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Abstract

Distributed multimedia applications offer to clients degrees of freedom for selecting Quality of
Service (Q0S). This paper describes a framework for application level negotiation as a means
to regulate client requested QoS under QoS constraints imposed on an application. A QoS archi-
tecture is motivated interrelating levels for media specific and transport level QoS handling. The
necessity of corresponding protocol levels is explained. The coupling between these levels is
demonstrated for a concrete protocol developed for an example application. The embedding of

end-to-end delay into the protocol is discussed.



1 Introduction

Distributed multimedia applications are employed to generate, process and comsume (e.g.
present) continuous (e.g. audio, video) data streams across distributed locations. An application
client has a service oriented view towards QoS provided by the application. It specifies QoS
with respect to consumed data (e.g. presented video frame size and rate) and expects the appli-
cation to agree on a specific QoS selection. Providing such an agreement requires a process
orchestrating client QoS requests and QoS constraints imposed on the application (for instance)

by restricted resource availability. We refer to this process as application level QoS negotiation.

So far, description of negotiation is in analogy to negotiation at transport level as currently pur-
sued for various transport system designs (e.g. [VHN92], [MMR93]). However, a number of
features make QoS selection at the application level a different and potentially much more com-
plex task. It is the goal of this paper to elaborate these features and to interrelate them in an over-
all framework allowing the development of negotiation protocols for distributed multimedia
applications. In particular, such a protocol is developed for an example application demonstrat-

ing in this way the feasibility of introduced concepts.

The paper is structured as follows. In Section 2, we introduce an abstract model for constructing
distributed multimedia applications. We use this model in Section 3 to motivate and position
two distinct QoS levels required during negotiation and describe the relative position of appli-
cation clients issuing QoS requests. The relationship between the QoS levels is completed by

appropriate mapping functions.

Section 4 motivates the necessity of two protocol levels referring to the existence of different
QoS levels and application topologies. It describes the role of each level by introducing a nego-
tiation protocol in the context of an application example, in particular highlighting the coupling
required between the protocol levels. Section 5 indicates how issues concerning end-to-end
parameters such as delay can be integrated into the introduced protocols. Section 6 summarizes

important conclusions and gives a status report on current implementation work.



2 Application Model

In this section we introduce a concept for constructing distributed multimedia applications.
Similar concepts are pursued by various research groups ([KHSM95],"BLAMKSD90])
including the group defining IMA MMS [IMA93]. We describe here the terminology used for

our Cinema development platform. For a detailed descriptio@ieémva refer to [RBH94].

Cinema allows a client to compose an application out of components and links. Components
encapsulate processing of multimedia data, e.g. for generating, presenting or manipulating data.
To provide a uniform data access point for the components, ports are used that deliver data units
to the component (input port) or take the data units from the component (output port). A client
constructs an application by specifying a topology of components interconnected via links. A
link provides an abstraction from underlying communication mechanisms which may be used
to perform the transport of data units. Figure 1 shows an example topology composed of two
video components generating two video streams which are mixed by a video mixer and dis-

played by a 3D monitor component.
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Figure 1: Example of an application topology

Before using an application, a client has to indicate desired QG&etan. For this,Cinema

offers the concept of a session. A session is the unit of resource reservation allowing the client
to specify the application to be instantiated and the QoS expected with respect to output gener-
ated by sink components. The goal of negotiation is then to settle on the best possible QoS com-

plying with client requests under two kinds of restrictions: limited functional capabilities of



components (e.g.: design enforcing processing of video frames only up to a maximal size) and

limited resource availability for links and components.

3 QoS Architecture

The necessity of different QoS levels arises from the type of data encountered at component
ports. Such ports are employed to feed components for processing and to obtain processed data
for distribution to subsequent components. Internal processing of a component requires data in
a formatted form. For instance, a video component may expect data as a sequence of frames
with a certain picture size and picture rate. For each existing component port, a description has
to exist in order to indicate externally the characteristics of data expected. Such information is
a prerequisite to negotiation, for instance, checking whether two component ports can be inter-

linked in a compatible fashion.

Characteristics of processed and communicated data are media specific. For video, description
parameters frequently include video picture size, picture rate, compression scheme and ratio.
For audio, similar parameters may be used including sample rate, sample size and encoding
scheme. Media specific differences are being given at least in form of different implied dimen-
sions and value ranges. In terms of abstraction levels, such parameters are media specific since
they have no unambiguous transport level representation. For instance, a pair of (video frame
size, frame rate) values can be mapped in various ways onto a pair of (packet size, packet rate)

values.

From the above, it is obvious that any distributed multimedia system has to include two levels
of QoS: (a) a “higher” media specific level describing the communication load requested by
interconnected components and (b) a “lower” level describing the communication load
requested at the service interface of transport systems. Figure 2 shows the positioning of QoS
levels inCinema. At the level of components and links, media specific parameters are exchanged

in so-called application flowspecs (AFS), while transport level parameters are employed only
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Figure 2: QoS Architecture
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inside links within transport flowspecs (TFS). The figure shows that a client specifies its QoS
requests with respect to the input ports of sink components, i.e. in terms of media specific

parameters expected there. The following discussion motivates the architecture.

Cinema offers a basic level for QoS specification. The client itself may be given as a program
converting media specific parameters into higher level abstractions for (human) end users (e.g.
“high”, “mid” and “low quality” video). Client requests are related to sink component ports,
assuming that the client has knowledge about sensed output QoS and corresponding media spe-

cific QoS required as input to sink components.

As mentioned earlier, component design involves the selection of a media specific parameter set
to be used by a component at a certain port. Since we do not expect such parameter sets to be
defined too often, we make a specific set of parameters available in form of streamtype objects
including, besides the media specific parameter list, the possible value ranges for each parame-
ter. In consequence, a component designer has to associate with each component port the

streamtype to be used making all related information available at the port.



Components are designed to be reusable in various application topéltrg'pw.ticular, com-

ponent design is kept independent of data transport characteristics. Differences exist here since
current transport systems expect and handle transport level QoS differently. Link objects
abstract from such peculiarities and offer a uniform external view. As shown in Figure 2, a link
object receives media specific parameters at its interface from which it derives the QoS repre-
sentation needed by the encapsulated transport system. But in order to reduce the number of
implemented link types, link implementation is to be kept independent of any media specific
characteristics. These requirements lead to the following structuring of the mapping from media

specific to transport system parameters.

A first mapping, termed DownQM, is provided by streamtype objects at componerﬁ ports.
DownQM maps media specific parameter values (e.g. video frame size and rate) onto a so-
called uniform communication load representation (UCL) defineg@iNeya. UCL is positioned

at the transport level, its purpose is to abstract from (QoS) interface peculiarities of a specific
transport system. Given DownQM, a link implementation has to include only a function map-
ping a UCL description onto the QoS representation expected by the specific transport system.
A link object handles media specific parameters since it has access to both described functions.
It can use its internal mapping and can call DownQM since it has access to component ports
connected to the link. Given this structuring, a new link implementation is required only if it

encapsulates a new transport system (e.g. for radio communication).

Mapping to UCL

The selection of UCL parameters was based on parameter selections pursued by current multi-
media transport systems. It was guided by the requirement to describe application generated
load both for compressed and uncompressed media streams as shaped for instance by MPEG

[Gall9l] or JPEG [JPEG93] compression. Optimal selection of parameters for load description

1 Two interconnected component ports have to be associated with the same streamtype.
2 Another function, NextQM, is also provided by a streamtype object (see Section 4 for motivation).



IS a continuing research issue. In particular, a future standardized transport QoS description may

be used for UCL, should one emerge. The following UCL parameters are currently defined:

* peak data unit sizepp€ak
* average data unit siza\g
» data unit ratergte)

* average intervaiy)

For uncompressed streams the use of these parameters is straightforward. For audio, a UCL data
unit would encompass the amount of audio processed by a component at once (e.g. 40 ms of
Audio. Peakandavgwould be both set to a corresponding number of bytes, vdtdavould

be fixed to 25 data units/s. For uncompressed video, a UCL data unit would encompass the
amount of video processed at once, typically a picture size, rakélevould be set to the video

frame rate. However, different mapping schemes could be défined.

c. quality 192 x 144 256 x 192 384 x 288 512 x 384 768 x 576
10 4.1 6.0 8.6 16.0 29.2
25 4.7 6.6 94 17.5 31.8
50 5.9 8.4 12.2 22.1 40.0
70 7.8 10.4 154 28.6 58.1
85 9.8 15.2 24.1 45.0 80.0
95 16.6 26.7 44.8 69.8 131.6

Table 1: UCL data unit sizes in KB

For JPEG compressed video, we have to include the compression effect. We took an empiric
approach to measure the size of a UCL data unit resulting from a picture of a given size, color
depth (fixed to 24 bit) and compression quality (given as a number between 1 to 100). Table 1

contains some measurement results. Calculating UCL values then amounts to:

1 Recall that DownQM encapsulates this mapping.



peak=avg= table entry for desired picture size and compression quality

rate=f _rate

The mapping may be defined differently, for instance by yséiagtandavgto reflect variations

of compressed picture sizes over a longer time interval. Our UCL description scheme does allow
for this, though further experimentation is required for deriving corresponukagy &vg) value

pairs as table entries. This latter approach is currently taken for MPEG compressed streams,
where we measurepéak avg) pairs. Peak denotes the maximum compressed picture size
encountered (typically an | coded frame), wiailgis an average value for an average interval
which encompasses at least one picture sequence starting from an | frame up to the next | frame

(e.g. IBBPBBPBB).

Mapping to a multimedia transport system

In order to be efficient, such a mapping should be supported by a transport system capable of
transferring both constant and variable bit rate streams. In case the latter is not possible, either
(inefficient) worst case reservation or (time consuming) traffic shaping has to be performed.
Below, we describe the mapping of UCL parameters onto parameters defined for the Tenet Pro-
tocol Suite [BFM94]. Tenet allows QoS representation of a variable bit rate data stream using
the following parameters: minimum inter-message time, average inter-message time, averaging
interval and maximum message size. In contrast to UCL description, which is application
processing oriented, this load description is network oriented. Tenet expects a fixed packet size
and a variable packet rate, whereas UCL offers a variable data unit size, but a fixed rate corre-

sponding to a more ‘natural’ description of periodic data streams.

The mapping from UCL to Tenet parameters is performed as follows:

maximum message sizeseg

minimum inter-message time = Dﬂteaksegﬂ]}ate)l

1 assuming corresponding temporal smoothing in the link
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average inter-message time =ay(g'sed*rate)

averaging interval #

wheresegis currently a value derived experimentally and fixed for the transport system in

advance in order to avoid reservation inefficiency (i.e. overbooking of resources).

Without going into detail we indicate that similar parameters are offered by other transport sys-
tems, e.g. XTPX [MMR93] or HeiTS [VHN92] (which incorporates ST-1l [Topo90] as reserva-
tion protocol). Another reservation protocol, RSVP [ZB8], defines no communication load

parameters so far.

4 Negotiation Protocols and Protocol Coupling

The last section introduced two abstraction levels for QoS. Current QoS oriented protocols are
defined for the transport or network level. Their primary purpose is to provide for resource res-
ervation along connections between computing endsystems. Protocols have been developed to
cover point-to-point and point-to-multipoint connections (Tenet, XTPX, ST-1I), while RSVP

realizes a concept for interconnecting m sources with n sinks.

Except for RSVP, these protocols imply that data sent at source sides is delivered unchanged
(i.e. unprocessed) at receiving sides. RSVP allows for a restricted form of QoS scaling for
receivers by employing filters at the network level. In all cases, QoS representation adheres to
the transport or network level only. None of the protocols offers support for negotiation between

transport connection users beyond transparent user data transfer.

Distributed multimedia applications feature further requirements. First, if resource reservation
were to be performed in a complete end-to-end manner, it has to include all application compo-
nents and intermediate transport connections influencing a data stream. For applications imply-
ing processing hops between source and sink components (Figure 1), neither of the mentioned

protocols is applicable.
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Second, even if no resource reservation is to be performed (or only in topology parts), QoS
negotiation is still required to regulate interworking between interconnected components and
links. The reason is that QoS support by components may already be limited by their implemen-
tation and that any limited QoS support influences interconnected components. Finally, as moti-
vated in Section 3, QoS negotiation at the application level cannot be carried out in terms of

transport level parameters.

The example of Figure 1 shall illustrate these requirements. The possibility of negotiation shall
be given with each of the involved components being able to support various picture sizes. The
components shall be such that it has to be ensured that all components handle the same picture
size. For instance, the mixer component shall require equality of picture sizes at its two input
ports. A limited resource availability of any component or intermediate link affects QoS to be
provided by all other components or links. In order to regulate QoS according to such depend-

encies a protocol is required encompassing the whole application topology.

These requirements motivate the approach takédnaya to define, in analogy to QoS levels,

two protocols aiming at QoS negotiation and resource reservation at different levels. At the
transport level, existing protocols are taken as they are provided currently by external sources.
At the application level, a new protocol type is required. Below, we develop such a protocol
(termed negotiation and resource reservation protocol NRP) for the example application of
Figure 1, in particular to indicate required couplings between protocol levels. We refer the

reader to [BDFR95] for a protocol design covering more complex application topologies.

Negotiation Example

We assume that client QoS requests and negotiation relates to one media specific parameter,
namely video picture size (assuming for instance, that the frame rate is fixed in advance to 25

frames/s). Note that the description could easily be extended to the case of multiple parameters,
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if priorities are specified (by the application client) indicating which parameter is to be reduced

first, in case that QoS reductions become necessary.

As mentioned in Section 3, negotiation is triggered by an application client when issuing QoS
requests with respect to the input ports at sink components. We assume the client requests for
Dsp the best possible frame size from an acceptable range of (256x192 ... 512x384) (in pixels x

pixels). At this point, NRP is triggered.

NRP is carried out by a corresponding protocol engine (PE) in three phases during which (in

phase 1) the AFS available at the sink port is propagated towards the source components for
resource reservation, (in phase 2) AFS from source ports are propagated back to the sink to pre-
pare resource relaxation, and (in phase 3) resource reservations are relaxed while propagating
the AFS towards sources again. We describe the phases below, first skipping the descriptions

concerning negotiation inside links.

Phase 1 starts with the PE using the client QoS request to furnish initial AFS for the input port
of Dsp: AFS(256x192 ... 512x384 ). Dsp is invoked with the AFS and responds to the PE with
an unchanged AFS, thus indicating that it could reserve resources for the most demanding frame
size. Next, the PE invokes the link between the mixer and the display. Both sending and receiv-
ing side of the link are invoked as motivated later. Assuming that the link is able to support all
requested frame sizes, the link returns an unchanged AFS. The PE passes the AFS to the mixer
by invoking it. Assuming that the mixer can support all frame sizes, two unchanged AFS are

returned to the PE, one for each of the two input ports of the mixer.

The PE invokes the two links leading to the mixer input ports. We assume the link from Cam1
to the mixer can reserve for the best of requested frame sizes and returns an unchanged AFS.
The PE invokes Cam1l with this AFS and receives it back unchanged. For the link from Cam2
the sequence of actions is similar. However, we assume that the link can support only a reduced

frame size range and returns a reduced AFS(256x192 ... 384x288) to the PE. The PE invokes
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Cam2 with this AFS and receives it back unchanged assuming that Cam2 can reserve corre-

spondingly.

The first NRP phase ends upon reaching all source components. The second phases serves
merely to match media specific QoS between mixer input ports. In consequence, links are
bypassed during this phase. The phase starts with the AFS obtained from Cam1 and Camz2 being
propagated by the PE to the mixer. The mixer matches the two AFS QoS ranges into a single
range (256x192 ... 384x288) and returns it in its AFS (for the output port) to the PE. The PE
delivers the AFS to the sink component Dsp. Upon invocation, Dsp installs the final video frame
size to 384x288 and relaxes resource reservation accordingly. This last step marks already the
begin of the third phase. The rest of this phase is similar to the first phase, except that the PE
invokes resource relaxation methods of components and links instead of reservation methods.
Upon reaching all source components, NRP is completed and the reservation session initiated

by the client is set up.

Role of Links - Protocol Coupling

We explain here the effect of link invocations identified in the example above. The discussion
shall highlight issues resulting from coupling QoS levels as well as their corresponding proto-
cols. Three aspects are addressed: (a) the way how a link interacts with the PE and the transport
system for connection set-up, (b) how a link does the mapping between media specific and
transport level parameters and (c) how a link is to react in case of resource shortages in a trans-

port system.

Interaction between the (NRP) PE and link objects was designed to offer to the PE a uniform
view towards components and link objects. For this, link objects are made visible by decompos-
ing them into receiver and sender side link objects denotegrasil. L.. Each of these objects

is treated by the PE like a component with one output and one input port. Figure 3 depicts the

sequence of actions for invoking links for resource reservation. Since the NRP phase proceeds
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from sinks to sources, the PE invokes first the receiver side link objéatraw 1) receiving

back a result AFS (2) just as when interacting with a component. Next, the PE invokes the send-
ing side of the link L (3) from which it also receives a result AFS (7). Besides ensuring this
uniform view of the PE, the approach detaches the PE from any specific connection establish-

ment schemes used inside the link.

To demonstrate this feature, we assume that inside the link of Figure 3 a transport system is
employed for which connection set-up initiation and completion has to be done at the sending
side (e.g. HeiTS). When invoked by the PE (3)dsponds with an unchanged AFS to the PE,
since the receiving side does not initiate connection set-up (the PE is unaware of this). In con-
trast, Ls upon invocation may respond with a modified AFS (8) due to QoS reductions enforced

inside the link.

Internally (to the link), L invokes the transport system for connection set-up (4), while L
acknowledges the connection setup indication (5 and 6) without interacting further with the PE.
This behaviour is sufficient, sincg Hoes not have to support negotiation between intercon-
nected components using the link (given that the PE already does this). The set-up confirmation

(7) is used by Lto determine the response AFS for the PE (8).

AFS passing
Distributed 4— -
Protocol Engine

3 1
ST reserve(AFS) ZT reserve(AFS)
Link I—s Lr
4 5
set-up
e
7 | TS 6
accept

Figure 3: Protocol Coupling Example
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Lsreceives and delivers media specific parameters from/to the PE. In order to provide a trans-
port flowspec (TFS) to the transport system, it first invokes the DownQM function (introduced
in section 3) available at the p’otb which Lgis connected. DownQM maps the QoS range of

the AFS onto the UCL representation for the best media specific selection of this range. Given
this UCL representation,glapplies its internal mapping function to obtain the TFS. In case the
transport system reserves successfully according to this TFS, iteiins the AFS unchanged

to the PE.

In case resource reservation was not successfuhaly be faced with two situations. In one

case, the transport system indicates its QoS values (e.g. packet size and rate) for which reserva-
tion was possible. Juses these values to compare them with transport values derived for suc-
cessively worse media specific value selections. For thieybkes at its connected port a sec-

ond mapping, NextQM, delivering two results: a shrunk QoS range excluding the highest
possible media specific selection and UCL values corresponding to the new best media specific
selection of the range. From the latteychn again derive a reduced TFS. Repeating this process
allows Lgto find the best possible media selection implying a TFS which is in line with the ini-

tial resource reservation of the transport sys%dupreturns the possibly shrunk media specific

QoS range in its AFS response to the PE.

A second case is given for a transport system which only indicates resource reservation failure.
In such a case,dlcan still calculate successively reduced TFS as described above. In addition,
for each reduced TFSglhas to invoke the transport system for connection set-up. This addi-

tional overhead is unavoidable here.

The interactions between the PE, L, and the transport system are completely analogous for

the relaxation phase of NRP. Beside different invocatiogiaxX instead ofreserve change

1 Recall that ports are associated with streamtype objects

2 Given that the number of values for a media specific parameter is in most cases low, the implied overhead of
this try-and-retry approach is low as well.
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instead oket-up), a second difference is that relaxation never requires iterative use of QoS map-

pings.

5 End to end parameter handling

QoS requirements for multimedia applications concern, besides described media specific QoS,
more generic parameters such as delay, jitter or loss-rate. These are usually referred to as end-
to-end parameters, since they accumulate contributions of components and links between data
stream source and sinks in order to yield QoS to the client. We currently work on concepts for

including such generic QoS into NRP.

For delay, it is easy to see that NRP PE invocations can be extended to include a delay parameter
filled in by links and components to indicate their contribution to delay. The PE would sum up
these contributions to derive end-to-end values and compare them with client specified limits.
For our negotiation example, this could be done during an additional fourth phase by summing
up delay from sources towards sinks (Dsp). Accumulated values would have to be below the
client's limit for Dsp (implying that the same limit applies to both paths from Cam1 and Cam?2),
otherwise the negotiation protocol would be stopped informing the client, that the delay cannot

be kept.

The situation for jitter is similar, if component and link scheduling does not provide for jitter
compensation. Otherwise, jitter values are accumulated prior to jitter compensating stages and
compared with the tolerance limits of these stages. Considering data loss across many process-
ing stages and communication links requires an adequate model describing their impact on data
loss. Both number of stages and implied different abstraction levels make this a challenging

task. The definition of such a model fokema is for further research.
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6 Related Work

Media specific quality issues have been considered in restricted contexts. IMA MSS [IMA93]
introduces the concept of media formats independent of QoS parameters. An IMA MSS format
defines the encoding used for a specific medium. Format selection is done considering two adja-
cent component ports only, an end-to-end approach for applications consisting of many (more

than two) processing component stages is not defined.

Several schemes have been developed for defining the mapping between media specific and
transport level parameters ([KrLi94], [BD®4], [SMHW95], [NaSm95]). [BDF94] uses a
management information base to map application specific QoS to transport system QoS.
[SMHW95] uses a QoS manager tool to do the mapping. The QoS manager tool is called with
the selected kind of media encoding and the desired QoS class and returns the transport level
(XTPX-based) QoS data structure. [NaSm95] introduces a QoS Broker which negotiates end-
to-end QoS at application level for client/server settings only. Application level negotiation in

the sense described in this paper is not considered in either case and neither of these approaches

considers topologies beyond client/server.

7 Conclusions

Provision of QoS by distributed multimedia applications is subject to QoS constraints. Applica-
tion clients can specify QoS requests as QoS ranges in order to allow best possible QoS selec-
tion, while avoiding a time-consuming and possibly complex try-and-retry approach with fixed
QoS-value requests. Application level negotiation differs from transport level negotiation. It
requires a separation of QoS abstraction levels for media specific and transport level character-
istics and definition of mappings between them. Application clients have to be offered a media

specific QoS view.

Application level negotiation has to encompass all components and links, even if resource res-

ervation is not performed or restricted to some application parts only. Application level protocol
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design can be kept independent from transport system design by providing link objects encap-
sulating transport system peculiarities. Coupling between application and transport level nego-
tiation can be hidden from any of the two levels and confined to the link objects. This applies

both to QoS mappings and connection set-up schemes.

Besides motivating introduced concepts, the paper demonstrated their feasibility for an example
negotiation protocol. The QoS framework presented is currently introduced ilGoeun sys-
tem implementation. It prepares the implementation of an application level protocol which is

applicable to a wide class of application topologies.
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Abstract

Distributed multimedia applications offer to clients degrees of freedom for selecting Quality of
Service (Q0S). This paper describes a framework for application level negotiation as a means
to regulate client requested QoS under QoS constraints imposed on an application. A QoS archi-
tecture is motivated interrelating levels for media specific and transport level QoS handling. The
necessity of corresponding protocol levels is explained. The coupling between these levels is
demonstrated for a concrete protocol developed for an example application. The embedding of

end-to-end delay into the protocol is discussed.



1 Introduction

Distributed multimedia applications are employed to generate, process and comsume (e.g.
present) continuous (e.g. audio, video) data streams across distributed locations. An application
client has a service oriented view towards QoS provided by the application. It specifies QoS
with respect to consumed data (e.g. presented video frame size and rate) and expects the appli-
cation to agree on a specific QoS selection. Providing such an agreement requires a process
orchestrating client QoS requests and QoS constraints imposed on the application (for instance)

by restricted resource availability. We refer to this process as application level QoS negotiation.

So far, description of negotiation is in analogy to negotiation at transport level as currently pur-
sued for various transport system designs (e.g. [VHN92], [MMR93]). However, a number of
features make QoS selection at the application level a different and potentially much more com-
plex task. It is the goal of this paper to elaborate these features and to interrelate them in an over-
all framework allowing the development of negotiation protocols for distributed multimedia
applications. In particular, such a protocol is developed for an example application demonstrat-

ing in this way the feasibility of introduced concepts.

The paper is structured as follows. In Section 2, we introduce an abstract model for constructing
distributed multimedia applications. We use this model in Section 3 to motivate and position
two distinct QoS levels required during negotiation and describe the relative position of appli-
cation clients issuing QoS requests. The relationship between the QoS levels is completed by

appropriate mapping functions.

Section 4 motivates the necessity of two protocol levels referring to the existence of different
QoS levels and application topologies. It describes the role of each level by introducing a nego-
tiation protocol in the context of an application example, in particular highlighting the coupling
required between the protocol levels. Section 5 indicates how issues concerning end-to-end
parameters such as delay can be integrated into the introduced protocols. Section 6 summarizes

important conclusions and gives a status report on current implementation work.



2 Application Model

In this section we introduce a concept for constructing distributed multimedia applications.
Similar concepts are pursued by various research groups ([KHSM95],"BLAMKSD90])
including the group defining IMA MMS [IMA93]. We describe here the terminology used for

our Cinema development platform. For a detailed descriptio@ieémva refer to [RBH94].

Cinema allows a client to compose an application out of components and links. Components
encapsulate processing of multimedia data, e.g. for generating, presenting or manipulating data.
To provide a uniform data access point for the components, ports are used that deliver data units
to the component (input port) or take the data units from the component (output port). A client
constructs an application by specifying a topology of components interconnected via links. A
link provides an abstraction from underlying communication mechanisms which may be used
to perform the transport of data units. Figure 1 shows an example topology composed of two
video components generating two video streams which are mixed by a video mixer and dis-

played by a 3D monitor component.
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Figure 1: Example of an application topology

Before using an application, a client has to indicate desired QG&etan. For this,Cinema

offers the concept of a session. A session is the unit of resource reservation allowing the client
to specify the application to be instantiated and the QoS expected with respect to output gener-
ated by sink components. The goal of negotiation is then to settle on the best possible QoS com-

plying with client requests under two kinds of restrictions: limited functional capabilities of



components (e.g.: design enforcing processing of video frames only up to a maximal size) and

limited resource availability for links and components.

3 QoS Architecture

The necessity of different QoS levels arises from the type of data encountered at component
ports. Such ports are employed to feed components for processing and to obtain processed data
for distribution to subsequent components. Internal processing of a component requires data in
a formatted form. For instance, a video component may expect data as a sequence of frames
with a certain picture size and picture rate. For each existing component port, a description has
to exist in order to indicate externally the characteristics of data expected. Such information is
a prerequisite to negotiation, for instance, checking whether two component ports can be inter-

linked in a compatible fashion.

Characteristics of processed and communicated data are media specific. For video, description
parameters frequently include video picture size, picture rate, compression scheme and ratio.
For audio, similar parameters may be used including sample rate, sample size and encoding
scheme. Media specific differences are being given at least in form of different implied dimen-
sions and value ranges. In terms of abstraction levels, such parameters are media specific since
they have no unambiguous transport level representation. For instance, a pair of (video frame
size, frame rate) values can be mapped in various ways onto a pair of (packet size, packet rate)

values.

From the above, it is obvious that any distributed multimedia system has to include two levels
of QoS: (a) a “higher” media specific level describing the communication load requested by
interconnected components and (b) a “lower” level describing the communication load
requested at the service interface of transport systems. Figure 2 shows the positioning of QoS
levels inCinema. At the level of components and links, media specific parameters are exchanged

in so-called application flowspecs (AFS), while transport level parameters are employed only
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Figure 2: QoS Architecture
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inside links within transport flowspecs (TFS). The figure shows that a client specifies its QoS
requests with respect to the input ports of sink components, i.e. in terms of media specific

parameters expected there. The following discussion motivates the architecture.

Cinema offers a basic level for QoS specification. The client itself may be given as a program
converting media specific parameters into higher level abstractions for (human) end users (e.g.
“high”, “mid” and “low quality” video). Client requests are related to sink component ports,
assuming that the client has knowledge about sensed output QoS and corresponding media spe-

cific QoS required as input to sink components.

As mentioned earlier, component design involves the selection of a media specific parameter set
to be used by a component at a certain port. Since we do not expect such parameter sets to be
defined too often, we make a specific set of parameters available in form of streamtype objects
including, besides the media specific parameter list, the possible value ranges for each parame-
ter. In consequence, a component designer has to associate with each component port the

streamtype to be used making all related information available at the port.



Components are designed to be reusable in various application topéltrg'pw.ticular, com-

ponent design is kept independent of data transport characteristics. Differences exist here since
current transport systems expect and handle transport level QoS differently. Link objects
abstract from such peculiarities and offer a uniform external view. As shown in Figure 2, a link
object receives media specific parameters at its interface from which it derives the QoS repre-
sentation needed by the encapsulated transport system. But in order to reduce the number of
implemented link types, link implementation is to be kept independent of any media specific
characteristics. These requirements lead to the following structuring of the mapping from media

specific to transport system parameters.

A first mapping, termed DownQM, is provided by streamtype objects at componerﬁ ports.
DownQM maps media specific parameter values (e.g. video frame size and rate) onto a so-
called uniform communication load representation (UCL) defineg@iNeya. UCL is positioned

at the transport level, its purpose is to abstract from (QoS) interface peculiarities of a specific
transport system. Given DownQM, a link implementation has to include only a function map-
ping a UCL description onto the QoS representation expected by the specific transport system.
A link object handles media specific parameters since it has access to both described functions.
It can use its internal mapping and can call DownQM since it has access to component ports
connected to the link. Given this structuring, a new link implementation is required only if it

encapsulates a new transport system (e.g. for radio communication).

Mapping to UCL

The selection of UCL parameters was based on parameter selections pursued by current multi-
media transport systems. It was guided by the requirement to describe application generated
load both for compressed and uncompressed media streams as shaped for instance by MPEG

[Gall9l] or JPEG [JPEG93] compression. Optimal selection of parameters for load description

1 Two interconnected component ports have to be associated with the same streamtype.
2 Another function, NextQM, is also provided by a streamtype object (see Section 4 for motivation).



IS a continuing research issue. In particular, a future standardized transport QoS description may

be used for UCL, should one emerge. The following UCL parameters are currently defined:

* peak data unit sizepp€ak
* average data unit siza\g
» data unit ratergte)

* average intervaiy)

For uncompressed streams the use of these parameters is straightforward. For audio, a UCL data
unit would encompass the amount of audio processed by a component at once (e.g. 40 ms of
Audio. Peakandavgwould be both set to a corresponding number of bytes, vdtdavould

be fixed to 25 data units/s. For uncompressed video, a UCL data unit would encompass the
amount of video processed at once, typically a picture size, rakélevould be set to the video

frame rate. However, different mapping schemes could be défined.

c. quality 192 x 144 256 x 192 384 x 288 512 x 384 768 x 576
10 4.1 6.0 8.6 16.0 29.2
25 4.7 6.6 94 17.5 31.8
50 5.9 8.4 12.2 22.1 40.0
70 7.8 10.4 154 28.6 58.1
85 9.8 15.2 24.1 45.0 80.0
95 16.6 26.7 44.8 69.8 131.6

Table 1: UCL data unit sizes in KB

For JPEG compressed video, we have to include the compression effect. We took an empiric
approach to measure the size of a UCL data unit resulting from a picture of a given size, color
depth (fixed to 24 bit) and compression quality (given as a number between 1 to 100). Table 1

contains some measurement results. Calculating UCL values then amounts to:

1 Recall that DownQM encapsulates this mapping.



peak=avg= table entry for desired picture size and compression quality

rate=f _rate

The mapping may be defined differently, for instance by yséiagtandavgto reflect variations

of compressed picture sizes over a longer time interval. Our UCL description scheme does allow
for this, though further experimentation is required for deriving corresponukagy &vg) value

pairs as table entries. This latter approach is currently taken for MPEG compressed streams,
where we measurepéak avg) pairs. Peak denotes the maximum compressed picture size
encountered (typically an | coded frame), wiailgis an average value for an average interval
which encompasses at least one picture sequence starting from an | frame up to the next | frame

(e.g. IBBPBBPBB).

Mapping to a multimedia transport system

In order to be efficient, such a mapping should be supported by a transport system capable of
transferring both constant and variable bit rate streams. In case the latter is not possible, either
(inefficient) worst case reservation or (time consuming) traffic shaping has to be performed.
Below, we describe the mapping of UCL parameters onto parameters defined for the Tenet Pro-
tocol Suite [BFM94]. Tenet allows QoS representation of a variable bit rate data stream using
the following parameters: minimum inter-message time, average inter-message time, averaging
interval and maximum message size. In contrast to UCL description, which is application
processing oriented, this load description is network oriented. Tenet expects a fixed packet size
and a variable packet rate, whereas UCL offers a variable data unit size, but a fixed rate corre-

sponding to a more ‘natural’ description of periodic data streams.

The mapping from UCL to Tenet parameters is performed as follows:

maximum message sizeseg

minimum inter-message time = Dﬂteaksegﬂ]}ate)l

1 assuming corresponding temporal smoothing in the link
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average inter-message time =ay(g'sed*rate)

averaging interval #

wheresegis currently a value derived experimentally and fixed for the transport system in

advance in order to avoid reservation inefficiency (i.e. overbooking of resources).

Without going into detail we indicate that similar parameters are offered by other transport sys-
tems, e.g. XTPX [MMR93] or HeiTS [VHN92] (which incorporates ST-1l [Topo90] as reserva-
tion protocol). Another reservation protocol, RSVP [ZB8], defines no communication load

parameters so far.

4 Negotiation Protocols and Protocol Coupling

The last section introduced two abstraction levels for QoS. Current QoS oriented protocols are
defined for the transport or network level. Their primary purpose is to provide for resource res-
ervation along connections between computing endsystems. Protocols have been developed to
cover point-to-point and point-to-multipoint connections (Tenet, XTPX, ST-1I), while RSVP

realizes a concept for interconnecting m sources with n sinks.

Except for RSVP, these protocols imply that data sent at source sides is delivered unchanged
(i.e. unprocessed) at receiving sides. RSVP allows for a restricted form of QoS scaling for
receivers by employing filters at the network level. In all cases, QoS representation adheres to
the transport or network level only. None of the protocols offers support for negotiation between

transport connection users beyond transparent user data transfer.

Distributed multimedia applications feature further requirements. First, if resource reservation
were to be performed in a complete end-to-end manner, it has to include all application compo-
nents and intermediate transport connections influencing a data stream. For applications imply-
ing processing hops between source and sink components (Figure 1), neither of the mentioned

protocols is applicable.
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Second, even if no resource reservation is to be performed (or only in topology parts), QoS
negotiation is still required to regulate interworking between interconnected components and
links. The reason is that QoS support by components may already be limited by their implemen-
tation and that any limited QoS support influences interconnected components. Finally, as moti-
vated in Section 3, QoS negotiation at the application level cannot be carried out in terms of

transport level parameters.

The example of Figure 1 shall illustrate these requirements. The possibility of negotiation shall
be given with each of the involved components being able to support various picture sizes. The
components shall be such that it has to be ensured that all components handle the same picture
size. For instance, the mixer component shall require equality of picture sizes at its two input
ports. A limited resource availability of any component or intermediate link affects QoS to be
provided by all other components or links. In order to regulate QoS according to such depend-

encies a protocol is required encompassing the whole application topology.

These requirements motivate the approach takédnaya to define, in analogy to QoS levels,

two protocols aiming at QoS negotiation and resource reservation at different levels. At the
transport level, existing protocols are taken as they are provided currently by external sources.
At the application level, a new protocol type is required. Below, we develop such a protocol
(termed negotiation and resource reservation protocol NRP) for the example application of
Figure 1, in particular to indicate required couplings between protocol levels. We refer the

reader to [BDFR95] for a protocol design covering more complex application topologies.

Negotiation Example

We assume that client QoS requests and negotiation relates to one media specific parameter,
namely video picture size (assuming for instance, that the frame rate is fixed in advance to 25

frames/s). Note that the description could easily be extended to the case of multiple parameters,
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if priorities are specified (by the application client) indicating which parameter is to be reduced

first, in case that QoS reductions become necessary.

As mentioned in Section 3, negotiation is triggered by an application client when issuing QoS
requests with respect to the input ports at sink components. We assume the client requests for
Dsp the best possible frame size from an acceptable range of (256x192 ... 512x384) (in pixels x

pixels). At this point, NRP is triggered.

NRP is carried out by a corresponding protocol engine (PE) in three phases during which (in

phase 1) the AFS available at the sink port is propagated towards the source components for
resource reservation, (in phase 2) AFS from source ports are propagated back to the sink to pre-
pare resource relaxation, and (in phase 3) resource reservations are relaxed while propagating
the AFS towards sources again. We describe the phases below, first skipping the descriptions

concerning negotiation inside links.

Phase 1 starts with the PE using the client QoS request to furnish initial AFS for the input port
of Dsp: AFS(256x192 ... 512x384 ). Dsp is invoked with the AFS and responds to the PE with
an unchanged AFS, thus indicating that it could reserve resources for the most demanding frame
size. Next, the PE invokes the link between the mixer and the display. Both sending and receiv-
ing side of the link are invoked as motivated later. Assuming that the link is able to support all
requested frame sizes, the link returns an unchanged AFS. The PE passes the AFS to the mixer
by invoking it. Assuming that the mixer can support all frame sizes, two unchanged AFS are

returned to the PE, one for each of the two input ports of the mixer.

The PE invokes the two links leading to the mixer input ports. We assume the link from Cam1
to the mixer can reserve for the best of requested frame sizes and returns an unchanged AFS.
The PE invokes Cam1l with this AFS and receives it back unchanged. For the link from Cam2
the sequence of actions is similar. However, we assume that the link can support only a reduced

frame size range and returns a reduced AFS(256x192 ... 384x288) to the PE. The PE invokes
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Cam2 with this AFS and receives it back unchanged assuming that Cam2 can reserve corre-

spondingly.

The first NRP phase ends upon reaching all source components. The second phases serves
merely to match media specific QoS between mixer input ports. In consequence, links are
bypassed during this phase. The phase starts with the AFS obtained from Cam1 and Camz2 being
propagated by the PE to the mixer. The mixer matches the two AFS QoS ranges into a single
range (256x192 ... 384x288) and returns it in its AFS (for the output port) to the PE. The PE
delivers the AFS to the sink component Dsp. Upon invocation, Dsp installs the final video frame
size to 384x288 and relaxes resource reservation accordingly. This last step marks already the
begin of the third phase. The rest of this phase is similar to the first phase, except that the PE
invokes resource relaxation methods of components and links instead of reservation methods.
Upon reaching all source components, NRP is completed and the reservation session initiated

by the client is set up.

Role of Links - Protocol Coupling

We explain here the effect of link invocations identified in the example above. The discussion
shall highlight issues resulting from coupling QoS levels as well as their corresponding proto-
cols. Three aspects are addressed: (a) the way how a link interacts with the PE and the transport
system for connection set-up, (b) how a link does the mapping between media specific and
transport level parameters and (c) how a link is to react in case of resource shortages in a trans-

port system.

Interaction between the (NRP) PE and link objects was designed to offer to the PE a uniform
view towards components and link objects. For this, link objects are made visible by decompos-
ing them into receiver and sender side link objects denotegrasil. L.. Each of these objects

is treated by the PE like a component with one output and one input port. Figure 3 depicts the

sequence of actions for invoking links for resource reservation. Since the NRP phase proceeds
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from sinks to sources, the PE invokes first the receiver side link objéatraw 1) receiving

back a result AFS (2) just as when interacting with a component. Next, the PE invokes the send-
ing side of the link L (3) from which it also receives a result AFS (7). Besides ensuring this
uniform view of the PE, the approach detaches the PE from any specific connection establish-

ment schemes used inside the link.

To demonstrate this feature, we assume that inside the link of Figure 3 a transport system is
employed for which connection set-up initiation and completion has to be done at the sending
side (e.g. HeiTS). When invoked by the PE (3)dsponds with an unchanged AFS to the PE,
since the receiving side does not initiate connection set-up (the PE is unaware of this). In con-
trast, Ls upon invocation may respond with a modified AFS (8) due to QoS reductions enforced

inside the link.

Internally (to the link), L invokes the transport system for connection set-up (4), while L
acknowledges the connection setup indication (5 and 6) without interacting further with the PE.
This behaviour is sufficient, sincg Hoes not have to support negotiation between intercon-
nected components using the link (given that the PE already does this). The set-up confirmation

(7) is used by Lto determine the response AFS for the PE (8).

AFS passing
Distributed 4— -
Protocol Engine

3 1
ST reserve(AFS) ZT reserve(AFS)
Link I—s Lr
4 5
set-up
e
7 | TS 6
accept

Figure 3: Protocol Coupling Example
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Lsreceives and delivers media specific parameters from/to the PE. In order to provide a trans-
port flowspec (TFS) to the transport system, it first invokes the DownQM function (introduced
in section 3) available at the p’otb which Lgis connected. DownQM maps the QoS range of

the AFS onto the UCL representation for the best media specific selection of this range. Given
this UCL representation,glapplies its internal mapping function to obtain the TFS. In case the
transport system reserves successfully according to this TFS, iteiins the AFS unchanged

to the PE.

In case resource reservation was not successfuhaly be faced with two situations. In one

case, the transport system indicates its QoS values (e.g. packet size and rate) for which reserva-
tion was possible. Juses these values to compare them with transport values derived for suc-
cessively worse media specific value selections. For thieybkes at its connected port a sec-

ond mapping, NextQM, delivering two results: a shrunk QoS range excluding the highest
possible media specific selection and UCL values corresponding to the new best media specific
selection of the range. From the latteychn again derive a reduced TFS. Repeating this process
allows Lgto find the best possible media selection implying a TFS which is in line with the ini-

tial resource reservation of the transport sys%dupreturns the possibly shrunk media specific

QoS range in its AFS response to the PE.

A second case is given for a transport system which only indicates resource reservation failure.
In such a case,dlcan still calculate successively reduced TFS as described above. In addition,
for each reduced TFSglhas to invoke the transport system for connection set-up. This addi-

tional overhead is unavoidable here.

The interactions between the PE, L, and the transport system are completely analogous for

the relaxation phase of NRP. Beside different invocatiogiaxX instead ofreserve change

1 Recall that ports are associated with streamtype objects

2 Given that the number of values for a media specific parameter is in most cases low, the implied overhead of
this try-and-retry approach is low as well.
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instead oket-up), a second difference is that relaxation never requires iterative use of QoS map-

pings.

5 End to end parameter handling

QoS requirements for multimedia applications concern, besides described media specific QoS,
more generic parameters such as delay, jitter or loss-rate. These are usually referred to as end-
to-end parameters, since they accumulate contributions of components and links between data
stream source and sinks in order to yield QoS to the client. We currently work on concepts for

including such generic QoS into NRP.

For delay, it is easy to see that NRP PE invocations can be extended to include a delay parameter
filled in by links and components to indicate their contribution to delay. The PE would sum up
these contributions to derive end-to-end values and compare them with client specified limits.
For our negotiation example, this could be done during an additional fourth phase by summing
up delay from sources towards sinks (Dsp). Accumulated values would have to be below the
client's limit for Dsp (implying that the same limit applies to both paths from Cam1 and Cam?2),
otherwise the negotiation protocol would be stopped informing the client, that the delay cannot

be kept.

The situation for jitter is similar, if component and link scheduling does not provide for jitter
compensation. Otherwise, jitter values are accumulated prior to jitter compensating stages and
compared with the tolerance limits of these stages. Considering data loss across many process-
ing stages and communication links requires an adequate model describing their impact on data
loss. Both number of stages and implied different abstraction levels make this a challenging

task. The definition of such a model fokema is for further research.
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6 Related Work

Media specific quality issues have been considered in restricted contexts. IMA MSS [IMA93]
introduces the concept of media formats independent of QoS parameters. An IMA MSS format
defines the encoding used for a specific medium. Format selection is done considering two adja-
cent component ports only, an end-to-end approach for applications consisting of many (more

than two) processing component stages is not defined.

Several schemes have been developed for defining the mapping between media specific and
transport level parameters ([KrLi94], [BD®4], [SMHW95], [NaSm95]). [BDF94] uses a
management information base to map application specific QoS to transport system QoS.
[SMHW95] uses a QoS manager tool to do the mapping. The QoS manager tool is called with
the selected kind of media encoding and the desired QoS class and returns the transport level
(XTPX-based) QoS data structure. [NaSm95] introduces a QoS Broker which negotiates end-
to-end QoS at application level for client/server settings only. Application level negotiation in

the sense described in this paper is not considered in either case and neither of these approaches

considers topologies beyond client/server.

7 Conclusions

Provision of QoS by distributed multimedia applications is subject to QoS constraints. Applica-
tion clients can specify QoS requests as QoS ranges in order to allow best possible QoS selec-
tion, while avoiding a time-consuming and possibly complex try-and-retry approach with fixed
QoS-value requests. Application level negotiation differs from transport level negotiation. It
requires a separation of QoS abstraction levels for media specific and transport level character-
istics and definition of mappings between them. Application clients have to be offered a media

specific QoS view.

Application level negotiation has to encompass all components and links, even if resource res-

ervation is not performed or restricted to some application parts only. Application level protocol
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design can be kept independent from transport system design by providing link objects encap-
sulating transport system peculiarities. Coupling between application and transport level nego-
tiation can be hidden from any of the two levels and confined to the link objects. This applies

both to QoS mappings and connection set-up schemes.

Besides motivating introduced concepts, the paper demonstrated their feasibility for an example
negotiation protocol. The QoS framework presented is currently introduced ilGoeun sys-
tem implementation. It prepares the implementation of an application level protocol which is

applicable to a wide class of application topologies.
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