COMROS
Basis-Dokumentation

Universitat Stuttgart, IPVR
Lehrstuhl Praktische Informatik - Bildverstehen, Prof. Levi

Zusammengestellt von Braunl
Mit Beitragen von Bayer ¢ Gerl « Mamier « Muscholl
Rausch « Sommerau « Vogt « Will

Vorwort

COMROS steht fur Cooperative Mobile Robot Systems Stuttgart. Wir beschaftigen
uns mit der Entwicklung autonomer Systeme auf der Basis der mobilen Roboter ,,Ro-
buter* von Robosoft, Bayonne, Frankreich.

Der vorliegende Text ist eine Zusammenstellung der Basis-Routinen fur die Robo-
tersteuerung und Bildverarbeitung von vier verschiedenen Rechnersystemen aus:
IBM-PC Pentium unter Linux, Sun SPARCstation, Sun mit ELTEC-VectEx VME-Sub-
system und MasPar MP-1216 (massiv parallel).

Die einzelnen Kapitel dokumentieren die Implementierungen von Basisoperatio-
nen und sollen neuen Studenten und Mitarbeitern den Einstieg in die Robotersteue-
rung an unserem Lehrstuhl erleichtern.

Als aktuelles Robotik-Informationssystem fur Mitarbeiter und Studenten dient das
www-basierte RIS, das unter folgender Adresse erreicht werden kann:

http://vasarely/roboter/ris/ris.html

bzw. als File:

file://localhost/usr/local/bv/robot/ris/ris.html

Dort finden sich aktuelle Hinweise Uber Veranstaltungen, Probleme und Ldsungen,
abgeschlossene, bzw. aktuelle Studien- und Diplomarbeiten, zu vergebende Themen,
usw. Auch auf die Protokolle der Robotik-Teilgruppen (Architektur, Bildverstehen,
Ultraschall, Neuro und Wartung) kann hier zugegriffen werden.

August 1995 Paul Levi
Thomas Braunl

Allgemeines

Abb. 0.1 zeigt den Basisaufbau des Robotiklabors. Bilder und Daten werden uber
getrennte Funkstrecken Ubertragen. Bilddaten werden Uber eine analoge uni-direktio-
nale Videofunkstrecke gesendet, wahrend die Datenverbindung digital bi-direktional
arbeitet.

Die derzeitigen Motorola Prozessor-Boards der Fahrzeuge erlauben nur eine RS-
232 Kommunikation mit 9.600 Baud. Trotzdem wurden bereits die bestehenden RS-
232 Funkmodems durch Funk-Ethernet ersetzt, da ein gleichzeitiger Betrieb mehrerer
Modempaare auf Grund von gegenseitiger Stérungen nicht moglich war. Die Umset-
zung zwischen Ethernet und RS-232 wird derzeit von speziellen Umsetzern (Com-
server) auf dem Fahrzeug Gbernommen, die Prozessorkarten sollen jedoch in absehba-
rer Zeit auf neuere Modelle mit Ethernet-Interface aufgeristet werden.

wireless data
i wireless video JO,

MasPar

Ethernet or ATM

Abbildung 0.1: Hardware-Konfiguration

Eine weitere Option, die derzeit realisiert wird, ist die Integration eines Pentium-
PCs unter Betriebssystem Linux direkt auf dem Fahrzeug, um so zwar mit geringerer
Rechenleistung, jedoch vollkommen autonom agieren zu kénnen.

Von M. Vogt wurde ein einfaches Interface unter Verwendung des Tools FORMS
erstellt, dal eine ,,Fernsteuerung“ von mobilem Roboter, bzw. Greifarm/Stereokopf
ermaoglicht. Dieses Tool heil3t xremroc , als Abklrzung fur x-remote-robot-control.

Eine erste Version findet sich unter

lust/local/bv/robot/bin/fSUNMP/XRRCO-1/xremroc

Beim Aufruf ist als einziger Parameter einer der drei Roboternamen anzugeben.
Dabei wird die Datei /usr/local/bv/robot/etc/system.Rolrc gelesen, die die Zuord-
nung zwischen Fahrzeugen, Comservern und ttys definiert. Sollte im eigenen HOME
Verzeichnis eine Datei .Rolrc existieren, so werden diese Daten von dort gelesen.

Abbildung 0.2: xremroc

Ein remote-Aufruf auBerhalb der Workstation-Konsolen der Roboter (robosunl-3)
ist mdglich, jedoch ist hierbei aus Sicherheitsgriinden die Steuerung eines Fahrzeugs
unterbunden. Fur die Fahrt stehen acht Pfeiltasten zur Verfigung, die wahlweise
gerade, gebogen oder auf der Stelle gedrehte Bewegungen ausfuhren. Die Schieber im
unteren Bereich des Fensters definieren die Bewegung genauer.

Beim Greifarm lassen sich neben der direkten Ansteuerung der Achsen auch
bestimmte Armpositionen speichern und wieder abrufen. Da keine Kollisionsvermei-
dung stattfindet, muf3 hier besonders vorsichtig agiert werden! Die Umrechnung von
kartesischen Koordinaten und die Bedienung der Greifhand sind derzeit noch nicht
implementiert.

Horst Stolz entwickelte in seiner Diplomarbeit unter Leitung von Thomas Braunl
das Roboter-Simulationssystem MOBS (Abb. 0.3). Das System ermdglicht die Erstel-
lung einer 3D-Umgebung und die gleichzeitige Simulation beliebig vieler Roboter.
Simuliert werden die Grundbefehle der ,,Robuter, wobei die gleichen ASCII-Steuer-
sequenzen Ubertragen werden. Roboter-Steuerungsprogramme kdénnen ohne erneute
Ubersetzung sowohl fiir die Steuerung realer Roboter wir auch fiir die Steuerung
eines Roboters in der Simulation eingesetzt werden. Simuliert werden die Ultraschall-

sensoren, Odometrie sowie das Kamerabild aus dem Blickwinkel eines Roboters
(Gber die Inventor-Bibliothek der SGI).

Abbildung 0.3: Roboter-Simulator

Inhaltsverzeichnis

1. Projektverwaltung... 11
1.1 Die Verzeichnisstruktur des Projektes 12
1.1.1 Der Verwaltungsbereich. 13
1.1.2 Der Veroffentlichungsbereich............................ 16
1.1.3 Sonstige Verzeichnisse............ ... i 17

1.2 Die Verzeichnisstruktur der privaten Sicht auf ein Teilprojektis
1.2.1 Generische Makefiles. il 19

1.3 Die Projektverwaltung inder Praxis......................... 22
1.3.1 EinrichtenderUmgebung............, 22
1.3.2 Erzeugen eines neuen Teilprojektes. 24
1.3.3 Verwenden schon vorhandener Teilprojekte 25
1.3.4 Anpassen der generischen Makefiles..................... 26
1.35 Benutzenvon SNiFF+ 27
1.3.6 Installieren von getesteter und stabiler Software............ 29
1.3.7 Aktualisieren eines Teilprojekts 30

1.4 CVS-Repositories fur weitere Projekte...................... 34
1.4.1 EinrichtenderUmgebung............... 35
1.4.2 Einrichten des Verwaltungsbereichs...................... 36
1.4.3 Einrichten des Veroffentlichungsbereichs. 36
1.4.4 Zugriffsberechtigung. 36

1.5 Richtlinien flr Multi-Entwicklerinnen-Teilprojekte 38
2. Verwendungvon CVS..................................... a1
2.1 Was ist CVS . .. 41
2.2 Voraussetzungen fur die Nutzungvon CVS................. 42
2.3 Grundlegende Kommandosvon CVS....................... 43
2.3.1 Erzeugeneiner privaten Sicht. 43
2.3.2 Hinzufigenvon Dateien. 44
2.3.3 LOschenvonDateien.............ccoiiiiiiinnnn. 44
2.3.4 Uberprifen der privaten Sicht. 44
2.3.5 Private Sicht auf den neusten Stand bringen. 45

2.4

2.3.6 Eigene Anderungen der Allgemeinheit zur Verfiigung stellen. 46
2.3.7 Eigene Anderungen aufgeben bzw. Bearbeitung abbrechen . 46

2.3.8 Anderungsgeschichte ansehen 46
239 emacsinterfacezuCVS i 46
Einrichten eines neuen Roboterteilprojektes................ 47
2.4.1 Generisches Projekterzeugen.coooiivnn.. 48
2.4.2 Anpassung an das neue Projekt 48
2.4.3 Eintragung in die Moduldatenbank. 49

2.4.4 Bereitstellen des neuen Teilprojektes. 50

2.4.5 Entfernen der Urversion des neuen Projektes.............. 50

2.4.6 Erstelleneinerprivaten Sicht 51
247 Bearbeitung......... . .. e 51
2.5 Literatur. 52
Rol (Robot Interface)..................................... 53
3.1 Hardwareumgebung............... ... 53
3.2 Befehlssatz................. 54
3.3 Beispiel.o 54
3.4 Abbildung der Verkabelung................................. 55
3.5 VerwendungderSourcen..................coiiiiiiiiii. 55
Verwendungvon DRIL..................................... 57
4.1 EInleitung.o 58
4.2 Funktionalitat............., 59
4.2.1 Direkte Ansteuerung der Fahrzeuge 59
4.2.2 Indirekte Ansteuerung der Fahrzeuge. 59
4.2.3 Indirekte Ansteuerung Uber mehrere Steuerprogramme. 60
4.3 Voraussetzungen firdenEinsatz........................... 60
4.4 ArDEItSWEISE. 61
4.4.1 Direkte Ansteuerung der TTY - Schnittstelle 61
4.4.2 Indirekte Ansteuerung der TTY - Schnittstelle. 61
443 Ansteuerungdes Simulators. 62
4.5 Funktionsvorrat..............o 62
451 Systembefehle............ 62
452 TTY-Befehle........ ... i 62
4.5.3 Programmentwicklungsbefehle., 62
4.5.4 Robotersteuerungsbefehle:. L 63
4.5.5 Ausdruckenvon Nachrichten 63
4.6 Deklarationen und Fehlercodes............................. 63
4.6.1 Deklarationen und Fehlercodes.......................... 63
4.7 Ausblick 65
4.8 Verwendungder Sourcen................oiiiiiiiiiiiii.. 65
4.9 LIteratur. 65
6-D-Maus................. 67
5.1 Pinbelegung und Adapterkabel 67
5.2 Koordinaten und Einstellungen der Space Mause........... 68
5.2.1 Das Koordinatensystem. ..., 68
5.2.2 Die Steuerparameter.t 69
5.2.3 Das Kommunikationskonzept................. 70
5.3 Schnittstelle zum Anwendungsprogramm. 70
5.3.1 Verbindungsaufbau und -abbau zur Space Mouse. 70
5.3.2 Steuerung der Space Mouse Funktionen.................. 71

5.3.3 Datenverkehr mitder Space Mouse. 72

5.3.4 Programmtemplate fur die Verwendung der Space Mouse. .. 73

5.4 VerwendungderSourcen.................cciiiiiiiii. 73
5.5 Literatur. 74
Bildformate.............................. ... 77
6.1 Hardware Formate.................... i, 77
6.1.1 Sun XIL Framegrabber................ 77
6.1.2 EltecKantenfinder........... 79
6.2 Software Formate.................. 79
6.2.1 HOIUS. ... e 79
6.2.2 KRhOIOS. 82
6.2.3 pbmplusFormat 83
6.3 Weitere Gesichtspunkte 84
6.4 Empfehlung fur ein allgemeines Bildformat................. 84
6.5 Literatur.o 85
Benutzung des Maspar Framegrabbers.............. 87
7.1 Virtualisierung der Bilddaten................................ 87
7.2 cfgInit. . .o 88
7.3 cfgGetFrame........... 88
7.4 cfgGetHalfFrame 89
7.5 Geschwindigkeit............ 89
ELTEC-VeCtEX................. i, 91
8.1 Konfigurationder Hardware................................. 91
8.1.1 SBus VME-Bus Adapter (PT-SBS915).................... 92
8.1.2 Image ProcessingPort (IPR). 92
8.1.3 Thinedge Processor (THIN). oo, 92
8.1.4 Vector Processor (VECT) 93
8.1.5 Handhabung des Gesamtsystems. 93
8.1.6 TIPS & THCKS . .o 96
8.2 Konturpunkte 96
8.3 KONtUIeN. 98
8.4 Konturdatenbanken.............. 101
8.4.1 Die Ablage derKonturdaten.................. 101
8.4.2 Der AufbauderDatenbank............................. 103
8.4.3 TIPS &TriCKS ... o 105
8.5 Anfragen an Konturdatenbanken 105
8.5.1 AuswahldesBildbereichs.............................. 106
8.5.2 Auswahl anhand von Konturattributen. 107
8.5.3 Eine komplette Anfrage i, 109
854 TipsS&Tricks 110
8.6 Visualisierungvon Konturen............................... 110
8.7 Die Bibliothek libElt boards.a.............................. 113

10

10.

8.8 Die Bibliothek libEIt misc.a................................ 113

8.9 Beispiele........ ... 114

8.9.1 Hardware, Datenbank und Visualisierung in einem Programrihl4
8.9.2 Aufnahme und Speicherung einer Bildsequenz auf Datei . . . 116

8.9.3 Einlesen einer Bildsequenzvon Datei.................... 116
8.9.4 Suche nach antiparallelenKonturen 117
8.10 MESSUNQGEN 120
8.11 Programme 121
8.12 Verwendung der Sourcen. ..., 122
8.13 Literatur........ ... 123
Die SUN Framegrabber Routinen..................... 125
9.1 InitialiSIerung. 126
9.2 GrabenvonBildern............... 127
9.2.1 SchnellesGraben.......... ... i, 128
9.2.2 SicheresGraben. i 129
9.2.3 Intelligentes Graben. i 129
9.3 Weitere Funktionen................. i, 130
9.3.1 LangedesFIFO. i 130
9.3.2 Maximales Bildalter. i, 130
9.3.3 Automatisches Uberspringenc.c.ove.... 130
9.3.4 Automatischer WeiRabgleich. 131
9.3.5 AutomatischenxmFaltung............................. 131
9.4 Hilfsfunktionen..........., 132
9.4.1 Bildinformation. 132
9.4.2 Bilderkopieren. 132
9.4.3 Bilderloschen i 132
9.4.4 AbspeichernvonBildern............... 133
9.4.5 Zugriff auf geditherte Bilder. 133
946 Zugriffauf XIL 133
9.5 SchlieRen des Framegrabbers............................. 133
9.6 MESSUNQGENt 134
9.7 VerwendungderSourcen................cciiiiiiiiiiii.. 135
9.8 Fehlermeldungen.............. 135
Benutzung der SUN Framegrabber mit HORUS. . 137
10.1 Initialisieren der Robosun-Framegrabher.................. 138
10.1.1 Verhalten 142
10.1.2 Beispiele.o 142

10.2 LItEratur.o 142

Kapitel 1

Projektverwaltung

Matthias Muscholl, Marco Sommerau

Wichtig fur die Entstehung des Roboterprojektes ist es, dal jeder Softwareentwickler
nicht nur einheitliche Schnittstellen innerhalb seiner Software anbietet, sondern dal
bei der Softwareentwicklung einheitliche Strukturen verwendet werden. Dieses Kapi-
tel handelt von der Strukturierung der Verzeichnisse des Roboterprojektes, der Ver-
zeichnisse der Teilprojekte, in denen die Software fur einzelne Module entwickelt
wird, sowie von den Projektverwaltungsdateien, die einen mdglichst einheitlichen,
hoffentlich einfachen und fehlerfreien Zugriff auf Teile des Projektes erméglichen —
also: was wann wo steht, oder wie man was wo ablegt!.

Das Roboterprojekt wird in Teilprojekte gegliedert, die jeweils eine mindestens drei
Zeichen lange Abkurzung erhalten. Im folgenden wird die Abkiirzung TPR als Stell-
vertreter fur beliebige Teilprojektabkirzungen verwendet. (TPR ist selbst ein generi-
sches Teilprojekt, das die hier beschriebene Struktur definiert.)

Ziele fur die entworfene Strukturierung waren:

1. Programme entwickeln zu kénnen, die auf verschiedenen Rechnersysteme aus-
fuhrbar sind. Es soll ein und derselbe Code auf unterschiedlichen Architekturen
und Betriebssystemen Ubersetzbar sein, wobei architekturabhangiger Code durch
bedingte Compile-Anweisungen getrennt wird. Die Architekturen die unterstutzt
werden sind Sun4, Sun4 Solaris, Sun4 Solaris Multiprozessor, HP, Ultrix (Maspar),
SGI und Linux (in Kirze auch Maspar mit OSF/1).

2. Daessich bei dem Roboterprojekt um ein sehr dynamisches, weitestgehend im Ex-
perimentierstadium befindliches Projekt handelt, ist die Verwendung eines Versi-
onsverwaltungssystems unumganglich. Nach Ablauf verschiedener Studien zu

1. Die Projektverwaltung wurde aufbauend auf einer Verzeichnisstruktur entwickelt, die in der Abteilung

Verteilte Systeme (VS) des IPVR verwendet wird.

12

1. Projektverwaltung

Systemen wie SCCS, RCS, CVS entschieden wir uns fur CVS. Einen ersten Uber-
blick bietet hierzu das Kapitel ‘Verwendung von CVS’ von Michael Vogt.

Eine weitere Anforderung bestand darin, einen einheitlichen Umgang mit dem
Projekt und seinen Teilen anzubieten, um eine moglichst komfortable Einbindung
der eigenen Code-Dateien, und die sichere Verwendung von Libraries anderer
Teilprojekte zu garantieren.

Teilprojekte geben nach Entwicklungsfortschritt Libraries und Programme zur
Verwendung in anderen Teilprojekten frei. Meist geht die Entwicklung jedoch wei-
ter, so daB gleichzeitig mehrere Versionen eines Teilprojekts verwendet werden.
Das Versionsverwaltungssystem bietet nun die Basis, um jedem Nutzer diejenige
Version zuganglich zu machen, auf die er aufbaut. Zu einer verdffentlichten Ver-
sion gehoren Include-Dateien und Manpages, sowie Libraries und Programme.
Die Include-Dateien und Manpages werden in der bendtigten Version lokal fur
den nutzenden Entwickler aus dem CVS-Repository extrahiert. Versionen die
nicht mehr ben6tigt werden, kann der Nutzer aus dem lokalen Verzeichnis 16-
schen.

Die Libraries und Programme werden nicht im CVS-Repository gehalten, sondern
beim Installieren im Veroffentlichungsbereich des Projektes dauerhaft abgelegt.
Welche Version extrahiert und hinzugebunden wird, kann der Entwickler durch
Angabe in einer einzigen Makefile-Variablen definieren. Global definierte Makefi-
le-Targets ermoglichen dann das automatische Extrahieren von angegebenen Ver-
sionen.

Der Abschnitt "1.2 Die Verzeichnisstruktur der privaten Sicht auf ein Teilprojekt" auf
Seite 18 beschreibt die Verzeichnisstruktur in der jeder Entwickler seine Programme
schreibt.

1.1 Die Verzeichnisstruktur des Projektes
Unter /usr/local/bv befindet sich das Verzeichnis robot (Abb. 1.1):

Abbildung 1.1: Das HOME-Verzeichnis des Robot-Projektes.

Hier befindet sich das Home-Verzeichnis des Roboterprojektes. In den Dateien
,,LABORORDNUNG@GnNd ,,PROBLEMEfinden sich aktuelle Informationen tber die Or-
ganisation des Forschungsbetriebes.

1.1 Die Verzeichnisstruktur des Projektes 13

Die in den Teilprojekten entwickelte Software wird im Sourcecode in einem
Repository der Versionsverwaltung CVS gespeichert. Vom Software-Entwickler gete-
stete und freigegebene Libraries oder Programme werden in Installations-Verzeich-
nissen anderen Teilprojekten zur Verfiigung gestellt.

Wir unterscheiden zwei Bereiche: den Verwaltungsbereich (CVS adm) und den Verof-
fentlichungsbereich (bin , doc, lib).

1.1.1 Der Verwaltungsbereich

In diesem Bereich sind Dateien abgelegt, die fur eine einheitliche Administration des
Projektes notwendig sind. Auf diese Dateien wird fast ausschlielich automatisiert
zugegriffen.

Auf den CVSUnterbaum wird mit Kommandos des Versionsverwaltungssystems ge-
lesen oder geschrieben. Es darf auf ihn nicht unter Zuhilfenahme normaler Unix-
Kommandos zugegriffen werden! Jegliches Verandern hat Auswirkungen Uber das ei-
gene Teilprojekt hinaus.

Im adm-Verzeichnis befinden sich neben den Verzeichnissen MakeSupport , cmd und
templates folgende Dateien (Abb. 1.2):

- o B B B

md Ahresiptionl it P 3 kel ST Erm i nFra e FamefiE ingial

€ i &

F GRS Lt 3 e oo L =4[W il S P ol

Abbildung 1.2: Administrationsverzeichnis (adm)

1. AbbreviationList enthalt zu jedem Teilprojekt eine Zeile, in der die Teilpro-
jekt-Abkurzung, die Teilprojektbezeichnung, die Namen des Entwicklungsteams
sowie der Name des Teamleiters (meist der Betreuer) eingetragen ist. Diese Daten
werden beim Erzeugen eines Teilprojektes durch das Shellscript CreateNewTPR
automatisch auf dem laufenden gehalten. Es wird sichergestellt, daf3 keine zwel
Teilprojekte die gleiche Abkirzung erhalten.

2. Aus Kompatibilitatsgrinden zu friiheren Versionen der Verzeichnisstruktur befin-
det sich im Verzeichnis robot/adm noch eine Datei cshrc , die bisher von priva-
ten .cshrc jedes Entwicklers eingebunden wurde. Environment-Variablen
werden nun vom abteilungsweiten /usr/local/bv/rc/cshrc gesetzt, wenn
im privaten .cshrc ,,set ROB_USER* und ,,set PVM_USER*“ angegeben wurde.
Folgende Variablen sind dadurch gesetzt:

a. CVSROOder Pfad, unter dem das Repository des Versionsverwaltungssystem
gespeichert ist,

b. BV_ARCHlie Architektur des Systems auf dem man sich augenblicklich befin-
det,

c. PROJ_TOPDIRdas Home-Verzeichnis des Roboter-Projektes,
und fir PROJECTABBREVIATIONtent CoMRoS,

14 1. Projektverwaltung

e. was fur PROJECTNAMECooperative Mobile Robot Systems Stuttgart' steht.

Weiterhin existieren symbolischen Links, die aus Kompatibilitatsgriinden auf globale
Makefiles verweisen.:

1. Makefile.Sniff.BasedOnProjects auf MakeSupport/Global.Tople-
vel.Targets.make

2. Makefile.Sniff.install und

3. Makefile.install auf MakeSupport/Global.SrcLevel.Targets.make

Im Unterverzeichnis adm/MakeSupport befinden sich globale Makefiles. Hier wer-
den Targets definiert, die eine einheitliche und sichere Integration der einzelnen Teil-
projekte ermdglichen (Abb. 1.3):

H

ClobalMakedile Adminmeke ClobalSrclevel Tergets mess Globel Toplevel Tangets maks

Abbildung 1.3: Dateien mit globalen Makefile-Regeln (adm/MakeSupport).

1. Global.Makefile.Admin.make enthalt die Konfigurationsinformation fur die
folgenden, globalen Makefiles.

2. Global.SrcLevel.Targets.make enthélt die projekteinheitlichen Targets ftr
das automatische Generieren von Source-Dateien (template), zur Berechnung
der Abhéangigkeiten (depend) der Source-Dateien, fur das Installieren fertiger
Softwareversionen (install) und das Generieren von Manpages (man). Die Datei
wird von den teilprojektbezogenen Makefiles der TPR/src Verzeichnisse aufge-
rufen.

3. Global.Toplevel.Targets.make enthalt die Projekt-einheitlichen Targets fur
das Bereitstellen von Versionen, auf denen Teilprojekte basieren (get , siehe Ab-
schnitt "1.2.1 Generische Makefiles" auf Seite 19). Ferner besitzt es Targets fur all
und install , die in die Makefiles der TPR/src Verzeichnisse verzweigen. Die
Datei wird von Makefiles der Teilprojektebene eingebunden.

Im Unterverzeichnis adm/templates befinden sich folgende Schablonen. Sie
werden bei der Generierung von Source-Dateien durch das in der Datei adm/Make-
Support/Global.SrcLevel. Targets.make definierten Target template ver-
wendet (Abb. 1.4):

] il] &

[T bEmiptaie templess H TRR gabch mmpaieh

] L] d

Ahbrevmbsniak emphy Emglxte.C.mEin hEmipatecmein bl wie

Abbildung 1.4: Templates zur Source-Dateien Generierung (adm/templates).

1.1 Die Verzeichnisstruktur des Projektes 15

© N o 0 bk w

Abbreviationlist.empty enthalt die Schablone fur eine leere Abbrevia-
tionlist.

TPR.get.sh enthalt die Schablone ftr ein Shell-Skript das automatisch abgear-
beitet wird, wenn dieses Teilprojekt als Teil eines Ubergeordneten Teilprojekts aus-
gecheckt wird (verwendet bei Target: get).

template.h enthélt die Schablone fur Header von C Sourcen.
template.c enthélt die Schablone ftr C Sourcen.
template.c.main enthalt die Schablone fur ein main() in C.
template.H enthalt die Schablone flr Header von C++ Sourcen.
template.C enthélt die Schablone fur C++ Sourcen.
template.C.main enthélt die Schablone fur ein main() in C++.

Die global definierten Targets rufen Shell-Skripte auf, die teilweise interaktiv bedient
werden. Sie sind im Unterverzeichnis adm/cmd/make* abgelegt. Dort befinden sich
weiterhin folgende Shell-Skripte (Abb. 1.5):

F P el 1 =1

(] gl gl gl il

s i b S0 P e e 1 i ey Chea dTER [codd b e S saFi piks
L =] 1 1

D -7) WA WA

gL medily FroLiws i e, o Tl T raElifa=1FH ik B p b e vl b ol e sl 1 I ey
Fip® Fapsi - e]
L bt nd i i

meks gak pubpre] echy mik= depent IpésisTAA ChangeMekabefarinbie o ke i ie

Abbildung 1.5: Die bereitgestellten Skripte

CreateNewTPR (Shell-Skript) erzeugt im aktuellen PROJ_DEVELOPDIRIN neues
Teilprojekt. Die Variable PROJ_DEVELOPDIRollte im privaten .cshrc gesetzt
sein(z.B. setenv PROJ_DEVELOPDIR $HOME/SA. Zur Erzeugung eines neuen
Teilprojekts werden Informationen wie die Teilprojektbezeichnung, die Teilpro-
jekt-Abktrzung, die Namen des Entwicklungsteams sowie der Name des Teamlei-
ters (meist der Betreuer) interaktiv abgefragt. Dieses Skript stellt daraufhin ein
neues, bereits konfiguriertes Teilprojekt zur Verfiigung (siehe Abschnitt "1.3.2 Er-
zeugen eines neuen Teilprojektes” auf Seite 24).

UpdateTPR (Shell-Skript) dient dazu, Teilprojekte die auf einer alteren Version des
generischen Teilprojekts TPR basieren, an die neue Struktur anzupassen. Dazu
wird interaktiv die Abkilrzung des anzupassenden Teilprojekts abgefragt um die
automatisierbaren Anderungen wie Hinzufiigen von Verzeichnissen und Dateien
vornehmen zu kénnen (siehe Abschnitt "1.3.7 Aktualisieren eines Teilprojekts" auf
Seite 30).

ChmodTPR(Shell-Skript) erlaubt die Festlegung der Zugriffsberechtigung von
Teilprojekten im CVS Repository. Die Teilprojektbezeichnung und die gewuinschte
Berechtigung werden interaktiv abgefragt (siehe Abschnitt "1.4 CVS-Repositories
far weitere Projekte" auf Seite 34).

16

1. Projektverwaltung

10.

11.

12.

13.

ChangeMakefileVariable (Shell-Skript) ermoglicht es gezielt Makefilevaria-
blen zu &ndern, ohne daR der Aufruf des Editors nétig ist. Die Syntax ist:
ChangeMakefileVariable filename [variable value] ...

check (Shell-Skript) tberpriift, ob die fiir einen Ubersetzungslauf notwendigen
Include-Dateien des Makefiles TPR/src/Makefile aktualisiert sind und erzeugt
diese neu, falls sie fehlen, oder veraltet sind (Aufruf aus dem Makefile heraus).

configure.OSE.scripts (Shell-Skript) andert die Shell-Skripte des Tools
classinfo des C++ Programmpakets OSEftur die Verwendung in /usr/local/
bv/cmd ab.

make.install (Shell-Skript) installiert die Libraries und Programme der aktuel-
le Version eines Teilprojekts im Veroffentlichungsbereich (Target: install).

make.deinstall (Shell-Skript) entfernt die Libraries und Programme der aktu-
elle Version eines Teilprojekts aus dem Veroffentlichungsbereich.

make.depend (Shell-Skript) erzeugt eine Abhangigkeitsliste aller .c und .C -Da-
teien, fUr Lex- und Yacc-Dateien sowie SNNS-Netzbeschreibungsdateien. Es wer-
den alle durch ein #include eingebundene Dateien aufgefuhrt, wobei
Systemincludes ausgenommen sind. Die Unterscheidung ist wie folgt: "TPR/
userinclude.h” bzw. <systeminclude.h> . Das Makefile wird selbst mit in
die Abhangigkeitsliste aufgenommen (Target: depend).

make.dependency (Shell-Skript) und make.Sniff.dependency (Shell-Skript)
rufen jeweils make.depend mit erweiterter Parameterleiste auf und sind nur aus
Kompatibilitatsgrinden noch vorhanden.

make.template (Shell-Skript) erzeugt aus den generischen Templates eine neue
Source-Datei, dessen Dateikopf bereits teilprojektspezifisch konfiguriert ist. Dazu
wird interaktiv der Name der zu generierenden Datei abgefragt. Fur *.[cC] Da-
teien kann angegeben werden, ob der Rumpf einer main() Funktion ebenfalls ge-
neriert werden soll und fur *.[hH] Dateien wird abgefragt, ob es sich um einen
Schnittstellen-Header handelt, und somit im TPR/include/TPR -Verzeichnis an-
gelegt werden soll (Target: template).

make.get.modifyProj.awk (awk-Skript) paldt die in SNiFF+ Projektbeschrei-
bungsdateien vorhandenen Pfade an versionsabhangigen Pfade von Unter-Teil-
projekten an (verwendet bei Target: get).

make.get.subprojects (Shell-Skript) durchlauft rekursiv alle Unter-Teilpro-
jekte, erstellt dabei eine Liste der Unter-Teilprojekte und exportiert die Include-Da-
teien und Manpages der im PROJ_DEVELOPDIRfehlenden Unter-Teilprojekte
(verwendet bei Target: get).

1.1.2 Der Veroéffentlichungsbereich

In diesem Bereich befinden sich die Verzeichnisse fur die Ablage von fertiggestellten
Versionen (Abb. 1.6). Hierhinein werden voll ausgetestete, stabile Libraries und Pro-
gramme abgelegt. Von vorhandenen Dateien kann man ausgehen, dal} sie wéahrend
der Laufzeit des Gesamtprojektes bestehen bleiben.

1.1 Die Verzeichnisstruktur des Projektes 17

Abbildung 1.6: Der Veréffentlichungsbereich

doc: Zu jedem Teilprojekt wird eine Dokumentation (Usermanual und/oder Aus-
arbeitung der Arbeit) im Unterverzeichnis $(PROJECTTAG) abgelegt. Der Name
muf das Prafix $(PROJECTTAG).$(PROJECTVERSION) besitzen und sollte mit
dem Suffix die Dateiart (.ps oder .dvi oder .fm) spezifizieren. Grundsatzlich
sollte darauf geachtet werden, dal? ein Dateiformat gewéahlt wird, das mdglichst
platzsparend ist, aber ohne zusatzliche uncompress-Verfahren gelesen werden
kann.

bin : Lauffahige Programme sollten ein ausfuhrliches Usage angeben, wenn man
siemita.out-h aufruft.

lib : Libraries sind vorubersetzte Code-Files und bilden eine Einheit mit ihren
include-Dateien, die Prototypen flr Funktionen und Datentypen spezifizieren. Die
include-Dateien sind in der Versionsverwaltung gespeichert. Jedes Teilprojekt, das
auf andere aufbaut holt sich automatisch die von ihm benétigten Versionen der Li-
brary-spezifischen include-Dateien aus dem Repository.

Aufgrund der unterschiedlichen Betriebssysteme und Rechnerarchitekturen wird in
den Unterverzeichnissen bin und lib eine Strukturierung in architekturspezifische
Unterverzeichnisse vorgenommen, hier HPPA LINUX, MASPARUItrix), SGI5, SUN4
SUN4SOL2und SUNMPDas zu einem Rechner gehérige Architekturktrzel wird auto-
matisch beim Offnen einer Shell gesetzt.

1.1.3 Sonstige Verzeichnisse

1.

bilder

Es wurde unter /usr/local/bv/robot ein Verzeichnis bilder angelegt, in das
alle moglichen Roboterbilder gelegt werden kdnnen (und sollen), um somit fur alle
einen einfachen Zugriff auf Bilder von unseren Fahrzeugen zu ermdglichen. Das
Unterverzeichnis habe ich entsprechend den mdoglichen BildgréRe des SFG [Sun
Frame Grabber] unterteilt. Eine weitere Unterteilung dieses Verzeichnisses erfolgt
dann nach Format. Bisher sind ppmund tif vorgesehen.

Als Basis habe ich meine Bilder zur Verfiigung gestellt. Sie sind von der Grofe
192x144 im ppm-Format und stehen folglich unter /usr/local/bv/robot/
bilder/192x144/ppm/

18 1. Projektverwaltung

2. etc:
Im Verzeichnis etc sind Konfigurationsfiles abgelegt, die flr den Betrieb der Ro-
boterfahrzeuge erforderlich sind (system.*). Ferner finden sich in diesem Ver-
zeichnis Beispiele fur personliche Konfigurationsfiles, die flr den Einsatz von
PVM gebraucht werden [pvm_hosts , rhosts].

1.2 Die Verzeichnisstruktur der privaten Sicht auf ein
Tellprojekt

Wie bereits beschrieben, werden die Codedateien durch das Versionsverwaltungssy-
stem CVS gespeichert. Die Benutzung sieht wie folgt aus: Sobald ein Teilprojekt be-
gonnen wird, richtet der Betreuer die zugehorige Verzeichnisstruktur ein. Sie wird im
Home-Verzeichnis des Softwareentwicklers angelegt und entsprechend dem Teilpro-
jekt konfiguriert. Gleichzeitig wird diese Struktur im CVS-Repository eingetragen.
Der Softwareentwickler kann nun entweder das Versionsverwaltungssystem nutzen
und einzelne Abschnitte seiner Arbeit in das Repository speichern, oder bis zum Ende
seiner Arbeit seine Programme entwickeln und erst zum Schlufd den Source-Code im
Repository ablegen. CVS ermdoglicht es, dal mehrere Entwickler gleichzeitig an den
selben Dateien editieren, und ihre Anderungen liber das Repository austauschen. Ge-
naueres siehe "1.5 Richtlinien far Multi-Entwicklerlnnen-Teilprojekte" auf Seite 38.

Ein Teilprojekt besteht aus mehreren Unterverzeichnissen, deren Aufgabe darin be-
steht, verschiedene Typen von Dateien aufzunehmen (Abb. 1.7):

g N i - e

cvs cvs cvs |rr: | cvs |1-u:-| cvs cvs |arra | [uu-l h-::-l |:-:r: | |Tm-| su.al |_._...|.§

Pl L
| ' | i

Ccvs Ccvs Ccvs Cvs Ccvs Cvs ‘ Cvs Ccvs Cvs

Abbildung 1.7: Die private Sicht auf ein Teilprojekt

1. src : Innerhalb dieses Verzeichnisses werden die Code-Dateien entwickelt. C-Da-
teien haben die Endung .c und .h , C++-Dateien die Endung .C und .H.
Zu jeder Architektur/Betriebssystem existieren Unterverzeichnisse. Dorthinein
werden alle erzeugten oder architekturabhéangigen Dateien abgelegt. Die erzeug-
ten Dateien sind .0 -Dateien, die Datei .Make.dependencies.rej mit den Ma-
kefile Abhangigkeiten, alle ausfuhrbaren Programme und Libraries.
Die Datei CONFIG.make enthalt schlie3lich die Definition der architekturabhangi-
gen Makefile Variablen

2. include : Innerhalb dieses Verzeichnis-Baumes (im Unterverzeichnis TPR) wer-
den diejenigen include-Dateien abgelegt, die andere Teilprojekte zur Benutzung
von Teilprojekt-Libraries bendtigen. Benutzt der Entwickler SNiFF+, so werden im

1.2 Die Verzeichnisstruktur der privaten Sicht auf ein Teilprojekt 19

include-Verzeichnis selbst Projektbeschreibungsdateien abgelegt (siehe Erklarung
zu dem Verzeichnis proj).

3. man Zu den in Libraries zur Verfigung gestellten Funktionen, Variablen sowie
C++ Klassen sind Beschreibungen in Form von Manpages zu erzeugen. Dazu wer-
den Hilfsmittel bereitgestellt, die aus formatgerechten Kommentaren in den inclu-
de-Dateien entsprechende Manpages generieren, und sie im man3
Unterverzeichnis ablegen (Target: man).

4. proj : Dieses Verzeichnis dient zur Aufnahme von SNiFF+ Projektbeschreibungs-
dateien, die das gesamte Teilprojekt umfassen. Fir diejenigen die SNiFF+ verwen-
den wurde folgende Konvention entworfen: die Codefiles einer zur Verfigung
gestellten Library werden in zwei Projektbeschreibungsdateien zusammengefal3t:
Einerseits die include-Dateien die die sichtbare Schnittstelle der Library darstellen,
andererseits alle restlichen Code-Dateien, die die Library implementieren. Dieses
zweite SNiFF+ Projekt enthéalt dann das SNiFF+ Projekt der include-Files als Un-
terprojekt (Tabelle 1.1):

Namen der SNiFF+ Projekte/ N
. Verzeichnis Sourcen
Unterprojekte
libTPR.proj TPR/proj TPR/src/*.[hHcC]
libTPR.Interface.proj TPR/include TPR/include/TPR/*.[hH]

Tabelle 1.1: Namenskonvention fur SNiFF+ Projektbeschreibungsdateien.

Ein Teilprojekt kann prinzipiell aus beliebig vielen SNiFF+ Projekten bestehen.
cmd: Shell, awk, perl, ... -Skripte, fur die Verwaltung oder Aufrufe im Teilprojekt.

data : Testszenarien und andere Dateien, die in keines der anderen Verzeichnisse
gehoren (z.B. pvm_hostfile).

1.2.1 Generische Makefiles

Aufgrund der unterschiedlichen Funktionalititen von make, die von den einzelnen
Betriebssystemen bereitgestellt werden, wird im Roboterprojekt einheitlich Ghnumake
verwendet (Aufruf: gmake).

Wir unterscheiden drei Abstraktionsebenen in einem Teilprojekt, denen entsprechen-
de Makefiles zugeordnet sind: die Teilprojektebene (TPR), die Ebene der Code-
Dateien (TPR/src) und die architekturabhangige Ebene (TPR/src/$(BV_ARCH)).
In der Teilprojektebene befindet sich ein Makefile, dal3 die teilprojektspezifischen Va-
riablen definiert (Makefile.project.part.defines). Dieses wird von allen an-
deren Makefiles eingebunden.

In der Architekturebene befindet sich das Konfigurationsfile, in dem architekturab-
héangige Variablen gesetzt werden (CONFIG.make), sowie die erzeugten Abhangig-
keitsbeschreibungen (.Make.dependencies.rej).

Auf der Ebene der Code-Dateien ist das Makefile abgelegt, in dem die Targets fur das
Erzeugen der Libraries und der Programme vom Entwickler angegeben werden und

20

1. Projektverwaltung

stellt das sog. Arbeits-Makefile dar. Es bindet ein globales Makefile ein, in dem Targets
projekteinheitlich spezifiziert sind. Ein Makefile, daR der Entwickler kaum verwen-
den wird, welches aber fur die spatere Weiterverwendbarkeit wichtig ist, befindet sich
auf der Teilprojektebene. Es ermoglicht ohne Kenntnisse der internen Projektstruktur
Programmversionen nachtraglich zu Ubersetzen und zu installieren.

Im folgenden werden die einzelnen Teile detailliert aufgefuhrt:

1. TPR/Makefile.project.part.defines : Diese Datei wird von allen Makefi-
les eingebunden und enthélt folgende @nderbaren teilprojektspezifischen Varia-
blen:

a.

BASESOMNSpezifiziert all jene Teilprojekte, auf die das Teilprojekt aufbaut, und
die aus dem gleichen CVS-Repository stammen. Der Inhalt dieser Variablen
wird verwendet um include-Pfade und Linkpfade zu bestimmen. Teilprojekte
werden in Form von <project-tag><project-version> angegeben (z.B:
BASESON = TPR Sub2-1). Der Inhalt dieser Variablen dient dem automati-
schen Extrahieren der verwendeten Teilprojektversionen aus dem CVS-Repo-
sitory. Der zu den Unter-Teilprojekten gehérende Schnittstellenbereich TPRx-
y/include/TPR und TPRx-y/man wird in die Ebene des
PROJ_DEVELOPDIRXxportiert. (Sobald sie nicht mehr benétigt werden kon-
nen sie z. B. mit /bin/rm -rf SUB3-0 geldscht werden).

Falls einige der in BASESOMingegebenen Teilprojekte nur intern zur Erzeu-
gung von lauffahigen Programmen und nicht zur allgemeinen Verwendung
der Teilprojekt-Libraries notwendig sind, sollten diese mit [...] geklammert
werden. Dadurch wird das unnoétige Exportieren der geklammerten Teilpro-
jekte bei der Verwendung dieses Teilprojekts vermieden (z.B: BASESON=TPR
Sub2-1 [TST1-5 SUB3-0]).

ADDITIONAL_BASESONMIt Hilfe dieser Variablen konnen auch Teilprojekte
aus anderen CVS-Repositories (die fur andere Projekte eingerichtet wurden)
von diesem Teilprojekt verwendet werden. Solche Teilprojekte kdnnen hier mit
<CVS repository>:<lib directory>:\
<project tag><project version>
angegeben werden (z.B.. ADDITIONAL_BASESON = /otherproject/
CVS:/otherproject/lib:OTPR1-1). Pfade, Schnittstellenbereiche und
die Klammerung intern benétigter Teilprojekte werden wie die von BASESON
behandelt.

PROJECTVERSIONENthalt die Versionsnummer, an der gerade gearbeitet
wird. Anstelle des tiblichen Trennsymbols ‘. * wird ‘- * verwendet! (z.B. 1-0 ,
2-4-1-2)

Die folgenden Variablen werden in dieser Datei definiert, sollen aber vom Ent-
wickler nicht geandert werden:

d. PROJECTTAQGMindestens drei Zeichen lange Abklrzung des Projektes. Sie ist

eindeutig innerhalb des gesamten Roboterprojektes und wird als Verzeichnis-
name, als Modulname (CVS) und als erster Teil von Versions-Tags verwendet.
Sie wird beim Erzeugen eines Teilprojektes angegeben und ist ab dann fest
(siehe dort).

Zukunftige Teilprojekte mussen alle global sichtbaren Bezeichner (globale Va-

1.2 Die Verzeichnisstruktur der privaten Sicht auf ein Teilprojekt 21

riablen, Typdefinitionen, Klassendefinitionen, Prozedurnamen, ...) mit dem
Prafix ,,<PROJECTTAG>" versehen, um Probleme beim Linken zu vermeiden.

e. ADM_VERSIONGIbt die Version der hier beschriebenen Administrationsum-
gebung an mit der dieses Teilprojekt erstellt wurde.

f. INSTDIR: Ist identisch mit PROJ_TOPDIR

g. INSTLIBDIR : Gibt den architekturabhangigen Pfad zur Installation der er-
zeugten Libraries an.

h. INSTBINDIR : Gibt den architekturabhangigen Pfad zur Installation der er-
zeugten Programme an.

i. MAKEGibt das fur Make zu verwendende Kommando an (hier gmake).

j. PVM_TOPDIRDer Pfad der dasinclude -undlib -Verzeichnisvon PVM ent-
halt.

k. TPR_DEVELOPDIRHome-Verzeichnis dieses Teilprojekts, wobei sich der Pfad
aus PROJ_DEVELOPDIRInd TPRzusammensetzt.

2. TPR/Makefile : Dieses Makefile verzweigt in das src -Verzeichnis und ruft dort
wieder Make auf.
Die Philosophie dahinter ist die, da man sich eine private Kopie eines Teilprojek-
tes geben lassen kann, gmake aufruft und es werden die Libraries, Programs, etc.
erzeugt, ohne dal man genaueres Uber das Teilprojekt und dessen Struktur wissen
mulf3.
Far teilprojektubergreifende Targets wird ein globales Makefile eingebunden.

3. TPR/src/Makefile : Dies ist das eigentliche Arbeitsmakefile. Wie schon vorher
genannt, werden architekturabhangigen Konfigurationsdateien eingebunden. Die
Abhéngigkeiten der .0 -Files von .c - und .h -Dateien werden durch den Aufruf
von gmake depend erzeugt und in architekturspezifische Dependency-Files ge-
speichert. Es empfielt sich nach Anderung von include-Abhéingigkeiten die Dependency-
Files neu zu erzeugen. Sie werden in das Arbeitsmakefile eingebunden und bewir-
ken ein Compilieren derjenigen Sourcen, die gedndert wurden, bzw. von solchen
abhangen.

Folgende Eintragungen sind jedoch vom Entwickler selbst vorzunehmen:

a. Regeln zum Linken compilierter Codefiles zu ausfiihrbaren Programmen
b. Regeln zum Erstellen von static oder shared Libraries
c. Eintragen aller zur Veroffentlichung gedachten Programme in PROGRAMS

22 1. Projektverwaltung

d. Eintragen aller zur \eroffentlichung gedachten statischen Libraries in
STATICLIBRARIES (vgl. Tabelle 1.2)

Teilprojekt enthalt

nur eine Library mehrere Libraries

libTPR.a libTPR_<namel>.a
libTPR_<name2>.a

Tabelle 1.2: Namenskonventionen fir erstellte Libraries.

e. Eintragen aller zur Veroffentlichung gedachten shared Libraries in
DYNAMICLIBRARIES(vgl. Tabelle 1.2) Wer shared Libraries erzeugen méchte,
sollte die Hinweise in $PROJ_TOPDIR/doc/adm/Shared.Libraries.txt
lesen.

4. TPR/src/$(BV_ARCH)/CONFIG.make : Architekturabhéangige Konfiguration
von Pfaden und Variablen.
Weiterhin kdnnen hier folgende Eintragungen vom Entwickler selbst vorgenom-
men werden:

a. Eintragen aller zur Veroffentlichung gedachten architekturspezifischen Pro-
gramme in ARCH_PROGRAMS

b. Eintragen aller nicht zur Verdffentlichung gedachten architekturspezifischen
Testprogramme in ARCH_TESTS

c. Eintragen aller zur Veréffentlichung gedachten architekturspezifischen stati-
schen Libraries in ARCH_STATICLIBS

d. Eintragen aller zur Veroffentlichung gedachten architekturspezifischen shared
Libraries in ARCH_DYNAMICLIBS

1.3 Die Projektverwaltung in der Praxis

1.3.1 Einrichten der Umgebung

Um die vorhandene Projektverwaltung nutzen zu kénnen und ein komfortables Ar-
beiten zu ermdglichen sind fur jeden Entwickler ein Reihe von Eintragungen in den
Dateien ~/.cshrc bzw. ~/.emacs erforderlich.

Damit die Umgebungsvariablen und Pfade korrekt gesetzt werden, mussen in der
Datei ~/.cshrc des Entwicklers mindestens die in Prog. 1.1, 4-10 aufgefuhrten
Schalter gesetzt werden. AulBerdem ist es dringend erforderlich, die Variablen
PROJ_DEVELOPDIRu setzen (Prog. 1.1, 12). Um die Anderungen in der aktuellen
Shell wirksam zu machen sollte nach dem Abspeichern ein source ~/.cshrc aus-
gefuhrt werden.

1.3 Die Projektverwaltung in der Praxis 23

Programm 1.1: Eintragungen in der Datei ~/.cshrc des Entwicklers.

L]
1 #
2 #uncomment to use this software
3 #

[..]
4 set PVM_USER
5 setBV_USER

[
6 # DO NOT DELETE NEXT LINE
7 source /usr/local/rc/cshrc

[...]
8 setROB_USER
9 set SNIFF201
10 source /usr/local/bv/rc/cshrc
11
12 setenv PROJ_DEVELOPDIR $HOME/SA

[..]

FUr das komfortablere Arbeiten mit CVS ist es empfehlenswert das emacs Erweite-
rungspaket pcl-cvs zu verwenden. Dazu missen in der Datei ~/.emacs des Entwick-
lers die in Prog. 1.2, 1-6 aufgefuhrten Zeilen eingefigt werden. Damit die
Anderungen wirksam werden, sollte ein eventuell laufender emacs verlassen und neu
gestartet werden. Das Starten des Programmpakets erfolgt dann durch die Eingabe
von M-x cvs-update im laufenden emacs. Eine ausfuhrliche Beschreibung der
Funktionsweise dieses Programmpakets ist Uber das emacs Menu Help, Unterment
Info unter dem Punkt Pcl-cvs zu bekommen

Wer bei der Verwendung von SNiFF+ statt des eingebauten Editors weiterhin emacs
verwendet werden méchte, kann dies durch den Eintrag der in Prog. 1.2, 8ff aufge-
fuhrten Zeilen konfigurieren. Die genaue Anbindung kann in der Dokumentation zu
SNiFF+ unter $SNIFF_DIR/doc/UsersRefPartl.ps.gz , hachgelesen werden..

Programm 1.2: Eintragungen in der Datei ~/.emacs des Entwicklers.

(-]
.1, pcl-cvs-startup.el,v 1.2 1992/04/07 20:49:17 berliner Exp
(autoload ,cvs-update ,,pcl-cvs”

»,Run a ,cvs update’ in the current working directory.

he
output to a *cvs* buffer and run cvs-mode on it.
If optional prefix argument LOCAL is non-nil, ,cvs update -I' is

Feed

G o WODN PR

run.”

B

6
e
8 ;-- SNiFF+ ---
9 (load-library ,$SNIFF_DIR/config/sniff-mode*)

[..]

24 1. Projektverwaltung

1.3.2 Erzeugen eines neuen Teilprojektes

Das Erzeugen eines neuen Teilprojekts erfolgt weitgehend automatisiert. Der Ent-
wickler, oder der Betreuer fuhrt in einer Shell des Entwicklers das Kommando Crea-
teNewTPR aus. Zu beachten ist, dall man sich in dem Verzeichnis befindet, unter dem
die Softwareentwicklung stattfinden soll (also $PROJ_DEVELOPDIR Dort hinein
wird dann der Verzeichnisunterbaum angelegt, der das Teilprojekt enthalten wird.

Da alle Entwickler im Roboter-Projekt der Unix-Gruppe bvrobot angehdren, sind
die Schreibrechte auf das CVS-Repository auf diese Gruppe beschrankt. Falls die
Gruppe nicht aktiv ist, mufd newgrp bvrobot aufgerufen werden.

Ein korrektes Protokoll sieht dann folgendermaf3en aus:
robosun3:[SA] > /usr/local/bv/robot/adm/cmd/CreateNewTPR

This script prompts you for project part name, abbreviation, developers
and project part leader that is required by the organization of the
CoMRoS-Project: Cooperative Mobile Robot Systems Stuttgart.

Current settings of the necessary environment:
PROJ_TOPDIR /usr/local/bv/robot
CVSROOT /usr/local/bv/robot/CVS
PROJ_DEVELOPDIR /home/<account>/SA

Current working directory:
/home/<account>/SA

Do you want to continue [yes]? yes

These are the existing project parts:

man erhalt nun eine Liste der schon vergebenen Namen, hier ein Ausschnitt:

#Abbr. Name students leader

TPR Teilprojekt Template mmuschol

Rol RS232 Robot Interface mmuschol mmuschol

Elt Eltec Interface sommerau sommerau

SFG Sun Frame Grabber Software mamier mamier
DRI Distributed Robots Interface rausch rausch

Fea Flaschen erkennen und ansteuern goerzisn gerl
DSI Distributed SpaceMouse Interface jnkarau rausch
MGI Manipulator Gripper Interface rausch rausch

OpG Optimales Greifen filipph,gerl gerl

MobS Mobile Robot Simulator stolz,braunl braunl

NUM Navigation mit Ultraschall (Modellbildung) loethe rausch
NNF neural network object following clemengo zell
CRE Automatisches Einparken msoberdo zell

DCI Device Controller Interface loethe rausch

[..]

Please answer the following questions with care. The information
is needed to simplify the administration of the whole project.

Abbreviation of your project part (e.g. ,Bsp‘) []? NEU

1.3 Die Projektverwaltung in der Praxis 25

Full name of your project part (or ,none’) []? IHR NEUES PROJECT
Accounts of software developers (e.g. ,roy,lee) []? ENTWICKLER
Account of project part leader (e.g. ,braunl’) []? BETREUER

nun werden eine Reihe von Operationen durchgefihrt:
I. Die Abkurzung des Teilprojektnamens wird reserviert.
ii. Die generische Verzeichnisstruktur eines Teilprojekts wird angelegt.
iii. Die Dateien werden hinsichtlich dem neuen Teilprojekt konfiguriert.
iv. Das Teilprojekt wird im Repository angelegt.

1.3.3 Verwenden schon vorhandener Teilprojekte

Einer der wesentlichen Aspekte dieser Verwaltungsstruktur ist die Maglichkeit zur
einfachen Einbindung schon vorhandener Teilprojekte in ein neues Teilprojekt. Dazu
mussen in der Datei TPR/Makefile.project.part.defines , wie schon in "1.2.1
Generische Makefiles" auf Seite 19, 1.a) und b) beschrieben, die Makefile-Variablen
BASESONProg. 1.3, 7) und ADDITIONAL_BASESONProg. 1.3, 18ff) entsprechend ge-
setzt werden.

Programm 1.3Eintrag von Unter-Teilprojekten im TPR/Makefile.project.part.defines.

(-]

1 AR R R R R

2 #names and versions of other projects

3 # on which this one bases on

4 #e.g. TPR1-0

5 #TPR only is needed by default

6 HHHHHHHHHHHH T

7 BASESON = TPR SUBTPR2-1 [SUB1-0]

8

O HHHHHHHHHHHH T
10 # names and Versions of other projects from other CVS repositories
11 # and projects on which this one bases on
12 # syntax:
13 # <CVS repository>:<lib directory>:<project tag><project version>
14 # e.g. /otherproject/CVS:/otherproject/lib:OTPR1-1
15 #
16 # architecture substitution applies as usual
17 SRR R
18 ADDITIONAL_BASESON =\
19 /home/mueller/CVS:/home/mueller/lib:MUELL1-5\
20 [/home/maier/CVS:/home/maier/lib:/MAI2-5]

[..]

Nachdem alle notwendigen Unter-Teilprojekte angegeben und abgespeichert sind,
wird automatisch beim nachsten Aufruf von gmake sichergestellt, dal im aktuellen
PROJ_DEVELOPDIRIie Includes und Manpages aller angegebener Unter-Teilprojekte
vorhanden sind. Falls dies nicht der Fall sein sollte, werden diese aus dem jeweiligen

26 1. Projektverwaltung

CVS-Repository exportiert. Damit bei der Verwendung des neuerstellten Teilprojekts
durch andere Teilprojekte nur die fur die Libraries notwendigen Unter-Teilprojekte
exportiert werden, sollte von der Mdglichkeit Gebrauch gemacht werden, Teilprojekte
die nur zur Erstellung teilprojekt-interner Programme benoétigt werden durch [] aus-
zuklammern.

Teilprojekte werden rekursiv nach weiteren bendétigten Teilprojekten durchsucht. Es
sind also nur die Unter-Teilprojekte anzugeben, auf die direkt aufgebaut wird. In der
Datei TPR/src/.Make.subprojects.rej werden alle ermittelten Abhangigkeiten
abgelegt. Nach einer Anderung von BASESOMder ADDITIONAL_BASESONwerden
die Abhangigkeiten beim nachsten Aufruf von gmake automatisch neu ermittelt

1.3.4 Anpassen der generischen Makefiles

Um die eigenen Programme und Libraries in den generischen Makefiles einzubauen
mul im Regelfall nur das Makefile TPR/src/Makefile editiert werden. Dort gibt es
die Variablen DYNAMICLIBRARIES STATICLIBRARIES und PROGRAM@iehe auch
"1.2.1 Generische Makefiles" auf Seite 19, 3.). Diese Variablen enthalten je ein Liste der
zu diesem Teilprojekt gehdrenden Softwarekomponenten. Fur jede dort angegebene
Komponente mulfi eine Regel existieren.

Um eine Library mit Namen l[ibTPR.a zu erstellen mul also der Name (Namens-
konventionen siehe Tabelle 1.2) in der Variablen STATICLIBRARIES angegeben wer-
den (Prog.1.4,2), die zur Library gehorenden Objektdateien in der Variablen
LIBRARY1 OBJECTSProg. 1.4, 5ff) aufgefuihrt und schliefdlich eine Regel fur die Ge-
nerierung formuliert werden (Prog. 1.4, 12ff).

Programm 1.4: Eintragungen im TPR/src/Makefile zur Erstellung einer Library.

]
STATICLIBRARIES = $(ARCH_STATICLIBS) \
$(BV_ARCH)/libTPR.a

1

2

3 ..

4 #-- build libraries

5 LIBRARY1 _OBJECTS = $(BV_ARCH)/complex.o \
6

7

8

$(BV_ARCH)/simple.o \

$(BV_ARCH)/array.o \

$(BV_ARCH)/scalar.o \
9 $(BV_ARCH)/calculate.o

11 # -- build a static library
12 $(BV_ARCH)/libTPR.a: $(LIBRARY1_OBJECTS)

13 $(RM) $@
14 $(STATIC_LIBRARY) $@ $(LIBRARY1_OBJECTS)
15 $(RANLIB) $@
16 @echo
[.]

Ahnlich sehen die Eintragungen fir ein Programm test aus, das die schon erwahnte
Library benutzt. Dazu muld der Programmname in der Variablen TESTS (PROGRAMS
falls es sich um ein zu installierendes Programm handelt) angegeben (Prog. 1.5, 2)
und zwei Regeln zur Generierung des Programms formuliert werden (Prog. 1.5, 6ff),

1.3 Die Projektverwaltung in der Praxis 27

wobei die erste der beiden nur zu Vereinfachung des gmake Aufrufs dient: statt
gmake $BV_ARCH/test genlgt ein gmake test

Programm 1.5: Eintragungen im TPR/src/Makefile zur Erstellung eines Programms

[...]
1 TESTS = $(ARCH_PROGRAMS) \
2 $(BV_ARCH)/test
3

4 # -- build programs
5 # -- build a single program
6 test: $(BV_ARCH)/test
7
8
9

$(BV_ARCH)/test: $(BV_ARCH)/test.0 $(STATICLIBRARIES)
$(CCC) -0 $@ $(LDEFINES) \

10 $(BV_ARCH)/test.0 \
11 $(LIBPATH) -ITPR -Im $(LIBS)
12 @echo

[...]

Wie schon in Prog. 1.4, 1 und Prog. 1.5, 1 zu erkennen ist, gibt es noch die Méglichkeit
Programme bzw. Libraries nur auf bestimmten Architekturen zu erstellen. Dazu mus-
sen die Namen der jeweiligen Komponenten in den Variablen ARCH_DYNAMICLIBS
ARCH_STATICLIBS, ARCH_TEST®zw. ARCH_PROGRANI& CONFIG.make der ge-
winschten Architektur eingetragen werden. Die erforderlichen Regeln sind wie
schon bei den auf allen Architekturen vorhandenen Komponenten im Makefile TPR/
src/Makefile anzugeben.

1.3.5 Benutzen von SNiFF+

SNIiFF+ ist ein Werkzeug, das fur die Entwicklung von C++ Programmen eine kom-
fortable Entwicklungsumgebung mit verschiedenen Browsern bereitstellt (Die Ent-
wicklung von reinen C Programmen wird ebenfalls unterstitzt).

Dieses Werkzeug verwendet ebenfalls den Begriff Projekt, jedoch in einem anderen
Zusammenhang. Hier wird unter einem Projekt eine Menge von Dateien gesehen, die
alle in demselben Verzeichnis liegen mussen. Diese Definition des Projekts ist also
nicht mit dem seither verwendeten Begriff Teilprojekt vereinbar, da die Header der
Schnittstellen zu vorhandenen Libraries nicht im Pfad TPR/src , sondern im Pfad
TPR/include/TPR verwaltet werden. Die Losung des Problems liegt darin, daf}
SNiFF+ Projekte ihrerseits wieder Projekte enthalten kdnnen und damit beliebig
schachtelbar sind.

Die im Roboterprojekt verwendete Regelung ist wie schon in "1.2 Die Verzeichnis-
struktur der privaten Sicht auf ein Teilprojekt" auf Seite 18, Punkt 4. erwahnt so, dald
die Schnittstellen-Header einer Library aus dem Verzeichnis TPR/include/TPR in
einem SNiFF+ Projekt zusammengefat werden und die Projektbeschreibungsdatei
im Verzeichnis TPR/include abgelegt wird. Der Name dieser Datei ergibt sich aus
den Namenskonventionen von Tabelle 1.1 und Tabelle 1.2. SNiFF+ wird durch den
Aufruf sniff gestartet. Um ein Projekt fur die Schnittstellen-Header anzulegen mus-
sen folgende Schritte durchgefuhrt werden:

28 1. Projektverwaltung

Anwahl MenuUpunkt Project -> New Project im Hauptfenster.

2. Mit Dateiauswahlbox in das Verzeichnis TPR/include/TPR springen und den But-
ton Select anklicken.

3. Eintragungen im Fenster Attributes of a New Project:

a. Project Directory TPR/include/TPR
b. Project File Name libTPR.Interface
c. Project File Extension proj

d. Destination of Project File(s)

e. Project Type Relative Project

und OK anklicken.

4. Durch Anwahl des Menupunkts Project -> Add/Remove Files im Project Editor
kann nachtraglich die Auswahl der zum Projekt gehdrigen Dateien gedndert wer-
den (z.B. bei Unterteilung in mehrere Libraries).

Weiterhin werden die zu dieser Library gehdrenden Implementierungsdateien aus
dem Verzeichnis TPR/src zu einem zweiten SNiFF+ Projekt zusammengefaldt und
im Verzeichnis TPR/proj abgelegt, wobei das zuvor erzeugte SNiFF+ Projekt der
Schnittstelle der Library als Unterprojekt hinzugenommen wird:

1. Anwahl Menupunkt Project -> New Project im Hauptfenster.

2. Mit Dateiauswahlbox in das Verzeichnis TPR/src springen und den Button Select
anklicken.

3. Eintragungen im Fenster Attributes of a New Project:

a. Project Directory TPR/src

b. Project File Name libTPR

c. Project File Extension proj

d. Destination of Project File(s) .Iproj

e. Project Type Relative Project

und OK anklicken.

4. Die Auswahl der zum Projekt gehérigen Dateien kann wie schon beschrieben ge-
andert werden.

5. Durch Anwahl des Menupunkts Project -> Add Subproject im Project Editor kann
das zugehorige Projekt libTPR.Interface.shared aus dem Verzeichnis TPR/inclu-
de hinzugenommen werden.

Far alle Programme, wobei jedes einzelne wieder ein SNiFF+ Projekt sein sollte, muld
nur das entsprechende Projekt der Library als Unterprojekt angeben werden damit
alle notwendigen Sourcen im Browser verfugbar sind.

Falls fur Programme im Teilprojekt weitere Teilprojekte benutzt werden und die Ent-
wickler dieser Teilprojekte ebenfalls SNiFF+ verwendet haben, sind die Projektbe-
schreibungsdateien der Schnittstelle in den jeweiligen include-Pfaden vorhanden.
Diese konnen also einfach vom eigenen SNiFF+ Projekt als Unterprojekt eingebunden
werden.

1.3 Die Projektverwaltung in der Praxis 29

Weitere Informationen zu SNiFF+ sind im Verzeichnis $SNIFF_DIR/doc zu finden.

1.3.6 Installieren von getesteter und stabiler Software

Das Installieren erfolgt mit Hilfe des Makefiles. Zu beachten ist, dal man bereits in
TPR/Makefile.project.part.defines die Variable PROJECTVERSIOMktuali-
siert hat. Es werden alle in den Variablen PROGRAMSTATICLIBRARIES und DYNA-
MICLIBRARIES angegebenen Komponenten installiert.

Zur durchgangigen Unterstlitzung von SNiFF+ ist es notwendig, da fur jedes Teil-
projekt zumindest eine SNiFF+ Projektbeschreibungsdatei fur jede der darin vorhan-
denen Libraries existiert! (Kurzanleitung siehe "1.3.5 Benutzen von SNiFF+" auf Seite
27)

Man ruft in einer Shell der entsprechenden Architektur gmake install auf:
matisse:[src] > gmake install

you are now installing a new version of your software.
1. verify that the version number Sml1-1 is correct
or change PROJECTVERSION in
/home/mmuscholl/ROBO/inWork/Sml/Makefile.project.part.defines
2. continue or rerun make install

3. run cvs commit in /home/mmuscholl/ROBO/inWork/Sml
4. run cvs tag Smi1-1in
/home/mmuscholl/ROBO/inWork/Sml

Do you want to continue [no]: yes
shared libraries successfully installed

installing SUN4/libmouse.a in /usr/local/bv/robot/lib/SUN4/libSmI1-1mouse.a
static libraries successfully installed

installing SUN4/mousetest in /usr/local/bv/robot/bin/SUN4/Sml1-1mousetest
programs successfully installed

you have successfully installed a new version of your software.
Keep in mind that you have to add generated Files like Manpages
and copied includes into the CVS repository (see below).

Please do not forget to complete point 3 and 4 above, like:

cd /home/mmuscholl/ROBO/inWork/Sml/man/man3; cvs add *.3
cd /home/mmuscholl/ROBO/inWork/Sml; cvs commit; cvs tag Smi1-1

Die als letztes ausgedruckten Unix-Kommandos sind Ausgaben des Installskiptes.
Mit Cut-and-Paste kann man die Kommandos direkt in der Shell auszuftihren.

Nachdem alle angegebenen Kommandos ausgefuhrt sind ist die erstellte Software
dieses Teilprojekts allgemein verfugbar und kann wie in "1.3.3 Verwenden schon vor-
handener Teilprojekte" auf Seite 25 beschrieben exportiert und von anderen Teilpro-
jekten verwendet werden.

Sollte man direkt nach dem Installieren doch noch einen Bug finden, so kbnnen mit
gmake deinstall die veroffentlichten Dateien geléscht werden. Nach dem Bug-fix
und einem gmake install muld cvstag abermals ausgefuhrt werden.

30 1. Projektverwaltung

Falls zur Verwendung eines installierten Teilprojekts aufer dem Exportieren zusatzli-
che Schritte erforderlich sind (z.B. Anlegen von Links), gibt es ab der Version admz2-2
des Verwaltungsbereichs die Mdoglichkeit im Verzeichnis TPR/cmd ein Shell-Skript
TPR.get.sh abzulegen. Dieses Shell-Skript wird, falls vorhanden, nach dem Expor-
tieren der gewunschten Teilprojekt-Version durch den Aufruf gmake get eines Uber-
geordneten Teilprojekts automatisch ausgeftihrt. Da dieser Fall eher die Ausnahme
sein wird, ist dieses Shell-Skript nicht als Default in jedem erstellten Teilprojekt vor-
handen, sondern kann bei Bedarf hinzugeftigt werden (Template: adm/templates/
TPR.get.sh).

1.3.7 Aktualisieren eines Teilprojekts

Falls ein alteres Teilprojekt die im Lauf der Zeit erweiterte Funktionalitat ebenfalls
verwenden méchte, mul} die Struktur des Teilprojekts aktualisiert werden. Ob es sich
bei einem Teilprojekt um eine altere Version handelt kann durch den Aufruf von
gmake version im Verzeichnis TPR/src festgestellt werden (die aktuelle Version
ist adm2-2). Die Aktualisierung des Teilprojekts startet man mit dem Aufruf des
Kommandos UpdateTPR.

Ein korrektes Protokoll sieht dann folgendermalR3en aus:
robosun3:[SA] > /usr/local/bv/robot/adm/cmd/Update TPR

This script prompts you for the project abbreviation of the
project to be updated.

Current settings of the necessary environment:
PROJ _TOPDIR /usr/local/bv/robot
CVSROOT lusr/local/bv/robot/CVS
PROJ_DEVELOPDIR /home/<account>/SA

Current working directory:
/home/<account>/SA
Do you want to continue [yes]? yes

These are the existing project parts:

man erhalt nun eine Liste der schon vergebenen Namen, hier ein Ausschnitt:

#Abbr. Name students leader

TPR Teilprojekt Template mmuschol

Rol RS232 Robot Interface mmuschol mmuschol
Elt Eltec Interface sommerau sommerau

SFG Sun Frame Grabber Software mamier mamier
DRI Distributed Robots Interface rausch rausch

Fea Flaschen erkennen und ansteuern goerzisn gerl
DSI Distributed SpaceMouse Interface jnkarau rausch
MGI Manipulator Gripper Interface rausch rausch

OpG Optimales Greifen filipph,gerl gerl

MobS Mobile Robot Simulator stolz,braunl braunl

NUM Navigation mit Ultraschall (Modellbildung) loethe rausch

1.3 Die Projektverwaltung in der Praxis 31

NNF neural network object following clemengo zell

CRE Automatisches Einparken msoberdo zell

DCI Device Controller Interface loethe rausch

[..]

Select the project abbreviation whose source tree has to

be updated.

Abbreviation of your project part (e.g. ,Bsp’) [I? OLD

The selected project is:
OLD = IHR ALTES PROJEKT (ENTWICKLER:BETREUER)

Do you want to continue [yes]? yes

Checking for status of OLD in /home/<account>/SA ...
OLD exists and is not modified.

Now the new/changed files/directories of the generic project part
since ADM_VERSION adm1-1 will be exported to SHOME/SA:

man erhalt nun eine Liste der seit adm1-1 gednderten Dateien (diese Liste variiert naturlich je
nachdem wie alt das Teilprojekt ist):

U TPR/include/TPR/README
U TPR/Makefile
U TPR/Makefile.project.part.defines

[.]

Now the new/changed files/directories will be processed and
copied to OLD:

Processing OLD/include/OLD/README ...
Processing OLD/Makefile ...
Processing OLD/Makefile.project.part.defines ...

[..]

Now the new directories will be added to the repository:

Adding OLD/include/OLD/ ...
Add directory /home/sommerau/CVS/OLD/include/OLD to the repository (y/n) [n]
? Directory /home/sommerau/CVS/OLD/include/OLD added to the repository

Now the new files will be added to the repository:

Adding OLD/include/OLD/README ...
cvs add: scheduling file 'README' for addition
cvs add: use ,cvs commit’ to add this file permanently

32 1. Projektverwaltung

Some files are not needed by default any more
and may be removed from the repository:

OLD/src/HPPA/C.Make-Dependencies
OLD/src/HPPA/c.Make-Dependencies

[..]
OLD/src/OLDmain.c
OLD/src/OLDmain.h

ACHTUNG: unter Umstédnden werden die Dateien OLDmain.[ch] in diesem Teilprojekt ver-
wendet!

(use ,cvs add <file>* for accidentally removed files)

Do you want to remove them ALL from the repository [no]? yes
bei Angabe von no wird fur jede einzelne Datei gefragt, ob diese Datei geldscht werden soll

cvs remove: scheduling C.Make-Dependencies for removal
cvs remove: scheduling c.Make-Dependencies for removal
cvs remove: scheduling C.Make-Dependencies for removal

[.]

CVS remove:; use ,cvs commit' to remove these files permanently

Files modified:

OLD/Makefile
OLD/Makefile.project.part.defines
OLD/README
OLD/src/HPPA/CONFIG.make

[..]

ATTENTION: Do not commit the modified files! These are generic files
which first have to be merged with the last checked in
version!

Nach der Ausfuhrung dieses Skripts sind die unter Files modified: aufgefuhrten
Dateien durch ihr Pendant aus dem generischen Teilprojekt Gberschrieben. Aus die-
sem Grund mussen die Inhalte der jeweils betroffenen beiden Dateien zusammenge-
fuhrt werden. Dies geschieht mit der Hilfe des SNiFF+ Werkzeugs DiffMerge, indem
ein spezielles SNiFF+ Projekt erstellt wird, das alle Makefiles des Teilprojekts beinhal-
tet:

1. Anwahl Menupunkt Project -> New Project im Hauptfenster.

2. Mit Dateiauswahlbox in das Verzeichnis TPR springen und den Button Select an-
klicken.

3. Eintragungen im Fenster Attributes of a New Project
a. View General, Project Options

1.3 Die Projektverwaltung in der Praxis 33

I. Project Directory TPR

ii. Project File Name TPR

iii. Project File Extension shared

iv. Destination of Project File(s)

V. Project Type Shared Project
b. View General, zusatzliche Selektionen bei New Project Options

I. Generate Subproject Tree selektieren

ii.Remove Empty Projects selektieren

c. View File Types:
Auswabhl ausschliel3lich des File Types Make durch Doppelklicks.

und OK anklicken.

4. Im Project Editor Uber dem unteren Fensterteil mit der Uberschrift Pro-
jects die rechte Maustaste drticken und den Meniupunkt Select From All Pro-
jects anwahlen.

Im Project Editor kann nun fur jede der angezeigten Dateien nacheinander der

Menupunkt File -> Show Differences... angewahlt und der folgenden Requester be-
statigt werden. Das nun erscheinende Fenster stellt, falls Unterschiede vorhanden
sein sollten, auf der linken Seite den Inhalt der aktuellen Datei und auf der rechten
Seite den Inhalt der Datei beim letzten Einchecken dar. Fir das Zusammenfiigen ge-
nugt es zu wissen welche Teile aus der zuletzt eingecheckten Version Gbernommen
werden mussen (Fehlerhafte Ubernahmen koénnen durch den Menipunkt Edit ->
Undo Merge Text zurickgenommen werden):

1.

Allgemein:
$Revision$, $Date$, $Author$ und Log tbernehmen.

TPR/src/*/CONFIG.make

Bis auf die in 1. erwéahnten Punkte nichts Ubernehmen, aul3er eventuell vorhande-
nen Erweiterungen des Entwicklers im Bezug auf Compileroptionen und Include-
bzw. Librarypfaden.

TPR/Makefile
Bis auf die in 1. erwdhnten Punkte nichts Gibernehmen, auRer eventuell vorhande-
nen Erweiterungen des Entwicklers.

TPR/Makefile.project.part.defines
a. BASESONInd
b. PROJECTVERSIONbernehmen, bzw. gleich erhdhen.

TPR/src/Makefile

Hier gibt es die gravierendsten und unubersichtlichsten Anderungen, wobei das
Werkzeug DiffMerge leider nur wenig Hilfe leisten kann. Es empfiehlt sich ein
haufigeres Abspeichern, da dabei ein erneutes diff ausgeftihrt und die Darstellung
erneuert wird. Zu beachten sind folgende Punkte:

a. Jetzt enthalt die Variable CCCden C++ Compiler (nicht mehr CPR).
b. Namenskonvention fur Libraries siehe Tabelle 1.2.

34 1. Projektverwaltung

c. Regeln der Form
<program>: $(BV_ARCH)/<program>
mussen entweder mit einem Semikolon abgeschlossen werden, oder in der
nachsten Zeile einen Tabulator haben.

Falls bei der Arbeit mit SNiFF+ etwas nicht so funktioniert wie hier beschrieben, das
Programm verlassen und nochmals starten, das verschafft meistens Abhilfe. Nach-
dem alle Dateien angepaldt sind, kann das SNiFF+ Projekt geschlossen werden. An-
schlieBend kénnen die im TPR Verzeichnis gelegenen *.shared Dateien geldscht
werden.

Der Platz fur die Schnittstellen-Header der Libraries hat sich im Lauf der Zeit mehr-
fach geandert. Falls sie bei dem umzustellenden Teilprojekt noch nicht im Verzeichnis
TPR/include/TPR liegen, kénnen diese einfach mit
mv *.[hH] $PROJ_DEVELOPDIR/TPR/include/TPR dorthin bewegt werden. Ein
direkt anschlieBend ausgefihrtes cvs-update im emacs meldet, dal? die verschobenen
Include-Dateien verschwunden sind und daher aktualisiert wurden (mit Updated
markiert). Im Gegenzug sind die Include-Dateien in ihrem neuen Pfad nattrlich un-
bekannt (mit Unknown markiert). Die mit Updated markierten Dateien kdnnen nun
vom Repository geléscht und die mit Unknown markierten Include-Dateien hinzuge-
fugt werden (Genauere Beschreibung: im cvs-buffer den Mentpunkt Help -> Descri-
be Mode anwaéhlen).

Die Log-Messages im Header dieser verschobenen Dateien kdnnen geldscht werden,
da die Zahlung wieder bei Version 1.1 beginnt. Au3erdem sollte anschlieRend ein
gmake depend all aufgerufen werden, da unter Umstéanden bei einer Compilation
nicht mehr alle Includes gefunden werden und die Sourcen dementsprechend ange-
glichen werden mussen (statt #include “header.h® nun #include “TPR/hea-
der.h*).

War die Entwicklung des Teilprojekts bereits abgeschlossen, d.h. die aktuelle Version
ist auch installiert, dann sollte die aktualisierte Version des Teilprojekts eingecheckt
und mit einer neue Versionsnummer getagt werden.

1.4 CVS-Repositories fur weitere Projekte

Far diejenigen, die die Notwendigkeit sehen, ihre Sourcen unter die Verwaltung von
CVS zu stellen, sei an dieser Stelle eine kurze Anleitung zur Einrichtung der Umge-
bung gegeben.

Es bietet sich an, die fur das Roboterprojekt erstellte Projektverwaltung auch fur die
Sourcen-Verwaltung eigener Projekte zu verwenden, da die Moglichkeit Teilprojekte
aus verschiedenen CVS-Repositories zu mischen.

Empfehlenswert ist die Uberlegung, ob fiir das neue Projekt eine eigene Gruppen-ID
eingerichtet werden soll. Dadurch konnen die Zugriffsrechte, insbesondere die
Schreibrechte besser kontrolliert werden.

1.4 CVS-Repositories fur weitere Projekte 35

1.4.1 Einrichten der Umgebung

Der erste Schritt ist das Anlegen eines privaten CVS-Repositories durch das Ausfuh-
ren folgender Kommandos (falls keine eigene Gruppen-ID verwendet wird entfallen
die Punkte 2. und 3.):

1. mkdir<myProj> ($PROJ_TOPDIRVerzeichnis des eigenen Projektes im $HOMIE
2. chgrp <ourGroup> <myProj>

3. chmod g+s <myProj>

4. unsetenv CVSROOT

5. cvsinit

The CVSROOT environment variable is not set.

You should choose a location for your source repository
that can be shared by many developers. It also helps to
place the source repository on a file system that has
plenty of free space.

Please enter the full path for your CVSROOT source repository:

/home/<account>/<myProj>/CVS

[-]
Der nachste Schritt beinhaltet das Umsetzen der Umgebungsvariablen CVSROQT
PROJ TOPDIRund PROJ DEVELOPDIRdie von der Projektverwaltung bendtigt
werden. Es hat sich bewahrt, dieses Umsetzen in der Datei ~/.cshrc vorzunehmen,
indem die in Prog. 1.6 aufgefuhrten Zeilen hinzugefiigt werden. Durch den Aufruf
newgrp bvrobot werden dann automatisch die Variablen richtig gesetzt..

Programm 1.6: Zusatzliche Eintragungen in der Datei ~/.cshrc des Entwicklers.

1 setenv MYGID ’id | awk {i=index($2,“(,); I=length($2); print
substr($2,i+1,I-i-1)}"
2 switch (MYGID)
3 case <ourGroup>:
4 setenv PROJ_TOPDIR $HOME/<myProj>
5 setenv PROJ_DEVELOPDIR $HOME/MYGROUPWORK
6 setenv CVSROOT $PROJ_TOPDIR/CVS
7 breaksw
8 case bvrobot:
9 umask 002
10 setenv PROJ_TOPDIR /usr/local/bv/robot
11 setenv PROJ_DEVELOPDIR $HOME/ROBOWORK
12 setenv CVSROOT $PROJ_TOPDIR/CVS
13 set prompt = ,%M:[%.] ROBOT>"
14 breaksw
15 endsw

36 1. Projektverwaltung

1.4.2 Einrichten des Verwaltungsbereichs

Fur die Projektverwaltung muB im Verzeichnis $PROJ_TOPDIRunter anderem das
Verzeichnis adm fur den Verwaltungsbereich angelegt werden ("1.1.1 Der Verwal-
tungsbereich” auf Seite 13).

Die zum Verwaltungsbereich gehdrenden Dateien und Verzeichnisse werden in einem
eigenen Teilprojekt (adm) unter CVS verwaltet. Da sich dieser Bereich gelegentlich an-
dert, ist es von Vorteil einen symbolischen Link vom eigenen adm-Verzeichnis auf das
adm-Verzeichnis des Roboterprojekts zu legen. Dadurch ist sichergestellt, dal3 immer
die neueste und weitgehend getestete Version verwendet wird. Da jedoch im adm-
Verzeichnis auch die Datei Abbreviationlist liegt, die sdmtliche Module des eige-
nen CVS-Repositories enthalten soll, kann dieser Link nicht ftr die oberste Ebene des
adm-Verzeichnisses angelegt werden.

Die einfachste Mdglichkeit das Gewinschte zu erreichen besteht in der Ausfihrung
der folgenden Kommandofolge:

cd $PROJ_DEVELOPDIR

mkdir adm

cd adm

In -s /usr/local/bv/robot/adm/* .
Der ebenfalls entstandene Link Abbreviationlist muf durch eine Kopie der Da-
tei adm/templates/Abbreviationlist.empty ersetzt werden. Dadurch ist das

neue CVS-Repository auch fur die Projektverwaltung vollig leer, wenn man von eini-
gen reservierten Namen absieht.

Einer der reservierten Namen ist das generische Teilprojekt TPR. Um im eigenen CVS-
Repository neue Teilprojekte anlegen zu kdnnen muf dieses Teilprojekt dort ebenfalls
vorhanden sein. Dies wird durch das Anlegen eines symbolischen Links im Verzeich-
nis $CVSROORuUf das Verzeichnis /usr/local/bv/robot/CVS/TPR erreicht. Ein
angenehmer Nebeneffekt dieses Links ist, dal? ohne eigenes Zutun immer die aktuell-
ste Version des generischen Teilprojekts verwendet wird.

1.4.3 Einrichten des Verdffentlichungsbereichs

Fur die Projektverwaltung fehlen im Verzeichnis $PROJ_TOPDIRnur noch die fur die
Installation notwendigen Unterverzeichnisse ("1.1.2 Der Veroffentlichungsbereich”
auf Seite 16). Diese werden durch das Ausfuhren der folgenden Kommandos ange-
legt:

mkdir bin lib

cd bin

mkdir HPPA LINUX MASPAR SGI5 SUN4 SUN4SOL2 SUNMP

cd ../lib

mkdir HPPA LINUX MASPAR SGI5 SUN4 SUN4SOL2 SUNMP

1.4.4 Zugriffsberechtigung

Die im neuen CVS-Repository verwalteten Sourcen sollen im Regelfall nicht von je-
dermann verwendet werden kdnnen. Aus diesem Grund ist es moglich die Zugriffs-

1.4 CVS-Repositories fur weitere Projekte 37

rechte fur jedes einzelne Teilprojekt durch den Aufruf des Shell-Skripts ChmodTPRzu
andern.

Ein korrektes Protokoll sieht dann folgendermalRien aus:
robosun3:[SA] > /usr/local/bv/robot/adm/cmd/ChmodTPR

This script prompts you for the project abbreviation of the
project to change permissions.

Current settings of the necessary environment:
PROJ _TOPDIR /usr/local/bv/robot
CVSROOT lusr/local/bv/robot/CVS

Do you want to continue [yes]? yes

These are the existing project parts:

man erhalt nun eine Liste der schon vergebenen Namen, hier ein Ausschnitt:

#Abbr. Name students leader

TPR Teilprojekt Template mmuschol

Rol RS232 Robot Interface mmuschol mmuschol

Elt Eltec Interface sommerau sommerau

SFG Sun Frame Grabber Software mamier mamier
DRI Distributed Robots Interface rausch rausch

Fea Flaschen erkennen und ansteuern goerzisn gerl
DSI Distributed SpaceMouse Interface jnkarau rausch
MGI Manipulator Gripper Interface rausch rausch

OpG Optimales Greifen filipph,gerl gerl

MobS Mobile Robot Simulator stolz,braunl braunl

NUM Navigation mit Ultraschall (Modellbildung) loethe rausch
NNF neural network object following clemengo zell
CRE Automatisches Einparken msoberdo zell

DCI Device Controller Interface loethe rausch

[..]

Select the project abbreviation which permissions of the source
tree have to be changed.

Abbreviation of your project part (e.g. ,Bsp’) [I? CHG

The selected project is:
CHG = IHR PROJEKT (ENTWICKLER:BETREUER)

Who else shall have permissions (()user, (g)roup, (o)thers&group) []? g

The permissions of project
CHG = IHR PROJEKT
will be changed:
chmod ug=r CHG

38 1. Projektverwaltung

Do you want to continue [yes]? yes

[..]

1.5 Richtlinien far Multi-Entwicklerinnen-Teilprojekte

folgendes steht ebenso in Zusr/local/bv/info/cvs.faq:

2D.2 If I work with multiple modules, should | check them all out and
commit them occasionally? Is it OK to leave modules checked out?

The simple answers are "Yes."

There is no reason to remove working directories, other than to
save disk space. As long as you have committed the files you
choose to make public, your working directory is just like any
other directory.

CVS doesn't care whether you leave modules checked out or not.
The advantage of leaving them checked out is that you can quickly
visit them to make and commit changes.

committing a file? Is there a "cvs-mode" for Emacs?

See Section 4F.1

4F.1 How do | use CVS under Emacs? Is there an Emacs cvs-mode?

The pcl-cvs package distributed with CVS 1.3 is an emacs package
that helps with the update/commit process. When you are ready to
update, you use the 'cvs-update' command within emacs. This
executes "update" and fills a cvs-mode buffer with a line for each
file that changed. The most helpful features are: descriptive

words for what happened (i.e. Merged or Conflict rather than 'U"),
single keys bound to diffs and commits, and the ability to mark
arbitrary groups of files, possibly from different directories,

for commit as a whole.

All the developers in my group that use emacs find pcl-cvs a much
friendlier and more helpful way to update/commit than raw cvs.
One vi user even converted to emacs just to use pcl-cvs.

Contributed by Jeffrey M Loomis

2D.7 How does conflict resolution work? What *really* happens if two
of us change the same file?

While editing files, there is no conflict. You are working on
separate virtual branches of development contained in your working
directories. When one of you decides to commit the file, the

other may not commit the same file until "update" has merged the
two together.

Say you both check out rev 1.2 of <file>. Your coworker commits
revision 1.3. When you try to commit your file, CVS says:

cvs commit: Up-to-date check failed for “<file>'

You must merge your coworker's changes into your working file by
typing:

1.5 Richtlinien fir Multi-Entwicklerlnnen-Teilprojekte

39

cvs update <file>
which will produce the output described in 2B.6.

After you resolve any overlaps caused by the merging process, you
may then commit the file.

Yes, the first one who commits can cause the other some work.

Yes, between the time you execute "update" and "commit", someone
else may have committed a later revision of <file>. You will have

to execute "update" again to merge the new work before

committing. Most organizations don't have this problem. If you

do, you might consider splitting the file.

30.4 So "tag" labels a bunch of files. What do you use a Tag for?

You use it to "checkout" the labeled collection of files as a
single object, referring to it by name.

Anywhere a revision number can be used a Tag can be used. In fact
tags are more useful because they draw a line through a collection
of files, marking a development milestone.

The way to think about a Tag is as a curve drawn through a matrix
of filename vs. revision number. Consider this:

Say we have 5 files (in some arbitrary modules, some may be in 2
or more modules by name, some may be in 2 or more modules because
of the Repository tree structure) with the following revisions:

filel file2 file3 filed4 file5

11 11 11 11 /-11* <-* <tag>
12* 12 1.2 -1.2*
1.3 \-13* 13 /1.3
1.4 \14 /14
\-1.5*%- 1.5
1.6

At some time in the past, the *' versions were tagged. Think

of the <tag> as a handle attached to the curve drawn through the
tagged revisions. When you pull on the handle, you get all the
tagged revisions. Another way to look at it is that you draw a
straight line through the set of revisions you care about and
shuffle the other revisions accordingly. Like this:

filel file2 file3 file4 file5

1.1
1.2
1.1 1.3 B
1.1 12 14 11 /
1.2%---1.3%---15%----1.2%--1.1 (- <-- Look here
1.3 1.6 1.3 \
1.4 1.4
1.5

| find that using these visual aids, it is much easier to
understand what a <tag> is and what it is useful for.

4C.2 Why (or when) would | want to create a branch?

Remember that you can think of your working directory as a
"branch for one". You can consider yourself to be on a branch
all the time because you can work without interfering with others

40

1. Projektverwaltung

until your project (big or small) is done.
The four major situations when should create a branch are when:

1. You expect to take a long enough time or make a large enough
set of changes that the merging process will be difficult.

2. You want to be able to "commit" and "tag" your work
repeatedly without affecting others.

If you ever think you need Source Control for your own work,
but don't want your changes to affect others, create a private
branch. (Put your username in the branch tag, to make it
obvious that it is private.)

3. You need to share code among a group of developers, but not the
whole development organization working on the files.

Rather than trying to share a working directory, you can move
onto a branch and share your work with others by "committing”
your work onto the branch. Developers not working on the
branch won't see your work unless they switch to your branch or
explicitly merge your branch into theirs.

4. You need to make minor changes to a released system.

Normally a "release" is labeled by a branch tag, allowing later
work on the released files. If the release is labeled by a
non-branch tag, it is easy to add a branch tag to a previously
tagged module with the "rtag” command. If the release is not
tagged, you made a mistake. Recovery requires identifying all
revisions involved in the release and adding a tag to them.

4C.3 How do | create and checkout a branch?

4C.4 Once created, how do | manage a branch?

4C.5 Are there any extra issues in managing multiple branches?
4C.6 How do | merge a whole branch back into the trunk?

Kapitel 2

Verwendung von CVS

Michael Vogt

Samtliche Projekte, die sich mit der Steuerung der Roboterfahrzeuge befassen, sollen
bezuglich der Software-Entwicklung durch CVS unterstitzt werden. Hierdurch soll
paralleles Arbeiten mehrerer Entwicklergruppen auf jeweils stabiler Software erreicht
werden. Die nachfolgenden Abschnitte geben eine kurze Einfiihrung in CVS und in
die Verwendung von CVS in Roboterprojekten.

2.1 Was ist CVS

CVS steht fur ,,Concurrent Versions System®. Es ist ein System zur Entwicklung und
Verwaltung von Quelltexten aller Art (Programme, Dokumentation, usw.). CVS setzt
auf dem System RCS (Revision Control System) auf, welches das GNU-Pendant zum
bekannten SCCS (Source Code Control System) ist, das auf fast allen Unix-Plattfor-
men verbreitet ist.

CVS bietet folgende Mdglichkeiten:
1. Verwaltung von Dateien und Verzeichnissen

Ein Teilprojekt im Roboterprojekt besteht typischerweise aus einem Verzeichnis-
baum mit fest vorgegebener Architektur. Ein solches Teilprojekt wird unter CVS
als Modul bezeichnet. (Im weiteren Verlauf dieses Textes ist mit Modul immer ein
solches Teilprojekt bzw. ein Verzeichnisbaum gemeint).

Alle Module, die durch CVS verwaltet werden, befinden sich in einem speziellen
Verzeichnis (Repository) und sollten normalerweise nicht angefa3t und keines-
falls von Hand verandert werden.

42 2. Verwendung von CVS

2. Unterschiedliche Sichten

Jeder Entwickler, der an einem Modul arbeitet, verfugt Gber seine private Sicht
auf dieses Modul. Die private Sicht ist eine dquivalente Verzeichnisstruktur im
privaten Home-Verzeichnis des Entwicklers. Unterschiedliche Entwickler kénnen
unterschiedliche Sichten auf ein und dasselbe Modul besitzen (z.B. unterschiedli-
che Versionen).

3. Verschiedene Entwicklungszweige

Durch die unterschiedlichen Sichten ergibt sich sofort das Konzept von unter-
schiedlichen Entwicklungszweigen. Diese Zweige kdnnen durch CVS wieder ver-
einigt werden, oder aber als vollwertige Abzweigungen weitergefthrt werden.

Weitere Dokumentation zu CVS, die Uber diese Kurzubersicht hinausgeht, befindet
sich an folgenden Stellen:

1. Manual Pages zu cvs und rcs

2. Tutorial, Frequently Asked Questions, Postscript Texte unter
/ustr/local/bv/info

3. Per Emacs uber
M-x info m cvs RETURN

4. Lokale Newsgruppe inf.ml.cvs-info (Kopie der Mail-Liste zu CVS)

2.2 Voraussetzungen fur die Nutzung von CVS

Um CVS verwenden zu kdnnen, mufi die Shell Environment-Variable CVSROORuf
den Pfadnamen des Repository (s.0.) gesetzt werden. In unserem Fall ist dies das Ver-
zeichnis /usr/local/bv/robot/CVS . Folgendes Kommando mufite ausgefiihrt
werden:

setenv CVSROOT /usr/local/bv/robot/CVS

Ein Weg, dies automatisch auszufuhren, ist eine entsprechende Eintragung in der pri-
vaten .cshrc Datei oder ein automatisches Importieren aller Roboter relevanten Er-
weiterungen von .cshrc durch

set ROB_USER
set PVM_USER
source /usr/local/bv/rc/cshrc

Diese Kommandos aollten am besten gleich vom privaten .cshrc aus ausgefuhrt
werden. Neueinsteiger sollten die angedeutetet automatische Methode anwenden.
Hierdurch werden auch noch einige andere wichtige Variablen gesetzt.

Durch das Setzen der Variable CVSROOWwird automatisch das Zielverzeichnis fur
samtliche CVS Kommandos bestimmt. Wer gerne weitere, andere Projekte (nicht Ro-
boter) mit CVS verwalten mochte, muB3 entprechend ein privates Repository aufbauen
und die Variable entsprechend setzen. Dies wird hier aber nicht weiter besprochen.

Eine weitere notwendige Voraussetzung ist die Zugehorigkeit zu einer bestimmten
Gruppe (hier: bvrobot). Betreuer von Studien- und Diplomarbeiten missen bei der
Beantragung eines Accounts auf diese Gruppe hinweisen. Vor dem Arbeiten mit dem
COMROS CVS System sollte grundsatzlich das Kommando

2.3 Grundlegende Kommandos von CVS 43

newgrp bvrobot

ausgefuhrt werden. Ausschlief3lich diejenigen Benutzer, die das Schreibrecht fur diese
Gruppe haben, kénnen die Module, die von CVS unter dem oben angegebenen Pfad
verwaltet werden, manipulieren.

Wahrend der Arbeit mit CVS werden vom Entwickler immer wieder Kommentare
zur Anderungsgeschichte der privaten Sicht verlangt (z.B. beim Erzeugen neuer Da-
tein oder beim Freigeben einer neuen Version). Diese Kommentare werden durch ei-
nen Editor aufgenommen, der von CVS gestartet wird. Falls die Shell Environment
Variable EDITORgesetzt ist, so wird der dort angegebene Editor verwendet. Ist diese
Variable nicht gesetzt, so wird der Standard-Editor vi aufgerufen.

2.3 Grundlegende Kommandos von CVS

Die hier vorgestellten Kommandos stellen nur einen sehr kleinen Teil der grolien
Funktionalitdt der CVS Kommandos dar. Zur weiteren Information sei ausdrtcklich
auf die angegebene Dokumentation verwiesen.

Jedes CVS Kommando erlaubt grundsatzlich die Option -H, die eine kurze online-
Hilfe des entsprechenden Kommandos anzeigt und weiter keine Funktion ausfuhrt.

Jedes CVS Kommando wird grundséatzlich in einem privaten Verzeichnis ausge-
fuhrt, namlich dort, wo sich die private Sicht des zu bearbeitenden Teilprojektes (Mo-
duls) befindet, bzw. wo diese private Sicht entstehen soll. Es ist normalerweise nie
notwendig und sollte unbedingt unterlassen werden, direkt Dateien des Repository
zu lesen oder zu schreiben. Letzteres konnte fatale Folgen fur die gesamte Projektor-
ganisation nach sich ziehen.

2.3.1 Erzeugen einer privaten Sicht

Um irgendeine der nachfolgend noch beschriebenen Operationen auszufiihren zu
kdnnen, mul eine private Sicht auf ein Modul bestehen. Durch das Kommando

cvs checkout module

wird eine private Sicht des Verzeichnisbaums module im aktuellen Verzeichnis ange-
legt. Bei dieser einfachen Form der Anwendung des checkout-Befehls wird immer die
neueste verfugbare Version erstellt.

Durch die Ausfuhrung des Befehls entsteht eine komplette Verzeichnisstruktur im ak-
tuellen Verzeichnis. Samtliche Dateien dieser Struktur sind ausschliel3lich fur den
Auftraggeber schreibbar. Eine weitere Anmeldung, um nun tatsachlich Anderungen
vorzunehmen, ist nicht notwendig.

Innerhalb der entstandenen Verzeichnisstruktur ist in jedem Unterverzeichnis ein
neues Verzeichnis mit dem Namen CVSentstanden. Hier legt das CVS System wah-
rend der weiteren Bearbeitung wichtige Informationen ab. Unter keinen Umstéanden
darfen Inhalte dieser CVSVerzeichnisse verandert werden.

44 2. Verwendung von CVS

2.3.2 Hinzuftigen von Dateien

Sollen in einem Modul weitere Dateien unter die Verwaltung von CVS gestellt wer-
den (weitere C-Sourcen, Dokumentation, Skripte, usw.) so reicht es nicht aus, diese
Dateien einfach nur zu erzeugen. CVS ignoriert bei einem spéateren Freigeben des Mo-
duls namlich alle Dateien, die nicht schon friiher von CVS verwaltet wurden. (Hier
wird allerdings eine ausfuhrliche Warnmeldung ausgegeben). Dieses Verhalten ist
sinnvoll, da z.B. Binardateien und Libraries nicht mit CVS verwaltet werden sollen,
obwohl sie typischerweise wahrend der Entwicklung im Verzeichnisbaum des Mo-
duls entstehen.

Sobald eine neue Datei angeleget wurde, kann sie mit dem Kommando
cvs add file

unter die Verwaltung von CVS gestellt werden. Die Datei file muf3 sich innerhalb der
privaten Sicht des Moduls im aktuellen Verzeichnis befinden.

2.3.3 Loschen von Dateien

Ahnlich wie das Hinzufiigen von Dateien muR auch das Lschen von Dateien explizit
dem CVS System bekanntgegeben werden. Dies gilt aber nur fir Dateien, die bisher
bereits von CVS verwaltet wurden. Zum Ldschen wird die Datei zunachst mit dem
Unix Kommando rm entfernt und anschlieBend mit dem CVS Komando

cvs remove file

aus der Verwaltung von CVS gestrichen. Die Lebensgeschichte der geldschten Datel
bleibt dabei jedoch unter der Verwaltung von CVS und es ist spater weiterhin mog-
lich, alte Versionen dieser Datei zu extrahieren.

2.3.4 Uberprufen der privaten Sicht

Wahrend der Weiterentwicklung eines Moduls auf der privaten Sicht kénnen gleich-
zeitig andere Entwickler ebenfalls dieses Modul weiterentwickeln und ihre Anderun-
gen evtl. bereits in das Repository zurlckgestellt haben (s.u.). Es besteht also
grundsatzlich jederzeit die Mdéglichkeit, daR die private Sicht nicht mehr mit der Spit-
ze des entsprechenden Entwicklungszweigs Ubereinstimmt.

Um diese Unterschiede festzustellen und auch um die eigenen Anderungen mit der
urprunglich erzeugten privaten Sicht zu vergleichen, geht man zunéachst in das Wur-
zelverzeichnis des Moduls. Dort kann man sich mit dem Befehl

cvs diff [files ..]

samtliche Anderungen aller Dateien des Moduls anzeigen lassen, oder bestimmte Da-
teien herausgreifen.

In den meisten Fallen reicht es jedoch aus, nicht ausdticklich alle Unterschiede aufge-
listet zu erhalten (wie dies bei diff ~ Ublich ist), sondern eine kurze Status Information
Uber den aktuellen Zustand der Dateien des Moduls reicht aus. Diese Status Informa-
tion kann auch dazu verwendet werden, den mdoglichen Effekt eines update Befehls
(siehe nachster Abschnitt) abzuschéatzen. Der Status Befehl lautet:

2.3 Grundlegende Kommandos von CVS 45

Cvs status [files ...]

2.3.5 Private Sicht auf den neusten Stand bringen

Bevor die private Sicht eines Moduls als fertige Version in das Repository zuruckge-
stellt wird, mufl man sich entscheiden, ob hierdurch ein neuer Entwicklungszweig
eingeleitet werden soll, oder ob evtl. zwischenzeitlich von anderen Entwicklern
durchgefiihrte und freigegebene Anderungen an diesem Modul Glbernommen wer-
den sollen.

Die (halb)automatische Ubernahme von anderen Anderungen (Merge) geschieht mit
dem Befehl

cvs update [files ...]

Hierdurch werden die angegebenen Dateien oder aber der gesamte Verzeichnisbaum
auf die neuste Version angepalit. Fur das Ergebnis eines update Befehls auf einer be-
stimmten Datei gibt es sechs unterschiedliche Félle, die durch eine speziellen Buchsta-
ben als Statusmeldung zusammen mit dem Dateinamen ausgegeben werden:

e U file
file im Repository hatte einen neueren Inhalt als die private Kopie. Die private Ko-
pie war unverandert gegentiber dem urprtnglichen checkout . Sie wurde durch
die neue Version ersetzt.

- A file
file ist bisher noch nicht im Repository enthalten, wurde aber durch einen
cvs add Befehl bereits angemeldet

= R file
file wurde aus der privaten Sicht per cvs remove Befehl bereits geléscht, ist mo-
mentan aber noch im Repository enthalten

e M file
file in der privaten Sicht ist gegentiber dem Repository verandert. Die Anderungen
werden bei der Freigabe in dieser Form tlbernommen. Eventuelle weitere Ande-
rungen, die zwischenzeitlich von anderen Entwicklern freigegeben wurden, wur-
den erfolgreich in die private Kopie der Datei eingebaut (Merge)

e C file
Beim Versuch eine Merge-Operation auszufuhren ist ein Konflikt aufgetreten. Als
Ergebnis enthalt file nun die Ausgabe des Kommandos rcsmerge (siehe Manual
Page). Die urprungliche private Kopie wurde unter dem Namen .# file. version ab-
gelegt.

e 72 file
Die angegebene Datei befindet sich in der privaten Sicht aber nicht im Repository.
Eventuell wurde eine add Kommando fur diese Datei bisher vergessen oder aber
es handlet sich um eine Datei, die bewuf3t nicht unter der Verwaltung von CVS
steht.

46 2. Verwendung von CVS

2.3.6 Eigene Anderungen der Allgemeinheit zur Verfligung stellen

Die endguiltige Freigabe der Anderungen der privaten Sicht, also das Freigeben einer
neuen Version bzw. die Ubertragung der Dateien in das Repository geschieht mit dem
Kommando

cvs commit [files ...]

Hierdurch wird entweder das gesamte Modul freigegeben (beim Aufruf ohne file Ar-
gumente) oder nur bestimmte Dateien. Weitere Einzelheiten, wie z.B. die Erzeugung
eines neuen Entwicklungszweigs oder die Zuweisung einer expliziten Marke fur die-
se Version, sind der weiteren Dokumentation von CVS zu entnehmen.

2.3.7 Eigene Anderungen aufgeben bzw. Bearbeitung abbrechen

Nach der Freigabe einer privaten Sicht durch commit , soll eventuell die private Sicht
aus dem privaten Verzeichnis entfernt werden. Dies kann durch einen gezielten Unix
rm Befehl geschehen, dessen Anwendung allerdings nicht empfehlenswert ist. Besser
ist es, den durch CVS bereitgestellten Befehl zu verwenden, da hierbei nochmals die
Konsistenz der privaten Sicht mit der aktuellen freigegebenen Sicht Uberpruaft wird.

Ein anderer Fall, der eintreten kann, ist, daR die Anderungen auf der privaten Sicht
nicht freigegeben werden sollen (es soll also kein commit ausgefthrt werden), aber
trotzdem dauerhaft entfernt werden sollen.

In beiden Fallen sollte der Befehl
cvs release [-d] module

angewendet werden. Hierzu muss zunachst das private Verzeichnis aufgesucht wer-
den, in dem sich das Wurzelverzeichnis von module, also die Wurzel der privaten
Sicht befindet. Durch die Option -d wird nach erfolgreicher Uberpriifung und noch-
maliger Rickfrage der entsprechende Verzeichnisbaum gel6scht. Ohne diese Option
werden keine Dateien geldscht. Jedoch wird in diesem Fall im Repository vermerkt,
dal} der Entwickler widerruflich bekanntgegeben hat, da® er an diesem Modul keine
Anderungen mehr vornimmt. Er behalt jedoch eine private Kopie zurtick.

2.3.8 Anderungsgeschichte ansehen

Die Anderungsgeschichte von Modulen, das checkout, commit und release usw. wird
in einer globalen History-Datei protokolliert. Diese Datei kann durch das Kommando
cvs history

ausgewertet werden. Es bestehen viele moglichen Optionen, die alle im entprechen-
den Manual beschrieben sind.

2.3.9 emacs Interface zu CVS

Benutzer des Editors emacs konnen durch die Ergdnzung der Zeile
(autoload ‘cvs-update “pcl-cvs® “Run CVS update” t)
in ihrem .emacs File den Befehl

2.4 Einrichten eines neuen Roboterteilprojektes 47

M-x cvs-update

verwenden, der viele Mdglichkeiten von CVS in einem emacs Buffer mit ansprechen-
der Bedienung bereitstellt. Naheres erfahrt man in der vorhandenen online-Doku-
mentation.

2.4 Einrichten eines neuen Roboterteilprojektes

Das folgende Unterkapitel beschreibt, wie ein neues Teilprojekt mit CVS angelegt
werden kann. Da in der Zwischenzeit sehr leistungsfahige Skripte erstellt wurden,
die dies automatisch ausfiihren und da sich au3erdem inzwischen die Struktur der
Verzeichnisse verandert hat, sollten die nachfolgend beschriebenen Schritte nicht
von Hand ausgefuhrt werden. Sie sind trotzdem in der Dokumentation zu CVS
enthalten, um noch einmal die beschriebenen Elementarbefehle, die nattrlich zum
Teil weiterhin direkt ausgefuhrt werden miussen, im Zusammenhang zu demon-
strieren.

Am Beispiel der Erzeugung eines neuen Teilprojektes soll nun exemplarisch die Ver-
wendung von CVS demonstriert werden. Hierbei werden auch zwei Befehle verwen-
det, die bisher nicht besprochen wurden, die aber flr den taglichen Gebrauch von
untergeordneter Bedeutung sind.

Fur die Erzeugung eines neuen Teilprojektes steht eine generische Projektschablone
zur Verfugung, die ebenfalls unter CVS verwaltet ist und bei Bedarf erweitert wird.
Das hier beschriebene Beispiel durchlauft die folgenden Schritte:

1. Eswird eine Kopie der generischen Projektschablone in einem privaten Verzeich-
nis angelegt

2. Der Name des Teilprojektes (Modulname) wird festgelegt. Alle entsprechenden
Dateien in der privaten Kopie werden entspreched anderer Richtlinien (siehe Ka-
pitel Projektverwaltung) modifiziert.

3. Das neue Modul wird in die Moduldatenbank des Repository von CVS eingetra-
gen. Diese Moduldatenbank ist selbst auch durch CVS verwaltet. Entsprechend
sind einige CVS Funktionen aufzurufen.

Das neue Teilprojekt wird erstmalig unter die Kontrolle von CVS gestellt.

Die private Kopie des neuen Teilprojekts wird per Unix rm geldscht. Hier darf noch
nicht das release Kommando von CVS verwendet werden, da bisher ja auch
noch kein checkout stattgefunden hat.

Mit checkout wird nun eine neue Arbeitsversion des Teilprojektes generiert.

Ab jetzt kénnen alle gewtinschten Arbeiten, die im letzten Unterkapitel beschrie-
ben wurden, durchgeftihrt werden.

Es folgt nun die ausfuhrliche Beschreibung der einzelnen Punkte, die in dieser Form
jederzeit nachvollzogen werden kénnen. Alle Arbeiten finden im privaten Home-Ver-
zeichnis $SHOMEstatt. Das neue Teilprojekt erhalt den exemplarischen Namen Bsp.

48 2. Verwendung von CVS

2.4.1 Generisches Projekt erzeugen

Zundachst wird die Voraussetzung fur das korrekte Funktionieren von CVS durch Set-
zen von CVSROOTInd EDITORsichergestellt:

matisse:[~] > cd $SHOME

/home/vogt

matisse:[~] > setenv CVSROQOT /ustr/local/bv/robot/CVS
matisse:[~] > setenv EDITOR emacs

Nun wird mit demexport Kommando ein generischer Teilprojektbaum im privaten Ver-
zeichnis angelegt. Da hierzu eine Versionsnummer oder eine Zeitangabe notwendig ist, wurde
exemplariscldate aufgerufen:

matisse:[~] > date

Thu Apr 7 15:07:23 MET DST 1994
matisse:[~] > cvs export -D '15:07:23' TPR
cvs export: Updating TPR

U TPR/Makefile

cvs export: Updating TPR/cmd

cvs export: Updating TPR/data

cvs export: Updating TPR/include

cvs export: Updating TPR/man

cvs export: Updating TPR/src

U TPR/src/Makefile

cvs export: Updating TPR/src/[HPPA

U TPR/src/HPPA/CONFIG.make

cvs export: Updating TPR/src/MASPAR

U TPR/src/MASPAR/CONFIG.make

cvs export: Updating TPR/src/SUN4

U TPR/src/SUN4/CONFIG.make

cvs export: Updating TPR/src/SUN4SOL2
U TPR/src/SUN4SOL2/CONFIG.make

Es ist nun eine Verzeichnisstruktur mit Namen TPR entstanden:

matisse:[~] > Is -Id TPR
drwxr-xr-x 3 vogt 512 Apr 7 15:08 TPR

2.4.2 Anpassung an das neue Projekt

Das neue Projekt soll den Namen Bsp erhalten. Hierzu wird einfach mit dem Unix Be-
fehl mvder Name des Verzeichnisses verandert:

matisse:[~] > mv TPR Bsp
matisse:[~] > Is -Id Bsp
drwxr-xr-x 3 vogt 512 Apr 7 15:08 Bsp

Weiterhin missen nun verschiedene Dateien innerhalb des Verzeichnisbaums an die
eigenen Wunsche angepal3t werden. Da diese Anderungen nicht mit CVS zusammen-
hangen, sind sie an anderer Stelle beschrieben (Kapitel Projektverwaltung).

2.4 Einrichten eines neuen Roboterteilprojektes 49

2.4.3 Eintragung in die Moduldatenbank

Das neue Modul muRR nun in die Moduldatenbank von CVS eingetragen werden. Da
die Moduldatenbank selbst von CVS verwaltet wird, erfolgen einige CVS Aufrufe, die
genau in dieser Form wiederholt werden mussen. Zunachst wird wieder sicherge-
stellt, dass man sich im privaten Home-Verzeichnis befindet:

matisse:[~] > cd $SHOME

/home/vogt

matisse:[~] > cvs checkout modules

U modules/modules

matisse:[~] > Is -Id modules

drwxr-xr-x 3 vogt 512 Apr 7 15:31 modules
matisse:[~] > cd modules
/home/vogt/modules

matisse:[modules] > Is -I

total 3

drwxr-xr-x 2 vogt 512 Apr 7 15:31 CVS
-rw-r--r-- 1 vogt 1349 Mar 25 17:47 modules
matisse:[modules] > emacs modules

In der Datei modules wird die letzte Zeile eingefligt, so dafR das Ende der Datei etwa
folgendermafen aussieht:

Add other modules here...
TPR TPR
Bsp Bsp

AnschlieBend kann z.B. die Wirkung des status Befehls demonstriert werden:

matisse:[modules] > Ccvs status
cvs status: Examining .

File: modules Status: Locally Modified

Version: 1.2 Fri Mar 25 17:47:26 1994

RCS Version: 1.2 /usr/local/bv/robot/CVS/CVSROOT/modules,v
Sticky Tag: (none)

Sticky Date: (none)

Sticky Options: (none)

Um die Anderung wirksam zu machen wird das Modul modules wieder freigege-
ben. Vorher wird noch ein update ausgefuihrt:

matisse:[modules] > cvs update
cvs update: Updating .

M modules

matisse:[modules] > cvs commit

cvs commit: Examining .

cvs commit: Committing .

Checking in modules;
{usr/local/bv/robot/CVS/CVSROOT/modules,v <-- modules
new revision: 1.3; previous revision: 1.2

50 2. Verwendung von CVS

done
cvs commit: Executing 'mkmodules /usr/local/bv/robot/CVS/CVS-
ROOT’

Wahrend der Bearbeitung von commit wurde nun wiederum ein Editor gestartet, um
die Anderung an der Moduldatenbank zu kommentieren. Dies geschieht automatisch
und ist hier nicht dargestellt. Zum Abschlu wird die private Sicht auf das Modul
modules wieder entfernt:

matisse:[modules] > cd ..

/home/vogt

matisse:[~] > cvs release -d modules

You have [0] altered files in this repository.

Are you sure you want to release (and delete) module ‘modules’:

y

2.4.4 Bereitstellen des neuen Teilprojektes

Das angepalite Teilprojekt Bsp ist bisher nur als Modulname bekanntgegeben. Das
Projekt selbst ist aber noch nicht unter die Kontroll von CVS gestellt. Dies wird im
nachsten Schritt durchgefuhrt. Absolut wichtig ist hierbei, dal3 zuvor das Wurzelver-
zeichnis des neuen Projektes aufgesucht wird, da der verwendete import Befehl alle
Dateien des aktuellen Verzeichnis rekursiv als neues Projekt einspielt:

matisse:[~] > cd Bsp

/home/vogt/Bsp

matisse:[Bsp] > cvs import Bsp VOGT START

N Bsp/Makefile

cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src

N Bsp/src/Makefile

cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src/HPPA

N Bsp/src/HPPA/CONFIG.make

cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src/MASPAR
N Bsp/src/MASPAR/CONFIG.make

cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src/SUN4

N Bsp/src/SUN4/CONFIG.make

cvs import: Importing /usr/local/bv/robot/CVS/Bsp/src/SUN4SOL2
N Bsp/src/SUN4SOL2/CONFIG.make

No conflicts created by this import

Der import Befehl hat drei Parameter. Der erste Parameter ist der Modulname (Bsp).
Der zweite und dritte Parameter sind zwei Marken, die fur den Erzeuger des Moduls
(VOGY) und fur einen symbolischen Release-Namen (START) stehen.

2.4.5 Entfernen der Urversion des neuen Projektes

Bevor irgendwelche weiteren Anderungen gemacht werden, wird nun die private Ur-
version des Projektes entfernt. Wird dies nicht gemacht, so kann es passieren, dald

2.4 Einrichten eines neuen Roboterteilprojektes 51

CVS spater bei der Verwaltung des neuen Moduls im eigenen Verzeichnis Probleme
bekommt, da dieses Verzeichnis nicht durch ein checkout eingerichtet wurde:

matisse:[Bsp] > cd ..
/home/vogt
matisse:[~] > rm -r Bsp

2.4.6 Erstellen einer privaten Sicht

Durch ein checkout wird nun eine private Sicht des Moduls Bsp erstellt:

matisse:[~] > cvs checkout Bsp

cvs checkout: Updating Bsp

U Bsp/Makefile

cvs checkout: Updating Bsp/src

U Bsp/src/Makefile

cvs checkout: Updating Bsp/src/HPPA

U Bsp/src/HPPA/CONFIG.make

cvs checkout: Updating Bsp/src/MASPAR

U Bsp/src/MASPAR/CONFIG.make

cvs checkout: Updating Bsp/src/SUN4

U Bsp/src/SUN4/CONFIG.make

cvs checkout: Updating Bsp/src/SUN4SOL2
U Bsp/src/SUN4SOL2/CONFIG.make
matisse:[~] > cd Bsp

/home/vogt/Bsp

matisse:[Bsp] > Is -I

total 5

drwxr-xr-x 2 vogt 512 Apr 7 16:09 CVS
-rw-r--r-- 1 vogt 3004 Apr 7 15:52 Makefile
drwxr-xr-x 7 vogt 512 Apr 7 16:10 src

Auffallig an dieser privaten Sicht ist, daB3 nun in jedem Verzeichnis des erzeugten Ver-
zeichnisbaums ein Verzeichnis mit Namen CVS steht. Hier werden zukinftige Ande-
rungen protokolliert.

2.4.7 Bearbeitung

Die Bearbeitung erfolgt mit den tblichen Unix Tools. Am Rande kann hier noch die
Wirkung eines history Befehls demonstriert werden, der hier nun die sehr kurze
Geschichte des Projektes Bsp aufzeigt:

matisse:[Bsp] > cvs history -m Bsp
O 04/07 16:09 vogt Bsp =Bsp= ~/*

Die Ausgabe dieses Befehls beschreibt, dal? vogt das Modul Bsp am 4.7. um 16:09
Uhr per checkout in sein Home-Verzeichnis kopiert hat.

52 2. Verwendung von CVS

2.5 Literatur

[1] Manual zu CVS, online Dokumentation, erreichbar mit man cvs
[2] CVS Infoseiten, online Dokumentation, erreichbar im emacs mit M-x info m cvs

[3] PCL-CVS Infoseiten, online Dokumentation zum emacs Frontend zu CVS, erreich-
bar im emacs mit M-x info m pcl-cvs

Kapitel 3
Rol (Robot Interface)

Alexander Rausch

Rol stellt die unterste Schnittstellenebene fur den programmgesteuerten Betrieb der
ROBOSOFT - Fahrzeuge dar. Die Befehlstibergabe und das Auswerten der Roboter-
antwort erfolgen Uber das Versenden von Zeichenketten, die dem ALBATROS -
Befehlssatz entsprechen. Diese Beschreibung ist ab Version 3-1 gultig.

3.1 Hardwareumgebung

Die Roboterfahrzeuge sind tber Funk ansprechbar. Rol unterstitzt den Einsatz der
von ROBOSOFT gelieferten Modems und die Verwendung des MOTOROLA Funke-
thernets in Verbindung mit den WT-Ethernet-RS232 Umsetzern. Die aktuelle Verkabe-
lung spiegelt sich im Systemfile /usr/local/bv/robot/etc/system.Rolrc . Abhangig
von der Art der Funkverbindung zu einem Fahrzeugs deckt Rol folgende Anwen-
dungsfalle ab:

e ROBOSOFT-Modem: Das Anwenderprogramm lauft auf dem Steuerrechner, an
dem das Fahrzeug angebunden ist.

= Funkethernet: Das Fahrzeug kann von allen Rechnern angesprochen werden.

Es besteht die Moglichkeit, ein eigenes Konfigurationsfile $(HOME)/.Rolrc File anzule-
gen, sodald das Systemfile nicht verwendet wird. Dies ist nur sinnvoll, wenn die Ver-
kabelung verandert wird. Da nur Mitarbeiter die Verkabelung andern durfen (in
Absprache mit dem Laborleiter), ertbrigt sich fur Studenten das Anlegen eines
eigenen Konfigurationsfiles. In spateren Versionen wird zur Absicherung die Grup-
penmitgliedschaft des Anwenders Uberpruft werden, um Mil3brauch zu vermeiden.

54 3. Rol (Robot Interface)

WARNUNG: Eine unsachgemafle Veradnderung der Verkabelung kann unter
Umstanden die Beschadigung der Steuerrechner, der Funkmodems oder der Fun-
kethernetgerate nach sich ziehen. Veranderungen an der Hardwarekonstellation ist
Studenten ausdrucklich untersagt.

3.2 Befehlssatz

Alle Befehle und Datentypen besitzen einheitlich den Prafix Rol_, um Schwierigkei-
ten beim Linken der Programme aus dem Weg zu gehen. Jeder Roboter wird tber
einen Handle vom Datentyp Rol_Handle angesprochen. Der aktuell verfugbare Funk-
tionsvorrat besteht aus je einer Funktion zum

= Offnen der Verbindung zum Fahrzeug

= Absetzen von Befehlen

= SchlieBen der Verbindung zum Fahrzeug
= Ricksetzen des Roboterfahrzeugs

e Debuggen von Programme, indem zusatzlich auf einem Logfile im /tmp/
Rol.xxxxx (xxxxx = Benutzernummer im UNIX System) Debuginformation ausge-
druckt wird.

Detaillierte Erlauterungen zu den Funktionen finden sich in den man-pages

3.3 Beispiel
#include“Robolnterface.h*

void main(int argc, char *argv[])

{

Rol_Handle robot;

char *reply;

Rol_debug(Rol_Log);

Rol_open(&robot, argv[1]);
Rol_send(robot,“MOTV ON*,&reply);
Rol_reset(robot);
Rol_send(robot,“RNOD R=ON*,&reply);
Rol_send(robot,“READ C=1,110000,000000*,&reply);
Rol_send(robot,“ODOM ON*“,&reply);
Rol_send(robot,“ODOM*,&reply);
Rol_send(robot,“MOTV OF* &reply);
Rol_close(robot);

}

3.4 Abbildung der Verkabelung 55

Die einzubindende Library befindet sich im Verzeichnis
Jusr/local/bv/robot/lib/ Rechnerarchitektur/Rol Versionsnummer.

3.4 Abbildung der Verkabelung

Das im Verzeichnis Zusr/local/bv/robot/etc abgelegte File system.Rolrc hat folgen-
den Aufbau:

<robotername> <hostname><port>

<robotername>: porthos,aramis, athos

2. <hostname>: Steuerrechner, falls das Fahrzeug ueber serielle Schnittstelle ange-
sprochen wird. Ansonsten der Name des Ethernet-RS232-Umsetzers

3. <port>: Bei seriellen Schnittstellen mit Bezeichnung /dev/ttyx: Sl _x, bei den
Ethernet-RS232-Umsetzern und Ausgabeport x: WT_X

Es konnen Kommentarzeilen eingefluigt werden, die mit # beginnen.

3.5 Verwendung der Sourcen

Teilprojektname: Rol (Robot Interface)
aktuelle Version: Rol4-0

Library: libRol.a

Beschreibung: Routinen zum Ansprechen der Roboter
Architekturen: SUN4 SUNMP MASPAR

Includes: #include "Rol/RobotlInterface.h"
Linkoptionen: -IRol

Programme: Rol_test

Beschreibung: Testprogramm fur die Library-Wartung

Architekturen: SUN4 SUNMP MASPAR

56

3. Rol (Robot Interface)

Kapitel 4

Verwendung von DRI

(Distributed Robots Interface)

Alexander Rausch

Der EthernetanschluR auf allen Roboterfahrzeugen und eine entsprechende Erweiterung von
Rol hat die DRI praktisch tberflissig gemacht. Nur bei Verwendung des Simulationssystems
MORBS ist der Einsatz von DRI noch sinnvoll.

Die in dieser Beschreibung vorgestellte Roboterschnittstelle ermdglicht die Ansteue-
rung der vorhandenen mobilen Fahrzeuge namens ,,Portos, ,,Athos* und ,,Aramis*
auf einheitliche Weise. Diese Schnittstelle stellt eine Grundfunktionalitat in der Pro-
grammiersprache C zur Verfugung, auf die Steuerprogramme ftr die Fahrzeuge auf-
setzen konnen. Insbesondere werden in DRI keine anwendungsspezifischen
Funktionen bereitgestellt, da diese dem Charakter der allgemein verwendbaren
Schnittstelle widersprechen wirden. Anwendungsspezifische Funktionalitat muf3 so-
mit in weiteren Projekten, die auf DRI aufbauen, bereitgestellt werden. Beispielsweise
sind hier Verfahren zu nennen, die eine besondere Strategie zum Auslesen der Fahr-
zeugsensoren Ultraschall und Odometrie betreffen. Eine Erweiterung in dieser Hin-
sicht wird jedoch dann erfolgen, wenn sich herausstellt, dal} die getesteten Verfahren
von allgemeinem Nutzen sind.

Wesentlicher Unterschied samtlicher Weiterentwicklungen auf héherer Ebene wird
die objektorientierte Gestaltung der Schnittstelle sein. So wird Funktionalitat bereitge-
stellt werden, die C++ - Klassen zur Sensorabfrage und Fahrzeugbewegung verwen-
det.

Nach wie vor wird die vorhandene C - Schnittstelle jedoch im hier vorgestellten Um-
fang untersttzt, um auch von der MasPar aus die Fahrzeuge steuern zu kénnen.

58

4. Verwendung von DRI

4.1 Einleitung

Im Roboterlabor sind alle mobilen Fahrzeuge an je einen dedizierten Steuerrechner
angeschlossen. Derselbe Sachverhalt trifft fur die vorhanden 6D - Steuerkugeln zu.
Die Videosignale kdnnen tber ein Switchboard zur weiteren Bildverarbeitung auf die
MasPar, das Eltec-Board oder die SUN gefuihrt werden. Somit ergibt sich die im fol-
genden beschriebene Problematik:

1.

Die feste Zuordnung der Fahrzeuge zu Steuerrechnern und die beliebige aber soft-
waremanig nicht zu beeinflussende Zuordnung der Videosignale zu Bildverarbei-
tungsrechnern bewirkt, daR Fahrzeugsteuerrechner und Bildverarbeitungsrechner
nicht identisch sein mussen. Die Verbindung zwischen Bildverarbeitungs- und
Steuerrechner kann Uber Interprozeflkommunikation, hier mit dem Werkzeug
PVM [1] geschlossen werden.

Die Ansteuerung eines Fahrzeuges ist ohne Einsatz von Interprozelkommunika-
tion nur von dem Rechner und das Fahrzeug mdglich, das an dem betreffenden
Steuerrechner Uber die serielle Schnittstelle angeschlossen ist. Die Interprozel3-
kommunikation ermdglicht es, einen ,,ServerprozeR“ auf einem entfernten Rech-
ner zur Ansteuerung eines weiteren Fahrzeugs zu starten und die
Fahrzeugsteuerbefehle Gber Nachrichtenaustausch weiterzuleiten.

Der Einsatz mehrerer Steuerprogramme zur Steuerung eines einzigen Fahrzeugs
ist naturgemal} nur Uber den Einsatz von Interprozef3kommunikation moglich.

Nachfolgende Abbildung veranschaulicht die Problematik.

jgl\ I’/I I\I

Fall 1 Fall 2 Steuer-
programm

Bild-
verarbeitung o o O o
* PVM *
Steuer- Fall 3
programm
Steuer-
programme
reifer
\j
Fahr-

I;I zeug g

4.2 Funktionalitat 59

4.2 Funktionalitat

4.2.1 Direkte Ansteuerung der Fahrzeuge

DRI erlaubt den direkten Zugriff auf dieTTY - Schnittstelle. Dies ist z.B. dann sinnvoll,
wenn Bildverarbeitung und Ansteuerung auf demselben Rechner stattfinden. Das
Programm hat dann prinzipiell folgende Struktur:

Programm 4.1: Direkte Ansteuerung der Fahrzeuge

#include“rob.h*
char reply[256];
int aramis = rob_init("aramis®);

rob_command(aramis,“MOTV ON* reply);

~NOoO b WNBRE

rob_exit(aramis);

4.2.2 Indirekte Ansteuerung der Fahrzeuge

Eine indirekte Ansteuerung der Fahrzeuge unter Zuhilfenahme von Interprozel3kom-
munikation ist erforderlich, wenn Bildverarbeitungsrechner und Steuerrechner nicht
Ubereinstimmen. Wird beispielsweise die MasPar zur Bildverarbeitung eingesetzt, so
mufd das Bildverarbeitungsprogramm mit einem Serverprozel} auf dem Fahrzeugs-
teuerrechner kommunizieren. Das Bildverarbeitungsprogramm hat dann folgenden
strukturellen Aufbau:

Programm 4.2: Indirekte Ansteuerung der Fahrzeuge

include“rob.h*

char reply[256]; int aramis;
rob_start(RobViaServer);
aramis = rob_init("aramis");

rob_command(aramis,“MOTV ON* reply);

rob_exit(aramis);
rob_halt();

©Coo~NOULE, WNBE

60

4. Verwendung von DRI

4.2.3 Indirekte Ansteuerung Uber mehrere Steuerprogramme

Startup-Programm: . »| Steuerprogramm 2:

rob_start(RobViaServer); |——w| Steuerprogramm 1:

rob_control(procl,hostl); rob_join();
rob_control(proc2,host2);

't.i'd:rob_init(“porthos“);
rob_halt();

rob_exit(tid):

rob_leave();

In diesem Fall ist zu beachten, da PVM vor dem Starten des Startup-Programms
hochgefahren wird. Falls die Steuerprogramme bereits auf den Steuerrechnern der
Roboter laufen, kann auch rob_start(RobViaRS232) verwendet werden. Diese
Option bewirkt, dal3 bei rob_init() in den Steuerprogrammen direkt auf die tty -
und somit ohne Instantiierung eines dedizierten Serverprozesses - geschrieben wird.

4.3 Voraussetzungen fur den Einsatz

Der Einsatz von DRI erfordert die Einhaltung einiger weniger Voraussetzungen, die
im folgenden beschrieben sind:

1.

Setzen der Environmentvariablen. Dies kann z.B. durch Setzen einer entsprechen-
den Variable set ROB_USERerfolgen. Zuvor mull PVM_USERjesetzt werden. Das

alte File /usr/local/bv/adm/cshrc darf nicht mehr eingesourced werden.
Diese Funktion Ubernimmt das File /usr/local/bv/rc/cshrc , das unmittel-
bar nach /usr/local/rc/cshrc eingesourced werden sollte.

Auschecken des Schnittstelleninterfaces DRI aus CVS.

Bereitstellen eines .pvm_hosts . Ein Beispiel ist unter /usr/local/bv/robot/
etc/pvm_hosts zu finden (Achtung: Dieses File sollte im eigenen $(HOME) un-
sichtbar unter dem Namen (.pvm_hosts) abgespeichert werden.

Im eigenen $(HOME) mufR ein .rhosts vorhanden sein. Ansonsten ist es nicht
moglich, auf den robosuns Prozesse remote zu starten. Ein Beispiel ist unter /usr/
local/bv/robot/etc/rhosts zu finden (Achtung: Dieses File sollte im eige-
nen $(HOME) unsichtbar unter dem Namen (.rhosts) abgespeichert werden.

4.4 Arbeitsweise 61

6.

Standardmallig wird die unter /usr/local/bv/robot/adm/etc/sy-
stem.robotrc beschriebene Roboterkonfiguration verwendet. Falls eine andere
Konfiguration gewinscht wird, muf3 im $(HOME) ein .robotrc vorhanden sein.

Die Libraries missen mit
-L/usr/local/bv/robot/lib/$(BV_ARCH)/DRI2-0 -IDRI und

-L/usr/local/bv/pvm3 -lpvm3

hinzugebunden werden. Das Ausckecken sollte die entsprechenden Pfade automa-
tisch setzen und die richtigen libraries finden (vgl. Kapitel Projektverwaltung).

4.4 Arbeitsweise

4.4.1 Direkte Ansteuerung der TTY - Schnittstelle

Falls eine InterprozeBkommunikation nicht benétigt wird, werden die mittels der
Funktionen rob_init(), rob_command() und rob_exit() ausgelosten Aktio-
nen direkt and die serielle Schnittstelle des Arbeitsplatzrechners weitergereicht.

4.4.2 Indirekte Ansteuerung der TTY - Schnittstelle

Falls die Anwendung den Einsatz der InterprozeRkommunikation erfordert, wird ein
Systemprozel} gestartet, der fur die Steuerung des Prozel3systems erforderlich ist. Die-
ser Prozel} (genannt: administrator) verwaltet die Zugriffe auf die tty.

1.

Zentraler Verwaltungsprozel3: Dieser Prozel sequentialisiert alle Auftrage, die das
Offnen und SchlieRen einer seriellen Schnittstelle betreffen. Ein Programm, das
eine Schnittstelle 6ffnen moéchte, meldet sich hierzu beim sog. ,,Administrator* an
und erhalt die Adresse des dedizierten TTY-Roboterserverprozesses, falls dieser
schon instanziiert wurde. Falls der Roboterserverprozel3 noch nicht lauft, wird er
zuvor instanziiert. Eine Aufforderung zum Schlie3en der Schnittstelle bewirkt erst
dann das Herunterfahren des Roboterserverprozesses, falls der Prozel3, der den
Auftrag zum SchlieRen gab, der letzte ProzeR ist, der noch Zugriff auf den Robo-
terserverprozel hat. Ansonsten wird lediglich der zugreifende Anwenderprozeld
aus der Liste der auf den Roboterserverprozel3 zugreifenden Prozesse ausgetra-
gen. Beim Absetzen von Fahrkommandos, Sensorabfragen, usw. kommuniziert
das Anwendungsprogramm direkt mit dem RoboterserverprozelR3.

Der Messageserver wird nicht mehr benoetigt, da DRI auf den Einsatz von XPVM
vorbereitet ist. Der testweise Einsatz von XPVM erfolgte bereits, eine abteilungs-
weite Installation kann jedoch aufgrund eines PVM-Bugs erst mit der nachsten
major Release von PVM3.4.x erfolgen. XPVM beinhaltet bereits die Funktionalitat
des zuvor implementierten Messageservers.

62 4. Verwendung von DRI

4.4.3 Ansteuerung des Simulators

Die Simulationsumgebung mobs kann verwendet werden, indem beim Aufruf des
RoboterprozeR3systems die Option RobViaSimulator verwendet wird, also
rob_start(RobViaSimulator) . Es ist erforderlich zuvor PVM und den Simulator
selbst zu starten. DRI haengt sich dann in das laufende PVM ein.

4.5 Funktionsvorrat

Zur Programmierung der Schnittstelle stehen Funktionen zur Verfligung, die die
komplette Funktionalitat der mobilen Fahrzeuge erschlieRen, jedoch noch nicht auf
die spezifischen Eigenheiten der Kommandos, wie Fahrbefehle, Ultraschallsensorik,
Odometrie, usw. Rucksicht nehmen. Um auch von der MasPar aus direkt Fahrbefehle
absetzen zu kdnnen, ist die vorliegende Implementierung in C gehalten. Weitergehen-
de Implementierungen werden im objektorientierten Sinne Klassen bereitstellen, die
einen Bezug zu gewissen Befehlsgruppen herstellen. Die Robotersteuerungskomman-
dos reichen den Befehl als ASCII - Zeichenkette zum mobilen Fahrzeug durch. Fur
eine ausfuhrliche Dokumentation der bereitgestellten Funktionen sei auf die man -
pages verwiesen. Im folgenden werden die Befehle stichpunktartig aufgefuhrt. Als
Referenz dienen die man-pages, die beim Ausckecken automatisch verfuegbar sind.

4.5.1 Systembefehle

int rob_start(int ttyflag) ; /* startet das ProzeRRsystem */

int rob_halt(); /* halt das Prozel3system an */

int rob_join(); /* klinkt den Prozess in ein laufendes System ein */

int rob_leave(); /* Klinkt den Prozess aus einem laufenden System aus */

45.2 TTY-Befehle

int rob_init(char* robname); /* Offnet die Verbindung zum Fahrzeug */
int rob_exit(int robtid); /* Schlie3t die Verbindung zum Fahrzeug */

4.5.3 Programmentwicklungsbefehle

Der Programmier hat fur Zwecke der Programmentwicklung die Mdglichkeit die
TTY-Ausgabe abzuklemmen und 7/ oder den aktuell abgesetzten Befehl textuell ange-
zeigt zu bekommen (im File Ztmp/pvml.xxxxx):

/* Folgende Routine erlaubt die textuelle Ausgabe des zum Fahrzeug gesendeten
Kommandos und / oder das Abklemmen der TTY */

int rob_setopt(int what, int val);

/* Folgende Routine liest die gewunschte Option aus */

4.6 Deklarationen und Fehlercodes 63

int rob_getopt(int what);

4.5.4 Robotersteuerungsbefehle:

1.

rob_command(int robtid,char* command, char* reply) - synchrones
Absetzen eines Robotersteuerungsbefehls und Abwarten der Antwort.

rob_send_command(int robtid, char* command) - Absetzen eines Ro-
botersteuerungsbefehls, wobei auf eine Antwort des Roboterserverprozesses nicht
gewartet wird.

rob_get_reply(int robtid, char* reply) - Auslesen der Antwort des
Roboters zum letzten abgesetzten Robotersteuerungsbefeh.

rob_send_command_confirm(int robtid, char* command) - Absetzen
eines Robotersteuerungsbefehls, wobei auf ein Echo des Roboterserverprozesses
gewartet wird. Die Antwort des Roboters wird jedoch nicht abgewartet.

rob_send_command_buffer(int robtid, char* command) - Absetzen
eines Robotersteuerungsbefehls, wobei auf das Echo des Roboterserverprozesses
auf den vorigen rob_send_command_buffer(..) gewartet wird.

rob_send_command_clearbuffer(introbtid) - Dieser Befehl ist erforder-
lich um nach dem Absetzen einer Sequenz von rob_send _command_buf-
fer(..) - Befehlen das vom RoboterserverprozelR gesendete letze Echo korrekt
zu verarbeiten.

4 5.5 Ausdrucken von Nachrichten

Das Ausdrucken von Nachrichten erfolgt Gber einheitliche Funktionen. Die Verwen-
dung von printf(...) sollte vermieden werden, um den Nachrichtenflu3 auch im Hin-
blick auf spatere Erweiterungen tber die folgenden Funktionen zu kanalisieren:

void rob_print(char* message);

void rob_error(char* message);

4.6 Deklarationen und Fehlercodes

4.6.1 Deklarationen und Fehlercodes

Folgende Deklarationen und Fehlercodes wurden bislang im include-File vorgesehen
und sollten in Anwendungsprogrammen verwendet werden. Eine auf jeden Fall gul-
tige Auflistung kann dem File DRI/include/rob.h entnommen werden:

64

4. Verwendung von DRI

Programm 4.3: DRI - Deklarationen und Fehlercodes

[* general constants */

#define ROBOCMDLENGTH 256
#define ROBOMSGLENGTH 256
#define MAXEXECLENGTH 20
#define MAXHOSTNAMELENGTH 256

[* general tty behavior */

©Coo~NOULE, WNBE

#define Activated 1

10 #define NotActivated O

11

12 #define RobDebugDefault Activated /* no debugging */

13 #define RobTTYDefault NotActivated /* tty I-O */

14

15 /*for rob_pvm_start */

16

17 #define RobViaRS232 402 /* all rob_commands are routed
to RS232 immediaely*/

18

19 #define RobViaServer 401 /* all rob_commands are routed
to a robotserver*/

20

21 #define RobViaSimulator 403 /* all commands are routed to simu
lator

22

23 /*for rob_setopt and rob_getopt */

24

25 #define RobToTid 305 /* set options */

26 #define RobGetOpt 304 /* set options */

27 #define RobSetOpt 303 /* set options */

28 #define RobDebug 302 /* debug option */

29 #define RobTTY 301 /* tty option */

30

31 /*librob error codes */

32

33 #define RobOk 0 /*okay*

34 #define RobPvmFalil -1 /* pvm not started / stopped */

35 #define RobAdmFail -2 [* administration process not

started / not cleaned up
correctly */

36 #define RobEnvFail -3 /* environment variables for robot
servers missng */

37 #define RobFileMissing -4 /* environment variables for robot
servers missng */

38 #define RobHostMismatch -5 /* direkt tty only: actual host
does not match erver

host */
39 #define RobCtrlFail -6 /* control process not started */
40 #define RobNoRobot -7 [* no such robot name */
41 #define RobOptFalil -8 /* no such option */
42 #define RobNoServers -9 /* no server processes running */

43

4.7 Ausblick 65

4.7 Ausblick

Die vorgestellte Schnittstelle steht unter fortdauernder Entwicklung. Soweit moglich
wird eine Aufwartskompatibilitat angestrebt. In zuklnfigten Releases sollen folgende
Punkte eingearbeitet werden:

= Beseitigung aufgetretener Bugs.

= Schedulingalgorithmus zur Verwaltung mehrerer auf denselben Roboterserver-
prozel3 zugreifender Prozesse.

e C++ - Aufsatz fur Bewegungsbefehle der MOTV-Gruppe, Ultraschall, Odometrie

= Mit der néachsten PVM3.4.x Release wird XPVM hoffentlich fehlerfrei funktionie-
ren. Mit XPVM steht dann eine graphisch ansprechende Monitoringumgebung
zur Verflgung.

4.8 Verwendung der Sourcen

Teilprojektname: DRI (Distributed Robots Interface)
aktuelle Version: DRI2-0

Library: libDRI.a

Beschreibung: Routinen zum Ansprechen der realen Roboter
Architekturen: SUN4 SUN4SOL2 SUNMP

Includes: #include "DRI/rob.h"

Linkoptionen: -IDRI

Programme: testl, test2, test3, test4

Beschreibung: Programme fur die Library-Wartung
Architekturen: SUN4 SUNMP MASPAR

4.9 Literatur

[1] Al Geist et.al. PVM 3.0 User’s Guide and Reference Manual, Oak Ridge National La-
boratory, Oak Ridge, Tennessee 37831, 1993

66

4. Verwendung von DRI

Kapitel 5
6-D-Maus

Matthias Muscholl

Die Space Mousel ist eine Eingabeeinheit, die die Steuerung von graphischen Objek-
ten oder die Positionierung von Effektoren in 6 Freiheitsgraden erlaubt. Sie versetzt
den Benutzer in die Lage, Objekte in den drei translatorischen und den drei rotatori-
schen Bewegungsrichtungen mit einem Handgriff zu flhren.

5.1 Pinbelegung und Adapterkabel

Die Space Mouse wird mit einem 9 polige Stecker geliefert, die an die RS232 Schnitt-
stelle des Rechners angeschlossen wird. Die Pinbelegung ist wie folgt:

i/ SR

RTS

Abbildung 5.1: Space Mouse Pinbelegung des 9-poligen RS232-Steckers

SUN bietet an einer RS232-Buchse(A/B) eine Verschaltung von zwei RS232-Schnitt-
stellen. Die Pinbelegung sieht fur A wie folgt aus:

68 5. 6-D-Maus

(ELC/RC)15
(ELC/RDCEA)17

Abbildung 5.2: SUN Pinbelegung der 25-poligen RS232-Buchse fur ttyA

FUr den AnschluR an eine RS232-Schnittstelle(A) von SUN ergibt sich die folgende
Verschaltung:

gibeleaur | PILREOS | Facocerun
1 Schirm

2TxD 3RD braun

3 RxD 2TD rot

5GND 7SG blau

7CTS 4 RTS gelb

8 RTS 5CTS grun

Tabelle 5.1: Verkabelung fir den Anschluf3 an SUN ttyA

5.2 Koordinaten und Einstellungen der Space Mouse

Die Space Mouse war ursprunglich far die graphische Steuerungen von 3-D-Applika-
tionen gedacht. Daher ist das Koordinatensystem der Maus der des Bildschirmes an-
gepaltl. Fur unsere Anwendung definieren wir die Koordinaten entsprechend den
Ublichen Weltkoordinaten um, so wie sie in Abb. 5.3 dargestellt sind.

5.2.1 Das Koordinatensystem

Das Koordinatensystem ist rechtwinklig, die x-Achse zeigt nach rechts, die y-Achse
nach hinten und die z-Achse nach oben. Die Rotation um die x-Achse bezeichnen wir
mit a, die um die y-Achse mit b und die um die z-Achse mit c.

1. Die Achsen sind wie folgt definiert: x-Achse nach rechts, y-Achse nach oben, z-Achse nach vorne.

5.2 Koordinaten und Einstellungen der Space Mouse

69

Abbildung 5.3: Koordinatensystem der Space Mouse

5.2.2 Die Steuerparameter

Die Space Mouse hat folgende Einstellmdéglichkeiten, die fast vollstandig auch Gber
das Tastaturfeld der Maus (drucken zweier Tasten gleichzeitig) vorgenommen wer-

den koénnen:

Abkirzung Erklarung Tasten

Trans Setzt alle translatorischen Komponenten auf 0. [True, False] | « 1

Rot Setzt alle rotatorischen Komponenten auf 0. [True, False] 2

Dom Setzt alle Komponenten auf 0, bis auf die betragsmaRig *3
grofte [True, False]

Zeroing Eicht den Nullpunkt der Space Mouse auf die augenblickli- | « 4
che Auslenkung

Sens Trans | Stellt die Empfindlichkeit der translatorische Auslenkung | «5
ein. Jeder Tastendruck z&hlt als Inkrement. [0 ... 15]

Sens Rot Stellt die Empfindlichkeit der rotatorische Auslenkung ein. | « 6
Jeder Tastendruck zahlt als Inkrement. [0 ... 15]

Nullradius | Stellt Schwellwert, ab der eine Auslenkung wahrgenom- w7
men wird. Jeder Tastendruck zahlt als Inkrement. [0 ... 15]

Set Default | Die Empfindlichkeit der translatorischen und rotatorischen | « 8
Komponenten wird auf 0 gestellt. Der Schwellwert wird
auf den Wert 8 gesetzt.

Tabelle 5.2: Kontrollparameter der Space Mouse

70 5. 6-D-Maus

Abkurzung Erklarung Tasten

Data Rate Einstellen der maximalen und minimalen Periodenzeit
(siehe 5.2.3). {60, 80, ..., 320} [ms]

Beep Das interne Pietzoelement kann flr bestimmte Zeitspannen
erténen. {32, 64, 125, 250, 500, 1000, 1500, 2000} [ms]

Tabelle 5.2: Kontrollparameter der Space Mouse

5.2.3 Das Kommunikationskonzept

Die Space Mouse schickt asynchron Datenpakete an den Rechner, die folgende Infor-
mationen transportieren: Auslenkungen der Kappe in den 6 Dimensionen, Dricken
einer Kombination von Tasten, Loslassen einer Kombination von Tasten, Ruckmel-
dung von vom Benutzer vorgenommenen Anderungen der Steuerparameter bzw.
Fehlermeldung bei unbekannten Kommandos.

Datenpakete werden dann tbersendet, wenn
1. wenn Auslenkungswerte ungleich 0 und

a. wenn die maximale Periodenzeit Uberschritten ist, nach der spontan ein Da-
tenpaket gesendet wird, oder

b. sobald die minimale Periodenzeit schon verstrichen ist und Datenpakete an-
gefordert wurden (Pollen).

2. oder der Auslenkungswerte ist null, aber vorher sind nur Datenpakete mit Werten
ungleich 0 Ubersendet worden.

Mithilfe der maximalen und minimalen Periodenzeit kann die Granularitat der zeitli-
chen Abtastung eingestellt werden:

1. feine Granularitat
Pmin = Pmax = 60 ms

2. grobe Granularitat
Pmin = Pmax = 320 ms

3. grobe Granularitat mit zwischenzeitig feinerer Granularitat beim Pollen
Pmin =60 ms, P2 = 320 ms

5.3 Schnittstelle zum Anwendungsprogramm

5.3.1 Verbindungsaufbau und -abbau zur Space Mouse

Das Initialisieren der RS232-Schnittstelle und die Konfiguration der Space Mouse
ubernimmt die Funktion smConfig() die den Deskriptor auf das TTY liefert. . Die
Funktion 6ffnet das TTY, konfiguriert die RS232-Schnittstelle und setzt die Space
Mouse auf die in Programm 5.1.angegebenen Werte. Der Ruckgabeparameter ist der
Deskriptor auf das TTY.

5.3 Schnittstelle zum Anwendungsprogramm 71

Programm 5.1: Prototype der Initialisierungsfunktion smConfig()
int smConfig(void)

{...
td = open("/dev/ttya", O_ RDWR);

smCntrl(td, smPeriodMaxMin, 60, 60);
smCntrl(td, smSensityTransRot, 0, 0);
smCntrl(td, smNullRadiusTo, 8);
smCntrl(td, smZeroing);

smCntrl(td, smBeepDuration, 64);
smCntrl(td, smRotOnTransOn);

10 return(td);

11 }

Mit der Prozedur smClose() wird die Verbindung zur Space Mouse wieder beendet.
Die SpaceMouse wird veranlalit keine Werte mehr zu senden (siehe Programm 5.2).

O©CoO~NOOULDWNPE

Programm 5.2: Prototype der Abmeldeprozedur smClose()

void smClose(int td)
1 {
2 smCntrl(td, smRotOffTransOff);
3 close(td);
4}

5.3.2 Steuerung der Space Mouse Funktionen

Die Space Mouse wird mit der in Programm 5.3 aufgefthrten Funktion gesteuert. Der
Ruckgabeparameter ist -1, falls die aufgerufene Option nicht verfugbar ist. In Tabelle
5.3 sind die implementierten Optionen aufgefuhrt

Optionen Parameter Bedeutung
smZeroing siehe Zeroing (Tabelle 5.2)
smRotOnTransOn empfindlich auf Rot / Trans
smRotDomTransOff empfindlich auf betragsgroite Rot
smRotOffTransOn empfindlich nur auf Trans
smRotOffTransDom empfindlich auf betragsgrofite Trans
smRotDomTransDon empfindlich auf betragsgréite Rot / Trans
smRotOffTransOff unempfindlich auf Rot / Trans
smBeepDuration int duration siehe Beep (Tabelle 5.2)
smPeriodMaxMin int max, int min | siehe Data Rate (Tabelle 5.2)
smNullRadiusTo int radius siehe Nullradius (Tabelle 5.2)

Tabelle 5.3: Optionen der Stererfunktion smCnitrl()

72 5. 6-D-Maus

Optionen Parameter Bedeutung

smSensityTransRot | int trans, int rot | siehe Sens Trans / Sens Rot (Tabelle 5.2)

Tabelle 5.3: Optionen der Stererfunktion smCnirl()

Programm 5.3: Prototype der Steuerfunktion smCntrl()

int smChntrl(int td, int option, ...)
1 {..

2}

5.3.3 Datenverkehr mit der Space Mouse

Die Werte der Space Mouse werden mit der Funktion smDataRequest() abgerufen.

Programm 5.4: Prototype der Prozedur smDataRequest()

void smDataRequest(int td, int polling, smDataConfirm *reply);
1 {.
2}

Der erste Parameter Ubergibt den Deskriptor, der zweite bestimmt, ob anstatt alle Da-
ten weiterzugeben nur die aktuelle Auslenkung der Kappe ausgelesen werden soll
(polling O { TRUE FALSE siehe dazu 5.2.3) und der dritte Parameter ist der Rickga-
beparameter. Der Rickgabeparameter ist vom Typ smDataConfirm (siehe Tabelle 5.4
und Programm 5.5).

smReplyType , Zugehorige
<var>.tag == Erklarung Variantentupel
smKeyboard Eine oder mehrere Tasten wurden gedruckt. | <var>.msg.button
kl-ks sind Bool-Werte, no gibt die Anzahl
der gleichzeitig gedrickten Tasten wieder.
smData Die Kappe wurde bewegt. Das Koordina- <var>.msg.move
tensystem entspricht dem der Abb. 5.3

Tabelle 5.4: Aufzaehlungsvarianten des Typs smDataConfirm

5.3 Schnittstelle zum Anwendungsprogramm

73

dConfiguration

anderungen durch Dricken von Tasten-
kombinationen (siehe auch smKeyboard)
vorgenommen. Zu diesen zaehlen:

a. Sens Trans
b. Sens Rot
¢c. Nullradius

d. Set Default

Ist dies unzulassig, so kann das Programm
die Anderungen geeignet Uberschreiben.

smReplyType) Zugehdrige
<var>.tag == Erklarung Variantentupel
smUserChange- | Der Benutzer hat kritische Konfigurations-

smCmdError Ein Fehler in einem Kommando ist erkannt | <var>.msg
worden. In unknown wird zeichenweise
das Kommando an das Programm uberge-
ben.

smFrameError Es trat ein Datenubertragungsfehler auf.

Tabelle 5.4: Aufzaehlungsvarianten des Typs smDataConfirm

5.3.4 Programmtemplate fur die Verwendung der Space Mouse

Im eigenen Programm kann man den Code aus Programm 5.6 verwenden, um die
Space Mouse abzufragen.

5.4 Verwendung der Sourcen

Teilprojektname:
aktuelle Version:

bei nutzenden TPR:

Library:
Beschreibung:
Architekturen:
Includes:
Linkoptionen:

Programme:
Beschreibung:

Architekturen:

Sml (Space Mouse Interface)
Smi2-0

libSml.a

Routinen zum Ansprechen der Space Mouse

SUN4 SUN4SOL2 SUNMP
#include "Sml/SpaceMouselnterface.h”
-ISml

mousetest

Makefilevariable BASESONImM die aktuelle Version erweitern

Gibt die von der Space Mouse Ubertragen Daten auf der Shell

aus. Beendet wird es mit ctrl-c.
SUN4 SUNMP

74 5. 6-D-Maus

Programm 5.5: Datentyp der von der Space Mouse verschickten Werte

1 typedef enum { smKeyboard, smData, smUserChangedConfiguration,
smCmdError, smFrameError } smReplyType;

2

3 typedef union {

4

5 struct { [* tag == smKeyboard */

6 unsigned k1 : 1; /* Taste gedrueckt, dann k. == TRUE */
7 unsigned k2 : 1;

8 unsigned k3 : 1;

©

1
1
unsigned k4 : 1
10 unsigned k5 : 1
11 unsigned k6 : 1;
1

1

1

4

12 unsigned K7 :
13 unsigned k8 :
14 unsigned ks :

15 unsigned no : 4; /* Anzahl gedrueckter Tasten [0..9] */
16 } button;

17

18 struct { [* tag == smData */

19 int x,y,z,a,b,c; /* enthaelt transl. und rotat. Werte */

20 } move;

21 [* tag == smCmdError */

22 char unknown; /* unverstandenes Kommando (zeichenweise) */
23

24 } smReplyMessage;

25

26 typedef struct {

27 smReplyType tag;

28 smReplyMessage msg;
29 } smDataConfirm;

5.5 Literatur

[1] NN. Space Mouse Software Interface Benutzerhandbuch, Space Control Gesellschaft
fur 3D Systeme, 82216 Malching, 1994

5.5 Literatur

75

Programm 5.6: Programmtemplate

1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18
19
20
21
22

#include “SpaceMouselnterface.h”

funct(...)

{

int td; /* Deskriptor der Schnittstelle zur Space Mouse */
smDataConfirm mouse;

td = smConfig();

while (I<Ende Bedingung>) {
smDataRequest(td, FALSE, &mouse);
switch(mouse.tag) {
case smKeyboard: ...; break;
case smData: ...; break;
case smCmdError: ...; break;
case smFrameError: ...; break;

default: ...; break;
}

}

smClose(td);

76

5. 6-D-Maus

Kapitel 6

Bildformate

Michael Vogt, Harald Bayer, Susanne Gerl

Far die im Roboterprojekt anfallenden Bilder und Verarbeitungsroutinen sollen regel-
maRig die gleichen internen Formate verwendet werden, um eine moglichst hohe
Wiederverwendbarkeit der einzelnen Programme zu garantieren. Zur Diskussion ste-
hen mehrere Formate, die zum Teil durch die Hardware (Sun, MasPar, Eltec) und zum
anderen Teil durch vorhandene Software (Horus, Khoros, pbmplus) in Betracht kom-
men. Nachfolgend erfolgt eine Zusammenstellung der bisher vorhandenen Formate
und eine Empfehlung fur ein integriertes Format, das moglichst vielen Anforderun-
gen gerecht wird.

6.1 Hardware Formate

6.1.1 Sun XIL Framegrabber

Der Sun Framegrabber liefert in Zusammenarbeit mit der XIL Library die Bilder in
Form einer speziellen Speicherstruktur mit Namen XilMemoryStorage. Der Aufbau
ist in Programm 6.1 verdeutlicht.

Wie man erkennen kann, handelt es sich um eine Union, die vier verschiedene Falle
(also Bildformate) abdeckt. Leider enthalt der Datentyp keinen Hinweis darauf, wel-
ches Format tatsachlich vorliegt. Der einzige Hinweis hierauf ergibt sich aus der In-
itialisierung des Framegrabbers und der Aufrufreinenfolge und Definition
verschiedener Zwischenbilder, die der Endbenutzer jedoch nicht sieht. Die bereits
vorhandenen Routinen zum Lesen eines Bildes (schwarz weil3 oder farbig) verwen-
den beide das Byte Format, welches in Programm 6.2 definiert ist.

78

6. Bildformate

Programm 6.1: Definition von XilMemoryStorage

typedef union __XilMemoryStorage {
XilMemoryStorageBit bit;
XilMemoryStorageByte byte;
XilMemoryStorageShort shrt;
XilMemoryStorageFloat flt;
} XilMemoryStorage;

OO0 WNPE

Programm 6.2: Definition von XilMemoryStorageByte

typedef struct __ XilMemoryStorageByte {
Xil_unsigned8* data;

[* pointer to the first byte of the image */
unsigned long scanline_stride;

[* the number of bytes between scanlines */
unsigned int pixel_stride;

[* the number of bytes between pixels */

} XilMemoryStorageByte;

coO~NO UL WNBE

Die Breite und Hohe des Bildes geht nicht aus dem Format hervor, sondern wird bei
der Initialisierung des Framegrabbers festgelegt und muf} an anderer Stelle gespei-
chert werden.

Nach unserer bisherigen Erfahrung liegen die Bilddaten folgendermaf3en vor:

1.

Grauwertbilder:

Xil_unsigned8* ist ein Zeiger auf einen Speicherbereich mit #Zeilen mal #Spalten
Bytes. Jedes Byte enthélt einen Grauwert zwischen 0 (schwarz) und 255 (weil3). Die
Anordnung ist Zeilenweise von oben nach unten und innerhalb der Zeilen von
links nach rechts. Das Feld scanline_stride gibt die Anzahl der Bytes pro Zeile an,
steht also de facto fur die Bildbreite. Der Zugriff auf ein Pixel an der Position (X,y)
kann z.B. erfolgen tber folgenden Pseudocode:

Programm 6.3: Zugriff auf XIL Grauwertbilder

1 grey = data[x+y*scanline_stride]

Farbbilder:

Wie bei schwarz weil3 Bildern gibt Xil_unsigned8* einen Zeiger auf den Bildbe-
reich an. Dieser Bereich enthalt #Zeilen mal #Spalten mal drei Bytes. Die zeilenwei-
se Anordnung ist analog. Hier werden jedoch fur jedes Pixel drei
aufeinanderfolgende Bytes belegt, und zwar in der Reihenfolge blau, grin, rot. Der
Zugriff auf die RGB Werte eines Pixels (x,y) kann z.B. erfolgen durch:

Programm 6.4: Zugriff auf XIL Farbbilder

1 rot = data[3*(x+y*scanline_stride)+2]
2 gruen= data[3*(x+y*scanline_stride)+1]
3 blau= data[3*(x+y*scanline_stride)]

6.2 Software Formate 79

Der Framegrabber von Sun bietet aul3er den Bildern noch weitere Information an. Z.B.
ist es moglich, eine Bildnummer und einen Timestamp auszulesen.

Weitere Informationen tber XIL Bilder und die Benutzung des Sun Framegrabbers be-
finden sich im Kapitel Uber den Sun Framegrabber. Hier ist die C Datenstruktur
SFG_image definiert, die XIL Bilder als Grundlage enthalt.

6.1.2 Eltec Kantenfinder

Der Eltec Kantenfinder liefert keine Bilder sondern bereits extrahierte Kanten. Grund-
satzlich steht als Information ein ,,Kantenbild* zur Verfigung, wobei folgende Defini-
tionen gelten:

= Eine (gerade) Kante ist definiert durch ihren Startpunkt (x,y Position) eine Rich-
tungsangabe (Winkel) und eine Lange.

= Eine Kontur ist eine Liste von (geraden) Kanten, die miteinander verkettet sind.
= Ein Kantenbild ist eine Liste von Konturen

Die genaue Kodierung sowie die Zugriffsmethoden sind Implementierungsabhangig
und liegen noch nicht endgultig fest. Es besteht theoretisch die Moéglichkeit, die Kan-
tenbilder in einem Format darzustellen, das mit einem Horus oder Khoros Format
identisch ist.

Marco Sommerau ist hier der richtige Ansprechpartner.

6.2 Software Formate

6.2.1 Horus

EinfUhrung

HORUS ist ein Bildverarbeitungstool, welches an der Technischen Universitat Mn-
chen entwickelt wurde [1], [2]. Es stellt mehr als 600 Bildverarbeitungsroutinen zur
Verfligung, die in C oder C++ Programmen eingebunden werden kénnen. Diese er-
moglichen eine einfache und schnelle Implementierung komplexer Routinen zur Bild-
auswertung, die sowohl Aufgaben in der Low-Level-Bildverarbeitung, als auch in der
hoheren Bildverarbeitung 16sen.

In HORUS wurde fir Regionen und Bilder der Uberbegriff Bildobjekt (ObjType) ein-
gefuhrt. Eine Region besteht aus einer Menge von Koordinaten in der Bildebene. Eine
solche Region muf durchaus nicht zusammenh&ngend sein und kann ohne weiteres
auch Lécher enthalten. Regionen kénnen auch groRer als das aktuelle Bildformat sein.
Intern werden Regionen durch Lauflangenkodierung realisiert.

Bilder bestehen aus mindestens einer Bildmatrix zusammen mit einer Region, die an-
gibt, an welchen Punkten die Matrix definierte Werte enthalt. AuBerdem unterstitzt
HORUS mehrkanalige Bilder. Jedes Bild kann bis zu m Kanéle enthalten, wobei die
Zahl n bei der Initialisierung des Systems mit init_horus(...,n) festgelegt wird.
Zu einer Bildkoordinate existiert hier also nicht nur ein Grauwert, sondern ein ganzer
Vektor von bis zu n Grauwerten. (Sofern die entsprechenden Bildpunkte zum Defini-

80 6. Bildformate

tionsbereich des Bildes gehort). Anschaulich kénnte man vielleicht auch von einem
Stapel von Bildern sprechen anstelle eines Einzelbildes. Damit lassen sich zum Bei-
spiel RGB Bilder oder Voxelbilder darstellen.

HORUS/C stellt fur Bildobjekte (Bilder + Regionen) den Datentype ObjType zur Ver-
fagung. Dahinter verbirgt sich ein Surrogat der HORUS Datenbank, in der die Bildob-
jekte abgelegt sind. Eingabebildobjekte werden per value an die HORUS Prozeduren
Ubergeben und Ausgabe-Bildobjekte mittels des &-Operators per reference. Variablen
dieses Typus kdnnen sowohl ein einzelnes Bildobjekt, als auch ganze Tupel von Bild-
objekten enthalten. Ein Einzelobjekt wird hierbei wie ein Tupel der Lange eins behan-
delt.

HORUS wurde bereits so modifiziert, da? man von HORUS aus die Framegrabber auf
den Robosuns 6ffnen, Bilder grabben und schlieRen kann.

Momentan wird gerade an der Schnittstelle ELTEC/HORUS gearbeitet.

Im Folgenden werden einige wichtige Eigenschaften von HORUS aufgefuhrt, die we-
sentlich ausfuhrlicher auch in [1] und [2] beschrieben sind.

Aufbau eines Bildes

< Jedes Bild besteht aus:
1. Einer oder mehreren Bildmatrizen
2. Definitionsbereich

= Man unterscheidet zwischen Bild und Bildmatrix in HORUS:
- Die Matrix ist ein Baustein fur ein Bild, es speichert die Grauwerte
- Aus mehreren Matrizen wird ein mehrkanaliges Bild aufgebaut.
- Der Definitionsbereich schrankt die gultigen Koordinaten der Matrix ein.

Der Definitionsbereich eines Bildes

=« Alle Grauwertoperationen werden nur im Definitionsbereich des Bildes aus-
gefuhrt

« (z.B. Filter- oder Segmentierungsoperationen)
= Der Definitionsbereich eines Bildes ist als eine Region realisiert
= Der Definitionsbereich ist nie grof3er als die Matrix; die Form ist beliebig.

e Der Definitionsbereich kann i.a. nur verkleinert werden (z.B
reduce_domain).

< Maximalen Definitionsbereich durch full_domain.

Das Bildformat

= Der Ursprung eines Bildes ist immer der Punkt (0,0), und liegt somit “links
oben”.

= Die x-Koordinate (column) lauft vom Ursprung mit wachsenden Werten nach
rechts bis zum Wert Bildbreite-1.

< Diey-Koordinate (row) lauft vom Ursprung mit wachsenden Werten nach un-
ten bis zum Wert Bildh6he-1.

6.2 Software Formate 81

Pixel kdnnen nie negative Koordinaten haben
Bilder kdnnen nur rechteckig sein.

Die maximale Bildkantenléange ist 10.000.
Jedes Bild hat ein eigenes Bildformat

Bilder mit unterschiedlichen Format kdnnen nicht gleichzeitig bearbeitet wer-
den (z.B.add__ , dyn_threshold__).

Das Format eines Ergebnisbildes kann sich von der des Eingabebildes unter-
scheiden (z.B. image_transform__ , zoom_imagel).

Bildformate kdnnen mit den Prozeduren crop_image und change format
direkt modifiziert werden.

Eine Modifikation des Definitionsbereichs hat keinen Einflufd auf das Bildfor-
mat (z.B reduce_domain)

Die Pixeltypen

byte :0...255, typisches Graubild.

intl :-127..127, Byte mit Vorzeichen.

int2: -32767...32767, z.B. das Ergebnis einer Konvolution.

int4 :-2147483647... 2147483647, z.B. 2-dimensionale Histogramme
real : Gleitpunktzahl mit 4 Byte

complex : Komplexe Zahl; jeder Punkt besteht aus zwei Gleitpunktzahlen
vom Typ real fur Real- und Imaginérteil (z.B. Ergebnis der FFT).

dvf : Verschiebungsvektorfeld; jeder Punkt beschreibt einen Vektor (x,y); Dar-
stellung durch zwei Werte vom Typ intl

cyclic :0...255, wobei 255+1=0 ist; z.B fur die Darstellung des Farbwertes im
hsi-Farbmodell (trans_from_rgb).

direction : 0..180 Darstellung eines Winkels/2 (z.B. sobel_dir und
edges__).

Alle Pixel einer Bildmatrix sind vom gleichen Typ

Bei mehrkanaligen Bildern kdnnen die einzelnen Matrizen von unterschiedli-
chen Typen sein.

Der Pixeltyp kann z.B. durch Filter verandert werden.

Eine Typanpassung erfolgt durch die Prozeduren convert_image_type :
dvf_to_int oder complex_to_float

Das mehrkanalige Bildformat

Mehrkanalige Bilder mussen ein einheitliches Format haben (d.h. alle Bildma-
trizen des Bildes haben die gleiche Kantenlange)

Die Regionen

82 6. Bildformate

= Eine Region ist eine beliebige Menge von Koordinatenpunkten.

= Eine Region mul nicht zusammenhangend sein.

= Eine Variable (bzw. ein Parameter) kann mehrere Regionen enthalten.

< Die Regionen einer Variablen kdnnen sich Uberlappen

= Der Wertebereich von Punkten einer Region ist auf -32767...32767 beschrankt.
= Regionen werden durch Lauflangenkodierung realisiert.

Zugriff auf Regionen
e Punkte der Regionen (fetch_coord |, fetch_chord etc.)
< Rand (fetch_contour , fetch_polygon etc.)
= Einzelne Punkte (inside_region2)

Clipping von Regionen
= Eine Region ist unabhangig vom Bildformat.
= Regionen kdnnen negative Koordinaten enthalten.

= Das Systemflag clip_region beschneidet Regionen auf das (aktuelle maxi-
male) Bildformat.

6.2.2 Khoros

Khoros 1.x

Hier gab es ein Format, das jetzt Xvimage genannt wird, das das global gultige For-
mat war. Bilder anderer Formate muf3ten Uber mitgelieferte Routinen konvertiert wer-
den. Das Xvimage-Format war dokumentiert.

Khoros 2.0

Eine endgultige Beschreibung laf3t sich noch nicht geben, da noch niemand sich die
Zeit genommen hat, die sehr umfangreichen Handbtcher zu lesen. Was man in An-
kiindigungen zwischen den Zeilen fand, interpretiere ich momentan so:

Jedes Khoros2.0-Programm kann tber die Library-Routinen einer Toolbox (Khoros2.0
besteht nur aus Toolboxen, die verschiedenen Zwecken dienen) Files jedes der unter-
stutzten Formate lesen und schreiben. Unterstitzt werden momentan: ASCII, AVS,
PNM, (EPS,) Raw, Sun Raster, VIFF, XBM, Xvimage, XWD und XPM. Dadurch entfallt
die Notwendigkeit expliziter Konverter. Aber Khoros2.0 geht noch weiter: Es soll so-
gar die Notwendigkeit entfallen, an die Konversion denken zu mussen. Das geht so
weit, dal} weder gesagt wird, ob jedes Bild beim Lesen konvertiert wird oder intern
mit allen Formaten gearbeitet werden kann (einige Postings lassen sich durchaus so
verstehen, dal es sich bei den Bildverarbeitungsroutinen um einen Code auf héherer
Ebene handelt, der vom Format unabhéngig ist), noch wird das VIFF-Format be-
schrieben, da keine Notwendigkeit mehr bestinde, direkt mit diesem Format umzu-
gehen. (HFB)

6.2 Software Formate 83

6.2.3 pbmplus Format

Sehr verbreitet ist das pbmplus Format. Fur alle Architekturen gibt es das pbmplus
Paket, das sowohl einfache Bildoperationen aber hauptsachlich Konvertierungsfunk-
tionen beinhaltet. Das Dateiformat fiir ppmplus Bilder ist in der ASCII Form rechner-
unabhangig. Das schnellere und kleinere bindre Format ist hingegen immer an eine
bestimmte Architektur (Sun, Dec, ...) gebunden, wobei keine Mdglichkeit der Archi-
tekturprifung besteht.

Das Speicherformat von pbmplus Bildern hangt davon ab, welches der drei mdgli-
chen Formate (Binarbilder, Grauwertbilder, Farbbilder) vorliegt. Hier werden nur
Grauwert- und Farbbilder vorgestellt:

1. Grauwertbilder (pgm)
Grauwertbilder sind als zweidimensionale C Felder gespeichert (eine andere Be-
schreibung ist: Es sind eindimensionale Felder von Zeigern auf eindimensionale
Felder von Pixelwerten). Die C Deklaration eines pgm Bildes lautet:

Programm 6.5: #include fur pgm-Bilder

1 #include <pgm.h>
2 gray **bild;

Die Grol3e des Feldes, also die BildgroRe, ist im Format nicht enthalten und muR
wiederum beim Laden bzw. Erzeugen des Bildes festgelegt und gespeichert wer-
den. Die Elemente des Feldes sind vom Typ gray, der i.allg. einem unsigned char
entspricht und einen Wertebereich von 0 (schwarz) bis 255 (weil3) bzw. maxgray
hat. Der Zugriff auf ein Pixel (x,y) erfolgt einfach Uber eine doppelte Indizierung:

Programm 6.6: Zugriff auf pgm-Pixel

1 grey = bild[y][x];

2. Farbbilder (ppm)
Farbbilder sind ebenso wie Grauwertbilder als zweidimensionale Felder gespei-
chert. Der Basistyp ist hier jedoch ,,pixel*, was eine Struktur aus drei Werten vom
Typ ,,pixval“ fir RGB ist. Die entsprechende C Deklaration fur ein Farbbild lautet:

Programm 6.7: #include fur ppm-Bilder

1 #include <ppm.h>
2 pixel **bild;

Der Wertebereich der RGB Werte liegt i.allg. ebenfalls zwischen 0 und 255 (ma-
xval). Der Zugriff auf die einzelnen Farbkomponenten erfolgt durch vorhandene
Zugriffsmacros fur das Lesen und Schreiben von Pixelwerten (siehe Programm
6.8).

84 6. Bildformate

Programm 6.8: Zugriff auf ppm-Pixel

pixval rot,gruen,blau;

/* Lesen: */

rot = PPM_GETR(bild[y][x]);

gruen= PPM_GETG(bild[y][x]);

blau= PPM_GETB(bild[y][x]);

* Schreiben: */

PPM_ASSIGN(bild[y][x], rot, gruen, blau);

NOoO b WNBRE

Weiter Informationen zu den pbmplus Formaten und zu vorhanden Routinen zum
Lesen und Schreiben und Allocieren von Bildern sind leicht den entsprechenden man
pages zu entnehmen (libpgm, libppm).

6.3 Weitere Gesichtspunkte

Fur eine moglichst zukunftssichere Architektur wird es nétig sein, weitere Gesichts-
punkte in Betracht zu ziehen. Wesentliche Punkte sind z.B.:

1. Timestamp
Um eine Fusion mit anderen Sensorsignalen zu erreichen ist es notwendig, jedes
Bild mit einer Zeitmarke zu versehen, die den Zeitpunkt seiner Aufnahme angibt.

2. Stereo Bildpaare
Durch den Stereomischer fur den Stereokopf werden zwei getrennte Bilder in
Halbbilder eines einzigen Bildes zusammengefaldt. Ein effizienter Zugriff kann
durch ,,geschickte* Indizierung in die Bilddaten erfolgen, ohne die Bilder vorher
zu trennen. Vorhanden Routinen aus pbmplus, Horus oder Khoros kénnen aber
nicht direkt angewendet werden, ohne die Bilder vorher zu trennen.

6.4 Empfehlung fur ein allgemeines Bildformat

Das pbmplus Format ist sehr leicht zu benutzen und weit verbreitet. Das XIL Format
ist andererseits ein Hardwareformat, das sehr schnellen Zugriff erlaubt. Keines der
Formate enthalt ausreichende Angaben Uber BildgroéRe oder Zeitpunkt der Aufnah-
me. Auch Stereobildpaare werden nicht bertcksichtigt. Es wird daher ein Format vor-
geschlagen, das moglichst vielen Anforderungen gerecht wird (siehe Programm 6.9).

Die Bedeutung der Felder ergibt sich aus den Kommentaren. Durch den Inhalt des
Feldes ,,type* wird die Gultigkeit und Form des Zugriffs auf die Bilddaten festgelegt.

Eine Diskussion hiertber ist notwendig. Eventuell kbnnten man auch die Unterschei-
dung zwischen Mono- und Stereobildern durch eine Union erzielen. AuRerdem kdnn-
ten es sinnvoll sein, ein Stereobild basierend auf Halbbildern zu definieren, um der
ursprunglich vorliegenden Form gerecht zu werden.

6.5 Literatur 85

Programm 6.9: Vorschlag fur ein allgemeines Bildformat

1 typedefenum __image_type
2 { MONO_GRAY, STEREO_GRAY, MONO_COLOR, STEREO_COLOR } image_type;
3
4 structimage
5 |
6 image_type type; /* type of image */
7 int x; [* width of the picture */
8 inty; /* height of the picture */
9 struct timeval *tp; /* timestamp */
10 union
11 {
12 gray **gray_data; [* gray scale data */
13 pixel **color_data; /* color data */
14 } mono_left;
15 union
16 {
17 gray **gray_data; [* gray scale data */
18 pixel **color_data; /* color data */
19 } right;
20}

6.5 Literatur

[1] Wolfgang Eckstein: Horus-Referenzmanual, Technische Universitat Munchen, Insti-
tut far Informatik, 1995.

[2] Wolfgang Eckstein: HORUS/C* Benutzerhandbuch, Technische Universitat Mn-
chen, Institut fur Informatik, 1994.

[3] Manual zum PNM System, online Dokumentation, Einstieg Uber man libpnm
oder man pnm

86

6. Bildformate

Kapitel 7

Benutzung des Maspar
Framegrabbers

Thilo Will

In der Maspar befindet sich ein Framegrabber. Diesen kann man mit Funktionen in
libcfg-GetFrame nutzen. D.h. man kann schwarz-weiss Bilder vom Framegrabber auf
das DPU transportieren. Es werden Bildgrdssen deren Kantenlaengen ein vielfaches
von 128 sind, unterstitzt. Die Kanten duerfen nicht grésser als 512 sein. Im folgenden
wird zunéchst besprochen, in welcher Weise die Bilddaten dabei auf der DPU abge-
legt werden, danach wird auf die Funktionen eingegangen.

7.1 Virtualisierung der Bilddaten

Die Funktionen aus libcfgl-2GetFrame dienen dazu Bilder aus dem Framegrabber auf
der DPU abzulegen. Wie werden nun die Daten eines Bildes auf die einzelnen PE’s
verteilt? Sei

unsigned char bild[nx][ny];
ein Bild, und
plural unsigned char *plural_bild;

ein Pointer auf das entsprechende Bild auf der DPU. Es gilt dann folgende Zuord-
nung:

bild[x][y] = iproc[x%nxproc][y%nyproc].plural_bild[x/nxproc +
(nx/nxproc)*(y/nyproc]);

Dies bezeichnet man auch als Two-Dimensional Cut-and-Stack Virtualization.

88 7. Benutzung des Maspar Framegrabbers

Insbesondere folgt daraus fur Bilder der Grél3e nxproc X nyproc:
bild[x][y]=iproc[x][y].plural_bild[0];

7.2 cfglnit

#include <GetFrame.h>
void cfglnit(void);

Diese Funktion initialisiert den Framegrabber. Sie muf3 vor dem ersten Aufruf von
cfgGetFrame aufgerufen werden.

7.3 cfgGetFrame
#include <GetFrame.h>
void cfgGetFrame(
plural unsigned char *image,
int ix,
int iy,
int xoff,
int yoff,
int xsk,
int ysk
);
Diese Funktion transportiert ein Bild vom Framegrabber auf die DPU. Es kann dabei
auch ein Auschnitt des Bildes im Buffer des Framegrabbers gelesen werden. Dieser
Auschnitt kann beliebig positioniert werden. Ausserdem kann der Ausschitt, beveor
er auf der DPU abgelegt wird, um ganzahlige Faktoren in Breite und Lange verklei-
nert werden.

image zeigt auf das plural Feld wo die Bilddaten hingeschrieben werden .

IX, 1y geben an wie Grol3 das Bild auf der DPU sein soll. Es gilt
Breite = ix * nxproc

Hoehe =iy * nyproc

Die Parameter ix, iy duerfen die Werte 1...4 annehmen.

xoff,yoff bestimmen die Postion des Bildausschnittes des Bildes im Framebuffer,
welcher auf die DPU kopiert werden soll. xoff,yoff sind dabei die Koordinaten
des linken oberen Pixels des Bildausschnittes im Gesamtbild.

xsk, ysk sind die Verkeinerungsfaktoren zwischen dem Bild im Framebuffer und
dem Bild auf der DPU in x bzw. y-Richtung.

7.4 cfgGetHalfFrame 89

7.4 cfgGetHalfFrame

#include <GetFrame.h>
void cfgGetHalfFrame(
plural unsigned char *image_even,
plural unsigned char *image_odd,
int ix,
int iy,
int xoff_even,
int xoff_odd,
int yoff_even,
int yoff _odd,
int xsk,
int ysk
);
cfgGetHalfframe ermdglicht das Lesen von Bildern die mit dem Stereobildmischer
zusammengemischt wurden. Der Stereobildmischer liefert als output ein Bild dessen
gerade Zeilen aus dem Halbbild des einen Inputskanales bestehen, und die ungera-
den aus einem Halbild des anderen. Mit cgfGetHalfFrame kann man diese Bilder ent-
mischt lesen. Die Bedeutng der Parameter ist anolog der von cfgGetFrame, mit dem
Unterschied:

e Esgibtjetzt zwei Zieladressen, image_even undimage_odd, fuer das Bild in den
geraden bzw. ungeraden Zeilen.

= Fur die beiden Bilder kann man unterschiedliche offset Werte angeben.

7.5 Geschwindigkeit

Der Transport der Bilddaten vom Framegrabber zur DPU ist langsam. Die Geschwin-
digkeit, hangt stark von den Parametern der GetFrame Funktionen ab. Den grdssten
Einfluss haben iy und ysk. Die Parameter fur Bildgrésse ix und Skalierung xsk in x-
Richtung haben weniger Einfluss. Der offset in y-Richtung hat keinen Einfluf3.

90

7. Benutzung des Maspar Framegrabbers

Kapitel 8
ELTEC-VectEX

Marco Sommerau

Das ELTEC-VectEx ist eine Spezialhardware zur Bildverarbeitung, die Konturen aus
einem Grauwertbild in Echtzeit (Videofrequenz: 50 Hz) extrahiert und durch Poly-
gonzuge approximiert (vektorisiert).

Die zum System gehdrende Hardware besteht aus drei VME-Bus Karten, die in einem
19“-Gehause untergebracht sind. Die Karten kdnnen nur von robosunl aus tber einen
SBus VME-Bus Adapter konfiguriert und ausgelesen werden.

Da die von der Hardware gelieferten Daten zur direkten Weiterverarbeitung ungeeig-
net sind, mussen diese erst durch einige Vorverarbeitungsschritte aufbereitet werden.

Die notwendige Software wurde unter Verwendung von Teilen der GNU C++ Biblio-
thek (libg++) komplett in C++ erstellt. Diese Dokumentation beschreibt die Struktur
und Funktionsweise der Software in der Version Elt2-1.

Diese Software besteht zum einen aus einer Bibliothek zur komfortablen Bedienung
der Hardware (libElt_boards.a) und zum anderen aus einer Bibliothek die losgeldst
von der Hardware die fur die Bilddaten notwendigen Vorverarbeitungsschritte bereit-
stellt und Hilfestellung fur eine weitere Bildauswertung gibt (libElt_misc.a).

8.1 Konfiguration der Hardware

Als Eingabe erhélt das VME-Subsystem ein analoges Videosignal. Dieses wird zuerst
digitalisiert, dann Uber den ELTEC-spezifischen Video-Bus (VI-Bus) von Verarbei-
tungseinheit zu Verarbeitungseinheit weitergereicht, bis schlieRlich tber VME-Bus
die extrahierten Daten in Form von Vektorpunkten ausgelesen werden kdnnen. Jede
der beteiligten drei Karten kann tber VME-Bus konfiguriert werden.

92 8. ELTEC-VectEx

8.1.1 SBus VME-Bus Adapter (PT-SBS915)

Um die Hardware von einer SPARCstation 10 aus ansprechen zu kénnen, wurde ein
SBus VME-Bus Adapter installiert [1]. Die Adapter-Karte steckt momentan auf dem
SBus-Slot 2 der robosunl im Roboter-Labor. Die VME-Bus Karten konnen tber die
Treiber-Dateien

e /dev/ptvme/al6d16 flr 16-Bit Adresse, 16-Bit Daten
e /dev/ptvme/al6d32 flr 16-Bit Adresse, 32-Bit Daten
e /dev/ptvme/a24d16 flr 24-Bit Adresse, 16-Bit Daten
e /dev/ptvme/a24d32 flr 24-Bit Adresse, 32-Bit Daten
e /dev/ptvme/a32d16 flr 32-Bit Adresse, 16-Bit Daten
e /dev/ptvme/a32d32 flr 32-Bit Adresse, 32-Bit Daten

direkt angesprochen werden. Es wird dabei der VME-Speicherbereich in den SUN-
Speicher gemappt.

Diese L6sung ist leider nur fur ein geringes Datenaufkommen wie etwa nach der
Bildvorverarbeitung durch die Spezialhardware geeignet, da diese Schnittstelle rela-
tiv langsam ist.

8.1.2 Image Processing Port (IPP)

Die erste der drei Karten ist ein 8-Bit Graustufen Framegrabber, der das eingehende
analoge Videosignal in ein Grauwertbild digitalisiert [2]. Die Position und GréRe des
zu digitalisierende Bildausschnitts innerhalb des Vollbildes kann dabei relativ frei
gewahlt werden. Zur Konfiguration des IPP existiert die Klasse elteclPP , die alle not-
wendigen Methoden zur Manipulation der Hardware bereitstellt.

Die Beschreibung der Schnittstelle dieser Klasse wie auch die der folgenden Klassen
zur direkten BeeinfluBung einzelner Karten sind nicht wichtig fur das \Verstandnis
und sind deshalb in dieser Dokumentation nicht enthalten.

8.1.3 Thinedge Processor (THIN)

Uber den 16-Bit breiten VI-Bus erhalt die THIN-Karte das Grauwertbild vom IPP. In
diesem Bild werden mittels eines 8x8 Filters Kanten detektiert und verduinnt [3]. Die
Funktionsweise entspricht prinzipiell der des Sobel-Operators (3x3). Der Filter
besteht aus zwei 8x8 Matrizen, die relativ frei programmiert werden kdnnen. Es ste-
hen fabrikmé&liig drei Filter als Beispiele zur Auswahl. Eine zweite Mdglichkeit zur
Parametrisierung ergibt sich aus der Festlegung eines Schwellwertes, ab dem eine
Kante Uberhaupt extrahiert werden soll. Das Ergebnis dieses Verarbeitungsschrittes
ist ein Binarbild das schon die extrahierten Kanten enthéalt und ein Gradientenbild,
jeweils in der GroRe des Originalbildes. Die Konfiguration der THIN-Karte erfolgt mit
den Methoden der Klasse eltecThin

8.1 Konfiguration der Hardware 93

8.1.4 Vector Processor (VECT)

Die letzte der drei Karten erhalt ebenfalls wieder tber den VI-Bus das Ergebnis des
vorhergehenden Verarbeitungsschrittes um aus den Pixeln der Grauwertkanten Kon-
turen in Form von Polygonziigen zu approximieren, d.h. zu vektorisieren [4]. Die
Genauigkeit der Approximation kann Uber eine sogenannte Winkeltoleranz beein-
flult werden. Anhand des Binadr- und Gradientenbildes werden fur die einzelnen
Grauwertkanten Konturpunkte erzeugt wenn eine neue Kante beginnt, oder die Rich-
tungsanderung seit dem letzten Konturpunkt dieser Kante die zuvor festgelegt Win-
keltoleranz Uberschreitet. Der Polygonzug, im weiteren mit Kontur bezeichnet,
besteht dabei mindestens aus zwei Konturpunkten. Die einzelnen Konturpunkte wer-
den aus bestimmten Hardware-Registern ausgelesen und haben die in Prog. 8.1
beschriebene Datenstruktur.

Programm 8.1: Die von der Hardware vorgegebene Datenstruktur.

1 typedef struct {

2 unsigned short Xx; /* column adress of contourpoint */

3 unsigned short y; [*row adress of contourpoint */

4 unsigned short angle; /* direction of contour */

5 unsigned short stendfl; /* start/end flag of contour */

6 unsigned short cnr; /* contour number */

7 unsigned short nstendfl; /* start/end flag of neighbour contour */
8 unsigned short ncnr; /* contour number of a neigbour */

9 }VECTPOINT;

Durch die Arbeitsweise des Systems das ein Grauwertbild von links oben nach rechts
unten verarbeitet ergibt sich das Problem, daf’ die zu einer Kontur gehdrenden Kon-
turpunkte im allgemeinen nicht fortlaufend aus den Registern ausgelesen werden
kénnen. D.h. nach Beendigung der Vektorisierung des Bildes existiert eine Menge von
unzusammenhangenden Konturpunkten, die zuerst anhand ihrer Konturnummer
einander zugeordnet werden mussen. Zur Konfiguration der VECT-Karte sind in der
Klasse eltecvect die notwendigen Methoden vorhanden.

8.1.5 Handhabung des Gesamtsystems

Die Hierarchie der hardware-relevanten Klassen ist in Abb. 8.1 dargestellt, wobei
Oberklassen auch im Bild tber den Unterklassen liegen.

Far die erfolgreiche Benutzung des Eltec-Systems genugt im Normalfall die Verwen-
dung der Schnittstelle der Klasse eltecSystem , die alle Methoden zur einfachen
Handhabung des Systems bereitstellt (siehe Prog. 8.2).

Der Konstruktor wie auch die Methoden dieser Klasse erlauben die Einstellung fol-
gender Systemparameter:

1. Modus: (default: Mono-Noninterlaced)
Das System kann momentan in den drei verschiedenen Modi Mono-Noninterlaced
(MONO_NQNMono-Interlaced (MONO_INJ und Stereo (STEREQ betrieben werden. Die
schnellste Verarbeitung wird durch den Modus Mono-Noninterlaced erreicht.

94

8. ELTEC-VectEx

eltecBase
eltecSystem vmeDevice
elteclpp eltecThin eltecVect

Abbildung 8.1: Die Klassenhierarchie zur Handhabung der Hardware.

Programm 8.2: Die 6ffentliche Schnittstelle der Klagig@System

1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class eltecSystem:public eltecBase

{

k

public:
/I enumerations
const enum selmode { MONO_NON =0, // mono noninterlaced
MONO_INT =1, // mono interlaced
STEREO =2 }; // stereo

/I instance variables

eltecVect vect; // Eltec-VECT Contour Vectorizer
eltecThin thin; // Eltec-THIN Contour Thinner
elteclpp ipp; // Eltec-IPP Framegrabber

/I constructors

eltecSystem(const u_short imgXoffset,
const u_short imgYoffset,
const u_short imgWidth,
const u_short imgHeight);

/I methods

void setMode(const selmode mode);

void load_thresh(const u_char thresh);

void load_filter(const eltecConvolver& conv);
void load_filter(const char file[]);

void set_angle(const char angle);

2. Schwellwert: (default 20)
Die Methode load_thresh() ermdoglicht die Einstellung des Schwellwertes ab dem
eine Kante durch den Grauwertunterschied im Originalbild extrahiert werden soll.
Der Wertebereich dieses Parameters stammt aus dem Intervall [0, 255].

8.1 Konfiguration der Hardware 95

3. Filter: (default: siehe Abb. 8.2 oder Datei Elt/data/convO.ini)
Es kénnen prinzipiell beliebige Filter zur Kantenextraktion verwendet werden.
Durch die Methode load_filter() kann Uber die Klasse eltecConvolver ein neuer

Filter dem System mitgeteilt werden. Diese Klasse ermoglicht es unter anderem in
Dateiform gespeicherte Filter einzulesen. Im Verzeichnis data sind in den Dateien
conv[012].ini drei verschiedene Filter abgelegt, die aber auch tUber die Variablen
conv[012] vom Typ eltecConvolver Vverfugbar sind.

a-2-4-4-2 0 (@ a g-2 -4 4 2 a
0 -§-20-29-25-20 -§ O 0 -5-20-25 25 20 a
-2 -20 -56 -60 -60 -56 -20 -2 -2-20-56-60 60 56 20 2
-4 -25 -6Q -61{ -61 -60 -25 -4 -4 -25-60-61] 61 60 25 4
4 25 60 61 61 60 25 4 -4 -25-60-61] 61 60 25 4
2 20 56 60 60 56 20 2 -2-20-56-60 60 56 20 2
0 520252520 9§ O 0 -5§-20-25 25 20 a
a g 2 4 4 2 q 0 a g-2-4 4 2 q 0

Abbildung 8.2: Die horizontale und vertikale Komponente des Default-Filters.

4. Winkeltoleranz: (default: 14)

Eine weitere Moglichkeit die Hardware zu beeinflu3en ist durch die Methode
set_angle() gegeben. Gultige Parameterwerte sind aus Tabelle 8.1 abzulesen. Der
Parameterwert -1 nimmt dabei eine Sonderstellung ein, da in diesem Fall die Grau-
wertkanten nicht im eigentlichen Sinn durch Polynomztige approximiert werden,
sondern Kantenpixel fur Kantenpixel ausgelesen werden kénnen. Diese Mdglich-
keit ist nur der Vollstandigkeit halber aufgefiuihrt, da sie in der Praxis ein viel zu
grol3es Datenaufkommen verursacht.

Parameterwert -1 0 2 4 6 8 10 12 14
Winkeltoleranz [°] 00| 14| 42| 70| 98| 126|154 | 182 | 21.0

Tabelle 8.1: Die Zuordnung von Parameterwerten zu Winkeltoleranzen.

5. Position und GroéRe des Bildausschnittes: (default: Position 82, 50; GroRRe 744x262)
Im Gegensatz zu den vorangegangenen Parametern konnen diese vier Parameter
nur bei der Instanziierung angegeben werden. Die ersten beiden Parameter be-
schreiben die Koordinaten der linken oberen Ecke des zu digitalisierenden Bild-
ausschnitts. Die beiden verbliebenen Parameter bestimmen Breite und Hohe des
Bildausschnitts.

Der in 4. beschriebene Parameter ist jederzeit ohne Einschrankungen anderbar.

Eine Anderung der in 1. bis 3. aufgefiihrten Parameter ist zwar jederzeit moglich,
beansprucht aber relativ viel Zeit, da zum Teil Lookup-Tables des Systems neu
berechnet und dem System mitgeteilt werden mussen.

96 8. ELTEC-VectEx

Die zuletzt genannten Parameter (siehe 5.) sind nur bei der Instanziierung festlegbar,
da ein Grof3teil der weiter unten beschriebenen Software auf dieser Basis dynamische
Felder anlegt.

Bei der Instanziierung einer Variablen der Klasse eltecSystem konnen einige oder
auch alle der aufgezahlten Parameter explizit mit Werten belegt werden um die
Default-Werte zu tberschreiben.

8.1.6 Tips & Tricks

= Der einzige auftretbare Fehler ist ein Uberlauf des Konturpuffers. Es wird dabei
eine so grof3e Anzahl von Konturen vektorisiert, da3 der interne Puffer der Hard-
ware nicht schnell genug ausgelesen werden kann. Dieser Fehler wird direkt von
der Hardware generiert und hat zur Folge, dal} der gesamte Frame verloren ist.
Dieser Fehler tritt haufig bei Bildstorungen auf, aber auch wenn die Hardware-Pa-
rameter ungunstig gewahlt wurden.

= Die wirkungsvollste Mdglichkeit die vektorisierte Datenmenge zu beeinfluf3en ist
die Winkeltoleranz. Je kleiner die Datenmenge desto schneller die Bildverarbei-
tung. Allerdings muR hier ein anwendungsabhangiger Kompromil3 gefunden
werden zwischen der Geschwindigkeit und der Ungenauigkeit der vektorisierten
Kanten.

= Der Modus Mono-Interlaced bringt in Punkto Genauigkeit der Kanten keine nen-
nenswerten Steigerungen und das auf Kosten der doppelten Verarbeitungszeit
durch die Hardware.

= Fur alle Hardware-Parameter ist frohliches Experimentieren angesagt, auch bei
den Filtern.

8.2 Konturpunkte

Nach dieser kurzen Einfihrung in den Hardware-Teil des Gesamtsystems endlich zu
den von der Hardware gelieferten Daten. Die in Prog. 8.1 vorgestellte Datenstruktur
VECTPOINT beschreibt die Hardware-Rohdaten eines einzelnen Konturpunkts. Diese
Datenstruktur wurde in eine C++ Klasse namens ctrPoint (siehe Prog. 8.3) umbe-
nannt und modifiziert.

Beim Vergleich dieser Klasse mit der Struktur VECTPOINTTfallt auf, dal3 die Struktur-
komponenten stendfl , cnr, nstendfl und ncnr in der offentlichen Klassen-Schnitt-
stelle fehlen. Die darin abgelegten Daten werden nur zur Sortierung und Verknup-
fung der unsortierten Menge von Konturpunkten zu zusammenhangenden Konturen
benétigt und gehdren damit zum privaten Teil dieser Klasse. Die verbliebenen drei
Attribute dieser Klasse haben folgende Semantik:

1. xund

2. y geben die Koordinaten des Konturpunktes im Konturbild an, wobei der Ur-
sprung des Koordinatensystems in der linken oberen Ecke liegt.

3. angle enthélt die Richtung der extrahierten Kontur an diesem Punkt. Der Wert
stammt aus dem Intervall [0, 255], d.h. die 360° des Vollkreises (Abb. 8.3, links)
werden auf dieses Intervall abgebildet (Abb. 8.3, rechts). Wichtig an dieser Stelle

8.2 Konturpunkte

97

Programm 8.3: Die 6ffentliche Schnittstelle der Klagg®oint

1 class ctrPoint:public eltecBase
2 |
3 public:
4 /I Instance Variables:
5 short x; /I column adress of contourpoint
6 short y; /I row adress of contourpoint
7 u_char angle; // direction of contour
8
9 /I Methods:
10 u_int angle2mask(void) const;
11 static u_int angle2mask(register const char angle);
12
13 static u_int isqrt(register const u_int x);
14 static bool in(const short left,
15 const short X,
16 const short right);
17
18 u_short distance(register const ctrPoint& p) const;
19 double gradient(register const ctrPoint& p) const;
20
21 bool intersectX(const ctrPoint& p1,
22 const ctrPoint& p2,
23 const short X);
24 bool intersectY(const ctrPoint& p1,
25 const ctrPoint& p2,
26 const short Y);
27
28 friend ofstream& operator<<(ofstream& s, ctrPoint& x);
29 friend ifstreamé& operator>>(ifstreamé& s, ctrPoint& x);
30 friend ostreamé& operator<<(ostream& s, ctrPoint& x);
31 }

ist, dal? Richtungen aus dem Teilintervall [0, 127] durch Grauwertkanten enstehen,
die, im Bild von links nach rechts gesehen, einen Helligkeitsverlauf von dunkel
nach hell aufweisen. Umgekehrt sind Richtungen aus dem Teilintervall [128, 255]
durch Kanten mit einem Verlauf von hell nach dunkel bestimmt.

Des weiteren sind fur diese Klasse einige Methoden implementiert, die eine Weiter-
verarbeitung der Daten vereinfachen.

1.

Die Methode angle2mask() setzt in den 32 Bit eines Integers je nach Wert des At-
tributs angle ein bestimmtes Bit. Die genau Zuordnung kann aus dem rechten Teil
der Abb. 8.3 abgelesen werden, wobei die in den Kreissegmenten angegebenen
Nummern mit der zu setzenden Bit-Nummer korrespondieren.

Da im Zusammenhang mit Konturpunkten nur Ganzzahlen vorkommen ist hier
die Methode isqrt() bereitgestellt. Sie erlaubt ein bedeutend schnelleres Wurzel-
ziehen als mit der herkémmlichen FlieBkommafunktion sqrt()

Die Methode in() dient lediglich zur Prifung, ob ein Wert innerhalb eines be-
stimmten Intervalls liegt.

distance() ermittelt den euklidschen Abstand zwischen den beteiligten Kontu-
punkten.

98 8. ELTEC-VectEx

Qrg»x 270° 191 192

180°

90°
Abbildung 8.3: Die Richtung einer Kontur in einem Konturpunkt.

5. Mittels der Methode gradient() kann die Steigung der Geraden durch die beiden
beteiligten Punkte ermittelt werden. Falls die x-Koordinaten der Konturpunkte
identisch sein sollten und damit die Steigung unendlich ware, wird der Wert
MAX_DOUBLRurtckgegeben.

6. Der Methode intersectX() werden als Parameter zwei Konturpunkte und eine
Koordinate x tbergeben. Sie berechnet daraus den Schnittpunkt der Strecke zwi-
schen den beiden Konturpunkten und einer Vertikalen an der Stelle x. Das Vorhan-
densein eines Schnittpunktes wird durch den boolschen Rickgabewert angezeigt.

7. Die Funktionsweise der Methode intersectY/() ist &quivalent zur vorangegange-
nen Methode. Der einzige Unterschied ist, dal3 hier der Schnittpunkt mit einer Ho-
rizontalen bestimmt wird.

8. Die Operatoren << und >> dienen zur formatierten Datei und Bildschirm Ein- und
Ausgabe.

8.3 Konturen

Eine Kontur besteht wie bereits erwahnt aus mindestens zwei Konturpunkten, die aus
Grunden der hohen Flexibilitat in einer doppelt verketteten Liste verwaltet werden.
Zur Implementierung dieser Konturpunktliste wurde die Containerklasse DLList der
GNU C++ Bibliothek verwendet. Die Klasse ctrPointDLList hat damit, ohne Beruck-
sichtigung der ererbten Schnittstelle, das in Prog. 8.4 beschrieben Aussehen.

Fur die Beschreibung der ererbten Klassenschnittstelle sei an dieser Stelle auf die Info-
Seiten im emacs verwiesen. Dort gibt es eine Eintrag Libg++ und darin einen Verweis
auf LinkList in dem die vorhandenen Methoden von einfach und doppelt verketteten
Listen beschrieben sind.

Bei der genaueren Betrachtung der Klassendeklaration von ctrPointDLList fallt auf,
dal} die Elemente der Liste nicht vom Typ ctrPoint , sondern vom Typ ctrPoint *
sind. Dies hat vor allem Effizienzgrinde, da etwa beim Einfligen von Elementen

8.3 Konturen 99

Programm 8.4: Die 6ffentliche Schnittstelle der Klagg®ointDLList

9 void pre_join_reverse(register ctrPointDLList& x);
10 void pre_join(register ctrPointDLList& x);
11 void join_reverse(register ctrPointDLList& x);
12 void cut(Pix p, int dir = 1);
13 friend ostreamé& operator<<(ostreamé& s, ctrPointDLList& X);
14 %

1 class ctrPointDLList:public DLList<ctrPoint *>, public eltecBase
2 |

3 public:

4 /I Methods:

5 u_short pixLength(void);

6 u_int mask(void);

7 void transX(register short dx);

8 void transY (register short dy);

immer zuerst eine Kopie des Elements erzeugt wird und diese dann in die Liste wan-
dert. D.h. durch die Verwendung von Zeigern wird die zu kopierende Datenmenge

minimiert.

Die durch die Vererbung schon vorhandenen Methoden wurden folgendermalien
erganzt:

1. Die Methode pixLength() berechnet die Lange [pel] der durch die Konturpunktli-

N o ook

ste reprasentierten Kontur als Summe der euklidschen Absténde zwischen den
einzelnen Konturpunkten.

Mit Hilfe von mask() werden alle vorkommenden Richtungen der Kontur in einer
32-Bit Maske codiert zurtickgegeben.

Durch die Methode transX() werden alle Konturpunkte dieser Kontur um die
Ubergebene Anzahl von Pixeln in x-Richtung verschoben.

Aquivalent dazu verschiebt transy() die Kontur in y-Richtung.
Die drei Methoden pre_join_reverse() (siehe Abb. 8.4a),
pre_join() (siehe Abb. 8.4b) und

join_reverse() (siehe Abb. 8.4c) verketten jeweils die Liste a mit der Ubergebenen
Liste b.

e e A [PR B e <

B B SBa e FER
b) LT L T
0 ST TS B T

Abbildung 8.4: Verkettung von Konturlisten.

100

8. ELTEC-VectEx

9.
Da

Durch die Anwendung der Methode cut() kann entweder das linke oder das rech-
te Ende einer Konturliste abgetrennt werden. Als Parameter wird das Listenele-
ment angegeben von wo aus die Trennung erfolgen soll. Die Richtung in der
abgetrennt wird bestimmt das Vorzeichen des zweiten Parameters: negativ ent-
spricht links und positiv rechts vom angegebenen Listenelement.

Der Operator << dient zur Bildschirmausgabe einer vollstandigen Konturliste.
fur jede Kontur die Verflugbarkeit zusatzlicher Attribute interessant ist, existiert

eine Ubergeordnete Klasse ctrAttrib , die diese Aufgabe erfullt (siehe Prog. 8.5).

Programm 8.5: Die 6ffentliche Schnittstelle der Klags&trib

1 class ctrAttrib:public eltecBase
2 |
3 public:
4 /l Enumerations:
5 const enum ctrType { CTR_MONO, // mono image
6 CTR_FIRST, //first half stereo image
7 CTR_SECOND }; /I second half stereo image
8
9 /I Instance Variables:
10 u_short cnr; [/l id-number of contour
11 u_short points; // number of points
12 u_short pixLen; // length of contour [pel]
13 u_int angleMask; // anglemask containing all angles
14 ctrType type; /I source of contour
15 ctrPointDLList pts; /I 'list of points
16
17 /I Methods:
18 friend ostreamé& operator<<(ostreamé& s, ctrAttrib& x);
19 §

Im
1.

7.

einzelnen sind folgende Attribute zu nennen:

Die Instanzvariable cnr enthalt eine eindeutige Konturnummer. Sie stimmt mit der
Nummer tberein, die, wie in Abschnitt 8.1.4 beschrieben, fur jeden einzelnen Kon-
turpunkt in der Struktur VECTPOINTvVON der Hardware belegt wird.

Die Anzahl der Punkte dieser Kontur ist in points festgehalten.
Das Attribut pixLen beinhaltet die Lange der Kontur in Pixeln.

In der Variablen angleMask sind alle in dieser Kontur enthaltenen Richtungen in
Form einer Bitmaske gespeichert.

Die Variable type enthalt fir den Fall da mit Stereobildern gearbeitet wird eine
Kennzeichnung aus welcher der beiden Halbbilder diese Kontur stammt. Mdégli-
che Belegungen sind CTR_FIRST oder CTR_SECOND

Auf die eigentliche Liste von Konturpunkten kann durch die Variable pts zuge-
griffen werden.

Der Operator << dient wieder der Ausgabe auf den Bildschirm.

Da in der weiteren Verarbeitung Mengen von Konturen zu untersuchen sind, werden
diese ebenfalls in doppelt verketteten Listen verwaltet. Die entsprechende Klasse
heil3t ctrAttribDLList und ist in Prog. 8.6 abgebildet.

8.4 Konturdatenbanken 101

Programm 8.6: Die 6ffentliche Schnittstelle der Klags#&tribDLList

class ctrAttribDLList:public DLList<ctrAttrib *>, public eltecBase

{
public:
/I Methods:
friend ostream& operator<<(ostream& s, ctrAttribDLList& x);

¥

OO0 WNPE

In dieser Klasse wurden bisher, auRer einer Methode zur Ausgabe auf den Bild-
schirm, keine weiteren Methoden implementiert. Wie aus der Klassendeklaration zu
entnehmen ist, sind die Elemente der Liste aus Effizienzgriinden ebenfalls wieder nur
Zeiger.

8.4 Konturdatenbanken

In den vorangegangenen Abschnitten wurden die Klassen zur Handhabung von Kon-
turen vorgestellt. Diese mussen nun erganzt werden durch Strukturen die die eigent-
lichen Daten enthalten und auf denen die Listen von Zeigern ihre Gultigkeit erhalten.

Zum Speichern der eigentlichen Konturen werden mehrere verschiedene Klassen ver-
wendet, die jeweils eine primitive Datenbank implementieren. Primitiv deshalb, da
der Benutzer nur lesenden Zugriff auf die Daten hat und im momentanen Stadium
kein Mehrbenutzerbetrieb mdglich ist.

Die Funktionalitat der einzelnen Klassen unterscheidet sich einerseits in der Art und
Weise wie die Konturdaten abgelegt werden, mit Auswirkungen auf die Arten von
zulassigen Datenbankanfragen. Andererseits gibt es Unterschiede bezuglich der Art
der Vorverarbeitung beim Datenbankaufbau.

8.4.1 Die Ablage der Konturdaten

Da jede der im weiteren beschriebenen Klassen von Datenbanken von der Klasse
eltecBaseDatabase den Offentlichen Teil der Klasse erbt, gentigt es die Methoden die-
ser Basisklasse genauer zu kennen (siehe Prog. 8.7). Unterschiede zwischen den
Schnittstellen der abgeleiteten Klassen bestehen nur in den Parameterleisten der Kon-
struktoren.

Die vorhandenen Methoden implementieren folgende Funktionalitét:

1. Durch die Methode setGlobalMinLen() besteht die Mdglichkeit die beim Aufbau
von Indizes bertcksichtigten Konturen von vornherein zu filtern, indem eine Min-
destlange [pel] fur Konturen vorgschrieben wird (default: 0 [pel]).

2. Eine ahnlich Mdoglichkeit bietet die Methode setGlobalMask() , durch die nur be-
stimmte Richtungen von Konturen beim Aufbau der Datenbankindizes bertck-
sichtigt werden (default: oxffffffff).

3. Mittels der Methode getTimeStamp() kann der Zeitstempel, von dem die in dieser
Datenbank gespeicherten Konturen stammen, abgefragt werden. Das Ergebnis
sind Sekunden seit dem 1. Januar 1970 (siehe auch man gettimeofday()). Der Zeit-

8. ELTEC-VectEx

Programm 8.7: Die offentlich Schnittstelle der Klass&BaseDatabase

1 class eltecBaseDatabase:public virtual eltecBase
2 |
3 public:
4 /I Constructors:
5 eltecBaseDatabase(void);
6
7 /I Destructor:
8 ~eltecBaseDatabase(void);
9
10 /I Methods:
11 void setGlobalMinLen(const u_short len = 0);
12 void setGlobalMask(const u_int msk = Oxffffffff);
13
14 double getTimeStamp(void) const;
15 int getFrameNr(void) const;
16 int getPtsQuant(void) const;
17 int getFrame(register eltecSystem& eltec);
18 int getFrame(const char file[], /l base name of file
19 const u_short nrLen = 4);// char length of frameNr
20
21 virtual void build(void);
22
23 int read(const char file[], // base name of file
24 const u_short nrLen =0, // char length of frameNr
25 const int frame = 0, Il frameNr
26 const char ext[] = ,ctr*); // file extension
27 void write(const char file[], // base name of file
28 const u_short nrLen =0, // char length of frameNr
29 const char ext[] = ,.ctr*);// file extension
30 }

stempel wird direkt nach dem Auslesen des ersten vektorisierten Konturpunkts
bestimmt.

getFrameNr() gibt einen Integer-Wert zuriick, der die Nummer das aktuellen Fra-
mes in dieser Datenbank angibt.

Durch die Methode getPtsQuant() kann die in dieser Datenbank gespeicherte An-
zahl von Konturpunkten abgefragt werden.

Durch die Methoden getFrame() ist es moglich einen neuen Frame entweder von
der Hardware oder von einer Datei einzulesen. Als Ruckgabe dieser Methode er-
halt man die Anzahl der eingelesenen Konturpunkte oder -1, falls dabei ein Fehler
in Form eines Uberlaufs des Konturpuffers auftritt.

Durch den Aufruf der Methode build) werden die Indizes der Datenbank fir die
neuen Rohdaten aufgebaut.

SchlieBlich gibt es noch die Methode read() , durch die auf eine Datei von Kontur-
Rohdaten zugegriffen werden kann.

Das Gegenstuck zum vorhergehenden Punkt ist die Methode write() , die zum
Schreiben von Rohdaten vorgesehen ist. Von der Hardware eingelesene Daten

8.4 Konturdatenbanken 103

kdnnen nur im Rohzustand abgespeichert werden, d.h. vor dem Aufruf der Me-
thode build()

Die von der Basisklasse abgeleiteten Klassen unterscheiden sich im wesentlichen nur
in der Implementierung der unter 7. aufgefuhrten Methode build() . Je nach Art der
Datenbank kdnnen, wie bereits erwahnt, Anfragen gestellt werde, um Konturen mit
bestimmten Attributwerten zu erhalten:

10. Dazu haben alle Klassen die Methode request() , die jedoch in der Basisklasse
noch nicht vorhanden ist, da diese erst in den Verfeinerungen der Unterklassen de-
finiert wird (siehe Prog. 8.9).

8.4.2 Der Aufbau der Datenbank

Waéhrend des Einlesens der Rohdaten eines neuen Frames werden die unsortierten
Konturpunkte mit identischer Konturnummer zu zusammenhangenden Konturen
verknupft. Bei dieser Verkniuipfung werden Konturen die durch einen Fehler nur aus
einem einzigen Konturpunkt bestehen herausgefiltert.

Beim weiteren Aufbau der Datenbank kdnnen zuséatzliche, miteinander kombinier-
bare, Vorverarbeitungsschritte ausgefuhrt werden:

1. Von der Hardware werden in den Endpunkten von Konturen Verweise auf etwa
vorhandene Nachbarkonturen mitgegeben. Solche Verweise erscheinen im Nor-
malfall nur, wenn die Endpunkte der benachbarten Konturen in ihren Pixelkoordi-
naten direkte Nachbarn sind. Somit kdénnen diese Konturen direkt miteinander
verknupft werden.

2. Bei der Verwendung von Stereobildern sind die beiden Halbbilder in ein Vollbild
gemischt, d.h. die Halbbilder missen voneinander getrennt und die Koordinaten
des zweiten Halbbilds transformiert werden.

Erst nach dem vollstdandigen Durchlaufen dieser Vorverarbeitungsschritte werden die
in Abschnitt 8.3 aufgefiihrten Konturattribute berechnet. Anschliel}end werden die
Konturen auf die Erfullung der Mindestwerte von Attributen gepruft, die durch die
in Abschnitt 8.4.1 aufgefuhrten Methoden setGlobalMinLen() und setGlobalMask()
gesetzt worden sind.

Nachdem die Konturdaten vorverarbeitet und gefiltert sind werden die eigentliche
Suchindizes aufgebaut. Dabei kann zwischen zwei miteinander kombinierbaren Mog-
lichkeiten gewahlt werden:

1. Der erste Index ist ein eindimensionales Feld, durch das alle verbliebenen Kontu-
ren referenziert werden kénnen. Dieser Index wird im weiteren mit Linear-Index
bezeichnet.

2. Um Konturen aus einem bestimmten Bildbereich abfragen zu kénnen ohne jedes-
mal alle Konturpunkte der einzelnen Kontur abzuprufen, werden die Konturen in
ein Bild gezeichnet. Dieses Indexbild, oder im weiteren auch Raster-Index ge-
nannt, besteht aus einzelnen Indexpixeln, die im Normalfall eine Flache von meh-
rere Pixeln des Originalbildes reprasentieren. Diese beinhalten Verweise auf alle
Konturen die durch den entsprechenden Pixelbereich verlaufen. Das Grolienver-
haltnis zwischen Pixeln im Originalbild und Indexpixeln kann in beiden Dimen-
sionen den Anforderungen der Anwendung angepaldt werden [5]. In Abb. 8.5 sind

104 8. ELTEC-VectEx

beispielsweise die Indexpixel in x-Richtung um den Faktor 22 = 4 und in y-Rich-
tung um den Faktor 2! = 2 skaliert. Das gestrichelte Raster entspricht der Matrix
des Originalbildes und das dartbergelegte grobere Raster der Matrix der Indexpi-
xel. Auf der rechten Seite ist der Inhalt des Raster-Index fiir die eingezeichneten
Konturen angegeben.

W W
N

NS

Abbildung 8.5: Die Abbildung von Konturen in den Raster-Index.

Jede Kombinationsmoglichkeit aus Vorverarbeitung und verwendeten Indizes ist eine
eigene Klasse. Da zumindest ein Index vorhanden sein muf, aber nicht unbedingt
eine spezielle Vorverarbeitung notwendig ist, ergeben sich die in Tabelle 8.2 aufge-
fuhrten 12 Klassen.

Indizes Vorverarbeitung
Klassenname Linear- Raster- Nachbar-1 g0 o opild
Index Index kon'guren trennen
verbinden

dbLinear X
dbLinear_Join X X
dbLinear_Stereo X X
dbLinear_Stereoloin X X X
dbRaster X
dbRaster_Join X X
dbRaster_Stereo X X
dbRaster_StereoJoin X X X
dbLinRast X X
dbLinRast_Join X X X

Tabelle 8.2: Klassen von Konturdatenbanken und ihre Merkmale.

8.5 Anfragen an Konturdatenbanken 105

Indizes Vorverarbeitung
Klassenname Linear- Raster- Nachbar- ¢, o opild
konturen
Index Index . trennen
verbinden
dbLinRast_Stereo X X X
dbLinRast_Stereoloin X X X X

Tabelle 8.2: Klassen von Konturdatenbanken und ihre Merkmale.

Die Schnittstellen dieser Klassen sind bezuglich ihrer Methoden identisch. Unter-
schiede bestehen lediglich in den Parameterleisten der Konstruktoren. Klassen die
das Stereobild trennen, brauchen Informationen tber die Breite und Hohe des Bildes.
Dieselbe Information bendtigen Klassen die einen Raster-Index verwenden. Diese
brauchen jedoch zuséatzlich noch die Skalierungsfaktoren fur den Aufbau des Raster-
Indexes. Eine Parameterwert n resultiert dabei in einer Skalierung 2", d.h. bei einem
Wert von n = 3 fir die Breite ist ein Indexpixel 23 = 8 Pixel breit.

8.4.3 Tips & Tricks

e Die Hardware und die Datenbanken mussen immer mit derselben BildgroRRe ar-
beiten. Falls versucht wird verschiedene Werte bei der Instanziierung zu verwen-
den bricht das Programm mit einer Fehlermeldung ab.

= Wenn versucht wird bei der Instanziierung von Datenbanken verschiedene Skalie-
rungsfaktoren zu verwenden wird das Programm ebenfalls sofort mit einer Feh-
lermeldung abgebrochen.

= Aus Geschwindigkeitsgriinden sollte immer die Klasse von Datenbank verwen-
den, die die Minimalvoraussetzungen erftllt, da nattrlich jeder zusatzliche Verar-
beitungsschritt Zeit kostet.

= Die Angabe einer minimale Konturldnge kann sehr viel Rechenzeit ersparen, aller-
dings hangt der Wert stark von der Anwendung ab. Falls bei der Vorverarbeitung
Nachbarkonturen verbunden werden kann dieser Wert etwas hoher gewahlt wer-
den.

= Beider Skalierung des Raster-Indexes sollten jeweils Werte grof3er als 1 verwendet
werden. Da das Ausmald der Bilddimensionen sehr unausgeglichen ist bietet es
sich auRerdem an die Auflésung des Rasters verschieden zu wahlen. Je grober das
Raster desto schneller der Aufbau des Raster-Indexes.

8.5 Anfragen an Konturdatenbanken

Was nitzen jedoch Konturen in einem Behélter ohne die Moglichkeit sich gezielt Kon-
turen daraus herausgeben zu lassen. Aus diesem Grund folgt nun die Beschreibung
der Klassen zur Abfrage bestimmter Konturen aus einer der Datenbanken.

106 8. ELTEC-VectEx

8.5.1 Auswabhl des Bildbereichs

Eine der wichtigsten Angaben bei der Suche nach bestimmten Konturen ist die
Angabe des zu durchsuchenden Bildbereichs.

eltecBase
eltecBaseRequest
eltecLinearRequest eltecRasterRequest
reqTotal regParallelogramm regRectangle

Abbildung 8.6: Die Klassenhierarchie zur Spezifikation von Bildbereichen.

Wie in Abb. 8.6 zu erkennen ist, gibt es ausgehend von der Basis-Klasse eltecBaseRe-
quest fur Bereichsanfragen an eine Konturdatenbank die zwei direkt abgeleiteten
Klassen eltecLinearRequest und eltecRasterRequest . Die daraus abgeleiteten Klas-
sen sind die in der Praxis zu verwendenden Klassen, mit deren Hilfe entweder inner-
halb der gesamten Konturenmenge (reqTotal), in einem rechteckigen (regRectangle)
oder einem parallelogrammférmigen Bildausschnitt (regParallelogramm) gesucht
werden kann.

Klassen die als Oberklasse die Klasse eltecLinearRequest haben kdnnen nur auf eine
Datenbank angewendet werden die einen Linear-Index bereitstellt. Gleiches gilt fur
die Klasse eltecRasterRequest und Datenbanken mit Raster-Index.

Eine Bereichsspezifikation einer Anfrage an eine Datenbank wird durch die Instanzi-
ierung einer der genannten Klassen erzeugt. Diese Instanz kann prinzipiell auf jede
Instanz einer Datenbank angewendet werden und ist damit beliebig oft wiederver-
wendbar:

1. Die Klasse reqTotal bendtigt zur Instanziierung keine weiteren Parameter.

2. Furdie Instanziierung der Klasse reqRectangle werden die Pixel-Koordinaten der
oberen linken Ecke P, und der unteren rechten Ecke P, des Rechtecksbereichs be-
notigt (siehe Abb. 8.7).

3. Als Parameter fur die Instanziierung eine parallelogrammférmigen Bildbereichs
werden wiederum die Pixelkoordinaten zweier Ubereinander gelegener Punkte P

8.5 Anfragen an Konturdatenbanken 107

und P, bendtigt. Diese beschreiben die Neigung der Seiten des Parallelogrammes.
Zur vollstandigen Beschreibung wird noch die Breite d des Parallelogramms in Pi-
xeln bendtigt (siehe Abb. 8.7).

Wie aus den Parametern von 2. und 3. zu erkennen ist kbnnen keine allgemeinen
Rechtecke und Parallelogramme beschrieben werden, sondern nur solche die zwei
horizontale Seiten haben.

Abbildung 8.7: Spezifikation von Bildbereichen fur eine Konturdatenbankanfrage.

In Abb. 8.7 ist anhand der grau unterlegten Flachen zu erkennen welche Bildbereiche
durch die als Linien eingezeichneten Bereichsanfragen tatsachlich Gberdeckt werden.

8.5.2 Auswahl anhand von Konturattributen

Wie in Abschnitt 8.3 beschrieben besitzen Konturen eine Anzahl von Attributen. Da
im Normalfall, je nach Anwendung, nur Konturen mit bestimmten Eigenschaften
interessant sind, gibt es Mdoglichkeiten diese genau zu spezifizieren. In Abb. 8.8 sind
die grundlegenden Klassen dargestellt die es erlauben entsprechende Attribute abzu-
prufen.

Sinnvollerweise kdnnen die aufgefliihrten Klassen chkMask , chkMaxLen , chkMinLen und
chkStereo beliebig miteinander kombiniert werden. Insgesamt stehen damit 16 ver-
schiedene Klassen zur Spezifikation der zu prifenden Konturattribute zur Verfuigung
(siehe Tabelle 8.3).

108

8. ELTEC-VectEx

TS

chkMask chkMaxLen

eltecBase

eltecBaseLimit

chkMinLen

chkNot

chkStereo

Abbildung 8.8: Klassenhierarchie zur Spezifikation von Konturattributen.

Klassenname Stere_o- Winkel- Minimale Maximale
halbbild maske Lange [pel] | Lange [pel]

chkNot
chkMask X
chkMinLen X
chkMaxLen X
chkLength X X
chkMaskMinLen X X
chkMaskMaxLen X X
chkMaskLength X X X
chkStereo X
chkStereoMask X X
chkStereoMinLen X X
chkStereoMaxLen X X
chkStereoLength X X X
chkStereoMaskMinLen X X X
chkStereoMaskMaxLen X X X
chkStereoMaskLength X X X X

Tabelle 8.3: Klassen zur Spezifikation von Konturattributen.

8.5 Anfragen an Konturdatenbanken 109

Da die Klassen eine verschiedene Anzahl von Parametern bendtigen sind die Kon-
struktoren den Anforderungen entsprechend angepal3t. Die Reihenfolge der anzuge-
benden Parameter ist fur alle Klassen gleich. Sie entspricht der in der Kopfzeile von
Tabelle 8.3 verwendeten Reihenfolge. Falls der eine oder andere Parameter von der zu
verwendenden Klasse nicht benétigt wird sind diese bei der Instanziierung der Klasse
einfach wegzulassen.

Alle in Tabelle 8.3 aufgefuihrten Klassen haben nur die eine Methode ok() , die sie von
der Klasse eltecBaseLimit erben (siehe Prog. 8.8). Diese Methode testet ob die Uber-

Programm 8.8: Die 6ffentliche Schnittstelle der Klagis#BaseLimit

1 class eltecBaseLimit:public eltecBase
2 |

3 public:

4 /I Methods:
5 virtual bool ok(ctrAttrib *ctr) = 0;
6

k

gebene Kontur den Anforderungen der bei der Instanziierung Ubergebenen Parame-
ter erflillt. Instanzen dieser Klasse kdnnen damit auch aufierhalb von Datenbankan-
fragen zum Testen von Konturattributen auf bestimmte Werte verwendet werden.

8.5.3 Eine komplette Anfrage

Zur Bildung einer Anfrage werden also zwei Komponenten verwendet. Zum einen
kann ein bestimmter Bildbereich spezifiziert werden und zum anderen kénnen Attri-
butwerte ausgewahlt werden. Diese werden mit zwei weiteren Argumenten der
Methode request() , die Bestandteil der Schnittstelle jeder Klasse von Datenbanken
ist, Ubergeben (siehe Prog. 8.9).

Programm 8.9: Die Parameterleiste der Datenbank-Methegiest()

1 virtual void request(ctrAttribDLList& dat,

2 eltecBaseRequest& req,

3 eltecBaseLimit& lim = chkNot(),
4 bool group = false);

1. Das erste Argument ist eine Variable vom Typ ctrAttrioDLList , also einer Liste
von Konturen. Das Ergebnis der Anfrage wird an das Ende dieser Liste angehangt.

2. Das zweite Argument betrifft die Spezifikation eines Bildausschnitts mittels einer
Instanz der in Abschnitt 8.5.1 erlauterten Klassen.

3. Das nachste Argument ist die Instanz einer der im vorhergehenden Abschnitt auf-
gefuhrten Klassen um bestimmte Konturattribute zu testen. Als Default werden
keine Attribute getestet, d.h. es wird eine Instanz der Klasse chkNot Ubergeben.

4. Das letzte Argument ist ein boolscher Wert und ermdglicht es mehrere Anfragen
zu gruppieren ohne dabei in der Gesamtergebnismenge Duplikate von Konturen
zu erhalten. Der Default ist false , d.h. jede Anfrage wird separat behandelt.

110 8. ELTEC-VectEx

8.5.4 Tips & Tricks

= Achtung: Alle Daten von Konturen und Konturpunkten sind physisch nur inner-
halb einer Datenbank vorhanden. Das Ergebnis von Anfragen sind nur Listen von
Zeigern die auf Daten in der Datenbank verweisen. Anderungen von Attributwer-
ten Uber diese Zeiger werden damit global in dieser Datenbank vollzogen und
kodnnen nachfolgenden Anfragen und schon erhaltene Konturdaten beeinfluRen!

= Wichtig beim Arbeiten mit rechteckigen oder parallelogrammférmigen Bereichs-
anfragen ist, dal Konturen immer in ihrer ganzen Lange zuriickgegeben werden.
D.h. falls eine Kontur von links oben quer Uber das ganze Bild nach rechts unten
verlauft und ein kleiner Bereich in der Bildmitte Ziel der Anfrage ist, wird trotz-
dem die Kontur nicht an den Bereichsgrenzen abgeschnitten, sondern komplett
zurtckgegeben.

= Je feiner der Raster-Index ist desto langsamer wird naturlich auch eine Bildbe-
reichsanfrage bearbeitet, da immer aller Index-Pixel eines angegebenen Bildbe-
reichs durchsucht werden mussen.

e Wie in Abb. 8.7 zu erkennen ist kann der Einzugsbereich einer rechteckigen oder
parallelogrammférmigen Bereichsanfrage im Endeffekt um einiges grof3er sein als
spezifiziert. Die Genauigkeit der Abgrenzung der Bereiche hangt stark von der
Kornigkeit des Rasters ab, d.h. es mul3 ein anwendungsabhangiger Kompromif
zwischen Geschwindigkeit und Genauigkeit gefunden werden.

= Bei der Verwendung von Richtungsmasken zur Auswahl bestimmter Konturen
muf} man sich bewult sein, dal} eine Kontur die Randbedingungen erfullt wenn
irgendwo eine der in der Maske angegebenen Richtungen existiert. Das bedeutet
insbesonders auch dal bei einer Anfrage aus einer Kombination von Bildbereich
und Maske die Maskenwerte nicht unbedingt innerhalb dieses Bereichs erfullt sein
mussen.

= Falls bei der Verarbeitung von Stereobildern nicht die Klassen chkStereo* verwen-
det werden, enthalt die Ergebnismenge von Konturen immer die Konturen aus
beiden Bildhalften.

8.6 Visualisierung von Konturen

Um die Arbeit mit Konturen zu erleichtern besteht die Moglichkeit diese in einem
Fenster zu visualisieren. Dazu gibt es die beiden Klassen eltecBaseX und Xcontours
wobei Xcontours eine Unterklasse von eltecBasex ist. Die Klasse eltecBasex hat die
in Prog. 8.10 beschriebene Klassenschnittstelle.

Bei der Instanziierung mussen die Breite und Hohe des Fensters sowie der Titel als
Parameter Ubergeben werden. Optional kdnnen die Kommandozeilenoptionen der
Anwendung ebenfalls Ubergeben werden, die dann die X spezifische Optionen her-
ausfiltert und verwendet. Die Klassenschnittstelle hat folgendes Aussehen:

1. Die Methode Rename() zur Neubenennung des Fensters und

2. Resize() zur Veranderung der FenstergroRRe, die damit eine nachtragliche Ande-
rung der bei der Instanziierung festgelegten Parameter ermdglicht.

3. Die Methoden DrawLine() zum Zeichnen einer Linie und

8.6 Visualisierung von Konturen 111

Programm 8.10: Die offentliche Schnittstelle der KlaggeBaseX

1 class eltecBaseX:public eltecBase
2 |
3 public:
4 /l Enumerations:
5 const enum colour { WHITE = 0,
6 BLACK =1,
7 RED =2,
8 GREEN = 3,
9 BLUE =4}
10
11 /I Constructors:
12 eltecBaseX(const u_int w,
13 const u_int h,
14 const char title[],
15 int *argc = NULL,
16 char **argv = NULL);
17
18 /l Destructor:
19 ~eltecBaseX(void);
20
21 /I Methods:
22 void Rename(const char title[]);
23 void Resize(const u_int w,
24 const u_int h);
25
26 void DrawLine(const u_short x0,
27 const u_short yO0,
28 const u_short x1,
29 const u_short y1,
30 const colour ¢ = BLACK);
31 void DrawRectangle(const u_short x0,
32 const u_short yO0,
33 const u_short x1,
34 const u_short y1,
35 const colour ¢ = BLACK);
36 void ClearBitmap(const colour ¢ = WHITE);
37 void ShowBitmap(void);
38 static void workOnEvents(const int doreturn = true);
39}

4. DrawRectangle() zum Zeichnen eines Rechtecks kdnnen Ausgaben in einer be-
stimmten Farbe machen. Dazu sind die Farben WHITE BLACK REQ GREENUNd BLUE
als Konstanten deklariert. Es konnen mit dieser Methode nur Rechtecke einge-
zeichnet werden, die zwei horizontale Seiten haben (siehe Abb. 8.7).

5. Dain dieser Implementierung mit Pufferung gearbeitet wird, gibt es die Methode
ClearBitmap(), die die zur Pufferung dienende Bitmap mit einer bestimmten Hin-
tergrundfarbe fullt um den Inhalt des Fensters zu l6schen.

6. Die Methode ShowBitmap() dient schlieRlich zum Kopieren der Bitmap in das ei-
gentliche Fenster. Alle Ausgaben die durch die vorangegangenen drei Methoden
gemacht wurden sind gepuffert, d.h. bevor eine Ausgabe im Fenster erscheint
muf diese Methode aufgerufen werden.

112

8. ELTEC-VectEx

Mit workOnEvents() werden die durch die vorangegangenen Methoden erzeugten
X-Events abgearbeitet und damit das Ergebnis erst sichtbar. Als Parameter kann
Ubergeben werden, ob der Kontrollflul nach dem Abarbeiten der X-Events wieder
an das Anwendungsprogramm zurickgegeben werden soll oder nicht.

Zur Ausgabe von Konturen existiert die in Prog. 8.11 beschriebene Klasse Xcontours

Programm 8.11: Die offentliche Schnittstelle der Klassstours

1 class Xcontours:public eltecBaseX
2 |

3 public:

4 /I Constructors:

5 Xcontours(const u_int w,

6 const u_int h,

7 const char title[],

8 int *argc = NULL,

9 char **argv = NULL);
10
11 /I Methods:
12 void DrawParallelogramm(const u_short x0,
13 const u_short y0,
14 const u_short x1,
15 const u_short y1,
16 const short dx,
17 const colour ¢ = BLACK);
18 void DrawCross(const u_short x,
19 const u_short y,
20 const u_short d,
21 const colour ¢ = BLACK);
22 void DrawContour(ctrPointDLList& ctr,
23 const colour ¢ = BLACK);
24 void DrawContour(ctrAttrib *ctr,
25 const colour ¢ = BLACK);
26 void DrawContourList(ctrAttribDLList& list,
27 const colour ¢ = BLACK);
28}

Der Konstruktor ist identisch mit dem schon aus der Klasse eltecBaseXx bekannten
Konstruktor. Neu hinzugekommen sind die folgenden Methoden:

1.

Es

Mit DrawParallelogramm() kann ein Parallelogramm mit zwei horizontalen Seiten
in das Fenster eingezeichnet werden (siehe Abb. 8.7).

Die Methode DrawCross() zeichnet an den Ubergebenen Punktkoordinaten ein
Kreuz, das aus Linien der Ubergebenen Lange geformt wird.

Die beiden Methoden DrawContour() geben eine komplette Kontur im Fenster aus,
indem sie die einzelnen Konturpunkte mit Linien verbinden.

Mit der Methode DrawContourList() koénnen schliel3lich auch Listen von Konturen
in einem einzigen Aufruf in ein Fenster gezeichnet werden.

konnen prinzipiell beliebig viele Instanzen der beiden vorgestellten Klassen und

damit Fenster von einer Anwendung erzeugt werden. Die Ausfiihrung der Anwen-
dung wird abgebrochen sobald ein Tastatur-Event in einem der Fenster erscheint.

8.7 Die Bibliothek libElt_boards.a 113

8.7 Die Bibliothek libElt_boards.a

Zur vollstandigen Schnittstelle der Bibliothek libElt_boards.a gehoren folgende
Dateien und Klassen:

eltbase.H
Klasse eltecBase mit globalen Variablen und Methoden.

e shs2vme.H
Klasse vmeDevice zur allgemeinen Ansteuerung des VME-Buses.
Klasse sbs2vmeCfg zur Konfiguration des SBus VME-Bus Adapters.
e ipp.H
Klasse elteclpp zur Konfiguration der IPP Karte.
e thinH
Klasse eltecThin ~ zur Konfiguration des THIN Karte.
= vectH
Klasse eltecvect zur Konfiguration des VECT Karte.
e eltec.H

Klasse eltecSystem , die je eine Instanz der Klassen elteclpp , eltecThin und
eltecvect zur konsistenten Konfiguration des Gesamtsystems beinhaltet.

Diese Bibliothek ist nur fur die Architekturen SUN4SOL2 und SUNMP vorhanden, da
sie wie bereits erwahnt nur Software zur direkten Hardwareansteuerung beinhaltet
und die Hardware nur uber robosunl verfugbar ist.

8.8 Die Bibliothek libElt_misc.a

Zur vollstandigen Schnittstelle der Bibliothek libEIt_misc.a gehdren folgende Dateien
und Klassen:

e eltbase.H

Klasse eltecBase mit globalen Variablen und Methoden.
= contours.H

Klassen ctrPoint |, ctrPointDLList , CtrAttrib , CtrAttribDLList
e database.H

Klasse eltecBaseDatabase , eltecDatabase |, eltecSubDatabase mit Variablen
und Methoden aller Datenbanken.

Klassen db[Linear|Raster|LinRast][_[Stereo][Join]]

e limitreq.H
Klasse eltecBaseLimit mit Methoden aller Attributsspezifikationen.
Klassen chk(Not|([Stereo][Mask][MinLen|MaxLen|Length]))

114 8. ELTEC-VectEx

= requestdb.H

Klasse eltecBaseRequest , eltecLinearRequest , eltecRasterRequest mit Va-
riablen und Methoden aller Bereichsspezifikationen

Klassen req[Total|Rectangle|Parallelogramm]
= Xcontours.H
Klassen eltecBaseX , Xcontours
= convolver.H
Klassen eltecConvolver , eltecConvolverMatrix

Diese Bibliothek ist zur Zeit fir die Architekturen HPPA, MASPAR (Front-End),
SUN4, SUN4SOL2 und SUNMP. Fur LINUX und SGI5 wird die Software verfligbar
sobald neuere Versionen von gcc und libg++ installiert sind.

8.9 Beispiele

8.9.1 Hardware, Datenbank und Visualisierung in einem Programm

Das erste Beispiel (siehe Prog. 8.12) soll zeigen wie die Hardware initialisiert, eine
Datenbank instanziiert und verschiedene einfache Anfragen gemacht werden kénnen
um anschlieRend die verschiedenen Ergebnisse in Fenstern zu visualisieren.

Die notwendigen Header-Dateien zur Nutzung der vorhandenen Mdoglichkeiten sind,
wie auch in Prog. 8.12 zu sehen, folgendermalen:

e Hardware: Elt/eltec.H
e Datenbanken: Elt/database.H
= Visualisierung: Elt/Xcontours.H

Die Hardware wird hier nur mit den Default-Werten initialisiert (siehe Prog. 8.12,
Zeile 13). Es konnen naturlich jederzeit andere Werte bei der Instanziierung verwen-
det werden oder auch nachtréaglich verandert werden.

Als Datenbanktyp wird hier die Klasse dbLinRast_Join verwendet, d.h. es existiert
ein Linear- und ein Raster-Index. Zuséatzliche werden Nachbarkonturen durch die
Vorverarbeitung miteinander verbunden (siehe Prog. 8.12, Zeile 16). Die verwendeten
Parameter fur die Skalierung des Raster-Index durften fur die meisten Anwendungen
ausreichend sein.

Es werden zwei rechteckige Bereichsanfragen generiert, die die obere bzw. untere
Halfte des Bildes beinhalten und eine Anfrage Uber den gesamten Bildbereich (siehe
Prog. 8.12, Zeile 19ff).

Als weitere Auswahlkriterien wird der Wertebereich der gultigen Attribute einge-
schrankt durch Instanzen der Klassen chkMask und chkMaskMinLen (siehe Prog. 8.12,
Zeile 24f). Fur die Auswahl nur vertikaler Konturen sind hier beispielsweise in der
Bitmaske die Bitnummern 7, 8, 23 und 24 gesetzt.

Die Fenster zur Visualisierung werden auf einmal instanziiert und anschlieend je
nach Inhalt umbenannt (siehe Prog. 8.12, Zeile 28).

8.9 Beispiele

115

Programm 8.12: Anwendung von Hardware, Datenbanken und Visualisierung.

©Coo~NOULE, WNBE

WWWWWWNNNDNNNMNNNNNRPRPRPRPEPRPERPERPRRERPE
OORRWNPFPOOONOUPR,WNRPOOO~NOOOPMAWNEO

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

#include <iostream.h>
#include <Elt/eltec.H>
#include <Elt/database.H>
#include <Elt/Xcontours.H>

int main(int argc, char *argv[])

{
/I image - parameters
int w = eltecSystem::DFLT_WIDTH,;
int h = eltecSystem::DFLT_HEIGHT;

/Il initialisation of hardware
eltecSystem Eltec;

/I contour database
dbLinRast_Join CtrDB(w, h, 4, 3);

Il specify areas

reqTotal total,

reqRectangle upper(0, 0, w, h/2);
reqRectangle lower(0, h/2, w, h);

/I specify attributes
chkMask vertical(0x01800180), horizontal(0x80018001);
chkMaskMinLen light2dark_min20(0xffff0000, 20);

/I open windows

Xcontours *win = new Xcontours[4](w, h, ,Upper vertical);
win[1].Rename(,Lower vertical®);

win[2].Rename(,Upper light-dark*);
win[3].Rename(,Lower horizontal®);

/I mainloop
while (1)
{
if (CtrDB.getFrame(Eltec) >= 0) // read contours from HW

{
register ctrAttribDLList allCtr, Ctr[4];

/1 build indices
CtrDB.build();

/I get all available contours
CtrDB.request(allCtr, total);

/I some combined requests
CtrDB.request(Ctr[0], upper, vertical);
CtrDB.request(Ctr[1], lower, vertical);
CtrDB.request(Ctr[2], upper, light2dark_min20);
CtrDB.request(Ctr[3], lower, horizontal);

116 8. ELTEC-VectEx

Programm 8.12: Anwendung von Hardware, Datenbanken und Visualisierung.

52 /I draw contours Into windows

53 for (inti=0;i<4;i++)

54 {

55 win[i].ClearBitmap();

56 win[i]. DrawContourList(allCtr);

57 win[i]. DrawContourList(Ctr[i], eltecBaseX::GREEN);
58 win[i].ShowBitmap();

59 }

60 Xcontours::workOnEvents();

61 }

62 else

63 cerr << ,Contour Buffer Overflow" << endl;
64 }

65 }

In der Hauptschleife werden immer zuerst die neuen Konturen eingelesen (siehe
Prog. 8.12, Zeile 36) und gepruft ob dabei ein Fehler in Form eines Konturpuffertber-
laufs aufgetreten ist. Falls alles in Ordnung ist wird die Vorverarbeitung angesto3en
(siehe Prog. 8.12, Zeile 41), werden Anfragen gestellt (siehe Prog. 8.12, Zeile 44ff) und
deren Ergebnisse visualisiert (siehe Prog. 8.12, Zeile 53ff).

8.9.2 Aufnahme und Speicherung einer Bildsequenz auf Datei

Da die vorhandene Hardware nur fur genau einen Benutzer gleichzeitig verwendbar
ist, kann es von Vorteil sein eine Bildsequenz von Rohdaten aufzunehmen um unab-
hangig von der Hardware arbeiten zu kdnnen. Wie eine solche Aufnahme program-
miert werden kann ist in Prog. 8.13 zu sehen. Aufgrund der langsamen Dateiausgabe
muf3, um fortlaufende Frames zu bekommen, zuerst ein Feld von Konturdatenbanken
allokiert werden (siehe Prog. 8.13, Zeile 15). Dann wird das Feld vollstandig mit
Daten gefullt (siehe Prog. 8.13, Zeile 18ff), bevor die Daten in Dateien geschrieben
werden (siehe Prog. 8.13, Zeile 27ff). Diese Programm schreibt die Frames fur die Zeit-
dauer einer Sekunde in die Dateien movie. XXX.ctr im aktuellen Arbeitsverzeichnis,
wobei XXX die Frame-Nummer ist. Falls in Prog. 8.13, Zeile 29 als zweiter Parameter
eine 2 Ubergeben wirde, hielRen die Dateien movie.xX.ctr , d.h. durch diesen Parame-
ter wird die Anzahl der Stellen fur die Frame-Nummer bestimmt.

8.9.3 Einlesen einer Bildsequenz von Datei

Die durch Prog. 8.13 erzeugten Dateien werden durch Prog. 8.14 eingelesen und in
einem Fenster visualisiert. Da hier das Einlesen der Dateien nicht zeitkritisch ist wird
kein Feld von Konturdatenbanken benotigt, sondern es werden nacheinander die Fra-
mes von Datei eingelesen (siehe Prog. 8.14, Zeile 23), die Vorverarbeitung durchge-
fuhrt (siehe Prog. 8.14, Zeile 24) und anschlieend die durch eine Datenbankanfrage
(siehe Prog. 8.14, Zeile 28) erhaltenen Konturen visualisiert (siehe Prog. 8.14, Zeile
31ff). In Prog. 8.14, Zeile 23 wird keine Frame-Nummer als Parameter tbergeben, da
diese Methode intern, bei 0 beginnend, die Frames zahlt und den korrekten Nachfol-
geframe von Datei ladt. Falls die explizite Angabe der Frame-Nummer notwendig
sein sollte, muR auf die Methode read() zuriickgegriffen werden. In Prog. 8.14 muf3te
dann die Zeile 23 durch die in Prog. 8.15: abgebildete Zeile ersetzt werden.

8.9 Beispiele 117

Programm 8.13: Aufnahme und Speicherung einer Bildsequenz auf Datei.

#include <iostream.h>
#include <Elt/eltec.H>
#include <Elt/database.H>

int main(int argc, char *argv[])
{
/I number of frames to record
int maxframes = 25;
int frame;

©Coo~NOULE, WNBE

11 /Il initialisation of hardware
12 eltecSystem Eltec;

14 /I contour database
15 dbLinear *CtrDB = new dbLinear[maxframes];

17 /l read contours from HW
18 for (frame = 0; frame < maxframes; frame++)

19 {

20 CtrDBJ[frame].getFrame(Eltec);
21 cout << . r*;

22 cout.flush();

23 }

24 cout << endl;

25

26 [l write to files
27 for (frame = 0; frame < maxframes; frame++)

28 {

29 CtrDBJ[frame].write(,movie", 3);
30 cout << ,w*;

31 cout.flush();

32 }

33 cout << endl;

34 }

8.9.4 Suche nach antiparallelen Konturen

Um etwa eine weil3e Linie auf dunklem Hintergrund zu erkennen mussen antiparal-
lele Konturen gefunden werden. Diese weil3e Linie besteht im Idealfall aus zwei par-
allelen Konturen. Eine Kontur wird dabei durch einen dunkel-hell Kontrast erzeugt
und die andere durch einen hell-dunkel Kontrast. Damit haben die beiden Konturen
eine entgegengesetzte Richtung (siehe Kapitel 8.2), d.h. sie sind antiparallel [6]. Mit
der in Prog. 8.16 abgebildeten Funktion kdnnen zu einer bekannten Kontur, die durch
einen dunkel-hell Kontrast erzeugt wurde, antiparallele Konturen gesucht werden.

Dazu werden immer fur ein Paar aufeinanderfolgender Konturpunkte der Gbergebe-
nen Kontur parallelogrammférmige Bereichsanfragen generiert (siehe Prog. 8.16,
Zeile 35). Zur Generierung der Bereichsanfrage werden die Koordinaten der beteilig-
ten Konturpunkte verwendet und als Breite des Parallelogramms ein der Anwendung
und der Breite der Linie angemessener Wert bestimmt. Die Menge moglicher Kandi-
daten wird durch die Angabe einer Richtungsmaske fur diesen Bereich weiter einge-

118

8. ELTEC-VectEx

Programm 8.14: Einlesen einer Bildsequenz von Datei.

©Coo~NOULE, WNBE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

#include <iostream.h>
#include <Elt/eltec.H>
#include <Elt/database.H>
#include <Elt/Xcontours.H>

int main(int argc, char *argv[])

{

}

/I number of frames to record
int maxframes = 25;
int frame;

/I contour database
dbLinear CtrDB;

/I visualisation
Xcontours win(eltecSystem::DFLT_WIDTH,

eltecSystem::DFLT_HEIGHT, ,movie");

/I read contours from files and visualize
for (frame = 0; frame < maxframes; frame++)
{
/l read contours from file
CtrDB.getFrame(,movie“, 3);
CtrDB.build();

/I get contours
ctrAttribDLList all;
CtrDB.request(all, reqTotal());

/ visualize contours
win.ClearBitmap();
win.DrawContourList(all);
win.ShowBitmap();
Xcontours::workOnEvents();

cout << ,.%
cout.flush();

}

cout << endl;

Programm 8.15: Verwendung der Methoead()

beim Einlesen von Datei.

1

CtrDB.read(,movie*, 3, frame);

schrankt. Zur Bestimmung der Richtungsmaske werden fur jeden der beiden bei einer
einzelnen Anfrage beteiligten Konturpunkte eine Winkelmaske bestimmt, indem die
im Konturpunkt vorhandene Richtung in der Bitmaske gesetzt wird (siehe Prog. 8.16,
Zeile 28). Als Toleranzbereich wird jeweils das linke und rechte Bit daneben ebenfalls
gesetzt (siehe Prog. 8.16, Zeile 29). Schlie8lich wird die Maske um 180° verschoben
um wirklich antiparallel Konturen zu finden (siehe Prog. 8.16, Zeile 30).

8.9 Beispiele 119

Programm 8.16: Suche nach antiparallelen Konturen.

1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

ctrAttribDLList searchAntiParallel(register ctrAttrib *ctr)
{

ctrAttribDLList result;

ctrPointDLList *actPointList = &(ctr->pts);

register u_int AngleMask1, AngleMask2;
register short x1, y1, d1, x2, y2, d2;

Pix i = actPointList->first();

/I mask of first point, add tolerance, make antiparallel mask
AngleMask?2 = (*actPointList)(i)->angle2mask();
AngleMask?2 |= (AngleMask?2 << 1) | (AngleMask2 >> 1);
AngleMask?2 = (AngleMask2 << 16) | (AngleMask2 >> 16);
x2 = (*actPointList)(i)->x;

y2 = (*actPointList)(i)->y;

d2 = 50;

register bool firstRequest = true;
for (actPointList->next(i); i '= NULL; actPointList->next(i))

{
AngleMask1 = AngleMask2;
x1 =X2;
yl =y2;
dl =dz;

/I mask of next point, add tolerance, make antiparallel mask
AngleMask?2 = (*actPointList)(i)->angle2mask();
AngleMask?2 |= (AngleMask2 << 1) | (AngleMask2 >> 1);
AngleMask2 = (AngleMask2 << 16) | (AngleMask2 >> 16);
X2 = (*actPointList)(i)->x;
y2 = (*actPointList)(i)->y;
d2 = 50;
CtrDB.request(result,
reqParallelogramm(x1, y1, x2, y2, max(d1, d2)),
chkMask(AngleMask1 | AngleMask?2),
IfirstRequest);
firstRequest = false;

}

return result;

}

Da im Idealfall fur jeden Teilabschnitt dieselbe antiparallele Kontur gefunden wird
verwendet diese Funktion die Moéglichkeit Anfragen zu gruppieren, um Duplikate in
der Ergebnismenge auszuschlie3en (siehe Prog. 8.16, Zeile 19, 37f).

Zu beachten ist, daR diese Funktion nur mogliche Kandidaten von antiparallelen
Konturen liefert. Probleme gibt es sobald mehrere Kandidaten auftreten, denn wel-
ches ist die richtige Kontur, oder sind alle richtig weil die Kontur zerrissen ist?

120 8. ELTEC-VectEx

8.10 Messungen

0.1
Linear-Index ——
i Raster-Index 4:3 -----
0.09 i Raster-tndex 3:2 ==~
i Raster-Index 2:1 -
Raster-Index 1:0 -~
0.08
@ 0.07
3
T L =
Eel L i
5 0.06 o i
T ;o
< .
= . A
@ P 7
€ 005 : fobe o
Q ' , PRl
E =
[a] ; « i
£ 0.04 R B R
> ,
N
3
N 0.03
0.02
0.01 |4
0
0 1000 1500 2000 2500 3000 3500

Anzahl der Konturpunkte

Abbildung 8.9: Zeitmessung ohne Vorverarbeitungsschritte.

0.1
Linear-Index ——
Raster-Index 4:3 ----
0.09 Raster-index 3:2 ===+
Raster-Index 2:1 -
Raster-Index 1:0 -~
0.08
/
@ 0.07 ;
=1 !
T
Ke}
5 0.06
I
X
c
<
2 005
Q
©
a]
€ 0.04
>
N
3
N 0.03
0.02
0.01
0
0 500 1000 1500 2000 2500 3000 3500

Anzahl der Konturpunkte

Abbildung 8.10: Zeitmessung mit Verbindung von Nachbarkonturen.

8.11 Programme 121

Um ein Gefuhl fur die Einstellung von Parametern zu bekommen sind in Abb. 8.9
und Abb. 8.10 Schaubilder aufgetragen, in denen die Zeit zum Aufbau des jeweiligen
Index Uber der Anzahl der vektorisierten Konturpunkte aufgetragen ist. Die Messun-
gen wurden ausschlief3lich auf robosunl durchgefuhrt.

Die Mel3ergebnisse der beiden Klassen dbLinear und dbRaster sind in Abb. 8.9 abge-
bildet, wobei fur alle Messungen dieselbe auf Datei gespeicherte Bildsequenz verwen-
det wurde. Fur doRaster wurden die Skalierungsfaktoren verschieden gewéahlt um
eine Vergleichsmaoglichkeit zwischen einigen moglichen Kombinationen zu erhalten.
Die Skalierung ist aus der Kurvenbezeichnung abzulesen, wobei eine Angabe von 4:3
fur eine Skalierung in x-Richtung von 2% = 16 und in y-Richtung 22 = 8 steht.

In Abb. 8.10 wurde wieder unter Verwendung derselben Bildsequenz eine Messung
Uber das Zeitverhalten durchgeftihrt, wenn die Verbindung von Nachbarkonturen als
Vorverarbeitungsschritt hinzukommt.

Wie zu erwarten war ist der Aufbau des Linear-Index etwa doppelt so schnell wie der
des Raster-Index. Bei der Verwendung einer Datenbank, in der beide Indizes verwen-
det werden, mussen die Zeiten aus Abb. 8.9 in etwa addiert werden. Dies gilt aller-
dings nicht fur die Zeiten aus Abb. 8.10, da sonst die Zeiten fur das Zusammenflgen
von Nachbarkonturen zweifach berechnet wiirde.

8.11 Programme

Es existieren einige Programme die unter anderem die einzelnen Karten separat kon-
figurieren kdnnen, bzw. Bildsequenzen speichern oder laden und anzeigen kdnnen.

AusschlieBlich fur die Architekturen SUN4SOL2 und SUNMP gibt es folgende Pro-
gramme:

* Eltipp
Konfiguration einiger Parameter der IPP-Karte. Ermoglicht aul3erdem das Abspei-
chern eines Grauwertbildes im pgm-Format.

* Eltthin
Konfiguration der Parameter der THIN-Karte.

e Eltvect
Konfiguration der Parameter der VECT-Karte.

* Eltmain
Konfiguration des Gesamtsystems mit Visualisierung der Konturen und der Mog-
lichkeit Bildsequenzen abzuspeichern.

* Eltfollow
Anwendung der ELTEC-Hardware zur Linienverfolgung. Die Roboter kdnnen
Uber Kommandozeilen-Option direkt angesteuert werden. Das Programm kann
auch nur auf einer Bildsequenz arbeiten, sollte dann aber aus verstandlichen
Griunden ohne die Option zur Ansteuerung der Roboter aufgerufen werden.

Insbesondere kdnnen wahrend des Ablaufs von Eitmain mit den drei zuerst genann-
ten Programmen zur Konfiguration der Hardware Parameter verandert werden -
allerdings ohne Gewéhr.

122

8. ELTEC-VectEx

Far die Architekturen HPPA, MASPAR (Front-End), SUN4, SUN4SOL2 und SUNMP
gibt es das folgende Programm:

e Eltshow

Einlesen und Anzeigen einer Bildsequenz.

Uber den genauen Aufruf aller genannten Programme kann man sich durch einen
Aufruf mit der Option -h informieren.

8.12Verwendung der Sourcen

Teilprojektname:
aktuelle Version:
bei nutzenden TPR;:

Library:

Beschreibung:
Architekturen:

Includes:

Linkoptionen:

Library:

Beschreibung:
Architekturen:

Includes:

Linkoptionen:

Programme:

Beschreibung:
Architekturen:

Programme:

Beschreibung:
Architekturen:

Programme:

Beschreibung:
Architekturen:

Programme:

Beschreibung:

Architekturen:

Programme:

Beschreibung:
Architekturen:

Elt (Eltec Interface)
Elt2-1
Makefilevariable BASESONImM die aktuelle Version erweitern

libEIt_misc.a

Routinen zur Verarbeitung und Visualisierung von Konturen
SUN4SOL2 SUNMP

#include "Elt/eltec.H"

-I[Elt_misc.a -IXt -1X11

libElt_boards.a
Routinen zum Ansprechen der Eltec Hardware
HPPA MASPAR(Front-End) SUN4 SUN4SOL2 SUNMP

#include "Elt/contours.H"
#include "Elt/Xcontours.H"

-I[Elt_boards -Im -IElt_misc.a

Eltipp
Konfiguration IPP-Karte, Abspeichern Grauwertbilder.

SUN4SOL2 SUNMP

Eltthin
Konfiguration THIN-Karte.
SUN4SOL2 SUNMP

Eltvect
Konfiguration VECT-Karte.
SUN4SOL2 SUNMP

Eltmain

Konfiguration Gesamtsystem, Abspeichern Konturbilder und
Visualisierung. Beendet wird es mit ctrl-c oder Tastendruck in
eines der Fenster.

SUN4SOL2 SUNMP

Eltfollow
Linienverfolgungs-Demo. Beendet wird es mit ctrl-c.
SUN4SOL2 SUNMP

8.13 Literatur 123

Programme: Eltshow
Beschreibung: Anzeigen von Konturbildern.
Architekturen: HPPA MASPAR(Front-End) SUN4 SUN4SOL2 SUNMP

8.13 Literatur

[1] User‘s Manual PT-SBS915 SBus-to-VMEbus Adapter, Document No 106A0183,
Performance Technologies Inc., New York, 1993.

[2] Hardware Manual Image Processing Port, Rev. 2a,
Eltec Elektronik, Mainz, 1991.

[3] Hardware Manual THINEDGE-Processor for Contour Matching, Rev. 1a,
ELTEC Elektronik GmbH, Mainz, 1991.

[4] Hardware Manual VECTOR-Processor for Contour Matching, Rev. 1a,
ELTEC Elektronik GmbH, Mainz, 1991.

[5] F. Faigle, Entwicklung einer Echtzeitdatenbank fiir Bildkonturen auf einem Transputersy-
stem zur autonomen Fahrzeugftihrung,
Diplomarbeit, FH Esslingen, Technische Informatik, 1992.

[6] M. Sommerau, Echtzeitinterpretation von Verkehrsszenen anhand extrahierter Konturen,
Diplomarbeit Nr. 1036, Universitat Stuttgart, Fakultat Informatik, 1993.

124 8. ELTEC-VectEx

Kapitel 9

Die SUN Framegrabber
Routinen

Michael Vogt, Gunter Mamier

Dieses Kapitel beschreibt die Benutzung und die Eigenschaften der SUN-Video Fra-
megrabber auf den Robosuns. Seit Dezember ‘94 existiert eine neuere Version der XIL
Libraries. Aufgrund dieser neuen Version, die auf allen drei robosuns eingespielt
wurde, ist es nun moglich, die angebotenen Funktionen wesentlich besser auszunut-
zen als bisher. Unter anderem gewinnt man die Méglichkeit, Zeitstempel anzulegen.
Die Grabzeiten haben sich in bestimmten Fallen wesentlich verbessert.

Neben dieser Dokumentation existieren eine Reihe von Manual Pages ftr alle SFG
spezifischen Funktionen, Variablen und Typen.

Was ist neu?
In der Version 2-1

Es besteht nun die Moglichkeit, direkt nach dem Graben eine beliebige NxMFaltung
auf dem Bild durchzufuihren. AuBerdem wurden ein paar kleinere Fehler behoben.

In der Version 2-0

Gegenuber der 1-3 Version der SFG Routinen hat sich der Datentyp beim Graben von
Bildern verandert. Alle Programme, die bisher SFG 1-3 verwenden und kiinftig SFG
2-x verwenden sollen (das ist sehr empfehlenswert), mussen leider minimal modifi-
ziert werden. Ein erneutes Ubersetzen und Binden mit der neuen SFG 2-0 Bibliothek
reicht leider nicht aus.

Es wird dringend empfohlen, die Umstellung auf 2-x vorzunehmen, da die bisheri-
gen Routinen zu sich verlangernden Grabzeiten fihren und unter bestimmten \Vor-
aussetzungen keine aktuellen Bilder garantieren.

126

9. Die SUN Framegrabber Routinen

9.1 Initialisierung

Bevor irgendwelche Bilddaten ausgelesen werden kdonnen mulfd der Framegrabber
initialisiert werden. Diese Initialisierung ist einmal fur beliebig viele Grabs durchzu-
fuhren. Ist der Framegrabber durch einen Benutzer initialisiert, so steht er ausschlief3-
lich diesem Benutzer zur Verfugung, bis er den Framegrabber explizit wieder freigibt

oder das Program terminiert (implizite Freigabe). Daraus ergibt sich die Folgerung,
dall Programme den Framegrabber schlieRen sollten sobald der Bildaufnahmeteil

durchlaufen ist. Es gab bereits ofters Beschwerden tiber Programme die dies unterlie-

Ren.

Die Initialisierung erfolgt mit dem Befehl:

int SFG_init(scalefact, port, farbe, &breite, &hohe);

Die Parameter bedeuten:

int scalefact

int port

int farbe

int breite

int hdhe

Die Funktion liefert im Erfolgsfall den Wert 0 zuruck, im Fehlerfall einen negativen

Skalierungsfaktor, der die GroRRe der zu grabenden Bilder angibt.
Der Skalierungsfaktor gibt direkt an, das wievielte Pixel in

einer Zeile bzw., die wievielte Zeile digitalisiert werden soll. Es
ergibt sich bei PAL Format (unser Format):

1 ==768x576 (Originalbild, PAL Format)

2 == 384x288
3 ==256x192
4 ==192x144
5 ==153x115.

Hinweis: Zeilenverschachtelte Stereobilder konnen nur mit un-
geraden Faktoren gegrabt werden!

Nummer des Eingangsports (0, 1 oder 2). Bei uns sind normaler-
weise immer die ports 1 belegt (Gber den Sony Kreuzschienen-
verteiler). Zusatzlich liegt manchmal an Port 0 ein S-Videosignal
an (zur Zeit an robosun3 der Farb-Stereo-Mixer)

SFG_GRAY == Graben in Graustufen,

SFG_COLOR == Graben in 24 Bit Farbe,

SFG_DITHER == Graben von geditherten Farbbildern
(SFG_DITHER ist nur zur Darstellung und nicht ftr die Bild-
verarbeitung geeignet).

Breite des zu grabenden Bildes (wird zuruckgeliefert).

Hohe des zu grabenden Bildes (wird zuruckgeliefert).

Fehlercode: 0 bei Erfolg; -1 Fehler beim Offnen der XIL library; -2 Fehler beim Offnen
des Ports bzw. Port belegt; -3 Ungultige Argumente.

9.2 Graben von Bildern 127

9.2 Graben von Bildern

Zur Zeit stehen drei verschieden Routinen zum Graben von Bildern zur Verfiigung.
Sie kénnen innerhalb eines SFG_init -- SFG_close Paares beliebig oft und in beliebiger
Kombination aufgerufen werden. Welche zu benutzen ist, ist im jeweiligen Fall auf
Grund der gegebenen Bedingungen zu entscheiden. Alle drei Funktionen liefern das
Bild in der Struktur SFG_image zurtck, auf die z.B. in der folgenden Art zugegriffen
werden kann:

Programm 9.1: Kopieren von Bildinformation (ineffizient)

SFG_image bild;

SFG_getFrameFast(&bild);
for(j=0;j<h;j++){
for(i=0;i<w;i++){
Blue[i][j] = (unsigned char)* bild.storage.byte.data++;
Green(i][j] = (unsigned char)* bild.storage.byte.data++;
Red[i][[] = (unsigned char)* bild.storage.byte.data++;

}

QOWoO~NOOUdWNE

=
—

Wesentlich eleganter kann man auf den Bildinhalt zugreifen, indem man sich eine
Zeigerstruktur aufbaut, die in den Bilddatenbereich hineinzeigt. Es ist vorgesehen,
hierfur eine eigene Bibliothek aufzubauen. Vorerst kann man sich mit etwa folgender
Konstruktion fur Farbbilder behelfen:

Programm 9.2: Einfacher Zugriff auf Bildinformation

1 typedef struct _uc_bgr {
2 unsigned char b;
3 unsigned char g;
4 unsigned char r;
5 }uc_bgr;
6
7 A
8 SFG_image bild;
9 uc_bgr **image;
10
11 /* Initialisierung */
12 SFG_init(scalefact, port, farbe, &breite, &hoehe);
13 image = (uc_bgr **) malloc(hoehe * sizeof(uc_bgr *));
14
15 while (verarbeitungsschleife) {
16 [* Bild graben */
17 SFG_getFrameFast(&bild);
18 for (i=0; i<hoehe; i++)
19 imageli] = ((uc_bgr *) bild.storage.byte.data)
20 + i*breite;
21
22 [* Zugriff: image[y][x].r, image[y][x].g, image[y][x].b */
23
24 }

128 9. Die SUN Framegrabber Routinen

Es kann so recht einfach auf jedes beliebige Pixel (RGB Werte) zugegriffen werden,
ohne dall hierzu das gesamte Bild umkopiert werden mufR, und ohne bei jedem
Zugriff eine umstandliche Berechnung der richtigen Adresse durchzufuhren. Als
Warnung bleibt zu erwéhnen, dal? sich der Bildspeicherbereich nach jedem Aufruf
von SFG_getFrame... potentiell &ndern kann. Es ist daher angebracht, die obige Zei-
gerstruktur nach jedem Grab neu aufzubauen. Es kann jedoch darauf verzichtet wer-
den, wenn durch einen Vergleich der Basisadresse in bild.storage.byte.data sicherge-
stellt ist, dal? sich der Bereich nicht verschoben hat.

Im Kapitel tGber Bildformate wird der Zugriff ebenfalls beschrieben.

Gegenuber der Version 1-3 der SFG Routinen hat sich der Aufrufparameter fur die
nachfolgenden Grab-Funktionen geandert. Es handelt sich nun um eine Struktur, die
neben den XIL-Bilddaten (friUherer Parameter) weitere Daten enthalt. Die Struktur hat
folgenden Aufbau:

Programm 9.3: Definition von SFG_image

1 typedef struct
2 |
3 XilMemoryStorage storage; [* Struktur, die (unter anderem) die
4 Daten des gegrabten Bildes
5 enthaelt */
6 double timestamp; /* Grab-Zeitpunkt [s] */
7 int width; [* Breite des Bildes */
8 int height; /* Hoehe des Bildes */
9 SFG_color_mode color; /* Farbmodus des Bildes */
10 int frame_no; [* Laufende Nummer des Bildes */
11 } SFG_image;

Besonders interessant sind der Zeitstempel (timestamp) und die fortlaufende Bild-
nummer. Der Zeitstempel gibt die Systemzeit in Sekunden seit dem 1.1.1970 (GMT)
an und besitzt eine Auflésung von 1 ms. Er ist aus dem Zeitstempel abgeleitet, den
der Framegrabber jedem Bild zuordnet. Leider kann dieser Zeitpunkt um bis zu 40 ms
neben dem tatsachlichen Zeitpunkt liegen. Ursache hierfur sind noch nicht behobene
Fehler der Software bzw. Hardware von SUN. Mdglicherweise bringt Solaris 2.4 hier
eine Besserung.

Die fortlaufende Bildnummer (frame_no) gibt die Nummer des anliegenden Kamera-
bildes an, das seit Initialisierung des Framegrabbers registriert wurde.

ACHTUNG: Dies ist nicht eine laufende Numerierung der gegrabten Bilder sondern
eine Zuordnung zwischen gegrabtem Bild und Kamerasignal. Da das Graben von
grofRen Farbbildern beispielsweise langer als 40 ms dauert, erhalt man hier nicht jede
maogliche Bildnummer, was auch ein Zeichen dafur ist, dafy man nicht jedes einzelne
Bild graben kann. Die Bildnummer wird auch weiterhin von allen SFG_getFrame...
Routinen als Ergebnis zurtckgeliefert.

9.2.1 Schnelles Graben

Die Routine
int SFG_getFrameFast(SFG_image *bild);

9.2 Graben von Bildern 129

grabt Bilder moglichst schnell. Sie nutzt dabei den internen FIFO Buffer des Frame-
grabbers. Durch diesen Buffer ist aber nicht mehr gewahrleistet, dal das gegrabte Bild
den aktuellen Gegebenheiten entspricht, es kann veraltet sein. Um ein relativ aktuel-
les Bild zu erhalten muf} deshalb evtl. mehrmals direkt hintereinander die Routine
aufgerufen werden. Daher ist diese Routine nicht empfehlenswert, wenn fir das
rufende Program ein Bild, das mehrere Millisekunden bis Minuten alt ist nicht akzep-
tabel ist.

9.2.2 Sicheres Graben

Die Routine
int SFG_getFrameSave(SFG_image *bild);

nutzt den internen Buffer des Framegrabbers nicht. Sie stellt im Gegenteil sicher, dal’
das Bild immer neu gegrabt wird bevor es an das rufende Program gegeben wird.
Dies wird erreicht, indem der FIFO Buffer des Framegrabbers mit einem speziellen
Befehl geleert wird. Ein neues Bild kann erst dann wieder gegrabt werden, sobald der
gesamte FIFO wieder gefullt ist. Die Zeitdauer fur diesen Vorgang hangt von der
Lange des FIFO ab (siehe auch Abschnitt Gber weitere Parameter) und von der fest
vorgegebenen Bildrate von 40 ms. Gegenuber SFG_getFrameFast nimmt man einen
deutlichen Zeitnachteil in Kauf.

9.2.3 Intelligentes Graben

Die Zwischenform
int SFG_getFrame(SFG_image *bild);

versucht abzuschéatzen welches Bild im Buffer des Framegrabbers der aktuellen Situa-
tion entspricht und gibt dieses Bild zurtick. Dieses ist aufgrund der neuen XIL-Biblio-
thek und der neuen Grab Routinen auf jeden Fall aktuell (d.h.: sicher), kann aber u.U.
langer dauern als SFG_getFrameSave. In der Regel sollte diese Funktion gegenuber
allen anderen bevorzugt werden. Die Funktionsweise ist folgende:

Beim Aufruf von SFG_getFrame wird die aktuelle Systemzeit bestimmt. Von dieser
Systemzeit wird ein tolerierbares Bildalter subtrahiert (siehe SFG_setMaxdelay) um
das alteste akzeptierbare Bild festzulegen. AnschlieBend werden aus dem FIFO des
Framegrabbers so lange Bilder entnommen, bis der jeweils mitgelieferte Zeitstempel
hochstens so alt ist, wie der zuvor festgelegte Zeitpunkt. Die Geschwindigkeit dieser
Routine hangt also in erster Linie davon ab, wann sie zuletzt aufgerufen wurde, d.h.
wie lange die Bearbeitung des zuvor gegrabten Bildes gedauert hat. Ist die Bearbei-
tung sehr schnell und akzeptiert man Bilder, die z.B. maximal 40 ms alt sein durfen,
dann wird moglicherweise jedes einzelne Bild ohne Wartezeiten bearbeitet. Weitere
EinflulRfaktoren sind die Tiefe des FIFO und das einstellbare akzeptierte Bildalter

(s.u.).

130 9. Die SUN Framegrabber Routinen

9.3 Weitere Funktionen

Um die Framegrabber Hardware optimal an das jeweilige Programm anzupassen,
gibt es weitere Mdglichkeiten, verschiedene Parameter zu andern.

9.3.1 Lange des FIFO

Mit der Funktion
int SFG_setMaxbuffers(int maxbuffers);

kann die maximale GrofR3e des Bildspeicher FIFOs eingestellt werden. Diese maximale
GroRe stellt eine obere Schranke dar. Die tatsachlich verwendete Anzahl hangt ab
vom verfugbaren Speicherplatz auf dem Framegrabber und von der aktuellen Grolie
der zu grabenden Bilder. Die tatsachliche GrofR3e soll von der Funktion zurtickgegeben
werden, was aber leider aufgrund eines Fehlers der XIL-Bibliothek nicht korrekt pas-
siert. Hier wird regelmaRig der Wert 2 geliefert obwohl aus Versuchen hervorgegan-
gen ist, dal3 deutlich andere Zahlen verwendet werden: Es gelten folgende Paarun-
gen, angegeben in <Skalierungsfaktor>:<tatsachliche FIFO-Lange>, die fur einen
Maximalwert von 20 Speicherplatzen bestimmt wurden:

1:2, 2:5, 3:3, 4.5, 5:8, 6:12

Der Benutzer muf3 sich im Zweifelsfall also selbst Uberlegen, wieviele Speicherplatze
bei einem vorgegebenen Maximalwert erzielt werden. Interessanterweise sind diese
Angaben unabhéangig davon, ob Farb- oder Grauwertbilder gegrabt werden. Der
schlechte Wert fur den Skalierungsfaktor 3 beruht offensichtlich ebenfalls auf Fehlern
der Hardware oder der XIL-Bibliothek.

Als Default-Wert ist #include <xil/xil.h>nach Initialisierung des Framegrabbers die
Maximalzahl von 2 FIFO Buffern eingestellt.

9.3.2 Maximales Bildalter

Mit der Funktion
void SFG_setMaxdelay(int maxdelay);

kann das maximale Alter von Bildern fur die Grabroutine SFG_getFrame in Millise-
kunden eingestellt werden. Auf die anderen beiden Grabfunktionen hat sie keinen
Einflul3. Als Default-Wert ist nach Initialisierung des Framegrabbers ein Wert von 20
ms eingestellt. Dies beruht auf der Beobachtung, dal der Fehler der Zeitstempel der
Bilder in Ausnahmefallen bis zu 40 ms betragen kann. Fir Anwender, die ganz sicher
sein wollen, sollte hier also ein Wert von 0 ms oder sogar ein negativer Wert angege-
ben werden. Fur Anwendungen mit wenig Bewegung im Bild reicht eventuell ein
akzeptiertes Alter von bis zu 1000 ms aus. Dies muB jeder Anwender nach eigenem
Ermessen selbst festlegen.

9.3.3 Automatisches Uberspringen

Die Funktion
void SFG_setSkip(int skip);

9.3 Weitere Funktionen 131

bewirkt, dald der Framegrabber beim Digitalisieren grundséatzlich <skip> Bilder aus-
lalst. Dies hat den Vorteil, dal} z.B. bei langsamen Anwendung das Zusammenspiel
von maximal erlaubtem Alter und Anwendung der Funktion SFG_getFrame der Bild-
zugriff optimiert werden kann. Stellt man im Laufe der Anwendung anhand der Bild-
nummern fest, dal beispielsweise nur jedes vierte oder flnfte Bild geliefert wird, so
ist es evtl. sinnvoll, des <skip> Wert auf drei zu setzen, damit nicht regelméaRig der
FIFO des Framegrabbers gefullt und unnotig leergelesen werden muf3. Die Funktion
kann (muR aber nicht) nach Initialisierung des Framegrabbers beliebig oft aufgerufen
werden. Der eingestellte Wert bleibt jeweils bis zum néachsten Aufruf von
SFG_setSkip aktiviert.

9.3.4 Automatischer Weil3abgleich

Mit der Funktion
void SFG_setWB(float red_scale, float blue_scale);

kann eine automatische WeiRkorrektur vorgenommen werden. Der Rot- und Blauan-
teil von Farbbildern wird bei jedem Graben automatisch mit den Werten red_scale
und blue_scale multipliziert, falls sie ungleich 1.0 sind. Der hierdurch erzielte Werte-
bereich wird auf 0 bis 255 beschrankt (eventuell verliert man also relevante Informa-
tion). Soll der automatische Weil3abgleich ausgeschaltet werden, so mussen die Werte
1.0 angegeben werden. Nach der Initialisierung ist der automatische Weif3abgleich
nicht aktiv.

9.3.5 Automatische nxm Faltung

Durch die Funktion
void SFG_setConvolution(Xil_boolean active);

kann eine automatische NxM Faltung aller gegrabten Bilder aktiviert (active ==
TRUE) oder deaktiviert (active == FALSE) werden. Nach Initialisierung des Frame-
grabbersistdie Faltung deaktiviert. Der eingestellte Default-Faltungskern ist ein
3x3 Mittelwertfilter zur Glattung der Bilder. Wahlweise kann jedoch ein anderer Kern
verwendet werden (z.B. Laplace), der jedoch vor Aufruf der Funktion zunéchst durch

void SFG_setKernel(int width, int height, int key_x, int key_y, float *data);
erzeugt werden mufR.

Durch SFG_setKernel kann der Standard-Faltungskern der SFG Routinen (Tiefpal3-
Filter mit 3x3 Filtermaske) gegen einen anderen Kern ausgetauscht werden. Die Para-
meter width und height bestimmen die Grol3e des Filterkerns. key x und key_y defi-
nieren das Zentrum des Kerns (0, 0 entspricht oben links). Beispielaufruf flr die Defi-
nition eines Laplace Filters:

Programm 9.4: Aktivierung eines Laplace Filters

1 float laplace[9] ={0, -1, O,

2 -1, 4,-1,
3 0,-1, 0}
4 SFG_setKernel(3, 3, 1, 1, laplace);.

132 9. Die SUN Framegrabber Routinen

9.4 Hilfsfunktionen

Far ein einfaches Arbeiten mit den SFG-Routinen stehen eine Reihe einfach zu bedie-
nender Hilfsfunktionen zur Verfligung:

9.4.1 Bildinformation

Die Funktion
char *SFG_image_info(SFG_image *image);
liefert fur ein gegebenes Bild einen kurzen Informations-String, der z.B. zu Protokoll-

zwecken verwendet werden kann. Der Aufbau des Strings wird am besten an einem
Beispiel Kklar:

frame [14] color captured on robosun3 by libSFG at Wed Jan 25 1995 20:16:02.864

Die Zahl in eckigen Klammern gibt die laufende Bildnummer seit der Initialisierung
an. Der Zeitstempel am Ende hat eine Auflésung von Millisekunden. Alle Informatio-
nen werden aus der SFG_image Struktur abgeleitet, die beim Graben des Bildes
gefullt wird.

9.4.2 Bilder kopieren

Die Funktion
SFG_image *SFG_copy_image(SFG_image *image);

dupliziert eine gultige SFG_image Bildstruktur, allokiert Speicherbereich fur die Bild-
daten und kopiert effizient die Bilddaten in die neue Struktur. Sollen z.B. nacheinan-
der mehrere Bilder aufgenommen werden, die erst nachtraglich bearbeitet werden
konnen, so ist ein Kopieren der Bilder mit dieser Funktion angebracht. Die Funktion
erhélt als Parameter einen Zeiger auf die bereits vorhandene Bildstruktur und liefert
einen Zeiger auf eine neue Bildstruktur. (Anmerkung: die alte Bildstruktur bleibt wei-
terhin gultig).

9.4.3 Bilder l6schen

Die Funktion
void SFG_free_image(SFG_image *image);

gibt den Speicherbereich eines Bildes, das mit SFG_copy_image dupliziert wurde,
wieder frei. Nach Aufruf dieser Funktion darf nicht mehr auf die Daten dieses Bildes
zugegriffen werden.

ACHTUNG: Es darf niemals eine Bildstruktur angegeben werden, die direkt von
einem SFG_getFrame...() Aufruf stammt, da hierdurch die interne Speicherverwal-
tung des XIL unterlaufen wird (drohendes Resultat: segmentation fault).

9.5 Schliel3en des Framegrabbers 133

9.4.4 Abspeichern von Bildern

Mit der Funktion
int SFG_save_pnm_file(FILE *fp, SFG_image *image);

wird ein Bild, das durch die Bildstruktur <image> tibergeben wird in die Datei <fp>
abgespeichert. Abhangig vom Bildtyp wird entweder ein PGM (P5) Grauwertbild
oder ein PPM (P6) Farbbild geschrieben (siehe man pgm oder man ppm). Die Datei
<fp> mul vor Aufruf der Funktion getffnet werden und anschlieRend geschlossen
werden. Die Funktion tut dies nicht selbststandig um grof3ere Flexibilitat zu gewéahr-
leisten.

9.4.5 Zugriff auf geditherte Bilder

Fur den Zugriff auf geditherte Farbbilder, die sich ausschliel3lich zur Darstellung und
nur eingeschrankt zur Bildverarbeitung eignen, wird eine spezielle Variable
(SFG_ccube) exportiert, die die Farbwerte des verwendeten Farbwirfels enthéalt. Die
Variable ist vom Typ SFG_rgb und erlaubt den Zugriff auf die RGB Komponenten der
Pixel. Ein beispielhafter Zugriff wirde etwa folgendermafen aussehen:

Programm 9.5: Zugriff Uber color cube auf geditherte Bilder

SFG_getFrame(&image);
for(j=0;j<h;j++){
for(i=0;i<w;i++){
red[i][j] = SFG_ccube[image.storage.byte.data].r;
green[i][j] = SFG_ccube[image.storage.byte.data].g;
blueli][j] = SFG_ccube[image.storage.byte.data++].b;

O~NO OIS WNPRP

9.4.6 Zugriff auf XIL

Die SFG-Routinen basieren auf der XIL-Library von SUN. Normalerweise ist es nicht
notwendig, XIL direkt anzusprechen, da alle notwendigen Operationen tber SFG-
Routinen nach oben weitergegeben werden. Soll aber doch einmal auf die XIL Ebene
zugegriffen werden, so ist ahnlich wie bei einem Dateizugriff ein Handle notwendig.
Aus diesem Grund wird die Variable SFG_xil_state vom Typ XilSystemState expor-
tiert. Nahere Doku hierzu ist in den XIL Manual Pages (z.B. man xil_open) nachzule-
sen.

9.5 Schliel3en des Framegrabbers

Das Aufnehmen von Bildern wird durch den Befehl
void SFG_close();

abgeschlossen. Bei Programmende wird der Framegrabber automatisch geschlossen.
Bei groReren Programmen sollte dieser Befehl aber immer explizit ausgefuhrt werden
sobald keine Bilder mehr benétigt werden, da sonst andere Personen evtl. unnétig

134 9. Die SUN Framegrabber Routinen

lange von der Benutzung des Framegrabbers ausgeschlossen werden. Es ist hier aber
auch zu bedenken, daB ein erneuter Aufruf von SFG_init() etwa 10 Sekunden dauert.

9.6 Messungen

Um die Zugriffszeiten beurteilen zu kénnen, wurden folgende Messungen durchge-
fahrt:

Grab-Zeiten in [ms] Fast (normal) Save

auf robosun3 fifo 1

fifo2 | fifol | fifo2 | fifol | fifo2

s/w frei | 116.7 | 110.6 | 116.5 | 221.2 | 160.1 | 161.1
Skalierung 2 belastet 110.3 | 112.3 | 228.0 | 338.9 | 171.3 | 168.8

384 x 288 | farbe frei | 139.9 | 93.9 | 140.0 | 181.9 | 200.2 | 200.2
belastet 99.7 | 99.6|239.0| 279.0 | 179.4 | 1741
s/w frei 40.1| 40.1| 40.1| 401 | 80.2| 804
belastet 269 | 271| 664 | 831| 837 839

Skalierung 4
192 x 144 | farbe frei | 40.2 | 40.1| 40.0| 40.1| 80.2| 80.2
[40.1] (40.1) (80.1)
belastet 23.8 238 | 636| 676 809 | 80.7
(23.9) (66.6) (81.3)
Tabelle 9.1:
Durchschnittliche fast (normal) save
Bildrate bei unbelasteter
Messung fifol | fifo2 | fifol | fifo2 | fifo 1 | fifo 2
Skalierung 2 | s/w 2.9 2.8 2.9 55 3.9 4.0
384X 288 I rbe 35 | 23 | 35 | 45 | 49 | 49
Skalierung 4 | s/w 1 1 1 1 2 2
192X 144 e rpe 1 1 1 1 2 2
Tabelle 9.2:

Tabelle 9.1 veranschaulicht die erzielbaren Grabzeiten: Die angegebenen Zeiten sind
Mittelwerte, die durch jeweils 1.000 Aufrufe der Funktionen SFG_getFrame... erzielt
wurden. Im unbelasteten Fall (frei) wurden die Aufrufe direkt hintereinandergesetzt,
ohne zwischendurch irgendwelche Berechnungen durchzuftihren. Im belasteten Fall
(belastet) wurde die Maschine zwischen einzelnen Aufrufen im Mittel mit einer busy-
wait-Schleife von 500 ms Dauer (zwischen 250 ms und 750 ms, gleichverteilt) belastet.

9.7 Verwendung der Sourcen 135

Die Werte in runden Klammern geben das Ergebnis fur 20.000 Grab-Aufrufen wieder.
In eckigen Klammern ist ein Mel3wert fur 100.000 Aufrufe angegeben.

In Tabelle 9.2 ist die durchschnittliche Differenz der erhaltenen Bildnummern von
zwei aufeinanderfolgenden Aufrufen der SFG_getFrame... Funktionen, gemittelt Gber
eine MeRreihe von jeweils 1000 Aufrufen.

9.7 Verwendung der Sourcen

Teilprojektname: SFG (SUN FrameGrabber)
aktuelle Version: SFG2-1
bei nutzenden TPR: Makefilevariable BASESONIm die aktuelle Version erweitern

Library: libSFG.a
Beschreibung: Routinen zum Ansprechen des SUN Framegrabbers
Architekturen: SUN4SOL2 SUNMP
Includes: #include <xil/xil.h>
#include "SFG.h"
Linkoptionen: -Ixil -IX11 -ISFG
Programme: SFGmain
Beschreibung: Grabt Bilder und speichert sie als PNM Files.
Architekturen: SUN4SOL2 SUNMP

Die xil.h befinden sich in der Directory Zopt/SUNWits/Graphics-sw/xil/include.
Auf die SFG include und library Dateien wird am besten durch den an anderer Stelle
beschriebenen CVS-Makefile-Mechanismus zugegriffen (vgl. Kapitel Projektverwal-
tung).

9.8 Fehlermeldungen

Kann der Framegrabber nicht gedffnet werden, weil er bereits von einem anderen
Benutzer belegt wird erscheinen am Bildschirm etwa folgende Fehlermeldung falls
die SFG Bibliothek mit gesetztem Flag -DSFG_DEBUG Ubersetzt wurde (standardma-
Big nicht der Fall!):

XilDefaultErrorFunc:
error category: System
error string: SUNWRtvc: could not open SUNWRtvc device
error id: SUNWrtvc-4
primary error detected at location ZSUWDZDSFBUFZUZZQF226 in XIL
object info: Device busy

usw....

Error: couldn’t open SUNWTrtvc device; device busy

Bei normaler Ubersetzung erscheinen wesentlich kiirzere Fehlermeldungen, die
durch den SFG internen Error-Handler erzeugt werden und die gleiche Kerninforma-
tion enthalten. Ein eigener Error-Handler kann mit der XIL Funktion
xil_install_error_handler() und der exportierten Variable SFG_xil_state (siehe
Abschnitt 9.4.6) eingerichtet werden.

136 9. Die SUN Framegrabber Routinen

Kapitel 10

Benutzung der SUN Fra-
megrabber mit HORUS

Susanne Gerl

HORUS ist ein Bildverarbeitungstool, welches an der Technischen Universitat Mun-
chen entwickelt wurde [1], [2]. Es stellt mehr als 600 Bildverarbeitungsroutinen zur
Verfugung, die in C oder C++ Programmen eingebunden werden konnen. Innerhalb
von HORUS koénnen die SUN-Framegrabber in den Robosuns getffnet, Bilder einge-
lesen und verarbeitet werden.

Im Einzelnen stehen hierfur folgende Funktionen zur Verfligung
(In ,,hdialog* unter ,,Bildeinzug* zu finden):

1.

query_framegrabber : ,,query_framegrabber* gibt die Namen der unterstutz-
ten Framegrabber zurtck.

open_framegrabber : ,,open_framegrabber* 6ffnet den Framegrabber und legt
seinen Betriebsmodus fest.

info_framegrabber . .info_framegrabber* liefert die moglichen Betriebsmodi
des aktuell ge6ffneten Framgrabbers.

grap_image :,grap_image“ liest ein Bild mit den in ,,open_framegrabber* ange-
gebenen Eigenschaften ein.

close_framegrabber . ,close_framegrabber® schlieBt den momentan geo6ffne-
ten Framegrabber.

get_framegrabber_lut u. set_framegrabber_lut . ,.get_framegrabber_lut*
und ,,set_framegrabber_lut* sind nicht implementiert und liefern MESS_OK zu-
rack.

138 10. Benutzung der SUN Framegrabber mit HORUS

10.1Initialisieren der Robosun-Framegrabber

Far die Initialisierung ist ,,open_framegrabber* aufzurufen. Jede Robosun greift dabei
auf ihren eigenen Framegrabber zu und initialisiert den Framegrabber fur ein be-
stimmtes Bildformat. Das Bildformat legt u.a. fest, welcher Bildbereich des Frame-
grabbers mit welcher Auflésung eingelesen werden soll. Falls man unterschiedliche
Bildformate einlesen will, muR man den Framegrabber mit dem ersten Format 6ffnen,
grabben, schlieen, und mit dem nachsten Format wieder 6ffnen usw.

Kurzfassung:

open_framegrabber(Name,FGWidth,FGHeight,Width,Height,StartLine,
StartCol,SquarePixels,Field,Bits,SpaceOrThresh,Gain,Generic,Dev
ice,Port)

Beschreibung der Parameter:
Name = ,RoboFG*

Name des zu 6ffnen Framegrabbers,
Eingabe-Steuer-Parameter,

Datentypen: string / atomar,

Defaultwert: ,VideoPix",

Aktion: auf ,RoboFG*" setzen (Grol3/Kleinschreibung beachten).

FGWidth =-1, (768), 384, 256, 192, 154

Legt die gewiinschte horizontale Auflosung des Framegrabbers fest,
Eingabe-Steuer-Parameter,

Datentypen: integer / atomar,

Defaultwert: -1 (= 768 in FG-Routine),

Aktion: Auf gewunschten Wert setzen.

FGHeight =-1,(576), 288, 192, 144, 115

Legt die gewunschte vertikale Auflésung des Framegrabbers fest,
Eingabe-Steuer-Parameter,

Datentypen: integer / atomar,

Defaultwert: -1 (=576 in FG-Routine),

Aktion: Auf gewtinschten Wert setzen.

Folgende Auflésungen (FGWidth x FGHeight) sind moglich:
768 x 576, 384 x 288, 256 x 192, 192 x 144, 154 x 115.

Width = -1, (768), 0 <= Width+StartCol <= FGWidth

Legt die Breite des gewunschten Bildausschnittes fest,
Eingabe-Steuer-Parameter,
Datentypen: integer / atomar,

10.1 Initialisieren der Robosun-Framegrabber 139

Defaultwert: -1 (=768 in FG-Routine),
Aktion: Auf gewtinschten Wert setzen.

Height =-1, (576), 0 <= Height+StartLine <= FGHeight

Legt die Hohe des gewiinschten Bildausschnittes fest,
Eingabe-Steuer-Parameter,

Datentypen: integer / atomar,

Defaultwert: -1 (=576 in FG-Routine) ,

Aktion: Auf gewunschten Wert setzen.

StartLine =-1, (0), 0 <= StartLine <= FGWidth

Legt die Zeilennummer der oberen linken Ecke des gewinschten
Bildausschnittes fest (Y-Offset),

Eingabe-Steuer-Parameter,

Datentypen: integer / atomar,

Defaultwert: -1 (=0 in FG-Routine) ,

Aktion: Auf gewulnschten Wert setzen.

StartCol = -1, (0), 0 <= StartCol <= FGHeight

Legt die Spaltennummer der oberen linken Ecke des gewlnschten
Bildausschnittes fest (X-Offset),

Eingabe-Steuer-Parameter,

Datentypen: integer / atomar,

Defaultwert: -1 (=0 in FG-Routine) ,

Aktion: Auf gewiinschten Wert setzen.

SquarePixels = ,,unchanged®, (,,n0"),

Gibt an ob die Bildpunkte quadratisch sind oder nicht. Bisher werden
nur quadratische Bildpunkte unterstitzt.

Eingabe-Steuer-Parameter,

Datentypen: string / atomatr,

Defaultwert: unchanged (= ,,no* in FG-Routine) ,

Aktion: KEINE. Nur Bilder ohne SquarePixel méglich.

Field =-1,(2)

Legt fest, ob ein Halbbild (0/1) oder Vollbild (2) gegrabbt werden soll.
Bisher wird nur das Grabben eines Vollbildes unterstutzt.
Eingabe-Steuer-Parameter,

Datentypen: integer / atomar,

Defaultwert: -1 (= 2 in FG-Routine),

Aktion: KEINE. Nur Vollbilder moéglich.

Bits =-1,(8), 24

Legt die Zahl der Bits pro Pixel fest. 8 = Grauwert oder 24 = Farbe. Bi-
nare Bilder werden nicht unterstitzt.

Eingabe-Steuer-Parameter,

Datentypen: integer / atomar,

Defaultwert: -1 (= 8 in FG-Routine),

Aktion: 8 fur Grauwertbild, 24 ftr Farbbild eingeben.

140

10. Benutzung der SUN Framegrabber mit HORUS

SpaceOrThresh =,,unchanged®, (,,rgh*), 128

Gain =

Generic =

Device =

Port =

Anmerkungen:

Legt bei Farbbildern den gewulnschten Farbraum und bei Binarbil-
dern die Schwelle fur die Binarisierung fest. Ist NICHT implementiert.
Eingabe-Steuer-Parameter,

Datentypen: string / atomar,

Defaultwert: unchanged (=,,rgb* bzw. 128 in FG-Routine)

Aktion: KEINE. Wert wird nicht verwendet.

-1.0, (1.0)

Verstarkungsfaktor fur Video-Verstarker. Ist NICHT implementiert.
Eingabe-Steuer-Parameter,

Datentypen: real / atomar,

Defaultwert: 1.000000 (= 1.0 in FG-Routine),

Aktion: KEINE. Wert wird nicht verwendet.

,unchanged®, (,,roboframe*)

Framegrabber-spezifischer generischer Parameter. Wird fur die Robo-
sun-Framegrabber nicht verwendet.

Eingabe-Steuer-Parameter,

Datentypen: string / atomar,

Defaultwert: unchanged (=,,roboframe* in FG-Routine),

Aktion: KEINE. Wert wird nicht verwendet.

,unchanged®, (,,/dev/rtvc0*)

Gibt das Device, an das der Framegrabber angeschlossen ist, an.
Eingabe-Steuer-Parameter,

Datentypen: string / atomatr,

Defaultwert: unchanged (=,,/dev/rtvc0*” in FG-Routine),

Aktion: KEINE. Neue Device nur eingeben, falls die default-device
nicht mehr aktuell ist.

'11 (1)

Gibt das Port des Devices, an das der Framegrabber angeschlossen ist,
an.

Eingabe-Steuer-Parameter,

Datentypen: integer / atomar,

Defaultwert: -1 (= 1 in FG-Routine),

Aktion: KEINE. Neuen Port nur eingeben, falls default-port nicht
mehr aktuell.

a. Der Klammerinhalt gibt den Funktionswert an, dem der Default-Wert

-1 bzw.

,unchanged* entspricht

b. Neu eingegebene Funktionswerte werden beim nachsten Aufruf dem Default-
Wert zugeordnet.

10.1 Initialisieren der Robosun-Framegrabber 141

c. Fur die Konsistenz der Parameterwerte ist der Aufrufer verantwortlich (Die
Funktionswerte, die dem Default-Wert zugeordneten sind, beachten!).

d. ,hdialog” 6ffnet defaultméssig ein 512x521 Bildfenster. Wenn man Width=768
und Height=576 setzt, erhalt man einen Fehler, da diese Bildgrolie die default-
BildgroRe in ,,hdialog* Giberschreitet. Auch das Offnen eines groReren Fensters
andert daran nichts, da HORUS die BildgréR3en intern umrechnet.

e. Farbbilder werden von ,,hdialog* nicht korrekt angezeigt.

f. Neu eingestellte Werte werden zu Default-Werten des Framegrabbers. Wird
z.B. ein Farbbild eingelesen, der FG geschlossen und wieder neu gedffnet, so
verbirgt sich unter dem Default-Wert -1 bei Bits nun 24 und nicht mehr 8 wie
bei HORUS-Start. Dies kann zu Fehlermeldungen fihren, wenn man z.B. den
FG mit einer geringeren Auflésung neu 6ffnet und den Bildausschnitt und den
Offset auf den Default-Werten (-1) 1aRt. Ist dieser Bildausschnitt plus Offset zu
groB fur die neue Auflésung, so wird der FG nicht gedffnet.

g. Width und Height geben die GroRe des Bildausschnittes an, der von
»grab_image* geliefert werden soll. Der Bildausschnitt plus Offset (StartLine,
StartCol) muf3 innerhalb des durch FGWidth und FGHeight bestimmten FG-
Bildes liegen. Es gilt also:

0 <=Width + StartCol <=FGWidth und 0 <= Height + StartLine <=FGHeight

StartCol
f FGWidth
- : >
A | _
: Width
| - >
StartLine -l :
A
Height HORUS-BILD
FGHeight
\j
\j

Abbildung 10.1: Wichtige Parameter bei der Initialisierung des Framegrabbers

142 10. Benutzung der SUN Framegrabber mit HORUS

10.1.1Verhalten

Sind die Parameterwerte korrekt und ist der gewinschte Framegrabber zum Aufruf-
zeitpunkt verfgbar, liefert open_framegrabber den Wert TRUE. Ansonsten wird eine
Exception-Behandlung durchgefuhrt (siehe Exception Behandlung durch
»error_text).

Hier die C-Syntax:

ERR_TYPE open_framegrabber(Name, FGWidth, FGHeight, Width,
Height, StartLine, StartCol, SquarePixels, Field,
Bits, SpaceOrThresh, Gain, Generic, Device, Port)

10.1.2Beispiele

a. Es soll ein FG-Grauwertbild 768x576 getffnet werden und daraus ein Bild
768x576 ab Position (0,0) (Ursprung links/oben) angewahlt werden:
open_framegrabber(,RoboFG*,-1,-1,-1,-1,-1,-1,
“unchanged”,-1,-1,“unchanged”,-1.0,“unchanged”,
“unchanged”,-1)

So ein Zufall, es waren gerade die Default-Werte!

b. Ein Farbbild 768x576 soll gedffnet werden und daraus ein Ausschnitt 200x100
ab Position (40,300) angewahlt werden:

open_framegrabber(,RoboFG*,-1,-1,200,100,300,40,
“unchanged”,-1,24, ,unchanged",-1.0,“unchanged®,
“unchanged”,-1)
c. EinFarbbild 154x115 soll getffnet werden und daraus ein Ausschnitt 50x70 ab
Position (10,20) angewahlt werden:

open_framegrabber(,RoboFG*,154,115,50,70,20,10,
“unchanged”,-1,24,,unchanged,-1.0,“unchanged®,
“unchanged®,-1)

10.2 Literatur

[1] Wolfgang Eckstein: Horus-Referenzmanual, Technische Universitdt Munchen, Insti-
tut fur Informatik, 1995.

[2] Wolfgang Eckstein: HORUS/C* Benutzerhandbuch, Technische Universitat Mun-
chen, Institut fur Informatik, 1994.

