Initialisierung der Verschiebefunktionen zur
Mustersuche in Texten

Bernhard Ziegler

Institut fiir Informatik, Universitdt Stuttgart
Breitwiesenstr. 20-22, D-70565 Stuttgart
Telefax: 0711/7816-370

E-mail: bziegler@informatik.uni-stuttgart.de

Zusammenfassung. Die schnellsten Algorithmen zur Mustersuche in Texten
sind Varianten des genialen Algorithmus BoMo von Boyer und Moore. Wenn Text
und Muster nicht zusammenpassen, verwendet BoMo Tabellen, um die gréfiten
zuléssigen Verschiebungen zu ermitteln. Eine effiziente Berechnung dieser Ta-
bellen wurde von Knuth angegeben.

Hier wird sowohl auf die den Algorithmen KMP von Knuth, Morris und Pratt,
BoMo und ESS zugrundeliegenden Ideen eingegangen, als auch die Implementie-
rung ihrer Verschiebetabellen detailliert beschrieben.

Schliisselworter: Wortsuche, Mustererkennung, Boyer-Moore

Summary. The fastest known algorithms for pattern matching in strings are
derivatives of the ingenious algorithm BoMo of Boyer and Moore. On mismatch
tables are used by BoMo to ascertain the largest possible pattern shifts. An effi-
cient scheme of computing these tables was given by Knuth.

In this report we recapitulate the key ideas underlying the algorithms KMP of
Knuth, Morris and Pratt, BoMo, and ESS, as well as presenting the implementa-
tion of their shift tables in detail.

Key words: String Searching, Pattern Matching, Boyer-Moore

Computing Reviews Classification: F.2.2, H.3.3

1. Einleitung

Die Mustersuche in Texten ist nach wie vor eine bedeutende Aufgabe der Da-
tenverarbeitung. Wir haben in [10] einen Algorithmus ESS vorgestellt, der bei
Genetischem Code die schnellsten Varianten von BoMo, einem von Boyer und

2 B. Ziegler — Initialisierung der Verschiebefunktionen

Moore in [4] publizierten Algorithmus, bis zu einem Faktor 3 tibertrifft. Die In-
itialisierung der Verschiebefunktion AA0 von ESS (Effiziente String Suche) ist
umfangreich. Da in [10] nicht darauf eingegangen wurde, soll sie hier darge-
stellt werden. Wir beschreiben aber nicht nur allein die Initialisierung von AAOQ,
sondern beschéftigen uns mit allen Verschiebefunktionen der angegebenen Mu-
stersuchalgorithmen.

Im Abschnitt ,Nomenklatur“ wird die verwendete Notation eingefiihrt. Im
Kapitel ,,Bausteine der Algorithmen zur Mustersuche in Texten“ wird am Bei-
spiel des naiven Algorithmus SPM gezeigt, wie man die verschiedenen Suchver-
fahren aus geeigneten voneinander (in den meisten Féllen) unabhingigen Bau-
steinen zusammensetzen kann.

In den drei sich anschliefenden Kapiteln werden die Algorithmen KMP von
Knuth, Morris und Pratt [7], BoMo von Boyer und Moore [4] und ESS von Ziegler
[10] und ihre Verschiebefunktionen eingehend behandelt. Im Vordergrund steht
dabei der Versuch, die Verschiebetabelle Nezt von KMP versténdlich darzustellen,
denn auf ihr basieren die Tabellen D und DO von BoMo und DD und DDO0 von
ESS.

Auch auf die Berechnung der Tabelle AA0 von ESS wird detailliert eingegan-
gen; zum einen, weil in [10] nur ihre Definition, nicht aber ihre Implementierung
angegeben wurde, zum anderen, weil von ihrer effizienten Implementierung die
Konkurrenzfihigkeit von ESS wesentlich abhingt.

2. Nomenklatur

Im folgenden wird angenommen, dafl der zu durchsuchende Text der Liange T
in einem Feld Text [*] und das zu suchende Muster der Linge Pl in einem
Feld Pat [+] geeigneter Grofle ab Position 1 gespeichert sind. Im Text sollen
jeweils alle sich nicht iiberlappenden Exemplare des Musters gesucht werden.
Wird ein Muster gefunden, so wird dies durch den Aufruf einer vom Benutzer
frei gestaltbaren Prozedur Locout(Position) angezeigt. Thr wird als Parameter
die Position des Musters im Text mitgegeben.

Die an einigen Stellen verwendete Notation I ... J bedeutet: alle Indizes K
von I bis J (I < K < J).Sosteht z.B. Pat [Pl —1 ... Pl]| = Text[Ke —1 ... Ke|]
statt Pat [Pl — 1] = Text [Ke — 1] & Pat[Pl] = Text [Ke].

Mit K0 und Ke werden die Stellen im Text indiziert, die Pat [0] und Pat [Pl]
gegeniiberliegen. Wird auf ein Zeichen im Text zum ersten Mal zugegriffen, so
sprechen wir von ,aufdecken®. Nur aufgedeckte Zeichen sind bekannt. Nicht
aufgedeckte Zeichen werden in unseren Skizzen durch ,,*“ symbolisiert. Gilt an
einer Stelle Text [K] # Pat [J], so sprechen wir davon, dafl die Zeichen ,nicht
passen“ und daher der , Vergleich gescheitert ist“. In den Skizzen liegen die
Zeichen, die miteinander verglichen werden sollen, iibereinander. Uber dem einen
Vergleichszeichen steht ,=% oder ,,#“, unter dem Partner ,,~“. ,~“ bedeutet
ferner in den meisten Fillen, dafl auf die beiden Partner beim letzten Schritt
zugegriffen und der Vergleich ausgeiibt wurde. Alle Zeichen des Textes, die nicht
im Muster enthalten sind, bewirken an der jeweils gleichen Position iiber dem
Muster dieselbe Verschiebung. Sie werden durch ,,$% symbolisiert.

In redundante runde Klammern gesetzte Ausdriicke in Programmstiicken
kénnten jeweils als Invariante einer eigenen Variablen zugewiesen werden, so dafl
sie nur einmal zu berechnen sind, oder sie lieflen sich in eine Funktionsdefinition

3. Die Bausteine der Algorithmen zur Mustersuche in Texten 3

mit aufnehmen. Auf diese Zusammenfassungen haben wir zum Teil, der besseren
Verstandlichkeit wegen, bei der Darstellung der Algorithmen verzichtet.

Die Verschiebefunktionen, die von den Mustersuchalgorithmen verwendet
werden, sind in Tabellen gespeichert. Deshalb werden die Notationen F'(z) und
F[z] synonym zueinander verwendet.

Wir nehmen an, daf} in der Regel das Muster zusitzlich an den Text als
Bremse angehingt wurde, so daf3 die Bedingung , Textende iiberschritten* nur
dann gepriift werden muf}, wenn ein Muster erkannt wurde. Das heifit, die Zahl
der benétigten Tests wird stark reduziert, indem man sich darauf beschrénkt,
nur dann auf Textende zu priifen, wenn ein Muster gefunden wurde. Dafiir muf}
das Muster einmal zusétzlich erkannt, aber nicht gemeldet werden.

3. Die Bausteine der Algorithmen zur Mustersuche in Texten

Der naive Algorithmus SPM (Simple Pattern Matching) beginnt die Suche in
Text und Muster von links nach rechts. Sobald ein Zeichen des Musters nicht zum
Text pafit, wird das Muster um eine Stelle tiber den Text nach rechts verscho-
ben, und der nichste Vergleich beginnt wieder links im Muster. Bei natiirlichen
Sprachen scheitert der Vergleich meist schon am ersten Zeichen. Deshalb ist
es zweckméfig, diesen Fall gesondert zu behandeln und den Algorithmus, wie
spater alle anderen auch, aus den unabhfngigen Bausteinen Skip-Schleife, Test-
und Shift-Teil zusammenzusetzen. Wenn sich die Haufigkeiten der Zeichen des
Textes wesentlich voneinander unterscheiden, ist es sinnvoll, den Vergleich nicht
mit dem ersten, sondern mit dem im Text am seltensten vorkommenden Zeichen
des Musters zu beginnen. Steht dieses Zeichen an der Position P, so ergibt sich
SPM mit Bremse als:

SPMF (* SPM with frequency x)
KF := P; FPat := Pat[P] (* FPat das seltenste Zeichen *)
loop

(* Skip Loop *)
while Text[KF] # FPat do KF := KF + 1 od;

K :=KF - (P -1); J :=1;

(x Test Part *)
while (Text[K] = Pat[J]) & (J <= P1)
do K =K+ 1; J :=J + 1 od;

if J >=P1
then (* pattern matched *)
if K > (T1l+1) then (* text exhausted -> *) exit fi;
Locout (K-Pl);

(* Shift Part *)
KF :+ KF + P1;
else KF := KF + 1;
fi;
end loop;
end (* SPMF *);

4 B. Ziegler — Initialisierung der Verschiebefunktionen

4, KMP, der Algorithmus von Knuth, Morris und Pratt

Auch Knuth, Morris und Pratt beginnen in ihrem 1977 in [7] veréffentlichten
Algorithmus KMP die Suche links im Muster. Scheitert der Vergleich an der Stelle
J im Muster, d. h. gilt Pat [J] # Text [KO0 + J], so benutzen sie die Tatsache,
dal Pat[l ... J—1] = Text [KO+1 ... KO+ J—1] ist, dazu, das Muster moglichst
weit iiber den Text zu verschieben, ohne daf} eine Fundstelle verloren geht. Dies
1483t sich an einem Beispiel aus [7] so anschaulich machen:

Index 12345678901234567890123456
Text babcbabcabcaabcabcabcacabe ganz aufgedeckt

Text Tosk sk sk sk sk o ke ok sk ok o ok ok ok ok ok o o ok Kok

(a # b)
Muster abcabcacab

(. # a)
.abcabcacab

Das erste Zeichen hat nicht gepafit. Das Muster wird vollig {iber die aktuelle
Position im Text hinweggeschoben.

Text babchbkskkskkskkskkskkokkokkkkkkkk

=== (a # b)
Muster abcabcacab

* (. # a)
....abcabcacab

Die ersten drei Zeichen haben gepafit, das vierte, a, nicht. Wir wissen jetzt,
dafB die vier Zeichen des Textes abcz waren. Nach einer Verschiebung sollten
moglichst viele davon erneut zum Muster passen. Da wir im Text die Position
nicht gedindert haben, brauchen wir uns das vierte Zeichen nicht zu merken. Wir
wissen aber, dal dort nur ein Zeichen B des Musters passen kann, wenn B # a
ist. Deshalb wird das Muster um 4 Stellen verschoben.

babcbabcabcaabcabcabcacabe
Text babcbabcabcaakskkskkskkskkkkkx

=======¢ (c # a)
Muster abcabcaca
==== (b # ¢)
...abcabcaca

Sieben Zeichen haben gepafit, beim achten scheitert der Vergleich. Es wird um
drei Stellen verschoben. Aber das Muster pafit immer noch nicht.

babcbabcabcaabcabcabcacabe
Text babcbabcabcaa®*kkkk kkkk k%%
==== (b # a)
Muster abcabcaca
(a # b)
....abcabcaca

4. KMP, der Algorithmus von Knuth, Morris und Pratt 5

Es wird erneut um vier Zeichen verschoben. Jetzt pafit Pat [1]. Die néchsten
Zeichen werden iiberpriift.

Text babcbabcabcaabcabcabcak***

=======§ (c # b)
Muster abcabcacab
====§ (b # c)
...abcabcacab

Erneut wird um 3 Stellen verschoben. Danach passen Text und Muster zusam-
men.

Text babcbabcabcaabcabcabcacab*

Muster abcabcacab

In allen Fallen wird das Muster so weit nach rechts verschoben, bis gilt:

Pat[l ...L—1] = Pat[J—L+1..J-1] & (Pat[J] # Pat[L]);
Pat[l ... L—1]= Text[KO+J—-L+1.. KO+ J—1].

Dabei ist L der Index im Muster, bis zu dem verschoben wird. An der Stelle L
wird der Vergleich fortgesetzt. Speichert man die Werte von L in einer Tabelle
Next [J], so ist J — Next [J] die Grofle der Verschiebung. Das erste Muster im
Text findet man mit folgendem Programmstiick:

KMPP (* KMP Prototyp *)

1 K :=7J :=1;
2 while (K <= T1) & (J <= P1)
3 do while (Text[K] # Pat[J]) & (J > 0)

(* verschiebe Pat bis Text[K] = Pat[J] *)
do J := Next[J] od;

4 K =K + 1; J :=J + 1;
5 od;
6 end (* KMPP x);

Die Funktion Next ist definiert als:
(Next): Nezt[J] = max(L: (Pat[l .. L—-1=Pat[J-L+1..J-1])
& (Pat [J] # Pat [L]);
Pat[l .. L—1]= Text [KO+J —L+1 .. KO+ J—1].

In [7] wurde zur Berechnung von Nezt eine Hilfsfunktion F' eingefiihrt:

(F): F[J] = max(L: Pat[l ... L—1]=Pat[J—-L+1..J-1]);

(* ohne Pat [J] # Pat[L]! *)
Pat[l .. L—1]= Text [KO+J —L+1 .. KO+ J—1].

Die beiden Funktionen Nezt und F héngen auf folgende Weise zusammen:

Newg g1~ FLTI . Pat[F[J]] # Pat[J]
ertlJ] =\ Newt[F[J] : Pat[F[J]] = Pat[J]
FlJ+1 = FlJ]+1 . Pat[F[J + 1]] = Pat [J + 1].

In [7] wird das folgende Beispiel fiir sie angegeben:

6 B. Ziegler — Initialisierung der Verschiebefunktionen

Index 1 2 3 4 5 6 7 8 910
Muster a b c a b c a c a b
Next 0o 1 1 0 1 1 0 5 0 1
F 0 1 1 1 2 3 4 5 1 2

Die Werte lassen sich mit dem oben angegebenen Suchprogramm berechnen,
wenn ein zweites Exemplar des Musters den Text simuliert. Gilt Pat[1] #
Text [K], so wird das Muster vollig iiber die Textstelle hinweggeschoben bis
zur virtuellen Position Pat [0]. Daher gilt Next[1] = F[1] = 0. Die Prozedur
Init_Next entsteht aus KMPP auf folgende Weise:

Init_Next;
1 (* F[1] := %) Next[1] := 0; J :=0; K :=1;
(* Nachdem das erste Zeichen nicht gepasst hat,
gilt: K =1, J = 0 %)
2 while K <= P1 (* Die anderen Operationen entfallen x)
3 do while (Pat[K] # Pat[J]) & (J > 0) do J = Next[J] od;
(* Hier gilt der 1. Teil der Definitionsbedingung von
Next: Pat[K-J+1...K] = Pat[1...J].
Aus Def (F) -> F[K+1] = J + 1 %)
K := K + 1; J :=J + 1;
(x F[K] := J; *)
if Pat[K] # Pat[J]
then Next[K] := J (% == F[K] *)
else (* Pat[K] = Pat[J]
-> das Muster wird weiter verschoben. *)
Next[K] := Next[J]
4.5 fi; (* Die Anweisungen 4.1 - 4.5 folgen aus der
Definition von F und Next. *)

IR NN NN NIRS
D W N -

5 od;
6 end (x Init_Next *);

Da die Werte von F[K] nur an einer einzigen Stelle abgerufen werden (4.3),
nachdem sie unmittelbar vorher (4.1) eingetragen wurden, kann auf F' véllig
verzichtet werden.

Die folgende Version von KMP ist aus den im vorausgegangenen Kapitel ge-
nannten Bausteinen zusammengesetzt.

KMPO
K :=1; FPat := Pat[1];
loop
(* Skip-Loop *)
while Text[K] # FPat do K := K + 1 od;
K =K + 1; J = 2;
(* Match-Part *)
repeat
while (Text[K] = Pat[J]) & (J <= Pl)
do K := K + 1; J :=J + 1 od;
if J > P1
then (* pattern matched *)
if K > (T1 + 1) then (* text exhausted -> *) exit fij;
Locout (K-P1); J :=0; K := K - 1;
else (* no match *)

J := Next[J];
while (Text[K] # Pat[J]) & (J > 0) do J := Next[J] od;
if J > 0 then J :=J + 1; K := K + 1 fi;

fi;

5. BoMo, der Algorithmus von Boyer und Moore 7

until J = 0;
K =K + 1;
end loop;
end (* KMPO *);

5. BoMo, der Algorithmus von Boyer und Moore

In [4] stellen Boyer und Moore den Algorithmus KMP von den Fiiflen auf den
Kopf. Sie beginnen einen Vergleich nicht links, sondern rechts im Muster. Da das
Muster schon vor Suchbeginn bekannt ist, lassen sich Funktionen bestimmen, die
zu jedem nicht passenden Zeichen solche Verschiebungen S > 1 festlegen, daf}

kein Muster im Text iibersehen wird.
Der Algorithmus von Boyer und Moore hat folgende allgemeine Form:

BoMoG (* BoMo Generalized *)
loop
(* Skip-Loop *)
while Text[Ke]l # Pat[Pl] do shift appropriately od;
(*x Test Part *)
if Text[KO+1...KO+P1] = Pat[1...P1]
then (* pattern matched *)
if Ke > Tl then (* text exhausted -> *) exit fi;
output location; shift by full pattern length;
else (* no match *)
shift appropriately
fi;
end loop;
end (* BoMoG *);

Boyer und Moore beginnen, wie oben gesagt, den Vergleich am Musterende.
Passen dort Text- und Musterzeichen nicht zusammen, so wird das Muster so
weit {iber den Text verschoben, bis das aufgedeckte Zeichen zum ersten Mal zu
einem Musterzeichen pafit oder das Muster vollig iber die Aufdeckstelle hinweg-
geglitten ist.

Text okokkok ok ok ok ok ok @k kok ok kok ok okok ok ook ook ok
#
Muster 1 entgegengegangen
= #
2entgegengegangen
3 entgegengegangen

Die Grofle der Verschiebung entspricht dem Abstand des aufgedeckten Zei-
chens vom rechten Rand des Musters. Alle nicht im Muster vorkommenden Zei-
chen passen erst, wenn dieses um die ganze Musterldnge iiber sie hinweg gescho-
ben wurde. Die Zeichen, die bereits links vor dem Muster liegen, beeinflussen die
Verschiebung nicht mehr. Sie wirken wie Joker. Thnen darf daher jede gewiinschte
Eigenschaft zugeschrieben werden. Die Werte dieser Verschiebungen werden in
der Skip-Tabelle AO[B] gespeichert. Sie héingen nur vom Zeichen B ab. AQ[B]
ist definiert als:

(A0): AO[B] = min{S | Pat[Pl —S]=B,0< S<Pl}: B= Text[Ke].

8 B. Ziegler — Initialisierung der Verschiebefunktionen

Hat zunéchst nicht nur ein einzelnes Zeichen gepafit, sondern ein lingeres
Suffix, und scheitert der Vergleich danach, so wird das Muster so weit, verschoben,
bis dieses Suffix erneut pafit, die jeweils davor liegenden Musterzeichen sich aber
voneinander unterscheiden.

Text ok kokkkkok Rk @Ik KKKk L eIk Kk kb kok ook kK
#=== HE (e # n)
Muster 1 entgegengegangen HEN

$=== #== (n#e) (i#g

2 L. entgegengegangen
#== (g #)
3 e entgegengegangen

Die Werte der Verschiebungen sind in einer Tabelle D[Position] gespeichert.
Bei Boyer und Moore heifit diese Tabelle Delta2. Thre Werte hangen nur von der
Position im Muster, nicht aber vom Zeichen ab, an dem der Vergleich scheitert.
D ist definiert als:

(D): D(J) =min{S+ (Pl —J) |
Pat[J+1~S .. Pl —S] = Pat[J +1 ... Pl],
Pat[J —S]# Pat[J]} : 1< J< Pl;

Pat[J+1..Pl]=Text[KO+J+1 .. Ke],
Pat [J] # Text [KO + J].

Vergleicht man die Bedingungen der Definitionen von D und Next , so sieht man,
dafl im wesenlichen rechts und links vertauscht sind. Diese Einsicht verwendet
Knuth in [7] dazu, D durch eine Modifikation von Init_Next zu berechnen.
Dazu fiihrt er die zu F seitenverkehrte Funktion FR ein, die so definiert ist:

(FR): FR[J] = min{I | Pat[I+1.. Pl]=Pat[J+1..J+ Pl —I]}:
J<I<PI.

Hier entspricht I dem Ausdruck J — S aus der Definition von D.
Bei der Definition von D ist:

J: die Stelle im Muster, an der der Vergleich scheitert.

S: die Verschiebung des Musters iiber den Text.

Pl — J: der Abstand des Zeichens vom rechten Rand des Musters, an dem der
Vergleich scheitert. Um diesen Betrag muf3 der Zeiger auf das Muster
riickgesetzt werden. Ist J — S < 0, so liegt das angesprochene Zeichen
links vor dem Muster. Es ist ein Joker und beeinfluflt die Verschiebung
nicht mehr.

Hinweis: Nach jeder Verschiebung, ob mit A oder D, werden alle an sich
zuginglichen Informationen {iber den Text vergessen!

Beispiele:

Text *kkkkkcbakk *okok ok ok cabak sk kokkok ok **k*kababakk***
f#== === f#====
Muster babacbaba babacbaba babacbaba

5. BoMo, der Algorithmus von Boyer und Moore 9

..babacbaba = babacbaba

Mit diesen beiden Verschiebefunktionen ergibt sich folgende BoMo-Version:

BoMo0; (* BoMo Original x)
Ke := P1;
loop
(* Skip Loop *)
while (Text[Ke] # Pat[P1])
do Ke := Ke + AO[Text[Kel] od;
K := Ke - 1; J := (Pl - 1);
if J=0
then (* pattern matched *)
if Ke > Tl then (* text exhausted -> *) exit fi;
Locout(K + 1); Ke := Ke + PIl;
else (* no match *)
Ke := K + max(AO[Text[K]], D[J1);
fi;
end loop;
end (* BoMoO *);

Knuth gibt in [7] folgende Prozedur zur Berechnung von D an.

Init_D (* Nach Knuth *)
(* Vorbelegung mit der maximalen Verschiebung an der Stelle J
verursacht durch $. *)
for J :=1 to P1 do D[J] := (2 * P1) - J od;
K := Pl; J =Pl + 1;
while K > 0 (* die beiden Muster ueberlappen sich noch x)
do FR[K] := J;
while (J <= P1) & (Pat[K] # Pat[J])
do D[J] := min(D[J], P1 - K);
J := FR[J]
od;
K :=XK - 1; J:=7J-1;
od;
(* Korrektur, wenn die Muster sich noch ueberlappen ->
Praefix(Pat) = Suffix(Pat). *)
for K := 1 to J do D[K] := min(D[K], P1 - K + J);
end (x Init_D *);

Dieser Algorithmus arbeitet dann nicht korrekt, wenn es mehrere verschieden
lange zueinander passende (Prifix, Suffix)-Paare gibt.

Beispiel:
Text xaaa* *xXaaxk kkxakkk ok kX k ok ok k
=== == #= #
Muster aaaa aaaa aaaa aaaa
=== == #= #
aaaa aaaa ...aaaaaaaa
S 1 2 3 4
J = 1 2 3 4
S+PlL-J-= 4 4 4 4

10 B. Ziegler — Initialisierung der Verschiebefunktionen

In diesem Fall gilt: D[1,2,3,4] = (4,4,4,4). Init_D in der Version von Knuth
liefert die Vorbelegung D = (7,6,5,4). Die innere Schleife wird nie durchlaufen,
da stets Pat [K]| = Pat[J] fiir jedes Paar (K,J), 1 < K, J < Pl ist. D wird
nur in der Korrekturschleife am Programmende geéndert. Da K und J synchron
verkleinert werden, gilt unmittelbar vor ihr J = 1, d.h. sie wird genau einmal
durchlaufen und berechnet: D[1] = min(D[1], Pl —J+S) = min(7,4—1+1) = 4.
Danach ist D = (4,6,5,4), d. h. offensichtlich falsch.

Bei der Bestimmung von D berechnet Knuth zunachst die Funktion FR , die
die passende Verschiebung angibt, wenn Pat [K| = Pat [J] ist. Fiir alle Félle, bei
denen das nicht galt, ist die korrekte Belegung nachzutragen, d.h. immer dann,
wenn so weit, verschoben wurde, daf die Fehlstelle bereits vor dem Muster liegt.
Ist dabei S < PI, dann gibt es sich {iberlappende (Préfix, Suffix)-Paare, fiir die
die Verschiebung korrigiert werden muf}. Knuth macht dies nur fiir das kiirzeste
Paar statt fiir alle Paare.

Bevor wir den Fehler beheben, soll auf eine Eigenschaft von Init_D hinge-
wiesen werden, die bisher nur in [11] erwdhnt wurde: Schon beim ersten Zugriff
nach der Vorbelegung wird in D[J] der Endwert eingetragen! Das kann ver-
wendet werden, um ohne die Berechnung des Minimums auszukommen. Dies
sieht man so ein. Es gilt immer FR [J] > J. In der inneren Schleife von Init_D
wird min(D[J], Pl — K') berechnet. K wird in dieser Schleife nicht geindert und
auBerhalb von ihr verkleinert, so dafl sich Pl — K nur noch vergroflert. Daraus
folgt die Behauptung und folgende Version von Init_D:

Init_D;
(* Vorbelegung *)
for J := 1 to P1 do D[J] := (2 * Pl) od;
K := Pl; J := (P1+1);
while K > 0
do FR[K] := J;
while (J <= P1) & (Pat[X] # Pat[J])
do if D[J] = (2 * P1) then D[J] := Pl - K fi;

J := FR[J]
od,
K =K - 1; J:=J -1;
od;
(* Korrektur fuer alle (Praefix, Suffix)-Paare x*)
S :=1;

while K <= P1
do for J := S to K
do if D[J] = (2 * P1) then D[J] := K + P1 - J fi od;
S =K + 1; K := FR[K];
od;
end (* Init_D x);

D gibt die Grofle der Zeigerverdnderung auf dem Text an, also Verschiebung
des Musters iiber den Text + Riicksetzen des Zeigers auf das Muster an das
Musterende. Will man nur die Musterverschiebung berechnen, so ergibt sich:

(D0): DO[J]=D[J]— (Pl —J): 1< J<PI.

In Init_D kommt die Funktion Next nicht vor, weil auf sie nur in dem Fall
Pat [K] # Pat [J] zugegriffen wiirde. Dabei gilt F[J] = Next [J]!

Beispiel fiir FR , D und DO:

5. BoMo, der Algorithmus von Boyer und Moore 11

Index : 1 2 3 4 5 6 7 8 9
Muster: b a b a c b a b

FR : 6 7 8 9 7 8 9 9 10
D : 13 12 11 10 9 10 4 10 1
DO : 5 5 5 5 5 7 2 9 1

A0 148t sich einfacher berechnen.

Init_AO;
for B := FirstLetter to LastLetter do AO[B] := Pl od;
for J := 1 to P1 - 1 do AO[B] := P1 - J od;

CShift := AO[Pat[Pl]]; AO[Pat[P1]] := 0;
end (* Init_AO x);

CShift gibt den minimalen Abstand > 0 an, den das Zeichen Pat [Pl] vom
rechten Rand hat, wenn es im Muster mehrfach enthalten ist. Dieser Wert wird
in der BoMo-Variante von Horspool [10] verwendet.

Beispiel fiir A0:

Index : i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Muster: e n t g e g e n g e g a n g e n
PL-J: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
B : a e g n t $ CShift = 3

AO[B] : 4 1 2 0 13 16

Hume und Sunday haben in [6] vorgeschlagen, BoMo ausrollbar zu formulie-
ren und auf diese Weise zu beschleunigen. Ausrollbar heifit: die Schleife darf
(teilweise) durch linearen Code ersetzt werden, womit die Abbruchbedingung
seltener zu iiberpriifen ist. Die ausrollbare Version von BoMo sieht so aus:

BoMoUr1; (* BoMo unrollable *)

loop

(**x skip loop **x)
while S # 0 do K := K + S; S := AO[Text[K]] od;

(*x*x test equal part ***)

K : =X - 1; J :=(P1 - 1);

while (Text[K] = Pat[J]) & (J > 0)
do K :=K - 1; J :=J -1 od;

if J=0
then (* pattern matched *)
if K >= (T1 - P1l) then (* text exhausted *) exit;
Locout(K + 1); S := (2 * P1);
else (* no match *)

(*** shift part **x*)
S := max(AO[Text[K]], D[J]);
(* shift-function: max(AO, D) *)
fi;
end loop;
end (* BoMoUri x*);

12 B. Ziegler — Initialisierung der Verschiebefunktionen

Schon Boyer und Moore haben iiberlegt, ob sie die Funktionen A0 und D
nicht zu einer einzigen von zwei Parametern abhingenden Funktion DD [B, J]
zusammenfassen sollten, um gréflere Verschiebungen zu erhalten. Sie haben dar-
auf verzichtet, nachdem Knuth bewiesen hatte, dal schon D in jedem Fall linea-
res Suchen garantiert. Die Idee wurde erst wieder bei der Suche in Genetischem
Code aufgegriffen und hat sich dort als auflerordentlich effizient erwiesen [6].

DD 148t sich analog zu D so definieren:
(DD): DD [B,J] = min{S + (Pl —J) |

Pat[J+1—-S .. Pl — S| = Pat[J+1 .. Pl],
Pat[J - S]= B} :

Pat[J+1..Pl] = Text [KO+ J + 1...Ke],
B = Text [KO0 + J].
(DD0): DDO[B,J] = DD [B,J]— (Pl —J) fiir jedes B und jedes .J.

DD und D unterscheiden sich nur im zweiten Teil der Definitionsbedingung.
Pat [J—S]muBlin DD der schirferen Bedingung Pat [J—S] = B = Text [K0+J]
geniigen, statt der schwécheren von D: Pat [J — S| # Pat [J].

Init_DDO;
for K := 1 to P1
do for B := FirstLetter to LastLetter
do DDO[B, K] := Pl od
od;
K := Pl; J :=P1 - 1;
while K > 0

do FR[K] := J;
while (J <= P1) & (Pat[XK] # Pat[J])
do if DDO[Pat[K], J] = Pl
then DDO[Pat[K], J] :=J - K fi;
J := FR[J]
od;
K =K - 1; J:=J - 1;
od;
K :=1;
while K <= P1
do for T := K to J
do for B := FirstLetter to LastLetter
do if DDO[B, T] = Pl then DDO[B, T] := J fi od;
od;
K :=XK + 1; J := FR[J];
od;
end (* Init_DDO *);

6. Der Algorithmus ESS

Die Skip-Schleife wird in BoMo stets dann verlassen, wenn gilt: Tezt [Ke] =
Pat [Pl]. Danach wird in natiirlichen Sprachen Test- und Shift-Teil in den mei-
sten Fallen wegen Text [Ke —1] # Pat [Pl — 1] nur einmal durchlaufen und, nach
einer Reihe zum Teil redundanter Operationen, in die Skipschleife zuriickgekehrt.
Gelingt es, dort langer zu bleiben, so steigt die Effizienz des Algorithmus.

6. Der Algorithmus ESS 13

Horspool hat in [5] gezeigt, dafl die Laufzeiten von SPM betréchtlich sin-
ken, wenn man statt des ersten Zeichens im Muster ein anderes, im Text sel-
tener vorkommendes zuerst testet. Dieses Vorgehen setzt voraus, dafl die Zei-
chenhiufigkeiten im Text wenigstens anndhernd bekannt sind, und daf sie sich
deutlich voneinander unterscheiden. Verwendet man in der Skip-Schleife von
BoMo ein anderes als das letzte Zeichen des Musters beim ersten Vergleichs-
schritt, so hat man eine geénderte Skip-Funktion zu verwenden. Thre Werte
werden kleiner. Daher sollte zunichst gepriift werden, ob der Verlust an Ver-
schiebung aufgewogen wird durch den Gewinn, den man erzielt, wenn Test- und
Shift-Teil seltener durchlaufen werden. Wir haben auf diese Art von Verbes-
serung verzichtet, da die Zeichen bei Genetischem Code nahezu gleich haufig
auftreten.

Wie schon in der Einleitung gesagt, vergifit BoMo in der Skip-Schleife nach
jeder Verschiebung die Vorgeschichte und fahrt im Zustand ,, weifl nichts“ fort.
Dabei ist durch eine Verschiebung L das Zeichen, das danach zum Text pafit, und
seine Position im Muster festgelegt. Wird dieser Sachverhalt berticksichtigt, so
148t sich eine im Durchschnitt groflere Verschiebung berechnen. Auflerdem wird
die Skip-Schleife erst dann verlassen, wenn die beiden letzten Zeichen passen,
wenn also gilt: Pat [Pl —1 ... Pl] = Text[Ke — 1 ... Ke].

Bevor wir die neue, von zwei Parametern abhingende Skip-Funktion
AAQ(B, L) formal definieren, soll sie an einem Beispiel mit A0(B) verglichen
werden.

Text Sie waren ihnen dem Vorschlag entgegen den Hang entlang entgegengegangen

¥ HHH pp STt mmsssssassasanss
Muster 1 entgegengegangen HE RS

2 e entgegengegangen U
= :::
3 entgegengegangen
B H
4 . ..entgegengegangen:
5 .entgegengegangen
6
7

Nach 14 Textzugriffen ist das Muster entgegengegangen mit A0 und DO bis
zur Position verschoben, an der es erkannt wird. Dabei kommt es zu folgenden
Verschiebungen: 1. AO[.] = 16; 2. DO[14] = 14; 3. DO[15] = 3; 4. AO[e] = 1;
5. DO[14] = 14; 6. DO[13] = 8; 7. Muster wird erkannt.

14 B. Ziegler — Initialisierung der Verschiebefunktionen

Text Sie waren ihnen dem Vorschlag entgegen den Hang entlang entgegengegangen.

¥ HHH troor tommsnsansasaass
Muster 1 entgegengegangen

2 e entgegengegangen
== #=
3 e entgegengegangen
= #
4 ...entgegengegangen
5

Hier ist mit AAO0 und DO die Endposition bereits nach 11 Textzugriffen erreicht.
Dabei wird so verschoben: 1. AA0[, 16] = 16; 2. DO[14] = 14; 3. AAO[a, —1] = 3;
4. AAQ[e,4] = 15; 5. DO[13] = 8; 6. Muster wird erkannt.

Die Skip-Schleife 188t sich besonders effizient implementieren, wenn die Skip-
Funktion nicht die Verschiebung des Musters, sondern die Anderung des Ver-
weises auf den Text angibt. Die beiden sind nur dann voneinander verschieden,
wenn Text [Ke] und Pat [Pl] gepaBit haben. Danach wird Tezt [Ke — 1] mit
Pat [Pl —1] verglichen. Der Verweis bewegt sich riickwirts, das Muster verdndert
seine Position nicht. Passen in dieser Situation die Zeichen nicht, so muf} dieses
Riicksetzen ausgeglichen werden, so daf3 die Verweisinderung um eins grofier ist
als die Verschiebung des Musters und den Wert Pl + 1 erreichen kann.

Text #kskkskokskkskkokkok kALK Kk kok Kok Aok kKKK Kk

#=
Muster entgegengegangen

...entgegengegangen

Wie oben erwahnt, soll AAQ eine Funktion sein, die es erlaubt, die Skip-
Schleife auszurollen. Deshalb muf} ihr Wert stets dann 0 sein, wenn die beiden
letzten Zeichen des Musters passen. Diese Situation kann auf zwei Wegen erreicht
werden: Zuerst wird Pat [Pl] als passend erkannt und danach Pat [Pl — 1], oder
die Reihenfolge ist umgekehrt. Abhéngig vom Weg zeigt der Verweis auf verschie-
dene Stellen im Text. Der Verschiebung 0 ist aber nicht anzusehen, auf welchem
Weg sie erreicht wurde. Deshalb haben wir den ersten Fall, in dem das letzte
Zeichen zuerst als passend erkannt wurde, auf den zweiten Fall zuriickgefiihrt,
allerdings auf Kosten eines zusatzlichen redundanten Textzugriffs auf Text [Ke].

Jetzt 148t sich AAO(B, L) definieren. Dabei ist B das zuletzt aufgedeckte
Zeichen, L die unmittelbar vorausgegangene Verweisidnderung;:

6. Der Algorithmus ESS 15

(AA0D):
AA0(B, L)

=min{S | Pat [Pl — S] = B,
Pat [(Pl —L)—S] = Pat[Pl — L]} :
B # Pat[Pl], 1< L< Pl;
B = Text [Ke].
Die Zeichen B und Pat [Pl — L] miissen auch nach der Verschiebung
um S passen. Ist der Index von Pat kleiner 1, so sind die dadurch
angesprochenen Zeichen Joker.

=-1: B=Pat[Pl], L>1.
Das aufgedeckte Zeichen pafit ohne Verschiebung.

= 0: B=Pat[Pl], L=0,1.
Die beiden letzten Zeichen passen. AA0(B,0) wird nur in einer aus-

gerollten Skip-Schleife angesprochen. Bei L = 0 ist dabei aber immer
B = Pat [P1].

=min{S | B = Pat [Pl — 5],
Pat[(Pl —L)—S]|=Pat[Pl — L]} +1:
B # Pat[Pl — 1], L =-1,
B = Text[Ke —1].
Text [Ke] hat gepaflt, Text [Ke — 1] pafit nicht!

=1: B = Pat[Pl - 1], L =-1,
B = Text [Ke —1].
Zuerst hat das letzte Zeichen gepaflt, erst danach das vorletzte; jetzt
wird die Reihenfolge umgedreht.

AAO(B, Pl +1) = AAO(B, Pl) fiir jedes zuldssige B. Das Muster wurde iiber
alle Aufdeckstellen hinweggeschoben.

Berechnet man dieser Definition entsprechend die Skip-Funktion AA0 zum
Muster entgegengegangen, so erhilt man folgende Tabelle:

Tab. 1. Funktionswerte von AAO fiir das Muster entgegengegangen

X X X X X

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10 —1
B| e n t g e g e n g e g a n g en e
n|-1 -1 -1 -1 =1 -1 -1 =1 -1 -1 -1 -1 =1 -1 =1 =1 0 0 17
el 1 1 1 6 6 6 6 6 6 6 9 9 11 15 11 15 15 1
gl 2 2 2 2 5 5 5 2 210 5 5 212 5 5 5 17
al 4 4 4 4 4 4 4 4 16 16 16 16 16 16 16 16 16 4
£ 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 16 16 17
$/16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17

16 B. Ziegler — Initialisierung der Verschiebefunktionen

Wie man leicht sieht, gilt stets: AA0(B,S) > A0(B) fir jedes S und jedes B,
B # Pat [Pl]. Das heifit, AAO verschiebt nie weniger als 40. AuBlerdem wird
die Skip-Schleife seltener verlassen. Allerdings mufl auf ein zweidimensionales
Feld zugegriffen werden, dessen Ansteuerung linger dauern kann als die des
eindimensionalen. Die mit ,, x“ gekennzeichneten Spalten der Tabelle werden
nie erreicht, wenn nur Verschiebungen aus A A0 verwendet werden.

Im allgemeinen steigt der Aufwand zur Berechnung der vollstindigen Ma-
trix AA0 mit O(Pl?). Bei langen Mustern und kleinen Alphabeten, etwa bei
Genetischem Code, wird in der Skip-Schleife nur ein Teil der Werte von AA0
verwendet. Wir beschrinken uns hier darauf, nur diese zu berechnen.

AAO kann man als einen endlichen Automaten auffassen, bei dem die Iden-
tifikationsnummern der Zustinde so geschickt gewihlt wurden, daf sie auch als
Verschiebungen des Textzeigers interpretiert werden diirfen. Es ergibt sich die
BoMo-Variante ESS .

ESS (* BoMo unrollable *);
Ke := 0; S := P1;
loop
while S # 0 do Ke := Ke + S; S := AAO[Text[Ke]l, S] od;
J := (P1 - 2); K := Ke - 2;
while Text[K] = Pat[J] & J > 0O
do K :=K - 1; J :=J -1 od;
if J=0
then (* pattern matched *)
if K >= (T1 - P1l) then (* text exhausted -> *) exit fi;
Locout(K + 1); Ke := Ke + P1;
else (* no match *)
Ke := Ke + DDO[Text[K], J]
fi;
S := AAO[Text[Ke], P1];
end loop;
end (x ESS x);

In dieser Version darf fiir DDO jede andere zuléssige Verschiebefunktion ste-
hen. Dabei wird allerdings Information nach der Verschiebung vergessen.

7. Init_AAO

In diesem Kapitel wird die Initialisierung von AAQ detailliert beschrieben.
Dazu ist es notwendig, Begriffe einzufiihren, die entweder die Beschreibung von
Init_AAO vereinfachen oder seine Effizienz steigern. Hier werden die Variablen
in der Schreibweise eingefiihrt, in der sie spéter im Programmtext vorkommen.
Da unser PASCAL-Compiler nur Integer-Variable als Indizes zuldfit, muften
wir mit den Funktionen ord (Zeichen) und chr (Integer) arbeiten. Auf diese Um-
wandlungen wird bei der Beschreibung der Programmbedeutung verzichtet.

Weg durch das Muster. Wir verstehen unter dem Weg eines Zeichens B durch
das Muster die Folge von Positionen in InvPat, an denen B steht.
Dabei ist fiir alle Zeichen die Position PI, an der in InvPat ein Joker
@ steht, das Ende des Weges, d. h. jeder Weg hat eine Richtung. Der
Weges beginnt an der durch AQ[B] festgelegten Stelle.

7. Init_AAO0 17

Beispiel des Weges von e durch entgegengegangen:

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
n t g e n g e g a

Lt o R

Weg(e, entgegengegangen) = (1, 6, 9, 11, 15, 16).

(0]

InvPat [0 ... Pl — 1] = Pat [Pl ...1] enthdlt das Muster invers, d.h. seitenver-
kehrt beim Index 0 beginnend. Der Index von InvPat gibt den Ab-
stand des entsprechenden Zeichens vom rechten Musterrand an. Die-
ser muf} nicht mehr eigens berechnet werden. InvPat ist so dimensio-
niert, dafl noch zusétzliche Zeichen, z.B. als Bremsen, eingefiigt werden
koénnen.

PatAlpha [0 ... LL] enthélt das Alphabet aller im Muster vorkommenden Zei-
chen. Fiir jedes dieser Zeichen muf} zu jedem Zustand ein Folgezustand
berechnet werden. Wird an der Stelle Text [Ke | das Zeichen Pat [Pl]
aufgedeckt, so pafit dieses immer. Der Folgezustand steht ohne Ver-
schiebung fest, so dafl er nie auf dem Weg von Pat [Pl] durch das
Muster gesucht werden mufl. Wir speichern Pat[Pl] an der festen
Stelle PatAlpha [0], so dafB} sich ein tiberflissiger Zugriff auf Pat [Pl]
in PatAlpha leicht vermeiden 1a8t.

LL+1 ist die Zahl der Zeichen dieses Alphabets. Alle Zeichen, die nicht im
Muster vorkommen, bewirken in allen Zustinden des Automaten A A0
die maximale Verschiebung PI . Diese wird als Voreinstellung verwen-
det. Nur fiir die Zeichen in PatAlpha miissen zu jedem erreichbaren
Zustand die Folgezustande ermittelt werden.

PatPath [0 ... Pl] enthilt fiir jedes Zeichen aus PatAlpha dessen Weg durch das
Muster.

Beispiel zu PatPath :

16 156 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
@ e n t g e g e n g e g amng en
17 16 16 16 16 15 12 11 1410 9 7 16 8 5 6 3

Die Bedingung, daf zwei gegebene Zeichen mit festem Abstand L von-
einander zum Muster passen, 1488t sich effizient priifen, indem man den
Weg des einen durch das Muster geht und testet, ob das andere im
Abstand L im Muster liegt.

UsedCol [] enthélt die Nummern der Zusténde, die in AA0 aufgenommen wer-
den miissen. Zu jedem Zustand in UsedCol werden alle Folgezustinde
ermittelt und, wenn nétig, dort hinzugefiigt.

IsinAAOQ[S] gibt an, ob der Zustand S schon in UsedCol eingetragen wurde
(true) oder nicht (false). Dies steigert die Effizienz, weil ein und
derselbe Zustand Folgezustand mehrerer verschiedener Zusténde sein
kann.

Im folgenden werden nicht auf Anhieb einsichtige Programmteile von
Init_AAO besprochen. Das komplette lauffihige PASCAL-Quellprogramm steht
im Anhang.

18 B. Ziegler — Initialisierung der Verschiebefunktionen

7.1. Initialisierung von A0, InvPat, IsInAAQ, PatPath und PatAlpha

LL := -1; (* LL: Zahl der Zeichen in PatAlpha *)
DS := Pl; (* Index von InvPat == Abstand vom Rand *)
for J :=1 to P1 -1
do B = Pat[J];
DS :=DS - 1;
InvPat[DS] := B; (* InvPat[P1-J] := Pat[J] *)
IsInAAO[DS] := false;
PatPath[DS]:= AO[B]; (* Weg wird von seinem Ende her erzeugt, -> Verweis auf
direkten Nachfolger *)
if AO[B] = P1 (* true -> Zeichen B wurde noch nicht angesprochen *)
then LL := LL + 1;
PatAlpha[LL] := B (* PatAlpha + B *)
fi;
AO[B] := DS; (* verzoegerte Uebernahme des Abstands Pl - J *)
od;

InvPat[0] := Pat[P1l];

Wenn, was bei Genetischem Code haufig der Fall sein dirfte, alle Zeichen des
Textalphabets auch im Muster vorkommen, kann PatAlpha einfacher initialisiert
werden (wie, lieber Leser?).

AQ[B] wird hier nur verwendet, weil es eindimensional ist, man kdnnte es
durch AAO[B, Pl] substituieren.

Beispiel zur Erzeugung von PatPath :

Index : o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Muster : @ e n t g e g e n g e g a n g e n
DS : 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
PatPath: 16 16 16 16 16 15 12 11 14 10 9 7 16 8 5 6 3
A
I ! tt 4
(
AO[a] : 16 ’ \ \ 4 4
r r r r
AO[e] : 16 15 11 9 6 1 1
r r r r r
AO[g]l : 16 12 10 7 5 2 2
r r r r
AO[n] : 16 14 8 3 0
(—/
AO[t] 16 13 13
Schritt Nr.: i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Die Belegung von PatPath bricht beim (Pl —1)-ten Schritt ab. In AO[Pat [P1]]
steht CShift . Der Schritt Pl wird nachgeholt.

CShift := AO[Pat[P1]]; AO[Pat[P1]] 0;
PatPath[0] := CShift; PatPath[P1l] := PatPath[P1+1] := Pl + 1;

(* Garantieren, dass PatAlpha[0] = Pat[P1l] ist. *)

PatAlpha[P1+1] := Pat[P1]; (* Bremse *)
J := 0;

while PatAlpha[J] # Pat[Pl] do J :=J + 1 od;

PatAlpha[0] :=: PatAlphalJ]; (* Pat[P1l] war noch nicht in PatAlpha *)

if J > LL then LL := LL + 1;

7. Init_AAO0 19

7.2. Belegen der Spalten Pl+ 1, Pl, Pl—1 und 0

Die Zustande Pl +1, Pl und Pl —1 fiihren zu den gleichen Verschiebungen wie
bei A0 und werden genauso berechnet.

for B := FirstLetter to LastLetter

do AAO[B, PL+1] := AAO[B, P1] := AAO[B, P1-1] := AO[B, P1-1] od;
AAO[Pat[P1], P1+1] := AAO[Pat[P1], P1] := AAO[Pat[Pl], P1-1] := -1;
(*x Das letzte Zeichen passt: Pat[P1l] = Text[Ke] *)

Die Spalte Pl — 1 wird bereits belegt, weil sie hier einfach zu berechnen ist.
AAO[Pat[P1], 0] := 0;

Der Zustand 0 wird nur tiber den Zustand 1 (Pat [Pl — 1] = Text [Ke — 1])
erreicht, wenn Pat [Pl — 1 ...Pl] = Text [Ke — 1 ... Ke] ist. Danach &ndert sich

der Zeiger Ke auf den Text nicht mehr. Die Operationen in der ausgerollten
Skip-Schleife sind:

S := AAO[Text[Ke]l, 1] == S := AAO[Pat[Pl], 1] == 0;
Ke: = Ke + S == Ke + 0;

S := AAO[Text[Ke], S] == AAO[Pat[P1l], 0] == 0;

Ke := Ke + S == Ke + 0; ...

Deshalb kann der Rest der Spalte 0 leer bleiben.

for J := 1 to LL
do S := AO[PatAlphalJ]];
UsedCol[SMax+J] := S; IsInAAO[S] := true;
od;
SMax := SMax + LL;
IsInAAO[P1+1] := IsInAAO[Pl] := IsInAAO[P1l-1] := true;

Alle Folgezustinde des Anfangszustands Pl wurden in UsedCol aufgenommen
und als schon bekannt in IsInA A0 markiert.

7.3. Berechnung der Folgezustinde aller Zustinde in UsedCol

Wenn der Zustand L erreicht wird, gilt nach der Verschiebung des Musters
InvPat [L] = Text[KO + Pl — L]. Von L ausgehend wird dem Weg S von
Z = InvPat [L] durch InvPat gefolgt. Die Folgezustinde werden durch die im
Abstand L rechts vom Weg liegenden Zeichen InvPat [S — L] bestimmt. Sind
auf dem Weg alle Zeichen von PatAlpha angesprochen worden, so bricht das
Verfahren ab; wenn nicht, dann wird von InvPat [Pl — L] bis zum Musteranfang
nach den restlichen Zeichen von PatAlpha gesucht. Spitestens an der Stelle
InvPat [Pl] = @ werden die letzten gefunden.

Die Berechnung der Folgezustdnde eines Zustands L beginnt mit der Vor-
belegung der Spalte L mit der maximalen Verschiebung PI. AAO[B,L] # Pl
bedeutet also: zum Zeichen B wurde der Folgezustand schon gefunden.

Beispiel: entgegengegangen, Folgezustdnde von Zustand 2

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
@ e n t g e g e n g e g a

S R S S S

Weg von 2 beginnend und Zeichen im Abstand 2: (2,n; 5,n; 7,g; 10,n; 12,g; 16,n)

20 B. Ziegler — Initialisierung der Verschiebefunktionen

Es gibt die Folgezustinde zu (2,n) — —1; (7,g) — 5. Es fehlen noch die
Folgezustidnde zu den Zeichen a, e und t. Zwischen 14 und 16 wird nur das
Zeichen e gefunden, der Folgezustand ist 15. Fiir a und t bleibt die maximale
Verschiebung 16 bestehen.

SC := 0; (* Zeiger auf den Zustand, dessen Folgezustaende
gesucht werden *)
while SC < SMax (* es gibt noch unbehandelte Zustaende *)
do SC := SC + 1;
S := UseCol[SC]; (* aktueller Zustand *)
B := InvPat[S]; (* zu S gehoerendes Musterzeichen *)
for B := FirstLetter to LastLetter do AAO[B, S] := Pl;
AAO[Pat[P1], S] := -1;
(* Weg von B ab S durch das Muster *)
NextS := PatPat[S]; (* naechste Station auf dem Weg *)
LB := 0; (¥ LB = LL -> alle Zeichen aus PatAlpha gefunden *)
while (NextS <= P1) & (LB < LL) (* NextS > Pl -> Ende des Wegs erreicht *)
do DS := NextS - S (* Index des moeglichen Folgezustands *)
DB := InvPat[DS]; (* Zeichen das den Folgezustand erzeugt *)
if AAO[B, S] >=P1
then (* Folgezustand zu B noch nicht in AAO eingetragen. *)
AAO[B, S] := DS;
LB := LB + 1;
if not IsInAAO[DS]
then (* Folgezustand in UsedCol eintragen *)

SMax := SMax + 1; UsedCol[SMax] := DS;
IsInAAO[DS] := true;

fi
fi;
NextS := PatPath[NextS]; (* naechste Station auf dem Weg *)
od; (* Am Ende des Weges angelangt *)
(* Folgezustaende noch nicht gefundener Zeichen aus PatAlpha *)

DS :=PL +1 - S;
while (DS < P1) & (LB <= LL)

do DB := InvPat[DS];(* Zeichen das den Folgezustand erzeugt *)
if AAO[B, S] >= P1
then (* Folgezustand zu B noch nicht in AAQ eingetragen. *)
AAO[B, S] := DS;
LB := LB + 1;
if not IsInAAO[DS]
then (* Folgezustand in UsedCol eintragen *)

SMax := SMax + 1; UsedCol[SMax] := DS;
IsInAAO[DS] := true;

fi
fi;
DS := DS + 1; (* naechste Station auf dem Weg *)
od; (* Am Ende des Weges angelangt *)
AAO[Pat[P1], 1] := 0;(* Die beiden letzten Zeichen passen. *)

end (* Init_AAO *)

7. Init_AAO0 21

Literatur

10.

11.

Baeza-Yates, Ricardo A.: Improved string searching. Software - Practice and Experience
19.3, 257 - 271 (1989).

Baeza-Yates, Ricardo A.: String searching algorithms revisited. Lecture Notes in Comp.
Sci. 382, Springer-Verlag (1989).

Baeza-Yates, Ricardo A.; Krogh, Fred T.; Ziegler, Bernhard; Sibbald, Peter R.; Sun-
day, Daniel M.: Notes on a very fast substring search algorithm. In <Technical
Correspondence> Comm. ACM 35.4, 132 - 137 (1992).

Boyer, Robert S.; Moore, J. Strother: A fast string search algorithm. Comm. ACM 20.10,
762 - 772 (1977).

Horspool, R. Nigel: Practical fast searching in strings. Software - Practice and Experience
10.8, 501 - 506 (1980).

Hume, Andrew; Sunday, Daniel: Fast string searching. Software - Practice and Experience
21.11, 1221 - 1248 (1991).

Knuth, Donald E.; Morris, James H.; Pratt, Vaugham R.: Fast pattern matching in
strings. STAM J. Comput. 6.2, 323 - 350 (1977).

Smith, P. D.: Experiments with a very fast substring search algorithm. Software - Practice
and Experience 21.10, 1065 - 1074 (1991).

Sunday, Daniel M.: A very fast substring search algorithm. Comm. ACM 33.8, 132 - 142
(1990).

Ziegler, Bernhard: QuickSearch — Ein schneller Algorithmus zur Mustersuche in Texten.
Report Nr. 1993/14 (Dezember 1993). Inst. fiir Informatik, Breitwiesenstr. 20-22,
D-70565 Stuttgart.

Ziegler, Bernhard: Anmerkungen zu einem Algorithmus von Knuth. Bericht Nr. 1/82
(1982). Inst. fiir Informatik, Azenbergstr. 12, D-7000 Stuttgart.

22 B. Ziegler — Initialisierung der Verschiebefunktionen

A. Anhang

procedure INIT_AAO_nackt; (x** == entkoppelt von Shift-Funktionen **x)

(* Globale Groessen:

Import:
PL : Musterlaenge,
MAXPL : groesste zulaessige Musterlaenge: integer;

FIRSTLETTER: Index des ersten,
LASTLETTER : des letzten Zeichens im Alphabet: char;

Export:
LPAT : == PAT[PL]: char;
CSHIFT, CCSHIFT:
invariante Verschiebung im Shift-Teil: integer;

AAO([B,S] : Skip-Tabelle: B in Alphabet, -1 <= S <= PL + 1.
%)
const Nabla = ’%’; (* Repraesentant fuer alle nicht
im Muster vorkommenden Zeichen. *)
type AlphaRange = FIRSTLETTER..LASTLETTER;
PATRange = 0..MAXPL;
var InvPAT : array[PATRange] of char;
(* inverses Muster,
InvPAT[0] = PAT[PL], ... ,
InvPAT[PL] = %’ ! *)
PATPath : array[PATRange] of integer;
(* enthaelt zu jedem Zeichen
den zugehoerenden Weg durch
das Muster *)
InvPATPath : array[PATRange] of integer;
PATAlpha : array[PATRange] of char;
(* Alphabet der Zeichen im Muster *)
IsInAAO : array[PATRange] of Boolean;
(* true == Spalte wird verwendet. *)
UsedCol : array[PATRange] of integer;
(* enthaelt die Spaltennummern *)
A0 : array[AlphaRange] of integer;
(* Skip-Funktion von BoMo *)
LPAT1, (* == PAT[PL-1] *)
B, DB : char;
PLpl, PLmil, (* Invariante: PL + 1, PL - 1 *)
LL, (* /PATAlpha/ - 1 *)
S, DS, NextS, SO,
(* Positionen auf Wegen durch PAT *)
SMax, (* Zahl der Spalten in UsedCol *)

ScC, (* Zeiger auf UsedCol %)

A. Anhang 23

LB, (* Gibt an, zu wieviel Zeichen S
gefunden wurde *)
J, JB : integer;

procedure Drucke_PATPath;
var J: integer;
begin writeln(’begin PATPath’);

for J := PL + 1 downto O do write(J:2, ’> 7); writeln;
for J := PL + 1 downto O do write(InvPAT[J]:2, ’> ’); writeln;
for J := PL + 1 downto O do write(PATPath[J]:2, ’ ’); writeln;

writeln(’end PATPath’);
end (* Drucke_PATPath *);

procedure Drucke_UsedCol;
var J: integer;
begin writeln(’begin UsedCol’);

for J := PL + 1 downto O do write(J:2, ’> 7); writeln;

for J := PL + 1 downto O do write(InvPAT[J]:2, ’ ’); writeln;
for J := PL + 1 downto 0 do write(UsedColl[J]:2, ’> ?); writeln;
for J := PL + 1 downto O

do if IsInAAO[J] then write(’ t ’) else write(’ f ’); writeln;
writeln(’end UsedCol’); readln;
end (* Drucke_PATPath *);

begin
(**x Belegung der Invarianten **x*)
PLpl := PL + 1;

PLml := PL - 1;
LPAT1 := PAT[PLmi];
LPAT := PAT[PL]; (x++ ZF_T := ZF_I+2; ++x)

(€131 Berechnung von AO, InvPAT, PATPath, PATAlpha,

CCSHIFT, CSHIFT, LL *Hx)
LL := -1;
InvPAT[PL+1] := Nabla;
PAT[0] := LPAT; (* => PATAlpha[0]=PAT[PL]

wird garantiert! *)

(k++ ZF_I := ZF_I+2; ++%)

for JB := FIRSTLETTER to LASTLETTER do AO[JB] := PL;
ZF_I := ZF_I + (LASTLETTER-FIRSTLETTER+1);

DS:= PL;
for J := 1 to PLml

24

B. Ziegler — Initialisierung der Verschiebefunktionen

do begin B := PAT[J];
JB := ord(B);
DS :=DS - 1;
InvPAT[DS] := B; (*
IsInAAO[DS] := false; (x*
PATPath[DS] := AO[JB]; (*
if AO[JB] = PL
then begin (*
LL := LL + 1;
PATAlpha[LL] := B; (k++
end (x if *);
AO[JB] := Ds; (et
end (x for J := 1 to PLml x);
CSHIFT := AO[ord(LPAT)];
AO[ord(LPAT)] := 0;
PATPath[0] := CSHIFT;
PATPath[PL] := PLpi;
PATPath[PLp1] := PLpil;
InvPAT[0] := LPAT;
PATAlpha[LL+1] := LPAT; (*
(x++
(* PATAlpha <= LPAT %)
J :=0; (*++
while PATAlpha[J] <> LPAT
do begin J := J+1; (*++
end;

if J > LL then LL := J;

PATAlpha[J] := PATAlpha[O];

PATAlpha[0] := LPAT;

(*
(k++
(k++

Muster umgedreht

Spalte DS noch nicht in AAO
Verweis auf direkten
Nachfolger auf dem Weg

Zeichen noch nicht im
Alphabet, einsetzen!

ZF_T :

ZF_I+1; ++x)

ZF_T :

ZF_I+6; ++x)

Bremse in PATAlpha

ZF_TI := ZF_I+7; ++x%)
ZF_I := ZF_I+1; ++x)
ZF_I := ZF_I+1 ++x%)
Vertausche

ZF_I := ZF_I+3; ++x%)
Drucke_PATPath ++%);

(¥++ Begin: Nach Test oder Drucke_AA0 wegwerfen! ++x%)

for J := 0 to PL + 1
do begin UsedCol[J] := 0;
for JB := FIRSTLETTER to LASTLETTER do AAO[JB,J] := -99;
end;
(¥++ End: Nach Test oder Drucke_AAO wegwerfen! — ++x%)
(**x Die Spalten S = 0, PL, PL + 1 belegen.
for JB := FIRSTLETTER to LASTLETTER
do begin S := AO[JB]; (x++ ZF_I := ZF_I+1; ++%)

AAO[JB,PLp1] := S;
AAO[JB,PL] :=S;

(*x++ ZF2_I :

ZF2_TI+2; ++%)

*)
*)

*)

*)

*)

*)

*okk)

A. Anhang 25

end (* od *);

AAO[ord (LPAT) ,PLp1] := -1;

AAO[ord (LPAT),PL] := -1;

AAO[ord (LPAT),0] := 0; (x++ ZF2_I := ZF2_I+43; ++%)

(**x UsedCol mit den Verschiebungen von AO belegen *kok)

for J := 1 to LL
do begin S := AO[ord(PATAlphalJ])];
IsInAAO[S] := true;

UsedCol[J] := S;
end (* od *);
SMax := LL; (*k++ ZF_I:= ZF_I+4%LL; ++%)
(**x Vorbelegung der Spalte -1 *kok)

(k++ ZF_I := ZF_I+1; ++%)
if PAT[1] = LPAT
then for JB := FIRSTLETTER to LASTLETTER do AAO[JB,-1]
else for JB := FIRSTLETTER to LASTLETTER do AAO[JB,-1]
(x++ ZF2_I:= ZF2_1 +
(-FIRSTLETTER + LASTLETTER +1); ++%)

PL
PLp1;

AAO[ord (LPAT1),-1] := 1; (% (PAT[PL], PAT[PL-1])
=> (PAT[PL-1], PAT[PL]) *)
(*x++ ZF2_I := ZF2_I+1; ++%)

InvPAT[PL] := LPAT1; (* wegen InvPAT[DS] = PAT[PL-1]7 *)
(k++ ZF_I := ZF_I+1; ++%)

(*x* Korrektur von Spalte -1 und PATPath *x*x)
NextS := CSHIFT;

S := -1;
LB := 0;
while (NextS < PL) and (LB < LL)
do begin
DS := NextS - S; (* Abstand zwischen Ausgangsposition
und aktueller Position *)
(* == Verschiebung des Musters *)
DB := InvPAT[DS]; (* aufgedecktes Zeichen,
bestimmt die Verschiebung *)
(k++ ZF_I:= ZF_I+1; ++%)

(*x++ ZF2_I:
if AAO[ord(DB),S] >= PL
then begin AAO[ord(DB),S] := DS;
(* nur einmal belegen *)
(*k++ ZF2_I:= ZF2_I+1; ++%)
(k++ ZF_I:= ZF_I+1; ++x)

ZF2_I+1; ++%)

LB := LB + 1;
if not IsInAAO[DS]

26 B. Ziegler — Initialisierung der Verschiebefunktionen

then begin SMax := SMax + 1;
UsedCol[SMax] := DS;
(k++ ZF_I:= ZF_I+2; ++%)

IsInAAO[DS] := true; (* Spalte DS ist zu belegen *)
end (* if not IsInAAO[DS] *);
end (x if AAO[DB,S] >= PL *);
NextS := PATPath[NextS];
(k++ ZF_I:= ZF_I+1; ++%)
end; (* while dox*)
(*++ Drucke_PATPath; ++%)
(*++ DRUCKE_AAO; ++x)
(**x Initialisierung des Kerns von AAO, d.h. der Spalten
1 bis PL - 2. Kk)
(**x if CSHIFT = 1 then SC := 0 else *kok)
SC := 0;
while SC < SMax
do begin SC := SC + 1;
S := UsedCol[SC]; (* ansteuerbare Spalte x)
B := InvPAT[S]; (* zur Verschiebung S
gehoerendes Zeichen *)
(k++ ZF_I:= ZF_I+2; ++%)
for JB := FIRSTLETTER to LASTLETTER do AAO[JB,S] := PL;
AAO[ord(LPAT),S] := -1; (x Text[Ke] = PAT[PL] *)
(k++ ZF2_I := ZF2_I +
(LASTLETTER-FIRSTLETTER+2) ; ++%)
(*** Zunaechst dem an der Stelle S beginnenden Weg
durch PAT folgen. *kok)
NextS := PATPath[S]; (* naechste Station auf dem Weg *)
LB := 0;
(k++ ZF_I:= ZF_I+1; ++%)
while (NextS <= PL) and (LB < LL)
do begin DS := NextS - S;
(*++ Drucke_PATPath; ++%)
(* Abstand zwischen Ausgangsposition
und aktueller Position *)
(* == Verschiebung des Musters *)
DB := InvPAT[DS]; (* aufgedecktes Zeichen,
bestimmt die Verschiebung *)
(k++ ZF_I:= ZF_I+1; ++%)
(%++ ZF2_I:= ZF2_I+1; ++%)
if AAO[ord(DB),S] >= PL
then begin AAO[ord(DB),S] := DS; (* nur einmal belegen *)

(x++ ZF_I:= ZF_I+41; ++x%)
(k++ ZF2_I:= ZF2_I+1; ++%)

LB := LB+1;
if not IsInAAO[DS]
then begin SMax := SMax + 1;

A. Anhang 27

UsedCol[SMax] := DS;
IsInAAO[DS] := true; (* Spalte DS ist zu belegen *)
ZF_I1:= ZF_1I+2;
end (* if not IsInAAO[DS] x);
end (x if AAO[DB,S] >= PL *);
NextS := PATPath[NextS];
(x++ ZF_I:= ZF_I+41; ++x)
end (* while NextS <= PL *);
(* AAO[.,S] belegt fuer alle von S erreichbaren Positionen. *)
(*++ Drucke_UsedCol; ++%)

(*** AAO[.,S] belegen fuer alle nicht auf dem Weg S
angesprochenen Zeichen. *kok)
DS := PLpl - S;
while (LB < LL) and (DS <= PL)
do begin
DB := InvPAT [DS]; (* nicht zu jedem DB ein S gefunden *)
(x++ ZF_I:= ZF_I+41; ++x*)
(k++ ZF2_I:= ZF2_I+1; ++%)
if AAO[ord(DB),S] >= PL

then begin (* Zeichen gilt als
noch nicht angesprochen *)
AAO[ord(DB),S] := DS;
(%++ ZF2_I:= ZF2_I+1; ++%)

LB := LB + 1;
(x++ ZF_I:
if not IsInAAO[DS]

ZF_I+1; ++%)

then begin SMax := SMax + 1;
UsedCol[SMax] := DS;
IsInAAO[DS] := true; (* Spalte DS ist zu belegen *)
(k++ ZF_I:= ZF_I+2; ++%)
end (* if not IsInAAO[DS] *);
end (x if AAO[DB,S] >= PL x);
DS := DS + 1;
end (* while LB < LL %);
end (* while SC < SMax *);
AAO[ord (LPAT),1] := 0; (x PAT[PL-1...PL] passt,
Textzeiger = Ke! *)
(k++ ZF2_I:= ZF2_I+1; ++%)
(*++ Drucke_UsedCol; ++x*)
(*++ DRUCKE_ASAAOQ; +4%)
(*++ DRUCKE_AAO; ++%)
end (*x INIT_AAO_nackt *);

