
COMROS

Basis-Dokumentation
Universität Stuttgart, IPVR

Lehrstuhl Praktische Informatik - Bildverstehen, Prof. Levi

Zusammengestellt von Bräunl
Mit Beiträgen von Bayer • Gerl • Mamier • Muscholl

Rausch • Sommerau • Vogt • Will

2

Vorwort
COMROS steht für Cooperative Mobile Robot Systems Stuttgart. Wir beschäftigen
uns mit der Entwicklung autonomer Systeme auf der Basis der mobilen Roboter „Ro-
buter“ von Robosoft, Bayonne, Frankreich.

Der vorliegende Text ist eine Zusammenstellung der Basis-Routinen für die Robo-
tersteuerung und Bildverarbeitung von vier verschiedenen Rechnersystemen aus:
IBM-PC Pentium unter Linux, Sun SPARCstation, Sun mit ELTEC-VectEx VME-Sub-
system und MasPar MP-1216 (massiv parallel).

Die einzelnen Kapitel dokumentieren die Implementierungen von Basisoperatio-
nen und sollen neuen Studenten und Mitarbeitern den Einstieg in die Robotersteue-
rung an unserem Lehrstuhl erleichtern.

Als aktuelles Robotik-Informationssystem für Mitarbeiter und Studenten dient das
www-basierte RIS, das unter folgender Adresse erreicht werden kann:

http://vasarely/roboter/ris/ris.html
bzw. als File:
file://localhost/usr/local/bv/robot/ris/ris.html
Dort finden sich aktuelle Hinweise über Veranstaltungen, Probleme und Lösungen,

abgeschlossene, bzw. aktuelle Studien- und Diplomarbeiten, zu vergebende Themen,
usw. Auch auf die Protokolle der Robotik-Teilgruppen (Architektur, Bildverstehen,
Ultraschall, Neuro und Wartung) kann hier zugegriffen werden.

August 1995 Paul Levi
Thomas Bräunl

3

Allgemeines
Abb. 0.1 zeigt den Basisaufbau des Robotiklabors. Bilder und Daten werden über
getrennte Funkstrecken übertragen. Bilddaten werden über eine analoge uni-direktio-
nale Videofunkstrecke gesendet, während die Datenverbindung digital bi-direktional
arbeitet.

Die derzeitigen Motorola Prozessor-Boards der Fahrzeuge erlauben nur eine RS-
232 Kommunikation mit 9.600 Baud. Trotzdem wurden bereits die bestehenden RS-
232 Funkmodems durch Funk-Ethernet ersetzt, da ein gleichzeitiger Betrieb mehrerer
Modempaare auf Grund von gegenseitiger Störungen nicht möglich war. Die Umset-
zung zwischen Ethernet und RS-232 wird derzeit von speziellen Umsetzern (Com-
server) auf dem Fahrzeug übernommen, die Prozessorkarten sollen jedoch in absehba-
rer Zeit auf neuere Modelle mit Ethernet-Interface aufgerüstet werden.

Eine weitere Option, die derzeit realisiert wird, ist die Integration eines Pentium-
PCs unter Betriebssystem Linux direkt auf dem Fahrzeug, um so zwar mit geringerer
Rechenleistung, jedoch vollkommen autonom agieren zu können.

Von M. Vogt wurde ein einfaches Interface unter Verwendung des Tools FORMS
erstellt, daß eine „Fernsteuerung“ von mobilem Roboter, bzw. Greifarm/Stereokopf
ermöglicht. Dieses Tool heißt xremroc , als Abkürzung für x-remote-robot-control.

Eine erste Version findet sich unter
/usr/local/bv/robot/bin/SUNMP/XRRC0-1/xremroc

Beim Aufruf ist als einziger Parameter einer der drei Roboternamen anzugeben.
Dabei wird die Datei /usr/local/bv/robot/etc/system.RoIrc gelesen, die die Zuord-
nung zwischen Fahrzeugen, Comservern und ttys definiert. Sollte im eigenen HOME
Verzeichnis eine Datei .RoIrc existieren, so werden diese Daten von dort gelesen.

Abbildung 0.1: Hardware-Konfiguration

wireless data
wireless video

Ethernet or ATM

VME-Subsys.
MasPar

4

Ein remote-Aufruf außerhalb der Workstation-Konsolen der Roboter (robosun1-3)
ist möglich, jedoch ist hierbei aus Sicherheitsgründen die Steuerung eines Fahrzeugs
unterbunden. Für die Fahrt stehen acht Pfeiltasten zur Verfügung, die wahlweise
gerade, gebogen oder auf der Stelle gedrehte Bewegungen ausführen. Die Schieber im
unteren Bereich des Fensters definieren die Bewegung genauer.

Beim Greifarm lassen sich neben der direkten Ansteuerung der Achsen auch
bestimmte Armpositionen speichern und wieder abrufen. Da keine Kollisionsvermei-
dung stattfindet, muß hier besonders vorsichtig agiert werden! Die Umrechnung von
kartesischen Koordinaten und die Bedienung der Greifhand sind derzeit noch nicht
implementiert.

Horst Stolz entwickelte in seiner Diplomarbeit unter Leitung von Thomas Bräunl
das Roboter-Simulationssystem MOBS (Abb. 0.3). Das System ermöglicht die Erstel-
lung einer 3D-Umgebung und die gleichzeitige Simulation beliebig vieler Roboter.
Simuliert werden die Grundbefehle der „Robuter“, wobei die gleichen ASCII-Steuer-
sequenzen übertragen werden. Roboter-Steuerungsprogramme können ohne erneute
Übersetzung sowohl für die Steuerung realer Roboter wir auch für die Steuerung
eines Roboters in der Simulation eingesetzt werden. Simuliert werden die Ultraschall-

Abbildung 0.2: xremroc

5

sensoren, Odometrie sowie das Kamerabild aus dem Blickwinkel eines Roboters
(über die Inventor-Bibliothek der SGI).

Abbildung 0.3: Roboter-Simulator

6

7

Inhaltsverzeichnis

1. Projektverwaltung. 11

1.1 Die Verzeichnisstruktur des Projektes. 12
1.1.1 Der Verwaltungsbereich. 13
1.1.2 Der Veröffentlichungsbereich . 16
1.1.3 Sonstige Verzeichnisse. 17

1.2 Die Verzeichnisstruktur der privaten Sicht auf ein Teilprojekt. . . . 18
1.2.1 Generische Makefiles. 19

1.3 Die Projektverwaltung in der Praxis. 22
1.3.1 Einrichten der Umgebung . 22
1.3.2 Erzeugen eines neuen Teilprojektes. 24
1.3.3 Verwenden schon vorhandener Teilprojekte. 25
1.3.4 Anpassen der generischen Makefiles. 26
1.3.5 Benutzen von SNiFF+ . 27
1.3.6 Installieren von getesteter und stabiler Software. 29
1.3.7 Aktualisieren eines Teilprojekts. 30

1.4 CVS-Repositories für weitere Projekte . 34
1.4.1 Einrichten der Umgebung . 35
1.4.2 Einrichten des Verwaltungsbereichs . 36
1.4.3 Einrichten des Veröffentlichungsbereichs. 36
1.4.4 Zugriffsberechtigung . 36

1.5 Richtlinien für Multi-EntwicklerInnen-Teilprojekte 38

2. Verwendung von CVS. 41

2.1 Was ist CVS . 41
2.2 Voraussetzungen für die Nutzung von CVS. 42
2.3 Grundlegende Kommandos von CVS . 43

2.3.1 Erzeugen einer privaten Sicht . 43
2.3.2 Hinzufügen von Dateien . 44
2.3.3 Löschen von Dateien . 44
2.3.4 Überprüfen der privaten Sicht . 44
2.3.5 Private Sicht auf den neusten Stand bringen 45
2.3.6 Eigene Änderungen der Allgemeinheit zur Verfügung stellen 46
2.3.7 Eigene Änderungen aufgeben bzw. Bearbeitung abbrechen 46
2.3.8 Änderungsgeschichte ansehen. 46
2.3.9 emacs Interface zu CVS. 46

2.4 Einrichten eines neuen Roboterteilprojektes . 47
2.4.1 Generisches Projekt erzeugen . 48
2.4.2 Anpassung an das neue Projekt . 48
2.4.3 Eintragung in die Moduldatenbank . 49
2.4.4 Bereitstellen des neuen Teilprojektes. 50

8

2.4.5 Entfernen der Urversion des neuen Projektes 50
2.4.6 Erstellen einer privaten Sicht. 51
2.4.7 Bearbeitung . 51

2.5 Literatur . 52

3. RoI (Robot Interface). 53

3.1 Hardwareumgebung . 53
3.2 Befehlssatz . 54
3.3 Beispiel. 54
3.4 Abbildung der Verkabelung . 55
3.5 Verwendung der Sourcen . 55

4. Verwendung von DRI . 57

4.1 Einleitung. 58
4.2 Funktionalität . 59

4.2.1 Direkte Ansteuerung der Fahrzeuge. 59
4.2.2 Indirekte Ansteuerung der Fahrzeuge . 59
4.2.3 Indirekte Ansteuerung über mehrere Steuerprogramme 60

4.3 Voraussetzungen für den Einsatz . 60
4.4 Arbeitsweise . 61

4.4.1 Direkte Ansteuerung der TTY - Schnittstelle 61
4.4.2 Indirekte Ansteuerung der TTY - Schnittstelle 61
4.4.3 Ansteuerung des Simulators. 62

4.5 Funktionsvorrat . 62
4.5.1 Systembefehle . 62
4.5.2 TTY-Befehle . 62
4.5.3 Programmentwicklungsbefehle . 62
4.5.4 Robotersteuerungsbefehle:. 63
4.5.5 Ausdrucken von Nachrichten. 63

4.6 Deklarationen und Fehlercodes . 63
4.6.1 Deklarationen und Fehlercodes . 63

4.7 Ausblick. 65
4.8 Verwendung der Sourcen . 65
4.9 Literatur . 65

5. 6-D-Maus. 67

5.1 Pinbelegung und Adapterkabel . 67
5.2 Koordinaten und Einstellungen der Space Mouse 68

5.2.1 Das Koordinatensystem. 68
5.2.2 Die Steuerparameter. 69
5.2.3 Das Kommunikationskonzept . 70

5.3 Schnittstelle zum Anwendungsprogramm . 70
5.3.1 Verbindungsaufbau und -abbau zur Space Mouse. 70
5.3.2 Steuerung der Space Mouse Funktionen . 71
5.3.3 Datenverkehr mit der Space Mouse. 72

9

5.3.4 Programmtemplate für die Verwendung der Space Mouse. 73
5.4 Verwendung der Sourcen . 73
5.5 Literatur . 74

6. Bildformate . 77

6.1 Hardware Formate. 77
6.1.1 Sun XIL Framegrabber . 77
6.1.2 Eltec Kantenfinder. 79

6.2 Software Formate . 79
6.2.1 Horus . 79
6.2.2 Khoros . 82
6.2.3 pbmplus Format. 83

6.3 Weitere Gesichtspunkte. 84
6.4 Empfehlung für ein allgemeines Bildformat . 84
6.5 Literatur . 85

7. Benutzung des Maspar Framegrabbers. 87

7.1 Virtualisierung der Bilddaten. 87
7.2 cfgInit . 88
7.3 cfgGetFrame. 88
7.4 cfgGetHalfFrame. 89
7.5 Geschwindigkeit . 89

8. ELTEC-VectEx. 91

8.1 Konfiguration der Hardware. 91
8.1.1 SBus VME-Bus Adapter (PT-SBS915). 92
8.1.2 Image Processing Port (IPP) . 92
8.1.3 Thinedge Processor (THIN). 92
8.1.4 Vector Processor (VECT) . 93
8.1.5 Handhabung des Gesamtsystems. 93
8.1.6 Tips & Tricks. 96

8.2 Konturpunkte . 96
8.3 Konturen . 98
8.4 Konturdatenbanken. 101

8.4.1 Die Ablage der Konturdaten . 101
8.4.2 Der Aufbau der Datenbank . 103
8.4.3 Tips & Tricks. 105

8.5 Anfragen an Konturdatenbanken. 105
8.5.1 Auswahl des Bildbereichs . 106
8.5.2 Auswahl anhand von Konturattributen . 107
8.5.3 Eine komplette Anfrage. 109
8.5.4 Tips & Tricks. 110

8.6 Visualisierung von Konturen . 110
8.7 Die Bibliothek libElt_boards.a. 113

10

8.8 Die Bibliothek libElt_misc.a . 113
8.9 Beispiele. 114

8.9.1 Hardware, Datenbank und Visualisierung in einem Programm. . . . 114
8.9.2 Aufnahme und Speicherung einer Bildsequenz auf Datei. 116
8.9.3 Einlesen einer Bildsequenz von Datei . 116
8.9.4 Suche nach antiparallelen Konturen. 117

8.10 Messungen . 120
8.11 Programme. 121
8.12 Verwendung der Sourcen . 122
8.13 Literatur . 123

9. Die SUN Framegrabber Routinen. 125

9.1 Initialisierung . 126
9.2 Graben von Bildern. 127

9.2.1 Schnelles Graben . 128
9.2.2 Sicheres Graben. 129
9.2.3 Intelligentes Graben. 129

9.3 Weitere Funktionen. 130
9.3.1 Länge des FIFO . 130
9.3.2 Maximales Bildalter. 130
9.3.3 Automatisches Überspringen. 130
9.3.4 Automatischer Weißabgleich. 131
9.3.5 Automatische nxm Faltung . 131

9.4 Hilfsfunktionen . 132
9.4.1 Bildinformation . 132
9.4.2 Bilder kopieren. 132
9.4.3 Bilder löschen. 132
9.4.4 Abspeichern von Bildern . 133
9.4.5 Zugriff auf geditherte Bilder . 133
9.4.6 Zugriff auf XIL . 133

9.5 Schließen des Framegrabbers. 133
9.6 Messungen. 134
9.7 Verwendung der Sourcen . 135
9.8 Fehlermeldungen. 135

10. Benutzung der SUN Framegrabber mit HORUS 137

10.1 Initialisieren der Robosun-Framegrabber . 138
10.1.1 Verhalten . 142
10.1.2 Beispiele. 142

10.2 Literatur . 142

Kapitel 1

Projektverwaltung
Matthias Muscholl, Marco Sommerau

Wichtig für die Entstehung des Roboterprojektes ist es, daß jeder Softwareentwickler
nicht nur einheitliche Schnittstellen innerhalb seiner Software anbietet, sondern daß
bei der Softwareentwicklung einheitliche Strukturen verwendet werden. Dieses Kapi-
tel handelt von der Strukturierung der Verzeichnisse des Roboterprojektes, der Ver-
zeichnisse der Teilprojekte, in denen die Software für einzelne Module entwickelt
wird, sowie von den Projektverwaltungsdateien, die einen möglichst einheitlichen,
hoffentlich einfachen und fehlerfreien Zugriff auf Teile des Projektes ermöglichen –
also: was wann wo steht, oder wie man was wo ablegt1.

Das Roboterprojekt wird in Teilprojekte gegliedert, die jeweils eine mindestens drei
Zeichen lange Abkürzung erhalten. Im folgenden wird die Abkürzung TPR als Stell-
vertreter für beliebige Teilprojektabkürzungen verwendet. (TPR ist selbst ein generi-
sches Teilprojekt, das die hier beschriebene Struktur definiert.)

Ziele für die entworfene Strukturierung waren:

1. Programme entwickeln zu können, die auf verschiedenen Rechnersysteme aus-
führbar sind. Es soll ein und derselbe Code auf unterschiedlichen Architekturen
und Betriebssystemen übersetzbar sein, wobei architekturabhängiger Code durch
bedingte Compile-Anweisungen getrennt wird. Die Architekturen die unterstützt
werden sind Sun4, Sun4 Solaris, Sun4 Solaris Multiprozessor, HP, Ultrix (Maspar),
SGI und Linux (in Kürze auch Maspar mit OSF/1).

2. Da es sich bei dem Roboterprojekt um ein sehr dynamisches, weitestgehend im Ex-
perimentierstadium befindliches Projekt handelt, ist die Verwendung eines Versi-
onsverwaltungssystems unumgänglich. Nach Ablauf verschiedener Studien zu

1. Die Projektverwaltung wurde aufbauend auf einer Verzeichnisstruktur entwickelt, die in der Abteilung
Verteilte Systeme (VS) des IPVR verwendet wird.

12 1. Projektverwaltung

Systemen wie SCCS, RCS, CVS entschieden wir uns für CVS. Einen ersten Über-
blick bietet hierzu das Kapitel ‘Verwendung von CVS’ von Michael Vogt.

3. Eine weitere Anforderung bestand darin, einen einheitlichen Umgang mit dem
Projekt und seinen Teilen anzubieten, um eine möglichst komfortable Einbindung
der eigenen Code-Dateien, und die sichere Verwendung von Libraries anderer
Teilprojekte zu garantieren.
Teilprojekte geben nach Entwicklungsfortschritt Libraries und Programme zur
Verwendung in anderen Teilprojekten frei. Meist geht die Entwicklung jedoch wei-
ter, so daß gleichzeitig mehrere Versionen eines Teilprojekts verwendet werden.
Das Versionsverwaltungssystem bietet nun die Basis, um jedem Nutzer diejenige
Version zugänglich zu machen, auf die er aufbaut. Zu einer veröffentlichten Ver-
sion gehören Include-Dateien und Manpages, sowie Libraries und Programme.
Die Include-Dateien und Manpages werden in der benötigten Version lokal für
den nutzenden Entwickler aus dem CVS-Repository extrahiert. Versionen die
nicht mehr benötigt werden, kann der Nutzer aus dem lokalen Verzeichnis lö-
schen.
Die Libraries und Programme werden nicht im CVS-Repository gehalten, sondern
beim Installieren im Veröffentlichungsbereich des Projektes dauerhaft abgelegt.
Welche Version extrahiert und hinzugebunden wird, kann der Entwickler durch
Angabe in einer einzigen Makefile-Variablen definieren. Global definierte Makefi-
le-Targets ermöglichen dann das automatische Extrahieren von angegebenen Ver-
sionen.

Der Abschnitt "1.2 Die Verzeichnisstruktur der privaten Sicht auf ein Teilprojekt" auf
Seite 18 beschreibt die Verzeichnisstruktur in der jeder Entwickler seine Programme
schreibt.

1.1 Die Verzeichnisstruktur des Projektes
Unter /usr/local/bv befindet sich das Verzeichnis robot (Abb. 1.1):

Hier befindet sich das Home-Verzeichnis des Roboterprojektes. In den Dateien
„LABORORDNUNG“ und „PROBLEME“ finden sich aktuelle Informationen über die Or-
ganisation des Forschungsbetriebes.

Abbildung 1.1: Das HOME-Verzeichnis des Robot-Projektes.

1.1 Die Verzeichnisstruktur des Projektes 13

Die in den Teilprojekten entwickelte Software wird im Sourcecode in einem
Repository der Versionsverwaltung CVS gespeichert. Vom Software-Entwickler gete-
stete und freigegebene Libraries oder Programme werden in Installations-Verzeich-
nissen anderen Teilprojekten zur Verfügung gestellt.

Wir unterscheiden zwei Bereiche: den Verwaltungsbereich (CVS, adm) und den Veröf-
fentlichungsbereich (bin , doc , lib).

1.1.1 Der Verwaltungsbereich

In diesem Bereich sind Dateien abgelegt, die für eine einheitliche Administration des
Projektes notwendig sind. Auf diese Dateien wird fast ausschließlich automatisiert
zugegriffen.

Auf den CVS-Unterbaum wird mit Kommandos des Versionsverwaltungssystems ge-
lesen oder geschrieben. Es darf auf ihn nicht unter Zuhilfenahme normaler Unix-
Kommandos zugegriffen werden! Jegliches Verändern hat Auswirkungen über das ei-
gene Teilprojekt hinaus.

Im adm-Verzeichnis befinden sich neben den Verzeichnissen MakeSupport , cmd und
templates folgende Dateien (Abb. 1.2):

1. AbbreviationList enthält zu jedem Teilprojekt eine Zeile, in der die Teilpro-
jekt-Abkürzung, die Teilprojektbezeichnung, die Namen des Entwicklungsteams
sowie der Name des Teamleiters (meist der Betreuer) eingetragen ist. Diese Daten
werden beim Erzeugen eines Teilprojektes durch das Shellscript CreateNewTPR
automatisch auf dem laufenden gehalten. Es wird sichergestellt, daß keine zwei
Teilprojekte die gleiche Abkürzung erhalten.

2. Aus Kompatibilitätsgründen zu früheren Versionen der Verzeichnisstruktur befin-
det sich im Verzeichnis robot/adm noch eine Datei cshrc , die bisher von priva-
ten .cshrc jedes Entwicklers eingebunden wurde. Environment-Variablen
werden nun vom abteilungsweiten /usr/local/bv/rc/cshrc gesetzt, wenn
im privaten .cshrc „set ROB_USER“ und „set PVM_USER“ angegeben wurde.
Folgende Variablen sind dadurch gesetzt:

a. CVSROOT der Pfad, unter dem das Repository des Versionsverwaltungssystem
gespeichert ist,

b. BV_ARCH die Architektur des Systems auf dem man sich augenblicklich befin-
det,

c. PROJ_TOPDIR das Home-Verzeichnis des Roboter-Projektes,

d. und für PROJECTABBREVIATION steht CoMRoS,

Abbildung 1.2: Administrationsverzeichnis (adm)

14 1. Projektverwaltung

e. was für PROJECTNAME='Cooperative Mobile Robot Systems Stuttgart' steht.

Weiterhin existieren symbolischen Links, die aus Kompatibilitätsgründen auf globale
Makefiles verweisen.:

1. Makefile.Sniff.BasedOnProjects auf MakeSupport/Global.Tople-
vel.Targets.make

2. Makefile.Sniff.install und

3. Makefile.install auf MakeSupport/Global.SrcLevel.Targets.make

Im Unterverzeichnis adm/MakeSupport befinden sich globale Makefiles. Hier wer-
den Targets definiert, die eine einheitliche und sichere Integration der einzelnen Teil-
projekte ermöglichen (Abb. 1.3):

1. Global.Makefile.Admin.make enthält die Konfigurationsinformation für die
folgenden, globalen Makefiles.

2. Global.SrcLevel.Targets.make enthält die projekteinheitlichen Targets für
das automatische Generieren von Source-Dateien (template), zur Berechnung
der Abhängigkeiten (depend) der Source-Dateien, für das Installieren fertiger
Softwareversionen (install) und das Generieren von Manpages (man). Die Datei
wird von den teilprojektbezogenen Makefiles der TPR/src Verzeichnisse aufge-
rufen.

3. Global.Toplevel.Targets.make enthält die Projekt-einheitlichen Targets für
das Bereitstellen von Versionen, auf denen Teilprojekte basieren (get , siehe Ab-
schnitt "1.2.1 Generische Makefiles" auf Seite 19). Ferner besitzt es Targets für all
und install , die in die Makefiles der TPR/src Verzeichnisse verzweigen. Die
Datei wird von Makefiles der Teilprojektebene eingebunden.

Im Unterverzeichnis adm/templates befinden sich folgende Schablonen. Sie
werden bei der Generierung von Source-Dateien durch das in der Datei adm/Make-
Support/Global.SrcLevel.Targets.make definierten Target template ver-
wendet (Abb. 1.4):

Abbildung 1.3: Dateien mit globalen Makefile-Regeln (adm/MakeSupport).

Abbildung 1.4: Templates zur Source-Dateien Generierung (adm/templates).

1.1 Die Verzeichnisstruktur des Projektes 15

1. Abbreviationlist.empty enthält die Schablone für eine leere Abbrevia-
tionlist.

2. TPR.get.sh enthält die Schablone für ein Shell-Skript das automatisch abgear-
beitet wird, wenn dieses Teilprojekt als Teil eines übergeordneten Teilprojekts aus-
gecheckt wird (verwendet bei Target: get).

3. template.h enthält die Schablone für Header von C Sourcen.

4. template.c enthält die Schablone für C Sourcen.

5. template.c.main enthält die Schablone für ein main() in C.

6. template.H enthält die Schablone für Header von C++ Sourcen.

7. template.C enthält die Schablone für C++ Sourcen.

8. template.C.main enthält die Schablone für ein main() in C++.

Die global definierten Targets rufen Shell-Skripte auf, die teilweise interaktiv bedient
werden. Sie sind im Unterverzeichnis adm/cmd/make* abgelegt. Dort befinden sich
weiterhin folgende Shell-Skripte (Abb. 1.5):

1. CreateNewTPR (Shell-Skript) erzeugt im aktuellen PROJ_DEVELOPDIR ein neues
Teilprojekt. Die Variable PROJ_DEVELOPDIR sollte im privaten .cshrc gesetzt
sein(z.B. setenv PROJ_DEVELOPDIR $HOME/SA). Zur Erzeugung eines neuen
Teilprojekts werden Informationen wie die Teilprojektbezeichnung, die Teilpro-
jekt-Abkürzung, die Namen des Entwicklungsteams sowie der Name des Teamlei-
ters (meist der Betreuer) interaktiv abgefragt. Dieses Skript stellt daraufhin ein
neues, bereits konfiguriertes Teilprojekt zur Verfügung (siehe Abschnitt "1.3.2 Er-
zeugen eines neuen Teilprojektes" auf Seite 24).

2. UpdateTPR (Shell-Skript) dient dazu, Teilprojekte die auf einer älteren Version des
generischen Teilprojekts TPR basieren, an die neue Struktur anzupassen. Dazu
wird interaktiv die Abkürzung des anzupassenden Teilprojekts abgefragt um die
automatisierbaren Änderungen wie Hinzufügen von Verzeichnissen und Dateien
vornehmen zu können (siehe Abschnitt "1.3.7 Aktualisieren eines Teilprojekts" auf
Seite 30).

3. ChmodTPR (Shell-Skript) erlaubt die Festlegung der Zugriffsberechtigung von
Teilprojekten im CVS Repository. Die Teilprojektbezeichnung und die gewünschte
Berechtigung werden interaktiv abgefragt (siehe Abschnitt "1.4 CVS-Repositories
für weitere Projekte" auf Seite 34).

Abbildung 1.5: Die bereitgestellten Skripte

16 1. Projektverwaltung

4. ChangeMakefileVariable (Shell-Skript) ermöglicht es gezielt Makefilevaria-
blen zu ändern, ohne daß der Aufruf des Editors nötig ist. Die Syntax ist:
ChangeMakefileVariable filename [variable value] ...

5. check (Shell-Skript) überprüft, ob die für einen Übersetzungslauf notwendigen
Include-Dateien des Makefiles TPR/src/Makefile aktualisiert sind und erzeugt
diese neu, falls sie fehlen, oder veraltet sind (Aufruf aus dem Makefile heraus).

6. configure.OSE.scripts (Shell-Skript) ändert die Shell-Skripte des Tools
classinfo des C++ Programmpakets OSE für die Verwendung in /usr/local/
bv/cmd ab.

7. make.install (Shell-Skript) installiert die Libraries und Programme der aktuel-
le Version eines Teilprojekts im Veröffentlichungsbereich (Target: install).

8. make.deinstall (Shell-Skript) entfernt die Libraries und Programme der aktu-
elle Version eines Teilprojekts aus dem Veröffentlichungsbereich.

9. make.depend (Shell-Skript) erzeugt eine Abhängigkeitsliste aller .c und .C -Da-
teien, für Lex- und Yacc-Dateien sowie SNNS-Netzbeschreibungsdateien. Es wer-
den alle durch ein #include eingebundene Dateien aufgeführt, wobei
Systemincludes ausgenommen sind. Die Unterscheidung ist wie folgt: "TPR/
userInclude.h" bzw. <systemInclude.h> . Das Makefile wird selbst mit in
die Abhängigkeitsliste aufgenommen (Target: depend).

10. make.dependency (Shell-Skript) und make.Sniff.dependency (Shell-Skript)
rufen jeweils make.depend mit erweiterter Parameterleiste auf und sind nur aus
Kompatibilitätsgründen noch vorhanden.

11. make.template (Shell-Skript) erzeugt aus den generischen Templates eine neue
Source-Datei, dessen Dateikopf bereits teilprojektspezifisch konfiguriert ist. Dazu
wird interaktiv der Name der zu generierenden Datei abgefragt. Für *.[cC] Da-
teien kann angegeben werden, ob der Rumpf einer main() Funktion ebenfalls ge-
neriert werden soll und für *.[hH] Dateien wird abgefragt, ob es sich um einen
Schnittstellen-Header handelt, und somit im TPR/include/TPR -Verzeichnis an-
gelegt werden soll (Target: template).

12. make.get.modifyProj.awk (awk-Skript) paßt die in SNiFF+ Projektbeschrei-
bungsdateien vorhandenen Pfade an versionsabhängigen Pfade von Unter-Teil-
projekten an (verwendet bei Target: get).

13. make.get.subprojects (Shell-Skript) durchläuft rekursiv alle Unter-Teilpro-
jekte, erstellt dabei eine Liste der Unter-Teilprojekte und exportiert die Include-Da-
teien und Manpages der im PROJ_DEVELOPDIR fehlenden Unter-Teilprojekte
(verwendet bei Target: get).

1.1.2 Der Veröffentlichungsbereich

In diesem Bereich befinden sich die Verzeichnisse für die Ablage von fertiggestellten
Versionen (Abb. 1.6). Hierhinein werden voll ausgetestete, stabile Libraries und Pro-
gramme abgelegt. Von vorhandenen Dateien kann man ausgehen, daß sie während
der Laufzeit des Gesamtprojektes bestehen bleiben.

1.1 Die Verzeichnisstruktur des Projektes 17

1. doc : Zu jedem Teilprojekt wird eine Dokumentation (Usermanual und/oder Aus-
arbeitung der Arbeit) im Unterverzeichnis $(PROJECTTAG) abgelegt. Der Name
muß das Präfix $(PROJECTTAG).$(PROJECTVERSION) besitzen und sollte mit
dem Suffix die Dateiart (.ps oder .dvi oder .fm) spezifizieren. Grundsätzlich
sollte darauf geachtet werden, daß ein Dateiformat gewählt wird, das möglichst
platzsparend ist, aber ohne zusätzliche uncompress-Verfahren gelesen werden
kann.

2. bin : Lauffähige Programme sollten ein ausführliches Usage angeben, wenn man
sie mit a.out -h aufruft.

3. lib : Libraries sind vorübersetzte Code-Files und bilden eine Einheit mit ihren
include-Dateien, die Prototypen für Funktionen und Datentypen spezifizieren. Die
include-Dateien sind in der Versionsverwaltung gespeichert. Jedes Teilprojekt, das
auf andere aufbaut holt sich automatisch die von ihm benötigten Versionen der Li-
brary-spezifischen include-Dateien aus dem Repository.

Aufgrund der unterschiedlichen Betriebssysteme und Rechnerarchitekturen wird in
den Unterverzeichnissen bin und lib eine Strukturierung in architekturspezifische
Unterverzeichnisse vorgenommen, hier HPPA, LINUX, MASPAR (Ultrix), SGI5 , SUN4,
SUN4SOL2 und SUNMP. Das zu einem Rechner gehörige Architekturkürzel wird auto-
matisch beim Öffnen einer Shell gesetzt.

1.1.3 Sonstige Verzeichnisse

1. bilder :
Es wurde unter /usr/local/bv/robot ein Verzeichnis bilder angelegt, in das
alle möglichen Roboterbilder gelegt werden können (und sollen), um somit für alle
einen einfachen Zugriff auf Bilder von unseren Fahrzeugen zu ermöglichen. Das
Unterverzeichnis habe ich entsprechend den möglichen Bildgröße des SFG [Sun
Frame Grabber] unterteilt. Eine weitere Unterteilung dieses Verzeichnisses erfolgt
dann nach Format. Bisher sind ppm und tif vorgesehen.

Als Basis habe ich meine Bilder zur Verfügung gestellt. Sie sind von der Größe
192x144 im ppm-Format und stehen folglich unter /usr/local/bv/robot/
bilder/192x144/ppm/ .

Abbildung 1.6: Der Veröffentlichungsbereich

18 1. Projektverwaltung

2. etc :
Im Verzeichnis etc sind Konfigurationsfiles abgelegt, die für den Betrieb der Ro-
boterfahrzeuge erforderlich sind (system.*). Ferner finden sich in diesem Ver-
zeichnis Beispiele für persönliche Konfigurationsfiles, die für den Einsatz von
PVM gebraucht werden [pvm_hosts , rhosts].

1.2 Die Verzeichnisstruktur der privaten Sicht auf ein
Teilprojekt

Wie bereits beschrieben, werden die Codedateien durch das Versionsverwaltungssy-
stem CVS gespeichert. Die Benutzung sieht wie folgt aus: Sobald ein Teilprojekt be-
gonnen wird, richtet der Betreuer die zugehörige Verzeichnisstruktur ein. Sie wird im
Home-Verzeichnis des Softwareentwicklers angelegt und entsprechend dem Teilpro-
jekt konfiguriert. Gleichzeitig wird diese Struktur im CVS-Repository eingetragen.
Der Softwareentwickler kann nun entweder das Versionsverwaltungssystem nutzen
und einzelne Abschnitte seiner Arbeit in das Repository speichern, oder bis zum Ende
seiner Arbeit seine Programme entwickeln und erst zum Schluß den Source-Code im
Repository ablegen. CVS ermöglicht es, daß mehrere Entwickler gleichzeitig an den
selben Dateien editieren, und ihre Änderungen über das Repository austauschen. Ge-
naueres siehe "1.5 Richtlinien für Multi-EntwicklerInnen-Teilprojekte" auf Seite 38.

Ein Teilprojekt besteht aus mehreren Unterverzeichnissen, deren Aufgabe darin be-
steht, verschiedene Typen von Dateien aufzunehmen (Abb. 1.7):

1. src : Innerhalb dieses Verzeichnisses werden die Code-Dateien entwickelt. C-Da-
teien haben die Endung .c und .h , C++-Dateien die Endung .C und .H .
Zu jeder Architektur/Betriebssystem existieren Unterverzeichnisse. Dorthinein
werden alle erzeugten oder architekturabhängigen Dateien abgelegt. Die erzeug-
ten Dateien sind .o -Dateien, die Datei .Make.dependencies.rej mit den Ma-
kefile Abhängigkeiten, alle ausführbaren Programme und Libraries.
Die Datei CONFIG.make enthält schließlich die Definition der architekturabhängi-
gen Makefile Variablen

2. include : Innerhalb dieses Verzeichnis-Baumes (im Unterverzeichnis TPR) wer-
den diejenigen include-Dateien abgelegt, die andere Teilprojekte zur Benutzung
von Teilprojekt-Libraries benötigen. Benutzt der Entwickler SNiFF+, so werden im

Abbildung 1.7: Die private Sicht auf ein Teilprojekt

CVS

CVS

CVS CVS CVS CVS

CVS CVS

CVS

CVS CVS CVS CVS CVS CVS CVS

1.2 Die Verzeichnisstruktur der privaten Sicht auf ein Teilprojekt 19

include-Verzeichnis selbst Projektbeschreibungsdateien abgelegt (siehe Erklärung
zu dem Verzeichnis proj).

3. man: Zu den in Libraries zur Verfügung gestellten Funktionen, Variablen sowie
C++ Klassen sind Beschreibungen in Form von Manpages zu erzeugen. Dazu wer-
den Hilfsmittel bereitgestellt, die aus formatgerechten Kommentaren in den inclu-
de-Dateien entsprechende Manpages generieren, und sie im man3-
Unterverzeichnis ablegen (Target: man).

4. proj : Dieses Verzeichnis dient zur Aufnahme von SNiFF+ Projektbeschreibungs-
dateien, die das gesamte Teilprojekt umfassen. Für diejenigen die SNiFF+ verwen-
den wurde folgende Konvention entworfen: die Codefiles einer zur Verfügung
gestellten Library werden in zwei Projektbeschreibungsdateien zusammengefaßt:
Einerseits die include-Dateien die die sichtbare Schnittstelle der Library darstellen,
andererseits alle restlichen Code-Dateien, die die Library implementieren. Dieses
zweite SNiFF+ Projekt enthält dann das SNiFF+ Projekt der include-Files als Un-
terprojekt (Tabelle 1.1):

Ein Teilprojekt kann prinzipiell aus beliebig vielen SNiFF+ Projekten bestehen.

5. cmd: Shell, awk, perl, ... -Skripte, für die Verwaltung oder Aufrufe im Teilprojekt.

6. data : Testszenarien und andere Dateien, die in keines der anderen Verzeichnisse
gehören (z.B. pvm_hostfile).

1.2.1 Generische Makefiles

Aufgrund der unterschiedlichen Funktionalitäten von make, die von den einzelnen
Betriebssystemen bereitgestellt werden, wird im Roboterprojekt einheitlich Gnumake
verwendet (Aufruf: gmake).

Wir unterscheiden drei Abstraktionsebenen in einem Teilprojekt, denen entsprechen-
de Makefiles zugeordnet sind: die Teilprojektebene (TPR), die Ebene der Code-
Dateien (TPR/src) und die architekturabhängige Ebene (TPR/src/$(BV_ARCH)).
In der Teilprojektebene befindet sich ein Makefile, daß die teilprojektspezifischen Va-
riablen definiert (Makefile.project.part.defines). Dieses wird von allen an-
deren Makefiles eingebunden.
In der Architekturebene befindet sich das Konfigurationsfile, in dem architekturab-
hängige Variablen gesetzt werden (CONFIG.make), sowie die erzeugten Abhängig-
keitsbeschreibungen (.Make.dependencies.rej).
Auf der Ebene der Code-Dateien ist das Makefile abgelegt, in dem die Targets für das
Erzeugen der Libraries und der Programme vom Entwickler angegeben werden und

Namen der SNiFF+ Projekte/
Unterprojekte Verzeichnis Sourcen

libTPR.proj

libTPR.Interface.proj

TPR/proj TPR/src/*.[hHcC]

TPR/include TPR/include/TPR/*.[hH]

Tabelle 1.1: Namenskonvention für SNiFF+ Projektbeschreibungsdateien.

20 1. Projektverwaltung

stellt das sog. Arbeits-Makefile dar. Es bindet ein globales Makefile ein, in dem Targets
projekteinheitlich spezifiziert sind. Ein Makefile, daß der Entwickler kaum verwen-
den wird, welches aber für die spätere Weiterverwendbarkeit wichtig ist, befindet sich
auf der Teilprojektebene. Es ermöglicht ohne Kenntnisse der internen Projektstruktur
Programmversionen nachträglich zu übersetzen und zu installieren.

Im folgenden werden die einzelnen Teile detailliert aufgeführt:

1. TPR/Makefile.project.part.defines : Diese Datei wird von allen Makefi-
les eingebunden und enthält folgende änderbaren teilprojektspezifischen Varia-
blen:

a. BASESON: Spezifiziert all jene Teilprojekte, auf die das Teilprojekt aufbaut, und
die aus dem gleichen CVS-Repository stammen. Der Inhalt dieser Variablen
wird verwendet um include-Pfade und Linkpfade zu bestimmen. Teilprojekte
werden in Form von <project-tag><project-version> angegeben (z.B:
BASESON = TPR Sub2-1). Der Inhalt dieser Variablen dient dem automati-
schen Extrahieren der verwendeten Teilprojektversionen aus dem CVS-Repo-
sitory. Der zu den Unter-Teilprojekten gehörende Schnittstellenbereich TPRx-
y/include/TPR und TPRx-y/man wird in die Ebene des
PROJ_DEVELOPDIR exportiert. (Sobald sie nicht mehr benötigt werden kön-
nen sie z. B. mit /bin/rm -rf SUB3-0 gelöscht werden).
Falls einige der in BASESON angegebenen Teilprojekte nur intern zur Erzeu-
gung von lauffähigen Programmen und nicht zur allgemeinen Verwendung
der Teilprojekt-Libraries notwendig sind, sollten diese mit [...] geklammert
werden. Dadurch wird das unnötige Exportieren der geklammerten Teilpro-
jekte bei der Verwendung dieses Teilprojekts vermieden (z.B: BASESON = TPR
Sub2-1 [TST1-5 SUB3-0]).

b. ADDITIONAL_BASESON: Mit Hilfe dieser Variablen können auch Teilprojekte
aus anderen CVS-Repositories (die für andere Projekte eingerichtet wurden)
von diesem Teilprojekt verwendet werden. Solche Teilprojekte können hier mit

<CVS repository>:<lib directory>:\
<project tag><project version>

angegeben werden (z.B.: ADDITIONAL_BASESON = /otherproject/
CVS:/otherproject/lib:OTPR1-1). Pfade, Schnittstellenbereiche und
die Klammerung intern benötigter Teilprojekte werden wie die von BASESON
behandelt.

c. PROJECTVERSION: Enthält die Versionsnummer, an der gerade gearbeitet
wird. Anstelle des üblichen Trennsymbols ‘. ’ wird ‘- ’ verwendet! (z.B. 1-0 ,
2-4-1-2)

Die folgenden Variablen werden in dieser Datei definiert, sollen aber vom Ent-
wickler nicht geändert werden:

d. PROJECTTAG: Mindestens drei Zeichen lange Abkürzung des Projektes. Sie ist
eindeutig innerhalb des gesamten Roboterprojektes und wird als Verzeichnis-
name, als Modulname (CVS) und als erster Teil von Versions-Tags verwendet.
Sie wird beim Erzeugen eines Teilprojektes angegeben und ist ab dann fest
(siehe dort).
Zukünftige Teilprojekte müssen alle global sichtbaren Bezeichner (globale Va-

1.2 Die Verzeichnisstruktur der privaten Sicht auf ein Teilprojekt 21

riablen, Typdefinitionen, Klassendefinitionen, Prozedurnamen, ...) mit dem
Präfix „<PROJECTTAG>_“ versehen, um Probleme beim Linken zu vermeiden.

e. ADM_VERSION: Gibt die Version der hier beschriebenen Administrationsum-
gebung an mit der dieses Teilprojekt erstellt wurde.

f. INSTDIR : Ist identisch mit PROJ_TOPDIR.

g. INSTLIBDIR : Gibt den architekturabhängigen Pfad zur Installation der er-
zeugten Libraries an.

h. INSTBINDIR : Gibt den architekturabhängigen Pfad zur Installation der er-
zeugten Programme an.

i. MAKE: Gibt das für Make zu verwendende Kommando an (hier gmake).

j. PVM_TOPDIR: Der Pfad der das include - und lib -Verzeichnis von PVM ent-
hält.

k. TPR_DEVELOPDIR: Home-Verzeichnis dieses Teilprojekts, wobei sich der Pfad
aus PROJ_DEVELOPDIR und TPR zusammensetzt.

2. TPR/Makefile : Dieses Makefile verzweigt in das src -Verzeichnis und ruft dort
wieder Make auf.
Die Philosophie dahinter ist die, daß man sich eine private Kopie eines Teilprojek-
tes geben lassen kann, gmake aufruft und es werden die Libraries, Programs, etc.
erzeugt, ohne daß man genaueres über das Teilprojekt und dessen Struktur wissen
muß.
Für teilprojektübergreifende Targets wird ein globales Makefile eingebunden.

3. TPR/src/Makefile : Dies ist das eigentliche Arbeitsmakefile. Wie schon vorher
genannt, werden architekturabhängigen Konfigurationsdateien eingebunden. Die
Abhängigkeiten der .o -Files von .c - und .h -Dateien werden durch den Aufruf
von gmake depend erzeugt und in architekturspezifische Dependency-Files ge-
speichert. Es empfielt sich nach Änderung von include-Abhängigkeiten die Dependency-
Files neu zu erzeugen. Sie werden in das Arbeitsmakefile eingebunden und bewir-
ken ein Compilieren derjenigen Sourcen, die geändert wurden, bzw. von solchen
abhängen.
Folgende Eintragungen sind jedoch vom Entwickler selbst vorzunehmen:

a. Regeln zum Linken compilierter Codefiles zu ausführbaren Programmen

b. Regeln zum Erstellen von static oder shared Libraries

c. Eintragen aller zur Veröffentlichung gedachten Programme in PROGRAMS

22 1. Projektverwaltung

d. Eintragen aller zur Veröffentlichung gedachten statischen Libraries in
STATICLIBRARIES (vgl. Tabelle 1.2)

e. Eintragen aller zur Veröffentlichung gedachten shared Libraries in
DYNAMICLIBRARIES (vgl. Tabelle 1.2) Wer shared Libraries erzeugen möchte,
sollte die Hinweise in $PROJ_TOPDIR/doc/adm/Shared.Libraries.txt
lesen.

4. TPR/src/$(BV_ARCH)/CONFIG.make : Architekturabhängige Konfiguration
von Pfaden und Variablen.
Weiterhin können hier folgende Eintragungen vom Entwickler selbst vorgenom-
men werden:

a. Eintragen aller zur Veröffentlichung gedachten architekturspezifischen Pro-
gramme in ARCH_PROGRAMS

b. Eintragen aller nicht zur Veröffentlichung gedachten architekturspezifischen
Testprogramme in ARCH_TESTS

c. Eintragen aller zur Veröffentlichung gedachten architekturspezifischen stati-
schen Libraries in ARCH_STATICLIBS

d. Eintragen aller zur Veröffentlichung gedachten architekturspezifischen shared
Libraries in ARCH_DYNAMICLIBS

1.3 Die Projektverwaltung in der Praxis

1.3.1 Einrichten der Umgebung

Um die vorhandene Projektverwaltung nutzen zu können und ein komfortables Ar-
beiten zu ermöglichen sind für jeden Entwickler ein Reihe von Eintragungen in den
Dateien ~/.cshrc bzw. ~/.emacs erforderlich.

Damit die Umgebungsvariablen und Pfade korrekt gesetzt werden, müssen in der
Datei ~/.cshrc des Entwicklers mindestens die in Prog. 1.1, 4-10 aufgeführten
Schalter gesetzt werden. Außerdem ist es dringend erforderlich, die Variablen
PROJ_DEVELOPDIR zu setzen (Prog. 1.1, 12). Um die Änderungen in der aktuellen
Shell wirksam zu machen sollte nach dem Abspeichern ein source ~/.cshrc aus-
geführt werden.

Teilprojekt enthält

nur eine Library mehrere Libraries

libTPR.a libTPR_<name1>.a
libTPR_<name2>.a
...

Tabelle 1.2: Namenskonventionen für erstellte Libraries.

1.3 Die Projektverwaltung in der Praxis 23

Für das komfortablere Arbeiten mit CVS ist es empfehlenswert das emacs Erweite-
rungspaket pcl-cvs zu verwenden. Dazu müssen in der Datei ~/.emacs des Entwick-
lers die in Prog. 1.2, 1-6 aufgeführten Zeilen eingefügt werden. Damit die
Änderungen wirksam werden, sollte ein eventuell laufender emacs verlassen und neu
gestartet werden. Das Starten des Programmpakets erfolgt dann durch die Eingabe
von M-x cvs-update im laufenden emacs. Eine ausführliche Beschreibung der
Funktionsweise dieses Programmpakets ist über das emacs Menü Help, Untermenü
Info unter dem Punkt Pcl-cvs zu bekommen

Wer bei der Verwendung von SNiFF+ statt des eingebauten Editors weiterhin emacs
verwendet werden möchte, kann dies durch den Eintrag der in Prog. 1.2, 8ff aufge-
führten Zeilen konfigurieren. Die genaue Anbindung kann in der Dokumentation zu
SNiFF+ unter $SNIFF_DIR/doc/UsersRefPart1.ps.gz , nachgelesen werden..

Programm 1.1: Eintragungen in der Datei ~/.cshrc des Entwicklers.
[...]

1 #
2 # uncomment to use this software
3 #

[...]
4 set PVM_USER
5 set BV_USER

[...]
6 # DO NOT DELETE NEXT LINE
7 source /usr/local/rc/cshrc

[...]
8 set ROB_USER
9 set SNIFF201

10 source /usr/local/bv/rc/cshrc
11
12 setenv PROJ_DEVELOPDIR $HOME/SA

[...]

Programm 1.2: Eintragungen in der Datei ~/.emacs des Entwicklers.
[...]

1 ;;; pcl-cvs-startup.el,v 1.2 1992/04/07 20:49:17 berliner Exp
2 (autoload ‚cvs-update „pcl-cvs“
3 „Run a ‚cvs update‘ in the current working directory.

Feed the
4 output to a *cvs* buffer and run cvs-mode on it.
5 If optional prefix argument LOCAL is non-nil, ‚cvs update -l‘ is

run.“
6 t)
7
8 ; --- SNiFF+ ---
9 (load-library „$SNIFF_DIR/config/sniff-mode“)

[...]

24 1. Projektverwaltung

1.3.2 Erzeugen eines neuen Teilprojektes

Das Erzeugen eines neuen Teilprojekts erfolgt weitgehend automatisiert. Der Ent-
wickler, oder der Betreuer führt in einer Shell des Entwicklers das Kommando Crea-
teNewTPR aus. Zu beachten ist, daß man sich in dem Verzeichnis befindet, unter dem
die Softwareentwicklung stattfinden soll (also $PROJ_DEVELOPDIR). Dort hinein
wird dann der Verzeichnisunterbaum angelegt, der das Teilprojekt enthalten wird.

Da alle Entwickler im Roboter-Projekt der Unix-Gruppe bvrobot angehören, sind
die Schreibrechte auf das CVS-Repository auf diese Gruppe beschränkt. Falls die
Gruppe nicht aktiv ist, muß newgrp bvrobot aufgerufen werden.

Ein korrektes Protokoll sieht dann folgendermaßen aus:
robosun3:[SA] > /usr/local/bv/robot/adm/cmd/CreateNewTPR

This script prompts you for project part name, abbreviation, developers
and project part leader that is required by the organization of the
CoMRoS-Project: Cooperative Mobile Robot Systems Stuttgart.

Current settings of the necessary environment:
 PROJ_TOPDIR /usr/local/bv/robot
 CVSROOT /usr/local/bv/robot/CVS
 PROJ_DEVELOPDIR /home/<account>/SA

Current working directory:
 /home/<account>/SA
Do you want to continue [yes]? yes

These are the existing project parts:

man erhält nun eine Liste der schon vergebenen Namen, hier ein Ausschnitt:

#Abbr. Name students leader

TPR Teilprojekt Template mmuschol
RoI RS232 Robot Interface mmuschol mmuschol
Elt Eltec Interface sommerau sommerau
SFG Sun Frame Grabber Software mamier mamier
DRI Distributed Robots Interface rausch rausch
Fea Flaschen erkennen und ansteuern goerzisn gerl
DSI Distributed SpaceMouse Interface jnkarau rausch
MGI Manipulator Gripper Interface rausch rausch
OpG Optimales Greifen filipph,gerl gerl
MobS Mobile Robot Simulator stolz,braunl braunl
NUM Navigation mit Ultraschall (Modellbildung) loethe rausch
NNF neural network object following clemengo zell
CRE Automatisches Einparken msoberdo zell
DCI Device Controller Interface loethe rausch

[...]

Please answer the following questions with care. The information
is needed to simplify the administration of the whole project.

Abbreviation of your project part (e.g. ‚Bsp‘) []? NEU

1.3 Die Projektverwaltung in der Praxis 25

Full name of your project part (or ‚none‘) []? IHR NEUES PROJECT

Accounts of software developers (e.g. ‚roy,lee‘) []? ENTWICKLER

Account of project part leader (e.g. ‚braunl‘) []? BETREUER

nun werden eine Reihe von Operationen durchgeführt:

i. Die Abkürzung des Teilprojektnamens wird reserviert.

ii. Die generische Verzeichnisstruktur eines Teilprojekts wird angelegt.

iii. Die Dateien werden hinsichtlich dem neuen Teilprojekt konfiguriert.

iv. Das Teilprojekt wird im Repository angelegt.

1.3.3 Verwenden schon vorhandener Teilprojekte

Einer der wesentlichen Aspekte dieser Verwaltungsstruktur ist die Möglichkeit zur
einfachen Einbindung schon vorhandener Teilprojekte in ein neues Teilprojekt. Dazu
müssen in der Datei TPR/Makefile.project.part.defines , wie schon in "1.2.1
Generische Makefiles" auf Seite 19, 1.a) und b) beschrieben, die Makefile-Variablen
BASESON (Prog. 1.3, 7) und ADDITIONAL_BASESON (Prog. 1.3, 18ff) entsprechend ge-
setzt werden.

Nachdem alle notwendigen Unter-Teilprojekte angegeben und abgespeichert sind,
wird automatisch beim nächsten Aufruf von gmake sichergestellt, daß im aktuellen
PROJ_DEVELOPDIR die Includes und Manpages aller angegebener Unter-Teilprojekte
vorhanden sind. Falls dies nicht der Fall sein sollte, werden diese aus dem jeweiligen

Programm 1.3:Eintrag von Unter-Teilprojekten im TPR/Makefile.project.part.defines.
[...]

1 ###################################
2 # names and versions of other projects
3 # on which this one bases on
4 # e.g. TPR1-0
5 # TPR only is needed by default
6 ###################################
7 BASESON = TPR SUBTPR2-1 [SUB1-0]
8
9 ###################################

10 # names and Versions of other projects from other CVS repositories
11 # and projects on which this one bases on
12 # syntax:
13 # <CVS repository>:<lib directory>:<project tag><project version>
14 # e.g. /otherproject/CVS:/otherproject/lib:OTPR1-1
15 #
16 # architecture substitution applies as usual
17 ###################################
18 ADDITIONAL_BASESON = \
19 /home/mueller/CVS:/home/mueller/lib:MUELL1-5 \
20 [/home/maier/CVS:/home/maier/lib:/MAI2-5]

[...]

26 1. Projektverwaltung

CVS-Repository exportiert. Damit bei der Verwendung des neuerstellten Teilprojekts
durch andere Teilprojekte nur die für die Libraries notwendigen Unter-Teilprojekte
exportiert werden, sollte von der Möglichkeit Gebrauch gemacht werden, Teilprojekte
die nur zur Erstellung teilprojekt-interner Programme benötigt werden durch [] aus-
zuklammern.

Teilprojekte werden rekursiv nach weiteren benötigten Teilprojekten durchsucht. Es
sind also nur die Unter-Teilprojekte anzugeben, auf die direkt aufgebaut wird. In der
Datei TPR/src/.Make.subprojects.rej werden alle ermittelten Abhängigkeiten
abgelegt. Nach einer Änderung von BASESON oder ADDITIONAL_BASESON werden
die Abhängigkeiten beim nächsten Aufruf von gmake automatisch neu ermittelt

1.3.4 Anpassen der generischen Makefiles

Um die eigenen Programme und Libraries in den generischen Makefiles einzubauen
muß im Regelfall nur das Makefile TPR/src/Makefile editiert werden. Dort gibt es
die Variablen DYNAMICLIBRARIES, STATICLIBRARIES und PROGRAMS (siehe auch
"1.2.1 Generische Makefiles" auf Seite 19, 3.). Diese Variablen enthalten je ein Liste der
zu diesem Teilprojekt gehörenden Softwarekomponenten. Für jede dort angegebene
Komponente muß eine Regel existieren.

Um eine Library mit Namen libTPR.a zu erstellen muß also der Name (Namens-
konventionen siehe Tabelle 1.2) in der Variablen STATICLIBRARIES angegeben wer-
den (Prog. 1.4, 2), die zur Library gehörenden Objektdateien in der Variablen
LIBRARY1_OBJECTS (Prog. 1.4, 5ff) aufgeführt und schließlich eine Regel für die Ge-
nerierung formuliert werden (Prog. 1.4, 12ff).

Ähnlich sehen die Eintragungen für ein Programm test aus, das die schon erwähnte
Library benutzt. Dazu muß der Programmname in der Variablen TESTS (PROGRAMS
falls es sich um ein zu installierendes Programm handelt) angegeben (Prog. 1.5, 2)
und zwei Regeln zur Generierung des Programms formuliert werden (Prog. 1.5, 6ff),

Programm 1.4: Eintragungen im TPR/src/Makefile zur Erstellung einer Library.
[...]

1 STATICLIBRARIES = $(ARCH_STATICLIBS) \
2 $(BV_ARCH)/libTPR.a
3 ...
4 # -- build libraries --
5 LIBRARY1_OBJECTS = $(BV_ARCH)/complex.o \
6 $(BV_ARCH)/simple.o \
7 $(BV_ARCH)/array.o \
8 $(BV_ARCH)/scalar.o \
9 $(BV_ARCH)/calculate.o

10
11 # -- build a static library
12 $(BV_ARCH)/libTPR.a: $(LIBRARY1_OBJECTS)
13 $(RM) $@
14 $(STATIC_LIBRARY) $@ $(LIBRARY1_OBJECTS)
15 $(RANLIB) $@
16 @echo

[...]

1.3 Die Projektverwaltung in der Praxis 27

wobei die erste der beiden nur zu Vereinfachung des gmake Aufrufs dient: statt
gmake $BV_ARCH/test genügt ein gmake test .

Wie schon in Prog. 1.4, 1 und Prog. 1.5, 1 zu erkennen ist, gibt es noch die Möglichkeit
Programme bzw. Libraries nur auf bestimmten Architekturen zu erstellen. Dazu müs-
sen die Namen der jeweiligen Komponenten in den Variablen ARCH_DYNAMICLIBS,
ARCH_STATICLIBS, ARCH_TESTS bzw. ARCH_PROGRAMS im CONFIG.make der ge-
wünschten Architektur eingetragen werden. Die erforderlichen Regeln sind wie
schon bei den auf allen Architekturen vorhandenen Komponenten im Makefile TPR/
src/Makefile anzugeben.

1.3.5 Benutzen von SNiFF+

SNiFF+ ist ein Werkzeug, das für die Entwicklung von C++ Programmen eine kom-
fortable Entwicklungsumgebung mit verschiedenen Browsern bereitstellt (Die Ent-
wicklung von reinen C Programmen wird ebenfalls unterstützt).

Dieses Werkzeug verwendet ebenfalls den Begriff Projekt, jedoch in einem anderen
Zusammenhang. Hier wird unter einem Projekt eine Menge von Dateien gesehen, die
alle in demselben Verzeichnis liegen müssen. Diese Definition des Projekts ist also
nicht mit dem seither verwendeten Begriff Teilprojekt vereinbar, da die Header der
Schnittstellen zu vorhandenen Libraries nicht im Pfad TPR/src , sondern im Pfad
TPR/include/TPR verwaltet werden. Die Lösung des Problems liegt darin, daß
SNiFF+ Projekte ihrerseits wieder Projekte enthalten können und damit beliebig
schachtelbar sind.

Die im Roboterprojekt verwendete Regelung ist wie schon in "1.2 Die Verzeichnis-
struktur der privaten Sicht auf ein Teilprojekt" auf Seite 18, Punkt 4. erwähnt so, daß
die Schnittstellen-Header einer Library aus dem Verzeichnis TPR/include/TPR in
einem SNiFF+ Projekt zusammengefaßt werden und die Projektbeschreibungsdatei
im Verzeichnis TPR/include abgelegt wird. Der Name dieser Datei ergibt sich aus
den Namenskonventionen von Tabelle 1.1 und Tabelle 1.2. SNiFF+ wird durch den
Aufruf sniff gestartet. Um ein Projekt für die Schnittstellen-Header anzulegen müs-
sen folgende Schritte durchgeführt werden:

Programm 1.5: Eintragungen im TPR/src/Makefile zur Erstellung eines Programms
[...]

1 TESTS = $(ARCH_PROGRAMS) \
2 $(BV_ARCH)/test
3
4 # -- build programs --
5 # -- build a single program
6 test: $(BV_ARCH)/test
7
8 $(BV_ARCH)/test: $(BV_ARCH)/test.o $(STATICLIBRARIES)
9 $(CCC) -o $@ $(LDEFINES) \

10 $(BV_ARCH)/test.o \
11 $(LIBPATH) -lTPR -lm $(LIBS)
12 @echo

[...]

28 1. Projektverwaltung

1. Anwahl Menüpunkt Project -> New Project im Hauptfenster.

2. Mit Dateiauswahlbox in das Verzeichnis TPR/include/TPR springen und den But-
ton Select anklicken.

3. Eintragungen im Fenster Attributes of a New Project:

a. Project Directory TPR/include/TPR

b. Project File Name libTPR.Interface

c. Project File Extension proj

d. Destination of Project File(s) ..

e. Project Type Relative Project

und OK anklicken.

4. Durch Anwahl des Menüpunkts Project -> Add/Remove Files im Project Editor
kann nachträglich die Auswahl der zum Projekt gehörigen Dateien geändert wer-
den (z.B. bei Unterteilung in mehrere Libraries).

Weiterhin werden die zu dieser Library gehörenden Implementierungsdateien aus
dem Verzeichnis TPR/src zu einem zweiten SNiFF+ Projekt zusammengefaßt und
im Verzeichnis TPR/proj abgelegt, wobei das zuvor erzeugte SNiFF+ Projekt der
Schnittstelle der Library als Unterprojekt hinzugenommen wird:

1. Anwahl Menüpunkt Project -> New Project im Hauptfenster.

2. Mit Dateiauswahlbox in das Verzeichnis TPR/src springen und den Button Select
anklicken.

3. Eintragungen im Fenster Attributes of a New Project:

a. Project Directory TPR/src

b. Project File Name libTPR

c. Project File Extension proj

d. Destination of Project File(s) ../proj

e. Project Type Relative Project

und OK anklicken.

4. Die Auswahl der zum Projekt gehörigen Dateien kann wie schon beschrieben ge-
ändert werden.

5. Durch Anwahl des Menüpunkts Project -> Add Subproject im Project Editor kann
das zugehörige Projekt libTPR.Interface.shared aus dem Verzeichnis TPR/inclu-
de hinzugenommen werden.

Für alle Programme, wobei jedes einzelne wieder ein SNiFF+ Projekt sein sollte, muß
nur das entsprechende Projekt der Library als Unterprojekt angeben werden damit
alle notwendigen Sourcen im Browser verfügbar sind.

Falls für Programme im Teilprojekt weitere Teilprojekte benutzt werden und die Ent-
wickler dieser Teilprojekte ebenfalls SNiFF+ verwendet haben, sind die Projektbe-
schreibungsdateien der Schnittstelle in den jeweiligen include-Pfaden vorhanden.
Diese können also einfach vom eigenen SNiFF+ Projekt als Unterprojekt eingebunden
werden.

1.3 Die Projektverwaltung in der Praxis 29

Weitere Informationen zu SNiFF+ sind im Verzeichnis $SNIFF_DIR/doc zu finden.

1.3.6 Installieren von getesteter und stabiler Software

Das Installieren erfolgt mit Hilfe des Makefiles. Zu beachten ist, daß man bereits in
TPR/Makefile.project.part.defines die Variable PROJECTVERSION aktuali-
siert hat. Es werden alle in den Variablen PROGRAMS, STATICLIBRARIES und DYNA-
MICLIBRARIES angegebenen Komponenten installiert.

Zur durchgängigen Unterstützung von SNiFF+ ist es notwendig, daß für jedes Teil-
projekt zumindest eine SNiFF+ Projektbeschreibungsdatei für jede der darin vorhan-
denen Libraries existiert! (Kurzanleitung siehe "1.3.5 Benutzen von SNiFF+" auf Seite
27)

Man ruft in einer Shell der entsprechenden Architektur gmake install auf:
matisse:[src] > gmake install

you are now installing a new version of your software.
1. verify that the version number SmI1-1 is correct
 or change PROJECTVERSION in
 /home/mmuscholl/ROBO/inWork/SmI/Makefile.project.part.defines
2. continue or rerun make install

3. run cvs commit in /home/mmuscholl/ROBO/inWork/SmI
4. run cvs tag SmI1-1 in
 /home/mmuscholl/ROBO/inWork/SmI

Do you want to continue [no]: yes
shared libraries successfully installed

installing SUN4/libmouse.a in /usr/local/bv/robot/lib/SUN4/libSmI1-1mouse.a
static libraries successfully installed

installing SUN4/mousetest in /usr/local/bv/robot/bin/SUN4/SmI1-1mousetest
programs successfully installed

you have successfully installed a new version of your software.
Keep in mind that you have to add generated Files like Manpages
and copied includes into the CVS repository (see below).

Please do not forget to complete point 3 and 4 above, like:

cd /home/mmuscholl/ROBO/inWork/SmI/man/man3; cvs add *.3
cd /home/mmuscholl/ROBO/inWork/SmI; cvs commit; cvs tag SmI1-1

Die als letztes ausgedruckten Unix-Kommandos sind Ausgaben des Installskiptes.
Mit Cut-and-Paste kann man die Kommandos direkt in der Shell auszuführen.

Nachdem alle angegebenen Kommandos ausgeführt sind ist die erstellte Software
dieses Teilprojekts allgemein verfügbar und kann wie in "1.3.3 Verwenden schon vor-
handener Teilprojekte" auf Seite 25 beschrieben exportiert und von anderen Teilpro-
jekten verwendet werden.

Sollte man direkt nach dem Installieren doch noch einen Bug finden, so können mit
gmake deinstall die veröffentlichten Dateien gelöscht werden. Nach dem Bug-fix
und einem gmake install muß cvs tag abermals ausgeführt werden.

30 1. Projektverwaltung

Falls zur Verwendung eines installierten Teilprojekts außer dem Exportieren zusätzli-
che Schritte erforderlich sind (z.B. Anlegen von Links), gibt es ab der Version adm2-2
des Verwaltungsbereichs die Möglichkeit im Verzeichnis TPR/cmd ein Shell-Skript
TPR.get.sh abzulegen. Dieses Shell-Skript wird, falls vorhanden, nach dem Expor-
tieren der gewünschten Teilprojekt-Version durch den Aufruf gmake get eines über-
geordneten Teilprojekts automatisch ausgeführt. Da dieser Fall eher die Ausnahme
sein wird, ist dieses Shell-Skript nicht als Default in jedem erstellten Teilprojekt vor-
handen, sondern kann bei Bedarf hinzugefügt werden (Template: adm/templates/
TPR.get.sh).

1.3.7 Aktualisieren eines Teilprojekts

Falls ein älteres Teilprojekt die im Lauf der Zeit erweiterte Funktionalität ebenfalls
verwenden möchte, muß die Struktur des Teilprojekts aktualisiert werden. Ob es sich
bei einem Teilprojekt um eine ältere Version handelt kann durch den Aufruf von
gmake version im Verzeichnis TPR/src festgestellt werden (die aktuelle Version
ist adm2-2). Die Aktualisierung des Teilprojekts startet man mit dem Aufruf des
Kommandos UpdateTPR .

Ein korrektes Protokoll sieht dann folgendermaßen aus:
robosun3:[SA] > /usr/local/bv/robot/adm/cmd/UpdateTPR

This script prompts you for the project abbreviation of the
project to be updated.

Current settings of the necessary environment:
 PROJ_TOPDIR /usr/local/bv/robot
 CVSROOT /usr/local/bv/robot/CVS
 PROJ_DEVELOPDIR /home/<account>/SA

Current working directory:
 /home/<account>/SA
Do you want to continue [yes]? yes

These are the existing project parts:

man erhält nun eine Liste der schon vergebenen Namen, hier ein Ausschnitt:

#Abbr. Name students leader

TPR Teilprojekt Template mmuschol
RoI RS232 Robot Interface mmuschol mmuschol
Elt Eltec Interface sommerau sommerau
SFG Sun Frame Grabber Software mamier mamier
DRI Distributed Robots Interface rausch rausch
Fea Flaschen erkennen und ansteuern goerzisn gerl
DSI Distributed SpaceMouse Interface jnkarau rausch
MGI Manipulator Gripper Interface rausch rausch
OpG Optimales Greifen filipph,gerl gerl
MobS Mobile Robot Simulator stolz,braunl braunl
NUM Navigation mit Ultraschall (Modellbildung) loethe rausch

1.3 Die Projektverwaltung in der Praxis 31

NNF neural network object following clemengo zell
CRE Automatisches Einparken msoberdo zell
DCI Device Controller Interface loethe rausch

[...]

Select the project abbreviation whose source tree has to
be updated.

Abbreviation of your project part (e.g. ‚Bsp‘) []? OLD

The selected project is:
 OLD = IHR ALTES PROJEKT (ENTWICKLER:BETREUER)

Do you want to continue [yes]? yes

Checking for status of OLD in /home/<account>/SA ...
 OLD exists and is not modified.

Now the new/changed files/directories of the generic project part
since ADM_VERSION adm1-1 will be exported to $HOME/SA:

man erhält nun eine Liste der seit adm1-1 geänderten Dateien (diese Liste variiert natürlich je
nachdem wie alt das Teilprojekt ist):

U TPR/include/TPR/README
U TPR/Makefile
U TPR/Makefile.project.part.defines

[...]

Now the new/changed files/directories will be processed and
copied to OLD:

Processing OLD/include/OLD/README ...
Processing OLD/Makefile ...
Processing OLD/Makefile.project.part.defines ...

[...]

Now the new directories will be added to the repository:

Adding OLD/include/OLD/ ...
Add directory /home/sommerau/CVS/OLD/include/OLD to the repository (y/n) [n]
? Directory /home/sommerau/CVS/OLD/include/OLD added to the repository

Now the new files will be added to the repository:

Adding OLD/include/OLD/README ...
cvs add: scheduling file `README‘ for addition
cvs add: use ‚cvs commit‘ to add this file permanently

32 1. Projektverwaltung

Some files are not needed by default any more
and may be removed from the repository:

OLD/src/HPPA/C.Make-Dependencies
OLD/src/HPPA/c.Make-Dependencies

[...]
OLD/src/OLDmain.c
OLD/src/OLDmain.h

ACHTUNG: unter Umständen werden die Dateien OLDmain.[ch] in diesem Teilprojekt ver-
wendet!

(use ‚cvs add <file>‘ for accidentally removed files)

Do you want to remove them ALL from the repository [no]? yes

bei Angabe von no wird für jede einzelne Datei gefragt, ob diese Datei gelöscht werden soll

cvs remove: scheduling C.Make-Dependencies for removal
cvs remove: scheduling c.Make-Dependencies for removal
cvs remove: scheduling C.Make-Dependencies for removal

[...]
cvs remove: use ‚cvs commit‘ to remove these files permanently

Files modified:

OLD/Makefile
OLD/Makefile.project.part.defines
OLD/README
OLD/src/HPPA/CONFIG.make

[...]

ATTENTION: Do not commit the modified files! These are generic files
 which first have to be merged with the last checked in
 version!

Nach der Ausführung dieses Skripts sind die unter Files modified: aufgeführten
Dateien durch ihr Pendant aus dem generischen Teilprojekt überschrieben. Aus die-
sem Grund müssen die Inhalte der jeweils betroffenen beiden Dateien zusammenge-
führt werden. Dies geschieht mit der Hilfe des SNiFF+ Werkzeugs DiffMerge, indem
ein spezielles SNiFF+ Projekt erstellt wird, das alle Makefiles des Teilprojekts beinhal-
tet:

1. Anwahl Menüpunkt Project -> New Project im Hauptfenster.

2. Mit Dateiauswahlbox in das Verzeichnis TPR springen und den Button Select an-
klicken.

3. Eintragungen im Fenster Attributes of a New Project :

a. View General, Project Options :

1.3 Die Projektverwaltung in der Praxis 33

i. Project Directory TPR

ii. Project File Name TPR

iii. Project File Extension shared

iv. Destination of Project File(s) .

v. Project Type Shared Project

b. View General, zusätzliche Selektionen bei New Project Options :

i. Generate Subproject Tree selektieren

ii.Remove Empty Projects selektieren

c. View File Types:
Auswahl ausschließlich des File Types Make durch Doppelklicks.

und OK anklicken.

4. Im Project Editor über dem unteren Fensterteil mit der Überschrift Pro-
jects die rechte Maustaste drücken und den Menüpunkt Select From All Pro-
jects anwählen.

Im Project Editor kann nun für jede der angezeigten Dateien nacheinander der
Menüpunkt File -> Show Differences... angewählt und der folgenden Requester be-
stätigt werden. Das nun erscheinende Fenster stellt, falls Unterschiede vorhanden
sein sollten, auf der linken Seite den Inhalt der aktuellen Datei und auf der rechten
Seite den Inhalt der Datei beim letzten Einchecken dar. Für das Zusammenfügen ge-
nügt es zu wissen welche Teile aus der zuletzt eingecheckten Version übernommen
werden müssen (Fehlerhafte Übernahmen können durch den Menüpunkt Edit ->
Undo Merge Text zurückgenommen werden):

1. Allgemein:
$Revision$, $Date$, $Author$ und Log übernehmen.

2. TPR/src/*/CONFIG.make :
Bis auf die in 1. erwähnten Punkte nichts übernehmen, außer eventuell vorhande-
nen Erweiterungen des Entwicklers im Bezug auf Compileroptionen und Include-
bzw. Librarypfaden.

3. TPR/Makefile :
Bis auf die in 1. erwähnten Punkte nichts übernehmen, außer eventuell vorhande-
nen Erweiterungen des Entwicklers.

4. TPR/Makefile.project.part.defines :

a. BASESON und

b. PROJECTVERSION übernehmen, bzw. gleich erhöhen.

5. TPR/src/Makefile :
Hier gibt es die gravierendsten und unübersichtlichsten Änderungen, wobei das
Werkzeug DiffMerge leider nur wenig Hilfe leisten kann. Es empfiehlt sich ein
häufigeres Abspeichern, da dabei ein erneutes diff ausgeführt und die Darstellung
erneuert wird. Zu beachten sind folgende Punkte:

a. Jetzt enthält die Variable CCC den C++ Compiler (nicht mehr CPP!).

b. Namenskonvention für Libraries siehe Tabelle 1.2.

34 1. Projektverwaltung

c. Regeln der Form
<program>: $(BV_ARCH)/<program>
müssen entweder mit einem Semikolon abgeschlossen werden, oder in der
nächsten Zeile einen Tabulator haben.

Falls bei der Arbeit mit SNiFF+ etwas nicht so funktioniert wie hier beschrieben, das
Programm verlassen und nochmals starten, das verschafft meistens Abhilfe. Nach-
dem alle Dateien angepaßt sind, kann das SNiFF+ Projekt geschlossen werden. An-
schließend können die im TPR Verzeichnis gelegenen *.shared Dateien gelöscht
werden.

Der Platz für die Schnittstellen-Header der Libraries hat sich im Lauf der Zeit mehr-
fach geändert. Falls sie bei dem umzustellenden Teilprojekt noch nicht im Verzeichnis
TPR/include/TPR liegen, können diese einfach mit
mv *.[hH] $PROJ_DEVELOPDIR/TPR/include/TPR dorthin bewegt werden. Ein
direkt anschließend ausgeführtes cvs-update im emacs meldet, daß die verschobenen
Include-Dateien verschwunden sind und daher aktualisiert wurden (mit Updated
markiert). Im Gegenzug sind die Include-Dateien in ihrem neuen Pfad natürlich un-
bekannt (mit Unknown markiert). Die mit Updated markierten Dateien können nun
vom Repository gelöscht und die mit Unknown markierten Include-Dateien hinzuge-
fügt werden (Genauere Beschreibung: im cvs-buffer den Menüpunkt Help -> Descri-
be Mode anwählen).
Die Log-Messages im Header dieser verschobenen Dateien können gelöscht werden,
da die Zählung wieder bei Version 1.1 beginnt. Außerdem sollte anschließend ein
gmake depend all aufgerufen werden, da unter Umständen bei einer Compilation
nicht mehr alle Includes gefunden werden und die Sourcen dementsprechend ange-
glichen werden müssen (statt #include “header.h“ nun #include “TPR/hea-
der.h“).

War die Entwicklung des Teilprojekts bereits abgeschlossen, d.h. die aktuelle Version
ist auch installiert, dann sollte die aktualisierte Version des Teilprojekts eingecheckt
und mit einer neue Versionsnummer getagt werden.

1.4 CVS-Repositories für weitere Projekte
Für diejenigen, die die Notwendigkeit sehen, ihre Sourcen unter die Verwaltung von
CVS zu stellen, sei an dieser Stelle eine kurze Anleitung zur Einrichtung der Umge-
bung gegeben.

Es bietet sich an, die für das Roboterprojekt erstellte Projektverwaltung auch für die
Sourcen-Verwaltung eigener Projekte zu verwenden, da die Möglichkeit Teilprojekte
aus verschiedenen CVS-Repositories zu mischen.

Empfehlenswert ist die Überlegung, ob für das neue Projekt eine eigene Gruppen-ID
eingerichtet werden soll. Dadurch können die Zugriffsrechte, insbesondere die
Schreibrechte besser kontrolliert werden.

1.4 CVS-Repositories für weitere Projekte 35

1.4.1 Einrichten der Umgebung

Der erste Schritt ist das Anlegen eines privaten CVS-Repositories durch das Ausfüh-
ren folgender Kommandos (falls keine eigene Gruppen-ID verwendet wird entfallen
die Punkte 2. und 3.):

1. mkdir <myProj> ($PROJ_TOPDIR Verzeichnis des eigenen Projektes im $HOME)

2. chgrp <ourGroup> <myProj>

3. chmod g+s <myProj>

4. unsetenv CVSROOT

5. cvsinit

The CVSROOT environment variable is not set.

You should choose a location for your source repository

that can be shared by many developers. It also helps to

place the source repository on a file system that has

plenty of free space.

Please enter the full path for your CVSROOT source repository:

/home/<account>/<myProj>/CVS

[...]

Der nächste Schritt beinhaltet das Umsetzen der Umgebungsvariablen CVSROOT,
PROJ_TOPDIR und PROJ_DEVELOPDIR, die von der Projektverwaltung benötigt
werden. Es hat sich bewährt, dieses Umsetzen in der Datei ~/.cshrc vorzunehmen,
indem die in Prog. 1.6 aufgeführten Zeilen hinzugefügt werden. Durch den Aufruf
newgrp bvrobot werden dann automatisch die Variablen richtig gesetzt..

Programm 1.6: Zusätzliche Eintragungen in der Datei ~/.cshrc des Entwicklers.

1 setenv MYGID `id | awk ‚{i=index($2,“(„); l=length($2); print
substr($2,i+1,l-i-1)}‘`

2 switch ($MYGID)
3 case <ourGroup>:
4 setenv PROJ_TOPDIR $HOME/<myProj>
5 setenv PROJ_DEVELOPDIR $HOME/MYGROUPWORK
6 setenv CVSROOT $PROJ_TOPDIR/CVS
7 breaksw
8 case bvrobot:
9 umask 002

10 setenv PROJ_TOPDIR /usr/local/bv/robot
11 setenv PROJ_DEVELOPDIR $HOME/ROBOWORK
12 setenv CVSROOT $PROJ_TOPDIR/CVS
13 set prompt = „%M:[%.] ROBOT>“
14 breaksw
15 endsw

36 1. Projektverwaltung

1.4.2 Einrichten des Verwaltungsbereichs

Für die Projektverwaltung muß im Verzeichnis $PROJ_TOPDIR unter anderem das
Verzeichnis adm für den Verwaltungsbereich angelegt werden ("1.1.1 Der Verwal-
tungsbereich" auf Seite 13).

Die zum Verwaltungsbereich gehörenden Dateien und Verzeichnisse werden in einem
eigenen Teilprojekt (adm) unter CVS verwaltet. Da sich dieser Bereich gelegentlich än-
dert, ist es von Vorteil einen symbolischen Link vom eigenen adm-Verzeichnis auf das
adm-Verzeichnis des Roboterprojekts zu legen. Dadurch ist sichergestellt, daß immer
die neueste und weitgehend getestete Version verwendet wird. Da jedoch im adm-
Verzeichnis auch die Datei Abbreviationlist liegt, die sämtliche Module des eige-
nen CVS-Repositories enthalten soll, kann dieser Link nicht für die oberste Ebene des
adm-Verzeichnisses angelegt werden.

Die einfachste Möglichkeit das Gewünschte zu erreichen besteht in der Ausführung
der folgenden Kommandofolge:

cd $PROJ_DEVELOPDIR
mkdir adm
cd adm
ln -s /usr/local/bv/robot/adm/* .

Der ebenfalls entstandene Link Abbreviationlist muß durch eine Kopie der Da-
tei adm/templates/Abbreviationlist.empty ersetzt werden. Dadurch ist das
neue CVS-Repository auch für die Projektverwaltung völlig leer, wenn man von eini-
gen reservierten Namen absieht.

Einer der reservierten Namen ist das generische Teilprojekt TPR. Um im eigenen CVS-
Repository neue Teilprojekte anlegen zu können muß dieses Teilprojekt dort ebenfalls
vorhanden sein. Dies wird durch das Anlegen eines symbolischen Links im Verzeich-
nis $CVSROOT auf das Verzeichnis /usr/local/bv/robot/CVS/TPR erreicht. Ein
angenehmer Nebeneffekt dieses Links ist, daß ohne eigenes Zutun immer die aktuell-
ste Version des generischen Teilprojekts verwendet wird.

1.4.3 Einrichten des Veröffentlichungsbereichs

Für die Projektverwaltung fehlen im Verzeichnis $PROJ_TOPDIR nur noch die für die
Installation notwendigen Unterverzeichnisse ("1.1.2 Der Veröffentlichungsbereich"
auf Seite 16). Diese werden durch das Ausführen der folgenden Kommandos ange-
legt:

mkdir bin lib
cd bin
mkdir HPPA LINUX MASPAR SGI5 SUN4 SUN4SOL2 SUNMP
cd ../lib
mkdir HPPA LINUX MASPAR SGI5 SUN4 SUN4SOL2 SUNMP

1.4.4 Zugriffsberechtigung

Die im neuen CVS-Repository verwalteten Sourcen sollen im Regelfall nicht von je-
dermann verwendet werden können. Aus diesem Grund ist es möglich die Zugriffs-

1.4 CVS-Repositories für weitere Projekte 37

rechte für jedes einzelne Teilprojekt durch den Aufruf des Shell-Skripts ChmodTPR zu
ändern.

Ein korrektes Protokoll sieht dann folgendermaßen aus:
robosun3:[SA] > /usr/local/bv/robot/adm/cmd/ChmodTPR

This script prompts you for the project abbreviation of the
project to change permissions.

Current settings of the necessary environment:
 PROJ_TOPDIR /usr/local/bv/robot
 CVSROOT /usr/local/bv/robot/CVS

Do you want to continue [yes]? yes

These are the existing project parts:

man erhält nun eine Liste der schon vergebenen Namen, hier ein Ausschnitt:

#Abbr. Name students leader

TPR Teilprojekt Template mmuschol
RoI RS232 Robot Interface mmuschol mmuschol
Elt Eltec Interface sommerau sommerau
SFG Sun Frame Grabber Software mamier mamier
DRI Distributed Robots Interface rausch rausch
Fea Flaschen erkennen und ansteuern goerzisn gerl
DSI Distributed SpaceMouse Interface jnkarau rausch
MGI Manipulator Gripper Interface rausch rausch
OpG Optimales Greifen filipph,gerl gerl
MobS Mobile Robot Simulator stolz,braunl braunl
NUM Navigation mit Ultraschall (Modellbildung) loethe rausch
NNF neural network object following clemengo zell
CRE Automatisches Einparken msoberdo zell
DCI Device Controller Interface loethe rausch

[...]

Select the project abbreviation which permissions of the source
tree have to be changed.

Abbreviation of your project part (e.g. ‚Bsp‘) []? CHG

The selected project is:
 CHG = IHR PROJEKT (ENTWICKLER:BETREUER)

Who else shall have permissions (()user, (g)roup, (o)thers&group) []? g

The permissions of project
 CHG = IHR PROJEKT
will be changed:
 chmod ug=r CHG

38 1. Projektverwaltung

Do you want to continue [yes]? yes

[...]

1.5 Richtlinien für Multi-EntwicklerInnen-Teilprojekte
folgendes steht ebenso in /usr/local/bv/info/cvs.faq:
2D.2 If I work with multiple modules, should I check them all out and
 commit them occasionally? Is it OK to leave modules checked out?

 The simple answers are "Yes."

 There is no reason to remove working directories, other than to
 save disk space. As long as you have committed the files you
 choose to make public, your working directory is just like any
 other directory.

 CVS doesn't care whether you leave modules checked out or not.
 The advantage of leaving them checked out is that you can quickly
 visit them to make and commit changes.

 committing a file? Is there a "cvs-mode" for Emacs?

 See Section 4F.1

4F.1 How do I use CVS under Emacs? Is there an Emacs cvs-mode?

 The pcl-cvs package distributed with CVS 1.3 is an emacs package
 that helps with the update/commit process. When you are ready to
 update, you use the 'cvs-update' command within emacs. This
 executes "update" and fills a cvs-mode buffer with a line for each
 file that changed. The most helpful features are: descriptive
 words for what happened (i.e. Merged or Conflict rather than 'U'),
 single keys bound to diffs and commits, and the ability to mark
 arbitrary groups of files, possibly from different directories,
 for commit as a whole.

 All the developers in my group that use emacs find pcl-cvs a much
 friendlier and more helpful way to update/commit than raw cvs.
 One vi user even converted to emacs just to use pcl-cvs.

 Contributed by Jeffrey M Loomis

 2D.7 How does conflict resolution work? What *really* happens if two
 of us change the same file?

 While editing files, there is no conflict. You are working on
 separate virtual branches of development contained in your working
 directories. When one of you decides to commit the file, the
 other may not commit the same file until "update" has merged the
 two together.

 Say you both check out rev 1.2 of <file>. Your coworker commits
 revision 1.3. When you try to commit your file, CVS says:

 cvs commit: Up-to-date check failed for `<file>'

 You must merge your coworker's changes into your working file by
 typing:

1.5 Richtlinien für Multi-EntwicklerInnen-Teilprojekte 39

 cvs update <file>

 which will produce the output described in 2B.6.

 After you resolve any overlaps caused by the merging process, you
 may then commit the file.

 Yes, the first one who commits can cause the other some work.

 Yes, between the time you execute "update" and "commit", someone
 else may have committed a later revision of <file>. You will have
 to execute "update" again to merge the new work before
 committing. Most organizations don't have this problem. If you
 do, you might consider splitting the file.

3O.4 So "tag" labels a bunch of files. What do you use a Tag for?

 You use it to "checkout" the labeled collection of files as a
 single object, referring to it by name.

 Anywhere a revision number can be used a Tag can be used. In fact
 tags are more useful because they draw a line through a collection
 of files, marking a development milestone.

 The way to think about a Tag is as a curve drawn through a matrix
 of filename vs. revision number. Consider this:

 Say we have 5 files (in some arbitrary modules, some may be in 2
 or more modules by name, some may be in 2 or more modules because
 of the Repository tree structure) with the following revisions:

 file1 file2 file3 file4 file5
 1.1 1.1 1.1 1.1 /--1.1* <-*- <tag>
 1.2*- 1.2 1.2 -1.2*-
 1.3 \- 1.3*- 1.3 / 1.3
 1.4 \ 1.4 / 1.4
 \-1.5*- 1.5
 1.6

 At some time in the past, the '*' versions were tagged. Think
 of the <tag> as a handle attached to the curve drawn through the
 tagged revisions. When you pull on the handle, you get all the
 tagged revisions. Another way to look at it is that you draw a
 straight line through the set of revisions you care about and
 shuffle the other revisions accordingly. Like this:

 file1 file2 file3 file4 file5

 1.1
 1.2
 1.1 1.3 _
 1.1 1.2 1.4 1.1 /
 1.2*----1.3*----1.5*----1.2*----1.1 (--- <-- Look here
 1.3 1.6 1.3 _
 1.4 1.4
 1.5

 I find that using these visual aids, it is much easier to
 understand what a <tag> is and what it is useful for.

4C.2 Why (or when) would I want to create a branch?

 Remember that you can think of your working directory as a
 "branch for one". You can consider yourself to be on a branch
 all the time because you can work without interfering with others

40 1. Projektverwaltung

 until your project (big or small) is done.

 The four major situations when should create a branch are when:

 1. You expect to take a long enough time or make a large enough
 set of changes that the merging process will be difficult.

 2. You want to be able to "commit" and "tag" your work
 repeatedly without affecting others.

 If you ever think you need Source Control for your own work,
 but don't want your changes to affect others, create a private
 branch. (Put your username in the branch tag, to make it
 obvious that it is private.)

 3. You need to share code among a group of developers, but not the
 whole development organization working on the files.

 Rather than trying to share a working directory, you can move
 onto a branch and share your work with others by "committing"
 your work onto the branch. Developers not working on the
 branch won't see your work unless they switch to your branch or
 explicitly merge your branch into theirs.

 4. You need to make minor changes to a released system.

 Normally a "release" is labeled by a branch tag, allowing later
 work on the released files. If the release is labeled by a
 non-branch tag, it is easy to add a branch tag to a previously
 tagged module with the "rtag" command. If the release is not
 tagged, you made a mistake. Recovery requires identifying all
 revisions involved in the release and adding a tag to them.

4C.3 How do I create and checkout a branch?
 4C.4 Once created, how do I manage a branch?
 4C.5 Are there any extra issues in managing multiple branches?
 4C.6 How do I merge a whole branch back into the trunk?

Kapitel 2

Verwendung von CVS
Michael Vogt

Sämtliche Projekte, die sich mit der Steuerung der Roboterfahrzeuge befassen, sollen
bezüglich der Software-Entwicklung durch CVS unterstützt werden. Hierdurch soll
paralleles Arbeiten mehrerer Entwicklergruppen auf jeweils stabiler Software erreicht
werden. Die nachfolgenden Abschnitte geben eine kurze Einführung in CVS und in
die Verwendung von CVS in Roboterprojekten.

2.1 Was ist CVS
CVS steht für „Concurrent Versions System“. Es ist ein System zur Entwicklung und
Verwaltung von Quelltexten aller Art (Programme, Dokumentation, usw.). CVS setzt
auf dem System RCS (Revision Control System) auf, welches das GNU-Pendant zum
bekannten SCCS (Source Code Control System) ist, das auf fast allen Unix-Plattfor-
men verbreitet ist.

CVS bietet folgende Möglichkeiten:

1. Verwaltung von Dateien und Verzeichnissen

Ein Teilprojekt im Roboterprojekt besteht typischerweise aus einem Verzeichnis-
baum mit fest vorgegebener Architektur. Ein solches Teilprojekt wird unter CVS
als Modul bezeichnet. (Im weiteren Verlauf dieses Textes ist mit Modul immer ein
solches Teilprojekt bzw. ein Verzeichnisbaum gemeint).

Alle Module, die durch CVS verwaltet werden, befinden sich in einem speziellen
Verzeichnis (Repository) und sollten normalerweise nicht angefaßt und keines-
falls von Hand verändert werden.

42 2. Verwendung von CVS

2. Unterschiedliche Sichten

Jeder Entwickler, der an einem Modul arbeitet, verfügt über seine private Sicht
auf dieses Modul. Die private Sicht ist eine äquivalente Verzeichnisstruktur im
privaten Home-Verzeichnis des Entwicklers. Unterschiedliche Entwickler können
unterschiedliche Sichten auf ein und dasselbe Modul besitzen (z.B. unterschiedli-
che Versionen).

3. Verschiedene Entwicklungszweige

Durch die unterschiedlichen Sichten ergibt sich sofort das Konzept von unter-
schiedlichen Entwicklungszweigen. Diese Zweige können durch CVS wieder ver-
einigt werden, oder aber als vollwertige Abzweigungen weitergeführt werden.

Weitere Dokumentation zu CVS, die über diese Kurzübersicht hinausgeht, befindet
sich an folgenden Stellen:

1. Manual Pages zu cvs und rcs

2. Tutorial, Frequently Asked Questions, Postscript Texte unter
/usr/local/bv/info

3. Per Emacs über
M-x info m cvs RETURN

4. Lokale Newsgruppe inf.ml.cvs-info (Kopie der Mail-Liste zu CVS)

2.2 Voraussetzungen für die Nutzung von CVS
Um CVS verwenden zu können, muß die Shell Environment-Variable CVSROOT auf
den Pfadnamen des Repository (s.o.) gesetzt werden. In unserem Fall ist dies das Ver-
zeichnis /usr/local/bv/robot/CVS . Folgendes Kommando müßte ausgeführt
werden:

setenv CVSROOT /usr/local/bv/robot/CVS

Ein Weg, dies automatisch auszuführen, ist eine entsprechende Eintragung in der pri-
vaten .cshrc Datei oder ein automatisches Importieren aller Roboter relevanten Er-
weiterungen von .cshrc durch

set ROB_USER
set PVM_USER
source /usr/local/bv/rc/cshrc

Diese Kommandos aollten am besten gleich vom privaten .cshrc aus ausgeführt
werden. Neueinsteiger sollten die angedeutetet automatische Methode anwenden.
Hierdurch werden auch noch einige andere wichtige Variablen gesetzt.

Durch das Setzen der Variable CVSROOT wird automatisch das Zielverzeichnis für
sämtliche CVS Kommandos bestimmt. Wer gerne weitere, andere Projekte (nicht Ro-
boter) mit CVS verwalten möchte, muß entprechend ein privates Repository aufbauen
und die Variable entsprechend setzen. Dies wird hier aber nicht weiter besprochen.

Eine weitere notwendige Voraussetzung ist die Zugehörigkeit zu einer bestimmten
Gruppe (hier: bvrobot). Betreuer von Studien- und Diplomarbeiten müssen bei der
Beantragung eines Accounts auf diese Gruppe hinweisen. Vor dem Arbeiten mit dem
COMROS CVS System sollte grundsätzlich das Kommando

2.3 Grundlegende Kommandos von CVS 43

newgrp bvrobot

ausgeführt werden. Ausschließlich diejenigen Benutzer, die das Schreibrecht für diese
Gruppe haben, können die Module, die von CVS unter dem oben angegebenen Pfad
verwaltet werden, manipulieren.

Während der Arbeit mit CVS werden vom Entwickler immer wieder Kommentare
zur Änderungsgeschichte der privaten Sicht verlangt (z.B. beim Erzeugen neuer Da-
tein oder beim Freigeben einer neuen Version). Diese Kommentare werden durch ei-
nen Editor aufgenommen, der von CVS gestartet wird. Falls die Shell Environment
Variable EDITOR gesetzt ist, so wird der dort angegebene Editor verwendet. Ist diese
Variable nicht gesetzt, so wird der Standard-Editor vi aufgerufen.

2.3 Grundlegende Kommandos von CVS
Die hier vorgestellten Kommandos stellen nur einen sehr kleinen Teil der großen
Funktionalität der CVS Kommandos dar. Zur weiteren Information sei ausdrücklich
auf die angegebene Dokumentation verwiesen.

Jedes CVS Kommando erlaubt grundsätzlich die Option -H , die eine kurze online-
Hilfe des entsprechenden Kommandos anzeigt und weiter keine Funktion ausführt.

Jedes CVS Kommando wird grundsätzlich in einem privaten Verzeichnis ausge-
führt, nämlich dort, wo sich die private Sicht des zu bearbeitenden Teilprojektes (Mo-
duls) befindet, bzw. wo diese private Sicht entstehen soll. Es ist normalerweise nie
notwendig und sollte unbedingt unterlassen werden, direkt Dateien des Repository
zu lesen oder zu schreiben. Letzteres könnte fatale Folgen für die gesamte Projektor-
ganisation nach sich ziehen.

2.3.1 Erzeugen einer privaten Sicht

Um irgendeine der nachfolgend noch beschriebenen Operationen auszuführen zu
können, muß eine private Sicht auf ein Modul bestehen. Durch das Kommando

cvs checkout module

wird eine private Sicht des Verzeichnisbaums module im aktuellen Verzeichnis ange-
legt. Bei dieser einfachen Form der Anwendung des checkout-Befehls wird immer die
neueste verfügbare Version erstellt.

Durch die Ausführung des Befehls entsteht eine komplette Verzeichnisstruktur im ak-
tuellen Verzeichnis. Sämtliche Dateien dieser Struktur sind ausschließlich für den
Auftraggeber schreibbar. Eine weitere Anmeldung, um nun tatsächlich Änderungen
vorzunehmen, ist nicht notwendig.

Innerhalb der entstandenen Verzeichnisstruktur ist in jedem Unterverzeichnis ein
neues Verzeichnis mit dem Namen CVS entstanden. Hier legt das CVS System wäh-
rend der weiteren Bearbeitung wichtige Informationen ab. Unter keinen Umständen
dürfen Inhalte dieser CVS Verzeichnisse verändert werden.

44 2. Verwendung von CVS

2.3.2 Hinzufügen von Dateien

Sollen in einem Modul weitere Dateien unter die Verwaltung von CVS gestellt wer-
den (weitere C-Sourcen, Dokumentation, Skripte, usw.) so reicht es nicht aus, diese
Dateien einfach nur zu erzeugen. CVS ignoriert bei einem späteren Freigeben des Mo-
duls nämlich alle Dateien, die nicht schon früher von CVS verwaltet wurden. (Hier
wird allerdings eine ausführliche Warnmeldung ausgegeben). Dieses Verhalten ist
sinnvoll, da z.B. Binärdateien und Libraries nicht mit CVS verwaltet werden sollen,
obwohl sie typischerweise während der Entwicklung im Verzeichnisbaum des Mo-
duls entstehen.

Sobald eine neue Datei angeleget wurde, kann sie mit dem Kommando

cvs add file

unter die Verwaltung von CVS gestellt werden. Die Datei file muß sich innerhalb der
privaten Sicht des Moduls im aktuellen Verzeichnis befinden.

2.3.3 Löschen von Dateien

Ähnlich wie das Hinzufügen von Dateien muß auch das Löschen von Dateien explizit
dem CVS System bekanntgegeben werden. Dies gilt aber nur für Dateien, die bisher
bereits von CVS verwaltet wurden. Zum Löschen wird die Datei zunächst mit dem
Unix Kommando rm entfernt und anschließend mit dem CVS Komando

cvs remove file

aus der Verwaltung von CVS gestrichen. Die Lebensgeschichte der gelöschten Datei
bleibt dabei jedoch unter der Verwaltung von CVS und es ist später weiterhin mög-
lich, alte Versionen dieser Datei zu extrahieren.

2.3.4 Überprüfen der privaten Sicht

Während der Weiterentwicklung eines Moduls auf der privaten Sicht können gleich-
zeitig andere Entwickler ebenfalls dieses Modul weiterentwickeln und ihre Änderun-
gen evtl. bereits in das Repository zurückgestellt haben (s.u.). Es besteht also
grundsätzlich jederzeit die Möglichkeit, daß die private Sicht nicht mehr mit der Spit-
ze des entsprechenden Entwicklungszweigs übereinstimmt.

Um diese Unterschiede festzustellen und auch um die eigenen Änderungen mit der
urprünglich erzeugten privaten Sicht zu vergleichen, geht man zunächst in das Wur-
zelverzeichnis des Moduls. Dort kann man sich mit dem Befehl

cvs diff [files ...]

sämtliche Änderungen aller Dateien des Moduls anzeigen lassen, oder bestimmte Da-
teien herausgreifen.

In den meisten Fällen reicht es jedoch aus, nicht ausdücklich alle Unterschiede aufge-
listet zu erhalten (wie dies bei diff üblich ist), sondern eine kurze Status Information
über den aktuellen Zustand der Dateien des Moduls reicht aus. Diese Status Informa-
tion kann auch dazu verwendet werden, den möglichen Effekt eines update Befehls
(siehe nächster Abschnitt) abzuschätzen. Der Status Befehl lautet:

2.3 Grundlegende Kommandos von CVS 45

cvs status [files ...]

2.3.5 Private Sicht auf den neusten Stand bringen

Bevor die private Sicht eines Moduls als fertige Version in das Repository zurückge-
stellt wird, muß man sich entscheiden, ob hierdurch ein neuer Entwicklungszweig
eingeleitet werden soll, oder ob evtl. zwischenzeitlich von anderen Entwicklern
durchgeführte und freigegebene Änderungen an diesem Modul übernommen wer-
den sollen.

Die (halb)automatische Übernahme von anderen Änderungen (Merge) geschieht mit
dem Befehl

cvs update [files ...]

Hierdurch werden die angegebenen Dateien oder aber der gesamte Verzeichnisbaum
auf die neuste Version angepaßt. Für das Ergebnis eines update Befehls auf einer be-
stimmten Datei gibt es sechs unterschiedliche Fälle, die durch eine speziellen Buchsta-
ben als Statusmeldung zusammen mit dem Dateinamen ausgegeben werden:

• U file
file im Repository hatte einen neueren Inhalt als die private Kopie. Die private Ko-
pie war unverändert gegenüber dem urprünglichen checkout . Sie wurde durch
die neue Version ersetzt.

• A file
file ist bisher noch nicht im Repository enthalten, wurde aber durch einen
cvs add Befehl bereits angemeldet

• R file
file wurde aus der privaten Sicht per cvs remove Befehl bereits gelöscht, ist mo-
mentan aber noch im Repository enthalten

• M file
file in der privaten Sicht ist gegenüber dem Repository verändert. Die Änderungen
werden bei der Freigabe in dieser Form übernommen. Eventuelle weitere Ände-
rungen, die zwischenzeitlich von anderen Entwicklern freigegeben wurden, wur-
den erfolgreich in die private Kopie der Datei eingebaut (Merge)

• C file
Beim Versuch eine Merge-Operation auszuführen ist ein Konflikt aufgetreten. Als
Ergebnis enthält file nun die Ausgabe des Kommandos rcsmerge (siehe Manual
Page). Die urprüngliche private Kopie wurde unter dem Namen .# file. version ab-
gelegt.

• ? file
Die angegebene Datei befindet sich in der privaten Sicht aber nicht im Repository.
Eventuell wurde eine add Kommando für diese Datei bisher vergessen oder aber
es handlet sich um eine Datei, die bewußt nicht unter der Verwaltung von CVS
steht.

46 2. Verwendung von CVS

2.3.6 Eigene Änderungen der Allgemeinheit zur Verfügung stellen

Die endgültige Freigabe der Änderungen der privaten Sicht, also das Freigeben einer
neuen Version bzw. die Übertragung der Dateien in das Repository geschieht mit dem
Kommando

cvs commit [files ...]

Hierdurch wird entweder das gesamte Modul freigegeben (beim Aufruf ohne file Ar-
gumente) oder nur bestimmte Dateien. Weitere Einzelheiten, wie z.B. die Erzeugung
eines neuen Entwicklungszweigs oder die Zuweisung einer expliziten Marke für die-
se Version, sind der weiteren Dokumentation von CVS zu entnehmen.

2.3.7 Eigene Änderungen aufgeben bzw. Bearbeitung abbrechen

Nach der Freigabe einer privaten Sicht durch commit , soll eventuell die private Sicht
aus dem privaten Verzeichnis entfernt werden. Dies kann durch einen gezielten Unix
rm Befehl geschehen, dessen Anwendung allerdings nicht empfehlenswert ist. Besser
ist es, den durch CVS bereitgestellten Befehl zu verwenden, da hierbei nochmals die
Konsistenz der privaten Sicht mit der aktuellen freigegebenen Sicht überprüft wird.

Ein anderer Fall, der eintreten kann, ist, daß die Änderungen auf der privaten Sicht
nicht freigegeben werden sollen (es soll also kein commit ausgeführt werden), aber
trotzdem dauerhaft entfernt werden sollen.

In beiden Fällen sollte der Befehl

cvs release [-d] module

angewendet werden. Hierzu muss zunächst das private Verzeichnis aufgesucht wer-
den, in dem sich das Wurzelverzeichnis von module, also die Wurzel der privaten
Sicht befindet. Durch die Option -d wird nach erfolgreicher Überprüfung und noch-
maliger Rückfrage der entsprechende Verzeichnisbaum gelöscht. Ohne diese Option
werden keine Dateien gelöscht. Jedoch wird in diesem Fall im Repository vermerkt,
daß der Entwickler widerruflich bekanntgegeben hat, daß er an diesem Modul keine
Änderungen mehr vornimmt. Er behält jedoch eine private Kopie zurück.

2.3.8 Änderungsgeschichte ansehen

Die Änderungsgeschichte von Modulen, das checkout, commit und release usw. wird
in einer globalen History-Datei protokolliert. Diese Datei kann durch das Kommando

cvs history

ausgewertet werden. Es bestehen viele möglichen Optionen, die alle im entprechen-
den Manual beschrieben sind.

2.3.9 emacs Interface zu CVS

Benutzer des Editors emacs können durch die Ergänzung der Zeile

(autoload ‘cvs-update “pcl-cvs“ “Run CVS update“ t)

in ihrem .emacs File den Befehl

2.4 Einrichten eines neuen Roboterteilprojektes 47

M-x cvs-update

verwenden, der viele Möglichkeiten von CVS in einem emacs Buffer mit ansprechen-
der Bedienung bereitstellt. Näheres erfährt man in der vorhandenen online-Doku-
mentation.

2.4 Einrichten eines neuen Roboterteilprojektes
Das folgende Unterkapitel beschreibt, wie ein neues Teilprojekt mit CVS angelegt
werden kann. Da in der Zwischenzeit sehr leistungsfähige Skripte erstellt wurden,
die dies automatisch ausführen und da sich außerdem inzwischen die Struktur der
Verzeichnisse verändert hat, sollten die nachfolgend beschriebenen Schritte nicht
von Hand ausgeführt werden. Sie sind trotzdem in der Dokumentation zu CVS
enthalten, um noch einmal die beschriebenen Elementarbefehle, die natürlich zum
Teil weiterhin direkt ausgeführt werden müssen, im Zusammenhang zu demon-
strieren.

Am Beispiel der Erzeugung eines neuen Teilprojektes soll nun exemplarisch die Ver-
wendung von CVS demonstriert werden. Hierbei werden auch zwei Befehle verwen-
det, die bisher nicht besprochen wurden, die aber für den täglichen Gebrauch von
untergeordneter Bedeutung sind.

Für die Erzeugung eines neuen Teilprojektes steht eine generische Projektschablone
zur Verfügung, die ebenfalls unter CVS verwaltet ist und bei Bedarf erweitert wird.
Das hier beschriebene Beispiel durchläuft die folgenden Schritte:

1. Es wird eine Kopie der generischen Projektschablone in einem privaten Verzeich-
nis angelegt

2. Der Name des Teilprojektes (Modulname) wird festgelegt. Alle entsprechenden
Dateien in der privaten Kopie werden entspreched anderer Richtlinien (siehe Ka-
pitel Projektverwaltung) modifiziert.

3. Das neue Modul wird in die Moduldatenbank des Repository von CVS eingetra-
gen. Diese Moduldatenbank ist selbst auch durch CVS verwaltet. Entsprechend
sind einige CVS Funktionen aufzurufen.

4. Das neue Teilprojekt wird erstmalig unter die Kontrolle von CVS gestellt.

5. Die private Kopie des neuen Teilprojekts wird per Unix rm gelöscht. Hier darf noch
nicht das release Kommando von CVS verwendet werden, da bisher ja auch
noch kein checkout stattgefunden hat.

6. Mit checkout wird nun eine neue Arbeitsversion des Teilprojektes generiert.

7. Ab jetzt können alle gewünschten Arbeiten, die im letzten Unterkapitel beschrie-
ben wurden, durchgeführt werden.

Es folgt nun die ausführliche Beschreibung der einzelnen Punkte, die in dieser Form
jederzeit nachvollzogen werden können. Alle Arbeiten finden im privaten Home-Ver-
zeichnis $HOME statt. Das neue Teilprojekt erhält den exemplarischen Namen Bsp .

48 2. Verwendung von CVS

2.4.1 Generisches Projekt erzeugen

Zunächst wird die Voraussetzung für das korrekte Funktionieren von CVS durch Set-
zen von CVSROOT und EDITOR sichergestellt:

matisse:[~] > cd $HOME
/home/vogt
matisse:[~] > setenv CVSROOT /usr/local/bv/robot/CVS
matisse:[~] > setenv EDITOR emacs

Nun wird mit demexport Kommando ein generischer Teilprojektbaum im privaten Ver-
zeichnis angelegt. Da hierzu eine Versionsnummer oder eine Zeitangabe notwendig ist, wurde
exemplarischdate aufgerufen:

matisse:[~] > date
Thu Apr 7 15:07:23 MET DST 1994
matisse:[~] > cvs export -D ’15:07:23’ TPR
cvs export: Updating TPR
U TPR/Makefile
cvs export: Updating TPR/cmd
cvs export: Updating TPR/data
cvs export: Updating TPR/include
cvs export: Updating TPR/man
cvs export: Updating TPR/src
U TPR/src/Makefile
cvs export: Updating TPR/src/HPPA
U TPR/src/HPPA/CONFIG.make
cvs export: Updating TPR/src/MASPAR
U TPR/src/MASPAR/CONFIG.make
cvs export: Updating TPR/src/SUN4
U TPR/src/SUN4/CONFIG.make
cvs export: Updating TPR/src/SUN4SOL2
U TPR/src/SUN4SOL2/CONFIG.make

Es ist nun eine Verzeichnisstruktur mit Namen TPR entstanden:

matisse:[~] > ls -ld TPR
drwxr-xr-x 3 vogt 512 Apr 7 15:08 TPR

2.4.2 Anpassung an das neue Projekt

Das neue Projekt soll den Namen Bsp erhalten. Hierzu wird einfach mit dem Unix Be-
fehl mv der Name des Verzeichnisses verändert:

matisse:[~] > mv TPR Bsp
matisse:[~] > ls -ld Bsp
drwxr-xr-x 3 vogt 512 Apr 7 15:08 Bsp

Weiterhin müssen nun verschiedene Dateien innerhalb des Verzeichnisbaums an die
eigenen Wünsche angepaßt werden. Da diese Änderungen nicht mit CVS zusammen-
hängen, sind sie an anderer Stelle beschrieben (Kapitel Projektverwaltung).

2.4 Einrichten eines neuen Roboterteilprojektes 49

2.4.3 Eintragung in die Moduldatenbank

Das neue Modul muß nun in die Moduldatenbank von CVS eingetragen werden. Da
die Moduldatenbank selbst von CVS verwaltet wird, erfolgen einige CVS Aufrufe, die
genau in dieser Form wiederholt werden müssen. Zunächst wird wieder sicherge-
stellt, dass man sich im privaten Home-Verzeichnis befindet:

matisse:[~] > cd $HOME
/home/vogt
matisse:[~] > cvs checkout modules
U modules/modules
matisse:[~] > ls -ld modules
drwxr-xr-x 3 vogt 512 Apr 7 15:31 modules
matisse:[~] > cd modules
/home/vogt/modules
matisse:[modules] > ls -l
total 3
drwxr-xr-x 2 vogt 512 Apr 7 15:31 CVS
-rw-r--r-- 1 vogt 1349 Mar 25 17:47 modules
matisse:[modules] > emacs modules

In der Datei modules wird die letzte Zeile eingefügt, so daß das Ende der Datei etwa
folgendermaßen aussieht:

Add other modules here...
TPR TPR
Bsp Bsp

Anschließend kann z.B. die Wirkung des status Befehls demonstriert werden:

matisse:[modules] > cvs status
cvs status: Examining .
==
File: modules Status: Locally Modified

Version: 1.2 Fri Mar 25 17:47:26 1994
 RCS Version: 1.2 /usr/local/bv/robot/CVS/CVSROOT/modules,v
 Sticky Tag: (none)
 Sticky Date: (none)
 Sticky Options: (none)

Um die Änderung wirksam zu machen wird das Modul modules wieder freigege-
ben. Vorher wird noch ein update ausgeführt:

matisse:[modules] > cvs update
cvs update: Updating .
M modules
matisse:[modules] > cvs commit
cvs commit: Examining .
cvs commit: Committing .
Checking in modules;
/usr/local/bv/robot/CVS/CVSROOT/modules,v <-- modules
new revision: 1.3; previous revision: 1.2

50 2. Verwendung von CVS

done
cvs commit: Executing ’mkmodules /usr/local/bv/robot/CVS/CVS-
ROOT’

Während der Bearbeitung von commit wurde nun wiederum ein Editor gestartet, um
die Änderung an der Moduldatenbank zu kommentieren. Dies geschieht automatisch
und ist hier nicht dargestellt. Zum Abschluß wird die private Sicht auf das Modul
modules wieder entfernt:

matisse:[modules] > cd ..
/home/vogt
matisse:[~] > cvs release -d modules
You have [0] altered files in this repository.
Are you sure you want to release (and delete) module ‘modules’:
y

2.4.4 Bereitstellen des neuen Teilprojektes

Das angepaßte Teilprojekt Bsp ist bisher nur als Modulname bekanntgegeben. Das
Projekt selbst ist aber noch nicht unter die Kontroll von CVS gestellt. Dies wird im
nächsten Schritt durchgeführt. Absolut wichtig ist hierbei, daß zuvor das Wurzelver-
zeichnis des neuen Projektes aufgesucht wird, da der verwendete import Befehl alle
Dateien des aktuellen Verzeichnis rekursiv als neues Projekt einspielt:

matisse:[~] > cd Bsp
/home/vogt/Bsp
matisse:[Bsp] > cvs import Bsp VOGT START
N Bsp/Makefile
cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src
N Bsp/src/Makefile
cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src/HPPA
N Bsp/src/HPPA/CONFIG.make
cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src/MASPAR
N Bsp/src/MASPAR/CONFIG.make
cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src/SUN4
N Bsp/src/SUN4/CONFIG.make
cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src/SUN4SOL2
N Bsp/src/SUN4SOL2/CONFIG.make

No conflicts created by this import

Der import Befehl hat drei Parameter. Der erste Parameter ist der Modulname (Bsp).
Der zweite und dritte Parameter sind zwei Marken, die für den Erzeuger des Moduls
(VOGT) und für einen symbolischen Release-Namen (START) stehen.

2.4.5 Entfernen der Urversion des neuen Projektes

Bevor irgendwelche weiteren Änderungen gemacht werden, wird nun die private Ur-
version des Projektes entfernt. Wird dies nicht gemacht, so kann es passieren, daß

2.4 Einrichten eines neuen Roboterteilprojektes 51

CVS später bei der Verwaltung des neuen Moduls im eigenen Verzeichnis Probleme
bekommt, da dieses Verzeichnis nicht durch ein checkout eingerichtet wurde:

matisse:[Bsp] > cd ..
/home/vogt
matisse:[~] > rm -r Bsp

2.4.6 Erstellen einer privaten Sicht

Durch ein checkout wird nun eine private Sicht des Moduls Bsp erstellt:

matisse:[~] > cvs checkout Bsp
cvs checkout: Updating Bsp
U Bsp/Makefile
cvs checkout: Updating Bsp/src
U Bsp/src/Makefile
cvs checkout: Updating Bsp/src/HPPA
U Bsp/src/HPPA/CONFIG.make
cvs checkout: Updating Bsp/src/MASPAR
U Bsp/src/MASPAR/CONFIG.make
cvs checkout: Updating Bsp/src/SUN4
U Bsp/src/SUN4/CONFIG.make
cvs checkout: Updating Bsp/src/SUN4SOL2
U Bsp/src/SUN4SOL2/CONFIG.make
matisse:[~] > cd Bsp
/home/vogt/Bsp
matisse:[Bsp] > ls -l
total 5
drwxr-xr-x 2 vogt 512 Apr 7 16:09 CVS
-rw-r--r-- 1 vogt 3004 Apr 7 15:52 Makefile
drwxr-xr-x 7 vogt 512 Apr 7 16:10 src

Auffällig an dieser privaten Sicht ist, daß nun in jedem Verzeichnis des erzeugten Ver-
zeichnisbaums ein Verzeichnis mit Namen CVS steht. Hier werden zukünftige Ände-
rungen protokolliert.

2.4.7 Bearbeitung

Die Bearbeitung erfolgt mit den üblichen Unix Tools. Am Rande kann hier noch die
Wirkung eines history Befehls demonstriert werden, der hier nun die sehr kurze
Geschichte des Projektes Bsp aufzeigt:

matisse:[Bsp] > cvs history -m Bsp
O 04/07 16:09 vogt Bsp =Bsp= ~/*

Die Ausgabe dieses Befehls beschreibt, daß vogt das Modul Bsp am 4.7. um 16:09
Uhr per checkout in sein Home-Verzeichnis kopiert hat.

52 2. Verwendung von CVS

2.5 Literatur
[1] Manual zu CVS, online Dokumentation, erreichbar mit man cvs

[2] CVS Infoseiten, online Dokumentation, erreichbar im emacs mit M-x info m cvs

[3] PCL-CVS Infoseiten, online Dokumentation zum emacs Frontend zu CVS, erreich-
bar im emacs mit M-x info m pcl-cvs

Kapitel 3

RoI (Robot Interface)
Alexander Rausch

RoI stellt die unterste Schnittstellenebene für den programmgesteuerten Betrieb der
ROBOSOFT - Fahrzeuge dar. Die Befehlsübergabe und das Auswerten der Roboter-
antwort erfolgen über das Versenden von Zeichenketten, die dem ALBATROS -
Befehlssatz entsprechen. Diese Beschreibung ist ab Version 3-1 gültig.

3.1 Hardwareumgebung
Die Roboterfahrzeuge sind über Funk ansprechbar. RoI unterstützt den Einsatz der
von ROBOSOFT gelieferten Modems und die Verwendung des MOTOROLA Funke-
thernets in Verbindung mit den WT-Ethernet-RS232 Umsetzern. Die aktuelle Verkabe-
lung spiegelt sich im Systemfile /usr/local/bv/robot/etc/system.RoIrc . Abhängig
von der Art der Funkverbindung zu einem Fahrzeugs deckt RoI folgende Anwen-
dungsfälle ab:

• ROBOSOFT-Modem: Das Anwenderprogramm läuft auf dem Steuerrechner, an
dem das Fahrzeug angebunden ist.

• Funkethernet: Das Fahrzeug kann von allen Rechnern angesprochen werden.

Es besteht die Möglichkeit, ein eigenes Konfigurationsfile $(HOME)/.RoIrc File anzule-
gen, sodaß das Systemfile nicht verwendet wird. Dies ist nur sinnvoll, wenn die Ver-
kabelung verändert wird. Da nur Mitarbeiter die Verkabelung ändern dürfen (in
Absprache mit dem Laborleiter), erübrigt sich für Studenten das Anlegen eines
eigenen Konfigurationsfiles. In späteren Versionen wird zur Absicherung die Grup-
penmitgliedschaft des Anwenders überprüft werden, um Mißbrauch zu vermeiden.

54 3. RoI (Robot Interface)

WARNUNG: Eine unsachgemäße Veränderung der Verkabelung kann unter
Umständen die Beschädigung der Steuerrechner, der Funkmodems oder der Fun-
kethernetgeräte nach sich ziehen. Veränderungen an der Hardwarekonstellation ist
Studenten ausdrücklich untersagt.

3.2 Befehlssatz
Alle Befehle und Datentypen besitzen einheitlich den Präfix RoI_, um Schwierigkei-
ten beim Linken der Programme aus dem Weg zu gehen. Jeder Roboter wird über
einen Handle vom Datentyp RoI_Handle angesprochen. Der aktuell verfügbare Funk-
tionsvorrat besteht aus je einer Funktion zum

• Öffnen der Verbindung zum Fahrzeug

• Absetzen von Befehlen

• Schließen der Verbindung zum Fahrzeug

• Rücksetzen des Roboterfahrzeugs

• Debuggen von Programme, indem zusätzlich auf einem Logfile im /tmp/
RoI.xxxxx (xxxxx = Benutzernummer im UNIX System) Debuginformation ausge-
druckt wird.

Detaillierte Erläuterungen zu den Funktionen finden sich in den man-pages

3.3 Beispiel
#include“RoboInterface.h“

void main(int argc, char *argv[])

{

RoI_Handle robot;

char *reply;

RoI_debug(RoI_Log);

RoI_open(&robot, argv[1]);

RoI_send(robot,“MOTV ON“,&reply);

RoI_reset(robot);

RoI_send(robot,“RNOD R=ON“,&reply);

RoI_send(robot,“READ C=1,110000,000000“,&reply);

RoI_send(robot,“ODOM ON“,&reply);

RoI_send(robot,“ODOM“,&reply);

RoI_send(robot,“MOTV OF“,&reply);

RoI_close(robot);

}

3.4 Abbildung der Verkabelung 55

Die einzubindende Library befindet sich im Verzeichnis

/usr/local/bv/robot/lib/ Rechnerarchitektur/RoI Versionsnummer.

3.4 Abbildung der Verkabelung
Das im Verzeichnis /usr/local/bv/robot/etc abgelegte File system.RoIrc hat folgen-
den Aufbau:

<robotername> <hostname><port>

1. <robotername>: porthos,aramis, athos

2. <hostname>: Steuerrechner, falls das Fahrzeug ueber serielle Schnittstelle ange-
sprochen wird. Ansonsten der Name des Ethernet-RS232-Umsetzers

3. <port>: Bei seriellen Schnittstellen mit Bezeichnung /dev/ttyx: SI_x, bei den
Ethernet-RS232-Umsetzern und Ausgabeport x: WT_x

Es können Kommentarzeilen eingefügt werden, die mit # beginnen.

3.5 Verwendung der Sourcen
Teilprojektname: RoI (Robot Interface)

aktuelle Version: RoI4-0

Library: libRoI.a

Beschreibung: Routinen zum Ansprechen der Roboter
Architekturen: SUN4 SUNMP MASPAR

Includes: #include "RoI/RobotInterface.h"

Linkoptionen: -lRoI

Programme: RoI_test

Beschreibung: Testprogramm für die Library-Wartung
Architekturen: SUN4 SUNMP MASPAR

56 3. RoI (Robot Interface)

Kapitel 4

Verwendung von DRI
(Distributed Robots Interface)

Alexander Rausch

Der Ethernetanschluß auf allen Roboterfahrzeugen und eine entsprechende Erweiterung von
RoI hat die DRI praktisch überflüssig gemacht. Nur bei Verwendung des Simulationssystems
MOBS ist der Einsatz von DRI noch sinnvoll.

Die in dieser Beschreibung vorgestellte Roboterschnittstelle ermöglicht die Ansteue-
rung der vorhandenen mobilen Fahrzeuge namens „Portos“, „Athos“ und „Aramis“
auf einheitliche Weise. Diese Schnittstelle stellt eine Grundfunktionalität in der Pro-
grammiersprache C zur Verfügung, auf die Steuerprogramme für die Fahrzeuge auf-
setzen können. Insbesondere werden in DRI keine anwendungsspezifischen
Funktionen bereitgestellt, da diese dem Charakter der allgemein verwendbaren
Schnittstelle widersprechen würden. Anwendungsspezifische Funktionalität muß so-
mit in weiteren Projekten, die auf DRI aufbauen, bereitgestellt werden. Beispielsweise
sind hier Verfahren zu nennen, die eine besondere Strategie zum Auslesen der Fahr-
zeugsensoren Ultraschall und Odometrie betreffen. Eine Erweiterung in dieser Hin-
sicht wird jedoch dann erfolgen, wenn sich herausstellt, daß die getesteten Verfahren
von allgemeinem Nutzen sind.

Wesentlicher Unterschied sämtlicher Weiterentwicklungen auf höherer Ebene wird
die objektorientierte Gestaltung der Schnittstelle sein. So wird Funktionalität bereitge-
stellt werden, die C++ - Klassen zur Sensorabfrage und Fahrzeugbewegung verwen-
det.

Nach wie vor wird die vorhandene C - Schnittstelle jedoch im hier vorgestellten Um-
fang unterstützt, um auch von der MasPar aus die Fahrzeuge steuern zu können.

58 4. Verwendung von DRI

4.1 Einleitung
Im Roboterlabor sind alle mobilen Fahrzeuge an je einen dedizierten Steuerrechner
angeschlossen. Derselbe Sachverhalt trifft für die vorhanden 6D - Steuerkugeln zu.
Die Videosignale können über ein Switchboard zur weiteren Bildverarbeitung auf die
MasPar, das Eltec-Board oder die SUN geführt werden. Somit ergibt sich die im fol-
genden beschriebene Problematik:

1. Die feste Zuordnung der Fahrzeuge zu Steuerrechnern und die beliebige aber soft-
waremäßig nicht zu beeinflussende Zuordnung der Videosignale zu Bildverarbei-
tungsrechnern bewirkt, daß Fahrzeugsteuerrechner und Bildverarbeitungsrechner
nicht identisch sein müssen. Die Verbindung zwischen Bildverarbeitungs- und
Steuerrechner kann über Interprozeßkommunikation, hier mit dem Werkzeug
PVM [1] geschlossen werden.

2. Die Ansteuerung eines Fahrzeuges ist ohne Einsatz von Interprozeßkommunika-
tion nur von dem Rechner und das Fahrzeug möglich, das an dem betreffenden
Steuerrechner über die serielle Schnittstelle angeschlossen ist. Die Interprozeß-
kommunikation ermöglicht es, einen „Serverprozeß“ auf einem entfernten Rech-
ner zur Ansteuerung eines weiteren Fahrzeugs zu starten und die
Fahrzeugsteuerbefehle über Nachrichtenaustausch weiterzuleiten.

3. Der Einsatz mehrerer Steuerprogramme zur Steuerung eines einzigen Fahrzeugs
ist naturgemäß nur über den Einsatz von Interprozeßkommunikation möglich.

Nachfolgende Abbildung veranschaulicht die Problematik.

Bild-
verarbeitung

Steuer-
programm

PVM

Steuer-
programm

Steuer-
programme

Fahr-
zeug

Greifer

Fall 1 Fall 2

Fall 3

4.2 Funktionalität 59

4.2 Funktionalität

4.2.1 Direkte Ansteuerung der Fahrzeuge

DRI erlaubt den direkten Zugriff auf dieTTY - Schnittstelle. Dies ist z.B. dann sinnvoll,
wenn Bildverarbeitung und Ansteuerung auf demselben Rechner stattfinden. Das
Programm hat dann prinzipiell folgende Struktur:

4.2.2 Indirekte Ansteuerung der Fahrzeuge

Eine indirekte Ansteuerung der Fahrzeuge unter Zuhilfenahme von Interprozeßkom-
munikation ist erforderlich, wenn Bildverarbeitungsrechner und Steuerrechner nicht
übereinstimmen. Wird beispielsweise die MasPar zur Bildverarbeitung eingesetzt, so
muß das Bildverarbeitungsprogramm mit einem Serverprozeß auf dem Fahrzeugs-
teuerrechner kommunizieren. Das Bildverarbeitungsprogramm hat dann folgenden
strukturellen Aufbau:

Programm 4.1: Direkte Ansteuerung der Fahrzeuge

1 #include“rob.h“
2 char reply[256];
3 int aramis = rob_init(”aramis“);
4 ...
5 rob_command(aramis,“MOTV ON“,reply);
6 ...
7 rob_exit(aramis);

Programm 4.2: Indirekte Ansteuerung der Fahrzeuge

1 include“rob.h“
2 char reply[256]; int aramis;
3 rob_start(RobViaServer);
4 aramis = rob_init(”aramis“);
5 ...
6 rob_command(aramis,“MOTV ON“,reply);
7 ...
8 rob_exit(aramis);
9 rob_halt();

60 4. Verwendung von DRI

4.2.3 Indirekte Ansteuerung über mehrere Steuerprogramme

In diesem Fall ist zu beachten, daß PVM vor dem Starten des Startup-Programms
hochgefahren wird. Falls die Steuerprogramme bereits auf den Steuerrechnern der
Roboter laufen, kann auch rob_start(RobViaRS232) verwendet werden. Diese
Option bewirkt, daß bei rob_init() in den Steuerprogrammen direkt auf die tty -
und somit ohne Instantiierung eines dedizierten Serverprozesses - geschrieben wird.

4.3 Voraussetzungen für den Einsatz
Der Einsatz von DRI erfordert die Einhaltung einiger weniger Voraussetzungen, die
im folgenden beschrieben sind:

1. Setzen der Environmentvariablen. Dies kann z.B. durch Setzen einer entsprechen-
den Variable set ROB_USERerfolgen. Zuvor muß PVM_USER gesetzt werden. Das
alte File /usr/local/bv/adm/cshrc darf nicht mehr eingesourced werden.
Diese Funktion übernimmt das File /usr/local/bv/rc/cshrc , das unmittel-
bar nach /usr/local/rc/cshrc eingesourced werden sollte.

2. Auschecken des Schnittstelleninterfaces DRI aus CVS.

3. Bereitstellen eines .pvm_hosts . Ein Beispiel ist unter /usr/local/bv/robot/
etc/pvm_hosts zu finden (Achtung: Dieses File sollte im eigenen $(HOME) un-
sichtbar unter dem Namen (.pvm_hosts) abgespeichert werden.

4. Im eigenen $(HOME) muß ein .rhosts vorhanden sein. Ansonsten ist es nicht
möglich, auf den robosuns Prozesse remote zu starten. Ein Beispiel ist unter /usr/
local/bv/robot/etc/rhosts zu finden (Achtung: Dieses File sollte im eige-
nen $(HOME) unsichtbar unter dem Namen (.rhosts) abgespeichert werden.

Startup-Programm:

rob_start(RobViaServer);
...
rob_control(proc1,host1);
rob_control(proc2,host2);
...
rob_halt();

Steuerprogramm 1:

rob_join();
...
tid=rob_init(“porthos“);
...
rob_exit(tid);
...
rob_leave();

Steuerprogramm 2:

4.4 Arbeitsweise 61

5. Standardmäßig wird die unter /usr/local/bv/robot/adm/etc/sy-
stem.robotrc beschriebene Roboterkonfiguration verwendet. Falls eine andere
Konfiguration gewünscht wird, muß im $(HOME) ein .robotrc vorhanden sein.

6. Die Libraries müssen mit

• -L/usr/local/bv/robot/lib/$(BV_ARCH)/DRI2-0 -lDRI und

• -L/usr/local/bv/pvm3 -lpvm3

hinzugebunden werden. Das Ausckecken sollte die entsprechenden Pfade automa-
tisch setzen und die richtigen libraries finden (vgl. Kapitel Projektverwaltung).

4.4 Arbeitsweise

4.4.1 Direkte Ansteuerung der TTY - Schnittstelle

Falls eine Interprozeßkommunikation nicht benötigt wird, werden die mittels der
Funktionen rob_init(), rob_command() und rob_exit() ausgelösten Aktio-
nen direkt and die serielle Schnittstelle des Arbeitsplatzrechners weitergereicht.

4.4.2 Indirekte Ansteuerung der TTY - Schnittstelle

Falls die Anwendung den Einsatz der Interprozeßkommunikation erfordert, wird ein
Systemprozeß gestartet, der für die Steuerung des Prozeßsystems erforderlich ist. Die-
ser Prozeß (genannt: administrator) verwaltet die Zugriffe auf die tty.

1. Zentraler Verwaltungsprozeß: Dieser Prozeß sequentialisiert alle Aufträge, die das
Öffnen und Schließen einer seriellen Schnittstelle betreffen. Ein Programm, das
eine Schnittstelle öffnen möchte, meldet sich hierzu beim sog. „Administrator“ an
und erhält die Adresse des dedizierten TTY-Roboterserverprozesses, falls dieser
schon instanziiert wurde. Falls der Roboterserverprozeß noch nicht läuft, wird er
zuvor instanziiert. Eine Aufforderung zum Schließen der Schnittstelle bewirkt erst
dann das Herunterfahren des Roboterserverprozesses, falls der Prozeß, der den
Auftrag zum Schließen gab, der letzte Prozeß ist, der noch Zugriff auf den Robo-
terserverprozeß hat. Ansonsten wird lediglich der zugreifende Anwenderprozeß
aus der Liste der auf den Roboterserverprozeß zugreifenden Prozesse ausgetra-
gen. Beim Absetzen von Fahrkommandos, Sensorabfragen, usw. kommuniziert
das Anwendungsprogramm direkt mit dem Roboterserverprozeß.

2. Der Messageserver wird nicht mehr benoetigt, da DRI auf den Einsatz von XPVM
vorbereitet ist. Der testweise Einsatz von XPVM erfolgte bereits, eine abteilungs-
weite Installation kann jedoch aufgrund eines PVM-Bugs erst mit der nächsten
major Release von PVM3.4.x erfolgen. XPVM beinhaltet bereits die Funktionalität
des zuvor implementierten Messageservers.

62 4. Verwendung von DRI

4.4.3 Ansteuerung des Simulators

Die Simulationsumgebung mobs kann verwendet werden, indem beim Aufruf des
Roboterprozeßsystems die Option RobViaSimulator verwendet wird, also
rob_start(RobViaSimulator) . Es ist erforderlich zuvor PVM und den Simulator
selbst zu starten. DRI haengt sich dann in das laufende PVM ein.

4.5 Funktionsvorrat
Zur Programmierung der Schnittstelle stehen Funktionen zur Verfügung, die die
komplette Funktionalität der mobilen Fahrzeuge erschließen, jedoch noch nicht auf
die spezifischen Eigenheiten der Kommandos, wie Fahrbefehle, Ultraschallsensorik,
Odometrie, usw. Rücksicht nehmen. Um auch von der MasPar aus direkt Fahrbefehle
absetzen zu können, ist die vorliegende Implementierung in C gehalten. Weitergehen-
de Implementierungen werden im objektorientierten Sinne Klassen bereitstellen, die
einen Bezug zu gewissen Befehlsgruppen herstellen. Die Robotersteuerungskomman-
dos reichen den Befehl als ASCII - Zeichenkette zum mobilen Fahrzeug durch. Für
eine ausführliche Dokumentation der bereitgestellten Funktionen sei auf die man -
pages verwiesen. Im folgenden werden die Befehle stichpunktartig aufgeführt. Als
Referenz dienen die man-pages, die beim Ausckecken automatisch verfuegbar sind.

4.5.1 Systembefehle

int rob_start(int ttyflag) ; /* startet das Prozeßsystem */

int rob_halt(); /* hält das Prozeßsystem an */

int rob_join(); /* klinkt den Prozess in ein laufendes System ein */

int rob_leave(); /* klinkt den Prozess aus einem laufenden System aus */

4.5.2 TTY-Befehle

int rob_init(char* robname); /* Öffnet die Verbindung zum Fahrzeug */

int rob_exit(int robtid); /* Schließt die Verbindung zum Fahrzeug */

4.5.3 Programmentwicklungsbefehle

Der Programmier hat für Zwecke der Programmentwicklung die Möglichkeit die
TTY-Ausgabe abzuklemmen und / oder den aktuell abgesetzten Befehl textuell ange-
zeigt zu bekommen (im File /tmp/pvml.xxxxx):

/* Folgende Routine erlaubt die textuelle Ausgabe des zum Fahrzeug gesendeten
Kommandos und / oder das Abklemmen der TTY */

int rob_setopt(int what, int val);

/* Folgende Routine liest die gewünschte Option aus */

4.6 Deklarationen und Fehlercodes 63

int rob_getopt(int what);

4.5.4 Robotersteuerungsbefehle:

1. rob_command(int robtid,char* command, char* reply) - synchrones
Absetzen eines Robotersteuerungsbefehls und Abwarten der Antwort.

2. rob_send_command(int robtid, char* command) - Absetzen eines Ro-
botersteuerungsbefehls, wobei auf eine Antwort des Roboterserverprozesses nicht
gewartet wird.

3. rob_get_reply(int robtid, char* reply) - Auslesen der Antwort des
Roboters zum letzten abgesetzten Robotersteuerungsbefeh.

4. rob_send_command_confirm(int robtid, char* command) - Absetzen
eines Robotersteuerungsbefehls, wobei auf ein Echo des Roboterserverprozesses
gewartet wird. Die Antwort des Roboters wird jedoch nicht abgewartet.

5. rob_send_command_buffer(int robtid, char* command) - Absetzen
eines Robotersteuerungsbefehls, wobei auf das Echo des Roboterserverprozesses
auf den vorigen rob_send_command_buffer(..) gewartet wird.

6. rob_send_command_clearbuffer(int robtid) - Dieser Befehl ist erforder-
lich um nach dem Absetzen einer Sequenz von rob_send_command_buf-
fer(..) - Befehlen das vom Roboterserverprozeß gesendete letze Echo korrekt
zu verarbeiten.

4.5.5 Ausdrucken von Nachrichten

Das Ausdrucken von Nachrichten erfolgt über einheitliche Funktionen. Die Verwen-
dung von printf(...) sollte vermieden werden, um den Nachrichtenfluß auch im Hin-
blick auf spätere Erweiterungen über die folgenden Funktionen zu kanalisieren:

void rob_print(char* message);

void rob_error(char* message);

4.6 Deklarationen und Fehlercodes

4.6.1 Deklarationen und Fehlercodes

Folgende Deklarationen und Fehlercodes wurden bislang im include-File vorgesehen
und sollten in Anwendungsprogrammen verwendet werden. Eine auf jeden Fall gül-
tige Auflistung kann dem File DRI/include/rob.h entnommen werden:

64 4. Verwendung von DRI

Programm 4.3: DRI - Deklarationen und Fehlercodes

1 /* general constants */
2 #define ROBOCMDLENGTH 256
3 #define ROBOMSGLENGTH 256
4 #define MAXEXECLENGTH 20
5 #define MAXHOSTNAMELENGTH 256
6
7 /* general tty behavior */
8
9 #define Activated 1

10 #define NotActivated 0
11
12 #define RobDebugDefault Activated /* no debugging */
13 #define RobTTYDefault NotActivated /* tty I-O */
14
15 /* for rob_pvm_start */
16
17 #define RobViaRS232 402 /* all rob_commands are routed

to RS232 immediaely*/
18
19 #define RobViaServer 401 /* all rob_commands are routed

to a robotserver*/
20
21 #define RobViaSimulator 403 /* all commands are routed to simu

lator
22
23 /* for rob_setopt and rob_getopt */
24
25 #define RobToTid 305 /* set options */
26 #define RobGetOpt 304 /* set options */
27 #define RobSetOpt 303 /* set options */
28 #define RobDebug 302 /* debug option */
29 #define RobTTY 301 /* tty option */
30
31 /* librob error codes */
32
33 #define RobOk 0 /* okay */
34 #define RobPvmFail -1 /* pvm not started / stopped */
35 #define RobAdmFail -2 /* administration process not

started / not cleaned up
correctly */

36 #define RobEnvFail -3 /* environment variables for robot
servers missng */

37 #define RobFileMissing -4 /* environment variables for robot
servers missng */

38 #define RobHostMismatch -5 /* direkt tty only: actual host
does not match erver
host */

39 #define RobCtrlFail -6 /* control process not started */
40 #define RobNoRobot -7 /* no such robot name */
41 #define RobOptFail -8 /* no such option */
42 #define RobNoServers -9 /* no server processes running */
43

4.7 Ausblick 65

4.7 Ausblick

Die vorgestellte Schnittstelle steht unter fortdauernder Entwicklung. Soweit möglich
wird eine Aufwärtskompatibilität angestrebt. In zukünfigten Releases sollen folgende
Punkte eingearbeitet werden:

• Beseitigung aufgetretener Bugs.

• Schedulingalgorithmus zur Verwaltung mehrerer auf denselben Roboterserver-
prozeß zugreifender Prozesse.

• C++ - Aufsatz für Bewegungsbefehle der MOTV-Gruppe, Ultraschall, Odometrie

• Mit der nächsten PVM3.4.x Release wird XPVM hoffentlich fehlerfrei funktionie-
ren. Mit XPVM steht dann eine graphisch ansprechende Monitoringumgebung
zur Verfügung.

4.8 Verwendung der Sourcen
Teilprojektname: DRI (Distributed Robots Interface)

aktuelle Version: DRI2-0

Library: libDRI.a

Beschreibung: Routinen zum Ansprechen der realen Roboter
Architekturen: SUN4 SUN4SOL2 SUNMP

Includes: #include "DRI/rob.h"

Linkoptionen: -lDRI

Programme: test1, test2, test3, test4

Beschreibung: Programme für die Library-Wartung
Architekturen: SUN4 SUNMP MASPAR

4.9 Literatur
[1] Al Geist et.al. PVM 3.0 User’s Guide and Reference Manual, Oak Ridge National La-
boratory, Oak Ridge, Tennessee 37831, 1993

66 4. Verwendung von DRI

Kapitel 5

6-D-Maus
Matthias Muscholl

Die Space Mouse ist eine Eingabeeinheit, die die Steuerung von graphischen Objek-
ten oder die Positionierung von Effektoren in 6 Freiheitsgraden erlaubt. Sie versetzt
den Benutzer in die Lage, Objekte in den drei translatorischen und den drei rotatori-
schen Bewegungsrichtungen mit einem Handgriff zu führen.

5.1 Pinbelegung und Adapterkabel
Die Space Mouse wird mit einem 9 polige Stecker geliefert, die an die RS232 Schnitt-
stelle des Rechners angeschlossen wird. Die Pinbelegung ist wie folgt:

SUN bietet an einer RS232-Buchse(A/B) eine Verschaltung von zwei RS232-Schnitt-
stellen. Die Pinbelegung sieht für A wie folgt aus:

Abbildung 5.1: Space Mouse Pinbelegung des 9-poligen RS232-Steckers

15
69

RxD
TxD
Schirm

GND

CTS
RTS

68 5. 6-D-Maus

Für den Anschluß an eine RS232-Schnittstelle(A) von SUN ergibt sich die folgende
Verschaltung:

5.2 Koordinaten und Einstellungen der Space Mouse
Die Space Mouse war ursprünglich für die graphische Steuerungen von 3-D-Applika-
tionen gedacht. Daher ist das Koordinatensystem der Maus der des Bildschirmes an-
gepaßt1. Für unsere Anwendung definieren wir die Koordinaten entsprechend den
üblichen Weltkoordinaten um, so wie sie in Abb. 5.3 dargestellt sind.

5.2.1 Das Koordinatensystem

Das Koordinatensystem ist rechtwinklig, die x-Achse zeigt nach rechts, die y-Achse
nach hinten und die z-Achse nach oben. Die Rotation um die x-Achse bezeichnen wir
mit a, die um die y-Achse mit b und die um die z-Achse mit c.

1. Die Achsen sind wie folgt definiert: x-Achse nach rechts, y-Achse nach oben, z-Achse nach vorne.

Abbildung 5.2: SUN Pinbelegung der 25-poligen RS232-Buchse für ttyA

Pinbelegung
Space Mouse

Pinbelegung
 SUN ttyA Farbcodierung

1 Schirm ---

2 TxD 3 RD braun

3 RxD 2 TD rot

5 GND 7 SG blau

7 CTS 4 RTS gelb

8 RTS 5 CTS grün

Tabelle 5.1: Verkabelung für den Anschluß an SUN ttyA

113
625

RD 3
TD 2

TC 24

CTS 5
RTS 4

DSR 6
SG=GND 7

DCD 8

(ELC/RC)15

(ELC/RDCEA)17

DTR 20

5.2 Koordinaten und Einstellungen der Space Mouse 69

5.2.2 Die Steuerparameter

Die Space Mouse hat folgende Einstellmöglichkeiten, die fast vollständig auch über
das Tastaturfeld der Maus (drücken zweier Tasten gleichzeitig) vorgenommen wer-
den können:

Abbildung 5.3: Koordinatensystem der Space Mouse

Abkürzung Erklärung Tasten

Trans Setzt alle translatorischen Komponenten auf 0. [True, False] * 1

Rot Setzt alle rotatorischen Komponenten auf 0. [True, False] * 2

Dom Setzt alle Komponenten auf 0, bis auf die betragsmäßig
größte [True, False]

* 3

Zeroing Eicht den Nullpunkt der Space Mouse auf die augenblickli-
che Auslenkung

* 4

Sens Trans Stellt die Empfindlichkeit der translatorische Auslenkung
ein. Jeder Tastendruck zählt als Inkrement. [0 … 15]

* 5

Sens Rot Stellt die Empfindlichkeit der rotatorische Auslenkung ein.
Jeder Tastendruck zählt als Inkrement. [0 … 15]

* 6

Nullradius Stellt Schwellwert, ab der eine Auslenkung wahrgenom-
men wird. Jeder Tastendruck zählt als Inkrement. [0 … 15]

* 7

Set Default Die Empfindlichkeit der translatorischen und rotatorischen
Komponenten wird auf 0 gestellt. Der Schwellwert wird
auf den Wert 8 gesetzt.

* 8

Tabelle 5.2: Kontrollparameter der Space Mouse

x

z
y

a

b c

70 5. 6-D-Maus

5.2.3 Das Kommunikationskonzept

Die Space Mouse schickt asynchron Datenpakete an den Rechner, die folgende Infor-
mationen transportieren: Auslenkungen der Kappe in den 6 Dimensionen, Drücken
einer Kombination von Tasten, Loslassen einer Kombination von Tasten, Rückmel-
dung von vom Benutzer vorgenommenen Änderungen der Steuerparameter bzw.
Fehlermeldung bei unbekannten Kommandos.

Datenpakete werden dann übersendet, wenn

1. wenn Auslenkungswerte ungleich 0 und

a. wenn die maximale Periodenzeit überschritten ist, nach der spontan ein Da-
tenpaket gesendet wird, oder

b. sobald die minimale Periodenzeit schon verstrichen ist und Datenpakete an-
gefordert wurden (Pollen).

2. oder der Auslenkungswerte ist null, aber vorher sind nur Datenpakete mit Werten
ungleich 0 übersendet worden.

Mithilfe der maximalen und minimalen Periodenzeit kann die Granularität der zeitli-
chen Abtastung eingestellt werden:

1. feine Granularität
Pmin = Pmax = 60 ms

2. grobe Granularität
Pmin = Pmax = 320 ms

3. grobe Granularität mit zwischenzeitig feinerer Granularität beim Pollen
Pmin = 60 ms, Pmax = 320 ms

5.3 Schnittstelle zum Anwendungsprogramm

5.3.1 Verbindungsaufbau und -abbau zur Space Mouse

Das Initialisieren der RS232-Schnittstelle und die Konfiguration der Space Mouse
übernimmt die Funktion smConfig() die den Deskriptor auf das TTY liefert. . Die
Funktion öffnet das TTY, konfiguriert die RS232-Schnittstelle und setzt die Space
Mouse auf die in Programm 5.1.angegebenen Werte. Der Rückgabeparameter ist der
Deskriptor auf das TTY.

Data Rate Einstellen der maximalen und minimalen Periodenzeit
(siehe 5.2.3). {60, 80, …, 320} [ms]

Beep Das interne Pietzoelement kann für bestimmte Zeitspannen
ertönen. {32, 64, 125, 250, 500, 1000, 1500, 2000} [ms]

Abkürzung Erklärung Tasten

Tabelle 5.2: Kontrollparameter der Space Mouse

5.3 Schnittstelle zum Anwendungsprogramm 71

Mit der Prozedur smClose() wird die Verbindung zur Space Mouse wieder beendet.
Die SpaceMouse wird veranlaßt keine Werte mehr zu senden (siehe Programm 5.2).

5.3.2 Steuerung der Space Mouse Funktionen

Die Space Mouse wird mit der in Programm 5.3 aufgeführten Funktion gesteuert. Der
Rückgabeparameter ist -1, falls die aufgerufene Option nicht verfügbar ist. In Tabelle
5.3 sind die implementierten Optionen aufgeführt

Programm 5.1: Prototype der Initialisierungsfunktion smConfig()
int smConfig(void)

1 { …
2 td = open("/dev/ttya", O_RDWR);
3 …
4 smCntrl(td, smPeriodMaxMin, 60, 60);
5 smCntrl(td, smSensityTransRot, 0, 0);
6 smCntrl(td, smNullRadiusTo, 8);
7 smCntrl(td, smZeroing);
8 smCntrl(td, smBeepDuration, 64);
9 smCntrl(td, smRotOnTransOn);

10 return(td);
11 }

Programm 5.2: Prototype der Abmeldeprozedur smClose()
void smClose(int td)

1 {
2 smCntrl(td, smRotOffTransOff);
3 close(td);
4 }

Optionen Parameter Bedeutung

smZeroing siehe Zeroing (Tabelle 5.2)

smRotOnTransOn empfindlich auf Rot / Trans

smRotDomTransOff empfindlich auf betragsgrößte Rot

smRotOffTransOn empfindlich nur auf Trans

smRotOffTransDom empfindlich auf betragsgrößte Trans

smRotDomTransDom empfindlich auf betragsgrößte Rot / Trans

smRotOffTransOff unempfindlich auf Rot / Trans

smBeepDuration int duration siehe Beep (Tabelle 5.2)

smPeriodMaxMin int max, int min siehe Data Rate (Tabelle 5.2)

smNullRadiusTo int radius siehe Nullradius (Tabelle 5.2)

Tabelle 5.3: Optionen der Stererfunktion smCntrl()

72 5. 6-D-Maus

5.3.3 Datenverkehr mit der Space Mouse

Die Werte der Space Mouse werden mit der Funktion smDataRequest() abgerufen.

Der erste Parameter übergibt den Deskriptor, der zweite bestimmt, ob anstatt alle Da-
ten weiterzugeben nur die aktuelle Auslenkung der Kappe ausgelesen werden soll
(siehe dazu 5.2.3) und der dritte Parameter ist der Rückga-
beparameter. Der Rückgabeparameter ist vom Typ smDataConfirm (siehe Tabelle 5.4
und Programm 5.5).

smSensityTransRot int trans, int rot siehe Sens Trans / Sens Rot (Tabelle 5.2)

Programm 5.3: Prototype der Steuerfunktion smCntrl()
int smCntrl(int td, int option, ...)

1 { …

2 }

Programm 5.4: Prototype der Prozedur smDataRequest()
void smDataRequest(int td, int polling, smDataConfirm *reply);

1 {…
2 }

smReplyType
<var>.tag == Erklärung Zugehörige

Variantentupel

smKeyboard Eine oder mehrere Tasten wurden gedrückt.
k1-ks sind Bool-Werte, no gibt die Anzahl
der gleichzeitig gedrückten Tasten wieder.

<var>.msg.button

smData Die Kappe wurde bewegt. Das Koordina-
tensystem entspricht dem der Abb. 5.3

<var>.msg.move

Tabelle 5.4: Aufzaehlungsvarianten des Typs smDataConfirm

Optionen Parameter Bedeutung

Tabelle 5.3: Optionen der Stererfunktion smCntrl()

polling TRUE FALSE{ , }∈

5.3 Schnittstelle zum Anwendungsprogramm 73

5.3.4 Programmtemplate für die Verwendung der Space Mouse

Im eigenen Programm kann man den Code aus Programm 5.6 verwenden, um die
Space Mouse abzufragen.

5.4 Verwendung der Sourcen
Teilprojektname: SmI (Space Mouse Interface)
aktuelle Version: SmI2-0

bei nutzenden TPR: Makefilevariable BASESON um die aktuelle Version erweitern

Library: libSmI.a

Beschreibung: Routinen zum Ansprechen der Space Mouse
Architekturen: SUN4 SUN4SOL2 SUNMP

Includes: #include "SmI/SpaceMouseInterface.h"

Linkoptionen: -lSmI

Programme: mousetest

Beschreibung: Gibt die von der Space Mouse übertragen Daten auf der Shell
aus. Beendet wird es mit ctrl-c.

Architekturen: SUN4 SUNMP

smUserChange-
dConfiguration

Der Benutzer hat kritische Konfigurations-
änderungen durch Drücken von Tasten-
kombinationen (siehe auch smKeyboard)
vorgenommen. Zu diesen zaehlen:

a. Sens Trans

b. Sens Rot

c. Nullradius

d. Set Default
Ist dies unzulässig, so kann das Programm
die Änderungen geeignet überschreiben.

smCmdError Ein Fehler in einem Kommando ist erkannt
worden. In unknown wird zeichenweise
das Kommando an das Programm überge-
ben.

<var>.msg

smFrameError Es trat ein Datenübertragungsfehler auf.

smReplyType
<var>.tag == Erklärung Zugehörige

Variantentupel

Tabelle 5.4: Aufzaehlungsvarianten des Typs smDataConfirm

74 5. 6-D-Maus

5.5 Literatur
[1] NN. Space Mouse Software Interface Benutzerhandbuch, Space Control Gesellschaft
für 3D Systeme, 82216 Malching, 1994

Programm 5.5: Datentyp der von der Space Mouse verschickten Werte

1 typedef enum { smKeyboard, smData, smUserChangedConfiguration,
smCmdError, smFrameError } smReplyType;

2
3 typedef union {
4
5 struct { /* tag == smKeyboard */
6 unsigned k1 : 1; /* Taste gedrueckt, dann k. == TRUE */
7 unsigned k2 : 1;
8 unsigned k3 : 1;
9 unsigned k4 : 1;

10 unsigned k5 : 1;
11 unsigned k6 : 1;
12 unsigned k7 : 1;
13 unsigned k8 : 1;
14 unsigned ks : 1;
15 unsigned no : 4; /* Anzahl gedrueckter Tasten [0..9] */
16 } button;
17
18 struct { /* tag == smData */
19 int x,y,z,a,b,c; /* enthaelt transl. und rotat. Werte */
20 } move;
21 /* tag == smCmdError */
22 char unknown; /* unverstandenes Kommando (zeichenweise) */
23
24 } smReplyMessage;
25
26 typedef struct {
27 smReplyType tag;
28 smReplyMessage msg;
29 } smDataConfirm;

5.5 Literatur 75

Programm 5.6: Programmtemplate

1 #include “SpaceMouseInterface.h”
2 …
3 … funct(…)
4 {
5 int td; /* Deskriptor der Schnittstelle zur Space Mouse */
6 smDataConfirm mouse;
7 …
8 td = smConfig();
9 …

10 while (!<Ende Bedingung>) {
11 smDataRequest(td, FALSE, &mouse);
12 switch(mouse.tag) {
13 case smKeyboard: …; break;
14 case smData: …; break;
15 case smCmdError: …; break;
16 case smFrameError: …; break;
17 default: …; break;
18 }
19 }
20 …
21 smClose(td);
22 }

76 5. 6-D-Maus

Kapitel 6

Bildformate
Michael Vogt, Harald Bayer, Susanne Gerl

Für die im Roboterprojekt anfallenden Bilder und Verarbeitungsroutinen sollen regel-
mäßig die gleichen internen Formate verwendet werden, um eine möglichst hohe
Wiederverwendbarkeit der einzelnen Programme zu garantieren. Zur Diskussion ste-
hen mehrere Formate, die zum Teil durch die Hardware (Sun, MasPar, Eltec) und zum
anderen Teil durch vorhandene Software (Horus, Khoros, pbmplus) in Betracht kom-
men. Nachfolgend erfolgt eine Zusammenstellung der bisher vorhandenen Formate
und eine Empfehlung für ein integriertes Format, das möglichst vielen Anforderun-
gen gerecht wird.

6.1 Hardware Formate

6.1.1 Sun XIL Framegrabber

Der Sun Framegrabber liefert in Zusammenarbeit mit der XIL Library die Bilder in
Form einer speziellen Speicherstruktur mit Namen XilMemoryStorage. Der Aufbau
ist in Programm 6.1 verdeutlicht.

Wie man erkennen kann, handelt es sich um eine Union, die vier verschiedene Fälle
(also Bildformate) abdeckt. Leider enthält der Datentyp keinen Hinweis darauf, wel-
ches Format tatsächlich vorliegt. Der einzige Hinweis hierauf ergibt sich aus der In-
itialisierung des Framegrabbers und der Aufrufreihenfolge und Definition
verschiedener Zwischenbilder, die der Endbenutzer jedoch nicht sieht. Die bereits
vorhandenen Routinen zum Lesen eines Bildes (schwarz weiß oder farbig) verwen-
den beide das Byte Format, welches in Programm 6.2 definiert ist.

78 6. Bildformate

Die Breite und Höhe des Bildes geht nicht aus dem Format hervor, sondern wird bei
der Initialisierung des Framegrabbers festgelegt und muß an anderer Stelle gespei-
chert werden.

Nach unserer bisherigen Erfahrung liegen die Bilddaten folgendermaßen vor:

1. Grauwertbilder:
Xil_unsigned8* ist ein Zeiger auf einen Speicherbereich mit #Zeilen mal #Spalten
Bytes. Jedes Byte enthält einen Grauwert zwischen 0 (schwarz) und 255 (weiß). Die
Anordnung ist Zeilenweise von oben nach unten und innerhalb der Zeilen von
links nach rechts. Das Feld scanline_stride gibt die Anzahl der Bytes pro Zeile an,
steht also de facto für die Bildbreite. Der Zugriff auf ein Pixel an der Position (x,y)
kann z.B. erfolgen über folgenden Pseudocode:

2. Farbbilder:
Wie bei schwarz weiß Bildern gibt Xil_unsigned8* einen Zeiger auf den Bildbe-
reich an. Dieser Bereich enthält #Zeilen mal #Spalten mal drei Bytes. Die zeilenwei-
se Anordnung ist analog. Hier werden jedoch für jedes Pixel drei
aufeinanderfolgende Bytes belegt, und zwar in der Reihenfolge blau, grün, rot. Der
Zugriff auf die RGB Werte eines Pixels (x,y) kann z.B. erfolgen durch:

Programm 6.1: Definition von XilMemoryStorage

1 typedef union __XilMemoryStorage {
2 XilMemoryStorageBit bit;
3 XilMemoryStorageByte byte;
4 XilMemoryStorageShort shrt;
5 XilMemoryStorageFloat flt;
6 } XilMemoryStorage;

Programm 6.2: Definition von XilMemoryStorageByte

1 typedef struct __XilMemoryStorageByte {
2 Xil_unsigned8* data;
3 /* pointer to the first byte of the image */
4 unsigned long scanline_stride;
5 /* the number of bytes between scanlines */
6 unsigned int pixel_stride;
7 /* the number of bytes between pixels */
8 } XilMemoryStorageByte;

Programm 6.3: Zugriff auf XIL Grauwertbilder

1 grey = data[x+y*scanline_stride]

Programm 6.4: Zugriff auf XIL Farbbilder

1 rot = data[3*(x+y*scanline_stride)+2]
2 gruen= data[3*(x+y*scanline_stride)+1]
3 blau= data[3*(x+y*scanline_stride)]

6.2 Software Formate 79

Der Framegrabber von Sun bietet außer den Bildern noch weitere Information an. Z.B.
ist es möglich, eine Bildnummer und einen Timestamp auszulesen.

Weitere Informationen über XIL Bilder und die Benutzung des Sun Framegrabbers be-
finden sich im Kapitel über den Sun Framegrabber. Hier ist die C Datenstruktur
SFG_image definiert, die XIL Bilder als Grundlage enthält.

6.1.2 Eltec Kantenfinder

Der Eltec Kantenfinder liefert keine Bilder sondern bereits extrahierte Kanten. Grund-
sätzlich steht als Information ein „Kantenbild“ zur Verfügung, wobei folgende Defini-
tionen gelten:

• Eine (gerade) Kante ist definiert durch ihren Startpunkt (x,y Position) eine Rich-
tungsangabe (Winkel) und eine Länge.

• Eine Kontur ist eine Liste von (geraden) Kanten, die miteinander verkettet sind.

• Ein Kantenbild ist eine Liste von Konturen

Die genaue Kodierung sowie die Zugriffsmethoden sind Implementierungsabhängig
und liegen noch nicht endgültig fest. Es besteht theoretisch die Möglichkeit, die Kan-
tenbilder in einem Format darzustellen, das mit einem Horus oder Khoros Format
identisch ist.

Marco Sommerau ist hier der richtige Ansprechpartner.

6.2 Software Formate

6.2.1 Horus

Einführung

HORUS ist ein Bildverarbeitungstool, welches an der Technischen Universität Mün-
chen entwickelt wurde [1], [2]. Es stellt mehr als 600 Bildverarbeitungsroutinen zur
Verfügung, die in C oder C++ Programmen eingebunden werden können. Diese er-
möglichen eine einfache und schnelle Implementierung komplexer Routinen zur Bild-
auswertung, die sowohl Aufgaben in der Low-Level-Bildverarbeitung, als auch in der
höheren Bildverarbeitung lösen.

In HORUS wurde für Regionen und Bilder der Überbegriff Bildobjekt (ObjType) ein-
geführt. Eine Region besteht aus einer Menge von Koordinaten in der Bildebene. Eine
solche Region muß durchaus nicht zusammenhängend sein und kann ohne weiteres
auch Löcher enthalten. Regionen können auch größer als das aktuelle Bildformat sein.
Intern werden Regionen durch Lauflängenkodierung realisiert.

Bilder bestehen aus mindestens einer Bildmatrix zusammen mit einer Region, die an-
gibt, an welchen Punkten die Matrix definierte Werte enthält. Außerdem unterstützt
HORUS mehrkanalige Bilder. Jedes Bild kann bis zu m Kanäle enthalten, wobei die
Zahl n bei der Initialisierung des Systems mit init_horus(...,n) festgelegt wird.
Zu einer Bildkoordinate existiert hier also nicht nur ein Grauwert, sondern ein ganzer
Vektor von bis zu n Grauwerten. (Sofern die entsprechenden Bildpunkte zum Defini-

80 6. Bildformate

tionsbereich des Bildes gehört). Anschaulich könnte man vielleicht auch von einem
Stapel von Bildern sprechen anstelle eines Einzelbildes. Damit lassen sich zum Bei-
spiel RGB Bilder oder Voxelbilder darstellen.

HORUS/C stellt für Bildobjekte (Bilder + Regionen) den Datentype ObjType zur Ver-
fügung. Dahinter verbirgt sich ein Surrogat der HORUS Datenbank, in der die Bildob-
jekte abgelegt sind. Eingabebildobjekte werden per value an die HORUS Prozeduren
übergeben und Ausgabe-Bildobjekte mittels des &-Operators per reference. Variablen
dieses Typus können sowohl ein einzelnes Bildobjekt, als auch ganze Tupel von Bild-
objekten enthalten. Ein Einzelobjekt wird hierbei wie ein Tupel der Länge eins behan-
delt.

HORUS wurde bereits so modifiziert, daß man von HORUS aus die Framegrabber auf
den Robosuns öffnen, Bilder grabben und schließen kann.

Momentan wird gerade an der Schnittstelle ELTEC/HORUS gearbeitet.

Im Folgenden werden einige wichtige Eigenschaften von HORUS aufgeführt, die we-
sentlich ausführlicher auch in [1] und [2] beschrieben sind.

Aufbau eines Bildes

• Jedes Bild besteht aus:
1. Einer oder mehreren Bildmatrizen
2. Definitionsbereich

• Man unterscheidet zwischen Bild und Bildmatrix in HORUS:
- Die Matrix ist ein Baustein für ein Bild, es speichert die Grauwerte
- Aus mehreren Matrizen wird ein mehrkanaliges Bild aufgebaut.
- Der Definitionsbereich schränkt die gültigen Koordinaten der Matrix ein.

Der Definitionsbereich eines Bildes

• Alle Grauwertoperationen werden nur im Definitionsbereich des Bildes aus-
geführt

• (z.B. Filter- oder Segmentierungsoperationen)

• Der Definitionsbereich eines Bildes ist als eine Region realisiert

• Der Definitionsbereich ist nie größer als die Matrix; die Form ist beliebig.

• Der Definitionsbereich kann i.a. nur verkleinert werden (z.B
reduce_domain).

• Maximalen Definitionsbereich durch full_domain.

Das Bildformat

• Der Ursprung eines Bildes ist immer der Punkt (0,0), und liegt somit “links
oben”.

• Die x-Koordinate (column) läuft vom Ursprung mit wachsenden Werten nach
rechts bis zum Wert Bildbreite-1.

• Die y-Koordinate (row) läuft vom Ursprung mit wachsenden Werten nach un-
ten bis zum Wert Bildhöhe-1.

6.2 Software Formate 81

• Pixel können nie negative Koordinaten haben

• Bilder können nur rechteckig sein.

• Die maximale Bildkantenlänge ist 10.000.

• Jedes Bild hat ein eigenes Bildformat

• Bilder mit unterschiedlichen Format können nicht gleichzeitig bearbeitet wer-
den (z.B. add__ , dyn_threshold__).

• Das Format eines Ergebnisbildes kann sich von der des Eingabebildes unter-
scheiden (z.B. image_transform__ , zoom_image1).

• Bildformate können mit den Prozeduren crop_image und change_format
direkt modifiziert werden.

• Eine Modifikation des Definitionsbereichs hat keinen Einfluß auf das Bildfor-
mat (z.B reduce_domain)

Die Pixeltypen

• byte : 0...255, typisches Graubild.

• int1 : -127...127, Byte mit Vorzeichen.

• int2: -32767...32767, z.B. das Ergebnis einer Konvolution.

• int4 : -2147483647... 2147483647, z.B. 2-dimensionale Histogramme

• real : Gleitpunktzahl mit 4 Byte

• complex : Komplexe Zahl; jeder Punkt besteht aus zwei Gleitpunktzahlen
vom Typ real für Real- und Imaginärteil (z.B. Ergebnis der FFT).

• dvf : Verschiebungsvektorfeld; jeder Punkt beschreibt einen Vektor (x,y); Dar-
stellung durch zwei Werte vom Typ int1

• cyclic : 0...255, wobei 255+1=0 ist; z.B für die Darstellung des Farbwertes im
hsi-Farbmodell (trans_from_rgb).

• direction : 0...180 Darstellung eines Winkels/2 (z.B. sobel_dir und
edges__).

• Alle Pixel einer Bildmatrix sind vom gleichen Typ

• Bei mehrkanaligen Bildern können die einzelnen Matrizen von unterschiedli-
chen Typen sein.

• Der Pixeltyp kann z.B. durch Filter verändert werden.

• Eine Typanpassung erfolgt durch die Prozeduren convert_image_type ,
dvf_to_int oder complex_to_float .

Das mehrkanalige Bildformat

• Mehrkanalige Bilder müssen ein einheitliches Format haben (d.h. alle Bildma-
trizen des Bildes haben die gleiche Kantenlänge)

Die Regionen

82 6. Bildformate

• Eine Region ist eine beliebige Menge von Koordinatenpunkten.

• Eine Region muß nicht zusammenhängend sein.

• Eine Variable (bzw. ein Parameter) kann mehrere Regionen enthalten.

• Die Regionen einer Variablen können sich überlappen

• Der Wertebereich von Punkten einer Region ist auf -32767...32767 beschränkt.

• Regionen werden durch Lauflängenkodierung realisiert.

Zugriff auf Regionen

• Punkte der Regionen (fetch_coord , fetch_chord etc.)

• Rand (fetch_contour , fetch_polygon etc.)

• Einzelne Punkte (inside_region2)

Clipping von Regionen

• Eine Region ist unabhängig vom Bildformat.

• Regionen können negative Koordinaten enthalten.

• Das Systemflag clip_region beschneidet Regionen auf das (aktuelle maxi-
male) Bildformat.

6.2.2 Khoros

Khoros 1.x

Hier gab es ein Format, das jetzt Xvimage genannt wird, das das global gültige For-
mat war. Bilder anderer Formate mußten über mitgelieferte Routinen konvertiert wer-
den. Das Xvimage-Format war dokumentiert.

Khoros 2.0

Eine endgültige Beschreibung läßt sich noch nicht geben, da noch niemand sich die
Zeit genommen hat, die sehr umfangreichen Handbücher zu lesen. Was man in An-
kündigungen zwischen den Zeilen fand, interpretiere ich momentan so:

Jedes Khoros2.0-Programm kann über die Library-Routinen einer Toolbox (Khoros2.0
besteht nur aus Toolboxen, die verschiedenen Zwecken dienen) Files jedes der unter-
stützten Formate lesen und schreiben. Unterstützt werden momentan: ASCII, AVS,
PNM, (EPS,) Raw, Sun Raster, VIFF, XBM, Xvimage, XWD und XPM. Dadurch entfällt
die Notwendigkeit expliziter Konverter. Aber Khoros2.0 geht noch weiter: Es soll so-
gar die Notwendigkeit entfallen, an die Konversion denken zu müssen. Das geht so
weit, daß weder gesagt wird, ob jedes Bild beim Lesen konvertiert wird oder intern
mit allen Formaten gearbeitet werden kann (einige Postings lassen sich durchaus so
verstehen, daß es sich bei den Bildverarbeitungsroutinen um einen Code auf höherer
Ebene handelt, der vom Format unabhängig ist), noch wird das VIFF-Format be-
schrieben, da keine Notwendigkeit mehr bestünde, direkt mit diesem Format umzu-
gehen. (HFB)

6.2 Software Formate 83

6.2.3 pbmplus Format

Sehr verbreitet ist das pbmplus Format. Für alle Architekturen gibt es das pbmplus
Paket, das sowohl einfache Bildoperationen aber hauptsächlich Konvertierungsfunk-
tionen beinhaltet. Das Dateiformat für pbmplus Bilder ist in der ASCII Form rechner-
unabhängig. Das schnellere und kleinere binäre Format ist hingegen immer an eine
bestimmte Architektur (Sun, Dec, ...) gebunden, wobei keine Möglichkeit der Archi-
tekturprüfung besteht.

Das Speicherformat von pbmplus Bildern hängt davon ab, welches der drei mögli-
chen Formate (Binärbilder, Grauwertbilder, Farbbilder) vorliegt. Hier werden nur
Grauwert- und Farbbilder vorgestellt:

1. Grauwertbilder (pgm)
Grauwertbilder sind als zweidimensionale C Felder gespeichert (eine andere Be-
schreibung ist: Es sind eindimensionale Felder von Zeigern auf eindimensionale
Felder von Pixelwerten). Die C Deklaration eines pgm Bildes lautet:

Die Größe des Feldes, also die Bildgröße, ist im Format nicht enthalten und muß
wiederum beim Laden bzw. Erzeugen des Bildes festgelegt und gespeichert wer-
den. Die Elemente des Feldes sind vom Typ gray, der i.allg. einem unsigned char
entspricht und einen Wertebereich von 0 (schwarz) bis 255 (weiß) bzw. maxgray
hat. Der Zugriff auf ein Pixel (x,y) erfolgt einfach über eine doppelte Indizierung:

2. Farbbilder (ppm)
Farbbilder sind ebenso wie Grauwertbilder als zweidimensionale Felder gespei-
chert. Der Basistyp ist hier jedoch „pixel“, was eine Struktur aus drei Werten vom
Typ „pixval“ für RGB ist. Die entsprechende C Deklaration für ein Farbbild lautet:

Der Wertebereich der RGB Werte liegt i.allg. ebenfalls zwischen 0 und 255 (ma-
xval). Der Zugriff auf die einzelnen Farbkomponenten erfolgt durch vorhandene
Zugriffsmacros für das Lesen und Schreiben von Pixelwerten (siehe Programm
6.8).

Programm 6.5: #include für pgm-Bilder

1 #include <pgm.h>
2 gray **bild;

Programm 6.6: Zugriff auf pgm-Pixel

1 grey = bild[y][x];

Programm 6.7: #include für ppm-Bilder

1 #include <ppm.h>
2 pixel **bild;

84 6. Bildformate

Weiter Informationen zu den pbmplus Formaten und zu vorhanden Routinen zum
Lesen und Schreiben und Allocieren von Bildern sind leicht den entsprechenden man
pages zu entnehmen (libpgm, libppm).

6.3 Weitere Gesichtspunkte
Für eine möglichst zukunftssichere Architektur wird es nötig sein, weitere Gesichts-
punkte in Betracht zu ziehen. Wesentliche Punkte sind z.B.:

1. Timestamp
Um eine Fusion mit anderen Sensorsignalen zu erreichen ist es notwendig, jedes
Bild mit einer Zeitmarke zu versehen, die den Zeitpunkt seiner Aufnahme angibt.

2. Stereo Bildpaare
Durch den Stereomischer für den Stereokopf werden zwei getrennte Bilder in
Halbbilder eines einzigen Bildes zusammengefaßt. Ein effizienter Zugriff kann
durch „geschickte“ Indizierung in die Bilddaten erfolgen, ohne die Bilder vorher
zu trennen. Vorhanden Routinen aus pbmplus, Horus oder Khoros können aber
nicht direkt angewendet werden, ohne die Bilder vorher zu trennen.

6.4 Empfehlung für ein allgemeines Bildformat
Das pbmplus Format ist sehr leicht zu benutzen und weit verbreitet. Das XIL Format
ist andererseits ein Hardwareformat, das sehr schnellen Zugriff erlaubt. Keines der
Formate enthält ausreichende Angaben über Bildgröße oder Zeitpunkt der Aufnah-
me. Auch Stereobildpaare werden nicht berücksichtigt. Es wird daher ein Format vor-
geschlagen, das möglichst vielen Anforderungen gerecht wird (siehe Programm 6.9).

Die Bedeutung der Felder ergibt sich aus den Kommentaren. Durch den Inhalt des
Feldes „type“ wird die Gültigkeit und Form des Zugriffs auf die Bilddaten festgelegt.

Eine Diskussion hierüber ist notwendig. Eventuell könnten man auch die Unterschei-
dung zwischen Mono- und Stereobildern durch eine Union erzielen. Außerdem könn-
ten es sinnvoll sein, ein Stereobild basierend auf Halbbildern zu definieren, um der
ursprünglich vorliegenden Form gerecht zu werden.

Programm 6.8: Zugriff auf ppm-Pixel

1 pixval rot,gruen,blau;
2 /* Lesen: */
3 rot = PPM_GETR(bild[y][x]);
4 gruen= PPM_GETG(bild[y][x]);
5 blau= PPM_GETB(bild[y][x]);
6 /* Schreiben: */
7 PPM_ASSIGN(bild[y][x], rot, gruen, blau);

6.5 Literatur 85

6.5 Literatur
[1] Wolfgang Eckstein: Horus-Referenzmanual, Technische Universität München, Insti-

tut für Informatik, 1995.

[2] Wolfgang Eckstein: HORUS/C* Benutzerhandbuch, Technische Universität Mün-
chen, Institut für Informatik, 1994.

[3] Manual zum PNM System, online Dokumentation, Einstieg über man libpnm
oder man pnm

Programm 6.9: Vorschlag für ein allgemeines Bildformat

1 typedef enum __image_type
2 { MONO_GRAY, STEREO_GRAY, MONO_COLOR, STEREO_COLOR } image_type;
3
4 struct image
5 {
6 image_type type; /* type of image */
7 int x; /* width of the picture */
8 int y; /* height of the picture */
9 struct timeval *tp; /* timestamp */

10 union
11 {
12 gray **gray_data; /* gray scale data */
13 pixel **color_data; /* color data */
14 } mono_left;
15 union
16 {
17 gray **gray_data; /* gray scale data */
18 pixel **color_data; /* color data */
19 } right;
20 };

86 6. Bildformate

Kapitel 7

Benutzung des Maspar
Framegrabbers

Thilo Will

In der Maspar befindet sich ein Framegrabber. Diesen kann man mit Funktionen in
libcfg-GetFrame nutzen. D.h. man kann schwarz-weiss Bilder vom Framegrabber auf
das DPU transportieren. Es werden Bildgrössen deren Kantenlaengen ein vielfaches
von 128 sind, unterstützt. Die Kanten duerfen nicht grösser als 512 sein. Im folgenden
wird zunächst besprochen, in welcher Weise die Bilddaten dabei auf der DPU abge-
legt werden, danach wird auf die Funktionen eingegangen.

7.1 Virtualisierung der Bilddaten
Die Funktionen aus libcfg1-2GetFrame dienen dazu Bilder aus dem Framegrabber auf
der DPU abzulegen. Wie werden nun die Daten eines Bildes auf die einzelnen PE’s
verteilt? Sei

unsigned char bild[nx][ny];

ein Bild, und

plural unsigned char *plural_bild;

ein Pointer auf das entsprechende Bild auf der DPU. Es gilt dann folgende Zuord-
nung:

bild[x][y] = iproc[x%nxproc][y%nyproc].plural_bild[x/nxproc +
(nx/nxproc)*(y/nyproc]);

Dies bezeichnet man auch als Two-Dimensional Cut-and-Stack Virtualization.

88 7. Benutzung des Maspar Framegrabbers

Insbesondere folgt daraus für Bilder der Größe nxproc x nyproc:

bild[x][y]=iproc[x][y].plural_bild[0];

7.2 cfgInit
#include <GetFrame.h>
void cfgInit(void);

Diese Funktion initialisiert den Framegrabber. Sie muß vor dem ersten Aufruf von
cfgGetFrame aufgerufen werden.

7.3 cfgGetFrame
#include <GetFrame.h>
void cfgGetFrame(
 plural unsigned char *image,
 int ix,
 int iy,
 int xoff,
 int yoff,
 int xsk,
 int ysk
);

Diese Funktion transportiert ein Bild vom Framegrabber auf die DPU. Es kann dabei
auch ein Auschnitt des Bildes im Buffer des Framegrabbers gelesen werden. Dieser
Auschnitt kann beliebig positioniert werden. Ausserdem kann der Ausschitt, beveor
er auf der DPU abgelegt wird, um ganzahlige Faktoren in Breite und Länge verklei-
nert werden.

image zeigt auf das plural Feld wo die Bilddaten hingeschrieben werden .

ix, iy geben an wie Groß das Bild auf der DPU sein soll. Es gilt

Breite = ix * nxproc

Hoehe = iy * nyproc

Die Parameter ix, iy duerfen die Werte 1...4 annehmen.

xoff,yoff bestimmen die Postion des Bildausschnittes des Bildes im Framebuffer,
welcher auf die DPU kopiert werden soll. xoff,yoff sind dabei die Koordinaten
des linken oberen Pixels des Bildausschnittes im Gesamtbild.

xsk, ysk sind die Verkeinerungsfaktoren zwischen dem Bild im Framebuffer und
dem Bild auf der DPU in x bzw. y-Richtung.

7.4 cfgGetHalfFrame 89

7.4 cfgGetHalfFrame
#include <GetFrame.h>
void cfgGetHalfFrame(
 plural unsigned char *image_even,
 plural unsigned char *image_odd,
 int ix,
 int iy,
 int xoff_even,
 int xoff_odd,
 int yoff_even,
 int yoff_odd,
 int xsk,
 int ysk
);

cfgGetHalfframe ermöglicht das Lesen von Bildern die mit dem Stereobildmischer
zusammengemischt wurden. Der Stereobildmischer liefert als output ein Bild dessen
gerade Zeilen aus dem Halbbild des einen Inputskanales bestehen, und die ungera-
den aus einem Halbild des anderen. Mit cgfGetHalfFrame kann man diese Bilder ent-
mischt lesen. Die Bedeutng der Parameter ist anolog der von cfgGetFrame, mit dem
Unterschied:

• Es gibt jetzt zwei Zieladressen, image_even und image_odd, fuer das Bild in den
geraden bzw. ungeraden Zeilen.

• Für die beiden Bilder kann man unterschiedliche offset Werte angeben.

7.5 Geschwindigkeit
Der Transport der Bilddaten vom Framegrabber zur DPU ist langsam. Die Geschwin-
digkeit, hängt stark von den Parametern der GetFrame Funktionen ab. Den grössten
Einfluss haben iy und ysk. Die Parameter für Bildgrösse ix und Skalierung xsk in x-
Richtung haben weniger Einfluss. Der offset in y-Richtung hat keinen Einfluß.

90 7. Benutzung des Maspar Framegrabbers

Kapitel 8

ELTEC-VectEx
Marco Sommerau

Das ELTEC-VectEx ist eine Spezialhardware zur Bildverarbeitung, die Konturen aus
einem Grauwertbild in Echtzeit (Videofrequenz: 50 Hz) extrahiert und durch Poly-
gonzüge approximiert (vektorisiert).

Die zum System gehörende Hardware besteht aus drei VME-Bus Karten, die in einem
19“-Gehäuse untergebracht sind. Die Karten können nur von robosun1 aus über einen
SBus VME-Bus Adapter konfiguriert und ausgelesen werden.

Da die von der Hardware gelieferten Daten zur direkten Weiterverarbeitung ungeeig-
net sind, müssen diese erst durch einige Vorverarbeitungsschritte aufbereitet werden.

Die notwendige Software wurde unter Verwendung von Teilen der GNU C++ Biblio-
thek (libg++) komplett in C++ erstellt. Diese Dokumentation beschreibt die Struktur
und Funktionsweise der Software in der Version Elt2-1.

Diese Software besteht zum einen aus einer Bibliothek zur komfortablen Bedienung
der Hardware (libElt_boards.a) und zum anderen aus einer Bibliothek die losgelöst
von der Hardware die für die Bilddaten notwendigen Vorverarbeitungsschritte bereit-
stellt und Hilfestellung für eine weitere Bildauswertung gibt (libElt_misc.a).

8.1 Konfiguration der Hardware
Als Eingabe erhält das VME-Subsystem ein analoges Videosignal. Dieses wird zuerst
digitalisiert, dann über den ELTEC-spezifischen Video-Bus (VI-Bus) von Verarbei-
tungseinheit zu Verarbeitungseinheit weitergereicht, bis schließlich über VME-Bus
die extrahierten Daten in Form von Vektorpunkten ausgelesen werden können. Jede
der beteiligten drei Karten kann über VME-Bus konfiguriert werden.

92 8. ELTEC-VectEx

8.1.1 SBus VME-Bus Adapter (PT-SBS915)

Um die Hardware von einer SPARCstation 10 aus ansprechen zu können, wurde ein
SBus VME-Bus Adapter installiert [1]. Die Adapter-Karte steckt momentan auf dem
SBus-Slot 2 der robosun1 im Roboter-Labor. Die VME-Bus Karten können über die
Treiber-Dateien

• /dev/ptvme/a16d16 für 16-Bit Adresse, 16-Bit Daten

• /dev/ptvme/a16d32 für 16-Bit Adresse, 32-Bit Daten

• /dev/ptvme/a24d16 für 24-Bit Adresse, 16-Bit Daten

• /dev/ptvme/a24d32 für 24-Bit Adresse, 32-Bit Daten

• /dev/ptvme/a32d16 für 32-Bit Adresse, 16-Bit Daten

• /dev/ptvme/a32d32 für 32-Bit Adresse, 32-Bit Daten

direkt angesprochen werden. Es wird dabei der VME-Speicherbereich in den SUN-
Speicher gemappt.

Diese Lösung ist leider nur für ein geringes Datenaufkommen wie etwa nach der
Bildvorverarbeitung durch die Spezialhardware geeignet, da diese Schnittstelle rela-
tiv langsam ist.

8.1.2 Image Processing Port (IPP)

Die erste der drei Karten ist ein 8-Bit Graustufen Framegrabber, der das eingehende
analoge Videosignal in ein Grauwertbild digitalisiert [2]. Die Position und Größe des
zu digitalisierende Bildausschnitts innerhalb des Vollbildes kann dabei relativ frei
gewählt werden. Zur Konfiguration des IPP existiert die Klasse eltecIPP , die alle not-
wendigen Methoden zur Manipulation der Hardware bereitstellt.

Die Beschreibung der Schnittstelle dieser Klasse wie auch die der folgenden Klassen
zur direkten Beeinflußung einzelner Karten sind nicht wichtig für das Verständnis
und sind deshalb in dieser Dokumentation nicht enthalten.

8.1.3 Thinedge Processor (THIN)

Über den 16-Bit breiten VI-Bus erhält die THIN-Karte das Grauwertbild vom IPP. In
diesem Bild werden mittels eines 8x8 Filters Kanten detektiert und verdünnt [3]. Die
Funktionsweise entspricht prinzipiell der des Sobel-Operators (3x3). Der Filter
besteht aus zwei 8x8 Matrizen, die relativ frei programmiert werden können. Es ste-
hen fabrikmäßig drei Filter als Beispiele zur Auswahl. Eine zweite Möglichkeit zur
Parametrisierung ergibt sich aus der Festlegung eines Schwellwertes, ab dem eine
Kante überhaupt extrahiert werden soll. Das Ergebnis dieses Verarbeitungsschrittes
ist ein Binärbild das schon die extrahierten Kanten enthält und ein Gradientenbild,
jeweils in der Größe des Originalbildes. Die Konfiguration der THIN-Karte erfolgt mit
den Methoden der Klasse eltecThin .

8.1 Konfiguration der Hardware 93

8.1.4 Vector Processor (VECT)

Die letzte der drei Karten erhält ebenfalls wieder über den VI-Bus das Ergebnis des
vorhergehenden Verarbeitungsschrittes um aus den Pixeln der Grauwertkanten Kon-
turen in Form von Polygonzügen zu approximieren, d.h. zu vektorisieren [4]. Die
Genauigkeit der Approximation kann über eine sogenannte Winkeltoleranz beein-
flußt werden. Anhand des Binär- und Gradientenbildes werden für die einzelnen
Grauwertkanten Konturpunkte erzeugt wenn eine neue Kante beginnt, oder die Rich-
tungsänderung seit dem letzten Konturpunkt dieser Kante die zuvor festgelegt Win-
keltoleranz überschreitet. Der Polygonzug, im weiteren mit Kontur bezeichnet,
besteht dabei mindestens aus zwei Konturpunkten. Die einzelnen Konturpunkte wer-
den aus bestimmten Hardware-Registern ausgelesen und haben die in Prog. 8.1
beschriebene Datenstruktur.

Durch die Arbeitsweise des Systems das ein Grauwertbild von links oben nach rechts
unten verarbeitet ergibt sich das Problem, daß die zu einer Kontur gehörenden Kon-
turpunkte im allgemeinen nicht fortlaufend aus den Registern ausgelesen werden
können. D.h. nach Beendigung der Vektorisierung des Bildes existiert eine Menge von
unzusammenhängenden Konturpunkten, die zuerst anhand ihrer Konturnummer
einander zugeordnet werden müssen. Zur Konfiguration der VECT-Karte sind in der
Klasse eltecVect die notwendigen Methoden vorhanden.

8.1.5 Handhabung des Gesamtsystems

Die Hierarchie der hardware-relevanten Klassen ist in Abb. 8.1 dargestellt, wobei
Oberklassen auch im Bild über den Unterklassen liegen.

Für die erfolgreiche Benutzung des Eltec-Systems genügt im Normalfall die Verwen-
dung der Schnittstelle der Klasse eltecSystem , die alle Methoden zur einfachen
Handhabung des Systems bereitstellt (siehe Prog. 8.2).

Der Konstruktor wie auch die Methoden dieser Klasse erlauben die Einstellung fol-
gender Systemparameter:

1. Modus: (default: Mono-Noninterlaced)
Das System kann momentan in den drei verschiedenen Modi Mono-Noninterlaced
(MONO_NON), Mono-Interlaced (MONO_INT) und Stereo (STEREO) betrieben werden. Die
schnellste Verarbeitung wird durch den Modus Mono-Noninterlaced erreicht.

Programm 8.1: Die von der Hardware vorgegebene Datenstruktur.

1 typedef struct {
2 unsigned short x; /* column adress of contourpoint */
3 unsigned short y; /* row adress of contourpoint */
4 unsigned short angle; /* direction of contour */
5 unsigned short stendfl; /* start/end flag of contour */
6 unsigned short cnr; /* contour number */
7 unsigned short nstendfl; /* start/end flag of neighbour contour */
8 unsigned short ncnr; /* contour number of a neigbour */
9 } VECTPOINT;

94 8. ELTEC-VectEx

2. Schwellwert: (default 20)
Die Methode load_thresh() ermöglicht die Einstellung des Schwellwertes ab dem
eine Kante durch den Grauwertunterschied im Originalbild extrahiert werden soll.
Der Wertebereich dieses Parameters stammt aus dem Intervall [0, 255].

Abbildung 8.1: Die Klassenhierarchie zur Handhabung der Hardware.

Programm 8.2: Die öffentliche Schnittstelle der KlasseeltecSystem .

1 class eltecSystem:public eltecBase
2 {
3 public:
4 // enumerations
5 const enum selmode { MONO_NON = 0, // mono noninterlaced
6 MONO_INT = 1, // mono interlaced
7 STEREO = 2 }; // stereo
8
9 // instance variables

10 eltecVect vect; // Eltec-VECT Contour Vectorizer
11 eltecThin thin; // Eltec-THIN Contour Thinner
12 eltecIpp ipp; // Eltec-IPP Framegrabber
13
14 // constructors
15 eltecSystem(const u_short imgXoffset,
16 const u_short imgYoffset,
17 const u_short imgWidth,
18 const u_short imgHeight);
19
20 // methods
21 void setMode(const selmode mode);
22 void load_thresh(const u_char thresh);
23 void load_filter(const eltecConvolver& conv);
24 void load_filter(const char file[]);
25 void set_angle(const char angle);
26 };

eltecBase

eltecThineltecIpp

eltecSystem vmeDevice

*

eltecVect

8.1 Konfiguration der Hardware 95

3. Filter: (default: siehe Abb. 8.2 oder Datei Elt/data/conv0.ini)
Es können prinzipiell beliebige Filter zur Kantenextraktion verwendet werden.
Durch die Methode load_filter() kann über die Klasse eltecConvolver ein neuer
Filter dem System mitgeteilt werden. Diese Klasse ermöglicht es unter anderem in
Dateiform gespeicherte Filter einzulesen. Im Verzeichnis data sind in den Dateien
conv[012].ini drei verschiedene Filter abgelegt, die aber auch über die Variablen
conv[012] vom Typ eltecConvolver verfügbar sind.

4. Winkeltoleranz: (default: 14)
Eine weitere Möglichkeit die Hardware zu beeinflußen ist durch die Methode
set_angle() gegeben. Gültige Parameterwerte sind aus Tabelle 8.1 abzulesen. Der
Parameterwert -1 nimmt dabei eine Sonderstellung ein, da in diesem Fall die Grau-
wertkanten nicht im eigentlichen Sinn durch Polynomzüge approximiert werden,
sondern Kantenpixel für Kantenpixel ausgelesen werden können. Diese Möglich-
keit ist nur der Vollständigkeit halber aufgeführt, da sie in der Praxis ein viel zu
großes Datenaufkommen verursacht.

5. Position und Größe des Bildausschnittes: (default: Position 82, 50; Größe 744x262)
Im Gegensatz zu den vorangegangenen Parametern können diese vier Parameter
nur bei der Instanziierung angegeben werden. Die ersten beiden Parameter be-
schreiben die Koordinaten der linken oberen Ecke des zu digitalisierenden Bild-
ausschnitts. Die beiden verbliebenen Parameter bestimmen Breite und Höhe des
Bildausschnitts.

Der in 4. beschriebene Parameter ist jederzeit ohne Einschränkungen änderbar.

Eine Änderung der in 1. bis 3. aufgeführten Parameter ist zwar jederzeit möglich,
beansprucht aber relativ viel Zeit, da zum Teil Lookup-Tables des Systems neu
berechnet und dem System mitgeteilt werden müssen.

Abbildung 8.2: Die horizontale und vertikale Komponente des Default-Filters.

Parameterwert -1 0 2 4 6 8 10 12 14

Winkeltoleranz [o] 0.0 1.4 4.2 7.0 9.8 12.6 15.4 18.2 21.0

Tabelle 8.1: Die Zuordnung von Parameterwerten zu Winkeltoleranzen.

0 0 -2 -4 0 0

00 -5 -20 -25

-2 -20 -56 -60

-4 -25 -60 -61

61 60 25 4

60 56 2

00 25 20 5

0 0 4 2 0 0

-4 -2

-25 -20 -5

-60 -56 -2

-61 -60 -25 -4

4 25 60 61

2 20 56 60

5 20 25

2 4

-20

20

0 0 -2 -4 4 2 0 0

00 -5 -20 -25 25 20 5

-2 -20 -56 -60 60 56 2

-4 -25 -60 -61 61 60 25 4

-4 -25 -60 -61 61 60 25 4

-2 -20 -56 -60 60 56 2

00 -5 -20 -25 25 20 5

0 0 -2 -4 4 2 0 0

20

20

96 8. ELTEC-VectEx

Die zuletzt genannten Parameter (siehe 5.) sind nur bei der Instanziierung festlegbar,
da ein Großteil der weiter unten beschriebenen Software auf dieser Basis dynamische
Felder anlegt.

Bei der Instanziierung einer Variablen der Klasse eltecSystem können einige oder
auch alle der aufgezählten Parameter explizit mit Werten belegt werden um die
Default-Werte zu überschreiben.

8.1.6 Tips & Tricks

• Der einzige auftretbare Fehler ist ein Überlauf des Konturpuffers. Es wird dabei
eine so große Anzahl von Konturen vektorisiert, daß der interne Puffer der Hard-
ware nicht schnell genug ausgelesen werden kann. Dieser Fehler wird direkt von
der Hardware generiert und hat zur Folge, daß der gesamte Frame verloren ist.
Dieser Fehler tritt häufig bei Bildstörungen auf, aber auch wenn die Hardware-Pa-
rameter ungünstig gewählt wurden.

• Die wirkungsvollste Möglichkeit die vektorisierte Datenmenge zu beeinflußen ist
die Winkeltoleranz. Je kleiner die Datenmenge desto schneller die Bildverarbei-
tung. Allerdings muß hier ein anwendungsabhängiger Kompromiß gefunden
werden zwischen der Geschwindigkeit und der Ungenauigkeit der vektorisierten
Kanten.

• Der Modus Mono-Interlaced bringt in Punkto Genauigkeit der Kanten keine nen-
nenswerten Steigerungen und das auf Kosten der doppelten Verarbeitungszeit
durch die Hardware.

• Für alle Hardware-Parameter ist fröhliches Experimentieren angesagt, auch bei
den Filtern.

8.2 Konturpunkte
Nach dieser kurzen Einführung in den Hardware-Teil des Gesamtsystems endlich zu
den von der Hardware gelieferten Daten. Die in Prog. 8.1 vorgestellte Datenstruktur
VECTPOINT beschreibt die Hardware-Rohdaten eines einzelnen Konturpunkts. Diese
Datenstruktur wurde in eine C++ Klasse namens ctrPoint (siehe Prog. 8.3) umbe-
nannt und modifiziert.

Beim Vergleich dieser Klasse mit der Struktur VECTPOINT fällt auf, daß die Struktur-
komponenten stendfl , cnr , nstendfl und ncnr in der öffentlichen Klassen-Schnitt-
stelle fehlen. Die darin abgelegten Daten werden nur zur Sortierung und Verknüp-
fung der unsortierten Menge von Konturpunkten zu zusammenhängenden Konturen
benötigt und gehören damit zum privaten Teil dieser Klasse. Die verbliebenen drei
Attribute dieser Klasse haben folgende Semantik:

1. x und

2. y geben die Koordinaten des Konturpunktes im Konturbild an, wobei der Ur-
sprung des Koordinatensystems in der linken oberen Ecke liegt.

3. angle enthält die Richtung der extrahierten Kontur an diesem Punkt. Der Wert
stammt aus dem Intervall [0, 255], d.h. die 360o des Vollkreises (Abb. 8.3, links)
werden auf dieses Intervall abgebildet (Abb. 8.3, rechts). Wichtig an dieser Stelle

8.2 Konturpunkte 97

ist, daß Richtungen aus dem Teilintervall [0, 127] durch Grauwertkanten enstehen,
die, im Bild von links nach rechts gesehen, einen Helligkeitsverlauf von dunkel
nach hell aufweisen. Umgekehrt sind Richtungen aus dem Teilintervall [128, 255]
durch Kanten mit einem Verlauf von hell nach dunkel bestimmt.

Des weiteren sind für diese Klasse einige Methoden implementiert, die eine Weiter-
verarbeitung der Daten vereinfachen.

1. Die Methode angle2mask() setzt in den 32 Bit eines Integers je nach Wert des At-
tributs angle ein bestimmtes Bit. Die genau Zuordnung kann aus dem rechten Teil
der Abb. 8.3 abgelesen werden, wobei die in den Kreissegmenten angegebenen
Nummern mit der zu setzenden Bit-Nummer korrespondieren.

2. Da im Zusammenhang mit Konturpunkten nur Ganzzahlen vorkommen ist hier
die Methode isqrt() bereitgestellt. Sie erlaubt ein bedeutend schnelleres Wurzel-
ziehen als mit der herkömmlichen Fließkommafunktion sqrt() .

3. Die Methode in() dient lediglich zur Prüfung, ob ein Wert innerhalb eines be-
stimmten Intervalls liegt.

4. distance() ermittelt den euklidschen Abstand zwischen den beteiligten Kontu-
punkten.

Programm 8.3: Die öffentliche Schnittstelle der KlassectrPoint .

1 class ctrPoint:public eltecBase
2 {
3 public:
4 // Instance Variables:
5 short x; // column adress of contourpoint
6 short y; // row adress of contourpoint
7 u_char angle; // direction of contour
8
9 // Methods:

10 u_int angle2mask(void) const;
11 static u_int angle2mask(register const char angle);
12
13 static u_int isqrt(register const u_int x);
14 static bool in(const short left,
15 const short x,
16 const short right);
17
18 u_short distance(register const ctrPoint& p) const;
19 double gradient(register const ctrPoint& p) const;
20
21 bool intersectX(const ctrPoint& p1,
22 const ctrPoint& p2,
23 const short X);
24 bool intersectY(const ctrPoint& p1,
25 const ctrPoint& p2,
26 const short Y);
27
28 friend ofstream& operator<<(ofstream& s, ctrPoint& x);
29 friend ifstream& operator>>(ifstream& s, ctrPoint& x);
30 friend ostream& operator<<(ostream& s, ctrPoint& x);
31 };

98 8. ELTEC-VectEx

5. Mittels der Methode gradient() kann die Steigung der Geraden durch die beiden
beteiligten Punkte ermittelt werden. Falls die x-Koordinaten der Konturpunkte
identisch sein sollten und damit die Steigung unendlich wäre, wird der Wert
MAX_DOUBLE zurückgegeben.

6. Der Methode intersectX() werden als Parameter zwei Konturpunkte und eine
Koordinate x übergeben. Sie berechnet daraus den Schnittpunkt der Strecke zwi-
schen den beiden Konturpunkten und einer Vertikalen an der Stelle x . Das Vorhan-
densein eines Schnittpunktes wird durch den boolschen Rückgabewert angezeigt.

7. Die Funktionsweise der Methode intersectY() ist äquivalent zur vorangegange-
nen Methode. Der einzige Unterschied ist, daß hier der Schnittpunkt mit einer Ho-
rizontalen bestimmt wird.

8. Die Operatoren << und >> dienen zur formatierten Datei und Bildschirm Ein- und
Ausgabe.

8.3 Konturen
Eine Kontur besteht wie bereits erwähnt aus mindestens zwei Konturpunkten, die aus
Gründen der hohen Flexibilität in einer doppelt verketteten Liste verwaltet werden.
Zur Implementierung dieser Konturpunktliste wurde die Containerklasse DLList der
GNU C++ Bibliothek verwendet. Die Klasse ctrPointDLList hat damit, ohne Berück-
sichtigung der ererbten Schnittstelle, das in Prog. 8.4 beschrieben Aussehen.

Für die Beschreibung der ererbten Klassenschnittstelle sei an dieser Stelle auf die Info-
Seiten im emacs verwiesen. Dort gibt es eine Eintrag Libg++ und darin einen Verweis
auf LinkList in dem die vorhandenen Methoden von einfach und doppelt verketteten
Listen beschrieben sind.

Bei der genaueren Betrachtung der Klassendeklaration von ctrPointDLList fällt auf,
daß die Elemente der Liste nicht vom Typ ctrPoint , sondern vom Typ ctrPoint *

sind. Dies hat vor allem Effizienzgründe, da etwa beim Einfügen von Elementen

Abbildung 8.3: Die Richtung einer Kontur in einem Konturpunkt.

o

o

o

o

0

0

270

90

180
128 255

0

8

0

y

1

3

4
5

679
10

11

12

13

14

15

16

17

18

19

20
21

22 23 24 25
26

27

28

29

30

31

127

64 63

191 192x

2

8.3 Konturen 99

immer zuerst eine Kopie des Elements erzeugt wird und diese dann in die Liste wan-
dert. D.h. durch die Verwendung von Zeigern wird die zu kopierende Datenmenge
minimiert.

Die durch die Vererbung schon vorhandenen Methoden wurden folgendermaßen
ergänzt:

1. Die Methode pixLength() berechnet die Länge [pel] der durch die Konturpunktli-
ste repräsentierten Kontur als Summe der euklidschen Abstände zwischen den
einzelnen Konturpunkten.

2. Mit Hilfe von mask() werden alle vorkommenden Richtungen der Kontur in einer
32-Bit Maske codiert zurückgegeben.

3. Durch die Methode transX() werden alle Konturpunkte dieser Kontur um die
übergebene Anzahl von Pixeln in x-Richtung verschoben.

4. Äquivalent dazu verschiebt transY() die Kontur in y-Richtung.

5. Die drei Methoden pre_join_reverse() (siehe Abb. 8.4a),

6. pre_join() (siehe Abb. 8.4b) und

7. join_reverse() (siehe Abb. 8.4c) verketten jeweils die Liste a mit der übergebenen
Liste b.

Programm 8.4: Die öffentliche Schnittstelle der KlassectrPointDLList .

1 class ctrPointDLList:public DLList<ctrPoint *>, public eltecBase
2 {
3 public:
4 // Methods:
5 u_short pixLength(void);
6 u_int mask(void);
7 void transX(register short dx);
8 void transY(register short dy);
9 void pre_join_reverse(register ctrPointDLList& x);

10 void pre_join(register ctrPointDLList& x);
11 void join_reverse(register ctrPointDLList& x);
12 void cut(Pix p, int dir = 1);
13 friend ostream& operator<<(ostream& s, ctrPointDLList& x);
14 };

Abbildung 8.4: Verkettung von Konturlisten.

a

c)

b)

a)

b

b

a

a b

a b

b0 1b ma b

0 anbm

n

0 a

a0 anb b0 m

b

a0 an b bm 0

1a0a

100 8. ELTEC-VectEx

8. Durch die Anwendung der Methode cut() kann entweder das linke oder das rech-
te Ende einer Konturliste abgetrennt werden. Als Parameter wird das Listenele-
ment angegeben von wo aus die Trennung erfolgen soll. Die Richtung in der
abgetrennt wird bestimmt das Vorzeichen des zweiten Parameters: negativ ent-
spricht links und positiv rechts vom angegebenen Listenelement.

9. Der Operator << dient zur Bildschirmausgabe einer vollständigen Konturliste.

Da für jede Kontur die Verfügbarkeit zusätzlicher Attribute interessant ist, existiert
eine übergeordnete Klasse ctrAttrib , die diese Aufgabe erfüllt (siehe Prog. 8.5).

Im einzelnen sind folgende Attribute zu nennen:

1. Die Instanzvariable cnr enthält eine eindeutige Konturnummer. Sie stimmt mit der
Nummer überein, die, wie in Abschnitt 8.1.4 beschrieben, für jeden einzelnen Kon-
turpunkt in der Struktur VECTPOINT von der Hardware belegt wird.

2. Die Anzahl der Punkte dieser Kontur ist in points festgehalten.

3. Das Attribut pixLen beinhaltet die Länge der Kontur in Pixeln.

4. In der Variablen angleMask sind alle in dieser Kontur enthaltenen Richtungen in
Form einer Bitmaske gespeichert.

5. Die Variable type enthält für den Fall daß mit Stereobildern gearbeitet wird eine
Kennzeichnung aus welcher der beiden Halbbilder diese Kontur stammt. Mögli-
che Belegungen sind CTR_FIRST oder CTR_SECOND.

6. Auf die eigentliche Liste von Konturpunkten kann durch die Variable pts zuge-
griffen werden.

7. Der Operator << dient wieder der Ausgabe auf den Bildschirm.

Da in der weiteren Verarbeitung Mengen von Konturen zu untersuchen sind, werden
diese ebenfalls in doppelt verketteten Listen verwaltet. Die entsprechende Klasse
heißt ctrAttribDLList und ist in Prog. 8.6 abgebildet.

Programm 8.5: Die öffentliche Schnittstelle der KlassectrAttrib .

1 class ctrAttrib:public eltecBase
2 {
3 public:
4 // Enumerations:
5 const enum ctrType { CTR_MONO, // mono image
6 CTR_FIRST, // first half stereo image
7 CTR_SECOND }; // second half stereo image
8
9 // Instance Variables:

10 u_short cnr; // id-number of contour
11 u_short points; // number of points
12 u_short pixLen; // length of contour [pel]
13 u_int angleMask; // anglemask containing all angles
14 ctrType type; // source of contour
15 ctrPointDLList pts; // list of points
16
17 // Methods:
18 friend ostream& operator<<(ostream& s, ctrAttrib& x);
19 };

8.4 Konturdatenbanken 101

In dieser Klasse wurden bisher, außer einer Methode zur Ausgabe auf den Bild-
schirm, keine weiteren Methoden implementiert. Wie aus der Klassendeklaration zu
entnehmen ist, sind die Elemente der Liste aus Effizienzgründen ebenfalls wieder nur
Zeiger.

8.4 Konturdatenbanken
In den vorangegangenen Abschnitten wurden die Klassen zur Handhabung von Kon-
turen vorgestellt. Diese müssen nun ergänzt werden durch Strukturen die die eigent-
lichen Daten enthalten und auf denen die Listen von Zeigern ihre Gültigkeit erhalten.

Zum Speichern der eigentlichen Konturen werden mehrere verschiedene Klassen ver-
wendet, die jeweils eine primitive Datenbank implementieren. Primitiv deshalb, da
der Benutzer nur lesenden Zugriff auf die Daten hat und im momentanen Stadium
kein Mehrbenutzerbetrieb möglich ist.

Die Funktionalität der einzelnen Klassen unterscheidet sich einerseits in der Art und
Weise wie die Konturdaten abgelegt werden, mit Auswirkungen auf die Arten von
zulässigen Datenbankanfragen. Andererseits gibt es Unterschiede bezüglich der Art
der Vorverarbeitung beim Datenbankaufbau.

8.4.1 Die Ablage der Konturdaten

Da jede der im weiteren beschriebenen Klassen von Datenbanken von der Klasse
eltecBaseDatabase den öffentlichen Teil der Klasse erbt, genügt es die Methoden die-
ser Basisklasse genauer zu kennen (siehe Prog. 8.7). Unterschiede zwischen den
Schnittstellen der abgeleiteten Klassen bestehen nur in den Parameterleisten der Kon-
struktoren.

Die vorhandenen Methoden implementieren folgende Funktionalität:

1. Durch die Methode setGlobalMinLen() besteht die Möglichkeit die beim Aufbau
von Indizes berücksichtigten Konturen von vornherein zu filtern, indem eine Min-
destlänge [pel] für Konturen vorgschrieben wird (default: 0 [pel]).

2. Eine ähnlich Möglichkeit bietet die Methode setGlobalMask() , durch die nur be-
stimmte Richtungen von Konturen beim Aufbau der Datenbankindizes berück-
sichtigt werden (default: 0xffffffff).

3. Mittels der Methode getTimeStamp() kann der Zeitstempel, von dem die in dieser
Datenbank gespeicherten Konturen stammen, abgefragt werden. Das Ergebnis
sind Sekunden seit dem 1. Januar 1970 (siehe auch man gettimeofday()). Der Zeit-

Programm 8.6: Die öffentliche Schnittstelle der KlassectrAttribDLList .

1 class ctrAttribDLList:public DLList<ctrAttrib *>, public eltecBase
2 {
3 public:
4 // Methods:
5 friend ostream& operator<<(ostream& s, ctrAttribDLList& x);
6 };

102 8. ELTEC-VectEx

stempel wird direkt nach dem Auslesen des ersten vektorisierten Konturpunkts
bestimmt.

4. getFrameNr() gibt einen Integer-Wert zurück, der die Nummer das aktuellen Fra-
mes in dieser Datenbank angibt.

5. Durch die Methode getPtsQuant() kann die in dieser Datenbank gespeicherte An-
zahl von Konturpunkten abgefragt werden.

6. Durch die Methoden getFrame() ist es möglich einen neuen Frame entweder von
der Hardware oder von einer Datei einzulesen. Als Rückgabe dieser Methode er-
hält man die Anzahl der eingelesenen Konturpunkte oder -1, falls dabei ein Fehler
in Form eines Überlaufs des Konturpuffers auftritt.

7. Durch den Aufruf der Methode build() werden die Indizes der Datenbank für die
neuen Rohdaten aufgebaut.

8. Schließlich gibt es noch die Methode read() , durch die auf eine Datei von Kontur-
Rohdaten zugegriffen werden kann.

9. Das Gegenstück zum vorhergehenden Punkt ist die Methode write() , die zum
Schreiben von Rohdaten vorgesehen ist. Von der Hardware eingelesene Daten

Programm 8.7: Die öffentlich Schnittstelle der KlasseeltecBaseDatabase .

1 class eltecBaseDatabase:public virtual eltecBase
2 {
3 public:
4 // Constructors:
5 eltecBaseDatabase(void);
6
7 // Destructor:
8 ~eltecBaseDatabase(void);
9

10 // Methods:
11 void setGlobalMinLen(const u_short len = 0);
12 void setGlobalMask(const u_int msk = 0xffffffff);
13
14 double getTimeStamp(void) const;
15 int getFrameNr(void) const;
16 int getPtsQuant(void) const;
17 int getFrame(register eltecSystem& eltec);
18 int getFrame(const char file[], // base name of file
19 const u_short nrLen = 4);// char length of frameNr
20
21 virtual void build(void);
22
23 int read(const char file[], // base name of file
24 const u_short nrLen = 0, // char length of frameNr
25 const int frame = 0, // frameNr
26 const char ext[] = „ctr“); // file extension
27 void write(const char file[], // base name of file
28 const u_short nrLen = 0, // char length of frameNr
29 const char ext[] = „ctr“);// file extension
30 };

8.4 Konturdatenbanken 103

können nur im Rohzustand abgespeichert werden, d.h. vor dem Aufruf der Me-
thode build() .

Die von der Basisklasse abgeleiteten Klassen unterscheiden sich im wesentlichen nur
in der Implementierung der unter 7. aufgeführten Methode build() . Je nach Art der
Datenbank können, wie bereits erwähnt, Anfragen gestellt werde, um Konturen mit
bestimmten Attributwerten zu erhalten:

10. Dazu haben alle Klassen die Methode request() , die jedoch in der Basisklasse
noch nicht vorhanden ist, da diese erst in den Verfeinerungen der Unterklassen de-
finiert wird (siehe Prog. 8.9).

8.4.2 Der Aufbau der Datenbank

Während des Einlesens der Rohdaten eines neuen Frames werden die unsortierten
Konturpunkte mit identischer Konturnummer zu zusammenhängenden Konturen
verknüpft. Bei dieser Verknüpfung werden Konturen die durch einen Fehler nur aus
einem einzigen Konturpunkt bestehen herausgefiltert.

Beim weiteren Aufbau der Datenbank können zusätzliche, miteinander kombinier-
bare, Vorverarbeitungsschritte ausgeführt werden:

1. Von der Hardware werden in den Endpunkten von Konturen Verweise auf etwa
vorhandene Nachbarkonturen mitgegeben. Solche Verweise erscheinen im Nor-
malfall nur, wenn die Endpunkte der benachbarten Konturen in ihren Pixelkoordi-
naten direkte Nachbarn sind. Somit können diese Konturen direkt miteinander
verknüpft werden.

2. Bei der Verwendung von Stereobildern sind die beiden Halbbilder in ein Vollbild
gemischt, d.h. die Halbbilder müssen voneinander getrennt und die Koordinaten
des zweiten Halbbilds transformiert werden.

Erst nach dem vollständigen Durchlaufen dieser Vorverarbeitungsschritte werden die
in Abschnitt 8.3 aufgeführten Konturattribute berechnet. Anschließend werden die
Konturen auf die Erfüllung der Mindestwerte von Attributen geprüft, die durch die
in Abschnitt 8.4.1 aufgeführten Methoden setGlobalMinLen() und setGlobalMask()

gesetzt worden sind.

Nachdem die Konturdaten vorverarbeitet und gefiltert sind werden die eigentliche
Suchindizes aufgebaut. Dabei kann zwischen zwei miteinander kombinierbaren Mög-
lichkeiten gewählt werden:

1. Der erste Index ist ein eindimensionales Feld, durch das alle verbliebenen Kontu-
ren referenziert werden können. Dieser Index wird im weiteren mit Linear-Index
bezeichnet.

2. Um Konturen aus einem bestimmten Bildbereich abfragen zu können ohne jedes-
mal alle Konturpunkte der einzelnen Kontur abzuprüfen, werden die Konturen in
ein Bild gezeichnet. Dieses Indexbild, oder im weiteren auch Raster-Index ge-
nannt, besteht aus einzelnen Indexpixeln, die im Normalfall eine Fläche von meh-
rere Pixeln des Originalbildes repräsentieren. Diese beinhalten Verweise auf alle
Konturen die durch den entsprechenden Pixelbereich verlaufen. Das Größenver-
hältnis zwischen Pixeln im Originalbild und Indexpixeln kann in beiden Dimen-
sionen den Anforderungen der Anwendung angepaßt werden [5]. In Abb. 8.5 sind

104 8. ELTEC-VectEx

beispielsweise die Indexpixel in x-Richtung um den Faktor 22 = 4 und in y-Rich-
tung um den Faktor 21 = 2 skaliert. Das gestrichelte Raster entspricht der Matrix
des Originalbildes und das darübergelegte gröbere Raster der Matrix der Indexpi-
xel. Auf der rechten Seite ist der Inhalt des Raster-Index für die eingezeichneten
Konturen angegeben.

Jede Kombinationsmöglichkeit aus Vorverarbeitung und verwendeten Indizes ist eine
eigene Klasse. Da zumindest ein Index vorhanden sein muß, aber nicht unbedingt
eine spezielle Vorverarbeitung notwendig ist, ergeben sich die in Tabelle 8.2 aufge-
führten 12 Klassen.

Abbildung 8.5: Die Abbildung von Konturen in den Raster-Index.

Klassenname

Indizes Vorverarbeitung

Linear-
Index

Raster-
Index

Nachbar-
konturen
verbinden

Stereobild
trennen

dbLinear X

dbLinear_Join X X

dbLinear_Stereo X X

dbLinear_StereoJoin X X X

dbRaster X

dbRaster_Join X X

dbRaster_Stereo X X

dbRaster_StereoJoin X X X

dbLinRast X X

dbLinRast_Join X X X

Tabelle 8.2: Klassen von Konturdatenbanken und ihre Merkmale.

1
2

3

1

1 1

1

1

1 1
3

3

3

33

2

2

2

21

4
4

4

4

8.5 Anfragen an Konturdatenbanken 105

Die Schnittstellen dieser Klassen sind bezüglich ihrer Methoden identisch. Unter-
schiede bestehen lediglich in den Parameterleisten der Konstruktoren. Klassen die
das Stereobild trennen, brauchen Informationen über die Breite und Höhe des Bildes.
Dieselbe Information benötigen Klassen die einen Raster-Index verwenden. Diese
brauchen jedoch zusätzlich noch die Skalierungsfaktoren für den Aufbau des Raster-
Indexes. Eine Parameterwert n resultiert dabei in einer Skalierung 2n, d.h. bei einem
Wert von n = 3 für die Breite ist ein Indexpixel 23 = 8 Pixel breit.

8.4.3 Tips & Tricks

• Die Hardware und die Datenbanken müssen immer mit derselben Bildgröße ar-
beiten. Falls versucht wird verschiedene Werte bei der Instanziierung zu verwen-
den bricht das Programm mit einer Fehlermeldung ab.

• Wenn versucht wird bei der Instanziierung von Datenbanken verschiedene Skalie-
rungsfaktoren zu verwenden wird das Programm ebenfalls sofort mit einer Feh-
lermeldung abgebrochen.

• Aus Geschwindigkeitsgründen sollte immer die Klasse von Datenbank verwen-
den, die die Minimalvoraussetzungen erfüllt, da natürlich jeder zusätzliche Verar-
beitungsschritt Zeit kostet.

• Die Angabe einer minimale Konturlänge kann sehr viel Rechenzeit ersparen, aller-
dings hängt der Wert stark von der Anwendung ab. Falls bei der Vorverarbeitung
Nachbarkonturen verbunden werden kann dieser Wert etwas höher gewählt wer-
den.

• Bei der Skalierung des Raster-Indexes sollten jeweils Werte größer als 1 verwendet
werden. Da das Ausmaß der Bilddimensionen sehr unausgeglichen ist bietet es
sich außerdem an die Auflösung des Rasters verschieden zu wählen. Je gröber das
Raster desto schneller der Aufbau des Raster-Indexes.

8.5 Anfragen an Konturdatenbanken
Was nützen jedoch Konturen in einem Behälter ohne die Möglichkeit sich gezielt Kon-
turen daraus herausgeben zu lassen. Aus diesem Grund folgt nun die Beschreibung
der Klassen zur Abfrage bestimmter Konturen aus einer der Datenbanken.

dbLinRast_Stereo X X X

dbLinRast_StereoJoin X X X X

Klassenname

Indizes Vorverarbeitung

Linear-
Index

Raster-
Index

Nachbar-
konturen
verbinden

Stereobild
trennen

Tabelle 8.2: Klassen von Konturdatenbanken und ihre Merkmale.

106 8. ELTEC-VectEx

8.5.1 Auswahl des Bildbereichs

Eine der wichtigsten Angaben bei der Suche nach bestimmten Konturen ist die
Angabe des zu durchsuchenden Bildbereichs.

Wie in Abb. 8.6 zu erkennen ist, gibt es ausgehend von der Basis-Klasse eltecBaseRe-

quest für Bereichsanfragen an eine Konturdatenbank die zwei direkt abgeleiteten
Klassen eltecLinearRequest und eltecRasterRequest . Die daraus abgeleiteten Klas-
sen sind die in der Praxis zu verwendenden Klassen, mit deren Hilfe entweder inner-
halb der gesamten Konturenmenge (reqTotal), in einem rechteckigen (reqRectangle)
oder einem parallelogrammförmigen Bildausschnitt (reqParallelogramm) gesucht
werden kann.

Klassen die als Oberklasse die Klasse eltecLinearRequest haben können nur auf eine
Datenbank angewendet werden die einen Linear-Index bereitstellt. Gleiches gilt für
die Klasse eltecRasterRequest und Datenbanken mit Raster-Index.

Eine Bereichsspezifikation einer Anfrage an eine Datenbank wird durch die Instanzi-
ierung einer der genannten Klassen erzeugt. Diese Instanz kann prinzipiell auf jede
Instanz einer Datenbank angewendet werden und ist damit beliebig oft wiederver-
wendbar:

1. Die Klasse reqTotal benötigt zur Instanziierung keine weiteren Parameter.

2. Für die Instanziierung der Klasse reqRectangle werden die Pixel-Koordinaten der
oberen linken Ecke P1 und der unteren rechten Ecke P2 des Rechtecksbereichs be-
nötigt (siehe Abb. 8.7).

3. Als Parameter für die Instanziierung eine parallelogrammförmigen Bildbereichs
werden wiederum die Pixelkoordinaten zweier übereinander gelegener Punkte P1

Abbildung 8.6: Die Klassenhierarchie zur Spezifikation von Bildbereichen.

eltecBaseRequest

*

eltecLinearRequest

reqRectangle

eltecBase

reqTotal reqParallelogramm

eltecRasterRequest

8.5 Anfragen an Konturdatenbanken 107

und P2 benötigt. Diese beschreiben die Neigung der Seiten des Parallelogramms.
Zur vollständigen Beschreibung wird noch die Breite d des Parallelogramms in Pi-
xeln benötigt (siehe Abb. 8.7).

Wie aus den Parametern von 2. und 3. zu erkennen ist können keine allgemeinen
Rechtecke und Parallelogramme beschrieben werden, sondern nur solche die zwei
horizontale Seiten haben.

In Abb. 8.7 ist anhand der grau unterlegten Flächen zu erkennen welche Bildbereiche
durch die als Linien eingezeichneten Bereichsanfragen tatsächlich überdeckt werden.

8.5.2 Auswahl anhand von Konturattributen

Wie in Abschnitt 8.3 beschrieben besitzen Konturen eine Anzahl von Attributen. Da
im Normalfall, je nach Anwendung, nur Konturen mit bestimmten Eigenschaften
interessant sind, gibt es Möglichkeiten diese genau zu spezifizieren. In Abb. 8.8 sind
die grundlegenden Klassen dargestellt die es erlauben entsprechende Attribute abzu-
prüfen.

Sinnvollerweise können die aufgeführten Klassen chkMask , chkMaxLen , chkMinLen und
chkStereo beliebig miteinander kombiniert werden. Insgesamt stehen damit 16 ver-
schiedene Klassen zur Spezifikation der zu prüfenden Konturattribute zur Verfügung
(siehe Tabelle 8.3).

Abbildung 8.7: Spezifikation von Bildbereichen für eine Konturdatenbankanfrage.

P1

P2
P2

P1

d

108 8. ELTEC-VectEx

Abbildung 8.8: Klassenhierarchie zur Spezifikation von Konturattributen.

Klassenname Stereo-
halbbild

Winkel-
maske

Minimale
Länge [pel]

Maximale
Länge [pel]

chkNot

chkMask X

chkMinLen X

chkMaxLen X

chkLength X X

chkMaskMinLen X X

chkMaskMaxLen X X

chkMaskLength X X X

chkStereo X

chkStereoMask X X

chkStereoMinLen X X

chkStereoMaxLen X X

chkStereoLength X X X

chkStereoMaskMinLen X X X

chkStereoMaskMaxLen X X X

chkStereoMaskLength X X X X

Tabelle 8.3: Klassen zur Spezifikation von Konturattributen.

eltecBaseLimit

*

chkMaxLen chkNot chkStereochkMinLenchkMask

eltecBase

8.5 Anfragen an Konturdatenbanken 109

Da die Klassen eine verschiedene Anzahl von Parametern benötigen sind die Kon-
struktoren den Anforderungen entsprechend angepaßt. Die Reihenfolge der anzuge-
benden Parameter ist für alle Klassen gleich. Sie entspricht der in der Kopfzeile von
Tabelle 8.3 verwendeten Reihenfolge. Falls der eine oder andere Parameter von der zu
verwendenden Klasse nicht benötigt wird sind diese bei der Instanziierung der Klasse
einfach wegzulassen.

Alle in Tabelle 8.3 aufgeführten Klassen haben nur die eine Methode ok() , die sie von
der Klasse eltecBaseLimit erben (siehe Prog. 8.8). Diese Methode testet ob die über-

gebene Kontur den Anforderungen der bei der Instanziierung übergebenen Parame-
ter erfüllt. Instanzen dieser Klasse können damit auch außerhalb von Datenbankan-
fragen zum Testen von Konturattributen auf bestimmte Werte verwendet werden.

8.5.3 Eine komplette Anfrage

Zur Bildung einer Anfrage werden also zwei Komponenten verwendet. Zum einen
kann ein bestimmter Bildbereich spezifiziert werden und zum anderen können Attri-
butwerte ausgewählt werden. Diese werden mit zwei weiteren Argumenten der
Methode request() , die Bestandteil der Schnittstelle jeder Klasse von Datenbanken
ist, übergeben (siehe Prog. 8.9).

1. Das erste Argument ist eine Variable vom Typ ctrAttribDLList , also einer Liste
von Konturen. Das Ergebnis der Anfrage wird an das Ende dieser Liste angehängt.

2. Das zweite Argument betrifft die Spezifikation eines Bildausschnitts mittels einer
Instanz der in Abschnitt 8.5.1 erläuterten Klassen.

3. Das nächste Argument ist die Instanz einer der im vorhergehenden Abschnitt auf-
geführten Klassen um bestimmte Konturattribute zu testen. Als Default werden
keine Attribute getestet, d.h. es wird eine Instanz der Klasse chkNot übergeben.

4. Das letzte Argument ist ein boolscher Wert und ermöglicht es mehrere Anfragen
zu gruppieren ohne dabei in der Gesamtergebnismenge Duplikate von Konturen
zu erhalten. Der Default ist false , d.h. jede Anfrage wird separat behandelt.

Programm 8.8: Die öffentliche Schnittstelle der KlasseeltecBaseLimit .

1 class eltecBaseLimit:public eltecBase
2 {
3 public:
4 // Methods:
5 virtual bool ok(ctrAttrib *ctr) = 0;
6 };

Programm 8.9: Die Parameterleiste der Datenbank-Methoderequest() .

1 virtual void request(ctrAttribDLList& dat,
2 eltecBaseRequest& req,
3 eltecBaseLimit& lim = chkNot(),
4 bool group = false);

110 8. ELTEC-VectEx

8.5.4 Tips & Tricks

• Achtung: Alle Daten von Konturen und Konturpunkten sind physisch nur inner-
halb einer Datenbank vorhanden. Das Ergebnis von Anfragen sind nur Listen von
Zeigern die auf Daten in der Datenbank verweisen. Änderungen von Attributwer-
ten über diese Zeiger werden damit global in dieser Datenbank vollzogen und
können nachfolgenden Anfragen und schon erhaltene Konturdaten beeinflußen!

• Wichtig beim Arbeiten mit rechteckigen oder parallelogrammförmigen Bereichs-
anfragen ist, daß Konturen immer in ihrer ganzen Länge zurückgegeben werden.
D.h. falls eine Kontur von links oben quer über das ganze Bild nach rechts unten
verläuft und ein kleiner Bereich in der Bildmitte Ziel der Anfrage ist, wird trotz-
dem die Kontur nicht an den Bereichsgrenzen abgeschnitten, sondern komplett
zurückgegeben.

• Je feiner der Raster-Index ist desto langsamer wird natürlich auch eine Bildbe-
reichsanfrage bearbeitet, da immer aller Index-Pixel eines angegebenen Bildbe-
reichs durchsucht werden müssen.

• Wie in Abb. 8.7 zu erkennen ist kann der Einzugsbereich einer rechteckigen oder
parallelogrammförmigen Bereichsanfrage im Endeffekt um einiges größer sein als
spezifiziert. Die Genauigkeit der Abgrenzung der Bereiche hängt stark von der
Körnigkeit des Rasters ab, d.h. es muß ein anwendungsabhängiger Kompromiß
zwischen Geschwindigkeit und Genauigkeit gefunden werden.

• Bei der Verwendung von Richtungsmasken zur Auswahl bestimmter Konturen
muß man sich bewußt sein, daß eine Kontur die Randbedingungen erfüllt wenn
irgendwo eine der in der Maske angegebenen Richtungen existiert. Das bedeutet
insbesonders auch daß bei einer Anfrage aus einer Kombination von Bildbereich
und Maske die Maskenwerte nicht unbedingt innerhalb dieses Bereichs erfüllt sein
müssen.

• Falls bei der Verarbeitung von Stereobildern nicht die Klassen chkStereo* verwen-
det werden, enthält die Ergebnismenge von Konturen immer die Konturen aus
beiden Bildhälften.

8.6 Visualisierung von Konturen
Um die Arbeit mit Konturen zu erleichtern besteht die Möglichkeit diese in einem
Fenster zu visualisieren. Dazu gibt es die beiden Klassen eltecBaseX und Xcontours ,
wobei Xcontours eine Unterklasse von eltecBaseX ist. Die Klasse eltecBaseX hat die
in Prog. 8.10 beschriebene Klassenschnittstelle.

Bei der Instanziierung müssen die Breite und Höhe des Fensters sowie der Titel als
Parameter übergeben werden. Optional können die Kommandozeilenoptionen der
Anwendung ebenfalls übergeben werden, die dann die X spezifische Optionen her-
ausfiltert und verwendet. Die Klassenschnittstelle hat folgendes Aussehen:

1. Die Methode Rename() zur Neubenennung des Fensters und

2. Resize() zur Veränderung der Fenstergröße, die damit eine nachträgliche Ände-
rung der bei der Instanziierung festgelegten Parameter ermöglicht.

3. Die Methoden DrawLine() zum Zeichnen einer Linie und

8.6 Visualisierung von Konturen 111

4. DrawRectangle() zum Zeichnen eines Rechtecks können Ausgaben in einer be-
stimmten Farbe machen. Dazu sind die Farben WHITE, BLACK, RED, GREEN und BLUE

als Konstanten deklariert. Es können mit dieser Methode nur Rechtecke einge-
zeichnet werden, die zwei horizontale Seiten haben (siehe Abb. 8.7).

5. Da in dieser Implementierung mit Pufferung gearbeitet wird, gibt es die Methode
ClearBitmap(), die die zur Pufferung dienende Bitmap mit einer bestimmten Hin-
tergrundfarbe füllt um den Inhalt des Fensters zu löschen.

6. Die Methode ShowBitmap() dient schließlich zum Kopieren der Bitmap in das ei-
gentliche Fenster. Alle Ausgaben die durch die vorangegangenen drei Methoden
gemacht wurden sind gepuffert, d.h. bevor eine Ausgabe im Fenster erscheint
muß diese Methode aufgerufen werden.

Programm 8.10: Die öffentliche Schnittstelle der KlasseeltecBaseX .

1 class eltecBaseX:public eltecBase
2 {
3 public:
4 // Enumerations:
5 const enum colour { WHITE = 0,
6 BLACK = 1,
7 RED = 2,
8 GREEN = 3,
9 BLUE = 4 };

10
11 // Constructors:
12 eltecBaseX(const u_int w,
13 const u_int h,
14 const char title[],
15 int *argc = NULL,
16 char **argv = NULL);
17
18 // Destructor:
19 ~eltecBaseX(void);
20
21 // Methods:
22 void Rename(const char title[]);
23 void Resize(const u_int w,
24 const u_int h);
25
26 void DrawLine(const u_short x0,
27 const u_short y0,
28 const u_short x1,
29 const u_short y1,
30 const colour c = BLACK);
31 void DrawRectangle(const u_short x0,
32 const u_short y0,
33 const u_short x1,
34 const u_short y1,
35 const colour c = BLACK);
36 void ClearBitmap(const colour c = WHITE);
37 void ShowBitmap(void);
38 static void workOnEvents(const int doreturn = true);
39 };

112 8. ELTEC-VectEx

7. Mit workOnEvents() werden die durch die vorangegangenen Methoden erzeugten
X-Events abgearbeitet und damit das Ergebnis erst sichtbar. Als Parameter kann
übergeben werden, ob der Kontrollfluß nach dem Abarbeiten der X-Events wieder
an das Anwendungsprogramm zurückgegeben werden soll oder nicht.

Zur Ausgabe von Konturen existiert die in Prog. 8.11 beschriebene Klasse Xcontours .

Der Konstruktor ist identisch mit dem schon aus der Klasse eltecBaseX bekannten
Konstruktor. Neu hinzugekommen sind die folgenden Methoden:

1. Mit DrawParallelogramm() kann ein Parallelogramm mit zwei horizontalen Seiten
in das Fenster eingezeichnet werden (siehe Abb. 8.7).

2. Die Methode DrawCross() zeichnet an den übergebenen Punktkoordinaten ein
Kreuz, das aus Linien der übergebenen Länge geformt wird.

3. Die beiden Methoden DrawContour() geben eine komplette Kontur im Fenster aus,
indem sie die einzelnen Konturpunkte mit Linien verbinden.

4. Mit der Methode DrawContourList() können schließlich auch Listen von Konturen
in einem einzigen Aufruf in ein Fenster gezeichnet werden.

Es können prinzipiell beliebig viele Instanzen der beiden vorgestellten Klassen und
damit Fenster von einer Anwendung erzeugt werden. Die Ausführung der Anwen-
dung wird abgebrochen sobald ein Tastatur-Event in einem der Fenster erscheint.

Programm 8.11: Die öffentliche Schnittstelle der KlasseXcontours .

1 class Xcontours:public eltecBaseX
2 {
3 public:
4 // Constructors:
5 Xcontours(const u_int w,
6 const u_int h,
7 const char title[],
8 int *argc = NULL,
9 char **argv = NULL);

10
11 // Methods:
12 void DrawParallelogramm(const u_short x0,
13 const u_short y0,
14 const u_short x1,
15 const u_short y1,
16 const short dx,
17 const colour c = BLACK);
18 void DrawCross(const u_short x,
19 const u_short y,
20 const u_short d,
21 const colour c = BLACK);
22 void DrawContour(ctrPointDLList& ctr,
23 const colour c = BLACK);
24 void DrawContour(ctrAttrib *ctr,
25 const colour c = BLACK);
26 void DrawContourList(ctrAttribDLList& list,
27 const colour c = BLACK);
28 };

8.7 Die Bibliothek libElt_boards.a 113

8.7 Die Bibliothek libElt_boards.a
Zur vollständigen Schnittstelle der Bibliothek libElt_boards.a gehören folgende
Dateien und Klassen:

• eltbase.H

Klasse eltecBase mit globalen Variablen und Methoden.

• sbs2vme.H

Klasse vmeDevice zur allgemeinen Ansteuerung des VME-Buses.

Klasse sbs2vmeCfg zur Konfiguration des SBus VME-Bus Adapters.

• ipp.H

Klasse eltecIpp zur Konfiguration der IPP Karte.

• thin.H

Klasse eltecThin zur Konfiguration des THIN Karte.

• vect.H

Klasse eltecVect zur Konfiguration des VECT Karte.

• eltec.H

Klasse eltecSystem , die je eine Instanz der Klassen eltecIpp , eltecThin und
eltecVect zur konsistenten Konfiguration des Gesamtsystems beinhaltet.

Diese Bibliothek ist nur für die Architekturen SUN4SOL2 und SUNMP vorhanden, da
sie wie bereits erwähnt nur Software zur direkten Hardwareansteuerung beinhaltet
und die Hardware nur über robosun1 verfügbar ist.

8.8 Die Bibliothek libElt_misc.a
Zur vollständigen Schnittstelle der Bibliothek libElt_misc.a gehören folgende Dateien
und Klassen:

• eltbase.H

Klasse eltecBase mit globalen Variablen und Methoden.

• contours.H

Klassen ctrPoint , ctrPointDLList , ctrAttrib , ctrAttribDLList .

• database.H

Klasse eltecBaseDatabase , eltecDatabase , eltecSubDatabase mit Variablen
und Methoden aller Datenbanken.

Klassen db[Linear|Raster|LinRast][_[Stereo][Join]] .

• limitreq.H

Klasse eltecBaseLimit mit Methoden aller Attributsspezifikationen.

Klassen chk(Not|([Stereo][Mask][MinLen|MaxLen|Length])) .

114 8. ELTEC-VectEx

• requestdb.H

Klasse eltecBaseRequest , eltecLinearRequest , eltecRasterRequest mit Va-
riablen und Methoden aller Bereichsspezifikationen

Klassen req[Total|Rectangle|Parallelogramm] .

• Xcontours.H

Klassen eltecBaseX , Xcontours .

• convolver.H

Klassen eltecConvolver , eltecConvolverMatrix .

Diese Bibliothek ist zur Zeit für die Architekturen HPPA, MASPAR (Front-End),
SUN4, SUN4SOL2 und SUNMP. Für LINUX und SGI5 wird die Software verfügbar
sobald neuere Versionen von gcc und libg++ installiert sind.

8.9 Beispiele

8.9.1 Hardware, Datenbank und Visualisierung in einem Programm

Das erste Beispiel (siehe Prog. 8.12) soll zeigen wie die Hardware initialisiert, eine
Datenbank instanziiert und verschiedene einfache Anfragen gemacht werden können
um anschließend die verschiedenen Ergebnisse in Fenstern zu visualisieren.

Die notwendigen Header-Dateien zur Nutzung der vorhandenen Möglichkeiten sind,
wie auch in Prog. 8.12 zu sehen, folgendermaßen:

• Hardware: Elt/eltec.H

• Datenbanken: Elt/database.H

• Visualisierung: Elt/Xcontours.H

Die Hardware wird hier nur mit den Default-Werten initialisiert (siehe Prog. 8.12,
Zeile 13). Es können natürlich jederzeit andere Werte bei der Instanziierung verwen-
det werden oder auch nachträglich verändert werden.

Als Datenbanktyp wird hier die Klasse dbLinRast_Join verwendet, d.h. es existiert
ein Linear- und ein Raster-Index. Zusätzliche werden Nachbarkonturen durch die
Vorverarbeitung miteinander verbunden (siehe Prog. 8.12, Zeile 16). Die verwendeten
Parameter für die Skalierung des Raster-Index dürften für die meisten Anwendungen
ausreichend sein.

Es werden zwei rechteckige Bereichsanfragen generiert, die die obere bzw. untere
Hälfte des Bildes beinhalten und eine Anfrage über den gesamten Bildbereich (siehe
Prog. 8.12, Zeile 19ff).

Als weitere Auswahlkriterien wird der Wertebereich der gültigen Attribute einge-
schränkt durch Instanzen der Klassen chkMask und chkMaskMinLen (siehe Prog. 8.12,
Zeile 24f). Für die Auswahl nur vertikaler Konturen sind hier beispielsweise in der
Bitmaske die Bitnummern 7, 8, 23 und 24 gesetzt.

Die Fenster zur Visualisierung werden auf einmal instanziiert und anschließend je
nach Inhalt umbenannt (siehe Prog. 8.12, Zeile 28).

8.9 Beispiele 115

Programm 8.12: Anwendung von Hardware, Datenbanken und Visualisierung.

1 #include <iostream.h>
2 #include <Elt/eltec.H>
3 #include <Elt/database.H>
4 #include <Elt/Xcontours.H>
5
6 int main(int argc, char *argv[])
7 {
8 // image - parameters
9 int w = eltecSystem::DFLT_WIDTH;

10 int h = eltecSystem::DFLT_HEIGHT;
11
12 // initialisation of hardware
13 eltecSystem Eltec;
14
15 // contour database
16 dbLinRast_Join CtrDB(w, h, 4, 3);
17
18 // specify areas
19 reqTotal total;
20 reqRectangle upper(0, 0, w, h/2);
21 reqRectangle lower(0, h/2, w, h);
22
23 // specify attributes
24 chkMask vertical(0x01800180), horizontal(0x80018001);
25 chkMaskMinLen light2dark_min20(0xffff0000, 20);
26
27 // open windows
28 Xcontours *win = new Xcontours[4](w, h, „Upper vertical“);
29 win[1].Rename(„Lower vertical“);
30 win[2].Rename(„Upper light-dark“);
31 win[3].Rename(„Lower horizontal“);
32
33 // mainloop
34 while (1)
35 {
36 if (CtrDB.getFrame(Eltec) >= 0) // read contours from HW
37 {
38 register ctrAttribDLList allCtr, Ctr[4];
39
40 // build indices
41 CtrDB.build();
42
43 // get all available contours
44 CtrDB.request(allCtr, total);
45
46 // some combined requests
47 CtrDB.request(Ctr[0], upper, vertical);
48 CtrDB.request(Ctr[1], lower, vertical);
49 CtrDB.request(Ctr[2], upper, light2dark_min20);
50 CtrDB.request(Ctr[3], lower, horizontal);
51

116 8. ELTEC-VectEx

In der Hauptschleife werden immer zuerst die neuen Konturen eingelesen (siehe
Prog. 8.12, Zeile 36) und geprüft ob dabei ein Fehler in Form eines Konturpufferüber-
laufs aufgetreten ist. Falls alles in Ordnung ist wird die Vorverarbeitung angestoßen
(siehe Prog. 8.12, Zeile 41), werden Anfragen gestellt (siehe Prog. 8.12, Zeile 44ff) und
deren Ergebnisse visualisiert (siehe Prog. 8.12, Zeile 53ff).

8.9.2 Aufnahme und Speicherung einer Bildsequenz auf Datei

Da die vorhandene Hardware nur für genau einen Benutzer gleichzeitig verwendbar
ist, kann es von Vorteil sein eine Bildsequenz von Rohdaten aufzunehmen um unab-
hängig von der Hardware arbeiten zu können. Wie eine solche Aufnahme program-
miert werden kann ist in Prog. 8.13 zu sehen. Aufgrund der langsamen Dateiausgabe
muß, um fortlaufende Frames zu bekommen, zuerst ein Feld von Konturdatenbanken
allokiert werden (siehe Prog. 8.13, Zeile 15). Dann wird das Feld vollständig mit
Daten gefüllt (siehe Prog. 8.13, Zeile 18ff), bevor die Daten in Dateien geschrieben
werden (siehe Prog. 8.13, Zeile 27ff). Diese Programm schreibt die Frames für die Zeit-
dauer einer Sekunde in die Dateien movie.XXX.ctr im aktuellen Arbeitsverzeichnis,
wobei XXX die Frame-Nummer ist. Falls in Prog. 8.13, Zeile 29 als zweiter Parameter
eine 2 übergeben würde, hießen die Dateien movie.XX.ctr , d.h. durch diesen Parame-
ter wird die Anzahl der Stellen für die Frame-Nummer bestimmt.

8.9.3 Einlesen einer Bildsequenz von Datei

Die durch Prog. 8.13 erzeugten Dateien werden durch Prog. 8.14 eingelesen und in
einem Fenster visualisiert. Da hier das Einlesen der Dateien nicht zeitkritisch ist wird
kein Feld von Konturdatenbanken benötigt, sondern es werden nacheinander die Fra-
mes von Datei eingelesen (siehe Prog. 8.14, Zeile 23), die Vorverarbeitung durchge-
führt (siehe Prog. 8.14, Zeile 24) und anschließend die durch eine Datenbankanfrage
(siehe Prog. 8.14, Zeile 28) erhaltenen Konturen visualisiert (siehe Prog. 8.14, Zeile
31ff). In Prog. 8.14, Zeile 23 wird keine Frame-Nummer als Parameter übergeben, da
diese Methode intern, bei 0 beginnend, die Frames zählt und den korrekten Nachfol-
geframe von Datei lädt. Falls die explizite Angabe der Frame-Nummer notwendig
sein sollte, muß auf die Methode read() zurückgegriffen werden. In Prog. 8.14 müßte
dann die Zeile 23 durch die in Prog. 8.15: abgebildete Zeile ersetzt werden.

52 // draw contours into windows
53 for (int i = 0; i < 4; i++)
54 {
55 win[i].ClearBitmap();
56 win[i].DrawContourList(allCtr);
57 win[i].DrawContourList(Ctr[i], eltecBaseX::GREEN);
58 win[i].ShowBitmap();
59 }
60 Xcontours::workOnEvents();
61 }
62 else
63 cerr << „Contour Buffer Overflow“ << endl;
64 }
65 }

Programm 8.12: Anwendung von Hardware, Datenbanken und Visualisierung.

8.9 Beispiele 117

8.9.4 Suche nach antiparallelen Konturen

Um etwa eine weiße Linie auf dunklem Hintergrund zu erkennen müssen antiparal-
lele Konturen gefunden werden. Diese weiße Linie besteht im Idealfall aus zwei par-
allelen Konturen. Eine Kontur wird dabei durch einen dunkel-hell Kontrast erzeugt
und die andere durch einen hell-dunkel Kontrast. Damit haben die beiden Konturen
eine entgegengesetzte Richtung (siehe Kapitel 8.2), d.h. sie sind antiparallel [6]. Mit
der in Prog. 8.16 abgebildeten Funktion können zu einer bekannten Kontur, die durch
einen dunkel-hell Kontrast erzeugt wurde, antiparallele Konturen gesucht werden.

Dazu werden immer für ein Paar aufeinanderfolgender Konturpunkte der übergebe-
nen Kontur parallelogrammförmige Bereichsanfragen generiert (siehe Prog. 8.16,
Zeile 35). Zur Generierung der Bereichsanfrage werden die Koordinaten der beteilig-
ten Konturpunkte verwendet und als Breite des Parallelogramms ein der Anwendung
und der Breite der Linie angemessener Wert bestimmt. Die Menge möglicher Kandi-
daten wird durch die Angabe einer Richtungsmaske für diesen Bereich weiter einge-

Programm 8.13: Aufnahme und Speicherung einer Bildsequenz auf Datei.

1 #include <iostream.h>
2 #include <Elt/eltec.H>
3 #include <Elt/database.H>
4
5 int main(int argc, char *argv[])
6 {
7 // number of frames to record
8 int maxframes = 25;
9 int frame;

10
11 // initialisation of hardware
12 eltecSystem Eltec;
13
14 // contour database
15 dbLinear *CtrDB = new dbLinear[maxframes];
16
17 // read contours from HW
18 for (frame = 0; frame < maxframes; frame++)
19 {
20 CtrDB[frame].getFrame(Eltec);
21 cout << „r“;
22 cout.flush();
23 }
24 cout << endl;
25
26 // write to files
27 for (frame = 0; frame < maxframes; frame++)
28 {
29 CtrDB[frame].write(„movie“, 3);
30 cout << „w“;
31 cout.flush();
32 }
33 cout << endl;
34 }

118 8. ELTEC-VectEx

schränkt. Zur Bestimmung der Richtungsmaske werden für jeden der beiden bei einer
einzelnen Anfrage beteiligten Konturpunkte eine Winkelmaske bestimmt, indem die
im Konturpunkt vorhandene Richtung in der Bitmaske gesetzt wird (siehe Prog. 8.16,
Zeile 28). Als Toleranzbereich wird jeweils das linke und rechte Bit daneben ebenfalls
gesetzt (siehe Prog. 8.16, Zeile 29). Schließlich wird die Maske um 1800 verschoben
um wirklich antiparallel Konturen zu finden (siehe Prog. 8.16, Zeile 30).

Programm 8.14: Einlesen einer Bildsequenz von Datei.

1 #include <iostream.h>
2 #include <Elt/eltec.H>
3 #include <Elt/database.H>
4 #include <Elt/Xcontours.H>
5
6 int main(int argc, char *argv[])
7 {
8 // number of frames to record
9 int maxframes = 25;

10 int frame;
11
12 // contour database
13 dbLinear CtrDB;
14
15 // visualisation
16 Xcontours win(eltecSystem::DFLT_WIDTH,
17 eltecSystem::DFLT_HEIGHT, „movie“);
18
19 // read contours from files and visualize
20 for (frame = 0; frame < maxframes; frame++)
21 {
22 // read contours from file
23 CtrDB.getFrame(„movie“, 3);
24 CtrDB.build();
25
26 // get contours
27 ctrAttribDLList all;
28 CtrDB.request(all, reqTotal());
29
30 // visualize contours
31 win.ClearBitmap();
32 win.DrawContourList(all);
33 win.ShowBitmap();
34 Xcontours::workOnEvents();
35
36 cout << „.“;
37 cout.flush();
38 }
39 cout << endl;
40 }

Programm 8.15: Verwendung der Methoderead() beim Einlesen von Datei.

1 CtrDB.read(„movie“, 3, frame);

8.9 Beispiele 119

Da im Idealfall für jeden Teilabschnitt dieselbe antiparallele Kontur gefunden wird
verwendet diese Funktion die Möglichkeit Anfragen zu gruppieren, um Duplikate in
der Ergebnismenge auszuschließen (siehe Prog. 8.16, Zeile 19, 37f).

Zu beachten ist, daß diese Funktion nur mögliche Kandidaten von antiparallelen
Konturen liefert. Probleme gibt es sobald mehrere Kandidaten auftreten, denn wel-
ches ist die richtige Kontur, oder sind alle richtig weil die Kontur zerrissen ist?

Programm 8.16: Suche nach antiparallelen Konturen.

1 ctrAttribDLList searchAntiParallel(register ctrAttrib *ctr)
2 {
3 ctrAttribDLList result;
4 ctrPointDLList *actPointList = &(ctr->pts);
5
6 register u_int AngleMask1, AngleMask2;
7 register short x1, y1, d1, x2, y2, d2;
8
9 Pix i = actPointList->first();

10
11 // mask of first point, add tolerance, make antiparallel mask
12 AngleMask2 = (*actPointList)(i)->angle2mask();
13 AngleMask2 |= (AngleMask2 << 1) | (AngleMask2 >> 1);
14 AngleMask2 = (AngleMask2 << 16) | (AngleMask2 >> 16);
15 x2 = (*actPointList)(i)->x;
16 y2 = (*actPointList)(i)->y;
17 d2 = 50;
18
19 register bool firstRequest = true;
20 for (actPointList->next(i); i != NULL; actPointList->next(i))
21 {
22 AngleMask1 = AngleMask2;
23 x1 = x2;
24 y1 = y2;
25 d1 = d2;
26
27 // mask of next point, add tolerance, make antiparallel mask
28 AngleMask2 = (*actPointList)(i)->angle2mask();
29 AngleMask2 |= (AngleMask2 << 1) | (AngleMask2 >> 1);
30 AngleMask2 = (AngleMask2 << 16) | (AngleMask2 >> 16);
31 x2 = (*actPointList)(i)->x;
32 y2 = (*actPointList)(i)->y;
33 d2 = 50;
34 CtrDB.request(result,
35 reqParallelogramm(x1, y1, x2, y2, max(d1, d2)),
36 chkMask(AngleMask1 | AngleMask2),
37 !firstRequest);
38 firstRequest = false;
39 }
40 return result;
41 }

120 8. ELTEC-VectEx

8.10 Messungen

Abbildung 8.9: Zeitmessung ohne Vorverarbeitungsschritte.

Abbildung 8.10: Zeitmessung mit Verbindung von Nachbarkonturen.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 500 1000 1500 2000 2500 3000 3500

Z
ei

t z
um

 D
at

en
ba

nk
au

fb
au

 [s
]

Anzahl der Konturpunkte

Linear-Index
Raster-Index 4:3
Raster-Index 3:2
Raster-Index 2:1
Raster-Index 1:0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 500 1000 1500 2000 2500 3000 3500

Z
ei

t z
um

 D
at

en
ba

nk
au

fb
au

 [s
]

Anzahl der Konturpunkte

Linear-Index
Raster-Index 4:3
Raster-Index 3:2
Raster-Index 2:1
Raster-Index 1:0

8.11 Programme 121

Um ein Gefühl für die Einstellung von Parametern zu bekommen sind in Abb. 8.9
und Abb. 8.10 Schaubilder aufgetragen, in denen die Zeit zum Aufbau des jeweiligen
Index über der Anzahl der vektorisierten Konturpunkte aufgetragen ist. Die Messun-
gen wurden ausschließlich auf robosun1 durchgeführt.

Die Meßergebnisse der beiden Klassen dbLinear und dbRaster sind in Abb. 8.9 abge-
bildet, wobei für alle Messungen dieselbe auf Datei gespeicherte Bildsequenz verwen-
det wurde. Für dbRaster wurden die Skalierungsfaktoren verschieden gewählt um
eine Vergleichsmöglichkeit zwischen einigen möglichen Kombinationen zu erhalten.
Die Skalierung ist aus der Kurvenbezeichnung abzulesen, wobei eine Angabe von 4:3
für eine Skalierung in x-Richtung von 24 = 16 und in y-Richtung 23 = 8 steht.

In Abb. 8.10 wurde wieder unter Verwendung derselben Bildsequenz eine Messung
über das Zeitverhalten durchgeführt, wenn die Verbindung von Nachbarkonturen als
Vorverarbeitungsschritt hinzukommt.

Wie zu erwarten war ist der Aufbau des Linear-Index etwa doppelt so schnell wie der
des Raster-Index. Bei der Verwendung einer Datenbank, in der beide Indizes verwen-
det werden, müssen die Zeiten aus Abb. 8.9 in etwa addiert werden. Dies gilt aller-
dings nicht für die Zeiten aus Abb. 8.10, da sonst die Zeiten für das Zusammenfügen
von Nachbarkonturen zweifach berechnet würde.

8.11 Programme
Es existieren einige Programme die unter anderem die einzelnen Karten separat kon-
figurieren können, bzw. Bildsequenzen speichern oder laden und anzeigen können.

Ausschließlich für die Architekturen SUN4SOL2 und SUNMP gibt es folgende Pro-
gramme:

• Eltipp

Konfiguration einiger Parameter der IPP-Karte. Ermöglicht außerdem das Abspei-
chern eines Grauwertbildes im pgm-Format.

• Eltthin

Konfiguration der Parameter der THIN-Karte.

• Eltvect

Konfiguration der Parameter der VECT-Karte.

• Eltmain

Konfiguration des Gesamtsystems mit Visualisierung der Konturen und der Mög-
lichkeit Bildsequenzen abzuspeichern.

• Eltfollow

Anwendung der ELTEC-Hardware zur Linienverfolgung. Die Roboter können
über Kommandozeilen-Option direkt angesteuert werden. Das Programm kann
auch nur auf einer Bildsequenz arbeiten, sollte dann aber aus verständlichen
Gründen ohne die Option zur Ansteuerung der Roboter aufgerufen werden.

Insbesondere können während des Ablaufs von Eltmain mit den drei zuerst genann-
ten Programmen zur Konfiguration der Hardware Parameter verändert werden -
allerdings ohne Gewähr.

122 8. ELTEC-VectEx

Für die Architekturen HPPA, MASPAR (Front-End), SUN4, SUN4SOL2 und SUNMP
gibt es das folgende Programm:

• Eltshow

Einlesen und Anzeigen einer Bildsequenz.

über den genauen Aufruf aller genannten Programme kann man sich durch einen
Aufruf mit der Option -h informieren.

8.12Verwendung der Sourcen
Teilprojektname: Elt (Eltec Interface)
aktuelle Version: Elt2-1

bei nutzenden TPR: Makefilevariable BASESON um die aktuelle Version erweitern

Library: libElt_misc.a

Beschreibung: Routinen zur Verarbeitung und Visualisierung von Konturen
Architekturen: SUN4SOL2 SUNMP

Includes: #include "Elt/eltec.H"

Linkoptionen: -lElt_misc.a -lXt -lX11

Library: libElt_boards.a

Beschreibung: Routinen zum Ansprechen der Eltec Hardware
Architekturen: HPPA MASPAR(Front-End) SUN4 SUN4SOL2 SUNMP

Includes: #include "Elt/contours.H"
#include "Elt/Xcontours.H"

Linkoptionen: -lElt_boards -lm -lElt_misc.a

Programme: Eltipp

Beschreibung: Konfiguration IPP-Karte, Abspeichern Grauwertbilder.
Architekturen: SUN4SOL2 SUNMP

Programme: Eltthin

Beschreibung: Konfiguration THIN-Karte.
Architekturen: SUN4SOL2 SUNMP

Programme: Eltvect

Beschreibung: Konfiguration VECT-Karte.
Architekturen: SUN4SOL2 SUNMP

Programme: Eltmain

Beschreibung: Konfiguration Gesamtsystem, Abspeichern Konturbilder und
Visualisierung. Beendet wird es mit ctrl-c oder Tastendruck in
eines der Fenster.

Architekturen: SUN4SOL2 SUNMP

Programme: Eltfollow

Beschreibung: Linienverfolgungs-Demo. Beendet wird es mit ctrl-c.
Architekturen: SUN4SOL2 SUNMP

8.13 Literatur 123

Programme: Eltshow

Beschreibung: Anzeigen von Konturbildern.
Architekturen: HPPA MASPAR(Front-End) SUN4 SUN4SOL2 SUNMP

8.13 Literatur
[1] User‘s Manual PT-SBS915 SBus-to-VMEbus Adapter, Document No 106A0183,

Performance Technologies Inc., New York, 1993.

[2] Hardware Manual Image Processing Port, Rev. 2a,
Eltec Elektronik, Mainz, 1991.

[3] Hardware Manual THINEDGE-Processor for Contour Matching, Rev. 1a,
ELTEC Elektronik GmbH, Mainz, 1991.

[4] Hardware Manual VECTOR-Processor for Contour Matching, Rev. 1a,
ELTEC Elektronik GmbH, Mainz, 1991.

[5] F. Faigle, Entwicklung einer Echtzeitdatenbank für Bildkonturen auf einem Transputersy-
stem zur autonomen Fahrzeugführung,
Diplomarbeit, FH Esslingen, Technische Informatik, 1992.

[6] M. Sommerau, Echtzeitinterpretation von Verkehrsszenen anhand extrahierter Konturen,
Diplomarbeit Nr. 1036, Universität Stuttgart, Fakultät Informatik, 1993.

124 8. ELTEC-VectEx

Kapitel 9

Die SUN Framegrabber
Routinen

Michael Vogt, Günter Mamier

Dieses Kapitel beschreibt die Benutzung und die Eigenschaften der SUN-Video Fra-
megrabber auf den Robosuns. Seit Dezember ‘94 existiert eine neuere Version der XIL
Libraries. Aufgrund dieser neuen Version, die auf allen drei robosuns eingespielt
wurde, ist es nun möglich, die angebotenen Funktionen wesentlich besser auszunut-
zen als bisher. Unter anderem gewinnt man die Möglichkeit, Zeitstempel anzulegen.
Die Grabzeiten haben sich in bestimmten Fällen wesentlich verbessert.
Neben dieser Dokumentation existieren eine Reihe von Manual Pages für alle SFG
spezifischen Funktionen, Variablen und Typen.

Was ist neu?

In der Version 2-1

Es besteht nun die Möglichkeit, direkt nach dem Graben eine beliebige NxMFaltung
auf dem Bild durchzuführen. Außerdem wurden ein paar kleinere Fehler behoben.

In der Version 2-0

Gegenüber der 1-3 Version der SFG Routinen hat sich der Datentyp beim Graben von
Bildern verändert. Alle Programme, die bisher SFG 1-3 verwenden und künftig SFG
2-x verwenden sollen (das ist sehr empfehlenswert), müssen leider minimal modifi-
ziert werden. Ein erneutes Übersetzen und Binden mit der neuen SFG 2-0 Bibliothek
reicht leider nicht aus.

Es wird dringend empfohlen, die Umstellung auf 2-x vorzunehmen, da die bisheri-
gen Routinen zu sich verlängernden Grabzeiten führen und unter bestimmten Vor-
aussetzungen keine aktuellen Bilder garantieren.

126 9. Die SUN Framegrabber Routinen

9.1 Initialisierung
Bevor irgendwelche Bilddaten ausgelesen werden können muß der Framegrabber
initialisiert werden. Diese Initialisierung ist einmal für beliebig viele Grabs durchzu-
führen. Ist der Framegrabber durch einen Benutzer initialisiert, so steht er ausschließ-
lich diesem Benutzer zur Verfügung, bis er den Framegrabber explizit wieder freigibt
oder das Program terminiert (implizite Freigabe). Daraus ergibt sich die Folgerung,
daß Programme den Framegrabber schließen sollten sobald der Bildaufnahmeteil
durchlaufen ist. Es gab bereits öfters Beschwerden über Programme die dies unterlie-
ßen.

Die Initialisierung erfolgt mit dem Befehl:

int SFG_init(scalefact, port, farbe, &breite, &höhe);

Die Parameter bedeuten:

 int scalefact Skalierungsfaktor, der die Größe der zu grabenden Bilder angibt.
Der Skalierungsfaktor gibt direkt an, das wievielte Pixel in
einer Zeile bzw., die wievielte Zeile digitalisiert werden soll. Es
ergibt sich bei PAL Format (unser Format):

1 == 768x576 (Originalbild, PAL Format)
2 == 384x288
3 == 256x192
4 == 192x144
5 == 153x115.

Hinweis: Zeilenverschachtelte Stereobilder können nur mit un-
geraden Faktoren gegrabt werden!

 int port Nummer des Eingangsports (0, 1 oder 2). Bei uns sind normaler-
weise immer die ports 1 belegt (über den Sony Kreuzschienen-
verteiler). Zusätzlich liegt manchmal an Port 0 ein S-Videosignal
an (zur Zeit an robosun3 der Farb-Stereo-Mixer)

 int farbe SFG_GRAY == Graben in Graustufen,
SFG_COLOR == Graben in 24 Bit Farbe,
SFG_DITHER == Graben von geditherten Farbbildern
(SFG_DITHER ist nur zur Darstellung und nicht für die Bild-
verarbeitung geeignet).

int breite Breite des zu grabenden Bildes (wird zurückgeliefert).

int höhe Höhe des zu grabenden Bildes (wird zurückgeliefert).

Die Funktion liefert im Erfolgsfall den Wert 0 zurück, im Fehlerfall einen negativen
Fehlercode: 0 bei Erfolg; -1 Fehler beim Öffnen der XIL library; -2 Fehler beim Öffnen
des Ports bzw. Port belegt; -3 Ungültige Argumente.

9.2 Graben von Bildern 127

9.2 Graben von Bildern
Zur Zeit stehen drei verschieden Routinen zum Graben von Bildern zur Verfügung.
Sie können innerhalb eines SFG_init -- SFG_close Paares beliebig oft und in beliebiger
Kombination aufgerufen werden. Welche zu benutzen ist, ist im jeweiligen Fall auf
Grund der gegebenen Bedingungen zu entscheiden. Alle drei Funktionen liefern das
Bild in der Struktur SFG_image zurück, auf die z.B. in der folgenden Art zugegriffen
werden kann:

Wesentlich eleganter kann man auf den Bildinhalt zugreifen, indem man sich eine
Zeigerstruktur aufbaut, die in den Bilddatenbereich hineinzeigt. Es ist vorgesehen,
hierfür eine eigene Bibliothek aufzubauen. Vorerst kann man sich mit etwa folgender
Konstruktion für Farbbilder behelfen:

Programm 9.1: Kopieren von Bildinformation (ineffizient)

1 SFG_image bild;
2
3 SFG_getFrameFast(&bild);
4 for(j=0;j<h;j++){
5 for(i=0;i<w;i++){
6 Blue[i][j] = (unsigned char)* bild.storage.byte.data++;
7 Green[i][j] = (unsigned char)* bild.storage.byte.data++;
8 Red[i][j] = (unsigned char)* bild.storage.byte.data++;
9 }

10 }

Programm 9.2: Einfacher Zugriff auf Bildinformation

1 typedef struct _uc_bgr {
2 unsigned char b;
3 unsigned char g;
4 unsigned char r;
5 } uc_bgr;
6
7 {
8 SFG_image bild;
9 uc_bgr **image;

10
11 /* Initialisierung */
12 SFG_init(scalefact, port, farbe, &breite, &hoehe);
13 image = (uc_bgr **) malloc(hoehe * sizeof(uc_bgr *));
14
15 while (verarbeitungsschleife) {
16 /* Bild graben */
17 SFG_getFrameFast(&bild);
18 for (i=0; i<hoehe; i++)
19 image[i] = ((uc_bgr *) bild.storage.byte.data)
20 + i*breite;
21
22 /* Zugriff: image[y][x].r, image[y][x].g, image[y][x].b */
23
24 }

128 9. Die SUN Framegrabber Routinen

Es kann so recht einfach auf jedes beliebige Pixel (RGB Werte) zugegriffen werden,
ohne daß hierzu das gesamte Bild umkopiert werden muß, und ohne bei jedem
Zugriff eine umständliche Berechnung der richtigen Adresse durchzuführen. Als
Warnung bleibt zu erwähnen, daß sich der Bildspeicherbereich nach jedem Aufruf
von SFG_getFrame... potentiell ändern kann. Es ist daher angebracht, die obige Zei-
gerstruktur nach jedem Grab neu aufzubauen. Es kann jedoch darauf verzichtet wer-
den, wenn durch einen Vergleich der Basisadresse in bild.storage.byte.data sicherge-
stellt ist, daß sich der Bereich nicht verschoben hat.

Im Kapitel über Bildformate wird der Zugriff ebenfalls beschrieben.

Gegenüber der Version 1-3 der SFG Routinen hat sich der Aufrufparameter für die
nachfolgenden Grab-Funktionen geändert. Es handelt sich nun um eine Struktur, die
neben den XIL-Bilddaten (früherer Parameter) weitere Daten enthält. Die Struktur hat
folgenden Aufbau:

Besonders interessant sind der Zeitstempel (timestamp) und die fortlaufende Bild-
nummer. Der Zeitstempel gibt die Systemzeit in Sekunden seit dem 1.1.1970 (GMT)
an und besitzt eine Auflösung von 1 ms. Er ist aus dem Zeitstempel abgeleitet, den
der Framegrabber jedem Bild zuordnet. Leider kann dieser Zeitpunkt um bis zu 40 ms
neben dem tatsächlichen Zeitpunkt liegen. Ursache hierfür sind noch nicht behobene
Fehler der Software bzw. Hardware von SUN. Möglicherweise bringt Solaris 2.4 hier
eine Besserung.

Die fortlaufende Bildnummer (frame_no) gibt die Nummer des anliegenden Kamera-
bildes an, das seit Initialisierung des Framegrabbers registriert wurde.

ACHTUNG: Dies ist nicht eine laufende Numerierung der gegrabten Bilder sondern
eine Zuordnung zwischen gegrabtem Bild und Kamerasignal. Da das Graben von
großen Farbbildern beispielsweise länger als 40 ms dauert, erhält man hier nicht jede
mögliche Bildnummer, was auch ein Zeichen dafür ist, daß man nicht jedes einzelne
Bild graben kann. Die Bildnummer wird auch weiterhin von allen SFG_getFrame...
Routinen als Ergebnis zurückgeliefert.

9.2.1 Schnelles Graben

Die Routine

int SFG_getFrameFast(SFG_image *bild);

Programm 9.3: Definition von SFG_image

1 typedef struct
2 {
3 XilMemoryStorage storage; /* Struktur, die (unter anderem) die
4 Daten des gegrabten Bildes
5 enthaelt */
6 double timestamp; /* Grab-Zeitpunkt [s] */
7 int width; /* Breite des Bildes */
8 int height; /* Hoehe des Bildes */
9 SFG_color_mode color; /* Farbmodus des Bildes */

10 int frame_no; /* Laufende Nummer des Bildes */
11 } SFG_image;

9.2 Graben von Bildern 129

grabt Bilder möglichst schnell. Sie nutzt dabei den internen FIFO Buffer des Frame-
grabbers. Durch diesen Buffer ist aber nicht mehr gewährleistet, daß das gegrabte Bild
den aktuellen Gegebenheiten entspricht, es kann veraltet sein. Um ein relativ aktuel-
les Bild zu erhalten muß deshalb evtl. mehrmals direkt hintereinander die Routine
aufgerufen werden. Daher ist diese Routine nicht empfehlenswert, wenn für das
rufende Program ein Bild, das mehrere Millisekunden bis Minuten alt ist nicht akzep-
tabel ist.

9.2.2 Sicheres Graben

Die Routine

int SFG_getFrameSave(SFG_image *bild);

nutzt den internen Buffer des Framegrabbers nicht. Sie stellt im Gegenteil sicher, daß
das Bild immer neu gegrabt wird bevor es an das rufende Program gegeben wird.
Dies wird erreicht, indem der FIFO Buffer des Framegrabbers mit einem speziellen
Befehl geleert wird. Ein neues Bild kann erst dann wieder gegrabt werden, sobald der
gesamte FIFO wieder gefüllt ist. Die Zeitdauer für diesen Vorgang hängt von der
Länge des FIFO ab (siehe auch Abschnitt über weitere Parameter) und von der fest
vorgegebenen Bildrate von 40 ms. Gegenüber SFG_getFrameFast nimmt man einen
deutlichen Zeitnachteil in Kauf.

9.2.3 Intelligentes Graben

Die Zwischenform

int SFG_getFrame(SFG_image *bild);

versucht abzuschätzen welches Bild im Buffer des Framegrabbers der aktuellen Situa-
tion entspricht und gibt dieses Bild zurück. Dieses ist aufgrund der neuen XIL-Biblio-
thek und der neuen Grab Routinen auf jeden Fall aktuell (d.h.: sicher), kann aber u.U.
länger dauern als SFG_getFrameSave. In der Regel sollte diese Funktion gegenüber
allen anderen bevorzugt werden. Die Funktionsweise ist folgende:

Beim Aufruf von SFG_getFrame wird die aktuelle Systemzeit bestimmt. Von dieser
Systemzeit wird ein tolerierbares Bildalter subtrahiert (siehe SFG_setMaxdelay) um
das älteste akzeptierbare Bild festzulegen. Anschließend werden aus dem FIFO des
Framegrabbers so lange Bilder entnommen, bis der jeweils mitgelieferte Zeitstempel
höchstens so alt ist, wie der zuvor festgelegte Zeitpunkt. Die Geschwindigkeit dieser
Routine hängt also in erster Linie davon ab, wann sie zuletzt aufgerufen wurde, d.h.
wie lange die Bearbeitung des zuvor gegrabten Bildes gedauert hat. Ist die Bearbei-
tung sehr schnell und akzeptiert man Bilder, die z.B. maximal 40 ms alt sein dürfen,
dann wird möglicherweise jedes einzelne Bild ohne Wartezeiten bearbeitet. Weitere
Einflußfaktoren sind die Tiefe des FIFO und das einstellbare akzeptierte Bildalter
(s.u.).

130 9. Die SUN Framegrabber Routinen

9.3 Weitere Funktionen
Um die Framegrabber Hardware optimal an das jeweilige Programm anzupassen,
gibt es weitere Möglichkeiten, verschiedene Parameter zu ändern.

9.3.1 Länge des FIFO

Mit der Funktion

int SFG_setMaxbuffers(int maxbuffers);

kann die maximale Größe des Bildspeicher FIFOs eingestellt werden. Diese maximale
Größe stellt eine obere Schranke dar. Die tatsächlich verwendete Anzahl hängt ab
vom verfügbaren Speicherplatz auf dem Framegrabber und von der aktuellen Größe
der zu grabenden Bilder. Die tatsächliche Größe soll von der Funktion zurückgegeben
werden, was aber leider aufgrund eines Fehlers der XIL-Bibliothek nicht korrekt pas-
siert. Hier wird regelmäßig der Wert 2 geliefert obwohl aus Versuchen hervorgegan-
gen ist, daß deutlich andere Zahlen verwendet werden: Es gelten folgende Paarun-
gen, angegeben in <Skalierungsfaktor>:<tatsächliche FIFO-Länge>, die für einen
Maximalwert von 20 Speicherplätzen bestimmt wurden:

1:2, 2:5, 3:3, 4:5, 5:8, 6:12

Der Benutzer muß sich im Zweifelsfall also selbst überlegen, wieviele Speicherplätze
bei einem vorgegebenen Maximalwert erzielt werden. Interessanterweise sind diese
Angaben unabhängig davon, ob Farb- oder Grauwertbilder gegrabt werden. Der
schlechte Wert für den Skalierungsfaktor 3 beruht offensichtlich ebenfalls auf Fehlern
der Hardware oder der XIL-Bibliothek.

Als Default-Wert ist #include <xil/xil.h>nach Initialisierung des Framegrabbers die
Maximalzahl von 2 FIFO Buffern eingestellt.

9.3.2 Maximales Bildalter

Mit der Funktion

void SFG_setMaxdelay(int maxdelay);

kann das maximale Alter von Bildern für die Grabroutine SFG_getFrame in Millise-
kunden eingestellt werden. Auf die anderen beiden Grabfunktionen hat sie keinen
Einfluß. Als Default-Wert ist nach Initialisierung des Framegrabbers ein Wert von 20
ms eingestellt. Dies beruht auf der Beobachtung, daß der Fehler der Zeitstempel der
Bilder in Ausnahmefällen bis zu 40 ms betragen kann. Für Anwender, die ganz sicher
sein wollen, sollte hier also ein Wert von 0 ms oder sogar ein negativer Wert angege-
ben werden. Für Anwendungen mit wenig Bewegung im Bild reicht eventuell ein
akzeptiertes Alter von bis zu 1000 ms aus. Dies muß jeder Anwender nach eigenem
Ermessen selbst festlegen.

9.3.3 Automatisches Überspringen

Die Funktion

void SFG_setSkip(int skip);

9.3 Weitere Funktionen 131

bewirkt, daß der Framegrabber beim Digitalisieren grundsätzlich <skip> Bilder aus-
läßt. Dies hat den Vorteil, daß z.B. bei langsamen Anwendung das Zusammenspiel
von maximal erlaubtem Alter und Anwendung der Funktion SFG_getFrame der Bild-
zugriff optimiert werden kann. Stellt man im Laufe der Anwendung anhand der Bild-
nummern fest, daß beispielsweise nur jedes vierte oder fünfte Bild geliefert wird, so
ist es evtl. sinnvoll, des <skip> Wert auf drei zu setzen, damit nicht regelmäßig der
FIFO des Framegrabbers gefüllt und unnötig leergelesen werden muß. Die Funktion
kann (muß aber nicht) nach Initialisierung des Framegrabbers beliebig oft aufgerufen
werden. Der eingestellte Wert bleibt jeweils bis zum nächsten Aufruf von
SFG_setSkip aktiviert.

9.3.4 Automatischer Weißabgleich

Mit der Funktion

void SFG_setWB(float red_scale, float blue_scale);

kann eine automatische Weißkorrektur vorgenommen werden. Der Rot- und Blauan-
teil von Farbbildern wird bei jedem Graben automatisch mit den Werten red_scale
und blue_scale multipliziert, falls sie ungleich 1.0 sind. Der hierdurch erzielte Werte-
bereich wird auf 0 bis 255 beschränkt (eventuell verliert man also relevante Informa-
tion). Soll der automatische Weißabgleich ausgeschaltet werden, so müssen die Werte
1.0 angegeben werden. Nach der Initialisierung ist der automatische Weißabgleich
nicht aktiv.

9.3.5 Automatische nxm Faltung

Durch die Funktion

void SFG_setConvolution(Xil_boolean active);

kann eine automatische NxM Faltung aller gegrabten Bilder aktiviert (active ==
TRUE) oder deaktiviert (active == FALSE) werden. Nach Initialisierung des Frame-
grabbers ist die Faltung deaktiviert. Der eingestellte Default-Faltungskern ist ein
3x3 Mittelwertfilter zur Glättung der Bilder. Wahlweise kann jedoch ein anderer Kern
verwendet werden (z.B. Laplace), der jedoch vor Aufruf der Funktion zunächst durch

void SFG_setKernel(int width, int height, int key_x, int key_y, float *data);

erzeugt werden muß.

Durch SFG_setKernel kann der Standard-Faltungskern der SFG Routinen (Tiefpaß-
Filter mit 3x3 Filtermaske) gegen einen anderen Kern ausgetauscht werden. Die Para-
meter width und height bestimmen die Größe des Filterkerns. key_x und key_y defi-
nieren das Zentrum des Kerns (0, 0 entspricht oben links). Beispielaufruf für die Defi-
nition eines Laplace Filters:

Programm 9.4: Aktivierung eines Laplace Filters

1 float laplace[9] = { 0, -1, 0,
2 -1, 4, -1,
3 0, -1, 0 };
4 SFG_setKernel(3, 3, 1, 1, laplace);.

132 9. Die SUN Framegrabber Routinen

9.4 Hilfsfunktionen
Für ein einfaches Arbeiten mit den SFG-Routinen stehen eine Reihe einfach zu bedie-
nender Hilfsfunktionen zur Verfügung:

9.4.1 Bildinformation

Die Funktion

char *SFG_image_info(SFG_image *image);

liefert für ein gegebenes Bild einen kurzen Informations-String, der z.B. zu Protokoll-
zwecken verwendet werden kann. Der Aufbau des Strings wird am besten an einem
Beispiel klar:

frame [14] color captured on robosun3 by libSFG at Wed Jan 25 1995 20:16:02.864

Die Zahl in eckigen Klammern gibt die laufende Bildnummer seit der Initialisierung
an. Der Zeitstempel am Ende hat eine Auflösung von Millisekunden. Alle Informatio-
nen werden aus der SFG_image Struktur abgeleitet, die beim Graben des Bildes
gefüllt wird.

9.4.2 Bilder kopieren

Die Funktion

SFG_image *SFG_copy_image(SFG_image *image);

dupliziert eine gültige SFG_image Bildstruktur, allokiert Speicherbereich für die Bild-
daten und kopiert effizient die Bilddaten in die neue Struktur. Sollen z.B. nacheinan-
der mehrere Bilder aufgenommen werden, die erst nachträglich bearbeitet werden
können, so ist ein Kopieren der Bilder mit dieser Funktion angebracht. Die Funktion
erhält als Parameter einen Zeiger auf die bereits vorhandene Bildstruktur und liefert
einen Zeiger auf eine neue Bildstruktur. (Anmerkung: die alte Bildstruktur bleibt wei-
terhin gültig).

9.4.3 Bilder löschen

Die Funktion

void SFG_free_image(SFG_image *image);

gibt den Speicherbereich eines Bildes, das mit SFG_copy_image dupliziert wurde,
wieder frei. Nach Aufruf dieser Funktion darf nicht mehr auf die Daten dieses Bildes
zugegriffen werden.

ACHTUNG: Es darf niemals eine Bildstruktur angegeben werden, die direkt von
einem SFG_getFrame...() Aufruf stammt, da hierdurch die interne Speicherverwal-
tung des XIL unterlaufen wird (drohendes Resultat: segmentation fault).

9.5 Schließen des Framegrabbers 133

9.4.4 Abspeichern von Bildern

Mit der Funktion

int SFG_save_pnm_file(FILE *fp, SFG_image *image);

wird ein Bild, das durch die Bildstruktur <image> übergeben wird in die Datei <fp>
abgespeichert. Abhängig vom Bildtyp wird entweder ein PGM (P5) Grauwertbild
oder ein PPM (P6) Farbbild geschrieben (siehe man pgm oder man ppm). Die Datei
<fp> muß vor Aufruf der Funktion geöffnet werden und anschließend geschlossen
werden. Die Funktion tut dies nicht selbstständig um größere Flexibilität zu gewähr-
leisten.

9.4.5 Zugriff auf geditherte Bilder

Für den Zugriff auf geditherte Farbbilder, die sich ausschließlich zur Darstellung und
nur eingeschränkt zur Bildverarbeitung eignen, wird eine spezielle Variable
(SFG_ccube) exportiert, die die Farbwerte des verwendeten Farbwürfels enthält. Die
Variable ist vom Typ SFG_rgb und erlaubt den Zugriff auf die RGB Komponenten der
Pixel. Ein beispielhafter Zugriff würde etwa folgendermaßen aussehen:

9.4.6 Zugriff auf XIL

Die SFG-Routinen basieren auf der XIL-Library von SUN. Normalerweise ist es nicht
notwendig, XIL direkt anzusprechen, da alle notwendigen Operationen über SFG-
Routinen nach oben weitergegeben werden. Soll aber doch einmal auf die XIL Ebene
zugegriffen werden, so ist ähnlich wie bei einem Dateizugriff ein Handle notwendig.
Aus diesem Grund wird die Variable SFG_xil_state vom Typ XilSystemState expor-
tiert. Nähere Doku hierzu ist in den XIL Manual Pages (z.B. man xil_open) nachzule-
sen.

9.5 Schließen des Framegrabbers
Das Aufnehmen von Bildern wird durch den Befehl

void SFG_close();

abgeschlossen. Bei Programmende wird der Framegrabber automatisch geschlossen.
Bei größeren Programmen sollte dieser Befehl aber immer explizit ausgeführt werden
sobald keine Bilder mehr benötigt werden, da sonst andere Personen evtl. unnötig

Programm 9.5: Zugriff über color cube auf geditherte Bilder

1 SFG_getFrame(&image);
2 for(j=0;j<h;j++){
3 for(i=0;i<w;i++){
4 red[i][j] = SFG_ccube[image.storage.byte.data].r;
5 green[i][j] = SFG_ccube[image.storage.byte.data].g;
6 blue[i][j] = SFG_ccube[image.storage.byte.data++].b;
7 }
8 }

134 9. Die SUN Framegrabber Routinen

lange von der Benutzung des Framegrabbers ausgeschlossen werden. Es ist hier aber
auch zu bedenken, daß ein erneuter Aufruf von SFG_init() etwa 10 Sekunden dauert.

9.6 Messungen
Um die Zugriffszeiten beurteilen zu können, wurden folgende Messungen durchge-
führt:

Tabelle 9.1 veranschaulicht die erzielbaren Grabzeiten: Die angegebenen Zeiten sind
Mittelwerte, die durch jeweils 1.000 Aufrufe der Funktionen SFG_getFrame... erzielt
wurden. Im unbelasteten Fall (frei) wurden die Aufrufe direkt hintereinandergesetzt,
ohne zwischendurch irgendwelche Berechnungen durchzuführen. Im belasteten Fall
(belastet) wurde die Maschine zwischen einzelnen Aufrufen im Mittel mit einer busy-
wait-Schleife von 500 ms Dauer (zwischen 250 ms und 750 ms, gleichverteilt) belastet.

Grab-Zeiten in [ms]
auf robosun3

Fast (normal) Save

fifo 1 fifo 2 fifo 1 fifo 2 fifo 1 fifo 2

Skalierung 2
384 x 288

s/w frei 116.7 110.6 116.5 221.2 160.1 161.1

belastet 110.3 112.3 228.0 338.9 171.3 168.8

farbe frei 139.9 93.9 140.0 181.9 200.2 200.2

belastet 99.7 99.6 239.0 279.0 179.4 174.1

Skalierung 4
192 x 144

s/w frei 40.1 40.1 40.1 40.1 80.2 80.4

belastet 26.9 27.1 66.4 83.1 83.7 83.9

farbe frei 40.2 40.1
[40.1]

40.0 40.1
(40.1)

80.2 80.2
(80.1)

belastet 23.8 23.8
(23.9)

63.6 67.6
(66.6)

80.9 80.7
(81.3)

Tabelle 9.1:

Durchschnittliche
Bildrate bei unbelasteter

Messung

fast (normal) save

fifo 1 fifo 2 fifo 1 fifo 2 fifo 1 fifo 2

Skalierung 2
384 x 288

s/w 2.9 2.8 2.9 5.5 3.9 4.0

farbe 3.5 2.3 3.5 4.5 4.9 4.9

Skalierung 4
192 x 144

s/w 1 1 1 1 2 2

farbe 1 1 1 1 2 2

Tabelle 9.2:

9.7 Verwendung der Sourcen 135

Die Werte in runden Klammern geben das Ergebnis für 20.000 Grab-Aufrufen wieder.
In eckigen Klammern ist ein Meßwert für 100.000 Aufrufe angegeben.

In Tabelle 9.2 ist die durchschnittliche Differenz der erhaltenen Bildnummern von
zwei aufeinanderfolgenden Aufrufen der SFG_getFrame... Funktionen, gemittelt über
eine Meßreihe von jeweils 1000 Aufrufen.

9.7 Verwendung der Sourcen
Teilprojektname: SFG (SUN FrameGrabber)
aktuelle Version: SFG2-1

bei nutzenden TPR: Makefilevariable BASESON um die aktuelle Version erweitern

Library: libSFG.a

Beschreibung: Routinen zum Ansprechen des SUN Framegrabbers
Architekturen: SUN4SOL2 SUNMP

Includes: #include <xil/xil.h>
#include "SFG.h"

Linkoptionen: -lxil -lX11 -lSFG

Programme: SFGmain

Beschreibung: Grabt Bilder und speichert sie als PNM Files.
Architekturen: SUN4SOL2 SUNMP

Die xil.h befinden sich in der Directory /opt/SUNWits/Graphics-sw/xil/include.
Auf die SFG include und library Dateien wird am besten durch den an anderer Stelle
beschriebenen CVS-Makefile-Mechanismus zugegriffen (vgl. Kapitel Projektverwal-
tung).

9.8 Fehlermeldungen
Kann der Framegrabber nicht geöffnet werden, weil er bereits von einem anderen
Benutzer belegt wird erscheinen am Bildschirm etwa folgende Fehlermeldung falls
die SFG Bibliothek mit gesetztem Flag -DSFG_DEBUG übersetzt wurde (standardmä-
ßig nicht der Fall!):

XilDefaultErrorFunc:
 error category: System
 error string: SUNWRtvc: could not open SUNWRtvc device
 error id: SUNWrtvc-4
 primary error detected at location ZSUWDZDSFBUFZUZZQF226 in XIL
 object info: Device busy

usw....

Error: couldn’t open SUNWrtvc device; device busy

Bei normaler Übersetzung erscheinen wesentlich kürzere Fehlermeldungen, die
durch den SFG internen Error-Handler erzeugt werden und die gleiche Kerninforma-
tion enthalten. Ein eigener Error-Handler kann mit der XIL Funktion
xil_install_error_handler() und der exportierten Variable SFG_xil_state (siehe
Abschnitt 9.4.6) eingerichtet werden.

136 9. Die SUN Framegrabber Routinen

Kapitel 10

Benutzung der SUN Fra-
megrabber mit HORUS

Susanne Gerl

HORUS ist ein Bildverarbeitungstool, welches an der Technischen Universität Mün-
chen entwickelt wurde [1], [2]. Es stellt mehr als 600 Bildverarbeitungsroutinen zur
Verfügung, die in C oder C++ Programmen eingebunden werden können. Innerhalb
von HORUS können die SUN-Framegrabber in den Robosuns geöffnet, Bilder einge-
lesen und verarbeitet werden.

Im Einzelnen stehen hierfür folgende Funktionen zur Verfügung
(In „hdialog“ unter „Bildeinzug“ zu finden):

1. query_framegrabber : „query_framegrabber“ gibt die Namen der unterstütz-
ten Framegrabber zurück.

2. open_framegrabber : „open_framegrabber“ öffnet den Framegrabber und legt
seinen Betriebsmodus fest.

3. info_framegrabber : „info_framegrabber“ liefert die möglichen Betriebsmodi
des aktuell geöffneten Framgrabbers.

4. grap_image : „grap_image“ liest ein Bild mit den in „open_framegrabber“ ange-
gebenen Eigenschaften ein.

5. close_framegrabber : „close_framegrabber“ schließt den momentan geöffne-
ten Framegrabber.

6. get_framegrabber_lut u. set_framegrabber_lut : „get_framegrabber_lut“
und „set_framegrabber_lut“ sind nicht implementiert und liefern MESS_OK zu-
rück.

138 10. Benutzung der SUN Framegrabber mit HORUS

10.1Initialisieren der Robosun-Framegrabber
Für die Initialisierung ist „open_framegrabber“ aufzurufen. Jede Robosun greift dabei
auf ihren eigenen Framegrabber zu und initialisiert den Framegrabber für ein be-
stimmtes Bildformat. Das Bildformat legt u.a. fest, welcher Bildbereich des Frame-
grabbers mit welcher Auflösung eingelesen werden soll. Falls man unterschiedliche
Bildformate einlesen will, muß man den Framegrabber mit dem ersten Format öffnen,
grabben, schließen, und mit dem nächsten Format wieder öffnen usw.

Kurzfassung:

open_framegrabber(Name,FGWidth,FGHeight,Width,Height,StartLine,
StartCol,SquarePixels,Field,Bits,SpaceOrThresh,Gain,Generic,Dev
ice,Port)

Beschreibung der Parameter:

Name = „RoboFG“

Name des zu öffnen Framegrabbers,
Eingabe-Steuer-Parameter,
Datentypen: string / atomar,
Defaultwert: „VideoPix“,
Aktion: auf „RoboFG“ setzen (Groß/Kleinschreibung beachten).

FGWidth = -1, (768), 384, 256, 192, 154

Legt die gewünschte horizontale Auflösung des Framegrabbers fest,
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,
Defaultwert: -1 (= 768 in FG-Routine),
Aktion: Auf gewünschten Wert setzen.

FGHeight = -1, (576), 288, 192, 144, 115

Legt die gewünschte vertikale Auflösung des Framegrabbers fest,
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,
Defaultwert: -1 (= 576 in FG-Routine),
Aktion: Auf gewünschten Wert setzen.

Folgende Auflösungen (FGWidth x FGHeight) sind möglich:
768 x 576, 384 x 288, 256 x 192, 192 x 144, 154 x 115.

Width = -1, (768), 0 <= Width+StartCol <= FGWidth

Legt die Breite des gewünschten Bildausschnittes fest,
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,

10.1 Initialisieren der Robosun-Framegrabber 139

Defaultwert: -1 (= 768 in FG-Routine),
Aktion: Auf gewünschten Wert setzen.

Height = -1, (576), 0 <= Height+StartLine <= FGHeight

Legt die Hohe des gewünschten Bildausschnittes fest,
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,
Defaultwert: -1 (= 576 in FG-Routine) ,
Aktion: Auf gewünschten Wert setzen.

StartLine = -1, (0), 0 <= StartLine <= FGWidth

Legt die Zeilennummer der oberen linken Ecke des gewünschten
Bildausschnittes fest (Y-Offset),
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,
Defaultwert: -1 (= 0 in FG-Routine) ,
Aktion: Auf gewünschten Wert setzen.

StartCol = -1, (0), 0 <= StartCol <= FGHeight

Legt die Spaltennummer der oberen linken Ecke des gewünschten
Bildausschnittes fest (X-Offset),
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,
Defaultwert: -1 (= 0 in FG-Routine) ,
Aktion: Auf gewünschten Wert setzen.

SquarePixels = „unchanged“, („no"),

Gibt an ob die Bildpunkte quadratisch sind oder nicht. Bisher werden
nur quadratische Bildpunkte unterstützt.
Eingabe-Steuer-Parameter,
Datentypen: string / atomar,
Defaultwert: unchanged (= „no“ in FG-Routine) ,
Aktion: KEINE. Nur Bilder ohne SquarePixel möglich.

Field = -1, (2)

Legt fest, ob ein Halbbild (0/1) oder Vollbild (2) gegrabbt werden soll.
Bisher wird nur das Grabben eines Vollbildes unterstützt.
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,
Defaultwert: -1 (= 2 in FG-Routine),
Aktion: KEINE. Nur Vollbilder möglich.

Bits = -1, (8), 24

Legt die Zahl der Bits pro Pixel fest. 8 = Grauwert oder 24 = Farbe. Bi-
näre Bilder werden nicht unterstützt.
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,
Defaultwert: -1 (= 8 in FG-Routine),
Aktion: 8 für Grauwertbild, 24 für Farbbild eingeben.

140 10. Benutzung der SUN Framegrabber mit HORUS

SpaceOrThresh = „unchanged“, („rgb“), 128

Legt bei Farbbildern den gewünschten Farbraum und bei Binärbil-
dern die Schwelle für die Binärisierung fest. Ist NICHT implementiert.
Eingabe-Steuer-Parameter,
Datentypen: string / atomar,
Defaultwert: unchanged (= „rgb“ bzw. 128 in FG-Routine)
Aktion: KEINE. Wert wird nicht verwendet.

Gain = -1.0, (1.0)

Verstärkungsfaktor für Video-Verstärker. Ist NICHT implementiert.
Eingabe-Steuer-Parameter,
Datentypen: real / atomar,
Defaultwert: 1.000000 (= 1.0 in FG-Routine),
Aktion: KEINE. Wert wird nicht verwendet.

Generic = „unchanged“, („roboframe“)

Framegrabber-spezifischer generischer Parameter. Wird für die Robo-
sun-Framegrabber nicht verwendet.
Eingabe-Steuer-Parameter,
Datentypen: string / atomar,
Defaultwert: unchanged (= „roboframe“ in FG-Routine),
Aktion: KEINE. Wert wird nicht verwendet.

Device = „unchanged“, („/dev/rtvc0“)

Gibt das Device, an das der Framegrabber angeschlossen ist, an.
Eingabe-Steuer-Parameter,
Datentypen: string / atomar,
Defaultwert: unchanged (= „/dev/rtvc0“ in FG-Routine),
Aktion: KEINE. Neue Device nur eingeben, falls die default-device
nicht mehr aktuell ist.

Port = -1, (1)

Gibt das Port des Devices, an das der Framegrabber angeschlossen ist,
an.
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,
Defaultwert: -1 (= 1 in FG-Routine),
Aktion: KEINE. Neuen Port nur eingeben, falls default-port nicht
mehr aktuell.

Anmerkungen:

a. Der Klammerinhalt gibt den Funktionswert an, dem der Default-Wert
-1 bzw. „unchanged“ entspricht

b. Neu eingegebene Funktionswerte werden beim nächsten Aufruf dem Default-
Wert zugeordnet.

10.1 Initialisieren der Robosun-Framegrabber 141

c. Für die Konsistenz der Parameterwerte ist der Aufrufer verantwortlich (Die
Funktionswerte, die dem Default-Wert zugeordneten sind, beachten!).

d. „hdialog“ öffnet defaultmässig ein 512x521 Bildfenster. Wenn man Width=768
und Height=576 setzt, erhält man einen Fehler, da diese Bildgröße die default-
Bildgröße in „hdialog“ überschreitet. Auch das Öffnen eines größeren Fensters
ändert daran nichts, da HORUS die Bildgrößen intern umrechnet.

e. Farbbilder werden von „hdialog“ nicht korrekt angezeigt.

f. Neu eingestellte Werte werden zu Default-Werten des Framegrabbers. Wird
z.B. ein Farbbild eingelesen, der FG geschlossen und wieder neu geöffnet, so
verbirgt sich unter dem Default-Wert -1 bei Bits nun 24 und nicht mehr 8 wie
bei HORUS-Start. Dies kann zu Fehlermeldungen führen, wenn man z.B. den
FG mit einer geringeren Auflösung neu öffnet und den Bildausschnitt und den
Offset auf den Default-Werten (-1) läßt. Ist dieser Bildausschnitt plus Offset zu
groß für die neue Auflösung, so wird der FG nicht geöffnet.

g. Width und Height geben die Größe des Bildausschnittes an, der von
„grab_image“ geliefert werden soll. Der Bildausschnitt plus Offset (StartLine,
StartCol) muß innerhalb des durch FGWidth und FGHeight bestimmten FG-
Bildes liegen. Es gilt also:
0 <= Width + StartCol <= FGWidth und 0 <= Height + StartLine <= FGHeight

Abbildung 10.1: Wichtige Parameter bei der Initialisierung des Framegrabbers

StartCol

StartLine

FGWidth

FGHeight

Height

Width

HORUS-BILD

142 10. Benutzung der SUN Framegrabber mit HORUS

10.1.1Verhalten

Sind die Parameterwerte korrekt und ist der gewünschte Framegrabber zum Aufruf-
zeitpunkt verfügbar, liefert open_framegrabber den Wert TRUE. Ansonsten wird eine
Exception-Behandlung durchgeführt (siehe Exception Behandlung durch
„error_text“).

Hier die C-Syntax:

ERR_TYPE open_framegrabber(Name, FGWidth, FGHeight, Width,
Height, StartLine, StartCol, SquarePixels, Field,
Bits, SpaceOrThresh, Gain, Generic, Device, Port)

10.1.2Beispiele

a. Es soll ein FG-Grauwertbild 768x576 geöffnet werden und daraus ein Bild
768x576 ab Position (0,0) (Ursprung links/oben) angewählt werden:

open_framegrabber(„RoboFG“,-1,-1,-1,-1,-1,-1,
“unchanged“,-1,-1,“unchanged“,-1.0,“unchanged“,
“unchanged“,-1)

So ein Zufall, es waren gerade die Default-Werte!

b. Ein Farbbild 768x576 soll geöffnet werden und daraus ein Ausschnitt 200x100
ab Position (40,300) angewählt werden:

open_framegrabber(„RoboFG“,-1,-1,200,100,300,40,
“unchanged“,-1,24, „unchanged“,-1.0,“unchanged“,
“unchanged“,-1)

c. Ein Farbbild 154x115 soll geöffnet werden und daraus ein Ausschnitt 50x70 ab
Position (10,20) angewählt werden:

open_framegrabber(„RoboFG“,154,115,50,70,20,10,
“unchanged“,-1,24,„unchanged“,-1.0,“unchanged“,
“unchanged“,-1)

10.2 Literatur
[1] Wolfgang Eckstein: Horus-Referenzmanual, Technische Universität München, Insti-

tut für Informatik, 1995.

[2] Wolfgang Eckstein: HORUS/C* Benutzerhandbuch, Technische Universität Mün-
chen, Institut für Informatik, 1994.

