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Abstract

Protocols for synchronizing data streams should be highly adaptive with regard to

both changing network conditions as well as to individual user needs. The stream

synchronization protocol we are going to describe in this paper supports any type of

distribution of the stream group to be synchronized. It incorporates buffer level con-

trol mechanisms allowing an immediate reaction on overflow or underflow situa-

tions. Moreover, the proposed mechanism is flexible enough to support a variety of

synchronization policies and allows to switch them dynamically during presenta-

tion. Since control messages are only exchanged when the network conditions actu-

ally change, the message overhead of the protocol is neglectable.

Keywords: distributed system, multimedia, synchronization protocol, time-sensi-

tive data, quality of service
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1 INTRODUCTION

In multimedia systems, synchronization plays an important role at several levels of abstraction.

At the data stream level, synchronization relationships are defined among temporally related

streams, such as a lip-sync relationship between an audio and a video stream. To ensure the syn-

chronous play-out of temporally related streams, appropriate stream synchronization protocols

are required.

Solutions to the problem of data stream synchronization seem to be quite obvious, especially if

clocks are synchronized. Nevertheless, designing an efficient synchronization protocol that is

highly adaptive with regard to both changing network conditions and changing user needs is a

challenging task. If the network cannot guarantee reasonable bounds on delay and jitter, or a low

end-to-end delay is of importance, the protocol should operate on the basis of the current net-

work conditions rather than some worst case assumptions, and should be able to automatically

adapt itself to changing conditions. Moreover, the protocol should be flexible enough to support

various synchronization policies, such as ‘minimal end-to-end delay’ or ‘best quality’. This kind

of flexibility is important as different applications may have totally different needs in terms of

quality of service. In a teleconferencing system, for example, a low end-to-end delay is of para-

mount importance, while a degraded video quality may be tolerated. In contrast, in a surveil-

lance application, one might accept a higher delay rather than a poor video quality.

Protocols for synchronizing data streams can be classified into those assuming the existence of

synchronized clocks and those making no such assumption. The Adaptive Synchronization Pro-

tocol (ASP), we are going to propose in this paper, belongs to the first class and has the follow-

ing characteristics:

• ASP supports any kind of distribution of the group of streams to be synchronized, i.e. the

sources of the streams as well as their sinks may reside on different nodes. Streams may be

point-to-point or point-to-multipoint.

• ASP incorporates buffer level control mechanisms and by this is able to react immediately

on changing network conditions. It allows a stream’s play-out rate to be adapted imme-

diately when the stream becomes critical, i.e. when it runs the risk of a buffer underflow or

overflow. If changing network conditions cause several streams to become critical at the

same time, each stream may immediately initiate the required adaption, independent from

all other streams. Note that this property may improve the intrastream synchronization

quality substantially.
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• ASP monitors the network conditions indirectly by means of the local buffer level control

mechanism and performs rate adaptions only if they are actually required, i.e. only when a

stream becomes critical. Due to this fact, the overhead for exchanging control messages is

almost zero if the streams’ average network delay and jitter are rather stable.

• ASP supports the notion of a master stream, where the master controls the advance of the

other streams, called slaves. The role of the master is assigned in accordance with the cho-

sen synchronization policy and can be changed dynamically during the presentation if

needed.

• ASP is a powerful and flexible mechanism that forms the base for various synchronization

policies. It is powerful in the sense that the realization of a desired policy is a simple task:

A policy is determined by setting a set of parameters and assigning the master role appro-

priately. For a chosen policy ASP can be tuned individually to achieve the desired trade-off

between end-to-end delay and intrastream synchronization quality. This tuning and even

the applied policy can be changed dynamically during the presentation.

The remainder of this paper is structured as follows. After a discussion of related work in the

next section, the basic assumptions and concepts of ASP are introduced in Sec. 3. Then, Sec. 4

presents ASP by describing its protocol elements for start-up, buffer control, master/slave syn-

chronization and master switching. We show in Sec. 5, how different synchronization policies

can be efficiently realized on top of the proposed synchronization mechanism, and provide some

simulation results illustrating the performance of ASP in Sec. 6. Finally, we conclude with a

brief summary.

2 RELATED WORK

The approaches to stream synchronization proposed in the literature differ in the stream confi-

gurations supported. Some of the proposals require all sinks of the synchronization group to

reside on the same node (e.g. Multimedia Presentation Manager [IBM92], ACME system

[AnHo91]). Others assume the existence of a centralized server, which stores and distributes

data streams. The scheme proposed by Rangan et al. [RaRa92], [RRK93] plays back stored data

streams from a server. Sinks are required to periodically send feedback messages to the server,

which uses these messages to estimated the temporal state of the individual streams. Since

clocks are not assumed to be synchronized, the quality of these estimations depends on the jitter

of feed-back messages, which is assumed to be bound. A similar approach has been described
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in [AgSo94], which requires no bounded jitter but estimates the difference between clocks by

means of probe messages.

Both the Flow Synchronization Protocol [EPD94] and the Lancaster Orchestration Service

[CCGH92] assume synchronized clocks and support configurations with distributed sinks and

sources. However, neither of the two protocols allows a sink to react immediately when its

stream becomes critical. Moreover, the former protocol does not support the notion of a master

stream, which excludes a number of synchronization policies. Finally, both schemes do not pro-

vide buffer level control concepts at their service interfaces, which makes the specification of

policies more complicated than for ASP.

Some buffer level control schemes have been proposed also. The scheme described in [KM94]

aims at intrastream synchronization only. In [KHMS94], stream quality is defined in terms of

the rate of data loss due to buffer underflow. A local mechanism is proposed that allows either

to minimize the stream’s end-to-end delay or to optimize its quality.

3 BASIC ASSUMPTIONS AND CONCEPTS

The set of streams, which are to be played out in a synchronized fashion is calledsynchroniza-

tion group (or sync group for short). The Adaptive Synchronization Protocol (ASP) distin-

guishes between two kinds of streams, the so-calledmaster and slave streams. Each sync

group comprises a single master stream and one or more slave streams. While the rate of the

master stream can be individually controlled, the ones of the slave streams are adapted accord-

ing to the progress of the master stream. The master and slave role can be switched dynamically

as needed.

For each sync group there exists a single synchronizationserver and severalclients, two for

each stream. The server is a software entity that maintains state information and performs con-

trol operations concerning the entire sync group. In particular, it controls the start-up procedure

and the switching of the master role. Moreover, it is this entity that enforces the synchronization

policy chosen by the user. The server communicates with the clients, which are software entities

controlling individual streams. Each stream has a pair of clients, a sink client and a source client,

which are able to start, stop, slow-down or speed-up the stream. Depending on the type of

stream it is controlling, a sink client either acts as amaster orslave. To achieve interstream syn-

chronization, the master communicates with its slaves according to an orchestration protocol.
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ASP supports arbitrarily distributed configurations: A sync group’s sources may reside on dif-

ferent sites, and the same holds for the sinks. The location of the server may be chosen freely,

e.g. it may be located on the node that hosts the most sink clients.

We will assume that control messages are communicated reliably and hence are never lost. The

required level of reliability is typically provided by virtual circuits or reliable datagrams. Fur-

ther, it is assumed that the system clocks of the nodes participating in a sync group are appro-

ximately synchronized to withinε of each other, i.e. no clock value differs from any other by

more thanε. Well-established protocols, such as the Network Time Protocol [Mill90], achieve

clock synchronization withε in the lower milliseconds range.

The basic principle of interstream synchronization adopted by ASP and various other protocols

based on the notion of global time (e.g. [EPD94]) is very simple: Each data unit of a stream is

associated with a timestamp, which defines its media time. To achieve synchronous presenta-

tions of streams, the streams’ media time must be mapped to global time, such that data units

with the same timestamp will be played out at the same (global) time. Similarly, the sources

exploit the existence of synchronized clocks: data units with the same timestamp are sent at the

same (global) time. Different transmission delays that may exist between different streams are

equalized by buffering data units appropriately at the sink sites.

Our model of stream transmission and buffering is depicted in Fig. 1. The data units of a stream

are produced by a source with anominal rate R1 and are transmitted to one or more sinks via

an unidirectional transmission channel. The transmission channel introduces a certain delay and

jitter, resulting in amodified arrival rate  R1’ . At the sink’s site, data units are buffered in a

play-out buffer, from which they are released with arelease rate R2. The release rate, which

determines how fast the stream’s presentation advances, is directly controlled by ASP to mani-

pulate the fill state of the play-out buffer and to ensure synchrony.

Figure 1 : Data Stream and Delay Model
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A data unit that is released from the buffer is transferred to the so-called s/d-buffer, which can

hold a single data unit only. From this buffer, it is read by the sink device withconsumption

rate R3. The s/d-buffer decouples the actual consumption rate of the sink device from the

release rate and by this models a simple skipping or duplicating mechanism in the caseR2 dif-

fers fromR3. This may happen, for example, if the consumption rate is fixed. For many devices,

however, R2 will never differ fromR3, in which case the s/d-buffer is not needed at all.

On its way from generation to play-out, a data unit is delayed at several stages. It takes a data

unit atransmission delay dT until it arrives in the buffer at the sink’s site. This includes all the

times for generation, packetization, network transmission and transfer into the buffer. In the

buffer, a data unit is delayed by abuffering delay dB before it is removed by the sink device.

In the sink, of course, a data unit may experience a further delay before it is actually presented.

For the sake of simplicity, however, we will assume that this delay is neglectable.1

Themedia time M(t) specifies the stream’s temporal state of play-out and can be determined

by reading the timestamp of the data unit in the s/d-buffer at timet. However, the granularity of

media time were too coarse would it simply be based on the read timestamps without interpo-

lation of intermediate values. Due to this fact, media time is actually modelled as a partially

linear, continuous functionM(t), which delivers the media time at real timet.

4 THE ADAPTIVE SYNCHRONIZATION PROTOCOL

This section presents the Adaptive Synchronization Protocol (ASP), which can be separated

into four rather independent subprotocols. After a general overview, the start-up protocol, buffer

control protocol, master/slave synchronization protocol, and master switching protocol are

introduced. It is important to mention, that this section concentrates on mechanisms, while pos-

sible policies exploiting these mechanisms will be discussed in the next section.

4.1  Overview of the Protocols

Thestart-up protocol initiates the processing of the sinks and sources in a given sync group.

In particular, it ensures that the sources synchronously start the transmission and the sinks syn-

1 Additional delays, resulting from devices that buffer a certain amount of data internally or from differing rates
R2 andR3, may easily be handled in ASP. It only requires to offset buffering delays and state information of
play-out by a fixed or variable amount. However, a detailed description is beyond the scope of this paper.
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chronously start the presentation. Start-up is coordinated by the server, which derives start-up

times from estimated transmission times, selects an initial master stream depending on the cho-

sen synchronization policy and sends control messages containing the start-up times to clients.

Thebuffer control protocol is a purely local mechanism, which keeps the fill state of the mas-

ter stream’s play-out buffer in a given target area. The determination of the target area depends

on the applied synchronization policy and thus is not subject to this mechanism. Whenever the

fill state moves out of the given target area, the buffer control protocol regulates the progress of

the master stream by manipulating release rateR2 accordingly.

Themaster/slave synchronization protocol ensures interstream synchronization by adjusting

the progress of slave streams to the advance of the master stream. Processing of this protocol

only involves a sync group’s sink clients, one of them acting as master and the other ones acting

as slaves. Whenever the master changes release rateR2, it computes for some future point in

time, sayt, the master’s media timeM(t), taking into account the modified value ofR2. Then,

M(t) andt are propagated in a control message to all slaves. When a slave receives such a control

message, it locally adjustsR2 in a way that its stream will reachM(t) at timet. Obviously, this

protocol ensures that all streams are in sync again at timet, within the margins of the accuracy

provided by clock synchronization. Notice that this protocol does not involve the server and is

only initiated when the buffer situation or - in other words - the network conditions have

changed.

Themaster switching protocol allows to switch the master role from one stream to another at

any point in time. The protocol involves the server and the sink clients, whereas the server is the

only instance that may grant the master role. Switching the master role may become necessary

when the user changes its synchronization policy or some slave stream enters a critical state, i.e.

runs the risk of having a buffer underflow or overflow. A nice property of this protocol is that a

critical slave can react immediately: It becomes a so-called tentative master, which is allowed

to adjustR2 accordingly. The protocol takes care of the fact that there may be a master and

several tentative masters at the same point in time and makes sure that the sync group eventually

ends up with a single master.

After this brief overview, we will now consider the four protocols in more detail.
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4.2  Start-up Protocol

Our start-up procedure is very similar to that described in [EPD94]. The server initializes the

synchronous start-up of a sync group’s data streams by sendingStart messages to each sink and

source client. EachStart message contains besides other information a start-up time. All source

clients receive the same start-up time, at which they are supposed to start transmitting data units.

Similarly, all sink clients receives the same start-up time, which tells them when to start the

play-out process.

Starting clients simultaneously requires theStart messages to arrive early enough. The start-up

time t0 of sources is derived from the current timetnow, the message transmission delaydm expe-

rienced byStart messages, and processing delaysdproc at the server site:t0 = tnow + dm + dproc.

Start-up of sinks is delayed by an additional time to allow the data units to arrive at the sinks’

locations and to preload buffers. This delay, called expected delaydexp, is computed from ave-

rage delaysdave,i of the sync group’s streams and the buffer delaydpre caused by preloading:

dexp = max (dave,i) + dpre, wheredpre,i primarily depends on streami’s jitter characteristic. We

assume some infrastructure component that provides access to the needed jitter and delay

parameters.

A Start message sent to a source client (at least) contains start timet0 and the nominal rateR1.

Start received by a sink encompasses the start timet0 + dexp, the release rateR2 = R1 and a flag

assigning the initial role (i.e. master or slave). Furthermore, it includes some initial parameters

concerning the play-out buffer: the low water mark, high water mark and - in case of the master

stream - the initial target area (see below).

Each client starts stream transmission or play-out at the received start-up time. Therefore, the

start-up asynchrony is bounded by the inaccuracy of clock synchronization providedStart mes-

sages arrive in time. However, even if someStart messages are too late, ASP is able to imme-

diately resynchronize the ‘late’ streams.

4.3  Buffer Control Protocol

Before describing the protocol, we will take a closer look at the play-out buffer (see Fig. 2). The

parameterdB(t) denotes thesmoothed buffer delay at current timet. The buffer delay at a given

point in time is determined by the amount of buffered data. In order to filter out short-term fluc-

tuations caused by jitter, some smoothing function is to be applied. ASP does not require a dis-
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tinct smoothing function. Some examples are the geometric weighting smoothing function

[Post81]: dB(ti) = α dB(ti-1)+ (1-α) ActBufferDelay(t), or the Finite Impulse Response Filter as

used in [KM94].

For each play-out buffer alow water mark (LWM) andhigh water mark (HWM) is defined.

When dB(t) falls underLWM or exceedsHWM, there is the risk of underflow or overflow,

respectively. Therefore, we will call the buffer areas belowLWM and aboveHWM thecritical

buffer regions. As will be seen below, ASP takes immediate corrective measures whendB(t)

moves into either one of the critical buffer regions. Note that the quality of intrastream synchro-

nization is primarily determined by theLWM andHWM values (for details see Sec. 5). For

example, a reasonable value for LWM is j/2, wherej denotes the jitter of the incoming data

stream.

The buffer control protocol is executed locally at the sink site of the master stream. Its only pur-

pose is the keepdB(t) of the master stream in a so-calledtarget area, which is defined by an

upper target boundary (UTB) and alower target boundary (LTB). Clearly, the target area

must not overlap with a critical buffer region. The location and width of the target area is pri-

marily determined by the chosen synchronization policy. For example, to minimize the overall

delay the target should be close toLWM (for details see Sec. 5).

The buffer delaydB(t) may float freely between the lower and upper target boundary without

triggering any rate adaptions. Changing transmission delays (or a modification of the target area

requested by the server) may causedB(t) to move out of the target area. When this happens, the

master enters a so-calledadaption phase, whose purpose is to movedB(t) back into the target

area.

Figure 2 : Play-out Buffer of a Sink
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At the beginning of the adaption phase, release rateR2 is modified accordingly. The adapted

release rate isR2 + Rcorr, whereRcorr = (dB(t) - (LTB + (UTB-LTB)/2)) / L. LengthL of the

adaption phase determines how aggressive the algorithm reacts. At the end of the adaption

phase, it is checked whether or notdB(t) is within the target area. If it is in the target area,R2 is

set back to its previous value, the nominal stream rate. Otherwise, the master immediately enters

a new adaption phase.

In order to keep the slave streams in sync, each adaption of the master stream has to be propa-

gated to the slave streams. This is achieved by the protocol described in the next section.

4.4  Master/Slave Synchronization Protocol

The master/slave synchronization protocol ensures that the slave streams are played out in sync

with the master stream. This protocol is initialized whenever the master (or a tentative master

as will be seen in the next section) modifies its release rate. Protocol processing involves all sink

clients, each of which acts either as master or slave.

Whenever it enters an adaption phase, the master performs the following operations. First, it

computes the so-called target media time for this adaption phase, which is defined to be the

media time the master stream will reach at the end of this phase. Assume that the adaption phase

starts at real timets and is of lengthL. Then the target media time isM(ts+L) = M(ts) + L*(R2

+ Rcorr). Subsequently, the master propagates anAdapt message to each slave in the sync group.

This message includes the following information: end timete=ts+L of the adaption phase, target

media timeM(te) at the end of the adaption phase, and a structured timestamp for ordering com-

petingAdapt messages (see next section).

When a slave receives anAdapt message, it immediately enters the adaption phase by modifying

its release rateR2 according to the received target media time (see Fig. 4). The modified release

Figure 3 : Buffer Delay Adaption
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rate isR2= (M(te)-M (ta)) / (te - ta), whereta denotes the time at which the slave receivedAdapt.

At time te (i.e. at the end of the adaption phase),R2 is set back to its previous value, the nominal

stream rate.

Obviously, this protocol ensures that at the end of each adaption phase all streams in the sync

group reach the same target media time at the same point in real time. Between two adaption

phases, streams stay in sync as their nominal release rates are derived from global time.

As with all synchronization schemes based on the notion of global time, skew among sinks is

introduced by the inaccuracy of synchronized clocks, which is assumed to be bounded byε. In

our protocol, an additional source of skew is the adaption of release rates at different points in

time. The worst case skewSmax during the adaption phase of the master depends on transfer

time dm of theAdapt message and master stream’s correction rateRcorr: Smax = dm*|Rcorr| + ε.
Between adaption phases, the skew is bounded byε.

The skew among data streams synchronized by ASP is mainly determined by the inaccuracy of

synchronized clocks. Table 1 shows skew estimations among data streams that are played out

on the same node as well as on separate nodes in a local and in a wide area network. We assume

Figure 4 :  Master/Slave Synchronization
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WAN 100 .. 1000 ms 10 .. 100 ms [Mill90] 12 .. 120 ms
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rate corrections of up to 2% of the nominal rate, which is derived from simulation results in Sec.

6. For simplicity, we assume the data units to originate at the same node, i.e. there is no addi-

tional skew due to timestamps based on differing clocks.

4.5  Master Switching Protocol

In our protocol, we distinguish between two types of master switching. The first type of switch-

ing, calledpolicy-initiated, is performed whenever (a change in) the synchronization policy

requires a new assignment of the master role. In this case, the server, which enforces the policy,

performs the switching just by sending aGrantMaster message to the new master and aQuit-

Master message to the old master. GrantMaster specifies the target buffer area of the new mas-

ter, which is determined by the server depending on the chosen policy. With this simple protocol

it may happen that for a short period of time there exist two masters, which both propagate

Adapt messages. Our protocol prevents inconsistencies by performingAdapt requests in time-

stamp order (see below).

The second type of switching isrecovery-initiated. The slave initiates recovery when its stream

becomes critical. A stream is called critical if its current buffer delay is in a critical region and

(locally) no rate adaption improving the situation is in progress. A very attractive property of

our protocol is that a slave can immediately react when its stream becomes critical. Recovery

goes as follows: First, the slave makes a transition to a so-called tentative master (or t-master

for short) and informs the server about this by sending anIamT-Master message. Then - without

waiting on any response - it enters an adaption phase, in which it adapts release rateR2 in a way

that its buffer delay can be expected to move out of the critical region. In order to keep the other

streams in sync, it propagates anAdapt request to all other sink clients, including the master. At

the end of the adaption phase, a t-master falls back in the slave role. Should the stream still be

critical by this time, then the recovery procedure is initiated once more.

Obviously, our protocol allows multiple instances to propagateAdapt concurrently, which may

cause inconsistencies leading to the loss of synchronization if no care is taken. As already

pointed out above, policy-initiated switching may cause the new master to sendAdapt messages

while the old master is still in place. Moreover, at the same point in time, there may exist any

number of t-masters propagatingAdapt requests concurrently. It should be clear that stream syn-

chronization can be ensured only ifAdapt messages are performed in the same order at each

client. This requirement can be fulfilled by including a timestamp inAdapt requests and per-

forming these requests in timestamp order at the client sites. The latter means that a client
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accepts anAdapt request only if it is younger than all other requests received before. Older

requests are just discarded.

However, performing requests in some timestamp order is not sufficient. Assume, for example,

that the master and some t-master propagateAdapt requests at approximately the same time, and

the former requests an increase of the release rate, while the latter requests a decrease. For some

synchronization policies, this might be a very common situation (see for example the minimum

delay policy described in the next section). If the timestamps were solely based on system time

and the master would perform the propagation slightly after the t-master, then the t-master’s

request would be wiped out, although it is the reaction on a critical situation and hence is more

important. The stability of the algorithm can only be guaranteed if recovery actions are per-

formed with the highest priority.2 Consequently, the timestamping scheme defining the execu-

tion order ofAdapt requests must take into account the ‘importance’ of requests.

The precedence ofAdapt requests sent at approximately the same time is given by the following

list in increasing order: (1) requests of old masters (2) requests of the new master (3) requests

of t-masters. We apply a structured timestamping scheme to reflect this precedence of requests.

In this scheme, a timestamp has the following structure:<ER.EM.T>, whereER denotes arecov-

ery epoch, EM designates amaster epoch, andT is thereal time when the message tagged

with this timestamp was sent. A new recovery epoch is entered when a slave performs recovery,

while a new master epoch is entered whenever a new master is selected. So, a recovery epoch

may have seen several master epochs. As will be seen below, entering a new recovery epoch

requires a new master to be selected.

Each control message contains a structured timestamp, which is generated before the message

is sent on the basis of two local epoch counters and the local (synchronized) clock. The server

and the clients keep track of the current recovery and master epoch by locally maintaining two

epoch counters. Whenever they accept a message whose timestamp contains an epoch value

greater than the one recorded locally, the corresponding counter is set to the received epoch

value. Moreover, a client increments its local recovery epoch counter when it performs reco-

very, i.e. theIamT-Master message sent to the server already reflects the new recovery period.

The server increments its master epoch counter when it selects a new master, i.e. theGrantMas-

ter message already indicates the new master epoch.

2 We assume that at no point in time there exist two t-masters that try to adapt the release rate in contradicting
directions, i.e. one tries to increase the rate while the other tries to decrease it. This is achieved by dimensioning
the play-out buffer appropriately.
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Adapt requests are accepted only in strict timestamp order. Should a client receive two requests

with the same timestamps, total ordering is achieved by ordering these two request according to

the requestors’ unique identifiers included in the messages. As a slave performing recovery

enters a new recovery epoch, allAdapt request generated by some master in the previous reco-

very epoch are wiped out. Similarly, selecting a new master enters a new master epoch, and by

this wipes out allAdapt request from former masters. When a master receives anAdapt request

indicating a younger master or recovery epoch, it can learn from this message that there exists

a new master or a t-master performing recovery, respectively. In both cases, it immediately gives

up the master role and becomes a slave.

As already mentioned above, a critical slave sends anIamT-Master message when it becomes a

t-master. When the server receives such a message indicating a new recovery epoch, it must

select a new master. Which stream becomes the new master, primarily depends on the synchro-

nization policy chosen. For example, the originator of theIamT-Master message establishing a

new recovery epoch may be granted the master role. All other messages of this type belonging

to the same recovery epoch are just discarded upon arrival (see Fig. 5).

In summary, in an adaption phase a t-master or master may receive anAdapt or GrantMaster

message. They are only accepted if they are younger than all other control messages of the same

type received before. If anAdapt request is accepted, a new adaption phase is started based on

the target media time included in the accepted request. As mentioned above, a master accepting

an Adapt message immediately becomes a slave. IfGrantMaster is accepted, the recipient

becomes master and acts accordingly. A t-master that has not receivedGrantMaster by the end

Figure 5 :  Recovery-initiated Master Switching
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of the adaption phase goes back in the slave role. Of course, if it is still critical by this time, it

initiates recovery again.

The worst case skewSmax among sinks can be observed when master and a t-master decide to

adapt their release rates in opposite directions at approximately the same time.Smax can be

shown to bedm*(|Rcorr, master| + |Rcorr, t-master|) + ε, wheredm denotes the transmission delay

of Adapt messages.

5 SYNCHRONIZATION POLICIES

The ASP has many parameters for tuning the protocol to the characteristics of the underlying

system as well as to the quality of service expected by the given application. A discussion of all

these parameters would go far beyond the scope of this paper. Therefore, we will focus on the

most important parameters, in particular those influencing the synchronization policy: the low

and high water mark, the width of the target area and its placement in the play-out buffer, as well

as the rules for granting the master role.

The intrastream synchronization quality in terms of data loss due to underflow or overflow is

primarily influenced by theLWM andHWM values. A good rule of thumb for the width of the

critical regions defined by these two parameters isj/2 for each, wherej denotes the jitter of the

corresponding data stream. IncreasingLWM also increases the quality as the probability of

underflow is reduced. On the other hand, this modification may also increase the overall delay,

which might be critical for the given application. ASP allows to modifyLWM andHWM values

while the presentation is in progress. For example, it is conceivable that a user interactively

adjusts the stream quality during play-out. Alternatively, an internal mechanism similar to the

one described in [KHMS94] may monitor the data loss rate and adjusts the water marks as

needed.

The width of the target buffer area determines aggressiveness of the buffer control algorithm.

The minimum width of this area depends on the smoothing function applied to determinedB(t).

The larger the width of the target area, the less adaptions of the release rate are required. Rather

constant release rates require almost no communication overhead for adapting slaves. On the

other hand, with a large target area there is only limited control over the actual buffer delay. If,

for example, the actual buffer delay has to be kept as close as possible to theLWM to minimize

the overall delay, a small target area is the better choice.
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The location of the target area in the buffer together with the way how the master role is granted

are the major policy parameters of ASP. This will be illustrated by the following two examples,

the minimum delay policy and the dedicated master policy.

The goal of theminimum delay policy is to achieve the minimum overall delay for a given

intrastream synchronization quality. To reach this goal the stream with the currently longest

transmission delay is granted the master role, and this stream’s buffer delay is kept as close as

possible toLWM. The target area for the master is located as follows:LTB = LWM andUTB =

LWM + ∆, where∆ is the jitter ofdB(t) after smoothing.

Due to changing network conditions it may happen that the transmission delay of a slave stream

surpasses the one of the master. This will cause the slave’s buffer delay to fall below itsLWM

triggering recovery. When the server receives anIamT-Master message it grants the master role

the originator of this message. If it receives multipleIamT-Master messages originated in the

same recovery epoch only the first one is accepted, all the other ones are discarded. In the long

run, this strategy ensures that the stream with the longest transmission delay eventually becomes

master. The overall delay at timet amounts to the longest transmission delay att plusLWM,

which obviously is the minimal overall delay that can be achieved att.

The possibility of dynamically tuningLWM makes this policy very powerful. By increasing the

LWM value the quality but also the overall delay is increased. Conversely, the quality and delay

is decreased ifLWM is decreased. Consequently, by tuningLWM the user may (interactively)

determine the appropriate trade-off between delay and intrastream synchronization quality.

Thededicated master policy dedicates the master role to a certain stream. This is typically a

stream that is played out at a sink device with a fixed consumption rateR3, such as an audio

device. Obviously, the best intrastream synchronization quality for such a stream is achieved if

its release rateR2 equalsR3, allowing it to operate without duplicating and skipping. The dedi-

cated master policy ensures thatR2 andR3 may differ only if some stream in the sync group is

critical.

During the start-up procedure, the dedicated stream is granted the master role, and the target

area is set to its maximum size (LTB = LWM andUTB = HWM), reducing the necessity of rate

adaptions to a minimum. When a slave gets critical, it becomes t-master and performs recovery.

After recovery, however, the dedicated stream is granted the master role again by the server.
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Not only individual parameters but the entire policy can be changed during presentation. For

example, the server may start with the dedicated master policy and later on switch to the

minimum delay policy when the overall delay gets unacceptable. When changing the policy, the

server may require knowledge about the state of the play-out buffers (e.g. current buffer delay,

LWM, HWM). For that purpose, the ASP provides services for requesting buffer state informa-

tion from clients.

In our opinion, the two synchronization policies described above are the most important ones in

practice. However, other policies are conceivable as well.

6 SIMULATION RESULTS

The section presents some simulation results showing the behavior of ASP. In our simulations,

we have used both measured and synthetically generated delays. First, the behavior of the buffer

control protocol is shown, afterwards results of the master/slave interstream synchronization

protocol including role switches among master and slave.

The simulation of the master control protocol is based on delay data measured on the Internet.

Incoming data units have an average delay between 300 and 400 ms (see Fig. 7). The data units

are buffered in the play-out buffer of the master stream. Its target area is first set to 300-500 ms.

The buffer delay is smoothed by the geometric weighting smoothing function withα set to 0.9.

The buffering leads to a nearly constant release rateR2 (see Fig. 6), which most of the time

Figure 6 : Buffer Delay and Release Rate of a Master Stream
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delay of 100 ms and 120 ms, respectively. Low and high water marks are set to 29 ms and 79

ms, respectively. The master’s target area is between 29 ms and 49 ms. Initial master stream is

stream 1. As shown in Fig. 8, the master role is switched to stream 2 when the buffer delay of

the stream falls below the low water mark the first time. Stream 2 remains master until the end

of the simulation. The master stream influences the slave’s rate the same way as influencing its

own by setting target stream times. However, rate adaptions of both streams are seldom. In Fig.

9, the synthetically generated network delay of data units and the resulting end-to-end delay of

both streams are shown. Obviously, the resolution of the graphic does not allow to depict any

skew while altering delays of both streams. The curves of their end-to-end-delays lie directly

over one another.

7 SUMMARY

In distributed multimedia applications, synchronization protocols are required to restore tempo-

ral relationships among data streams that were transmitted over separate communication chan-

nels. The protocols must be able to deliver a intrastream and interstream quality that is appro-

priate for the particular application scenario, even under changing network conditions.

The ASP achieves interstream synchronization in distributed environments. It adapts to chang-

ing network conditions and allows to tune the quality of data streams to application require-

ments by supporting a wide range of synchronization policies. Stream quality is improved by

Figure 9 : Network and End-to-End-Delay of Data Units
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reacting on critical situations immediately. Furthermore, by limiting reactions to critical situa-

tions, a considerably low message overhead is achieved. The simulation results show good per-

formance even when there is no guaranteed quality of the underlying communication system.

The design of the ASP was conducted in the context of theCINEMA project [RBH94], [RoHe94].

CINEMA is an environment to establish and control multimedia applications in distributed envi-

ronments. The next step will be the integration of the Adaptive Synchronisation Protocol into

theCINEMA architecture. This will allow us to experiment with the ASP in real-world applica-

tions, gather more experience with its behavior and verify our simulation results.
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