
- 1 -

Das HiCon-Modell:
Dynamische Lastverteilung

für datenintensive Anwendungen
in Workstation-Netzen

Wolfgang Becker

Fakultätsbericht Nr. 1994 / 4

CR-Klassifikation C.2.4, C.4, D.4.8

Alle Rechte vorbehalten

veröffentlicht vom

Institut für Parallele und Verteilte Höchstleistungsrechner (IPVR)

in der Abteilung Anwendersoftware (Prof. Dr. A. Reuter)

Fakultät für Informatik

Universität Stuttgart

Breitwiesenstr. 20-22, D-70565 Stuttgart

Wolfgang.Becker@informatik.uni-stuttgart.de

- 2 -

Das HiCon-Modell: Dynamische Lastverteilung
für datenintensive Anwendungen in Workstation-Netzen

Kurzfassung:

Das hier vorgestellte Modell versucht im wesentlichen durch drei Ansätze, die Leistungssteige-
rungen durch dynamische Lastbalancierung für ein deutlich breiteres Feld von Anwendungen und
Systemen anwendbar zu machen, als es derzeit möglich ist.

Teilsysteme werden durch zentrale Balancierungsverfahren verwaltet; erst zwischen Teilsystemen
werden dezentrale Verfahren eingesetzt, um hohe Skalierbarkeit zu gewährleisten. Das ermöglicht
Lastverteilung im Zusammenspiel der Anwendungen und Ressourcen und vermeidet kontra-pro-
duktive Entscheidungen unabhängiger Balancierungskomponenten.

Der zweite wichtige Ansatz ist die Berücksichtigung mehrerer Ressourcen für Lastbalancie-
rungsentscheidungen. So können Verteilungsstrategien im HiCon-Modell beispielsweise sowohl
Prozessorauslastungen als auch Datenaffinitäten der Anwendungen im Entscheidungsalgorithmus
kombinieren. Das eröffnet der Lastbalancierung ein weiteres Spektrum unterschiedlicher Anwen-
dungen auf heterogenen Systemen.

Als dritter Schwerpunkt soll Lastbalancierung im HiCon-Modell adaptiv auf aktuelle Systemlast-
und Anwendungsprofile reagieren können. Dazu wird eine Sammlung einfacher Strategien ver-
waltet, zwischen denen zur Laufzeit umgeschaltet wird, um wechselnde Lastprofile mit möglichst
geringem Zusatzaufwand auf dem System zu balancieren.

Der Artikel stellt die Grundideen vor und validiert die Konzepte durch Messung verschiedener
Anwendungen auf einem heterogenen Rechnernetz.

Abstract:

The HiCon model investigates three approaches to exploit performance improvement by dynamic
load balancing for a wider range of applications and systems than it is possible nowadays.

Centralized load balancing schemes manage cells of the whole system. Between cells decentral-
ized strategies are employed to achieve high scalability. This enables harmonized load balancing
of applications and resources and avoids contra-productive decisions of independent load balanc-
ing agents.

The second approach is the consideration of multiple resources for load balancing decisions. For
example, load balancing policies in the HiCon model may combine both processor utilization and
data affinities of the applications for decision making. This opens a wide range of different appli-
cation types for load balancing in heterogeneous environments.

The third issue is the facility to dynamically adapt HiCon load balancing to current system load
and application profiles. Therefore, a collection of simple strategies is maintained. At run-time,
load balancing switches between these strategies to distribute changing load patterns with mini-
mal overhead across the system.

This article introduces the main ideas and validates the concepts through measurement of differ-
ent applications on a heterogeneous computer network.

- 3 -

Inhaltsverzeichnis
1 Einleitung 3

1.1 Das Lastverteilungsproblem in Parallelrechnern und Rechnernetzen 3

1.2 Datenintensive Anwendungen auf lose gekoppelten Systemen 4

1.3 Relevante Forschungsarbeiten und Klassifikation 5

2 Der Lastbalancierungsansatz im HiCon-Modell 6

2.1 Ablaufmodell für Anwendungen 7

2.2 Die Struktur der Lastbalancierung 7

2.3 Auftragsverwaltung und Datenverwaltung 9

2.4 Lastkenngrößen 11

2.5 Netzwerk unabhängiger Lastverteilungskomponenten 12

2.6 Die strategische Lastbalancierung 13

3 Performance-Evaluierung des HiCon-Modells 14

3.1 Strategien zur dynamischen Lastverteilung 14

3.2 Realisierte Anwendungen 16

3.3 Messung und Beurteilung 20

4 Zusammenfassung und Ausblick 24

5 Literaturverzeichnis 25

1 Einleitung

1.1 Das Lastverteilungsproblem in Parallelrechnern und Rechnernetzen

Parallele Rechnersysteme und Computernetze bieten ein Vielfaches der Rechenleistung, die selbst
durch einen schnellen Einzelrechner alleine erreicht werden kann. Daher scheinen sich parallele
und verteilte Rechnersysteme noch in diesem Jahrzehnt zur Lösung der anstehenden rechenauf-
wendigen Probleme (große verteilte Datenbanken, numerische Simulationen, Bildverarbeitung,
etc.) durchzusetzen.

Große Rechnersysteme und Netze werden nicht exklusiv durch eine Anwendung belegt, sondern
viele Benutzer und Rechenaufgaben sind gleichzeitig aktiv. Das ermöglicht eine gute Ausnutzung
der vorhandenen Rechenkapazitäten, sofern die anstehende Last gut über das System verteilt ist.
Das ist jedoch nicht selbstverständlich, da die verschiedenen Anwendungen gegenseitig nicht
voneinander wissen und auch von verschiedenen Stellen aus in das Rechnersystem gelangen. Die
Lastbalancierung der Anwendungen im System besteht in der Zuordnung und Verteilung der
Anwendungen, so daß eine gleichmäßige Auslastung der Ressourcen erreicht wird. Das ver-
spricht den größtmöglichen Durchsatz der Anwendungen insgesamt.

Während ein einzelner Rechner durch eine Anwendung voll genutzt werden kann, ist es sehr
schwierig, eine Anwendung so in verschiedene Teile zu zerlegen, daß sie, auf ein paralleles
System verteilt, tatsächlich schneller abläuft. Probleme wie Datenabhängigkeiten und Kommuni-

- 4 -

kationsaufwand zwischen den Teilen der Anwendung hängen vom verwendeten Algorithmus ab.
Darüber hinaus stellt sich aber auch die Frage, wie die Teilabläufe und Daten sinnvoll auf das
parallele System zu verteilen sind. Die Lastbalancierung einer parallelisierten Anwendung besteht
in der Ausnutzung der Parallelität, soweit sie die Anwendung beschleunigt, und in der Zuordnung
und Gruppierung der parallelen Anwendungsteile auf das System, so daß der Zusatzaufwand
(Synchronisation und Datenaustausch) gering gehalten wird.Gegenüber der Balancierung vieler
unabhängiger Anwendungen bringt die Balancierung parallelisierter Anwendungen die Probleme
der Datenkommunikation mit sich.

Im Gegensatz zu lokaler Lastbalancierung, die einzelne Aufträge so schnell als möglichst abzuar-
beiten versucht, ist es Hauptziel einer globalen Optimierung, den Gesamtdurchsatz des Systems
zu maximieren. Dabei werden Nachteile für einzelne, unkritische Aufträge in Kauf genommen.

In dem hier vorgestellten Projekt sollen heterogene Gemische aus konkurrierend laufenden paral-
lelisierten Anwendungen automatisch balanciert werden, so daß der Gesamtdurchsatz des
Systems maximal wird.

1.2 Datenintensive Anwendungen auf lose gekoppelten Systemen

Nicht alle Sorten von Anwendungen lassen sich durch eine einheitliche Methode auf parallelen
Systemen erfolgreich balancieren. Neben der ungeheuren Komplexität eines allumfassenden Ver-
fahrens ist vor allem der damit verbundene Aufwand prohibitiv. Da in der Praxis nicht alle zur
Lastverteilung relevanten Faktoren im voraus bekannt sind, muß dynamische Lastbalancierung
während der Laufzeit der Anwendungen Entscheidungen treffen. Das verursacht einerseits erheb-
lichen Rechenaufwand und verbraucht so selbst einen Teil der Rechenkapazitäten; andererseits
bringt es Verzögerungen mit sich, weil eine Teilaufgabe erst dann berechnet werden kann, wenn
sie ihrem Zielknoten zugeteilt und dort eingeplant ist.

Wir beschränken uns im HiCon-Modell auf eine Klasse von Anwendungen, in der große, persi-
stente Datenbestände verarbeitet werden. Die später vorgestellten Anwendungen zeigen, daß sich
die Anwendungsklasse nicht allein auf typische Datenbank-Funktionen beschränkt. In Bezug auf
die Lastverteilung haben diese Anwendungen die Eigenschaft, daß nicht nur die Nutzung der
Rechenleistung, sondern auch Beachtung von Datenaffinitäten für den Durchsatz entscheidend ist.
Zudem können häufig beim Start einer Teilaufgabe Abschätzungen über Rechenaufwand und
benutzte Datensätze gemacht werden. Das befähigt die Lastbalancierung, nicht nur auf Beobach-
tung der Systemlast hin zu reagieren, sondern die Last bereits bei der Entstehung vorausschauend
zu plazieren.

Das Granulat sinnvoller Parallelität und die Möglichkeiten der Lastverteilung sind auf verschie-
denen Rechnerarchitekturen sehr unterschiedlich. So können auf SIMD Rechnern sehr fein paral-
lelisierte Algorithmen ablaufen, auf Systemen mit gemeinsamem Speicher kann aufgrund
geringer Nachrichtenkosten feingranular auf gemeinsamen Daten operiert werden. Unsere Unter-
suchungen beziehen sich jedoch auf lose gekoppelte Systeme mit schnellen Prozessoren, die über
relativ langsame Verbindungen verfügen und keine gemeinsamen Ressourcen haben. Wir legen
daher ein heterogenes Netz von Workstations und grobgranularen MIMD Parallelrechnern
zugrunde.

Die lose Kopplung der Rechenknoten verlangt, daß Anwendungen in einige große, in sich
sequentielle Teilaufgaben zerlegt sind. Lastbalancierung hat darauf zu achten, daß der Aufwand

- 5 -

zur Synchronisation und für den Datenaustausch signifikant und daher gering zu halten ist. Zudem
ist in derartigen Rechnernetzen zu berücksichtigen, daß meist mehrere unabhängige Anwendun-
gen konkurrierend auf dem System abzuwickeln sind.

1.3 Relevante Forschungsarbeiten und Klassifikation

Der Großteil der Forschungsprojekte im Bereich der Lastverteilung auf parallelen Systemen hat
sich, ausgehend von der statischen Vorplanung für große Batch-Anwendungen (Scheduling, stati-
sche Anfrageoptimierung), verstärkt in Richtung sehr einfacher, verteilter Verfahren zum dynami-
schen Lastausgleich unkorrelierter Anwendungen bewegt.

Die Grundidee dieser Ansätze ist folgende: Auf jedem Prozessor im System mißt eine Lastvertei-
lungskomponente die Prozessorlast (dabei sind verschiedene Metriken möglich) und tauscht diese
Werte periodisch, oder nach signifikanten Änderungen, mit benachbarten Prozessoren aus. Wenn
auf einem stark belasteten Prozessor ein neuer Auftrag gestartet wird, so versucht die Lastvertei-
lungskomponente, ihn an den Nachbar abzugeben, der zur Zeit am geringsten belastet ist. Einige
Verfahren setzen auch die Migration laufender Prozesse ein, um bestehende Ungleichverteilungen
in der Systemlast zu verringern. Hier versucht die Lastverteilungskomponente, wenn ihr Prozes-
sor erheblich stärker belastet ist als einer der benachbarten, einen laufenden Prozeß an diesen
abzugeben.

Für Übersichten und Klassifikationen der diversen Ansätze verweisen wir auf [13], [25] und [44].
Auf dem Gebiet der statischen Zuweisung von parallelisierten Anwendungen finden sich zahlrei-
che Ergebnisse: In [7], [10] und [37] werden Aufträge zur Minimierung der Kommunikationsko-
sten auf Prozessoren gruppiert; [8] und [38] verteilen unabhängige Aufträge so, daß die
Gesamtlaufzeit minimal wird, bzw. daß die Knotenauslastungen gleich sind ([26], [34]). Zusätz-
lich werden in [11] und [14] Reihenfolgebeziehungen zwischen Aufträgen berücksichtigt. Bei
[31] und [47] werden Transferraten für gegebenes statistisches Lastaufkommen ermittelt, um die
mittlere Antwortzeit einzelner Aufträge zu minimieren.

In [29] und [43] werden statische Lastverteilungsverfahren um dynamische Anpassungen erwei-
tert. Zentral gesteuerte dynamische Lastbalancierungstechniken finden sich in [9], [36], [48]
sowie [49]. Viele Ansätze wurden zur dezentralen dynamischen Auftragszuweisung veröffent-
licht; man unterscheidet, ob überlastete Knoten neue Aufträge weitergeben ([19], [27], [30], [35],
[39], [54]), freie Knoten Aufträge anfordern ([19], [39]), oder explizite Absprachen zwischen
benachbarten Knoten stattfindet [2], [23], [45], [46]. Die Projekte [17], [18], [20], [22], [32], [40]
sowie [55] beschäftigen sich mit der Migration laufender Prozesse zum Lastausgleich bzw. modi-
fizieren die Auftragsgrößen zur Laufzeit [12]. Dynamische Adaption der Lastbalancierungsstrate-
gien, d.h. Anpassung von Schwellwerten und Meßintervallen, wird in [21] und [33] untersucht.
Im Bereich der datenintensiven Anwendungen finden sich Ansätze in [15], [16], [24], [28], [42],
[50] und [52].

Wir wollen das HiCon-Modell1 lediglich anhand zweier Kriterien in das Umfeld dieser Lastbalan-
cierungsarbeiten einordnen. Abbildung 1 zeigt die Informationen, die Lastbalancierungsmethoden
verwenden können. Da die Lastverteilungskomponente im HiCon-Modell als Teil des Betriebssy-
stems angesehen wird, dürfen keine Eigenschaften und Kenntnisse einer speziellen Anwendung

1. Das AcronymHiCon ist älteren Ursprungs und steht fürHIerarchical COntrolled Network computing.

- 6 -

eingesetzt werden. Andererseits genügt es in der hier betrachteten Anwendungsklasse nicht, die
Ressourcenauslastung auf Betriebssystemebene zu messen und für Entscheidungen zu verwen-
den, sondern Anwendungen können der Lastbalancierung durch Profil-Abschätzungen und
Datenzugriffs-Charakteristiken Vorabinformationen über Teilaufgaben liefern.

In Abbildung 2 sind die Aufgaben und damit Einflußmöglichkeiten der Lastbalancierung klassifi-
ziert. Wir beschränken uns im HiCon-Modell in der Auftragsverwaltung auf die Zuweisung von
Aufträgen, da die Migration laufender Prozesse in heterogenen Systemen noch nicht mit vernünf-
tigem Aufwand realisierbar ist. Die Möglichkeit der Auftragsduplikation ist nur für voll funktio-
nale Teilrechnungen, keinesfalls für datenintensive Berechnungen anwendbar: Wenn man einen
Auftrag mehrfach ausgibt, um dann das Ergebnis des schnellsten Bearbeiters weiter zu verwen-
den, darf der Auftrag keine globalen Daten verändern. In der Datenverwaltung stehen den Metho-
den im HiCon-Modell sowohl die Möglichkeit zur Verlagerung von Daten als auch zur (korrekt
synchronisierten) Verteilung von Datenkopien zur Verfügung.

2 Der Lastbalancierungsansatz im HiCon-Modell
Die Untersuchungen im HiCon-Modell ([3], [4]) basieren auf dem Konzept einer Lastbalancie-
rungsumgebung, die es ermöglicht, Effekte verschiedener Methoden zur Lastverteilung anhand
verschiedenartiger Anwendungen auf einem heterogenen Netz von Workstations und Parallel-
rechnern zu evaluieren. Die Anforderungen an eine solche Umgebung sind ein relativ allgemeines
Modell für das Rechnersystem und die Anwendungen, um praxisrelevante Resultate zu erhalten,
sowie geeignete Informations- und Eingriffsmöglichkeiten für Lastverteilungsstrategien. Die
Umgebung selbst muß so effizient sein, daß paralleles Rechnen nutzbar und verschiedene Balan-
cierungsverfahren unterscheidbar bleiben. In diesem Abschnitt werden die wesentlichen Eigen-
schaften des Ansatzes vorgestellt.

Abbildung 1: Klassifikation der genutzten Lastbalancierungsinformationen.

Abbildung 2: Klassifikation der Lastbalancierungsaufgaben.

anwendungs-
spezifisch

anwendungs-
unabhängig

Betriebssystem-
Lastfaktoren

Anwendungs-
Abschätzungen

Auftrags-
Verwaltung

Daten-
Verwaltung

Daten-
Migration

Daten-
Replikation

intra
Prozessor
scheduling

Auftrags-
Zuweisung

Auftrags-
Migration

Auftrags-
Duplikation

- 7 -

2.1 Ablaufmodell für Anwendungen

Je allgemeiner die Ablaufstrukturen, die Kooperation und die Synchronisation in parallelisierten
Anwendungen und zwischen konkurrierenden Aufträgen sind, desto schwieriger ist es, die Ausla-
stung des Systems zu interpretieren, um geeignete Maßnahmen zur günstigeren Lastverteilung
treffen zu können. Es finden sich zahlreiche Arbeiten, in denen ein beliebiges Netz kommunizie-
render Prozesse betrachtet wird. Automatische Lastverteilung ist hier aufgrund der mangelnden
Informationen über die laufenden Anwendungen nur begrenzt möglich. Extreme Leistungssteige-
rungen wurden hingegen in Projekten erreicht, die für spezielle parallelisierte Anwendungen
dedizierte Lastausgleichsverfahren entwickelt haben.

Im HiCon-Modell wird als Ablaufstruktur das Client-Server-Konzept vorausgesetzt, das sich in
Datenbank-Umgebungen und bei nahezu allen größeren, parallelen und verteilten Anwendungen
bewährt hat. Die Teilfunktionen einer Anwendung werden als Serverklassen bezeichnet. Prozesse
(allgemeiner: Ausführungseinheiten), die eine Teilfunktion ausführen können, sind die Server
einer Klasse. Eine Anwendung besteht nun aus Clients, die Aufrufe an Serverklassen durchfüh-
ren, und Servern, die diese Aufrufe bearbeiten. Server können selbst Unteraufrufe an andere Ser-
verklassen absenden und nehmen dabei die Rolle eines Clients an.

In datenintensiven Anwendungen sollten persistente Daten explizit im Verarbeitungsmodell
berücksichtigt werden. Im HiCon-Modell arbeiten Anwendungen mit globalen Datensätzen, die
über Namen identifiziert werden und für die Dauer einer Anwendung existieren oder persistent
sind. Globale Daten können beliebige Hauptspeicher- und Sekundärspeicher-Datenstrukturen
sein. Synchronisation, Datenlokalisierung und Replikationsverwaltung ist für die Anwendung
unsichtbar. Server schützen Zugriffe auf globale Datenbestände durch geeignete Lese- bzw.
Änderungssperren.

Dieses Ablaufmodell verlangt in der Praxis, daß parallelisierte Anwendungen umstrukturiert wer-
den müssen. Die unten angeführten Beispielanwendungen zeigen jedoch, daß ein breites Spek-
trum an Anwendungen sinnvoll nach dem Client-Server-Konzept mit gemeinsamen Datensätzen
ablaufen kann. Dadurch ermöglicht das HiCon-Modell anwendungsunabhängige Lastbalancie-
rung unter Einsatz vieler relevanter Lastfaktoren.

2.2 Die Struktur der Lastbalancierung

Abbildung 3 gibt einen Überblick über die Komponenten zur Abwicklung der Lastbalancierung,
die Komponenten der Anwendungen (Clients, Server und Datenbestände) und das umgebende
Laufzeitsystem. Das Laufzeitsystem sollte Teil eines geeigneten verteilten Betriebssystems sein,
wobei manche Teile heutzutage als Datenbankkomponente oder Transaction-Processing Monitor
realisiert werden. Charakteristisch sind in diesem Systemmodell - im Vergleich zu vielen anderen
Projekten - zum einen die logisch zentralisierten Funktionen der Lastverteilung (Verwaltung der
Systemzustands-Information und Treffen der Balancierungsentscheidungen), zum anderen die
Aufteilung der Lastbalancierung in eine unmittelbar agierende Komponente und eine sogenannte
strategische, welche die dynamische Adaption der Lastverteilung ermöglicht. Es wird keine spe-
zifische Prozessor- oder Netzwerktopologie vorausgesetzt. Das Bild gibt die Struktur eines Teilsy-
stems wieder. Zur Skalierung auf sehr große Systeme können beliebig viele Teilsysteme dieser
Art vernetzt werden (siehe Abschnitt 2.5).

- 8 -

Die Komponentenstruktur zeigt lediglich die logischen Zusammenhänge. In einer Realisierung
werden Teile der Lastverteilungskomponente als zentraler Prozeß, andere Teile als Verwaltungs-
prozeß je Knoten angelegt und weitere Teile werden als Bibliotheksfunktionen an die Server der
Anwendung gebunden.

Lastbalancierung darf das laufende System nicht durch unnötige Aktivitäten stören. Daher ist im
HiCon-Modell nur die Ressourcen-Lastmessungskomponente periodisch aktiv. Sie beobachtet die
Auslastung der Prozessoren, Hauptspeicher, Platteneinheiten sowie der Netzwerkverbindungen.
Signifikante Änderungen werden in der Systemzustandstabelle eingetragen.

Die eigentliche Lastbalancierungskomponente ist passiv, d.h. sie reagiert auf Ereignisse. Für die
Lastverteilung relevante Ereignisse sind im folgenden, nach Häufigkeit sortiert, aufgelistet:

• Entstehung neuer Aufträge. Clients schicken Aufrufe ab, die durch einen Server einer
bestimmten Klasse zu bearbeiten sind.

• Änderungen im Arbeitszustand von Servern. Wie unten erläutert, haben Server lokale Auftrag-
swarteschlangen. Sie können zu beliebigen Zeitpunkten Informationen abgeben, wie weit sie
den aktuellen Auftrag bearbeitet haben, und wie viele Aufträge sich derzeit in der Warte-
schlange befinden. Der einfachste Fall besteht darin, am Ende einer Berechnung mit dem
Ergebnis eine Fertigmeldung zu geben.
Auch Änderungen in der Server-Konfiguration sind möglich.

• Änderungen in der aktuellen Auslastung von Ressourcen. Als Ressourcen werden hier Prozes-
soren, Hauptspeicher, Platten und Netzverbindungen angesehen. Auch Änderungen in der
Systemkonfiguration (Hardware-Komponenten) fallen in diese Ereignisklasse.

Abbildung 3: Struktur der Lastbalancierungsumgebung.

Serverklassen

Laufzeitsystem

Clients

pa
ra

lle
le

 H
ar

dw
ar

e

Daten

R
es

so
ur

ce
n-

la
st

-

Auftrags-
verwaltung

Datenort-
verwaltung

Konfigurations-
verwaltung

m
es

su
ng

Aufrufe &

zentrale

(verteiltes Betriebs- und

Gruppen-
anmeldungen

Datenverwaltungssystem)

be
na

ch
ba

rt
e

Te
ils

ys
te

m
e

Zugriffe

Aktualisierung
der Zustands-
information Bewertung & Zuweisung von Aufträgen

aggregierte Lastinformation

Anpassung der Strategie

Lastbalancierung

- 9 -

• Bewegung von Datensätzen und Entstehung von Datenkopien. Dazu gehört auch die Entste-
hung von globalen Datensätzen, denn Server können zur Laufzeit Datensätze erzeugen und
löschen.

• Zustandsänderungen in einer benachbarten Balancierungskomponente. Bei signifikanten
Änderungen im aggregierten Zustand einer Balancierungskomponente (siehe Abschnitt 2.5)
benachrichtigt diese ihre unmittelbaren Nachbarn.
Zur Laufzeit können auch Änderungen in der hierarchischen Struktur der Lastverteilungskom-
ponenten auftreten, da diese Struktur dynamisch ist.

Je nach momentan aktiver Lastbalancierungsstrategie werden manche dieser Ereignisse berück-
sichtigt, andere ignoriert. Wie unten erklärt wird, muß das Ziel darin bestehen, stets eine mög-
lichst simple Strategie zu verwenden. Im Regelfall werden daher nur wenige Ereignisse größere
Balancierungs-Aktionen nach sich ziehen. Als Folge eines Ereignisses können je nach derzeit
aktiver Lastverteilungsstrategie

• Einträge in der Zustandstabelle vorgenommen werden,

• Routing-Tabellen und Bewertungen von Aufträgen, Servern oder möglichen Zuweisungen
aktualisiert werden,

• Aufträge an Server zugewiesen werden,

• Daten umverteilt bzw. Datenkopien kreiert werden,

• Server zugefügt oder abgeschaltet werden und

• andere Lastbalancierungseinheiten zugefügt oder abgeschaltet werden.

2.3 Auftragsverwaltung und Datenverwaltung

Abbildung 4 zeigt die Struktur der Auftragsverwaltung im HiCon-Modell. Ein Auftrag ist ein
Aufruf eines Clients an einen unbestimmten Server einer bestimmten Klasse. Es ist nicht möglich,
stehende Verbindungen (Sessions) zwischen einem Client und einem bestimmten Server herzu-
stellen. Derartiger Verarbeitungskontext muß in Form globaler Daten in der Serverklasse gespei-
chert werden.

Abbildung 4: Auftragsverwaltung der Lastbalancierungsumgebung.

Auftrag

Auftragszuweisung

zentrale Warteschlangen

Serverklassen

W
er

tu
ng

W
er

tu
ng

lokale Warteschlangen

- 10 -

Der Auftrag wird zunächst in eine zentrale Warteschlange für die Ziel-Serverklasse eingereiht und
durch die Lastbalancierung bewertet. Nun kann der Auftrag zu einem beliebigen Zeitpunkt an
einen Server zugewiesen werden; er braucht dazu nicht am Anfang der zentralen Warteschlange
zu stehen und die lokale Warteschlange des Servers muß auch nicht leer sein. Diese Zuweisung ist
endgültig, d.h. es werden keine Aufträge zwischen lokalen Warteschlangen ausgetauscht. Jeder
Server arbeitet die Aufträge in seiner Warteschlange der Reihe nach ab (sofern er nicht multi-
threaded operiert). Resultate gelangen zum Aufrufer zurück, der entweder direkt auf das Resultat
wartet (synchroner Aufruf) oder später auf verschiedene Resultate wartet (parallele Aufrufe) oder
kein Resultat erwartet.

Lastverteilungsstrategien können bei der Ankunft eines Auftrags Wertungen berechnen, wie vor-
teilhaft momentan eine Zuweisung an welchen Server ist (z.B. nach welcher Zeit der Auftrag dort
vollendet würde) und ihn evtl. sofort zuweisen. Wenn sich danach der Lastzustand im System, der
Arbeitszustand eines Servers oder die Datenverteilung ändern, können die Strategien die warten-
den Aufträge noch einmal durchsehen, neu bewerten und evtl. zuweisen.

Durch diese logisch zentralisierte Auftragsverwaltung ist die übliche Unterscheidung zwischen
sender- und empfängerinitiierten Lastverteilungsstrategien nicht notwendig. Im HiCon-Modell
können viel allgemeiner an verschiedene Ereignisse (siehe oben) unterschiedliche Reaktionen der
Lastbalancierung geknüpft werden.

Weiterhin können Clients Auftragsgruppen anmelden. Dabei bezeichnet der Client die erwarteten
Aufträge mit Namen und kann Informationen über die Gruppe angeben, wie z.B. Reihenfolgeab-
hängigkeiten zwischen Aufträgen und vermutete Auftragsgrößen. Die Aufträge der Gruppe laufen
später als gewöhnliche Serverklassenaufrufe ein, die mit den Namen versehen sind. Die Lastba-
lancierung kann sie daran identifizieren und sie den vorgegebenen Reihenfolgebeziehungen oder
Datenaffinitäten innerhalb der Gruppe angepaßt behandeln. Ein typisches Beispiel für derartige
Auftragsgruppen sind komplexe Datenbankoperationen. Die Teilaufträge eines Anfragegraphen
haben gewisse Ausführungsreihenfolgen und arbeiten auf Zwischenresultaten von Vorgänger-
Teilaufträgen. Hier ist es wichtig, die Aufträge in kritischen Pfaden vorrangig abzuwickeln, um
die Gesamtausführungszeit der Auftragsgruppe zu minimieren. Positive Resultate werden in [6]
bzw. [51] vorgestellt.

Wie die Auftragsverwaltung im Client-Server-Konzept, so ist auch die Datenverwaltung im
HiCon-Modell an Konzepte aus dem Datenbank-Bereich angelehnt. Datensätze sind durch
Anwendungen definierte, mit Namen identifizierbare Objekte. Einzelne Datensätze können zwi-
schen Servern ausgetauscht und kopiert werden. Der aktuelle Ort von Datensätzen und Kopien
wird durch die Zugriffsanforderungen der Server bestimmt: Ein Server fordert Lese- oder Ände-
rungszugriff auf einen Datensatz und erhält daraufhin die Daten. Durch Lastbalancierungsent-
scheidungen kann die Datenverteilung und der Replikationsgrad indirekt über die Zuweisung von
Aufträgen beeinflußt werden.

Die Lastbalancierung kann also die Lokalität von Datenzugriffen begünstigen, indem sie Server
benutzt, die bereits die voraussichtlich benötigten Daten besitzen, oder indem sie Daten auf die
Server verteilt, die später darauf arbeiten sollen. Das setzt voraus, daß Clients zu ihren Aufträgen
Abschätzungen über vermutliche Datenreferenzen mitgeben (siehe Abschnitt 2.4). Keine Lastba-
lancierungsmethode kann jedoch den korrekten Ablauf der Anwendung stören, da die Daten auto-
matisch auf Zugriffsanforderungen hin geschickt werden und dort bleiben, bis die Sperren
freigegeben sind.

- 11 -

2.4 Lastkenngrößen

Strategien zur dynamischen Lastverteilung benötigen zur Laufzeit aktuelle Informationen über
die Belastung der Ressourcen und den Verlauf der Anwendung. Man unterscheidet zumindest
zwischen aktuellen Zustandskenngrößen und aggregierten Angaben, die meist Mittelwerte über
kurze Zeitintervalle sind. Die Gewinnung und Verwaltung akkurater Informationen sowie die
Nutzung dieser Informationen für Balancierungsentscheidungen bringen hohen Aufwand mit sich
(siehe Abschnitte 2.5 und 2.6). Wir listen daher in Tabelle 1 alle verfügbaren Kenngrößen auf mit
dem Hinweis, daß keine Balancierungsstrategie auch nur annähernd alle Größen zusammen nut-
zen kann:

Objekt aktuelle Zustandsgrößen aggregierte Informationen

Server-
klasse

• Zahl der vorhandenen Server
• Zahl der unbeschäftigten Server
• Zahl der Aufträge in der zentralen

Warteschlange

• mittlere Zahl freier Server
• mittlere Länge der zentralen Auftrags-

warteschlange
• mittlere Länge der lokalen Auftrags-

warteschlangen aller Server
• Ankunftsrate der Aufträge
• mittlere Bearbeitungszeit und Daten-

wartezeit je Auftrag,
• Leerlaufzeit zwischen zwei Aufträgen

der Server

Server

• Länge der lokalen Auftragswarte-
schlange + verbleibender Restanteil
des momentan bearbeiteten Auftrags

• vermuteter Zeitpunkt, an dem der
Server seine Warteschlange komplett
abgearbeitet hat

• Ankunftsrate der Aufträge
• mittlere Bearbeitungsdauer pro Auftrag
• Rechenzeitanteil, Anteil an Wartezeit

auf Daten pro Auftragsbearbeitung
• mittlere Leerlaufzeit zwischen zwei

Bearbeitungen

Auftrag
bzw.

Auftrags-
gruppe

• erwarteter Rechenumfang
• Zahl der Plattenzugriffe
• Abschätzungen über zu lesende und

zu ändernde Datensätze oder Berei-
che von Daten.

• vermutete Ausführungsdauer unter
derzeitigen Bedingungen auf
bestimmten Servern

• Reihenfolge-Beziehungen zwischen
den Aufträgen der Gruppe

• Weiterverwendung derselben Daten-
sätze in der Gruppe

• aktueller Bearbeitungszustand der Auf-
tragsgruppe

Datensatz
• Speicherplatzbedarf
• Ort des Originals
• Kopienverteilung im System

• mittlere Transfer-Kosten
• Häufigkeit der Datenverschiebungen
• mittlere Anzahl existierender Kopien.

Tabelle 1: Mögliche Zustandsinformationen über System und Anwendung.

- 12 -

Informationen über Aufträge können vom Client beim Aufruf mitgegeben werden. Diese Anga-
ben sind lediglich Zusatzhinweise für die Lastbalancierung und haben keinen Einfluß auf den kor-
rekten Ablauf der Anwendung. Weiterhin kann die Lastbalancierung eigene Bewertungen zu den
Aufträgen abspeichern.

Informationen über den Systemzustand benachbarter Lastbalancierungskomponenten (siehe
Abschnitt 2.5) werden ebenfalls pro Serverklasse des Nachbarn ausgetauscht. Allerdings werden
sämtliche Daten über die Systemleistung und -Belastung des Nachbarn auf Mittelwerte pro Ser-
verklasse komprimiert, da eine Lastbalancierungseinheit weder die einzelnen Server noch die
Systemkonfiguration der Nachbarn kennen soll.

Die direkt auf Hardware basierenden Lastfaktoren wurden absichtlich zuletzt aufgeführt, um zu
betonen, daß Lastbalancierung im HiCon-Modell - obwohl sie anwendungsunabhängig bleibt -
auch Faktoren auf höherer Ebene sinnvoll einsetzen kann. Die meisten Forschungsprojekte haben
sich bisher darauf beschränkt, die Faktoren auf Systemebene zu betrachten.

2.5 Netzwerk unabhängiger Lastverteilungskomponenten

Zahlreiche Studien haben nachgewiesen, daß eine zentralisierte Lastverteilung nicht unbegrenzt
skalierbar ist. Wird das zu kontrollierende System oder die Anzahl und Häufigkeit von Aufträgen
sehr groß, so verbraucht die Balancierungskomponente selbst viel Speicher und Rechenkapazitä-
ten, und die Verzögerung zwischen Absendung eines Auftrages und dessen Bearbeitungsbeginn
wächst an. Zentralisierte Lastverteilung wird also zum Engpaß, wenn ihr Ressourcenbedarf in
derselben Größenordnung liegt wie der Ressourcenbedarf der laufenden Anwendungen oder die
Verzögerung von Aufträgen in der Größenordnung der eigentlichen Auftragsbearbeitungszeit
liegt.

Zentralisierte Ansätze haben freilich den Vorzug, sämtliche Abhängigkeiten im System und den
Anwendungen zu beachten und einzusetzen, während dezentrale Verfahren nur jeweils kleine
Teile des Systems balancieren und größere Unausgewogenheiten in der Auslastung bzw. Abhän-
gigkeiten von Anwendungen zwischen den Teilsystemen nicht bemerken bzw. sogar kontra-pro-

Rechen-
knoten und
Verbindun

gen

• Rechenleistung, Speicherplatz, Plat-
tenzugriffszeit (statisch)

• Nachrichtendurchsatz /-Verzögerung
(statisch)

• Zahl der hier liegenden Server
• freier Speicher

• Run Queue Length (mittlere Zahl lauf-
bereiter Prozesse)

• Speicherseiten-Auslagerungsrate
(Paging und Swapping)

• Nutzungszeit der Platten-Controller
• Netzauslastung (Nutzungszeit oder

Anteil von Kollisionspaketen)

Teilsystem

• aggregierte Rechenleistung
• mittlere Belastung der Prozessoren
• Warteschlangenlänge je Klasse
• mittlere Länge der lokalen Server-

Warteschlangen je Klasse

• aggregierte Rechenleistung
• mittlere Belastung der Prozessoren
• Warteschlangenlänge je Klasse
• mittlere Länge der lokalen Server-War-

teschlangen je Klasse

Objekt aktuelle Zustandsgrößen aggregierte Informationen

Tabelle 1: Mögliche Zustandsinformationen über System und Anwendung.

- 13 -

duktiv agieren. Diese Schwächen treten bei großen Anwendungen und solchen, die auf globalen,
verteilten Daten operieren, verstärkt zu Tage.

Im HiCon-Modell bekommt eine Lastverteilungskomponente einen möglichst großen Teil des
Systems zur zentralen Balancierung zugewiesen und kann die oben genannten Vorteile nutzen.
Was über die Kapazität einer Komponente hinaus geht, wird auf mehrere Komponenten verteilt.
Zwischen den Balancierungskomponenten können, völlig transparent für die Anwendungen, Last-
informationen, Aufträge und Daten ausgetauscht werden. Solange Anwendungen innerhalb einer
Balancierungskomponente vernünftig ablaufen können und zwischen verschiedenen Komponen-
ten keine allzu großen Lastdifferenzen auftreten, wird alles zentral und somit effizient abgewik-
kelt. Komponenten-übergreifende Aktionen sind dagegen mit zusätzlichem Aufwand verbunden
und treten nur bei groben Auslastungsdifferenzen oder sehr großen Aufträgen bzw. Auftragsgrup-
pen auf.

Die Lastbalancierungskomponenten sind im HiCon-Modell eine im Prinzip beliebig vernetzte
Struktur. Direkt benachbarte Komponenten tauschen Lastinformationen und Aufträge untereinan-
der aus. In der derzeitigen Realisierung ist eine Baumstruktur für die korrekte Verwaltung der
Anwendungen sowie der Daten durch das Laufzeitsystem notwendig, denn an keiner Stelle im
System liegen globale Informationen vor. Ansonsten kennt jede Komponente eine Menge von
Nachbarn und jede Komponente kann gleichermaßen Ressourcen, Anwendungen und Daten ver-
walten.

Zwischen Teilsystemen werden dezentrale Lastbalancierungsverfahren zum Lastausgleich einge-
setzt. Lastbalancierer tauschen periodisch Informationen (siehe Abschnitt 2.4) aus und verschie-
ben Aufträge an Teilsysteme, die weniger belastet sind. In diesem Artikel werden jedoch keine
weiteren Ergebnisse dazu vorgestellt. In [53] finden sich positive Ergebnisse für Lastbalancie-
rungsverfahren, in denen benachbarte Teilsysteme als besondere Server miteinbezogen werden.

2.6 Die strategische Lastbalancierung

Im vorigen Abschnitt wurden grundlegende Probleme von Lastbalancierungsstrukturen angespro-
chen und potentielle Engpässe dadurch vermieden, daß die Menge von Informationen und Häufig-
keit von Entscheidungen pro zentraler Lastverteilungskomponente in akzeptablem Rahmen
bleibt.

Optimale Lastbalancierungsentscheidungen sind jedoch NP-vollständig, d.h. der Aufwand für die
bestmögliche Verteilung der Arbeitslast auf das System unter Berücksichtigung aller relevanter
Faktoren wächst exponentiell mit der Anzahl der Systemkomponenten und mit der Anzahl der
Aufträge im System. Um Lastbalancierung zur Laufzeit durchführen zu können muß man daher
auf optimale Lösungen verzichten und möglichst einfache Heuristiken einsetzen, die das theoreti-
sche Durchsatz-Optimum annähernd erreichen. Zudem sind die Informationen, auf denen die
Balancierungsentscheidungen basieren stets unvollständig, ungenau und veralten sehr schnell, so
daß die Voraussetzungen zur Anwendung ‘optimaler’ Verfahren nicht gegeben sind.

Heuristische Balancierungsstrategien sind nicht für jedes System und jede Lastsituation gleicher-
maßen geeignet. Im HiCon-Modell soll daher eine sogenannte strategische Komponente das
System- und Anwendungsverhalten in groben Zügen beobachten und versuchen, jeweils die best-
passende Heuristik zur Lastverteilung zum Einsatz zu bringen. Dazu verfügt die Lastbalancierung
über einen Vorrat an einfachen Strategien, die mit Lastkenngrößen versehen sind. Durch periodi-

- 14 -

schen Vergleich des Systemverhaltens mit den Kenngrößen dieser Strategien kann die strategische
Komponente erkennen, wann die momentan laufende Strategie durch eine bessere zu ersetzen ist.

Die Herausforderung dieses adaptiven Ansatzes ist weniger die Realisierung der Strategiewechsel
als die Bestimmung der relevanten Lastindikatoren, welche die Anwendbarkeit der Strategien
unterscheiden. Unten werden einige der bisher verfügbaren Strategien vorgestellt und in Messun-
gen aufgezeigt, daß sie signifikant unterschiedliche Resultate aufweisen. Die Gewinnung und
Evaluierung geeigneter Unterscheidungsfaktoren ist derzeitig Hauptgegenstand der Bemühungen
im HiCon-Modell. Wir können daher in diesem Artikel noch keine Messergebnisse und Erfahrun-
gen vorstellen.

3 Performance-Evaluierung des HiCon-Modells

3.1 Strategien zur dynamischen Lastverteilung

Die bisher im HiCon-Modell realisierten Strategien zur dynamischen Lastverteilung haben einige
Eigenschaften gemeinsam. Zunächst kann jede der Strategien eine beliebige Methode zur initialen
Datenverteilung vorgeschaltet werden. Derzeit sind verfügbar:

• Do Nothing. Neu entstandene Datensätze bleiben bei dem Server, der sie erzeugt hat.

• Distribution. Datensätze werden nach einer Hash-Funktion reihum auf die Server verteilt, d.h.
beiN Servern wird ein Datensatz zum Serverh(Name) modulo N migriert.

• Blocking. Hier werden Gruppen von Datensätzen reihum auf Server verteilt. BeiB Datensätzen
pro Block wandert ein Datensatz zum Serverh(Name) / B modulo N.

Diese anfängliche Verteilung geschieht jeweils nur innerhalb der Server derselben Klasse und
innerhalb einer Lastbalancierungskomponente. Durch Datenanforderungen der Anwendungen
oder durch dynamische Lastbalancierungsentscheidungen können die Datensätze im Laufe der
Zeit wieder völlig anders verteilt werden.

Weiterhin nutzen alle hier besprochenen Strategien die lokalen Auftragswarteschlangen der Ser-
ver nur bis zu einer festen Grenze aus. Das muß nicht notwendigerweise so sein; der Einfluß auf
den Erfolg der Strategien wird in [5] genauer untersucht. Die meisten Strategien reagieren nur auf
zwei Ereignisse: der Ankunft eines neuen Auftrags und der Zustandsänderung eines Servers. Die
StrategienData Locality undDLPS1 reagieren zusätzlich auf die Bewegung von Datensätzen. Bei
allen anderen Ereignissen tragen die Strategien lediglich die Änderungen in der Zustandstabelle
ein. Die Kooperation zwischen verschiedenen Lastbalancierungskomponenten wird bisher in kei-
ner Strategie genutzt. Die im folgenden skizzierten Strategien versuchen jedesmal, wenn sie akti-
viert werden, Aufträge aus der zentralen Warteschlange an geeignete Server zuzuweisen.
Momentan führt keine Strategie zusätzliche Aktionen, wie etwa Änderungen der Server-Konfigu-
ration oder Verlagerung von Datensätzen, durch.

• Round Robin. Die Server jeder Klasse bekommen reihum Aufträge zugewiesen. Für jeden
ankommenden Auftrag steht also sofort fest, von welchem Server er bearbeitet wird. Die Stra-
tegie weist allerdings immer nur den ältesten Auftrag zu. Neuere Aufträge müssen daher evtl.
warten, wenn der Server, der den ältesten Auftrag erhalten soll, gerade belegt ist (d.h. seine
lokale Auftragsschlange bis zur fixen Grenze aufgefüllt ist).

- 15 -

• First Free. Im Unterschied zur obigen Strategie versucht diese, den ältesten Auftrag dem näch-
sten freien Server zuzuweisen; sie überspringt also belegte Server. Sie reagiert dadurch dyna-
misch auf das Systemverhalten, indem sie den Servern, die Aufträge schneller erledigen, mehr
Aufträge zuweist.

• Shortest Queue. Ähnlich derFirst Free Strategie werden Aufträge hier jedoch nicht reihum,
sondern jeweils dem Server mit der kürzesten lokalen Auftragsschlange zugewiesen. In Situa-
tionen hoher Parallelität verhält sie sich genau wieFirst Free, denn es warten stets Aufträge,
und sobald ein Server wieder Platz bietet, bekommt er einen weiteren.

• Data Locality. Für jeden Auftrag wird der Server herausgesucht, der momentan den größten
Teil der vermutlich benötigten Daten lokal vorliegen hat. Dazu werden die Abschätzungen ver-
wendet, die der Client beim Aufruf mitgegeben hat. Wenn dieser beste Server (oder einer, der
in einem Toleranzbereich dem besten nahekommt) noch nicht belegt ist, so erhält er den Auf-
trag. Bei jedem Ereignis wird, beginnend beim ältesten Auftrag, die zentrale Warteschlange
soweit abgearbeitet, bis ein Auftrag nicht zugewiesen werden kann.
Die Strategie versucht also hauptsächlich, dynamisch die Datenkommunikation zwischen den
Servern zu minimieren (Nutzung der Datenaffinität). Durch den Toleranzbereich reagiert sie
jedoch wieFirst Free auch auf die tatsächlichen Ausführungszeiten der Aufträge.

• Processor Speed. Diese Strategie wählt unter den verfügbaren Servern (deren Auftrags-
schlange nicht voll ist) denjenigen, dessen Prozessor die höchste Rechenleistung bietet. Dazu
wird die volle Rechenleistung (durch Benchmarks zu bestimmen) durch die aktuelle soge-
nannte Run Queue Length dividiert. Die Run Queue Length ist die mittlere Anzahl laufbereiter
Prozesse auf dem Prozessor.
Diese Strategie ist eine andere Verfeinerung vonFirst Free, die versucht, die gesamte Prozes-
sorleistung im System voll auszunutzen. Viele Ansätze dezentraler Lastverteilung verwenden
diese Metrik zur Bestimmung des geeigneten (Nachbar-) Prozessors oder als Kriterium zur
Migration von Aufträgen.

• DLPS1 (Data Locality & Processor Speed). Diese Methode kombiniert alle Faktoren, die in
den letzten drei Strategien betrachtet wurden. Im Prinzip versucht sie jeden Auftrag, beginnend
beim ältesten, demjenigen Server zuzuweisen, der ihn am ehesten fertigstellen wird. Auch sie
bricht ab, wenn sie einen Auftrag nicht zuweisen kann, weil der beste Server bereits voll belegt
ist.
Der Zeitbedarf für einen AuftragA, wenn er von ServerS ausgeführt wird, wird folgenderma-
ßen abgeschätzt: Zuerst müssen alle Aufträge inS’s Warteschlange bearbeitet werden. Man
nimmt an, daß jeder soviel Zeit benötigt, wie der letzte Auftrag, denS bearbeitet hat. Dann
mußA berechnet werden. Die vom Client angegebene Instruktionszahl wird durch die momen-
tan verfügbare Prozessorleistung geteilt (sieheProcessor Speed). Zuletzt müssen die Wartezei-
ten auf nicht-lokale Datensätze berücksichtigt werden. Für jeden fehlenden Satz wird die Zeit
zuaddiert, dieS beim letzten Heranschaffen des Satzes warten mußte. Dabei werden nur Ände-
rungszugriffe betrachtet. Lesende Zugriffe gelten als kostenlos, um eine hohe Parallelität zu
erreichen.

• DLPS2. Diese Strategie ist eine Abwandlung vonDLPS1. Sie bewertet die Kosten für den
Datentransport absichtlich schwächer, ignoriert aber die Kosten für Datenkopien bei Lesezu-
griffen nicht ganz.

- 16 -

Dieser Vorrat an Strategien ist weder umfassend noch das Optimum, was im Rahmen der hier vor-
gestellten Konzepte an Balancierungsmethoden möglich ist. Er soll nur zeigen, daß Unterschiede
zwischen Strategien bestehen und eine strategische Ebene der Lastverteilung Nutzen bringen
kann.

3.2 Realisierte Anwendungen

Bisher wurden drei verschiedenartige Anwendungen unter dem vorgestellten Lastbalancierungs-
modell realisiert. Sie sind absichtlich aus verschiedenen Bereichen gewählt, die nicht zu den klas-
sischen Datenbank-Anwendungen zählen. Dadurch wird ersichtlich, daß der in Abschnitt 1.2
erklärte Begriff ‘datenintensive Anwendung’ in der Praxis einen recht großes Anwendungsspek-
trum umfaßt. Es folgt die Beschreibung der verwendeten parallelen Algorithmen und der verteil-
ten Datenstrukturen.

3.2.1 Wegesuche in gerichteten Graphen

Diese Anwendung sucht in einem gerichteten Graphen, dessen Kanten unterschiedliche Längen
besitzen, den kürzesten Weg zwischen zwei vorgegebenen Knoten. Zur Lösung wurde eine Brei-
tensuche ausgewählt. Ein Client steuert die Suche vom Startpunkt zum Ziel folgendermaßen:

Er ruft die ServerklasseGFind auf mit einer Liste von Knoten, von denen aus weiter in Richtung
Zielknoten gesucht werden muß. Zu Anfang ist diese Liste nur der Startknoten, im weiteren Ver-
lauf besteht sie aus den Ergebnis-Knoten derGFind Aufrufe. Die ServerklasseGFind erhält als
Eingabeparameter eine Liste von Knoten und gibt die Liste der Knoten zurück, die von dort aus in
einem Schritt direkt erreichbar sind. Dabei verwaltet sie eine Liste der bisher erreichten Knoten
samt den Kosten. Sie gibt nur diejenigen erreichten Knoten zurück, die bisher noch nicht oder nur
teurer erreicht wurden. Abbildung 5 skizziert links die Aufteilung von Ergebnisknoten für Folge-
aufträge. Die Startaufträge werden weitmöglichst so aufgeteilt, daß die Startpunkte in derselben
oder in benachbarten Datenpartitionen liegen.

Der Graph ist in Form mehrerer Dateien abgespeichert. Eine Datei enthält jeweils alle Kanten, die
von einem bestimmten Knotenbereich ausgehen (Abbildung 5 deutet rechts die Aufteilung des
Graphen an). Jede Datei bildet einen Datensatz bezüglich der Lastbalancierung, ist also das Gra-
nulat der Verteilung und Synchronisation. Die temporäre Liste der bisher in der Suche erreichten
Knoten wird als Datenfeld im Hauptspeicher gehalten. Auch dieses Feld ist für die Parallelarbeit
nach Nummernbereichen der erreichten Knoten partitioniert.

Da der Graph während der Suche statisch ist, lohnt es sich, zum parallelen Suchen Kopien zu ver-
teilen. Die Geschwindikeitssteigerung durch Parallelarbeit wird aber durch die Änderungsopera-
tionen auf der gemeinsamen Liste der erreichten Knoten beschränkt. Neben der gleichmäßigen
Ausnutzung der Prozessoren kann Lastbalancierung den Ablauf extrem beschleunigen, indem sie
Aufträge an diejenigen Server vergibt, die den größten Teil der vermutlich benötigten Zeilen in
der Liste lokal vorliegen haben.

Für die Messungen wurde ein Auftragsgranulat in der Größenordnung von 10 - 100 Sekunden
Verarbeitungszeit (auf Workstations) gewählt. Die 20 Dateien des Graphen haben im Mittel eine
Größe von 15 KByte. Die Liste der erreichten Knoten wurde - wegen der hohen Änderungsrate
etwas feiner - in 50 Partitionen zu je 80 Byte aufgeteilt. Gesucht wurde auf einem Graphen mit
1000 Knoten und 50000 Kanten, der so generiert wurde, daß im Mittel 95% der Kanten zwischen

- 17 -

Knoten derselben Graph-Partition verlaufen. Dieses Maß an Lokalität im Graphen hat starken
Einfluß auf das Parallelisierungs- und auf das Lastbalancierungspotential: Wenn sich die Suche
innerhalb eines Schrittes sehr zerstreut (d.h. die Liste der erreichten Knoten beinhaltet Knoten aus
vielen verschiedenen Partitionen), müssen die Folgeaufträge auf einer Vielzahl von Partitionen
arbeiten oder das Granulat der Folgeaufträge muß sehr klein gemacht werden.

3.2.2 Flächensegmentierung zur Bilderkennung

Aufgabe der Flächensegmentierung ist es, ein gegebenes Punktrasterbild in eine Menge homoge-
ner Flächen (Polygone) zu konvertieren. Eine Fläche soll farblich beieinander liegende Punkte
mit einem kleinen Anteil von Ausnahmen enthalten. Der verwendete Algorithmus [41] besteht
aus vier Schritten (siehe auch Abbildung 6): Ausgehend von einer initialen Rasterung wird ver-
sucht, benachbarte Quadrate zusammenzufassen (Square Merge), sofern das neue Quadrat eine
homogene Fläche ergibt. Parallel dazu werden die Quadrate solange verfeinert (Square Split), bis
jedes Quadrat eine homogene Fläche enthält. Danach werden soviel als möglich benachbarte
Quadrate zu beliebigen Polygonen zusammengefaßt (Polygon Merge). In der letzten Phase wer-
den die Kantenzüge berechnet, welche die Polygone umgeben (Boundary Search). Im wesentli-
chen werden zwei globale Datenstrukturen verwendet: Ein zweidimensionales Datenfeld enthält
für jeden Bildpunkt die Farbe und die derzeitige Zuordnung zu einer Fläche; eine Liste enthält für
jede Fläche statistische Informationen (Farbmittelwert und Anteil der einzelnen Farben) bzw. eine
Zugehörigkeit zu einer anderen Fläche.

Split- und Merge-Operationen sind meist sehr feingranular (wenige Millisekunden). Daher wer-
den sie, wo möglich, nach Bildsegmenten zusammengefaßt in einem Aufruf bearbeitet. Dennoch
ist die Anzahl und das Granulat der Aufträge stark von der jeweiligen Bildstruktur abhängig und
beeinflußt die sinnvoll nutzbare Parallelität. In der Polygon-Merge Phase ist es nicht mehr so gut
möglich, die Operationen auf disjunkte Bildteile anzusetzen, da die Polygonformen beliebig sind.

Abbildung 5: Aufteilung der Aufrufstartpunkte und der Graphdaten in der Wegesuche.

Suchauftrag mit 2 Startknoten

Ergebnis dieses Suchauftrages,

Datenpartition

das in 2 Folgeaufträge zerteilt wird

- 18 -

Das verursacht je nach Bildstruktur starke Datenkommunikation und schränkt die Parallelität ein.
Dieselbe Beobachtung gilt auch für die anschließende Berechnung der Polygonränder.

Die hier vorgestellten Messungen basieren auf dem in Abbildung 7 links oben gezeigten Pixelmu-
ster, der Luftaufnahme einer Landschaft. Rechts oben ist das Zwischenergebnis nach den ersten
beiden Schritten, unten das Resultat (links die eingefärbten Polygone verkleinert, rechts nur die
Umrandungen) gezeigt. Das Datenfeld der Bildpunkte besteht aus 900 Partitionen zu je 256 Byte,
die Liste der ca. 3300 entstanden Flächen ist in 410 Blöcke der Größe 1400 Byte partitioniert. Die
Bearbeitungszeit pro Auftrag liegt zwischen 0.1 und 20 Sekunden. Von der Gesamtrechenzeit ent-
fallen etwa 15% auf die Phase Square-Merge und -Split, 75% auf Polygon-Merge und 10% auf
die Phase Boundary-Search.

3.2.3 Verwaltung geometrischer Objekte mit Hilfe von R-Bäumen

Die dritte realisierte Anwendung führt geometrische Operationen auf Polygonen durch [1]. Poly-
gone werden in Relationen abgespeichert; zu jeder Polygon-Relation wird zusätzlich ein R-Baum
verwaltet, der inhaltsbezogene Zugriffe beschleunigt. Dies ist eine in Datenbank-basierten CAD-
Systemen und geographischen Anwendungen übliche Struktur. Inhaltsbezogene Zugriffe sind
Selektionen oder Verbundoperationen mit räumlichen Suchprädikaten: Überlappung / Enthaltens-
ein / Höchstabstand zwischen geometrischen Objekten.

Sowohl die Polygone einer Relation als auch die Knoten des zugehörigen R-Baums sind partitio-
niert und auf verschiedene Dateien verteilt (siehe Abbildung 8; die Rechtecke sind jeweils Daten-
Partitionen). Die Anwendung realisiert eine Mischung von Einfüge-, Selektions- und Verbundo-
perationen auf mehreren Polygon-Relationen, die größtenteils parallel ablaufen dürfen. Das Auf-
suchen und Kombinieren von Tupeln besteht nur aus lesenden Zugriffen auf die Zugriffs- und
Datenstrukturen. Diese Operationen können durch Verteilung der Polygone und der passenden R-
Baumteile bzw. durch Anlegen von Kopien effizient parallelisiert werden.

Bei Einfügeoperationen müssen Zugriffs- und Datenpartitionen modifiziert werden. Im Gegensatz
zu eindimensionalen B+-Bäumen beschränken sich die Änderungen meist nicht auf die Blätter,

Abbildung 6: Schritte des Bildsegmentierungs-Algorithmus.

Square
Merge

Square
Split

Polygon
Merge

Boundary
Search

- 19 -

sondern die umgebenden Rechtecke müssen relativ weit den Baum hinauf angepaßt werden.
Parallele Einfügeoperationen verlangen daher von der Lastbalancierung gute Ausnutzung der
Datenaffinität und schränken die Anzahl der Datenkopien ein. Ein weiteres Problem besteht darin,

Abbildung 7: Zur Messung der Flächensegmentierung verwendetes Bild.

Abbildung 8: Verteilte Datenstrukturen zur Verwaltung der Polygone.

- 20 -

daß Einfügeoperationen sehr feingranular sind, während Selektionen und Verbunde (eine Selek-
tion / ein Verbund wird hier nicht in sich parallelisiert) relativ große Operationen sind.

Für die Messungen werden insgesamt 3000 Polygone eingefügt und 600 Selektionen mit räumli-
chen Prädikaten durchgeführt (siehe auch Abbildung 13). Die Polygone sind in 325 Dateien zu je
ca. 10 KByte partitioniert, die Zugriffstrukturen belegen 25 Dateien einer Größe um 1 KByte.

3.2.4 Weitere Anwendungen

Um das Spektrum der Awendungen zu erweitern, werden derzeit ein exakter Löser für lineare
Gleichungssysteme, ein Szenario relationaler Datenbankoperationen sowie eine Spannungsbe-
rechnung in Körpern mit Methode der finiten Elemente auf die Lastbalancierungsumgebung por-
tiert.

3.3 Messung und Beurteilung

3.3.1 Lastbalancierung zur Effizienzsteigerung einer einzelnen Anwendung

Alle in diesem Abschnitt vorgestellten Messergebnisse basieren auf dem in Abbildung 9 skizzier-
ten System. Die Lastbalancierungskomponente sowie die Clients der Anwendungen wurden auf
einem relativ langsamen Prozessor (A) angesiedelt, die Server jeweils auf die übrigen Prozesso-
ren verteilt. Die Server der Wegesuche und der geometrischen Objektverwaltung arbeiten mit per-
sistenten Daten und können daher nur auf die Rechner E .. H verteilt werden, die mit lokalen
Platten ausgestattet sind.

Abbildung 10 gibt einen Überblick des Potentials an Parallelität, das in den oben vorgestellten
Algorithmen auf der Messumgebung enthalten ist. Man beachte dabei, daß diese Messungen alle
unter derselben LastverteilungsstrategieFirst Free mit der initialen DatenverteilungData Blok-
king durchgeführt wurden (beschrieben in Abschnitt 3.1) und daher nicht das theoretische Paralle-
lisierungspotental angeben. Die Werte sind jeweils Durchschnitte aus fünf identischen Meßläufen.
Im Bild wurden die Meßreihen unter Verwendung eines, zweier, dreier ... Prozessoren als Balken
aufgetragen. Sie sind auf der X-Achse nach der Gesamtrechenleistung der beteiligten Prozessoren
positioniert.

Abbildung 9: Die für die Messungen verwendete Konfiguration.

28
MIPS

16
MIPS

34
MIPS

18
MIPS

28
MIPS

28
MIPS

34
MIPS

34
MIPS

Netz: 10 MBit/s Durchsatz, 500 µs Latenzzeit

A B C D

E F G H

- 21 -

Mit der relativ simplen Lastbalancierungsstrategie läßt sich die Wegesuche auf bis zu drei Prozes-
soren effizient parallelisieren. Darüber wird die Synchronisation der Änderungsoperationen auf
der Erreichbarkeitsliste zu teuer. Die Flächenerkennung zeigt auch bei fünf Prozessoren noch
Geschwindigkeitssteigerungen. Bemerkenswert ist, daß hauptsächlich die Merge-Phase beschleu-
nigt wird, während die übrigen Phasen relativ konstant bleiben. Die R-Baum-Operationen lassen
sich mit dem gewählten Operations-Mix insgesamt nicht gewinnbringend parallelisieren. Der
Anteil der Einfügeoperationen ist so groß, daß die leichten Gewinne durch parallele Selektionen
nicht genügend ausgleichen können.

Abbildung 11 vergleicht die Laufzeiten der parallelen Anwendungen unter Einsatz der Strategie
DLPS2 mir den obigen (First Free). Dies soll verdeutlichen, daß die Verwendung von unter-
schiedlichen Lastverteilungsstrategien signifikanten Einfluß auf die Laufzeiten hat.

Die Wegesuche läßt sich durch die Strategie DLPS2 auch noch auf vier Prozessoren effizient
rechnen, denn durch die Berücksichtigung der Datenaffinitäten können mehr Updates der Erreich-
barkeitsliste lokal abgewickelt werden. Abbildung 12 zeigt links das Laufzeitverhalten der Server.
Über die Zeitachse sind die Zeitanteile aufgetragen, die die Server zum tatsächlichen Rechnen,
beim Warten auf und Austauschen von Daten bzw. im unbeschäftigten Zustand verbracht haben.
Die Flächenerkennung lief langsamer ab als unterFirst Free, weil in der Merge-Phase nicht alle
Server eingesetzt wurden (in der Mitte von Abbildung 12 ist das Laufzeitverhalten gezeigt): Die
Datenmigrationskosten wurden teilweise überschätzt bzw. der mögliche Gewinn durch das Anle-

Abbildung 10: Speedup-Verhalten der Anwendungen bei einfacher Lastbalancierung.

Abbildung 11: Vergleich der Strategien First Free und DLPS2.

∑ Rechenleistung [MIPS]

Ø Laufzeit [sec]

2000
1000

0 100
∑ Rechenleistung [MIPS]

Ø Laufzeit [sec]

2000
1000

0 100

Wegesuche

∑ Rechenleistung [MIPS]

Ø Laufzeit [sec]

1000
500

0 100

square
split &

boundary
search

polygon merge

merge

Selektion

Einfügen

Flächenerkennung R-Bäume

Ø Laufzeit [sec]

2000
1000

0

F
F

D
LP

S
2

Wegesuche Flächenerkennung

F
F

D
LP

S
2

F
F

D
LP

S
2

R-Bäume

- 22 -

gen von Kopien unterschätzt. Die R-Baum-Operationen wurden deutlich effizienter, da vor allem
beim Einfügen von Polygonen verstärkt auf lokal vorliegenden Teilen der Bäume gearbeitet wer-
den konnte (Abbildung 12 zeigt rechts das Laufzeitverhalten der Server).

3.3.2 Lastbalancierung zur Durchsatzsteigerung bei homogenen Lasten

Um den Einfluß der Lastbalancierung im Mehrbenutzerbetrieb zu analysieren, zeigt Abbildung 14
Laufzeiten der Anwendungen, die jeweils mehrfach parallel abliefen. Die Wegesuche findet Pfade
zwischen drei verschiedenen Start- und Zielpunkten (auf demselben Graph). Die Flächenerken-
nung analysiert drei verschiedene Bilder. Auf den R-Bäumen werden Einfüge- und Selektionso-
perationen konkurrierend durchgeführt; im Unterschied zu Abschnitt 3.3.1 werden auch alle
Selektions- und Einfügephasen zueinander parallel bearbeitet (siehe Abbildung 13). Um das Pro-
fil realistischer zu gestalten, wird die maximale Parallelität - wie auch in Abschnitt 3.3.1 - vom
Client auf 40 begrenzt.

Der Speedup ist im Mehrbenutzerbetrieb weniger interessant, da mehrere unabhängige Anwen-
dungen problemlos auf das System verteilt werden können. Hier sind jedoch auch die einzelnen
Anwendungen in sich parallelisiert. Die Lastbalancierung muß also dieselben Probleme wie in
Abschnitt 3.3.1 erfassen; als Zusatz kommen hier die höhere Systemlast und häufigere Lastbalan-
cierungsereignisse.

Die Wegesuche zeigt bis auf Ausnahmen bessere Laufzeiten mit zunehmender Komplexität der
Lastbalancierungsstrategie, während bei der Flächenerkennung die einzelnen Phasen sehr unter-
schiedlich auf die Strategien reagieren. Die erste Phase der Flächenerkennung läuft unterData
Locality und DLPS1 deshalb lange, weil die Lastbalancierung für die vielen kurzen Aufträge
zuviel Aufwand treibt, da diese viele benutzte Datenbereiche angeben. Bei den R-Baum-Opera-
tionen können, wie schon im Einbenutzerbetrieb beobachtet, durch verfeinerte Strategien vor

Abbildung 12: Arbeitsprofile der Server unter der Strategie DPLS2.

se
rv

er
.3

se
rv

er
.4

se
rv

er
.2

se
rv

er
.0

se
rv

er
.1

server instance usage

G
F

in
d.

3
G

F
in

d.
2

G
F

in
d.

1
G

F
in

d.
0

% idle
% data wait
% busy

time

Wegesuche

Flächenerkennung

R-Bäume

se
rv

er
.3

se
rv

er
.2

se
rv

er
.0

se
rv

er
.1

- 23 -

allem die kritischen Einfügeoperationen optimiert verteilt werden, was teilweise zu Lasten der
Retrieval-Operationen geht.

Die StrategieData Locality schneidet sichtbar schlecht ab, weil die alleinige Betrachtung der
Datenaffinitäten dazu führt, daß einige Server mehr und mehr Datensätze auf sich konzentrieren
und damit zunehmend viele Aufträge erhalten, während andere leerlaufen. Insbesondere bei star-
ker Last im Mehrbenutzerbetrieb ist es für den Lastausgleich wichtig, unabhängige Aufträge zu
verstreuen.

3.3.3 Lastbalancierung zur Durchsatzsteigerung bei Mischlasten

Als letzte Meßreihe beobachten wir ein heterogenes Gemisch von Lasten auf dem System unter
verschiedenen Balancierungsstrategien. Dazu werden die drei Anwendungen konkurrierend abge-
wickelt. Als Rechnernetz wurden für die Server die Knoten E, F, G und H gewählt. Man beachte,
daß nun pro Knoten mehrere Server, nämlich einer je Klasse, zur Verfügung stehen. Abbildung 15
gibt die Ausführungszeiten wieder. Alle Wegesuchen sind als letzte beendet, während es von der
angewandten Strategie abhängt, ob die Bilderkennungsberechnungen oder die R-Baum-Operatio-
nen zuerst abgeschlossen sind. Im Bild werden die Abschlußzeiten der Anwendungstypen neben-
einander aufgezeichnet. Sie liefen aber tatsächlich nicht nacheinander, sondern vollständig
parallel zueinander ab. Neben der höheren Last und häufigeren Balancierungsentscheidungen

Abbildung 13: Ablauf der Operationen auf R-Bäumen für die Messungen.

Abbildung 14: Laufzeitverhalten bei homogenen Lasten unter verschiedenen Strategien.

1000 * Einfügen

200 *Selektion

3000 * Einfügen 600 * Selektion

Einbenutzerprofil Mehrbenutzerprofil

3
Ite

ra
tio

ne
n

Ø Laufzeit [sec]

0

Wegesuche Flächenerkennung

D
LP

S
2

R-Bäume

D
LP

S
1

P
S

D
L

S
Q

F
F

R
R

D
LP

S
2

D
LP

S
1

P
S

D
L

S
Q

F
F

R
R

D
LP

S
2

D
LP

S
1

P
S

D
L

S
Q

F
F

R
R

1000
3000

2000

- 24 -

kommt hier das Problem hinzu, daß eine Strategie nicht auf alle Anwendungsprofile zugleich hin
optimiert werden kann.

Insgesamt sind im Vergleich zur trivialen Balancierung (Round Robin) deutliche Leistungssteige-
rungen durch die meisten Strategien erkennbar. Die Lastbalancierung im HiCon-Modell wirkt
sich also auch bei hoher, heterogener Systembelastung nicht störend aus, sondern ist in der Lage,
den Gesamtdurchsatz zu erhöhen. Die detaillierten Ablaufprofile der einzelnen Anwendungen
sollen hier nicht analysiert werden. Sie führen aber insgesamt zu dem Schluß, daß bei sehr hetero-
genen Lastprofilen das Wechseln zwischen kompletten Strategien wenig Erfolg verspricht. Viel-
mehr sollten dann Strategien eingesetzt werden, die jeden einzelnen Auftrag nach einer groben
Einordnung passend behandeln. Beispielsweise sollten kurze Aufträge beliebig verteilt werden,
kurze Aufträge mit hohem Anteil an Datenänderungen rein nach Datenaffinität und lange Auf-
träge nach gleichmäßiger Prozessorauslastung. Diese Beobachtung deckt sich mit dem in
Abschnitt 2.6 vorgestellten Konzept, daß sehr heterogene Profile entsprechend komplexerer Stra-
tegien bedürfen, während homogene Phasen gut durch spezielle, einfache Strategien zu balancie-
ren sind.

4 Zusammenfassung und Ausblick
Dieser Artikel gab eine Einführung in die Problematik der Lastbalancierung, gefolgt von einer
Vorstellung der Konzepte, die im HiCon-Modell entwickelt und untersucht werden. Der Artikel
will vorrangig die vorgestellten Konzepte zur dynamischen Lastbalancierung plausibel machen.

Da der Großteil der realisierten und simulierten Konzepte in Forschungsprojekten völlig dezen-
trale Verfahren verwendet, wurde hier gezeigt, daß es durchaus sinnvoll ist, Teilsysteme durch
zentrale Balancierungsverfahren zu verwalten. Es wurde gezeigt, daß verschiedene Ressourcen,
nicht nur die Systemgröße ‘CPU queue length’, für Balancierungsentscheidungen relevant sind.
Die Konzepte der zentralen Balancierungsstrategien unter Betrachtung verschiedener Ressourcen
wurden mithilfe von Messungen verschiedener Anwendungen auf realen Systemen evaluiert. Die
Zweckmäßigkeit dezentraler Erweiterungen und adaptiver Strategiewechsel wurde lediglich plau-
sibel gemacht; genauere Auswertungen sind momentan in Arbeit.

Abbildung 15: Laufzeitverhalten bei Mischlasten unter verschiedenen Strategien.

Ø Laufzeit [sec]

4000
2000

0

Wegesuche + Flächenerkennung + R-Bäume

D
LP

S
2

D
LP

S
1

P
S

D
L

S
Q

F
F

R
R

Ende der letzten Wegesuche
Ende der letzten Flächenerkennung

Ende der R-Baum-Operationen

- 25 -

5 Literaturverzeichnis
1. Aldinger, K.: Lastbalancierte Verwaltung geometrischer Objekte mit R-Bäumen, Diplomarbeit

Nr. 1040, Universität Stuttgart, Institut für Parallele und Verteilte Höchstleistungsrechner
(1993)

2. Baumgartner, K., Wah, B.: A Global Load Balancing Strategy for a Distributed Computer
System, Workshop on the Future Trends of Distributed Computing Systems in the 1990’s
(1988)

3. Becker, W.: Lastbalancierung in heterogenen Client-Server Architekturen, Fakultätsbericht
1992 /1, Universität Stuttgart, Institut für Parallele und Verteilte Höchstleistungsrechner
(1992)

4. Becker, W.: Globale dynamische Lastbalancierung in datenintensiven Anwendungen, Fakultät-
sbericht 1993 /1, Universität Stuttgart, Institut für Parallele und Verteilte Höchstleistungs-
rechner (1993)

5. Becker, W., Pollak, R.: Efficiency of Server Task Queueing for Dynamic Load Balancing, ein-
gereicht zur Veröffentlichung (1994)

6. Becker, W., Waldmann, G.: Exploiting Inter Task Dependencies for Dynamic Load Balancing,
eingereicht zur Veröffentlichung (1994)

7. Berger, M., Bokhari, S.: A Partitioning Strategy for Nonuniform Problems on Multiprocessors,
IEEE Transactions on Computers, Vol. 36, No. 5 (1987)

8. Blazewicz, J., Drabowski, M., Weglarz, J.: Scheduling Multiprozessor Tasks to Minimize Sche-
dule Length, IEEE Transactions on Computers, Vol. 35, No. 5 (1986)

9. Bonomi, F, Kumar, A.: Adaptive Load Balancing in a Nonhomogeneous Multiserver System
with a Central Job Scheduler, IEEE Transactions on Computers, Vol. 39, No. 10 (1990)

10. Bowen, N., Nikolaou, C., Ghafoor, A.: On the Assignment Problem of Arbitrary Process
Systems to Heterogeneous Distributed Computer Systems, IEEE Transactions on Compu-
ters, Vol. 41, No. 3 (1992)

11. Bruno, J.: On Scheduling Tasks with Exponential Service Times and In-Tree Precedence Con-
straints, Acta Inf. 22 (1985)

12. Cap, C., Strumpen, V.: The PARFORM - A High Performance Platform for Parallel Compu-
ting in a Distributed Workstation Environment, Technical Report, Institut für Informatik,
Universität Zürich (1992)

13. Casavant, T. , Kuhl, J.: A Taxonomy of Scheduling in General-Purpose Distributed Compu-
ting Systems, IEEE Transactions on Software Engineering, Vol. 14, No. 2, 1988.

14. Chandy, K., Reynolds, P.: Scheduling Partially Ordered Tasks with Probabilistic Execution
Times, Proceedings Operating System Principles, Operating Systems Review, Vol. 9, No.
5 (1975)

15. Ciciani, B., Dias, D., Yu, P.: Load Sharing in Hybrid Distributed - Centralized Database
Systems, Proceedings Distributed Computing Systems (1988)

- 26 -

16. Copeland, G., Alexander, W., Boughter, E., Keller, T.: Data Placement in Bubba, Proceedings
SIGMOD (1988)

17. Cybenko, G.: Dynamic Load Balancing for Distributed Memory Multiprocessors, Journal of
Parallel and Distributed Computing, No. 7 (1989)

18. Douglis, F., Ousterhout, J.: Transparent Process Migration: Design Alternatives and the Sprite
Implementation, Software-Practice and Experience, Vol. 21, No. 8 (1991)

19. Eager, D., Lazowska, E., Zahorjan, J.: Adaptive Load Sharing in Homogeneous Distributed
Systems, IEEE Transactions on Software Engineering, Vol. 12, No. 5 (1986)

20. Eager, D., Lazowska, E., Zahorjan, J.: The Limited Performance Benefits of Migrating Active
Processes for Load Sharing, ACM SIGMETRICS, Performance Evaluation Review
(1988)

21. Efe, K., Groselj, B.: Minimizing Control Overheads in Adaptive Load Sharing, Proceedings
9th International Conference on Distributed Computing Systems (1989)

22. Ezzat, A.: Load Balancing in NEST: A Network of Workstations, Proceedings Fall Joint Com-
puter Conference, Dallas, Texas (1986)

23. Ferguson, D., Yemini, Y., Nikolaou, C.: Microeconomic Algorithms for Load Balancing in
Distributed Computer Systems, Proceedings Distributed Computing Systems (1988)

24. Gavish, B., Sheng, O.: Dynamic File Migration in Distributed Computer Systems, Communi-
cations of the ACM, Vol. 33, No. 2 (1990)

25. He, X.: Eine Übersicht über die Lastverteilung in verteilten Systemen, Bericht 190/89, Uni-
versität Kaiserslautern, Fachbereich Informatik (1989)

26. Hosseini, S., Litow, B., Malkawi, M., Mc Pherson, J., Vairvan, K.: Analysis of a Graph Colo-
ring Based Distributed Load Balancing Algorithm, Journal of Parallel and Distributed
Computing, No. 6 (1990)

27. Hsu, C., Liu, J.: Dynamic Load Balancing Algorithms in Homogeneous Distributed Systems,
Proceedings Distributed Computing Systems (1986)

28. Huang, Y., Wolfson, O.: A Competitive Dynamic Data Replication Algorithm, Proc. Data
Engineering (1993)

29. Iqbal, M., Saltz, J., Bokhari, S.: A Comparative Analysis of Static and Dynamic Load Balan-
cing Strategies, Proceedings Parallel Processing (1986)

30. Kale, L.: Comparing the Performance of two Dynamic Load Distribution Methods, Procee-
dings Parallel Processing (1988)

31. Kim, C., Kameda, H.: An Algorithm for Optimal Static Load Balancing in Distributed Com-
puter Systems, IEEE Transactions on Computers, Vol. 41, No. 3 (1992)

32. Krueger, P., Livny, M: A Comparison of Preemptive and Non-Preemptive Load Distributing,
Proceedings Distributed Computing (1988)

33. Kunz, T.: The Influence of Different Workload Descriptions on a Heuristic Load Balancing
Scheme, IEEE Transactions on Software Engineering, Vol. 17, No. 7 (1991)

- 27 -

34. Li, K., Cheng, K.: Static Job Scheduling in Partitionable Mesh Connected Systems, Journal of
Parallel and Distributed Computing, No. 10, October 1990.

35. Lin, F., Keller, R.: The Gradient Model Load Balancing Method, IEEE Transactions on Soft-
ware Engineering, Vol. 13, No. 1 (1987)

36. Lin, H., Raghavendra, C.: A Dynamic Load-Balancing Policy With a Central Job Dispatcher
(LBC), IEEE Transactions on Software Engineering, Vol. 18, No. 2 (1992)

37. Lo, V.: Algorithms for Static Task Assignment and Symmetric Contraction in Distributed
Computing Systems, Proceedings Parallel Processing (1988)

38. Martel, C.: A Parallel Algorithm for Preemptive Scheduling of Uniform Machines, Journal of
Parallel and Distributed Computing, No. 5 (1988)

39. Mirchandaney, R., Towsley, D., Stankovic, J.: Adaptive Load Sharing in Heterogeneous
Systems, Proceedings Distributed Computing Systems (1989)

40. Osser, W.: Automatic Process Selection for Load Balancing, Master Thesis, University of
California, Santa Cruz (1992)

41. Pollak, R.: Lastbalancierte parallele Flächenerkennung, Diplomarbeit Nr. 974, Universität
Stuttgart, Institut für Parallele und Verteilte Höchstleistungsrechner (1993)

42. Rahm, E.: Algorithmen zur effizienten Lastkontrolle in Mehrrechner-Datenbanksystemen,
Angewandte Informatik 4/86 (1986)

43. Ross, K., Yao, D.: Optimal Load Balancing and Scheduling in a Distributed Computer
System, Journal of the ACM, Vol. 38, No. 3 (1991)

44. Schabernack, J.: Lastenausgleichsverfahren in verteilten Systemen - Überblick und Klassifi-
kation, Informationstechnik, Vol. 34, No. 5 (1992.)

45. Shen, S.: Cooperative Distributed Dynamic Load Balancing, Acta Informatica, Vol. 25 (1988)

46. Smith, R.: The Contract Net Protocol: High-Level Communication and Control in a Distribu-
ted Problem Solver, IEEE Transactions on Computers, Vol. 29, No. 12 (1980)

47. Tantawi, A., Towsley, D.: Optimal Static Load Balancing in Distributed Computer Systems,
Journal of the ACM, Vol. 32, No. 2 (1985)

48. Theimer, M., Lantz, K.: Finding Idle Machines in a Workstation-Based Distributed System,
IEEE Transactions on Software Engineering, Vol. 15, No. 11 (1989) bzw. Proc. 8th Conf.
on Distributed Computing Systems (1988)

49. van Tilborg, A., Wittie, L.: Wave Scheduling - Decentralized Scheduling of Task Forces in
Multicomputers, IEEE Transaction on Computers, Vol. 33, No. 9 (1984)

50. Varadarajan, R., Ma, E.: An Approximate Load Balancing Model with Resource Migration in
Distributed Systems, Proceedings Parallel Processing (1988)

51. Waldmann, G.: Dynamische Lastbalancierung unter Ausnutzung von Reihenfolgebeziehun-
gen, Studienarbeit Nr. 1280, Universität Stuttgart, Institut für Parallele und Verteilte
Höchstleistungsrechner (1993)

- 28 -

52. Yu, P., Leff, A., Lee, Y.: On Robust Transaction Routing and Load Sharing, ACM Tran-
sactions on Database Systems, Vol. 16, No. 3 (1991)

53. Zedelmayr, J.: Hierarchische dynamische Lastbalancierung in datenintensiven Anwendungen,
Studienarbeit Nr. 1293, Universität Stuttgart, Institut für Parallele und Verteilte Höchstlei-
stungsrechner (1994)

54. Zhou, S., Ferrari, D.: An Experimental Study of Load Balancing Performance, Report No.
86.8, Computer Science Division, University of California, Berkeley (1987)

55. Zhou, S., Zheng, X., Wang, J., Delisle, P.: Utopia: A Load Sharing Facility for Large, Hetero-
geneous Distributed Computer Systems, Technical Report CSRI-257, Computer Systems
Research Institute, University of Toronto, Canada (1992)

