SESAM

Softwar e-Engineering-Simulation
durch animierte Modelle

Jochen Ludewig (Hrsg.)

| nhalt

Tell 1 Jochen Ludewig Die Abteilung Software Engineering
— ein privater Ruckblick

Teil 2 Jochen Ludewig SESAM: Grundidee und Uberblick

Teil 3 Kurt Schneider SESAM: Die konzeptionelle Basis

Teil 4 JinhualLi SESAM als Simulator

Teil 5 Anke Drappa SESAM und die Realitét

Teil 6 Marcus Deininger SESAM und die Lehre

Teil 7 Jurgen Schwille SESAM und vis-A-vis

Teil 8 Horst Lichter Software Engineering objektorientiert

— eine Herausforderung fur die Praxis

Teil 9 Jochen Ludewig Software Engineering in der Universitét

21

27

35

49

55

61

Teil 1

Die Abtellung Software Engineering

— ein privater Ruckblick
Jochen Ludewig

1. Ab urbecondita

Die Abteilung Software Engineering entstand als eine
der letzten in der Stuttgarter Informatik, der Lehrstuhl
wurde Ende 1986 erstmalig ausgeschrieben. Der Na-
me der neuen Abteilung fand weniger Zustimmung
alsihr Arbeitsgebiet, und mit dem Senatsbeschluf zur
Ausschreibung war die Aufforderung an die Kom-
mission verbunden, einen anderen, besseren Namen
zu suchen. Tatsachlich blieb es beim Namen ,, Soft-
ware Engineering”. Wir haben uns daran gewdhnt,
und wenn mir auch eine deutsche Bezeichnung lieber
waére, so ziehe ich diesen klaren Anglizismus doch
allen Mischwortern wie,, Software-Technologie” oder
»Software-Technik® vor.

Nachdem ich den Ruf nach Ende Juli 1988
angenommen hatte, gelang es in der kurzen Frist von
zwei Monaten, die Berufungsurkunde nicht nur
auszustellen, sondern auch vom Ministerprasidenten
unterzeichnen zu lassen. Damit stand dem Dienst-
antritt am 1. Oktober 1988 nichts mehr im Wege.

Der Start fiel mit dem Ausscheiden Prof. Barths
zusammen. So wurden wir die Erben der Abt. Pro-
grammier sprachen, sowohl bel den Pflichten (Einfih-
rungsvorlesung | und Il) als auch bei den Privilegien
(Raume im Gebaude Azenbergstral3e und vor allem
die Betreuung durch Frau Ginthor).

Da Frau Ginthérs Zuordnung am Anfang noch
nicht klar war, gab es zunéchst nur einen Mitarbeiter,
Horst Lichter, der mutig (oder desperat) genug war,
um den Wechsel von Zirich nach Stuttgart mitzu-
machen.

Das erste Jahr war geprégt durch die Rekrutierung
weiterer Mitarbeiter und durch den Papierkrieg zum
Zwecke der Rechnerbeschaffung. 18 Monate nach
dem Start waren alle Stellen besetzt, die Gruppe hatte
fast die gleiche Zusammensetzung wie heute:

Ursula Glnthdr, die auch Mitglied der Abteilung
Programmiersrprachen ist, im Sekretariat.

Angela Georgescu und Max Schneider auf den
Programmiererstellen.

Horst Lichter, Marcus Deininger, Kurt Schnel -
der, Jurgen Schwille a's wissenschaftliche Mitarbei -
ter; der dienstdlteste hat inzwischen seine Stelle
gerdumt und damit Platz gemacht fir Anke Drappa.

Thomas Bassler war 16 Monate ab Herbst 1991
wissenschaftlicher Mitarbeiter der Abteilung. Heute

sind zwei Doktoranden als Stipendiaten bei uns,
Helga Hoff und Jinhua Li.

Die Rechnerauswahl war zugunsten von DEC-
Workstations entschieden worden; dawir unser Geld
nur zogerlich ausgaben, vermehrte sich sein Wert
wundersam, und wir haben schliefdlich eine leistungs-
fahige, zuverléssige und vermutlich noch fir einige
Jahre brauchbare Rechnerkonfiguration bekommen.
Einzig die Software macht uns Sorgen, da wir mit
den MIPS-Prozessoren an einem Gleis sitzen, das von
DEC nicht mehr bedient wird.

In das erste Jahr fallt auch die Idee zum Projekt
SESAM; darauf werde ich im zweiten Teil dieses
Beitrags ndher eingehen.

Die folgenden Jahre waren in keiner Weise spek-
takuléar. Amter wie das des Geschéftsfilhrenden Insti-
tutsdirektors lieflen sich nicht vermeiden, eher un-
dankbare L ehrveranstaltungen wie die Einflhrung in
die Informatik 111 auch nicht. Der IVS und die
verwaiste Abteilung Programmiersprachen erzeugten
auch eine gewisse Belastung, inzwischen sind zum
Gliick beide unter kompetenter Fiihrung (Proff. Claus
und Plodereder).

Die Mitarbeiter wurden kompetenter und selb-
sténdiger, so dal3 es immer riskanter wurde, ihnen
leichtfertig zu widersprechen. Verschiedene Engage-
ments in der Industrie zur Schulung und zur Koope-
ration waren nicht nur eine willkommene Méglich-
keit, den Hypothekarzins-Drachen niederzukampfen,
sondern hielten auch das Gefihl fir dasin der Praxis
Notwendige und M&gliche wach.

Als im Wintersemester 92/93 Amter und Lehr-
veranstaltungen die offene Flanke meiner organi -
torischen Immunschwéache nutzten, um mich end-
giltig ins Chaos zu stiirzen, konnte nur noch die vor-
Ubergehende Flucht helfen (, Forschungssemester*).
Sie fuhrte mich ins schéne Land Ontario, und sie
wére ganz und gar erfolgreich gewesen, hétte ich
nicht meine temporére e-mail-Adresse in Stuttgart
hinter|assen.

2. Hochschullehrer:
Ein Anlern-Beruf

Hochschullehrer und Politiker haben gemeinsam, dai3
sie zunéchst eine sehr strenge Auswahl Uberstehen
missen, um ins Amt zu kommen. AnschlieRend ste-
hen sie in aler Regel vor Problemen, die mit den
Kriterien dieser Auswahl nur wenig zu tun haben.

Bei der Bewerbung um eine Hochschullehrerstelle
muf} man unter Beweis stellen, da? man auch
schwierige wissenschaftliche Probleme 16sen kann
und in der Lage ist, die Resultate vorzutragen und zu
publizieren. Neben der fachlichen Ausrichtung ent-
sprechend der Widmung ist dies das wesentliche
Kriterium.

Als Hochschullehrer steht man vor Aufgaben, die
eine Art wissenschaftlichen Herkules erfordern:
Naturlich soll man auch weiterhin und mit Erfolg
wissenschaftlich aktiv sein; daneben soll man einen
gelegentlich spréden, auch fir den Dozenten nicht
immer begeisternden Stoff fir Studenten aufbereiten,
die nicht stets und samtlich auf das Wissen scharf
sind. Man soll Mitarbeiter auswahlen und Doktoran-
den so fihren, daid sie die entscheidende Hilfe er-
halten, um nach einigen Jahren den Sprung Uber die
Hurde zu schaffen.

Neben diesen im ganzen erfreulichen Aufgaben
gibt es andere, die jedenfalls nur selten erfreulich, oft
hochst unerfreulich sind. Als Mitglied des Instituts-
vorstands oder gar als Geschéftsfihrender Direktor
hat man in den Bereichen Personal und Haushalt
Aufgaben, die einfach nicht befriedigend zu I6sen
sind. Personal probleme entstehen unter den Rahmen-
bedingungen der Universitét (FUhrungsdefizit, BAT
und Beamtenrecht) unausweichlich wie die Leber-
zirrhose des Wirts, und ihre Behandlung ist ebenso
erfolgreich. Die Unsicherheiten und Irrationalitéten
der offentlichen Haushalte sind ein sténdiger Quell
fr Irritationen, vorsorgliche Diskussionen und An-
trage, Leerlauf eben.

Kann man fir diese Schwierigkeiten irgend
jemanden verantwortlich machen? Zum Teil. Die
Ausstatung der Institute mit Geld lief3e sich nach
meiner Meinung deutlich effizienter und rascher
organisieren, vor allem, indem man die Mittel den
Instituten zur freien Verfligung Ubertragt, ohne
Bindung an Titel und Haushaltsjahre. Schon die
Umstellung vom Kalenderjahr auf das Studienjahr
waére eine Verbesserung. Im Gbrigen leiden wir unter
den impliziten politischen Vorgaben, die niemand
formulieren will, aber jeder in irgendeiner unbe-
stimmten Form im Kopf hat, schwankend je nach
politischer Strémung und Konjunktur. Was soll die
Universitét denn leisten? Hochwertige Lehre oder
Drittmittel forschung? Buchstabengetreue Exekution
der Gesetze und Bestimmungen oder Nagel mit
Kopfen? Ausschlu® oder Auszeichnung derer, die
Studentenausweis und festen Job haben? Arbeit zum

Wohle des Landes oder moglichst viele Publi-
kationen? Throughput oder Qualitat? Ausbildung der
Massen oder Bildung einer Elite?

Das , oder” ist hier, zugegeben, nicht wirklich
exklusiv, aber kaum ein Hochschullehrer ist nach
meiner Erfahrung und Beobachtung in der Lage, alle
Anforderungen zu erfillen. Er muf3 also Prioritéten
setzen. Wenn wenigstens die Gemeinschaft der
L ehrenden einen — natiirlich nicht punktférmigen —
Konsens erreichte, dann hétten sie doch eine Position,
von der aus man werten und urteilen kdnnte. Unter
den gegebenen Bedingungen geht jegliche Stellung-
nahme, z.B. zu einer Mittel- oder Stundenkiirzung,
von Prémissen aus, Uber die nie Einigkeit bestanden
hat.

Meine Zeit in der Industrie und an der ETH Zirich
brachte einige interessante und bis heute nachwir-
kende Kurse mit, z.B. iber Personalfiihrung und tber
Hochschuldidaktik. Jeder Student muf3 im Studium
bestimmte Nachweise erbringen, teilweise als Vorlei -
stung (Praktika, Latinum). Ich sehe noch immer nicht
ein, warum der Hochschullehrer nicht als Teil seiner
Bewerbung, notfalls nachtréglich, Scheine tber die
erfolgreiche Teilnahme an bestimmten Kursen vorle-
gen muf3, z.B. Uber Didaktik oder Uber &ffentliche
Haushalte.

Teil 2

SESAM: Grundidee und Uberblick

Jochen Ludewig

1. Der Hintergrund

Als 1989 die Gruppe langsam auf ihre Sollgrofie
wuchs, stellte sich die Frage, an welchem Thema sie
denn arbeiten sollte. Naheliegende, wenn auch kei-
neswegs ganz bewuf3te Randbedingungen waren:

e Das Thema soll praxisnah sein, also nicht von
einem unsinnig vereinfachten Bild der Praxis aus-
gehen, und Resultate liefern, diein der Praxis ein-
gesetzt werden kdnnen.

¢ Essall die spezifische Stérke der Hochschule zur
Geltung bringen, namlich die Freiheit von kurz-
fristigen Rentabilitétstiberlegungen und die Frei-
heit zur firmenubergreifenden Forschung.

* Es soll Raum fir viele miteinander verbundene
Arbeiten bieten und in absehbarer Zeit nicht zu
erschopfen sein.

¢ Es soll den Doktoranden eine auch im Hinblick
auf ihre spétere Arbeit nitzliche Erfahrung ver-
schaffen.

¢ Und essoll alen Beteiligten Spald machen.

So kam mir die Idee, den Prozeld der Software-
Entwicklung in einem Computer-Spiel zu simulieren.
~Ausloser* war ein Zeitungsartikel tiber Okolopoly
von F. Vester; viele Erinnerungen und Erfahrungen,
beginnend mit meiner Diplomarbeit (ein Simulations-
system, 1973), auch friihe Spiele auf der VAX
(,,Dungeon*), bildeten den Hintergrund.

2. DieZielsetzung

Was soll SESAM? Das Projekt (, Software-Engin-
eering-Simulation durch animierte Modelle*) hat das
Zidl, ein Software-System zu schaffen, das auf einer
Workstation lauft und von einer Person, dem Spidler,
bedient wird. Der Spieler wird durch die Mitteilungen
des SESAM-Systems mit Informationen Uber ein
Software-Projekt versehen. Er kann den Verlauf
dieses Projekts in dhnlicher Weise beeinflussen wie
bei realen Projekten der Projektleiter und es dadurch
mehr oder minder gelingen oder scheitern lassen.

Bei der Ausbildung im Flugsimulator findet keine
reale Flugbewegung statt, nur die Daten einer simu-
lierten Bewegung werden erzeugt. Ebenso entsteht
beim Spiel mit SESAM keine Software, nur Daten
der Software, z.B. quantitative und qualitative Merk-
male ihrer Komponenten, werden aus dem Spiel -
verlauf berechnet.

SESAM kann aus verschiedenen Perspektiven
beschrieben und présentiert werden:

A. Der Blickpunkt des Spielersist klar und l&dt zur
Identifikation ein (,,das mocht' ich auch spielen®).

B. Aus der Sicht des forschenden Ingenieurs stellt
SESAM, wenn esim Spiel ein plausibles Verhal -
ten zeigt, eine kompakte Codifizierung wichtiger
Gesetzmaliigkeiten im Software Engineering dar.

(A) SESAM als Spie

Wenn uns ein solches System zur Verflgung steht,
dann kénnen wir auch Dinge unterrichten, die in der
traditionellen Weise so gut wie gar nicht zu vermit-
teln sind. Denn die reale Welt der Software-Bearbei -
tung ist im Sinne der reinen Lehre Uberwiegend durch
~Schmutzeffekte® geprégt. Alle moglichen personli -
chen Beweggriinde, Uberraschende Ereignisse und
zuféllige, aber kaum zu éndernde Randbedingungen
prégen die Resultate oft starker als rationale Ent-
schel dungen.

Solche Effekte kénnen wir simulieren und damit
erfahrbar machen. SESAM ist also ohne Frage attrak-
tiv als Lehrmittel, und das nicht nur an der Hoch-
schule, sondern tberall, wo Software entwickelt wird.

(B) SESAM alsModell

Uber Software Engineering gibt es seit einigen Jahren
eine ganze Reihe teilweise dicker Blcher. Man sollte
also meinen, dal3 eine ganze Menge Wissen verfligbar
sein mufte. Das gilt aber nur mit erheblichen Ein-
schrankungen. Wir wissen heute vor allem, wie man
nicht vorgehen sollte, und wir kénnen unsere Erfah-
rungen in Aussagen kleiden, die nach ihrer Prézision
eher der Medizin des 19. Jahrhunderts denn der
Physik des 20. &hneln.

In diesem Sinne ist SESAM das Modell, das die
»Bauernregeln” des Software Engineerings prézi siert
und quantifiziert, so dal3 aus konkreten Daten erst-
mals konkrete Schliisse gezogen werden konnen.
Hier liegt der wissenschaftliche Reiz und die akade-
mische Herausforderung des Projekts.

3. Der Stand mit SESAM-1

Darum haben wir uns bislang kaum mit Fragen
befald, die bel der Entwicklung eines Abenteuerspiels
auf dem Rechner scheinbar vorrangig sind, beispiels-
weise mit der moglichst luxuridsen Benutzer schnitt-
stelle. Die meiste Zeit ist damit vergangen, die

abstrakte Architektur des Systems zu schaffen. Damit
ist die Beziehung zwischen Modell und Simulator
gemeint.

Wir arbeiten an einem ausfihrbaren Modell, von
dem wir wissen, daf3 es alles andere als perfekt ist.
Wir brauchen darum einen Simulator, der durch das
Modell quasi parametrisiert wird. Nur so ist eine
schnelle Evolution der Modelle méglich. Aber das
Prinzip der Parametrisierung schrankt die Freiheit des
Modell-Schopfers ein. Was nicht durch Parameter
gesetzt werden kann, das ist durch den Simulator
vorgegeben und nur mit sehr grofem Aufwand énder -
bar. Das nach drei Prototypen jetzt fertiggestellte
System SESAM-1 ist nach unserer Einschétzung fir
einige Jahre als Werkzeug tragféhig. Die Entwick-
lung der Modelle ist zuriickgeblieben, denn bislang
hatten wir keine Moglichkeit, neue Modelle in kurzer
Zeit zu formalisieren und zu erproben.

Wir stehen also bei SESAM heute an einem
Meilenstein: Wir zeigen das Werkzeug und seine
Komponenten als wichtiges Halbfabrikat; in den
néachsten Monaten und Jahren werden wir vor allem
die Evolution des Modells forcieren.

4. DieModéllierung des
Unbekannten

Bei der Konzeption von SESAM standen wir immer
wieder vor einem Dilemma: Simulieren kann man
ales, was man gut verstanden hat. Der Prozef3 der
Software-Entwicklung ist aber keineswegs gut
verstanden, und so ist er auch der Formalisierung,
damit der Simulation entzogen. Andererseitsist diese
Situation in der Wissenaschaft nicht ungewohnlich:
Gerade durch eine — unzulangliche — Prézisierung des
Problems wird sichtbar, wie eine bessere aussehen
konnte.

Hier ist ein Zitat aufschlufreich: Hj. Siegenthaler,
Prof. fir Wirtschaftsgeschichte am Soziodkonomi -
schen Seminar der Universitét Zirich, schreibt in der
NZZ vom 16.10.1993 in einem Artikel zur Vergabe
des Nobelpreises fur Wirtschaftswissenschaften

Spielzustand

Simulationssystem ~— |ST-80-Umgebung| —

|
Smalltalk-80 V. 4.1
/ I \
Ultrix auf DecStation

(,Neuer Blick in die Geschichte: Die innovativen
Ansétze Robert Fogels und Douglass C. Norths*):

Fogel quantifiziert systematisch alle Feststellun-
gen, die er zur Begrindung seiner Vorstellungen
trifft. Er tut dies auch dort, wo die Datenlage seinen
Quantifi zierungsversuchen nicht eben entgegen-
kommt. Dabei riickt er die Bedeutung statistischer
Verfahren aus dem Zwielicht zweifelhafter Wahr-
heitsanspriiche sehr entschieden heraus: Quantifi-
Zierung begriindet keine Wahrheit, aber wer auf sie
verzichtet, schreckt davor zuriick, sich einer immer-
hin kritisierbaren «Wahrheit» Uberhaupt zu stellen.

o —— (o J— Spieler
TR S] — ¢

/ Sltuatlonsmodell hw
SESAN: Rege'” <——

SESAM Schema S

Diesist auch unser Ansatz: Wir wissen sehr wenig
Uber die Zusammenhange im Software Engineering.
Darum simulieren wir sie.

5. Uberblick zu den Beitragen

Aus der Sicht des Spielers ist SESAM einfach ein
grofdes, komplexes System. Aus der Sicht der Ent-
wickler zerfallt es in viele Komponenten, deren
Abgrenzung uns betréchtliche Mtihe gemacht hat und
die wir heute als ein wesentliches Resultat unserer
Arbeit betrachten.

Die folgende schematische Darstellung zeigt die
Gliederung und die Themen der Beitrége.

Kurt Schneider befafl3t sich mit der Gliederung
selbst, dann vor alem mit dem Zusammenspiel von
Schema, Regeln und Situationsmodell.

Jinhua Li geht auf die Realisierung des Simula-
tionssystems ein.

Anke Drappa diskutiert die verschiedenen M6g-
lichkeiten, Informationen fir den Modellbauer zu
beschaffen, also die Quellen fir ein Modell.

Marcus Deininger betrachtet SESAM aus der
Sicht des Lehrers, also den Einsatz von SESAM.

Jurgen Schwille préasentiert einen wichtigen Im-
plementi erungsaspekt, den generischen Editor vis-A -
vis, der den drei Editoren fur den Modell-Bauer
zugrundeliegt.

(+ Lehrer)

Legende:
odell-Bauer

—_— benutzt
~-a— greift zu auf

SESAM- I realisiert auf

Entwickler

Teil 3

SESAM —die konzeptionelle Basis

Kurt Schneider

Zusammenfassung

In diesem Beitrag werden die grundlegenden
Konzepte von SESAM vorgestellt. Zunéchst geheich
noch einmal kurz auf die Idee von SESAM ein und
grenze sie von Prozelimodellierung ab: In SESAM
wird deskriptiv (beschreibend) modelliert, nicht
normativ (vorschreibend).

Im zweiten Kapitel werden grundsétzliche
Entscheidungen Gber SESAM vorgetragen. Thesen-
artig wird jeweils eine Eigenschaft von SESAM in
den Raum gestellt. Anschlief3end wird sie diskutiert,
die Konzepte, die diese Eigenschaft hervorbringen,
werden genannt.

Eine zentrale Rolle in SESAM nimmt die
Modellbildung ein. Fir SESAM wurde eine neuer
Modellierungsansatz entwickelt, der hier als "Effekt-
orientierte Modellierung" bezeichnet wird. Die
Grundziige dieses Ansatzes werden im dritten Kapitel
erortert.

Das vierte Kapitel geht kurz auf die Architektur
des SESAM-Programmesystems ein. Es zeigt sich, dai3
diese Architektur den konzeptionellen Aufbau von
SESAM-Modellen widerspiegelt. Zum Abschlul? ge-
be ich einen kurzen Uberblick tber den gegen-
waértigen Entwicklungsstand von SESAM.

Dieser Beitrag liefert einerseits die konzeptionelle
Grundlage, auf der die folgenden Aufsétze basieren.
Andererseits gibt der Beitrag einen groben Uberblick
Uber die Themen, die in den anderen Beitrégen im
einzelnen behandelt werden.

1. Dieldee:
Deskriptive M odelle

In SESAM werden Software-Projekte simuliert. Dazu
missen sie modelliert werden — und zwar so, wie sie
sind: deskriptiv.

Auch in anderer Bedeutung wird mitunter von
»~Modellierung” oder ,Simulation* von Software-
Prozessen gesprochen. Zunéchst sollen zwei grund-
sétzliche Feststellungen getroffen werden, die die
Position von SESAM charakterisieren: SESAM leitet
niemanden an, und SESAM ist kein Programm-
generator.

1.1 SESAM versusProzedmodellierung:
Abbild oder Vorbild?

Mit SESAM sollen Software-Projekte modelliert
werden. Die Projekte werden so modelliert, wie sie
sind — nicht wie sie sein sollten. Ludewig (1989) hat
zwischen Modellen mit Abbildcharakter und solchen
mit Vorbildcharakter unterschieden. SESAM-Model -
le sind Abbilder realer Projekte. Alle Fehlent-
wicklungen, Uberraschenden Stérungen und mensch-
lichen Insuffizienzen werden nach Méglichkeit mo-
deliert. So kann ein angehender Projektleiter bzw.
Spiel er an den simulierten Projekten realistische Er-
fahrungen sammeln.

Es gibt seit einigen Jahren eine Bewegung im
Software Engineering, die als Prozefmodellierung
(process modeling) bezeichnet wird; Curtis et al.
(1992) geben einen guten Uberblick (iber dieses
Gebiet. In der Prozelfimodellierung werden die Ab-
laufe in Software-Projekten ebenfalls modelliert —
aber die Modelle haben Vorbildcharakter. Ein-
schlagige Systeme wie MARVEL (Kaiser et al.,
1993) oder Merlin (Peuschel/Schéafer, 1992)
unterstiitzen die Ausfiihrung von Proze3modellen.
Wird ein Prozef3modell ausgefiihrt, so lauft im Prin-
Zip ein Programm ab: das Modell. Nur werden nicht
ale Teile des Programms vom Computer ausgefihrt.
An vielen Stellen werden menschliche Bearbeiter
~wie Unterprogramme aufgerufen* und zu einer
Leistung veranlal3t. Dann missen sie z.B. zu einer
Systemspezifikation einen Modulentwurf erstellen.
Sind sie damit fertig, melden sie es dem System.
Entsprechend der im Modell festgelegten Abhangig-
keiten wird dann der Modulentwurf an einen anderen
Bearbeiter zur Kontrolle oder zur Implementierung
weitergereicht. In Prozel3modellen ist also festgelegt,
welche Aktivitéten-Reihenfolge einzuhalten und wel -
che Bedingungen zu beachten sind. Animierte Pro-
zel3modelle leiten ein Software-Projekt an, indem sie
die Tétigkeiten der Entwickler koordinieren. Die
Modelle werden zu diesem Zweck interpretiert. Ist
der Prozef3 ungiinstig modelliert, leitet er die Ent-
wickler schlecht an. Mit der Prozef3modellierung will
man Software-Projektleiter entlasten, indem man ihn-
en die Koordination aus der Hand nimmt.

SESAM st in diesem Sinn kein Ansatz zur
Prozef3modellierung: Projektleiter lernen an SESAM,
Projekte besser zu leiten, Fehlentwicklungen schnel -
ler zu erkennen; aber sie bleiben Projektleiter, mit
allen ihren Aufgaben. SESAM wird einem
Projektleiter as "Abenteuerspiel” prasentiert, in dem

er sich bewéghren muf3. Aufgrund des komplizierten,
quantitativen Modells vereint SESAM Elemente von
Planspielen und Adventure Games, was in Schneider
(1993a) ausgefiihrt wird. SESAM-Modelle sind Ab-
bilder, Prozef3modelle sind Vorbilder.

12 Realeund simulierte Projekte

In SESAM werden Software-Projekte simuliert. Dazu
werden Dokumente, Code und beteiligte Personen
modelliert. Das Modell einer Person ist — grob
gesprochen — ein Smalltalk-80 - Objekt mit einigen
Variablen wie Name, Monatsgehalt, analytische und
gynthetische Fahigkeiten. NatUrlich erfaf3t dieses
Modell nur sehr wenige Facetten einer Person, es ver-
einfacht und abstrahiert stark. Nur digjenigen
Merkmale sind im Modell beriicksichtigt, die fur
Software-Projekte am wichtigsten sind. Die meisten
Eigenschaften realer Personen tauchen im Modell
Uberhaupt nicht auf, sie werden weggelassen.

Ebenso wie Modelle von Personen natiirlich keine
wirklichen Personen sind, sind auch Modelle von
Dokumenten keine Dokumente, und Modelle von
Programmcode sind kein Programmcode. Das Modell
besteht nur aus Vertretern fir Personen, Dokumenten
und Code. Jeder dieser Vertreter hat einige Attribute,
dieihn charakterisieren.

Stachowiak (1972) hat die Modellabbildung wie
in Abb. 1 dargestellt: Von einem realen Projekt wer -
den nur wenige Eigenschaften fir relevant erachtet,
die meisten sind irrelevant und werden einfach weg-
gelassen. Die relevanten werden ins Modell abge-
bildet — und nicht einfach Ubernommen. Aus den
komplizierten Fahigkeiten einer Person wird das
Attribut "analytische Fahigkeiten" mit dem Wert 1,1
kondensiert. Das soll bedeuten: Die Person ist um
10% begabter als der Durchschnitt. Der Inhalt von
Dokumenten wird ebenfalls abgebildet: Auf eine

(irrelevante Attribute \

Menge von Software-Quanten. Jeder Software-Quant
hat eine indivi duelle, aber anonyme Identitét. Er steht
fur irgendeine Anforderung des Kunden. Die
Information, um welche Anforderung es sich dabei
handelt, ist durch die Moddlabbildung verloren
gegangen: Fir den Projektleiter ist in erster Linie
wichtig, wie viele Anforderungen ein Kunde hat —
nicht, wie diese lauten. Jeder Software-Quant macht
gleich viel Aufwand. Marcus Deininger geht auf die
| dee der Software-Quanten ein.

Modellierte Dokumente haben also keinen fir
reale Menschen lesbaren Inhalt. Das gilt auch fur
Modell-Code; er ist weder lesbar noch ablaufféhig:
schliefflich handelt es sich eben nicht um Code,
sondern um ein Modell von Code. SESAM st kein
Programmgenerator. Alle relevanten Projektbestand-
teile werden bei der Moddlbildung auf einfache
Objekte mit einigen wenigen Instanzvariablen-Wer -
ten abgebildet.

2. Grundkonzepte

SESAM zeichnet sich durch eine Reihe charak-
terisitischer Eigenschaften aus. Diese werden zu
Beginn der folgenden Unterabschnitte thesenartig an-
gegeben und dann erlautert. Schliefdlich wird zu jeder
Eigenschaft angegeben, durch welche Konzepte siein
SESAM erreicht wird.

21 Der Zweck von SESAM-Modellen

SESAM ist ein Lehrspiel fur Projektleiter; es
ist aber auch ein Forschungswerkzeug fur
Software Engineering.

Modellabbildung

irrelevante
Attribute

NS J
/ Original

relevante Originalattribute

/ Modell
relevante Modellattribute

Abb. 1: Bel der Modellabbildung kénnen irrel evante Attribute weggel assen werden

Die Vision eines computergestitzten Adventure-
Games fur Software-Projektleiter hért sich zunéchst
ganz einfach an. Aber was sind die relevanten
Aspekte eines Software-Projekts? Welche kénnen
weggel assen werden? Offensichtlich muf man zuerst
klégren, was man mit SESAM-Modellen genau er-
reichen will. Dann kann man entscheiden, welche As-
pekte fir diesen Zweck relevant sind.

Konzepte

e Wir wollen mit SESAM Abhéngigkeiten, Beob-
achtungen und dynamische Effekte sammeln, die
den Erfolg von Software-Projekten wesentlich be-
einflussen.

e Siewerden in einer eigenen Notation einheitlich
dargestellt und in einem Modell integriert.

¢ DasMaodell ist anschaulich fir Menschen und zu-
gleich animierbar fir den Computer.

¢ DasModell kann als Adventure Game préasentiert
werden.

¢ Durch Experimente mit dem Modell sollen Pro-
jektleiter lernen, reale Projekte besser zu fihren
(Abb. 2, kleine Schleife). Wir wollen dabei ler-
nen, wovon die Entwicklung von Software-Pro-
jekten wirklich abhangt (Abb. 2, grofRe Schieife).

am Modell

Modell B Spiel e Kritik
Abb. 2: Lernen durch Kritik

22 Lernzide

Spieler sollen mit SESAM bestimmte Dinge
lernen kdnnen. Darauf missen die Modelle
zugeschnitten sein.

An einem simulierten Projekt kann man nicht ales
erfahren und lernen, was man in realen Projekte er-
fahren konnte. Schliefflich sind viele Eigenschaften
as irrelevant weggelassen worden. Man muR3 sich
klar machen, welche Einsichten und Erfahrungen am
Modell mdglich sein sollen. Die dazu nétigen As-
pekte darf man dann nicht weglassen: Sie sind rele-
vant.

Lernzielevon SESAM

Spieler sollen durch den Umgang mit SESAM einige
Einsichten vermittelt bekommen:

¢ In Software-Projekten gibt es viele, komplizierte
Zusammenhange, die man auf den ersten Blick
nicht erkennen kann. Projektdauer, -preis und
Produktqualitét hdngen beispielsweie untereinan-

der und vom Betriebsklima ab. Das Betriebsklima
héangt wiederum vom Zeitdruck ab. Wenn der
Projektleiter eine Anordnung trifft, erreicht er
damit nicht nur die gewiinschte Anderung: Viele
Seiten- und Folgeeffekte konnen ausgel st
werden und die angestrebte Verbesserung sogar
wieder zunichte machen.

e Software ist immateriell. Es ist fir den Projekt-
leiter schwierig einzuschétzen, wie weit das Pro-
jekt schon gediehen ist; auch das Betriebsklima
kann er nicht messen, sondern nur vage einschét -
zen. Nur wenn er ausdriicklich Maf3nahmen zur
Fortschrittskontrolle (wie Software-Metriken) ein-
setzt, erhdlt er etwas mehr Informationen. Das
kostet aber Zeit und Geld.

¢ Die meisten Entscheidungen in Software-Projek-
ten mui3 der Projektleiter fallen, obwohl ihm viele
Planungsgrundlagen fehlen: Er weil3 nicht, wann
seine Mitarbeiter krank werden; er weil3 nicht,
wie weit sie bereits gekommen sind und wie gut
die Qualitét des entstandenen Software-Produkts
ist. Er mul3 unter Unsicherheit entscheiden.

* Wenn ein Projektleiter nicht plant, weil3 er auch
Uber die angestrebte Entwicklung seines Projekts
nicht Bescheid. Um das zu verhindern, muf3 er
planen; und zwar mit Puffern, um den zahireichen
Unsicherheiten Rechnung zu tragen. Tut er es
nicht, gerét seine Projektleitung immer mehr zu
reak tivem Krisenmanagement.

e Es kommt in Software-Projekten darauf an, das
Richtige zu tun. Es kommt aber auch darauf an,
das Richtige angemessen zu dosieren: So reicht es
nicht aus, Anforderungsanalyse Uberhaupt durch-
zufthren. Thr muR3 statt dessen angemesse Zeit
und gentigend Aufwand gewidmet werden.

Konzepte

SESAM-Spieler sollen diese Erkenntnisse sammeln
kdnnen. Die Modelle weisen die entsprechenden
Eigenschaften auf:

e Siesind quantitativ.
e Siesind dynamisch, lassen aso die Auswirkungen

versteckter Zusammenhénge teilweise erst im
Laufe der Zeit sichtbar werden.

e Siesind interaktiv und bieten dem Spieler immer
wieder Eingriffsmdglichkeiten, mit denen er den
Fortgang des simulierten Projekts beeinflussen
kann.

* Der Spieler kann das simulierte Projekt aktiv lei-
ten, er kann es aber auch vernachlassigen. Dann
gerét es mehr und mehr auf3er Kontrolle.

» Madgliche Projektleiteraktionen und Modelle sind
feingranular und konkret; der Spieler kann mit
ahnlichen Aktionen ins simulierte Projekt ein-
greifen, wie ein realer Projektleiter in sein Pro-
jekt. Insbesondere muR3 er mit einzelnen, indivi-

duellen (simulierten) Mitarbeitern umgehen, tber
ihre Aktivitaten nachdenken und den Uberblick
Uber die entstehenden (simulierten) Dokumente
behalten.

2.3 Einbettung von SESAM in die
Projektmitar beiter-Ausbildung

Spielen am Modell allein geniigt nicht. Es
ist nur komplementar zu praktischer
Erfahrung und theoretischem Unterricht
einzusetzen und muR in ein Ausbildungs-
Gesamtkonzept integriert werden.

Die genannten Lernziele decken nicht alle Fertig-
keiten ab, die ein Projektleiter haben muR3. Mitarbei -
terfihrung wird nur in sehr groben Ziigen abgedeckt,
Gesprachsfiihrung kann man z.B. nicht im Spiel
lernen. Auch reicht es nicht aus, ein oder zwei Mal zu
spielen, um die oben genannten Lernziele zu errei-
chen. Dazu missen die Spieler vielmehr zusammen
mit einem Betreuer die simulierten Projekte nachvoll -
ziehen und besprechen. Man braucht also ein didak-
tisches Konzept fur SESAM. SESAM mul3 seinen
Teil dazutun, indem es die technischen Voraus-
setzungen bietet, um Spiele wiederholen und kritisch
diskutieren zu kénnen.

Konzepte

[&] verimd der Amlandrorsakes- e [,

In SESAM werden alle Simulationslaufe bzw.
Spiele aufgezeichnet und kénnen beliebig oft
wiederholt werden. Dabei treten auch "lber-
raschende" Ereignisse immer wieder zur selben
Modellzeit ein.

Es gibt verschiedene Simulationsmodi: Im Spiel -
modus hat der Spieler nur sehr wenige Informa-
tionen (vgl. die Lernziele). Im Anayse-Modus
bekommt er zusétzliche Informationen, einige
versteckte Zusammenhénge werden aufgedeckt.
Im Betreuer-Modus kann man alle im Modell
vorhandenen Gréfen beobachten und sieht genau,
was sich im Modell tut.

In der Aushildung sollten sich SESAM-Spiel-
phasen mit Lehreinheiten abwechseln. Erst durch
Riickmeldungen und Kritik kénnen viele Spieler
ihre eigenen Fehler erkennen. Dazu kann man im
Analyse- und schliellich im Betreuermodus
immer mehr Informationen zeigen, damit schritt-
weise die Dynamik des simulierten Projekts er-
schlief3en.

L. 05 15. % 25 Ak 11. 17 ET.OT

Filaichtsalaft defacdecies
Ardran Srabaroschilaatar . sckarn bakeda rdacruncees,

Code dedacdecten

EntwurE defacdsctss
Joamrasy Baskwzslosr srksoorcabnbordesorgan

Abb. 3: Analyse eines Simulationslaufs durch Studium der Attributwertverldufe

24 Modelierungsansatz statt festem
M odéll

Es gibt in SESAM nicht "das Modell" von
Software-Entwicklung schlechthin, sondern
viele konkurrierende und einander ergan-
zende Modelle.

So wie es nicht nur eine Art von Software-Projekten
gibt, kann es nicht ein einziges, immer gleiches
Modell aller dieser Projekte geben. Auftragsprojekte
laufen anders ab als in-house-Projekte;
Verwaltungssoftware wird anders erstellt, getestet
und gewartet als Echtzeitsoftware. Jede Firma hat
ihre eignen Randbedingungen, Standards und Vor-
gehensmodelle. Die individuellen Mitarbeiter ent-
scheiden Uber Erfolg oder MiRerfolg gerade kleiner
Projekte.

Es gibt verbltffenderweise trotzdem Ansétze, um
mit einem Abbild-Modell Aussagen zu gewinnen, die
auf alle (oder zumindest sehr viele) Software-Pro-
jekte anwendbar sein wollen (Abdel-Hamid, 1991).
Das dort verwendete Modell wurde mit einem
NASA-Projekt abgeglichen.

In SESAM gehen wir einen anderen Weg. Denn
selbst, wenn man ein einziges, konkretes Projekt
modelliert, werden verschiedene Modéllierer zu ganz
verschiedenen Ergebnissen kommen. Darin drickt
sich der Mangel an allgemein anerkannten Erkennt-
nissen Uber Zusammenhéange und dynamische Effekte
in Software-Projekten aus. Jeder Modellierer ist
weitgehend auf eigene Intuition und Erfahrung ange-
wiesen; er muld viele Hypothesen in sein Modell
einbauen. Dabei wird er Fehler machen, Hypothesen
werden sich als inkonsistent oder schlicht falsch
herausstellen. Man mul3 mit standigen Modell ver-
anderungen rechnen.

Konzepte

¢ In SESAM st nicht ein Modell fest implemen-
tiert, sondern es steht ein ganzer Modellierungs-

ansatz zur Verfigung: ein Modell-Baukasten, mit
dem man schnell und einfach Modelle erstellen,
veradndern und anpassen kann.

e Daher sollte man unterscheiden zwischen dem
modellunabhéngigen SESAM-Programmsystem
und den SESAM-Modellen, die damit erstellt,
verwaltet und animiert werden.

Im folgenden Abschnitt werden Konsequenzen
aus dieser Entscheidung fir einen Modell-Baukasten
gezogen: Wenn Modelle sténdig geéndert werden
sollen, mul das leicht und einfach gehen.

25 FlexibleModédle

SESAM-Modelle laden zu Diskussion und
Modell-Anderungen geradezu ein.

wird dynamisiert durch

Der Modell-Baukasten gibt die Bausteine vor, aus
denen Modelle bestehen. Sie sind so gestaltet, dal3 sie
einfach auszuwechseln und zu veréndern sind. Dazu
werden die Modelle aus Teilen aufgebaut, die jeweils
weitgehend unabhéngig voneinander bearbeitet wer-
den konnen. Nicht einmal das Repertoire der im
Modell vorkommenden Objekte ist durch den Model -
lierungsansatz vorgegeben: Der Modellierer soll
selbst entscheiden, welche Komponenten in seinen
Modellen vorkommen, welche charakteristischen
Eigenschaften sie haben und wie sie sich dynamisch
verhalten. Besonders zur Darstellung der Dynamik
mufl}d man sich etwas einfallen lassen: Modelle
bestehen nicht einfach aus Programmesticken; damit
kénnte man zwar bequem dynamische Ver-
anderungen darstellen. Sie waren aber nur sehr
schwer zu verstehen und zu warten. Modellierer sol -
len nicht Programmierer sein. Die Struktur der
Modelle wird daher graphisch notiert, nur Details a's
Text angegeben.

Konzepte

* In einem Entity-Relationship-Schema wird fest-
gelegt, welche Objekte und Beziehungen als rele-

Entity-Relationship-Schema

pragt sich aus in

= Effektmodelle U

verandern wahrend der Animation

Situationsmodell

Abb. 4: Schema, Situationsmodell und Regeln

vant erachtet werden. Der Modellierer braucht nur
das Schema zu andern, um das Repertoire an
verfligbaren Komponenten zu veréndern.

¢ Die Ausgangssituation eines Projekts wird model -
liert, indem eine Auspragung des Schemas erstel It
wird. Darin sind als Objekte z.B. einzelne Mit-
arbeiter, Dokumente und Computer enthalten. Da-
zu kommen vielerlel Beziehungen, in denen diese
Objekte zu Beginn des Projekts stehen.

e Die Dynamik — as besonders komplizierter
Modellteil —wird in Effekte zerlegt, die mit einer
besonderen Art von Regeln (SESAM-Regeln)
dargestellt werden (siehe unten).

Abb. 4 zeigt die Teile eines dynamischen Modellsim
Uberblick: Zuerst wird in einem Schema festgelegt,
welche Komponentenarten es gibt. Dann wird eine
Ausgangssituation als Auspréagung des Schemas
aufgebaut. Die Dynamik wird durch eine Menge von
Regeln beschrieben.

Will man einen Aspekt der Dynamik éndern, kann
man einzelne Regeln austauschen oder verandern.
Die Interpretation und Kombination aller Regeln
Ubernimmt das SESAM-Programmsystem. Dadurch
kann sich der Modellierer ganz auf inhaltliche Fragen
seines Modells konzentrieren. Er braucht tiberhaupt

nicht zu programmieren. Damit sind die Voraus-
setzungen fiir eine schnelle Uberarbeitung von
Modellen geschaffen.

26 SESAM in anderen Einsatzbereichen

SESAM st durch seine Flexibilitat ein
universell einsetzbarer Modellierungs-
ansatz. Es ist nicht auf Software-Projekt -
Simulation beschrénkt.

Wenn im folgenden Ausschnitte aus einem SESAM -
Modell gezeigt werden, so haben sie
Beispielcharakter: Man kann mit SESAM auch ganz
andere Projekte, und sogar ganz andere Themen-
gebiete modellieren als Software-Projekte: Man
zeichnet ein Schema dieses anderen Wirklich-
keitsausschnitts, bildet eine Anfangssituation und legt
in Regeln die Dynamik fest. Das funktioniert in
vielen Bereichen z.B. der Biologie, der Soziologie —
Uberall dort, wo Effekte als Trager der Dynamik
identifiziert werden konnen und eine sinnvolle
Granularitét bilden (siehe Kapitel 3).

Bei der Entwicklung von SESAM als Projekt-

[*] SESAM Schema Edito

File | Farmat |Derive Situation Editar ‘ Annatations ‘ Wiews |

W W

L)

ENTITY

EMntivatinn:

2
Person

‘Erfahrung —]

Frojekt

Inhalt i

yufgabensicht =
kditarbeiter

‘Tagessatz =~

D

Faehigkeit

schreibt

N
aF aehigkeit

........ —

Entwickler Frojektleiter

apezifikation

reekiivitaet -

<]

A—E

Abb. 5: Ein Schemaim Schema-Editor

Simulator war diese allgemeine Einsetzbarkeit nicht
unbedingt angestrebt worden. Die letztlich
eingesetzten Konzepte sind aber keineswegs auf
dieses eine Anwendungsgebiet eingeschrankt.

2.7 Vesténdliche Notation und
Werkzeuge fur Modellbildung

Modelle werden so notiert, dal} sie sowohl
fir menschliche Betrachter als auch fur das
Simulationswerkzeug verstandlich sind.

Derzeit gibt es kaum allgemein anerkannte, quan-
titative Beobachtungen Uber Software-Projekte. In
jedem quantitativen Modell stecken daher zahlreiche
Hypothesen. Esist in diesem Stadium der Forschung
unverzichtbar, die Hypothesen explizit nennen zu
koénnen. Modelle kdnnen nur verbessert werden,
wenn ganz klar ist, welche Annahmen darin stecken.
Deshalb ist die Darstellung der Modelle so wichtig.

Esist nicht akzeptabel, ein Modell zwar graphisch
zu zeichnen, es dann aber noch einmal manuell in
eine lineare Notation transformieren zu missen. Die-
ser Vorgang ware nicht nur zu aufwendig, er wirde

beinahe sicher auch zu Fehlern und Inkonsistenzen
fuhren. Dadurch wirde die Validierung zusétzlich
erheblich erschwert.

Konzepte

e Modelle sind modularisiert: Ein dynamisches
Modell besteht aus einem Schema, einem
Situationsmodell und einer Menge von Regeln.
Jeder dieser Teile ist fur sich genommen Uber-
schaubar. Ferner existieren einfache Prinzipien,
wie die Teile zusammenwirken.

¢ Jede Regel steht fir einen Effekt oder einen Zu-
sammenhang im Projekt. Ein dynamischer Effekt
ist eine logisch zusammengehorige Menge von
Abhéngigkeiten, Einflissen und Veranderungen
an den Attributen mehrerer beteiligter Kompo-
nenten (siehe Kapitel 4).

e Es gibt eine halb-graphische Notation fur alle
Teile von dynamischen Modellen. Strukturen
wer den graphisch notiert, Details durch Formeln
oder textuelle Annotationen.

e Es gibt halb-graphische Editoren fir Schema,
Situationsmodell und Regeln. Durch Veranderung
von Diagrammen werden intern computer-
interpretierbare Modelle verdndert. Die Dia-
gramme sind fir Menschen verstandlich; die in-

[#] SESAM Situation Model Editor

File | Format ‘ FParameters |

L W

Al w

Frojektleiter Projekt

istZugeordnet
B~

[===] Sptiegch
Peter Leiter .
istZueardnet

istZugemptnet

Hack, Analyl]

— schreibt

Andrea Siehenschlaefdt

Suebia
Entwickler
Al w [A |
o
Johannes Bankmueller
15 [e] Attribute values
v v
=i - o G00.0,
’,f ‘namea’
Ff??‘ *rntivatior
b ‘Erfahrung’
]
ﬂ? analytisch
- Stresst
= "effFrodukt
3 ’Aufgaben
konstrukti

~ 1t Ehrling

Fllichtenheft V1.3

£

A

Abb. 6: Ein Situationsmodell im graphischen Editor

terne Darstellung ist unmittelbar animierbar.

« Effekte sind eine Gliederungseinheit, die den
Blick von Modellierern und Projektleitern auf das
fir sie Wesentliche lenken: wiedererkennbare, 1o-
gisch zusammengehotrige Komplexe von Ver-
anderungen.

« Die graphisch représentierte Struktur ist leicht
verstandlich. Damit sind die Grundideen eines
Modells mit wenig Aufwand vermittelbar. Flr
guantitative Details mufld man sich dann ndher mit
den Modellen beschaftigen.

2.7 Die Spieloberflache: Einfach und klar

Wahrend der Modellaufbau graphisch un-
terstitzt wird, ist die Spieloberflache be-
wult einfach gehalten: Eine reine Text-
schnittstelle.

Die meisten der bisherigen Konzepte bezogen sich
auf den Aspekt des Modellaufbaus. Im Spiel werden
Modelle eingesetzt. Wéahrend der Modellaufbau
durch eine Familie graphischer Editoren unterstiitzt
wird, wirkt die Spieloberfléche eher spartanisch: Der
Projektleiter sucht seine Aktionen aus einem sehr
vollen, Uberladenen Menu aus, gibt Parameter an und
erhdlt Rickmeldungen in einem Textfenster. Von
den Modellen ist im Spiel nicht viel zu sehen. Sie
laufen vallig im Verborgenen ab.

Die Menlauswahl des Projektleiters geht als
Ereignis ins Modell ein, das die Modellentwicklung
beeinflussen kann. Uber die Entwicklung wird der
Projektleiter nur durch kurze Texte unterrichtet, die
von den Regeln ins Textfenster geschrieben werden.

Abb. 8 zeigt einen Ausschnitt daraus.

Die Interaktion ist absichtlich so einfach aus-
gefallen. Als Eingabe fur Projektleiteraktionen wére
eigentlich Freitext am besten geeignet: Der Pro-
jektleiter/Spieler mifdte selbst und véllig ohne An-
leitung oder Hilfe seine Anordnungen formulieren.
Nichts wirde ihm einen Hinweis geben, was er je-
wells tun sollte — oder auch nur, was er tUberhaupt tun
kann. Allerdings ist Freitext auf3erordentlich schwer
zuinterpretieren. Das Uberladene, absichtlich untiber -
sichtliche Men(stellt einen Kompromif3 dar: Es leitet
nur wenig an, erleichtert aber die Interpretation von
Aktionen ungemein.

Eine graphische Spieloberfléache, wie man sie von
Adventure Games wie , Larry Leasure in the Land of
Lounge Lizzards* her kennt, habe ich ausprobiert.
Inzwischen bin ich aber der Uberzeugung, dafR? die
Graphik SESAM eher schadet a's niitzt: Die Spieler
glauben, mit einem Blick erfassen zu kénnen, wo-
durch eine Situation gekennzeichnet ist. Wenn sie die
Situation nicht sehen, ist diese Gefahr kleiner, es
bleibt die nagende Ungewif3heit, ob man nicht noch
etwas vergessen hat. So soll es sein.

3. Effekt-orientierte
Modellierung

Ein eigenes Kapitel ist dem zentralen Model-
lierungskonzept in SESAM gewidmet: Der Zer-
gliederung eines dynamischen Modells in sogenannte
Effekte und Abhangigkeiten.

31 Wasist ein Effekt?

Die Dynamik eines SESAM-Modells wird dargestel It

Waehlen Sie eine Aktion:

ichBeantrageFristverlaengerung
ichEBeantragekostenushermahme
ichBeantragetdehrGeld
ichBerufeGruppensitzungEin
ichEtklagreDembkundean
ichErlaubetdir&nzumerken
ichFordereBericht
ichFrageMachUrlaubsplasnen
ichFrageMachErfahrung
ichFrageMachF ortschritt
ichFuehretarstellungsgespragch
ichGebeallesah
ichGeheStellenanzeigesuf
ichGenehmigeUrlaub
ichHalteMeeting&h
ichkaufesoftware
ichLadeZumEssenEin
ichLasseaArheitentitSoftware
ichLasseBeimkundeninstallieren
ichLasseCodieran

>

[¢] SESAM Simulator :

01.06.1932
9 Uhr

Ein Schritt weiter

»

Parameter fur &ktion
"ichLassesrbeitenMitSoftware”

<]

accept | cancel |

Software

Person
accept ‘ Cancel ‘
Life | Flayback | Save run il |
Reset |«<< |

Abb. 7: Mentauswahl und Simulationssteuerfenster

[®] Was bisher geschah..

w

Befoerderungen, bei uns?"

191119582 7T

19111982 7T

R3I89 T

Katharina Kohlhaas begegnet lhnen in der Kaffeekueche;

“lch hin jetzt mit der Macharbeit von Code schon recht weit gediehen; allerdings sind mir dabei
noch ein paar Funktionen aufgefallen, an denen was fehlt. Ich werde das aber demnaechst
etledigen. Jetzt brauche ich aber erstmal ein Paeuschen. Sagen Sie, wie ist das nochmal mit

Es entwickelt sich ein angeregtes Gespraech ueber die Qualifikationen, die ein Projektleiter
braucht. Sie zeichnen die Taetigkeit in eher duesteren Farben, waehrend Katharina Kohlhaas sie
als "guthezahlten Job" bezeichnet; Sie weisen aber auf die enarme Arbeitshelastung hin, der gin
Projektleiter ausgesetzt ist. War Katharina Kohlhaas’s Laecheln wirklich unglaeubig, oder bilden
Sie sich das nur ein? Die Leute haben wirklich keine Yorstellung!

Katharina Kohlhaas stoehnt: "Wenn Sie meinen, mache ich Installation, obwohl mir Programmieren
oder Entwerfen oder irgendsowas Produktives schon mehr Spass macht.”

Andrea Siebenschlaefer staehnt: "Wenn Sie meinen, mache ich Installation, abwohl mir
Programmieren oder Entwerfen oder irgendsowas Produktives schon mehr Spass macht.”

tartin Huthmacher ist heute nicht gekommen. Hat Urlaub: so schoen muesste man’s hahben!

<]

Abb. 8: Das Rickmeldungsfenster

as ein System von Abhéangigkeiten und Effekten.
Eine der schwierigsten Fragen in SESAM war die
Modellierung der Dynamik. In SESAM wird die
Dynamik als System sich Uberlagernder und gegen-
seitig auslosender Effekte und Abhangigkeiten
aufgefaldt. Das Konzept der Effektmodelle ist eine
Verallgemeinerung sowohl der objekt-orientierten
Modellierung, als auch der aktivitétsorientierten
Simulation.

Objekt-orientierte Modellierung

In einem streng objekt-orientieren Modell wiirde man
fur alle beteiligten Klassen aus dem Schema
festlegen, welches Verhalten ihre Auspragungen
zeigen. Die Dynamik des Gesamtmodells ergibt sich
durch das Zusammenwirken der dynamischen
Objekte; sie schicken sich gegenseitig Nachrichten zu
und fordern sich damit zu Aktivitéten (Verhalten)
auf. In diesem Paradigma ist die Dynamik auf alle
Objekte und innerhalb der Objekte auf die
-~Methoden" verteilt. Innerhalb einer Methode
(Verhaltenseinheit) legt man genau fest, was mit dem
betreffenden Objekt geschieht. Veranderungen an
anderen Objekten sieht man dagegen nicht: Ihnen
werden Nachrichten geschickt, jedes Objekt kapselt
aber alle Anderungen an seinem Zustand und verbirgt
sie nach aufen. In Schneider (1993) wird SESAM
von rein objekt-orientierter Modellierung abgegrenzt.

Aktivitats-orientierte Simulation

Die aktivitatsorientierte Simulation ist eine Form
ereignisorientierter bzw. diskreter Simulation (Page,
1991). In der aktivitatsorientierten Simulation ist die
Dynamik eines Systems auf eine Menge von
Aktivitéten verteilt. Zu jeder Aktivitét gehort eine

Ausfihrungsbedingung. Die Aktivitét ist selbst dafir
.verantwortlich*, standig zu prifen, ob diese
Bedingung erfillt ist. Dann wird die Aktivitat
ausgefihrt. Dies resultiert in einer diskreten Zu-
standsanderung an beliebigen Modellkomponenten.
Die Wirkung der Aktivitat wird also nicht Uber
»Objekte" verstreut, sondern ist an einer Stelle fur
ale Objekte gemeinsam festgelegt., die von einer Ak-
tivitét betroffen sind: in der Aktivitatsbeschreibung.

Effekt-orientierte Modellierung und Simulation in
SESAM

Die Gliederungseinheit der Dynamik in SESAM st
der Effekt. Ein Effekt ist eine Klasse von Begeben-
heiten, die unter typischen Bedingungen auftreten.
Ergibt sich in einem Software-Projekt eine
Konstellation, die den Effekt auslost, so findet eine
solche Begebenheit statt. Die Begebenheit verandert
den Zustand der am Effekt beteiligten Objekte — der
Objekte, die in der Konstellation vorkommen. Die
Konstellation kann ein beliebiges Situationsmuster
aus dem Schema sein. In einem Effektmodell sind
ale Zustandsédnderungen an allen Objekten zusam-
mengefaldt, die unter den Effekt fallen. Nicht das
Objekt, nicht unbedingt eine bewuflte Aktivitét,
sondern Effekte sind Trager von Dynamik. Anders
alsin der aktivitdtsorientierten Simulation kann die
Zustandsénderung auch kontinuierlicher Natur sein:
Durch Differenzengleichungen werden allmahliche
Attributwertdnderungen beschrieben. Sie wirken sich
erst aus, wenn Modellzeit verstreicht.

Effekte kdnnen sich gegenseitig ausldsen. Ein
Effekt soll eine wiedererkennbare Einheit sein, die
ein Projektleiter auch in realen Projekten bemerken
kann. Seine Aufgaben ist es, die jeweils wirksamen

aus formalen

entfernen

einfigen

Situationsmuster

Entitaten und Verbindungen

Bestehende Komponenten

Neue Komponenten

formName

Rn rol
ro3 - - . ro2
formName

RN rol
+
ro3_+ SNt + 102
formName

Abb. 9: Prinzip der Notation fur Strukturdnderungen

Effekt zu erkennen und ihre Uberlagerte Wirkung
abzuschétzen. Das kann er in SESAM lernen. Er muf3
es meiner Uberzeugung nach auch in realen Projekten
standig tun.

Effekt-orientierte Modellierung préagt der
Wirklichkeit eine typische Struktur auf; Gberall sieht
man Effekte, komplementiert von Abhangigkeiten.
Projektleiter mussen lernen, durch ihre Aktionen in-
direkt mit Effekten zu jonglieren: wiinschenswerte
hervorzurufen, schédliche zu erkennen und zu unter-
binden. Ungelibte Projektleiter kbnnen zunéchst nur
auf wenige grundlegende Effekte achten. Mit mehr
Ubung wéchst das Repertoire, man hat das Projekt
immer besser im Griff. Die effekt-orientierte Sicht
der Welt ist der Projektleitertétigkeit angemessen.

3.2 Prinzip: Graphmanipulationsregeln
als Effektmodelle

Den Kern eines dynamischen Modells bilden die
Regeln, mit denen die Dynamik modelliert wird. Jede
Regel stellt einen Effekt oder eine Abhangigkeit dar.
Hier kann nur das Prinzip der Regeln vorgestellt wer-
den.

Eine Regel besteht Ublicherweise aus einem
Bedingungs- und einem Aktionsteil. Im Bedingungs-
teil ist festgelegt, unter welchen Umstanden die Regel
anwendbar ist. Im Aktionsteil wird beschrieben, was
dann geschieht.

Der Zustand eines SESAM-Modells wird als
Graph interpretiert, bestehend aus Projektbeteiligten
Objekten (Knoten) und Beziehungen dazwischen
(Kanten). Ein Situationsmodell beschreibt einen Zu-
stand. Auf dem Diagramm ist daher ein Graph zu
sehen (vgl. Abb. 6).

SESAM-Regeln sind eine spezielle Variante von

Graphmanipulationsregeln: Bedingungs- und Ak-
tionsteil bestehen aus Graphmustern. Wird im Si-

tuationsmodell ein Teilgraph gefunden, der mit dem
Graphmuster des Regel-Bedingungsteils Uberein-
stimmt, so wird das Graphmuster mit diesem Teil -
graphen gebunden. Der Teilgraph wird nun ersetzt
durch einen anderen Teilgraph, der dem Aktionsteil -
Muster entspricht. Dieses Muster wird dann anstelle
des Bedingungsteil-Musters in das Situationsmodell
eingebettet. Verschiedene Formen von Graph-
Grammatiken werden unter anderem in Schneider
(1977) und Géttler (1988) detailliert beschrieben.

3.3 EineNotation fir Effekte

Die ldee, Zustandséanderungen als Graphmanipula-
tionsregeln darzustellen, entfaltet ihre Stérken nur
dann vollstandig, wenn die Verédnderungen auch
weitgehend graphisch notiert werden. Wenn man von
einigen syntaktischen Details absieht, hat die
graphische Notation folgende Bestandteile: Ein
Situationsmuster wird als Graph aus formalen
Komponenten (Kreisen und Verbindungslinien mit
Raute in Abb. 9) dargestellt. Verénderungen werden
durch + bzw. - Zeichen an formalen Komponenten
ausgedrickt: mit "-" markierte Komponenten werden
gelbscht, fir jede "+" markierte Komponente wird ein
neues Objekt oder eine neue Beziehung in den
Situationsgraphen eingefiigt.

Dieses Konzept ist in SESAM verbunden mit der
Mdoglichkeit, Attributwerte von gebundenen Tellgra-
phen zu verdndern. Der Bedingungsteil besteht also
weiterhin aus einem Situationsmuster, das an einen
Teilgraphen des Situationsmodells gebunden wird.
Im Aktionsteil der Regel wird angegeben, wie sich
die Attributwerte dndern. Die Anderungen vollziehen
sich entweder auf einen Schlag (Zuweisungen) oder
allméahlich (Differenzengleichungen). Die Zugehorig-
keit eines Attributs zu einer (formalen) Komponente
wird wiein Abb. 10, links, ausgedriickt.

Zustandsbildende Attribute

N

|AttrNa'me| |AttrName |~——{
Zuweisung Kontinuierliche beides
Veranderung
Abgeleitete Attribute
1
AttrName AttrName AttrName AttrName
Basisdefinition Faktor Offset

Abb. 10: Attributwertanderungen (Ubersicht)

In einer SESAM-Regel koénnen verschiedene

Aktionen kombiniert werden:

e Graphstruktur wird verandert,

e Attributwerte veréndern sich schlagartig,

» Attributwerte veréndern sich Uber einen Zeitraum
hinweg allmahlich.

AuRerdem gibt es in SESAM das Konzept
diskreter Ereignisse, die wie bei herkbmmlicher
ereignis-orientierter Simulation (z.B. Page, 1991)
auftreten konnen. Beispiele: Mitarbeiter wird krank,
Kunde taucht auf.

4. Architektur

Die genannten Konzepte sind im SESAM-Programm-
system implementiert. Die Architektur des Systems
wird skizziert. In dieser Archtiektur spiegeln sich die
Konzepte.

4.1 Tellsystemevon SESAM

Das SESAM-Programmsystem besteht aus drei Teil -
systemen:

e Modellaufbau-Teilsystem mit drei halb-gra-
phischen Editoren zur Entwicklung, Verwaltung

Aktionsart
(rol: formNamel,
ro2: formName2)

und Veranderung von Schema, Situationsmodell
und Regeln.

e Konfigurations- und Analyseteilsystem fir die
Kombination der Modellteile zu einem voll-
standigen dynamischen Modell. In diesem Teil -
system wird je ein Schema, ein Situationsmodell
und eine dazu passende Menge von Regeln aus-
gesucht. Das Teilsystem kombiniert diese Teile
dann automatisch.

¢ Modellanimations-Teilsystem zur eigentlichen
Simulation. In diesem Teilsystem wird das
Modell animiert, verschiedene Animationsmodi
stehen zur Verfigung: Spielmodus, Analyse-
modus und Betreuermodus. Je nach ausge-
wahltem Modus sind mehr oder weniger Informa-
tionen und Optionen zuganglich.

42 Schichtenstruktur von SESAM

SESAM ist in Smalltalk-80, Version 4.1 implemen-
tiert. Diese Smalltalk-Version ist auf PCs, Mac-
Intoshs und einer grof3en Zahl von Workstations
verflgbar; SESAM ist ohne jede Anpassung auf alen
diesen Plattformen ablauffdhig. Derzeit umfafdt
SESAM rund 250 Smalltalk-Klassen mit Uber 4000
Methoden.

... auf Aktionen reagieren

Ereignisart
(rol: formNamel,
und Ereignisse auslosen.... ro2: formNameZ)

Abb. 11:; Erwartetes (links) und ausgel 6stes Ereignis (rechts)

Modellerstellungs-

Teilsysteme Teilsystem

Animations-
Teilsystem

Konfigurations-
teilsystem

Dynamische

Persistente

Regeln

Modelle

=/ N/

Speicher

Situationsmodelle

Abb. 12: Die drei SESAM-Teilsysteme, verbunden durch persistente Speicher

Im Modellaufbau-Teilsystem wird der generische
graphische Editor vis-A-vis eingesetzt, um die drei
halb-graphischen Editoren zu realisieren. vis-A-vis
umfaldt rund 75 Smalltalk-Klassen und bietet die
Basisfunktionen eines graphischen Editors. Die
Spezifika von Schema, Situationsmodell und Regeln
werden in den Rahmen von vis-A-vis eingebracht
und ergeben so drei halb-graphische Editoren. vis-A-
vis ist in Lichter/Schneider (1993) und Lichter/
Schneider (1993a) beschrieben. Jirgen Schwille geht
naher auf vis-A-visein.

5. Wo steht SESAM heute?

Die oben vorgestellten Konzepte sind im SESAM -
Programmsystem umgesetzt. Seit inzwischen
eineinhalb Jahren haben wir auch ein Modell, mit
dem man ein Projekt von rund sechs Monaten Dauer
innerhalb weniger Stunden bzw. Tage im Rahmen
einer Lehrveranstaltung simulieren kann. Das Modell
war im Wintersemester 1992/93 bereits manuell
animiert worden: Damals stand noch kein Simulator
zur Verfugung. Die Animation war sehr mihsam und
erforderte mehrere Manntage pro Simulationsschritt.
Uber das Modell und die Lehrveranstaltung, in der
wir es eingesetzt haben, berichten wir in Dei ninger/
Schneider (1994).

Grundlage des Modells ist die Metapher der

Stillen Post: In der Software-Entwicklung muf3
Information vom Kunden in die Spezifikation, weiter
in den Entwurf und schliellich in den Code
transportiert werden. Dabei kommt es zu
MiRversténdnissen und Fehlern. Die Aufgabe des
Projektleiters ist es, seinen Teil zu einer mdglichst
unbeschadeten Informationsweitergabe zwischen den
Projektbeteiligten und den Dokumenten beizutragen.
Er muR3 die Rahmenbedingungen schaffen und ge-
eignete Anordnungen treffen, so dal? die Information
moglichst wenig entstellt wird. Die Metapher wird in
Schneider (1994) ausfuhrlich beschrieben. Repréasen-
tant einer "Informationseinheit” ist ein Software-
Quant.

Ein derartiges Modell ist im Wintersemester
1993/94 im SESAM-Programmsystem aufgebaut
worden. Es wurde an vier Studenten erprobt, die
interaktiv Projektleiter spielten. In beiden
Lehrveranstaltungen erwies sich SESAM als brauch-
bar.

Erkannte Schwéchen sind in einer neuen Version
des Modells teilweise beseitigt; die Modellevolution
(Abb. 2) hat begonnen und fihrt zu immer besseren
Modellen. Das SESAM-Programmsystem und die
zugrundeliegenden Konzepte sind dagegen
weitgehend stabil und unverandert geblieben. An der
Benutzeroberflache ist noch einiges zu tun, das
Programm ist jedoch inzwischen durchaus einsetzbar.

| vis-A-vis, Release 1.2

' Modellkonfi- |
Modellerstellung ' guration ! Modellverwendung
1 - !
Schema-| | Situationsmodell- || Regel- |'| Konfigurator Simulator
Editor Editor editor || Analysator || Regeln&DGL-Integ.
! i
1 1
1 1
1 1
L 1

| Smalltalk-80, Version 4.1

Abb. 13; vis-A-vis as Hilfsschicht im Modellerstellungs-Teilsystem

Literatur

Abdel-Hamid, T. K.; Madnick, S. (1991): Software
Project Dynamics; Prentice Hall, Englewood
Cliffs, NJ

Curtis, B; Kellner, M. I.; Over, J. (1992): Process
Modeling; Communications of the ACM, Sept.
1992, val. 35, no. 9

Deininger, M.; Schneider, K. (1994): Teaching
Software Project Management by Simulation -
Experiences with a Comprehensive Model; Proc.
of the Conference on Software Engineering
Education (CSEE), Austin, Texas, Jan. 1994

Gottler, H. (1988): Graph-Grammatiken in der
Softwaretechnik; Springer, Berlin

Kaiser, G. T. E.; Popovich, S. S.; Ben-Shaul, I. Z.
(1993): A Bi-Level Language for Software
Process Modeling; Proc. of the International
Conference on Software Engineering (ICSE-
15), IEEE Comp. Soc. Press

Lichter, H.; Schneider, K. (1993): vis-A-vis: An
Object-Oriented Application Framework for
Graphical Design Tools; Proc. of the IFIP
Workshop on Interfacesin Industrial Systems
for Production and Engineering; Darmstadt,
Germany, March 15-17, 1993; Elsevier

Lichter, H.; Schneider, K. (1993a): vis-A-vis: Ein
objektorientiertes Application Framework fir
graphische Entwurfswerkzeuge; in Mayr, H.C;
Wagner, R. (Hrsg.): Objektorientierte Metho-
den fur Informationssysteme; Springer, Infor-
matik aktuell

Ludewig, J. (1989): Modelle der Software-Ent-
wicklung: Abbilder oder Vorbilder? Software-
technik Trends, Band 9, Heft 3, Okt. 1989

Ludewig, J; Bassler, Th.; Deininger, M.; Schneider,
K.; Schwille, J. (1992): SESAM - Simulating
Software Projects; Proceedings of the Software
Engineering and Knowledge Engineering
(SEKE) Conference, Capri, Italy

Page, B. (1991): Diskrete Simulation - Eine
Einflhrung mit Modula 2; Springer, Berlin

Peuschel, B.; Schafer, W. (1992): concepts and
Implementation of a Rule-based Process Engine;
Proc. of the International Conference on
Softwar e Engineering (ICSE-14), ACM

Schneider, H.-J. (1977): Graph Grammers; Lecture
Notes in Computer Science 56, pp 314-331

Schneider, K. (1993): SESAM-zwischen Planspiel
und Adventure Game; Tagungsband zur 5.
Fachtagung Informatik und Schule “93; Springer,
Informatik aktuell " Informatik als Schltissel zur
Qualifikation™

Schneider, K. (1993a): Object-Oriented Simulation of
the Software Development Process in SESAM;
Proc. of the Object-Oriented Simulation
Conference (O0S'93), part of the Western
Simulation Multiconference, San Diego; SCS
Society for Computer Simulation

Schneider, K. (1994): Komm, wir spielen
Projektleiter!; Tagungsband zum 3. Workshop
SEUH (HuBmann/Paech, Hrsg.: Software
Engineering im Unterricht der Hochschu-
len'94); Teubner, Stuttgart

Stachowiak, H. (1972): Allgemeine Modelltheorie;
Springer Verlag, Wien, New Y ork

Teil 4
SESAM als Simulator
JinhuaLi

1. Einleitung

SESAM ist ein Simulationssystem, in dem Simula-
tionstechniken verwendet werden, um Software-Ent-
wicklungen zu modellieren. Dieser Artikel behandelt
den SESAM-Simulator, ein Teilsystem von SESAM,
das die Animation verschiedener Software-Projekt-
Modelle (SP-Modelle) unterstiitzt. Die grundlegende
Kenntnis von SESAM und Software-Projekt-Modell -
bildungen aus der Einfuhrung von Ludewig und den
konzeptionellen Grundlagen von Schneider werden
fUr den vorliegenden Aufsatz vorausgesetzt.

Zuerst werden einige in diesem Artikel benutzte
Begriffe kurz erklért, damit man die Diskussionen in
den folgenden Abschnitten besser verstehen kann.
Genaue Definitionen und ausfihrliche Auseinander -
setzungen dieser und anderer relevanten Konzepte
finden sich in anderen SESAM-Dokumenten und in
der Literatur.

Unter Systemsimulation versteht man eine
Methode zur Lésung von Problemen, bei der man die
Anderungen eines dynamischen Systemmodells tiber
der Zeit verfolgt (Gordon, 1969). Es wird zwischen
stetigen Simulationen, die stetige Systeme modéellie-
ren, und diskreten Smulationen, die diskrete Systeme
modellieren, unterschieden. Durchfiihrung von Sy-
stemsimulationen besteht aus ein Reihe von grundle-
genden Schritten, die sich im wesentlichen in drei
Bereiche einordnen lassen: Modellbildung (z.B. Pro-
blemdefinition, Modellentwurf und -implementa-
tion), Modell- oder Smulationsexperimente (z.B.
Planung und Ausfiihrung von Modellexperimenten)
und Ergebnisanalyse (z.B. Bewertung von Ergebni-
ssen). Ein rechnerunterstiitztes Simulationssystem ist
nach Page (1991) ein Softwaresystem, das die Bear-
beitung der drei Aufgabenbereiche Modell-bil dung,
Durchfihrung von Simulationsexperi-menten und
Ergebnisanalyse im Rahmen einer Simulationsstudie
unterstitzt. In den drei genannten Bereichen sind
jeweils die folgenden Funktionen zu erfillen:

Modellbildung

» Eingabe und Modifikation von Modellen

» Speicherung von Modellen

e Zugriff und Verkniipfung gespeicherter Modelle

Durchfiihrung von Simulationsexperimenten

» Festlegung von Eingabedaten fir Experimente
» Start und Ausfiihrung von Simulationsléufen

» Speicherung der Ergebnisse

Ergebnisanalyse

o Zugriff auf gespeicherte Ergebnisse

* Auswahl der zu analysierenden Ergebnisse
e Préasentation der Ergebnisse

Das Teilsystem eines Simulationssystems, das fir
Simulationsexperimente eingesetzte laufféhige
Computerprogramm, wird in der Literatur gelegent-
lich als Softwaresimulator oder kurz Simulator be-
zeichnet (vgl. z.B. Schmidt 1985). Dieser Teil von
SESAM wird in diesem Artikel als SESAM-Smulator
bezeichnet und vorgestelit.

Der folgende Abschnitt behandelt Modelldar-
stellungen in SESAM-System, die der Bildung von
SP-Modellen dienen. Im dritten Abschnitt wird der
SESAM-Simulator aus Sicht des Benutzers betrach-
tet, d.h. wie der Spieler durch SESAM ein Simula-
tionsexperiment (einen Software-Entwick-lungs-
prozefd) durchfiihrt. Diese wird uns zum Begriff des
interaktiven Simulationssystems fihren. Der Aufbau
und die Mechanismen des SESAM-Simulators, der
eigentlich die Animation von SP-Modellen zeitlich
vorantreibt, erlautert Abschnitt 4. Der Artikel endet
mit einigen SchluRbemerkungen zum Thema Simula-
tionin SESAM.

2. Darstellungen von Softwar e-
Projekt-M odellen

Software-Projekt-Modelle im SESAM-System um-
fassen alle wichtigen in realen Softwareent-wick-
lungen auftretenden Elemente (z.B. Auftrége, Werk-
zeuge, Personal und Budget) und Beziehungen (z.B.
ein Mitarbeiter erzeugt oder liest ein Dokument). Sie
werden in SESAM in zwei Kategorien eingeordnet:
Entitaten und Beziehungen. Entitdten lassen sich wie-
der durch Attribute beschreiben. Ein Mitarbeiter in
SESAM wird z.B. as eine Entitét modelliert, die
durch Attribute wie Qualifikation, Motivation und
Fahigkeit zur Programmierung charakterisiert wird.
Das im Simulationsverlauf entstandene Produkt wird
auch durch eine Reihe von Attributen (wie den Um-
fang und Qualitét einer Software) enthaltender Enti-
téten beschrieben. Eine Beziehung verbindet min-
destens zwei Entitéten, z.B. ein Mitarbeiter diskutiert
mit dem Kunden Uber die Softwareanforderungen.

Schwieriger as bei anderen Simulationen sind bei
SESAM einerseits die konzeptionelle Modell-bildung
von SP, die die Redlitét sinnvoll und adaquat nachbil -
det, und andererseits die konkrete Darstellung ihrer

Attributwerte, die sowohl genaue Werte (Zeit und
Budget) oder unscharfe Werte (Motivation und Lei -
stung eines Mitarbeiters) sein konnen, als auch stetig
veréandern (Qualitét eines Softwareprodukts und
Entwurfsfahigkeit eines Mitarbeiters) oder sprunghaft
verandern (Anzahlsénderungen von Mitarbeiter und
Budget) kénnen.

Um SP-Modelle genau nachzubilden, wird in
SESAM ein SP-Modell in drei Schichte beschrieben:
Das attributierte Entity-Relationship-Schema fihrt
die Entitdten (mit ihren Attributen) und ihre
maoglichen Beziehungen ein. Die Anfangssituation,
mit der der Spieler ein Simulationsexperiment
durchfihrt, ist eine spezielle Auspragung dieses
Schemas. Die Anderungen der Situation (des
Szenarios) werden durch Regeln, die sog. Effekt-
modelle, beschrieben. Allmahliche Anderungen der
Attributwerte sind nach dem Konzept von ,, System
Dynamics® definiert; sprunghafte Anderungen auf-
grund von Ereignissen (Einfuhrung oder Entfernung
von Entitéten und Beziehungen) sind durch eine attri -
butierte Graph-Grammatik vorgegeben. Zur Erzeu-
gung und Handhabung der drei Schichten stehen in
SESAM entsprechend jeweils drei Graphen-Editoren
zur Unterstiitzung, des universellen Werkzeugs ,, vis-
A-vis* (Lichter, Schneider, 1993) zur Verflgung.

3. SESAM-Simulator I:
benutzer-orientierte
Simulation

In diesem Abschnitt wird der SESAM-Simulator aus
Sicht des SESAM-Spielers erlautert. Zu Beginn eines
Simulationsexperiments steht dem Spieler eine
Ausgangslage (das Szenario) zur Verfligung, die ein
simuliertes Softwareprojekt reprasentiert und alle we-
sentlichen Informationen und Gegenstande fur ein
Projekt enthdlt, z.B. Budget, Kunde, Betriebsmittel
(z.B. Rdume und Werkzeuge) und eine Gruppe von
Mitarbeitern. Sie wird in SESAM graphisch darge-
stellt und bildet den Anfangszustand einer Simula-
tion.

Ziel des Spielersist es, durch seine Aktionen mit
den Unterstitzungen des SESAM-Simulators das
mode lierte Projekt erfolgreich zu Ende zu bringen.
Er Ubt seinen Einflul® auf die Simulationsléufe tber
eine Benutzeroberfléache in Form von Aktionen, also
Spieleraktionen, aus. Abbildung 1 veranschaulicht
diese Beziehung zwischen dem SESAM-Simulator
und dem Spieler.

Spicler

v
/ Benutzeroberfléche /

Spicleraktionen

SESAM-Simulator

Abb. 1: Simulationslaufe durch die Spieleraktion

Zur Verfigung stehen dem Spieler eine Reihe von
vor definierten moglichen Spieleraktionen, mit denen
er ein simuliertes Projekt leiten kann. Der Spieler
mufd allerdings die Aktionen auswahlen, ihre
Durchfihrungen ordnen und Entscheidungen treffen,
wenn etwas passiert ist, d.h. ein Ereignis zuféllig
entsteht. Die Spieleraktionen entsprechen im Prinzip
allem, was ein Projektleiter in der Praxis tun kann.
Beispiel sweise kann er
* Mitarbeiter einstellen oder entlassen,

» Arbeitsgruppen bilden und Aufgaben erteilen,

« entscheiden, ob nétige Werkzeuge erzeugt oder
gekauft werden,

* beim Vorgesetzten sein Budget verteidigen,
* zu einer Besprechung zusammenkommen.

AuRerdem ist dem Spieler moglich, die Simulations-
|&ufe zu beenden, zu unterbrechen oder wiederaufzu-
nehmen sowie sich die aktuellen Informationen
seines Projekts zu geben lassen.

Der SESAM-Simulator verarbeitet solche Spieler-
aktionen, wodurch sich der Systemzustand sténdig
veréndert. Der SESAM-Simulator kann z.B. (vgl.
Tabelle 1)

« Entitdten in das System einfligen oder entfernen,

« Beziehungen zwischen existierenden Entitdten
enrichten

« Attributwerte in einem Systemzustand verandern
oder

» Ereignisse erzeugen (z.B. Mitarbeiter E ist kran-
ken und muf3 eine Woche zu Hause bleiben) oder
behandelt (z.B. muR der SESAM-Simulator auf
dem Ereignis, dal? Mitarbeiter E nicht zur Arbeit
kommen kann, aber mit dem Kunden einen
Termin ausgemacht hat, dadurch reagieren, dal3 er
entweder eine Aktion ausldst oder den Spieler
eine Entscheidung treffen |43t)

Spieleraktion

Auswirkungen im SESAM-Simulator

Erzeugen einer Modulspezifikation

Einfligen der Entitét in dem Systemzustand

Entlassung eines Mitarbeiters

Ldschung der Entitét in dem Systemzustand

Teilsystem B nach Spezifikation C

Mitarbeiter A beschaftigt sich mit | Ubernahme der entsprechenden Entitéten in den
Systemzustand und Anderungen der entsprechen-
den Attributwerte UGber der Zeit

Uber die Systemanforderungen

Mitarbeiter D diskutiert mit Kunden K | standige Anderung der Attributwerte, z.B. des
Verstandnisses von Mitarbeiter D fir das Projekt
und Funktion-Points der simulierten Software-

Spezifikation

Tab. 1: Einige Spieleraktionen und entsprechende Auswirkungen im SESAM-Simulator

AuRerdem verwaltet der SESAM-Simulator die simu-
lierte Uhr, in dem er die Simulationszeit nach jeder
Aktion des Spielers weitersetzt.

AuRerhalb des SESAM-Systems kdnnen nur die
Auswirkungen des Spielers auf das Systemverhalten
beobachtet werden. Der Spieler bestimmt den Verlauf
eines Simulationsexperiments und spielt damit die
zentrale Rolle bei SESAM-Simulationen. SESAM
wird deshalb als interaktives Simulations-system oder
benut zer-orientiertes Simul ationssystem bezeichnet.

Die Ablaufe im SESAM-Simulator wahrend einer
Simulation lassen sich alerdings nicht direkt auf3er-
halb erkennen. Der SESAM-Simulator reagiert auf
jede Spieleraktion, indem er den Systemzustand stén-
dig veréndert und damit die Simulation um eine
Simulationszeiteinheit (At) fortfuhrt. Wie der
SESAM-Simulator arbeitet und was innerhalb des
SESAM-Simulators passiert, wird in dem nachsten
Abschnitt ausfihrlich beschrieben.

4. SESAM-Simulator 11:
Aufbau und M echanismen

Die gegenwértige Version des SESAM-Simulators
besteht aus zwel Modulen: einem Ereignis-Simulator
(wird kurz als Simulator bezeichnet) zur Animation
von zufélligen oder anschliefRend vom Spieler ausge-
[6sten Ereignissen, und ein Regelanwender (RA) , der
u.a. die zeitkonsumierenden Vorgange von SP-
Modellen simuliert. Um den Ablauf beider Module
zu synchronisieren, wird in SESAM der RA dem
Ereignis-Simulator untergeordnet (Kiehne, 1993).
Dies fuhrt dazu, dafd3 der Ereignis-Simulator die
Simulation zeitlich vorantreibt. SESAM st ein
gemischtes Simulationssystem in dem Sinne, dal in
SESAM einerseits von einem Zeitpunkt zum
néchsten Zeitpunkt aufgrund von Ereignissen um die
Simulationsschrittweite (At) fortgeschritten wird,
andererseits sich das Systemverhalten in einer

gewissen Situation innerhalb jeder simulierten
Zeitspanne (At) quasi-kontinuierlich veréndert.
Diesen Zeitverlauf und die Zustandsveranderungen
zwischen zwei simulierten Zeitpunkten kann man
jedoch auRRerhalb des SESAM-Simulators nicht
beobachten.

Abbildung 2 zeigt die Komponenten des SESAM -
Simulators, und ihre Beziehung mit anderen
Komponenten, die zum Systemverhalten zusammen
beitragen.

Systemzustand und Spieleraktionen, die eigentlich
nicht zum SESAM-Simulator gehdren und dennoch
enge Zusammenhange mit dem Systemverhalten in
einem Simulationslauf haben, werden ebenso in die-
sem Abschnitt erlautert. Der Systemzustand wird in
SESAM als ein Spielzustand und ein erweitertes
System-Dynamics-Modell (SD-Modell) reprasentiert.
Ereignisse signalisieren, dal3 etwas passiert ist. In
SESAM représentieren sie Zustandsénderungen und
beinhalten keine Information Uber den aktuellen
Zustand selbst, sondern machen Aussagen Uber seine
Entwicklung. Esist dennoch praktisch, Ereignisse als
Teil des Zustands anzusehen, denn so kann man
anhand der eingetretenen Ereignisse erkennen, wasin
der Vergangenheit mit dem Zustand passiert ist.
Ereignisse sind in SESAM entweder exogene
Ereignisse, die vom Spieler ausgel6st werden, oder
endogene Ereignisse, die durch den RA zuféllig
erzeugt werden. Spieleraktionen, mit denen der
Spieler seinen Einflul? auf die Simulation austibt,
werden im SESAM-Simulator als exogene Ereignisse
angesehen.

Der Ereignis-Simulator stellt die Drehscheibe der
Simulation dar. Er kommuniziert mit allen in einem
Simulationslauf mitwirkenden Komponenten, nam-
lich den RA, den Spieleraktionen, den Systemzustand
usw. Die Hauptaufgabe vom Ereignis-Simulator
besteht darin, dal3 er

« ale Ereignisse speichert, verwaltet und manipu-
liert (z.B. er nimmt die Spieleraktionen in
Empfang und vermerkt alle Ereignisse als
eingetreten, deren Eintrittszeitpunkt erreicht oder
Uberschrittenist),

* einen Teil von Attributwerten im SD-Modell be-
rechnet und damit auch den Systemzustand konsi -
stent macht,

e die Simulationsergebnisse sasmmelt und verwaltet,

+ die Routinearbeiten wie Setzen von Simulations-
parametern (z.B. Anfangs- und Endzeit), Start der
Simulation und Vormerkung von Unterbre-
chungs-zeitpunkten zur Verfuhrung stellt und

+ die Simulationszeit, die wahrend einer Simulation
vergehende Zeit, sprunghaft fortschaltet.

exogene Ereignisse

v

<4—>

Ereignis-Simul ator [Regel anwender }

| (Effektmodelle) |

| (Ereignise) |

Systemzustand

(Spielzustand
+SD-Modell)

Abb. 2: Logische Struktur des SESAM-Simulators

Der Regelanwender, dhnlich einem Regelsystem,
stellt die Art und Weise des Systemverhaltens dar,
d.h. wie sich der Systemzustand &ndert. Effekt-
modelle, die der Wissenbasis eines Regelsystems
entsprechen, sind die bearbeiteten Hypothesen im
Software Engineering. Der RA beschreibt, wie die
Regeln in einer Situation angewendet werden
konnen, und bestimmt, ob das Systemverhalten schon
zu einem stabilen Zustand erreicht ist, so dal3 keine
Regeln mehr verwendbar sind. Unter einem stabilen
Zustand versteht man einen Zustand, in dem alle
Strukturen stimmig (widersprechen keiner Regeln)
sind und alle Werte auf denselben Zeitpunkt und
aufeinander bezogen sind. Aber der RA unterscheidet
sich von gewohnlichen Regelsystem so, daf in
SESAM nicht nach einem Ldsungszustand gesucht,
sondern das Verhalten von Softwareprojekt
nachgebildet wird. Die Aufgabe der Problemldsung
kommt dabei dem Spieler, nicht dem SESAM-
System zu.

Der RA fihrt die durch Ereignisse ausgeldsten
Aktionen aus und verandert quasi-kontinuierlich den

Systemzustand zwischen zwei Simulationszeitpunkte
dadurch, dal3 er nach Ereignissen und Regeln

» Attributwerte andert,

e Attribute, Entitdten und Beziehungen im Spiel -
zustand erzeugt oder 16scht und

» FEreignisse zufdlig erzeugt.

Simulator und RA stellen gemeinsam die Antriebs-
feder des SESAM-Systems dar. Sie arbeiten Hand in
Hand und verdndern den Systemzustand geméal’ den
verwendeten Effektmodelle und aufgetauchten
Ereignissen. Anderungen der Systemzustande mit der
Zeit, d.h. die Animation eines Software-Prozesses,
sind moglich durch

« die entweder vom Spieler ausgeldsten oder
zuféllig eingetreten Ereignissen oder

» das Uberschreiten von Schwellwerten definiert
sein kénnen.

Das Zusammenwirken von Spieler und
SESAM-Simulator

Um das Zusammenwirken von Spieler,
Regelanwender und Ereignis-Simulator klar zu
machen, nehmen wir ein einfaches Beispielszenario
in Anlehnung an Krause (1993), das in Abbildung 3
anschaulich dargestellt ist. Fangen wir damit an, dal?
in einer bestimmten Situation zu einem Zustand 1 der
Spieler einen Mitarbeiter des Projekts zum Kunden
geschickt hat. Diese Spieleraktion flgt in den
Zustand ein Ereignis ein, das sofort bearbeitet wird.
Die Kontrolle wird nach Ausfiihrung dieser Spie-
leraktion an den Regelanwender Ubergeben (die
Ubergabe der Kontrolle wird durch vertikale Linien
mit Pfeilen angedeutet), der nun priift, ob er aufgrund
der Effektmodellen Aktionen ausfuhren soll. Wir
nehmen fur den Zustand 1 an, daR dies der Fall ist.
Eine Regel reagiert auf die Spieleraktion und entfernt
den Mitarbeiter aus dem Raum, in dem er sich gerade
befindet und richtet eine Beziehung (sprichtMit)
zwischen ihm und dem Kunden ein. Zugleich
beeinfluf}t sie den Zustand des Mitarbeiters durch die
Besprechung mit dem Kunden. Diese Aktionen
fuhren zum Zustand 2, in dem die Attribute des
Systems, z.B. das Verstandis dieses Mitarbeiters fir
das Projekt, beeinflut werden und deshalb der
Zustand inkonsistent wird. Berechnung der
Attributwerte ist nun die Aufgabe des Simulators, der
die Kontrolle Gbernimmt, um den Zustand logisch
konsistent zu machen. Jetzt ist der Zustand 3 erreicht.

Aufgrund der veranderten Attribute kbnnte nun
eventuell eine Regel anwendbar sein. Die Kontrolle
geht darum wieder an den RA zurlck. Dieser tut
wieder das gleiche wie in Zustand 1: Er wendet die
Effektmodelle auf den verénderten Zustand an.
Werden dabei Aktionen ausgefiihrt, so wird der
nachste Zustand, Zustand 4, wieder dem Simulator
Uberlassen, der die Attribute berechnet. So kann die

Kontrolle zwischen dem Simulator und dem RA
mehrfach hin und her gehen, bis der RA keine Regeln
mehr anwenden kann und ein stabiler Zustand
gelangt. In Abbildung 3-2 stellt Zustand 5 einen
solchen stabilen Zustand dar, mit ihm nun Zustand 6
identisch ist.

Bis zu diesem Punkt ist die Simulationszeit noch
nicht fortgeschritten. Dieser Abschnitt der Simulation
wird Phase 1 der Smulation genannt. Nun kann der
Simulator also einen Simulationsschritt ausfihren
und die Simulationszeit um ein At weiterschalten.
Dies heist Phase 2 der Simulation oder
Smulationsschritt. Damit ist Zustand 7 erreicht und
der Spieler kann wiederum eine Aktion ausfihren.
Denkbar ist, dal3 wahrend der Phase 1 der Simulation
eine Situation eintritt, die unbedingt einen
Spielereingriff braucht. In diesem Fall muR3 die Kon-
trolle an den Spieler gegeben werden. Zusténde 8 und
10 stellen einen solchen Simulationsverlauf dar:
Zustand 9 verlangt nach einer Spielerentscheidung;
bevor die Kontrolle an den Spieler geht, macht der
Simulator den Zustand noch konsistent.

Spicler mm

) At
Simulator

RA \ A

Zustand 1 2 3 4 56 7 8 9 10

1 2 1
Phase | —

Abb. 3: Zusammenspiel von Spieler,
RA und Simulator

5. SchluBbemerkungen

Eine entschiedene Rolle spielt in Simulations-
systemen und in SESAM Zeit, von der u.A. die
Qualitdt eines Simulators abhangt. In SESAM-
Simulator geht es um zwei Aspekte von Simu-
lationszeit. Erstens mul3 die Entscheidung tber das
kleinste Zeiteinheit, auch Simulationsschrittweite ge-
nannt, getroffen werden, um die praktischen
Situationen von Software-Entwicklungen getreu si-
mulieren zu koénnen. Zweitens weil es in SESAM
zwei Modulen, der Ereignis-Simulator und der
Regelanwender, gibt, ist es erforderlich und auch
maoglich, die Schrittweiten in beiden Teilen anzupa-
ssen. AulBerdem ist im Sinne vom Abenteuerspiel,
dal’ der Spieler den Spielverlauf mdglicherweise

schnell durchfihrt, eine Erweiterung von SESAM
zweckmaRig. Dieser schwierige Aspekt eines
Abenteuerspiels ist gekennzeichnet durch die
Realzeit, die tatsachlich in der realen Welt vergeht,
und die CPU-Zeit, die einer Spieler bei der
Simulation auf einem Rechner ben(itzt.

Der Regelanwender ist im wesentlichen ein
Regelsystem, das aus drei Komponenten besteht:
Effektmodell (Wissensbasis), Konfliktldsungs-
strategie und Regelanwendungsverfahren (Kontroll-
einheit) sowie Systemzustand (Datenbasis). Im ge-
genwértigen SESAM ist jedoch noch keine
Konfliktldsungsstrategien fertiggestellt. Bei Durch-
fuhrung von Simulationsexperimenten verwendeten
statistischen Verfahren (z.B. Verteilungsfunktionen
wie die Normalverteilung oder Erlangverteilung) sind
nun noch nicht zufrieden in Simulationsmodellen
eingebracht.

Gekennzeichnet ist SESAM in bezug auf Simula-
tionstechniken durch:

 interaktive Simulationsablaufsteuerung

« Anwendung von regelbasierten Techniken in
Systemsimulationen

* Erweiterung und Anwendung der formalen
Darstellung programmierter attributierten Graph-
Grammatik mit objektorientierten Ansétze

e Erweiterung und Anwendung der Systemtheorie
System Dynamics bei Modellierung und
Simulierung von Softwareprozessen

« Erweiterung und Anwendung von zeitgesteuerten
und ereignisorientierten Simulationsmethoden in
einem Simulationssystem

¢ Représentation und Handhabung von unscharfen
Eigenschaften und Wissen in Software
Engineering und in Simulationssystemen

« interaktive graphische Modellbildung in System-
simulationen.

Literatur

Gordon, G. (1969): System Simulation. Prentice-
Hall, Inc. 1969.

Kiehne, K. (1993): Entwurf und Implementierung
eines Simulator-Moduls fir SESAM . Diplom-
arbeit 870, Fakultdt Informatik, Universitat
Stuttgart, 1993.

Krause, M. (1993): Entwicklung eines regelbasier -
ten Baukasten zur Verhaltensmodellierung in
SESAM. Diplomarbeit 994, Fakultét Informatik,
Universitét Stuttgart, 1993.

Lichter, H.; Schneider, K. (1993): vis-A-vis. Ein
objekorientiertes Application Framework fur
graphi sche Entwurfswerkeuge. in Mayr, H.C;
Wagner, R. (Hrsg.) Objektorientierte Metho-
den fir Informationssysteme (EMISA-
Tagung); Springer, Informatik aktuell, pp. 187-
207, 1993.

Page, B. (1991): Diskrete Simulation - Eine Ein-
fihrung mit Modula-2. Springer 1991.

Schmidt, B. (1985): Systemanalyse und Modell-auf -
bau. Grundlagen der Simulationstechnik.
Fachberichte Simulation 1. Berlin: Springer
1985.

Tel 5
SESAM und die Realitat
Anke Drappa

Zusammenfassung

SESAM ist ein objekt-orientiertes Werkzeug, mit
dem Modelle fur Software-Projekte in einer
graphischen Notation beschrieben und anschlieffend
animiert werden kdnnen.

In diesem Beitrag wird untersucht, wie sinnvolle,
d.h. insbesondere realitdtsnahe Modelle von
Software-Projekten entwickelt werden kdnnen und
wodurch sie sich auszeichnen. Daflr werden die
Ergebnisse verschiedener Arbeiten, die in den letzten
Jahren in der Abteilung Software Engineering
durchgefihrt worden sind, vorgestellt und die dabei
gewahlten Ansétze diskutiert.

1. Einfihrung

SESAM ist ein Simulator fur Software-Projekte, der
im Rahmen eines Forschungsprojekts der Abteilung
Software Engineering an der Universitat Stuttgart
entwickelt worden ist.

In SESAM koénnen Modelle von Software-
Entwicklungsprojekten in einer Uberwiegend
graphischen Notation beschrieben und anschlief’end
"durchgespielt”" werden. Der Spieler ibernimmt dabei
die Rolle des Projektleiters und veranlaldt alle fur die
Projektdurchfiihrung notwendigen (simulierten)
Téatigkeiten, wie z.B. Einstellen von Mitarbeitern,
Zuteilen von Aufgaben oder Beschaffen von Werk-
zeugen.

In der Art eines Adventure Games erhdlt der
Spieler Informationen und Reaktionen vom System,
die seine weiteren Aktivitaten im simulierten Projekt
bestimmen. Am Ende des Spiels kann der Verlauf des
Software-Projekts sichtbar gemacht und analysiert
werden. Der Spieler erfahrt, welche Aktionen sich
gunstig und welche sich eher negativ auf das
simulierte Projekt ausgewirkt haben.

Hier steht weniger das Werkzeug SESAM als
vielmehr die Problematik der Modellierung von
Software-Projekten im Vordergrund. Ziel der
Modellierung ist, dem Praktiker ein realitétsnahes
Abbild seiner Wirklichkeit anzubieten. Es wird unter -
sucht, welche Schwierigkeiten bei der Modellierung
bestehen und wie die Abbildung der Realitét in ein
Modell durch empirische Daten gestitzt werden
kann.

In der Abteilung Software Engineering sind
mehrere Arbeiten durchgefihrt worden mit dem Ziel,
Gesetzmalligkeiten bei der Abwicklung von
Software-Projekten zu erkennen. In diesen Arbeiten
wurden sowohl die vorhandenen Literaturquellen
ausgewertet als auch reale Projektdaten erhoben und
analysiert. In diesem Beitrag werden Inhalt und
Ergebnisse der Arbeiten vorgestellt. Darlber hinaus
wird diskutiert, inwieweit die gewdhlten Ansétze die
Modellbildung unterstiitzen kénnen.

Waéhrend die Hypothesensammlung (Utz, 1992)
und die Erhebung von Metriken in Software-
Projekten (Drappa, 1993) unabhangig von SESAM
durchgefuhrt wurden, ist in Feest (1993) das bisher in
SESAM vorhandene Modell als Basis fur die
Untersuchungen verwendet worden. Zunéchst sollen
der grundsétzliche Aufbau der Modelle sowie die
Grundidee desin SESAM verfugbaren Modells kurz
erléutert werden.

Komponenten von SESAM-M odellen

Modelle in SESAM bestehen grundsétzlich aus drei
Komponenten, dem Schema, der Startsituation und
den Regeln.

Im Schema werden die benétigten Entitats- und
Relationstypen definiert und mit den zu ihrer
Charakterisierung erforderlichen Attributen versehen.
Das Schema liefert im Prinzip eine abstrakte
Beschreibung fur alle im Modell beriicksichtigten
Objekte und Beziehungen der realen Welt.

Im Verlauf des Spiels werden von diesen Entitéts-
und Relationstypen Auspragungen (also Entitéten
und Relationen) erzeugt und deren Attribute mit kon-
kreten Werten belegt. In der Startsituation wird der
Anfangszustand der Simulation definiert, d.h. es
werden alle im Spiel bereits verfiigbaren Entitéten
und Relationen mit den entsprechenden Attribut-
werten erzeugt.

Die letzte Modellkomponente, die Menge von
Regeln, dient der Anderung des Spielzustands
wahrend der Simulation. Jede Regel Ubt gewisse
Effekte auf den Spielzustand aus, wie z.B. das
Erzeugen oder Ldéschen von Entitdten bzw.
Relationen oder das Andern von Attributwerten.

Fii | Foaman | O 300 aie B | aasdglbis I--L--\.l

e
m
g

ambvaniey larecbuergur famansie ebad
| "
.l

LN RO e -
At _"'- e
Linfargu Fsisor _1 e
Wnlarwys bl —— A

T Y i

Eakni
LR T _-' =
L L] s
et edangoet il
MCONF T D d
T e —
Syupam e i

ivvesFEn el Fablencen MUETuRld it
— b "

Eatredlion T edesd Argasemichl

i Ly
! - -
NN HEEET 3EN gL

== barriruisr e nani gini

Te ARAEEETERSTETRL]
iuéu.ﬂ.‘.‘.'wnw
AL o e

» n:__-_-_ TageiEsz

= LA A D

Framiiisde

ArssrcdungEeeich
§ .-"".-\.-h'.rn'wr.-'-:
| e e
e L _'| Puciaid _.—';-L-a_-\.u-;,.-r.:_-\.-\.'-.-.f
Budgel ~——_~ "_--T_J-'-f.'\-"'.'.l\.ﬂ'\-"..'

F!'Ilal'ﬂ'l’__.—' S

—

L i EE A R

Abb. 1: Schemaim derzeitigen SESAM-Modell

Bisheriges M odell

Das derzeit in SESAM vorhandene Modell ist
konzeptionell noch sehr einfach. Auf der Schema-
ebene werden im wesentlichen Dokumente, Personen
(mit verschiedenen Subentitéten), Werkzeuge sowie
das Projekt selbst beriicksichtigt. Die wichtigsten
Beziehungen bestehen zwischen den Entitétstypen
Dokument und Person, d.h. Personen lesen, schreiben
oder prifen Dokumente (vgl. Abbildung 1).

Die Mitarbeiter werden durch ihre (konstruktiven
und analytischen) Fahigkeiten sowie durch ihre
Erfahrung charakterisiert. Die Dokumente werden
hauptsachlich durch die Attribute Umfang und Inhalt
modelliert, wobei die Beschreibung des Inhalts durch
die Attribute Gefordertes, Uberfliissiges und Fehlendes
detailliert wird.

Ein Problem der Modellierung besteht darin, den
Attributen "aussagekréftige" Werte zuzuordnen. Bei
den Attributen der Entitét Person und den Attributen
ihrer Subentitdten wurden im wesentlichen Multipli-
katoren verwendet, die mit den aus COCOMO
bekannten Anpassungsfaktoren (z.B. ACAP, PCAP)
vergleichbar sind. Das Attribut Fahigkeit erhalt bei
einer Person mit durchschnittlichen Fahigkeiten
beispielsweise den Wert 1, wahrend entsprechend

geringere oder hohere Fahigkeiten durch Werte
kleiner bzw. grofzer 1 modelliert werden.

Die wesentliche Idee des Modells liegt jedoch in
der Art der Modellierung des Inhalts und der Qualitét
der Dokumente. Dafir wurden die sogenannten
Software-Quanten entwickelt, die fir kleinste, nicht
weiter teilbare Aufgabeneinheiten stehen. Software-
Quanten sind voneinander unterscheidbar, werden
aber inhaltlich nicht néher spezifiziert.

Der in dem Projekt zu entwickelnden Software
wird eine bestimmte Menge an erforderlichen
Software-Quanten zugeordnet. Die Idee ist nun,
Inhalt und Qualitét der Dokumente durch die Menge
der ihnen zugeordneten Software-Quanten zu
beschreiben. Angenommen, die zu erstellende
Anwendung erfordert 234 Software-Quanten. Dann
mufdten in der Spezifikation idealerweise ebenfalls
234 Software-Quanten enthalten sein, wenn nach
dem Winschen des Kunden spezifiziert wurde.
Tatséchlich werden aber oft nicht ale geforderten
Software-Quanten spezifiziert, sondern einige fehlen
oder Uberflissige eingefiihrt werden. Je mehr dieser
Software-Quanten nun in die Spezifikation
"hinUbergerettet" werden, desto hoher ist die Qualitét
des entstandenen Dokuments.

Im Modell werden also Regeln bereitgestellt, die
das FlieRen dieser Software-Quanten beschreiben.
Abhéngig von dem in das Dokument investierten
Bearbeitungsaufwand und von den Fahigkeiten der
Bearbeiter wéchst die Menge der Software-Quanten,
die den Inhat des Dokuments modelliert. Je lénger an
dem Dokument gearbeitet wird, desto weniger
Quanten werden fehlen und desto mehr Uberfllssige
werden eingefuhrt. Dabei werden die Ergebnisse
umso besser sein, je hoher die zustéandigen
Mitarbeiter qualifiziert sind. Nach dem gleichen
Prinzip wird auch das Flief3en der Software-Quanten
von der Spezifikation in den Entwurf und vom
Entwurf in den Code modelliert.

Die Entitét Projekt beschreibt wesentliche Aspekte
des durchzufiihrenden Software-Projekts, wie z.B.
den geplanten Endtermin, das verfligbare Budget
oder den Anteil einzelner Phasen am Gesamtauf -
wand.

In diesem Stadium des Forschungsprojekts ist das
Modell weit davon entfernt, vollstandig und
wirklichkeitsgetreu zu sein, obwohl wesentliche
Aspekte durchaus realistisch modelliert worden sind
(val. Kapitel 3). Es soll hauptsachlich als Grundlage
fur die hier prasentierten Uberlegungen betrachtet
werden. Es geht also nicht nur darum, dieses Modell
zu kritisieren, sondern es mufd festgestellt werden,
wodurch sich giiltige Modelle auszeichnen und auf
welcher Basis diese erstellt werden konnen. Diese
Aspekte sollten durch die Diplomarbeiten untersucht
werden, dieim folgenden vorgestellt werden.

2. Sammlung von Hypothesen

Die erste der folgenden drei Arbeiten wurde im Jahr
1991 durchgefiihrt. Zu dieser Zeit befand sich das
Forschungsprojekt SESAM noch im Anfangsstadium,
diese Arbeit diente auch der Klarung der
Anforderungen an ein Programmsystem zur
Simulation.

Zieleder Arbeit

In der Diplomarbeit sollten Hypothesen Uber
Software-Projekte gesammelt und fir SESAM
formuliert, klassifiziert und quantifiziert werden. Die
Grundlage fur die Sammlung bildete die vorhandene
Software Engineering-Literatur.

Ziel der Diplomarbeit war die Gewinnung von
Aussagen Uber Software-Projekte, welche die darin
gultigen Zusammenhange beschreiben. Durch die
Definition einer einheitlichen Représentationsform
und die Entwicklung eines Klassifikationsschemas
sollten die Hypothesen gruppiert und &ahnliche
Hypothesen identifiziert werden.

Diese Hypothesen-Sammlung sollte eine erste
Grundlage fur ein Modell des Software-Entwick-
lungsprozesses darstellen. Die vorhandenen Hypothe-

sen konnen auf dieser Basis schrittweise verifiziert,
falsifiziert oder angepaldt werden.

Ergebnisseder Arbeit

In der Arbeit ist zundchst ein Schema entwickelt
worden, das den Aufbau von Hypothesen beschreibt.
Danach verwendet eine Hypothese Attribute von
Eingabeobjekten und verandert (hier) ein Attribut
eines Zielobjekts. Die sogenannte Ausl ésebedingung
enthdt Informationen dartiber, wann eine Hypothese
glltig ist (z.B. wenn ein bestimmtes Ereignis
eingetreten ist).

Dariiber hinaus ist ein Schema zur Klassifikation
der Hypothesen nach den Zielobjekten, Gber die sie
Aussgen machen, erarbeitet worden; z.B. gibt es
Klassen wie Mitarbeiter, Kunde, Sourcecode oder
Testdokument.

Die in der Literatur gefundenen Hypothesen sind
zusammengestellt und in das Klassifikationsschema
eingeordnet worden. Dabei ist eine umfangreiche
Sammlung mit insgesamt 273 Hypothesen ent-
standen. Es war zu beobachten, dal3 die Klassen-
belegung sehr inhomogen war; sechs von sechzehn
Klassen enthielten keine Hypothesen, wahrend
andere Klassen, z.B. Mitarbeiter oder Sourcecode,
mit 66 bzw. 60 Hypothesen sehr stark belegt waren.

Die folgenden Beispielhypothesen sollen die

Ergebnisse der Arbeit veranschaulichen (Utz, 1992):

e JegroRRer eine Organisation ist, desto niedriger ist
die Produktivitét. (1)

* Wenn wiederverwendbarer Code eingesetzt wird,
dann steigt die Qualitét von Modulen. (2)

« Der Aufwand fir ein Software-Projekt ist von der
Programmgréfe abhéngig und betrégt im Modus
semidetached E = 3.2 (KDSI)1.05 MM. (3)

e Fehlerbeseitigungsaktivitéten erfordern im Durch-
schnitt 30 % des gesamten Entwicklungsauf-
wands. (4)

« Die Produktivitét fur "leichte” Funktionen betragt
20 LOC/Tag, fir "mittlere" Funktionen
10 LOC/Tag und fur "schwere" Funktionen
5LOCI/Tag (LOC = Lines of Code). (5)

« Bei Kontrollprogrammen (z.B. Betriebssystemen)
betrégt die Produktivitét 600 LOC pro Mitarbeiter
und Jahr, bei Ubersetzern betragt sie ca. 2200
LOC pro Mitarbeiter und Jahr. (6)

Viele in der Arbeit gesammelten Hypothesen
beschreiben einen rein qualitativen Zusammenhang
zwischen verschiedenen Attributen. Die beiden ersten
der oben genannten Hypothesen geben z.B. einen
Zusammenhang zwischen der OrganisationsgrofRe
und der Produktivitdt bzw. zwischen wiederverwend-
barem Code und der Modulqualitét an. Andere Hypo-
thesen enthalten zwar quantitative Angaben, sind
aber dennoch sehr allgemein formuliert. Es ist

beispiel sweise nicht klar, welche der in einem Projekt
durchgefihrten Tétigkeiten zu den Fehlerbeseiti-
gungsaktivitdten zu rechnen sind (vgl. Hypothese 4).
In weiteren Hypothesen sind exakte Angaben
enthalten, ihre Aussagen weichen aber von den
Untersuchungsergebnissen anderer Autoren teilweise
ab (vgl. Hypothesen 5 und 6).

Diskussion des Ansatzes

Obwohl die Hypothesensammlung interessante
Einblicke in die Praxis der Software-Entwicklung
gewahrt, ist sie als Grundlage fur die Modellierung
von Software-Projekten in SESAM nur mit einigen
Einschrénkungen verwendbar. In der Literatur waren
Uberwiegend qualitative und nicht —wie erhofft —
guantitative Aussagen zu finden. Qualitative
Aussagen sind aber nicht oder nur schlecht fir die
Simulation zu verwenden. Zum einen missen die
Zusammenhénge zwischen den Attributen exakt
guantifiziert sein, damit eine entsprechende Regel
formuliert und in der Simulation eingesetzt werden
kann. Zum anderen muf festgelegt werden, wie die
Attribute gemessen werden konnen, durch welche
Metrik ihnen also ein Wert zugeordnet wird.

Betrachtet man beispielsweise die im letzten
Abschnitt genannte Hypothese "Je grofer eine
Organisation ist, desto niedriger ist die Produktivitat",
so wird deutlich, dal’ zwar irgendein, aber sicher kein
guantitativer Zusammenhang zwischen den Attri-
buten Organisationsgrofle und Produktivitédt postuliert
wird. Wahrend bei dieser Hypothese wenigstens noch
vorstellbar ist, wie die Attribute bewertet werden
koénnten (Organisationsgrof3e durch die Anzahl der
Mitarbeiter und Produktivitét durch LOC pro Tag),
ist beispielsweise fur das Attribut Modulqualitét
bisher keine einheitliche, validierte Melvorschrift
bekannt.

Ein weiteres Problem bei der Sammlung von
Hypothesen aus der Literatur besteht darin, dal? der
Kontext, in dem die jeweiligen Untersuchungen
stattgefunden haben, verloren geht. Bestimmte
Zusammenhange gelten z.B. nur unter besonderen
Randbedingungen oder speziellen Voraussetzungen.
Wegen der Reduktion der durchgefiihrten Untersuch-
ungen auf die einzelnen Aussagen werden solche
Einschrankungen u.U. nicht mehr beriicksichtigt.
Dies ist auch eine moégliche Erkléarung fur die z.T.
stark voneinander abweichenden Aussagen (ber
denselben Aspekt der Software-Entwicklung (wie
z.B. die Produktivitét), die in der Hypothesen-
sammlung enthalten sind.

Trotz der genannten Schwierigkeiten und
Gefahren tréagt aber der vorgestellte Ansatz wesent-
lich zur Konservierung und zur Konsolidierung
bisher erzielter Forschungsergebnisse bei. Dartiber
hinaus kann mit diesem Ansatz eine erste Grundlage
fur die Modellierung geschaffen werden. Die so

entstandenen Modelle missen dann schrittweise
verbessert und verfeinert werden.

3. Validierung des SESAM -
Modéells

Wahrend die im letzten Kapitel vorgestellte Arbeit
die Grundlagen fur die Modellierung von Software-
Projekten schaffen sollte und lange vor der ersten
Implementierung des SESAM-Systems stattfand, ist
in der jetzt diskutierten Diplomarbeit das bisher in
SESAM enthaltene Modell als Ausgangsbasis
verwendet worden.

Zideder Arbeat

In dieser Arbeit sollten die Regeln des in Kapitel 1
skizzierten SESAM-Modells Uberprift, also auf
Vollstandigkeit, Genauigkeit und besonders auf
Realitatsndhe hin untersucht werden. Dazu sollten
—ahnlich wie in der letzten Arbeit — eine Literatur-
analyse durchgefihrt und die relevanten Daten
zusammengestellt und verdichtet werden. Die sich
aus den Daten ergebenden Aussagen sollten mit den
SESAM-Regeln verglichen werden.

Das Literaturstudium wurde durch eine
Praktikerbefragung erganzt, um digjenigen Regeln
validieren zu koénnen, fur deren Prifung in der
Literatur keine Daten vorhanden waren.

Ergebnisse der Arbeit

Die Ergebnisse dieser Arbeit sind durchaus
ermutigend fir die Zukunft. Im Rahmen der
Literaturanalyse sind ingesamt 14 Quellen untersucht
worden. Sie ist nach verschiedenen Aspekten der
Software-Entwicklung gegliedert (z.B. Fehler,
Aufwandsschatzung oder Produktivitat der
Mitarbeiter) und liefert eine Fiille quantitativer Aus-
sagen. Angaben, die von den Autoren nicht durch
Zahlen belegt worden sind, wurden in dieser Arbeit
nicht berticksichtigt.

Im Rahmen der Primaranalyse, also der
Befragung, sind elf Praktiker aus acht verschiedenen
Unternehmen interviewt worden, wobei ein auf der
Basis der empirischen Soziaforschung ausgearbei -
teter Fragebogen eingesetzt wurde. Obwohl die
resultierende Datenmenge relativ klein ist, konnte
durch spezifische Fragen zum ersten Mal die
"Redlitétsndhe" des SESAM-Modells geprift werden.

Die auf der Basis der Analyse durchgefiihrte
Validierung ergab, da3 das SESAM-Modell im
grof3en und ganzen zutreffend ist, jedoch an einigen
Stellen erweitert und verbessert werden muf3. Kurz
zusammengefaldt stellte Feest (1993) folgendes fest:

« Die Kosten fur Mitarbeiter und Stellenanzeigen
sind im Modell zu niedrig angesetzt worden.

Dieim Modell angenommene Zahl der Fehler, die
durch die Bearbeitung von den Mitarbeiternin die
Dokumente eingefiigt werden, ist zu hoch.

Die Produktivitét eines simulierten Mitarbeiters,
gemessen in LOC/Tag, muld deutlich reduziert
werden.

Die Kommunikation der Mitarbeiter ist zu wenig
berticksichtigt worden.

Die Motivation der simulierten Mitarbeiter ist zu
grob modelliert worden.

Die Mitarbeiter bendtigen neben Fahigkeit,
Erfahrung und Motivation weitere Personlich-
keitsmerkmale, damit die von ihnen erbrachte
Leistung realistischer modelliert werden kann.
Nach Meinung des Autors fehlen z.B. Merkmale
wie Kooperations- und Kommunikationsfahigkeit
oder Selbsténdigkeit.

Die simulierten Mitarbeiter werden in bezug auf
Fahigkeiten und Erfahrung zu schlecht bewertet.
Im SESAM-Modell wird jedem Mitarbeiter eine
Analyse-, Entwurfs- und Programmiererfahrung
zugeordnet. Zur Prifung dieser Werte wurden im
Interview Fragen in bezug auf die Féhigkeiten der
Mitarbeiter der jeweiligen Unternehmen einge-
baut. Die Antworten wurden in den im Modell
verwendeten Wertebereich transformiert, um sie
mit den im Modell verwendeten Daten
vergleichen zu koénnen. Das Ergebnis des Ver-
gleichswird in Abbildung 2 gezeigt.

Abb. 2: Vergleich der Fahigkeiten der Mitarbeiter

Es ist zu erkennen, dald die Fahigkeiten der
SESAM-Mitarbeiter niedrigere Werte aufweisen
als die der "echten" Mitarbeiter in Software-
Projekten.

Diskussion des Ansatzes

Generell sind durch die beschriebene Vorgehens-
weise in diesem Projektstadium die erwarteten
Ergebnisse erzielt worden. Dennoch sind auch zu
diesem Ansatz einige Bemerkungen notwendig.

Der Kritikpunkt, da® durch die Literaturanalyse
die Daten oft aus ihrem urspriinglichen Zusammen-
hang gerissen und die Aussagen, die von den Autoren
aus den Daten abgeleitet werden, haufig recht
spekulativ sind, gilt leider auch fir den hier
beschriebenen Ansatz.

Darlber hinaus war zu beobachten, daf3 sowohl
die Daten aus der Literatur als auch die Angaben der
Praktiker sehr stark streuen. Die in dieser Arbeit
verwendete Datenmenge war aber noch sehr klein, so
dal? auch eine statistische Auswertung keine gultigen
Resultate gewéhrleisten kann. Auf3erdem ist bei der
Durchfthrung der Interviews deutlich geworden, dal3
vielfach in den Unternehmen keine konkreten Daten
vorlagen, sondern die angegebenen Werte grob
geschétzt worden sind, so dal3 einige Zweifel
hinsichtlich der Zuverlassigkeit der Daten angebracht
sind.

Trotz der genannten Probleme konnte durch die
Arbeit aber gezeigt werden, dal? es mit diesem Ansatz
grundsétzlich mdoglich ist, die SESAM-Modelle zu
validieren. Positiv ist auch, da3 Kenntnisse einer
anderen Fachrichtung fir eine empirische Unter-
suchung in der Informatik genutzt worden sind.

4. Untersuchungrealer Software-
Projekte

Die letzte, hier prasentierte Arbeit wurde ebenfalls
unabhéngig von SESAM durchgefiihrt. Es handelt
sich dabel um eine rein empirische Untersuchung der
"Redlitét der Software-Erstellung” in einer konkreten
industriellen Entwicklungsumgebung.

Diese Arbeit bildet gewissermal3en das Gegen-
stiick zu der in Kapitel 2 beschriebenen, wahrend die
in Kapitel 3 vorgestellte Arbeit beide Ansétze vereint.

Zieleder Arbeit

Ziel der Arbeit war, in einer "echten" Software-
Entwicklungsumgebung Daten zu erheben, um
Aussagen Uber die beobachteten Projekte treffen zu
konnen und Gesetzmaldigkeiten zu erkennen.

Dafir sollte zunéchst bestimmt werden, welche
Attribute welcher Objekte des Prozesses Uberhaupt
flr seine Beurteilung relevant sind und durch welche
Metriken die Attribute moglicherweise bewertet
werden kénnen.

Auf dieser Grundlage sollten die konkreten
Projektdaten erhoben und fir eine Analyse des
Entwicklungsprozesses eingesetzt werden.

Ergebnisseder Arbeit

Im Rahmen der Arbeit wurde ein Schema mit den
wichtigen Objekten und Beziehungen und den sie
charakterisierenden Attributen erstellt. Fur die
Attribute ist definiert worden, durch welche Metriken
sie bewertet werden kénnen.

Das Schemaist als Anleitung fir die eigentliche
Datenerhebung im Unternehmen verwendet worden.
In der Abteilung wurden elf (Uberwiegend
abgeschlossene) Projekte untersucht, in denen von
meist einem Bearbeiter kleine Datenbank-
Applikationen erstellt worden sind.

Die resultierenden Daten wurden zuné&chst fir die
Beschreibung der einzelnen Projekte verwendet und
dann verdichtet, um damit die "typische Vorgehens-
weise" bei der Software-Entwicklung in der
Abteilung zu beschreiben.

Die Analyse der kumulierten Projektdaten hat u.a
folgendes ergeben (Drappa, 1993):

e FUr die Programmierung sind sehr hohe Sprachen
und leistungsféahige Werkzeuge (Code-
Generatoren) eingesetzt worden; es gab jedoch in
keiner anderen Phase Unterstiitzung durch
Methoden oder Tools.

e Es ist praktisch keine Dokumentation erstellt
worden, auch keine Benutzerhandbticher fir die
Applikationen.

« Eswaren keine Richtlinien zum Vorgehen bel der
Software-Entwicklung vorhanden.

e Das gesamte Management der Projekte wurde
sehr informal betrieben; es gab kaum Unterlagen
zur Projektplanung und daher auch wenig
Termin- und Fortschrittskontrollen.

e Der Aufwand entfiel trotz der in der
Implementierung verwendeten Hilfsmittel
hauptséchlich auf die Codierphase.

Die Datenerhebung erméglichte auch die Ableitung
einiger GesetzmaRigkeiten fur die untersuchte
Abteilung. Durch die Erfassung des in die Applika-
tionen investierten Aufwands und die Analyse des
dafUr erzeugten Codes konnten beispielsweise Aus-
sagen Uber die durchschnittliche Produktivitét der
Mitarbeiter der Abteilung getroffen werden. Dabei
wurde der (sehr hohe) Wert von fast 2000
LOC/Mitarbeitermonat berechnet, der durch den
Einsatz eines Code-Generators und weitere spezielle
Randbedingungen in der Abteilung erkléart werden
konnte.

Auf der Grundlage der Datenauswertung wurden
schliellich Vorschlage fiur Verdnderungen des
Entwicklungsprozesses ausgearbeitet und ein
Metrikprogramm zur zuklnftigen Steuerung und
Analyse der Software-Projekte des Unternehmens
erstellt.

Diskussion des Ansatzes

Die Erhebung und Verwendung echter Projektdaten
fir die Modellierung in SESAM st prinzipiell ein
wichtiger Ansatz, alerdings sind auch hier einige
Schwierigkeiten aufgetreten.

In dem untersuchten Unternehmen war eine sehr
spezielle Entwicklungsumgebung vorhanden (Einsatz
von 4-GL, Code-Generator), so dal3 nur wenige der
bekannten Metriken, inshesondere flr die Bewertung
des Codes, einsetzbar waren. Um Uberhaupt zu
Aussagen zu kommen, mufdten z.T. neue Malie
definiert werden.

Daten Uber den Software-Entwicklungsprozef3
waren in der Abteilung so gut wie nicht verfligbar.
Deshalb mufite ebenfalls die Befragungstechnik
eingesetzt werden, wobei die Bearbeiter die Werte
rickblickend geschétzt haben. Die resultierenden
Daten sind daher teilweise widerspriichlich und
ungenau gewesen.

Durch die spezielle Entwicklungsumgebung sind
darUber hinaus die Aussagen kaum verallgemeinerbar
und damit auf andere Umgebungen Ubertragbar
gewesen. Diese Erkenntnis hat allerdings auch zu der
Einsicht gefhrt, dal’ nicht das typische Software-
Projekt modelliert werden kann, sondern verschie-
dene Umgebungen auch verschiedene Modelle mit
jewells spezifischen Regeln erfordern.

5. Fazit und Aushlick

Modelle sind grundsétzlich entweder Abbilder von
etwas oder Vorbilder fir etwas. Nach Ludewig
(1989) weisen Modelle immer die folgenden drei
Merkmale auf:

e das Abbildungsmerkmal, d.h. zum Modell gibt es
ein Original, das wirklich vorhanden, geplant oder
fiktiv sein kann,

e« das Verkirzungsmerkmal, d.h. da im
allgemeinen nicht alle Attribute eines Originals,
sondern nur die fir einen bestimmten Zweck
relevanten erfal®t werden, sowie

» das pragmatische Merkmal, d.h. das Modell kann
unter bestimmten Bedingungen und fir bestimmte
Fragestellungen das Original ersetzen.

Bezogen auf die hier diskutierten Modelle von
Software-Projekten in SESAM, hat sich durch die
Arbeiten deutlich gezeigt, worin die Problematik der
Modellbildung speziell besteht.

e Es gibt nicht das eine Original, nicht das
Software-Projekt fur das ein Modell erstellt und
anschliefiend validiert werden kann (Abbildungs-
merkmal). Vielmehr hat sich gezeigt, dai
zumindest jede Entwicklungsumgebung ein
eigenes Modell erfordert, in dem die spezifischen
Gegebenheiten berilicksichtigt werden.

e Esist bisher nicht klar, welches die wesentlichen
Faktoren sind, die ein Projekt beeinflussen. Daher
ist es schwierig, digjenigen Attribute des
Originals (des Software-Projekts) zu identifi-
zieren, die auch im Modell enthalten sein miissen,
damit die wesentlichen Aspekte der Realitét in
das Modell abgebildet werden konnen
(Verkirzungsmerkmal).

* Esist schwierig zu entscheiden, wann ein Modell
detailliert genug ist, um seinen Zweck, das
Sammeln von Projekterfahrung fir eine
bestimmte Kategorie von Software-Projekten,
erfullen zu kdnnen (pragmatisches Merkmal).

Die genannten Probleme sollen durch weitere,
vornehmlich emprische Arbeiten, zumindest in
Ansétzen gel6st werden. Dabei sind im wesentlichen
zwel Vorgehensweisen denkbar. Auf der Grundlage
der in einer speziellen Entwicklungsumgebung
erhobenen Daten kdnnten unternehmensspezifische
Modelle erstellt werden, die dann von den
Mitarbeitern des Unternehmens durch Benutzung
erprobt werden. Dadurch koénnten die Modelle
schrittweise verfeinert und an die Realitét angepal3t
werden.

Um sich aber nicht nur unternehmensspezifische
Modelle zu konzentrieren, wére es dartber hinaus
denkbar, umfassende Untersuchungen in vielen
verschiedenen Unternehmen durchzufihren. Auf
diese Weise kdnnten wahrscheinlich allgemeingliltige
Regeln identifiziert werden, die schliellich die
Grundlage aller SESAM-Modelle bilden und nur
noch um unternehmensspezifische Regeln erganzt
werden miifdten.

Literatur

Deininger, M., Schneider, K. (1994): Teaching
Project Management by Simulation. Procee-
dings of the 7th Conference on Software
Engineering and Education (CSEE), San
Antonio, Januar 1994, pp. 227-242.

Drappa, A. (1993): Konzeption und Einflihrung
eines Metrikprogramms in einem Software-
Projekt. Diplomarbeit, Univ. Stuttgart, 1993.

Feest, R. (1993): Validierung von SESAM -
Modellen anhand von Aufwandsschatzver -
fahren fir Software-Projekte und von
Praktikerbefragungen. Diplomarbeit, Univ.
Stuttgart, 1993.

Ludewig, J. (1989): Modelle der Software-Entwick-
lung - Abbilder oder Vorbilder? Softwar etech-
nik-Trends, Oktober 1989, pp. 1-12.

Schneider, K. (1993): Object-Oriented Simulation of
the Software Development Process in SESAM.
Proceedings of the Object-Oriented Simu-
lation Conference (OOS "93), Teil der Western
Simulation Multiconference, San Diego, Januar
1993.

Utz, A. (1992): Sammlung und Darstellung von
Hypothesen Uiber Software-Projekte. Diplom-
arbeit, Univ. Stuttgart, 1992.

Teil 6
SESAM und dieLehre

Marcus Deininger

Zusammenfassung

In der Software Engineering-Ausbildung haben
Studenten selten die Gelegenheit, Erfahrungen bei der
Leitung von Projekten zu sammeln — dies ist ein
schwerwiegender Mangel in der Ausbildung zum
~Software Ingenieur®. In der Software Engineering-
Ausbildung erschwert das Fehlen der Erfahrung sehr
oft das Verstandnis fir die Probleme der Software-
Entwicklung, im spéteren Berufsleben kénnten viele
Einstiegsschwierigkeiten vermieden werden.

In diesem Beitrag wird gezeigt, wie die Software
Engineering-Ausbildung mit Hilfe von Simulation
unterstitzt werden kann. Studenten durften ein
simuliertes Projekt fuhren. Um willkirliche Effekte
auszuschalten und zu nachvollziehbaren Ergebnissen
zu gelangen, wurde fir die Simulation ein sehr
einfaches, mathematisches Simulationsmodell ge-
wahlt. Im Verlauf der Simulation stellte sich heraus,
dafd dieses Modell mehr al's ausreichend war: Viele
bekannte Projekt-Effekte stellten sich wéhrend der
Simulation ein. Die , Projekt Manager* machten
typische Fehler, die zu plausiblen Effekten im Projekt
fuhrten. Am Ende der Projekte hatten Studenten ein
besseres Verstandnis fur die Aufgaben eines
Projektleiters, die Tutoren ein besseres Verstéandnis
flr die Simulation von Software-Projekten.

Die Simulation war eine Phase des Projekts
SESAM. SESAM soll einen allgemeinen Rahmen zur
Simulation von Software-Projekten liefern. Um den
Rahmen mit einem Modell zu fillen, wurde das in
diesem Beitrag beschriebene Modell entwickelt und
zunéchst ,trocken”, d.h. ohne Simulator, in einem
Fachpraktikum durchgespielt.

1. Einleitung

In der Software Engineering-Ausbildung an einer
Universitét stehen wir vor folgendem Problem: Wir
lehren die Grundlagen des Software Engineerings;
Studenten haben aber praktisch keine Gelegenheit,
dieses Wissen in einem echten Projekt anzuwenden.
Sie kdnnen selten wahrend ihres Studiums an einem
Projekt teilzunehmen und wenn, dann nicht als
Projektleiter.

In diesem Betrag beschreibe ich die Erfahrungen,
die wir wéahrend eines Fachpraktikums an unserer
Abteilung mit der Smulation von Software-Projekten
gesammelt haben. Dieser Ansatz erlaubt uns,

Projektleiter-Erfahrungen innerhalb der beschrénkten
Mdglichkeiten der Universitdt zu vermitteln. Statt
eines echten Projekts waren Studenten Leiter eines
simulierten Projekts, das sie erfolgreich zu Ende
bringen sollten. Das zugrunde liegende
Simulationsmodell war sehr einfach, erlaubte aber
trotzdem den gesamten Software-Entwicklungsprozef3
abzudecken.

2. Das Fachpraktikum innerhalb
des Projekts SESAM

Das Fachpraktikum, das in diesem Beitrag be-
schrieben ist, war eine Phase unseres Projekts
SESAM (Software Engineering Simulation durch
Animierte M odelle). Wir haben Uber SESAM in
Ludewig et al. (1992), Schneider (1993), Schneider
(1993a), Deininger/Schneider (1994) und
Schneider/Deininger (1994) ausfuhrlich berichtet, ich
werde deshalb nur einen kurzen Uberblick geben und
das Fachpraktikum einordnen.

21 DasProjekt SESAM

SESAM soll einen allgemeinen Rahmen zur
Simulation von Software-Projekten liefern. Teilziele
von SESAM sind:

» Dynamische und animierte Modelle von Software-
Entwicklungsprojekten.

» Graphische Editoren, um diese Modelle zu
formulieren, zu speichern und zu &ndern.
(SESAM-Modelle miissen leicht &nderbar sein, um
leicht an neue Situationen angepaldt werden zu
kénnen.)

» Geeignete Simulationswerkzeuge fur diese
Modelle.

» Ein graphisches interaktives Abenteuerspiel, das
es Studenten ermdglicht, ein Projekt ohne Tutor
durchzuspielen.

Bis zum Sommer 1992 waren drei Prototypen
fertiggestellt, mit denen wir verschiedene Aspekte der
Simulation untersucht haben. Nachstes Ziel war die
Entwicklung eines Modells, das zur Simulation
eingesetzt werden konnte. Da zu diesem Zeitpunkt
Notation und Mé&chtigkeit der Modelle noch offen
war, machte es keinen Sinn daflr einen weiteren
Simulator-Prototyp zu entwickeln. Statt dessen haben
wir uns entschlossen, zundchst ein sehr einfaches

Modell ,trocken“, d.h. ohne Simulator, in einem
Fachpraktikum durchzuspielen.

Das Simulationsmodell war erfolgreicher alswir es
zunéchst erwartet hatten:

* Es wurden eine ganze Reihe typischer Projekt-
effekte evoziert, die auch in wirklichen Projekten
dem Projektleiter das Leben schwer machen.

» Die Studenten gewannen einen Eindruck von den
Sorgen und Néte eines Projektleiters, die Tutoren
— und damit die Abteilung Software Engineering —
gewannen Erfahrung in der Modellierung und
Simulation von Software-Projekten.

Damit haben wir unser urspringliches Ziel, namlich
den prinzipiellen Aufbau geeigneter Simulations-
modelle fir SESAM, erreicht. Dartiber hinaus haben
wir mit diesem einfachen Modell eine Mdglichkeit
geschaffen, solche Simulationen auch von Hand
durchzufiihren und erfolgreich im Unterricht ein-
Zusetzen.

2.2 Verwandte Arbeiten

Die Simulation von Software-Projekten ist keine neue
Idee. Abdel-Hamid(1991) beschreibt eine Software-
Projekt-Simulation, die auf System Dynamics basiert.
Anders als unser Modell ist dieses Modell eine
»closed loop simulation“, d.h. auch die Projekt-
Manager werden simuliert. Der Benutzer der
Simulation beobachtet nur den Simulationsverlauf,
kann aber nicht mit dem System interagieren. Zu
Beginn wird der Anfangszustand eingegeben, danach
simuliert der Simulator den Projektverlauf, das
Ergebnis der Simulation kann am Ende des Laufs
begutachtet werden. Im Gegensatz dazu haben wir
eine ,open loop simulation“: in der Simulation-
sumgebung koénnen die Spieler wéahrend der
Simulation Entscheidungen treffen und eingreifen.

McKeeman (1989) berichtet Uiber ein Tutor-
Programm zur Schulung von Software-Entwicklern.
Das Programm hilft Entwicklern die Prinzipien von
Reviews zu lernen. Das Programm hat Spielcharakter,
wie unsere Simulation, beschrankt sich aber auf einen
kleinen Ausschnitt des Entwicklungsprozesses.

Einen Schritt weiter, aber auf einem ganz anderen
Gebiet, geht Vester (197). Er hat ein Spiel namens
,Okolopoly* entwickelt. Der Spieler ist Prasident
eines fiktiven Landes und hat die Aufgabe, die
O6konomischen und 6kologischen Probleme dieses
Landes zu l6sen. Dazu stehen ihm eine Reihe von
Entscheidungsmoglichkeiten und Zigen zur
Verfligung. Auch hier sind die Abhéngigkeiten mit
Hilfe von System Dynamics modelliert. Das
Grundprinzip, also die offene Schleife und ein
interagierender Spieler, ist dasselbe wie unseres.

3. Software Engineering-
Ausbildung an der Universitat
Stuttgart

Die Software Engineering-Ausbildung an der
Universitét Stuttgart zielt darauf ab, Studenten das
notige Wissen zu vermitteln, damit sie spater
erfolgreich an Software-Projekten teilnehmen oder
diese leiten kdnnen. Dieses Ziel verfolgten wir
zunéchst mit den Ublichen Mitteln: Auf der Basis der
Bucher von Fairley (1986) und Sommerville (1989)
haben wir eine Vorlesung angeboten, die die
Grundlagen des Software Engineerings vermittelt. In
dieser Vorlesung werden zunéchst die grundlegenden
Prinzipien des Software Engineerings diskutiert;
Themen sind u.a. Projekt-Management, der Software-
Life-Cycle, Qualitétssicherung und Software-Metri-
ken. Im zweiten Teil der Vorlesung werden, entlang
der Phasen des klassischen Wasserfall-Modells, die
wesentlichen Aktivitéten, Methoden, Notationen und
Ergebnisse dieser Phasen diskutiert. Am Ende der
Vorlesung sollten die Studenten die wesentlichen
Konzepte des Software Engineerings kennen.

Diese Vorlesung wird durch begleitende Ubungen
erganzt. In diesen Ubungen werden die in der
Vorlesung vorgestellten Konzepte in Fall-Studien und
Beispielen eingesetzt. Allerdings kénnen mit solchen
Ubungen nur einzelne Schwerpunkte vertieft werden,
siesind kein Ersatz fur die Mitarbeit in einem Projekt.
Dieser Mangel fuhrte dazu, da’ wir die folgenden
Praktika angeboten oder bestehende Praktika nach
unseren Vorstellungen umgestaltet haben:

e Software-Praktikum. In einer Gruppe von 3-4
Personen fuhren Studenten ein kleines, aber
vollsténdiges Projekt durch. Das Projekt beginnt
mit einer Aufgabenstellung, zu der nacheinander
Spezifikation, Entwurf und Code entwickelt
werden mussen. Das Projekt dauert ca. ein halbes
Jahr. Gruppenleiter sind Mitarbeiter unserer
Abteilung. Am Ende haben die Studenten einen
vollsténdigen Software-Life-Cycle mitgemacht
und zum ersten Mal Erfahrungen in Projektarbeit
gemacht.

¢ Fachpraktikum , Software Engineering”. Im
Software-Praktikum kdnnen Studenten ein Projekt
vom Standpunkt des Analytikers und
Programmierers miterleben. Im Fachpraktikum
»S0ftware Engineering” erhalten sie zusétzlich
einige Managementaufgaben: neben der
Aufgabenstellung bekommen sie einen Zeitplan,
der ihnen die Phasen und Meilensteine vorgibt.
Die Durchfihrung des Projekts im Rahmen dises
Plans liegt ganz in ihren Handen, insbesondere die
Planung und Durchfilhrung von Reviews, die
Aufteilung in Arbeitspakete oder die Festlegung
von Schnittstellen.

Um den Schwerpunkt auf die Planung und
Organisation legen zu kénnen, sind die Aufgaben,
die bearbeitet werden, eher einfach. Allerdings
werden nach jedem Meilenstein die Projekt-
ergebnisse (Spezifikation, Entwurf und Module)
zyklisch zur néchsten Gruppe weitergegeben. Dies
fuhrt dazu, dad die Studenten auch mit fremden
Dokumenten arbeiten muissen, was ein gutes
Gefihl fur die Qualitét der Dokumente schafft.

Am Ende der Projekte haben die Studenten eine
ganze Reihe von Problemen, sowohl aus Sicht der
Entwickler als auch aus Sicht des Leiters, kennen-
gelernt: knappe Zeitplane, die Auswirkungen
fehlerhafter Spezifikationen, die Effekte unzu-
reichender Schnittstellendefinitionen, usw.

Fachpraktikum ,, Projekt Management”. Haupt-
nachteil der vorigen Praktika (aus Sicht unserer
Abteilung) waren zwei sich widersprechende
Ziele: Studenten sollten einerseits Erfahrungen as

4. Randbedingungen des
Fachpraktikums

4.1 ZieledesFachpraktikums

Das Hauptziel des Fachpraktikums war, den Studen-
ten ,echte” Projektleiter-Erfahrungen zu vermitteln,
ohne dal} sie irgendwelche Entwickleraktivitaten
durchfuhren mufiten. Sie sollten soviel wie mdglich
an Software Engineering-Wissen einbringen und
einsetzten konnen, insbesondere sollten sie die
folgenden Effekte kennenlernen:

* Planung ist unerléilich fir ein Software-Projekt!
Ein fehlendes oder mangelhaftes Prozel3modell
fuhrt zu einem mangelhaften Produkt. Die
Studenten sollten lernen, zu planen und ihre
Planung dem Projektverlauf anzupassen.

e Quantitat ist nicht Qualitat! Erhéhter Aufwand
fuhrt zu groReren Produkten, aber nicht notwendi -

Veranstaltung

Teilnehmer

Aufwand der Studenten

Vorlesung ,, Software Engineering*

120 Studenten, 5. - 7. Semester

15 Wochen, 4 h/ Woche

Ubungen zur Vorlesung
»Software Engineering”

120 Studenten, 5. - 7. Semester

Begleitend zur Vorlesung,
zweiwdchentlich,

jeweils2h
Software Praktikum ca 10 Gruppen a 3-4 Studenten, 20 Wochen,
3. Semester ca. 4h/Waoche
Fachpraktikum ca 6 Gruppen a 3-4 Studenten, 12 Wochen,
»Software Engineering” 7. Semester ca. 8h/Waoche
Fachpraktikum cab Gruppen a2 Studenten, 12 Wochen,
» Projekt Management" 7. Semester ca. 8h/Waoche

Tab. 1: Uberblick tiber die Lehraktivitdten unserer Abteilung. (Nicht enthalten sind
Vertiefungsvorlesungen zu speziellen Gebieten des Software Engineerings)

Projekt-Mitarbeiter sammeln (was sie nach dem
Software-Praktikum bereits haben), andererseits
sollten sie Erfahrungen als Projektleiter sasmmeln
(etwas, was sie noch nie zuvor gemacht haben).
Um beide Erfahrungen zu ermgglichen, waren die
Projekte einfach. Allerdings evozierten solche Pro-
jekte nicht alle von uns gewlinschten Effekte. Wir
haben uns deshalb entschlossen, ein neues Prakti -
kum ins Leben zu rufen, bei dem sich die Stu-
denten vollstandig auf das Projekt-Management
konzentrieren konnen, aber keine Entwicklungs-
arbeit leisten sollten — die sollte von anderen
gemacht werden. Damit sollte es méglich sein
grofRere und komplexere Projekte zu bearbeiten.

gerweise zu mehr Qualitét. Die Produkt-Qualitét
wird sich nur verbessern, wenn ausdrticklich Qua-
li tétssicherung betrieben wird. Fehlende Quali téts-
sicherung fihrt zu Inkonsistenzen zwischen den
Dokumenten der einzelnen Phasen.

» Die beste Mdglichkeit der Qualitatssicherung (vor
allem in den frihen Phasen) sind Reviewsl!
Allerdings mussen Reviews gut vorbereitet wer-
den, um erfolgreich zu sein. Erfolgreiche Reviews
finden viele Fehler.

* Die Wiinsche des Kunden sollen erfillt werden
und nicht, was sich die Entwickler an Stelle des
Kunden wiinschen wiirden!

» Die Fahigkeiten der Entwickler sollen realistisch

eingeschétzt werden — sie kénnen keine Wunder
vollbringen!

e Und schliefdlich: Der Projektleiter ist allein fir den

Erfolg oder MiRerfolg des Projekts verantwortlich
und niemand sonst!

4.2 Organisatorischer Rahmen

Das Fachpraktikum fand wéahrend eines Sommer-
semesters statt, damit standen zwolf Wochen zur
Verfligung. Fur Studenten ist ein Aufwand von acht
Stunden pro Woche fir eine Veranstaltung dieser Art
vorgesehen.

Dabel sollten die folgenden Rahmenbedingungen
eingehalten werden:

» Alle Teillnehmer sollten sich ausschliefdlich auf die
Projektleitung konzentrieren kénnen; es sollte kein
Aufwand fir Software-Entwicklung getrieben
werden.

» Die Projektleiter sollten innerhalb der zur Ver-
flgung stehenden zwdlf Wochen alle wesentlichen
Erfahrungen eines Projektleiters machen.

Flr ein reales Projekt waren diese Forderungen
nicht vereinbar.

e Ein reales Projekt, das in zwolf Wochen durch-
fuhrbar ist, ist zu klein, um die von uns ge-
winschten Probleme zu verursachen.

« Ein groReres Projekt wirde innerhalb der zwolf
Wochen nicht Uber die friihen Phasen hinaus-
kommen und damit ebenfalls nur einen Teil der
Probleme verursachen.

« Ein echtes Projekt zu Ubungszwecken stand nicht
zur Verfligung, und wirde von uns nicht gentigend
kontrolliert werden kénnen.

e In einem echten Projekt mifte jemand die
Entwicklerarbeit tun.

e Wir hatten ber weder die Zeit noch die Mittel,
echte Projekte fur dieses Praktikum durchzu-
fuhren.

Um innerhalb dieser Bedingungen zu arbeiten, haben
wir uns entschlossen ein Projekt zu simulieren. Eine
Simulation erfiullt alle die oben aufgestellten
Forderungen. Die Simulation sollte offen sein, d.h. die
Spieler sollten wahrend der Simulation ins Geschehen
eingreifen konnen. Simuliert werden sollten alle
Entwicklungsaktivitéten (und damit natiirlich auch die
Entwickler) und die entstehenden Ergebnisse (also die
Software). Die Studenten sollten lediglich als
Manager in das Projekt eingreifen kénnen und ihren
Mitarbeitern Anweisungen erteilen kdnnen.

5. Elemente der Simulation

51 Dassimulierte Projekt

Alle Projektleiter wurden unabhangig voneinander
dem gleichen Projekt zugeteilt. Sie sollten flr einen
externen Kunden ein Scheckschreibungsprogramm
entwickeln. Zu Beginn erhielten die Projektleiter eine
vierseitige Analyse Uber das Projekt. Diese Analyse
beschrieb die wesentlichen funktionalen Anforder-
ungen des zu entwickelnden Produkts. Die Analyse

war das einzige echte Stiick Software, das die Spieler
zu sehen bekamen — die andere Software, wie z. B.
der Code wurde nur simuliert.

Die Analyse entstammte einem Buch Uber
K ostenschéatzungsmethoden (Knéll 1990). Sie war ein
Beispiel fur die Anwendung der Function Point-
Methode. Diese Methode lieferte fir unser
Beispielprojekt 234 Function Points, einen erwarteten
Aufwand von 17 Mitarbeiter Monaten und eine Dauer
von 7 Monaten. Keine dieser Informationen wurde
den Spielern gegeben. Die Spieler erhielten einen
knapperen Zeitplan: Das Projekt sollte in 6 Monaten
mit einem geplanten Budget von 250.000.- DM
abgeschlossen werden. Insgesamt war ein Festpreis
von 400.000,- DM fir das Produkt ausgemacht. Diese
Vorgaben waren von einem ,,anonymen” Management
gesetzt worden. Sowohl Zeit als auch Budget waren
von vorne herein etwas zu knapp gesetzt, um die
Spieler im Simulationsverlauf zu Kompromissen zu
zwingen.

5.2 Der Simulationsrahmen

Die Simulation mufite innerhalb von zwdlf Wochen
durchgefuihrt werden. Die Studenten konnten pro
Woche einen Zug machen. Ein Zug umfalite die die
folgenden Bestandteile:

e Eine Liste aller Aktionen (einschliefdlich ihrer
Dauer), die in dem simulierten Projekt
durchgefihrt werden sollten,

e Erléauterungen zu den Aktionen,
e die erwarteten Ergebnisse der Aktionen

¢ und ale Dokumente, die eine echter Projektleiter
im entsprechenden Projekt erstellen wirde, wie
Zeitplane, Mitarbeiterbewertungen, usw.

Im Gegenzug erhielten die ,Manager* zwei Tage
spater als Ergebnis alle Informationen und
Dokumente, die ein echter Projektleiter anihrer Stelle
erhalten wdirde; insbesondere wurden ihnen
Kommentare und Bemerkungen ihrer simulierten
Mitarbeiter mitgeteilt — aber keine Software!

Zu Beginn der Simulation war von uns noch nicht
festgelegt worden, welche Aktionen durchgefihrt
werden dirfen. Jede echte Projektleitertétigkeit sollte
erlaubt sein, verboten waren lediglich , Wunder”, wie
»lch stelle einen Assistenten ein, der das Projekt
fuhren wird“. Trotz dieser unbeschrankten
Mdglichkeiten, wurden tatséchlich nur die folgenden
Aktionen durchgefihrt:

e Einer oder mehrere der simulierten
Projektmitarbeiter sollen eine Aufgabe ausfihren.
Mdgliche Aufgaben waren:

° Anforderungssanalyse schreiben
¢ Architekturentwurf schreiben

° Modulentwurf schreiben

° Modul codieren

Benutzerhandbuch schreiben

Modultest vorbereiten und ausfthren

° Integrationstest vorbereiten und ausfiihren
° Systemtest vorbereiten und ausfiihren
Review vorbereiten

Dokument reviewen

die in Tests oder Reviews gefundene Fehler

korrigieren

¢ Der Kunde soll in eine Aktion einbezogen werden
(an einem Review teilnehmen, an einer
Besprechung teilnehmen, an einem Geschéftsessen
teilnehmen, usw.).

¢ Informationen Uber verflgbare Schulungen
erfragen.

¢ Mitarbeiter zu einer der Schulungen schicken.

¢ Informationen Uber verflgbare Software-
Werkzeuge erfragen.

¢ Ein Werkzeug kaufen.
* Einen Berater konsultieren.
* Eine Stelle ausschreiben.

¢ Einen Bewerber einstellen oder einen Mitarbeiter
entlassen.

¢« Mit dem Management oder dem Kunden ein
hoheres Budget oder Verschiebung des
Projektendes aushandeln.

¢ Eine Reihe von Social Events, von einer
Einladung zum Essen bis zu einer Wochenendreise
fur alle Mitarbeiter. (Diese Aktionen verbesserten
vor allem die Motivation der Mitarbeiter, hatten
aber keinen direkten EinfluR® auf en Fortgang der
Simulation.)

Im Gegenzug erhielten die Spieler folgende
Informationen:

¢ Alle Aktivitéten hatten zundchst ein quantitatives
Ergebnis. Den Spielern wurde mitgeteilt, wie viele
Seiten Spezifikation, wie viele Zeilen Code
geschrieben wurden, wie viele Fehler in einem
Review gefunden wurden. Da sie keine weitere
Software erhielten, mul3ten sie ihre
Entscheidungen allein auf diesen Projektdaten
begriinden.

¢ Auf Anfragen erhielten die Spieler Prospekte fur
Schulungen. Es gab Prospekte zu den folgenden
Schulungsthemen: COBOL, Ada, Test, Struk-
turierte Programmierung, Structured Design und
Kostenschédtzung. Die Prospekte wurden nur
verschickt, falls ein Spieler eine entsprechende
Anforderung machte. Wurde einer der simulierten
Mitarbeiter auf eine Schulung geschickt, ver-
besserten sich seine Fahigkeiten in dem ent-
sprechenden Gebiet.

« Auf Anfrage wurden Prospekte fur Software-
Werkzeuge zuruickgegeben: drei verschiedene
CASE-Tools, ein Test-Werkzeug, eine Standard-

Datenbank, Ada- und COBOL-Compiler. So wie
bei den Schulungen erhoht ein Werkzeug die
Produktivitdt — nach einer angemessenen
Schulungszeit.

* In einer personlichen Beratung konnten sich die
Manager selbst beraten lassen (alle anderen
Schulungen waren nur fir die simulierten
Mitarbeiter). Die Berater wurden von uns
dargestellt. In der Beratung konnten die Spieler
Hinweise auf den Spielverlauf bekommen —
natiirlich zu einem angemessenen (simulierten)
Preis.

» Bewerbungsschreiben von Stellenanwértern.

» Die Spieler wurden immer Uber alle aktuell
angefallenen Kosten informiert, sie mufdten aber
selbst die Kosten verfolgen und den Uberbllick
behalten.

Alle diese Informationen wurden immer in einen
kurzen Text gepackt, um so der Simulation einen
lebendigeren Anstrich zu geben.

6. Das Simulationsmodell

Als Basis fur die Simulation wurde ein einfaches
mathematisches Modell verwendet. Dieses Modell
wurde manuell, nur unterstiitzt von einem
Spreadsheet-Programm ausgefiihrt. Ein solches
Modell erlaubte nachvollziehbare und objektive
Reaktionen, die konsistent Uber alle Simulationen
waren. Das Modell sollte so einfach wie moglich sein,
nur so wirde das Ergebnis Uberprifbar bleiben. Eine
solche Uberprifung ist die Voraussetzung fiir
Validierung und Vermeidung von Berechnungs-
fehlern.

Ausgangspunkt fiar das Modell waren die
folgenden Zielkriterien flr ein erfolgreiches Software-
Produkt. Nach Frihauf et al. (1988) ist ein Projekt
erfolgreich, wenn

» das Projekt in der vorgegebenen Zeit durchgefihrt
wird,

e das Projekt mit der vorgegebenen Budget
durchgefihrt wird,

« am Ende sowohl Kunde als auch Mitarbeiter
zufrieden sind und

» dasfertige Produkt die geforderte Qualitét besitzt.
6.1 Das statische Simulationsmodell

Diese Ziele wurden in unserem Modell folgender-
malien reprasentiert:

Zeit und Budget

Die Kosten aller Aktionen waren zuvor festgelegt
worden. Wahrend der Simulation mufdten Zeit und
Geld einfach aufaddiert werden.

Motivation und Zufriedenheit

Alle Aktionen hatten Auswirkungen auf die Motiva-
tion und Zufriedenheit von Projekt-Mitarbeitern und
Kunde. Die Motivation wurde durch sog. ,Motiva-
tions-Punkte" gezahlt. Jeder Mitarbeiter und der
Kunde hatten ein eigenes Motivations-Konto, auf das
einfach Punkte aufaddiert oder abgezogen wurden.
Produktqualitét

Wahrend die Simulation von Zeit, Geld und
Motivation relativ einfach war, standen wir bei der
Verfolgung der Produktqualitét vor einem grof3en
Problem. Da wir keine echten Dokumente erzeugen
wollten, muften wir den Inhalt der Dokumente
simulieren.

Elementare Anforderungen eines
Dokuments [Software Quanten]

SQen des zugrunde

Entstehungszeitpunkt, aber geben keinen Hinweis auf
die Natur der Fehler.

Wir mufiten deshalb eine neue Metrik zur Be-
schreibung des Dokumenteninhalts entwickeln. Dabei
gingen wir von folgendem Modell aus: Wesentlich fir
ein Software-Projekt ist es, dal die ursprunglichen
Anforderungen des Kunden Uber die Spezifikation
und den Entwurf in das endgtiltige Produkt ibertragen
werden. Bei dieser Ubertragung diirfen keine
Anforderungen verloren gehen, es dirfen aber auch
keine unndétigen Anforderungen hinzugefiigt werden.
Fehlende Anforderungen fuhren zur Unzufriedenheit
des Kunden, unndtige Anforderungen verursachen
unndtigen Aufwand.

Redundante SQen

liegenden Dokuments
(Baseline)

Fehlende SQen

Anzahl der korrekt
Ubertragenen SQen

e

Aufwand [Mitar beiter-Mopfate]

Abb. 1: Zusammenhang zwischen Aufwand und korrekt ibertragenen,
insgesamt erzielten, fehlenden und redundanten Software-Quanten

Alle Metriken, die wir dazu untersucht haben,
messen nur den Umfang oder zdhlen die Fehler auf
die eine oder andere Weise: COCOMO (Boehm 1981)
schétzt die Anzahl der Instruktionen im spéteren
Produkt, Albrecht (1983) zahlt die Function Points der
Anforderungsanalyse. Die Zyklomatische Komplexi -
tét (McCabe 1976) zahlt die Anzahl der Verzweigun-
gen im Quellcode. Die Metriken, die im |IEEE
Standard 1045 (IEEE 1993) verzeichnet sind, zéhlen
die Dokumenten-Seiten oder das Verhétnis von Sei-
ten zu Graphi ken in nicht-formalen Dokumenten. Die
Fehler-Metriken des IEEE Standards 982.1 (IEEE
1988) zdhlen die Fehler klassifiziert nach ihrem

Diese Vorstellung ermdglicht uns allgemein die
Qualitét von Dokumenten, aber auch ihre quantitative
Evolution zu modellieren:

e Ein Dokument besteht aus einer Menge von
elementaren Anforderungen; diese Anforderungen
werden durch sog. , Software-Quanten® (SQen)
dargestellt. Ein Software-Quant représentiert eine
nicht mehr teilbare, elementare Information einer
Software.

¢ Der Inhalt jedes Dokuments kann durch Software-
Quanten modelliert werden. Dabei ,, manifestieren”
sie sich in jedem Dokument anders. in der
Spezifikation beispielsweise in einem Satz, im

Entwurf durch eine Graphik, im Code schliefdlich
durch einige Zeilen Programmcode.

¢ Wird ein Dokument geschrieben, so werden die
Software-Quanten des zugrunde liegenden Doku-
ments in das neue Dokument Ubertragen. Wenn
also ein Designer den Architekturentwurf schreibt,
so muld er alle Anforderungen (alle Quanten) der
Spezifikation in den Entwurf Ubertragen, nicht
mehr und nicht weniger.

+ Jede Ubertragung fiihrt zu Stérungen: einige der
Quanten der urspriinglichen Anforderungen gehen
verloren, andere Quanten kommen unnétigerweise
z.B. durch Mifversténdnisse hinzu.

¢ Die Quanten sind unterscheidbar. Dadurch kann
fur jedes Dokument festgestellt werden, welche
Quanten aus dem Vorgangerdokument uber-
nommen worden sind und welche hinzukamen.

¢ Der Einfachheit halber haben wir als ersten
Ansatz, die Anzahl der Quanten der Analyse (also
das, was der Kunde urspriinglich wollte) mit der
Anzahl der Function-Points gleichgesetzt (also
234 SQen fir unser Projekt).

6.2 Dasdynamische Simulationsmodell

Abbildung 1 zeigt den prinzipiellen Verlauf der
Software-Quanten in einem Dokument beziiglich dem
Aufand der fur das Dokument erbracht wird.

Die Anzahl aller korrekt Ubertragbaren Software-
Quanten wird natlrlich durch den Inhalt des vorigen
Dokuments bestimmt. Das vorige Dokument ist die
Referenz fir das aktuelle Dokument. Die Uber-
tragungsfunktion hat die Form einer negativen Ex-
ponential-Funktion Uber den Aufwand, der fir das
Dokument eingesetzt wird. Zusammen mit den kor-
rekten Quanten werden redundante eingefiihrt. Re-
dundante Quanten sind als Differenz zwischen allen
und den korrekten Quanten definiert. Die Gesamtzahl
der Quanten wird mit Hilfe von COCOMO (1981)
bestimmt. Die fehlenden Quanten sind definiert durch

Abstraktionsebene

entdeckt Fehler, die auf dieser

die Differenz zwischen allen Quanten des Vorganger -
dokuments und den richtig Ubertragenen.

Vom Blickwinkel der nachfolgenden Dokumente
gibt es keinen Unterschied mehr zwischen korrekten
und redundanten Quanten: Was im Entwurf redundant
war und was verlangt, ist fir den Programmierer nicht
mehr unterscheidbar — er implementiert alles, was
entworfen ist;. Die Konsequenz diese Effektsist durch
die Badewannenkurve beschrieben, die in Abbildung
2 zu sehen ist: Fehler (die redundanten und fehlenden
Quanten unseres Modells) kdnnen nur entdeckt
werden, wenn ein Dokument gegen sein Vorganger-
dokument gepriift wird — in spéteren Phasen sind sie
nicht mehr unterscheidbar. D. h. Fehler kdnnen nur in
der Phase, in der sie gemacht wurden oder in der
entsprechenden Testphase, aber in keiner der
folgenden Entwicklungsphasen, gefunden werden!

Wir haben ebenfalls ein einfaches Modell von
Schreib- und Codierfehlern eingefiihrt; Diese Fehler
werden direkt aus der Anzahl der Software-Quanten
abgeleitet. Im Gegensatz zu den fehlenden oder
redundanten Quanten, haben diese Fehler fir uns
keine Seiteneffekte — sie représentieren einfache
Syntax- oder nur Schreibfehler.

6.3 Ausfuhrungder Simulation

Die Spieler haben keine Informationen Uber unser
internes Modell erhalten, d.h. Gber die korrekten,
fehlenden und redundanten Software-Quanten — sie
erhielten nur die Anzahl der Seiten eines Dokuments
oder die Anzahl der Codezeilen in einem Modul. Alle
diese Grofen wurden direkt aus der Gesamtzahl der
Quanten abgel eitet.

Ohne Quialitétssicherung gehen mehr und mehr der
urspringlich verlangten Quanten verloren, wahrend
immer mehr redundante eingefiihrt werden. Unsere
Ubertragungsfunktion ist so parametrisiert, dald ein
Projekt, das auf Basis von COCOMO geplant ist, in
jeder Phase 80% der korrekten Quanten des Vor-

Anforderungs- | lati

andlyse ¢ Ebene gemacht wurden netallation
. entdeckt Fehler, die auf dieser

Architektur- Ebene gemacht wurden Systemtest

entwurf

Modu entdeckt Fehler, die auf dieser)
ul- Ebene gemacht wurden Integration

entwurf

Cod Qtdeckt Fehler, die auf dieser

ode Ebene gemacht wurden Modultest
-
Zeit

Abb. 2: Die Badewannenkurve

ganger dokuments in das nachfolgende Uberfihrt und
zusétzlich noch eine Anzahl redundanter Quanten.
(Wir unterstellen hier — willkurlich — eine Pareto-
Verteilung.) In einem nominalen COCOM O-Projekt
ohne Qualitétssicherung werden damit 80% der ur-
sprunglichen Benutzeranforderungen in die Spezi-
fikation Ubertragen, 64% (80% von 80%) werden in
den Architekturentwurf Ubertragen. 51% (80% von
64%) gelangen in den Modulentwurf. Und schliefdlich
gelangen nur 41% (80% von 51%) in den Programm-
code. D. h. der Code enthélt nur 41% der urspriinglich
geforderten Eigenschaften. Trotz dieses dramatischen
Schwunds, hat der Code die urspriinglich geforderte
Grole , die unterwegs verlorenen Quanten wurden
(far die Entwickler) unbemerkt durch redundante
ersetzt.

Wie konnten die Spieler diesen Effekt verhindern?
Zuallererst natdrlich indem sie mehr Aufwand treiben
lieflen — dies fuhrte dazu, dal? sich die Anzahl der
korrekten Quanten erhdhte, gleichzeitig erhéhte sich
aber auch die Anzahl der redundanten Quanten und
damit die Gesamtzahl der Quanten. Dies fihrt dazu,
daR die Folgedokumente immer grof3er werden. Eine
solche Politik wirde in einem riesigen und dramatisch
aufwendigen (und damit verspéteten) Produkt enden.

Der zweite Weg besteht darin, Qualitétssicherung
zu betreiben. Im Fall unseres Modells vor allem durch
Reviewing von Dokumenten. Ein gut vorbereitetes
Review entdeckt 60% aller Fehler in einem
Dokument, also 60% aller fehlenden und 60% aller re-
dundanten Quanten. Die entdeckten redundanten
Quanten kénnen einfach und ohne Aufwand entfernt
werden, die fehlenden Quanten miissen nachgearbeitet
werden.

7. Ein Beispielzug

In diesem Kapitel zeige ich einen Beispielzug aus
dem Fachpraktikum, um einen Eindruck vom Ablauf
der Simulation zu vermitteln. Der Zug ist ein
Ausschnitt aus dem siebten (von zwolf) Zigen der
Gruppe 2 (der Gewinnergruppe).

7.1 Projektzustand zu
Beginn des Zugs

Zu Beginn des siebten Zugs hatte das Projekt
folgenden Zustand:

» Das Projekt begann am 1. Juni 1992. Das aktuelle
Datum ist der 7. September 1992. Das Projekt hat
ein Gesamtbudget von 250.000,- DM von denen
bisjetzt 123 830,- DM ausgegeben sind.

» Der Projektleiter hat bisher drei Mitarbeiter
eingestellt: Frau Siebenschl&fer, Herrn Bankmdiller
und Frau Schmidt.

e Der Projektleiter hat bisher einige Informationen
Uber Schulungen erhalten, darunter auch Unter-

lagen Uber MENTOR-5, ein Kurs Uber Software-
Test-Methoden.

« Die Anforderungsanalyse hat einen Aufwand von
18 Mitarbeiter-Tagen bendtigt und ist jetzt
abgeschlossen. Die Spezifikation enthdlt 225
korrekte Software Quanten (von 234 mdglichen)
und 10 redundante Quanten. 68 der 225 Quanten
wurden aufgrund ausfihrlicher Reviews erzielt.

¢ Im Augenblick werden gerade Architektur- und
Modulentwurf durchgefuihrt. Der Architektur-
entwurf hat bisher 36 Mitarbeiter-Tage benétigt
und ist inzwischen 143 Seiten dick. Er enthélt 187
korrekte und 3 redundante Quanten. Der Modul -
entwurf hat bisher 20 Mitarbeiter-Tage gedauert,
der bisher entstandene Entwurf umfaldt 112 Seiten
und enthdlt 70 korrekte und 4 redundante
Software-Quanten.

e Im letzten Zug wurde ein Review des
Architekturentwurfs durchgefihrt, das 31 mittlere
Fehler (unser Ausdruck fur fehlende oder
redundante Quanten) und 37 einfache Fehler
(unser Ausdruck fur Schreibfehler) entdeckte.
Aufgrund dieser Befunde wurde das Dokument
mit der Auflage von Nacharbeiten akzeptiert.

Wie schon zuvor erlautert wurde nur ein Teil
dieser Informationen den Spielern gegeben.

72 Der Zug

Der siebte Zug besteht aus den in Tabelle 2 gezeigten
Aktionen.

Beigeflugt war auferdem eine detaillierte
Beschreibung der Arbeitspakete, die in diesem Zug
ausgefuhrt werden sollten, sowie eine Uberarbeitete
Fassung des Projektplans.

7.3 Reaktionen auf den Zug
Gruppe 2 erhielt folgende Antwort auf den Zug:

»,Das Management ist sehr besorgt Uber die
Verzogerungen ihres Projekts. Sie werden gefragt,
wie Sie unter diesen Umstanden das Projekt zu
Ende bringen werden und wie Sie den neuen
Abgabetermin am 19. Dezember einhalten wollen.
Die Aufstockung des Budgets wird vorlaufig
abgelehnt, eine endglltige Entscheidung wird
nachsten Monat getroffen.

Der Kunde ist nicht sehr davon angetan, daf3 Sie
den Abnahmetermin auf den 19. Dezember
verschieben wollen, akzeptiert aber unter der
Bedingung, da’ keine weiteren Verzégerungen
mehr stattfinden.

Herr Bankmiiller korrigiert den Architektur-
entwurf, Frau Siebenschlafer und Frau Schmidt
arbeiten am weiter am Modulentwurf, der in-
zwischen einen Umfang von 177 Seiten hat.

Nr. | Aktion Betroffene Beginn/Dauer

1 | Wir geben dem Management einen Uberblick tiber die Projektleiter 7. September/
allgemeine Projektsituation. Aufgrund des erwarteten weiteren | anagement 1Tag
Projektverlaufs bitten wir um eine Aufstockung des Budgets
um 60.000,- DM.

2 | Wir verhandeln mit dem Kunden eine Ver schiebung des Projektleiter 8. September/
Projektendes auf den 19. Dezember 1992 aus. Kunde 1Tag

3 | Herr Bankmilller soll dieim Review des Architekturentwurfs | Herr Bankmiller 7. September/
gefundenen Fehler korrigieren. 5Tage

4 | Frau Siebenschléfer und Frau Schmidt sollen die Arbeit am Frau Siebenschl&fer | 7. September/
Modulentwurf fortsetzen. Frau Schmidt 5Tage

5 Frau Siebenschléfer und Frau Schmidt sollen die Arbeit am Frau Siebenschl&fer | 14. September/
Modulentwurf fortsetzen. Frau Schmidt 3Tage

6 | Wir gratulieren Frau Siebenschl&fer zum Geburtstag, schenken | alle Mitarbeiter 14. September/
ihr einen Blumenstraul3 und laden alle zu einem kleinen Imbif3 30 Minuten
en.

7 | Wir schicken Herrn Bankmdiller zur Herr Bankmuiller 14. September/
MENTOR-5-Schulung. 3Tage

8 Frau Siebenschl&fer, Frau Schmidt und Herr Bankmliller sollen | Frau Siebenschldfer | 18. September/
sich auf das Review des Modulentwurfs vorbereiten. Frau Schmidt 2Tage

Herr Bankmiller
9 | weitere Aktionen

Tab. 2: Ausschnitt aus dem Beispielzug

Frau Siebenschlé&fer ist sehr erfreut Gber den
Blumenstraui3 (60,- DM). Der Imbif3 kostet sie 40,-
DM. .
Herr Bankmiiller kehrt hoch motiviert und
voller neuer Ideen von der MENTOR-5-Schulung .
zurlick. .

“

Diese Resultate hatten die folgenden, internen

Konsequenzen:

¢ Das Budget wird beim néchsten Zug auf 310.000,-
DM erhoht werden.

e Das geplante Projektende wird auf den 19.
Dezember 1992 verschoben.

e Die Motivation des Kunden wird um einen Punkt
gesenkt. .

e Der Architekturentwurf umfafdt nun 219 korrekte .
und 2 redundante Software-Quanten.

¢ Der Modulentwurf umfafét nun 142 korrekte und
14 redundante Software-Quanten.

« Die Motivation von Frau Siebenschléfer steigt
nach ihrem Geburtstag um einen Punkt.

¢ Die Testfahigkeiten von Herrn Bankmiiller steigen
nach der Schulung um eine Einheit. (Die

Fahigkeiten wurden mit Hilfe der COCOMO-
EinfluRfaktoren in Boehm (1981) modelliert.)

Die Motivation von Herrn Bankmdiller steigt nach
der Schulung um einen Punkt.

Gehdlter (einschliefllich Steuern und Versicher-
ungskosten) fir die vergangenen vier Wochen:

° Projektleiter: DM 16.000,-

° Frau Siebenschléfer: DM 12.000,-

° Herr Bankmiller: DM 12.000,-

° Frau Schmidt: DM 8.000,-

Andere Kosten:

¢ MENTOR-5 -Schulung: DM 1.470,-

¢ Blumenstraul und Imbif3: DM 100,-

Das aktuelle Projektdatum ist der 5. Oktober 1992.

Die bisher aufgelaufenen Projektkosten betragen
173.400,- DM.

8. Der Verlauf der Projekte

Das Fachpraktikum begann im Oktober 1992. Es
nahmen 5 Gruppen Teil, pro Gruppe zwei Studenten.
Die Studenten einer Gruppe spielten zusammen und
verkorperten jewells einen Projektleiter. Alle Gruppen
waren erfolgreich (im Sinne des Fachpraktikums —
nicht unbedingt im Sinne des simulierten Projekts!)
und lieferten ein ,vollstandiges System” innerhalb
von zwdlf Zigen ab. Keine Gruppe kam mit weniger
als zwolf Zlgen aus.

81 Gesamtergebnisse

Alle Gruppen arbeiteten gemal’ dem Wasserfallmodell
— sie begannen mit der Anforderungsanalyse und
endeten bei der Integration und Abnahme — obwohl
kein Modell vorgeschrieben war. Wahrend des
Projekts wurde von allen Gruppen ein Projektplan
abgeliefert. Fur die Projektplanung wurde von allen
Gruppen mehr oder weniger COCOMO eingesetzt,
eine Gruppe flhrte sogar eine Function Point-Anayse
durch, konnte aber mit den ermittelten Function
Points nichts weiter anfangen.

Gruppen, die eine frihzeitige Qualitétssicherung
durchfihrten, gelangten zu besseren Ergebnissen, as
Gruppen die nur sehr spa oder gar keine
Qualitétssicherung hatten. Alle Gruppen haben sich
wahrend des Praktikums sehr stark mit ihren
Projekten identifiziert, diese Identifikation ging
soweit, dal} einige Spieler in echte personliche

Probleme gestiirzt wurden, als ihr Projekt ins
Schlingern kam.

8.2 Bestimmung des Gewinners

Um den Gewinner zu bestimmen, haben wir die
Gruppen nach den Kriterien in Tabelle 3 bewertet.
Tabelle 3 enthdlt aulerdem eine Gewichtungsfunkti-
on, um Konflikte zwischen widerstreitenden Zielen zu
[Gsen.

8.3 Ergebnisseder einzelnen Gruppen

Abb. 3 gibt eine Uberblick iiber die Ergebnisse der
funf Gruppen.

Die obere Halfte der Abbildung zeigt die erfillten
Kundenwinsche im fertigen Produkt (die korrekten
Software-Quanten), wobel maximal 234 Quanten
erreichbar waren. Diese Werte sollten so hoch wie
maoglich sein — das war das Hauptkriterium bei der
Auswertung der Projektergebnisse. Die untere Hélfte
zeigt die nicht gewiinschten, aber trotzdem realisierten
Eigenschaften (in redundanten Software-Quanten), die
Budgetliberschreitung in 1000 DM und die
Zeituberschreitung gegenuber dem geplanten
Abgabetermin in Tagen. Diese Werte sollten natirlich
so niedrig wie moglich sein.

e Gruppe 2 erzielte die besten Ergebnisse. Sie
zeigten keine besonders aufregenden Ergebnisse in
den einzelnen Phasen, aber lieferten zu Beginn
einen vollstandigen 15-seitigen (!) Projektplan ab,

Kategorie sehr gut gut mittel schlecht Gewicht
Projekt Ende 4. Dez. 1992 |12. Dez. 1992|26. Dez. 1992|8. Jan. 1993 5
oder friher oder spéter
Budget (DM) 280.000,- 320.000,- 360.000,- 400.000,- 5
oder weniger oder mehr
fehlende SQen verglichen |5 oder 10 15 20 oder mehr Anf. Analyse: 3
mit der urspriingl. Analyse |weniger Architekturentw.: 3
(die 234 SQen enthielt) Modulentw.: 3
Code: 5
redundante SQen verglichen |5 oder 10 20 40 oder mehr Anf. Analyse: 3
mit der urspriingl. Analyse |weniger Architekturentw.: 3
Modulentw.: 3
Code: 5
Code-Fehler 3 oder 6 10 15 oder mehr 5
weniger
Durchschnittl. Motivation |2 oder mehr 1 0 -1 oder 1
der Projektmitarbeiter weniger
Moativation des Kunden 2 oder mehr 1 0 -1 oder 1
weniger
Punkte 4 Punkte 3 Punkte 2 Punkte 1 Punkt

Tab. 3: Gewichtungsfunktion zur Ermittlung der Simul ationsergebnisse

der dauernd aktualisiert wurde. In den meisten
Kriterien kamen sie nur auf den zweiten Platz —
bis auf die erfillten Kundenwiinsche, hier waren
sie am besten. Das Geheimnis ihres Erfolgs war
eine verninftige Planung, an die sie sich Uber das
ganze Projekt hin gehalten haben. Diese Gruppe
(und auch Gruppe 5) hat erwogen, eine Standard-
Datenbank zu kaufen, um die geforderte Aufgabe
zu erledigen. Beide Gruppen haben die Datenbank
nicht gekauft, da sie zu teuer war.

Diese Gruppe wurde von Gruppe 4 gefolgt. Sie
hatten zwar bessere Ergebnisse bei Budget und
Termin, aber weniger Kundenwiinsche erfillt. Die
Gruppe beendete alle Aktivitaten zu frih, bevor
sie Uberhaupt die Chance hatten, die geforderte

Maximal erreichbare

hatten. Interesanterweise haben sich beide
Gruppen dazu entschlossen, in der Mitte der
Entwicklung einen Teil ihrer zu grof3en Produkte
zu streichen — welcher Teil gestrichen werden
sollte, wurde alerdings nicht geplant, so dal? der
Streichung neben den redundanten auch eine
Reihe korrekter Software-Quanten zum Opfer
fielen. Beide Gruppen hatten offensichtliche
Schwierigkeiten, ein Projekt zu planen und sich an
die Planung zu halten.

Auf den 4. Platz kam Gruppe 1. Diese Gruppe hat
ein System entwickelt, ohne sich dabei alzu sehr
um Quialitatssicherung zu kiimmern. Statt der ge-
forderten Eigenschaften hatte das Produkt eine
grofl3e Anzahl redundanter Quanten. Dies war die

Anzahl von 234 SQen 7
200 SQen 7
100 SQen
0 Gruppe 1 Gruppe 2 Gruppe 3 Gruppe4 Gruppe5 | OkDM/
SQen 4 | OTage
100 SQen | 75kDM/
< 30 Tage
| 150 kDM/
60 Tage

Fe=a Erfillte Kundenanforderungen
Hﬁ (Korrekte Software-Quanten)

Nicht gewiischte Realisierungen

(redundante Software-Quanten)

E= Budgetiiberschreitung (kDM)

% Terminuberschreitung (Tage)

Abb. 3: Die Resultate der Projekte

Qualitét zu erreichen — allerdings hatten sie
dadurch auch nicht die Chance viele Fehler zu
machen. Dies flhrte zu einem eher kleinen System
ohne viele redundante Software-Quanten und
geringen Zeit- und Budgetiiberschreitungen.

Gruppe 5 kam auf den 3. Platz. Sie entwickelten
zwar fast das gleiche Produkt wie Gruppe 4 —im
Sinne der Software-Quanten — aber sie benétigten
wesentlich mehr Zeit und Geld. Ursache des
schlechten Abschneidens (wie auch bei Gruppe 3)
war der viel zu grof3e Aufwand in der Entwicklung
und der zu geringe Aufwand in der Prifung der
Ergebnisse. Dies fuhrte dazu, daid diese Gruppe
und Gruppe 3 riesige Produkte mit geringer Quali -
tét und grof3e Termin- und Budget Uberziehungen

einzige Gruppe die beinahe innerhalb der vorgege-
benen Zeit und des vorgegebenen Budgets war —
sie horten einfach auf als Zeit und Geld zu Ende
waren

Gruppe 3 kam auf den letzten Platz. Diese Gruppe
konnte nicht verntinftig planen und machte die
gleichen Fehler wie Gruppe 5, kam dabei aber
noch mehr ins Schlingern. Man kann ihre An-
strengungen an den grofiten Budgetiiber schreitung
ablesen, die den groften Aufwand anzeigt — diese
Anstrengungen fhrten aber zu einem Produkt, das
noch schlechter als das der Gruppe 1 war.

Tabelle 4 zeigt die Einzelergebnisse der Projekte.

9. Erfahrungen mit der Smula-

tion von Softwar e-Pr ojekten

Am Ende des Fachpraktikums wurden zwei Bespre-
chungen mit allen Spielern durchgefiihrt, in der die
Ergebnisse diskutiert und das Modell vorgestellt
wurde. Dabei wurden zahlreiche Probleme identifi-
ziert und das Modell kritisiert. Insgesamt schatzen wir
den Verlauf des Fachpraktikums aber erfolgreich ein:

Wir konnten ein plausibles Projektverhalten
simulieren, das sich den Aktionen unserer finf
»Projektleiter” anpalite.

Wir konnten ein relativ einfaches Simulations-
modell einsetzen, das Uber die ganze Simulation

Die Studenten berichteten Uber Erfahrungen, wie
man sie in echten Projekten bei mangelhafter
Planung oder unzureichender Qualitétssicherung
erleben kann.

Die post-mortem Analyse war ergiebiger als in
wirklichen Projekten und flhrte zu einem besseren
Verstandnis der Vorgange in den simulierten
Projekten.

Der Aufwand fir die Simulation war hoch, konnte
aber dank des einfachen Modells bewdltigt
werden.

Die Simulation beeinflufdte das Verhaten der Stu-
denten nicht dramatisch: keiner hatte das Gefiihl,
dal3 unredlistische Effekte auftraten.

hinweg unverandert blieb.

Gruppe 1 2 3 4 5
Projektende (alle Projektebe- | 4. Dez. 1992 | 21. Dez. 1992 | 27. Dez. 1992 | 11. Dez. 1992 | 29. Jan. 1993
gannen am 1. Juni 1992)

Budget (DM) 276.660,- 310.596,- 398.616,- 303.615,- 391.508,-
Korrekte Software-Quanten 215 kSQen 225 kSQen 228 kSQen 214 kSQen 213 kSQen
(kSQen), fehlende Software- 29fSQen 9fSQen 6fSQen = 20fSQen | 21fSQen
Quanten (fSQen) und redundan- 15 10 50 23 8

te Software-Quanten (rSQen) in rSQen rSQen rSQen rSQen rSQen
der Anforderungsanlyse ver-

glichen mit den urspriingl. An-

forderungen

Korrekte Software-Quanten, 198 kSQen 210 kSQen 217 kSQen 214 kSQen 202 kSQen
fenlende Software-Quantenund | 35fSQen | 24fSQen | 17fSQen | 20fSQen | 32fSQen
redundante Software-Quanten 51 1 70 U on

im Architektiurentwurf ver- rSQen rSQen rSQen rSQen rSQen
glichen mit den urspringl. An-

forderungen

Korrekte Software-Quanten, 166 kSQen 200 kSQen 164 kSQen 198 kSQen 202 kSQen
fi'enge tSOfS“gf'?f eQUS”te“tU”d 68fSQen | 34fSQen = 70fSQen = 36fSQen | 32fSQen
redundante Software-Quanten

im Modulentwurf verglichen 48 r3Qen 15rSQen 63 rSQen 39r3Qen 241Qen
mit den urspriingl. Anforder-

ungen

Korrekte Software-Quanten, 186 kSQen 215 kSQen 180 kSQen 212 kSQen 212 kSQen
g' e”c?e tSOfSt(‘)'\f'f‘f GQUS”te”tU”d 48fSQen = 19fSQen | 54fSQen = 22fSQen | 22fSQen
redundante Software-Quanten

im fertigen Produkt verglichen 66 rSQen 19 rSQen 58 rSQen 24 rSQen 25 rSQen
mit den urspringl. Anforder-

ungen

Code-Fehler 44 Fehler 0 Fehler 3 Fehler 10 Fehler 1 Fehler
Durchschnittliche Motivation 0,75 33 0,2 0,75 2,8
der Projektmitarbeiter

Motivation des Kunden -3 -1 0 2 -1
Wertung 48 95 48 66 54

Tab. 4: Die Resultate der Projekte

Ein wichtiger Erfolgsfaktor fir die Simulation war die
lebendige Présentation. Sobald sich die Studenten mit
dem Projekt identifizieren konnten, haben sie sich
auch wie Projektleiter verhalten.

Die meisten Spieler kritisierten, daf’ sie keine
echten Dukumente und keine informativen Antworten
von ihren simulierten Mitarbeitern erhielten:

¢ ,Wenn ich das Dokument gesehen hétte, wirde
ich wissen, ob es die Anforderungen des Kunden
erfillt. Der Blindflug war eine negative
Erfahrung — aber eine Sache mit der sie auch in
einem echten Projekt umgehen miissen.

e, In Wirklichkeit sind meine Mitarbeiter aktiver,
sie erzéhlen mehr Uber den Projektfortschritt.”
Nein, das tun sie nicht! Aber die Aussage zeigt,
wie wichtig eine lebendige Simulation ist. Die
nackten Zahlen in natUrliche Sprache zu packen,
ist ein guter Ansatz dazu, der aber noch weiter
entwickelt werden mul3.

e ,Es muf3 Unterstrukturen fir die Dokumente
geben. Man kann keine ganze Spezifikation in
einem einzigen Review prifen.” Das ist richtig
und wird in dem né&chsten Modell korrigiert
werden.

Die folgenden Bestandteile haben sich bewahrt und
konnen beibehalten werden:

¢ Das einfache Modell war prinzipiell ausreichend.
Lediglich die manuelle Simulation war zu
mihsam. Mit der Fertigstellung des SESAM -
Simulators sollte dieses Problem erledigt sein.

¢ Die Granularitdt der Zige auf Tagesebene war
ausreichend, sie bewahrte die Spieler davor, sich
in Details zu verlieren. Vorstellbar ist aber auch
eine feinere Granularitat.

¢ Die von uns fur die Simulation bereitgestellten
Aktionen, Programmierer, Schulungen und
Werkzeuge waren ausrei chend.

Zusammenfassend kann sagen, dal3 fir den Einsatz
im Unterricht bereits dieses einfache Modell
ausreicht, um die Bricke zwischen Software
Engineering-Ausbildung und Praxis zu schlagen: Es
gibt Studenten die Gelegenheit, Erfahrungen als
Projektleiter zu sammeln!

Literatur

Abdel-Hamid, T. K. (1991): Softwar e Project Dyna-
mics - An Integrated Approach. Prentice Hall,
Englewood Cliffs, New Jersey.

Albrecht, A. J.,, J. E. Gaffney (1983). Software
Function, Source Lines of Code, and Develop-
ment Effort Prediction: A Software Science Vali-
dation. IEEE Transactions on Software
Engineering, SE-9, Nov. 83, pp. 639-648.

Boehm, B. W. (1981): Software Engineering Eco-
nomics. Prentice Hall, Englewood Cliffs, New
Jersey.

Deininger, M., K. Schneider (1994): Teaching
Software Project Management by Simulation.
Proceedings of the 7th Conference on Software
Engineering and Education (CSEE), San
Antonio, Januar 1994, pp. 227-242.

Fairley, R. (1985): Software Engineering Concepts.
McGraw-Hill, New Y ork.

Frihauf, K., J. Ludewig, H. Sandmayr (1988):
Softwar e-Pr oj ekt management und -Qualitats-
sicherung. Verlag der Fachvereine an der
Schweizerischen Hochschulen und Techniken,
Zrich.

|EEE (1989): Standard Dictionary of Measures to
Produce Reliable Software. IEEE Std 982.1-
1988.

IEEE (1993): Standard for Software Productivity
Metrics. |IEEE Std. 1045.

Knoll, H.-D., J. Busse (1991): Aufwandsschatzung
von Softwar e-Projekten in der Praxis. Metho-
den, Werkzeugeinsatz, Fallbeispiele. (Reihe
Angewandte Informatik Bd. 8), Bl-Wissen-
schaftsverlag, Mannheim, Wien, Zirich.

Ludewig, J., Th. Bassler, M. Deininger, K. Schneider,
J. Schwille (1992): SESAM - Simulating Soft-
ware Projects. Proceedings of the Software
Engineering and Knowledge Engineering Con-
ference (SEKE '92), Capri, Mai 1992, pp. 608-
615.

McCabe, T. J. (1976): A Complexity Measure. |EEE
Transactions on Software Engineering, SE-2,
pp. 308-320.

McKeeman, W. M. (1989): Graduation Talk at Wang
Institute. IEEE Computer, Vol. 22, No. 5, pp.
78-80.

Schneider, K. (1993): Object-Oriented Simulation of
the Software Devel opment Process in SESAM.
Proceedings of the Object-Oriented Simulation
Conference (OOS '93), Teil der Western
Simulation Multiconference, San Diego, Januar
1993.

Schneider, K. (1993a): SESAM -Zwischen Planspiel
und Adventure Game. , Informatik und Schule
93, Koblenz, Oktober 1993.

Schneider, K., M. Deininger (1994): An Overview of
the SESAM Project. Erscheint in den
Proceedings of the GM D-Metrics Workshop.

Sommerville, I. (1989): Software Engineering. 3rd
Edition, Addison Wessley, Workingham,
England.

Vester, F. (1987): Okolopoly - Ein kyber netisches
Umweltspiel. Otto Maier Verlag, Ravensburg,
Germany.

Tel 7
SESAM und vis-A-vis
Jurgen Schwille

Zusammenfassung

SESAM-Modelle werden mittels verschiedener
graphischer Notationen beschrieben. Fir jede
graphische Notation stellt SESAM einen graphischen
Editor bereit. Dieser Artikel beschreibt das Werkzeug
vissA-vis, welches hinter diesen Editoren steht,
seinen Einsatz in SESAM und das Konzept der
Integritétsbedingungen, das eine mdgliche Weiterent-
wicklung von vis-A-vis zur einfacheren Realisierung
graphischer Editoren darstellt.

File [Format | Derive Situation Editor | Annotations | Wiews |

1. Einfhrung

SESAM enthdlt verschiedene graphische Notationen
zur Beschreibung von Modellen, z. B. eine Notation
zur Beschreibung der Elemente eines Software-
Projekts und deren Beziehungen (Abbildung 1), zur
Beschreibung von konkreten Projektsituationen
(Abbildung 2) und zur Beschreibung von Regeln, die
angegeben, wie aus einer Projektsituation eine neue
Situation hervorgeht (Abbildung 3).

Schema, Situations- und Regeleditor werden von
einem Modellbauer verwendet, um sein Modell einer
Software-Entwicklung zu beschreiben. Der
Modellbauer legt hierfir sein Projektschema fest,

w

Geibrdartes Ushorfuessiges Fefvendzs Inhalt

lokaleFehler
Uinizng \\ Krtisiertes Dok

UmfangsFaktor -

Dokument

Umrangsw

Foiged o

schreibt

basiertauf

karrigiert

kalender

Software

I

{EntwurfsHilfe -

|—TestHilfe:
‘ProgrammierHilfa:

sprichtMit

&
Person

ermannie ADRIERINgErn |
| AuSIaStRgsqrRe|

B
kunde Mitarbeiter

Projektleiter

arbeitet it
Frograini

istZugeardnet
Tegm _Anwendungsbereich:
Ardeil Speziihalion

//E,ﬂﬁgﬂ@/sfememwrf :

Yerlaengerung —] Projekt ’”’ﬂf;ne‘e.rm:foa’wemwﬁf
{ Budget -
Resthudget

A

kennt

Endtermin

Abb. 1: Der Schemaeditor

ile | Format ‘Parameters ‘

»

L
<1

S

]

¥,

Suehia

Entwickler

Stefan Ehrling

istZugeordnet

Entwlckler

Johannes Bankmueller

Dokument

[

Fflichtenheft

Dokumeant

[

Entwsurf

Dokument

[

Code

Frojekt
F istZugeardnet

Schesch

Andrea Siehenschlaefer

Abb. 2: Der Situationseditor

beschreibt eine Anfangssituation des zu simu-
lierenden Projekts und gibt die Regeln an, nach denen
sich sein Projektmodell verhalten soll. Das in diesem
Band verwendete SESAM-Beispielmodell umfalit
insgesamt 30 Regeln, um ein Beispiel fur die
notwendige Zahl von Regeln zu geben.

Der Modellbauer kann, z.B. aufgrund von
Erkenntnissen, die er aus der Simulation seines
Projektmodells gewonnen hat, sein Modell veréndern
und anschlief3end neu simulieren. Die graphische
Darstellung seiner Modelle erlauben einem
Modellbauer, notwendige Modellénderungen schnell
durchzufiihren und seine Modelle tbersichtlich und
kompakt zu halten. SESAM bietet komfortable
Mdoglichkeiten zur Bearbeitung von Modellen.
Modelle muissen nicht umsténdlich textuell
beschrieben werden, sondern kdnnen graphisch
erstellt und geédndert werden, was die Arbeit des
ModelIbauers wesentlich erleichtert.

Die hier gezeigten graphischen Editoren haben
sehr viele Gemeinsamkeiten: In jedem Editor kdnnen
graphische Elemente eingefligt, geltscht und
positioniert werden, jede Notation legt bestimmte
graphische Repréasentationen ihrer Elemente fest, jede

Notation definiert mogliche Verbindungen zwischen
den Elementen.

Diese Vielzahl von Gemeinsamkeiten bildete die
Motivation fur die Erstellung von vis-A-vis.
visA-vis wird von seinen Entwicklern als
~Application Framework" bezeichnet, das Bausteine
zur Erstellung von graphischen Editoren enthélt. Alle
gezeigten Editoren bauen auf vis-A-vis auf, d. h.
verwenden die von vis-A-vis bereitgestellten Bau-
steine, was sich z. B. in einer einheitlichen Benutzer-
oberfléache widerspiegelt (vgl. Abbildungen 1 bis 3).

Dieser Artikel soll einerseits die Verbindung von
vis-A-vis und SESAM aufzeigen, andererseits einen
kurzen Uberblick tber die Moglichkeiten von
vis-A -vis geben (Abschnitt 2). Abschnitt 3 geht Uber
vis-A-vis hinaus und zeigt, wie die graphischen
Notationen inhérenten Integritétsbedingungen mittels
Pradikatenlogik formuliert werden kénnen.

File | Format | Rules | Schema ‘ Motes | Wiews ‘

kad

HODIFY
o+

T~ _ eflEfahrung

Aufgabensicht
INFLUEME]

5C ibt

£ 1)

W

rule "A-kern-Entwicklerschreibt” loaded

Abb. 3: Der Regeleditor

2. VISA-vis

Dieser Abschnitt beschreibt die wesentlichen
Merkmale von vis-A-vis. Lichter (1993) und Lichter
(1993a) beschreiben vis-A-visim Detail.

2.1 Anwendungsbereich von
ViSA-vis

Graphische Notationen werden nicht nur in SESAM
verwendet. Uberall im Software Engineering finden
sich graphische Notationen, z. B. in SA von
DeMarco, in JSD von Jackson und Cameron sowiein
OMT von Rumbaugh, um nur einige Notationen zu
nennen. Auch auf3erhalb des Software Engineering
findet man viele Beispiele, wie etwa Petrinetze,
endliche Automaten oder FluRdiagramme. Der Grund
fur diese Vielzahl graphischer Notationen ist einfach:
Graphische Notationen erlauben es, komplexe
Zusammenhange Ubersichtlich darzustellen.

Einen graphischen Editor fir eine graphische
Notation ,from scratch® zu erstellen ist eine
schwierige und aufwendige Aufgabe. vis-A-vis
erleichtert diese Aufgabe wesentlich durch seine

Klassenbibliothek, in der der , Werkzeugbauer” viele
fertige Bausteine fur seinen Editor vorfindet. Anders
as z. B. in Gandalf (Habermann, 1986) geht es bei
visA-vis nicht darum, aus der textuellen
Beschreibung einer Notation in Form einer
Grammatik einen fertigen Editor zu generieren,
sondern vis-A-vis unterstitzt einen Werkzeugbauer
durch eine umfangreiche Bibliothek von fertigen
Editorbausteinen.

2.2 Leistungen von vis-A-vis

VisA-vis bietet einem Benutzer eine einheitliche
Benutzeroberfléche, eine umfangreiche Klassen-
bibliothek und eine Standardarchitektur. Diese drei
L eistungen werden im folgenden kurz erléutert.

Abbildungen 1 bis 3 zeigen die Benutzer-
oberflache, die allen vis-A-vis-Editoren zugrunde
liegt. Ein vis-A-vis-Fenster besteht aus einer
Mentleiste, in der einerseits Standardoperationen wie
Speichern und Laden eines Diagramms, andererseits
auch editorspezifische Kommandos enthalten sind,
einer Palette, die die Symbole der graphischen
Notation zeigt, einem Zeichenfenster fur die
Erstellung eines Diagramms aus den verfligbaren

Symbolen und einem Textfenster fir Meldungen an
den Benutzer.

Die vis-A-vis-Klassenbibliothek stellt eine Reihe
von Grundvisualisierungsformen zur Verfligung, aus
denen der Werkzeugbauer seine eigenen graphischen
Symbole zusammensetzen kann. Vis-A-vis-
Konnektoren verbinden die semantischen Objekte
einer Notation, bei einem Petrinetz-Editor sind dies
Stellen und Transitionen sowie ihre zugehorigen
Operationen wie z. B. das Setzen einer Marke auf
eine Stelle, mit ihrer graphischen Darstellung.

visA-vis gibt Werkzeugbauern eine Standard-
architektur vor. Durch Spezialisierung der vorhande-
nen vis-A-vis-Klassen erstellt ein Werkzeugbauer
einen neuen Editor, d. h. die Architektur des neuen
Editorsist der vis-A -vis-Architektur untergeordnet.

2.3 Verwendungvon Vis-A-vis

Lichter (1993) schlagt folgende Vorgehensweise vor,
um einen neuen vis-A -vis-Editor zu erstellen:

1. Semantische Objekte der Anwendung
identifizieren und implementieren

Der Werkzeugbauer mufd die Bestandteile seiner
graphischen Notation, die semantischen Objekte,
identifizieren und ihr Verhalten realisieren. Dies
geschieht vollig unabhangig von vis-A-vis.

2. Grundsymbole fir die semantischen Objekte
festlegen

Fir die graphische Darstellung der Symbole einer
Notation stellt vis-A-vis eine umfangreiche
Bibliothek zur Verfligung, aus der die passende
Darstellung fur ein Symbol ausgewahlt wird oder
anhand der vorhandenen Grundvisualisierungsformen
zusammengesetzt wird.

3. Festlegen, welche Aspekte des semantischen
Objektswievisualisiert werden sollen

In diesem Schritt wird die in Schritt 1 erstellte
Realisierung eines semantischen Objekts mit der in
Schritt 2 erstellten graphischen Darstellung des
Objekts verknipft. Hierfir werden die vorhandenen
Vis-A -vis-Konnektoren verwendet.

4. Unterklasse der vis-A-visWerkzeugklasse
erstellen

Die in den Abbildungen 1 bis 3 gezeigte
Benutzeroberflache kann um editorspezifische Ments
erweitert werden, indem das vorhandene vis-A-vis-
“Basiswerkzeug“ spezialisiert wird (vgl. die
unterschiedlichen Mentis der einzelnen Editoren).

24 Stand von vis-A-vis

Die Vielzahl der mit vis-A-vis erstellten Editoren
innerhalb und auflerhalb von SESAM zeigt, dai
VisA-vis ein vielseitig einsetzbares Werkzeug ist,
das die Erstellung graphischer Editoren wesentlich
erleichtert.

Geplante Erweiterungen von vis-A-vis sind
einerseits die Speicherung der mit vis-A-vis erstellten
Modelle in der objektorientierten Datenbank
GemStone und andererseits die Entwicklung von
Meta-Werkzeugen zur Verkirzung der reinen
Programmierarbeit bei der Erstellung eines vis-A-vis-
Editors.

3. Integritatsbedingungen

Modelle, die mittels graphischer Notationen be-
schrieben werden, missen bestimmten Bedingungen
genligen, damit diese Modelle bzgl. der verwendeten
Notation korrekt sind. Diese Bedingungen werden
hier als Integritatsbedingungen bezeichnet.

Integritatsbedingungen beschreiben, welche
Elemente einer graphischen Notation wie kombiniert
werden dirfen. In Abbildung 1 ist jedes Attribut,
dargestellt durch ein gepunktetes Rechteck, mit
genau einem Entitétstyp, dargestellt durch ein
Rechteck mit durchgezogenen Linien, verbunden. Ein
Attribut, dal3 keinem oder mehr als einem Entitétstyp
zugeordnet ist, verletzt diese Bedingung und macht
das zugehorige Diagramm unguiltig.

Zwei Arten von Integritétsbedingungen lassen sich
unterscheiden: Integritétsbedingungen kdnnen ent-
weder notationsbezogen oder benutzerdefiniert sein.
Die Integritatsbedingung des vorangegangenen
Absatzes ist notationsbezogen. Ein Beispiel fur eine
benutzerdefinierte Integritétsbedingung ist, daf? ein
bestimmter Mitarbeiter nur maximal einem Projekt
zugeordnet sein darf (vgl. Relation istZugeordnet in
Abbildung 1 und 2). Benutzerdefinierte Integritéts-
bedingungen werden nicht durch die Notation
impliziert, sondern durch den Modellbauer festgelegt.

Beide Arten von Integritatsbedingungen treten in
graphischen Notationen in unerwartet grof3er Zahl
auf. Flr eine vom Autor spezifizierte Entity-
Relationship-Notation, die der in Abbildung 1
gezeigten Notation sehr dhnlich ist, wurden rund 70
verschiedene notationsbezogene Integritétsbeding-
ungen gefunden. Fir ein in dieser Notation
beschriebenes Schema wurden bisher rund 30
benutzerdefinierte | ntegritétsbedingungen aufgestellt,
wobei diese Zahl noch stark steigen wird, da die
Entwicklung des Schemas noch lange nicht
abgeschlossen ist.

VisA-vis unterstitzt die Formulierung von

Integritétsbedingungen bisher nur rudimentar.
I ntegritatsbedingungen missen , festverdrahtet” reali-

siert werden, wobel vis-A-vis hierflir einige mengen-
orientierte Anfragen wie das Durchlaufen aller
Elemente eines Diagramms zur Verfligung stellt. Was
der Modellbauer sich dagegen winscht ist eine
Notation, in der er die Integritétsbedingungen seiner
Modelle nur spezifiziert, die Uberpriifung der
Bedingungen jedoch nicht realisieren muf3.

Eine Madglichkeit zur Formulierung von
Integritétsbedingungen bietet die Pradikatenlogik
(vgl. Westfechtel, 1991, und Wiebe, 1990), mit der
erste positive Erfahrungen gemacht wurden. Von den
oben zitierten 70 notationsbezogenen Integritats-
bedingungen konnten fast 60 Bedingungen mittels
Préadikatenlogik erster Ordnung nach dem Ansatz von
Wiebe formuliert werden, d. h. nur noch ein kleiner
Teil von Integritétsbedingungen mufd hartverdrahtet
in den Editor eingebaut werden, was den Aufwand
zur Erstellung eines Editors betréchtlich reduziert und
den Editor selbst wesentlich Gbersichtlicher macht, da
der Modellbauer gezwungen ist, Code zur
L~hormalen“ Diagrammbearbeitung von Code zur
»Fehlerbearbeitung”, sprich Code fir die Integritéts-
bedingungen, strikt zu trennen.

Ohne hier auf die Details prédikatenl ogikbasierter
Integritatsbedingungen einzugehen wird jetzt noch
abschliefend auf die Einbettung von Integritats-
bedingungen in eine graphische Notation einge-
gangen. Benutzerdefinierte Integritétsbedingungen
werden an das jeweilige Element eines Diagramms
angehangt. Die oben beschriebene Bedingung, dal’
ein Mitarbeiter nur maximal einem Projekt
zugeordnet sein darf, wird in Abbildung 1 am bestem
beim Entitatstyp Mitarbeiter definiert. Diese
Bedingung wird aus Griinden der Ubersichtlichkeit
nicht im Diagramm sichtbar sein. Einen Mitarbeiter
im Situationseditor mehr als einem Projekt
zuzuordnen, wird durch die obige Bedingung
verhindert. (Diese Bedingung koénnte mit den in
vielen Entity-Relationship-Notationen enthaltenen
Kardinalitédten formuliert werden. Fur andere
benutzerdefinierte Integritétsbedingungen reichen
Kardinalitéten jedoch nicht aus.) Notationsbezogene
Integritétsbedingungen kdnnen nicht mehr einem
einzelnen Element zugeordnet werden, sondern
gelten fur mehrere Elemente eines Diagramms: Dal3
ein Attribut stets genau einem Entitétstyp zugeordnet
ist, mufd fir alle Attribute gelten.

Die hier vorgestellten Uberlegungen bzgl.
Integritétsbedingungen werden derzeit noch vom
Autor untersucht und durfen deshalb keinesfalls als
abgeschlossen angesehen werden. Dieser Artikel
sollte nur die Problematik der Integritétsbedingungen
klaren und eine moégliche Ldsung aufzeigen. Ob
dieser Weg auch wirklich zum Erfolg fuhrt, muf3 erst
noch untersucht werden.

Literatur

Habermann, A.N., D. Notkin (1986): Gandalf.
Software Development Environments. |EEE
Transactions on Software Engineering, 12(12),
Dezember 1986. S. 1117-1127.

Lichter, H., K. Schneider (1993): vis-A-vis. Ein
objektorientiertes Application Framework flr
graphische Entwurfswerkzeuge. In H.C. Mayr
und R. Wagner (Hrsg.): Objektorientierte
Methoden fur Informationssysteme. Springer,
Informatik aktuell.

Lichter, H., K. Schneider (1993a): vis-A-vis. An
Object-Oriented Application Framework for
Graphical Design Tools. Proc. of the IFIP
Workshop on Interfacesin Industrial Systems
for Production and Engineering. Darmstadt,
15.-17.03.93. Elsevier

Westfechtel, B. (1991): Revisions- und
Konsistenzkontrolle in einer integrierten
Softwar e-Entwicklungsumgebung. Informatik-
Fachbericht, Nr. 280. Springer-Verlag, Berlin.

Wiebe, D. (1990): Generic Software Configuration
Management: Theory and Design. University
of Washington, Dept. of Computer Science, PhD
Thesis, TR 90-07-03.

Teil 8

Softwar e Engineering objektorientiert
— eine Herausforderung flr die Praxis

Horst Lichter, Schweizerische Bankgesellschaft Zurich

Zusammenfassung

In diesem Beitrag formuliere ich am Anfang einige
wesentliche Griinde, warum die objektorientierte
Technologie (OO-Technologie) in der industriellen
Software-Entwicklung eingesetzt wird oder werden
wird. Anschliel?end werden Randbedingungen und
EinfluRfaktoren vorgestellt und diskutiert, die bertick-
sichtigt werden missen, wenn die OO-Technologiein
einem Unternehmen eingefuhrt werden soll. Darauf
aufbauend wird am Beispiel der Schweizerischen
Bankgesellschaft (SBG) erlautert, wie dies organi-
satorisch durchgefiihrt werden kann.

1. Warum Objektorientierung? —
Einige Griinde

Es gibt verschiedene Griinde, warum die OO-Tech-
nologie zur Zeit in vielen industriellen Software-
Unternehmen eingefiihrt oder zum Teil bereits einge-
setzt wird. Es sollen nur einige genannt werden:

e Der Aspekt ,time to market* wird auch oder ist
gerade auch bel Software-Produkten immer wich-
tiger. Je schneller und kostengiinstiger neue Pro-
dukte erstellt oder existierende den Marktanforde-
rungen angepaldt werden kénnen, je besser kann
man sich im Markt behaupten.

Man hofft, mit den Mitteln der OO-Technologie —
insbesondere durch die Wiederverwendung von
Bausteinen — kirzere Entwicklungszeiten zu
erzielen.

¢ In den Entwicklungsabteilungen grof3er Firmen
werden mehr und mehr Ressourcen verbraucht,
um die bestehenden operativen Systeme zu
warten und zu pflegen. Schuld daran sind unter
anderem eine extrem hohe Integration der ein-
zelnen Anwendungen; eine saubere Schnitt-
stellenarchitektur zwischen den Anwendungen
fehlt. Anderungen kénnen dementsprechend nicht
lokal begrenzt ausgefiihrt werden, sondern schla-
gen in das gesamte Netz der Anwendungen durch.

Hier hofft man, mit den Mitteln der Daten-
kapselung Bausteine mit hohem inneren Zusam-
menhalt konstruieren zu kénnen (Datenstrukturen
und deren Operationen), die Uber exakt definierte
Schnittstellen miteinander verbunden sind.

e Ein weiteres Manko der konventionellen Soft-
ware-Entwicklung, das sich sowohl in den Ent-
wicklungszeiten als auch im Wartungsaufwand
niederschlégt, besteht darin, da’ nur sehr selten
Bausteine wiederverwendet werden, wenn neue
»ahnliche* Anwendungen erstellt werden miissen.

Hier hofft man, spezielle Klassenbibliotheken
oder sogar Frameworks erstellen und einsetzen zu
konnen, die einen grof3en Teil der immer wieder
bendtigten Funktionalitédt einer Anwendungs-
klasse zur Verfligung stellen.

Die Grinde, warum die OO-Technologie in der indu-
striellen Software-Entwicklung eingesetzt werden
soll, kénnen zusammenfassend auf den folgenden
Nenner gebracht werden: Software soll schneller,
billiger und qualitativ hochwertiger erstellt werden.

Die Anspriiche, denen die OO-Technologie ge-
recht werden mu3, sind demnach sehr hoch. Die in
sie gesetzten Hoffnungen ruhen vor alem auf den
Techniken Datenkapselung mit sauberer Schnitt-
stellenarchitektur und Vererbung als Mittel zur
Wiederverwendung. Dal3 die Hoffnungen, die hinter
den genannten Grinden stehen, nicht unberechtigt
sind, zeigen Beispiele industrieller Software-Ent-
wicklungen (siehe z.B. Biirkle, 1992)

2. Einflhrung der
OO-Technologie

In Kilberth et al. (1993) wird die OO-Technologie
und ihre Einfuhrung unter verschiedenen Gesichts-
punkten — technisch, organisatorisch und wirtschaft-
lich — beschrieben. Ich mdchte besonders auf die
folgenden Aspekte eingehen: Welche Randbedingun-
gen sind bei der EinfUhrung der OO-Technologie zu
beachten und welche Konsequenzen mussen daraus
gezogen werden. Die dazu gemachten Aussagen
gelten zum Teil nicht nur speziell fur die Einfihrung
der OO-Technologie, sondern gelten generell, wenn
eine neue Technologie eingefihrt werden soll.

Die Einfuihrung der OO-Technologie stellt in
verschiedener Hinsicht ein Risiko dar: Auf der einen
Seite birgt die Technologie selbst erhebliche Risiken
in sich, auf der anderen Seite kann der Schaden, der
dadurch entstehen kann, dai? die Technologie unge-
plant und unsystematisch eingefiihrt wurde, ebenfalls

Management

Mitarbeiter

Organisation

Technologie

Abb. 1: EinfluRfaktoren

erheblich sein. Die zuletzt genannte Risikogruppe
wird gemildert, wenn die Einflhrung sinnvoll geplant
und systematisch durchgefihrt wird. Die nachfol-
gende Abbildung zeigt wesentliche Einflu3faktoren
und Randbedingungen, die zu beachten sind.

Das Management muf3 die Einfihrung der OO-
Technologie vollumfénglich tragen und mitverant-
worten. In diesem Zusammenhang missen dem
Management die Chancen, aber auch die Risiken, die
in der OO-Technologie liegen, bekannt sein.
Letzteres ist — bei der Flut von Lobpreisungen —
besonders wichtig. Weiterhin mufd dem Management
klar sein, welcher Aufwand zu leisten ist, damit ein
konsolidiertes OO-Engineering in der Unternehmung
entstehen kann; ihm muf klar sein, dald sich die
vorhandenen Potentiale der OO-Technologie sowie
ein messbarer Nutzen in Form von projekt-
Ubergreifender Wiederverwendung nicht kurzfristig
einstellen werden, sondern erst mittelfristig zu
erwarten sind. Kurz gesagt: Die Einfiihrung der OO-
Technologie muf? " Chefsache" sein.

Die Mitarbeiter missen die OO-Technologie in
ihren Projekten umsetzen. Damit dies erfolgreich
moglich sein kann, missen sie motiviert werden,
Neues zu lernen. Da dieses mit nicht unerheblichem
Aufwand fur jeden einzelnen Mitarbeiter verbunden
ist, ist dies nicht immer einfach (, Wir machen das
doch schon 15 Jahre so und die Anwendungen laufen
doch prima*). Wird der Aufwand von den Mitar-
beitern investiert, so muR3 dieser , belohnt” werden.
Dies kann in extrinsischer oder intrinsischer Form
geschehen. Da die OO-Technologie nicht in einer
»Softwarekulturfreien® Umgebung eingefiihrt wird,
die haufig durch die traditionelle Host-Entwicklung

gepragt ist, mud verhindert werden, dal3 eine sich
gegenseitig hemmende Zwei-Welten-Kultur entsteht.
Die eine — alte — Welt darf nicht als die ewig-
gestrige, die zweite - die OO-Welt — nicht als die
alein-seligmachende Welt dargestellt werden. Dazu
muf3, und dies ist Sache des Managements, der
Stellenwert beider Technologien klar formuliert sein
und das Mit- und Nebeneinander der Technologien
deutlich gemacht werden.

In diesem Zusammenhang sei am Rande erwahnt,
daR die Umsetzung der OO-Technologie nicht —wie
ab und an félschlich zu lesen oder zu héren ist — dazu
fuhrt, dafl3 die vorhandenen Kenntnisse der Mitar-
beiter nichts mehr wert sind und nicht mehr
gebraucht werden. Im Gegenteil bilden diese doch die
Basis und den Grundstock, um die neuen Konzepte
der OO-Technologie zu schulen und ihre Vorteile
gegentiber dlteren bekannten K onzepten zu erlautern.

Die Organisationsform der Projekte mul3 unter
Umstanden an die Bedirfnisse der OO-Technologie
angepaldt werden. In Kilberth et al. (1993) wird
festgestellt, daR sich in objektorientierten Projekten
gezeigt hat, dal? ein objektorientiertes Anwendungs-
system nicht vollig unabhéngig von der Organi-
sationsform entwickelt werden kann. Die vorhandene
Aufteilung in Geschéftsbereiche mit ihren jeweiligen
Zustandigkeiten kann sich gelegentlich als sperrig
erweisen. So ist etwa zu berticksichtigen, daf3 anwen-
dungsnah arbeitende Systemanalytiker oder DV -Be-
rater viel stérker als vorher Ublich in ein Entwick-
lungsprojekt integriert werden mussen. Dies wirft
dort Probleme auf, wo fachliche Verantwortung und
personelle Zustandigkeit, bedingt durch die Orga-
nisationsstruktur, auseinanderfallen. Als L&sung

empfiehlt sich meist ein Matrixmanagement, das
Mitarbeiter aus ver schiedenen Abteilungen fir den
Ablauf eines Projektes fachlich einer Projektleitung
unterstellt.

Soll objektorientierte Entwicklung nicht nur in
einem einzelnen Projekt, sondern in zeitlich und
thematisch parallelen Projekten erfolgen, dann
erfordert das sowohl umfassende Werkzeugunter-
stitzung als auch personelle und organisatorische
Voraussetzungen. Von herausragender Bedeutung fur
die mittelfristige Realisierung der Aspekte Flexibili-
tat, Wiederverwendbarkeit und Offenheit ist dabei,
daid die in den entstehenden Klassenbibliotheken und
Frameworks dokumentierten Konzepte kontinuierlich
gepflegt und weiterentwickelt werden. Dazu muR
nicht nur bekannt sein, wie OO-Programmtexte tech-
nisch zu verwalten sind, sondern dies bedeutet auch,
dal? kontinuierlich Wissen und Erfahrung weiter-
gegeben werden muf3.

Nicht zuletzt missen die Elemente der einzufih-
renden OO-Technologie bekannt und auf die Bedurf-
nisse der Projekte abgestimmt sein. Da es zur Zeit
eine Vielzahl von methodischen Ansétzen im Bereich
der objektorientierten Analyse und des Entwurfs gibt,
verschiedene Sprachen- und Werkzeugalternativen
existieren, mussen die Elemente ausgewahlt und
zusammengestellt werden, die den Anforderungen
der ersten OO-Projekte am besten gerecht werden.
Bei der Auswahl dieser Projekte mui3 darauf geachtet
werden, dal? diese von der Aufgabenstellung beson-
ders geeignet sind, um sie in der OO-Technologie
durchzufihren. Positive Erfahrungen existieren zur
Zeit im Bereich der interaktiven Auskunfts- und
Beratungssysteme.

3. OO-Technologie bei der SBG -
Strategieder Einfihrung

In diesem Abschnitt méchte ich kurz beschreiben,
welche Strategie die SBG umsetzen will, um die OO-
Technologie erfolgreich einzufiihren und zu eta-
blieren.

In der SBG existiert bereits seit ca. finf Jahren in
Form des eigenen Informatik-Forschungslabors UBI -
LAB eine Keimzelle fur die OO-Technologie. In den
letzten drei Jahren wurden neben den doch eher
Labor-orientierten Arbeiten des UBILAB’s einzelne
Projekte in OO-Technologie entwickelt. Erst in
diesem Jahr ist jedoch geplant, die OO-Technologie
systematisch einzufihren

Marty (1994) beschreibt die folgenden Aspekte
fir die Einfihrung der OO-Technologie bei der SBG:
+ Esigt ein gradueller Ubergang hin zur OO-Tech-

nologie geplant, der mindestens funf Jahre dauern

wird.
¢ Die Einflhrung soll in kleinen nachvollziehbaren
Schritten durchgefiihrt werden.

e Erste Erfahrungen sollen an speziellen Pilotpro-
jekten erhalten werden.

« Um eigene SBG-angepalite Klassenbibliotheken
oder Frameworks zu erstellen, soll verstéarkt auf
zugekauften ,, Halb-Produkten* aufgebaut werden.

3.1 DieOO-Gruppe-
Selbstverstandnisund Ziele

In der SBG wird zur Zeit eine Gruppe aufgebaut, die
mit der Einfuhrung der OO-Technologie und deren
Umsetzung in den Projekten betraut sein wird. Die
Etablierung dieser OO-Gruppe ist letztlich eine Kon-
seguenz der oben fir die OO-Technologie beschrie-
benen organisatorischen Voraussetzungen. Das
Selbstverstandnis und die Aufgaben der OO-Gruppe
werden nachfolgend erléautert.

Die OO-Gruppeist ein Anbieter von
Dienstleistungen.

Die OO-Gruppe versteht sich als ein Dienstleistungs-
anbieter. Die angebotenen Dienstleistungen miissen
den Erfordernissen der OO-durchgefihrten Projekte
entsprechen. In diesem Zusammenhang ist es wichtig,
dal3 die Projekte einen direkten mef3baren Nutzen
haben, wenn sie auf die Dienste der OO-Gruppe
zurtickgreifen. Damit dies erreicht werden kann,
mussen die angebotenen Dienstleistungen bekannt
sein und mehrheitlich akzeptiert werden.

Die OO-Gruppeist der Synergiepunkt fir die OO-
Technologie.

Die OO-Gruppe ist die zentrale Stelle, die Ergebnis-
se, die in verschiedenen Projekten erarbeitet werden,
aufbereitet, pflegt und anderen Projekten zur Verfi-
gung stellt. Hierzu zdhlen insbesondere die einge-
setzten Klassenbibliotheken, aber auch die verwende-
ten Werkzeugumgebungen. Die Chancen, die die
OO-Technologie im Bereich Wiederverwendung
bietet, sollen dadurch aktiv genutzt und zielfiihrend
umgesetzt werden.

Die OO-Gruppe ar beitet innovations-orientiert.

Die OO-Technologie ist noch lange nicht ausgereift,
sondern unterliegt sténdiger Verdnderungen und Ver-
besserungen. Dieser Tatsache muf3 die OO-Gruppe
dadurch Rechnung tragen, dal3 sie die sich stabili-
sierenden Neuerungen erkennt, bewertet und even-
tuell umsetzt. Die OO-Gruppe beobachtet dazu u.a
den sich rasch entwickelnden Markt fir Methoden,
Werkzeuge, Klassenbibliotheken und Frameworks.

Bietet

Dienstleitungen
an

. arbeit_et
innovations-

orientiert

Synergie-
punkt

OO0O-Know-How
Trager &
Vermittler

Abb. 2: Selbstversténdnis der OO-Gruppe

Die OO-Gruppeist der zentrale K now-How-
Trager der OO-Technologie.

Damit die OO-Technologie systematisch eingefihrt,
verbreitet und stabilisiert werden kann, muf3 es eine
zentrale Stelle geben, in der das eingesetzte Know-
How zusammengefasst ist. Die OO-Gruppe muf3 ale
aktuell verwendeten Sprachen, Methoden und Werk -
zeuge, sowie die praxis-orientierten QS-Mal3nahmen
kennen, die speziell auf OO-Projekte zugeschnitten
sind. Sie mul3 weiterhin in der Lage sein, dieses
Wissen angemessen zu vermitteln.

3.2 Aufgabenfelder der OO-Gruppe

Aus den oben genannten Zielen lassen sich die fol -
genden zentralen Aufgabenbereiche der OO-Gruppe
identifizieren:

A. Zeitliche begrenzte Mitarbeit in OO-
Projekten

Die Arbeit der OO-Gruppe darf kein Selbstzweck
sein. Im Sinn eines Dienstleistungsanbieters kénnen
deshalb die Mitarbeiter der OO-Gruppe in einem
zeitliche beschrankten Maf3e in OO-durchgefiihrten
Projekten mitarbeiten. Dies fuhrt auf der einen Seite
dazu, dal3 die OO-Gruppe standig mit den Problemen
und der Entwicklungssituation der Projekte vertraut
bleibt und dementsprechend darauf reagieren kann.
Auf der anderen Seite ist dies die Voraussetzung, um
Gemeinsamkeiten im Sinn der Synergie und Wieder -
verwendung zu entdecken und umzusetzen.

Aus heutiger Sicht werden die folgenden Schwer -
punkte beim Einsatz in einem Projekt gesehen:
e Unterstiitzung bei der Einarbeitung in die ver-

wendete Entwicklungsumgebung, Sprache und

Methode.

* Vermitteln der eingesetzten Klassenbibliotheken.

e Mitarbeit und Beratung im Bereich Analyse,
Design- und Implementierung.

« Anstol3 von QS-Aktivitaten.

B. Pflegeder vorhandenen und entstehenden
wieder verwendbaren Bausteine

Damit projektibergreifend nutzbare Klassenbiblio-
theken entstehen kénnen, muf3 es eine Stelle geben,
die sich intensiv mit den bestehenden eingekauften
Klassenbibliotheken und mit den in den Projekten
entwickelten Klassen auseinandersetzt. Dies kénnen
die einzelnen Projekte aus Termin- und Kosten-
grunden nicht leisten. Die OO-Gruppe hat in diesem
Zusammenhang die Aufgabe, in sich konsistente,
aktuelle und wiederverwendbare Klassen in Form
von Bibliotheken oder sogar Frameworks zur
Verfligung zu stellen.

Damit dieses Ziel erreicht werden kann, miissen
seitens der OO-Gruppe die folgenden Aktivitéten
durchgefihrt werden:

e Die vorhandenen Klassen miissen den Projekten
vermittelt werden. Beim Entwurf neuer Klassen
muf3 darauf geachtet werden, da3 die existieren-
den Klassen sinngemald verwendet und eingesetzt
werden.

» Entstehen in einem Projekt neue Klassen, die
nicht problemspezifisch, sondern genereller Natur
sind, so miissen diese in die Klassenbibliothek
aufgenommen werden. In der Regel missen
solche Klassen aber einem Redesign unterzogen
werden. Weiterhin kann es notwendig sein, daf3
existierende Klassen veréndert und aktualisiert
werden mussen, wenn neue Klasse in eine Biblio-
thek aufgenommen werden. Dies ist die Aufgabe
der OO-Gruppe.

C. Aufbau eines OO-Engineerings

Die OO-Technologie ist nur auf der Basis eines
entsprechenden Software-Engineerings umsetzbar.
Dazu zéhlen alle Aspekte, die fur den Entwicklungs-
prozeld relevant sind. Die OO-Gruppe mul3 in diesem
Zusammenhang einen OO-Engineering-Ansatz erar-
beiten, definieren und in die Projekte einfliefRen
lassen. Dieser Prozef3 wird iterativ sein, da sich das
Engineering nicht ad hoc abschliezend definieren
[ant, sondern sich aufgrund der in den Projekten
gemachten Erfahrungen anpassen und veréndern
wird.

Es lassen sich die folgenden groben Themen-
gebiete im Bereich OO-Engineering identifizieren:
¢ FErarbeiten einer praxisnahen und praxisgerechten
Qualitétssicherung fir OO-Projekte (Reviews,
Metriken, Testverfahren etc.).

e FErarbeiten von Standards und Konventionen (Pro-
grammierrichtlinien, Dokumentationsstandards,
Bezei chnerkonzept etc.)

¢ Bedingt durch den Einsatz integrierter OO-Ent-
wicklungsumgebungen wie etwa Smalltalk muf3
ein Konzept fur ein geeignetes Versions- und
Konfigurationsmanagement erarbeitet und
umgesetzt werden.

D. Erarbeiten eines OO-angepaldten
Schulungskonzeptes

Damit die objektorientierte Technologie in den Pro-
jekten umgesetzt werden kann, missen die Projekt-
mitglieder entsprechend geschult sein. Dabei ist zu
beachten, daf3 die einzelnen Mitarbeiter einen unter-
schiedlichen Wissenstand haben. Weiterhin miissen
die zu schulenden Inhalte so gewdahlt sein, dal3 sie den
Anforderungen der Projekte gentigen. Dies kann
durch ein in sich abgestimmtes Schulungskonzept
erreicht werden.

Die Aufgabe der OO-Gruppe besteht in diesem
Zusammenhang darin, die Inhalte und die Reihen-
folge der aufeinander aufbauenden Kurse mitzuge-
stalten. Das Schulungskonzept kann grob in zwei
Kategorien gegliedert werden. Die erste Kategorie
enthdlt Kurse, die das der OO-Technologie zugrunde-
liegende softwaretechnische Basiswissen vermitteln.
Dazu zéhlt im einzelnen das Modulkonzept, das
Geheimnisprinzip, die Datenkapselung, Abstrakte
Datentypen, Generizitét, Polymorphie, Typsysteme,
dynamisches Binden, evolutiondre Prozefimodelle
und Prototyping. In der zweiten Kategorie sind Kurse
enthalten, die spezielle Themen die Objektorientie-
rung vermitteln. Folgende Kurse sind denkbar:

» Uberblick tiber die OO-Software-Entwicklung
¢ Objektorientiertes Programmieren
¢ Qualitétssicherungsmalinahmen in OO-Projekten

e Objektorientierter Systementwurf (Methoden,
Software-Architekturen)

¢ Objektorientierte Frameworks — Konzepte und
Designmuster

E. Aufbau und Unterhalt desOO-
Entwicklungs-Environments

Die OO-Software-Entwicklung findet in zunehmen-
dem MaRRe auf speziellen, teils integrierten Ent-
wicklungsumgebungen (Smalltalk, Visual C++) statt
und wird durch speziell geeignete Werkzeuge unter-
stutzt. Die Auswahl, das Know-How und die Pflege
der eingesetzten Werkzeuge sollte sinnvollerweise an
einem Ort zusammengefaldt sein.

Durch den Mix von Projektarbeit und Innovations-
tétigkeit der OO-Gruppe kdnnen die Werkzeuge so
ausgewahlt und notfalls adaptiert werden, dald sie den
Erfordernissen der Projekte und den Erfordernissen
des OO-Engineering-Ansatzes entsprechen.

33 Bewertung

In diesem Bericht ist der aktuelle Stand des Denkens
dokumentiert, der bzgl. der Einfiihrung der OO-
Technologie in der SBG vorhanden ist. Da wir zur
Zeit erst in der Initialphase der Einfiihrung sind,
kénnen keine Erfahrungen berichtet werden. Wir
glauben jedoch, mit der gewahlten Vorgehensweise
folgende Ziele erreichen zu kénnen:

» Die Technologie kann geplant, schrittweise, syste-
matisch und nachvollziehbar eingefihrt werden.

« Die vorhandenen noch knappen OO-Ressourcen
werden in Form der OO-Gruppe zusammenge-
faldt, so daid eine kritische Masse entstehen kann,
die notwendig ist, damit Erfolge erzielt werden
konnen.

e Durch die Arbeit der OO-Gruppe besteht die
Mdglichkeit, eine unternehmensweite OO-Basis
zu bilden. Dazu z&hlt neben den Klassen-
bibliotheken insbesondere auch das Know-How
im Umgang mit OO-Projekten.

» Die OO-Technologie soll nicht Uberall und nicht
zu jedem Preis eingesetzt werden. Es sollen die
Projekte in dieser Technologie realisiert werden,
die besonders dafir geeignet sind. Die OO-
Technologie wird nicht zum Selbstzweck, son-
dern als,,Nutzengenerator” eingesetzt.

Literatur

Kilberth, K., G. Gryczan, H. Zullighoven (1993):
Objektorientierte Anwendungsentwicklung:
Konzepte, Strategien, Erfahrungen. Vieweg,
Wiesbaden.

Birkle, U., G. Gryczan, H. Zillighoven (1992):
Erfahrungen mit der objektorientierten Vorge-
hensweise in einem Bankenprojekt. | nfor matik -
Spektrum 15, Heft 5, 273-381.

Marty, R (1994): Klassische Entwicklungstechnolo-
gien ungentgend. Computer Woche Extra 1,
Februar 1994, 38-40.

Teil 9

Software Engineering in der Universitat

Jochen Ludewig

Dem Ingenieur ist nichts zu schwer,
Er tirmt die Boschung in die Luft,
Er wiihit als Maulwurf in der Gruft,
Kein Hindernisist ihmzu grof3,

Er geht drauf los.

Heinrich Seidel, 1842 — 1906
Zusammenfassung

Die Rolle derer, die in einer Universitét das Fach
Software Engineering vertreten, ist nach wie vor
unklar und schwierig. Die Griinde liegen im Gebiet
selbst, in der traditionellen Struktur der Hochschule,
in der Erwartung der Umgebung und in der Praxis
aulerhalb der Universitéten.

Infolgedessen muR ich als Hochschullehrer dieses
Gebietes die Fragen nach Zielen, Grenzen, Mal3sta-
ben und Erfolgskriterien immer wieder selbst stellen
und beantworten. Das sind die Themen dieses Bei-
trags. Er kniipft an Uberlegungen, die ich in meinen
Antrittsvorlesungen in Zurich und Stuttgart entwik-
kelt hatte (Ludewig, 1986, 1989).

1. Schwierigkeiten mit dem
Begriff Software Engineering

Laut |IEEE Std. 610.12 (1990) (Standard Glossary of
Software Engineering Terminology) ist

softwar e engineering

() The application of a systematic, disciplined,
guantifiable approach to the development, ope-
ration, and maintenance of software; that is, the
application of engineering to software.

(2) The study of approachesasin (1).

S0 nett diese Definition auf den ersten Blick aussieht,

sie hilft uns kaum. Die darin enthaltene Wertung a3t

erkennen, dal3 damit mehr ein Programm als eine

Definition gemeint ist. Aber auch bei jedem anderen

Versuch, den Begriff sinnvoll zu fassen, begegnen

uns verschiedene Schwierigkeiten:

(1) DasProblem des Software Engineerings fehit.

(@ Uber den Zweck besteht kein Konsens.

(3) Software Engineering ist ein riesiges Gebiet.

(4) Software Engineering ist keine Disziplin, die
klar von den anderen abgegrenzt werden kann

(5) Software Engineering ist an der Hochschule
kaum moglich, in der Praxis kaum blich.

1.1 Kein Problem, viele Probleme

Das zentrale Problem des Software Engineerings
ist, daf3 es im Software Engineering kein zentrales
Problem gibt, sondern viele verfilzte Einzel pro-
bleme... (ausLudewig, 1989)

In den siebziger Jahren war es Ublich, die Schwie-
rigkeiten mit der Software auf irgendeinen , offen-
sichtlichen* Mangel zurtickzufihren, z.B. die falsche
Programmiersprache oder das Fehlen einer formalen
Spezifikation. Das war eine Form des Wunder-
glaubens, tatséchlich gibt es den einen Drachen nicht,
dessen Tod uns erlést. Die Hoffnung auf die Frei-
kugel (Brooks, 1987) setzt den Glauben an das Mon-
ster voraus. Wer mit Micken kampft, kann mit
Freikugeln nichts anfangen.

1.2 Ein Gebiet ohneklaren Zweck

Auch der Zweck des Software Software Engineerings
ist nicht klar; ich habe mich entschieden, als (ein-
zigen) Zweck die Kostenminimierung zu akzeptieren,
aber ich rechne dabei nicht mit grof3er Zustimmung.

1.3 Einriesiges Gebiet

Alles, was mit der Entwicklung oder Bearbeitung von
Software zu tun hat, fallt in die Zustandigkeit des
Software Engineerings; das ist viel. Darum kann
jeder Einzelne nur einen Ausschnitt kennen und ver-
treten. Die Gemeinsamkeiten dieser Leute sind ent-
sprechend gering, wie die seit 1992 laufende Tagung
»S0ftware Engineering im Unterricht der Hochschu-
len* (Ludewig, Schneider, 1992) deutlich zeigt. Das
~Arbeitsgebiet Software Engineering” ist eine
Fiktion, so wie das ,Heimatland Afrika* eine Fiktion
waére.

14 Ein Gebiet in vidlen Gebieten

Baumstrukturen schaffen klare, disjunkte Subsyste-
me, in denen alles seinen bestimmten Platz hat. Auch
Universitdten haben mit ihren Fakultéten, Instituten
und Lehrstihlen eine Baumstruktur, und es ist prak-
tisch, dal3 diese Struktur weitgehend auch im fach-
lichen gilt. Das Software Engineering jedoch liegt
guer: Wer ein Programm schreibt, betreibt (viel leicht,
je nach Definition) Software Engineering, und was
der Software-Ingenieur redisiert, gehort stets auch zu
einem (anderen) Spezialgebiet der Informatik.

Unser Arbeitsgebiet Uberlappt also mit alen ande-
ren Arbeitsgebieten, und jeder Informatik-Dozent
unterrichtet Software Engineering, auf seine Art.

Wir haben damit das alte Dilemma derer, die amt-
lich ein populéres Thema vertreten (wie auch Pfarrer,
Deutschlehrer, Berufsberater): Entweder wir haben
die gleiche Position wie ale unsere nebenberuflichen
Kollegen (dann wéren wir Uberfllssig), oder wir
haben eine besondere (dann stehen unsere Chancen,
einen Effekt zu erzielen, schlecht).

15 Software Engineering? Nein danke!

Akzeptiert man, dal3 das Ziel des Software Engi nee-
rings die Kostenminimierung ist, dann sind die
Rahmenbedingungen an der Hochschule ungiinstig.
Denn die Studenten kennen zwar meist den Preis
einer Speichererweiterung, aber nicht den Wert
geistiger Arbeit. Was sie nicht bezahlt bekommen,
kann nicht wertvoll sein.

Aber auch die Ubrigen Angehdrigen der Hoch-
schule, Mitarbeiter, Professoren und Verwaltung,
denken nicht in Kosten. Wir haben Stellen (die sind
gratis) und Mittel (meist Uberraschend gegen Jahres-
ende), aber keine Kosten. Die Universitét ist in die-
sem Sinne das letzte Refugium des real existierenden
Sozialismus. Wir schulen darum eine Denkweise, die
die Kosten al's Angel punkt hat, unvermeidlich so, wie
die Parteihochschule in Moskau vermutlich den
AuRenhandel geschult hat.

Esist daher naheliegend, den Blick hoffnungsvall
in die , freie Wirtschaft* zu richten. Was sehen wir?
Fast Uberall guten Willen und sinnvolle Ansétze, aber
keinen langen Atem, um die , offiziellen“ Ziele auch
im Auge zu behalten. Solange keine zusammenhan-
gende Kostenrechnung fur Software auf dem Tisch
liegt, wird es unméglich sein, Anderungen vorzuneh-
men, die fast jeder fur sinnvoll und rentabel hélt. Bei-
spielsweise sollte der Aufwand in den frilhen Phasen
der Software-Entwicklung erhéht werden, damit die
Wartung billiger wird. Was sich nicht im néchsten
Quartalsabschlufd vorteilhaft auswirkt und keinen
simplen Effekt auf Kosten und Ertrdge hat, ist
chancenlos.

Die Tragheit der Software-Leute kommt hinzu,
und kaum ein Management nimmt es auf sich, von
ihnen hart zu fordern, was jeder Ingenieur selbst-
verstandlich liefert, ndmlich Resultate nach dem
Stand der Technik, innerhalb der vorgesehenen Zeit
und zu den vorher geschétzten Kosten.

Darum konnen wir unseren Studenten und Mit-
arbeitern in der Praxis kaum Vorbilder zeigen: Die
Praxisist nicht vorbildlich. Wer daran zweifelt, sollte
den Versuch machen, dort vorbildliche Software oder
Projekt-Dokumentationen als Anschauungsmaterial
zu erhalten. Wir haben es mehrfach probiert und sind
uns sicher: Das ist entgegen naheliegenden Vermu-
tungen kein Problem der Geheimhaltung.

2. Zieleund Grenzen

Die vorstehende Diskussion zeigt, dafd wir im Soft-
ware Engineering zunéchst den Boden ebnen miissen,
auf dem wir dann die eigentliche Arbeit leisten kon-
nen. Sie zeigt auch, daf3 wir, die Software-Enginee-
ring-Professionals, uns langfristig Uberflissig machen
sollten. Eine Ingenieur-Disziplin, die ihren Namen
verdient, braucht keine Spezialisten zur Pflege des
I ngeni eur-Gedankens.

Was kdnnen und sollen wir, solange wir noch
nicht Uberflissig sind, leisten?

In der Forschung sollten wir versuchen, die
Methoden und Mittel bereitzustellen, die eine ratio-
nale Bewertung der Methoden und Mittel in der
Informatik unterstiitzen. Erst wenn wir in der Lage
sind, den Wert zweier CASE-Tools sinnvoll zu ver-
gleichen, den Aufwand und Nutzen einer Neuimple-
mentierung dem der weiteren Wartung gegentber-
zustellen, den EinfluR der Programmiersprache zu
quantifizieren, dann haben wir die Grundlagen fir ein
rationales Software Engineering. Metriken, allgemei -
ner Bewertungsverfahren sind also nach meiner
Einschétzung die Schllisseltechnol ogie.

In der Lehre sollten wir unsere Horer darauf vor-
bereiten, ihnen wie auch immer glaubhaft machen,
dal3 es ein Leben nach der (heutigen) Praxis gibt, dai3
man Software also auch ganz anders machen kann.
Nach wie vor gilt mein Programm, eine SE-Guerilla
auszubilden, die auch in einer dem Software Enginee-
ring feindlichen Umgebung Uberleben kann, ohne
zum ,Feind* Uberzulaufen.

Und in der Hochschule selbst missen wir weiter-
hin um unsere Kollegen as Verbtindete werben und
die Rolle spielen, die auch die Fachleute fir Hygiene
in den Universitatskliniken haben: Das besonders
Uberzeugend tun, was alle tun sollten.

Queéllen und Referenzen

Brooks, F.P., Jr. (1987): No silver bullet - essence
and accidents of software engineering. 1EEE
COMPUTER 20, 4, 10-19.

Ludewig, J. (1986): Software Engineering: Compu-
ter-Programme als technische Produkte. Antritts-
vorlesung an der ETH Zirich, Mai 1986. Tech-
nische Rundschau 79 (1987), Heft 7, 50-57.

Ludewig, J. (1989): Modelle der Software-Entwick-
lung: Abbilder oder Vorbilder? Antrittsvorlesung
an der Universitat Stuttgart, Juni 1989. Soft-
war etechnik-Trends, 9, 3 (Okt. 1989), 1-12.

Ludewig, J., K. Schneider (Hrsg.) (1992): SEUH
(Software Engineering im Unterricht der
Hochschulen). Berichte des German Chapter of
the ACM, Band 37, Teubner, Stuttgart.

