On the use of symbolic markup
in the Production of aMulti-Lingual Dictionary !

Klaus Lagally 2
Institut far Informatik, Universitat Stuttgart
Breitwiesenstral3e 20-22, 70565 Stuttgart, GERMANY
EMail: | agal | y@ nf or mati k. uni -stuttgart. de

Abstract: [symbolic markup, dictionary, TeX]

We propose somesimpledesign rulesfor encoding multi-lingual textsfor flexibility of further automatic
processing. Our main recommendation is to include the available descriptive information with the
data, and to use symbolic markup conventions. e report on the successful application of these rules
in thefirst steps of compiling a multi-lingual dictionary.

1 Introduction

The recent availability of relatively inexpensive powerful computer systems opens up a host of
new possibilitiesfor many fields, among them e.g., research on Oriental |anguages. Due to industrious
collecting activitiesawealth of written material has been accumulated whose evaluation by traditional
means might, given the available human resources, take decades or even centuries. Much of the
necessary work isof clerical nature, and could well be automated, once the material were in machine-
readable form. But the necessary softwareisusually not available, or not affordable, and will probably
have to be developed from scratch, preferably in a cooperation between Orientalists and computer
experts. Also the encoding of the dataisamanual processthat should haveto be performed only once,
and some prior consideration is advisable to avoid duplication of effort.

As an example, imagine the task of building a catalog for alarge number of Arabic manuscripts.
This could possibly be handled by using one of the available bilingual word processors. But the data
format used will probably be private and not easily accessible, and since these toolsare geared towards
generating a printed version only, there is no easy way to include additional descriptive information
which could otherwise be used for further evaluations.

In the sequel we present some recommendations which we believe can be helpful, and report on
our first results of their application.

2 On dataencoding

We believe thereis abasic distinction between data and text, if the latter is viewed as a pattern of ink
on paper, or some other physical representation. If thetext can be understood at all we can derivefrom
the pattern individual words that are connected into sentences and, hopefully, convey some meaning.
This activity is commonly called reading, and extracts structural and semantic information from the
pattern itself. When we encode the text as data to be processed and evaluated further we frequently
are not only interested in the pattern itself but also in this additional information now available; the
pattern itself may even be of little interest depending on the application, if some equivalent external
representation can be reconstructed.

Reading and encoding the text is only afirst, sometimes|aborious step, and is often done at a point
of timewherenot al further evaluation steps are known. Thusit is advisable to encode the information
in away that can be processed by, and transmitted between, various different computers and software
systems. Our choiceisobviously influenced by the rapidly evolving state of technology and emerging
standards, but we may expect future devel opments not to invalidate current solutions.

At the time of this writing the main limitation is the inability of many electronic transmitting
systemsto reliably transfer anything but plain 7-bit ASCI1 data [I SO646], which on the other hand can

be processed by virtually any computer system now available. Thus this code is an obvious starting
point, and fortunately nearly all more powerful encodings that have been proposed since contain it as
a genuine subset, with unchanged meaning.

ASCII is primarily intended for encoding English texts, but it can equally well be used for
tranditerating other languagesby asuitablere-interpretation (asin, e.g., [ASM0449]) and, if necessary,
using more than one code byte for a character of the language in question. This can be done in a
multitude of ways, and standards for switching the character mapping [| SO2022] have already existed
for along time.

Should therestrictionto 7 bitsdisappear soon we may a so usethe | SO 8859-x family of extensions
to 8 bits per character catering individually for the needs of various European languages, plus Arabic
[1SO8859-6, ASMO708] and Hebrew [SO8859-8]; but asthese codes overlap we still haveto indicate
the coding used locally within multi-lingual documents, as also in the case of an ASCI| trandliteration.

Switching to longer codewordsof 16 or morebitsas proposed, e.g., in [UNICODE] or [SO10646]
will not solve all of these problems, but might introduce a considerable overhead. With the exceptions
of Far Eastern languages the alphabets needed are of moderate size, and the benefits of not having
to indicate the encoding will probably not offset an increase in size of the data files by a factor of 2,
especialy since, as we shall show, we usually want to add other descriptive information anyway.

We thus advocate to stay, for quite some time from now, with a rather primitive encoding,
supplemented by a sufficient amount of descriptive information.

3 Symbolic markup

Up to now we were only concerned with the encoding of the text proper. Devising a notation for the
additional structural and semantic knowledgelookshopelessat first and seemsto requireclairvoyance,
since the future processing needs cannot even be guessed. But indeed some progress is possible.

Once we consider the coded text as alinear sequence of code symbols, any additional knowledge
about it can be described by a set of attributes assigned to the individual symbols, or to ranges of
symbols. We might not yet for every attribute know how to process it further, nor even its exact
meaning; but we certainly know whenever attributes are different, and thisis all we need now. The
main issue when encoding the data is to preserve al the information then available; exploiting it can
come | ater.

A sufficiently powerful mechanism that does not require the a priori knowledge of ataxonomy of
features, consists of some meansof denoting ranges of code symbols, and amechanism of associating
the name of an attribute or a set of attributes to such arange. We need a sufficiently rich repertoire
of names such that differing attributes or sets of attributes can be denoted differently. The names
are arbitrary, and their interpretation needs only to be fixed much later whenever the data will be
evaluated, and for different evaluationswe may well use different interpretations as required. We only
have to agree on the basic format of the markup to distinguish it from the text proper. This basic idea
is called symbolic markup.

Symbolic markup is not a new idea but has been used in severa contexts for some time, and
we shall briefly review two of its special applications. In doing so we shall skim over many details,
simplify grosdy, and aso deviate from the customary terminol ogy.

31 SGML

The idea of SGML, for “Standard Generalized Markup Language” [1SO8879], originated within the
printing industry with the goal of helping to separate the logical structure of a document from the
details of its external printed representation, and thus ease the production process. It soon turned
out that its possible scope is much wider, and one of its variants, HTML, presently has important
applications in the distributed Hypertext system called the World-Wide Web [BL*94].

The basic markup mechanism in SGML works roughly as follows: arange of characters carrying
an attribute A is delimited by a start tag <A> and an end tag </ A>. Instead of a single attribute A
may also denote an attribute class, and in this case the start tag a so carries an indication of the actual
member of the class, and/or additional descriptive information. The set of possible tag identifiers
is fixed for any document type by some formal definition not described here, but due to the class
mechanism the set of possible attributesis virtually unbounded.

[Smi92] stresses the usability of symbolic markup for capturing arbitrary information also outside
of the production of documents. The main difference to our approach seems to be that for a SGML

document the complete syntax of the markup used must be put down beforehand in a Document Type
Definition (DTD), whereas we propose to postpone this step until the actual processing.

32 TeX

TeX [Knu84] is a program written by D. E. Knuth to support high quality computer type-setting of
text and mathematics. It is in the public domain, and compatible implementations exist for a large
range of computing systems. TpX will take care of al the visual formatting including line-breaking,
hyphenation, formatting of formulas, page layout etc. The output produced is completely device
independent and may be viewed on a computer screen display or also directed to a large range of
printing devices, provided that appropriate device driver programs are available.

TeX provides a large number of markup commands for controlling the typesetting process, and
also a powerful macro extension mechanism that enables the user to introduce new markup tags and
definetheir meaningsarbitrarily, so that symbolic markup iseasily possible. TEX can aso be (mis)used
as aportable general purpose data processor.

Due to the extensibility of TeX a number of macro packages have been developed to cater for
specia applications, among them:

o A\S-TpX (see[BeeB5]), supplying an additional set of mathematical symbols;

o IATEX [Lam94], providing styles for several common document classes and supporting the logical
structuring into chapters and sections, building a title block, positioning figures and tables, and
managing cross references, index information, atable of contents etc.;

e MI-TEX [Fer85], some multi-lingual extensions for European languages,
e Babel [Bradl], a package supporting language-specific processing for more than 20 languages,

e ArabTpX [Lag92a, Lag92c, Lag93a, Lag94b, Lag94a)], catering for right-to-left languages such as
Arabic, Persian, Urdu, Pashto, Hebrew etc. with full support of diacriticsand vowels, ligatures, and
also the common standard transcriptions 3.

e A number of further packages, e.g., for including graphics, are described in [GM S84].

Most of these packages may be combined to make use of al the additional features provided, and
further extensons may be defined freely. [Lam94] strongly advocates using symbolic markup in
document design.

3.3 Abstract Data Bases

In some respects our approach is related to using a data base system but there are some marked
differences. In a data base system, the information is stored as a collection of records consisting of
a fixed number of fields; for every field the meaning and the format is determined a priori by a data
base scheme. In contrast to this we advocate having an undetermined number of ranges of symbols
with some attributes assigned to them, and we may introduce new attributes at any time. Also we do
not require the data to be a collection of subunits with basically the same structure, even if this may
frequently be the case. So we could simulate a classical data base system easily, but our approach is
much more general, and could be called an “abstract data base’.

Of course, because we leave most the structure and the interpretation of the text unspecified,
we cannot expect our data to be usable directly for any specific evaluation, and to process them
by any given application program we will have to do some preprocessing first to get the data into
the format our application expects. Fortunately, the preprocessing task will be rather well-defined,
consisting mainly of omitting information presently of no interest, and reformatting the remaining data
according to the needs of the application program. Whenever the format of the input datarequired, as
well astherelevant structure of our abstract data base, can be described by aformal grammar, we can
automatically generate the preprocessing program by any of several existing generator systems, e.g.,
Lex [Les75], YACC [Joh75], or WRG [Lag90]; and in many cases the reformatting task will befairly
trivial so we might as well write the preprocessor from scratch.

4 Recommendations and Guidelines

From the considerations given above we derive the following recommendations on how to devise a
coding scheme suitable for capturing a structured text while also preserving the known associated
information.

¢ Decide on the basic encoding of the text.
¢ Decide on the method and the format of the markup.

e Assign markup tags arbitrarily, and document their meaning. Take care to mark up portions of text
with different meanings differently.

e Try to capture al the available structure information about the text. Concentrate on the logical
structure and do not worry about the layout, except if it carries essential information.

e Do not omit any available information that has no apparent use. It might become important and
useful later, if it ispreserved now.

e Rely on the computer to perform clerical tasks efficiently when given enough information; but
remember that it isnot intelligent, and that you will have to do the thinking.

¢ Do not worry about efficiency of processing. Computers can be expected to continue getting faster.

Some of these recommendations may sound quite obvious and trivial. According to our experience
they are not, or at least not always observed.

5 An exampleof an application

We have tested the viability of our approach within an ongoing project [Ser93, Ser94] of compiling
adictionary of Greek loan-words within Arabic. A central requirement is the ability to print Arabic,
Greek, Syriac or Hebrew, and Latin script, and we decided to use and, if required, extend the author’s
ArabTeX system.

In addition to printing we wanted to automatically generate several indices sorted according to
the collating sequences of the various languages used, and this proved feasible. We found that the
necessary preprocessing could easily be handled by TpX itself plus some existing system routines.

5.1 Input encoding

As we decided to use TEX for all processing, we will use the basic TEX conventions [Knu84]. This
means the coding used will be 7-bit ASCII [1SO646] both for text and for markup. In TeX a markup
command is distinguished by a name consisting of Latin letters and preceded by an inverse dash,
and, if required, followed by parameter strings included in curly braces; one of them might well be
the range of symbols the markup command appliesto. In addition to the standard TEX commands we
shall define additional symbolic commands as required.

We next take the intrinsic structure of the available input data into account. Presently they reside
on a large number of index cards, each of which carries the information available about a specific
Arabic lemma. There are main entries describing words derived from Greek directly or via some
intermediate steps, and secondary entries that describe writing variants and refer to some main entry.

We represent these data as a possibly unordered sequence of text blocksin free format. Every text
block starts with a markup command of the form\ al emma {t he | emma} followed by the de-
scriptiveinformation and terminated by an empty line (for ease of editing only). The descriptiveinfor-
mation may contain componentsin severa languagesthat aremarkedupby \ ar { Arabi c text},
\gr {Geek text},\sy {Syriac text},\he {Hebrew text} asrequired; other lan-
guages, e.g., Coptic could be added. This also applies to some of the European languages occurring
as their encoding conventions are dightly different. In addition there are a few more symbolic tags
like \ see for pointers to other entries, \ var for denoting variants, \ cod for referring to sources,
and afew more. Note that we distinguish between \ al enmra and\ ar astheir rolesare different, and
for the same reason we denote, e.g., a Greek lemma (\ gl enmre)) and an explanation in Greek (\ gr)
differently.

Greek text is mapped to 7-bit ASCII using the encoding proposed by Silvio Levy [Lev88] and
supported by GREEK TEX, another extension to TpX freely available [Dry94]. For Arabic, Syriac, and
Hebrew we use the standard encoding implemented in the ArabTpX system; it is alinearised variant
of the ZDMG tranditeration [DIN31635, | SO/R233] that, however, uses no diacritical marks and can
easily be handled using a standard computer keyboard.

Thefollowing exampleistypical; we made liberal use of white space to keep the input data, which
might have to be edited, human readable:

\ al enma { gAbUs}
JA 1886 (1) 460.
\see \ar {qwA tUs} (ib.)

\'al enma {gAbl | }

\glemma {k’aphloc} \from\slemua {gpll’}

ZDMG 1897 (51) 470.

\de {der Kleinh"andl er, Speisewirth:}

\ar {m _tl insAn _dAhib fl al-sUg ‘inda al-qgAbll
ya"sum al -"si wA' | wa-al.tabl _h}

\de {"*We ein Mensch wel cher auf dem Markte
bei [den] Speisew rth vorbei geht und den Duft
der gekochten und gebratenen Speisen riecht."’}

\al emma {gAti smA}

\glenma {k’ajisma} pl. \ar {gAtismAt}

GRAF VERZ. 86

\de {"*Kathisma in der Psal neneinleitung"’ .}

\var \ar {gA. tsmA} (pl. \ar {gA ssmAt}), \ar {KAtsmA}.

\ al enma { gAt smAt }
GRAF VERZ. 86
\see \ar {qAtsmA} (ib.)

5.2 Printing the text

If we want to print alisting of the datain dictionary format we have to writea small driver programin
the TeX macro language that will determine the general output format, and that will assign to all yet
undefined tags, astheir meaning, therequired external representation by calling some TeX or ArabTeX
routines. Then it will read the input data file and let TEX processit to do the formatting. As presently
no Syriac font is available we substituted Hebrew temporarily.

The resulting output for a sample page is given in the appendix. The correspondence with the
encoding example should be obvious.

53 Sorting

Up to now we have assumed that our input data are sorted according to the Arabic lemma, obeying
the standard Arabic collating sequence (on the basic glyphs only, without respect to vowel indicators
and other diacritical marks). In the long run this will not remain true as a consequence of editing and
introduction of new entries, and we shall have to re-sort the data from time to time. We cannot expect
that a sorting routine obeying the Arabic collating sequence, and understanding our input notation is
available, and therefore we exploit the fact that any Operating System known to us provides a sorting
routinethat can at least sort the lines of atext file according to the standard ASCI|I collating sequence;
and we transform our input file into another one that, when sorted mechanically, will contain the
entriesin the required order.

It was not too difficult, even though nontrivial, to write another TEX macro program that interprets
the same data in a different way: instead of producing formatted output, it will read the data one
complete entry at atime, filter out the Arabic lemma, and compute an a phanumeric sorting key from
its internal Arabic glyph representation that is available within ArabTeX. Now we copy the entry to

an output file and prepend to every line anew tag of theform\ key {t he key}; andthisnew file
can now be processed by the standard sorting routine. The additional tag will not interfere with the
printing process if we define its meaning as to produce no output at al. Thus we can use our sorted
file as anew version of our input data, and whenever sufficiently many new entries have been added,
we can reprocess the file, compute sorting keys for the new entries, keep the aready existing ones,
and re-sort again.

The sorting keys are comparatively long and thus add some space overhead even if they do no
harm otherwise. But they are really required only during the sorting processitself and can be recreated
whenever needed. Getting rid of them againis easy: processthe dataagain after redefining the meaning
of the\ key command so that it will copy the rest of the entry (without the key) to an output file.

5.4 Compilingindices

For compiling an index, e.g., on the Greek terms, from the same data set some more processing is
required, but thistask issimpler. We again process the dataone entry at atime but now only keep those
entriesthat contain a Greek |lemma (these are the main entries), and build anew output file containing
for each main entry just the following items. a sorting key (again hidden within the argument of a
tag, but this time computed from the Greek lemma so as to respect the Greek collating sequence),
the Greek lemmaitself, and the Arabic lemma. This file can again be sorted by the standard sorting
program and be printed by an obvious variant of the printing program described above.

For indiceson other languages we proceed anal ogoudy, and we could also easily build aretrograde
index by processing the internal representation of the Arabic lemma in reverse order. The technical
details are givenin [Lag95].

5.5 Re-encodingtexts

We can imagine applications where data derived from various sources have to be combined within
a processing task, and where different encodings have been used from the outset. According to our
general markup philosophy these parts have to be made sufficiently self-describing by adding suitable
tags, and thus several encodings can coexist. This does not happen in the application at hand, but
nonethel ess we performed afew experimentsin order to find out whether transforming e.g. the Arabic
lemmatato adifferent encoding could be done easily, while leaving therest of the data unchanged. In
fact nothing more was needed than reading the entries one at atime, get at the internal representation,
compute the new external representation, and output the entry with the newly encoded lemma (and a
suitable markup tag) in place of the old version.

Of course this mechanism is not limited to our specia application. It can as well be used for
converting any file between our private encoding, ASM 0449 (1S09036) [1 SO9036, ASM0449], and
ASMO708 (1S08859-6) [SO8859-6, ASMO708] encodings back and forth; and extending it to other
encodings as, e.g., the one used inside Arabic Windows into this schemeis easy. See also [Lag95].

5.6 Further processing

Among thelinesgivenwe couldrather easily open up theway for variousother evaluations of the same
data. We could, e.g., search for lemmatain several languages, build concordances, collate versions of
the same basic text for identifying variants, or derive a differently formatted file that is suitable for
loading it into a sufficiently powerful data base system.

None of this has yet been done, but we also see no basic difficulties apart from the work to be
expended in writing the necessary programs. We found TpX, asit is geared towards text processing
from the outset, especialy suitable for comparable tasks, but we can also not deny the fact that using
the TEX macro language for programming purposes requires special skills not widely available, and
other programming techniques could be used as well.

5.7 Discussion
The mechanism we presented proved usable but has some apparent drawbacks. One of them is that

before starting any new kind of processing task we have to do some non-trivial programming; this,
as we believe, is inherent. Using TeX macros for programming was locally convenient in our case

as we aready had ample experience, but is not mandatory; other programming techniques could
have been used as well. The fact that the parts given in Oriental languages are presently coded in
a tranditeration, eases the task of manual editing when using a very ssmple plain text editor, but is
otherwise not essential. The encodings for the various languages are logically independent of each
other, and could easily be changed, even automatically, if some multi-language editor were available.
We might even use different encodings in different parts of our data at the same time, as long as we
keep them distinguishable by different markup tags.

6 Conclusion

Our experience has shown that encoding quite heterogeneousdatain away that preservestheavailable
meta-information, enabled us to perform a variety of related but quite diverse automated processing
tasks on the same abstract data base, without having to perform any manua re-encoding. The pro-
gramming effort required and a so the processing load invested were not trivia, but we believe that
the costs incurred were reasonabl e given the fact that some of the tasks had, to our knowledge, never
been attempted successfully before.

We generally believein the benefits of cooperation, also between fieldsas diverse as Orientalistics
and Computer Science; and we expect the cost of computing power to continue to decrease rapidly.
Our main concern has been to reduce, asfar as possible, the amount of labour that cannot be delegated
to a machine, in order to liberate humans from purely mechanical chores and to enable them to
concentrate on tasks where they can better exploit their specific abilities.

References

[ASMO449] Arab Standards and Metrology Organization.
7-bit coded Arabic character set for information interchange.
ASMO 449 Tech. Rep., Amman, Jordan, 1982.

[ASMO708] Arab Standards and Metrology Organization.
8-bit Coded Arabic/Latin Character Set for Information Interchange.
ASMO DS 708 Tech. Rep., Amman, Jordan, 1985.

[Bee85] Barbara Beeton.
Mathematical Symbolsand Cyrillic Fonts Ready for Distribution.
TUGboat, 6(2):59-66, 1985.

[BLT94] Tim Berners-Leeet al.
The World-Wide Web.
Communications of the ACM, 37(8):76-82, 1994.

[Bragl] Johannes Braams.
Babel, a Multilingual Style Option for Use with IATEX’ s Standard Document Styles.
TUGboat, 12(2):291-301, 1991.

[DIN31635] Deutsches Ingtitut fir Normung e.V.
Umschrift des Arabischen Alphabets.
DIN 31 635, 1982.

[Dry94] K. J. Dryllerakis.
GREEKTEX.
Availableelectronically viathe InterNet from the Comprehensive TeX Archive Network
(CTAN), 1994,
A set of Greek fonts, associated macros and documentation; based on fonts devised by
Silvio Levy and Yannis Haralambous.

[Fer85] M.J. Ferguson.
A Multilingual TEX.
TUGboat, 6(2):57-58, 1985.

[GMS84] Michael Goossens, Frank Mittelbach, and Alexander Samarin.
The IATEX Companion.
Addison-Wedley, Reading, Mass,, etc., 1984.

[1S010646]

[1S02022]

[1S0646]

[1S08859-6]

[1S08859-8]

[1S08879]

[1S09036]

[1SO/R233]

[Joh75]

[Knu84]

[Lag90]

[Lag924]

[Lag92b]

[Lag92c]

[Lag92d]

International Organization for Standardization.
Universal Coded Character St.
Technical report 1SO DIS 10646 (draft international standard), SO Geneva, 1992.

International Organization for Standardization.

Information processing — SO 7-bit and 8-bit coded character sets — Code extension
techniques.

1SO 2022.

International Organization for Standardization.
Information processing — SO 7-bit coded character set for information interchange.
SO 646.

International Organization for Standardization.

Information processing — 8-bit single-byte coded graphics character sets — Part 6:
Latin/Arabic alphabet.

SO 8859-6, 1987.

International Organization for Standardization.

Information Processing — 8-bit single-byte coded graphics character sets — Part 8:
Latin/Hebrew al phabet.

SO 8859-8, 1987.

International Organization for Standardization.

Information Processing — Text and Office Systems — Standard Generalized Markup
Language (SGML).

Technical Report 1SO 8879, | SO Geneva, 15 October 1986; Amendment 1, 1 July 1988.

International Organization for Standardization.

Information processing — Arabic 7-bit coded character set for information interchange.

ISO/TC 97 - 1SO 9036, 1987.

International Organization for Standardization.
International System for the Trandliteration of Arabic Characters.
ISO/R 233 - 1961.

S.C. Johnson.

Yacc — Yet Another Compiler Compiler.

Computing Science Technical Report 32, AT& T Bell Laboratories, Murray Hill, N.J.,
1975.

Donald E. Knuth.
The TeXbook, volume A of “Computers & Typesetting”.
Addison-Wesley, Reading, Mass., 1984.

Klaus Lagaly.

WRG — ein neuer Generator fur Top-Down-Parser mit automatischer Fehlerbehand-
lung.

Report 1990/01, Universitat Stuttgart, Fakultéat Informatik, 1990.

Klaus Lagaly.

ArabTeX, a System for Typesetting Arabic.

In ICEMCQ92, Proc. 3rd International Conference and Exhibition on Multi-lingual
Computing (Arabic and Roman Script), pages 9.4.1-9.4.8, University of Durham,
UK, December 10-12, 1992.

See also [Lag92b].

Klaus Lagaly.
ArabTeX, a System for Typesetting Arabic.
Report 1992/11, Universitat Stuttgart, Fakultat Informatik, 1992.

Klaus Lagaly.

ArabTpX — Typesetting Arabic with Vowels and Ligatures.

In EuroTeX '92, Proc. 7th European TpX Conference, pages 153-172, Prague,
Czechodovakia, September 14-18, 1992.

Seealso [Lag92d].

Klaus Lagaly.
ArabTpX — Typesetting Arabic with Vowels and Ligatures.
Report 1992/07, Universitat Stuttgart, Fakultéat Informatik, 1992.

[Lag93a]

[Lag93b]

[Lag94a]

[Lag94b]

[Lag94c]

[Lag95]

[Lam94]

[Les75]

[Levas]

[Sero3]

[Ser94]

[Smi92]

[UNICODE]

Klaus Lagaly.
ArabTeX, a System for Typesetting Arabic. User Manua Version 3.00.
Report 1993/11, Universitat Stuttgart, Fakultat Informatik, 1993.

Klaus Lagaly.
Some Problemsin Arabizing IATEX.
Report 1993/15, Universitat Stuttgart, Fakultéat Informatik, 1993.

Klaus Lagaly.
How to extend ArabTeX to handle Hebrew, 1994.
Unpublished internal Notes.

Klaus Lagaly.

Some Problemsin Arabizing IATEX.

In ICEMCQO94, Proc. 4th International Conference and Exhibition on Multi-lingual
Computing (Arabic and Roman Script), pages 9.10.1-9.10.8, London, April 7-9,
1994.

See also [Lag93b].

Klaus Lagaly.
Using TeX asaTool in the Production of a Multi-Lingual Dictionary.
Report 1994/15, Universitat Stuttgart, Fakultéat Informatik, 1994.

Klaus Lagaly.
A Non-standard Application of ArabTpX: Generating Sorted Indices.
Report 1995/02, Universitat Stuttgart, Fakultéat Informatik, 1995.

Ledie Lamport.
IATEX, a Document Preparation System. User’s Guide and Reference Manual.
Addison-Wesley, Reading, Mass., second edition, 1994.

M.E. Lesk.

Lex — alLexical Analyser Generator.

Computing Science Technical Report 39, AT& T Bell Laboratories, Murray Hill, N.J.,
1975.

Silvio Levy.
Using Greek Fonts with TeX.
TUGboat, 9(1):20-24, 1988.

Nikolg Serikoff.

A Dictionary of Greek Borrowings and Loan Words in Arabic [Tasks, Methods, Pre-
l[iminary Results].

Graeco-Arabica, 5:267-273, 1993.

Nikolg Serikoff.

A Project to Build aMulti-Lingual Dictionary of Greek Loan-Words within the Arabic
Language, 1994.

Personal communication.

Joan M. Smith.
SGML and Related Sandards.
Ellis Horwood Ltd., New York, 1992.

The Unicode Consortium.
The Unicode Standard. Worldwide Character Encoding. Version 1.0, \Volume 1.
Addison-Wedley, Reading, Mass., 1991.

L A preliminary version of this paper [Lag94c] has been presented to the XV I1th Congress of the Union Européennedes Arabisants
et Islamisants, St. Petersburg, GUS, 20-26 August, 1994, and is to appear in Manuscripta Orientalia. The present versionis published
here for thefirst time.

2 KlausLagally, bornin Munich (GERMANY) in 1937. University studiesin Mathematicsand Physics, Ph.D. in Theoretical Physics
1967. Work on Operating Systems and Programming L anguages. Professor of Computer Science 1976, Universitat Stuttgart, Germany.
Current research interests: Arabic text processing and typesetting, multi-lingual computing and communication.

3 The ArabTeX package is available without charge for scientific and private applications. It can be downloaded from
ftp.informatik.uni-stuttgart. de in the directory / pub/ ar abt ex/ . For other ways of acquiring it, or for commer-
cial use, please contact the author.

