
Initialisierung der Verschiebefunktionen zur

Mustersuche in Texten

Bernhard Ziegler

Institut f�ur Informatik, Universit�at Stuttgart

Breitwiesenstr. 20-22, D-70565 Stuttgart

Telefax: 0711/7816-370

E-mail: bziegler@informatik.uni-stuttgart.de

Zusammenfassung. Die schnellsten Algorithmen zur Mustersuche in Texten
sind Varianten des genialen Algorithmus BoMo von Boyer und Moore. Wenn Text
und Muster nicht zusammenpassen, verwendet BoMo Tabellen, um die gr�o�ten
zul�assigen Verschiebungen zu ermitteln. Eine e�ziente Berechnung dieser Ta-
bellen wurde von Knuth angegeben.

Hier wird sowohl auf die den Algorithmen KMP von Knuth, Morris und Pratt,
BoMo und ESS zugrundeliegenden Ideen eingegangen, als auch die Implementie-
rung ihrer Verschiebetabellen detailliert beschrieben.

Schl�usselw�orter: Wortsuche, Mustererkennung, Boyer-Moore

Summary. The fastest known algorithms for pattern matching in strings are
derivatives of the ingenious algorithm BoMo of Boyer and Moore. On mismatch
tables are used by BoMo to ascertain the largest possible pattern shifts. An e�-
cient scheme of computing these tables was given by Knuth.

In this report we recapitulate the key ideas underlying the algorithms KMP of
Knuth, Morris and Pratt, BoMo, and ESS, as well as presenting the implementa-
tion of their shift tables in detail.

Key words: String Searching, Pattern Matching, Boyer-Moore

Computing Reviews Classi�cation: F.2.2, H.3.3

1. Einleitung

Die Mustersuche in Texten ist nach wie vor eine bedeutende Aufgabe der Da-
tenverarbeitung. Wir haben in [10] einen Algorithmus ESS vorgestellt, der bei
Genetischem Code die schnellsten Varianten von BoMo, einem von Boyer und

2 B. Ziegler { Initialisierung der Verschiebefunktionen

Moore in [4] publizierten Algorithmus, bis zu einem Faktor 3 �ubertri�t. Die In-
itialisierung der Verschiebefunktion AA0 von ESS (E�ziente String Suche) ist
umfangreich. Da in [10] nicht darauf eingegangen wurde, soll sie hier darge-
stellt werden. Wir beschreiben aber nicht nur allein die Initialisierung von AA0,
sondern besch�aftigen uns mit allen Verschiebefunktionen der angegebenen Mu-
stersuchalgorithmen.

Im Abschnitt
"
Nomenklatur\ wird die verwendete Notation eingef�uhrt. Im

Kapitel
"
Bausteine der Algorithmen zur Mustersuche in Texten\ wird am Bei-

spiel des naiven Algorithmus SPM gezeigt, wie man die verschiedenen Suchver-
fahren aus geeigneten voneinander (in den meisten F�allen) unabh�angigen Bau-
steinen zusammensetzen kann.

In den drei sich anschlie�enden Kapiteln werden die Algorithmen KMP von
Knuth, Morris und Pratt [7], BoMo von Boyer und Moore [4] und ESS von Ziegler
[10] und ihre Verschiebefunktionen eingehend behandelt. Im Vordergrund steht
dabei der Versuch, die Verschiebetabelle Next von KMP verst�andlich darzustellen,
denn auf ihr basieren die Tabellen D und D0 von BoMo und DD und DD0 von
ESS .

Auch auf die Berechnung der Tabelle AA0 von ESS wird detailliert eingegan-
gen; zum einen, weil in [10] nur ihre De�nition, nicht aber ihre Implementierung
angegeben wurde, zum anderen, weil von ihrer e�zienten Implementierung die
Konkurrenzf�ahigkeit von ESS wesentlich abh�angt.

2. Nomenklatur

Im folgenden wird angenommen, da� der zu durchsuchende Text der L�ange Tl
in einem Feld Text [�] und das zu suchende Muster der L�ange Pl in einem
Feld Pat [�] geeigneter Gr�o�e ab Position 1 gespeichert sind. Im Text sollen
jeweils alle sich nicht �uberlappenden Exemplare des Musters gesucht werden.
Wird ein Muster gefunden, so wird dies durch den Aufruf einer vom Benutzer
frei gestaltbaren Prozedur Locout(Position) angezeigt. Ihr wird als Parameter
die Position des Musters im Text mitgegeben.

Die an einigen Stellen verwendete Notation I ::: J bedeutet: alle Indizes K
von I bis J (I � K � J). So steht z.B. Pat [Pl �1 ::: Pl] = Text [Ke �1 ::: Ke]
statt Pat [Pl � 1] = Text [Ke � 1] & Pat [Pl] = Text [Ke].

Mit K0 und Ke werden die Stellen im Text indiziert, die Pat [0] und Pat [Pl]
gegen�uberliegen. Wird auf ein Zeichen im Text zum ersten Mal zugegri�en, so
sprechen wir von

"
aufdecken\. Nur aufgedeckte Zeichen sind bekannt. Nicht

aufgedeckte Zeichen werden in unseren Skizzen durch
"
*\ symbolisiert. Gilt an

einer Stelle Text [K] 6= Pat [J], so sprechen wir davon, da� die Zeichen
"
nicht

passen\ und daher der
"
Vergleich gescheitert ist\. In den Skizzen liegen die

Zeichen, die miteinander verglichen werden sollen, �ubereinander. �Uber dem einen
Vergleichszeichen steht

"
=\ oder

"
6=\, unter dem Partner

"
^\.

"
^\ bedeutet

ferner in den meisten F�allen, da� auf die beiden Partner beim letzten Schritt
zugegri�en und der Vergleich ausge�ubt wurde. Alle Zeichen des Textes, die nicht
im Muster enthalten sind, bewirken an der jeweils gleichen Position �uber dem
Muster dieselbe Verschiebung. Sie werden durch

"
$\ symbolisiert.

In redundante runde Klammern gesetzte Ausdr�ucke in Programmst�ucken
k�onnten jeweils als Invariante einer eigenen Variablen zugewiesen werden, so da�
sie nur einmal zu berechnen sind, oder sie lie�en sich in eine Funktionsde�nition

3. Die Bausteine der Algorithmen zur Mustersuche in Texten 3

mit aufnehmen. Auf diese Zusammenfassungen haben wir zum Teil, der besseren
Verst�andlichkeit wegen, bei der Darstellung der Algorithmen verzichtet.

Die Verschiebefunktionen, die von den Mustersuchalgorithmen verwendet
werden, sind in Tabellen gespeichert. Deshalb werden die Notationen F (x) und
F [x] synonym zueinander verwendet.

Wir nehmen an, da� in der Regel das Muster zus�atzlich an den Text als
Bremse angeh�angt wurde, so da� die Bedingung

"
Textende �uberschritten\ nur

dann gepr�uft werden mu�, wenn ein Muster erkannt wurde. Das hei�t, die Zahl
der ben�otigten Tests wird stark reduziert, indem man sich darauf beschr�ankt,
nur dann auf Textende zu pr�ufen, wenn ein Muster gefunden wurde. Daf�ur mu�
das Muster einmal zus�atzlich erkannt, aber nicht gemeldet werden.

3. Die Bausteine der Algorithmen zur Mustersuche in Texten

Der naive Algorithmus SPM (Simple Pattern Matching) beginnt die Suche in
Text und Muster von links nach rechts. Sobald ein Zeichen des Musters nicht zum
Text pa�t, wird das Muster um eine Stelle �uber den Text nach rechts verscho-
ben, und der n�achste Vergleich beginnt wieder links im Muster. Bei nat�urlichen
Sprachen scheitert der Vergleich meist schon am ersten Zeichen. Deshalb ist
es zweckm�a�ig, diesen Fall gesondert zu behandeln und den Algorithmus, wie
sp�ater alle anderen auch, aus den unabh�angigen Bausteinen Skip-Schleife, Test-
und Shift-Teil zusammenzusetzen. Wenn sich die H�au�gkeiten der Zeichen des
Textes wesentlich voneinander unterscheiden, ist es sinnvoll, den Vergleich nicht
mit dem ersten, sondern mit dem im Text am seltensten vorkommenden Zeichen
des Musters zu beginnen. Steht dieses Zeichen an der Position P , so ergibt sich
SPM mit Bremse als:

SPMF (* SPM with frequency *)

KF := P; FPat := Pat[P] (* FPat das seltenste Zeichen *)

loop

(* Skip Loop *)

while Text[KF] # FPat do KF := KF + 1 od;

K := KF - (P - 1); J := 1;

(* Test Part *)

while (Text[K] = Pat[J]) & (J <= Pl)

do K := K + 1; J := J + 1 od;

if J >= Pl

then (* pattern matched *)

if K > (Tl+1) then (* text exhausted -> *) exit fi;

Locout (K-Pl);

(* Shift Part *)

KF :+ KF + Pl;

else KF := KF + 1;

fi;

end loop;

end (* SPMF *);

4 B. Ziegler { Initialisierung der Verschiebefunktionen

4. KMP, der Algorithmus von Knuth, Morris und Pratt

Auch Knuth, Morris und Pratt beginnen in ihrem 1977 in [7] ver�o�entlichten
Algorithmus KMP die Suche links im Muster. Scheitert der Vergleich an der Stelle
J im Muster, d. h. gilt Pat [J] 6= Text [K0 + J], so benutzen sie die Tatsache,
da� Pat [1 ::: J�1] = Text [K0+1 ::: K0+J�1] ist, dazu, das Muster m�oglichst
weit �uber den Text zu verschieben, ohne da� eine Fundstelle verloren geht. Dies
l�a�t sich an einem Beispiel aus [7] so anschaulich machen:

Index 12345678901234567890123456

Text babcbabcabcaabcabcabcacabc ganz aufgedeckt

Text b*************************

^

(a # b)

Muster abcabcacab

^

(. # a)

.abcabcacab

Das erste Zeichen hat nicht gepa�t. Das Muster wird v�ollig �uber die aktuelle
Position im Text hinweggeschoben.

Text babcb*********************

^^^^

===# (a # b)

Muster abcabcacab

^

(. # a)

....abcabcacab

Die ersten drei Zeichen haben gepa�t, das vierte, a, nicht. Wir wissen jetzt,
da� die vier Zeichen des Textes abcx waren. Nach einer Verschiebung sollten
m�oglichst viele davon erneut zum Muster passen. Da wir im Text die Position
nicht ge�andert haben, brauchen wir uns das vierte Zeichen nicht zu merken. Wir
wissen aber, da� dort nur ein Zeichen B des Musters passen kann, wenn B 6= a

ist. Deshalb wird das Muster um 4 Stellen verschoben.

babcbabcabcaabcabcabcacabc

Text babcbabcabcaa*************

^^^^^^^^

=======# (c # a)

Muster abcabcaca

^

====# (b # c)

...abcabcaca

Sieben Zeichen haben gepa�t, beim achten scheitert der Vergleich. Es wird um
drei Stellen verschoben. Aber das Muster pa�t immer noch nicht.

babcbabcabcaabcabcabcacabc

Text babcbabcabcaa*************

^

====# (b # a)

Muster abcabcaca

^

(a # b)

....abcabcaca

4. KMP, der Algorithmus von Knuth, Morris und Pratt 5

Es wird erneut um vier Zeichen verschoben. Jetzt pa�t Pat [1]. Die n�achsten
Zeichen werden �uberpr�uft.

Text babcbabcabcaabcabcabca****

^^^^^^^^

=======# (c # b)

Muster abcabcacab

^

====# (b # c)

...abcabcacab

Erneut wird um 3 Stellen verschoben. Danach passen Text und Muster zusam-
men.

Text babcbabcabcaabcabcabcacab*

^^^^^^

==========

Muster abcabcacab

In allen F�allen wird das Muster so weit nach rechts verschoben, bis gilt:

Pat [1 ::: L� 1] = Pat [J � L+ 1 ::: J � 1] & (Pat [J] 6= Pat [L]);
Pat [1 ::: L� 1] = Text [K0 + J � L+ 1 ::: K0 + J � 1].

Dabei ist L der Index im Muster, bis zu dem verschoben wird. An der Stelle L
wird der Vergleich fortgesetzt. Speichert man die Werte von L in einer Tabelle
Next [J], so ist J � Next [J] die Gr�o�e der Verschiebung. Das erste Muster im
Text �ndet man mit folgendem Programmst�uck:

KMPP (* KMP Prototyp *)

1 K := J := 1;

2 while (K <= Tl) & (J <= Pl)

3 do while (Text[K] # Pat[J]) & (J > 0)

(* verschiebe Pat bis Text[K] = Pat[J] *)

do J := Next[J] od;

4 K := K + 1; J := J + 1;

5 od;

6 end (* KMPP *);

Die Funktion Next ist de�niert als:

(Next): Next [J] = max(L : (Pat [1 ::: L� 1] = Pat [J � L+ 1 ::: J � 1])
& (Pat [J] 6= Pat [L]);

Pat [1 ::: L� 1] = Text [K0 + J � L+ 1 ::: K0 + J � 1].

In [7] wurde zur Berechnung von Next eine Hilfsfunktion F eingef�uhrt:

(F): F [J] = max(L : Pat [1 ::: L� 1] = Pat [J � L+ 1 ::: J � 1]);
(* ohne Pat [J] 6= Pat[L]! *)

Pat [1 ::: L� 1] = Text [K0 + J � L+ 1 ::: K0 + J � 1].

Die beiden Funktionen Next und F h�angen auf folgende Weise zusammen:

Next [J] =

�
F [J] : Pat [F [J]] 6= Pat [J]
Next [F [J]] : Pat [F [J]] = Pat [J]

F [J + 1] = F [J] + 1 : Pat [F [J + 1]] = Pat [J + 1]:

In [7] wird das folgende Beispiel f�ur sie angegeben:

6 B. Ziegler { Initialisierung der Verschiebefunktionen

Index 1 2 3 4 5 6 7 8 9 10

Muster a b c a b c a c a b

Next 0 1 1 0 1 1 0 5 0 1

F 0 1 1 1 2 3 4 5 1 2

Die Werte lassen sich mit dem oben angegebenen Suchprogramm berechnen,
wenn ein zweites Exemplar des Musters den Text simuliert. Gilt Pat [1] 6=
Text [K], so wird das Muster v�ollig �uber die Textstelle hinweggeschoben bis
zur virtuellen Position Pat [0]. Daher gilt Next [1] = F [1] = 0. Die Prozedur
Init_Next entsteht aus KMPP auf folgende Weise:

Init_Next;

1 (* F[1] := *) Next[1] := 0; J := 0; K := 1;

(* Nachdem das erste Zeichen nicht gepasst hat,

gilt: K = 1, J = 0 *)

2 while K <= Pl (* Die anderen Operationen entfallen *)

3 do while (Pat[K] # Pat[J]) & (J > 0) do J = Next[J] od;

(* Hier gilt der 1. Teil der Definitionsbedingung von

Next: Pat[K-J+1...K] = Pat[1...J].

Aus Def (F) -> F[K+1] = J + 1 *)

4 K := K + 1; J := J + 1;

4.1 (* F[K] := J; *)

4.2 if Pat[K] # Pat[J]

4.3 then Next[K] := J (* == F[K] *)

4.4 else (* Pat[K] = Pat[J]

-> das Muster wird weiter verschoben. *)

Next[K] := Next[J]

4.5 fi; (* Die Anweisungen 4.1 - 4.5 folgen aus der

Definition von F und Next. *)

5 od;

6 end (* Init_Next *);

Da die Werte von F [K] nur an einer einzigen Stelle abgerufen werden (4.3),
nachdem sie unmittelbar vorher (4.1) eingetragen wurden, kann auf F v�ollig
verzichtet werden.

Die folgende Version von KMP ist aus den im vorausgegangenen Kapitel ge-
nannten Bausteinen zusammengesetzt.

KMP0

K := 1; FPat := Pat[1];

loop

(* Skip-Loop *)

while Text[K] # FPat do K := K + 1 od;

K := K + 1; J := 2;

(* Match-Part *)

repeat

while (Text[K] = Pat[J]) & (J <= Pl)

do K := K + 1; J := J + 1 od;

if J > Pl

then (* pattern matched *)

if K > (Tl + 1) then (* text exhausted -> *) exit fi;

Locout(K-Pl); J := 0; K := K - 1;

else (* no match *)

J := Next[J];

while (Text[K] # Pat[J]) & (J > 0) do J := Next[J] od;

if J > 0 then J := J + 1; K := K + 1 fi;

fi;

5. BoMo, der Algorithmus von Boyer und Moore 7

until J = 0;

K := K + 1;

end loop;

end (* KMP0 *);

5. BoMo, der Algorithmus von Boyer und Moore

In [4] stellen Boyer und Moore den Algorithmus KMP von den F�u�en auf den
Kopf. Sie beginnen einen Vergleich nicht links, sondern rechts im Muster. Da das
Muster schon vor Suchbeginn bekannt ist, lassen sich Funktionen bestimmen, die
zu jedem nicht passenden Zeichen solche Verschiebungen S � 1 festlegen, da�
kein Muster im Text �ubersehen wird.

Der Algorithmus von Boyer und Moore hat folgende allgemeine Form:

BoMoG (* BoMo Generalized *)

loop

(* Skip-Loop *)

while Text[Ke] # Pat[Pl] do shift appropriately od;

(* Test Part *)

if Text[K0+1...K0+Pl] = Pat[1...Pl]

then (* pattern matched *)

if Ke > Tl then (* text exhausted -> *) exit fi;

output location; shift by full pattern length;

else (* no match *)

shift appropriately

fi;

end loop;

end (* BoMoG *);

Boyer und Moore beginnen, wie oben gesagt, den Vergleich am Musterende.
Passen dort Text- und Musterzeichen nicht zusammen, so wird das Muster so
weit �uber den Text verschoben, bis das aufgedeckte Zeichen zum ersten Mal zu
einem Musterzeichen pa�t oder das Muster v�ollig �uber die Aufdeckstelle hinweg-
geglitten ist.

Text ***************a***d****************

^ ^

:

Muster 1 entgegengegangen :

= #

2entgegengegangen

=

3entgegengegangen

Die Gr�o�e der Verschiebung entspricht dem Abstand des aufgedeckten Zei-
chens vom rechten Rand des Musters. Alle nicht im Muster vorkommenden Zei-
chen passen erst, wenn dieses um die ganze Musterl�ange �uber sie hinweg gescho-
ben wurde. Die Zeichen, die bereits links vor dem Muster liegen, beein
ussen die
Verschiebung nicht mehr. Sie wirken wie Joker. Ihnen darf daher jede gew�unschte
Eigenschaft zugeschrieben werden. Die Werte dieser Verschiebungen werden in
der Skip-Tabelle A0[B] gespeichert. Sie h�angen nur vom Zeichen B ab. A0[B]
ist de�niert als:

(A0): A0[B] = minfS j Pat [Pl � S] = B; 0 � S � Pl g : B = Text [Ke].

8 B. Ziegler { Initialisierung der Verschiebefunktionen

Hat zun�achst nicht nur ein einzelnes Zeichen gepa�t, sondern ein l�angeres
Su�x, und scheitert der Vergleich danach, so wird dasMuster so weit verschoben,
bis dieses Su�x erneut pa�t, die jeweils davor liegenden Musterzeichen sich aber
voneinander unterscheiden.

Text ************egen*****ien**************

^^^^ ^^^

#=== ::: (e # n)

Muster 1 entgegengegangen :::

^^^^ :::

#=== #== (n # e) (i # g)

2entgegengegangen

^^^

#== (g # .)

3entgegengegangen

Die Werte der Verschiebungen sind in einer Tabelle D[Position] gespeichert.
Bei Boyer und Moore hei�t diese Tabelle Delta2. Ihre Werte h�angen nur von der
Position im Muster, nicht aber vom Zeichen ab, an dem der Vergleich scheitert.
D ist de�niert als:

(D): D(J) = minfS + (Pl � J) j
Pat [J + 1� S ::: Pl � S] = Pat [J + 1 ::: Pl],
Pat [J � S] 6= Pat [J]g : 1 � J � Pl ;

Pat [J + 1 ::: Pl] = Text [K0 + J + 1 ::: Ke],
Pat [J] 6= Text [K0 + J].

Vergleicht man die Bedingungen der De�nitionen vonD und Next , so sieht man,
da� im wesenlichen rechts und links vertauscht sind. Diese Einsicht verwendet
Knuth in [7] dazu, D durch eine Modi�kation von Init_Next zu berechnen.
Dazu f�uhrt er die zu F seitenverkehrte Funktion FR ein, die so de�niert ist:

(FR): FR [J] = minfI j Pat [I + 1 ::: Pl] = Pat [J + 1 ::: J + Pl � I]g :
J < I � Pl .

Hier entspricht I dem Ausdruck J � S aus der De�nition von D.
Bei der De�nition von D ist:

J : die Stelle im Muster, an der der Vergleich scheitert.
S: die Verschiebung des Musters �uber den Text.
Pl � J : der Abstand des Zeichens vom rechten Rand des Musters, an dem der

Vergleich scheitert. Um diesen Betrag mu� der Zeiger auf das Muster
r�uckgesetzt werden. Ist J � S � 0, so liegt das angesprochene Zeichen
links vor dem Muster. Es ist ein Joker und beein
u�t die Verschiebung
nicht mehr.

Hinweis: Nach jeder Verschiebung, ob mit A oder D, werden alle an sich
zug�anglichen Informationen �uber den Text vergessen!

Beispiele:

Text ******cba** *****caba******* ****ababa*****

^^^ ^^^^ ^^^^^

#== #=== #====

Muster babacbaba babacbaba babacbaba

5. BoMo, der Algorithmus von Boyer und Moore 9

^:: ^::: ^::::

#== #=== #====

..babacbabababacbabababacbaba

Mit diesen beiden Verschiebefunktionen ergibt sich folgende BoMo-Version:

BoMoO; (* BoMo Original *)

Ke := Pl;

loop

(* Skip Loop *)

while (Text[Ke] # Pat[Pl])

do Ke := Ke + A0[Text[Ke]] od;

K := Ke - 1; J := (Pl - 1);

if J = 0

then (* pattern matched *)

if Ke > Tl then (* text exhausted -> *) exit fi;

Locout(K + 1); Ke := Ke + Pl;

else (* no match *)

Ke := K + max(A0[Text[K]], D[J]);

fi;

end loop;

end (* BoMoO *);

Knuth gibt in [7] folgende Prozedur zur Berechnung von D an.

Init_D (* Nach Knuth *)

(* Vorbelegung mit der maximalen Verschiebung an der Stelle J

verursacht durch $. *)

for J := 1 to Pl do D[J] := (2 * Pl) - J od;

K := Pl; J := Pl + 1;

while K > 0 (* die beiden Muster ueberlappen sich noch *)

do FR[K] := J;

while (J <= Pl) & (Pat[K] # Pat[J])

do D[J] := min(D[J], Pl - K);

J := FR[J]

od;

K := K - 1; J := J - 1;

od;

(* Korrektur, wenn die Muster sich noch ueberlappen ->

Praefix(Pat) = Suffix(Pat). *)

for K := 1 to J do D[K] := min(D[K], Pl - K + J);

end (* Init_D *);

Dieser Algorithmus arbeitet dann nicht korrekt, wenn es mehrere verschieden
lange zueinander passende (Pr�a�x, Su�x)-Paare gibt.

Beispiel:

Text xaaa* *xaa** **xa*** ***x****

^^^^ ^^^ ^^ ^

#=== #== #= #

Muster aaaa aaaa aaaa aaaa

^::: ^:: ^: ^

#=== #== #= #

.aaaa ..aaaa ...aaaaaaaa

S = 1 2 3 4

J = 1 2 3 4

S + Pl - J = 4 4 4 4

10 B. Ziegler { Initialisierung der Verschiebefunktionen

In diesem Fall gilt: D[1; 2; 3; 4] = (4; 4; 4; 4). Init_D in der Version von Knuth
liefert die Vorbelegung D = (7; 6; 5; 4). Die innere Schleife wird nie durchlaufen,
da stets Pat [K] = Pat [J] f�ur jedes Paar (K; J); 1 � K; J � Pl ist. D wird
nur in der Korrekturschleife am Programmende ge�andert. Da K und J synchron
verkleinert werden, gilt unmittelbar vor ihr J = 1, d.h. sie wird genau einmal
durchlaufen und berechnet: D[1] = min(D[1];Pl �J+S) = min(7; 4�1+1) = 4.
Danach ist D = (4; 6; 5; 4), d. h. o�ensichtlich falsch.

Bei der Bestimmung von D berechnet Knuth zun�achst die Funktion FR , die
die passende Verschiebung angibt, wenn Pat [K] = Pat [J] ist. F�ur alle F�alle, bei
denen das nicht galt, ist die korrekte Belegung nachzutragen, d.h. immer dann,
wenn so weit verschoben wurde, da� die Fehlstelle bereits vor dem Muster liegt.
Ist dabei S < Pl, dann gibt es sich �uberlappende (Pr�a�x, Su�x)-Paare, f�ur die
die Verschiebung korrigiert werden mu�. Knuth macht dies nur f�ur das k�urzeste
Paar statt f�ur alle Paare.

Bevor wir den Fehler beheben, soll auf eine Eigenschaft von Init_D hinge-
wiesen werden, die bisher nur in [11] erw�ahnt wurde: Schon beim ersten Zugri�
nach der Vorbelegung wird in D[J] der Endwert eingetragen! Das kann ver-
wendet werden, um ohne die Berechnung des Minimums auszukommen. Dies
sieht man so ein. Es gilt immer FR [J] > J . In der inneren Schleife von Init_D

wird min(D[J];Pl �K) berechnet. K wird in dieser Schleife nicht ge�andert und
au�erhalb von ihr verkleinert, so da� sich Pl �K nur noch vergr�o�ert. Daraus
folgt die Behauptung und folgende Version von Init_D:

Init_D;

(* Vorbelegung *)

for J := 1 to Pl do D[J] := (2 * Pl) od;

K := Pl; J := (Pl+1);

while K > 0

do FR[K] := J;

while (J <= Pl) & (Pat[K] # Pat[J])

do if D[J] = (2 * Pl) then D[J] := Pl - K fi;

J := FR[J]

od,

K := K - 1; J := J - 1;

od;

(* Korrektur fuer alle (Praefix, Suffix)-Paare *)

S := 1;

while K <= Pl

do for J := S to K

do if D[J] = (2 * Pl) then D[J] := K + Pl - J fi od;

S := K + 1; K := FR[K];

od;

end (* Init_D *);

D gibt die Gr�o�e der Zeigerver�anderung auf dem Text an, also Verschiebung
des Musters �uber den Text + R�ucksetzen des Zeigers auf das Muster an das
Musterende. Will man nur die Musterverschiebung berechnen, so ergibt sich:

(D0): D0[J] = D[J]� (Pl � J) : 1 � J � Pl .

In Init_D kommt die Funktion Next nicht vor, weil auf sie nur in dem Fall
Pat [K] 6= Pat [J] zugegri�en w�urde. Dabei gilt F [J] = Next [J]!

Beispiel f�ur FR , D und D0:

5. BoMo, der Algorithmus von Boyer und Moore 11

Index : 1 2 3 4 5 6 7 8 9

Muster: b a b a c b a b a

FR : 6 7 8 9 7 8 9 9 10

D : 13 12 11 10 9 10 4 10 1

D0 : 5 5 5 5 5 7 2 9 1

A0 l�a�t sich einfacher berechnen.

Init_A0;

for B := FirstLetter to LastLetter do A0[B] := Pl od;

for J := 1 to Pl - 1 do A0[B] := Pl - J od;

CShift := A0[Pat[Pl]]; A0[Pat[Pl]] := 0;

end (* Init_A0 *);

CShift gibt den minimalen Abstand > 0 an, den das Zeichen Pat [Pl] vom
rechten Rand hat, wenn es im Muster mehrfach enthalten ist. Dieser Wert wird
in der BoMo-Variante von Horspool [10] verwendet.

Beispiel f�ur A0:

Index : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Muster: e n t g e g e n g e g a n g e n

Pl - J: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B : a e g n t $ CShift = 3

A0[B] : 4 1 2 0 13 16

Hume und Sunday haben in [6] vorgeschlagen, BoMo ausrollbar zu formulie-
ren und auf diese Weise zu beschleunigen. Ausrollbar hei�t: die Schleife darf
(teilweise) durch linearen Code ersetzt werden, womit die Abbruchbedingung
seltener zu �uberpr�ufen ist. Die ausrollbare Version von BoMo sieht so aus:

BoMoUr1; (* BoMo unrollable *)

K := 0; S := Pl;

loop

(*** skip loop ***)

while S # 0 do K := K + S; S := A0[Text[K]] od;

(*** test equal part ***)

K := K - 1; J := (Pl - 1);

while (Text[K] = Pat[J]) & (J > 0)

do K := K - 1; J := J - 1 od;

if J = 0

then (* pattern matched *)

if K >= (Tl - Pl) then (* text exhausted *) exit;

Locout(K + 1); S := (2 * Pl);

else (* no match *)

(*** shift part ***)

S := max(A0[Text[K]], D[J]);

(* shift-function: max(A0, D) *)

fi;

end loop;

end (* BoMoUr1 *);

12 B. Ziegler { Initialisierung der Verschiebefunktionen

Schon Boyer und Moore haben �uberlegt, ob sie die Funktionen A0 und D
nicht zu einer einzigen von zwei Parametern abh�angenden Funktion DD [B; J]
zusammenfassen sollten, um gr�o�ere Verschiebungen zu erhalten. Sie haben dar-
auf verzichtet, nachdem Knuth bewiesen hatte, da� schon D in jedem Fall linea-
res Suchen garantiert. Die Idee wurde erst wieder bei der Suche in Genetischem
Code aufgegri�en und hat sich dort als au�erordentlich e�zient erwiesen [6].

DD l�a�t sich analog zu D so de�nieren:

(DD): DD [B; J] = minfS + (P l � J) j
Pat [J + 1� S ::: Pl � S] = Pat [J + 1 ::: Pl],
Pat [J � S] = Bg :

Pat [J + 1:::Pl] = Text [K0 + J + 1:::Ke],
B = Text [K0 + J].

(DD0): DD0[B; J] = DD [B; J]� (Pl � J) f�ur jedes B und jedes J .

DD und D unterscheiden sich nur im zweiten Teil der De�nitionsbedingung.
Pat [J�S] mu� in DD der sch�arferen Bedingung Pat [J�S] = B = Text [K0+J]
gen�ugen, statt der schw�acheren von D: Pat [J � S] 6= Pat [J].

Init_DD0;

for K := 1 to Pl

do for B := FirstLetter to LastLetter

do DD0[B, K] := Pl od

od;

K := Pl; J := Pl - 1;

while K > 0

do FR[K] := J;

while (J <= Pl) & (Pat[K] # Pat[J])

do if DD0[Pat[K], J] = Pl

then DD0[Pat[K], J] := J - K fi;

J := FR[J]

od;

K := K - 1; J := J - 1;

od;

K := 1;

while K <= Pl

do for T := K to J

do for B := FirstLetter to LastLetter

do if DD0[B, T] = Pl then DD0[B, T] := J fi od;

od;

K := K + 1; J := FR[J];

od;

end (* Init_DD0 *);

6. Der Algorithmus ESS

Die Skip-Schleife wird in BoMo stets dann verlassen, wenn gilt: Text [Ke] =
Pat [Pl]. Danach wird in nat�urlichen Sprachen Test- und Shift-Teil in den mei-
sten F�allen wegen Text [Ke �1] 6= Pat [Pl �1] nur einmal durchlaufen und, nach
einer Reihe zum Teil redundanter Operationen, in die Skipschleife zur�uckgekehrt.
Gelingt es, dort l�anger zu bleiben, so steigt die E�zienz des Algorithmus.

6. Der Algorithmus ESS 13

Horspool hat in [5] gezeigt, da� die Laufzeiten von SPM betr�achtlich sin-
ken, wenn man statt des ersten Zeichens im Muster ein anderes, im Text sel-
tener vorkommendes zuerst testet. Dieses Vorgehen setzt voraus, da� die Zei-
chenh�au�gkeiten im Text wenigstens ann�ahernd bekannt sind, und da� sie sich
deutlich voneinander unterscheiden. Verwendet man in der Skip-Schleife von
BoMo ein anderes als das letzte Zeichen des Musters beim ersten Vergleichs-
schritt, so hat man eine ge�anderte Skip-Funktion zu verwenden. Ihre Werte
werden kleiner. Daher sollte zun�achst gepr�uft werden, ob der Verlust an Ver-
schiebung aufgewogen wird durch den Gewinn, den man erzielt, wenn Test- und
Shift-Teil seltener durchlaufen werden. Wir haben auf diese Art von Verbes-
serung verzichtet, da die Zeichen bei Genetischem Code nahezu gleich h�au�g
auftreten.

Wie schon in der Einleitung gesagt, vergi�t BoMo in der Skip-Schleife nach
jeder Verschiebung die Vorgeschichte und f�ahrt im Zustand

"
wei� nichts\ fort.

Dabei ist durch eine Verschiebung L das Zeichen, das danach zum Text pa�t, und
seine Position im Muster festgelegt. Wird dieser Sachverhalt ber�ucksichtigt, so
l�a�t sich eine im Durchschnitt gr�o�ere Verschiebung berechnen. Au�erdem wird
die Skip-Schleife erst dann verlassen, wenn die beiden letzten Zeichen passen,
wenn also gilt: Pat [Pl � 1 ::: Pl] = Text [Ke � 1 ::: Ke].

Bevor wir die neue, von zwei Parametern abh�angende Skip-Funktion
AA0(B;L) formal de�nieren, soll sie an einem Beispiel mit A0(B) verglichen
werden.

Text Sie waren ihnen dem Vorschlag entgegen den Hang entlang entgegengegangen

^ ^^^ ^^ ^ ^^^^

::: :: ^^^ ^^^^^^^^^^^^^^^^

Muster 1 entgegengegangen ::: :: ::: : :::: :

: ::: :: ::: : :::: :

= #== :: ::: : :::: :

2entgegengegangen :: ::: : :::: :

^:: :: ::: : :::: :

#= ::: : :::: :

3entgegengegangen ::: : :::: :

::: : :::: :

:#: : :::: :

4 ...entgegengegangen: : :::: :

::: : :::: :

#== : :::: :

5 .entgegengegangen : :::: :

^:: : :::: :

#== : :::: :

6entgegengegangen :

::::::::::::::::

================

7entgegengegangen

Nach 14 Textzugri�en ist das Muster entgegengegangen mit A0 und D0 bis
zur Position verschoben, an der es erkannt wird. Dabei kommt es zu folgenden
Verschiebungen: 1. A0[] = 16; 2. D0[14] = 14; 3. D0[15] = 3; 4. A0[e] = 1;
5. D0[14] = 14; 6. D0[13] = 8; 7. Muster wird erkannt.

14 B. Ziegler { Initialisierung der Verschiebefunktionen

Text Sie waren ihnen dem Vorschlag entgegen den Hang entlang entgegengegangen.

^ ^^^ ^^ ^ ^^^^

::: :: : ^^^^^^^^^^^^^^^^

Muster 1 entgegengegangen ::: :: : : :::: :

: ::: :: : : :::: :

= #== :: : : :::: :

2entgegengegangen :: : : :::: :

^:: :: : : :::: :

#== #= : : :::: :

3entgegengegangen : . :::: :

:: : : :::: :

== # : :::: :

4 ...entgegengegangen : :::: :

: : : :::: :

= = : #=== :

5entgegengegangen :

::::::::::::::::

================

6entgegengegangen

Hier ist mit AA0 und D0 die Endposition bereits nach 11 Textzugri�en erreicht.
Dabei wird so verschoben: 1. AA0[; 16] = 16; 2.D0[14] = 14; 3. AA0[a;�1] = 3;
4. AA0[e; 4] = 15; 5. D0[13] = 8; 6. Muster wird erkannt.

Die Skip-Schleife l�a�t sich besonders e�zient implementieren, wenn die Skip-
Funktion nicht die Verschiebung des Musters, sondern die �Anderung des Ver-
weises auf den Text angibt. Die beiden sind nur dann voneinander verschieden,
wenn Text [Ke] und Pat [Pl] gepa�t haben. Danach wird Text [Ke � 1] mit
Pat [Pl �1] verglichen. Der Verweis bewegt sich r�uckw�arts, das Muster ver�andert
seine Position nicht. Passen in dieser Situation die Zeichen nicht, so mu� dieses
R�ucksetzen ausgeglichen werden, so da� die Verweis�anderung um eins gr�o�er ist
als die Verschiebung des Musters und den Wert Pl + 1 erreichen kann.

Text **************an******************

^::::

#= :

Muster entgegengegangen :

== :

...entgegengegangen

Wie oben erw�ahnt, soll AA0 eine Funktion sein, die es erlaubt, die Skip-
Schleife auszurollen. Deshalb mu� ihr Wert stets dann 0 sein, wenn die beiden
letzten Zeichen des Musters passen. Diese Situation kann auf zwei Wegen erreicht
werden: Zuerst wird Pat [Pl] als passend erkannt und danach Pat [Pl � 1], oder
die Reihenfolge ist umgekehrt. Abh�angig vomWeg zeigt der Verweis auf verschie-
dene Stellen im Text. Der Verschiebung 0 ist aber nicht anzusehen, auf welchem
Weg sie erreicht wurde. Deshalb haben wir den ersten Fall, in dem das letzte
Zeichen zuerst als passend erkannt wurde, auf den zweiten Fall zur�uckgef�uhrt,
allerdings auf Kosten eines zus�atzlichen redundanten Textzugri�s auf Text [Ke].

Jetzt l�a�t sich AA0(B;L) de�nieren. Dabei ist B das zuletzt aufgedeckte
Zeichen, L die unmittelbar vorausgegangene Verweis�anderung:

6. Der Algorithmus ESS 15

(AA0):

AA0(B;L)

= minfS j Pat [Pl � S] = B;
Pat [(Pl � L)� S] = Pat [Pl � L]g :
B 6= Pat [Pl], 1 � L � Pl ;
B = Text [Ke].
Die Zeichen B und Pat [Pl � L] m�ussen auch nach der Verschiebung
um S passen. Ist der Index von Pat kleiner 1, so sind die dadurch
angesprochenen Zeichen Joker.

= �1 : B = Pat [Pl]; L > 1:
Das aufgedeckte Zeichen pa�t ohne Verschiebung.

= 0 : B = Pat [Pl]; L = 0; 1:
Die beiden letzten Zeichen passen. AA0(B; 0) wird nur in einer aus-
gerollten Skip-Schleife angesprochen. Bei L = 0 ist dabei aber immer
B = Pat [Pl].

= minfS j B = Pat [Pl � S];
Pat [(Pl � L)� S] = Pat [Pl � L]g+ 1 :
B 6= Pat [Pl � 1]; L = �1;
B = Text [Ke � 1]:
Text [Ke] hat gepa�t, Text [Ke � 1] pa�t nicht!

= 1 : B = Pat [Pl � 1]; L = �1;
B = Text [Ke � 1]:
Zuerst hat das letzte Zeichen gepa�t, erst danach das vorletzte; jetzt
wird die Reihenfolge umgedreht.

AA0(B;Pl + 1) = AA0(B;Pl) f�ur jedes zul�assige B. Das Muster wurde �uber
alle Aufdeckstellen hinweggeschoben.

Berechnet man dieser De�nition entsprechend die Skip-Funktion AA0 zum
Muster entgegengegangen, so erh�alt man folgende Tabelle:

Tab. 1. Funktionswerte von AA0 f�ur das Muster entgegengegangen

� � � � �

L 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 �1

B e n t g e g e n g e g a n g e n e

n �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 0 0 17

e 1 1 1 6 6 6 6 6 6 6 9 9 11 15 11 15 15 1

g 2 2 2 2 5 5 5 2 2 10 5 5 2 12 5 5 5 17

a 4 4 4 4 4 4 4 4 16 16 16 16 16 16 16 16 16 4

t 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 16 16 17

$ 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17

16 B. Ziegler { Initialisierung der Verschiebefunktionen

Wie man leicht sieht, gilt stets: AA0(B;S) � A0(B) f�ur jedes S und jedes B,
B 6= Pat [Pl]. Das hei�t, AA0 verschiebt nie weniger als A0. Au�erdem wird
die Skip-Schleife seltener verlassen. Allerdings mu� auf ein zweidimensionales
Feld zugegri�en werden, dessen Ansteuerung l�anger dauern kann als die des
eindimensionalen. Die mit

"
�\ gekennzeichneten Spalten der Tabelle werden

nie erreicht, wenn nur Verschiebungen aus AA0 verwendet werden.
Im allgemeinen steigt der Aufwand zur Berechnung der vollst�andigen Ma-

trix AA0 mit O(Pl 2). Bei langen Mustern und kleinen Alphabeten, etwa bei
Genetischem Code, wird in der Skip-Schleife nur ein Teil der Werte von AA0
verwendet. Wir beschr�anken uns hier darauf, nur diese zu berechnen.

AA0 kann man als einen endlichen Automaten au�assen, bei dem die Iden-
ti�kationsnummern der Zust�ande so geschickt gew�ahlt wurden, da� sie auch als
Verschiebungen des Textzeigers interpretiert werden d�urfen. Es ergibt sich die
BoMo-Variante ESS .

ESS (* BoMo unrollable *);

Ke := 0; S := Pl;

loop

while S # 0 do Ke := Ke + S; S := AA0[Text[Ke], S] od;

J := (Pl - 2); K := Ke - 2;

while Text[K] = Pat[J] & J > 0

do K := K - 1; J := J - 1 od;

if J = 0

then (* pattern matched *)

if K >= (Tl - Pl) then (* text exhausted -> *) exit fi;

Locout(K + 1); Ke := Ke + Pl;

else (* no match *)

Ke := Ke + DD0[Text[K], J]

fi;

S := AA0[Text[Ke], Pl];

end loop;

end (* ESS *);

In dieser Version darf f�ur DD0 jede andere zul�assige Verschiebefunktion ste-
hen. Dabei wird allerdings Information nach der Verschiebung vergessen.

7. Init AA0

In diesem Kapitel wird die Initialisierung von AA0 detailliert beschrieben.
Dazu ist es notwendig, Begri�e einzuf�uhren, die entweder die Beschreibung von
Init_AA0 vereinfachen oder seine E�zienz steigern. Hier werden die Variablen
in der Schreibweise eingef�uhrt, in der sie sp�ater im Programmtext vorkommen.
Da unser PASCAL-Compiler nur Integer-Variable als Indizes zul�a�t, mu�ten
wir mit den Funktionen ord (Zeichen) und chr (Integer) arbeiten. Auf diese Um-
wandlungen wird bei der Beschreibung der Programmbedeutung verzichtet.

Weg durch das Muster. Wir verstehen unter dem Weg eines Zeichens B durch
das Muster die Folge von Positionen in InvPat , an denen B steht.
Dabei ist f�ur alle Zeichen die Position Pl , an der in InvPat ein Joker
@ steht, das Ende des Weges, d. h. jeder Weg hat eine Richtung. Der
Weges beginnt an der durch A0[B] festgelegten Stelle.

7. Init AA0 17

Beispiel des Weges von e durch entgegengegangen:

16

@

15

e

14

n

13

t

12

g

11

e

10

g

9

e

8

n

7

g

6

e

5

g

4

a

3

n

2

g

1

e

0

n

6� 6� 6� 6� 6� 6� A0[e]

Weg(e, entgegengegangen) = (1, 6, 9, 11, 15, 16).

InvPat [0 ::: Pl � 1] = Pat [Pl :::1] enth�alt das Muster invers, d.h. seitenver-
kehrt beim Index 0 beginnend. Der Index von InvPat gibt den Ab-
stand des entsprechenden Zeichens vom rechten Musterrand an. Die-
ser mu� nicht mehr eigens berechnet werden. InvPat ist so dimensio-
niert, da� noch zus�atzliche Zeichen, z.B. als Bremsen, eingef�ugt werden
k�onnen.

PatAlpha [0 ::: LL] enth�alt das Alphabet aller im Muster vorkommenden Zei-
chen. F�ur jedes dieser Zeichen mu� zu jedem Zustand ein Folgezustand
berechnet werden. Wird an der Stelle Text [Ke] das Zeichen Pat [Pl]
aufgedeckt, so pa�t dieses immer. Der Folgezustand steht ohne Ver-
schiebung fest, so da� er nie auf dem Weg von Pat [Pl] durch das
Muster gesucht werden mu�. Wir speichern Pat [Pl] an der festen
Stelle PatAlpha [0], so da� sich ein �uber
�ussiger Zugri� auf Pat [Pl]
in PatAlpha leicht vermeiden l�a�t.

LL+ 1 ist die Zahl der Zeichen dieses Alphabets. Alle Zeichen, die nicht im
Muster vorkommen, bewirken in allen Zust�anden des Automaten AA0
die maximale Verschiebung Pl . Diese wird als Voreinstellung verwen-
det. Nur f�ur die Zeichen in PatAlpha m�ussen zu jedem erreichbaren
Zustand die Folgezust�ande ermittelt werden.

PatPath [0 ::: Pl] enth�alt f�ur jedes Zeichen aus PatAlpha dessen Weg durch das
Muster.
Beispiel zu PatPath :

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ e n t g e g e n g e g a n g e n

17 16 16 16 16 15 12 11 14 10 9 7 16 8 5 6 3

Die Bedingung, da� zwei gegebene Zeichen mit festem Abstand L von-
einander zum Muster passen, l�a�t sich e�zient pr�ufen, indem man den
Weg des einen durch das Muster geht und testet, ob das andere im
Abstand L im Muster liegt.

UsedCol [�] enth�alt die Nummern der Zust�ande, die in AA0 aufgenommen wer-
den m�ussen. Zu jedem Zustand in UsedCol werden alle Folgezust�ande
ermittelt und, wenn n�otig, dort hinzugef�ugt.

IsInAA0[S] gibt an, ob der Zustand S schon in UsedCol eingetragen wurde
(true) oder nicht (false). Dies steigert die E�zienz, weil ein und
derselbe Zustand Folgezustand mehrerer verschiedener Zust�ande sein
kann.

Im folgenden werden nicht auf Anhieb einsichtige Programmteile von
Init_AA0 besprochen. Das komplette lau��ahige PASCAL-Quellprogramm steht
im Anhang.

18 B. Ziegler { Initialisierung der Verschiebefunktionen

7.1. Initialisierung von A0, InvPat, IsInAA0, PatPath und PatAlpha

LL := -1; (* LL: Zahl der Zeichen in PatAlpha *)

DS := Pl; (* Index von InvPat == Abstand vom Rand *)

for J := 1 to Pl - 1

do B = Pat[J];

DS := DS - 1;

InvPat[DS] := B; (* InvPat[Pl-J] := Pat[J] *)

IsInAA0[DS]:= false;

PatPath[DS]:= A0[B]; (* Weg wird von seinem Ende her erzeugt, -> Verweis auf

direkten Nachfolger *)

if A0[B] = Pl (* true -> Zeichen B wurde noch nicht angesprochen *)

then LL := LL + 1;

PatAlpha[LL] := B (* PatAlpha + B *)

fi;

A0[B] := DS; (* verzoegerte Uebernahme des Abstands Pl - J *)

od;

InvPat[0] := Pat[Pl];

Wenn, was bei Genetischem Code h�au�g der Fall sein d�urfte, alle Zeichen des
Textalphabets auch im Muster vorkommen, kann PatAlpha einfacher initialisiert
werden (wie, lieber Leser?).

A0[B] wird hier nur verwendet, weil es eindimensional ist, man k�onnte es
durch AA0[B;Pl] substituieren.

Beispiel zur Erzeugung von PatPath :

Index :

Muster :

DS :

PatPath:

0

@

1

e

2

n

3

t

4

g

5

e

6

g

7

e

8

n

9

g

10

e

11

g

12

a

13

n

14

g

15

e

16

n

16

16

15

16

14

16

13

16

12

16

11

15

10

12

9

11

8

14

7

10

6

9

5

7

4

16

3

8

2

5

1

6

0

3

6��

A0[a] : 16 4 4

6

��

6

��

6

��

6

��

6

��

A0[e] : 16 15 11 9 6 1 1

6

��

6

��

6

��

6

��

6

��

A0[g] : 16 12 10 7 5 2 2

6

��

6

��

6

��

6

��

A0[n] : 16 14 8 3 0

6

��

A0[t] : 16 13 13

Schritt Nr.: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Die Belegung von PatPath bricht beim (Pl � 1){ten Schritt ab. In A0[Pat [Pl]]
steht CShift . Der Schritt Pl wird nachgeholt.

CShift := A0[Pat[Pl]]; A0[Pat[Pl]] := 0;

PatPath[0] := CShift; PatPath[Pl] := PatPath[Pl+1] := Pl + 1;

(* Garantieren, dass PatAlpha[0] = Pat[Pl] ist. *)

PatAlpha[Pl+1] := Pat[Pl]; (* Bremse *)

J := 0;

while PatAlpha[J] # Pat[Pl] do J := J + 1 od;

PatAlpha[0] :=: PatAlpha[J]; (* Pat[Pl] war noch nicht in PatAlpha *)

if J > LL then LL := LL + 1;

7. Init AA0 19

7.2. Belegen der Spalten Pl+ 1, Pl, Pl� 1 und 0

Die Zust�ande Pl +1, Pl und Pl � 1 f�uhren zu den gleichen Verschiebungen wie
bei A0 und werden genauso berechnet.

for B := FirstLetter to LastLetter

do AA0[B, PL+1] := AA0[B, Pl] := AA0[B, Pl-1] := A0[B, Pl-1] od;

AA0[Pat[Pl], Pl+1] := AA0[Pat[Pl], Pl] := AA0[Pat[Pl], Pl-1] := -1;

(* Das letzte Zeichen passt: Pat[Pl] = Text[Ke] *)

Die Spalte Pl � 1 wird bereits belegt, weil sie hier einfach zu berechnen ist.

AA0[Pat[Pl], 0] := 0;

Der Zustand 0 wird nur �uber den Zustand 1 (Pat [Pl � 1] = Text [Ke � 1])
erreicht, wenn Pat [Pl � 1 :::Pl] = Text [Ke � 1 ::: Ke] ist. Danach �andert sich
der Zeiger Ke auf den Text nicht mehr. Die Operationen in der ausgerollten
Skip-Schleife sind:

S := AA0[Text[Ke], 1] == S := AA0[Pat[Pl], 1] == 0;

Ke: = Ke + S == Ke + 0;

S := AA0[Text[Ke], S] == AA0[Pat[Pl], 0] == 0;

Ke := Ke + S == Ke + 0; ...

Deshalb kann der Rest der Spalte 0 leer bleiben.

for J := 1 to LL

do S := A0[PatAlpha[J]];

UsedCol[SMax+J] := S; IsInAA0[S] := true;

od;

SMax := SMax + LL;

IsInAA0[Pl+1] := IsInAA0[Pl] := IsInAA0[Pl-1] := true;

Alle Folgezust�ande des Anfangszustands Pl wurden in UsedCol aufgenommen
und als schon bekannt in IsInAA0 markiert.

7.3. Berechnung der Folgezust�ande aller Zust�ande in UsedCol

Wenn der Zustand L erreicht wird, gilt nach der Verschiebung des Musters
InvPat [L] = Text [K0 + Pl � L]. Von L ausgehend wird dem Weg S von
Z = InvPat [L] durch InvPat gefolgt. Die Folgezust�ande werden durch die im
Abstand L rechts vom Weg liegenden Zeichen InvPat [S � L] bestimmt. Sind
auf dem Weg alle Zeichen von PatAlpha angesprochen worden, so bricht das
Verfahren ab; wenn nicht, dann wird von InvPat [P l�L] bis zum Musteranfang
nach den restlichen Zeichen von PatAlpha gesucht. Sp�atestens an der Stelle
InvPat [P l] = @ werden die letzten gefunden.

Die Berechnung der Folgezust�ande eines Zustands L beginnt mit der Vor-
belegung der Spalte L mit der maximalen Verschiebung Pl . AA0[B;L] 6= Pl

bedeutet also: zum Zeichen B wurde der Folgezustand schon gefunden.

Beispiel: entgegengegangen, Folgezust�ande von Zustand 2

16

@

15

e

14

n

13

t

12

g

11

e

10

g

9

e

8

n

7

g

6

e

5

g

4

a

3

n

2

g

1

e

0

n

6� 6� 6� 6� 6� 6� A0[g]

Weg von 2 beginnend und Zeichen im Abstand 2: (2,n; 5,n; 7,g; 10,n; 12,g; 16,n)

20 B. Ziegler { Initialisierung der Verschiebefunktionen

Es gibt die Folgezust�ande zu (2,n) ! �1; (7,g) ! 5. Es fehlen noch die
Folgezust�ande zu den Zeichen a, e und t. Zwischen 14 und 16 wird nur das
Zeichen e gefunden, der Folgezustand ist 15. F�ur a und t bleibt die maximale
Verschiebung 16 bestehen.

SC := 0; (* Zeiger auf den Zustand, dessen Folgezustaende

gesucht werden *)

while SC < SMax (* es gibt noch unbehandelte Zustaende *)

do SC := SC + 1;

S := UseCol[SC]; (* aktueller Zustand *)

B := InvPat[S]; (* zu S gehoerendes Musterzeichen *)

for B := FirstLetter to LastLetter do AA0[B, S] := Pl;

AA0[Pat[Pl], S] := -1;

(* Weg von B ab S durch das Muster *)

NextS := PatPat[S]; (* naechste Station auf dem Weg *)

LB := 0; (* LB = LL -> alle Zeichen aus PatAlpha gefunden *)

while (NextS <= Pl) & (LB < LL) (* NextS > Pl -> Ende des Wegs erreicht *)

do DS := NextS - S (* Index des moeglichen Folgezustands *)

DB := InvPat[DS]; (* Zeichen das den Folgezustand erzeugt *)

if AA0[B, S] >= Pl

then (* Folgezustand zu B noch nicht in AA0 eingetragen. *)

AA0[B, S] := DS;

LB := LB + 1;

if not IsInAA0[DS]

then (* Folgezustand in UsedCol eintragen *)

SMax := SMax + 1; UsedCol[SMax] := DS;

IsInAA0[DS] := true;

fi

fi;

NextS := PatPath[NextS]; (* naechste Station auf dem Weg *)

od; (* Am Ende des Weges angelangt *)

(* Folgezustaende noch nicht gefundener Zeichen aus PatAlpha *)

DS := Pl + 1 - S;

while (DS < Pl) & (LB <= LL)

do DB := InvPat[DS];(* Zeichen das den Folgezustand erzeugt *)

if AA0[B, S] >= Pl

then (* Folgezustand zu B noch nicht in AA0 eingetragen. *)

AA0[B, S] := DS;

LB := LB + 1;

if not IsInAA0[DS]

then (* Folgezustand in UsedCol eintragen *)

SMax := SMax + 1; UsedCol[SMax] := DS;

IsInAA0[DS] := true;

fi

fi;

DS := DS + 1; (* naechste Station auf dem Weg *)

od; (* Am Ende des Weges angelangt *)

AA0[Pat[Pl], 1] := 0;(* Die beiden letzten Zeichen passen. *)

end (* Init_AA0 *)

7. Init AA0 21

Literatur

1. Baeza-Yates, Ricardo A.: Improved string searching. Software - Practice and Experience

19.3, 257 - 271 (1989).

2. Baeza-Yates, Ricardo A.: String searching algorithms revisited. Lecture Notes in Comp.

Sci. 382, Springer-Verlag (1989).

3. Baeza-Yates, Ricardo A.; Krogh, Fred T.; Ziegler, Bernhard; Sibbald, Peter R.; Sun-

day, Daniel M.: Notes on a very fast substring search algorithm. In <Technical

Correspondence> Comm. ACM 35.4, 132 - 137 (1992).

4. Boyer, Robert S.; Moore, J. Strother: A fast string search algorithm. Comm. ACM 20.10,

762 - 772 (1977).

5. Horspool, R. Nigel: Practical fast searching in strings. Software - Practice and Experience

10.8, 501 - 506 (1980).

6. Hume, Andrew; Sunday, Daniel: Fast string searching. Software - Practice and Experience

21.11, 1221 - 1248 (1991).

7. Knuth, Donald E.; Morris, James H.; Pratt, Vaugham R.: Fast pattern matching in

strings. SIAM J. Comput. 6.2, 323 - 350 (1977).

8. Smith, P. D.: Experiments with a very fast substring search algorithm. Software - Practice

and Experience 21.10, 1065 - 1074 (1991).

9. Sunday, Daniel M.: A very fast substring search algorithm. Comm. ACM 33.8, 132 - 142

(1990).

10. Ziegler, Bernhard: QuickSearch { Ein schneller Algorithmus zur Mustersuche in Texten.

Report Nr. 1993/14 (Dezember 1993). Inst. f�ur Informatik, Breitwiesenstr. 20-22,

D-70565 Stuttgart.

11. Ziegler, Bernhard: Anmerkungen zu einem Algorithmus von Knuth. Bericht Nr. 1/82

(1982). Inst. f�ur Informatik, Azenbergstr. 12, D-7000 Stuttgart.

22 B. Ziegler { Initialisierung der Verschiebefunktionen

A. Anhang

procedure INIT_AA0_nackt; (*** == entkoppelt von Shift-Funktionen ***)

(* Globale Groessen:

Import:

PL : Musterlaenge,

MAXPL : groesste zulaessige Musterlaenge: integer;

FIRSTLETTER: Index des ersten,

LASTLETTER : des letzten Zeichens im Alphabet: char;

Export:

LPAT : == PAT[PL]: char;

CSHIFT, CCSHIFT:

invariante Verschiebung im Shift-Teil: integer;

AAO[B,S] : Skip-Tabelle: B in Alphabet, -1 <= S <= PL + 1.

*)

const Nabla = '%'; (* Repraesentant fuer alle nicht

im Muster vorkommenden Zeichen. *)

type AlphaRange = FIRSTLETTER..LASTLETTER;

PATRange = 0..MAXPL;

var InvPAT : array[PATRange] of char;

(* inverses Muster,

InvPAT[0] = PAT[PL], ... ,

InvPAT[PL] = '%' ! *)

PATPath : array[PATRange] of integer;

(* enthaelt zu jedem Zeichen

den zugehoerenden Weg durch

das Muster *)

InvPATPath : array[PATRange] of integer;

PATAlpha : array[PATRange] of char;

(* Alphabet der Zeichen im Muster *)

IsInAA0 : array[PATRange] of Boolean;

(* true == Spalte wird verwendet. *)

UsedCol : array[PATRange] of integer;

(* enthaelt die Spaltennummern *)

A0 : array[AlphaRange] of integer;

(* Skip-Funktion von BoMo *)

LPAT1, (* == PAT[PL-1] *)

B, DB : char;

PLp1, PLm1, (* Invariante: PL + 1, PL - 1 *)

LL, (* /PATAlpha/ - 1 *)

S, DS, NextS, S0,

(* Positionen auf Wegen durch PAT *)

SMax, (* Zahl der Spalten in UsedCol *)

SC, (* Zeiger auf UsedCol *)

A. Anhang 23

LB, (* Gibt an, zu wieviel Zeichen S

gefunden wurde *)

J, JB : integer;

procedure Drucke_PATPath;

var J: integer;

begin writeln('begin PATPath');

for J := PL + 1 downto 0 do write(J:2, ' '); writeln;

for J := PL + 1 downto 0 do write(InvPAT[J]:2, ' '); writeln;

for J := PL + 1 downto 0 do write(PATPath[J]:2, ' '); writeln;

writeln('end PATPath');

end (* Drucke_PATPath *);

procedure Drucke_UsedCol;

var J: integer;

begin writeln('begin UsedCol');

for J := PL + 1 downto 0 do write(J:2, ' '); writeln;

for J := PL + 1 downto 0 do write(InvPAT[J]:2, ' '); writeln;

for J := PL + 1 downto 0 do write(UsedCol[J]:2, ' '); writeln;

for J := PL + 1 downto 0

do if IsInAA0[J] then write(' t ') else write(' f '); writeln;

writeln('end UsedCol'); readln;

end (* Drucke_PATPath *);

begin

(*** Belegung der Invarianten ***)

PLp1 := PL + 1;

PLm1 := PL - 1;

LPAT1 := PAT[PLm1];

LPAT := PAT[PL]; (*++ ZF_I := ZF_I+2; ++*)

(*** Berechnung von A0, InvPAT, PATPath, PATAlpha,

CCSHIFT, CSHIFT, LL ***)

LL := -1;

InvPAT[PL+1] := Nabla;

PAT[0] := LPAT; (* => PATAlpha[0]=PAT[PL]

wird garantiert! *)

(*++ ZF_I := ZF_I+2; ++*)

for JB := FIRSTLETTER to LASTLETTER do A0[JB] := PL;

ZF_I := ZF_I + (LASTLETTER-FIRSTLETTER+1);

DS:= PL;

for J := 1 to PLm1

24 B. Ziegler { Initialisierung der Verschiebefunktionen

do begin B := PAT[J];

JB := ord(B);

DS := DS - 1;

InvPAT[DS] := B; (* Muster umgedreht *)

IsInAA0[DS] := false; (* Spalte DS noch nicht in AA0 *)

PATPath[DS] := A0[JB]; (* Verweis auf direkten

Nachfolger auf dem Weg *)

if A0[JB] = PL

then begin (* Zeichen noch nicht im

Alphabet, einsetzen! *)

LL := LL + 1;

PATAlpha[LL] := B; (*++ ZF_I := ZF_I+1; ++*)

end (* if *);

A0[JB] := DS; (*++ ZF_I := ZF_I+6; ++*)

end (* for J := 1 to PLm1 *);

CSHIFT := A0[ord(LPAT)];

A0[ord(LPAT)] := 0;

PATPath[0] := CSHIFT;

PATPath[PL] := PLp1;

PATPath[PLp1] := PLp1;

InvPAT[0] := LPAT;

PATAlpha[LL+1] := LPAT; (* Bremse in PATAlpha *)

(*++ ZF_I := ZF_I+7; ++*)

(* PATAlpha <= LPAT *)

J := 0; (*++ ZF_I := ZF_I+1; ++*)

while PATAlpha[J] <> LPAT

do begin J := J+1; (*++ ZF_I := ZF_I+1 ++*)

end;

if J > LL then LL := J;

PATAlpha[J] := PATAlpha[0];

PATAlpha[0] := LPAT; (* Vertausche *)

(*++ ZF_I := ZF_I+3; ++*)

(*++ Drucke_PATPath ++*);

(*++ Begin: Nach Test oder Drucke_AA0 wegwerfen! ++*)

for J := 0 to PL + 1

do begin UsedCol[J] := 0;

for JB := FIRSTLETTER to LASTLETTER do AA0[JB,J] := -99;

end;

(*++ End: Nach Test oder Drucke_AA0 wegwerfen! ++*)

(*** Die Spalten S = 0, PL, PL + 1 belegen. ***)

for JB := FIRSTLETTER to LASTLETTER

do begin S := A0[JB]; (*++ ZF_I := ZF_I+1; ++*)

AA0[JB,PLp1] := S;

AA0[JB,PL] := S; (*++ ZF2_I := ZF2_I+2; ++*)

A. Anhang 25

end (* od *);

AA0[ord(LPAT),PLp1] := -1;

AA0[ord(LPAT),PL] := -1;

AA0[ord(LPAT),0] := 0; (*++ ZF2_I := ZF2_I+3; ++*)

(*** UsedCol mit den Verschiebungen von A0 belegen ***)

for J := 1 to LL

do begin S := A0[ord(PATAlpha[J])];

IsInAA0[S] := true;

UsedCol[J] := S;

end (* od *);

SMax := LL; (*++ ZF_I:= ZF_I+4*LL; ++*)

(*** Vorbelegung der Spalte -1 ***)

(*++ ZF_I := ZF_I+1; ++*)

if PAT[1] = LPAT

then for JB := FIRSTLETTER to LASTLETTER do AA0[JB,-1] := PL

else for JB := FIRSTLETTER to LASTLETTER do AA0[JB,-1] := PLp1;

(*++ ZF2_I:= ZF2_I +

(-FIRSTLETTER + LASTLETTER +1); ++*)

AA0[ord(LPAT1),-1] := 1; (* (PAT[PL], PAT[PL-1])

=> (PAT[PL-1], PAT[PL]) *)

(*++ ZF2_I := ZF2_I+1; ++*)

InvPAT[PL] := LPAT1; (* wegen InvPAT[DS] = PAT[PL-1]? *)

(*++ ZF_I := ZF_I+1; ++*)

(*** Korrektur von Spalte -1 und PATPath ***)

NextS := CSHIFT;

S := -1;

LB := 0;

while (NextS < PL) and (LB < LL)

do begin

DS := NextS - S; (* Abstand zwischen Ausgangsposition

und aktueller Position *)

(* == Verschiebung des Musters *)

DB := InvPAT[DS]; (* aufgedecktes Zeichen,

bestimmt die Verschiebung *)

(*++ ZF_I:= ZF_I+1; ++*)

(*++ ZF2_I:= ZF2_I+1; ++*)

if AA0[ord(DB),S] >= PL

then begin AA0[ord(DB),S] := DS;

(* nur einmal belegen *)

(*++ ZF2_I:= ZF2_I+1; ++*)

(*++ ZF_I:= ZF_I+1; ++*)

LB := LB + 1;

if not IsInAA0[DS]

26 B. Ziegler { Initialisierung der Verschiebefunktionen

then begin SMax := SMax + 1;

UsedCol[SMax] := DS;

(*++ ZF_I:= ZF_I+2; ++*)

IsInAA0[DS] := true; (* Spalte DS ist zu belegen *)

end (* if not IsInAA0[DS] *);

end (* if AA0[DB,S] >= PL *);

NextS := PATPath[NextS];

(*++ ZF_I:= ZF_I+1; ++*)

end; (* while do*)

(*++ Drucke_PATPath; ++*)

(*++ DRUCKE_AA0; ++*)

(*** Initialisierung des Kerns von AA0, d.h. der Spalten

1 bis PL - 2. ***)

(*** if CSHIFT = 1 then SC := 0 else ***)

SC := 0;

while SC < SMax

do begin SC := SC + 1;

S := UsedCol[SC]; (* ansteuerbare Spalte *)

B := InvPAT[S]; (* zur Verschiebung S

gehoerendes Zeichen *)

(*++ ZF_I:= ZF_I+2; ++*)

for JB := FIRSTLETTER to LASTLETTER do AA0[JB,S] := PL;

AA0[ord(LPAT),S] := -1; (* Text[Ke] = PAT[PL] *)

(*++ ZF2_I := ZF2_I +

(LASTLETTER-FIRSTLETTER+2); ++*)

(*** Zunaechst dem an der Stelle S beginnenden Weg

durch PAT folgen. ***)

NextS := PATPath[S]; (* naechste Station auf dem Weg *)

LB := 0;

(*++ ZF_I:= ZF_I+1; ++*)

while (NextS <= PL) and (LB < LL)

do begin DS := NextS - S;

(*++ Drucke_PATPath; ++*)

(* Abstand zwischen Ausgangsposition

und aktueller Position *)

(* == Verschiebung des Musters *)

DB := InvPAT[DS]; (* aufgedecktes Zeichen,

bestimmt die Verschiebung *)

(*++ ZF_I:= ZF_I+1; ++*)

(*++ ZF2_I:= ZF2_I+1; ++*)

if AA0[ord(DB),S] >= PL

then begin AA0[ord(DB),S] := DS; (* nur einmal belegen *)

(*++ ZF_I:= ZF_I+1; ++*)

(*++ ZF2_I:= ZF2_I+1; ++*)

LB := LB+1;

if not IsInAA0[DS]

then begin SMax := SMax + 1;

A. Anhang 27

UsedCol[SMax] := DS;

IsInAA0[DS] := true; (* Spalte DS ist zu belegen *)

ZF_I:= ZF_I+2;

end (* if not IsInAA0[DS] *);

end (* if AA0[DB,S] >= PL *);

NextS := PATPath[NextS];

(*++ ZF_I:= ZF_I+1; ++*)

end (* while NextS <= PL *);

(* AA0[.,S] belegt fuer alle von S erreichbaren Positionen. *)

(*++ Drucke_UsedCol; ++*)

(*** AA0[.,S] belegen fuer alle nicht auf dem Weg S

angesprochenen Zeichen. ***)

DS := PLp1 - S;

while (LB < LL) and (DS <= PL)

do begin

DB := InvPAT [DS]; (* nicht zu jedem DB ein S gefunden *)

(*++ ZF_I:= ZF_I+1; ++*)

(*++ ZF2_I:= ZF2_I+1; ++*)

if AA0[ord(DB),S] >= PL

then begin (* Zeichen gilt als

noch nicht angesprochen *)

AA0[ord(DB),S] := DS;

(*++ ZF2_I:= ZF2_I+1; ++*)

LB := LB + 1;

(*++ ZF_I:= ZF_I+1; ++*)

if not IsInAA0[DS]

then begin SMax := SMax + 1;

UsedCol[SMax] := DS;

IsInAA0[DS] := true; (* Spalte DS ist zu belegen *)

(*++ ZF_I:= ZF_I+2; ++*)

end (* if not IsInAA0[DS] *);

end (* if AA0[DB,S] >= PL *);

DS := DS + 1;

end (* while LB < LL *);

end (* while SC < SMax *);

AA0[ord(LPAT),1] := 0; (* PAT[PL-1...PL] passt,

Textzeiger = Ke! *)

(*++ ZF2_I:= ZF2_I+1; ++*)

(*++ Drucke_UsedCol; ++*)

(*++ DRUCKE_ASAA0; ++*)

(*++ DRUCKE_AA0; ++*)

end (* INIT_AA0_nackt *);

