Bidirectional line breaking with TEX macros

Klaus Lagally

Institut fiur Informatik, Universitat Stuttgart
Breitwiesenstrafie 20-22, D-70565 Stuttgart, Germany
Internet: lagally@informatik.uni-stuttgart.de

Abstract

TEX has originally been designed with European languages in mind, and thus,
whenever a paragraph contains text portions running in opposite directions, e.g.
when combining English and Arabic or Hebrew in the same document, the task
of line-breaking becomes rather complicated.

For a clean solution, Knuth and MacKay have proposed an modification to
TEX, TeX-XeT, which will produce an extended DVI file containing additional
directional information to be exploited by a modified DVI driver; and by now
there exist several implementations of this idea, including TeX--XeT that produces
a standard DVI file. The main drawback is just that we have to go outside the

TEX standard.

We present a portable technique to handle bidirectional line-breaking by us-
ing TEX macros alone, albeit at some sacrifice in quality. This technique has been
implemented in the version 3.02 of the author’s multi-lingual ArabTEX package.

Introduction

Folklore says, and most people believe, that correct
line-breaking of a paragraph consisting of mixed left-
to-right and right-to-left passages is impossible to do
with TEX. Knuth and MacKay [KM87] explain why
it is difficult, and propose a bidirectional extension
of TEX. There have since been several implementa-
tions, e.g. TeX-XeT and TeX--XeT which provide ad-
ditional facilities to handle bidirectional typesetting.
Whereas the problem is thus solved in principle, still
many users have no access to these extensions, or are
reluctant to leave the TEX standard.

We show that the problem can also be solved
with TEX alone, although in a rather complicated
way, and at some expense and some loss of quality.
The solution we present is a simplified version of
what actually happens inside our ArabTFX package
[Lag92a, Lag93], and should not be considered as an
instruction for use of the real system.!

In a bidirectional typesetting system every text
element has an implicit or explicit direction at-
tribute, called L-text and R-text in [KM8&7]. TgX
is very good at processing L-text whereas it needs
some assistance for R-text. To be able to do this
we assume that R-text passages are identified by

I The ArabTgX system is in the public domain.
It can be downloaded from the author’s institu-
tion at ftp.informatik.uni-stuttgart.de, In-
ternet address (129.69.211.2), login ftp, and also
from the CTAN server network.

PREPRINT: 1994 EuroTEX Meeting

appropriate markup commands. For the sake of
this presentation we ignore the fact that L-text and
R-text passages may be nested within IATEX envi-
ronments possibly modifying the layout parameters,
the \par command and the \everypar mechanism;
and we restrict our discussion to the case of a single
paragraph of one kind containing an insertion of the
other kind, and possibly contained within a \vbox.

There are two sorts of paragraphs to con-
sider: LR-paragraphs processed by TgX, and RL-
paragraphs for which we have to do the line breaking
ourselves. An LR-paragraph may contain R-text in-
sertions where TEX needs assistance, and a RL
paragraph may contain L-text insertions.

Let us assume the following markup conven-
tions:

e a LR paragraph is just an ordinary TEX para-
graph, delimited by an empty line or an explicit
\par command.

e for special purposes a LR paragraph may also
be written \Lpar {L-text}.

e a RL paragraph is written as \Rpar {R-text}.

e we denote a RL insertion within L-text by the
command \Rinsert {R-text}, and a LR inser-
tion in R-text is marked \Linsert {L-text},

e we also assume the presence of a command
\Rtext {R-text} which will put the included
text into a \hbox, without any line-breaking.

The structure of the paper is as follows: we
first describe a simplified model of our processing

7 Dec 1994 17:59 1001

Hlalds Liagally

of R-text. We then indicate how L-text insertions
within R-text, and R-text insertions within L-text
are handled. After discussing the remaining prob-
lems and drawbacks with our solution, we speculate
on some possible improvements.

Processing of R-text

For this report we assume the following, simplified
model:

e a passage of R-text is a sequence of words in
some suitable external notation, separated by
single spaces and/or newlines;

e this sequence is split into individual items, and
each item is transformed into its graphical rep-
resentation;

e these representations are aligned from right to
left, with interspersed glue, in a line buffer of
maximal length \hsize. Whenever this buffer
gets full, its contents will be aligned by suitable
stretching of the glue between, and also within,
the individual items, and will be output as a
single \hbox of width \hsize. The last line
will be filled up with glue at the left end.

To get an idea of the techniques used the in-
terested reader might want to inspect the following
These are a grossly simplified version of
the routines actually used, which contain many ad-
ditional technical details. The effect of some rou-
tines not explained should be obvious from their
names. Note that we do not read our RL text im-
mediately; depending on the coding for the RL lan-
guage in question we might e.g. have to adjust some
\catcodes first.

macros.

\def \Rpar {% no parameters !
\bgroup \arab@codes \set@arabfont
\setbox\lineb@x \hbox {}\Ritems }

\def \Ritems #1{% read the argument now
\Rwords #1 \Rend \flushlineb@x \egroup }

\def \Rwords #1 #2{% split the sequence
\setbox\wordb@x {\Rword #1}\putwordb@x
\ifx #2\Rend \let \next \relax \else
\def \next {\Rwords #2}\fi \next }

\def \putwordb@x {% deposit one R-word
\setbox0 \copy\lineb®x % save old value
\setbox\lineb@x \hbox {\unhcopy\wordbex
\arab@space \unhbox\lineb@x }}, prepend
\ifdim \wd\lineb@x > \hsize % overflow
\hbox to \hsize {\unhbox0 }) old line
\setbox\lineb@x \box\wordb@x % new word
\fi }

1002 7 Dec 1994 17:59

\def \flushlineb®@x {% last line
\hbox to \hsize {\hfill \unhbox\lineb®@x }3}

The full version of the analogous macros within
ArabTgX allows for an arbitrary number of space to-
kens between R-words and caters, among others, for
indentation, handling of commands within R-text,
transliteration, mathematical insertions, and also
L-text insertions.

Contrary to the L-text case where TEX does the
line-breaking, there is no global optimization of line
breaks for R-text. This leads to better results than
expected because

e in the RL languages considered, Arabic and He-
brew, words are comparatively short and there
is no hyphenation;

e in Arabic, we exploit the fact that also the
words are elastic, as some of the letters may
stretch.

L-text within R-text

This case is comparatively straightforward. We pro-
ceed as follows:

e We deposit the L-text insertion as a paragraph
into a \vbox of width \hsize. The first line
will be shorter than the rest because it later has
to fit into the partially filled R-line; this is ac-
complished by suitable values of the paragraph
parameters \hangindent and \hangafter.

e TEX will break this L-paragraph optimally into
lines [Knu84, Chapter 14, p. 94] which will
be deposited in the \vbox as a sequence of
\hboxes, with interspersed glue.

e We split the individual LR lines off this \vbox
and deposit them, \unhbox-ed and after delet-
ing any glue at the right end, into the RL line
buffer. When the buffer gets full, its contents
will be output, and this will happen exactly at
the same line breaks as before. Thus the lines,
including the first one, will still be optimally
spaced horizontally, and the last one will be
right adjusted.

We end up with a partially filled RL line buffer con-

taining some LR text, and resume RL processing.
The macros below again show only the main

features; for the full version see the appendix.

\def \Linsert #1{\dimen@ \wd\lineb@x

% splice Ltext into a open RL paragraph
\setbox\insertb@x \vbox

{\rm \hangindent -\dimen@ \hangafter \m@ne
\vskip \a@vglue \noindent #1\endgraf }%
\a@Lunpack \Ritems }% go on with RL text

PREPRINT: 1994 EuroTEX Meeting

\def \a@Lunpack {/ unpack and deposit

% all LR lines from the insertion box
\loop \aQgetline \a@spacefalse
\putwordb@x {\unhbox\tempb@x \unskip }%
\ifvbox \insertb@x \repeat }

\def \a@getline {% unpack the next line
% globally to \box\tempb@x
\splittopskip \a@vglue \setbox\tempb@x
\vsplit \insertb@x to \a@splitht
\setbox0 \vbox {\unvbox \tempb@x
\global \setbox\tempb@x \lastbox }}

R-text within L-text

This case is more complicated. We can try to fol-
low the strategy for L-text within R-text with the
necessary modifications; but various problems turn
up, depending on the mode we are in [Knu84, Chap-
ter 13, p. 85].

Vertical mode. If we are in vertical mode, that
means we in fact have not yet started a LR para-
graph. So the first idea is just to deposit our RL ma-
terial as a RL paragraph, and we are done. That is,
almost; only if a \par command follows we may fill
up the RL buffer at the left, and deposit the last line.
Otherwise we start a new LR paragraph without in-
dentation, and with the contents of the RL buffer
at the beginning of the first line, and let TEX go on
with LR processing.

At first sight this looks logical, but it is wrong.
We are in L-text mode, and thus our new para-
graph must be indented at the left, even if there
is no preceding L-text, and not at the right like a
genuine RL paragraph. So instead we start a new
LR paragraph by switching to horizontal mode by
\leavevmode, and process our RL material as a gen-
uine insertion, as described below.

Restricted horizontal mode. If we are in re-
stricted horizontal mode, this means we are within
an \hbox that can grow arbitrarily wide. We just
collect our RL material within a line buffer of un-
limited length, and add the contents, \unhbox-ed, to
the current \hbox; and if the box thus gets too wide
for the current line, that is the user’s problem as
an \hbox by definition will never be automatically
split, and we can do nothing about it.

To find out whether this case applies, and also
to handle the case of vertical mode discussed above,
we can proceed as follows:

\def \Rinsert {% change catcodes and font
\bgroup \arab@codes \set@arabfont
\a@Rinsert }

PREPRINT: 1994 EuroTEX Meeting

Dldirccuiondl 1e blrecakllly Wwitll 1A HH1aClOs

\def \a@Rinsert #1{), now read RL argument
\leavevmode % hmode if not there already
\ifinner \Rtext {#1}), inside hbox: append
\else \a@Rsplit{#1}% splice into paragraph
\fi \egroup }

Horizontal mode. When we are in horizontal
mode this means we are in the process of building a
LR paragraph and want to include some RL mate-
rial. We again can try to collect the RL lines tem-
porarily within a suitable \vbox and add them to
the current paragraph; the first RL line has to be
made sufficiently short so its contents will fit on the
partially completed last line of the current LR para-
graph.

Thus our simplified algorithm would run along
the following lines:

\def \a@Rsplit #1{)% not inside a hbox
\a@Ldimen % dimensions of the last line
\a@Rtobox {#1}), pack insertion into \vbox
\a@Runpack }% unpack lines and splice

\def \a@Rtobox #1{) pack into \insertb@x
\setbox \insertb@x \vbox {\hsize \a@Lwidth
\parshape \O@ne \a@Lindent \hsize
\setbox\lineb@x {\hskip \a@Llength 1}%
\Rwords #1 \Rend % get RL material
\box\1lineb@x }}/ flush last line

\def \a@Runpack {% get and adjust

% all the lines from the insertion box
\loop \a@getline % line to \tempb@x
\unhbox \tempb@x \unskip \break % add line
\ifvbox \insertb@x \repeat

\unpenalty }% no break after the last line

Here the routine \a@Ldimen has to deliver the
dimensions \a@Llength, \a@Lwidth, \a@Lindent of
the last LR line. But — there is as yet no such line,
so we have to finish the current LR paragraph first,
before we can sensibly talk about the length of its
last line, and open it up again afterwards.

Unfortunately it is not quite as simple as that.
In (external) vertical mode the current paragraph
will go to the main vertical list at once, and we can
no more get at the last line to find out about its
length. In internal vertical mode, that is, if we are
within a \vbox, the last line would be still accessible,
but we cannot find out in time whether that is the
case. So we have to resort to a device that always
does what we need, that is, display mode [Knu84,
Chapter 19], which has some side effects we exploit.

Whenever we interrupt a paragraph by open-
ing a display, the material collected up to this
point will be formatted without exercising the
page builder, and the dimensions of the last line

7 Dec 1994 17:59 1003

Hlalds Liagally

will be accessible through the internal TEX pa-
rameters \predisplaysize, \displaywidth, and
\displayindent. So we can get at the information
required to format our RL material, but we have
to get rid again of the spurious display introduced.
We want to handle this differently depending on
whether we are inside a \vbox or not, and in order
to find out which case applies we have to close the
paragraph first by finishing the display and adding a
\par command, carefully inserting penalties so the
page builder will not interfere. Only now we can
find out in which context we are, by the \ifinner
test.

We compute the length of the last wvisible
LR line from the value of \predisplaysize, and
there are a few cases to distinguish: [Knu84, Chap-
ter 19, p. 188]

e If the value is —\maxdimen, there was no pre-
vious line. This cannot happen.

e If the value is \maxdimen, this signifies that
the last line has not been typeset at its natural
width. Either there was some infinite stretch in
it, or the \parfillskip is finite, or the line has
been shrunk to \hsize. In any case we adjust
\predisplaysize to \hsize.

e Otherwise we have to subtract two ems in the
current font.

The result is the amount of horizontal skip by which
the overlayed first RL line must start at the left, pos-
sibly after a strut and a suitable penalty to prevent
TEX from breaking the line at this position.

Now at last we can collect our RL material in-
side a temporary \vbox, and we split off the first
line to get at its vertical dimensions. We need them
as \prevdepth by now will have been set to zero
because of the empty box within the display, and
we have to adjust it so that the newly started para-
graph, after skipping back the height of the dummy
display plus \parskip, will start again at the correct
vertical position.

A first version of \a@Ldimen thus looks as fol-
lows:

\def \a@Ldimen {% get the dimensions
% of the current LR line

$$\global \a@Llength \predisplaysize
\global \a@Lwidth \displaywidth
\global \a@Lindent \displayindent
\hbox to \a@Lwidth {}¥ filler
\postdisplaypenalty 10000

$$\endgraf % close the paragraph
\a@Ladjust % update \a@Llength
\ifinner \a®killdisplay \else
\a@skipback \fi }

1004 7 Dec 1994 17:59

\def \a@Ladjust {% correct \a@Llength
\ifdim \a@Llength = \maxdimen
\a@Llength \hsize % flexible line
\else \advance \a@Llength -2em \fi
\advance \a@Llength -\a@Lindent }

Continuing a paragraph within a box. Let us
first discuss the case that we are within a \vbox.
This happens rather frequently, e.g. while building
up a footnote, a minipage, a parbox, and also while
collecting an LR insertion. In this case we take away
all the extraneous material by a suitable sequence
of \lastbox, \unskip, and \unpenalty operations.
We also grab the last LR line, unpack it and delete
the \parfillskip glue and the final penalty, and
deposit it again as the first line of a new paragraph
without indentation. Then we collect the RL mate-
rial, and deposit it into the current paragraph as in
the R-text case above.

There 1s a complication here, as well as in the
case of vertical mode: the new portion of the first
line might well have a greater height than the part
already processed once, and thus we may not reuse
the interline skip already deposited without risking
that the distance of the baselines might increase
without need. So we have to make the new para-
graph respect the depth of the preceding line, by
explicitly computing it from the height of the cur-
rent line, the \baselineskip, and the last interline
glue deposited. Only after adjusting \prevdepth
and skipping back by \parskip we may open the
new paragraph to get to the old vertical position
again.

\def \a@killdisplay {% remove garbage
\unskip \unskip \unpenalty

\setbox0 \lastbox % contents of display
\unskip \unskip \unpenalty

\setbox0 \lastbox % grab last line
\dimen@ \baselineskip

\advance \dimen@ -\htO

\advance \dimen@ -\lastskip
\prevdepth \dimen@ % new value
\unskip \vskip -\parskip

\noindent \unhbox0 % open last line
\unskip \unskip \unpenalty }% trim it

It is interesting to note that in this case, as well
as in the case of R-text within L-text, the result
looks internally like a single paragraph consisting of
a sequence of lines with intervening glue and penal-
ties. It can therefore be taken apart again line by
line, as is done e.g. in the EDMAC system [LW90]
and also when it is used recursively as an insertion.

PREPRINT: 1994 FuroTEX Meeting

Continuing a paragraph on the main vertical
list. This is the most risky case, and in some in-
stances we may not arrive at a satisfactory result.
We can no more take away and open up the last line;
we just can try to simulate this by visually overlay-
ing it with another line, starting with a skip over
the already deposited LR text, and continuing with
RL material. We try hard to get back to exactly
the vertical position at which we started, and to do
this we need tight control of the dimensions of our
invisible display.

We know that depending on the width of the
display and the previous line, either the parameter
\abovedisplayskip or \abovedisplayshortskip
will be used, and likewise for the skip after the dis-
play. We enforce the use of \abovedisplayskip by
depositing an empty box of height and depth zero
and the full line width into the display. We also set
\postdisplaypenalty to 10000 in order to prevent
the page builder that gets control after closing the
display and the current paragraph, from breaking
the page at this place, before skipping back.

Now in case we are not within a box we skip
back explicitly:

\def \a@skipback {% to the old position
\vskip -\belowdisplayskip

\vskip -\baselineskip

\vskip -\abovedisplayskip

\vskip -\baselineskip

\vskip -\parskip \noindent

\a@strut \nobreak \hskip \a@Llength }

Apart from the fact that we did not yet com-
pensate for the effect that we lost the old value of
\prevdepth by the box contained in the display, we
are at the old vertical and horizontal position again.
But our solution still has some severe drawbacks:

e in case the first RL word will not fit on the last
LR line, this line will have white space, in fact
\parfillskip, at the end;

e if exactly one RL word still fits on the last
LR line, the new RL line visually overlayed will
be severely underfull, and there will be an ugly
gap between LR and RL material.

Fortunately we can do much better, however at ad-
ditional expense.

First we have to make sure that the last LR line,
if the first RL word will no more fit on it, is not filled
up at the right end with the \parfillskip glue but
spread out to the full line length. For this purpose
we collect the first RL word in a temporary box;
and if while doing this we find out that it is the
only RL word, we just deposit it and are done with

PREPRINT: 1994 EuroTEX Meeting

Dldirccuiondl 1e blrecakllly Wwitll 1A HH1aClOs

the RL insertion. Otherwise we look at its dimen-
sions and add an empty box with the same width,
depth, and height to the still open LR paragraph.
If this empty box, after formatting the LR material
by entering display mode, lands on a line by itself
the previous line will be spread out correctly. Oth-
erwise we know there is room on the current line
for the first RL word, and its height will have been
taken into account for determining the interline skip,
also its depth influences \prevdepth. Of course we
have to subtract the width of the invisible box from
the value of \a@Llength computed as above, before
collecting and depositing the RL material.

In order to solve the second problem we gener-
alize this idea: we deposit an empty box each for
the first and the second RL word, in this order, into
the current paragraph, with appropriate glue in be-
tween. Now if a line break falls between these boxes,
the last visible LR, line will have been spread out just
enough so that the first RL word will fit snugly; if
both boxes get to a new line the last visible line
will extend to the right margin; and if both boxes
fit on the current line there will be sufficient stretch
available in the RL material for reasonable format-
ting. In all cases we know the vertical dimensions of
the last LR line, at least under the assumption that
the RL material dominates; this is usually the case,
as we routinely deposit a suitable strut. So we can
again skip back to the correct vertical position and
adjust \prevdepth accordingly.

More details are given in the appendix; they are
straightforward but tedious.

Manual tuning. The solution just given still
has a drawback: the two visually overlayed lines
are formatted independently, and thus might be
stretched by a noticably different amount. The
worst case occurs when the second line contains just
two RL words whereas the third RL word would
nearly fit in the remaining space, so practically its
whole width will go into glue. This only can happen
within (external) vertical mode, and whereas there
is as yet no automatic solution, the user can help
by modifying the input text, and while fine tuning
the document (s)he would do so probably anyway.

The remedy is actually rather simple: the para-
graph in question has to go into a \vbox first, and
we make the command \Lpar {L-text} mentioned
above do just that. As usual we have to make sure
that this command will not read its argument but
expand it, otherwise any \catcode changes, e.g. in-
side a \verbatim insertion, would be lost; (we bor-
rowed the technique from the Plain TEX footnote
mechanism; IATEX 2.09 [Lam86] has a flaw there!)

7 Dec 1994 17:59 1005

Hlalds Liagally

A possible alternative would be to deposit more
than two empty boxes for the first RL words into the
open LR paragraph. As there are still more cases to
distinguish than before, we have not implemented
this extension due to its sheer complexity, and also
its additional dynamical costs. In our experience
the same effect, or even better results, can be eas-
ily obtained by manual tuning so the extension is
probably not worth while.

Other mode combinations

One of the characteristic features of TEX is that its
various modes may be nested recursively. Our ex-
tension fits well into this scheme for the following
reasons:

e it works recursively, as noted above;

o the transition to R-text is triggered by an ex-
plicit command,

e R-text has its own command processing, thus
we can handle the mode switching explicitly,
and have full control.

The following mode transitions remain to be
discussed:

e R-text to (in-line) mathematical mode:

We start a dummy L-text insertion that is
handled as above. Inside it TEX does the nor-
mal paragraph processing, including possible
line-breaking, and L-text may contain mathe-
matical mode material. At the end of this inser-
tion we get back to R-text mode as described.

e R-text to display mode:

This can be handled by brute force. We fin-
ish the current RL paragraph, let TEX do the
processing of the display, and restart R-text af-
terwards. The display parameters get reason-
able values by prepending an invisible dummy
LR paragraph.

e display mode to R-text:
and
e in-line mathematical mode to R-text:

All longer R-text inserts will be within a
\hbox, and we already covered this case. Iso-
lated RL-language symbols may be introduced
via macros, analogous to Greek symbols.

We have to admit that we have had little ex-
perience with these transitions, but in our tests we
experienced no severe problems. When testing we
assumed, supported by the examples that we have
seen, that all mathematical insertions run from left
to right, even within R-text documents, and that
mathematical symbols are taken from Latin script,
with some well-known exceptions handled by TEX.

1006- 7 Dec 1994 17:59

Conclusion

We have demonstrated that the problem of bidirec-
tional line breaking can indeed be solved within the
context of TEX, but the price is high. Our algorithm
is extremely involved, and the fact that it uses a lot
of time is usually only concealed by the fact that
also our method of processing RL words is, due to
the complexity of the Arabic script, rather slow.

On the positive side, our method automatically
covers the case where insertions of the two types
are recursively nested. However this feature is not
needed very often, and as shown in [KM87] its indis-
criminate use may lead to texts with a very cryptical
structure.

The technique we described is, with some mi-
nor modifications, available within ArabTEX ver-
sion 3.02, and has already been used to process a
paper of about 40 pages of mixed English and He-
brew text, also some Arabic, with quite satisfactory
results.

References

[KM87] Donald E. Knuth and Pierre A. MacKay.
“Mixing right-to-left texts with left-to-

right texts”. TUGboat, 8(1):14-25, 1987.

Donald E. Knuth. The TgXbook, volume
A of Computers & Typesetting. Addison-
Wesley, Reading, Mass., 1984.

[Lag92a] Klaus Lagally. ArabTEX — Typesetting
Arabic with Vowels and Ligatures. In Fu-
roTpX '92, Proc. 7th European TpX Con-
ference, pages 153-172, Prague, Czecho-
slovakia, September 14-18, 1992. See also
[Lag92b].

[Lag92b] Klaus Lagally. ArabTEX — Typesetting
Arabic with Vowels and Ligatures. Report
1992/07, Universitat Stuttgart, Fakultat
Informatik, 1992.

Klaus Lagally. ArabTgX, a System for
Typesetting Arabic. User Manual Version
3.00. Report 1993/11, Universitiat Stutt-
gart, Fakultat Informatik, 1993.

[Lam86] Leslie Lamport. JATEX, a Document Pre-
paration System. Addison-Wesley, Read-
ing, Mass., 1986.

[Knu84]

[Lag93]

[LW90] John Lavagnino and Dominik Wujastyk.
An Overview of EDMAC: A plain TEX

format for critical editions. TUGboat,

11(4):623-643, 1990.

PREPRINT: 1994 FuroTEX Meeting

Appendix

In the main part of this report we glossed over
many technicalities. For readers interested in some
more details, here is the actual code (still somewhat
simplified). The meaning of some parameters and
macros not described should be obvious.

DT It e oo o to s o to fo Tots fo To o Fototo o 1o o Yoo o 1o s o oo Fo oo o o
% external commands:

Tttt T T I T Tt T T U Toto To T It Tt To o To o to e d e 9o Vo fo tofo to Voo o
% these do not read their arguments

% \Rtext{#1} = RL insertion inside Ltext
\def \Rtext {\protect \a@RL }

% \Ltext{#1} = LR insertion inside Rtext
\def \a@c@Ltext {\unarab@codes \a@Linsert}
% this is called internally

\def \Lpar {% wusage: \Lpar {paragraphs}

% put around one or more paragraphs

% whenever the linebreaking is bad
\dimen@ \prevdepth

\setbox0 \vbox \bgroup \prevdepth \dimen@
\def \par{\egroup \endgraf \Lpar x}, dummy
\aftergroup \L@par \let \next=}

\def \L@par {\unvbox0 }), called internally

I Tttt T Tyt T o s et T o e T e e T o o e T o e Vot o o e
% implementation

Tttt T T I T Tt T T U Toto To T It Tt To o To o to e d e 9o Vo fo tofo to Voo o
% internal declarations

\newdimen \a@Llength
\newdimen \a@Lwidth
\newdimen \a@Lindent
\newdimen \a@splitht

\newbox \insertb@x
\newbox \a@Rboxi
\newbox \a@Rboxii
\newbox \a@Rdummyi
\newbox \a@Rdummyii

\newif \ifR@split

\def \ins@skip {\hskip \z@ plus 0.lem }
% hglue before and after an insertion

\def \a@vglue {\z@ plus 2ex }
% vglue at top of the insertion \vbox

PREPRINT: 1994 EuroTEX Meeting

Dldirccuiondl 1e blrecakllly Wwitll 1A HH1aClOs

Tt T T I U T Tt T o to o to T Tt T T T ot T T T ot Toto To o to oo o
% macros for LR insertions

D latototot tolototetot lotototote o o toto o oo ot toto o tote o Voo fo oo oot

\def \a@Linsert #1{% splice Ltext

% into a open RL paragraph

\a@spacetrue \putwordb@x {\ins@skip }%
\dimen@ \wd \lineb@x % current RL line
\setbox \insertb@x \vbox

{\rm \hangindent -\dimen@ \hangafter \m@ne
\parskip \z@ \rightskip \z@ plus .001fil
\vskip \a@vglue \noindent #1\endgraf }%
\a@Lunpack % get the LR lines again
\putwordb@x {\ins@skip }% after insertion
\a@spacetrue \arab@codes \testQtoken }

% go on with RL text

\def \a@Lunpack {% unpack and deposit

% all LR lines from the insertion box
\a@splitht 3.5ex

\loop \a@getline \a@spacefalse
\putwordb@x {\unhbox \tempb@x \unskip }%
\ifvbox \insertb@x \repeat }

\def \a@getline {% unpack the next line
% globally to \box \tempb@x
\splittopskip \a@vglue \setbox \tempb@x
\vsplit \insertb@x to \a@splitht
\setbox0 \vbox {\unvbox \tempb@x
\global \setbox \tempb@x \lastbox }}

Tt T T I U T Tt T o to o to T Tt T T T ot T T T ot Toto To o to oo o
% macros for RL insertions

D latototot tolototetot lotototote o o toto o oo ot toto o tote o Voo fo oo oot

\def \a@RL {’ change catcodes and font
\bgroup \arab@codes \set@arabfont
\a@Rinsert }

\def \a@Rinsert #1{), now read RL argument
\leavevmode % hmode if not there already
\ifinner \aORtext #1>), inside hbox: append
\else \a@Rsplit{#1}% splice into paragraph
\fi \egroup }

\def \a@Rsplit #1{) splice RL lines into

% an open LR paragraph

\a@Rdimen {#1}% length of first 2 RL words
\ifdim \wd\a@Rboxii = \z@ % only one !
\unhbox\a@Rboxi % done with the insertion
\else \a@Ldimen % dimensions of last line
\a@Rtobox {#1}), pack insertion into \vbox
\a@Runpack \fi }% unpack lines and splice

7 Dec 1994 17:59 1007

Hlalds Liagally

\def \a@Rdimen #1{% get the dimensions
% of the first two RL words

\a@Rfirst #1 \to \a@wordi \a@Rrest
\expandafter \a@Rwordtobox \aQwordi
\to \a@Rboxi \aO@Rdummyi

% put into box and make dummy box
\expandafter \ifx \expandafter \relax
\a@Rrest \relax \def \a@wordii {}%

% no second RL word exists

\else \expandafter \a@Rfirst \a@Rrest
\to \a@wordii \a@Rrest \fi % get 2. word
\expandafter \a@Rwordtobox \aQwordii
\to \a@Rboxii \a@Rdummyii }

\def \a@Rfirst #1 #2\to #3#4{), split off

% first RL word from RL sequence

\ifx \relax #i\relax \a@Rfirst #2\to #3#4Y
\else \def #3{#1}\def #4{#2}\fi }

\def \a@Rwordtobox #1\to #2#3{) pack word
% into \box #2 and make dummy \box #3
{\setbox#2\hbox {\a@strut \a@Rtext {#1}}%
\setbox#3\hbox to\wd#2{\hfill }% dummy box
\ht#3\ht#2\dp#3\dp#2}% same dimensions

\def \a@Rtobox #1{) pack into \insertb@x
\setbox \insertb@x \vbox {\hsize \a@Lwidth
\parshape \O@ne \a@Lindent \hsize

\vskip \a@vglue \hbadness \@M % no warning
\putlineb@x {\a@strut \hskip \a@Llength }%
\a@spacefalse \Rwords #1 \Rend

% process the RL material using \lineb@x
\unskip \unskip \vskip \a@vglue
\box\lineb@x }}

\def \a@Runpack {\ins@skip

% unpack all RL lines from the insertion
\a@splitht 1.4\baselineskip

\loop \aQgetline % split off and adjust
\unhbox \tempb@x \unskip \break

\ifvbox \insertb@x \repeat

\unpenalty \penalty 5000 \ins@skip }

\def \a@Ldimen {% close paragraph and get
% the dimensions of the current LR line
\leavevmode % cover the case of \vmode
\copy \a@Rdummyi \arab@space % glue

\copy \a@Rdummyii % may split the line !
\lineskiplimit \lineskip % to make sure
$$\global \a@Llength \predisplaysize
\global \a@Lwidth \displaywidth

\global \a@Lindent \displayindent

\hbox to \a@Lwidth {\hfill }}, filler
\postdisplaypenalty \QM % no page break !
$$ \endgraf \a@Ladjust % update \a@Llength
\ifinner \a®killdisplay % within a \vbox 7
\else \a@skipback \fi }

1008 7 Dec 1994 17:59

\def \a@Ladjust {% correct \a@Llength
\ifdim \a@Llength = \maxdimen

\a@Llength \hsize % was a flexible line
\else \advance \a@Llength -2em \fi
\advance \a@Llength -\a@Lindent

\advance \a@Llength -\wd\a@Rdummyii % box2
\ifdim \a@Llength = \z@ % line was split
\R@splittrue \a@Llength \hsize % at margin
\else \setbox0 \hbox {\arab@spacel}’, space
\R@splitfalse \advance \a@Llength -\wdO
\fi \advance \a@Llength -\wd\a@Rdummyi }

\def \a@killdisplay {% remove any garbage
% produced by the dummy display

\unskip \unskip \unpenalty

\setbox0 \lastbox % contents of display
\ifR@split \unskip \unskip \unpenalty
\setbox0 \lastbox \fi% last line was split
\unskip \unskip \unpenalty

\setbox0 \lastbox % last visible LR line
\dimenO \baselineskip % compute \prevdepth
\advance \dimen@ -\htO

\advance \dimen@ -\lastskip

\prevdepth \dimen@ % new \prevdepth value
\unskip \vskip -\parskip

\noindent \unhbox0 % open last LR line
\unskip \unskip \unpenalty

\setbox0 \lastbox % delete dummy box
\ifR@split \else \unskip % was space
\setbox0 \lastbox \fi }), second dummy

\def \a@skipback {% get back over the

% display to the old vertical position
\vskip -\belowdisplayskip

\vskip —\baselineskip

\vskip —\abovedisplayskip

\vskip —\baselineskip \vskip -\parskip
\ifR@split % line was split

\vskip -\ht\a@Rdummyii % second dummy box
\vskip -\dp\a@Rdummyii \vskip -\lineskip
\fi % now open next RL line

\noindent \a@strut \nobreak

\hskip \a@Llength }

Ut I U T I T T T Tt Tt T ol T oo Vo Do o To Ve
% end of macros

Dl tototo tolototetot lotototote o lototatote o ot tototo ot

YANNA

YANNA

PREPRINT: 1994 FuroTEX Meeting

