veroffentlicht vom
Institut fir Parallele und Verteilte Hochstleistungsrechner (IPVR)
in der Abteilung Anwendersoftware (Prof. Dr. A. Reuter)
Fakultat fur Informatik
Universitat Stuttgart

Breitwiesenstr. 20-22, D-70565 Stuttgart

Das HiCon-Modell:
Dynamische Lastverteilung
fur datenintensive Anwendungen
iIn Workstation-Netzen

Wolfgang Becker
Fakultatsbericht Nr. 1994 / 4

CR-Klassifikation C.2.4, C.4, D.4.8

Alle Rechte vorbehalten

Wolfgang.Becker@informatik.uni-stuttgart.de

Das HiCon-Modell: Dynamische Lastverteilung
fur datenintensive Anwendungen in Workstation-Netzen

Kurzfassung:

Das hier vorgestellte Modell versucht im wesentlichen durch drei Ansatze, die Leistungssteige-
rungen durch dynamische Lastbalancierung fir ein deutlich breiteres Feld von Anwendungen und
Systemen anwendbar zu machen, als es derzeit mdglich ist.

Teilsysteme werden durch zentrale Balancierungsverfahren verwaltet; erst zwischen Teilsystemen
werden dezentrale Verfahren eingesetzt, um hohe Skalierbarkeit zu gewahrleisten. Das erméglicht
Lastverteilung im Zusammenspiel der Anwendungen und Ressourcen und vermeidet kontra-pro-
duktive Entscheidungen unabhéngiger Balancierungskomponenten.

Der zweite wichtige Ansatz ist die Bertcksichtigung mehrerer Ressourcen fir Lastbalancie-
rungsentscheidungen. So kénnen Verteilungsstrategien im HiCon-Modell beispielsweise sowohl
Prozessorauslastungen als auch Datenaffinitaten der Anwendungen im Entscheidungsalgorithmus
kombinieren. Das ertffnet der Lastbalancierung ein weiteres Spektrum unterschiedlicher Anwen-
dungen auf heterogenen Systemen.

Als dritter Schwerpunkt soll Lastbalancierung im HiCon-Modell adaptiv auf aktuelle Systemlast-
und Anwendungsprofile reagieren konnen. Dazu wird eine Sammlung einfacher Strategien ver-
waltet, zwischen denen zur Laufzeit umgeschaltet wird, um wechselnde Lastprofile mit mdglichst
geringem Zusatzaufwand auf dem System zu balancieren.

Der Artikel stellt die Grundideen vor und validiert die Konzepte durch Messung verschiedener
Anwendungen auf einem heterogenen Rechnernetz.

Abstract:

The HiCon model investigates three approaches to exploit performance improvement by dynamic
load balancing for a wider range of applications and systems than it is possible nowadays.

Centralized load balancing schemes manage cells of the whole system. Between cells decentral-
ized strategies are employed to achieve high scalability. This enables harmonized load balancing
of applications and resources and avoids contra-productive decisions of independent load balanc-
ing agents.

The second approach is the consideration of multiple resources for load balancing decisions. For
example, load balancing policies in the HiCon model may combine both processor utilization and
data affinities of the applications for decision making. This opens a wide range of different appli-
cation types for load balancing in heterogeneous environments.

The third issue is the facility to dynamically adapt HiCon load balancing to current system load
and application profiles. Therefore, a collection of simple strategies is maintained. At run-time,
load balancing switches between these strategies to distribute changing load patterns with mini-
mal overhead across the system.

This article introduces the main ideas and validates the concepts through measurement of differ-
ent applications on a heterogeneous computer network.

-2-

Inhaltsverzeichnis
1 Einleitung 3
1.1 Das Lastverteilungsproblem in Parallelrechnern und Rechnernetzen 3
1.2 Datenintensive Anwendungen auf lose gekoppelten Systemen
1.3 Relevante Forschungsarbeiten und Klassifikation 5
2 Der Lastbalancierungsansatz im HiCon-Modell 6
2.1 Ablaufmodell fir Anwendungen 7
2.2 Die Struktur der Lastbalancierung
2.3 Auftragsverwaltung und Datenverwaltung

2.4 Lastkenngrof3en 11
2.5 Netzwerk unabhangiger Lastverteilungskomponenten 12
2.6 Die strategische Lastbalancierung 13
3 Performance-Evaluierung des HiCon-Modells 14
3.1 Strategien zur dynamischen Lastverteilung 14
3.2 Realisierte Anwendungen 16
3.3 Messung und Beurteilung 20
4 Zusammenfassung und Ausblick 24
5 Literaturverzeichnis 25

1 Einleitung

1.1 Das Lastverteilungsproblem in Parallelrechnern und Rechnernetzen

Parallele Rechnersysteme und Computernetze bieten ein Vielfaches der Rechenleistung, die selbst
durch einen schnellen Einzelrechner alleine erreicht werden kann. Daher scheinen sich parallele
und verteilte Rechnersysteme noch in diesem Jahrzehnt zur Losung der anstehenden rechenauf-
wendigen Probleme (grol3e verteilte Datenbanken, numerische Simulationen, Bildverarbeitung,
etc.) durchzusetzen.

GroRR3e Rechnersysteme und Netze werden nicht exklusiv durch eine Anwendung belegt, sondern
viele Benutzer und Rechenaufgaben sind gleichzeitig aktiv. Das ermdglicht eine gute Ausnutzung
der vorhandenen Rechenkapazitaten, sofern die anstehende Last gut tber das System verteilt ist.
Das ist jedoch nicht selbstverstandlich, da die verschiedenen Anwendungen gegenseitig nicht
voneinander wissen und auch von verschiedenen Stellen aus in das Rechnersystem gelangen. Die
Lastbalancierung der Anwendungen im System besteht in der Zuordnung und Verteilung der
Anwendungen, so dald eine gleichmafige Auslastung der Ressourcen erreicht wird. Das ver-
spricht den gro3tmoéglichen Durchsatz der Anwendungen insgesamt.

Wahrend ein einzelner Rechner durch eine Anwendung voll genutzt werden kann, ist es sehr
schwierig, eine Anwendung so in verschiedene Teile zu zerlegen, dal3 sie, auf ein paralleles
System verteilt, tatsachlich schneller ablauft. Probleme wie Datenabhangigkeiten und Kommuni-

-3-

kationsaufwand zwischen den Teilen der Anwendung hdngen vom verwendeten Algorithmus ab.

Daruber hinaus stellt sich aber auch die Frage, wie die Teilablaufe und Daten sinnvoll auf das
parallele System zu verteilen sind. Die Lastbalancierung einer parallelisierten Anwendung besteht
in der Ausnutzung der Parallelitat, soweit sie die Anwendung beschleunigt, und in der Zuordnung

und Gruppierung der parallelen Anwendungsteile auf das System, so dal® der Zusatzaufwand
(Synchronisation und Datenaustausch) gering gehalten wird.Gegeniber der Balancierung vieler
unabhangiger Anwendungen bringt die Balancierung parallelisierter Anwendungen die Probleme

der Datenkommunikation mit sich.

Im Gegensatz zu lokaler Lastbalancierung, die einzelne Auftrage so schnell als moglichst abzuar-
beiten versucht, ist es Hauptziel einer globalen Optimierung, den Gesamtdurchsatz des Systems
zu maximieren. Dabei werden Nachteile flr einzelne, unkritische Auftrage in Kauf genommen.

In dem hier vorgestellten Projekt sollen heterogene Gemische aus konkurrierend laufenden paral-
lelisierten Anwendungen automatisch balanciert werden, so daf? der Gesamtdurchsatz des
Systems maximal wird.

1.2 Datenintensive Anwendungen auf lose gekoppelten Systemen

Nicht alle Sorten von Anwendungen lassen sich durch eine einheitliche Methode auf parallelen
Systemen erfolgreich balancieren. Neben der ungeheuren Komplexitat eines allumfassenden Ver-
fahrens ist vor allem der damit verbundene Aufwand prohibitiv. Da in der Praxis nicht alle zur
Lastverteilung relevanten Faktoren im voraus bekannt sind, mufd dynamische Lastbalancierung
wahrend der Laufzeit der Anwendungen Entscheidungen treffen. Das verursacht einerseits erheb-
lichen Rechenaufwand und verbraucht so selbst einen Teil der Rechenkapazitaten; andererseits
bringt es Verzogerungen mit sich, weil eine Teilaufgabe erst dann berechnet werden kann, wenn
sie ihrem Zielknoten zugeteilt und dort eingeplant ist.

Wir beschranken uns im HiCon-Modell auf eine Klasse von Anwendungen, in der grol3e, persi-
stente Datenbestdnde verarbeitet werden. Die spéater vorgestellten Anwendungen zeigen, dal} sich
die Anwendungsklasse nicht allein auf typische Datenbank-Funktionen beschrankt. In Bezug auf
die Lastverteilung haben diese Anwendungen die Eigenschaft, dal3 nicht nur die Nutzung der
Rechenleistung, sondern auch Beachtung von Datenaffinitaten flir den Durchsatz entscheidend ist.
Zudem koénnen haufig beim Start einer Teilaufgabe Abschatzungen tber Rechenaufwand und
benutzte Datensatze gemacht werden. Das befahigt die Lastbalancierung, nicht nur auf Beobach-
tung der Systemlast hin zu reagieren, sondern die Last bereits bei der Entstehung vorausschauend
zu plazieren.

Das Granulat sinnvoller Parallelitat und die Mdglichkeiten der Lastverteilung sind auf verschie-
denen Rechnerarchitekturen sehr unterschiedlich. So kdnnen auf SIMD Rechnern sehr fein paral-
lelisierte Algorithmen ablaufen, auf Systemen mit gemeinsamem Speicher kann aufgrund
geringer Nachrichtenkosten feingranular auf gemeinsamen Daten operiert werden. Unsere Unter-
suchungen beziehen sich jedoch auf lose gekoppelte Systeme mit schnellen Prozessoren, die tber
relativ langsame Verbindungen verfigen und keine gemeinsamen Ressourcen haben. Wir legen
daher ein heterogenes Netz von Workstations und grobgranularen MIMD Parallelrechnern
zugrunde.

Die lose Kopplung der Rechenknoten verlangt, dal3 Anwendungen in einige grof3e, in sich
sequentielle Teilaufgaben zerlegt sind. Lastbalancierung hat darauf zu achten, daf} der Aufwand

-4 -

zur Synchronisation und fur den Datenaustausch signifikant und daher gering zu halten ist. Zudem
ist in derartigen Rechnernetzen zu bertcksichtigen, daf? meist mehrere unabhangige Anwendun-
gen konkurrierend auf dem System abzuwickeln sind.

1.3 Relevante Forschungsarbeiten und Klassifikation

Der Grolteil der Forschungsprojekte im Bereich der Lastverteilung auf parallelen Systemen hat
sich, ausgehend von der statischen Vorplanung fur gro3e Batch-Anwendungen (Scheduling, stati-
sche Anfrageoptimierung), verstarkt in Richtung sehr einfacher, verteilter Verfahren zum dynami-
schen Lastausgleich unkorrelierter Anwendungen bewegt.

Die Grundidee dieser Ansatze ist folgende: Auf jedem Prozessor im System mif3t eine Lastvertei-
lungskomponente die Prozessorlast (dabei sind verschiedene Metriken méglich) und tauscht diese
Werte periodisch, oder nach signifikanten Anderungen, mit benachbarten Prozessoren aus. Wenn
auf einem stark belasteten Prozessor ein neuer Auftrag gestartet wird, so versucht die Lastvertei-
lungskomponente, ihn an den Nachbar abzugeben, der zur Zeit am geringsten belastet ist. Einige
Verfahren setzen auch die Migration laufender Prozesse ein, um bestehende Ungleichverteilungen
in der Systemlast zu verringern. Hier versucht die Lastverteilungskomponente, wenn ihr Prozes-
sor erheblich starker belastet ist als einer der benachbarten, einen laufenden Prozel3 an diesen
abzugeben.

Fur Ubersichten und Klassifikationen der diversen Ansatze verweisen wir auf [13], [25] und [44].
Auf dem Gebiet der statischen Zuweisung von parallelisierten Anwendungen finden sich zahlrei-
che Ergebnisse: In [7], [10] und [37] werden Auftrdge zur Minimierung der Kommunikationsko-
sten auf Prozessoren gruppiert; [8] und [38] verteilen unabhangige Auftrdge so, dafl} die
Gesamtlaufzeit minimal wird, bzw. dal3 die Knotenauslastungen gleich sind ([26], [34]). Zusatz-
lich werden in [11] und [14] Reihenfolgebeziehungen zwischen Auftrdgen bericksichtigt. Bei
[31] und [47] werden Transferraten flr gegebenes statistisches Lastaufkommen ermittelt, um die
mittlere Antwortzeit einzelner Auftrdge zu minimieren.

In [29] und [43] werden statische Lastverteilungsverfahren um dynamische Anpassungen erwei-
tert. Zentral gesteuerte dynamische Lastbalancierungstechniken finden sich in [9], [36], [48]
sowie [49]. Viele Ansatze wurden zur dezentralen dynamischen Auftragszuweisung veroffent-
licht; man unterscheidet, ob Uberlastete Knoten neue Auftrage weitergeben ([19], [27], [30], [35],
[39], [54]), freie Knoten Auftrdge anfordern ([19], [39]), oder explizite Absprachen zwischen
benachbarten Knoten stattfindet [2], [23], [45], [46]. Die Projekte [17], [18], [20], [22], [32], [40]
sowie [55] beschéftigen sich mit der Migration laufender Prozesse zum Lastausgleich bzw. modi-
fizieren die AuftragsgréRen zur Laufzeit [12]. Dynamische Adaption der Lastbalancierungsstrate-
gien, d.h. Anpassung von Schwellwerten und MeRintervallen, wird in [21] und [33] untersucht.
Im Bereich der datenintensiven Anwendungen finden sich Ansétze in [15], [16], [24], [28], [42],
[50] und [52].

Wir wollen das HiCon-Mode]rIIediinch anhand zweier Kriterien in das Umfeld dieser Lastbalan-
cierungsarbeiten einordnen. Abbildung 1 zeigt die Informationen, die Lastbalancierungsmethoden
verwenden konnen. Da die Lastverteilungskomponente im HiCon-Modell als Teil des Betriebssy-
stems angesehen wird, durfen keine Eigenschaften und Kenntnisse einer speziellen Anwendung

1. Das AcronynHiConist alteren Ursprungs und steht fierarchical COntrolled Network computing

-5-

eingesetzt werden. Andererseits gentgt es in der hier betrachteten Anwendungsklasse nicht, die
Ressourcenauslastung auf Betriebssystemebene zu messen und fur Entscheidungen zu verwen-
den, sondern Anwendungen koénnen der Lastbalancierung durch Profil-Abschatzungen und
Datenzugriffs-Charakteristiken Vorabinformationen Gber Teilaufgaben liefern.

anwendungs- anwendungs-
spezifisch unabhangig

Betriebssystem- Anwendungs-
Lastfaktoren Abschatzungen

Abbildung 1: Klassifikation der genutzten Lastbalancierungsinformationen.

In Abbildung 2 sind die Aufgaben und damit Einflulimdglichkeiten der Lastbalancierung klassifi-
ziert. Wir beschranken uns im HiCon-Modell in der Auftragsverwaltung auf die Zuweisung von
Auftragen, da die Migration laufender Prozesse in heterogenen Systemen noch nicht mit verninf-
tigem Aufwand realisierbar ist. Die Mdglichkeit der Auftragsduplikation ist nur fur voll funktio-
nale Teilrechnungen, keinesfalls fir datenintensive Berechnungen anwendbar: Wenn man einen
Auftrag mehrfach ausgibt, um dann das Ergebnis des schnellsten Bearbeiters weiter zu verwen-
den, darf der Auftrag keine globalen Daten verandern. In der Datenverwaltung stehen den Metho-
den im HiCon-Modell sowohl die Mdglichkeit zur Verlagerung von Daten als auch zur (korrekt
synchronisierten) Verteilung von Datenkopien zur Verfligung.

Auftrags- Daten-
Verwaltung Verwaltung

- N e
- N ~a
N
N

int'r—a Auftrags- Auftrégs- Auﬁrags-
ProzessorZuweisungMigration Duplikation
scheduling

Daten- Daten-
Migration Replikatian

Abbildung 2: Klassifikation der Lastbalancierungsaufgaben.

2 Der Lastbalancierungsansatz im HiCon-Modell

Die Untersuchungen im HiCon-Modell ([3], [4]) basieren auf dem Konzept einer Lastbalancie-
rungsumgebung, die es ermdglicht, Effekte verschiedener Methoden zur Lastverteilung anhand
verschiedenartiger Anwendungen auf einem heterogenen Netz von Workstations und Parallel-
rechnern zu evaluieren. Die Anforderungen an eine solche Umgebung sind ein relativ allgemeines
Modell fir das Rechnersystem und die Anwendungen, um praxisrelevante Resultate zu erhalten,
sowie geeignete Informations- und Eingriffsmdglichkeiten fir Lastverteilungsstrategien. Die
Umgebung selbst mul3 so effizient sein, dal3 paralleles Rechnen nutzbar und verschiedene Balan-
cierungsverfahren unterscheidbar bleiben. In diesem Abschnitt werden die wesentlichen Eigen-
schaften des Ansatzes vorgestellt.

2.1 Ablaufmodell fir Anwendungen

Je allgemeiner die Ablaufstrukturen, die Kooperation und die Synchronisation in parallelisierten
Anwendungen und zwischen konkurrierenden Auftréagen sind, desto schwieriger ist es, die Ausla-
stung des Systems zu interpretieren, um geeignete Mal3hahmen zur gunstigeren Lastverteilung
treffen zu kénnen. Es finden sich zahlreiche Arbeiten, in denen ein beliebiges Netz kommunizie-
render Prozesse betrachtet wird. Automatische Lastverteilung ist hier aufgrund der mangelnden
Informationen Uber die laufenden Anwendungen nur begrenzt maglich. Extreme Leistungssteige-
rungen wurden hingegen in Projekten erreicht, die fur spezielle parallelisierte Anwendungen
dedizierte Lastausgleichsverfahren entwickelt haben.

Im HiCon-Modell wird als Ablaufstruktur das Client-Server-Konzept vorausgesetzt, das sich in
Datenbank-Umgebungen und bei nahezu allen gré3eren, parallelen und verteilten Anwendungen
bewahrt hat. Die Teilfunktionen einer Anwendung werden als Serverklassen bezeichnet. Prozesse
(allgemeiner: Ausfuihrungseinheiten), die eine Teilfunktion ausfiihren kdnnen, sind die Server
einer Klasse. Eine Anwendung besteht nun aus Clients, die Aufrufe an Serverklassen durchfiih-
ren, und Servern, die diese Aufrufe bearbeiten. Server kdnnen selbst Unteraufrufe an andere Ser-
verklassen absenden und nehmen dabei die Rolle eines Clients an.

In datenintensiven Anwendungen sollten persistente Daten explizit im Verarbeitungsmodell
bertcksichtigt werden. Im HiCon-Modell arbeiten Anwendungen mit globalen Datensétzen, die
uber Namen identifiziert werden und fiir die Dauer einer Anwendung existieren oder persistent
sind. Globale Daten kénnen beliebige Hauptspeicher- und Sekundarspeicher-Datenstrukturen
sein. Synchronisation, Datenlokalisierung und Replikationsverwaltung ist fur die Anwendung
unsichtbar. Server schitzen Zugriffe auf globale Datenbestdnde durch geeignete Lese- bzw.
Anderungssperren.

Dieses Ablaufmodell verlangt in der Praxis, dal3 parallelisierte Anwendungen umstrukturiert wer-
den mussen. Die unten angefiihrten Beispielanwendungen zeigen jedoch, dal3 ein breites Spek-
trum an Anwendungen sinnvoll nach dem Client-Server-Konzept mit gemeinsamen Datensatzen
ablaufen kann. Dadurch ermdglicht das HiCon-Modell anwendungsunabhangige Lastbalancie-
rung unter Einsatz vieler relevanter Lastfaktoren.

2.2 Die Struktur der Lastbalancierung

Abbildung 3 gibt einen Uberblick tiber die Komponenten zur Abwicklung der Lastbalancierung,
die Komponenten der Anwendungen (Clients, Server und Datenbestéande) und das umgebende
Laufzeitsystem. Das Laufzeitsystem sollte Teil eines geeigneten verteilten Betriebssystems sein,
wobei manche Teile heutzutage als Datenbankkomponente oder Transaction-Processing Monitor
realisiert werden. Charakteristisch sind in diesem Systemmodell - im Vergleich zu vielen anderen
Projekten - zum einen die logisch zentralisierten Funktionen der Lastverteilung (Verwaltung der
Systemzustands-Information und Treffen der Balancierungsentscheidungen), zum anderen die
Aufteilung der Lastbalancierung in eine unmittelbar agierende Komponente und eine sogenannte
strategische, welche die dynamische Adaption der Lastverteilung erméglicht. Es wird keine spe-
zifische Prozessor- oder Netzwerktopologie vorausgesetzt. Das Bild gibt die Struktur eines Teilsy-
stems wieder. Zur Skalierung auf sehr groRe Systeme kdnnen beliebig viele Teilsysteme dieser
Art vernetzt werden (siehe Abschnitt 2.5).

L] R e LR
Aktualisierung/'l Anpas.sung der_ Strateglle | |
-------------- b || der Zustands- —>| aggregierte Lastinformation |
information ~&{Bewertung & Zuweisung von Auftragen]zentrale

/ \ Lastbalancierung

al Auftrags- _ Konfigurations- . Datenort. j -aufzeitsystem
‘| verwaltung| verwaltung | verwaltungll (verteiltes Betriebs- und
Aufrufe &

benachbarte Teilsysteme

Datenverwaltungssystem)

LA \
% B8
@) gt

Clients Serverklassen Daten

Ressourcen-
last-
messung

parallele Hardware

Abbildung 3: Struktur der Lastbalancierungsumgebung.

Die Komponentenstruktur zeigt lediglich die logischen Zusammenhange. In einer Realisierung
werden Teile der Lastverteilungskomponente als zentraler Prozel3, andere Teile als Verwaltungs-
prozeld je Knoten angelegt und weitere Teile werden als Bibliotheksfunktionen an die Server der
Anwendung gebunden.

Lastbalancierung darf das laufende System nicht durch unnétige Aktivitaten stéren. Daher ist im
HiCon-Modell nur die Ressourcen-Lastmessungskomponente periodisch aktiv. Sie beobachtet die
Auslastung der Prozessoren, Hauptspeicher, Platteneinheiten sowie der Netzwerkverbindungen.
Signifikante Anderungen werden in der Systemzustandstabelle eingetragen.

Die eigentliche Lastbalancierungskomponente ist passiv, d.h. sie reagiert auf Ereignisse. Fir die
Lastverteilung relevante Ereignisse sind im folgenden, nach Haufigkeit sortiert, aufgelistet:

» Entstehung neuer Auftrage. Clients schicken Aufrufe ab, die durch einen Server einer
bestimmten Klasse zu bearbeiten sind.

« Anderungen im Arbeitszustand von Servern. Wie unten erlautert, haben Server lokale Auftrag-
swarteschlangen. Sie konnen zu beliebigen Zeitpunkten Informationen abgeben, wie weit sie
den aktuellen Auftrag bearbeitet haben, und wie viele Auftrage sich derzeit in der Warte-
schlange befinden. Der einfachste Fall besteht darin, am Ende einer Berechnung mit dem
Ergebnis eine Fertigmeldung zu geben.

Auch Anderungen in der Server-Konfiguration sind moglich.

« Anderungen in der aktuellen Auslastung von Ressourcen. Als Ressourcen werden hier Prozes-
soren, Hauptspeicher, Platten und Netzverbindungen angesehen. Auch Anderungen in der
Systemkonfiguration (Hardware-Komponenten) fallen in diese Ereignisklasse.

Bewegung von Datenséatzen und Entstehung von Datenkopien. Dazu gehort auch die Entste-
hung von globalen Datensatzen, denn Server kdnnen zur Laufzeit Datenséatze erzeugen und

l6schen.
Zustandsanderungen in einer benachbarten Balancierungskomponente. Bei signifikanten
Anderungen im aggregierten Zustand einer Balancierungskomponente (siehe Abschnitt 2.5)

benachrichtigt diese ihre unmittelbaren Nachbarn.
Zur Laufzeit kbnnen auch Anderungen in der hierarchischen Struktur der Lastverteilungskom-

ponenten auftreten, da diese Struktur dynamisch ist.

Je nach momentan aktiver Lastbalancierungsstrategie werden manche dieser Ereignisse bertck-
sichtigt, andere ignoriert. Wie unten erklart wird, mufd das Ziel darin bestehen, stets eine moég-
lichst simple Strategie zu verwenden. Im Regelfall werden daher nur wenige Ereignisse grof3ere
Balancierungs-Aktionen nach sich ziehen. Als Folge eines Ereignisses kdnnen je nach derzeit

aktiver Lastverteilungsstrategie

Eintrage in der Zustandstabelle vorgenommen werden,

Routing-Tabellen und Bewertungen von Auftragen, Servern oder mdoglichen Zuweisungen
aktualisiert werden,

Auftrage an Server zugewiesen werden,

Daten umverteilt bzw. Datenkopien kreiert werden,

Server zugefiigt oder abgeschaltet werden und

andere Lastbalancierungseinheiten zugeftigt oder abgeschaltet werden.

2.3 Auftragsverwaltung und Datenverwaltung

Abbildung 4 zeigt die Struktur der Auftragsverwaltung im HiCon-Modell. Ein Auftrag ist ein
Aufruf eines Clients an einen unbestimmten Server einer bestimmten Klasse. Es ist nicht méglich,
stehende Verbindungen (Sessions) zwischen einem Client und einem bestimmten Server herzu-
stellen. Derartiger Verarbeitungskontext muf3 in Form globaler Daten in der Serverklasse gespei-

chert werden.

-~ 2 N
zentrale Warteschlangen

O)
c
2
o
(5]
=

_ <
/ Auftragszuweisung

lokale Warteschlangen

Abbildung 4: Auftragsverwaltung der Lastbalancierungsumgebung.

Auftrag

Wertung

Der Auftrag wird zunéchst in eine zentrale Warteschlange fir die Ziel-Serverklasse eingereiht und
durch die Lastbalancierung bewertet. Nun kann der Auftrag zu einem beliebigen Zeitpunkt an
einen Server zugewiesen werden; er braucht dazu nicht am Anfang der zentralen Warteschlange
zu stehen und die lokale Warteschlange des Servers muf3 auch nicht leer sein. Diese Zuweisung ist
endgliltig, d.h. es werden keine Auftrdge zwischen lokalen Warteschlangen ausgetauscht. Jeder
Server arbeitet die Auftrage in seiner Warteschlange der Reihe nach ab (sofern er nicht multi-
threaded operiert). Resultate gelangen zum Aufrufer zuriick, der entweder direkt auf das Resultat
wartet (synchroner Aufruf) oder spater auf verschiedene Resultate wartet (parallele Aufrufe) oder
kein Resultat erwartet.

Lastverteilungsstrategien konnen bei der Ankunft eines Auftrags Wertungen berechnen, wie vor-
teilhaft momentan eine Zuweisung an welchen Server ist (z.B. nach welcher Zeit der Auftrag dort
vollendet wirde) und ihn evtl. sofort zuweisen. Wenn sich danach der Lastzustand im System, der
Arbeitszustand eines Servers oder die Datenverteilung andern, kénnen die Strategien die warten-
den Auftrage noch einmal durchsehen, neu bewerten und evtl. zuweisen.

Durch diese logisch zentralisierte Auftragsverwaltung ist die Ubliche Unterscheidung zwischen
sender- und empfangerinitiierten Lastverteilungsstrategien nicht notwendig. Im HiCon-Modell
konnen viel allgemeiner an verschiedene Ereignisse (siehe oben) unterschiedliche Reaktionen der
Lastbalancierung geknupft werden.

Weiterhin konnen Clients Auftragsgruppen anmelden. Dabei bezeichnet der Client die erwarteten
Auftrage mit Namen und kann Informationen Uber die Gruppe angeben, wie z.B. Reihenfolgeab-
hangigkeiten zwischen Auftragen und vermutete Auftragsgrof3en. Die Auftrage der Gruppe laufen
spater als gewohnliche Serverklassenaufrufe ein, die mit den Namen versehen sind. Die Lastba-
lancierung kann sie daran identifizieren und sie den vorgegebenen Reihenfolgebeziehungen oder
Datenaffinitaten innerhalb der Gruppe angepalit behandeln. Ein typisches Beispiel fur derartige
Auftragsgruppen sind komplexe Datenbankoperationen. Die Teilauftrdge eines Anfragegraphen
haben gewisse Ausfuhrungsreihenfolgen und arbeiten auf Zwischenresultaten von Vorgénger-
Teilauftragen. Hier ist es wichtig, die Auftrage in kritischen Pfaden vorrangig abzuwickeln, um
die Gesamtausfuhrungszeit der Auftragsgruppe zu minimieren. Positive Resultate werden in [6]
bzw. [51] vorgestellt.

Wie die Auftragsverwaltung im Client-Server-Konzept, so ist auch die Datenverwaltung im
HiCon-Modell an Konzepte aus dem Datenbank-Bereich angelehnt. Datensatze sind durch
Anwendungen definierte, mit Namen identifizierbare Objekte. Einzelne Datensatze kénnen zwi-
schen Servern ausgetauscht und kopiert werden. Der aktuelle Ort von Datenséatzen und Kopien
wird durch die Zugriffsanforderungen der Server bestimmt: Ein Server fordert Lese- oder Ande-
rungszugriff auf einen Datensatz und erhalt daraufhin die Daten. Durch Lastbalancierungsent-
scheidungen kann die Datenverteilung und der Replikationsgrad indirekt Uber die Zuweisung von
Auftragen beeinflul3t werden.

Die Lastbalancierung kann also die Lokalitat von Datenzugriffen begunstigen, indem sie Server
benutzt, die bereits die voraussichtlich benétigten Daten besitzen, oder indem sie Daten auf die
Server vertelilt, die spater darauf arbeiten sollen. Das setzt voraus, daf} Clients zu ihren Auftragen
Abschatzungen uber vermutliche Datenreferenzen mitgeben (siehe Abschnitt 2.4). Keine Lastba-
lancierungsmethode kann jedoch den korrekten Ablauf der Anwendung stéren, da die Daten auto-
matisch auf Zugriffsanforderungen hin geschickt werden und dort bleiben, bis die Sperren
freigegeben sind.

-10 -

2.4 Lastkenngrof3en

Strategien zur dynamischen Lastverteilung bendtigen zur Laufzeit aktuelle Informationen tber
die Belastung der Ressourcen und den Verlauf der Anwendung. Man unterscheidet zumindest
zwischen aktuellen Zustandskenngrof3en und aggregierten Angaben, die meist Mittelwerte tGber
kurze Zeitintervalle sind. Die Gewinnung und Verwaltung akkurater Informationen sowie die
Nutzung dieser Informationen fur Balancierungsentscheidungen bringen hohen Aufwand mit sich
(siehe Abschnitte 2.5 und 2.6). Wir listen daher in Tabelle 1 alle verfugbaren Kenngroéf3en auf mit
dem Hinweis, daf’ keine Balancierungsstrategie auch nur annahernd alle GroRen zusammen nut-

zen kann:
Objekt aktuelle Zustandsgrof3en aggregierte Informationen
» Zahl der vorhandenen Server * mittlere Zahl freier Server
» Zahl der unbeschaftigten Server |« mittlere Lange der zentralen Auftrags-
» Zahl der Auftrage in der zentralen warteschlange
Warteschlange * mittlere Lange der lokalen Auftrags-
Server- warteschlangen aller Server
klasse » Ankunftsrate der Auftrage
* mittlere Bearbeitungszeit und Daten-
wartezeit je Auftrag,
» Leerlaufzeit zwischen zwei Auftragen
der Server
 Lange der lokalen Auftragswarte- Ankunftsrate der Auftrage
schlange + verbleibender Restanteiimittlere Bearbeitungsdauer pro Auftfag
Server des momentan_bearbeiteten Auftrags Rechenzeitanteil, Anteil an Wartezeit
» vermuteter Zeitpunkt, an dem derauf Daten pro Auftragsbearbeitung
Server seine Warteschlange komptetinittlere Leerlaufzeit zwischen zwei
abgearbeitet hat Bearbeitungen
» erwarteter Rechenumfang * Reihenfolge-Beziehungen zwischen
» Zahl der Plattenzugriffe den Auftragen der Gruppe
Auftrag [¢ Abschatzungen Uber zu lesende andVeiterverwendung derselben Daten-
bzw. zu andernde Datensétze oder Bereisatze in der Gruppe
Auftrags-| che von Daten. » aktueller Bearbeitungszustand der Auf-
gruppe |¢ vermutete Ausflhrungsdauer untertragsgruppe
derzeitigen Bedingungen auf
bestimmten Servern
» Speicherplatzbedarf * mittlere Transfer-Kosten
Datensatze Ort des Originals » Haufigkeit der Datenverschiebungen
» Kopienverteilung im System * mittlere Anzahl existierender Kopien.

Tabelle 1: Mégliche Zustandsinformationen tdber System und Anwendung.

-11 -

Objekt aktuelle Zustandsgrofien aggregierte Informationen

* Rechenleistung, Speicherplatz, PatRun Queue Length (mittlere Zahl lapf-

tenzugriffszeit (statisch) bereiter Prozesse)
Rechen- : y i .
knoten und’ Nachrlchtendurchsatz /-VerzogerLngSpe|(_:herse|ten-AusI_agerungsrate
Verbindun (statisch) (Paging und Swapping)
en |° Zahl der hier liegenden Server * Nutzungszeit der Platten-Controller
9 freier Speicher * Netzauslastung (Nutzungszeit oger
Anteil von Kollisionspaketen)
» aggregierte Rechenleistung » aggregierte Rechenleistung

* mittlere Belastung der Prozessorefe mittlere Belastung der Prozessoren

Warteschlangenlange je Klasse |¢ Warteschlangenlénge je Klasse

* mittlere Lange der lokalen Server- mittlere Lange der lokalen Server-War-
Warteschlangen je Klasse teschlangen je Klasse

Teilsystem

Tabelle 1: Mégliche Zustandsinformationen Gber System und Anwendung.

Informationen Uber Auftrage kdnnen vom Client beim Aufruf mitgegeben werden. Diese Anga-
ben sind lediglich Zusatzhinweise flr die Lastbalancierung und haben keinen Einflul3 auf den kor-
rekten Ablauf der Anwendung. Weiterhin kann die Lastbalancierung eigene Bewertungen zu den
Auftragen abspeichern.

Informationen Uber den Systemzustand benachbarter Lastbalancierungskomponenten (siehe
Abschnitt 2.5) werden ebenfalls pro Serverklasse des Nachbarn ausgetauscht. Allerdings werden
samtliche Daten Uber die Systemleistung und -Belastung des Nachbarn auf Mittelwerte pro Ser-
verklasse komprimiert, da eine Lastbalancierungseinheit weder die einzelnen Server noch die
Systemkonfiguration der Nachbarn kennen soll.

Die direkt auf Hardware basierenden Lastfaktoren wurden absichtlich zuletzt aufgefihrt, um zu
betonen, dafl} Lastbalancierung im HiCon-Modell - obwohl sie anwendungsunabhangig bleibt -
auch Faktoren auf héherer Ebene sinnvoll einsetzen kann. Die meisten Forschungsprojekte haben
sich bisher darauf beschrankt, die Faktoren auf Systemebene zu betrachten.

2.5 Netzwerk unabhangiger Lastverteilungskomponenten

Zahlreiche Studien haben nachgewiesen, daf3 eine zentralisierte Lastverteilung nicht unbegrenzt
skalierbar ist. Wird das zu kontrollierende System oder die Anzahl und Haufigkeit von Auftragen
sehr grol3, so verbraucht die Balancierungskomponente selbst viel Speicher und Rechenkapazita-
ten, und die Verzdégerung zwischen Absendung eines Auftrages und dessen Bearbeitungsbeginn
wachst an. Zentralisierte Lastverteilung wird also zum Engpalf3, wenn ihr Ressourcenbedarf in
derselben GrolRenordnung liegt wie der Ressourcenbedarf der laufenden Anwendungen oder die
Verzogerung von Auftrdgen in der Gréfienordnung der eigentlichen Auftragsbearbeitungszeit
liegt.

Zentralisierte Ansatze haben freilich den Vorzug, samtliche Abhéngigkeiten im System und den
Anwendungen zu beachten und einzusetzen, wahrend dezentrale Verfahren nur jeweils kleine
Teile des Systems balancieren und gréf3ere Unausgewogenheiten in der Auslastung bzw. Abhan-
gigkeiten von Anwendungen zwischen den Teilsystemen nicht bemerken bzw. sogar kontra-pro-

-12 -

duktiv agieren. Diese Schwachen treten bei groRen Anwendungen und solchen, die auf globalen,
verteilten Daten operieren, verstarkt zu Tage.

Im HiCon-Modell bekommt eine Lastverteilungskomponente einen mdaglichst groRen Teil des
Systems zur zentralen Balancierung zugewiesen und kann die oben genannten \orteile nutzen.
Was Uber die Kapazitat einer Komponente hinaus geht, wird auf mehrere Komponenten verteilt.
Zwischen den Balancierungskomponenten kénnen, vollig transparent fur die Anwendungen, Last-
informationen, Auftrdge und Daten ausgetauscht werden. Solange Anwendungen innerhalb einer
Balancierungskomponente verninftig ablaufen kénnen und zwischen verschiedenen Komponen-
ten keine allzu gro3en Lastdifferenzen auftreten, wird alles zentral und somit effizient abgewik-
kelt. Komponenten-ibergreifende Aktionen sind dagegen mit zusatzlichem Aufwand verbunden
und treten nur bei groben Auslastungsdifferenzen oder sehr grof3en Auftragen bzw. Auftragsgrup-
pen auf.

Die Lastbalancierungskomponenten sind im HiCon-Modell eine im Prinzip beliebig vernetzte
Struktur. Direkt benachbarte Komponenten tauschen Lastinformationen und Auftrage untereinan-
der aus. In der derzeitigen Realisierung ist eine Baumstruktur fur die korrekte Verwaltung der
Anwendungen sowie der Daten durch das Laufzeitsystem notwendig, denn an keiner Stelle im
System liegen globale Informationen vor. Ansonsten kennt jede Komponente eine Menge von
Nachbarn und jede Komponente kann gleichermalien Ressourcen, Anwendungen und Daten ver-
walten.

Zwischen Teilsystemen werden dezentrale Lastbalancierungsverfahren zum Lastausgleich einge-
setzt. Lastbalancierer tauschen periodisch Informationen (siehe Abschnitt 2.4) aus und verschie-
ben Auftrage an Teilsysteme, die weniger belastet sind. In diesem Artikel werden jedoch keine
weiteren Ergebnisse dazu vorgestellt. In [53] finden sich positive Ergebnisse flr Lastbalancie-
rungsverfahren, in denen benachbarte Teilsysteme als besondere Server miteinbezogen werden.

2.6 Die strategische Lastbalancierung

Im vorigen Abschnitt wurden grundlegende Probleme von Lastbalancierungsstrukturen angespro-
chen und potentielle Engpésse dadurch vermieden, dal3 die Menge von Informationen und Haufig-
keit von Entscheidungen pro zentraler Lastverteilungskomponente in akzeptablem Rahmen
bleibt.

Optimale Lastbalancierungsentscheidungen sind jedoch N