
Using TEX as a Tool in the Production

of a Multi-Lingual Dictionary

Klaus Lagally

Institut f�ur Informatik, Universit�at Stuttgart

Breitwiesenstra�e 20-22, 70565 Stuttgart, GERMANY

lagally@informatik.uni-stuttgart.de

Abstract

We propose some simple design rules for encoding multi-lingual texts for


exibility of further automatic processing. Our main recommendation is to

include the available descriptive information with the data, and to use symbolic

markup conventions. These rules have been applied successfully to the �rst

steps of compiling a multi-lingual dictionary.

1 Introduction

The recent availability of relatively inexpensive powerful computer systems opens up

a host of new possibilities for many �elds, among them e.g., research on Oriental

languages. Due to industrious collecting activities a wealth of written material has

been accumulated whose evaluation by traditional means might, given the available

human resources, take decades or even centuries. Much of the necessary work is of

clerical nature, and could well be automated, once the material is in machine-readable

form. But the necessary software is usually not available, or not a�ordable, and will

probably have to be developed from scratch, preferably in a cooperation between

Orientalists and computer experts. Also the encoding of the data is a manual process

that should have to be performed only once, and some prior consideration is advisable

to avoid the necessity of duplication of e�ort.

As an example, imagine the building of a catalog for a large number of Arabic

manuscripts. This could possibly be handled by using one of the available bilingual

word processors. But the data format used will probably be private and not easily

accessible, and since these tools are geared towards generating a printed version

only, there is no easy way to include additional descriptive information which could

otherwise be used for further evaluations.

In the sequel we present some recommendations which we believe can be helpful, and

report on �rst results of their application.



2 On data encoding

We believe there is a basic distinction between data and text, the latter viewed as

a pattern of ink on paper, or some other physical representation. If the text can be

understood at all we can derive from the pattern individual words that are connected

into sentences and, hopefully, convey some meaning. This activity is commonly called

reading, and extracts structural and semantic information from the pattern itself.

When we encode the text as data to be processed and evaluated further we frequently

are not only interested in the pattern itself but also in this additional information

now available; the pattern itself may even be of little interest depending on the

application, if some equivalent external representation can be reconstructed.

Reading and encoding the text is only a �rst, sometimes laborious step, and is often

done at a point of time where not all further evaluation steps are known. Thus

it is advisable to encode the information in a way that can be processed by, and

transmitted between, various di�erent computers and software systems. Our choice

is obviously in
uenced by the rapidly evolving state of technology and emerging

standards, but wemay expect future developments not to invalidate current solutions.

At the time of this writing the main limitation is the inability of many electronic

mailing systems to reliably transfer anything but plain 7-bit ASCII data [ISO646],

which on the other hand can be processed by virtually any computer system now

available. Thus this code is an obvious starting point, and fortunately all more

powerful encodings proposed since contain it as a genuine subset, with unchanged

meaning.

ASCII is primarily intended for encoding English texts, but it can equally well be used

for transliterating other languages by a suitable re-interpretation and, if necessary,

using more than one code byte for a character of the language in question. This can

be done in a multitude of ways, and standards for switching the character mapping

[ISO2022] have already been issued.

Should the restriction to 7 bits disappear soon we may also use the ISO 8859-x family

of extensions to 8 bits per character catering individually for the needs of various

European languages, plus Arabic [ISO8859-6] and Hebrew [ISO8859-8]; but as these

codes overlap we still have to indicate the coding used locally within multi-lingual

documents, as also in the case of an ASCII transliteration.

Switching to longer code words of 16 or more bits as proposed, e.g., in [UNICODE]

will not solve all problems, but might introduce a considerable overhead. With the

exceptions of Far Eastern languages the alphabets needed are of moderate size, and

the bene�ts of not having to indicate the encoding will probably not o�set an increase

in size of the data �les by a factor of 2, especially since, as we shall show, we usually

want to add other descriptive information anyway.

We thus advocate to stay, for quite some time from now, with a rather primitive

encoding, supplemented by a su�cient amount of descriptive information.



3 Symbolic markup

Up to now we were only concerned with the encoding of the text proper. Devising a

notation for the additional structural and semantic knowledge looks hopeless at �rst

and seems to require clairvoyance, since the future processing needs cannot even be

guessed. But indeed some progress is possible.

Once we consider the coded text as a linear sequence of code symbols, any additional

knowledge about it can be described by a set of attributes assigned to the individual

symbols, or to ranges of symbols. We might not yet for every attribute know how

to process it further, nor even its exact meaning; but we certainly know whenever

attributes are di�erent, and this is all we need now. The main issue when encoding

the data is to preserve all the information then available; exploiting it can come later.

A su�ciently powerful mechanism that does not require the a priori knowledge of a

taxonomy of features, consists of some means of denoting ranges of code symbols,

and a mechanism of associating the name of an attribute or a set of attributes to such

a range. We need a su�ciently rich repertoire of names such that di�ering attributes

or sets of attributes can be denoted di�erently. The names are arbitrary, and their

interpretation needs only to be �xed much later whenever the data will be evaluated,

and for di�erent evaluations we may well use di�erent interpretations as required.

We only have to agree on the basic format of the markup to distinguish it from the

text proper. This basic idea is called symbolic markup.

Symbolic markup is not a new idea but has been used in several contexts for some

time, and we shall brie
y review two of its special applications. In doing so we

shall skim over many details, simplify grossly, and also deviate from the customary

terminology.

3.1 SGML

The idea of SGML, for \Standard Generalized Markup Language" [ISO8879],

originated within the printing industry with the goal to help separate the logical

structure of a document from the details of its external printed representation, and

thus ease the production process. It soon turned out that its possible scope is much

wider, and one of its variants, HTML, has important applications in the distributed

Hypertext system called the World-Wide Web [BL+94].

The basic markup mechanism in SGML works as follows: a range of characters

carrying an attribute A is delimited by a start tag <A> and an end tag </A>. Instead

of a single attribute A may also denote an attribute class, and in this case the start

tag also carries an indication of the actual member of the class, and/or additional

descriptive information. The set of possible tag identi�ers is �xed for any document

type by some formal de�nition not described here, but due to the class mechanism

the set of possible attributes is virtually unbounded.

[Smi92] stresses the usability of symbolic markup for capturing arbitrary information

also outside of the production of documents. The main di�erence to our approach



seems to be that for a SGML document the complete syntax of the markup used

must be put down beforehand in a Document Type De�nition, whereas we propose

to postpone this step until the actual processing.

3.2 TEX

TEX [Knu84] is a program written by D. E. Knuth to support high quality computer

type-setting of text and mathematics. It is in the public domain, and compatible

implementations exist for a large range of computing systems. TEX will take care of

all the visual formatting including line-breaking, hyphenation, formatting of formulas,

page layout etc. The output produced is completely device independent and may be

viewed on a computer screen display or also directed to a large range of output

devices, provided that appropriate device driver programs are available.

TEX provides a large number of markup commands for controlling the typesetting

process, and a powerful macro extension mechanism that enables the user to introduce

new markup tags and de�ne their meanings arbitrarily, so that symbolic markup

is easily possible. TEX can also be (mis)used as a portable general purpose data

processor.

Due to the extensibility of TEX a number of macro packages have been developed to

cater for special applications, among them:

� AMS-TEX (see [Bee85]), supplying an additional set of mathematical symbols;

� LaTEX [Lam94], providing styles for several common document classes and

supporting the logical structuring into chapters and sections, building a title

block, positioning �gures and tables, and managing cross references, index

information, a table of contents etc.;

� Ml-TÊX [Fer85], some multi-lingual extensions for European languages;

� Babel [Bra91], a package supporting language-speci�c processing for more than

20 languages;

� ArabTEX [Lag92c, Lag92a, Lag93, Lag94], catering for right-to-left languages

such as Arabic, Persian, Urdu, Pashto, Hebrew etc. with full support of

diacritics and vowels, ligatures, and also the common standard transcriptions1.

� A number of further packages, e.g., for including graphics, are described in

[GMS84].

Most of these packages may be combined to make use of all the additional features

provided, and further extensions may be de�ned freely. [Lam94] strongly advocates

using symbolic markup in document design.

1The ArabTEX package is freely available for scienti�c and private applications. It can be

downloaded from ftp.informatik.uni-stuttgart.de in the directory /pub/arabtex/. For other

ways of acquiring it, contact the author.



3.3 Abstract Data Bases

In some respects our approach is related to using a data base system but there

are some marked di�erences. In a data base system, the information is stored as a

collection of records consisting of a �xed number of �elds; for every �eld the meaning

and the format is determined a priori by a data base scheme. In contrast to this we

advocate having an undetermined number of ranges of symbols with some attributes

assigned to them, and we may introduce new attributes at any time. Also we do not

require the data to be a collection of subunits with basically the same structure, even

if this may frequently be the case. So we could simulate a classical data base system

easily, but our approach is much more general, and could be called an \abstract data

base".

Of course, because we leave most the structure and the interpretation of the

text unspeci�ed, we cannot expect our data to be usable directly for any speci�c

evaluation, and to process them by any given application program we will have

to do some preprocessing �rst. Fortunately, the preprocessing task will be rather

well-de�ned, consisting mainly of omitting information presently of no interest, and

reformatting the remaining data according to the needs of the application program.

Whenever the format of the input data required as well as the relevant structure of

our abstract data base can be described by a formal grammar, we can automatically

generate the preprocessing program by any of several existing generator systems, e.g.,

Lex [Les75], YACC [Joh75], or WRG [Lag90]; and in many cases the reformatting

task will be fairly trivial so we might rather write the preprocessor from scratch.

4 Recommendations and Guidelines

From the considerations given above we derive the following recommendations on

how to devise a coding scheme suitable for capturing a structured text while also

preserving the known associated information.

� Decide on the basic encoding of the text.

� Decide on the method and the format of the markup.

� Assign markup tags arbitrarily, and document their meaning. Take care to mark

up portions of text with di�erent meanings di�erently.

� Try to capture all the available structure information about the text.

Concentrate on the logical structure and do not worry about the layout, except

if it carries essential information.

� Do not omit any available information that has no apparent use. It might

become important and useful later, if it is preserved now.

� Rely on the computer to perform clerical tasks e�ciently when given enough

information; but remember that it is not intelligent, and that you will have to

do the thinking.



� Do not worry about e�ciency of processing. Computers can be expected to

continue getting faster.

Some of these recommendations may sound obvious and trivial. According to our

experience they are not.

5 An application

We have tested the viability of our approach within an ongoing project [Ser94] of

compiling a dictionary of Greek loan-words within Arabic. A central requirement is

the ability to print Arabic, Greek, Syriac or Hebrew, and Latin script, and we decided

to use and, if required, extend the author's ArabTEX system

In addition to printing we wanted to automatically generate several indices sorted

according to the collating sequences of the various languages used, and this proved

feasible. We found that the necessary preprocessing could easily be handled by TEX

itself plus some existing system routines.

5.1 Input encoding

As we decided to use TEX for all processing, we will use the basic TEX conventions

[Knu84]. This means the coding used will be 7-bit ASCII [ISO646] both for text

and for markup. In TEX a markup command is distinguished by a name consisting of

Latin letters and preceded by an inverse slash, and, if required, followed by parameter

strings included in curly braces; one of them might be the range of symbols the

markup command applies to. In addition to the standard TEX commands we shall

de�ne additional symbolic commands as required.

We next take the intrinsic structure of the available input data into account. Presently

they reside on a large number of index cards, each of which carries the information

available about a speci�c Arabic lemma. There are main entries describing words

derived from Greek directly or via some intermediate steps, and secondary entries

that describe writing variants and refer to some main entry.

We represent these data as a possibly unordered sequence of text blocks in free format.

Every text block starts with a markup command of the form \alemma {the lemma}

followed by the descriptive information and closed by an empty line (for ease of editing

only). The descriptive information may contain components in several languages that

are marked up by \ar {Arabic text}, \gr {Greek text}, \sy {Syriac text},

\he {Hebrew text} as required; other languages, e.g., Coptic could be added.

Presently we did not distinguish the European languages occurring but could easily

do so. In addition there are a few more symbolic tags like \see for pointers to other

entries, \var for denoting variants, \cod for referring to sources, and a few more. Note

that we distinguish between \alemma and \ar as their roles are di�erent, and in the

same way we denote e.g., a Greek lemma and an explanation in Greek di�erently.



Greek text is mapped to 7-bit ASCII using the encoding proposed by Silvio Levy

[Lev88] and supported by GreeKTEX, another extension to TEX freely available

[Dry94]. For Arabic, Syriac, and Hebrew we use the standard encoding implemented

in the ArabTEX system; it is a linearised variant of the ZDMG transliteration

[DIN31635, ISO/R233] that uses no diacritical marks and can easily be handled

using a standard computer keyboard.

The following example is typical; we made liberal use of white space to keep the

input data which might have to be edited, human readable:

\alemma {qAbUs}

JA 1886 (1) 460.

\see \ar {qwA_tUs} (ib.)

\alemma {qAbIl}

\gr {k'aphloc} \from \syr {qpIl'}

ZDMG 1897 (51) 470.

der Kleinh"andler, Speisewirth:

\ar {mi_tl insAn _dAhib fI al-sUq `inda al-qAbIl

ya^sum al-^siwA'| wa-al.tabI_h}

"`Wie ein Mensch welcher auf dem Markte

bei [dem] Speisewirth vorbeigeht und den Duft

der gekochten und gebratenen Speisen riecht."'

\alemma {qAtismA}

\gr {k'ajisma} pl. \ar {qAtismAt}

GRAF VERZ. 86

"`Kathisma in der Psalmeneinleitung"'.

\var \ar {qA.tsmA} (pl. \ar {qA.ssmAt}), \ar {kAtsmA}.

\alemma {qAtsmAt}

GRAF VERZ. 86

\see \ar {qAtsmA} (ib.)

5.2 Printing the text

If we want to print a listing of the data in dictionary format we have to write a small

driver program in the TEX macro language that will determine the general output

format, and that will assign to all unde�ned tags as their meaning the required

external representation by calling some TEX or ArabTEX routines. Then it will read

the input data �le and let TEX process it to do the formatting. As presently no Syriac

font is available we substituted Hebrew temporarily.

The resulting output for a sample page is given in the appendix. The correspondence

with the encoding example should be obvious.



5.3 Sorting

Up to now we have assumed that our input data are sorted according to the Arabic

lemma, obeying the standard Arabic collating sequence. In the long run this will not

remain so and we shall have to re-sort. Now we exploit the fact that any Operating

System known to us provides a sorting routine that can sort the lines of a text �le

according to the standard ASCII collating sequence, and we transform our input

�le into another one that when sorted mechanically will contain the entries in the

required sequence. There is another TEX macro program that interprets the same

data in a di�erent way: instead of producing formatted output, it will read the data

one complete entry at a time, �lter out the lemma, and compute an alphabetic sorting

key from its internal Arabic representation that is available within ArabTEX. Now

we copy the entry to an output �le and prepend to every line a new tag of the form

\key {the key}; and this new �le can be processed by the standard sorting routine.

The additional tag will not interfere with the printing process if in that context we

de�ne its meaning as producing no output at all. Thus we can use our sorted �le

as a new version of our input data, and whenever su�ciently many new data have

been added, we reprocess the �le, compute keys for the new entries, keep the already

existing ones, and re-sort again.

5.4 Compiling indices

For compiling an index, say, on the Greek terms, from the same data set some

more processing is required, but this task is simpler. We again process the data

one entry at a time but only keep those entries that contain a Greek component

(these are the main entries), and build a new output �le containing for each main

entry just the following items: a sorting key (again hidden within the argument of a

tag, but this time computed from the Greek lemma), the Greek lemma itself, and the

Arabic lemma. This �le can be printed by an obvious variant of the printing program

described above.

For indices on other languages we proceed analogously, and we can even build a

retrograde index by processing the internal representation of the Arabic lemma in

reverse order. We have already tried this, and it proved to be surprisingly easy.

5.5 Further processing

Among the lines given we could rather easily open up the way for other evaluations

of the same data. We could, e.g., search for lemmata in several languages, build

concordances, collate versions of the same basic text for identifying variants, or derive

a di�erently formatted �le suitable for loading into a su�ciently powerful data base

system.

None of this has yet been done, but we also see no basic di�culties apart from the

work to be expended in writing the necessary programs. We found TEX, as it is geared

towards text processing from the outset, especially suitable for comparable tasks, but



we cannot deny the fact that using the TEX macro language for programming is far

from trivial, and other methods more widely known could be substituted.

5.6 Discussion

Our present mechanism, while it proved usable, has some apparent drawbacks. One

problem is that for any new way of processing we have to do some non-trivial

programming; this, as we believe, is inherent. Using TEX macros for programming

was locally convenient, as we had some experience, but is not mandatory; other

techniques could be used as well. The fact that the parts in Oriental languages are

coded in a transliteration helps editing using a very simple plain text editor, but is not

essential. The encodings for the various languages are logically independent of each

other, and could easily be changed, even automatically, if some multi-language editor

were available. We may even use di�erent encodings for parts in the same language

at the same time provided we keep them distinguishable by di�erent markup tags.

6 Conclusion

Our experience has shown that encoding quite heterogeneous data in a way that

preserves the available meta-information, enabled us to perform a variety of related

but quite diverse automated processing tasks on the same abstract data base,

without any manual re-encoding necessary. The programming e�ort required and

the processing load invested were not trivial, but we believe that the costs incurred

were reasonable given the fact that some of the tasks had, to our knowledge, never

been attempted successfully before.

We generally believe in the bene�ts of cooperation, also between �elds as diverse as

Orientalistics and Computer Science; and we expect the cost of computing power to

continue to decrease rapidly. Our main concern is to reduce, as far as possible, the

amount of labour that cannot be delegated to a machine, in order to liberate humans

from mechanical chores and to enable them to concentrate on tasks where they can

exploit their speci�c abilities.

References

[Bee85] Barbara Beeton. Mathematical Symbols and Cyrillic Fonts Ready for

Distribution. TUGboat, 6(2):59{66, 1985.

[BL+94] Tim Berners-Lee et al. The World-Wide Web. Communications of the

ACM, 37(8):76{82, 1994.

[Bra91] Johannes Braams. Babel, a Multilingual Style Option for Use with

LaTEX's Standard Document Styles. TUGboat, 12(2):291{301, 1991.



[DIN31635] Deutsches Institut f�ur Normung e.V. Umschrift des Arabischen

Alphabets. DIN 31 635, 1982.

[Dry94] K. J. Dryllerakis.GreeKTEX. Available electronically via the InterNet

from the Comprehensive TEX Archive Network (CTAN), 1994. A set

of Greek fonts, associated macros and documentation; based on fonts

devised by Silvio Levy and Yannis Haralambous.

[Fer85] M.J. Ferguson. A Multilingual TÊX. TUGboat, 6(2):57{58, 1985.

[GMS84] Michael Goossens, Frank Mittelbach, and Alexander Samarin. The

LaTEX Companion. Addison-Wesley, Reading, Mass., etc., 1984.

[ISO2022] International Organization for Standardization. Information processing

{ ISO 7-bit and 8-bit coded character sets { Code extension techniques.

ISO 2022.

[ISO646] International Organization for Standardization. Information processing

{ ISO 7-bit coded character set for information interchange. ISO 646.

[ISO8859-6] International Organization for Standardization. Information processing

{ 8-bit single-byte coded graphics character sets { Part 6: Latin/Arabic

alphabet. ISO 8859-6, 1987.

[ISO8859-8] International Organization for Standardization. Information Processing

{ 8-bit single-byte coded graphics character sets { Part 8: Latin/Hebrew

alphabet. ISO 8859-8, 1987.

[ISO8879] International Organization for Standardization. Information Processing

{ Text and O�ce Systems { Standard Generalized Markup Language

(SGML). Technical Report ISO 8879, ISO Geneva, 15 October 1986;

Amendment 1, 1 July 1988.

[ISO/R233] International Organization for Standardization. International System

for the Transliteration of Arabic Characters. ISO/R 233 - 1961.

[Joh75] S.C. Johnson. Yacc | Yet Another Compiler Compiler. Computing

Science Technical Report 32, AT&T Bell Laboratories, Murray Hill,

N.J., 1975.

[Knu84] Donald E. Knuth. The TEXbook, volume A of \Computers

& Typesetting". Addison-Wesley, Reading, Mass., 1984.

[Lag90] Klaus Lagally. WRG | ein neuer Generator f�ur Top-Down-Parser

mit automatischer Fehlerbehandlung. Report 1990/01, Universit�at

Stuttgart, Fakult�at Informatik, 1990.

[Lag92a] Klaus Lagally. ArabTEX, a System for Typesetting Arabic. In

ICEMCO92, Proc. 3rd International Conference and Exhibition on

Multi-lingual Computing (Arabic and Roman Script), pages 9.4.1{9.4.8,

University of Durham, UK, December 10{12, 1992. See also [Lag92b].



[Lag92b] Klaus Lagally. ArabTEX, a System for Typesetting Arabic. Report

1992/11, Universit�at Stuttgart, Fakult�at Informatik, 1992.

[Lag92c] Klaus Lagally. ArabTEX | Typesetting Arabic with Vowels and

Ligatures. In EuroTEX '92, Proc. 7th European TEX Conference, pages

153{172, Prague, Czechoslovakia, September 14{18, 1992. See also

[Lag92d].

[Lag92d] Klaus Lagally. ArabTEX | Typesetting Arabic with Vowels and

Ligatures. Report 1992/07, Universit�at Stuttgart, Fakult�at Informatik,

1992.

[Lag93] Klaus Lagally. ArabTEX, a System for Typesetting Arabic. User

Manual Version 3.00. Report 1993/11, Universit�at Stuttgart, Fakul-

t�at Informatik, 1993.

[Lag94] Klaus Lagally. How to extend ArabTEX to handle Hebrew, 1994.

Unpublished internal Notes.

[Lam94] Leslie Lamport. LaTEX, a Document Preparation System. User's

Guide and Reference Manual. Addison-Wesley, Reading, Mass., second

edition, 1994.

[Les75] M.E. Lesk. Lex | a Lexical Analyser Generator. Computing Science

Technical Report 39, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

[Lev88] Silvio Levy. Using Greek Fonts with TEX. TUGboat, 9(1):20{24, 1988.

[Ser94] Nikolai Seriko�. A Project to Build a Multi-Lingual Dictionary

of Greek Loan-Words within the Arabic Language, 1994. Personal

communication.

[Smi92] Joan M. Smith. SGML and Related Standards. Ellis Horwood Ltd.,

New York, 1992.

[UNICODE] The Unicode Consortium. The Unicode Standard. Worldwide Character

Encoding. Version 1.0, Volume 1. Addison-Wesley, Reading, Mass.,

1991.



- ô - Das Specimen

�ñK. A
�
¯ JA 1886 (1) 460. ) �ñ�K@ñ�̄ (ib.)

ÉJ
K. A
�
¯ k�phloc < (syr. `li �tw) ZDMG

1897 (51) 470. der Kleinh�andler,

Speisewirth: ú


	̄ I. ë@

	X 	àA� 	�@ É �JÓ

Z @ñ� Ë@ Õæ� �
 É J
 K. A
�® Ë @ Y 	J« ôñ� Ë@

qJ
 J. ¢ Ë @ð
"
Wie ein Mensch welcher

auf dem Markte bei [dem] Speise-

wirth vorbeigeht und den Duft der

gekochten und gebratenen Speisen

riecht.\

>ä�
�
�A
�
¯ k�jisma pl. �H>ä� ��A �̄ GRAF VERZ.

86
"
Kathisma in der Psalmeneinlei-

tung\. var. >ä� £A �̄ (pl. �H>ä� �A �̄),
>ä���A¿.

�H>ä�
�
�A
�
¯ GRAF VERZ. 86 ) >ä���A�̄ (ib.)

�HA��
�º
�
K A
�
¯ katoiq�seic HIPA 2.474.7. )

�HAJ
cñ 	«A¢�Ó (ib.) cod. �HA��
�ºJ
Ê
	®Ë @

? �HA�ºJ
Ê
	®Ë @ ? �HA��
��º 	JJ
Ê

	®Ë @

õJ
Ëñ
�
KA
�
¯ pl.

�é �® Ê �J �̄ GRAF VERZ. 86 var.

�ñ �®J
Ë A
�® �̄ ; MAF. 129.9 ) õJ
 Ëñ

�KA �̄

(ib.)

��
�@PA
�
KA
�
¯ kaja�resic < (syr. qiqxzw)

GRAF VERZ. 86 Amtsenthebung,

Absetzung. ) �Q���̄ GRAF VERZ.

87

Q�£A
�
KA
�
¯ ZAHRAWI 68b.9 ) Q�
£A�KA�̄ (ib.)

Q�
£A
�
KA
�
¯ kaj�twr ZAHRAWI 68b.9 �

�éËBB@
ù Ò� �� ú�æ Ë @ cod. Q� £A �KA �̄ ; HINDU

163.5. ÉJ
ÊgBB@ ú


	̄ É 	gYK
 ò�ñe× ÉJ


�̄

ú


	̄ ©�̄ð Qek I. �. ��. ÈñJ. Ë @ ��.

�Jk@ @ 	X@

. ÐX õÊ« ð@ �èY� ð@ �é 	KA �JÖÏ@ õ 	J«
FRAENKEL, FREMD 261; BBH

843 paen; 1049.10 var. 	á�
£A�KA�̄

	á�
£A
�
KA
�
¯ BBH 843 paen., 1049.10) Q�
£A�KA�̄

(ib.)

õJ
Ëñ
�
KA
�
¯ kajolik�c MAF 129.9 õJ
Ê

�KAeÌ'@ ñëð
ÐA �® Óð õK
Q ¢ J. Ë @ Y K
 �I m�

�' 	áº K
ð
ô@QªË@ XCCJ. K. Ð AÓBB@ �èQå�k ú



	̄ õJ
Ê

�KAeÌ'@

õK
Q¢�. YK
 �Im�
�' 	áºJ


	̄ ÐCC�Ë@ �é 	JK
YÓ
�éJ
 »A ¢

	�


@ var. õJ
 Ëñ

�KA �̄ , õJ
 Ëñ
�KA 	̄ ,

	á�
»ñKA ¯ ; OC 1979 (63) 79,80 n.22

var. õJ
 Ëñ
�KA¿ ) õJ
 Ëñ

�KA¿ , õJ
 Ëñ
�KA �̄ ,

õJ
Ëñ
�KAg. .

�ñKA
�
¯ AG 2.54.5 ) �ñK
A

	̄
(ib.)

	á�

�
KPXA

�
¯ SUWAIDI 235a.15-b.3 ) �PXA �̄

DIOSK/DIET 1.22.14 - 2.1. Nr. 44.

�PXA
�
¯ k�droc DIOSK/DIET 1.22.14-2.1.

Nr. 44. (Zeder, Cedrus Libani

A.Rich) 	á�
 K. Qå� Ë @ ñ ëð
"
das ist die

Zeder\. ��

�KPXA�̄ SUWAIDI 235a.15

- b.3 (ib.); cod. �PXA¯

	
àXA

�
¯ FI 1.252.22 ) 	àXA 	̄ (ib.)

�ðXA
�
¯ k�doc ZDMG 1896 (50) 617, ib.

1897 (51) 300, 325.
"
Eimer\. JA

1886 (1) 431, ib. 1913 (2) 383
"
pot\.

"
ne signi�e gu�ere `conduit, tuyau'

que dans le Maghreb\ ) DOZY

322-323; �
�
Y
��̄
(Hi�gaz) ZDMG 1897

(51) 325.

	
àðXA

�
¯ FI 1.252.22 ) �XA 	̄ (ib.)

	
àð

	
XA
�
¯ QT 19.2 ) �PXñ�̄ (ib.)

��. @PA
�
¯ k�raboc ART. 235.10 : : : ½ Ò� Ë@

��. @PA
�̄ �Õæ��
 ø

	
Y
�
Ë@ É�JÓ ) H. PA

�̄


