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Efficiency of Server Task Queueing for Dynamic
Load Balancing

Abstract

In this paper we investigate optimal points of time for task assignment in dynamic load balancing
schemes. Normally final assignment of tasks to server queues is made at the latest possible time.
The main reason for a late assignment is, that a dynamic load balancer can use most recent infor-
mation about system and application state for the decision. In general however, assignment can be
done at task arrival time, at the moment when a processor or server becomes idle, or when signif-
icant load changes in the system occur. We will elaborate preconditions and circumstances for sit-
uations, where it is advantageous to assign tasks earlier than necessary, i.e. to queue them at the
servers. We verify the results in an experimental load balancing environment.
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1 Introduction

As distributed computer systems become increasingly popular, resource sharing among a number
of computers or processors within a MIMD-computer connected by communication networks
becomes practicable and desirable. Sharing of computing resources, e.g. processor time, data and
hardware devices is usually assisted by load balancing mechanisms. Load balancing is the process
of distributing and redistributing the workload submitted to a network of computers to avoid situ-
ations where some of the hosts / processors are overloaded while others are underloaded. Work
and data are distributed in a way that exploits all system resources and maximizes overall
throughput.

Load balancing strategies may be either static or dynamic, While static strategies yield schedules
based on averaged system characteristics and profiles of applications running in the system,
dynamic approaches also use information about the current system state and application behavior
at run time. Dynamic policies may be further subdivided into centralized and distributed struc-
tures and, according to the utilized information, into reactive and predictive load balancing strate-
gies. For a detailed classification of load balancing approaches we refer to [4] or [8], where a
hierarchical taxonomy is presented. Distributed schemes usually hold tasks only in local server
queues and migrate them at arrival time [9], in situations of load imbalance [1], [6], [11] or at task
completion time [13]. So our investigations of final assignment time apply especially to central-
ized, predictive load balancing schemes. Several recent publications are concerned with central-
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ized load balancing approaches in similar environments [3], [5], [7], [10], [12], [15], some of
them employing local server queues per processor (e.g. [5]). However, their main objective is
comparison of different load distribution strategies in terms of considered load factors, not struc-
tural aspects like server task queueing and optimal time points for task assignment. Furthermore
there is a lack of proposals, which are validated by actual application measurements.

2 General Considerations

For a load balancer there are several time points to assign tasks to processors or servers. Static
schemes commit placement at compilation or batch job start-up time, dynamic non-preemptive
schemes usually place tasks at arrival time. Preemptive dynamic load balancing methods are addi-
tionally able to correct such assignment decisions by migrating tasks, that are currently executing.
Although never explicitly investigated, dynamic schemes are principally able to defer assignment
of tasks until the best server could be ascertained and / or until one of the suitable servers becomes
ready to receive more tasks. One possibility in client server structures is to delay assignment until
any or the best suited server announces that it became idle. Another possible way, and this is what
we will examine in this paper, is to assign tasks even before they can be executed by the receiving
server, for the server may still have some previously received tasks to process.

For such a strategy to be feasible two requirements must be fulfilled. First, there must be a central
task queue for each server class. A server class is a group of servers having identical functionality.
The central queues are controlled by the load balancing component, which may arbitrarily select
tasks from it for assignment. At each server site there has to be a local task queue to contain
assigned tasks. Servers process the tasks in their queue in first come first served order or accord-
ing to their priorities.

The second precondition requires an accurate definition of load balancing events and actions trig-
gered by them. In section 4 we will mention the events and actions, that our experimental environ-
ment offers depending on the actually employed load balancing strategy.

• In most publications there exists an event of task arrival, followed by the action of immediate
assignment. In decentralized schemes this means pushing the task to some less loaded server.

• In preemptive schemes task migration is triggered also by the event of significant load imbal-
ance. The lightly loaded processor receives a task to the most heavy loaded neighbor. If a cen-
tral task queue exists, load changes may also trigger task assignment.

• In receiver initiated schemes each time when a server complets its task, an event occurs. This
event is followed by receiving a task from an overloaded neighbor. Centralized approaches
assign it the eldest or the best fitting task of the central queue to the underloaded processor or
server.

Here we briefly look at design alternatives to enable more flexible task assignment time points.
One possible extension are time-outs: at task arrival time the load balancer rates the servers and
decides whether to assign the task immediately or to establish a time-out. The time-out specifies,
when assignment must be committed at the latest, if no other events yield an assignment decision
for this task. Nevertheless we will not use time-outs in this paper, because it is rather complex and
not completely understood. Instead, we employ a flexible event - action coupling: no matter,
which task, processor or server caused the event, the action may assign any set of tasks to arbi-
trary servers. Furthermore we expand load balancing, that it may keep track of the tasks currently
queued at servers, especially the size of the local task queues. This allows to estimate the load at
the server and the time until the server turns back to idle state. If load balancing considers data
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access affinity (see section 5), it may also estimate which data records will be present at the server
when it has worked off its queue.

Once load balancing is capable of assigning tasks more or less at any moment, it is necessary to
investigate the advantages and drawbacks expected from early assignment. The first improvement
is the saving of server idle time due to load balancing decision and message passing delays. This
is especially true in central load balancing schemes and shared nothing computer architectures,
which we are concerned with. Each time a server has completed a task execution and has no fur-
ther tasks queued locally, it must call the load balancing component and wait until a task arrives.
Note that employing many servers per processor at a time helps keeping the cpu busy, but often
results in synchronization and task switching overhead. Also it complicates load balancing meth-
ods significantly. Our considerations in principle apply to both execution models.

The second advantage expected from early assignment is the reduction of load balancing over-
head. Load balancing should try to get rid of tasks residing in central queues, if their currently
favored placement most probably will not change anymore. The principle to assign tasks as late as
possible is based upon the observation, that the load situation may change distinctively. Another
placement becomes more lucrative during the time between the task arrived and the time, when
the server starts its execution. To exploit this, however, it is required that all task ratings in the
central queue are updated each time a relevant load balancing event occurs. In situations of high
parallelism, i.e. when a huge set of executable tasks arrive that cannot be served at once, this will
certainly cause much overhead. Therefore, load balancing must be able to estimate the possible
load change rates in terms of foreign processor load, task completions and data movements. The
stability and predictability of the system and application behavior then enables to assign tasks to
servers up to a certain degree in advance, i.e. put them into the local task queue.

A third opportunity arising from proper usage of local server task queues is less obvious, but nev-
ertheless important. Most load balancing concepts cannot exploit knowledge about groups of
tasks, whether for reasons of simplicity or avoidance of overhead. To detect the most promising
degree of parallelism, however, it requires to know in advance, how many tasks, showing a simi-
lar profile or data access pattern, will follow. Then load balancing decides whether to set up fur-
ther servers and whether it pays off to distribute data and copies among the system. The option of
earlier task assignment using local queues provides a rather simple way of controlling the degree
of parallelism. The algorithm for early assignment without explicit announcement of task groups
to load balancing works as follows: the first few tasks will be assigned to the currently available
servers, which have appropriate local access to the participant data. After a short time, however,
as their local task queues are growing, they become less attractive for further task assignment.
Other servers will be employed in spite of start-up overhead, data movement costs or inferior
available processing power. Without server queues, load balancing would always decide to keep
the next task until the best server becomes free again, because this is obviously faster than giving
it to someone else.

The obvious drawback of local task queues is the potential of inappropriate assignment due to
rapidly changing system load or data placement. In addition, there is overhead arising from the
explicit consideration of the tasks residing in the local server task queues.

In the following section we will introduce a simple analytic model to illustrate the relevant factors
and their correlations concerning task assignment time points.
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3 The Analytic Model

The underlying system model, as depicted in the left part of Figure 4, fulfils the requirements
explained above, providing central and local task queues. We will not use Markov queues [5] to
examine the effects of server task queueing but restrict ourselves to straightforward calculations.
Both ways cannot adequately reflect the real behavior and interactions, e.g. differences between
load balancing methods. So it is necessary to rely on measurements obtained from a real world
environment, that confirm the benefits and limitations of our considerations.

Our analysis bases on the following set of input parameters, which, of course, mutually influence
each other. They are estimations about system, application and load balancing behavior during
some homogeneous phase of the application run. The first set of parameters can be obtained from
measurements:

• p (processors) states the number of available processors, which equals the number of servers
for our considerations.

• ml (message latency) gives the average elapsed time for a message passed between the load
balancing component and some server including protocol overhead.

• tt (task execution time) is the elapsed time for a single task execution averaged over all tasks
arrived in this phase and all employed processors, if executed on a central processor without
any parallelism.

• lba (load balancing time per task assignment) estimates the average time load balancing spent
in reacting on events per assignment of a task. This includes server rating for assignment deci-
sions as well as system load state collection. Each time load sharing examines a task in the cen-
tral queue this value increases accordingly.

• squ(server queue usage) is the average server queue size effectively used by a certain load bal-
ancing strategy. This is essentially the parameter with which we vary the task assignment time
point as discussed above.

The second part of parameters are estimations that cannot be simply extracted by profiling the
system:

• tts (relative task execution time skew) is a factor, which gives the maximum increase of task
execution time due to processor speed and load differences, references to non-local data, etc.

• lbrs (load balancing recognized part of skew) is the portion of the system and application
inherent skew observed by the strategy. A simple strategy, for example, would equally distrib-
ute tasks to processors although this does not yield maximum throughput.

• if (information falsification per queued task) describes the load change and data movement
rate, i.e. instability and in-predictability of the system state. So we have a factor how much
load balancing benefit is lost per task, because the information used at assignment time grew
old while the task is waiting in the server queue. The more tasks in the servers local queue
exist, the more load balancing benefit will be lost for these tasks.

Upon this abstract characterization of system, load balancing and application behavior we built a
set of equations. They yield some overall performance estimation, expressed in the average num-
ber of tasks finished per unit of time, assuming a sufficiently loaded system (i.e. there are mostly
enough tasks to work on).

The temporary variables have the following meanings:
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• lbov gives the average overhead for the load balancing component per task from arrival till the
assignment decision,

• qe is the probability for a server to encounter an empty local queue after having finished a task.

• qed is the time a server remains idle until it receives the next task, provided its local queue is
empty.

• ettsestimates the actually observed relative task execution time skew.

• Finally, ptt gives the average elapsed time between two task executions on a processor divided
by the effective parallelism.

(EQ 1)

 , (EQ 2)

(EQ 3)

 , (EQ 4)

From these equations we can derive promising application and system parameter ranges in combi-
nation with load balancing methods, for which early task assignment in form of server task queue-
ing is profitable. We chose three different levels of load balancing representing stupid, simple and
more advanced strategies. All three have the following parameter settings in common:

• tt = 25 msec, rather fine grained tasks in a workstation environment. Note, that non-preemptive
load balancing should have fine grained tasks, because load skews caused by long running
tasks should not happen.

• tts = 5, a task placed on some unsuited processor will run five times as long as on average,
p = 15, a mid range workstation cluster,

• ml = 700µs, software latency in ethernet based tcp communications.

The other input parameters are empirical; they partially depend on the load balancing strategy
used. The first strategy, called Round Robin (RR), simply assigns tasks in round robin fashion.
There is no chance to detect some execution time skew,lbrs = 0, assignment cost are low,lba = 10
µs and, for no run time information is used, it cannot grow old,if = 0.

The second competitor, called First Free (FF), always assigns tasks to the first server, which has
some space left in its local queue; using round robin like above, if more than one is available. We
assume theoretical skew avoidance of 15%, i.e.lbrs = 0.15, still low assignment cost,lba = 50µs.
The only run time information used are the servers’ local queue size, which may be viewed as
growing old due to task size and processor speed variations, so we estimateif = 0.05.

Finally we model a rather advanced strategy, named Data Locality and Processor Speed (DLPS).
It takes into consideration several items: the processor speed and current load, the expected task
size, access pattern to global data and current data placement; further the time elapsing for execu-
tion of the tasks currently residing in the local queues. It uses complex formulas to rate the server
applicabilities for each task under the current situation. So it is able to swallow 60% of the execu-
tion time skew,i.e. lbrs = 0.6, to the debit of assignment costlba = 2 ms. There is a non-negligible
factor of information growing old while an assigned task is waiting in the local queue, due to load
changes and data movement, so we setif = 0.08. Note that all three dynamic strategies are subop-
timal and heuristic.

lbov
p lba×

squ
-----------------=

qe min
tts lbrs 1+×

squ
-------------------------------- 1,( )= qed qe 2 ml lbov+×( )×=

etts tts 1 lbrs 1 min if squ 1–( )× 1,( )–( )×–( )×=

ptt
tts
p

------ tt
tt etts×

2
------------------- qed+ + 

 ×= throughput
1

max ptt lbov,( )
------------------------------------=
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Figure 4, derived from the equations, compares the strategies at varying degree of server queue
usage. A queue size of one task means, that load balancing may assign a task to an server not
before it turned back to idle state. While RR throughput slightly increases due to sinking probabil-
ity for servers to run out of tasks, the same effect at FF is soon predominated by the loss due to
early assignment of tasks. Towards large local task queue size all strategies end up in equally dis-
tributing tasks regardless of the system behavior. While DLPS suffers from load balancing over-
head caused by repeated rating of tasks residing in the central queue and long delays for idle
servers at small local queue usage, there exists a range of stable maximum throughput, in which
the effects of increasing server usage, shrinking overhead and assignment information getting
antiquated, overlap. The right chart gives the performance degradation due to load balancing
overhead in larger scaled systems,p = 25. Here, load balancing poses a bottleneck if strategies are
complex and server queue usage is small. Some other parameter settings show less sensitivity to
early assignment, but the results we present below prove, that there is significant influence in
practise.

4 The Experimental Environment

The following results base on experiences with a prototype implementation of a dynamic, central-
ized load balancing environment called HiCon [2]. Applications running under HiCon are essen-
tially client server structured, which has been established as a valid cooperation paradigm for
parallel and distributed applications. Servers may operate on global data, which is distributed
among the system. Load balancing is realized as a component responsible for server configuration
management, task assignment and data movement as indicated in the right part of Figure 4. A cen-
tral task queue per server class as well as local task queues at the servers enable the required
assignment flexibility. Load balancing consists of a set of applicable strategies. Each strategy
specifies a couple of actions like updating state information and task ratings, sending tasks from
central into local server queues or migrate data partitions between servers. These actions are trig-
gered by events like task arrival, end of task execution, data movement or resource load state
change. The interested reader is referred to [2] for a detailed description of the underlying con-
cepts. Instead we will summarize the effects obtained with exploitation of different local queue
sizes below.

Figure 1: Server queue usage vs. throughput for different load balancing techniques
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We observed three different applications solved in parallel under HiCon load balancing support at
varying usage of local server task queues. The server call structures are shown in Figure 4. Two
algorithms were implemented for the search of the shortest path between certain nodes within a
given graph [2]. It turns out that the three applications above are able to show all effects derived in
section 3.

The first one, called Graph, decomposes the search into a client, which just starts the search and
combines the results, a server class GFind which collects the immediately reachable nodes from a
given set of start nodes and sends the found nodes as call to the third class. This class, GReach,
maintains a list of currently reached nodes. It inserts a set of reached nodes into this list and issues
several server class calls to GFind, along with a set of nodes, that are worth further investigation.
The graph is a set of edges, divided into partitions by start node ranges, each stored in a separate
disk file. Similarly the list of reached nodes, a main memory array structure, is partitioned by node
ranges, but the partitioning ranges may not match the graph partitioning. The GFind class further
maintains a termination counter, a small data partition, which nevertheless tends to be a hot spot
due to high update rates. The left part of Figure 4 shows the server call structure.

The second application, Graphx, solves the search problem with a client and one server class only.
Here, the client controls the search process explicitly, i.e. sends search tasks, receives their results,
divides the results into several new tasks and charges the server class with these new calls. The
server class GFindx maintains both the source graph and the list of reached nodes, applies found
nodes immediately to the reach list and yields a set of sorted nodes for further investigation.

The third application, called distributed picture segmentation (Dps) [14], is the most complex
one, for it solves a real world problem in parallel under load balancing support. Segmentation is
the process that subdivides an image into its constituent regions or objects. A region is an area in
a picture whose points have a common property (discontinuity and similarity of the color values).
The algorithm is roughly a split & merge technique; the application is realized by three server
classes. The first server class, called client, is responsible for the synchronization of different
calls. The second server, named dps_server, carries-out the image segmentation and the third,
called print_server, is responsible for the correct saving of the segmentation result. The coopera-
tion structure of the three server classes is shown in the right part of Figure 4. At the beginning

Figure 2: Analytic queueing model and HiCon load balancing structure

Figure 3: Server cooperation structure
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and at the end of the picture segmentation process the application has a high degree of parallel-
ism, whereas in the middle of the processing the degree is low.

5 Measurement Results

The applications were observed under the configuration shown in Figure 4. We used four different
load balancing strategies and varied the available server queue size for each application. Figure 4
summarizes the resulting response times. The strategies RR, FF and DLPS(1) have been intro-

duced in section 2. The strategy DLPS2 is a heuristic modification of DLPS1: it checks at maxi-
mum 20 entries in the central task queues per load balancing event. So it works faster but less
accurate. The analytic evaluation of section 3 is repeated at the bottom of Figure 4 to show the
correlation to the actual measurement results. The y-axis is inverted from throughput into elapsed
time. All parameter settings are the same as in section 3, except for the load balancing decision
costs, which had to be increased slightly to comply with the measurements.

Figure 4: Measurement system configuration.

Figure 5:Local queue size vs. elapsed time for different applications and load balancing strategies.
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The first effect we expected was a huge load balancing overhead at complex strategies along with
short server queues. In both Graph and Graphx application load balancing never became a bottle-
neck although placed onto the smallest workstation. The Dps application however, contains a
phase in which lots of tasks arrive that cannot be scheduled immediately, each of them announc-
ing access to about a thousand global data elements. So the DLPS1 strategy spent too much time
in re-rating all the tasks in the central queue at different events. The right part of Figure 4 tells that

servers are mostly waiting for data, because this also involves load balancing actions in this
HiCon prototype. At local queue sizes beyond 12 it outperforms the simple strategies and behaves
similar to DLPS2, which less accurately updates the information.

The loss of load balancing improvements due to aging information is not as well visible from the
measurements as it was in section 2. In spite of server queue usage growing larger, there still
remains some difference in throughput between the complex and the simple methods. There are
two reasons for it: first, because measurements where not taken during real life multi-user opera-
tion, system load and data placement changed comparably slow. Second, the load balancing strat-
egies are implemented in a way they may use the server queues up to the given limit, but we could
not force them to really exploit the maximum allowed (if it seemed unreasonable to them).

A better usage of the servers in terms of keeping them busy all the time and exploiting possible
parallelism with server queueing could be observed for all three applications. Especially the calls
to class GReach within the Graph application yielded very small tasks only. This class becomes
the bottleneck under DLPS1 when driven without local queueing. In the case of short running
tasks, the delays for getting a next task are comparably expensive. As the left part of Figure 4
shows, the servers were almost unemployed. Class GFind is the bottleneck for all queue sizes
beyond 1, which is the main reason for the minimization of the execution time. It should be men-
tioned, that DLPS1 decided to employ only one server of class GReach because of its high data
update rate. Thus it clearly defeats RR for all larger queue sizes, whereas RR more often employs
both GReach servers at increasing local queue size.

Figure 6: Execution profiles of certain application and load balancing behavior.
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The Graphx application has even more interesting properties: the maximum parallelism for both
strategies is about 14 tasks, so larger local queues could not be exploited. Tasks in Graphx are
rather long running (about ten seconds on a 34 MIPS processor), so load balancing was never
overstressed. Note that most other researchers look at even larger tasks in the range of minutes or
hours, but we are able to further decompose such tasks and thus obtain more load balancing bene-
fit. However, Graphx’s major problem without local queueing was that parallelism cannot be
exploited, and so the maximum throughput was achieved at a queue usage of five (see middle of
Figure 4). This is essentially the third consideration explained in section 2.

Dps under RR and FF marginally benefits from local task queues, because the time to compute the
load balancing decision is negligible. So the difference of working with or without a local queue
is the elapsed time for a message between the load balancing component and some servers. The
more advanced strategies are able to speed up Dps, DLPS1 requiring some local queue size. The
strategy DLPS2 is - at least for this application profile - an improvement of DLPS1, for it checks
less tasks of the central queues per load balancing event. It approaches the minimum execution
time when the local task queues are greater than six.

6 Conclusions

We tried to set up some simple straightforward calculations to estimate the server queueing effects
for a wide range of computing systems, applications and dynamic load balancing approaches. The
measurement results presented above cannot be viewed as a complete evaluation of early task
assignment advantages. But they demonstrate that there are several different dependences on load
balancing efficiency.

In principle, allowing large server queues causes no harm as long as the load balancing policies
are good enough to decide on their own, which size can be fruitfully exploited. Many heuristics
proposed in the literature are still too simple or too restricted in their functionality. Local server
queues provide some potential to improve load balancing without adding much decision or infor-
mation acquisition overhead. Further, adaptive load balancing may adjust the optimum local task
queue usage based on the system and application factors we elaborated in this paper.
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