
SESAM
Software-Engineering-Simulation
durch animierte Modelle

Jochen Ludewig (Hrsg.)

Inhalt

Teil 1 Jochen Ludewig Die Abteilung Software Engineering
— ein privater Rückblick 3

Teil 2 Jochen Ludewig SESAM: Grundidee und Überblick 5

Teil 3 Kurt Schneider SESAM: Die konzeptionelle Basis 7

Teil 4 Jinhua Li SESAM als Simulator 21

Teil 5 Anke Drappa SESAM und die Realität 27

Teil 6 Marcus Deininger SESAM und die Lehre 35

Teil 7 Jürgen Schwille SESAM und vis-A-vis 49

Teil 8 Horst Lichter Software Engineering objektorientiert
— eine Herausforderung für die Praxis 55

Teil 9 Jochen Ludewig Software Engineering in der Universität 61

Teil 1

Die Abteilung Software Engineering
— ein privater Rückblick
Jochen Ludewig

1. Ab urbe condita

Die Abteilung Software Engineering entstand als eine
der letzten in der Stuttgarter Informatik, der Lehrstuhl
wurde Ende 1986 erstmalig ausgeschrieben. Der Na-
me der neuen Abteilung fand weniger Zustimmung
als ihr Arbeitsgebiet, und mit dem Senatsbeschluß zur
Ausschreibung war die Aufforderung an die Kom-
mission verbunden, einen anderen, besseren Namen
zu suchen. Tatsächlich blieb es beim Namen „Soft-
ware Engineering“. Wir haben uns daran gewöhnt,
und wenn mir auch eine deutsche Bezeichnung lieber
wäre, so ziehe ich diesen klaren Anglizismus doch
allen Mischwörtern wie „Software-Technologie“ oder
„Software-Technik“ vor.

Nachdem ich den Ruf nach Ende Juli 1988
angenommen hatte, gelang es in der kurzen Frist von
zwei Monaten, die Berufungsurkunde nicht nur
auszustellen, sondern auch vom Ministerpräsidenten
unterzeichnen zu lassen. Damit stand dem Dienst-
antritt am 1. Oktober 1988 nichts mehr im Wege.

Der Start fiel mit dem Ausscheiden Prof. Barths
zusammen. So wurden wir die Erben der Abt. Pro-
grammiersprachen, sowohl bei den Pflichten (Einfüh-
rungsvorlesung I und II) als auch bei den Privilegien
(Räume im Gebäude Azenbergstraße und vor allem
die Betreuung durch Frau Günthör).

Da Frau Günthörs Zuordnung am Anfang noch
nicht klar war, gab es zunächst nur einen Mitarbeiter,
Horst Lichter, der mutig (oder desperat) genug war,
um den Wechsel von Zürich nach Stuttgart mitzu-
machen.

Das erste Jahr war geprägt durch die Rekrutierung
weiterer Mitarbeiter und durch den Papierkrieg zum
Zwecke der Rechnerbeschaffung. 18 Monate nach
dem Start waren alle Stellen besetzt, die Gruppe hatte
fast die gleiche Zusammensetzung wie heute:

Ursula Günthör , die auch Mitglied der Abteilung
Programmiersrprachen ist, im Sekretariat.

Angela Georgescu und Max Schneider auf den
Programmiererstellen.

Horst Lichter , Marcus Deininger, Kurt Schnei-
der, Jürgen Schwille als wissenschaftliche Mitarbei-
ter; der dienstälteste hat inzwischen seine Stelle
geräumt und damit Platz gemacht für Anke Drappa .

Thomas Bassler war 16 Monate ab Herbst 1991
wissenschaftlicher Mitarbeiter der Abteilung. Heute

sind zwei Doktoranden als Stipendiaten bei uns,
Helga Hoff und Jinhua Li .

Die Rechnerauswahl war zugunsten von DEC-
Workstations entschieden worden; da wir unser Geld
nur zögerlich ausgaben, vermehrte sich sein Wert
wundersam, und wir haben schließlich eine leistungs-
fähige, zuverlässige und vermutlich noch für einige
Jahre brauchbare Rechnerkonfiguration bekommen.
Einzig die Software macht uns Sorgen, da wir mit
den MIPS-Prozessoren an einem Gleis sitzen, das von
DEC nicht mehr bedient wird.

In das erste Jahr fällt auch die Idee zum Projekt
SESAM; darauf werde ich im zweiten Teil dieses
Beitrags näher eingehen.

Die folgenden Jahre waren in keiner Weise spek-
takulär. Ämter wie das des Geschäftsführenden Insti-
tutsdirektors ließen sich nicht vermeiden, eher un-
dankbare Lehrveranstaltungen wie die Einführung in
die Informatik III auch nicht. Der IVS und die
verwaiste Abteilung Programmiersprachen erzeugten
auch eine gewisse Belastung, inzwischen sind zum
Glück beide unter kompetenter Führung (Proff. Claus
und Plödereder).

Die Mitarbeiter wurden kompetenter und selb-
ständiger, so daß es immer riskanter wurde, ihnen
leichtfertig zu widersprechen. Verschiedene Engage-
ments in der Industrie zur Schulung und zur Koope-
ration waren nicht nur eine willkommene Möglich-
keit, den Hypothekarzins-Drachen niederzukämpfen,
sondern hielten auch das Gefühl für das in der Praxis
Notwendige und Mögliche wach.

 Als im Wintersemester 92/93 Ämter und Lehr-
veranstaltungen die offene Flanke meiner organisa-
torischen Immunschwäche nutzten, um mich end-
gültig ins Chaos zu stürzen, konnte nur noch die vor-
übergehende Flucht helfen („Forschungssemester“).
Sie führte mich ins schöne Land Ontario, und sie
wäre ganz und gar erfolgreich gewesen, hätte ich
nicht meine temporäre e-mail-Adresse in Stuttgart
hinterlassen.

2. Hochschullehrer:
Ein Anlern-Beruf

Hochschullehrer und Politiker haben gemeinsam, daß
sie zunächst eine sehr strenge Auswahl überstehen
müssen, um ins Amt zu kommen. Anschließend ste-
hen sie in aller Regel vor Problemen, die mit den
Kriterien dieser Auswahl nur wenig zu tun haben.

Bei der Bewerbung um eine Hochschullehrerstelle
muß man unter Beweis stellen, daß man auch
schwierige wissenschaftliche Probleme lösen kann
und in der Lage ist, die Resultate vorzutragen und zu
publizieren. Neben der fachlichen Ausrichtung ent-
sprechend der Widmung ist dies das wesentliche
Kriterium.

Als Hochschullehrer steht man vor Aufgaben, die
eine Art wissenschaftlichen Herkules erfordern:
Natürlich soll man auch weiterhin und mit Erfolg
wissenschaftlich aktiv sein; daneben soll man einen
gelegentlich spröden, auch für den Dozenten nicht
immer begeisternden Stoff für Studenten aufbereiten,
die nicht stets und sämtlich auf das Wissen scharf
sind. Man soll Mitarbeiter auswählen und Doktoran-
den so führen, daß sie die entscheidende Hilfe er-
halten, um nach einigen Jahren den Sprung über die
Hürde zu schaffen.

Neben diesen im ganzen erfreulichen Aufgaben
gibt es andere, die jedenfalls nur selten erfreulich, oft
höchst unerfreulich sind. Als Mitglied des Instituts-
vorstands oder gar als Geschäftsführender Direktor
hat man in den Bereichen Personal und Haushalt
Aufgaben, die einfach nicht befriedigend zu lösen
sind. Personalprobleme entstehen unter den Rahmen-
bedingungen der Universität (Führungsdefizit, BAT
und Beamtenrecht) unausweichlich wie die Leber-
zirrhose des Wirts, und ihre Behandlung ist ebenso
erfolgreich. Die Unsicherheiten und Irrationalitäten
der öffentlichen Haushalte sind ein ständiger Quell
für Irritationen, vorsorgliche Diskussionen und An-
träge, Leerlauf eben.

Kann man für diese Schwierigkeiten irgend
jemanden verantwortlich machen? Zum Teil. Die
Ausstatung der Institute mit Geld ließe sich nach
meiner Meinung deutlich effizienter und rascher
organisieren, vor allem, indem man die Mittel den
Instituten zur freien Verfügung überträgt, ohne
Bindung an Titel und Haushaltsjahre. Schon die
Umstellung vom Kalenderjahr auf das Studienjahr
wäre eine Verbesserung. Im übrigen leiden wir unter
den impliziten politischen Vorgaben, die niemand
formulieren will, aber jeder in irgendeiner unbe-
stimmten Form im Kopf hat, schwankend je nach
politischer Strömung und Konjunktur. Was soll die
Universität denn leisten? Hochwertige Lehre oder
Drittmittelforschung? Buchstabengetreue Exekution
der Gesetze und Bestimmungen oder Nägel mit
Köpfen? Ausschluß oder Auszeichnung derer, die
Studentenausweis und festen Job haben? Arbeit zum

Wohle des Landes oder möglichst viele Publi-
kationen? Throughput oder Qualität? Ausbildung der
Massen oder Bildung einer Elite?

Das „oder“ ist hier, zugegeben, nicht wirklich
exklusiv, aber kaum ein Hochschullehrer ist nach
meiner Erfahrung und Beobachtung in der Lage, alle
Anforderungen zu erfüllen. Er muß also Prioritäten
setzen. Wenn wenigstens die Gemeinschaft der
Lehrenden einen — natürlich nicht punktförmigen —
Konsens erreichte, dann hätten sie doch eine Position,
von der aus man werten und urteilen könnte. Unter
den gegebenen Bedingungen geht jegliche Stellung-
nahme, z.B. zu einer Mittel- oder Stundenkürzung,
von Prämissen aus, über die nie Einigkeit bestanden
hat.

Meine Zeit in der Industrie und an der ETH Zürich
brachte einige interessante und bis heute nachwir-
kende Kurse mit, z.B. über Personalführung und über
Hochschuldidaktik. Jeder Student muß im Studium
bestimmte Nachweise erbringen, teilweise als Vorlei-
stung (Praktika, Latinum). Ich sehe noch immer nicht
ein, warum der Hochschullehrer nicht als Teil seiner
Bewerbung, notfalls nachträglich, Scheine über die
erfolgreiche Teilnahme an bestimmten Kursen vorle-
gen muß, z.B. über Didaktik oder über öffentliche
Haushalte.

Teil 2

SESAM: Grundidee und Überblick
Jochen Ludewig

1. Der Hintergrund

Als 1989 die Gruppe langsam auf ihre Sollgröße
wuchs, stellte sich die Frage, an welchem Thema sie
denn arbeiten sollte. Naheliegende, wenn auch kei-
neswegs ganz bewußte Randbedingungen waren:

• Das Thema soll praxisnah sein, also nicht von
einem unsinnig vereinfachten Bild der Praxis aus-
gehen, und Resultate liefern, die in der Praxis ein-
gesetzt werden können.

• Es soll die spezifische Stärke der Hochschule zur
Geltung bringen, nämlich die Freiheit von kurz-
fristigen Rentabilitätsüberlegungen und die Frei-
heit zur firmenübergreifenden Forschung.

• Es soll Raum für viele miteinander verbundene
Arbeiten bieten und in absehbarer Zeit nicht zu
erschöpfen sein.

• Es soll den Doktoranden eine auch im Hinblick
auf ihre spätere Arbeit nützliche Erfahrung ver-
schaffen.

• Und es soll allen Beteiligten Spaß machen.

So kam mir die Idee, den Prozeß der Software-
Entwicklung in einem Computer-Spiel zu simulieren.
„Auslöser“ war ein Zeitungsartikel über Ökolopoly
von F. Vester; viele Erinnerungen und Erfahrungen,
beginnend mit meiner Diplomarbeit (ein Simulations-
system, 1973), auch frühe Spiele auf der VAX
(„Dungeon“), bildeten den Hintergrund.

2. Die Zielsetzung

Was soll SESAM? Das Projekt („Software-Engin-
eering-Simulation durch animierte Modelle“) hat das
Ziel, ein Software-System zu schaffen, das auf einer
Workstation läuft und von einer Person, dem Spieler,
bedient wird. Der Spieler wird durch die Mitteilungen
des SESAM-Systems mit Informationen über ein
Software-Projekt versehen. Er kann den Verlauf
dieses Projekts in ähnlicher Weise beeinflussen wie
bei realen Projekten der Projektleiter und es dadurch
mehr oder minder gelingen oder scheitern lassen.

Bei der Ausbildung im Flugsimulator findet keine
reale Flugbewegung statt, nur die Daten einer simu-
lierten Bewegung werden erzeugt. Ebenso entsteht
beim Spiel mit SESAM keine Software, nur Daten
der Software, z.B. quantitative und qualitative Merk-
male ihrer Komponenten, werden aus dem Spiel-
verlauf berechnet.

SESAM kann aus verschiedenen Perspektiven
beschrieben und präsentiert werden:

A. Der Blickpunkt des Spielers ist klar und lädt zur
Identifikation ein („das möcht‘ ich auch spielen“).

B. Aus der Sicht des forschenden Ingenieurs stellt
SESAM, wenn es im Spiel ein plausibles Verhal-
ten zeigt, eine kompakte Codifizierung wichtiger
Gesetzmäßigkeiten im Software Engineering dar.

(A) SESAM als Spiel
Wenn uns ein solches System zur Verfügung steht,
dann können wir auch Dinge unterrichten, die in der
traditionellen Weise so gut wie gar nicht zu vermit-
teln sind. Denn die reale Welt der Software-Bearbei-
tung ist im Sinne der reinen Lehre überwiegend durch
„Schmutzeffekte“ geprägt. Alle möglichen persönli-
chen Beweggründe, überraschende Ereignisse und
zufällige, aber kaum zu ändernde Randbedingungen
prägen die Resultate oft stärker als rationale Ent-
scheidungen.

Solche Effekte können wir simulieren und damit
erfahrbar machen. SESAM ist also ohne Frage attrak-
tiv als Lehrmittel, und das nicht nur an der Hoch-
schule, sondern überall, wo Software entwickelt wird.

(B) SESAM als Modell
Über Software Engineering gibt es seit einigen Jahren
eine ganze Reihe teilweise dicker Bücher. Man sollte
also meinen, daß eine ganze Menge Wissen verfügbar
sein müßte. Das gilt aber nur mit erheblichen Ein-
schränkungen. Wir wissen heute vor allem, wie man
nicht vorgehen sollte, und wir können unsere Erfah-
rungen in Aussagen kleiden, die nach ihrer Präzision
eher der Medizin des 19. Jahrhunderts denn der
Physik des 20. ähneln.

In diesem Sinne ist SESAM das Modell, das die
„Bauernregeln“ des Software Engineerings präzisiert
und quantifiziert, so daß aus konkreten Daten erst-
mals konkrete Schlüsse gezogen werden können.
Hier liegt der wissenschaftliche Reiz und die akade-
mische Herausforderung des Projekts.

3. Der Stand mit SESAM-1

Darum haben wir uns bislang kaum mit Fragen
befaßt, die bei der Entwicklung eines Abenteuerspiels
auf dem Rechner scheinbar vorrangig sind, beispiels-
weise mit der möglichst luxuriösen Benutzerschnitt-
stelle. Die meiste Zeit ist damit vergangen, die

Smalltalk-80 V. 4.1

Ultrix auf DecStation

Simulationssystem

SESAM-Schema

SESAM-Regeln
Situationsmodell

Spielzustand

ST-80-Umgebung

Schema-Editor

Regel-Editor

Situationseditor

Spiel-Interface

Analyse-Interface

Spieler
(+ Lehrer)

Modell-Bauer

SESAM-
Entwickler

realisiert auf

greift zu auf

benutzt

Legende:

abstrakte Architektur des Systems zu schaffen. Damit
ist die Beziehung zwischen Modell und Simulator
gemeint.

Wir arbeiten an einem ausführbaren Modell, von
dem wir wissen, daß es alles andere als perfekt ist.
Wir brauchen darum einen Simulator, der durch das
Modell quasi parametrisiert wird. Nur so ist eine
schnelle Evolution der Modelle möglich. Aber das
Prinzip der Parametrisierung schränkt die Freiheit des
Modell-Schöpfers ein. Was nicht durch Parameter
gesetzt werden kann, das ist durch den Simulator
vorgegeben und nur mit sehr großem Aufwand änder-
bar. Das nach drei Prototypen jetzt fertiggestellte
System SESAM-1 ist nach unserer Einschätzung für
einige Jahre als Werkzeug tragfähig. Die Entwick-
lung der Modelle ist zurückgeblieben, denn bislang
hatten wir keine Möglichkeit, neue Modelle in kurzer
Zeit zu formalisieren und zu erproben.

Wir stehen also bei SESAM heute an einem
Meilenstein: Wir zeigen das Werkzeug und seine
Komponenten als wichtiges Halbfabrikat; in den
nächsten Monaten und Jahren werden wir vor allem
die Evolution des Modells forcieren.

4. Die Modellierung des
Unbekannten

Bei der Konzeption von SESAM standen wir immer
wieder vor einem Dilemma: Simulieren kann man
alles, was man gut verstanden hat. Der Prozeß der
Software-Entwicklung ist aber keineswegs gut
verstanden, und so ist er auch der Formalisierung,
damit der Simulation entzogen. Andererseits ist diese
Situation in der Wissenaschaft nicht ungewöhnlich:
Gerade durch eine – unzulängliche – Präzisierung des
Problems wird sichtbar, wie eine bessere aussehen
könnte.

Hier ist ein Zitat aufschlußreich: Hj. Siegenthaler,
Prof. für Wirtschaftsgeschichte am Sozioökonomi-
schen Seminar der Universität Zürich, schreibt in der
NZZ vom 16.10.1993 in einem Artikel zur Vergabe
des Nobelpreises für Wirtschaftswissenschaften

(„Neuer Blick in die Geschichte: Die innovativen
Ansätze Robert Fogels und Douglass C. Norths“):

Fogel quantifiziert systematisch alle Feststellun-
gen, die er zur Begründung seiner Vorstellungen
trifft. Er tut dies auch dort, wo die Datenlage seinen
Quantifizierungsversuchen nicht eben entgegen-
kommt. Dabei rückt er die Bedeutung statistischer
Verfahren aus dem Zwielicht zweifelhafter Wahr-
heitsansprüche sehr entschieden heraus: Quantifi-
zierung begründet keine Wahrheit, aber wer auf sie
verzichtet, schreckt davor zurück, sich einer immer-
hin kritisierbaren «Wahrheit» überhaupt zu stellen.

Dies ist auch unser Ansatz: Wir wissen sehr wenig
über die Zusammenhänge im Software Engineering.
Darum simulieren wir sie.

5. Überblick zu den Beiträgen

Aus der Sicht des Spielers ist SESAM einfach ein
großes, komplexes System. Aus der Sicht der Ent-
wickler zerfällt es in viele Komponenten, deren
Abgrenzung uns beträchtliche Mühe gemacht hat und
die wir heute als ein wesentliches Resultat unserer
Arbeit betrachten.

Die folgende schematische Darstellung zeigt die
Gliederung und die Themen der Beiträge.

Kurt Schneider befaßt sich mit der Gliederung
selbst, dann vor allem mit dem Zusammenspiel von
Schema, Regeln und Situationsmodell.

Jinhua Li geht auf die Realisierung des Simula-
tionssystems ein.

Anke Drappa diskutiert die verschiedenen Mög-
lichkeiten, Informationen für den Modellbauer zu
beschaffen, also die Quellen für ein Modell.

Marcus Deininger betrachtet SESAM aus der
Sicht des Lehrers, also den Einsatz von SESAM.

Jürgen Schwille präsentiert einen wichtigen Im-
plementierungsaspekt, den generischen Editor vis-A-
vis, der den drei Editoren für den Modell-Bauer
zugrundeliegt.

Teil 3

SESAM – die konzeptionelle Basis
Kurt Schneider

Zusammenfassung

In diesem Beitrag werden die grundlegenden
Konzepte von SESAM vorgestellt. Zunächst gehe ich
noch einmal kurz auf die Idee von SESAM ein und
grenze sie von Prozeßmodellierung ab: In SESAM
wird deskriptiv (beschreibend) modelliert, nicht
normativ (vorschreibend).

Im zweiten Kapitel werden grundsätzliche
Entscheidungen über SESAM vorgetragen. Thesen-
artig wird jeweils eine Eigenschaft von SESAM in
den Raum gestellt. Anschließend wird sie diskutiert,
die Konzepte, die diese Eigenschaft hervorbringen,
werden genannt.

Eine zentrale Rolle in SESAM nimmt die
Modellbildung ein. Für SESAM wurde eine neuer
Modellierungsansatz entwickelt, der hier als "Effekt-
orientierte Modellierung" bezeichnet wird. Die
Grundzüge dieses Ansatzes werden im dritten Kapitel
erörtert.

Das vierte Kapitel geht kurz auf die Architektur
des SESAM-Programmsystems ein. Es zeigt sich, daß
diese Architektur den konzeptionellen Aufbau von
SESAM-Modellen widerspiegelt. Zum Abschluß ge-
be ich einen kurzen Überblick über den gegen-
wärtigen Entwicklungsstand von SESAM.

Dieser Beitrag liefert einerseits die konzeptionelle
Grundlage, auf der die folgenden Aufsätze basieren.
Andererseits gibt der Beitrag einen groben Überblick
über die Themen, die in den anderen Beiträgen im
einzelnen behandelt werden.

1. Die Idee:
Deskriptive Modelle

In SESAM werden Software-Projekte simuliert. Dazu
müssen sie modelliert werden – und zwar so, wie sie
sind: deskriptiv.

Auch in anderer Bedeutung wird mitunter von
„Modellierung“ oder „Simulation“ von Software-
Prozessen gesprochen. Zunächst sollen zwei grund-
sätzliche Feststellungen getroffen werden, die die
Position von SESAM charakterisieren: SESAM leitet
niemanden an, und SESAM ist kein Programm-
generator.

1.1 SESAM versus Prozeßmodellierung:
Abbild oder Vorbild?

Mit SESAM sollen Software-Projekte modelliert
werden. Die Projekte werden so modelliert, wie sie
sind – nicht wie sie sein sollten . Ludewig (1989) hat
zwischen Modellen mit Abbildcharakter und solchen
mit Vorbildcharakter unterschieden. SESAM-Model-
le sind Abbilder realer Projekte. Alle Fehlent-
wicklungen, überraschenden Störungen und mensch-
lichen Insuffizienzen werden nach Möglichkeit mo-
delliert. So kann ein angehender Projektleiter bzw.
Spieler an den simulierten Projekten realistische Er-
fahrungen sammeln.

Es gibt seit einigen Jahren eine Bewegung im
Software Engineering, die als Prozeßmodellierung
(process modeling) bezeichnet wird; Curtis et al.
(1992) geben einen guten Überblick über dieses
Gebiet. In der Prozeßmodellierung werden die Ab-
läufe in Software-Projekten ebenfalls modelliert –
aber die Modelle haben Vorbildcharakter. Ein-
schlägige Systeme wie MARVEL (Kaiser et al.,
1993) oder Merlin (Peuschel/Schäfer, 1992)
unterstützen die Ausführung von Prozeßmodellen.
Wird ein Prozeßmodell ausgeführt, so läuft im Prin-
zip ein Programm ab: das Modell. Nur werden nicht
alle Teile des Programms vom Computer ausgeführt.
An vielen Stellen werden menschliche Bearbeiter
„wie Unterprogramme aufgerufen“ und zu einer
Leistung veranlaßt. Dann müssen sie z.B. zu einer
Systemspezifikation einen Modulentwurf erstellen.
Sind sie damit fertig, melden sie es dem System.
Entsprechend der im Modell festgelegten Abhängig-
keiten wird dann der Modulentwurf an einen anderen
Bearbeiter zur Kontrolle oder zur Implementierung
weitergereicht. In Prozeßmodellen ist also festgelegt,
welche Aktivitäten-Reihenfolge einzuhalten und wel-
che Bedingungen zu beachten sind. Animierte Pro-
zeßmodelle leiten ein Software-Projekt an, indem sie
die Tätigkeiten der Entwickler koordinieren. Die
Modelle werden zu diesem Zweck interpretiert. Ist
der Prozeß ungünstig modelliert, leitet er die Ent-
wickler schlecht an. Mit der Prozeßmodellierung will
man Software-Projektleiter entlasten, indem man ihn-
en die Koordination aus der Hand nimmt.

SESAM ist in diesem Sinn kein Ansatz zur
Prozeßmodellierung: Projektleiter lernen an SESAM,
Projekte besser zu leiten, Fehlentwicklungen schnel-
ler zu erkennen; aber sie bleiben Projektleiter, mit
allen ihren Aufgaben. SESAM wird einem
Projektleiter als "Abenteuerspiel" präsentiert, in dem

Modellabbildung

irrelevante Attribute

irrelevante
Attribute

relevante Originalattribute relevante Modellattribute

Original
Modell

Abb. 1: Bei der Modellabbildung können irrelevante Attribute weggelassen werden

er sich bewähren muß. Aufgrund des komplizierten,
quantitativen Modells vereint SESAM Elemente von
Planspielen und Adventure Games, was in Schneider
(1993a) ausgeführt wird. SESAM-Modelle sind Ab-
bilder, Prozeßmodelle sind Vorbilder.

1.2 Reale und simulierte Projekte

In SESAM werden Software-Projekte simuliert. Dazu
werden Dokumente, Code und beteiligte Personen
modelliert. Das Modell einer Person ist – grob
gesprochen – ein Smalltalk-80 - Objekt mit einigen
Variablen wie Name, Monatsgehalt, analytische und
synthetische Fähigkeiten. Natürlich erfaßt dieses
Modell nur sehr wenige Facetten einer Person, es ver-
einfacht und abstrahiert stark. Nur diejenigen
Merkmale sind im Modell berücksichtigt, die für
Software-Projekte am wichtigsten sind. Die meisten
Eigenschaften realer Personen tauchen im Modell
überhaupt nicht auf, sie werden weggelassen.

Ebenso wie Modelle von Personen natürlich keine
wirklichen Personen sind, sind auch Modelle von
Dokumenten keine Dokumente, und Modelle von
Programmcode sind kein Programmcode. Das Modell
besteht nur aus Vertretern für Personen, Dokumenten
und Code. Jeder dieser Vertreter hat einige Attribute,
die ihn charakterisieren.

Stachowiak (1972) hat die Modellabbildung wie
in Abb. 1 dargestellt: Von einem realen Projekt wer-
den nur wenige Eigenschaften für relevant erachtet,
die meisten sind irrelevant und werden einfach weg-
gelassen. Die relevanten werden ins Modell abge-
bildet – und nicht einfach übernommen . Aus den
komplizierten Fähigkeiten einer Person wird das
Attribut "analytische Fähigkeiten" mit dem Wert 1,1
kondensiert. Das soll bedeuten: Die Person ist um
10% begabter als der Durchschnitt. Der Inhalt von
Dokumenten wird ebenfalls abgebildet: Auf eine

Menge von Software-Quanten. Jeder Software-Quant
hat eine individuelle, aber anonyme Identität. Er steht
für irgendeine Anforderung des Kunden. Die
Information, um welche Anforderung es sich dabei
handelt, ist durch die Modellabbildung verloren
gegangen: Für den Projektleiter ist in erster Linie
wichtig, wie viele Anforderungen ein Kunde hat –
nicht, wie diese lauten. Jeder Software-Quant macht
gleich viel Aufwand. Marcus Deininger geht auf die
Idee der Software-Quanten ein.

Modellierte Dokumente haben also keinen für
reale Menschen lesbaren Inhalt. Das gilt auch für
Modell-Code; er ist weder lesbar noch ablauffähig:
schließlich handelt es sich eben nicht um Code,
sondern um ein Modell von Code. SESAM ist kein
Programmgenerator. Alle relevanten Projektbestand-
teile werden bei der Modellbildung auf einfache
Objekte mit einigen wenigen Instanzvariablen-Wer-
ten abgebildet.

2. Grundkonzepte

SESAM zeichnet sich durch eine Reihe charak-
terisitischer Eigenschaften aus. Diese werden zu
Beginn der folgenden Unterabschnitte thesenartig an-
gegeben und dann erläutert. Schließlich wird zu jeder
Eigenschaft angegeben, durch welche Konzepte sie in
SESAM erreicht wird.

2.1 Der Zweck von SESAM-Modellen

SESAM ist ein Lehrspiel für Projektleiter; es
ist aber auch ein Forschungswerkzeug für
Software Engineering.

Die Vision eines computergestützten Adventure-
Games für Software-Projektleiter hört sich zunächst
ganz einfach an. Aber was sind die relevanten
Aspekte eines Software-Projekts? Welche können
weggelassen werden? Offensichtlich muß man zuerst
klären, was man mit SESAM-Modellen genau er-
reichen will. Dann kann man entscheiden, welche As-
pekte für diesen Zweck relevant sind.

Konzepte
• Wir wollen mit SESAM Abhängigkeiten, Beob-

achtungen und dynamische Effekte sammeln, die
den Erfolg von Software-Projekten wesentlich be-
einflussen.

• Sie werden in einer eigenen Notation einheitlich
dargestellt und in einem Modell integriert.

• Das Modell ist anschaulich für Menschen und zu-
gleich animierbar für den Computer.

• Das Modell kann als Adventure Game präsentiert
werden.

• Durch Experimente mit dem Modell sollen Pro-
jektleiter lernen, reale Projekte besser zu führen
(Abb. 2, kleine Schleife). Wir wollen dabei ler-
nen, wovon die Entwicklung von Software-Pro-
jekten wirklich abhängt (Abb. 2, große Schleife).

Modell Spiel Kritik

am Spiel

am Modell

Abb. 2: Lernen durch Kritik

2.2 Lernziele

Spieler sollen mit SESAM bestimmte Dinge
lernen können. Darauf müssen die Modelle
zugeschnitten sein.

An einem simulierten Projekt kann man nicht alles
erfahren und lernen, was man in realen Projekte er-
fahren könnte. Schließlich sind viele Eigenschaften
als irrelevant weggelassen worden. Man muß sich
klar machen, welche Einsichten und Erfahrungen am
Modell möglich sein sollen. Die dazu nötigen As-
pekte darf man dann nicht weglassen: Sie sind rele-
vant.

Lernziele von SESAM

Spieler sollen durch den Umgang mit SESAM einige
Einsichten vermittelt bekommen:

• In Software-Projekten gibt es viele, komplizierte
Zusammenhänge, die man auf den ersten Blick
nicht erkennen kann. Projektdauer, -preis und
Produktqualität hängen beispielsweie untereinan-

der und vom Betriebsklima ab. Das Betriebsklima
hängt wiederum vom Zeitdruck ab. Wenn der
Projektleiter eine Anordnung trifft, erreicht er
damit nicht nur die gewünschte Änderung: Viele
Seiten- und Folgeeffekte können ausgelöst
werden und die angestrebte Verbesserung sogar
wieder zunichte machen.

• Software ist immateriell. Es ist für den Projekt-
leiter schwierig einzuschätzen, wie weit das Pro-
jekt schon gediehen ist; auch das Betriebsklima
kann er nicht messen, sondern nur vage einschät-
zen. Nur wenn er ausdrücklich Maßnahmen zur
Fortschrittskontrolle (wie Software-Metriken) ein-
setzt, erhält er etwas mehr Informationen. Das
kostet aber Zeit und Geld.

• Die meisten Entscheidungen in Software-Projek-
ten muß der Projektleiter fällen, obwohl ihm viele
Planungsgrundlagen fehlen: Er weiß nicht, wann
seine Mitarbeiter krank werden; er weiß nicht,
wie weit sie bereits gekommen sind und wie gut
die Qualität des entstandenen Software-Produkts
ist. Er muß unter Unsicherheit entscheiden.

• Wenn ein Projektleiter nicht plant, weiß er auch
über die angestrebte Entwicklung seines Projekts
nicht Bescheid. Um das zu verhindern, muß er
planen; und zwar mit Puffern, um den zahlreichen
Unsicherheiten Rechnung zu tragen. Tut er es
nicht, gerät seine Projektleitung immer mehr zu
reaktivem Krisenmanagement.

• Es kommt in Software-Projekten darauf an, das
Richtige zu tun. Es kommt aber auch darauf an,
das Richtige angemessen zu dosieren: So reicht es
nicht aus, Anforderungsanalyse überhaupt durch-
zuführen. Ihr muß statt dessen angemesse Zeit
und genügend Aufwand gewidmet werden.

Konzepte

SESAM-Spieler sollen diese Erkenntnisse sammeln
können. Die Modelle weisen die entsprechenden
Eigenschaften auf:

• Sie sind quantitativ.

• Sie sind dynamisch, lassen also die Auswirkungen
versteckter Zusammenhänge teilweise erst im
Laufe der Zeit sichtbar werden.

• Sie sind interaktiv und bieten dem Spieler immer
wieder Eingriffsmöglichkeiten, mit denen er den
Fortgang des simulierten Projekts beeinflussen
kann.

• Der Spieler kann das simulierte Projekt aktiv lei-
ten, er kann es aber auch vernachlässigen. Dann
gerät es mehr und mehr außer Kontrolle.

• Mögliche Projektleiteraktionen und Modelle sind
feingranular und konkret; der Spieler kann mit
ähnlichen Aktionen ins simulierte Projekt ein-
greifen, wie ein realer Projektleiter in sein Pro-
jekt. Insbesondere muß er mit einzelnen, indivi-

Abb. 3: Analyse eines Simulationslaufs durch Studium der Attributwertverläufe

duellen (simulierten) Mitarbeitern umgehen, über
ihre Aktivitäten nachdenken und den Überblick
über die entstehenden (simulierten) Dokumente
behalten.

2.3 Einbettung von SESAM in die
Projektmitarbeiter-Ausbildung

Spielen am Modell allein genügt nicht. Es
ist nur komplementär zu praktischer
Erfahrung und theoretischem Unterricht
einzusetzen und muß in ein Ausbildungs-
Gesamtkonzept integriert werden.

Die genannten Lernziele decken nicht alle Fertig-
keiten ab, die ein Projektleiter haben muß. Mitarbei-
terführung wird nur in sehr groben Zügen abgedeckt,
Gesprächsführung kann man z.B. nicht im Spiel
lernen. Auch reicht es nicht aus, ein oder zwei Mal zu
spielen, um die oben genannten Lernziele zu errei-
chen. Dazu müssen die Spieler vielmehr zusammen
mit einem Betreuer die simulierten Projekte nachvoll-
ziehen und besprechen. Man braucht also ein didak-
tisches Konzept für SESAM. SESAM muß seinen
Teil dazutun, indem es die technischen Voraus-
setzungen bietet, um Spiele wiederholen und kritisch
diskutieren zu können.

Konzepte
• In SESAM werden alle Simulationsläufe bzw.

Spiele aufgezeichnet und können beliebig oft
wiederholt werden. Dabei treten auch "über-
raschende" Ereignisse immer wieder zur selben
Modellzeit ein.

• Es gibt verschiedene Simulationsmodi: Im Spiel-
modus hat der Spieler nur sehr wenige Informa-
tionen (vgl. die Lernziele). Im Analyse-Modus
bekommt er zusätzliche Informationen, einige
versteckte Zusammenhänge werden aufgedeckt.
Im Betreuer-Modus kann man alle im Modell
vorhandenen Größen beobachten und sieht genau,
was sich im Modell tut.

• In der Ausbildung sollten sich SESAM-Spiel-
phasen mit Lehreinheiten abwechseln. Erst durch
Rückmeldungen und Kritik können viele Spieler
ihre eigenen Fehler erkennen. Dazu kann man im
Analyse- und schließlich im Betreuermodus
immer mehr Informationen zeigen, damit schritt-
weise die Dynamik des simulierten Projekts er-
schließen.

Entity-Relationship-Schema

Situationsmodell

Effektmodelle

prägt sich aus in

wird dynamisiert durch

verändern während der Animation

Abb. 4: Schema, Situationsmodell und Regeln

2.4 Modellierungsansatz statt festem
Modell

Es gibt in SESAM nicht "das Modell" von
Software-Entwicklung schlechthin, sondern
viele konkurrierende und einander ergän-
zende Modelle.

So wie es nicht nur eine Art von Software-Projekten
gibt, kann es nicht ein einziges, immer gleiches
Modell aller dieser Projekte geben. Auftragsprojekte
laufen anders ab als in-house-Projekte;
Verwaltungssoftware wird anders erstellt, getestet
und gewartet als Echtzeitsoftware. Jede Firma hat
ihre eignen Randbedingungen, Standards und Vor-
gehensmodelle. Die individuellen Mitarbeiter ent-
scheiden über Erfolg oder Mißerfolg gerade kleiner
Projekte.

Es gibt verblüffenderweise trotzdem Ansätze, um
mit einem Abbild-Modell Aussagen zu gewinnen, die
auf alle (oder zumindest sehr viele) Software-Pro-
jekte anwendbar sein wollen (Abdel-Hamid, 1991).
Das dort verwendete Modell wurde mit einem
NASA-Projekt abgeglichen.

In SESAM gehen wir einen anderen Weg. Denn
selbst, wenn man ein einziges , konkretes Projekt
modelliert, werden verschiedene Modellierer zu ganz
verschiedenen Ergebnissen kommen. Darin drückt
sich der Mangel an allgemein anerkannten Erkennt-
nissen über Zusammenhänge und dynamische Effekte
in Software-Projekten aus. Jeder Modellierer ist
weitgehend auf eigene Intuition und Erfahrung ange-
wiesen; er muß viele Hypothesen in sein Modell
einbauen. Dabei wird er Fehler machen, Hypothesen
werden sich als inkonsistent oder schlicht falsch
herausstellen. Man muß mit ständigen Modellver-
änderungen rechnen.

Konzepte
• In SESAM ist nicht ein Modell fest implemen-

tiert, sondern es steht ein ganzer Modellierungs-

ansatz zur Verfügung: ein Modell-Baukasten, mit
dem man schnell und einfach Modelle erstellen,
verändern und anpassen kann.

• Daher sollte man unterscheiden zwischen dem
modellunabhängigen SESAM-Programmsystem
und den SESAM-Modellen, die damit erstellt,
verwaltet und animiert werden.

Im folgenden Abschnitt werden Konsequenzen
aus dieser Entscheidung für einen Modell-Baukasten
gezogen: Wenn Modelle ständig geändert werden
sollen, muß das leicht und einfach gehen.

2.5 Flexible Modelle

SESAM-Modelle laden zu Diskussion und
Modell-Änderungen geradezu ein.

Der Modell-Baukasten gibt die Bausteine vor, aus
denen Modelle bestehen. Sie sind so gestaltet, daß sie
einfach auszuwechseln und zu verändern sind. Dazu
werden die Modelle aus Teilen aufgebaut, die jeweils
weitgehend unabhängig voneinander bearbeitet wer-
den können. Nicht einmal das Repertoire der im
Modell vorkommenden Objekte ist durch den Model-
lierungsansatz vorgegeben: Der Modellierer soll
selbst entscheiden, welche Komponenten in seinen
Modellen vorkommen, welche charakteristischen
Eigenschaften sie haben und wie sie sich dynamisch
verhalten. Besonders zur Darstellung der Dynamik
muß man sich etwas einfallen lassen: Modelle
bestehen nicht einfach aus Programmstücken; damit
könnte man zwar bequem dynamische Ver-
änderungen darstellen. Sie wären aber nur sehr
schwer zu verstehen und zu warten. Modellierer sol-
len nicht Programmierer sein. Die Struktur der
Modelle wird daher graphisch notiert, nur Details als
Text angegeben.

Konzepte
• In einem Entity-Relationship-Schema wird fest-

gelegt, welche Objekte und Beziehungen als rele-

Abb. 5: Ein Schema im Schema-Editor

vant erachtet werden. Der Modellierer braucht nur
das Schema zu ändern, um das Repertoire an
verfügbaren Komponenten zu verändern.

• Die Ausgangssituation eines Projekts wird model-
liert, indem eine Ausprägung des Schemas erstellt
wird. Darin sind als Objekte z.B. einzelne Mit-
arbeiter, Dokumente und Computer enthalten. Da-
zu kommen vielerlei Beziehungen, in denen diese
Objekte zu Beginn des Projekts stehen.

• Die Dynamik – als besonders komplizierter
Modellteil – wird in Effekte zerlegt, die mit einer
besonderen Art von Regeln (SESAM-Regeln)
dargestellt werden (siehe unten).

Abb. 4 zeigt die Teile eines dynamischen Modells im
Überblick: Zuerst wird in einem Schema festgelegt,
welche Komponentenarten es gibt. Dann wird eine
Ausgangssituation als Ausprägung des Schemas
aufgebaut. Die Dynamik wird durch eine Menge von
Regeln beschrieben.

Will man einen Aspekt der Dynamik ändern, kann
man einzelne Regeln austauschen oder verändern.
Die Interpretation und Kombination aller Regeln
übernimmt das SESAM-Programmsystem. Dadurch
kann sich der Modellierer ganz auf inhaltliche Fragen
seines Modells konzentrieren. Er braucht überhaupt

nicht zu programmieren. Damit sind die Voraus-
setzungen für eine schnelle Überarbeitung von
Modellen geschaffen.

2.6 SESAM in anderen Einsatzbereichen

SESAM ist durch seine Flexibilität ein
universell einsetzbarer Modellierungs-
ansatz. Es ist nicht auf Software-Projekt -
Simulation beschränkt.

Wenn im folgenden Ausschnitte aus einem SESAM-
Modell gezeigt werden, so haben sie
Beispielcharakter: Man kann mit SESAM auch ganz
andere Projekte, und sogar ganz andere Themen-
gebiete modellieren als Software-Projekte: Man
zeichnet ein Schema dieses anderen Wirklich-
keitsausschnitts, bildet eine Anfangssituation und legt
in Regeln die Dynamik fest. Das funktioniert in
vielen Bereichen z.B. der Biologie, der Soziologie –
überall dort, wo Effekte als Träger der Dynamik
identifiziert werden können und eine sinnvolle
Granularität bilden (siehe Kapitel 3).

Bei der Entwicklung von SESAM als Projekt-

Abb. 6: Ein Situationsmodell im graphischen Editor

Simulator war diese allgemeine Einsetzbarkeit nicht
unbedingt angestrebt worden. Die letztlich
eingesetzten Konzepte sind aber keineswegs auf
dieses eine Anwendungsgebiet eingeschränkt.

2.7 Verständliche Notation und
Werkzeuge für Modellbildung

Modelle werden so notiert, daß sie sowohl
für menschliche Betrachter als auch für das
Simulationswerkzeug verständlich sind.

Derzeit gibt es kaum allgemein anerkannte, quan-
titative Beobachtungen über Software-Projekte. In
jedem quantitativen Modell stecken daher zahlreiche
Hypothesen. Es ist in diesem Stadium der Forschung
unverzichtbar, die Hypothesen explizit nennen zu
können. Modelle können nur verbessert werden,
wenn ganz klar ist, welche Annahmen darin stecken.
Deshalb ist die Darstellung der Modelle so wichtig.

Es ist nicht akzeptabel, ein Modell zwar graphisch
zu zeichnen, es dann aber noch einmal manuell in
eine lineare Notation transformieren zu müssen. Die-
ser Vorgang wäre nicht nur zu aufwendig, er würde

beinahe sicher auch zu Fehlern und Inkonsistenzen
führen. Dadurch würde die Validierung zusätzlich
erheblich erschwert.

Konzepte
• Modelle sind modularisiert: Ein dynamisches

Modell besteht aus einem Schema, einem
Situationsmodell und einer Menge von Regeln.
Jeder dieser Teile ist für sich genommen über-
schaubar. Ferner existieren einfache Prinzipien,
wie die Teile zusammenwirken.

• Jede Regel steht für einen Effekt oder einen Zu-
sammenhang im Projekt. Ein dynamischer Effekt
ist eine logisch zusammengehörige Menge von
Abhängigkeiten, Einflüssen und Veränderungen
an den Attributen mehrerer beteiligter Kompo-
nenten (siehe Kapitel 4).

• Es gibt eine halb-graphische Notation für alle
Teile von dynamischen Modellen. Strukturen
werden graphisch notiert, Details durch Formeln
oder textuelle Annotationen.

• Es gibt halb-graphische Editoren für Schema,
Situationsmodell und Regeln. Durch Veränderung
von Diagrammen werden intern computer-
interpretierbare Modelle verändert. Die Dia-
gramme sind für Menschen verständlich; die in-

Abb. 7: Menüauswahl und Simulationssteuerfenster

terne Darstellung ist unmittelbar animierbar.

• Effekte sind eine Gliederungseinheit, die den
Blick von Modellierern und Projektleitern auf das
für sie Wesentliche lenken: wiedererkennbare, lo-
gisch zusammengehörige Komplexe von Ver-
änderungen.

• Die graphisch repräsentierte Struktur ist leicht
verständlich. Damit sind die Grundideen eines
Modells mit wenig Aufwand vermittelbar. Für
quantitative Details muß man sich dann näher mit
den Modellen beschäftigen.

2.7 Die Spieloberfläche: Einfach und klar

Während der Modellaufbau graphisch un-
terstützt wird, ist die Spieloberfläche be-
wußt einfach gehalten: Eine reine Text-
schnittstelle.

Die meisten der bisherigen Konzepte bezogen sich
auf den Aspekt des Modellaufbaus. Im Spiel werden
Modelle eingesetzt. Während der Modellaufbau
durch eine Familie graphischer Editoren unterstützt
wird, wirkt die Spieloberfläche eher spartanisch: Der
Projektleiter sucht seine Aktionen aus einem sehr
vollen, überladenen Menü aus, gibt Parameter an und
erhält Rückmeldungen in einem Textfenster. Von
den Modellen ist im Spiel nicht viel zu sehen. Sie
laufen völlig im Verborgenen ab.

Die Menüauswahl des Projektleiters geht als
Ereignis ins Modell ein, das die Modellentwicklung
beeinflussen kann. Über die Entwicklung wird der
Projektleiter nur durch kurze Texte unterrichtet, die
von den Regeln ins Textfenster geschrieben werden.

Abb. 8 zeigt einen Ausschnitt daraus.

Die Interaktion ist absichtlich so einfach aus-
gefallen. Als Eingabe für Projektleiteraktionen wäre
eigentlich Freitext am besten geeignet: Der Pro-
jektleiter/Spieler müßte selbst und völlig ohne An-
leitung oder Hilfe seine Anordnungen formulieren.
Nichts würde ihm einen Hinweis geben, was er je-
weils tun sollte – oder auch nur, was er überhaupt tun
kann. Allerdings ist Freitext außerordentlich schwer
zu interpretieren. Das überladene, absichtlich unüber-
sichtliche Menü stellt einen Kompromiß dar: Es leitet
nur wenig an, erleichtert aber die Interpretation von
Aktionen ungemein.

Eine graphische Spieloberfläche, wie man sie von
Adventure Games wie „Larry Leasure in the Land of
Lounge Lizzards“ her kennt, habe ich ausprobiert.
Inzwischen bin ich aber der Überzeugung, daß die
Graphik SESAM eher schadet als nützt: Die Spieler
glauben, mit einem Blick erfassen zu können, wo-
durch eine Situation gekennzeichnet ist. Wenn sie die
Situation nicht sehen, ist diese Gefahr kleiner, es
bleibt die nagende Ungewißheit, ob man nicht noch
etwas vergessen hat. So soll es sein.

3. Effekt-orientierte
Modellierung

Ein eigenes Kapitel ist dem zentralen Model-
lierungskonzept in SESAM gewidmet: Der Zer-
gliederung eines dynamischen Modells in sogenannte
Effekte und Abhängigkeiten.

3.1 Was ist ein Effekt?

Die Dynamik eines SESAM-Modells wird dargestellt

Abb. 8: Das Rückmeldungsfenster

als ein System von Abhängigkeiten und Effekten.
Eine der schwierigsten Fragen in SESAM war die
Modellierung der Dynamik. In SESAM wird die
Dynamik als System sich überlagernder und gegen-
seitig auslösender Effekte und Abhängigkeiten
aufgefaßt. Das Konzept der Effektmodelle ist eine
Verallgemeinerung sowohl der objekt-orientierten
Modellierung, als auch der aktivitätsorientierten
Simulation.

Objekt-orientierte Modellierung

In einem streng objekt-orientieren Modell würde man
für alle beteiligten Klassen aus dem Schema
festlegen, welches Verhalten ihre Ausprägungen
zeigen. Die Dynamik des Gesamtmodells ergibt sich
durch das Zusammenwirken der dynamischen
Objekte; sie schicken sich gegenseitig Nachrichten zu
und fordern sich damit zu Aktivitäten (Verhalten)
auf. In diesem Paradigma ist die Dynamik auf alle
Objekte und innerhalb der Objekte auf die
„Methoden“ verteilt. Innerhalb einer Methode
(Verhaltenseinheit) legt man genau fest, was mit dem
betreffenden Objekt geschieht. Veränderungen an
anderen Objekten sieht man dagegen nicht: Ihnen
werden Nachrichten geschickt, jedes Objekt kapselt
aber alle Änderungen an seinem Zustand und verbirgt
sie nach außen. In Schneider (1993) wird SESAM
von rein objekt-orientierter Modellierung abgegrenzt.

Aktivitäts-orientierte Simulation

Die aktivitätsorientierte Simulation ist eine Form
ereignisorientierter bzw. diskreter Simulation (Page,
1991). In der aktivitätsorientierten Simulation ist die
Dynamik eines Systems auf eine Menge von
Aktivitäten verteilt. Zu jeder Aktivität gehört eine

Ausführungsbedingung. Die Aktivität ist selbst dafür
„verantwortlich“, ständig zu prüfen, ob diese
Bedingung erfüllt ist. Dann wird die Aktivität
ausgeführt. Dies resultiert in einer diskreten Zu-
standsänderung an beliebigen Modellkomponenten.
Die Wirkung der Aktivität wird also nicht über
„Objekte“ verstreut, sondern ist an einer Stelle für
alle Objekte gemeinsam festgelegt., die von einer Ak-
tivität betroffen sind: in der Aktivitätsbeschreibung.

Effekt-orientierte Modellierung und Simulation in
SESAM

Die Gliederungseinheit der Dynamik in SESAM ist
der Effekt. Ein Effekt ist eine Klasse von Begeben-
heiten, die unter typischen Bedingungen auftreten.
Ergibt sich in einem Software-Projekt eine
Konstellation, die den Effekt auslöst, so findet eine
solche Begebenheit statt. Die Begebenheit verändert
den Zustand der am Effekt beteiligten Objekte – der
Objekte, die in der Konstellation vorkommen. Die
Konstellation kann ein beliebiges Situationsmuster
aus dem Schema sein. In einem Effektmodell sind
alle Zustandsänderungen an allen Objekten zusam-
mengefaßt, die unter den Effekt fallen. Nicht das
Objekt, nicht unbedingt eine bewußte Aktivität,
sondern Effekte sind Träger von Dynamik. Anders
als in der aktivitätsorientierten Simulation kann die
Zustandsänderung auch kontinuierlicher Natur sein:
Durch Differenzengleichungen werden allmähliche
Attributwertänderungen beschrieben. Sie wirken sich
erst aus, wenn Modellzeit verstreicht.

Effekte können sich gegenseitig auslösen. Ein
Effekt soll eine wiedererkennbare Einheit sein, die
ein Projektleiter auch in realen Projekten bemerken
kann. Seine Aufgaben ist es, die jeweils wirksamen

formName

Kn
Rn

formName

ro1

ro2ro3
Situationsmuster
aus formalen
Entitäten und Verbindungen

formName

Kn

-
-

-

-

-

-
-

-

-

-
Rn

formName

ro1

ro2ro3
-

- --
-

-
Bestehende Komponenten
entfernen

formName

Kn

+ +
+

+

+

+
+

+

+

+

Rn

formName

ro1

ro3 ro2
+

+ +++
+Neue Komponenten

einfügen

Abb. 9: Prinzip der Notation für Strukturänderungen

Effekt zu erkennen und ihre überlagerte Wirkung
abzuschätzen. Das kann er in SESAM lernen. Er muß
es meiner Überzeugung nach auch in realen Projekten
ständig tun.

Effekt-orientierte Modellierung prägt der
Wirklichkeit eine typische Struktur auf; überall sieht
man Effekte, komplementiert von Abhängigkeiten.
Projektleiter müssen lernen, durch ihre Aktionen in-
direkt mit Effekten zu jonglieren: wünschenswerte
hervorzurufen, schädliche zu erkennen und zu unter-
binden. Ungeübte Projektleiter können zunächst nur
auf wenige grundlegende Effekte achten. Mit mehr
Übung wächst das Repertoire, man hat das Projekt
immer besser im Griff. Die effekt-orientierte Sicht
der Welt ist der Projektleitertätigkeit angemessen.

3.2 Prinzip: Graphmanipulationsregeln
als Effektmodelle

Den Kern eines dynamischen Modells bilden die
Regeln, mit denen die Dynamik modelliert wird. Jede
Regel stellt einen Effekt oder eine Abhängigkeit dar.
Hier kann nur das Prinzip der Regeln vorgestellt wer-
den.

Eine Regel besteht üblicherweise aus einem
Bedingungs- und einem Aktionsteil. Im Bedingungs-
teil ist festgelegt, unter welchen Umständen die Regel
anwendbar ist. Im Aktionsteil wird beschrieben, was
dann geschieht.

Der Zustand eines SESAM-Modells wird als
Graph interpretiert, bestehend aus Projektbeteiligten
Objekten (Knoten) und Beziehungen dazwischen
(Kanten). Ein Situationsmodell beschreibt einen Zu-
stand. Auf dem Diagramm ist daher ein Graph zu
sehen (vgl. Abb. 6).

SESAM-Regeln sind eine spezielle Variante von
Graphmanipulationsregeln: Bedingungs- und Ak-
tionsteil bestehen aus Graphmustern. Wird im Si-

tuationsmodell ein Teilgraph gefunden, der mit dem
Graphmuster des Regel-Bedingungsteils überein-
stimmt, so wird das Graphmuster mit diesem Teil-
graphen gebunden. Der Teilgraph wird nun ersetzt
durch einen anderen Teilgraph, der dem Aktionsteil-
Muster entspricht. Dieses Muster wird dann anstelle
des Bedingungsteil-Musters in das Situationsmodell
eingebettet. Verschiedene Formen von Graph-
Grammatiken werden unter anderem in Schneider
(1977) und Göttler (1988) detailliert beschrieben.

3.3 Eine Notation für Effekte

Die Idee, Zustandsänderungen als Graphmanipula-
tionsregeln darzustellen, entfaltet ihre Stärken nur
dann vollständig, wenn die Veränderungen auch
weitgehend graphisch notiert werden. Wenn man von
einigen syntaktischen Details absieht, hat die
graphische Notation folgende Bestandteile: Ein
Situationsmuster wird als Graph aus formalen
Komponenten (Kreisen und Verbindungslinien mit
Raute in Abb. 9) dargestellt. Veränderungen werden
durch + bzw. - Zeichen an formalen Komponenten
ausgedrückt: mit "-" markierte Komponenten werden
gelöscht, für jede "+" markierte Komponente wird ein
neues Objekt oder eine neue Beziehung in den
Situationsgraphen eingefügt.

Dieses Konzept ist in SESAM verbunden mit der
Möglichkeit, Attributwerte von gebundenen Teilgra-
phen zu verändern. Der Bedingungsteil besteht also
weiterhin aus einem Situationsmuster, das an einen
Teilgraphen des Situationsmodells gebunden wird.
Im Aktionsteil der Regel wird angegeben, wie sich
die Attributwerte ändern. Die Änderungen vollziehen
sich entweder auf einen Schlag (Zuweisungen) oder
allmählich (Differenzengleichungen). Die Zugehörig-
keit eines Attributs zu einer (formalen) Komponente
wird wie in Abb. 10, links, ausgedrückt.

AttrNameAttrName AttrName AttrName

formName

Kn Zustandsbildende Attribute

Zuweisung Kontinuierliche
Veränderung

beides

AttrName AttrName AttrName
+

AttrName
*

formName

Kn

Abgeleitete Attribute

Basisdefinition Faktor Offset

Abb. 10: Attributwertänderungen (Übersicht)

Aktionsart
(ro1: formName1,
 ro2: formName2)

... auf Aktionen reagieren

 und Ereignisse auslösen....

Ereignisart
(ro1: formName1,
 ro2: formName2)

Abb. 11: Erwartetes (links) und ausgelöstes Ereignis (rechts)

In einer SESAM-Regel können verschiedene
Aktionen kombiniert werden:

• Graphstruktur wird verändert,

• Attributwerte verändern sich schlagartig,

• Attributwerte verändern sich über einen Zeitraum
hinweg allmählich.

Außerdem gibt es in SESAM das Konzept
diskreter Ereignisse, die wie bei herkömmlicher
ereignis-orientierter Simulation (z.B. Page, 1991)
auftreten können. Beispiele: Mitarbeiter wird krank,
Kunde taucht auf.

4. Architektur

Die genannten Konzepte sind im SESAM-Programm-
system implementiert. Die Architektur des Systems
wird skizziert. In dieser Archtiektur spiegeln sich die
Konzepte.

4.1 Teilsysteme von SESAM

Das SESAM-Programmsystem besteht aus drei Teil-
systemen:

• Modellaufbau-Teilsystem mit drei halb-gra-
phischen Editoren zur Entwicklung, Verwaltung

und Veränderung von Schema, Situationsmodell
und Regeln.

• Konfigurations- und Analyseteilsystem für die
Kombination der Modellteile zu einem voll-
ständigen dynamischen Modell. In diesem Teil-
system wird je ein Schema, ein Situationsmodell
und eine dazu passende Menge von Regeln aus-
gesucht. Das Teilsystem kombiniert diese Teile
dann automatisch.

• Modellanimations-Teilsystem zur eigentlichen
Simulation. In diesem Teilsystem wird das
Modell animiert, verschiedene Animationsmodi
stehen zur Verfügung: Spielmodus, Analyse-
modus und Betreuermodus. Je nach ausge-
wähltem Modus sind mehr oder weniger Informa-
tionen und Optionen zugänglich.

4.2 Schichtenstruktur von SESAM

SESAM ist in Smalltalk-80, Version 4.1 implemen-
tiert. Diese Smalltalk-Version ist auf PCs, Mac-
Intoshs und einer großen Zahl von Workstations
verfügbar; SESAM ist ohne jede Anpassung auf allen
diesen Plattformen ablauffähig. Derzeit umfaßt
SESAM rund 250 Smalltalk-Klassen mit über 4000
Methoden.

Modellerstellungs-
Teilsystem

Konfigurations-
teilsystem

Animations-
Teilsystem

Dynamische
Modelle

Schemata

Regeln

Situationsmodelle

Teilsysteme

Persistente
Speicher

Abb. 12: Die drei SESAM-Teilsysteme, verbunden durch persistente Speicher

Smalltalk-80, Version 4.1

vis-A-vis, Release 1.2

Schema-
Editor

Situationsmodell-
Editor

Regel-
editor

Konfigurator
Analysator

Simulator

Modellerstellung
Modellkonfi-

guration Modellverwendung

Regeln&DGL-Integ.

Abb. 13: vis-A-vis als Hilfsschicht im Modellerstellungs-Teilsystem

Im Modellaufbau-Teilsystem wird der generische
graphische Editor vis-A-vis eingesetzt, um die drei
halb-graphischen Editoren zu realisieren. vis-A-vis
umfaßt rund 75 Smalltalk-Klassen und bietet die
Basisfunktionen eines graphischen Editors. Die
Spezifika von Schema, Situationsmodell und Regeln
werden in den Rahmen von vis-A-vis eingebracht
und ergeben so drei halb-graphische Editoren. vis-A-
vis ist in Lichter/Schneider (1993) und Lichter/
Schneider (1993a) beschrieben. Jürgen Schwille geht
näher auf vis-A-vis ein.

5. Wo steht SESAM heute?

Die oben vorgestellten Konzepte sind im SESAM-
Programmsystem umgesetzt. Seit inzwischen
eineinhalb Jahren haben wir auch ein Modell, mit
dem man ein Projekt von rund sechs Monaten Dauer
innerhalb weniger Stunden bzw. Tage im Rahmen
einer Lehrveranstaltung simulieren kann. Das Modell
war im Wintersemester 1992/93 bereits manuell
animiert worden: Damals stand noch kein Simulator
zur Verfügung. Die Animation war sehr mühsam und
erforderte mehrere Manntage pro Simulationsschritt.
Über das Modell und die Lehrveranstaltung, in der
wir es eingesetzt haben, berichten wir in Deininger/
Schneider (1994).

Grundlage des Modells ist die Metapher der

Stillen Post: In der Software-Entwicklung muß
Information vom Kunden in die Spezifikation, weiter
in den Entwurf und schließlich in den Code
transportiert werden. Dabei kommt es zu
Mißverständnissen und Fehlern. Die Aufgabe des
Projektleiters ist es, seinen Teil zu einer möglichst
unbeschadeten Informationsweitergabe zwischen den
Projektbeteiligten und den Dokumenten beizutragen.
Er muß die Rahmenbedingungen schaffen und ge-
eignete Anordnungen treffen, so daß die Information
möglichst wenig entstellt wird. Die Metapher wird in
Schneider (1994) ausführlich beschrieben. Repräsen-
tant einer "Informationseinheit" ist ein Software-
Quant.

Ein derartiges Modell ist im Wintersemester
1993/94 im SESAM-Programmsystem aufgebaut
worden. Es wurde an vier Studenten erprobt, die
interaktiv Projektleiter spielten. In beiden
Lehrveranstaltungen erwies sich SESAM als brauch-
bar.

Erkannte Schwächen sind in einer neuen Version
des Modells teilweise beseitigt; die Modellevolution
(Abb. 2) hat begonnen und führt zu immer besseren
Modellen. Das SESAM-Programmsystem und die
zugrundeliegenden Konzepte sind dagegen
weitgehend stabil und unverändert geblieben. An der
Benutzeroberfläche ist noch einiges zu tun, das
Programm ist jedoch inzwischen durchaus einsetzbar.

Literatur

Abdel-Hamid, T. K.; Madnick, S. (1991): Software
Project Dynamics; Prentice Hall, Englewood
Cliffs, NJ

Curtis, B; Kellner, M. I.; Over, J. (1992): Process
Modeling; Communications of the ACM, Sept.
1992, vol. 35, no. 9

Deininger, M.; Schneider, K. (1994): Teaching
Software Project Management by Simulation -
Experiences with a Comprehensive Model; Proc.
of the Conference on Software Engineering
Education (CSEE), Austin, Texas, Jan. 1994

Göttler, H. (1988): Graph-Grammatiken in der
Softwaretechnik; Springer, Berlin

Kaiser, G. T. E.; Popovich, S. S.; Ben-Shaul, I. Z.
(1993): A Bi-Level Language for Software
Process Modeling; Proc. of the International
Conference on Software Engineering (ICSE-
15) , IEEE Comp. Soc. Press

Lichter, H.; Schneider, K. (1993): vis-A-vis: An
Object-Oriented Application Framework for
Graphical Design Tools; Proc. of the IFIP
Workshop on Interfaces in Industrial Systems
for Production and Engineering; Darmstadt,
Germany, March 15-17, 1993; Elsevier

Lichter, H.; Schneider, K. (1993a): vis-A-vis: Ein
objektorientiertes Application Framework für
graphische Entwurfswerkzeuge; in Mayr, H.C;
Wagner, R. (Hrsg.): Objektorientierte Metho-
den für Informationssysteme; Springer, Infor-
matik aktuell

Ludewig, J. (1989): Modelle der Software-Ent-
wicklung: Abbilder oder Vorbilder? Software-
technik Trends, Band 9, Heft 3, Okt. 1989

Ludewig, J; Bassler, Th.; Deininger, M.; Schneider,
K.; Schwille, J. (1992): SESAM - Simulating
Software Projects; Proceedings of the Software
Engineering and Knowledge Engineering
(SEKE) Conference , Capri, Italy

Page, B. (1991): Diskrete Simulation - Eine
Einführung mit Modula 2; Springer, Berlin

Peuschel, B.; Schäfer, W. (1992): concepts and
Implementation of a Rule-based Process Engine;
Proc. of the International Conference on
Software Engineering (ICSE-14) , ACM

Schneider, H.-J. (1977): Graph Grammers ; Lecture
Notes in Computer Science 56, pp 314-331

Schneider, K. (1993): SESAM-zwischen Planspiel
und Adventure Game; Tagungsband zur 5.
Fachtagung Informatik und Schule ´93; Springer,
Informatik aktuell "Informatik als Schlüssel zur
Qualifikation"

Schneider, K. (1993a): Object-Oriented Simulation of
the Software Development Process in SESAM;
Proc. of the Object-Oriented Simulation
Conference (OOS´93) , part of the Western
Simulation Multiconference, San Diego; SCS
Society for Computer Simulation

Schneider, K. (1994): Komm, wir spielen
Projektleiter!; Tagungsband zum 3. Workshop
SEUH (Hußmann/Paech, Hrsg.: Software
Engineering im Unterricht der Hochschu-
len'94); Teubner, Stuttgart

Stachowiak, H. (1972): Allgemeine Modelltheorie;
Springer Verlag, Wien, New York

Teil 4

SESAM als Simulator
Jinhua Li

1. Einleitung

SESAM ist ein Simulationssystem, in dem Simula-
tionstechniken verwendet werden, um Software-Ent-
wicklungen zu modellieren. Dieser Artikel behandelt
den SESAM-Simulator, ein Teilsystem von SESAM,
das die Animation verschiedener Software-Projekt-
Modelle (SP-Modelle) unterstützt. Die grundlegende
Kenntnis von SESAM und Software-Projekt-Modell-
bildungen aus der Einführung von Ludewig und den
konzeptionellen Grundlagen von Schneider werden
für den vorliegenden Aufsatz vorausgesetzt.

Zuerst werden einige in diesem Artikel benutzte
Begriffe kurz erklärt, damit man die Diskussionen in
den folgenden Abschnitten besser verstehen kann.
Genaue Definitionen und ausführliche Auseinander-
setzungen dieser und anderer relevanten Konzepte
finden sich in anderen SESAM-Dokumenten und in
der Literatur.

Unter Systemsimulation versteht man eine
Methode zur Lösung von Problemen, bei der man die
Änderungen eines dynamischen Systemmodells über
der Zeit verfolgt (Gordon, 1969). Es wird zwischen
stetigen Simulationen, die stetige Systeme modellie-
ren, und diskreten Simulationen, die diskrete Systeme
modellieren, unterschieden. Durchführung von Sy-
stemsimulationen besteht aus ein Reihe von grundle-
genden Schritten, die sich im wesentlichen in drei
Bereiche einordnen lassen: Modellbildung (z.B. Pro-
blemdefinition, Modellentwurf und -implementa-
tion), Modell- oder Simulationsexperimente (z.B.
Planung und Ausführung von Modellexperimenten)
und Ergebnisanalyse (z.B. Bewertung von Ergebni-
ssen). Ein rechnerunterstütztes Simulationssystem ist
nach Page (1991) ein Softwaresystem, das die Bear-
beitung der drei Aufgabenbereiche Modell-bildung,
Durchführung von Simulationsexperi-menten und
Ergebnisanalyse im Rahmen einer Simulationsstudie
unterstützt. In den drei genannten Bereichen sind
jeweils die folgenden Funktionen zu erfüllen:

Modellbildung
• Eingabe und Modifikation von Modellen
• Speicherung von Modellen
• Zugriff und Verknüpfung gespeicherter Modelle

Durchführung von Simulationsexperimenten
• Festlegung von Eingabedaten für Experimente
• Start und Ausführung von Simulationsläufen
• Speicherung der Ergebnisse

Ergebnisanalyse
• Zugriff auf gespeicherte Ergebnisse
• Auswahl der zu analysierenden Ergebnisse
• Präsentation der Ergebnisse

Das Teilsystem eines Simulationssystems, das für
Simulationsexperimente eingesetzte lauffähige
Computerprogramm, wird in der Literatur gelegent-
lich als Softwaresimulator oder kurz Simulator be-
zeichnet (vgl. z.B. Schmidt 1985). Dieser Teil von
SESAM wird in diesem Artikel als SESAM-Simulator
bezeichnet und vorgestellt.

Der folgende Abschnitt behandelt Modelldar-
stellungen in SESAM-System, die der Bildung von
SP-Modellen dienen. Im dritten Abschnitt wird der
SESAM-Simulator aus Sicht des Benutzers betrach-
tet, d.h. wie der Spieler durch SESAM ein Simula-
tionsexperiment (einen Software-Entwick-lungs-
prozeß) durchführt. Diese wird uns zum Begriff des
interaktiven Simulationssystems führen. Der Aufbau
und die Mechanismen des SESAM-Simulators, der
eigentlich die Animation von SP-Modellen zeitlich
vorantreibt, erläutert Abschnitt 4. Der Artikel endet
mit einigen Schlußbemerkungen zum Thema Simula-
tion in SESAM.

2. Darstellungen von Software-
Projekt-Modellen

Software-Projekt-Modelle im SESAM-System um-
fassen alle wichtigen in realen Softwareent-wick-
lungen auftretenden Elemente (z.B. Aufträge, Werk-
zeuge, Personal und Budget) und Beziehungen (z.B.
ein Mitarbeiter erzeugt oder liest ein Dokument). Sie
werden in SESAM in zwei Kategorien eingeordnet:
Entitäten und Beziehungen. Entitäten lassen sich wie-
der durch Attribute beschreiben. Ein Mitarbeiter in
SESAM wird z.B. als eine Entität modelliert, die
durch Attribute wie Qualifikation, Motivation und
Fähigkeit zur Programmierung charakterisiert wird.
Das im Simulationsverlauf entstandene Produkt wird
auch durch eine Reihe von Attributen (wie den Um-
fang und Qualität einer Software) enthaltender Enti-
täten beschrieben. Eine Beziehung verbindet min-
destens zwei Entitäten, z.B. ein Mitarbeiter diskutiert
mit dem Kunden über die Softwareanforderungen.

Schwieriger als bei anderen Simulationen sind bei
SESAM einerseits die konzeptionelle Modell-bildung
von SP, die die Realität sinnvoll und adäquat nachbil-
det, und andererseits die konkrete Darstellung ihrer

Attributwerte, die sowohl genaue Werte (Zeit und
Budget) oder unscharfe Werte (Motivation und Lei-
stung eines Mitarbeiters) sein können, als auch stetig
verändern (Qualität eines Softwareprodukts und
Entwurfsfähigkeit eines Mitarbeiters) oder sprunghaft
verändern (Anzahlsänderungen von Mitarbeiter und
Budget) können.

Um SP-Modelle genau nachzubilden, wird in
SESAM ein SP-Modell in drei Schichte beschrieben:
Das attributierte Entity-Relationship-Schema führt
die Entitäten (mit ihren Attributen) und ihre
möglichen Beziehungen ein. Die Anfangssituation,
mit der der Spieler ein Simulationsexperiment
durchführt, ist eine spezielle Ausprägung dieses
Schemas. Die Änderungen der Situation (des
Szenarios) werden durch Regeln, die sog. Effekt-
modelle, beschrieben. Allmähliche Änderungen der
Attributwerte sind nach dem Konzept von „System
Dynamics“ definiert; sprunghafte Änderungen auf-
grund von Ereignissen (Einführung oder Entfernung
von Entitäten und Beziehungen) sind durch eine attri-
butierte Graph-Grammatik vorgegeben. Zur Erzeu-
gung und Handhabung der drei Schichten stehen in
SESAM entsprechend jeweils drei Graphen-Editoren
zur Unterstützung, des universellen Werkzeugs „vis-
A-vis“ (Lichter, Schneider, 1993) zur Verfügung.

3. SESAM-Simulator I:
benutzer-orientierte
Simulation

In diesem Abschnitt wird der SESAM-Simulator aus
Sicht des SESAM-Spielers erläutert. Zu Beginn eines
Simulationsexperiments steht dem Spieler eine
Ausgangslage (das Szenario) zur Verfügung, die ein
simuliertes Softwareprojekt repräsentiert und alle we-
sentlichen Informationen und Gegenstände für ein
Projekt enthält, z.B. Budget, Kunde, Betriebsmittel
(z.B. Räume und Werkzeuge) und eine Gruppe von
Mitarbeitern. Sie wird in SESAM graphisch darge-
stellt und bildet den Anfangszustand einer Simula-
tion.

Ziel des Spielers ist es, durch seine Aktionen mit
den Unterstützungen des SESAM-Simulators das
modellierte Projekt erfolgreich zu Ende zu bringen.
Er übt seinen Einfluß auf die Simulationsläufe über
eine Benutzeroberfläche in Form von Aktionen, also
Spieleraktionen, aus. Abbildung 1 veranschaulicht
diese Beziehung zwischen dem SESAM-Simulator
und dem Spieler.

Spieler

Spieleraktionen

Benutzeroberfläche

SESAM-Simulator

Abb. 1: Simulationsläufe durch die Spieleraktion

Zur Verfügung stehen dem Spieler eine Reihe von
vordefinierten möglichen Spieleraktionen, mit denen
er ein simuliertes Projekt leiten kann. Der Spieler
muß allerdings die Aktionen auswählen, ihre
Durchführungen ordnen und Entscheidungen treffen,
wenn etwas passiert ist, d.h. ein Ereignis zufällig
entsteht. Die Spieleraktionen entsprechen im Prinzip
allem, was ein Projektleiter in der Praxis tun kann.
Beispielsweise kann er

• Mitarbeiter einstellen oder entlassen,

• Arbeitsgruppen bilden und Aufgaben erteilen,

• entscheiden, ob nötige Werkzeuge erzeugt oder
gekauft werden,

• beim Vorgesetzten sein Budget verteidigen,

• zu einer Besprechung zusammenkommen.

Außerdem ist dem Spieler möglich, die Simulations-
läufe zu beenden, zu unterbrechen oder wiederaufzu-
nehmen sowie sich die aktuellen Informationen
seines Projekts zu geben lassen.

Der SESAM-Simulator verarbeitet solche Spieler-
aktionen, wodurch sich der Systemzustand ständig
verändert. Der SESAM-Simulator kann z.B. (vgl.
Tabelle 1)

• Entitäten in das System einfügen oder entfernen,

• Beziehungen zwischen existierenden Entitäten
einrichten

• Attributwerte in einem Systemzustand verändern
oder

• Ereignisse erzeugen (z.B. Mitarbeiter E ist kran-
ken und muß eine Woche zu Hause bleiben) oder
behandelt (z.B. muß der SESAM-Simulator auf
dem Ereignis, daß Mitarbeiter E nicht zur Arbeit
kommen kann, aber mit dem Kunden einen
Termin ausgemacht hat, dadurch reagieren, daß er
entweder eine Aktion auslöst oder den Spieler
eine Entscheidung treffen läßt)

Spieleraktion Auswirkungen im SESAM-Simulator

Erzeugen einer Modulspezifikation Einfügen der Entität in dem Systemzustand

Entlassung eines Mitarbeiters Löschung der Entität in dem Systemzustand

Mitarbeiter A beschäftigt sich mit
Teilsystem B nach Spezifikation C

Übernahme der entsprechenden Entitäten in den
Systemzustand und Änderungen der entsprechen-
den Attributwerte über der Zeit

Mitarbeiter D diskutiert mit Kunden K
über die Systemanforderungen

ständige Änderung der Attributwerte, z.B. des
Verständnisses von Mitarbeiter D für das Projekt
und Funktion-Points der simulierten Software-
Spezifikation

Tab. 1: Einige Spieleraktionen und entsprechende Auswirkungen im SESAM-Simulator

Außerdem verwaltet der SESAM-Simulator die simu-
lierte Uhr, in dem er die Simulationszeit nach jeder
Aktion des Spielers weitersetzt.

Außerhalb des SESAM-Systems können nur die
Auswirkungen des Spielers auf das Systemverhalten
beobachtet werden. Der Spieler bestimmt den Verlauf
eines Simulationsexperiments und spielt damit die
zentrale Rolle bei SESAM-Simulationen. SESAM
wird deshalb als interaktives Simulations-system oder
benutzer-orientiertes Simulationssystem bezeichnet.

Die Abläufe im SESAM-Simulator während einer
Simulation lassen sich allerdings nicht direkt außer-
halb erkennen. Der SESAM-Simulator reagiert auf
jede Spieleraktion, indem er den Systemzustand stän-
dig verändert und damit die Simulation um eine
Simulationszeiteinheit (∆t) fortführt. Wie der
SESAM-Simulator arbeitet und was innerhalb des
SESAM-Simulators passiert, wird in dem nächsten
Abschnitt ausführlich beschrieben.

4. SESAM-Simulator II:
Aufbau und Mechanismen

Die gegenwärtige Version des SESAM-Simulators
besteht aus zwei Modulen: einem Ereignis-Simulator
(wird kurz als Simulator bezeichnet) zur Animation
von zufälligen oder anschließend vom Spieler ausge-
lösten Ereignissen, und ein Regelanwender (RA) , der
u.a. die zeitkonsumierenden Vorgänge von SP-
Modellen simuliert. Um den Ablauf beider Module
zu synchronisieren, wird in SESAM der RA dem
Ereignis-Simulator untergeordnet (Kiehne, 1993).
Dies führt dazu, daß der Ereignis-Simulator die
Simulation zeitlich vorantreibt. SESAM ist ein
gemischtes Simulationssystem in dem Sinne, daß in
SESAM einerseits von einem Zeitpunkt zum
nächsten Zeitpunkt aufgrund von Ereignissen um die
Simulationsschrittweite (∆t) fortgeschritten wird,
andererseits sich das Systemverhalten in einer

gewissen Situation innerhalb jeder simulierten
Zeitspanne (∆t) quasi-kontinuierlich verändert.
Diesen Zeitverlauf und die Zustandsveränderungen
zwischen zwei simulierten Zeitpunkten kann man
jedoch außerhalb des SESAM-Simulators nicht
beobachten.

Abbildung 2 zeigt die Komponenten des SESAM-
Simulators, und ihre Beziehung mit anderen
Komponenten, die zum Systemverhalten zusammen
beitragen.

Systemzustand und Spieleraktionen, die eigentlich
nicht zum SESAM-Simulator gehören und dennoch
enge Zusammenhänge mit dem Systemverhalten in
einem Simulationslauf haben, werden ebenso in die-
sem Abschnitt erläutert. Der Systemzustand wird in
SESAM als ein Spielzustand und ein erweitertes
System-Dynamics-Modell (SD-Modell) repräsentiert.
Ereignisse signalisieren, daß etwas passiert ist. In
SESAM repräsentieren sie Zustandsänderungen und
beinhalten keine Information über den aktuellen
Zustand selbst, sondern machen Aussagen über seine
Entwicklung. Es ist dennoch praktisch, Ereignisse als
Teil des Zustands anzusehen, denn so kann man
anhand der eingetretenen Ereignisse erkennen, was in
der Vergangenheit mit dem Zustand passiert ist.
Ereignisse sind in SESAM entweder exogene
Ereignisse, die vom Spieler ausgelöst werden, oder
endogene Ereignisse, die durch den RA zufällig
erzeugt werden. Spieleraktionen, mit denen der
Spieler seinen Einfluß auf die Simulation ausübt,
werden im SESAM-Simulator als exogene Ereignisse
angesehen.

Der Ereignis-Simulator stellt die Drehscheibe der
Simulation dar. Er kommuniziert mit allen in einem
Simulationslauf mitwirkenden Komponenten, näm-
lich den RA, den Spieleraktionen, den Systemzustand
usw. Die Hauptaufgabe vom Ereignis-Simulator
besteht darin, daß er

• alle Ereignisse speichert, verwaltet und manipu-
liert (z.B. er nimmt die Spieleraktionen in
Empfang und vermerkt alle Ereignisse als
eingetreten, deren Eintrittszeitpunkt erreicht oder
Überschritten ist),

• einen Teil von Attributwerten im SD-Modell be-
rechnet und damit auch den Systemzustand konsi-
stent macht,

• die Simulationsergebnisse sammelt und verwaltet,

• die Routinearbeiten wie Setzen von Simulations-
parametern (z.B. Anfangs- und Endzeit), Start der
Simulation und Vormerkung von Unterbre-
chungs-zeitpunkten zur Verführung stellt und

• die Simulationszeit, die während einer Simulation
vergehende Zeit, sprunghaft fortschaltet.

(Spielzustand
+SD-Modell)

Ereignis-Simulator

(Ereignisse)

Systemzustand

exogene Ereignisse

Regelanwender

(Effektmodelle)

Abb. 2: Logische Struktur des SESAM-Simulators

Der Regelanwender, ähnlich einem Regelsystem,
stellt die Art und Weise des Systemverhaltens dar,
d.h. wie sich der Systemzustand ändert. Effekt-
modelle, die der Wissenbasis eines Regelsystems
entsprechen, sind die bearbeiteten Hypothesen im
Software Engineering. Der RA beschreibt, wie die
Regeln in einer Situation angewendet werden
können, und bestimmt, ob das Systemverhalten schon
zu einem stabilen Zustand erreicht ist, so daß keine
Regeln mehr verwendbar sind. Unter einem stabilen
Zustand versteht man einen Zustand, in dem alle
Strukturen stimmig (widersprechen keiner Regeln)
sind und alle Werte auf denselben Zeitpunkt und
aufeinander bezogen sind. Aber der RA unterscheidet
sich von gewöhnlichen Regelsystem so, daß in
SESAM nicht nach einem Lösungszustand gesucht,
sondern das Verhalten von Softwareprojekt
nachgebildet wird. Die Aufgabe der Problemlösung
kommt dabei dem Spieler, nicht dem SESAM-
System zu.

Der RA führt die durch Ereignisse ausgelösten
Aktionen aus und verändert quasi-kontinuierlich den

Systemzustand zwischen zwei Simulationszeitpunkte
dadurch, daß er nach Ereignissen und Regeln

• Attributwerte ändert,

• Attribute, Entitäten und Beziehungen im Spiel-
zustand erzeugt oder löscht und

• Ereignisse zufällig erzeugt.

Simulator und RA stellen gemeinsam die Antriebs-
feder des SESAM-Systems dar. Sie arbeiten Hand in
Hand und verändern den Systemzustand gemäß den
verwendeten Effektmodelle und aufgetauchten
Ereignissen. Änderungen der Systemzustände mit der
Zeit, d.h. die Animation eines Software-Prozesses,
sind möglich durch

• die entweder vom Spieler ausgelösten oder
zufällig eingetreten Ereignissen oder

• das Überschreiten von Schwellwerten definiert
sein können.

Das Zusammenwirken von Spieler und
SESAM-Simulator

Um das Zusammenwirken von Spieler,
Regelanwender und Ereignis-Simulator klar zu
machen, nehmen wir ein einfaches Beispielszenario
in Anlehnung an Krause (1993), das in Abbildung 3
anschaulich dargestellt ist. Fangen wir damit an, daß
in einer bestimmten Situation zu einem Zustand 1 der
Spieler einen Mitarbeiter des Projekts zum Kunden
geschickt hat. Diese Spieleraktion fügt in den
Zustand ein Ereignis ein, das sofort bearbeitet wird.
Die Kontrolle wird nach Ausführung dieser Spie-
leraktion an den Regelanwender übergeben (die
Übergabe der Kontrolle wird durch vertikale Linien
mit Pfeilen angedeutet), der nun prüft, ob er aufgrund
der Effektmodellen Aktionen ausführen soll. Wir
nehmen für den Zustand 1 an, daß dies der Fall ist.
Eine Regel reagiert auf die Spieleraktion und entfernt
den Mitarbeiter aus dem Raum, in dem er sich gerade
befindet und richtet eine Beziehung (sprichtMit)
zwischen ihm und dem Kunden ein. Zugleich
beeinflußt sie den Zustand des Mitarbeiters durch die
Besprechung mit dem Kunden. Diese Aktionen
führen zum Zustand 2, in dem die Attribute des
Systems, z.B. das Verständis dieses Mitarbeiters für
das Projekt, beeinflußt werden und deshalb der
Zustand inkonsistent wird. Berechnung der
Attributwerte ist nun die Aufgabe des Simulators, der
die Kontrolle übernimmt, um den Zustand logisch
konsistent zu machen. Jetzt ist der Zustand 3 erreicht.

Aufgrund der veränderten Attribute könnte nun
eventuell eine Regel anwendbar sein. Die Kontrolle
geht darum wieder an den RA zurück. Dieser tut
wieder das gleiche wie in Zustand 1: Er wendet die
Effektmodelle auf den veränderten Zustand an.
Werden dabei Aktionen ausgeführt, so wird der
nächste Zustand, Zustand 4, wieder dem Simulator
überlassen, der die Attribute berechnet. So kann die

Kontrolle zwischen dem Simulator und dem RA
mehrfach hin und her gehen, bis der RA keine Regeln
mehr anwenden kann und ein stabiler Zustand
gelangt. In Abbildung 3-2 stellt Zustand 5 einen
solchen stabilen Zustand dar, mit ihm nun Zustand 6
identisch ist.

Bis zu diesem Punkt ist die Simulationszeit noch
nicht fortgeschritten. Dieser Abschnitt der Simulation
wird Phase 1 der Simulation genannt. Nun kann der
Simulator also einen Simulationsschritt ausführen
und die Simulationszeit um ein ∆t weiterschalten.
Dies heißt Phase 2 der Simulation oder
Simulationsschritt. Damit ist Zustand 7 erreicht und
der Spieler kann wiederum eine Aktion ausführen.
Denkbar ist, daß während der Phase 1 der Simulation
eine Situation eintritt, die unbedingt einen
Spielereingriff braucht. In diesem Fall muß die Kon-
trolle an den Spieler gegeben werden. Zustände 8 und
10 stellen einen solchen Simulationsverlauf dar:
Zustand 9 verlangt nach einer Spielerentscheidung;
bevor die Kontrolle an den Spieler geht, macht der
Simulator den Zustand noch konsistent.

Spieler

Simulator

RA

 Zustand

Phase
1 12

∆t

1 2 3 4 5 6 7 8 9 10

Abb. 3: Zusammenspiel von Spieler,
RA und Simulator

5. Schlußbemerkungen

Eine entschiedene Rolle spielt in Simulations-
systemen und in SESAM Zeit, von der u.A. die
Qualität eines Simulators abhängt. In SESAM-
Simulator geht es um zwei Aspekte von Simu-
lationszeit. Erstens muß die Entscheidung über das
kleinste Zeiteinheit, auch Simulationsschrittweite ge-
nannt, getroffen werden, um die praktischen
Situationen von Software-Entwicklungen getreu si-
mulieren zu können. Zweitens weil es in SESAM
zwei Modulen, der Ereignis-Simulator und der
Regelanwender, gibt, ist es erforderlich und auch
möglich, die Schrittweiten in beiden Teilen anzupa-
ssen. Außerdem ist im Sinne vom Abenteuerspiel,
daß der Spieler den Spielverlauf möglicherweise

schnell durchführt, eine Erweiterung von SESAM
zweckmäßig. Dieser schwierige Aspekt eines
Abenteuerspiels ist gekennzeichnet durch die
Realzeit, die tatsächlich in der realen Welt vergeht,
und die CPU-Zeit, die einer Spieler bei der
Simulation auf einem Rechner benützt.

Der Regelanwender ist im wesentlichen ein
Regelsystem, das aus drei Komponenten besteht:
Effektmodell (Wissensbasis), Konfliktlösungs-
strategie und Regelanwendungsverfahren (Kontroll-
einheit) sowie Systemzustand (Datenbasis). Im ge-
genwärtigen SESAM ist jedoch noch keine
Konfliktlösungsstrategien fertiggestellt. Bei Durch-
führung von Simulationsexperimenten verwendeten
statistischen Verfahren (z.B. Verteilungsfunktionen
wie die Normalverteilung oder Erlangverteilung) sind
nun noch nicht zufrieden in Simulationsmodellen
eingebracht.

Gekennzeichnet ist SESAM in bezug auf Simula-
tionstechniken durch:

• interaktive Simulationsablaufsteuerung

• Anwendung von regelbasierten Techniken in
Systemsimulationen

• Erweiterung und Anwendung der formalen
Darstellung programmierter attributierten Graph-
Grammatik mit objektorientierten Ansätze

• Erweiterung und Anwendung der Systemtheorie
System Dynamics bei Modellierung und
Simulierung von Softwareprozessen

• Erweiterung und Anwendung von zeitgesteuerten
und ereignisorientierten Simulationsmethoden in
einem Simulationssystem

• Repräsentation und Handhabung von unscharfen
Eigenschaften und Wissen in Software
Engineering und in Simulationssystemen

• interaktive graphische Modellbildung in System-
simulationen.

Literatur

Gordon, G. (1969): System Simulation. Prentice-
Hall, Inc. 1969.

Kiehne, K. (1993): Entwurf und Implementierung
eines Simulator-Moduls für SESAM . Diplom-
arbeit 870, Fakultät Informatik, Universität
Stuttgart, 1993.

Krause, M. (1993): Entwicklung eines regelbasier-
ten Baukasten zur Verhaltensmodellierung in
SESAM. Diplomarbeit 994, Fakultät Informatik,
Universität Stuttgart, 1993.

Lichter, H.; Schneider, K. (1993): vis-A-vis: Ein
objekorientiertes Application Framework für
graphische Entwurfswerkeuge. in Mayr, H.C.;
Wagner, R. (Hrsg.) Objektorientierte Metho-
den für Informationssysteme (EMISA-
Tagung); Springer, Informatik aktuell, pp. 187-
207, 1993.

Page, B. (1991): Diskrete Simulation - Eine Ein-
führung mit Modula-2. Springer 1991.

Schmidt, B. (1985): Systemanalyse und Modell-auf-
bau. Grundlagen der Simulationstechnik.
Fachberichte Simulation 1. Berlin: Springer
1985.

Teil 5

SESAM und die Realität
Anke Drappa

Zusammenfassung

SESAM ist ein objekt-orientiertes Werkzeug, mit
dem Modelle für Software-Projekte in einer
graphischen Notation beschrieben und anschließend
animiert werden können.

In diesem Beitrag wird untersucht, wie sinnvolle,
d.h. insbesondere realitätsnahe Modelle von
Software-Projekten entwickelt werden können und
wodurch sie sich auszeichnen. Dafür werden die
Ergebnisse verschiedener Arbeiten, die in den letzten
Jahren in der Abteilung Software Engineering
durchgeführt worden sind, vorgestellt und die dabei
gewählten Ansätze diskutiert.

1. Einführung

SESAM ist ein Simulator für Software-Projekte, der
im Rahmen eines Forschungsprojekts der Abteilung
Software Engineering an der Universität Stuttgart
entwickelt worden ist.

In SESAM können Modelle von Software-
Entwicklungsprojekten in einer überwiegend
graphischen Notation beschrieben und anschließend
"durchgespielt" werden. Der Spieler übernimmt dabei
die Rolle des Projektleiters und veranlaßt alle für die
Projektdurchführung notwendigen (simulierten)
Tätigkeiten, wie z.B. Einstellen von Mitarbeitern,
Zuteilen von Aufgaben oder Beschaffen von Werk-
zeugen.

In der Art eines Adventure Games erhält der
Spieler Informationen und Reaktionen vom System,
die seine weiteren Aktivitäten im simulierten Projekt
bestimmen. Am Ende des Spiels kann der Verlauf des
Software-Projekts sichtbar gemacht und analysiert
werden. Der Spieler erfährt, welche Aktionen sich
günstig und welche sich eher negativ auf das
simulierte Projekt ausgewirkt haben.

Hier steht weniger das Werkzeug SESAM als
vielmehr die Problematik der Modellierung von
Software-Projekten im Vordergrund. Ziel der
Modellierung ist, dem Praktiker ein realitätsnahes
Abbild seiner Wirklichkeit anzubieten. Es wird unter-
sucht, welche Schwierigkeiten bei der Modellierung
bestehen und wie die Abbildung der Realität in ein
Modell durch empirische Daten gestützt werden
kann.

In der Abteilung Software Engineering sind
mehrere Arbeiten durchgeführt worden mit dem Ziel,
Gesetzmäßigkeiten bei der Abwicklung von
Software-Projekten zu erkennen. In diesen Arbeiten
wurden sowohl die vorhandenen Literaturquellen
ausgewertet als auch reale Projektdaten erhoben und
analysiert. In diesem Beitrag werden Inhalt und
Ergebnisse der Arbeiten vorgestellt. Darüber hinaus
wird diskutiert, inwieweit die gewählten Ansätze die
Modellbildung unterstützen können.

Während die Hypothesensammlung (Utz, 1992)
und die Erhebung von Metriken in Software-
Projekten (Drappa, 1993) unabhängig von SESAM
durchgeführt wurden, ist in Feest (1993) das bisher in
SESAM vorhandene Modell als Basis für die
Untersuchungen verwendet worden. Zunächst sollen
der grundsätzliche Aufbau der Modelle sowie die
Grundidee des in SESAM verfügbaren Modells kurz
erläutert werden.

Komponenten von SESAM-Modellen

Modelle in SESAM bestehen grundsätzlich aus drei
Komponenten, dem Schema, der Startsituation und
den Regeln.

Im Schema werden die benötigten Entitäts- und
Relationstypen definiert und mit den zu ihrer
Charakterisierung erforderlichen Attributen versehen.
Das Schema liefert im Prinzip eine abstrakte
Beschreibung für alle im Modell berücksichtigten
Objekte und Beziehungen der realen Welt.

Im Verlauf des Spiels werden von diesen Entitäts-
und Relationstypen Ausprägungen (also Entitäten
und Relationen) erzeugt und deren Attribute mit kon-
kreten Werten belegt. In der Startsituation wird der
Anfangszustand der Simulation definiert, d.h. es
werden alle im Spiel bereits verfügbaren Entitäten
und Relationen mit den entsprechenden Attribut-
werten erzeugt.

Die letzte Modellkomponente, die Menge von
Regeln, dient der Änderung des Spielzustands
während der Simulation. Jede Regel übt gewisse
Effekte auf den Spielzustand aus, wie z.B. das
Erzeugen oder Löschen von Entitäten bzw.
Relationen oder das Ändern von Attributwerten.

Abb. 1: Schema im derzeitigen SESAM-Modell

Bisheriges Modell

Das derzeit in SESAM vorhandene Modell ist
konzeptionell noch sehr einfach. Auf der Schema-
ebene werden im wesentlichen Dokumente, Personen
(mit verschiedenen Subentitäten), Werkzeuge sowie
das Projekt selbst berücksichtigt. Die wichtigsten
Beziehungen bestehen zwischen den Entitätstypen
Dokument und Person, d.h. Personen lesen, schreiben
oder prüfen Dokumente (vgl. Abbildung 1).

Die Mitarbeiter werden durch ihre (konstruktiven
und analytischen) Fähigkeiten sowie durch ihre
Erfahrung charakterisiert. Die Dokumente werden
hauptsächlich durch die Attribute Umfang und Inhalt

modelliert, wobei die Beschreibung des Inhalts durch
die Attribute Gefordertes, Überflüssiges und Fehlendes

detailliert wird.

Ein Problem der Modellierung besteht darin, den
Attributen "aussagekräftige" Werte zuzuordnen. Bei
den Attributen der Entität Person und den Attributen
ihrer Subentitäten wurden im wesentlichen Multipli-
katoren verwendet, die mit den aus COCOMO
bekannten Anpassungsfaktoren (z.B. ACAP, PCAP)
vergleichbar sind. Das Attribut Fähigkeit erhält bei
einer Person mit durchschnittlichen Fähigkeiten
beispielsweise den Wert 1, während entsprechend

geringere oder höhere Fähigkeiten durch Werte
kleiner bzw. größer 1 modelliert werden.

Die wesentliche Idee des Modells liegt jedoch in
der Art der Modellierung des Inhalts und der Qualität
der Dokumente. Dafür wurden die sogenannten
Software-Quanten entwickelt, die für kleinste, nicht
weiter teilbare Aufgabeneinheiten stehen. Software-
Quanten sind voneinander unterscheidbar, werden
aber inhaltlich nicht näher spezifiziert.

Der in dem Projekt zu entwickelnden Software
wird eine bestimmte Menge an erforderlichen
Software-Quanten zugeordnet. Die Idee ist nun,
Inhalt und Qualität der Dokumente durch die Menge
der ihnen zugeordneten Software-Quanten zu
beschreiben. Angenommen, die zu erstellende
Anwendung erfordert 234 Software-Quanten. Dann
müßten in der Spezifikation idealerweise ebenfalls
234 Software-Quanten enthalten sein, wenn nach
dem Wünschen des Kunden spezifiziert wurde.
Tatsächlich werden aber oft nicht alle geforderten
Software-Quanten spezifiziert, sondern einige fehlen
oder überflüssige eingeführt werden. Je mehr dieser
Software-Quanten nun in die Spezifikation
"hinübergerettet" werden, desto höher ist die Qualität
des entstandenen Dokuments.

Im Modell werden also Regeln bereitgestellt, die
das Fließen dieser Software-Quanten beschreiben.
Abhängig von dem in das Dokument investierten
Bearbeitungsaufwand und von den Fähigkeiten der
Bearbeiter wächst die Menge der Software-Quanten,
die den Inhalt des Dokuments modelliert. Je länger an
dem Dokument gearbeitet wird, desto weniger
Quanten werden fehlen und desto mehr überflüssige
werden eingeführt. Dabei werden die Ergebnisse
umso besser sein, je höher die zuständigen
Mitarbeiter qualifiziert sind. Nach dem gleichen
Prinzip wird auch das Fließen der Software-Quanten
von der Spezifikation in den Entwurf und vom
Entwurf in den Code modelliert.

Die Entität Projekt beschreibt wesentliche Aspekte
des durchzuführenden Software-Projekts, wie z.B.
den geplanten Endtermin, das verfügbare Budget
oder den Anteil einzelner Phasen am Gesamtauf-
wand.

In diesem Stadium des Forschungsprojekts ist das
Modell weit davon entfernt, vollständig und
wirklichkeitsgetreu zu sein, obwohl wesentliche
Aspekte durchaus realistisch modelliert worden sind
(vgl. Kapitel 3). Es soll hauptsächlich als Grundlage
für die hier präsentierten Überlegungen betrachtet
werden. Es geht also nicht nur darum, dieses Modell
zu kritisieren, sondern es muß festgestellt werden,
wodurch sich gültige Modelle auszeichnen und auf
welcher Basis diese erstellt werden können. Diese
Aspekte sollten durch die Diplomarbeiten untersucht
werden, die im folgenden vorgestellt werden.

2. Sammlung von Hypothesen

Die erste der folgenden drei Arbeiten wurde im Jahr
1991 durchgeführt. Zu dieser Zeit befand sich das
Forschungsprojekt SESAM noch im Anfangsstadium,
diese Arbeit diente auch der Klärung der
Anforderungen an ein Programmsystem zur
Simulation.

Ziele der Arbeit

In der Diplomarbeit sollten Hypothesen über
Software-Projekte gesammelt und für SESAM
formuliert, klassifiziert und quantifiziert werden. Die
Grundlage für die Sammlung bildete die vorhandene
Software Engineering-Literatur.

Ziel der Diplomarbeit war die Gewinnung von
Aussagen über Software-Projekte, welche die darin
gültigen Zusammenhänge beschreiben. Durch die
Definition einer einheitlichen Repräsentationsform
und die Entwicklung eines Klassifikationsschemas
sollten die Hypothesen gruppiert und ähnliche
Hypothesen identifiziert werden.

Diese Hypothesen-Sammlung sollte eine erste
Grundlage für ein Modell des Software-Entwick-
lungsprozesses darstellen. Die vorhandenen Hypothe-

sen können auf dieser Basis schrittweise verifiziert,
falsifiziert oder angepaßt werden.

Ergebnisse der Arbeit

In der Arbeit ist zunächst ein Schema entwickelt
worden, das den Aufbau von Hypothesen beschreibt.
Danach verwendet eine Hypothese Attribute von
Eingabeobjekten und verändert (hier) ein Attribut
eines Zielobjekts. Die sogenannte Auslösebedingung
enthält Informationen darüber, wann eine Hypothese
gültig ist (z.B. wenn ein bestimmtes Ereignis
eingetreten ist).

Darüber hinaus ist ein Schema zur Klassifikation
der Hypothesen nach den Zielobjekten, über die sie
Aussgen machen, erarbeitet worden; z.B. gibt es
Klassen wie Mitarbeiter, Kunde, Sourcecode oder
Testdokument.

Die in der Literatur gefundenen Hypothesen sind
zusammengestellt und in das Klassifikationsschema
eingeordnet worden. Dabei ist eine umfangreiche
Sammlung mit insgesamt 273 Hypothesen ent-
standen. Es war zu beobachten, daß die Klassen-
belegung sehr inhomogen war; sechs von sechzehn
Klassen enthielten keine Hypothesen, während
andere Klassen, z.B. Mitarbeiter oder Sourcecode,
mit 66 bzw. 60 Hypothesen sehr stark belegt waren.

Die folgenden Beispielhypothesen sollen die
Ergebnisse der Arbeit veranschaulichen (Utz, 1992):

• Je größer eine Organisation ist, desto niedriger ist
die Produktivität. (1)

• Wenn wiederverwendbarer Code eingesetzt wird,
dann steigt die Qualität von Modulen. (2)

• Der Aufwand für ein Software-Projekt ist von der
Programmgröße abhängig und beträgt im Modus
semidetached E = 3.2 (KDSI)1.05 MM. (3)

• Fehlerbeseitigungsaktivitäten erfordern im Durch-
schnitt 30 % des gesamten Entwicklungsauf-
wands. (4)

• Die Produktivität für "leichte" Funktionen beträgt
20 LOC/Tag, für "mittlere" Funktionen
10 LOC/Tag und für "schwere" Funktionen
5 LOC/Tag (LOC = Lines of Code). (5)

• Bei Kontrollprogrammen (z.B. Betriebssystemen)
beträgt die Produktivität 600 LOC pro Mitarbeiter
und Jahr, bei Übersetzern beträgt sie ca. 2200
LOC pro Mitarbeiter und Jahr. (6)

Viele in der Arbeit gesammelten Hypothesen
beschreiben einen rein qualitativen Zusammenhang
zwischen verschiedenen Attributen. Die beiden ersten
der oben genannten Hypothesen geben z.B. einen
Zusammenhang zwischen der Organisationsgröße
und der Produktivität bzw. zwischen wiederverwend-
barem Code und der Modulqualität an. Andere Hypo-
thesen enthalten zwar quantitative Angaben, sind
aber dennoch sehr allgemein formuliert. Es ist

beispielsweise nicht klar, welche der in einem Projekt
durchgeführten Tätigkeiten zu den Fehlerbeseiti-
gungsaktivitäten zu rechnen sind (vgl. Hypothese 4).
In weiteren Hypothesen sind exakte Angaben
enthalten, ihre Aussagen weichen aber von den
Untersuchungsergebnissen anderer Autoren teilweise
ab (vgl. Hypothesen 5 und 6).

Diskussion des Ansatzes

Obwohl die Hypothesensammlung interessante
Einblicke in die Praxis der Software-Entwicklung
gewährt, ist sie als Grundlage für die Modellierung
von Software-Projekten in SESAM nur mit einigen
Einschränkungen verwendbar. In der Literatur waren
überwiegend qualitative und nicht – wie erhofft –
quantitative Aussagen zu finden. Qualitative
Aussagen sind aber nicht oder nur schlecht für die
Simulation zu verwenden. Zum einen müssen die
Zusammenhänge zwischen den Attributen exakt
quantifiziert sein, damit eine entsprechende Regel
formuliert und in der Simulation eingesetzt werden
kann. Zum anderen muß festgelegt werden, wie die
Attribute gemessen werden können, durch welche
Metrik ihnen also ein Wert zugeordnet wird.

Betrachtet man beispielsweise die im letzten
Abschnitt genannte Hypothese "Je größer eine
Organisation ist, desto niedriger ist die Produktivität",
so wird deutlich, daß zwar irgendein, aber sicher kein
quantitativer Zusammenhang zwischen den Attri-
buten Organisationsgröße und Produktivität postuliert
wird. Während bei dieser Hypothese wenigstens noch
vorstellbar ist, wie die Attribute bewertet werden
könnten (Organisationsgröße durch die Anzahl der
Mitarbeiter und Produktivität durch LOC pro Tag),
ist beispielsweise für das Attribut Modulqualität
bisher keine einheitliche, validierte Meßvorschrift
bekannt.

Ein weiteres Problem bei der Sammlung von
Hypothesen aus der Literatur besteht darin, daß der
Kontext, in dem die jeweiligen Untersuchungen
stattgefunden haben, verloren geht. Bestimmte
Zusammenhänge gelten z.B. nur unter besonderen
Randbedingungen oder speziellen Voraussetzungen.
Wegen der Reduktion der durchgeführten Untersuch-
ungen auf die einzelnen Aussagen werden solche
Einschränkungen u.U. nicht mehr berücksichtigt.
Dies ist auch eine mögliche Erklärung für die z.T.
stark voneinander abweichenden Aussagen über
denselben Aspekt der Software-Entwicklung (wie
z.B. die Produktivität), die in der Hypothesen-
sammlung enthalten sind.

Trotz der genannten Schwierigkeiten und
Gefahren trägt aber der vorgestellte Ansatz wesent-
lich zur Konservierung und zur Konsolidierung
bisher erzielter Forschungsergebnisse bei. Darüber
hinaus kann mit diesem Ansatz eine erste Grundlage
für die Modellierung geschaffen werden. Die so

entstandenen Modelle müssen dann schrittweise
verbessert und verfeinert werden.

3. Validierung des SESAM-
Modells

Während die im letzten Kapitel vorgestellte Arbeit
die Grundlagen für die Modellierung von Software-
Projekten schaffen sollte und lange vor der ersten
Implementierung des SESAM-Systems stattfand, ist
in der jetzt diskutierten Diplomarbeit das bisher in
SESAM enthaltene Modell als Ausgangsbasis
verwendet worden.

Ziele der Arbeit

In dieser Arbeit sollten die Regeln des in Kapitel 1
skizzierten SESAM-Modells überprüft, also auf
Vollständigkeit, Genauigkeit und besonders auf
Realitätsnähe hin untersucht werden. Dazu sollten
– ähnlich wie in der letzten Arbeit – eine Literatur-
analyse durchgeführt und die relevanten Daten
zusammengestellt und verdichtet werden. Die sich
aus den Daten ergebenden Aussagen sollten mit den
SESAM-Regeln verglichen werden.

Das Literaturstudium wurde durch eine
Praktikerbefragung ergänzt, um diejenigen Regeln
validieren zu können, für deren Prüfung in der
Literatur keine Daten vorhanden waren.

Ergebnisse der Arbeit
Die Ergebnisse dieser Arbeit sind durchaus

ermutigend für die Zukunft. Im Rahmen der
Literaturanalyse sind ingesamt 14 Quellen untersucht
worden. Sie ist nach verschiedenen Aspekten der
Software-Entwicklung gegliedert (z.B. Fehler,
Aufwandsschätzung oder Produktivität der
Mitarbeiter) und liefert eine Fülle quantitativer Aus-
sagen. Angaben, die von den Autoren nicht durch
Zahlen belegt worden sind, wurden in dieser Arbeit
nicht berücksichtigt.

Im Rahmen der Primäranalyse, also der
Befragung, sind elf Praktiker aus acht verschiedenen
Unternehmen interviewt worden, wobei ein auf der
Basis der empirischen Sozialforschung ausgearbei-
teter Fragebogen eingesetzt wurde. Obwohl die
resultierende Datenmenge relativ klein ist, konnte
durch spezifische Fragen zum ersten Mal die
"Realitätsnähe" des SESAM-Modells geprüft werden.

Die auf der Basis der Analyse durchgeführte
Validierung ergab, daß das SESAM-Modell im
großen und ganzen zutreffend ist, jedoch an einigen
Stellen erweitert und verbessert werden muß. Kurz
zusammengefaßt stellte Feest (1993) folgendes fest:

• Die Kosten für Mitarbeiter und Stellenanzeigen
sind im Modell zu niedrig angesetzt worden.

• Die im Modell angenommene Zahl der Fehler, die
durch die Bearbeitung von den Mitarbeitern in die
Dokumente eingefügt werden, ist zu hoch.

• Die Produktivität eines simulierten Mitarbeiters,
gemessen in LOC/Tag, muß deutlich reduziert
werden.

• Die Kommunikation der Mitarbeiter ist zu wenig
berücksichtigt worden.

• Die Motivation der simulierten Mitarbeiter ist zu
grob modelliert worden.

• Die Mitarbeiter benötigen neben Fähigkeit,
Erfahrung und Motivation weitere Persönlich-
keitsmerkmale, damit die von ihnen erbrachte
Leistung realistischer modelliert werden kann.
Nach Meinung des Autors fehlen z.B. Merkmale
wie Kooperations- und Kommunikationsfähigkeit
oder Selbständigkeit.

• Die simulierten Mitarbeiter werden in bezug auf
Fähigkeiten und Erfahrung zu schlecht bewertet.
Im SESAM-Modell wird jedem Mitarbeiter eine
Analyse-, Entwurfs- und Programmiererfahrung
zugeordnet. Zur Prüfung dieser Werte wurden im
Interview Fragen in bezug auf die Fähigkeiten der
Mitarbeiter der jeweiligen Unternehmen einge-
baut. Die Antworten wurden in den im Modell
verwendeten Wertebereich transformiert, um sie
mit den im Modell verwendeten Daten
vergleichen zu können. Das Ergebnis des Ver-
gleichs wird in Abbildung 2 gezeigt.

Abb. 2: Vergleich der Fähigkeiten der Mitarbeiter

Es ist zu erkennen, daß die Fähigkeiten der
SESAM-Mitarbeiter niedrigere Werte aufweisen
als die der "echten" Mitarbeiter in Software-
Projekten.

Diskussion des Ansatzes

Generell sind durch die beschriebene Vorgehens-
weise in diesem Projektstadium die erwarteten
Ergebnisse erzielt worden. Dennoch sind auch zu
diesem Ansatz einige Bemerkungen notwendig.

Der Kritikpunkt, daß durch die Literaturanalyse
die Daten oft aus ihrem ursprünglichen Zusammen-
hang gerissen und die Aussagen, die von den Autoren
aus den Daten abgeleitet werden, häufig recht
spekulativ sind, gilt leider auch für den hier
beschriebenen Ansatz.

Darüber hinaus war zu beobachten, daß sowohl
die Daten aus der Literatur als auch die Angaben der
Praktiker sehr stark streuen. Die in dieser Arbeit
verwendete Datenmenge war aber noch sehr klein, so
daß auch eine statistische Auswertung keine gültigen
Resultate gewährleisten kann. Außerdem ist bei der
Durchführung der Interviews deutlich geworden, daß
vielfach in den Unternehmen keine konkreten Daten
vorlagen, sondern die angegebenen Werte grob
geschätzt worden sind, so daß einige Zweifel
hinsichtlich der Zuverlässigkeit der Daten angebracht
sind.

Trotz der genannten Probleme konnte durch die
Arbeit aber gezeigt werden, daß es mit diesem Ansatz
grundsätzlich möglich ist, die SESAM-Modelle zu
validieren. Positiv ist auch, daß Kenntnisse einer
anderen Fachrichtung für eine empirische Unter-
suchung in der Informatik genutzt worden sind.

4. Untersuchung realer Software-
Projekte

Die letzte, hier präsentierte Arbeit wurde ebenfalls
unabhängig von SESAM durchgeführt. Es handelt
sich dabei um eine rein empirische Untersuchung der
"Realität der Software-Erstellung" in einer konkreten
industriellen Entwicklungsumgebung.

Diese Arbeit bildet gewissermaßen das Gegen-
stück zu der in Kapitel 2 beschriebenen, während die
in Kapitel 3 vorgestellte Arbeit beide Ansätze vereint.

Ziele der Arbeit

Ziel der Arbeit war, in einer "echten" Software-
Entwicklungsumgebung Daten zu erheben, um
Aussagen über die beobachteten Projekte treffen zu
können und Gesetzmäßigkeiten zu erkennen.

Dafür sollte zunächst bestimmt werden, welche
Attribute welcher Objekte des Prozesses überhaupt
für seine Beurteilung relevant sind und durch welche
Metriken die Attribute möglicherweise bewertet
werden können.

Auf dieser Grundlage sollten die konkreten
Projektdaten erhoben und für eine Analyse des
Entwicklungsprozesses eingesetzt werden.

Ergebnisse der Arbeit

Im Rahmen der Arbeit wurde ein Schema mit den
wichtigen Objekten und Beziehungen und den sie
charakterisierenden Attributen erstellt. Für die
Attribute ist definiert worden, durch welche Metriken
sie bewertet werden können.

Das Schema ist als Anleitung für die eigentliche
Datenerhebung im Unternehmen verwendet worden.
In der Abteilung wurden elf (überwiegend
abgeschlossene) Projekte untersucht, in denen von
meist einem Bearbeiter kleine Datenbank-
Applikationen erstellt worden sind.

Die resultierenden Daten wurden zunächst für die
Beschreibung der einzelnen Projekte verwendet und
dann verdichtet, um damit die "typische Vorgehens-
weise" bei der Software-Entwicklung in der
Abteilung zu beschreiben.

Die Analyse der kumulierten Projektdaten hat u.a.
folgendes ergeben (Drappa, 1993):

• Für die Programmierung sind sehr hohe Sprachen
und leistungsfähige Werkzeuge (Code-
Generatoren) eingesetzt worden; es gab jedoch in
keiner anderen Phase Unterstützung durch
Methoden oder Tools.

• Es ist praktisch keine Dokumentation erstellt
worden, auch keine Benutzerhandbücher für die
Applikationen.

• Es waren keine Richtlinien zum Vorgehen bei der
Software-Entwicklung vorhanden.

• Das gesamte Management der Projekte wurde
sehr informal betrieben; es gab kaum Unterlagen
zur Projektplanung und daher auch wenig
Termin- und Fortschrittskontrollen.

• Der Aufwand entfiel trotz der in der
Implementierung verwendeten Hilfsmittel
hauptsächlich auf die Codierphase.

Die Datenerhebung ermöglichte auch die Ableitung
einiger Gesetzmäßigkeiten für die untersuchte
Abteilung. Durch die Erfassung des in die Applika-
tionen investierten Aufwands und die Analyse des
dafür erzeugten Codes konnten beispielsweise Aus-
sagen über die durchschnittliche Produktivität der
Mitarbeiter der Abteilung getroffen werden. Dabei
wurde der (sehr hohe) Wert von fast 2000
LOC/Mitarbeitermonat berechnet, der durch den
Einsatz eines Code-Generators und weitere spezielle
Randbedingungen in der Abteilung erklärt werden
konnte.

Auf der Grundlage der Datenauswertung wurden
schließlich Vorschläge für Veränderungen des
Entwicklungsprozesses ausgearbeitet und ein
Metrikprogramm zur zukünftigen Steuerung und
Analyse der Software-Projekte des Unternehmens
erstellt.

Diskussion des Ansatzes

Die Erhebung und Verwendung echter Projektdaten
für die Modellierung in SESAM ist prinzipiell ein
wichtiger Ansatz, allerdings sind auch hier einige
Schwierigkeiten aufgetreten.

In dem untersuchten Unternehmen war eine sehr
spezielle Entwicklungsumgebung vorhanden (Einsatz
von 4-GL, Code-Generator), so daß nur wenige der
bekannten Metriken, insbesondere für die Bewertung
des Codes, einsetzbar waren. Um überhaupt zu
Aussagen zu kommen, mußten z.T. neue Maße
definiert werden.

Daten über den Software-Entwicklungsprozeß
waren in der Abteilung so gut wie nicht verfügbar.
Deshalb mußte ebenfalls die Befragungstechnik
eingesetzt werden, wobei die Bearbeiter die Werte
rückblickend geschätzt haben. Die resultierenden
Daten sind daher teilweise widersprüchlich und
ungenau gewesen.

Durch die spezielle Entwicklungsumgebung sind
darüber hinaus die Aussagen kaum verallgemeinerbar
und damit auf andere Umgebungen übertragbar
gewesen. Diese Erkenntnis hat allerdings auch zu der
Einsicht geführt, daß nicht das typische Software-
Projekt modelliert werden kann, sondern verschie-
dene Umgebungen auch verschiedene Modelle mit
jeweils spezifischen Regeln erfordern.

5. Fazit und Ausblick

Modelle sind grundsätzlich entweder Abbilder von
etwas oder Vorbilder für etwas. Nach Ludewig
(1989) weisen Modelle immer die folgenden drei
Merkmale auf:

• das Abbildungsmerkmal, d.h. zum Modell gibt es
ein Original, das wirklich vorhanden, geplant oder
fiktiv sein kann,

• das Verkürzungsmerkmal, d.h. daß im
allgemeinen nicht alle Attribute eines Originals,
sondern nur die für einen bestimmten Zweck
relevanten erfaßt werden, sowie

• das pragmatische Merkmal, d.h. das Modell kann
unter bestimmten Bedingungen und für bestimmte
Fragestellungen das Original ersetzen.

Bezogen auf die hier diskutierten Modelle von
Software-Projekten in SESAM, hat sich durch die
Arbeiten deutlich gezeigt, worin die Problematik der
Modellbildung speziell besteht.

• Es gibt nicht d a s eine Original, nicht das
Software-Projekt für das ein Modell erstellt und
anschließend validiert werden kann (Abbildungs-
merkmal). Vielmehr hat sich gezeigt, daß
zumindest jede Entwicklungsumgebung ein
eigenes Modell erfordert, in dem die spezifischen
Gegebenheiten berücksichtigt werden.

• Es ist bisher nicht klar, welches die wesentlichen
Faktoren sind, die ein Projekt beeinflussen. Daher
ist es schwierig, diejenigen Attribute des
Originals (des Software-Projekts) zu identifi-
zieren, die auch im Modell enthalten sein müssen,
damit die wesentlichen Aspekte der Realität in
das Modell abgebildet werden können
(Verkürzungsmerkmal).

• Es ist schwierig zu entscheiden, wann ein Modell
detailliert genug ist, um seinen Zweck, das
Sammeln von Projekterfahrung für eine
bestimmte Kategorie von Software-Projekten,
erfüllen zu können (pragmatisches Merkmal).

Die genannten Probleme sollen durch weitere,
vornehmlich emprische Arbeiten, zumindest in
Ansätzen gelöst werden. Dabei sind im wesentlichen
zwei Vorgehensweisen denkbar. Auf der Grundlage
der in einer speziellen Entwicklungsumgebung
erhobenen Daten könnten unternehmensspezifische
Modelle erstellt werden, die dann von den
Mitarbeitern des Unternehmens durch Benutzung
erprobt werden. Dadurch könnten die Modelle
schrittweise verfeinert und an die Realität angepaßt
werden.

Um sich aber nicht nur unternehmensspezifische
Modelle zu konzentrieren, wäre es darüber hinaus
denkbar, umfassende Untersuchungen in vielen
verschiedenen Unternehmen durchzuführen. Auf
diese Weise könnten wahrscheinlich allgemeingültige
Regeln identifiziert werden, die schließlich die
Grundlage aller SESAM-Modelle bilden und nur
noch um unternehmensspezifische Regeln ergänzt
werden müßten.

Literatur

Deininger, M., Schneider, K. (1994): Teaching
Project Management by Simulation. Procee-
dings of the 7th Conference on Software
Engineering and Education (CSEE) , San
Antonio, Januar 1994, pp. 227-242.

Drappa, A. (1993): Konzeption und Einführung
eines Metrikprogramms in einem Software-
Projekt. Diplomarbeit, Univ. Stuttgart, 1993.

Feest, R. (1993): Validierung von SESAM-
Modellen anhand von Aufwandsschätzver-
fahren für Software-Projekte und von
Praktikerbefragungen. Diplomarbeit, Univ.
Stuttgart, 1993.

Ludewig, J. (1989): Modelle der Software-Entwick-
lung - Abbilder oder Vorbilder? Softwaretech-
nik-Trends, Oktober 1989, pp. 1-12.

Schneider, K. (1993): Object-Oriented Simulation of
the Software Development Process in SESAM.
Proceedings of the Object-Oriented Simu-
lation Conference (OOS ´93), Teil der Western
Simulation Multiconference, San Diego, Januar
1993.

Utz, A. (1992): Sammlung und Darstellung von
Hypothesen über Software-Projekte. Diplom-
arbeit, Univ. Stuttgart, 1992.

Teil 6

SESAM und die Lehre
Marcus Deininger

Zusammenfassung

In der Software Engineering-Ausbildung haben
Studenten selten die Gelegenheit, Erfahrungen bei der
Leitung von Projekten zu sammeln – dies ist ein
schwerwiegender Mangel in der Ausbildung zum
„Software Ingenieur“. In der Software Engineering-
Ausbildung erschwert das Fehlen der Erfahrung sehr
oft das Verständnis für die Probleme der Software-
Entwicklung, im späteren Berufsleben könnten viele
Einstiegsschwierigkeiten vermieden werden.

In diesem Beitrag wird gezeigt, wie die Software
Engineering-Ausbildung mit Hilfe von Simulation
unterstützt werden kann. Studenten durften ein
simuliertes Projekt führen. Um willkürliche Effekte
auszuschalten und zu nachvollziehbaren Ergebnissen
zu gelangen, wurde für die Simulation ein sehr
einfaches, mathematisches Simulationsmodell ge-
wählt. Im Verlauf der Simulation stellte sich heraus,
daß dieses Modell mehr als ausreichend war: Viele
bekannte Projekt-Effekte stellten sich während der
Simulation ein. Die „Projekt Manager“ machten
typische Fehler, die zu plausiblen Effekten im Projekt
führten. Am Ende der Projekte hatten Studenten ein
besseres Verständnis für die Aufgaben eines
Projektleiters, die Tutoren ein besseres Verständnis
für die Simulation von Software-Projekten.

Die Simulation war eine Phase des Projekts
SESAM. SESAM soll einen allgemeinen Rahmen zur
Simulation von Software-Projekten liefern. Um den
Rahmen mit einem Modell zu füllen, wurde das in
diesem Beitrag beschriebene Modell entwickelt und
zunächst „trocken“, d.h. ohne Simulator, in einem
Fachpraktikum durchgespielt.

1. Einleitung

In der Software Engineering-Ausbildung an einer
Universität stehen wir vor folgendem Problem: Wir
lehren die Grundlagen des Software Engineerings;
Studenten haben aber praktisch keine Gelegenheit,
dieses Wissen in einem echten Projekt anzuwenden.
Sie können selten während ihres Studiums an einem
Projekt teilzunehmen und wenn, dann nicht als
Projektleiter.

In diesem Betrag beschreibe ich die Erfahrungen,
die wir während eines Fachpraktikums an unserer
Abteilung mit der Simulation von Software-Projekten
gesammelt haben. Dieser Ansatz erlaubt uns,

Projektleiter-Erfahrungen innerhalb der beschränkten
Möglichkeiten der Universität zu vermitteln. Statt
eines echten Projekts waren Studenten Leiter eines
simulierten Projekts, das sie erfolgreich zu Ende
bringen sollten. Das zugrunde liegende
Simulationsmodell war sehr einfach, erlaubte aber
trotzdem den gesamten Software-Entwicklungsprozeß
abzudecken.

2. Das Fachpraktikum innerhalb
des Projekts SESAM

Das Fachpraktikum, das in diesem Beitrag be-
schrieben ist, war eine Phase unseres Projekts
SESAM (Software Engineering Simulation durch
Animierte Modelle). Wir haben über SESAM in
Ludewig et al. (1992), Schneider (1993), Schneider
(1993a), Deininger/Schneider (1994) und
Schneider/Deininger (1994) ausführlich berichtet, ich
werde deshalb nur einen kurzen Überblick geben und
das Fachpraktikum einordnen.

2.1 Das Projekt SESAM

SESAM soll einen allgemeinen Rahmen zur
Simulation von Software-Projekten liefern. Teilziele
von SESAM sind:

• Dynamische und animierte Modelle von Software-
Entwicklungsprojekten.

• Graphische Editoren, um diese Modelle zu
formulieren, zu speichern und zu ändern.
(SESAM-Modelle müssen leicht änderbar sein, um
leicht an neue Situationen angepaßt werden zu
können.)

• Geeignete Simulationswerkzeuge für diese
Modelle.

• Ein graphisches interaktives Abenteuerspiel, das
es Studenten ermöglicht, ein Projekt ohne Tutor
durchzuspielen.

Bis zum Sommer 1992 waren drei Prototypen
fertiggestellt, mit denen wir verschiedene Aspekte der
Simulation untersucht haben. Nächstes Ziel war die
Entwicklung eines Modells , das zur Simulation
eingesetzt werden konnte. Da zu diesem Zeitpunkt
Notation und Mächtigkeit der Modelle noch offen
war, machte es keinen Sinn dafür einen weiteren
Simulator-Prototyp zu entwickeln. Statt dessen haben
wir uns entschlossen, zunächst ein sehr einfaches

Modell „trocken“, d.h. ohne Simulator, in einem
Fachpraktikum durchzuspielen.

Das Simulationsmodell war erfolgreicher als wir es
zunächst erwartet hatten:

• Es wurden eine ganze Reihe typischer Projekt-
effekte evoziert, die auch in wirklichen Projekten
dem Projektleiter das Leben schwer machen.

• Die Studenten gewannen einen Eindruck von den
Sorgen und Nöte eines Projektleiters, die Tutoren
– und damit die Abteilung Software Engineering –
gewannen Erfahrung in der Modellierung und
Simulation von Software-Projekten.

Damit haben wir unser ursprüngliches Ziel, nämlich
den prinzipiellen Aufbau geeigneter Simulations-
modelle für SESAM, erreicht. Darüber hinaus haben
wir mit diesem einfachen Modell eine Möglichkeit
geschaffen, solche Simulationen auch von Hand
durchzuführen und erfolgreich im Unterricht ein-
zusetzen.

2.2 Verwandte Arbeiten

Die Simulation von Software-Projekten ist keine neue
Idee. Abdel-Hamid(1991) beschreibt eine Software-
Projekt-Simulation, die auf System Dynamics basiert.
Anders als unser Modell ist dieses Modell eine
„closed loop simulation“, d.h. auch die Projekt-
Manager werden simuliert. Der Benutzer der
Simulation beobachtet nur den Simulationsverlauf,
kann aber nicht mit dem System interagieren. Zu
Beginn wird der Anfangszustand eingegeben, danach
simuliert der Simulator den Projektverlauf, das
Ergebnis der Simulation kann am Ende des Laufs
begutachtet werden. Im Gegensatz dazu haben wir
eine „open loop simulation“: in der Simulation-
sumgebung können die Spieler während der
Simulation Entscheidungen treffen und eingreifen.

McKeeman (1989) berichtet über ein Tutor-
Programm zur Schulung von Software-Entwicklern.
Das Programm hilft Entwicklern die Prinzipien von
Reviews zu lernen. Das Programm hat Spielcharakter,
wie unsere Simulation, beschränkt sich aber auf einen
kleinen Ausschnitt des Entwicklungsprozesses.

Einen Schritt weiter, aber auf einem ganz anderen
Gebiet, geht Vester (197). Er hat ein Spiel namens
„Ökolopoly“ entwickelt. Der Spieler ist Präsident
eines fiktiven Landes und hat die Aufgabe, die
ökonomischen und ökologischen Probleme dieses
Landes zu lösen. Dazu stehen ihm eine Reihe von
Entscheidungsmöglichkeiten und Zügen zur
Verfügung. Auch hier sind die Abhängigkeiten mit
Hilfe von System Dynamics modelliert. Das
Grundprinzip, also die offene Schleife und ein
interagierender Spieler, ist dasselbe wie unseres.

3. Software Engineering-
Ausbildung an der Universität
Stuttgart

Die Software Engineering-Ausbildung an der
Universität Stuttgart zielt darauf ab, Studenten das
nötige Wissen zu vermitteln, damit sie später
erfolgreich an Software-Projekten teilnehmen oder
diese leiten können. Dieses Ziel verfolgten wir
zunächst mit den üblichen Mitteln: Auf der Basis der
Bücher von Fairley (1986) und Sommerville (1989)
haben wir eine Vorlesung angeboten, die die
Grundlagen des Software Engineerings vermittelt. In
dieser Vorlesung werden zunächst die grundlegenden
Prinzipien des Software Engineerings diskutiert;
Themen sind u.a. Projekt-Management, der Software-
Life-Cycle, Qualitätssicherung und Software-Metri-
ken. Im zweiten Teil der Vorlesung werden, entlang
der Phasen des klassischen Wasserfall-Modells, die
wesentlichen Aktivitäten, Methoden, Notationen und
Ergebnisse dieser Phasen diskutiert. Am Ende der
Vorlesung sollten die Studenten die wesentlichen
Konzepte des Software Engineerings kennen.

Diese Vorlesung wird durch begleitende Übungen
ergänzt. In diesen Übungen werden die in der
Vorlesung vorgestellten Konzepte in Fall-Studien und
Beispielen eingesetzt. Allerdings können mit solchen
Übungen nur einzelne Schwerpunkte vertieft werden,
sie sind kein Ersatz für die Mitarbeit in einem Projekt.
Dieser Mangel führte dazu, daß wir die folgenden
Praktika angeboten oder bestehende Praktika nach
unseren Vorstellungen umgestaltet haben:

• Software-Praktikum. In einer Gruppe von 3-4
Personen führen Studenten ein kleines, aber
vollständiges Projekt durch. Das Projekt beginnt
mit einer Aufgabenstellung, zu der nacheinander
Spezifikation, Entwurf und Code entwickelt
werden müssen. Das Projekt dauert ca. ein halbes
Jahr. Gruppenleiter sind Mitarbeiter unserer
Abteilung. Am Ende haben die Studenten einen
vollständigen Software-Life-Cycle mitgemacht
und zum ersten Mal Erfahrungen in Projektarbeit
gemacht.

• Fachpraktikum „Software Engineering“. Im
Software-Praktikum können Studenten ein Projekt
vom Standpunkt des Analytikers und
Programmierers miterleben. Im Fachpraktikum
„Software Engineering“ erhalten sie zusätzlich
einige Managementaufgaben: neben der
Aufgabenstellung bekommen sie einen Zeitplan,
der ihnen die Phasen und Meilensteine vorgibt.
Die Durchführung des Projekts im Rahmen dises
Plans liegt ganz in ihren Händen, insbesondere die
Planung und Durchführung von Reviews, die
Aufteilung in Arbeitspakete oder die Festlegung
von Schnittstellen.

Veranstaltung Teilnehmer Aufwand der Studenten

Vorlesung „Software Engineering“ 120 Studenten, 5. - 7. Semester 15 Wochen, 4 h / Woche

Übungen zur Vorlesung
„Software Engineering“

120 Studenten, 5. - 7. Semester Begleitend zur Vorlesung,
zweiwöchentlich,
jeweils 2 h

Software Praktikum ca 10 Gruppen à 3-4 Studenten,
3. Semester

20 Wochen,
ca. 4 h / Woche

Fachpraktikum
„Software Engineering“

ca 6 Gruppen à 3-4 Studenten,
7. Semester

12 Wochen,
ca. 8 h / Woche

Fachpraktikum
„Projekt Management“

ca 5 Gruppen à 2 Studenten,
7. Semester

12 Wochen,
ca. 8 h / Woche

Tab. 1: Überblick über die Lehraktivitäten unserer Abteilung. (Nicht enthalten sind
Vertiefungsvorlesungen zu speziellen Gebieten des Software Engineerings)

Um den Schwerpunkt auf die Planung und
Organisation legen zu können, sind die Aufgaben,
die bearbeitet werden, eher einfach. Allerdings
werden nach jedem Meilenstein die Projekt-
ergebnisse (Spezifikation, Entwurf und Module)
zyklisch zur nächsten Gruppe weitergegeben. Dies
führt dazu, daß die Studenten auch mit fremden
Dokumenten arbeiten müssen, was ein gutes
Gefühl für die Qualität der Dokumente schafft.

Am Ende der Projekte haben die Studenten eine
ganze Reihe von Problemen, sowohl aus Sicht der
Entwickler als auch aus Sicht des Leiters, kennen-
gelernt: knappe Zeitpläne, die Auswirkungen
fehlerhafter Spezifikationen, die Effekte unzu-
reichender Schnittstellendefinitionen, usw.

• Fachpraktikum „Projekt Management“. Haupt-
nachteil der vorigen Praktika (aus Sicht unserer
Abteilung) waren zwei sich widersprechende
Ziele: Studenten sollten einerseits Erfahrungen als

Projekt-Mitarbeiter sammeln (was sie nach dem
Software-Praktikum bereits haben), andererseits
sollten sie Erfahrungen als Projektleiter sammeln
(etwas, was sie noch nie zuvor gemacht haben).
Um beide Erfahrungen zu ermöglichen, waren die
Projekte einfach. Allerdings evozierten solche Pro-
jekte nicht alle von uns gewünschten Effekte. Wir
haben uns deshalb entschlossen, ein neues Prakti-
kum ins Leben zu rufen, bei dem sich die Stu-
denten vollständig auf das Projekt-Management
konzentrieren können, aber keine Entwicklungs-
arbeit leisten sollten – die sollte von anderen
gemacht werden. Damit sollte es möglich sein
größere und komplexere Projekte zu bearbeiten.

4. Randbedingungen des
Fachpraktikums

4.1 Ziele des Fachpraktikums

Das Hauptziel des Fachpraktikums war, den Studen-
ten „echte“ Projektleiter-Erfahrungen zu vermitteln,
ohne daß sie irgendwelche Entwickleraktivitäten
durchführen mußten. Sie sollten soviel wie möglich
an Software Engineering-Wissen einbringen und
einsetzten können, insbesondere sollten sie die
folgenden Effekte kennenlernen:

• Planung ist unerläßlich für ein Software-Projekt!
Ein fehlendes oder mangelhaftes Prozeßmodell
führt zu einem mangelhaften Produkt. Die
Studenten sollten lernen, zu planen und ihre
Planung dem Projektverlauf anzupassen.

• Quantität ist nicht Qualität! Erhöhter Aufwand
führt zu größeren Produkten, aber nicht notwendi-

gerweise zu mehr Qualität. Die Produkt-Qualität
wird sich nur verbessern, wenn ausdrücklich Qua-
litätssicherung betrieben wird. Fehlende Quali täts-
sicherung führt zu Inkonsistenzen zwischen den
Dokumenten der einzelnen Phasen.

• Die beste Möglichkeit der Qualitätssicherung (vor
allem in den frühen Phasen) sind Reviews!
Allerdings müssen Reviews gut vorbereitet wer-
den, um erfolgreich zu sein. Erfolgreiche Reviews
finden viele Fehler.

• Die Wünsche des Kunden sollen erfüllt werden
und nicht, was sich die Entwickler an Stelle des
Kunden wünschen würden!

• Die Fähigkeiten der Entwickler sollen realistisch
eingeschätzt werden – sie können keine Wunder
vollbringen!

• Und schließlich: Der Projektleiter ist allein für den
Erfolg oder Mißerfolg des Projekts verantwortlich
und niemand sonst!

4.2 Organisatorischer Rahmen

Das Fachpraktikum fand während eines Sommer-
semesters statt, damit standen zwölf Wochen zur
Verfügung. Für Studenten ist ein Aufwand von acht
Stunden pro Woche für eine Veranstaltung dieser Art
vorgesehen.

Dabei sollten die folgenden Rahmenbedingungen
eingehalten werden:

• Alle Teilnehmer sollten sich ausschließlich auf die
Projektleitung konzentrieren können; es sollte kein
Aufwand für Software-Entwicklung getrieben
werden.

• Die Projektleiter sollten innerhalb der zur Ver-
fügung stehenden zwölf Wochen alle wesentlichen
Erfahrungen eines Projektleiters machen.

Für ein reales Projekt waren diese Forderungen
nicht vereinbar.

• Ein reales Projekt, das in zwölf Wochen durch-
führbar ist, ist zu klein, um die von uns ge-
wünschten Probleme zu verursachen.

• Ein größeres Projekt würde innerhalb der zwölf
Wochen nicht über die frühen Phasen hinaus-
kommen und damit ebenfalls nur einen Teil der
Probleme verursachen.

• Ein echtes Projekt zu Übungszwecken stand nicht
zur Verfügung, und würde von uns nicht genügend
kontrolliert werden können.

• In einem echten Projekt müßte jemand die
Entwicklerarbeit tun.

• Wir hatten ber weder die Zeit noch die Mittel,
echte Projekte für dieses Praktikum durchzu-
führen.

Um innerhalb dieser Bedingungen zu arbeiten, haben
wir uns entschlossen ein Projekt zu simulieren. Eine
Simulation erfüllt alle die oben aufgestellten
Forderungen. Die Simulation sollte offen sein, d.h. die
Spieler sollten während der Simulation ins Geschehen
eingreifen können. Simuliert werden sollten alle
Entwicklungsaktivitäten (und damit natürlich auch die
Entwickler) und die entstehenden Ergebnisse (also die
Software). Die Studenten sollten lediglich als
Manager in das Projekt eingreifen können und ihren
Mitarbeitern Anweisungen erteilen können.

5. Elemente der Simulation

5.1 Das simulierte Projekt

Alle Projektleiter wurden unabhängig voneinander
dem gleichen Projekt zugeteilt. Sie sollten für einen
externen Kunden ein Scheckschreibungsprogramm
entwickeln. Zu Beginn erhielten die Projektleiter eine
vierseitige Analyse über das Projekt. Diese Analyse
beschrieb die wesentlichen funktionalen Anforder-
ungen des zu entwickelnden Produkts. Die Analyse

war das einzige echte Stück Software, das die Spieler
zu sehen bekamen – die andere Software, wie z. B.
der Code wurde nur simuliert.

Die Analyse entstammte einem Buch über
Kostenschätzungsmethoden (Knöll 1990). Sie war ein
Beispiel für die Anwendung der Function Point-
Methode. Diese Methode lieferte für unser
Beispielprojekt 234 Function Points, einen erwarteten
Aufwand von 17 Mitarbeiter Monaten und eine Dauer
von 7 Monaten. Keine dieser Informationen wurde
den Spielern gegeben. Die Spieler erhielten einen
knapperen Zeitplan: Das Projekt sollte in 6 Monaten
mit einem geplanten Budget von 250.000.- DM
abgeschlossen werden. Insgesamt war ein Festpreis
von 400.000,- DM für das Produkt ausgemacht. Diese
Vorgaben waren von einem „anonymen“ Management
gesetzt worden. Sowohl Zeit als auch Budget waren
von vorne herein etwas zu knapp gesetzt, um die
Spieler im Simulationsverlauf zu Kompromissen zu
zwingen.

5.2 Der Simulationsrahmen

Die Simulation mußte innerhalb von zwölf Wochen
durchgeführt werden. Die Studenten konnten pro
Woche einen Zug machen. Ein Zug umfaßte die die
folgenden Bestandteile:

• Eine Liste aller Aktionen (einschließlich ihrer
Dauer), die in dem simulierten Projekt
durchgeführt werden sollten,

• Erläuterungen zu den Aktionen,

• die erwarteten Ergebnisse der Aktionen

• und alle Dokumente, die eine echter Projektleiter
im entsprechenden Projekt erstellen würde, wie
Zeitpläne, Mitarbeiterbewertungen, usw.

Im Gegenzug erhielten die „Manager“ zwei Tage
später als Ergebnis alle Informationen und
Dokumente, die ein echter Projektleiter an ihrer Stelle
erhalten würde; insbesondere wurden ihnen
Kommentare und Bemerkungen ihrer simulierten
Mitarbeiter mitgeteilt – aber keine Software!

Zu Beginn der Simulation war von uns noch nicht
festgelegt worden, welche Aktionen durchgeführt
werden dürfen. Jede echte Projektleitertätigkeit sollte
erlaubt sein, verboten waren lediglich „Wunder“, wie
„Ich stelle einen Assistenten ein, der das Projekt
führen wird“. Trotz dieser unbeschränkten
Möglichkeiten, wurden tatsächlich nur die folgenden
Aktionen durchgeführt:

• Einer oder mehrere der simulierten
Projektmitarbeiter sollen eine Aufgabe ausführen.
Mögliche Aufgaben waren:

° Anforderungssanalyse schreiben

° Architekturentwurf schreiben

° Modulentwurf schreiben

° Modul codieren

° Benutzerhandbuch schreiben

° Modultest vorbereiten und ausführen

° Integrationstest vorbereiten und ausführen

° Systemtest vorbereiten und ausführen

° Review vorbereiten

° Dokument reviewen

° die in Tests oder Reviews gefundene Fehler
korrigieren

• Der Kunde soll in eine Aktion einbezogen werden
(an einem Review teilnehmen, an einer
Besprechung teilnehmen, an einem Geschäftsessen
teilnehmen, usw.).

• Informationen über verfügbare Schulungen
erfragen.

• Mitarbeiter zu einer der Schulungen schicken.

• Informationen über verfügbare Software-
Werkzeuge erfragen.

• Ein Werkzeug kaufen.

• Einen Berater konsultieren.

• Eine Stelle ausschreiben.

• Einen Bewerber einstellen oder einen Mitarbeiter
entlassen.

• Mit dem Management oder dem Kunden ein
höheres Budget oder Verschiebung des
Projektendes aushandeln.

• Eine Reihe von Social Events, von einer
Einladung zum Essen bis zu einer Wochenendreise
für alle Mitarbeiter. (Diese Aktionen verbesserten
vor allem die Motivation der Mitarbeiter, hatten
aber keinen direkten Einfluß auf en Fortgang der
Simulation.)

Im Gegenzug erhielten die Spieler folgende
Informationen:

• Alle Aktivitäten hatten zunächst ein quantitatives
Ergebnis. Den Spielern wurde mitgeteilt, wie viele
Seiten Spezifikation, wie viele Zeilen Code
geschrieben wurden, wie viele Fehler in einem
Review gefunden wurden. Da sie keine weitere
Software erhielten, mußten sie ihre
Entscheidungen allein auf diesen Projektdaten
begründen.

• Auf Anfragen erhielten die Spieler Prospekte für
Schulungen. Es gab Prospekte zu den folgenden
Schulungsthemen: COBOL, Ada, Test, Struk-
turierte Programmierung, Structured Design und
Kostenschätzung. Die Prospekte wurden nur
verschickt, falls ein Spieler eine entsprechende
Anforderung machte. Wurde einer der simulierten
Mitarbeiter auf eine Schulung geschickt, ver-
besserten sich seine Fähigkeiten in dem ent-
sprechenden Gebiet.

• Auf Anfrage wurden Prospekte für Software-
Werkzeuge zurückgegeben: drei verschiedene
CASE-Tools, ein Test-Werkzeug, eine Standard-

Datenbank, Ada- und COBOL-Compiler. So wie
bei den Schulungen erhöht ein Werkzeug die
Produktivität – nach einer angemessenen
Schulungszeit.

• In einer persönlichen Beratung konnten sich die
Manager selbst beraten lassen (alle anderen
Schulungen waren nur für die simulierten
Mitarbeiter). Die Berater wurden von uns
dargestellt. In der Beratung konnten die Spieler
Hinweise auf den Spielverlauf bekommen –
natürlich zu einem angemessenen (simulierten)
Preis.

• Bewerbungsschreiben von Stellenanwärtern.

• Die Spieler wurden immer über alle aktuell
angefallenen Kosten informiert, sie mußten aber
selbst die Kosten verfolgen und den Überbllick
behalten.

Alle diese Informationen wurden immer in einen
kurzen Text gepackt, um so der Simulation einen
lebendigeren Anstrich zu geben.

6. Das Simulationsmodell

Als Basis für die Simulation wurde ein einfaches
mathematisches Modell verwendet. Dieses Modell
wurde manuell, nur unterstützt von einem
Spreadsheet-Programm ausgeführt. Ein solches
Modell erlaubte nachvollziehbare und objektive
Reaktionen, die konsistent über alle Simulationen
waren. Das Modell sollte so einfach wie möglich sein,
nur so würde das Ergebnis überprüfbar bleiben. Eine
solche Überprüfung ist die Voraussetzung für
Validierung und Vermeidung von Berechnungs-
fehlern.

Ausgangspunkt für das Modell waren die
folgenden Zielkriterien für ein erfolgreiches Software-
Produkt. Nach Frühauf et al. (1988) ist ein Projekt
erfolgreich, wenn

• das Projekt in der vorgegebenen Zeit durchgeführt
wird,

• das Projekt mit der vorgegebenen Budget
durchgeführt wird,

• am Ende sowohl Kunde als auch Mitarbeiter
zufrieden sind und

• das fertige Produkt die geforderte Qualität besitzt.

6.1 Das statische Simulationsmodell

Diese Ziele wurden in unserem Modell folgender-
maßen repräsentiert:

Zeit und Budget

Die Kosten aller Aktionen waren zuvor festgelegt
worden. Während der Simulation mußten Zeit und
Geld einfach aufaddiert werden.

Elementare Anforderungen eines
Dokuments [Software Quanten]

Aufwand [Mitarbeiter-Monate]

Anzahl der korrekt
übertragenen SQen

Redundante SQen

Fehlende SQen

SQen des zugrunde
liegenden Dokuments
(Baseline)

Abb. 1: Zusammenhang zwischen Aufwand und korrekt übertragenen,
insgesamt erzielten, fehlenden und redundanten Software-Quanten

Motivation und Zufriedenheit

Alle Aktionen hatten Auswirkungen auf die Motiva-
tion und Zufriedenheit von Projekt-Mitarbeitern und
Kunde. Die Motivation wurde durch sog. „Motiva-
tions-Punkte“ gezählt. Jeder Mitarbeiter und der
Kunde hatten ein eigenes Motivations-Konto, auf das
einfach Punkte aufaddiert oder abgezogen wurden.
Produktqualität

Während die Simulation von Zeit, Geld und
Motivation relativ einfach war, standen wir bei der
Verfolgung der Produktqualität vor einem großen
Problem. Da wir keine echten Dokumente erzeugen
wollten, mußten wir den Inhalt der Dokumente
simulieren.

Alle Metriken, die wir dazu untersucht haben,
messen nur den Umfang oder zählen die Fehler auf
die eine oder andere Weise: COCOMO (Boehm 1981)
schätzt die Anzahl der Instruktionen im späteren
Produkt, Albrecht (1983) zählt die Function Points der
Anforderungsanalyse. Die Zyklomatische Komplexi-
tät (McCabe 1976) zählt die Anzahl der Verzweigun-
gen im Quellcode. Die Metriken, die im IEEE
Standard 1045 (IEEE 1993) verzeichnet sind, zählen
die Dokumenten-Seiten oder das Verhältnis von Sei-
ten zu Graphiken in nicht-formalen Dokumenten. Die
Fehler-Metriken des IEEE Standards 982.1 (IEEE
1988) zählen die Fehler klassifiziert nach ihrem

Entstehungszeitpunkt, aber geben keinen Hinweis auf
die Natur der Fehler.

Wir mußten deshalb eine neue Metrik zur Be-
schreibung des Dokumenteninhalts entwickeln. Dabei
gingen wir von folgendem Modell aus: Wesentlich für
ein Software-Projekt ist es, daß die ursprünglichen
Anforderungen des Kunden über die Spezifikation
und den Entwurf in das endgültige Produkt übertragen
werden. Bei dieser Übertragung dürfen keine
Anforderungen verloren gehen, es dürfen aber auch
keine unnötigen Anforderungen hinzugefügt werden.
Fehlende Anforderungen führen zur Unzufriedenheit
des Kunden, unnötige Anforderungen verursachen
unnötigen Aufwand.

Diese Vorstellung ermöglicht uns allgemein die
Qualität von Dokumenten, aber auch ihre quantitative
Evolution zu modellieren:

• Ein Dokument besteht aus einer Menge von
elementaren Anforderungen; diese Anforderungen
werden durch sog. „Software-Quanten“ (SQen)
dargestellt. Ein Software-Quant repräsentiert eine
nicht mehr teilbare, elementare Information einer
Software.

• Der Inhalt jedes Dokuments kann durch Software-
Quanten modelliert werden. Dabei „manifestieren“
sie sich in jedem Dokument anders: in der
Spezifikation beispielsweise in einem Satz, im

entdeckt Fehler, die auf dieser
Ebene gemacht wurden

Zeit

Anforderungs-
analyse

Architektur-
entwurf

Modul-
entwurf

Code

Installation

Systemtest

Integration

Modultest

entdeckt Fehler, die auf dieser
Ebene gemacht wurden

entdeckt Fehler, die auf dieser
Ebene gemacht wurden

entdeckt Fehler, die auf dieser
Ebene gemacht wurden

Abstraktionsebene

Abb. 2: Die Badewannenkurve

Entwurf durch eine Graphik, im Code schließlich
durch einige Zeilen Programmcode.

• Wird ein Dokument geschrieben, so werden die
Software-Quanten des zugrunde liegenden Doku-
ments in das neue Dokument übertragen. Wenn
also ein Designer den Architekturentwurf schreibt,
so muß er alle Anforderungen (alle Quanten) der
Spezifikation in den Entwurf übertragen, nicht
mehr und nicht weniger.

• Jede Übertragung führt zu Störungen: einige der
Quanten der ursprünglichen Anforderungen gehen
verloren, andere Quanten kommen unnötigerweise
z.B. durch Mißverständnisse hinzu.

• Die Quanten sind unterscheidbar. Dadurch kann
für jedes Dokument festgestellt werden, welche
Quanten aus dem Vorgängerdokument über-
nommen worden sind und welche hinzukamen.

• Der Einfachheit halber haben wir als ersten
Ansatz, die Anzahl der Quanten der Analyse (also
das, was der Kunde ursprünglich wollte) mit der
Anzahl der Function-Points gleichgesetzt (also
234 SQen für unser Projekt).

6.2 Das dynamische Simulationsmodell

Abbildung 1 zeigt den prinzipiellen Verlauf der
Software-Quanten in einem Dokument bezüglich dem
Aufand der für das Dokument erbracht wird.

Die Anzahl aller korrekt übertragbaren Software-
Quanten wird natürlich durch den Inhalt des vorigen
Dokuments bestimmt. Das vorige Dokument ist die
Referenz für das aktuelle Dokument. Die Über-
tragungsfunktion hat die Form einer negativen Ex-
ponential-Funktion über den Aufwand, der für das
Dokument eingesetzt wird. Zusammen mit den kor-
rekten Quanten werden redundante eingeführt. Re-
dundante Quanten sind als Differenz zwischen allen
und den korrekten Quanten definiert. Die Gesamtzahl
der Quanten wird mit Hilfe von COCOMO (1981)
bestimmt. Die fehlenden Quanten sind definiert durch

die Differenz zwischen allen Quanten des Vorgänger-
dokuments und den richtig übertragenen.

Vom Blickwinkel der nachfolgenden Dokumente
gibt es keinen Unterschied mehr zwischen korrekten
und redundanten Quanten: Was im Entwurf redundant
war und was verlangt, ist für den Programmierer nicht
mehr unterscheidbar – er implementiert alles, was
entworfen ist;. Die Konsequenz diese Effekts ist durch
die Badewannenkurve beschrieben, die in Abbildung
2 zu sehen ist: Fehler (die redundanten und fehlenden
Quanten unseres Modells) können nur entdeckt
werden, wenn ein Dokument gegen sein Vorgänger-
dokument geprüft wird – in späteren Phasen sind sie
nicht mehr unterscheidbar. D. h. Fehler können nur in
der Phase, in der sie gemacht wurden oder in der
entsprechenden Testphase, aber in keiner der
folgenden Entwicklungsphasen, gefunden werden!

Wir haben ebenfalls ein einfaches Modell von
Schreib- und Codierfehlern eingeführt: Diese Fehler
werden direkt aus der Anzahl der Software-Quanten
abgeleitet. Im Gegensatz zu den fehlenden oder
redundanten Quanten, haben diese Fehler für uns
keine Seiteneffekte – sie repräsentieren einfache
Syntax- oder nur Schreibfehler.

6.3 Ausführung der Simulation

Die Spieler haben keine Informationen über unser
internes Modell erhalten, d.h. über die korrekten,
fehlenden und redundanten Software-Quanten – sie
erhielten nur die Anzahl der Seiten eines Dokuments
oder die Anzahl der Codezeilen in einem Modul. Alle
diese Größen wurden direkt aus der Gesamtzahl der
Quanten abgeleitet.

Ohne Qualitätssicherung gehen mehr und mehr der
ursprünglich verlangten Quanten verloren, während
immer mehr redundante eingeführt werden. Unsere
Übertragungsfunktion ist so parametrisiert, daß ein
Projekt, das auf Basis von COCOMO geplant ist, in
jeder Phase 80% der korrekten Quanten des Vor-

gängerdokuments in das nachfolgende überführt und
zusätzlich noch eine Anzahl redundanter Quanten.
(Wir unterstellen hier – willkürlich – eine Pareto-
Verteilung.) In einem nominalen COCOMO-Projekt
ohne Qualitätssicherung werden damit 80% der ur-
sprünglichen Benutzeranforderungen in die Spezi-
fikation übertragen, 64% (80% von 80%) werden in
den Architekturentwurf übertragen. 51% (80% von
64%) gelangen in den Modulentwurf. Und schließlich
gelangen nur 41% (80% von 51%) in den Programm-
code. D. h. der Code enthält nur 41% der ursprünglich
geforderten Eigenschaften. Trotz dieses dramatischen
Schwunds, hat der Code die ursprünglich geforderte
Größe , die unterwegs verlorenen Quanten wurden
(für die Entwickler) unbemerkt durch redundante
ersetzt.

Wie konnten die Spieler diesen Effekt verhindern?
Zuallererst natürlich indem sie mehr Aufwand treiben
ließen – dies führte dazu, daß sich die Anzahl der
korrekten Quanten erhöhte, gleichzeitig erhöhte sich
aber auch die Anzahl der redundanten Quanten und
damit die Gesamtzahl der Quanten. Dies führt dazu,
daß die Folgedokumente immer größer werden. Eine
solche Politik würde in einem riesigen und dramatisch
aufwendigen (und damit verspäteten) Produkt enden.

Der zweite Weg besteht darin, Qualitätssicherung
zu betreiben. Im Fall unseres Modells vor allem durch
Reviewing von Dokumenten. Ein gut vorbereitetes
Review entdeckt 60% aller Fehler in einem
Dokument, also 60% aller fehlenden und 60% aller re-
dundanten Quanten. Die entdeckten redundanten
Quanten können einfach und ohne Aufwand entfernt
werden, die fehlenden Quanten müssen nachgearbeitet
werden.

7. Ein Beispielzug

In diesem Kapitel zeige ich einen Beispielzug aus
dem Fachpraktikum, um einen Eindruck vom Ablauf
der Simulation zu vermitteln. Der Zug ist ein
Ausschnitt aus dem siebten (von zwölf) Zügen der
Gruppe 2 (der Gewinnergruppe).

7.1 Projektzustand zu
Beginn des Zugs

Zu Beginn des siebten Zugs hatte das Projekt
folgenden Zustand:

• Das Projekt begann am 1. Juni 1992. Das aktuelle
Datum ist der 7. September 1992. Das Projekt hat
ein Gesamtbudget von 250.000,- DM von denen
bis jetzt 123 830,- DM ausgegeben sind.

• Der Projektleiter hat bisher drei Mitarbeiter
eingestellt: Frau Siebenschläfer, Herrn Bankmüller
und Frau Schmidt.

• Der Projektleiter hat bisher einige Informationen
über Schulungen erhalten, darunter auch Unter-

lagen über MENTOR-5, ein Kurs über Software-
Test-Methoden.

• Die Anforderungsanalyse hat einen Aufwand von
18 Mitarbeiter-Tagen benötigt und ist jetzt
abgeschlossen. Die Spezifikation enthält 225
korrekte Software Quanten (von 234 möglichen)
und 10 redundante Quanten. 68 der 225 Quanten
wurden aufgrund ausführlicher Reviews erzielt.

• Im Augenblick werden gerade Architektur- und
Modulentwurf durchgeführt. Der Architektur-
entwurf hat bisher 36 Mitarbeiter-Tage benötigt
und ist inzwischen 143 Seiten dick. Er enthält 187
korrekte und 3 redundante Quanten. Der Modul-
entwurf hat bisher 20 Mitarbeiter-Tage gedauert,
der bisher entstandene Entwurf umfaßt 112 Seiten
und enthält 70 korrekte und 4 redundante
Software-Quanten.

• Im letzten Zug wurde ein Review des
Architekturentwurfs durchgeführt, das 31 mittlere
Fehler (unser Ausdruck für fehlende oder
redundante Quanten) und 37 einfache Fehler
(unser Ausdruck für Schreibfehler) entdeckte.
Aufgrund dieser Befunde wurde das Dokument
mit der Auflage von Nacharbeiten akzeptiert.

Wie schon zuvor erläutert wurde nur ein Teil
dieser Informationen den Spielern gegeben.

7.2 Der Zug

Der siebte Zug besteht aus den in Tabelle 2 gezeigten
Aktionen.

Beigefügt war außerdem eine detaillierte
Beschreibung der Arbeitspakete, die in diesem Zug
ausgeführt werden sollten, sowie eine überarbeitete
Fassung des Projektplans.

7.3 Reaktionen auf den Zug

Gruppe 2 erhielt folgende Antwort auf den Zug:

„Das Management ist sehr besorgt über die
Verzögerungen ihres Projekts. Sie werden gefragt,
wie Sie unter diesen Umständen das Projekt zu
Ende bringen werden und wie Sie den neuen
Abgabetermin am 19. Dezember einhalten wollen.
Die Aufstockung des Budgets wird vorläufig
abgelehnt, eine endgültige Entscheidung wird
nächsten Monat getroffen.

Der Kunde ist nicht sehr davon angetan, daß Sie
den Abnahmetermin auf den 19. Dezember
verschieben wollen, akzeptiert aber unter der
Bedingung, daß keine weiteren Verzögerungen
mehr stattfinden.

Herr Bankmüller korrigiert den Architektur-
entwurf, Frau Siebenschläfer und Frau Schmidt
arbeiten am weiter am Modulentwurf, der in-
zwischen einen Umfang von 177 Seiten hat.

Nr. Aktion Betroffene Beginn/Dauer

1 Wir geben dem Management einen Überblick über die
allgemeine Projektsituation. Aufgrund des erwarteten weiteren
Projektverlaufs bitten wir um eine Aufstockung des Budgets
um 60.000,- DM.

Projektleiter

Management

7. September/
1 Tag

2 Wir verhandeln mit dem Kunden eine Verschiebung des
Projektendes auf den 19. Dezember 1992 aus.

Projektleiter

Kunde

8. September/
1 Tag

3 Herr Bankmüller soll die im Review des Architekturentwurfs
gefundenen Fehler korrigieren.

Herr Bankmüller 7. September/
 5 Tage

4 Frau Siebenschläfer und Frau Schmidt sollen die Arbeit am
Modulentwurf fortsetzen.

Frau Siebenschläfer

Frau Schmidt

7. September/
5 Tage

5 Frau Siebenschläfer und Frau Schmidt sollen die Arbeit am
Modulentwurf fortsetzen.

Frau Siebenschläfer

Frau Schmidt

14. September/
3 Tage

6 Wir gratulieren Frau Siebenschläfer zum Geburtstag, schenken
ihr einen Blumenstrauß und laden alle zu einem kleinen Imbiß
ein.

alle Mitarbeiter 14. September/
30 Minuten

7 Wir schicken Herrn Bankmüller zur
MENTOR-5-Schulung.

Herr Bankmüller 14. September/
3 Tage

8 Frau Siebenschläfer, Frau Schmidt und Herr Bankmüller sollen
sich auf das Review des Modulentwurfs vorbereiten.

Frau Siebenschläfer

Frau Schmidt

Herr Bankmüller

18. September/
2 Tage

9 weitere Aktionen … …

Tab. 2: Ausschnitt aus dem Beispielzug

Frau Siebenschläfer ist sehr erfreut über den
Blumenstrauß (60,- DM). Der Imbiß kostet sie 40,-
DM.

Herr Bankmüller kehrt hoch motiviert und
voller neuer Ideen von der MENTOR-5-Schulung
zurück.

…“

Diese Resultate hatten die folgenden, internen
Konsequenzen:

• Das Budget wird beim nächsten Zug auf 310.000,-
DM erhöht werden.

• Das geplante Projektende wird auf den 19.
Dezember 1992 verschoben.

• Die Motivation des Kunden wird um einen Punkt
gesenkt.

• Der Architekturentwurf umfaßt nun 219 korrekte
und 2 redundante Software-Quanten.

• Der Modulentwurf umfaßt nun 142 korrekte und
14 redundante Software-Quanten.

• Die Motivation von Frau Siebenschläfer steigt
nach ihrem Geburtstag um einen Punkt.

• Die Testfähigkeiten von Herrn Bankmüller steigen
nach der Schulung um eine Einheit. (Die

Fähigkeiten wurden mit Hilfe der COCOMO-
Einflußfaktoren in Boehm (1981) modelliert.)

• Die Motivation von Herrn Bankmüller steigt nach
der Schulung um einen Punkt.

• …

• Gehälter (einschließlich Steuern und Versicher-
ungskosten) für die vergangenen vier Wochen:

° Projektleiter: DM 16.000,-

° Frau Siebenschläfer: DM 12.000,-

° Herr Bankmüller: DM 12.000,-

° Frau Schmidt: DM 8.000,-

• Andere Kosten:

° MENTOR-5 -Schulung: DM 1.470,-

° Blumenstrauß und Imbiß: DM 100,-

• Das aktuelle Projektdatum ist der 5. Oktober 1992.

• Die bisher aufgelaufenen Projektkosten betragen
173.400,- DM.

Kategorie sehr gut gut mittel schlecht Gewicht

Projekt Ende 4. Dez. 1992
oder früher

12. Dez. 1992 26. Dez. 1992 8. Jan. 1993
oder später

5

Budget (DM) 280.000,-
oder weniger

320.000,- 360.000,- 400.000,-
oder mehr

5

fehlende SQen verglichen
mit der ursprüngl. Analyse
(die 234 SQen enthielt)

5 oder
weniger

10 15 20 oder mehr Anf. Analyse: 3
Architekturentw.: 3

Modulentw.: 3
Code: 5

redundante SQen verglichen
mit der ursprüngl. Analyse

5 oder
weniger

10 20 40 oder mehr Anf. Analyse: 3
Architekturentw.: 3

Modulentw.: 3
Code: 5

Code-Fehler 3 oder
weniger

6 10 15 oder mehr 5

Durchschnittl. Motivation
der Projektmitarbeiter

2 oder mehr 1 0 -1 oder
weniger

1

Motivation des Kunden 2 oder mehr 1 0 -1 oder
weniger

1

Punkte 4 Punkte 3 Punkte 2 Punkte 1 Punkt

Tab. 3: Gewichtungsfunktion zur Ermittlung der Simulationsergebnisse

8. Der Verlauf der Projekte

Das Fachpraktikum begann im Oktober 1992. Es
nahmen 5 Gruppen Teil, pro Gruppe zwei Studenten.
Die Studenten einer Gruppe spielten zusammen und
verkörperten jeweils einen Projektleiter. Alle Gruppen
waren erfolgreich (im Sinne des Fachpraktikums –
nicht unbedingt im Sinne des simulierten Projekts!)
und lieferten ein „vollständiges System“ innerhalb
von zwölf Zügen ab. Keine Gruppe kam mit weniger
als zwölf Zügen aus.

8.1 Gesamtergebnisse

Alle Gruppen arbeiteten gemäß dem Wasserfallmodell
– sie begannen mit der Anforderungsanalyse und
endeten bei der Integration und Abnahme – obwohl
kein Modell vorgeschrieben war. Während des
Projekts wurde von allen Gruppen ein Projektplan
abgeliefert. Für die Projektplanung wurde von allen
Gruppen mehr oder weniger COCOMO eingesetzt,
eine Gruppe führte sogar eine Function Point-Analyse
durch, konnte aber mit den ermittelten Function
Points nichts weiter anfangen.

Gruppen, die eine frühzeitige Qualitätssicherung
durchführten, gelangten zu besseren Ergebnissen, als
Gruppen die nur sehr spät oder gar keine
Qualitätssicherung hatten. Alle Gruppen haben sich
während des Praktikums sehr stark mit ihren
Projekten identifiziert, diese Identifikation ging
soweit, daß einige Spieler in echte persönliche

Probleme gestürzt wurden, als ihr Projekt ins
Schlingern kam.

8.2 Bestimmung des Gewinners

Um den Gewinner zu bestimmen, haben wir die
Gruppen nach den Kriterien in Tabelle 3 bewertet.
Tabelle 3 enthält außerdem eine Gewichtungsfunkti-
on, um Konflikte zwischen widerstreitenden Zielen zu
lösen.

8.3 Ergebnisse der einzelnen Gruppen

Abb. 3 gibt eine Überblick über die Ergebnisse der
fünf Gruppen.

Die obere Hälfte der Abbildung zeigt die erfüllten
Kundenwünsche im fertigen Produkt (die korrekten
Software-Quanten), wobei maximal 234 Quanten
erreichbar waren. Diese Werte sollten so hoch wie
möglich sein – das war das Hauptkriterium bei der
Auswertung der Projektergebnisse. Die untere Hälfte
zeigt die nicht gewünschten, aber trotzdem realisierten
Eigenschaften (in redundanten Software-Quanten), die
Budgetüberschreitung in 1000 DM und die
Zeitüberschreitung gegenüber dem geplanten
Abgabetermin in Tagen. Diese Werte sollten natürlich
so niedrig wie möglich sein.

• Gruppe 2 erzielte die besten Ergebnisse. Sie
zeigten keine besonders aufregenden Ergebnisse in
den einzelnen Phasen, aber lieferten zu Beginn
einen vollständigen 15-seitigen (!) Projektplan ab,

150 kDM/
60 Tage

75 kDM/
30 Tage

0 kDM/
0 Tage

Gruppe 1 Gruppe 2 Gruppe 3 Gruppe 4 Gruppe 5

Budgetüberschreitung (kDM)

Terminüberschreitung (Tage)

200 SQen

0 SQen

100 SQen

100 SQen

Erfüllte Kundenanforderungen
(Korrekte Software-Quanten)

Nicht gewüschte Realisierungen
(redundante Software-Quanten)

Maximal erreichbare
Anzahl von 234 SQen

Abb. 3: Die Resultate der Projekte

der dauernd aktualisiert wurde. In den meisten
Kriterien kamen sie nur auf den zweiten Platz –
bis auf die erfüllten Kundenwünsche, hier waren
sie am besten. Das Geheimnis ihres Erfolgs war
eine vernünftige Planung, an die sie sich über das
ganze Projekt hin gehalten haben. Diese Gruppe
(und auch Gruppe 5) hat erwogen, eine Standard-
Datenbank zu kaufen, um die geforderte Aufgabe
zu erledigen. Beide Gruppen haben die Datenbank
nicht gekauft, da sie zu teuer war.

• Diese Gruppe wurde von Gruppe 4 gefolgt. Sie
hatten zwar bessere Ergebnisse bei Budget und
Termin, aber weniger Kundenwünsche erfüllt. Die
Gruppe beendete alle Aktivitäten zu früh, bevor
sie überhaupt die Chance hatten, die geforderte

Qualität zu erreichen – allerdings hatten sie
dadurch auch nicht die Chance viele Fehler zu
machen. Dies führte zu einem eher kleinen System
ohne viele redundante Software-Quanten und
geringen Zeit- und Budgetüberschreitungen.

• Gruppe 5 kam auf den 3. Platz. Sie entwickelten
zwar fast das gleiche Produkt wie Gruppe 4 – im
Sinne der Software-Quanten – aber sie benötigten
wesentlich mehr Zeit und Geld. Ursache des
schlechten Abschneidens (wie auch bei Gruppe 3)
war der viel zu große Aufwand in der Entwicklung
und der zu geringe Aufwand in der Prüfung der
Ergebnisse. Dies führte dazu, daß diese Gruppe
und Gruppe 3 riesige Produkte mit geringer Quali-
tät und große Termin- und Budgetüberziehungen

hatten. Interesanterweise haben sich beide
Gruppen dazu entschlossen, in der Mitte der
Entwicklung einen Teil ihrer zu großen Produkte
zu streichen – welcher Teil gestrichen werden
sollte, wurde allerdings nicht geplant, so daß der
Streichung neben den redundanten auch eine
Reihe korrekter Software-Quanten zum Opfer
fielen. Beide Gruppen hatten offensichtliche
Schwierigkeiten, ein Projekt zu planen und sich an
die Planung zu halten.

• Auf den 4. Platz kam Gruppe 1. Diese Gruppe hat
ein System entwickelt, ohne sich dabei allzu sehr
um Qualitätssicherung zu kümmern. Statt der ge-
forderten Eigenschaften hatte das Produkt eine
große Anzahl redundanter Quanten. Dies war die

einzige Gruppe die beinahe innerhalb der vorgege-
benen Zeit und des vorgegebenen Budgets war –
sie hörten einfach auf als Zeit und Geld zu Ende
waren

• Gruppe 3 kam auf den letzten Platz. Diese Gruppe
konnte nicht vernünftig planen und machte die
gleichen Fehler wie Gruppe 5, kam dabei aber
noch mehr ins Schlingern. Man kann ihre An-
strengungen an den größten Budgetüberschreitung
ablesen, die den größten Aufwand anzeigt – diese
Anstrengungen führten aber zu einem Produkt, das
noch schlechter als das der Gruppe 1 war.

Tabelle 4 zeigt die Einzelergebnisse der Projekte.

Gruppe 1 2 3 4 5

Projektende (alle Projekte be-
gannen am 1. Juni 1992)

4. Dez. 1992 21. Dez. 1992 27. Dez. 1992 11. Dez. 1992 29. Jan. 1993

Budget (DM) 276.660,- 310.596,- 398.616,- 303.615,- 391.508,-

Korrekte Software-Quanten
(kSQen), fehlende Software-
Quanten (fSQen) und redundan-
te Software-Quanten (rSQen) in
der Anforderungsanlyse ver-
glichen mit den ursprüngl. An-
forderungen

215 kSQen

29 fSQen

15 rSQen

225 kSQen

9 fSQen

10 rSQen

228 kSQen

6 fSQen

50 rSQen

214 kSQen

20 fSQen

23 rSQen

213 kSQen

21 fSQen

8 rSQen

Korrekte Software-Quanten,
fehlende Software-Quanten und
redundante Software-Quanten
im Architektiurentwurf ver-
glichen mit den ursprüngl. An-
forderungen

198 kSQen

36 fSQen

51 rSQen

210 kSQen

24 fSQen

11 rSQen

217 kSQen

17 fSQen

70 rSQen

214 kSQen

20 fSQen

34 rSQen

202 kSQen

32 fSQen

24 rSQen

Korrekte Software-Quanten,
fehlende Software-Quanten und
redundante Software-Quanten
im Modulentwurf verglichen
mit den ursprüngl. Anforder-
ungen

166 kSQen

68 fSQen

48 rSQen

200 kSQen

34 fSQen

15 rSQen

164 kSQen

70 fSQen

63 rSQen

198 kSQen

36 fSQen

39 rSQen

202 kSQen

32 fSQen

24 rSQen

Korrekte Software-Quanten,
fehlende Software-Quanten und
redundante Software-Quanten
im fertigen Produkt verglichen
mit den ursprüngl. Anforder-
ungen

186 kSQen

48 fSQen

66 rSQen

215 kSQen

19 fSQen

19 rSQen

180 kSQen

54 fSQen

58 rSQen

212 kSQen

22 fSQen

24 rSQen

212 kSQen

22 fSQen

25 rSQen

Code-Fehler 44 Fehler 0 Fehler 3 Fehler 10 Fehler 1 Fehler

Durchschnittliche Motivation
der Projektmitarbeiter

0,75 3,3 0,2 0,75 2,8

Motivation des Kunden -3 -1 0 -2 -1

Wertung 48 95 48 66 54

Tab. 4: Die Resultate der Projekte

9. Erfahrungen mit der Simula-
tion von Software-Projekten

Am Ende des Fachpraktikums wurden zwei Bespre-
chungen mit allen Spielern durchgeführt, in der die
Ergebnisse diskutiert und das Modell vorgestellt
wurde. Dabei wurden zahlreiche Probleme identifi-
ziert und das Modell kritisiert. Insgesamt schätzen wir
den Verlauf des Fachpraktikums aber erfolgreich ein:

• Wir konnten ein plausibles Projektverhalten
simulieren, das sich den Aktionen unserer fünf
„Projektleiter“ anpaßte.

• Wir konnten ein relativ einfaches Simulations-
modell einsetzen, das über die ganze Simulation
hinweg unverändert blieb.

• Die Studenten berichteten über Erfahrungen, wie
man sie in echten Projekten bei mangelhafter
Planung oder unzureichender Qualitätssicherung
erleben kann.

• Die post-mortem Analyse war ergiebiger als in
wirklichen Projekten und führte zu einem besseren
Verständnis der Vorgänge in den simulierten
Projekten.

• Der Aufwand für die Simulation war hoch, konnte
aber dank des einfachen Modells bewältigt
werden.

• Die Simulation beeinflußte das Verhalten der Stu-
denten nicht dramatisch: keiner hatte das Gefühl,
daß unrealistische Effekte auftraten.

Ein wichtiger Erfolgsfaktor für die Simulation war die
lebendige Präsentation. Sobald sich die Studenten mit
dem Projekt identifizieren konnten, haben sie sich
auch wie Projektleiter verhalten.

Die meisten Spieler kritisierten, daß sie keine
echten Dukumente und keine informativen Antworten
von ihren simulierten Mitarbeitern erhielten:

• „Wenn ich das Dokument gesehen hätte, würde
ich wissen, ob es die Anforderungen des Kunden
erfüllt.“ Der Blindflug war eine negative
Erfahrung – aber eine Sache mit der sie auch in
einem echten Projekt umgehen müssen.

• „In Wirklichkeit sind meine Mitarbeiter aktiver,
sie erzählen mehr über den Projektfortschritt.“
Nein, das tun sie nicht! Aber die Aussage zeigt,
wie wichtig eine lebendige Simulation ist. Die
nackten Zahlen in natürliche Sprache zu packen,
ist ein guter Ansatz dazu, der aber noch weiter
entwickelt werden muß.

• „Es muß Unterstrukturen für die Dokumente
geben. Man kann keine ganze Spezifikation in
einem einzigen Review prüfen.“ Das ist richtig
und wird in dem nächsten Modell korrigiert
werden.

Die folgenden Bestandteile haben sich bewährt und
können beibehalten werden:

• Das einfache Modell war prinzipiell ausreichend.
Lediglich die manuelle Simulation war zu
mühsam. Mit der Fertigstellung des SESAM-
Simulators sollte dieses Problem erledigt sein.

• Die Granularität der Züge auf Tagesebene war
ausreichend, sie bewahrte die Spieler davor, sich
in Details zu verlieren. Vorstellbar ist aber auch
eine feinere Granularität.

• Die von uns für die Simulation bereitgestellten
Aktionen, Programmierer, Schulungen und
Werkzeuge waren ausreichend.

Zusammenfassend kann sagen, daß für den Einsatz
im Unterricht bereits dieses einfache Modell
ausreicht, um die Brücke zwischen Software
Engineering-Ausbildung und Praxis zu schlagen: Es
gibt Studenten die Gelegenheit, Erfahrungen als
Projektleiter zu sammeln!

Literatur

Abdel-Hamid, T. K. (1991): Software Project Dyna-
mics - An Integrated Approach. Prentice Hall,
Englewood Cliffs, New Jersey.

Albrecht, A. J., J. E. Gaffney (1983): Software
Function, Source Lines of Code, and Develop-
ment Effort Prediction: A Software Science Vali-
dation. IEEE Transactions on Software
Engineering, SE-9, Nov. 83, pp. 639-648.

Boehm, B. W. (1981): Software Engineering Eco-
nomics . Prentice Hall, Englewood Cliffs, New
Jersey.

Deininger, M., K. Schneider (1994): Teaching
Software Project Management by Simulation.
Proceedings of the 7th Conference on Software
Engineering and Education (CSEE) , San
Antonio, Januar 1994, pp. 227-242.

Fairley, R. (1985): Software Engineering Concepts.
McGraw-Hill, New York.

Frühauf, K., J. Ludewig, H. Sandmayr (1988):
Software-Projektmanagement und -Qualitäts-
sicherung. Verlag der Fachvereine an der
Schweizerischen Hochschulen und Techniken,
Zürich.

IEEE (1989): Standard Dictionary of Measures to
Produce Reliable Software . IEEE Std 982.1-
1988.

IEEE (1993): Standard for Software Productivity
Metrics. IEEE Std. 1045.

Knöll, H.-D., J. Busse (1991): Aufwandsschätzung
von Software-Projekten in der Praxis: Metho-
den, Werkzeugeinsatz, Fallbeispiele . (Reihe
Angewandte Informatik Bd. 8), BI-Wissen-
schaftsverlag, Mannheim, Wien, Zürich.

Ludewig, J., Th. Bassler, M. Deininger, K. Schneider,
J. Schwille (1992): SESAM - Simulating Soft-
ware Projects. Proceedings of the Software
Engineering and Knowledge Engineering Con-
ference (SEKE ’92), Capri, Mai 1992, pp. 608-
615.

McCabe, T. J. (1976): A Complexity Measure. IEEE
Transactions on Software Engineering, SE-2,
pp. 308-320.

McKeeman, W. M. (1989): Graduation Talk at Wang
Institute. IEEE Computer, Vol. 22 , No. 5, pp.
78-80.

Schneider, K. (1993): Object-Oriented Simulation of
the Software Development Process in SESAM.
Proceedings of the Object-Oriented Simulation
Conference (OOS ’93), Teil der Western
Simulation Multiconference, San Diego, Januar
1993.

Schneider, K. (1993a): SESAM-Zwischen Planspiel
und Adventure Game. „Informatik und Schule
’93“, Koblenz, Oktober 1993.

Schneider, K., M. Deininger (1994): An Overview of
the SESAM Project. Erscheint in den
Proceedings of the GMD-Metrics Workshop.

Sommerville, I. (1989): Software Engineering . 3rd
Edition, Addison Wessley, Workingham,
England.

Vester, F. (1987): Ökolopoly - Ein kybernetisches
Umweltspiel. Otto Maier Verlag, Ravensburg,
Germany.

Abb. 1: Der Schemaeditor

Teil 7

SESAM und vis-A-vis
Jürgen Schwille

Zusammenfassung

SESAM-Modelle werden mittels verschiedener
graphischer Notationen beschrieben. Für jede
graphische Notation stellt SESAM einen graphischen
Editor bereit. Dieser Artikel beschreibt das Werkzeug
vis-A-vis, welches hinter diesen Editoren steht,
seinen Einsatz in SESAM und das Konzept der
Integritätsbedingungen, das eine mögliche Weiterent-
wicklung von vis-A-vis zur einfacheren Realisierung
graphischer Editoren darstellt.

1. Einführung

SESAM enthält verschiedene graphische Notationen
zur Beschreibung von Modellen, z. B. eine Notation
zur Beschreibung der Elemente eines Software-
Projekts und deren Beziehungen (Abbildung 1), zur
Beschreibung von konkreten Projektsituationen
(Abbildung 2) und zur Beschreibung von Regeln, die
angegeben, wie aus einer Projektsituation eine neue
Situation hervorgeht (Abbildung 3).

Schema-, Situations- und Regeleditor werden von
einem Modellbauer verwendet, um sein Modell einer
Software-Entwicklung zu beschreiben. Der
Modellbauer legt hierfür sein Projektschema fest,

Abb. 2: Der Situationseditor

beschreibt eine Anfangssituation des zu simu-
lierenden Projekts und gibt die Regeln an, nach denen
sich sein Projektmodell verhalten soll. Das in diesem
Band verwendete SESAM-Beispielmodell umfaßt
insgesamt 30 Regeln, um ein Beispiel für die
notwendige Zahl von Regeln zu geben.

Der Modellbauer kann, z. B. aufgrund von
Erkenntnissen, die er aus der Simulation seines
Projektmodells gewonnen hat, sein Modell verändern
und anschließend neu simulieren. Die graphische
Darstellung seiner Modelle erlauben einem
Modellbauer, notwendige Modelländerungen schnell
durchzuführen und seine Modelle übersichtlich und
kompakt zu halten. SESAM bietet komfortable
Möglichkeiten zur Bearbeitung von Modellen.
Modelle müssen nicht umständlich textuell
beschrieben werden, sondern können graphisch
erstellt und geändert werden, was die Arbeit des
Modellbauers wesentlich erleichtert.

Die hier gezeigten graphischen Editoren haben
sehr viele Gemeinsamkeiten: In jedem Editor können
graphische Elemente eingefügt, gelöscht und
positioniert werden, jede Notation legt bestimmte
graphische Repräsentationen ihrer Elemente fest, jede

Notation definiert mögliche Verbindungen zwischen
den Elementen.

Diese Vielzahl von Gemeinsamkeiten bildete die
Motivation für die Erstellung von vis-A-vis.
vis-A-vis wird von seinen Entwicklern als
„Application Framework“ bezeichnet, das Bausteine
zur Erstellung von graphischen Editoren enthält. Alle
gezeigten Editoren bauen auf vis-A-vis auf, d. h.
verwenden die von vis-A-vis bereitgestellten Bau-
steine, was sich z. B. in einer einheitlichen Benutzer-
oberfläche widerspiegelt (vgl. Abbildungen 1 bis 3).

Dieser Artikel soll einerseits die Verbindung von
vis-A-vis und SESAM aufzeigen, andererseits einen
kurzen Überblick über die Möglichkeiten von
vis-A-vis geben (Abschnitt 2). Abschnitt 3 geht über
vis-A-vis hinaus und zeigt, wie die graphischen
Notationen inhärenten Integritätsbedingungen mittels
Prädikatenlogik formuliert werden können.

Abb. 3: Der Regeleditor

2. vis-A-vis

Dieser Abschnitt beschreibt die wesentlichen
Merkmale von vis-A-vis. Lichter (1993) und Lichter
(1993a) beschreiben vis-A-vis im Detail.

2.1 Anwendungsbereich von
vis-A-vis

Graphische Notationen werden nicht nur in SESAM
verwendet. Überall im Software Engineering finden
sich graphische Notationen, z. B. in SA von
DeMarco, in JSD von Jackson und Cameron sowie in
OMT von Rumbaugh, um nur einige Notationen zu
nennen. Auch außerhalb des Software Engineering
findet man viele Beispiele, wie etwa Petrinetze,
endliche Automaten oder Flußdiagramme. Der Grund
für diese Vielzahl graphischer Notationen ist einfach:
Graphische Notationen erlauben es, komplexe
Zusammenhänge übersichtlich darzustellen.

Einen graphischen Editor für eine graphische
Notation „from scratch“ zu erstellen ist eine
schwierige und aufwendige Aufgabe. vis-A-vis
erleichtert diese Aufgabe wesentlich durch seine

Klassenbibliothek, in der der „Werkzeugbauer“ viele
fertige Bausteine für seinen Editor vorfindet. Anders
als z. B. in Gandalf (Habermann, 1986) geht es bei
vis-A-vis nicht darum, aus der textuellen
Beschreibung einer Notation in Form einer
Grammatik einen fertigen Editor zu generieren,
sondern vis-A-vis unterstützt einen Werkzeugbauer
durch eine umfangreiche Bibliothek von fertigen
Editorbausteinen.

2.2 Leistungen von vis-A-vis

vis-A-vis bietet einem Benutzer eine einheitliche
Benutzeroberfläche, eine umfangreiche Klassen-
bibliothek und eine Standardarchitektur. Diese drei
Leistungen werden im folgenden kurz erläutert.

Abbildungen 1 bis 3 zeigen die Benutzer-
oberfläche, die allen vis-A-vis-Editoren zugrunde
liegt. Ein vis-A-vis-Fenster besteht aus einer
Menüleiste , in der einerseits Standardoperationen wie
Speichern und Laden eines Diagramms, andererseits
auch editorspezifische Kommandos enthalten sind,
einer Palette , die die Symbole der graphischen
Notation zeigt, einem Zeichenfenster für die
Erstellung eines Diagramms aus den verfügbaren

Symbolen und einem Textfenster für Meldungen an
den Benutzer.

Die vis-A-vis-Klassenbibliothek stellt eine Reihe
von Grundvisualisierungsformen zur Verfügung, aus
denen der Werkzeugbauer seine eigenen graphischen
Symbole zusammensetzen kann. vis-A-vis-
Konnektoren verbinden die semantischen Objekte
einer Notation, bei einem Petrinetz-Editor sind dies
Stellen und Transitionen sowie ihre zugehörigen
Operationen wie z. B. das Setzen einer Marke auf
eine Stelle, mit ihrer graphischen Darstellung.

vis-A-vis gibt Werkzeugbauern eine Standard-
architektur vor. Durch Spezialisierung der vorhande-
nen vis-A-vis-Klassen erstellt ein Werkzeugbauer
einen neuen Editor, d. h. die Architektur des neuen
Editors ist der vis-A-vis-Architektur untergeordnet.

2.3 Verwendung von vis-A-vis

Lichter (1993) schlägt folgende Vorgehensweise vor,
um einen neuen vis-A-vis-Editor zu erstellen:

1. Semantische Objekte der Anwendung
identifizieren und implementieren

Der Werkzeugbauer muß die Bestandteile seiner
graphischen Notation, die semantischen Objekte,
identifizieren und ihr Verhalten realisieren. Dies
geschieht völlig unabhängig von vis-A-vis.

2. Grundsymbole für die semantischen Objekte
festlegen

Für die graphische Darstellung der Symbole einer
Notation stellt vis-A-vis eine umfangreiche
Bibliothek zur Verfügung, aus der die passende
Darstellung für ein Symbol ausgewählt wird oder
anhand der vorhandenen Grundvisualisierungsformen
zusammengesetzt wird.

3. Festlegen, welche Aspekte des semantischen
Objekts wie visualisiert werden sollen

In diesem Schritt wird die in Schritt 1 erstellte
Realisierung eines semantischen Objekts mit der in
Schritt 2 erstellten graphischen Darstellung des
Objekts verknüpft. Hierfür werden die vorhandenen
vis-A-vis-Konnektoren verwendet.

4. Unterklasse der vis-A-vis-Werkzeugklasse
erstellen

Die in den Abbildungen 1 bis 3 gezeigte
Benutzeroberfläche kann um editorspezifische Menüs
erweitert werden, indem das vorhandene vis-A-vis-
“Basiswerkzeug“ spezialisiert wird (vgl. die
unterschiedlichen Menüs der einzelnen Editoren).

2.4 Stand von vis-A-vis

Die Vielzahl der mit vis-A-vis erstellten Editoren
innerhalb und außerhalb von SESAM zeigt, daß
vis-A-vis ein vielseitig einsetzbares Werkzeug ist,
das die Erstellung graphischer Editoren wesentlich
erleichtert.

Geplante Erweiterungen von vis-A-vis sind
einerseits die Speicherung der mit vis-A-vis erstellten
Modelle in der objektorientierten Datenbank
GemStone und andererseits die Entwicklung von
Meta-Werkzeugen zur Verkürzung der reinen
Programmierarbeit bei der Erstellung eines vis-A-vis-
Editors.

3. Integritätsbedingungen

Modelle, die mittels graphischer Notationen be-
schrieben werden, müssen bestimmten Bedingungen
genügen, damit diese Modelle bzgl. der verwendeten
Notation korrekt sind. Diese Bedingungen werden
hier als Integritätsbedingungen bezeichnet.

Integritätsbedingungen beschreiben, welche
Elemente einer graphischen Notation wie kombiniert
werden dürfen. In Abbildung 1 ist jedes Attribut,
dargestellt durch ein gepunktetes Rechteck, mit
genau einem Entitätstyp, dargestellt durch ein
Rechteck mit durchgezogenen Linien, verbunden. Ein
Attribut, daß keinem oder mehr als einem Entitätstyp
zugeordnet ist, verletzt diese Bedingung und macht
das zugehörige Diagramm ungültig.

Zwei Arten von Integritätsbedingungen lassen sich
unterscheiden: Integritätsbedingungen können ent-
weder notationsbezogen oder benutzerdefiniert sein.
Die Integritätsbedingung des vorangegangenen
Absatzes ist notationsbezogen. Ein Beispiel für eine
benutzerdefinierte Integritätsbedingung ist, daß ein
bestimmter Mitarbeiter nur maximal einem Projekt
zugeordnet sein darf (vgl. Relation istZugeordnet in
Abbildung 1 und 2). Benutzerdefinierte Integritäts-
bedingungen werden nicht durch die Notation
impliziert, sondern durch den Modellbauer festgelegt.

Beide Arten von Integritätsbedingungen treten in
graphischen Notationen in unerwartet großer Zahl
auf. Für eine vom Autor spezifizierte Entity-
Relationship-Notation, die der in Abbildung 1
gezeigten Notation sehr ähnlich ist, wurden rund 70
verschiedene notationsbezogene Integritätsbeding-
ungen gefunden. Für ein in dieser Notation
beschriebenes Schema wurden bisher rund 30
benutzerdefinierte Integritätsbedingungen aufgestellt,
wobei diese Zahl noch stark steigen wird, da die
Entwicklung des Schemas noch lange nicht
abgeschlossen ist.

vis-A-vis unterstützt die Formulierung von
Integritätsbedingungen bisher nur rudimentär.
Integritätsbedingungen müssen „festverdrahtet“ reali-

siert werden, wobei vis-A-vis hierfür einige mengen-
orientierte Anfragen wie das Durchlaufen aller
Elemente eines Diagramms zur Verfügung stellt. Was
der Modellbauer sich dagegen wünscht ist eine
Notation, in der er die Integritätsbedingungen seiner
Modelle nur spezifiziert, die Überprüfung der
Bedingungen jedoch nicht realisieren muß.

Eine Möglichkeit zur Formulierung von
Integritätsbedingungen bietet die Prädikatenlogik
(vgl. Westfechtel, 1991, und Wiebe, 1990), mit der
erste positive Erfahrungen gemacht wurden. Von den
oben zitierten 70 notationsbezogenen Integritäts-
bedingungen konnten fast 60 Bedingungen mittels
Prädikatenlogik erster Ordnung nach dem Ansatz von
Wiebe formuliert werden, d. h. nur noch ein kleiner
Teil von Integritätsbedingungen muß hartverdrahtet
in den Editor eingebaut werden, was den Aufwand
zur Erstellung eines Editors beträchtlich reduziert und
den Editor selbst wesentlich übersichtlicher macht, da
der Modellbauer gezwungen ist, Code zur
„normalen“ Diagrammbearbeitung von Code zur
„Fehlerbearbeitung“, sprich Code für die Integritäts-
bedingungen, strikt zu trennen.

Ohne hier auf die Details prädikatenlogikbasierter
Integritätsbedingungen einzugehen wird jetzt noch
abschließend auf die Einbettung von Integritäts-
bedingungen in eine graphische Notation einge-
gangen. Benutzerdefinierte Integritätsbedingungen
werden an das jeweilige Element eines Diagramms
angehängt. Die oben beschriebene Bedingung, daß
ein Mitarbeiter nur maximal einem Projekt
zugeordnet sein darf, wird in Abbildung 1 am bestem
beim Entitätstyp Mitarbeiter definiert. Diese
Bedingung wird aus Gründen der Übersichtlichkeit
nicht im Diagramm sichtbar sein. Einen Mitarbeiter
im Situationseditor mehr als einem Projekt
zuzuordnen, wird durch die obige Bedingung
verhindert. (Diese Bedingung könnte mit den in
vielen Entity-Relationship-Notationen enthaltenen
Kardinalitäten formuliert werden. Für andere
benutzerdefinierte Integritätsbedingungen reichen
Kardinalitäten jedoch nicht aus.) Notationsbezogene
Integritätsbedingungen können nicht mehr einem
einzelnen Element zugeordnet werden, sondern
gelten für mehrere Elemente eines Diagramms: Daß
ein Attribut stets genau einem Entitätstyp zugeordnet
ist, muß für alle Attribute gelten.

Die hier vorgestellten Überlegungen bzgl.
Integritätsbedingungen werden derzeit noch vom
Autor untersucht und dürfen deshalb keinesfalls als
abgeschlossen angesehen werden. Dieser Artikel
sollte nur die Problematik der Integritätsbedingungen
klären und eine mögliche Lösung aufzeigen. Ob
dieser Weg auch wirklich zum Erfolg führt, muß erst
noch untersucht werden.

Literatur
Habermann, A.N., D. Notkin (1986): Gandalf.

Software Development Environments. IEEE
Transactions on Software Engineering, 12(12) ,
Dezember 1986. S. 1117-1127.

Lichter, H., K. Schneider (1993): vis-A-vis: Ein
objektorientiertes Application Framework für
graphische Entwurfswerkzeuge. In H.C. Mayr
und R. Wagner (Hrsg.): Objektorientierte
Methoden für Informationssysteme . Springer,
Informatik aktuell.

Lichter, H., K. Schneider (1993a): vis-A-vis: An
Object-Oriented Application Framework for
Graphical Design Tools. Proc. of the IFIP
Workshop on Interfaces in Industrial Systems
for Production and Engineering . Darmstadt,
15.-17.03.93. Elsevier

Westfechtel, B. (1991): Revisions- und
Konsistenzkontrolle in einer integrierten
Software-Entwicklungsumgebung . Informatik-
Fachbericht, Nr. 280. Springer-Verlag, Berlin.

Wiebe, D. (1990): Generic Software Configuration
Management: Theory and Design. University
of Washington, Dept. of Computer Science, PhD
Thesis, TR 90-07-03.

Teil 8

Software Engineering objektorientiert
— eine Herausforderung für die Praxis
 Horst Lichter, Schweizerische Bankgesellschaft Zürich

Zusammenfassung

In diesem Beitrag formuliere ich am Anfang einige
wesentliche Gründe, warum die objektorientierte
Technologie (OO-Technologie) in der industriellen
Software-Entwicklung eingesetzt wird oder werden
wird. Anschließend werden Randbedingungen und
Einflußfaktoren vorgestellt und diskutiert, die berück-
sichtigt werden müssen, wenn die OO-Technologie in
einem Unternehmen eingeführt werden soll. Darauf
aufbauend wird am Beispiel der Schweizerischen
Bankgesellschaft (SBG) erläutert, wie dies organi-
satorisch durchgeführt werden kann.

1. Warum Objektorientierung? –
Einige Gründe

Es gibt verschiedene Gründe, warum die OO-Tech-
nologie zur Zeit in vielen industriellen Software-
Unternehmen eingeführt oder zum Teil bereits einge-
setzt wird. Es sollen nur einige genannt werden:

• Der Aspekt „time to market“ wird auch oder ist
gerade auch bei Software-Produkten immer wich-
tiger. Je schneller und kostengünstiger neue Pro-
dukte erstellt oder existierende den Marktanforde-
rungen angepaßt werden können, je besser kann
man sich im Markt behaupten.

 Man hofft, mit den Mitteln der OO-Technologie –
insbesondere durch die Wiederverwendung von
Bausteinen – kürzere Entwicklungszeiten zu
erzielen.

• In den Entwicklungsabteilungen großer Firmen
werden mehr und mehr Ressourcen verbraucht,
um die bestehenden operativen Systeme zu
warten und zu pflegen. Schuld daran sind unter
anderem eine extrem hohe Integration der ein-
zelnen Anwendungen; eine saubere Schnitt-
stellenarchitektur zwischen den Anwendungen
fehlt. Änderungen können dementsprechend nicht
lokal begrenzt ausgeführt werden, sondern schla-
gen in das gesamte Netz der Anwendungen durch.

Hier hofft man, mit den Mitteln der Daten-
kapselung Bausteine mit hohem inneren Zusam-
menhalt konstruieren zu können (Datenstrukturen
und deren Operationen), die über exakt definierte
Schnittstellen miteinander verbunden sind.

• Ein weiteres Manko der konventionellen Soft-
ware-Entwicklung, das sich sowohl in den Ent-
wicklungszeiten als auch im Wartungsaufwand
niederschlägt, besteht darin, daß nur sehr selten
Bausteine wiederverwendet werden, wenn neue
„ähnliche“ Anwendungen erstellt werden müssen.

Hier hofft man, spezielle Klassenbibliotheken
oder sogar Frameworks erstellen und einsetzen zu
können, die einen großen Teil der immer wieder
benötigten Funktionalität einer Anwendungs-
klasse zur Verfügung stellen.

Die Gründe, warum die OO-Technologie in der indu-
striellen Software-Entwicklung eingesetzt werden
soll, können zusammenfassend auf den folgenden
Nenner gebracht werden: Software soll schneller,
billiger und qualitativ hochwertiger erstellt werden.

Die Ansprüche, denen die OO-Technologie ge-
recht werden muß, sind demnach sehr hoch. Die in
sie gesetzten Hoffnungen ruhen vor allem auf den
Techniken Datenkapselung mit sauberer Schnitt-
stellenarchitektur und Vererbung als Mittel zur
Wiederverwendung. Daß die Hoffnungen, die hinter
den genannten Gründen stehen, nicht unberechtigt
sind, zeigen Beispiele industrieller Software-Ent-
wicklungen (siehe z.B. Bürkle, 1992)

2. Einführung der
OO-Technologie

In Kilberth et al. (1993) wird die OO-Technologie
und ihre Einführung unter verschiedenen Gesichts-
punkten – technisch, organisatorisch und wirtschaft-
lich – beschrieben. Ich möchte besonders auf die
folgenden Aspekte eingehen: Welche Randbedingun-
gen sind bei der Einführung der OO-Technologie zu
beachten und welche Konsequenzen müssen daraus
gezogen werden. Die dazu gemachten Aussagen
gelten zum Teil nicht nur speziell für die Einführung
der OO-Technologie, sondern gelten generell, wenn
eine neue Technologie eingeführt werden soll.

Die Einführung der OO-Technologie stellt in
verschiedener Hinsicht ein Risiko dar: Auf der einen
Seite birgt die Technologie selbst erhebliche Risiken
in sich, auf der anderen Seite kann der Schaden, der
dadurch entstehen kann, daß die Technologie unge-
plant und unsystematisch eingeführt wurde, ebenfalls

Management

EinführungMitarbeiter Organisation

Technologie

Abb. 1: Einflußfaktoren

erheblich sein. Die zuletzt genannte Risikogruppe
wird gemildert, wenn die Einführung sinnvoll geplant
und systematisch durchgeführt wird. Die nachfol-
gende Abbildung zeigt wesentliche Einflußfaktoren
und Randbedingungen, die zu beachten sind.

Das Management muß die Einführung der OO-
Technologie vollumfänglich tragen und mitverant-
worten. In diesem Zusammenhang müssen dem
Management die Chancen, aber auch die Risiken, die
in der OO-Technologie liegen, bekannt sein.
Letzteres ist – bei der Flut von Lobpreisungen –
besonders wichtig. Weiterhin muß dem Management
klar sein, welcher Aufwand zu leisten ist, damit ein
konsolidiertes OO-Engineering in der Unternehmung
entstehen kann; ihm muß klar sein, daß sich die
vorhandenen Potentiale der OO-Technologie sowie
ein messbarer Nutzen in Form von projekt-
übergreifender Wiederverwendung nicht kurzfristig
einstellen werden, sondern erst mittelfristig zu
erwarten sind. Kurz gesagt: Die Einführung der OO-
Technologie muß "Chefsache" sein.

Die Mitarbeiter müssen die OO-Technologie in
ihren Projekten umsetzen. Damit dies erfolgreich
möglich sein kann, müssen sie motiviert werden,
Neues zu lernen. Da dieses mit nicht unerheblichem
Aufwand für jeden einzelnen Mitarbeiter verbunden
ist, ist dies nicht immer einfach („Wir machen das
doch schon 15 Jahre so und die Anwendungen laufen
doch prima“). Wird der Aufwand von den Mitar-
beitern investiert, so muß dieser „belohnt“ werden.
Dies kann in extrinsischer oder intrinsischer Form
geschehen. Da die OO-Technologie nicht in einer
„softwarekulturfreien“ Umgebung eingeführt wird,
die häufig durch die traditionelle Host-Entwicklung

geprägt ist, muß verhindert werden, daß eine sich
gegenseitig hemmende Zwei-Welten-Kultur entsteht.
Die eine – alte – Welt darf nicht als die ewig-
gestrige, die zweite - die OO-Welt – nicht als die
allein-seligmachende Welt dargestellt werden. Dazu
muß, und dies ist Sache des Managements, der
Stellenwert beider Technologien klar formuliert sein
und das Mit- und Nebeneinander der Technologien
deutlich gemacht werden.

In diesem Zusammenhang sei am Rande erwähnt,
daß die Umsetzung der OO-Technologie nicht – wie
ab und an fälschlich zu lesen oder zu hören ist – dazu
führt, daß die vorhandenen Kenntnisse der Mitar-
beiter nichts mehr wert sind und nicht mehr
gebraucht werden. Im Gegenteil bilden diese doch die
Basis und den Grundstock, um die neuen Konzepte
der OO-Technologie zu schulen und ihre Vorteile
gegenüber älteren bekannten Konzepten zu erläutern.

Die Organisationsform der Projekte muß unter
Umständen an die Bedürfnisse der OO-Technologie
angepaßt werden. In Kilberth et al. (1993) wird
festgestellt, daß sich in objektorientierten Projekten
gezeigt hat, daß ein objektorientiertes Anwendungs-
system nicht völlig unabhängig von der Organi-
sationsform entwickelt werden kann. Die vorhandene
Aufteilung in Geschäftsbereiche mit ihren jeweiligen
Zuständigkeiten kann sich gelegentlich als sperrig
erweisen. So ist etwa zu berücksichtigen, daß anwen-
dungsnah arbeitende Systemanalytiker oder DV-Be-
rater viel stärker als vorher üblich in ein Entwick-
lungsprojekt integriert werden müssen. Dies wirft
dort Probleme auf, wo fachliche Verantwortung und
personelle Zuständigkeit, bedingt durch die Orga-
nisationsstruktur, auseinanderfallen. Als Lösung

empfiehlt sich meist ein Matrixmanagement, das
Mitarbeiter aus ver schiedenen Abteilungen für den
Ablauf eines Projektes fachlich einer Projektleitung
unterstellt.

Soll objektorientierte Entwicklung nicht nur in
einem einzelnen Projekt, sondern in zeitlich und
thematisch parallelen Projekten erfolgen, dann
erfordert das sowohl umfassende Werkzeugunter-
stützung als auch personelle und organisatorische
Voraussetzungen. Von herausragender Bedeutung für
die mittelfristige Realisierung der Aspekte Flexibili-
tät, Wiederverwendbarkeit und Offenheit ist dabei,
daß die in den entstehenden Klassenbibliotheken und
Frameworks dokumentierten Konzepte kontinuierlich
gepflegt und weiterentwickelt werden. Dazu muß
nicht nur bekannt sein, wie OO-Programmtexte tech-
nisch zu verwalten sind, sondern dies bedeutet auch,
daß kontinuierlich Wissen und Erfahrung weiter-
gegeben werden muß.

Nicht zuletzt müssen die Elemente der einzufüh-
renden OO-Technologie bekannt und auf die Bedürf-
nisse der Projekte abgestimmt sein. Da es zur Zeit
eine Vielzahl von methodischen Ansätzen im Bereich
der objektorientierten Analyse und des Entwurfs gibt,
verschiedene Sprachen- und Werkzeugalternativen
existieren, müssen die Elemente ausgewählt und
zusammengestellt werden, die den Anforderungen
der ersten OO-Projekte am besten gerecht werden.
Bei der Auswahl dieser Projekte muß darauf geachtet
werden, daß diese von der Aufgabenstellung beson-
ders geeignet sind, um sie in der OO-Technologie
durchzuführen. Positive Erfahrungen existieren zur
Zeit im Bereich der interaktiven Auskunfts- und
Beratungssysteme.

3. OO-Technologie bei der SBG -
Strategie der Einführung

In diesem Abschnitt möchte ich kurz beschreiben,
welche Strategie die SBG umsetzen will, um die OO-
Technologie erfolgreich einzuführen und zu eta-
blieren.

In der SBG existiert bereits seit ca. fünf Jahren in
Form des eigenen Informatik-Forschungslabors UBI-
LAB eine Keimzelle für die OO-Technologie. In den
letzten drei Jahren wurden neben den doch eher
Labor-orientierten Arbeiten des UBILAB´s einzelne
Projekte in OO-Technologie entwickelt. Erst in
diesem Jahr ist jedoch geplant, die OO-Technologie
systematisch einzuführen

Marty (1994) beschreibt die folgenden Aspekte
für die Einführung der OO-Technologie bei der SBG:

• Es ist ein gradueller Übergang hin zur OO-Tech-
nologie geplant, der mindestens fünf Jahre dauern
wird.

• Die Einführung soll in kleinen nachvollziehbaren
Schritten durchgeführt werden.

• Erste Erfahrungen sollen an speziellen Pilotpro-
jekten erhalten werden.

• Um eigene SBG-angepaßte Klassenbibliotheken
oder Frameworks zu erstellen, soll verstärkt auf
zugekauften „Halb-Produkten“ aufgebaut werden.

3.1 Die OO-Gruppe -
Selbstverständnis und Ziele

In der SBG wird zur Zeit eine Gruppe aufgebaut, die
mit der Einführung der OO-Technologie und deren
Umsetzung in den Projekten betraut sein wird. Die
Etablierung dieser OO-Gruppe ist letztlich eine Kon-
sequenz der oben für die OO-Technologie beschrie-
benen organisatorischen Voraussetzungen. Das
Selbstverständnis und die Aufgaben der OO-Gruppe
werden nachfolgend erläutert.

Die OO-Gruppe ist ein Anbieter von
Dienstleistungen.

Die OO-Gruppe versteht sich als ein Dienstleistungs-
anbieter. Die angebotenen Dienstleistungen müssen
den Erfordernissen der OO-durchgeführten Projekte
entsprechen. In diesem Zusammenhang ist es wichtig,
daß die Projekte einen direkten meßbaren Nutzen
haben, wenn sie auf die Dienste der OO-Gruppe
zurückgreifen. Damit dies erreicht werden kann,
müssen die angebotenen Dienstleistungen bekannt
sein und mehrheitlich akzeptiert werden.

Die OO-Gruppe ist der Synergiepunkt für die OO-
Technologie.

Die OO-Gruppe ist die zentrale Stelle, die Ergebnis-
se, die in verschiedenen Projekten erarbeitet werden,
aufbereitet, pflegt und anderen Projekten zur Verfü-
gung stellt. Hierzu zählen insbesondere die einge-
setzten Klassenbibliotheken, aber auch die verwende-
ten Werkzeugumgebungen. Die Chancen, die die
OO-Technologie im Bereich Wiederverwendung
bietet, sollen dadurch aktiv genutzt und zielführend
umgesetzt werden.

Die OO-Gruppe arbeitet innovations-orientiert.

Die OO-Technologie ist noch lange nicht ausgereift,
sondern unterliegt ständiger Veränderungen und Ver-
besserungen. Dieser Tatsache muß die OO-Gruppe
dadurch Rechnung tragen, daß sie die sich stabili-
sierenden Neuerungen erkennt, bewertet und even-
tuell umsetzt. Die OO-Gruppe beobachtet dazu u.a.
den sich rasch entwickelnden Markt für Methoden,
Werkzeuge, Klassenbibliotheken und Frameworks.

Bietet
Dienstleitungen

an

Synergie-
punkt

arbeitet
innovations-
orientiert

OO-Know-How
Träger &
Vermittler

 Abb. 2: Selbstverständnis der OO-Gruppe

Die OO-Gruppe ist der zentrale Know-How-
Träger der OO-Technologie.

Damit die OO-Technologie systematisch eingeführt,
verbreitet und stabilisiert werden kann, muß es eine
zentrale Stelle geben, in der das eingesetzte Know-
How zusammengefasst ist. Die OO-Gruppe muß alle
aktuell verwendeten Sprachen, Methoden und Werk-
zeuge, sowie die praxis-orientierten QS-Maßnahmen
kennen, die speziell auf OO-Projekte zugeschnitten
sind. Sie muß weiterhin in der Lage sein, dieses
Wissen angemessen zu vermitteln.

3.2 Aufgabenfelder der OO-Gruppe

Aus den oben genannten Zielen lassen sich die fol-
genden zentralen Aufgabenbereiche der OO-Gruppe
identifizieren:

A. Zeitliche begrenzte Mitarbeit in OO-
Projekten

Die Arbeit der OO-Gruppe darf kein Selbstzweck
sein. Im Sinn eines Dienstleistungsanbieters können
deshalb die Mitarbeiter der OO-Gruppe in einem
zeitliche beschränkten Maße in OO-durchgeführten
Projekten mitarbeiten. Dies führt auf der einen Seite
dazu, daß die OO-Gruppe ständig mit den Problemen
und der Entwicklungssituation der Projekte vertraut
bleibt und dementsprechend darauf reagieren kann.
Auf der anderen Seite ist dies die Voraussetzung, um
Gemeinsamkeiten im Sinn der Synergie und Wieder-
verwendung zu entdecken und umzusetzen.

Aus heutiger Sicht werden die folgenden Schwer-
punkte beim Einsatz in einem Projekt gesehen:

• Unterstützung bei der Einarbeitung in die ver-
wendete Entwicklungsumgebung, Sprache und
Methode.

• Vermitteln der eingesetzten Klassenbibliotheken.

• Mitarbeit und Beratung im Bereich Analyse,
Design- und Implementierung.

• Anstoß von QS-Aktivitäten.

B. Pflege der vorhandenen und entstehenden
wiederverwendbaren Bausteine

Damit projektübergreifend nutzbare Klassenbiblio-
theken entstehen können, muß es eine Stelle geben,
die sich intensiv mit den bestehenden eingekauften
Klassenbibliotheken und mit den in den Projekten
entwickelten Klassen auseinandersetzt. Dies können
die einzelnen Projekte aus Termin- und Kosten-
gründen nicht leisten. Die OO-Gruppe hat in diesem
Zusammenhang die Aufgabe, in sich konsistente,
aktuelle und wiederverwendbare Klassen in Form
von Bibliotheken oder sogar Frameworks zur
Verfügung zu stellen.

Damit dieses Ziel erreicht werden kann, müssen
seitens der OO-Gruppe die folgenden Aktivitäten
durchgeführt werden:

• Die vorhandenen Klassen müssen den Projekten
vermittelt werden. Beim Entwurf neuer Klassen
muß darauf geachtet werden, daß die existieren-
den Klassen sinngemäß verwendet und eingesetzt
werden.

• Entstehen in einem Projekt neue Klassen, die
nicht problemspezifisch, sondern genereller Natur
sind, so müssen diese in die Klassenbibliothek
aufgenommen werden. In der Regel müssen
solche Klassen aber einem Redesign unterzogen
werden. Weiterhin kann es notwendig sein, daß
existierende Klassen verändert und aktualisiert
werden müssen, wenn neue Klasse in eine Biblio-
thek aufgenommen werden. Dies ist die Aufgabe
der OO-Gruppe.

C. Aufbau eines OO-Engineerings

Die OO-Technologie ist nur auf der Basis eines
entsprechenden Software-Engineerings umsetzbar.
Dazu zählen alle Aspekte, die für den Entwicklungs-
prozeß relevant sind. Die OO-Gruppe muß in diesem
Zusammenhang einen OO-Engineering-Ansatz erar-
beiten, definieren und in die Projekte einfließen
lassen. Dieser Prozeß wird iterativ sein, da sich das
Engineering nicht ad hoc abschließend definieren
läßt, sondern sich aufgrund der in den Projekten
gemachten Erfahrungen anpassen und verändern
wird.

Es lassen sich die folgenden groben Themen-
gebiete im Bereich OO-Engineering identifizieren:

• Erarbeiten einer praxisnahen und praxisgerechten
Qualitätssicherung für OO-Projekte (Reviews,
Metriken, Testverfahren etc.).

• Erarbeiten von Standards und Konventionen (Pro-
grammierrichtlinien, Dokumentationsstandards,
Bezeichnerkonzept etc.)

• Bedingt durch den Einsatz integrierter OO-Ent-
wicklungsumgebungen wie etwa Smalltalk muß
ein Konzept für ein geeignetes Versions- und
Konfigurationsmanagement erarbeitet und
umgesetzt werden.

D. Erarbeiten eines OO-angepaßten
Schulungskonzeptes

Damit die objektorientierte Technologie in den Pro-
jekten umgesetzt werden kann, müssen die Projekt-
mitglieder entsprechend geschult sein. Dabei ist zu
beachten, daß die einzelnen Mitarbeiter einen unter-
schiedlichen Wissenstand haben. Weiterhin müssen
die zu schulenden Inhalte so gewählt sein, daß sie den
Anforderungen der Projekte genügen. Dies kann
durch ein in sich abgestimmtes Schulungskonzept
erreicht werden.

Die Aufgabe der OO-Gruppe besteht in diesem
Zusammenhang darin, die Inhalte und die Reihen-
folge der aufeinander aufbauenden Kurse mitzuge-
stalten. Das Schulungskonzept kann grob in zwei
Kategorien gegliedert werden. Die erste Kategorie
enthält Kurse, die das der OO-Technologie zugrunde-
liegende softwaretechnische Basiswissen vermitteln.
Dazu zählt im einzelnen das Modulkonzept, das
Geheimnisprinzip, die Datenkapselung, Abstrakte
Datentypen, Generizität, Polymorphie, Typsysteme,
dynamisches Binden, evolutionäre Prozeßmodelle
und Prototyping. In der zweiten Kategorie sind Kurse
enthalten, die spezielle Themen die Objektorientie-
rung vermitteln. Folgende Kurse sind denkbar:

• Überblick über die OO-Software-Entwicklung

• Objektorientiertes Programmieren

• Qualitätssicherungsmaßnahmen in OO-Projekten

• Objektorientierter Systementwurf (Methoden,
Software-Architekturen)

• Objektorientierte Frameworks – Konzepte und
Designmuster

E. Aufbau und Unterhalt des OO-
Entwicklungs-Environments

Die OO-Software-Entwicklung findet in zunehmen-
dem Maße auf speziellen, teils integrierten Ent-
wicklungsumgebungen (Smalltalk, Visual C++) statt
und wird durch speziell geeignete Werkzeuge unter-
stützt. Die Auswahl, das Know-How und die Pflege
der eingesetzten Werkzeuge sollte sinnvollerweise an
einem Ort zusammengefaßt sein.

Durch den Mix von Projektarbeit und Innovations-
tätigkeit der OO-Gruppe können die Werkzeuge so
ausgewählt und notfalls adaptiert werden, daß sie den
Erfordernissen der Projekte und den Erfordernissen
des OO-Engineering-Ansatzes entsprechen.

3.3 Bewertung

In diesem Bericht ist der aktuelle Stand des Denkens
dokumentiert, der bzgl. der Einführung der OO-
Technologie in der SBG vorhanden ist. Da wir zur
Zeit erst in der Initialphase der Einführung sind,
können keine Erfahrungen berichtet werden. Wir
glauben jedoch, mit der gewählten Vorgehensweise
folgende Ziele erreichen zu können:

• Die Technologie kann geplant, schrittweise, syste-
matisch und nachvollziehbar eingeführt werden.

• Die vorhandenen noch knappen OO-Ressourcen
werden in Form der OO-Gruppe zusammenge-
faßt, so daß eine kritische Masse entstehen kann,
die notwendig ist, damit Erfolge erzielt werden
können.

• Durch die Arbeit der OO-Gruppe besteht die
Möglichkeit, eine unternehmensweite OO-Basis
zu bilden. Dazu zählt neben den Klassen-
bibliotheken insbesondere auch das Know-How
im Umgang mit OO-Projekten.

• Die OO-Technologie soll nicht überall und nicht
zu jedem Preis eingesetzt werden. Es sollen die
Projekte in dieser Technologie realisiert werden,
die besonders dafür geeignet sind. Die OO-
Technologie wird nicht zum Selbstzweck, son-
dern als „Nutzengenerator“ eingesetzt.

Literatur

Kilberth, K., G. Gryczan, H. Züllighoven (1993):
Objektorientierte Anwendungsentwicklung:
Konzepte, Strategien, Erfahrungen . Vieweg,
Wiesbaden.

Bürkle, U., G. Gryczan, H. Züllighoven (1992):
Erfahrungen mit der objektorientierten Vorge-
hensweise in einem Bankenprojekt. Informatik-
Spektrum 15, Heft 5, 273-381.

Marty, R (1994): Klassische Entwicklungstechnolo-
gien ungenügend. Computer Woche Extra 1,
Februar 1994, 38-40.

Teil 9

Software Engineering in der Universität
Jochen Ludewig

Dem Ingenieur ist nichts zu schwer,
Er türmt die Böschung in die Luft,
Er wühlt als Maulwurf in der Gruft,
Kein Hindernis ist ihm zu groß,
Er geht drauf los.

Heinrich Seidel, 1842 – 1906

Zusammenfassung

Die Rolle derer, die in einer Universität das Fach
Software Engineering vertreten, ist nach wie vor
unklar und schwierig. Die Gründe liegen im Gebiet
selbst, in der traditionellen Struktur der Hochschule,
in der Erwartung der Umgebung und in der Praxis
außerhalb der Universitäten.

Infolgedessen muß ich als Hochschullehrer dieses
Gebietes die Fragen nach Zielen, Grenzen, Maßstä-
ben und Erfolgskriterien immer wieder selbst stellen
und beantworten. Das sind die Themen dieses Bei-
trags. Er knüpft an Überlegungen, die ich in meinen
Antrittsvorlesungen in Zürich und Stuttgart entwik-
kelt hatte (Ludewig, 1986, 1989).

1. Schwierigkeiten mit dem
Begriff Software Engineering

Laut IEEE Std. 610.12 (1990) (Standard Glossary of
Software Engineering Terminology) ist

software engineering

(1) The application of a systematic, disciplined,
quantifiable approach to the development, ope-
ration, and maintenance of software; that is, the
application of engineering to software.

(2) The study of approaches as in (1).

So nett diese Definition auf den ersten Blick aussieht,
sie hilft uns kaum. Die darin enthaltene Wertung läßt
erkennen, daß damit mehr ein Programm als eine
Definition gemeint ist. Aber auch bei jedem anderen
Versuch, den Begriff sinnvoll zu fassen, begegnen
uns verschiedene Schwierigkeiten:

(1) Das Problem des Software Engineerings fehlt.

(2) Über den Zweck besteht kein Konsens.

(3) Software Engineering ist ein riesiges Gebiet.

(4) Software Engineering ist keine Disziplin, die
klar von den anderen abgegrenzt werden kann

(5) Software Engineering ist an der Hochschule
kaum möglich, in der Praxis kaum üblich.

1.1 Kein Problem, viele Probleme
Das zentrale Problem des Software Engineerings

ist, daß es im Software Engineering kein zentrales
Problem gibt, sondern viele verfilzte Einzelpro-
bleme... (aus Ludewig, 1989)

In den siebziger Jahren war es üblich, die Schwie-
rigkeiten mit der Software auf irgendeinen „offen-
sichtlichen“ Mangel zurückzuführen, z.B. die falsche
Programmiersprache oder das Fehlen einer formalen
Spezifikation. Das war eine Form des Wunder-
glaubens, tatsächlich gibt es den einen Drachen nicht,
dessen Tod uns erlöst. Die Hoffnung auf die Frei-
kugel (Brooks, 1987) setzt den Glauben an das Mon-
ster voraus. Wer mit Mücken kämpft, kann mit
Freikugeln nichts anfangen.

1.2 Ein Gebiet ohne klaren Zweck
Auch der Zweck des Software Software Engineerings
ist nicht klar; ich habe mich entschieden, als (ein-
zigen) Zweck die Kostenminimierung zu akzeptieren,
aber ich rechne dabei nicht mit großer Zustimmung.

1.3 Ein riesiges Gebiet
Alles, was mit der Entwicklung oder Bearbeitung von
Software zu tun hat, fällt in die Zuständigkeit des
Software Engineerings; das ist viel. Darum kann
jeder Einzelne nur einen Ausschnitt kennen und ver-
treten. Die Gemeinsamkeiten dieser Leute sind ent-
sprechend gering, wie die seit 1992 laufende Tagung
„Software Engineering im Unterricht der Hochschu-
len“ (Ludewig, Schneider, 1992) deutlich zeigt. Das
„Arbeitsgebiet Software Engineering“ ist eine
Fiktion, so wie das „Heimatland Afrika“ eine Fiktion
wäre.

1.4 Ein Gebiet in vielen Gebieten
Baumstrukturen schaffen klare, disjunkte Subsyste-
me, in denen alles seinen bestimmten Platz hat. Auch
Universitäten haben mit ihren Fakultäten, Instituten
und Lehrstühlen eine Baumstruktur, und es ist prak-
tisch, daß diese Struktur weitgehend auch im fach-
lichen gilt. Das Software Engineering jedoch liegt
quer: Wer ein Programm schreibt, betreibt (vielleicht,
je nach Definition) Software Engineering, und was
der Software-Ingenieur realisiert, gehört stets auch zu
einem (anderen) Spezialgebiet der Informatik.

Unser Arbeitsgebiet überlappt also mit allen ande-
ren Arbeitsgebieten, und jeder Informatik-Dozent
unterrichtet Software Engineering, auf seine Art.

Wir haben damit das alte Dilemma derer, die amt-
lich ein populäres Thema vertreten (wie auch Pfarrer,
Deutschlehrer, Berufsberater): Entweder wir haben
die gleiche Position wie alle unsere nebenberuflichen
Kollegen (dann wären wir überflüssig), oder wir
haben eine besondere (dann stehen unsere Chancen,
einen Effekt zu erzielen, schlecht).

1.5 Software Engineering? Nein danke!
Akzeptiert man, daß das Ziel des Software Enginee-
rings die Kostenminimierung ist, dann sind die
Rahmenbedingungen an der Hochschule ungünstig.
Denn die Studenten kennen zwar meist den Preis
einer Speichererweiterung, aber nicht den Wert
geistiger Arbeit. Was sie nicht bezahlt bekommen,
kann nicht wertvoll sein.

Aber auch die übrigen Angehörigen der Hoch-
schule, Mitarbeiter, Professoren und Verwaltung,
denken nicht in Kosten. Wir haben Stellen (die sind
gratis) und Mittel (meist überraschend gegen Jahres-
ende), aber keine Kosten. Die Universität ist in die-
sem Sinne das letzte Refugium des real existierenden
Sozialismus. Wir schulen darum eine Denkweise, die
die Kosten als Angelpunkt hat, unvermeidlich so, wie
die Parteihochschule in Moskau vermutlich den
Außenhandel geschult hat.

Es ist daher naheliegend, den Blick hoffnungsvoll
in die „freie Wirtschaft“ zu richten. Was sehen wir?
Fast überall guten Willen und sinnvolle Ansätze, aber
keinen langen Atem, um die „offiziellen“ Ziele auch
im Auge zu behalten. Solange keine zusammenhän-
gende Kostenrechnung für Software auf dem Tisch
liegt, wird es unmöglich sein, Änderungen vorzuneh-
men, die fast jeder für sinnvoll und rentabel hält. Bei-
spielsweise sollte der Aufwand in den frühen Phasen
der Software-Entwicklung erhöht werden, damit die
Wartung billiger wird. Was sich nicht im nächsten
Quartalsabschluß vorteilhaft auswirkt und keinen
simplen Effekt auf Kosten und Erträge hat, ist
chancenlos.

Die Trägheit der Software-Leute kommt hinzu,
und kaum ein Management nimmt es auf sich, von
ihnen hart zu fordern, was jeder Ingenieur selbst-
verständlich liefert, nämlich Resultate nach dem
Stand der Technik, innerhalb der vorgesehenen Zeit
und zu den vorher geschätzten Kosten.

Darum können wir unseren Studenten und Mit-
arbeitern in der Praxis kaum Vorbilder zeigen: Die
Praxis ist nicht vorbildlich. Wer daran zweifelt, sollte
den Versuch machen, dort vorbildliche Software oder
Projekt-Dokumentationen als Anschauungsmaterial
zu erhalten. Wir haben es mehrfach probiert und sind
uns sicher: Das ist entgegen naheliegenden Vermu-
tungen kein Problem der Geheimhaltung.

2. Ziele und Grenzen

Die vorstehende Diskussion zeigt, daß wir im Soft-
ware Engineering zunächst den Boden ebnen müssen,
auf dem wir dann die eigentliche Arbeit leisten kön-
nen. Sie zeigt auch, daß wir, die Software-Enginee-
ring-Professionals, uns langfristig überflüssig machen
sollten. Eine Ingenieur-Disziplin, die ihren Namen
verdient, braucht keine Spezialisten zur Pflege des
Ingenieur-Gedankens.

Was können und sollen wir, solange wir noch
nicht überflüssig sind, leisten?

In der Forschung sollten wir versuchen, die
Methoden und Mittel bereitzustellen, die eine ratio-
nale Bewertung der Methoden und Mittel in der
Informatik unterstützen. Erst wenn wir in der Lage
sind, den Wert zweier CASE-Tools sinnvoll zu ver-
gleichen, den Aufwand und Nutzen einer Neuimple-
mentierung dem der weiteren Wartung gegenüber-
zustellen, den Einfluß der Programmiersprache zu
quantifizieren, dann haben wir die Grundlagen für ein
rationales Software Engineering. Metriken, allgemei-
ner Bewertungsverfahren sind also nach meiner
Einschätzung die Schlüsseltechnologie.

In der Lehre sollten wir unsere Hörer darauf vor-
bereiten, ihnen wie auch immer glaubhaft machen,
daß es ein Leben nach der (heutigen) Praxis gibt, daß
man Software also auch ganz anders machen kann.
Nach wie vor gilt mein Programm, eine SE-Guerilla
auszubilden, die auch in einer dem Software Enginee-
ring feindlichen Umgebung überleben kann, ohne
zum „Feind“ überzulaufen.

Und in der Hochschule selbst müssen wir weiter-
hin um unsere Kollegen als Verbündete werben und
die Rolle spielen, die auch die Fachleute für Hygiene
in den Universitätskliniken haben: Das besonders
überzeugend tun, was alle tun sollten.

Quellen und Referenzen

Brooks, F.P., Jr. (1987): No silver bullet - essence
and accidents of software engineering. IEEE
COMPUTER 20 , 4, 10-19.

Ludewig, J. (1986): Software Engineering: Compu-
ter-Programme als technische Produkte. Antritts-
vorlesung an der ETH Zürich, Mai 1986. Tech-
nische Rundschau 79 (1987), Heft 7, 50-57.

Ludewig, J. (1989): Modelle der Software-Entwick-
lung: Abbilder oder Vorbilder? Antrittsvorlesung
an der Universität Stuttgart, Juni 1989. Soft-
waretechnik-Trends , 9, 3 (Okt. 1989), 1-12.

Ludewig, J., K. Schneider (Hrsg.) (1992): SEUH
(Software Engineering im Unterricht der
Hochschulen) . Berichte des German Chapter of
the ACM, Band 37, Teubner, Stuttgart.

