
Modelling Interaction with HyTime

Stefan Wirag, Kurt Rothermel, Thomas Wahl

University of Stuttgart
IPVR

Breitwiesenstr. 20 - 22
D-70565 Stuttgart

wirag@informatik.uni-stuttgart.de

Abstract

Interactive multimedia presentations are an essential issue in many advanced multimedia appli-

cation tools. Before presenting multimedia data, media items, interaction types and synchroni-

zation constraints have to be specified in a multimedia document. This paper identifies and clas-

sifies the temporal interaction types in multimedia systems, and shows their impact on the

specification process and the supporting system. Then, we describe how to specify the interac-

tion types by using the standardized multimedia document language HyTime. The HyTime

mechanisms are demonstrated by examples followed by a discussion of the advantages and

limits of each technique.

1 Introduction

With the emerging multimedia technologies, more and more application tools are developed to

process and present multimedia data. Generally, multimedia data are stored as multimedia or

hypermedia documents using a proprietary format [Appl91], [BuZe93], [BHL91], [LiGh90].

The result is that tools of different vendors or developer groups cannot exchange their docu-

ments without a format conversion. Converting document formats is expensive if possible at all.

A general document standard for multimedia would alleviate this problem.

HyTime [HyTi92] defines a standardized language for specifying the essentials of multimedia

documents, such as addressing documents or defining temporal constraints. When developing

our multimedia presentation system TIEMPO1 [WaRo94], we considered HyTime as a document

model. The architecture of HyTime is described by [Gold91] and [NKN91]. Further, [Erfl94]

1TIEMPO: grant of the Deutsche Forschungsgemeinschaft DFG
Temporalintegratedmodel topresent multimedia-objects

2 Interaction 1

examined how to specify synchronization constraints in HyTime but he excludes the question

how to specify interaction. As multimedia application tools increasingly support interaction,

this question becomes a crucial issue in multimedia documents. Specifically, those interaction

types that affect the synchronization constraints are critical because the predefined presentation

schedules specified in HyTime might be modified in case of an interaction.

Although HyTime does not provide any direct mechanisms to express interaction, there are

generic mechanisms that can be used for modelling interaction since HyTime is an encompass-

ing standard. Therefore, this paper examines the mechanisms of HyTime, shows how interac-

tion might be expressed and describes specification techniques that exceed the approaches of

[KRRK93] and [BRR94].

In section 2, we identify the interaction types affecting the HyTime schedules, and describe the

issues for the specification and the system support of the interaction types. Section 3 introduces

the essentials of HyTime. HyTime mechanisms to support interaction are presented and dis-

cussed in section 4 followed by section 5 describing how to model the interaction types in

HyTime. Finally, we summarize the results.

2 Interaction

Various methods exist to interact with a system during a multimedia presentation. A user might

resize a presentation window or control the volume of an audio channel. Some of the interaction

types affect the temporal layout of a multimedia presentation. E.g. pushing the pause-button

delays future events, or with the fast-forward-button future events occur earlier than originally

scheduled. Interaction types that affect the temporal layout of a presentation are critical because

most multimedia presentations include a schedule of all events within the presentation. Thus,

interaction might result in several changes of the presentation schedule because events have to

be rescheduled, new events are added or other events are no longer valid and have to be removed

from the schedule.

In this section, we identify the interaction types with a temporal impact. Then, the issues of

specifying and executing multimedia presentations are discussed in respect to the interaction

types.

2 Interaction 2

2.1 Interaction types

Table 1 summarizes the interaction types with a temporal impact on multimedia presentations.

The interaction types are described by their name, symbol and their impact on the presentation

speed. The symbol represents the default presentation trace by a grey arrow and the modification

of the trace by a black arrow. Multimedia applications can be classified according to the inter-

action types that are offered when presenting documents. The fourth column of table 1 indicates

which interaction type is included in which class. Hence, the lower class interaction types might

be included in the higher classes.

A first class of multimedia presentation systems does not provide any interaction during the pre-

sentation. But still a start-mechanism is needed to produce any perceivable output. Therefore,

start is an essential interaction type of any presentation system. In a second class, the presenta-

tion speed can be varied by interaction types such asfaster, slower pause, continue or stop.

However, the direction of the traversal through the multimedia document remains forward dur-

ing the entire presentation. For this reason, this class of systems is calledlinear directed. More

advanced presentation systems also allow to reverse the presentation direction or to jump to

another part within the document. So, the sequence of the presented events is no longer pre-

defined. But still the default presentation of a document is linear, i.e. all events are totally

ordered. Therefore, this class is calledlinear undirected. The most comprehensive class of sys-

interaction type symbol presentation speed class

start vnew = vdefault basic

stop not defined linear directed

pause vnew = 0 linear directed

continue vnew = vbefore_pause linear directed

faster vnew = sign(vbefore)* |vbefore| ++ linear directed

slower vnew = sign(vbefore)*|vbefore| -- linear directed

reverse vnew = -vbefore linear undirected

jump vnew = vbefore linear undirected

selection vnew = vdefault non-linear

Table 1: Classification of interaction types

2 Interaction 3

tems additionally provides the selection-interaction, by which the next media item can be cho-

sen from a list of items. The path through a multimedia document with selection-interaction is

no longer predefined. A variety of paths are possible. So, the selection is anon-linear interaction

type.

2.2 Specification of interactive documents and system support

The basic class of presentations without any interaction except the start-command can be spec-

ified by using real time synchronization constraints since all events except the start are pre-

known and predictable. Also once the presentation is started, the supporting system can meet all

synchronization constraints by prefetching all necessary presentation data.

The non-basic classes of presentations are specifiable by real time constraints because the dura-

tion of a presentation segment might vary due to interaction such as pause slower, faster, etc.

Therefore, the concept of virtual [HyTi92] or logical time [Lamp78], [AnHo91], [RoHe94] was

introduced. The presentation data is considered as a totally ordered sequence of information

units. Then, the logical time is defined by the sequence of information units. A logical time unit

can be given in frames, samples, bits, bytes or simply an abstract unit. Now, synchronization

constraints are specified in terms of logical time units. However before rendering such a docu-

ment, its logical time has to be mapped to real time. Figure 1 shows how the mapping is done

Figure 1: Mapping logical time to real time

real time
start

document

real time
start

document

real time
start

document

pause continue

reverse reverse,
jump

basic interaction

linear directed interaction

linear undirected interaction

3 HyTime 4

in the basic, the linear directed and the linear undirected class. Each point in real time is assigned

the multimedia data that is rendered at that time.

Executing a presentation of the linear directed class can be implemented fairly easily as the sup-

porting system knows at any time what presentation data might be rendered next. This holds

because the rendering direction of a linear directed document is always forward.

Implementing the linear undirected class is more sophisticated because several presentation

data units might be rendered next depending on the interaction events that occur. In case of the

reverse interaction, the system might present either the last data unit or the next data unit

depending on whether the reverse-button was pressed or not. In case of a jump, the number of

possible data units to be rendered next is theoretically infinite.

The most complex class, a non-linear presentation, cannot be specified on a single logical time

line as it is not known which selection will be chosen by a user. E.g. figure 2 shows a scenario

in which a first talk is followed by a selected video and then by a second talk. Depending on the

duration of the selected video, the sequence numbers of the logical units of the second talk are

different. So, there is not a unique document time. Then, synchronization constraints cannot be

aligned on a single logical time axis. Implementing selection, prefetching of presentation data

by the supporting system is not trivial because several data units are in question to be presented

next depending on the number of options offered by the selection. This can vary from a few to

a theoretically infinite number of choices.

3 HyTime

Any platform for hypermedia applications might have its own proprietary method of represent-

ing documents. Thus, it is difficult or even impossible to interchange documents created by dif-

Figure 2: Non-linear interaction

talk1 talk2

video1

video2

video3
1 7

8

8

8

12

15

17

13
16
18

20
23
25

logical time unit

3 HyTime 5

ferent applications. Therefore, HyTime (Hypermedia/Time-based Structuring Language) was

developed as an international standard [HyTi92] for structured representation of hypermedia

documents for integrated open hypermedia applications. It is an SGML (Standardized General-

ized Markup Language) application and is interchanged using ASN.1 for OSI-compatibility.

A hypermedia document is a set of documents and other information objects connected by links.

When the definition of a document type is created, content and rendering instructions are dis-

tinguished. HyTime standardizes those facilities dealing with the addressing of portions of

hypermedia documents and their component multimedia information objects including the link-

ing, alignment and synchronization of document items. HyTime does not standardize the data

content notation, the encoding of the information objects or the application processing them.

The HyTime standard does not impose any particular implementation architecture, and it is pos-

sible to integrate HyTime-processing in application programs if desired. The HyTime architec-

ture is modular and only the required facilities need to be implemented. The HyTime standard

consists of the following modules: Thebase module specifies the basic issues. Thelocation

address module specifies the addressing facilities. Thehyperlink module specifies the hyperlink

facilities and thefinite coordinate space module deals with the position of objects in space and

time and their modification. Figure 3 shows the relations of the modules.

A brief description of the HyTime features that are useful for the specification of interaction is

given in the following sections.

Figure 3: HyTime modules [NKN91]

base
module

location
address
module hyperlink

module

finite
coordinate

space module

event
projection
module

object
modification

module

3 HyTime 6

3.1 Document structure

The architecture of an SGML document is expressed in its Document Type Definition (DTD).

The syntax is expressed as a set of elements, each with its own generic identifier, a set of

attributes and the content model, which determines the data types to be used in the element. The

HyTime standard defines element types calledarchitectural forms(AF) identifiable by the

attribute HyTime. By including the attribute HyTime and conforming to the model of a partic-

ular HyTime architectural form, document authors can create derived element types with spe-

cific semantics. Additionally, attributes can be inserted containing information according to the

semantics. Using AF’s and derived element types, document authors can create DTD’s which

incorporate only those semantics of HyTime that are needed.

3.2 Control flow

HyTime documents are interpreted by a HyTime-engine. If a HyTime document is ready to be

processed, the application calls the HyTime-engine which in turn calls the SGML-parser. The

parser notifies the HyTime-engine about anything important. The HyTime-engine performs

address resolution, linking, alignment and synchronization and passes the entire output of the

document back to the application controlling the presentation. The flow through a hyperdocu-

ment is controlled by an application program and can be modified by scripts that are embedded

within a hyperdocument. The application calls programs which interpret the scripts.

3.3 Temporal relations

In HyTime, an object is a piece of information of any type. An object may consist of data such

as video, audio, graphical objects or text. To position objects in space and time, HyTime uses a

finite coordinate space (FCS). A FCS is described byaxes. Any FCS establishes a specific mea-

surement domain with a reference unit defined for each axis. Objects in a HyTime finite coor-

dinate space occur as the content ofevents. An event is a conceptual frame for an object. Each

event has a dimension specification that represents its position and extent on the coordinate axes

of the FCS. Elements of the typedimref allow to position events dependent on other events. An

application might associate synchronization constraints with these relations. If the determina-

tion of the dimension specification of events requires complex computationsmarker functions

can be applied. Such a function computes the position or extent of an event on one axis. Events

3 HyTime 7

are organized inevent schedules. A FCS may contain any number of event schedules, and each

event schedule may contain any number of events.

The following example contains the temporal specification of a scenario where an event

(event 2) starts 10 seconds after another event (event 1) has started. Further, event 2 has the

same length as event 1. We use aHyFunk-element to specify the relative positioning of event 2.

HyFunk is a HyTime-defined marker function type that can be used to express simple relations

between event extents. The first three lines of the example define this function. The elements

%1, %2 in the definition represent parameter that are passed on to the function when it is called.

Then, the extent lists which define the position and extent of the events in the FCS are specified.

The position and extent of event 1 are directly specified. In the specification of the extent list of

event 2 the defined marker function is applied to position the event relative to event 1. The ref-

erence to the extent list of event 1 and the delay are the parameter of the function call. The dura-

tion of event 2 is specified by adimref-element which extracts the duration of event 1. Finally,

the finite coordinate space with the event schedule (evsched) containing the two events is spec-

ified. (Further examples are found in [Erfl94].)

<!-- excerpt from a document instance -->

<HyFunk fn=”cal_start”> <!-- function definition -->
@sum(@first(%1) %2)

<\HyFunk>

<extlist id=”ext_ev1”> <!-- extent list of event 1 -->
<dimspec id=”dim_ev1”>

30 210

<extlist id=”ext_ev2”> <!-- extent list of event 2 -->
<dimspec id=”dim_ev2”>

<HyFunk usefn=”cal_start” args=”dim_ev1 10”
<dimref elemref=”dim_ev1” selcomp=”qcnt”>

<fcs> <!-- finite coordinate space -->
<evsched>

<event exspec=”ext_ev1”> <!-- event1 -->
<event exspec=”ext_ev2”> <!-- event2 -->

The event projection module of HyTime provides the facility to project events from one FCS to

another FCS. Thus, event projection might be used to extract a specific part of an object or to

modify the presentation speed of an object. The projection is performed by a projector which

can be defined in a notation unknown to the HyTime-engine. In this case, the HyTime-engine

4 HyTime techniques to specify interaction 8

asks the application to determine the location and extent of the projected events. Simple projec-

tion types can be expressed applying marker functions, such as the projection by a constant

ratio. Projectors are organized in schedules calledbaton.A batrule-element must be used to

express the relation of a baton, unprojected event schedules, and projected event schedules. All

event parts in the related unprojected schedules that are within the specified projector-scope of

the projector are published to the projected event schedules. Additionally, projected event

schedules can contain events which are not derived from projections.

3.4 Links

The hyperlink module of HyTime provides various link types. Links can be used to describe

relations between any kind of objects. HyTime knows two major link types: Contextual links

(clinks) describe a relation between two objects. One link-end is the content of the link element

and the other link-end is an arbitrary object. Independent links (ilinks) represent a general form

of a link. It can have any number of link-ends. Withindependent links, roles can be defined

assigning semantics to anchors.

4 HyTime techniques to specify interaction

Documents with interaction abilities contain temporal relations which have to be resolved dur-

ing rendition. HyTime gives little support to specify relations which cannot be bound to well-

known time points. Thus if interaction should be integrated, HyTime extensions are needed. In

this section, we describe some approaches to integrate interaction in HyTime.

4.1 Schedule-link approach

In HyTime, events which describe the occurrence of objects in an abstract manner are organized

in schedules. Such a schedule determines the presentation for a temporal interval. This interval

is normally determined by the start instant of the first event and the end instant of the last event

in the schedule. In documents with interaction facilities, multiple alternative renditions are pos-

sible. In HyTime, such alternatives can be specified applying a schedule for each particular ren-

dition. Thus each time an interaction occurs, the rendition of the current schedule is aborted, and

the rendition continues in the schedule that represents the interaction effect. Enabling interac-

4 HyTime techniques to specify interaction 9

tion in HyTime and a mechanism to switch schedules on interaction are prerequisites of this

approach.

HyTime does not deal with user input like mouse clicks or key pressings. Nevertheless, possi-

bilities to interact must be offered to the user, such as buttons, keys or slide-bars. Input facilities

which have to be displayed on the screen might be specified as HyTime events. We call such

events interactive events. Element types for interactive events with a defined semantics can be

derived from the AFevent. An element type of a simple label-button event might be:

<!element button - 0 empty>
<!attlist button

label CDATA #REQUIRED
linkends IDREFS #REQUIRED
HyTime NAME #FIXED event
id ID #IMPLIED
-- exspec attributes --

>

The label-attribute determines the text that appears within the button. Thelinkends-attribute is

needed to express relations to following event-schedules. Theexspec-attributes describe the

position and extent of the button event. TheHyTime-attribute specifies that this element type is

derived from the AF event. Theid-attribute identifies an element of this type. The element type

has no content.

Hyperlinks are used to define an action which has to be performed if the user applies an inter-

active event. These hyperlinks relate an interactive element with a schedule that contains the

interaction affect. For this purpose, a link element type with special semantics might be derived

from the HyTimeclink-AF:

<!element linkbut - 0 empty >
<!attlist linkbut

trigger CDATA #REQUIRED
HyTime NAME #FIXED clink
id ID #IMPLIED
linkend IDREF #REQUIRED

>

In the example, the attributetrigger defines the condition which must become true on the inter-

active event so that the application traverses the link and continues processing in the referenced

4 HyTime techniques to specify interaction 10

event-schedule. Defining links with different trigger conditions relating different schedules,

multiple user interaction can be defined with the same interactive event.

In [KRRK93], a DTD for a slide show is described allowing to move to the next slide interac-

tively. In this DTD, links have a similar semantics as the link defined above. Figure 4 shows the

link connections of the example. Each slide schedule contains a button event and a slide event.

The button event is linked to the subsequent schedule. The link is traversed to find the following

slide schedule if the button is pressed.

Generally, all interaction types introduced in section 2 can be specified by links. For complex

interaction forms such as faster and reverse, additional information is needed to position the

events. This knowledge must be present in the application if the rendition module is not used.

Further, the definition of alternative renditions by different schedules is not applicable with infi-

nite interaction effects. For example, if the presentation speed of a media item can be manipu-

lated by a slider, any speed within a certain range is acceptable. The specification of such a

behavior requires additional mechanisms.

4.2 Integration of scripting languages

Interaction requires additional processing descriptions within HyTime. Therefore, scripting lan-

guages such as HyperTalk might be integrated to describe actions to be executed on interaction.

It is possible to define element types for scripts which can be added to any DTD by creating new

document elements in the appropriate places [BRR94]. Such script elements are treated as

media objects which cannot be interpreted by the HyTime-engine, and therefore would be

passed on to the processing application for interpretation. The following example [BRR94]

shows an element typepage which might contain script objects:

Figure 4: Generic interaction example

button

slide

button

slide

slide schedule slide schedule

....butnlink

4 HyTime techniques to specify interaction 11

<!element page - 0 (graphics*, buttons*, script*) >
<!element script - 0 CDATA >
<!attlist script

HyScript NAME #FIXED script
script_type CDATA #REQUIRED “HyperTalk”

>

The attributeHyScript expresses that the AF is not a HyTime AF. The attributescript_type iden-

tifies the scripting language. Therefore, multiple scripting languages can be integrated. The con-

tent type of the AF is the script and is not parsed by the HyTime-engine.

Generally, all interaction affects can be defined using scripts. For example, the application can

maintain and control temporal relations apart from the HyTime-engine by including the tempo-

ral information within scripts. However, this may lead to consistency problems because HyTime

also provides a mechanism to specify synchronization constraints.

4.3 Projection approach

In the existing examples, only simple interaction types are considered, e.g. start and stop. Our

goal is to extent the existing approaches to be able to specify the interaction forms introduced

in section 2. We developed a method to specify interaction using as many facilities of HyTime

as possible.

Analyzing the effect of the interaction types introduced in section 2 in respect to their specifi-

cation, the following is observed: The basic interactionstart, the linear directed interactionstop

and the non-linear interactionselection change the object set currently presented. For new

objects appearing as the result of an interaction or the remainder of objects which is rendered

different as the result of the interaction events have to be specified that are positioned at the cur-

rent rendition instant of the time axis. With interaction affecting events representing continuous

media items the context of the media item has to be preserved.

These effects require that interactive documents contain temporal relations which are resolved

during rendition. Therefore, context information is necessary to relate the events to the remain-

ing or new objects. Context information is the current rendition point on the time-axis of a FCS.

A derived element type of the AFevsched can be created that causes the application to collect

the context information. The application stores the information internally.

4 HyTime techniques to specify interaction 12

The projection facility of HyTime is used to specify the necessary mapping of logical time to

real time when positioning events after interactions. The effect of projectors can be described

using marker functions. Therefore, a derived marker function type has to be defined which con-

tains scripts that define how to apply the collected context information. To compute the value

of a marker represented by such a marker function, the HyTime-engine calls the application.

Thus, it is possible to use the context information during the execution of the marker function.

References identifying context information are passed on as input arguments to marker func-

tions. To apply this method, late computation of event extents and schedules must be given

because the needed context information is only available during the rendition.

To demonstrate the method we present an example. Figure 5 shows a scenario with a continuous

object where it is possible to skip a part of the object by pressing a button. Because the interac-

tion time point is not known before run-time, the position of the event presenting the remainder

of the object is context-sensitive. A document instance may contain the following lines to

describe the situation:

<!-- derived marker function returning the current position -->
<ConFunk fn=”con_last”>

-- return (current position on the axis %1) + %2 --
<\ConFunk>

<!-- extent lists of the unprojected event -->
<extlist id=”event_1”>

<dimspec id=”devent_1”>
0 -100

<!-- extent list of the button event-->
<extlist id=”butt_ev”>

<dimspec id=”dbut_ev”>
<dimref elemref=”video” projectr=”prj_11” selcomp=”first”>
<HyOp name=”subt”>

Figure 5: Projection with jump interaction

logical time

continuous event

jump

unprojected event

projected events

remainder0 1300not presented

real time

projectionprojection

4 HyTime techniques to specify interaction 13

<dimref elemref=”video” projectr=”prj_11” selcomp=”last”>
300

<\HyOp>

<!-- projector scope extent before interaction -->
< extlist id=”upexall”>

<dimspec id=”dupexall”>
<dimref elemref=”devent_1” selcomp=”first”>
<dimref elemref=”devent_1” selcomp=”last”>

<!-- projector scope extent after interaction -->
<extlist id=”upsec”>

<dimspec id=”dupsec”>
<ConFunk usefun=”con_last” args=”ufcs 300”>
<dimref elemref=”devent_1” selcomp=”last”>

<fcs id=”ufcs”> <!-- unprojected coordinate space -->

<evsched id=”upevched”> <!-- unprojected event schedule -->
<event id=”video” extlist=”event_1”>

<baton id=”baton1”> <!-- baton used before interaction -->
<proscope exspec=”upexall”>

<projector id=”prj_11”>
<extlist id=”exprj_11”>

<dimspec id=”dprj_11”>
<dimref elemref=”SCOPE” selcomp=”first”>
<dimref elemref=”SCOPE” selcomp=”last”>

<baton id=”baton2”> <!-- Baton used after the interaction -->
<proscope exspec=”upexsec”>

<projector id=”prj_21”>
<extlist id=”exprj_21”>

<dimspec id=”dprj_21”>
<ConFunk usefn=”con_last” args=”pfcs 0”>
<dimref elemref=”SCOPE” selcomp=”qcnt”>

<fcs id=”pfcs”> <!-- projected coordinate space -->

<!-- schedule used before the interaction -->
<evsched id=”psched_1”>

<button label=”go_on” linkends=”slink” extlist=”butt_ev”>

<!-- schedule used after the interaction -->
<evsched id=”psched_2”>

<!-- link relating the button and the following schedule -->
<linkbut id=”slink” trigger=”but1_press” linkend=”psched_2”>

<!-- batrule filling psched_1 used before the interaction -->
<batrule evsched=”upsched” baton=”baton1” pevsch=”psched_1”>

4 HyTime techniques to specify interaction 14

<!-- batrule filling psched_2 used after the interaction -->
<batrule evsched=”upsched” baton=”baton2” pevsch=”psched_2”>

First, a marker function of a derived marker function typeConFunk is defined. Assume this

marker function type is able to use context information collected by the application and a par-

ticular element (con_last) returns the current instant in a FCS added by a constant value. For

demonstration purposes, we do not specify a concrete script that describes the processing of

context information in the marker functions. When calling the defined function, the identifier of

a particular FCS is passed on as a parameter to the function. Then, the extent-list of the

unprojected event representing the continuous media object is defined. The endpoint of the

event is specified as negative value and therefore is counted from the end of the FCS. The posi-

tion and extent of the interactive button-event is specified dependent on the projected extent of

the media-object. The presentation of the button ends 300 time-units before the projected event

because the jump offset is 300 time-units and a jump makes only sense before that instant is

reached. The projector-scope position and extent of the projection before the interaction is

related to the position and extent of the unprojected event. The position of the projector-scope

that is applied after the interaction is specified by the marker functioncon_last because it has to

be positioned on the current instant of the unprojected FCS added by the jump-offset 300. Then,

the unprojected FCSufcs which represents the logical time is specified. This FCS contains two

batons:baton_1 contains the projector to position the projected events if no interaction occurs.

baton_2 contains a projector that positions the remainder ofevent_1. The projector which posi-

tions the remainder ofevent_1 usescon_last to position the projection. The projected FCSpfcs

which represents the real time contains two schedules:psched_1 is presented before the inter-

action occurs andpsched_2 is presented after the interaction.psched_1 additionally contains the

button-event. Then, thebutlink that relates the button-event withpsched_2 is specified. Finally,

the baton-rules are specified that relate the unprojected schedule with projected schedules and

projections.

For complex projections, more context information may be needed. Then, a derived projection

function containing a script might be used to determine the extent of the projector. Parameters

that are references to context information are defined as attributes that are passed on to the pro-

jection function.

5 Modelling the interaction types 15

5 Modelling the interaction types

In this section, we describe how the interaction types introduced in section 2 are represented by

the projection approach. Generally, alternative schedules connected by links are used to specify

different renditions. Projections are used to specify the effect of interaction with continuous

media items. To position events and projections in a context sensitive way, we use derived

marker function elements containing scripts.

5.1 Start, selection and stop

The interaction typesstart, selection andstop modify the set of presented media items. For any

possible combination of events that might occur according to interaction, one schedule has to

be used.link-elements connect interactive events and schedules. To position discrete events

which are continued in the subsequently presented schedule, derived marker function are used

which apply context information. The projection is applied with events representing continuous

media items. The projector-scope and the projection are positioned with derived marker func-

tions. Synchronization constraints are specified bydimref-elements.

5.2 Jump

A jump-interaction interrupts the regular flow through a hypermedia document. Several types

of jump-interaction exist, e.g. to jump to a particular place in a video. The characteristics of this

type is the well-known target of the jump. Another type of jump is relative in time, e.g. the user

is not interested in the actual sequence of the video and wants to jump forward by 10 minutes.

For both types, projections have to be applied. In the first case, a projection has to be defined for

each particular instant by defining appropriate projector-scopes. In the second case, the position

of the projector-scope is determined by a derived marker function taking the jump-offset into

account. The essential part of a possible document instance describing the mapping of the events

is specified in the example on page 12-14.

5 Modelling the interaction types 16

5.3 Pause and continue

Thepause-interaction causes an interruption in the presentation of media items. A subsequent

continue-interaction continues the presentation of the media items. During a pause, a schedule

describing the pause effect is presented. To present the last displayed information during a

pause, a projector with a projector-scope extracting this information is applied for the pause

schedule. If other media items should be presented during a pause, they have also to be specified

in the pause schedule. Derived marker functions are used to position the pause events. On a con-

tinue interaction, the old schedule presenting the remainder of the unprojected events is applied.

5.4 Faster and Slower

Faster- andslower-interaction cause the speed-up or slow-down of the continuing rendition.

Such a behavior is specified applying projectors that scale the projection according to the dif-

ferent speed factors (Figure 6). In its simplest form, this interaction type causes the speed up or

slow down of presentation by a well-known value. In this case, we can define a projector for

each speed factor. If not all speed factors are preknown the derived marker function elements

have to request the information from the application.

5.5 Reverse

Reverse-interaction causes a reversal of the presentation direction. Figure 7 shows the mapping

of an unprojected event to projected events if the direction of the presentation is reversed twice.

The mapping can be specified by a projector. The position of the projector-scope is the position

of the first event in the unprojected FCS. The extent of the projector-scope is the current instant

Figure 6: Projection with faster interactions

unprojected event

projected events

faster

time

projectionprojection

6 Conclusion 17

in the unprojected FCS which is computed as described above. The projector cannot be specified

applying marker functions because they cannot specify the reversion of the projection direction.

Thus, we have to use a projector function which contains a script that describes the reverse map-

ping of events. However, the mapping has to be done by the application because a reverse map-

ping is not a standard HyTime projection.

6 Conclusion

In conclusion, modelling interaction with HyTime might be done by embedding scripting lan-

guages, applying the link module or the rendition module. Embedding scripting languages pro-

vides a high flexibility but results in the rendering machines being less compatible as the non-

standardized scripting languages have to be interpreted by the application. Also, conflicts may

arise because several issues, e.g. temporal constraints, can be specified in HyTime or in scripting

languages. With applying the HyTime link module for interaction, more rendering information

can be represented within HyTime. But still, the semantics of the links are not defined by

HyTime. Thus, the link module introduces some incompatibility due to the necessary interpre-

tation of the link semantics. The third mechanism applying the rendition module conforms to a

large set of HyTime mechanisms. However since HyTime does not provide variables, context

information during run time has to be passed from the application to the HyTime engine. The

context information is needed to map the virtual document time to real time by the rendition

module.

As HyTime does not supply any predefined architectural forms for expressing interaction,

HyTime has to be extended, e.g. by one of the techniques proposed in this paper. But the non-

standardized extensions generally result in incompatible implementations of HyTime-engines

although compatibility was one of the intentions of the standardization process. Therefore, new

interactive multimedia applications require standardized element types with a predefined

Figure 7: Projection with reverse interactions

unprojected event

projected events

projection projection
proj.

time

reverse reverse

7 References 18

semantics. Further, it would be advantageous to have HyTime variables to express indetermin-

istic temporal relations [WaRo94], which exist in interactive systems because many temporal

relations are not resolved before rendition time due to interactive events.

A Standard Multimedia Scripting Language (SMSL) is currently developed by the International

Standards Organization [BRR94]. By SMSL, embedding scripting languages in HyTime might

become more attractive. Further, HyTime is not the only approach of standardizing multimedia

document data. MHEG (Multimedia Hypermedia Expert Group) [MHEG92] defines an object

model for multimedia control data or the scripting language ScriptX is developed by the Kaleida

consortium [Kale93]. In contrast to HyTime, these document models explicitly provide con-

structs to specify interaction.

7 References

[AnHo91] D. P. Anderson and G. Homsy. A Continuous Media I/O Server and Its
Synchronisation Mechanism.IEEE Computer, pages 51–57, 10 1991.

[Appl91] Computer Inc. Apple. QuickTime Developer’s Guide. Developer technical
Publications, 1991.

[BHL91] G. Blakowski, J. Huebel, and U. Langrehr. Tools for Specifying and Executing
Synchronised Multimedia Presentations.2nd. Intl. Workshop on Network and
Operating System Support for Digital Audio and Video, Heidelberg, 11 1991.

[BRR94] J. F. Buford, L. Rutledge, and J.L. Rutledge. Integrating Object-Oriented Scripting
Languages with HyTime. InIEEE 1st Intl. Conference on Multimedia Computing
and Systems, Boston, pages 456–462. p, 5 1994.

[BuZe93] M. Cecilia Buchanan and Polle T. Zellweger. Automatic Temporal Layout
Mechanisms. InACM 1st Intl. Conference on Multimedia, Anaheim, pages 341 –
350, 8 1993.

[Erfl94] Robert Erfle. HyTime as the Multimedia Document Model of Choice. InIEEE 1st
Intl. Conference on Multimedia Computing and Systems, Boston, pages 445–454, 5
1994.

[Gold91] Charles F. Goldfarb. HyTime: A standard for structured hypermedia interchange.
IEEE Computer, pages 81–84, 8 1991.

[HyTi92] HyTime. Information technology - Hypermedia/Time-based Structuring Language
(HyTime). ISO/IEC DIS 10744, 8 1992.

[Kale93] Kaleida. Kaleida, ScriptX, and the Multimedia Market. Kaleida Labs Inc.,
1945 Charstom Road, Mountain View, USA CA94043, 1993.

7 References 19

[KRRK93] John F. Koegel, Lloyed W. Rutledge, John L. Rutledge, and Can Keshin.
HyOctane: A HyTime Engine for an MMIS. InACM 1st Intl. Conference on
Multimedia, Anaheim, pages 129–136, 6 1993.

[Lamp78] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, 7 1978.

[LiGh90] T. D. C. Little and A. Ghafoor. Synchronization and Storage Models for
Multimedia Objects. IEEE Journal on Selected Areas in Communications,
8(3):413–427, 3 1990.

[MHEG92] ISO/IEC/WD MHEG. Information Technology - Coded Representation of
Multimedia and Hypermedia Information Objects. Working Draft 5, ISO/IEC, 3
1992.

[NKN91] Steven R. Newcomb, Neill A. Kipp, and Victoria T. Newcomb. "Hytime", The
Hypermedia/Time-based Document Structuring Language.Communications of the
ACM, pages 67–83, 11 1991.

[RoHe94] Kurt Rothermel and Tobias Helbig. Clock Hierarchies: An Abstraction for
Grouping and Controlling Media Streams. Technical Report 2, Universitaet
Stuttgart, 4 1994.

[WaRo94] Thomas Wahl and Kurt Rothermel. Representing Time in Multimedia Systems. In
IEEE 1st Intl. Conference on Multimedia Computing and Systems, Boston, pages
538–543, 5 1994.

