Using TEX as a Tool in the Production
of a Multi-Lingual Dictionary

Klaus Lagally
Institut fiir Informatik, Universitdt Stuttgart

Breitwiesenstrafie 20-22, 70565 Stuttgart, GERMANY
lagally@informatik.uni-stuttgart.de

Abstract

We propose some simple design rules for encoding multi-lingual texts for
flexibility of further automatic processing. Our main recommendation is to
include the available descriptive information with the data, and to use symbolic
markup conventions. These rules have been applied successfully to the first
steps of compiling a multi-lingual dictionary.

1 Introduction

The recent availability of relatively inexpensive powerful computer systems opens up
a host of new possibilities for many fields, among them e.g., research on Oriental
languages. Due to industrious collecting activities a wealth of written material has
been accumulated whose evaluation by traditional means might, given the available
human resources, take decades or even centuries. Much of the necessary work is of
clerical nature, and could well be automated, once the material is in machine-readable
form. But the necessary software is usually not available, or not affordable, and will
probably have to be developed from scratch, preferably in a cooperation between
Orientalists and computer experts. Also the encoding of the data is a manual process
that should have to be performed only once, and some prior consideration is advisable
to avoid the necessity of duplication of effort.

As an example, imagine the building of a catalog for a large number of Arabic
manuscripts. This could possibly be handled by using one of the available bilingual
word processors. But the data format used will probably be private and not easily
accessible, and since these tools are geared towards generating a printed version
only, there is no easy way to include additional descriptive information which could
otherwise be used for further evaluations.

In the sequel we present some recommendations which we believe can be helpful, and
report on first results of their application.

2 On data encoding

We believe there is a basic distinction between data and text, the latter viewed as
a pattern of ink on paper, or some other physical representation. If the text can be
understood at all we can derive from the pattern individual words that are connected
into sentences and, hopefully, convey some meaning. This activity is commonly called
reading, and extracts structural and semantic information from the pattern itself.
When we encode the text as data to be processed and evaluated further we frequently
are not only interested in the pattern itself but also in this additional information
now available; the pattern itself may even be of little interest depending on the
application, if some equivalent external representation can be reconstructed.

Reading and encoding the text is only a first, sometimes laborious step, and is often
done at a point of time where not all further evaluation steps are known. Thus
it is advisable to encode the information in a way that can be processed by, and
transmitted between, various different computers and software systems. Our choice
is obviously influenced by the rapidly evolving state of technology and emerging
standards, but we may expect future developments not to invalidate current solutions.

At the time of this writing the main limitation is the inability of many electronic
mailing systems to reliably transfer anything but plain 7-bit ASCII data [ISO646],
which on the other hand can be processed by virtually any computer system now
available. Thus this code is an obvious starting point, and fortunately all more
powerful encodings proposed since contain it as a genuine subset, with unchanged
meaning.

ASCII is primarily intended for encoding English texts, but it can equally well be used
for transliterating other languages by a suitable re-interpretation and, if necessary,
using more than one code byte for a character of the language in question. This can
be done in a multitude of ways, and standards for switching the character mapping

[[SO2022] have already been issued.

Should the restriction to 7 bits disappear soon we may also use the ISO 8859-x family
of extensions to 8 bits per character catering individually for the needs of various
FEuropean languages, plus Arabic [ISO8859-6] and Hebrew [ISO8859-8]; but as these
codes overlap we still have to indicate the coding used locally within multi-lingual
documents, as also in the case of an ASCII transliteration.

Switching to longer code words of 16 or more bits as proposed, e.g., in [UNICODE]
will not solve all problems, but might introduce a considerable overhead. With the
exceptions of Far Eastern languages the alphabets needed are of moderate size, and
the benefits of not having to indicate the encoding will probably not offset an increase
in size of the data files by a factor of 2, especially since, as we shall show, we usually
want to add other descriptive information anyway.

We thus advocate to stay, for quite some time from now, with a rather primitive
encoding, supplemented by a sufficient amount of descriptive information.

3 Symbolic markup

Up to now we were only concerned with the encoding of the text proper. Devising a
notation for the additional structural and semantic knowledge looks hopeless at first
and seems to require clairvoyance, since the future processing needs cannot even be
guessed. But indeed some progress is possible.

Once we consider the coded text as a linear sequence of code symbols, any additional
knowledge about it can be described by a set of attributes assigned to the individual
symbols, or to ranges of symbols. We might not yet for every attribute know how
to process it further, nor even its exact meaning; but we certainly know whenever
attributes are different, and this is all we need now. The main issue when encoding
the data is to preserve all the information then available; exploiting it can come later.

A sufficiently powertul mechanism that does not require the a priori knowledge of a
taxonomy of features, consists of some means of denoting ranges of code symbols,
and a mechanism of associating the name of an attribute or a set of attributes to such
a range. We need a sufficiently rich repertoire of names such that differing attributes
or sets of attributes can be denoted differently. The names are arbitrary, and their
interpretation needs only to be fixed much later whenever the data will be evaluated,
and for different evaluations we may well use different interpretations as required.
We only have to agree on the basic format of the markup to distinguish it from the
text proper. This basic idea is called symbolic markup.

Symbolic markup is not a new idea but has been used in several contexts for some
time, and we shall briefly review two of its special applications. In doing so we
shall skim over many details, simplify grossly, and also deviate from the customary
terminology.

3.1 SGML

The idea of SGML, for “Standard Generalized Markup Language” [ISO8879],
originated within the printing industry with the goal to help separate the logical
structure of a document from the details of its external printed representation, and
thus ease the production process. It soon turned out that its possible scope is much
wider, and one of its variants, HI'ML, has important applications in the distributed

Hypertext system called the World-Wide Web [BL194].

The basic markup mechanism in SGML works as follows: a range of characters
carrying an attribute A is delimited by a start tag <A> and an end tag . Instead
of a single attribute A may also denote an attribute class, and in this case the start
tag also carries an indication of the actual member of the class, and/or additional
descriptive information. The set of possible tag identifiers is fixed for any document
type by some formal definition not described here, but due to the class mechanism
the set of possible attributes is virtually unbounded.

[Smi92] stresses the usability of symbolic markup for capturing arbitrary information
also outside of the production of documents. The main difference to our approach

seems to be that for a SGML document the complete syntax of the markup used
must be put down beforehand in a Document Type Definition, whereas we propose
to postpone this step until the actual processing.

3.2 TgEX

TEX [Knu84] is a program written by D. E. Knuth to support high quality computer
type-setting of text and mathematics. It is in the public domain, and compatible
implementations exist for a large range of computing systems. TEX will take care of
all the visual formatting including line-breaking, hyphenation, formatting of formulas,
page layout etc. The output produced is completely device independent and may be
viewed on a computer screen display or also directed to a large range of output
devices, provided that appropriate device driver programs are available.

TEX provides a large number of markup commands for controlling the typesetting
process, and a powerful macro extension mechanism that enables the user to introduce
new markup tags and define their meanings arbitrarily, so that symbolic markup
is easily possible. TEX can also be (mis)used as a portable general purpose data
processor.

Due to the extensibility of TEX a number of macro packages have been developed to
cater for special applications, among them:

o ApS-TEX (see [Bee85]), supplying an additional set of mathematical symbols;

o INTEX [Lam94], providing styles for several common document classes and
supporting the logical structuring into chapters and sections, building a title
block, positioning figures and tables, and managing cross references, index
information, a table of contents etc.;

o MI-TEX [Fer85], some multi-lingual extensions for European languages;

e Babel [Bra9l], a package supporting language-specific processing for more than
20 languages;

o ArabTpX [Lag92c, Lag92a, Lag93, Lag94], catering for right-to-left languages
such as Arabic, Persian, Urdu, Pashto, Hebrew etc. with full support of

diacritics and vowels, ligatures, and also the common standard transcriptions!.

o A number of further packages, e.g., for including graphics, are described in

[GMS84].

Most of these packages may be combined to make use of all the additional features
provided, and further extensions may be defined freely. [Lam94] strongly advocates
using symbolic markup in document design.

!The ArabTEX package is freely available for scientific and private applications. It can be
downloaded from ftp.informatik.uni-stuttgart.de in the directory /pub/arabtex/. For other
ways of acquiring it, contact the author.

3.3 Abstract Data Bases

In some respects our approach is related to using a data base system but there
are some marked differences. In a data base system, the information is stored as a
collection of records consisting of a fixed number of fields; for every field the meaning
and the format is determined a priori by a data base scheme. In contrast to this we
advocate having an undetermined number of ranges of symbols with some attributes
assigned to them, and we may introduce new attributes at any time. Also we do not
require the data to be a collection of subunits with basically the same structure, even
if this may frequently be the case. So we could simulate a classical data base system
easily, but our approach is much more general, and could be called an “abstract data
base”.

Of course, because we leave most the structure and the interpretation of the
text unspecified, we cannot expect our data to be usable directly for any specific
evaluation, and to process them by any given application program we will have
to do some preprocessing first. Fortunately, the preprocessing task will be rather
well-defined, consisting mainly of omitting information presently of no interest, and
reformatting the remaining data according to the needs of the application program.
Whenever the format of the input data required as well as the relevant structure of
our abstract data base can be described by a formal grammar, we can automatically
generate the preprocessing program by any of several existing generator systems, e.g.,
Lex [Les75], YACC [Joh75], or WRG [Lag90]; and in many cases the reformatting

task will be fairly trivial so we might rather write the preprocessor from scratch.

4 Recommendations and Guidelines

From the considerations given above we derive the following recommendations on
how to devise a coding scheme suitable for capturing a structured text while also
preserving the known associated information.

e Decide on the basic encoding of the text.
e Decide on the method and the format of the markup.

o Assign markup tags arbitrarily, and document their meaning. Take care to mark
up portions of text with different meanings differently.

o Try to capture all the available structure information about the text.
Concentrate on the logical structure and do not worry about the layout, except
if it carries essential information.

e Do not omit any available information that has no apparent use. It might
become important and useful later, if it is preserved now.

e Rely on the computer to perform clerical tasks efficiently when given enough
information; but remember that it is not intelligent, and that you will have to

do the thinking.

e Do not worry about efficiency of processing. Computers can be expected to
continue getting faster.

Some of these recommendations may sound obvious and trivial. According to our
experience they are not.

5 An application

We have tested the viability of our approach within an ongoing project [Ser94] of
compiling a dictionary of Greek loan-words within Arabic. A central requirement is
the ability to print Arabic, Greek, Syriac or Hebrew, and Latin script, and we decided
to use and, if required, extend the author’s ArabTEX system

In addition to printing we wanted to automatically generate several indices sorted
according to the collating sequences of the various languages used, and this proved
feasible. We found that the necessary preprocessing could easily be handled by TEX
itself plus some existing system routines.

5.1 Input encoding

As we decided to use TEX for all processing, we will use the basic TEX conventions
[Knu84]. This means the coding used will be 7-bit ASCII [ISO646] both for text
and for markup. In TEX a markup command is distinguished by a name consisting of
Latin letters and preceded by an inverse slash, and, if required, followed by parameter
strings included in curly braces; one of them might be the range of symbols the
markup command applies to. In addition to the standard TEX commands we shall
define additional symbolic commands as required.

We next take the intrinsic structure of the available input data into account. Presently
they reside on a large number of index cards, each of which carries the information
available about a specific Arabic lemma. There are main entries describing words
derived from Greek directly or via some intermediate steps, and secondary entries
that describe writing variants and refer to some main entry.

We represent these data as a possibly unordered sequence of text blocks in free format.
Every text block starts with a markup command of the form \alemma {the lemma}
followed by the descriptive information and closed by an empty line (for ease of editing
only). The descriptive information may contain components in several languages that
are marked up by \ar {Arabic textl}, \gr {Greek text}, \sy {Syriac text},
\he {Hebrew text} as required; other languages, e.g., Coptic could be added.
Presently we did not distinguish the FEuropean languages occurring but could easily
do so. In addition there are a few more symbolic tags like \see for pointers to other
entries, \var for denoting variants, \cod for referring to sources, and a few more. Note
that we distinguish between \alemma and \ar as their roles are different, and in the
same way we denote e.g., a Greek lemma and an explanation in Greek differently.

Greek text is mapped to 7-bit ASCII using the encoding proposed by Silvio Levy
[Lev88] and supported by GREEKTEX, another extension to TEX freely available
[Dry94]. For Arabic, Syriac, and Hebrew we use the standard encoding implemented
in the ArabTpEX system; it is a linearised variant of the ZDMG transliteration
[DIN31635, ISO/R233] that uses no diacritical marks and can easily be handled

using a standard computer keyboard.

The following example is typical; we made liberal use of white space to keep the
input data which might have to be edited, human readable:

\alemma {qAbUs}
JA 1886 (1) 460.
\see \ar {qwA_tUs} (ib.)

\alemma {qAbI1}

\gr {k’aphloc} \from \syr {qpIl’}

ZDMG 1897 (51) 470.

der Kleinh"andler, Speisewirth:

\ar {mi_t1 insAn _dAhib fI al-sUq ‘inda al-gAbIl
ya“sum al-"siwA’| wa-al.tabI_h}

"‘Wie ein Mensch welcher auf dem Markte

bei [dem] Speisewirth vorbeigeht und den Duft
der gekochten und gebratenen Speisen riecht.'’

\alemma {qAtismA}

\gr {k’ajisma} pl. \ar {qAtismAt}

GRAF VERZ. 86

"‘Kathisma in der Psalmeneinleitung"’.

\var \ar {qA.tsmA} (pl. \ar {qA.ssmAt}), \ar {kAtsmA}.

\alemma {qAtsmAt}
GRAF VERZ. 86
\see \ar {gAtsmA} (ib.)

5.2 Printing the text

If we want to print a listing of the data in dictionary format we have to write a small
driver program in the TEX macro language that will determine the general output
format, and that will assign to all undefined tags as their meaning the required
external representation by calling some TEX or ArabTEX routines. Then it will read
the input data file and let TEX process it to do the formatting. As presently no Syriac
font is available we substituted Hebrew temporarily.

The resulting output for a sample page is given in the appendix. The correspondence
with the encoding example should be obvious.

5.3 Sorting

Up to now we have assumed that our input data are sorted according to the Arabic
lemma, obeying the standard Arabic collating sequence. In the long run this will not
remain so and we shall have to re-sort. Now we exploit the fact that any Operating
System known to us provides a sorting routine that can sort the lines of a text file
according to the standard ASCII collating sequence, and we transform our input
file into another one that when sorted mechanically will contain the entries in the
required sequence. There is another TEX macro program that interprets the same
data in a different way: instead of producing formatted output, it will read the data
one complete entry at a time, filter out the lemma, and compute an alphabetic sorting
key from its internal Arabic representation that is available within ArabTEX. Now
we copy the entry to an output file and prepend to every line a new tag of the form
\key {the key}; and this new file can be processed by the standard sorting routine.
The additional tag will not interfere with the printing process if in that context we
define its meaning as producing no output at all. Thus we can use our sorted file
as a new version of our input data, and whenever sufficiently many new data have
been added, we reprocess the file, compute keys for the new entries, keep the already
existing ones, and re-sort again.

5.4 Compiling indices

For compiling an index, say, on the Greek terms, from the same data set some
more processing is required, but this task is simpler. We again process the data
one entry at a time but only keep those entries that contain a Greek component
(these are the main entries), and build a new output file containing for each main
entry just the following items: a sorting key (again hidden within the argument of a
tag, but this time computed from the Greek lemma), the Greek lemma itself, and the
Arabic lemma. This file can be printed by an obvious variant of the printing program
described above.

For indices on other languages we proceed analogously, and we can even build a
retrograde index by processing the internal representation of the Arabic lemma in
reverse order. We have already tried this, and it proved to be surprisingly easy.

5.5 Further processing

Among the lines given we could rather easily open up the way for other evaluations
of the same data. We could, e.g., search for lemmata in several languages, build
concordances, collate versions of the same basic text for identifying variants, or derive
a differently formatted file suitable for loading into a sufficiently powerful data base
system.

None of this has yet been done, but we also see no basic difficulties apart from the
work to be expended in writing the necessary programs. We found TEX, as it is geared
towards text processing from the outset, especially suitable for comparable tasks, but

we cannot deny the fact that using the TEX macro language for programming is far
from trivial, and other methods more widely known could be substituted.

5.6 Discussion

Our present mechanism, while it proved usable, has some apparent drawbacks. One
problem is that for any new way of processing we have to do some non-trivial
programming; this, as we believe, is inherent. Using TEX macros for programming
was locally convenient, as we had some experience, but is not mandatory; other
techniques could be used as well. The fact that the parts in Oriental languages are
coded in a transliteration helps editing using a very simple plain text editor, but is not
essential. The encodings for the various languages are logically independent of each
other, and could easily be changed, even automatically, if some multi-language editor
were available. We may even use different encodings for parts in the same language
at the same time provided we keep them distinguishable by different markup tags.

6 Conclusion

Our experience has shown that encoding quite heterogeneous data in a way that
preserves the available meta-information, enabled us to perform a variety of related
but quite diverse automated processing tasks on the same abstract data base,
without any manual re-encoding necessary. The programming effort required and
the processing load invested were not trivial, but we believe that the costs incurred
were reasonable given the fact that some of the tasks had, to our knowledge, never
been attempted successfully before.

We generally believe in the benefits of cooperation, also between fields as diverse as
Orientalistics and Computer Science; and we expect the cost of computing power to
continue to decrease rapidly. Our main concern is to reduce, as far as possible, the
amount of labour that cannot be delegated to a machine, in order to liberate humans
from mechanical chores and to enable them to concentrate on tasks where they can
exploit their specific abilities.

References

[Bee85] Barbara Beeton. Mathematical Symbols and Cyrillic Fonts Ready for
Distribution. TUGboat, 6(2):59-66, 1985.

[BL*94] Tim Berners-Lee et al. The World-Wide Web. Communications of the
ACM, 37(8):76-82, 1994.

[Bra9l] Johannes Braams. Babel, a Multilingual Style Option for Use with
IATEX’s Standard Document Styles. T'UGboat, 12(2):291-301, 1991.

[DIN31635]

[Dry94]

[Fer85]
[GMS84]

[1502022]

[1S0646]

[1S08859-6]

[1S08859-8]

[1SO8879)]

[1SO/R233]

[JohT5]

[Knu84]

[Lag90]

[Lag92a]

Deutsches Institut fiir Normung e. V. Umschrift des Arabischen
Alphabets. DIN 31 635, 1982.

K. J. Dryllerakis. GREEKTEX. Available electronically via the InterNet
from the Comprehensive TEX Archive Network (CTAN), 1994. A set
of Greek fonts, associated macros and documentation; based on fonts
devised by Silvio Levy and Yannis Haralambous.

M.J. Ferguson. A Multilingual TEX. TUGboat, 6(2):57-58, 1985.

Michael Goossens, Frank Mittelbach, and Alexander Samarin. The
IATRX Companion. Addison-Wesley, Reading, Mass., etc., 1984.

International Organization for Standardization. Information processing
— ISO 7-bit and 8-bit coded character sets — Code extension techniques.
IS0 2022.

International Organization for Standardization. Information processing
— IS0 7-bit coded character set for information interchange. 150 646.

International Organization for Standardization. Information processing
— 8-bit single-byte coded graphics character sets — Part 6: Latin/Arabic
alphabet. ISO 8859-6, 1987.

International Organization for Standardization. Information Processing
— 8-bit single-byte coded graphics character sets — Part 8: Latin/Hebrew
alphabet. ISO 8859-8, 1987.

International Organization for Standardization. Information Processing
— Text and Office Systems — Standard Generalized Markup Language
(SGML). Technical Report ISO 8879, ISO Geneva, 15 October 1986;
Amendment 1, 1 July 1988.

International Organization for Standardization. International System

for the Transliteration of Arabic Characters. ISO/R 233 - 1961.

S.C. Johnson. Yacc — Yet Another Compiler Compiler. Computing
Science Technical Report 32, AT&T Bell Laboratories, Murray Hill,
N.J., 1975.

Donald E. Knuth. The TpXbook, volume A of “Computers
& Typesetting”. Addison-Wesley, Reading, Mass., 1984.

Klaus Lagally. WRG — ein neuer Generator fiir Top-Down-Parser
mit automatischer Fehlerbehandlung. Report 1990/01, Universitét
Stuttgart, Fakultat Informatik, 1990.

Klaus Lagally. ArabTgX, a System for Typesetting Arabic. In
ICEMCOY92, Proc. 3rd International Conference and Fzxhibition on
Multi-lingual Computing (Arabic and Roman Seript), pages 9.4.1-9.4.8,
University of Durham, UK, December 10-12, 1992. See also [Lag92b].

[Lag92b]

[Lag92c]

[Lag92d]

[Lag93]

[Lag94]

[Lam94]

[LesT5]

[Lev88|

[Ser94]

[Smi92]

[UNICODE]

Klaus Lagally. ArabTgX, a System for Typesetting Arabic. Report
1992/11, Universitat Stuttgart, Fakultat Informatik, 1992.

Klaus Lagally. ArabTpX — Typesetting Arabic with Vowels and
Ligatures. In FuroTpX '92, Proc. 7th Furopean TpX Conference, pages
153-172, Prague, Czechoslovakia, September 14-18, 1992. See also
[Lag92d].

Klaus Lagally. ArabTgX — Typesetting Arabic with Vowels and
Ligatures. Report 1992/07, Universitit Stuttgart, Fakultat Informatik,
1992.

Klaus Lagally. ArabTEX, a System for Typesetting Arabic. User
Manual Version 3.00. Report 1993/11, Universitdt Stuttgart, Fakul-
tat Informatik, 1993.

Klaus Lagally. How to extend ArabTgX to handle Hebrew, 1994.
Unpublished internal Notes.

Leslie Lamport. IATEX, a Document Preparation System. User’s
Guide and Reference Manual. Addison-Wesley, Reading, Mass., second
edition, 1994.

M.E. Lesk. Lex — a Lexical Analyser Generator. Computing Science

Technical Report 39, AT&T Bell Laboratories, Murray Hill, N.J., 1975.
Silvio Levy. Using Greek Fonts with TEX. TUGboat, 9(1):20-24, 1988.

Nikolai Serikoff. A Project to Build a Multi-Lingual Dictionary
of Greek Loan-Words within the Arabic Language, 1994. Personal
communication.

Joan M. Smith. SGML and Related Standards. Ellis Horwood Ltd.,
New York, 1992.

The Unicode Consortium. The Unicode Standard. Worldwide Character
Encoding. Version 1.0, Volume 1. Addison-Wesley, Reading, Mass.,
1991.

‘L}‘

o /B JA 1886 (1) 460. = . ol 45 (ib.)

J.‘.'.‘t; xdmnhos < (syr. N%’BP} ZDMG
1897 (51) 470. der Kleinhandler,
Speisewirth: 2 cald ol e
@.,_\a_”j »Wie ein Mensch welcher

auf dem Markte bei [dem] Speise-
wirth vorbeigeht und den Duft der
gekochten und gebratenen Speisen
riecht.”

u‘; x40wopa pl. QMG GRAF VERZ.

86 ,,KKathisma in der Psalmeneinlei-

tung®. var. lwlbls (pl. QMU),
(]

& led GRAF VERZ. 86 = a3 (ib.)

QM@ xazowyhoewg HIPA 2.474.7. =
Sl gellazs (ib.) cod. ol LAl
§ oKl § o b))

3d o6 pl. <25 GRAF VERZ. 86 var.
uﬂjj.:.‘\.‘é_‘é ; MAF. 129.9 = 5J 4515
(ib.)

W‘Jtﬂg xabaipearg < (Syr. D’Dﬁnp)
GRAF VERZ. 86 Amtsenthebung,

Absetzung. = U”JG GRAF VERZ.
87

ALEG ZAHRAWI 68b.9 = LU (ib.)

j.\'.bb.'t; xaf%Twp ZAHRAWI 68b.9 ~ I\
o d."” cod. A LULG ; HINDU
163.5. JADY‘ J Jg,__,' d}ﬁ J':;
G2y e Jsdl st B

FRAENKEL, FREMD 261; BBH
843 paen; 1049.10 var. bl

Das Specimen

b8 BBH 843 paen., 1049.10 = b
(ib.)

34 B xaboruxés MAF 129.9 55041 ga
pliey Bkl o
Sl 1 s rw 3 pax J Sl
S o KO8 L L
i'.:f_la_}‘ var. &Jj_?_‘é, &Jj_?_'a,
oS eole s OC 1979 (63) 79,80 n.22
var. g'?,:.lj_?{:> G,:JjJK, &Jjj\j ,
S il

6,56 SUWAIDI 235a.15-b.3 = 55
DIOSK/DIET 1.22.14 - 2.1. Nr. 44.

U"J)t; %€dp0g DIOSK/DIET 1.22.14-2.1.
Nr. 44. (Zeder, Cedrus Libani
ARich) oo &1 sa4 ,das ist die
Zeder*®. ij.v\é SUWAIDI 235a.15
- b.3 (ib.); cod. u”J"b

996 FI1.252.22 = s (ib.)

u”))r" x4dog ZDMG 1896 (50) 617, ib.
1897 (51) 300, 325. ,Eimer“. JA
1886 (1) 431, ib. 1913 (2) 383 ,,pot*“.
,he signifie guere ‘conduit, tuyau’
que dans le Maghreb® = DOZY
322-323; w3s (Higaz) ZDMG 1897
(51) 325.

Qj)\; FI1.252.22 = uwb\é (ib.)

3936 QT 19.2 = 543 (ib.)

O""o")t; xépafog ART. 235.10 ... <oud!
o6 e) o= 0B

