port identifier. In our code fragment, we link the output port of the microphone
component (namedudio) and the input port of the mixer component (naraedio_in).

A second link is established between the output port of the mixer companerd_(out)

and the input port of the speaker componanto).

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 10

link(micro->port("audio”),mixer->port("audio_in"));
link(mixer->port("audio_out"),speaker->port(*audio™));

It is important to mention that building up a data flow graph only describes the topology of an
application. Linking components does not imply the reservation of resources. To enable com-
munication, so-called sessions have to be established, which are the abstraction for atomic
resource reservation (see Section 4.1.).

3.3 Nesting Components

In many areas, nesting has turned out to be a very powerful concept for building higher levels
of abstractions. I'€inEma, more complex components, calleompound componentscan be
composed from other components. Compound components contain a part of a data flow graph.
They are used like non-nested, basic components, i.e. from the client’'s point of view, there is
no difference in using basic or compound components since the internal structure of a com-
pound component is hidden.

Constructing compound components from existing ones is straightforward. Instead of pro-
gramming anACTION clause, a part of a data flow graph is defined using already existing
components. The component control interfaces of the nested components are accessed through
a common interface provided by the compound component. The mapping of these interfaces
must be defined when building a compound component.

componen
control

stereo-
microphone

Figure 4: Compound Component

Compound components have AGTION clause. Instead, the components used to build the
compound component must be declared (inUsE clause) and the way they are intercon-

3 CONFIGURATION OF MULTIMEDIA APPLICATIONS 11

nected by links is defined (in théNK clause). The interface methods are declared in the same
manner as for basic components.

As an example for the programming of a compound component (see Figure 4), we show the
definition of a component representing a stereo microphone component. This component uses
two components of class microphone as they were declared in Section 3.1.

COMPONENT stereo_micro
MAP (device MICRO _I, device MICRO r);
dev_MICRO_| = MICRO _I; // handle the device param
dev_MICRO_r = MICRO_r; // handle the device param
ENDMAP
INIT (int sensitivity);
/ initialize the contained components with the
/I provided parameters
micro_|->init(sensitivity); // initialize mirco_|
micro_r->init(sensitivity); // initialize mirco_r
ENDINIT
/I define the ports of the compound component
OUTPORT audio_| 8kHz_Audio ;
OUTPORT audio_r 8kHz_Audio ;
USE
/I create component objects
micro_| = COMPONENT ("microphone”,dev_MICRO _);
micro_r = COMPONENT ("microphone”,dev_MICRO_r);
ENDUSE
LINK
// build up flow graph with links
/[use "this" to refer to compound component
link(micro_|->port("audio"),this->port("audio_1I"));
link(micro_r->port("audio”),this->port("audio_r"));
ENDLINK
/I map the specific interfaces
METHOD int sensitivity _adjust(int sensitivity)
/I use the interfaces of the used components
result = micro_|->sensitivity _adjust(sensitivity);
result = micro_r->sensitivity _adjust(sensitivity);
return result; // return value
ENDMETHOD
ENDCOMPONENT

4 COMMUNICATION AND SYNCHRONIZATION 12

4 COMMUNICATION AND SYNCHRONIZATION

Multimedia data streams are transmitted in arbitrarily structured flow graphs of interconnected
components. Determining their temporal properties, controlling them at run time, and guaran-
teeing a certain stream quality arises a multitude of requirements that need to be fulfilled by the
abstractions of a multimedia platform. Usually, multimedia data streams are designed to be
consumed by human users. Thus, their quality is determined by the sensitivity of human
senses. Ensuring a satisfying stream quality over long periods of time while using current com-
puter and network equipment makes the reservation of resources inevitable.

Due to the temporal dimension of time dependent data streams, there is a need to specify and
control temporal properties of streams. Setting initial parameters like data rate or start values
has to be enabled as well as scaling (i.e. changing speed or direction) at presentation time. The
appropriate control interface @iNneva is the media clock. However, an interface that only
allows to handle individual data streams is insufficient. Due to tight relationships between dif-
ferent streams, they need to be grouped together and be handled as a unit. This facilitates the
control over complex scenarios and is a prerequisite for specifying synchronization relation-
ships between data streams. Especially, the latter is essential in a multimedia system where the
guality of a presentation of time dependent data streams strongly depends on observing given
synchronization requirements (e.qg. lip synchronization of audio and video where the tolerable
skew is in the range of 80 ms [StENn93]). The grouping of data streams has to be supported by
concepts that are adaptive to the dynamics of interactive and cooperative multimedia applica-
tions where at any time new users enter running applications (e.g. teleconferencing) and others
leave. InCinema, the means to group control interfaces, to handle them as a unit and to specify
synchronization relationships is given by the concept of clock hierarchies. In the following, the
abstractions to fulfil the requirements are explained in detail.

4.1 Session

In CiNeEma, & session is the abstraction of resource reservation. It is associated with a set of qual-
ity of service parameters. By creating a session, a client causasethesystem to reserve the
resources that are needed to guarantee the specified quality of service requirements. This is
done in an all-or-nothing fashion. After a session has been established, the transmission and
processing of multimedia data may be started.

4 COMMUNICATION AND SYNCHRONIZATION 13

A session encompasses parts of the flow graph which is defined by a client. Its actual extension
is defined by specifying a set of source and sink components. Intermediate components and
interconnecting data paths are determined from the data flow graph Gwithe system. For
example, a point-to-point audio session may be created by the following statement. It describes
the components and their ports that are part of the session as well as desired quality of service
parameters:

create_session(micro ->port("audio®),
speaker->port("audio®),
QoS(Rate(min = 8000, max = 44100),
SampleSize(min = 8, max = 16),
Delay(min = 50, max = 150));

The success or failure of the establishment of a session determines whether a given application
can be started and maintained according to the specified quality of service. Thus, creating a
session is the prerequisite to transmit and process data units. Based on this, the following sec-
tions describe how temporal properties of streams are specified and data streams are controlled
at run time.

4.2 Clocks

The temporal dimension of continuous media streams is defined by so-called media time sys-
tems. The media time system associated with a stream is the temporal framework to determine
the media time of the stream’s data unitsCikema, media time systems are provided by media
clocks (or clocks for short). A clod® is defined as follows:

C:=(R,M,T,S)

The clock attributes have the following meaniRgletermines the ratio between real-time and

media timeR time units in media time correspond to 1 second in real-tfris.the start value

of the clock in media time, i.e. the value of the clock at the first clockTiiskthe start time of

the clock in real-timeSdetermines the speed of the cloBkR time units in media time corre-

spond to one second in real-time. Consequently, media time progresses in normal Speed if
equals 1. A speed greater than 1 causes the clock to move faster, a speed less than 1 causes it to
progress slower, and a negative speed causes it to move backwards. A clock relates media time

4 COMMUNICATION AND SYNCHRONIZATION 14

to real-time. It “ticks” after it has been started and media tmecé&n be derived from real-
time ():
m=M+SOR t 7

Clocks are the basic abstraction for clients to control the flow of media streams. They may be
attached to source and sink components, but never to intermediate ones. A clock attached to a
sink component controls the temporal progress of all data streams processed by this compo-
nent. This is expressed more precisely byctbek condition: a data unit having media time

Is processed at real-timenly if the controlling clock is ticking and its value equalst time

t. Conceptually, this means that the presentation of a stream is started, paused or scaled when
the controlling clock is started, halted or the clock speed is changed, respectively. Clocks
attached to source components are typically required in flow graphs where multiple sources
contribute data to a given sink (e.g. in a mixer scenario). Here, source clocks are needed to
individually start sources and to determine their start values. For more details on source clocks
refer to [RoHe94].

The most important clock operations for controlling streams are the following. The operation
Start(M) starts the clock at media tinMg by doing this it starts the controlled stream(s) as
well. The clock attributerl is set to the real-time at which the clock is actually started.
Halt(M) halts the clock when it reaches clock valja.e. the stream(s) controlled by this
clock are pausedrepare(M) prepares the starting of the clock at media fitley preload-

ing the buffers along the communication paths of the controlled stream(s)PAdeEre has

been performed, the clock can be started immediately ®teeh is issuedClear() clears

the internal buffers associated with the controlled strea®¢sje(M,S) changes the speed

of the clock toS when media timéMis reached, i.e. it scales the stream(s) controlled by the
clock.

In the simple scenario shown in Figure 5 cl@kontrols the presentation of a video stream.
The play out is started with frame 15. The play out rate is doubled when the presentation
reaches frame 3000, and the presentation is halted when reaching frame 5000.

video C

@ i C.Start(15)
video stream viaeo C.Scale(3000,2)
>)
sourcel:Io L | sink CHalt(5000)

Figure 5: Controlling a Video Stream

4 COMMUNICATION AND SYNCHRONIZATION 15

4.3 Clock Hierarchies

In this section, we will introduce the notion of a clock hierarchy, which is the basic abstraction
for grouping media streams, controlling groups of streams, and stream synchronization.

Remember that a clock attached to a component controls all streams processed by this compo-
nent. A number of streams can be grouped by linking their controlling clocks in a hierarchical
fashion to a common clock, which then controls the entire group. Stream groups can be
grouped again to groups at a higher level. In the example given in Figure 6Cglooktrols
streamsS; and S,, while C; controlsS, andSs. Cg controls the subgroups representeddgy

andC; as well as streai®;, and thus all streams in the given scenario can be started, halted or
scaled collectively by means of this clock.

A clock operation issued at a clock not only affects this clock but the entire (sub)hierarchy of
this clock. Conceptually, an operation called at a clogkopagatedin a root-to-leaf direc-

tion through the clock’s (sub)hierarchy, where it is performed at every clock in this hierarchy.
In general, clock operations can be issued at every level of the clock hierarchy.

Ss c,

Figure 6: Grouping Streams

Additionally, clock hierarchies may dynamically grow and shrink even if clocks are ticking.
This feature together with the capability of halting and starting individual subhierarchies is
very important in interactive applications, especially in those where multiple users with their
individual needs patrticipate in the same application.

Clocks provide individual media time systems which may relate to each other in various ways.
Clock synchronization and propagation of clock operations is done on the basis of so-called
reference points A reference point defines the temporal relationship of two media time sys-

4 COMMUNICATION AND SYNCHRONIZATION 16

tems. More precisely, reference poi@j [: P, C, : P,] defines that media tinf; in C;'s time

system corresponds to media tifgein C,'s time system, which means tligtandP, relate to

the same point in real-time (see Figure 7). Given this reference point, media time can be trans-
formed from one to the other time system as follows:

R
2
m, = (m, —P,) DR—1+P2

Py
: o : : —m Cg
; [C1:Pq, Co 1 Pyl
— —+++ + - C
P

Figure 7: Transforming Media Time

Clocks may be linked in two different ways: a link may establish eitben@&ol or asynchro-

nization relationship between two clocks. A control relationship between two clocks enables
the propagation of clock operations without synchronizing them. Typically, control relation-
ships are defined in settings where groups of streams are to be controlled collectively and a
rather loose temporal coupling of the grouped streams is sufficient. Alticongtol hierar-
chiesinclude reference points, this information is considered only when clock operations are
propagated to automatically transform the operation’s arguments. However, after a hierarchy
has been started, its clocks may drift out of synchronization and may be manipulated arbi-
trarily. For example, two different subhierarchies of the same hierarchy may be scaled in dif-
ferent ways, or clocks in the hierarchy may be halted and continued at any later time with
arbitrary start values.

A synchronization relationship goes a step further. In addition to propagation, it ensures that
the involved clocks progress synchronously. From the clock condition introduced in the previ-
ous section it can be concluded that two streams are synchronized if their controlling clocks are
synchronized. Thusynchronization hierarchiesare a general and very powerful concept to
specify arbitrary synchronization requirements between media streams. The structure of the
synchronization hierarchy specifies which streams have to be synchronized, while the refer-
ence points in the hierarchy define how the temporal dimensions of the streams relate to each
other. The system guarantees that all streams controlled by the clocks of the hierarchy are pro-
cessed synchronously. When a subhierarchy is halted and started once again at a later point in
time, this is performed in conformance with the temporal constraints.

4 COMMUNICATION AND SYNCHRONIZATION 17

4.3.1 Example

Figure 8 shows a simple telecooperation scenario with two users. Subject to the cooperation is
an experiment shown on vid®g. We assume that extra speech channels exist which allow the
users to talk to each other. The two users commonly Vievio ensure that both see the same
information at the same tim¥, must be played out synchronously. Besidgsuser 1 views

video V4, which shows the same experiment from a different perspective. Consequently,
andV, are to be synchronized. User 2 additionally views vidgowhich shows a similar
experiment. Since the two experiments roughly correspond to each other in their temporal
dimensionV; andV3 are grouped by a control relationship. We assume that media time 500 in
V3 corresponds to media time 5\.

The presentation of all video streams can be started by isStartg at clockCs. Moreover,

this clock can be used to collectively scale, pause and restart the entire configuration. User 1
may pausé/; orV, by haltingC; or C,, respectively. Halted clocks may be continued in a syn-
chronized fashion, i.e. after restart@f, for example, the presentation\df is not only syn-
chronized withV, but also withV,'s presentation at the site of user 2. SiGgeand C4 are

linked with a control edge/; can be scaled, paused and restarted at any position independent
of V;’s andV,’s state of the presentation. So, the presentafioran be adjusted manually as
needed.

If another user desires to join the scenario, the clock hierarchy has to be extended dynamically.
After the corresponding session has been established, the clock conWgfipgesentation at

the new user’s site is linked by a sync edge to clagIBy issuing the start operatiow,’s pre-
sentation is started synchronously to the ongoing presentations.

CJ@ sync [5,5] i

|V:|3 I] Cs User;
1 C
©

d_]sync[5,9]
I%lo Cs sync [5,5]

- ‘

C4@ ctrl[5,500] User,
[P o]
V3 -

Figure 8: A Simple Telecooperation Scenario

5 SUMMARY 18

4.4 Clock Hierarchies and Nesting

In the context of synchronization, nesting means that arbitrary complex clock hierarchies may
be defined within compound components and thus remain invisible for the components’ out-
side world. A clock hierarchy of a compound component is defined at the time the component
Is composed and specifies internal synchronization and control relationships between the
clocks defined within this component. Only the root of internal clock hierarchies is exported
and thus becomes visible to the components’ outside world. The operations issued at an
exported clock are propagated through the clock hierarchy and thereby control the internal pro-
cessing. Exported clocks may again be involved in clock hierarchies at higher levels of
abstraction.

The compound component shown in Figure 9 provides the abstraction of a television set, capa-
ble of playing out a video stream and two audio streams in a synchronized fashion. The com-
ponent shown contains two basic components, a video decompression comppaadtgink
component implementing a video output winddW).(In addition, it includes another com-
pound component, which consists of two filter compondfitsad two speaker components

(S. The nested compound component provides the abstraction of an audio output device,
whose operation is controlled by clo€k. The TV component exports clo€k, which is used

to start, pause or scale the audio-visual output.

Video

) S—

Audio 1

-0 -o

Audio 2 5 ..

Figure 9: Nested Components

5 SUMMARY

The efficient development of distributed multimedia applications requires abstractions and ser-
vices that are provided by a specialized software |&pava is such a development platform.
It uses the functionality of given transport and operating systems, adds the necessary features

6 REFERENCES 19

to support the processing of multimedia data in distributed environments and makes them
accessible by appropriate abstractions. The abstractioGsimfa and their usage were pre-
sented in this paper. We described components that provide multimedia processing functional-
ity and produce, respectively consume, units of data streams via typed ports. To facilitate the
reusability of software and to achieve higher levels of functional abstractions components may
be nested.

Distributed multimedia applications are created by interconnecting the components’ ports with
links which allows the definition of arbitrary flow graphs. Before starting the flow of data units,
the creation of sessions allows the specification of quality of service requirements and results
in the reservation of system resources that are needed to ensure the requirements. Having
established an application, the need for controlling its behavior (i.e. the flow of data units)
arises. With media clocks and clock hierarchies we proposed abstractions to control individual
data streams as well as groups of streams. We discussed the usage of clock hierarchies to spec-
ify synchronization relationships between data streams and showed how they may be used to
handle the requirements of highly dynamic, interactive and cooperative multimedia applica-
tions. Finally, it was outlined how clock hierarchies are used to control the propagation of
operations in compound components.

Currently, the implementation @inema is in progress. A first prototype is working. It supports

a restricted set of the functionality described in this paper. For example, it is possible to estab-
lish applications in a distributed environment and to control and to synchronize the flow of data
units in limited configurations. Our future work is directed at completing our prototype. By
experimenting with applications, we aim at gaining more experience in using the abstractions.
This will enable us to verify their practical usefulness.

6 REFERENCES

[AGH90] David P. Anderson, Ramesh Govindan, George Homsy. Abstractions for
Continuous Media in a Network Window SysteReport No. UCB/CSD 90/596,
Computer Science Division (EECS), University of California, Berkeley, 1TA
1990.

[Appl91] Apple Computer Inc., Cupertino, CA, USRuickTime Developer’'s Guigd&991.

[CBRS93] Geoff Coulson, Gordon S. Blair, Philippe Robin, Doug Shepherd. Extending the
Chorus Micro-Kernel to support continuous media applicationBrdceedings of
the 4th International Workshop on Network and Operating Systems Support for
Digital Audio and Videppp. 49-60, 11 1993.

6 REFERENCES 20

[DeKr75] F.DeRemer, H.Kron. Programming-in-the-large versus programming-in-the-
small. InProceedings of the Conference on Reliable Softwgrel14-121, 1975.

[DNNR92] Roger B. Dannenberg, Tom Neuendorffer, Joseph M. Newcomer, Dean Rubine.
Tactus: Toolkit-Level Support for Synchronized Interactive Multimedia3rid
International Workshop on Network and Operating System Support for Digital
Audio and Videpll 1992.

[Herr91] Ralf Guido Herrtwich. Time Capsules: An Abstraction for Access to Continuous-
Media DataThe Journal of Real-Time Systems, Kluwer Academic Publjghers
355-376, 3 1991.

[Hewl93] Hewlett-Packard Company and International Business Machines Corporation and
SunSoft Inc.Multimedia System Services, Version 1.0, available via ftp from
ibminet.awdpa.ibm.con? 1993.

[IBM92] IBM Corporation.Multimedia Presentation Manager Programming Reference and
Programming Guide 1.0, IBM Form: S41G-2919-00 and S41G-2926-0992.

[IMA92] Interactive Multimedia Association, Compatibility Project, Annapolis, MD, USA.
Request for Technology: Multimedia System Services, Version 2.0, available via ftp
from ibminet.awdpa.ibm.caoril 1992.

[KrMa85] Jeff Kramer, Jeff Magee. Dynamic Configuration for Distributed SystéaisE
Transaction on Software EngineerjrigE-11(4):424-436, 4 1985.

[MKSD90] Jeff Magee, Jeff Kramer, Morris Sloman, Naranker Dulay. An Overview of the
REX Software Architecture. 18nd IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systert® 1990.

[RAA+90] M. Rozier, V.Abrossimov, F.Armand, |I.Boule, M. Gien, M. Guillemont,
F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, W. Neuhauser. Overview of the
Chorus Distributed Operating Syste@horus Systémes CS/TR-90-24.990.

[RoHe94] Kurt Rothermel, Tobias Helbig. Clock Hierarchies: An Abstraction for Grouping
and Controlling Media Stream$echnical Report 2/94, University of Stuttgatt
1994.

[StEn93] Ralf Steinmetz, Clemens Engler. Human Perception of Media Synchronization.
Technical Report 43.9310, IBM ENC, Heidelberg, Germagag3.

