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Abstract

Protocols for synchronizing data streams should be highly adaptive with regard to
both changing network conditions as well as to individual user needs. The stream
synchronization protocol we are going to describe in this paper supports any type of
distribution of the stream group to be synchronized. It incorporatés bawel con-

trol mechanisms allowing an immediate reaction on overflow or underflow situa-
tions. Moreoverthe proposed mechanism is flexible enough to support a variety of
synchronization policies and allows to switch them dynamically during presenta-
tion. Since control messages are only exchanged when the network conditions actu-
ally change, the message overhead of the protocol is neglectable.

Keywords: distributed system, multimedia, synchronization protocol, time-sensi-
tive data, quality of service
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1 INTRODUCTION

In multimedia systems, synchronization plays an important role at several levels of abstraction.
At the data stream level, synchronization relationships are defined among temporally related
streams, such as a lip-sync relationship between an audio and a video streasur& the syn-
chronous play-out of temporally related streams, appropriate stream synchronization protocols
are required.

Solutions to the problem of data stream synchronization seem to be quite obvious, especially if
clocks are synchronized. Nevertheless, designingfameet synchronization protocol that is
highly adaptive with regard to both changing network conditions and changing user needs is a
challenging task. If the network cannot guarantee reasonable bounds on delay amdgitbsv
end-to-end delay is of importance, the protocol should operate on the basis of the current net-
work conditions rather than some worst case assumptions, and should be able to automatically
adapt itself to changing conditions. Morequie protocol should be flexible enough to support
various synchronization policies, such as ‘minimal end-to-end delay’ or ‘best quality’. This kind
of flexibility is important as dferent applications may have totallyféifent needs in terms of
quality of service. In a teleconferencing system, for example, a low end-to-end delay is of para-
mount importance, while a degraded video quality may be tolerated. In contrast, in a surveil-
lance application, one might accept a higher delay rather than a poor videa quality

Protocols for synchronizing data streams can be classified into those assuming the existence of
synchronized clocks and those making no such assumption. The Adaptive Synchronization Pro-
tocol (ASP), we are going to propose in this pabelongs to the first class and has the follow-

ing characteristics:

* ASP supports any kind of distribution of the group of streams to be synchronized, i.e. the
sources of the streams as well as their sinks may residder@difnodes. Streams may be
point-to-point or point-to-multipoint.

* ASP incorporates bfér level control mechanisms and by this is able to react immediately
on changing network conditions. It allows a streaplay-out rate to be adapted imme-
diately when the stream becomes critical, i.e. when it runs the risk diea baélerflow or
overflow If changing network conditions cause several streams to become critical at the
same time, each stream may immediately initiate the required adaption, independent from
all other streams. Note that this property may improve the intrastream synchronization
guality substantially
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* ASP monitors the network conditions indirectly by means of the loctdrdef/el control
mechanism and performs rate adaptions only if they are actually required, i.e. only when a
stream becomes critical. Due to this fact, the overhead for exchanging control messages is
almost zero if the streams’ average network delay and jitter are rather stable.

» ASP supports the notion of a master stream, where the master controls the advance of the
other streams, called slaves. The role of the master is assigned in accordance with the cho-
sen synchronization policy and can be changed dynamically during the presentation if
needed.

» ASP is a powerful and flexible mechanism that forms the base for various synchronization
pdlicies. It is powerful in the sense that the realization of a desired policy is a simple task:
A policy is determined by setting a set of parameters and assigning the master role appro-
priately For a chosen policy ASP can be tuned individually to achieve the desired frade-of
between end-to-end delay and intrastream synchronization qUdlis/tuning and even
the applied policy can be changed dynamically during the presentation.

The remainder of this paper is structured as follows. After a discussion of related work in the
next section, the basic assumptions and concepts of ASP are introduced in Sec. 3. Then, Sec. 4
presents ASP by describing its protocol elements for start-ujer lmaintrol, master/slave syn-
chronization and master switchingeWhow in Sec. 5, how €&rent synchronization policies

can be diciently realized on top of the proposed synchronization mechanism, and provide some
simulation results illustrating the performance of ASP in Sec. 6. Finadly}conclude with a

brief summary

2 RELATED WORK

The approaches to stream synchronization proposed in the literatarerdthe stream confi-
gurations supported. Some of the proposals require all sinks of the synchronization group to
reside on the same node (e.g. Multimedia Presentation Manager [IBM92], ACME system
[AnH091]). Others assume the existence of a centralized serimh stores and distributes

data streams. The scheme proposed by Rangan et al. [RaRa92], [RRK93] plays back stored data
streams from a serveBinks are required to periodically send feedback messages to the server
which uses these messages to estimated the temporal state of the individual streams. Since
clocks are not assumed to be synchronized, the quality of these estimations depends on the jitter
of feed-back messages, which is assumed to be bound. A similar approach has been described
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in [AgS094], which requires no bounded jitter but estimates thereiifce between clocks by
means of probe messages.

Both the Flow Synchronization Protocol [EPD94] and the Lancaster Orchestration Service
[CCGH92] assume synchronized clocks and support configurations with distributed sinks and
sources. Howevemneither of the two protocols allows a sink to react immediately when its
stream becomes critical. Moreoy#re former protocol does not support the notion of a master
stream, which excludes a number of synchronization policies. Fibatly schemes do not pro-

vide bufer level control concepts at their service interfaces, which makes the specification of
policies more complicated than for ASP

Some bufer level control schemes have been proposed also. The scheme described in [KM94]
aims at intrastream synchronization oty [KHMS94], stream quality is defined in terms of

the rate of data loss due to fasrfunderflow A local mechanism is proposed that allows either

to minimize the strears’end-to-end delay or to optimize its quality

3 BASIC ASSUMPTIONSAND CONCEPTS

The set of streams, which are to be played out in a synchronized fashion isycadledniza-

tion group (or sync group for short). The Adaptive Synchronization Protocol (ASP) distin-
guishes between two kinds of streams, the so-catlaster andslave streams. Each sync

group comprises a single master stream and one or more slave streams. While the rate of the
master stream can be individually controlled, the ones of the slave streams are adapted accord-
ing to the progress of the master stream. The master and slave role can be switched dynamically
as needed.

For each sync group there exists a single synchronizedieer and severatlients, two for

each stream. The server is a software entity that maintains state information and performs con-
trol operations concerning the entire sync group. In partiagu@ntrols the start-up procedure

and the switching of the master role. Moreoyias this entity that enforces the synchronization
policy chosen by the usdérhe server communicates with the clients, which are software entities
controlling individual streams. Each stream has a pair of clients, a sink client and a source client,
which are able to start, stop, slow-down or speed-up the stream. Depending on the type of
stream it is controlling, a sink client either acts asaater orslave. To achieve interstream syn-
chronization, the master communicates with its slaves according to an orchestration protocol.



3 BASIC ASSUMPTIONS AND CONCEPTS 5

ASP supports arbitrarily distributed configurations: A sync goapurces may reside on dif-
ferent sites, and the same holds for the sinks. The location of the server may be chosen freely
e.g. it may be located on the node that hosts the most sink clients.

We will assume that control messages are communicated reliably and hence are never lost. The
required level of reliability is typically provided by virtual circuits or reliable datagrams. Fur-
ther, it is assumed that the system clocks of the nodes participating in a sync group are appro-
ximately synchronized to withia of each otheri.e. no clock value diérs from any other by

more thare. Well-established protocols, such as the NetwankeTProtocol [Mill90], achieve

clock synchronization witk in the lower milliseconds range.

The basic principle of interstream synchronization adopted by ASP and various other protocols
based on the notion of global time (e.g. [EPD94]) is very simple: Each data unit of a stream is
associated with a timestamp, which defines its media timachieve synchronous presenta-

tions of streams, the streams’ media time must be mapped to global time, such that data units
with the same timestamp will be played out at the same (global) time. Simiterlgources

exploit the existence of synchronized clocks: data units with the same timestamp are sent at the
same (global) time. Diérent transmission delays that may exist betwedardiit streams are
equalized by bdé&ring data units appropriately at the sink sites.

R, M® R,

Ry Ry’
Source_D Sink

Transmission
Channel .I:Iay-out Bufer s/d Bufer
I
dr dg

Figure 1 : Data Steam and Delay Model

Our model of stream transmission andféring is depicted in Fig. 1. The data units of a stream

are produced by a source witm@aminal rate R, and are transmitted to one or more sinks via

an unidirectional transmission channel. The transmission channel introduces a certain delay and
jitter, resulting in anodified arrival rate R;’. At the sink$ site, data units are lbefed in a
play-out bufer, from which they are released witlrelease rateR,. The release rate, which
determines how fast the streampresentation advances, is directly controlled by ASP to mani-
pulate the fill state of the play-out beif and to ensure synchrany
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A data unit that is released from thefleufis transferred to the so-called s/dfbyfwhich can

hold a single data unit onl¥¥rom this bukr, it is read by the sink device witensumption

rate R;. The s/d-buer decouples the actual consumption rate of the sink device from the
release rate and by this models a simple skipping or duplicating mechanism in tRg difise

fers fromR3. This may happen, for example, if the consumption rate is fixed. For many devices,
however R, will never differ fromRg, in which case the s/d-ldaf is not needed at all.

On its way from generation to play-out, a data unit is delayed at several stages. It takes a data
unit atransmission delay dy until it arrives in the bdér at the sinks site. This includes all the

times for generation, packetization, network transmission and transfer into tee luthe

buffer, a data unit is delayed bybaffering delay dg before it is removed by the sink device.

In the sink, of course, a data unit may experience a further delay before it is actually presented.
For the sake of simplicifhoweverwe will assume that this delay is neglectéble.

The media time M(t) specifies the streamtemporal state of play-out and can be determined

by reading the timestamp of the data unit in the s/tkbat timet. However the granularity of

media time were too coarse would it simply be based on the read timestamps without interpo-
lation of intermediate values. Due to this fact, media time is actually modelled as a partially
linear continuous functioM(t), which delivers the media time at real time

4 THE ADAPTIVE SYNCHRONIZATION PROTOCOL

This section presents the Adaptive Synchronization Protocol (ASP), which can be separated
into four rather independent subprotocols. After a general overthiewtart-up protocol, bieir

control protocol, master/slave synchronization protocol, and master switching protocol are
introduced. It is important to mention, that this section concentrates on mechanisms, while pos-
sible policies exploiting these mechanisms will be discussed in the next section.

4.1 Overview of the Protocols

The start-up protocol initiates the processing of the sinks and sources in a given sync group.
In particular it ensures that the sources synchronously start the transmission and the sinks syn-

1 Additional delays, resulting from devices thatfeuf certain amount of data internally or fronfetihg rates
R, andR;, may easily be handled in ASPonly requires to d$et bufering delays and state information of
play-out by a fixed or variable amount. Howe\sedetailed description is beyond the scope of this paper
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chronously start the presentation. Start-up is coordinated by the, semahr derives start-up
times from estimated transmission times, selects an initial master stream depending on the cho-
sen synchronization policy and sends control messages containing the start-up times to clients.

Thebuffer control protocoal is a purely local mechanism, which keeps the fill state of the mas-
ter streans play-out bukr in a given taget area. The determination of thegtetrarea depends

on the applied synchronization policy and thus is not subject to this mechanism. Whenever the
fill state moves out of the given ¢gat area, the btdr control protocol regulates the progress of

the master stream by manipulating releaseRgt@ccordingly

Themaster/slave synchronization protocol ensures interstream synchronization by adjusting

the progress of slave streams to the advance of the master stream. Processing of this protocol
only involves a sync groupsink clients, one of them acting as master and the other ones acting
as slaves. Whenever the master changes releadg,yatt&omputes for some future point in

time, sayt, the mastés media timeM(t), taking into account the modified valueRf Then,

M(t) andt are propagated in a control message to all slaves. When a slave receives such a control
message, it locally adjusi® in a way that its stream will readfi(t) at timet. Obviously this

protocol ensures that all streams are in sync again at,tinighin the magins of the accuracy
provided by clock synchronization. Notice that this protocol does not involve the server and is
only initiated when the btdr situation or - in other words - the network conditions have
changed.

Themaster switching protocol allows to switch the master role from one stream to another at
any point in time. The protocol involves the server and the sink clients, whereas the server is the
only instance that may grant the master role. Switching the master role may become necessary
when the user changes its synchronization policy or some slave stream enters a critical state, i.e.
runs the risk of having a ket underflow or overflowA nice property of this protocol is that a
critical slave can react immediately: It becomes a so-called tentative ymdstdr is allowed

to adjustR, accordingly The protocol takes care of the fact that there may be a master and
several tentative masters at the same point in time and makes sure that the sync group eventually
ends up with a single master

After this brief overviewwe will now consider the four protocols in more detail.
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4.2 Start-up Protocol

Our start-up procedure is very similar to that described in [EPD94]. The server initializes the
synchronous start-up of a sync gragata streams by sendidgrt messages to each sink and
source client. Eac&art message contains besides other information a start-up time. All source
clients receive the same start-up time, at which they are supposed to start transmitting data units.
Similarly, all sink clients receives the same start-up time, which tells them when to start the
play-out process.

Starting clients simultaneously requires 8@t messages to arrive early enough. The start-up
timetg of sources is derived from the current tigg, the message transmission delgyexpe-

rienced byStart messages, and processing dethys at the server sitéy = tqy + dy+ dgroc.

Start-up of sinks is delayed by an additional time to allow the data units to arrive at the sinks’
locations and to preload Wafs. This delaycalled expected delals,,, is computed from ave-

rage delaysl,,e; of the sync groug’streams and the e delayd,, caused by preloading:

dexp = MaX (daye,) + dpres Wheredy,q; primarily depends on streais jitter characteristic. @/

assume some infrastructure component that provides access to the needed jitter and delay
parameters.

A Sart message sent to a source client (at least) contains statg, time the nominal rate;.

Sart received by a sink encompasses the starttfjrel,,, the release ra®, = R; and a flag
assigning the initial role (i.e. master or slave). Furthermore, it includes some initial parameters
concerning the play-out bigf: the low water mark, high water mark and - in case of the master
stream - the initial tget area (see below).

Each client starts stream transmission or play-out at the received start-up time. Therefore, the
start-up asynchrony is bounded by the inaccuracy of clock synchronization pr&ededes-

sages arrive in time. Howevaven if somé&tart messages are too late, ASP is able to imme-
diately resynchronize the ‘late’ streams.

4.3 Buffer Control Protocol

Before describing the protocol, we will take a closer look at the play-oigrlfsée Fig. 2). The
parametedg(t) denotes themoothed buffer delay at current timé. The bufer delay at a given
point in time is determined by the amount offetéd data. In order to filter out short-term fluc-
tuations caused by jittesome smoothing function is to be applied. ASP does not require a dis-
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tinct smoothing function. Some examples are the geometric weighting smoothing function
[Post81]:.dg(tj) = a dg(tj.1)+ (1-a) ActBufferDelay(t)pr the Finite Impulse Response Filter as
used in [KM94].

Y

dg(t) » Tamget Area
B

“*"High Water Mark

-

Upper Target Boundary
- Lower Target Boundary
L ow Water Mark

Ry
Figure 2 : Play-out Buffer of a Sink

For each play-out btdr alow water mark (LWM) andhigh water mark (HWM) is defined.
When dg(t) falls underLWM or exceeddHWM, there is the risk of underflow or overflow
respectively Therefore, we will call the bidr areas belowWM and abovédWM thecritical
buffer regions. As will be seen belowASP takes immediate corrective measures valpét)
moves into either one of the critical Berfregions. Note that the quality of intrastream synchro-
nization is primarily determined by th&VM andHWM values (for details see Sec. 5). For
example, a reasonable value fMWM is j/2, wherej denotes the jitter of the incoming data
stream.

The bufer control protocol is executed locally at the sink site of the master stream. Its only pur-
pose is the keegg(t) of the master stream in a so-caltedget area, which is defined by an
upper target boundary (UTB) and alower target boundary (LTB). Clearly the taget area

must not overlap with a critical ket region. The location and width of thegat area is pri-
marily determined by the chosen synchronization pokoy example, to minimize the overall
delay the taget should be close toNM (for details see Sec. 5).

The bufer delaydg(t) may float freely between the lower and uppegegtiboundary without
triggering any rate adaptions. Changing transmission delays (or a modification aj¢heraa
requested by the server) may cadg@) to move out of the tget area. When this happens, the
master enters a so-calladaption phase, whose purpose is to modg(t) back into the tayet
area.
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Buffer Delaydg(t) A dg(t)

|
|
uTB :
| W # Target Area

LTB -
Time

o _ -
t Adaption PhasetS +L

Figure 3 : Buffer Delay Adaption

At the beginning of the adaption phase, releaseRaie modified accordinglyThe adapted
release rate iR, + R, WhereR.,,, = (dg(t) - (LTB + (UTB-LTB)/2)) / L. LengthL of the
adaption phase determines how aggressive the algorithm reacts. At the end of the adaption
phase, it is checked whether or dgft) is within the taget area. If it is in the tget areaR; is

set back to its previous value, the nominal stream rate. Otherwise, the master immediately enters
a new adaption phase.

In order to keep the slave streams in sync, each adaption of the master stream has to be propa-
gated to the slave streams. This is achieved by the protocol described in the next section.

4.4 Master/Slave Synchronization Protocol

The master/slave synchronization protocol ensures that the slave streams are played out in sync
with the master stream. This protocol is initialized whenever the master (or a tentative master
as will be seen in the next section) modifies its release rate. Protocol processing involves all sink
clients, each of which acts either as master or slave.

Whenever it enters an adaption phase, the master performs the following operations. First, it
computes the so-called ¢ggt media time for this adaption phase, which is defined to be the
media time the master stream will reach at the end of this phase. Assume that the adaption phase
starts at real timg and is of length.. Then the tayet media time i#M(ts+L) = M(ty) + L* (R

+ Reorr)- Subsequent|yhe master propagates/aapt message to each slave in the sync group.

This message includes the following information: end tgmgt+ L of the adaption phase, gat

media timeM(t,) at the end of the adaption phase, and a structured timestamp for ordering com-
petingAdapt messages (see next section).

When a slave receives Adapt message, it immediately enters the adaption phase by modifying
its release ratR, according to the received ¢g@t media time (see Fig. 4). The modified release
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Figure4 : Master/Save Synchronization

rate iIsRy= (M(to)-M (tp)) / (te - ty), wherety denotes the time at which the slave receAwdapt.
Attimet, (i.e. at the end of the adaption phaBg)is set back to its previous value, the nominal
stream rate.

Obviously this protocol ensures that at the end of each adaption phase all streams in the sync
group reach the same gat media time at the same point in real time. Between two adaption
phases, streams stay in sync as their nominal release rates are derived from global time.

As with all synchronization schemes based on the notion of global time, skew among sinks is
introduced by the inaccuracy of synchronized clocks, which is assumed to be bouadkd by

our protocol, an additional source of skew is the adaption of release ratésrahtoints in

time. The worst case ske,, during the adaption phase of the master depends on transfer
time d,,, of theAdapt message and master streacorrection rat®.q: Syax = dm* |Reorr| + €-
Between adaption phases, the skew is bounded by

Sink Clients ETSr t;?;ngmEZ?ge Inaccuracye of Clocks| Expected SkeVi,x
Same Node | <20 ms 0Oms <0.4 ms

LAN <50 ms <10 ms (NTP) <1l ms

WAN 100 .. 1000 ms 10 .. 100 ms [Mill90] | 12 .. 120 ms

Table 1: Skew During Adaption Phases

The skew among data streams synchronized by ASP is mainly determined by the inaccuracy of
synchronized clocks.able 1 shows skew estimations among data streams that are played out
on the same node as well as on separate nodes in a local and in a wide area netagsumy
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rate corrections of up to 2% of the nominal rate, which is derived from simulation results in Sec.
6. For simplicity we assume the data units to originate at the same node, i.e. there is no addi-
tional skew due to timestamps based ofediig clocks.

4.5 Master Switching Protocol

In our protocol, we distinguish between two types of master switching. The first type of switch-
ing, calledpolicy-initiated, is performed whenever (a change in) the synchronization policy
requires a new assignment of the master role. In this case, the siearenforces the policy
performs the switching just by sendin@eantMaster message to the new master ar@ui-

Master message to the old mast@rantMaster specifies the tget bufer area of the new mas-

ter, which is determined by the server depending on the chosen. Wiiiloythis simple protocol

it may happen that for a short period of time there exist two masters, which both propagate
Adapt messages. Our protocol prevents inconsistencies by perfoAdapt requests in time-
stamp order (see below).

The second type of switchingriscover y-initiated. The slave initiates recovery when its stream
becomes critical. A stream is called critical if its currentdyudelay is in a critical region and
(locally) no rate adaption improving the situation is in progress. A very attractive property of
our protocol is that a slave can immediately react when its stream becomes critical. Recovery
goes as follows: First, the slave makes a transition to a so-called tentative master (or t-master
for short) and informs the server about this by sendirigrai-Master message. Then - without
waiting on any response - it enters an adaption phase, in which it adapts rel€asmrateay

that its bufer delay can be expected to move out of the critical region. In order to keep the other
streams in sync, it propagatesAgdapt request to all other sink clients, including the magter

the end of the adaption phase, a t-master falls back in the slave role. Should the stream still be
critical by this time, then the recovery procedure is initiated once more.

Obviously our protocol allows multiple instances to propadedapt concurrentlywhich may

cause inconsistencies leading to the loss of synchronization if no care is taken. As already
pointed out above, policy-initiated switching may cause the new master taAdsgtdnessages

while the old master is still in place. Moreoyvat the same point in time, there may exist any
number of t-masters propagatiddapt requests concurrentlif should be clear that stream syn-
chronization can be ensured onlyAdiapt messages are performed in the same order at each
client. This requirement can be fulfilled by including a timestamfdapt requests and per-
forming these requests in timestamp order at the client sites. The latter means that a client
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accepts arddapt request only if it is younger than all other requests received before. Older
requests are just discarded.

However performing requests in some timestamp order is notsuft. Assume, for example,

that the master and some t-master propalydpt requests at approximately the same time, and

the former requests an increase of the release rate, while the latter requests a decrease. For some
synchronization policies, this might be a very common situation (see for example the minimum
delay policy described in the next section). If the timestamps were solely based on system time
and the master would perform the propagation slightly after the t-méstarthe t-mastés

request would be wiped out, although it is the reaction on a critical situation and hence is more
important. The stability of the algorithm can only be guaranteed if recovery actions are per-
formed with the highest priorifyy Consequentlythe timestamping scheme defining the execu-

tion order ofAdapt requests must take into account the ‘importance’ of requests.

The precedence éfdapt requests sent at approximately the same time is given by the following

list in increasing order: (1) requests of old masters (2) requests of the new master (3) requests
of t-masters. W apply a structured timestamping scheme to reflect this precedence of requests.
In this scheme, a timestamp has the following structugg.E,,.T>, whereEg denotes aecov-

ery epoch, Ey, designates easter epoch, andT is thereal time when the message tagged

with this timestamp was sent. A new recovery epoch is entered when a slave performs,recovery
while a new master epoch is entered whenever a new master is selected. So, a recovery epoch
may have seen several master epochs. As will be seen, legltesing a new recovery epoch
requires a new master to be selected.

Each control message contains a structured timestamp, which is generated before the message
Is sent on the basis of two local epoch counters and the local (synchronized) clock. The server
and the clients keep track of the current recovery and master epoch by locally maintaining two
epoch counters. Whenever they accept a message whose timestamp contains an epoch value
greater than the one recorded logathe corresponding counter is set to the received epoch
value. Moreovera client increments its local recovery epoch counter when it performs reco-
very, i.e. thelamT-Master message sent to the server already reflects the new recovery period.
The server increments its master epoch counter when it selects a newireaieGrantMas-

ter message already indicates the new master epoch.

2 We assume that at no point in time there exist two t-masters that try to adapt the release rate in contradicting
directions, i.e. one tries to increase the rate while the other tries to decrease it. This is achieved by dimensioning
the play-out buer appropriately
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Adapt requests are accepted only in strict timestamp o&theruld a client receive two requests

with the same timestamps, total ordering is achieved by ordering these two request according to
the requestors’ unique identifiers included in the messages. As a slave performing recovery
enters a new recovery epoch,Adlapt request generated by some master in the previous reco-
very epoch are wiped out. Similarelecting a new master enters a new master epoch, and by
this wipes out alAdapt request from former masters. When a master receividapb request
indicating a younger master or recovery epoch, it can learn from this message that there exists
a new master or a t-master performing recquespectivelylin both cases, it immediately gives

up the master role and becomes a slave.

As already mentioned above, a critical slave sendamfitMaster message when it becomes a
t-master When the server receives such a message indicating a new recovery epoch, it must
select a new mastaiVhich stream becomes the new magtemarily depends on the synchro-
nization policy chosen. For example, the originator ofl éhel-Master message establishing a

new recovery epoch may be granted the master role. All other messages of this type belonging
to the same recovery epoch are just discarded upon arrival (see Fig. 5).

Server Client 1 Client 2 Client 3

critical SLAVE
= T-MASTER
critical ™ MASTER

s —— i
|

discard ™~ lamT-Master just ‘Adjust

message
|
| N

Figure5: Recovery-initiated Master Switching

\
\
\
\

lamT-Master

grant
master’

GrantMasteQ

In summaryin an adaption phase a t-master or master may receidaphor GrantMaster
message. They are only accepted if they are younger than all other control messages of the same
type received before. If aldapt request is accepted, a new adaption phase is started based on
the taget media time included in the accepted request. As mentioned above, a master accepting
an Adapt message immediately becomes a slavérHntMaster is accepted, the recipient
becomes master and acts accordinglirmaster that has not receivedantMaster by the end
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of the adaption phase goes back in the slave role. Of course, if it is still critical by this time, it
initiates recovery again.

The worst case skef,,, among sinks can be observed when master and a t-master decide to
adapt their release rates in opposite directions at approximately the sam§,timean be
shown to bed* (|Rorr, master] + [Reorr, t-master|) * € Whered,, denotes the transmission delay

of Adapt messages.

5 SYNCHRONIZATION POLICIES

The ASP has many parameters for tuning the protocol to the characteristics of the underlying
system as well as to the quality of service expected by the given application. A discussion of all
these parameters would go far beyond the scope of this jéyeeefore, we will focus on the

most important parameters, in particular those influencing the synchronization policy: the low
and high water mark, the width of thegat area and its placement in the play-outdsués well

as the rules for granting the master role.

The intrastream synchronization quality in terms of data loss due to underflow or overflow is
primarily influenced by theWM andHWM values. A good rule of thumb for the width of the
critical regions defined by these two parametejRior each, whergdenotes the jitter of the
corresponding data stream. IncreasiVyM also increases the quality as the probability of
underflow is reduced. On the other hand, this modification may also increase the overall delay
which might be critical for the given application. ASP allows to modvigM andHWM values

while the presentation is in progress. For example, it is conceivable that a user interactively
adjusts the stream quality during play-out. Alternatiyvaly internal mechanism similar to the

one described in [KHMS94] may monitor the data loss rate and adjusts the water marks as
needed.

The width of the taget bufer area determines aggressiveness of thiebodntrol algorithm.

The minimum width of this area depends on the smoothing function applied to detég(t)ine

The lager the width of the tget area, the less adaptions of the release rate are required. Rather
constant release rates require almost no communication overhead for adapting slaves. On the
other hand, with a lge taget area there is only limited control over the actudebufelay If,

for example, the actual def delay has to be kept as close as possible t0/Mv&to minimize

the overall delaya small taget area is the better choice.
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The location of the tget area in the btdr together with the way how the master role is granted
are the major policy parameters of ASRis will be illustrated by the following two examples,
the minimum delay policy and the dedicated master policy

The goal of theminimum delay policy is to achieve the minimum overall delay for a given
intrastream synchronization qualiffo reach this goal the stream with the currently longest
transmission delay is granted the master role, and this stréafi@r delay is kept as close as
possible tA_\WM. The taget area for the master is located as folldW® = LWM andUTB =
LWM + A, whereA is the jitter ofdg(t) after smoothing.

Due to changing network conditions it may happen that the transmission delay of a slave stream
surpasses the one of the mastdis will cause the slavebufer delay to fall below it$ WM

triggering recovern\When the server receiveslamT-Master message it grants the master role

the originator of this message. If it receives multigi@T-Master messages originated in the

same recovery epoch only the first one is accepted, all the other ones are discarded. In the long
run, this strategy ensures that the stream with the longest transmission delay eventually becomes
master The overall delay at timeamounts to the longest transmission delatytis LWM,

which obviously is the minimal overall delay that can be achieved at

The possibility of dynamically tuning MM makes this policy very powerful. By increasing the
LWM value the quality but also the overall delay is increased. Convdreehyuality and delay
is decreased WM is decreased. Consequently tuningLWM the user may (interactively)
determine the appropriate tradéJoétween delay and intrastream synchronization quality

Thededicated master policy dedicates the master role to a certain stream. This is typically a
stream that is played out at a sink device with a fixed consumptioRg;adech as an audio
device. Obviouslythe best intrastream synchronization quality for such a stream is achieved if
its release ratR, equalsRs, allowing it to operate without duplicating and skipping. The dedi-
cated master policy ensures tRatandR; may difer only if some stream in the sync group is
critical.

During the start-up procedure, the dedicated stream is granted the master role, agétthe tar
area is set to its maximum si2el8 = LWM andUTB = HWM), reducing the necessity of rate
adaptions to a minimum. When a slave gets critical, it becomes t-master and performs.recovery
After recovery howeverthe dedicated stream is granted the master role again by the server
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Not only individual parameters but the entire policy can be changed during presentation. For
example, the server may start with the dedicated master policy and later on switch to the
minimum delay policy when the overall delay gets unacceptable. When changing thelpslicy
server may require knowledge about the state of the play-detb(#.g. current btdr delay

LWM, HWM). For that purpose, the ASP provides services for requestifey Btdte informa-

tion from clients.

In our opinion, the two synchronization policies described above are the most important ones in
practice. Howevermther policies are conceivable as well.

6 SIMULATION RESULTS

The section presents some simulation results showing the behavior.dhAfsiPsimulations,

we have used both measured and synthetically generated delays. First, the behaviorfef the buf
control protocol is shown, afterwards results of the master/slave interstream synchronization
protocol including role switches among master and slave.
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Figure 6 : Buffer Delay and Release Rate of a Master Sream

The simulation of the master control protocol is based on delay data measured on the Internet.
Incoming data units have an average delay between 300 and 400 ms (see Fig. 7). The data units
are bufered in the play-out btdr of the master stream. ltsdat area is first set to 300-500 ms.

The bufer delay is smoothed by the geometric weighting smoothing functiorovgét to 0.9.

The bufering leads to a nearly constant release Ratésee Fig. 6), which most of the time
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equals the nominal rate of 10 frames per second. Nearly no data loss due to late arrival could be
observed (see Fig. 7).
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Figure 7 : Delay and Losses of Data Units

As mentioned before, ASP supports the adaption gétdevels even when a presentation is in
progress. By moving the et area to 100-400 ms, the overall delay of the played out data units
could be reduced by 100 ms (see Fig. 7). Howekerquality of the stream was degraded. The
loss rate of data units discarded due to late arrivals is higher
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Figure 8 : Buffer Delays of Sream 1 and Stream 2

Results of a simulation of the master/slave synchronization and the master switching protocol
are shown in Fig. 8 and Fig. 9. The delay of data units are synthetically generated with a mean
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delay of 100 ms and 120 ms, respectivelyw and high water marks are set to 29 ms and 79
ms, respectivelyThe masteés taget area is between 29 ms and 49 ms. Initial master stream is
stream 1. As shown in Fig. 8, the master role is switched to stream 2 whenfénelblafy of

the stream falls below the low water mark the first time. Stream 2 remains master until the end
of the simulation. The master stream influences the slaats the same way as influencing its
own by setting tayet stream times. Howeveate adaptions of both streams are seldom. In Fig.
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Figure 9 : Network and End-to-End-Delay of Data Units

9, the synthetically generated network delay of data units and the resulting end-to-end delay of
both streams are shown. Obvioygshe resolution of the graphic does not allow to depict any
skew while altering delays of both streams. The curves of their end-to-end-delays lie directly
over one another

7 SUMMARY

In distributed multimedia applications, synchronization protocols are required to restore tempo-
ral relationships among data streams that were transmitted over separate communication chan-
nels. The protocols must be able to deliver a intrastream and interstream quality that is appro-
priate for the particular application scenario, even under changing network conditions.

The ASP achieves interstream synchronization in distributed environments. It adapts to chang-
ing network conditions and allows to tune the quality of data streams to application require-
ments by supporting a wide range of synchronization policies. Stream quality is improved by
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reacting on critical situations immediateRurthermore, by limiting reactions to critical situa-
tions, a considerably low message overhead is achieved. The simulation results show good per-
formance even when there is no guaranteed quality of the underlying communication system.

The design of the ASP was conducted in the context @itleea project [RBH94], [RoHe94].
CiNema is an environment to establish and control multimedia applications in distributed envi-
ronments The next step will be the integration of the Adaptive Synchronisation Protocol into
the Cinema architecture. This will allow us to experiment with the ASP in real-world applica-
tions, gather more experience with its behavior and verify our simulation results.
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