Universitat Stuttgart
Fakultat Informatik

Institut fiir Informatik

[[
'I _l'_ 'I Breitwiesenstrafie 20-22
D-70565 Stuttgart

ChaPLin 3.2

Ein Chartparser fiir linguistische
Untersuchungen

Gerrit Burkert
Mathis Lothe

Report Nr. 1996/1

26.4.1996
CR-Klassifikation: 1.2.7,F.4.3,J.5.3

email: Gerrit.Burkert@swisslife.ch
Mathis.Loethe@informatik.uni-stuttgart.de

Abstract

ChaPLin is a Chart Parser for Linguistic research. Using dynamic program-
ming, chart parsers like ChaPLin store partial results in a wellformed substring
table (chart). They can use all kind of context free grammars including ambigu-
ous and nondeterministic ones. ChaPLin is specially designed for the needs of
natural language processing.

e It can use various grammar formalisms such as feature grammars, that
provide extra linguistic information for the parsing process and improve
speed and accuracy. Grammar formalisms can be programmed by the
user.

e The output generator can be programmed by the user and can be costu-
mized for different kinds of lexical information.

e An ATN-based line scanner is provided.

e ChaPLin has a parse tree visualizer, documentation of data structures,
and debugging tools to enhance debugging of grammars and grammar
formalisms.

ChaPLin has been developed by Gerrit Burkert at the University of Stuttgart
between 1989 and 1994 in Common Lisp. This document describes Version 3.2,
which has been completed by Mathis Lothe in February 1995.

In this report, the basic concepts of chart parsing are described and a user
manual as well as a reference manual for ChaPLin are provided.

Zusammenfassung

ChaPLin ist ein Chart-Parser fiir Linguistische Untersuchungen. Chartparser
wie ChaPLin legen nach dem Prinzip der dynamischen Programmierung Teil-
resultate in einer Tabelle, der Chart, ab. ChaPLin arbeitet mit beliebigen kon-
textfreien Grammatiken (auch mit mehrdeutigen und nichtdeterministischen).
Ergebnis des Parseprozesses ist der Syntaxbaum des Eingabesatzes. ChaPLin
ist speziell auf die Bediirfnisse der Sprachverarbeitung ausgerichtet.

e Grammatikformalismen steuern den Parser durch zusétzliche linguistische
Information. Grammatikformalismen fiir ChaPLin kénnen vom Benutzer
erstellt werden.

e Der Ausgabegenerator kann vom Benutzer programmiert werden, um
verschiedene Arten von Lexikoninformation zu verwerten und um den
Bediirfnissen der Weiterverarbeitung Rechnung zu tragen.

e Fiir die Vorverarbeitung wird ein ATN-basierter Textscanner zur Verfiigung
gestellt.

e Um die Suche nach Fehlern an Grammatikformalismus und Grammatik zu
erleichtern, gibt es fiir ChaPLin eine graphische Anzeige fiir Syntaxbaume,
Dokumentation der Datenstrukturen und Fehlersuchhilfen.

ChaPLin wurde von G. Burkert zwischen 1989 und 1994 an der Universitit
Stuttgart in Common Lisp entwickelt. Die hier beschriebene Version 3.2 wurde
von Mathis Lothe bis zum Februar 1995 erstellt.

Dieser Bericht erldutert die Grundbegriffe des Parsens mit einer Chart und
enthélt ein Benutzer- und Referenzhandbuch fiir ChaPLin.

Inhaltsverzeichnis

1 Uberblick

2 Syntaxanalyse mit Hilfe einer Chart
2.1 Grundlagen Lo
2.1.1 Die Chart als Darstellungsform des Syntaxbaums
2.1.2 Die Grundregel Lo
2.2 ParseprozeB
2.2.1 Top-down Analyse
2.2.2 Bottom-up Analyse.

3 Bedienungsanleitung
3.1 Analysephasen
3.2 Aufrufdes Parsers,
3.2.1 Verarbeitung unanalysierter Einzelsdtze
3.2.2 Parsen von Eingabesequenzen
3.2.3 Ausgabegenerierung
3.2.4 Inkrementelles Parsen
3.2.5 Analysephasen,
3.3 Fehlersuche und Analyse,
3.3.1 Quantitative Analyse
3.3.2 Datenausgabe Lo
3.4 Installation und Umgebung

4 Aufbau und Arbeitsweise von ChaPLin
4.1 Der Einflul des Grammatiktyps
4.2 Die Chart e

4.2.1 Knoten
4.2.2 Kanten e
423 Agenda

4.3 Syntaktische Analyse Lo oo
4.3.1 Kantenverschmelzung
4.3.2 Die Arbeitsschritte der syntaktischen Analyse
4.3.3 Grammatiktypoptionen fiir die syntaktische Analyse . . .

4.4 Ausgabegenerierung oL oL o 0oL
4.4.1 Die Ausgabespezifikation
4.4.2 Suche nach erfolgreichen Kanten

12
12
14
14
14
15
16
17
18
19
20
22

5 Sprachwissen

5.1
5.2
5.3
5.4
9.5

4.4.3 Finfache Ausgabeformen
4.44 Erzeugung der Lesarten
4.4.5 Baumerzeugung. o o
4.4.6 Nachbearbeitung
4.4.7 Grammatiktypoptionen der Ausgabegenerierung
Grammatiktyp Lo
Grammatik
Lexikon

Der Grammatiktyp :cf L oL oL
Der Grammatiktyp :sf L.

9.5.1
5.5.2
9.5.3
5.5.4

Datenstrukturen
Lexika fiir :sf-Grammatiken
:sf-Grammatikregeln oL Lo
Syntax von Grammatikregeln

6 Referenzhandbuch
6.1 Parserfunktionen

6.2

6.3
6.4
6.5

6.1.1 Argumente der Parserfunktionen
6.1.2 Beschreibung der Parserfunktionen
6.1.3 Globale Defaults
6.1.4 Ausgabe
Untersuchung und Analyse
6.2.1 Quantitative Untersuchungen
6.2.2 Ausgabe von Datenstrukturen.
Umgebung L
Scanmer e e
ATN-Interpreter e
6.5.1 Netzdefinition
6.5.2 Kategorien oo
6.5.3 Aufruf des ATN-Interpreters
6.5.4 Beispiele fiir ATNs

7 Implementierung
7.1 Verlauf der Implementierung
7.2 Stand der Implementierung L.
Weiterentwicklung und Ausblick

7.3

A Beispiele

A.1 Beispiellexikon o
A.2 Beispielgrammatik,

B Verzeichnis der zugehorigen Dateien
B.1 Unterverzeichnisse
B.2 Codedateien von ChaPLin

B.3 Dokumentationsdateien

II

41
41
43
45
46
46
48
48
49
93

55
95
95
96
98
99
61
61
64
65
66
67
67
69
69
70

72
72
72
75

76
76
77

C Fehlertabelle

D Inhaltverzeichnis des Codes

Glossar

Index

Literaturverzeichnis

111

80

83

84

86

89

Abbildungsverzeichnis

2.1 Syntaxbaum fiir den Beispielsatz 6
2.2 Chart fiir den Syntaxbaum aus Abbildung 2.1 6
2.3 Chart mit Terminalkanten 6
2.4 Chart mit einer Nichtterminalkante 7
2.5 Chart mit einer aktiven Schlinge 8
2.6 Chart nach dem ersten Lesevorgang 8
2.7 Chart nach der ersten Ableitung 9
2.8 Beginn der top-down Aktivierung 10
2.9 Top-down aktivierte Chart 10
2.10 Bottom-up aktivierte Chart 11
3.1 Aufbauvon ChaPLin. 13
4.1 Aufrufstruktur von ChaPLin 30

v

Kapitel 1

Uberblick

ChaPLin — ein ChartParser fiir Linguistische Untersuchungen — ist ein Par-
ser fiir die Verarbeitung natiirlicher Sprache. Die Syntaxanalyse (Parsing) ist
ein wichtiger Schritt bei der Untersuchung natiirlichsprachlicher Texte. Das
Ergebnis der Syntaxanalyse ist ein Syntarbaum oder Parsebaum.

Die folgenden Eigenschaften des Chartparseverfahrens fiir kontextfreie Gram-

matiken sind wichtig, um den speziellen Anforderungen der Verarbeitung natiirli-
cher Sprache und den Bediirfnissen der linguistischen Forschung gerecht zu wer-

den:

e Die Chart ist eine Datenstruktur, die alle Zwischenergebnisse und Zwi-
schenschritte beim Parsen explizit repréisentiert. Wenn kein Syntaxbaum
fiir den ganzen Satz gefunden wird, kénnen Teilergebnisse aus der Chart
extrahiert werden. So kann man auch partiell parsen, d.h. nach Teil-
strukturen wie z.B. Nominalphrasen suchen. Eine Analyse der Zwischen-
ergebnisse hilft auflerdem bei der Entwicklung von Grammatiken.

e Natiirlichsprachliche Satze sind syntaktisch mehrdeutig, so dafl ein Parser
fiir natiirliche Sprache mit mehrdeutigen Grammatiken arbeiten kénnen
muf}. Bei einem mehrdeutigen Satz gibt es daher nicht einen einzigen Par-
sebaum sondern eine Menge von Parsebdumen (Lesarten), den sogenann-
ten Parsewald. Die Chart ist eine kompakte Darstellung eines Parsewalds,
aus der die einzelnen Lesarten nach Bedarf extrahiert werden kénnen.

e Die Grammatik wird nicht vorverarbeitet, so dafl der Ableitungsweg durch
eine Analyse der Chart leicht nachvollzogen werden kann. ChaPLin kann
Grammatiken mit mehreren Startsymbolen und Grammatiken mit e-Zyk-
len verwenden, so dafl bei der Erstellung einer Grammatik auf deren Ei-
genschaften keine Riicksicht genommen werden mu$.

Zur vollstéandigen Beschreibung der Syntax natiirlicher Sprache sind kontext-
freie Grammatiken als Darstellungsformalismus nicht ausreichend. Die Lingui-
stik kennt daher méchtigere Grammatikformalismen, die den Einsatz zusétzli-
cher linguistischer Information erlauben. In ChaPLin wird diese Information
in den Features abgelegt, mit welchen man weitere Bedingungen fiir die An-
wendbarkeit einer Regel formuliert. Das Datenformat fiir die Features und ihre

KAPITEL 1. UBERBLICK 2

Behandlungsregeln wird im Grammatiktyp festgelegt. Ein Grammatiktyp ist
damit ein Modul fiir ChaPLin, das einen Grammatikformalismus implemen-
tiert.

Bei einer endlichen Menge von Featurewerten kann leicht eine dquivalente kon-
textfreie Grammatik konstruiert werden. Man kann daher die aus der theo-
retischen Informatik bekannten Resultate fiir kontextfreie Sprachen weiterhin
verwenden.

Der Parsebaum wird im Normalfall in Form einer geschachtelten Liste ausge-
geben, wobei das Ausgabeformat fiir Blatter und Zwischenknoten des Baumes
beim Aufruf des Parsers spezifiziert wird. Fiir diese Knoten des Syntaxbaums
kann man im Grammatiktyp Knotenattribute definieren, die bei der Ausgabege-
nerierung als synthetisierte Attribute (Z-Attribute) berechnet werden (vgl. se-
mantische Aktionen in [Aho et al. 86]). Damit ist es moglich, bei einem Einsatz
in einem grofleren System semantische Information fiir spétere Analysephasen
bereitzustellen.

Nicht nur bei der Ausgabe, sondern auch bei der Eingabe bietet ChaPLin ver-
schiedene Moglichkeiten an.

e ChaPLin bietet bei Bedarf verschiedene Vorverarbeitungschritte fiir den
Eingabesatz an. Ein ATN-basierter Zeilenscanner zerlegt vom Benutzer
eingegebene Sitze in eine Folge von Wortformen und Satzzeichen, den
Eingabeelementen. Der Parser selbst arbeitet mit einer Folge von solchen
Eingabeelementen. Die Wortformen werden vor dem Parsen mit einem
Lexikon analysiert.

e Es ist moglich nacheinander mehrere Grammatiken zu verwenden. Nach-
dem man mit der ersten Grammatik geparst hat, enthélt die Chart die
Ergebnisse der ersten Analyse. Eine andere Grammatik kann mit diesen
Ergebnissen weiterarbeiten.

So kann man eine einfache, effiziente Grammatik benutzen, die nur die
hiufigsten Moglichkeiten beriicksichtigt und im Falle eines Miflerfolgs ei-
ne genauere Analyse mit einer vollstindigeren aber auch aufwendigeren
Grammatik vornehmen.

AuBlerdem gibt es eine Ausgabestruktur fiir Zwischenergebnisse, die es
ermoglicht, Folgen von Nichtterminalsymbolen mit einer anderen Gram-
matik weiterzuverarbeiten.

e Man kann inkrementell parsen, d.h. eine bestehende Chart um ein Lexem
verldngern und alle moéglichen Ableitungen bestimmen. Fiir den Einsatz
in einem interaktiven System gibt es einen inkrementellen Scanner, der
ein Eingabeelement sofort an den Parser iibergibt, nachdem es vollsténdig
eingegeben ist. ChaPLin beginnt dann schon mit der Analyse, wihrend
der Benutzer noch die Eingabe vervollstindigt.

e Zur Unterstiitzung der Suche nach Fehlern in Grammatik und Lexikon
werden Werkzeuge zur Zeitmessung, zur Visualisierung der Ergebnisse
und fiir Statistiken iiber den Ableitungsprozef3 bereitgestellt.

KAPITEL 1. UBERBLICK 3

Diese unterschiedlichen Moglichkeiten machen ChaPLin fiir unterschiedliche Be-
nutzerkreise interessant. Wenn man ChaPLin als Teil eines grofleren Systems
benutzt, interessiert man sich in erster Linie fiir die verschiedenen Arten, den
Parser aufzurufen. Bei der Erstellung einer Grammatik oder eines Lexikons
sind dagegen die Analysewerkzeuge wichtig. Um Verarbeitungskomponenten
fiir einen Grammatiktyp zu erstellen, ist es zudem noch nétig, die genaue Ar-
beitsweise von ChaPLin zu kennen.

Die einzelnen Kapitel dieses Berichts versuchen den unterschiedlichen Bediirf-
nissen dieser Benutzerkreise Rechnung zu tragen.

In Kapitel 2 wird die dem Parsen mit einer Chart zugrunde liegende Theo-
rie erldutert.

Die Benutzeranleitung in Kapitel 3 beschreibt die Einsatzmoglichkeiten
und die grundlegenden Eigenschaften der wichtigsten Schnittstellenfunk-
tionen und dient als Einfithrung in ChaPLin. Genauere Information zu
den einzelnen Schnittstellenfunktionen steht im Referenzhandbuch in Ka-
pitel 6.

Kapitel 4 beschreibt die Datenstrukturen, die Arbeitsweise des Parsers
und die Schnittstellen zum Grammatiktyp. Hier werden auch die Be-
standteile fiir Grammatiktypen beschrieben, weil man Grammatiktypen
nur mit Kenntnissen iiber die Arbeitsweise von ChaPLin erstellen kann.

Das notige Sprachwissen erhélt der Parser durch Angabe einer Gramma-
tik und eines Lexikons. Kapitel 5 erklirt, wie Grammatik und Lexikon
definiert werden und beschreibt einen Grammatiktyp, der mit flachen Fea-
turemengen arbeitet.

Kapitel 7 gibt einen Uberblick iiber die Implementierungsgeschichte und
zukiinftige Entwicklungsméglichkeiten fiir ChaPLin.

In den Anhidngen befinden sich Beispiele fiir Grammatik und Lexikon,
eine Fehlertabelle, ein Verzeichnis aller Dateien und ein Uberblick iiber
den Quellcode.

Die aus der Literatur iibernommenden oder in diesem Bericht eingefiihrten
Fachbegriffe werden im Glossar erldutert.

Kapitel 2

Syntaxanalyse mit Hilfe einer
Chart

2.1

Grundlagen

Wie anfangs beschrieben legt ChaPLin Zwischenergebnisse in einer Chart ab.
Die Chart ist folgendermaflen definiert:

Eine Chart ist ein gerichteter Pseudograph [Harary 74] und besteht aus
einer (linear) geordneten Menge von Knoten und einer Menge von Kanten.
Eine Kante verbindet zwei Knoten, den Anfangs- und den Endknoten der
Kante. Mehrfache Kanten (Multikanten) sind zuléssig, d.h. es darf zwei
Kanten geben, die das gleiche Knotenpaar verbinden.

Die Kantenmenge besteht aus aktiven, inaktiven und Lesartkanten.

Alle Kanten sind vorwértsgerichtet, d.h. der Anfangsknoten einer Kan-
te hat eine kleinere Nummer (in der o.g. Ordnung) als ihr Endknoten.
Aktive Kanten diirfen dazu noch Schlingen bilden, d.h. Anfangs- und
Endknoten sind gleich. Abgesehen von diesen aktiven Schlingen ist die
Chart zyklenfrei.

Von einem beliebigen Knoten aus gibt es zu jedem Knoten mit groferer
Nummer einen Pfad aus inaktiven Kanten. Die inaktiven Kanten be-
schreiben damit eine lineare Ordnung auf der Knotenmenge.

Kanten enthalten weitere Information. Insbesondere haben Kanten einen
oder mehrere Inhalte. Wenn der Inhalt der Kante eine Folge von inaktiven
Kanten ist, dann beschreiben die enthaltenen Kanten einen Pfad vom
Anfangsknoten bis zum Endknoten der Kante.

2.1.1 Die Chart als Darstellungsform des Syntaxbaums

Eine Chart kann als Variante eines Syntaxbaums gesehen werden, mit zusitz-
lichen Eigenschaften zur Darstellung alternativer Teilstrukturen und offener
Hypothesen. Die Knoten der Chart entsprechen den Zwischenrdumen im Satz.

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART)

Die inaktiven Kanten in der Chart stehen fiir die Knoten des Syntaxbaums,
namlich fiir die Terminalsymbole (Blédtter des Syntaxbaums, Eingabeelemen-
te) und die Nichtterminalsymbole (innere Knoten des Syntaxbaums). Zu Be-
ginn des Parsevorgangs werden die Terminalsymbole als inaktive Kanten ein-
getragen; ihr Inhalt ist das Eingabeelement. Eine Terminalkante verbindet
immer einen Knoten mit dem néchstgrofieren. Die Nichtterminalkanten wer-
den wihrend des Parsevorgangs erzeugt und erhalten die ihren Konstituenten
entsprechenden inaktiven Kanten als Inhalt.

Aktive Kanten sind Hypothesen iiber anwendbare Regeln. Aktive Kanten haben
einen Teil der vom Regelrumpf (rechte Seite der Regel) geforderten inaktiven
Kanten schon gefunden, den Rest noch nicht.

Der Ablauf der Syntaxanalyse wird im folgenden am Beispielsatz
The old man the boats

erldutert. Das Lexikon enthalte unter anderem folgende Kategorieinformation:

the DET

old ADJ oder N
man N oder V
the DET

boats N

Die Grammatik enthalte folgende Regeln:

S — NP VP

NP — DETN

NP — DET ADJ N
NP — PROPN

VP — VNP

Die Abbildungen 2.1 und 2.2 zeigen fiir dieses Beispiel den Syntaxbaum und des-
sen Darstellung in der Chart. Wahrend der Analyse eines Satzes werden Kanten
in die Chart eingebaut, die immer groflere Teile des Eingabesatzes iiberspannen.
Zu Beginn des Analysevorgangs bestimmt der Parser zu jedem Wort mit Hilfe
des Lexikons die Kategorien (Wortarten) und trégt entsprechende Terminal-
kanten in die Chart ein. Der Lexikoneintrag — das Eingabeelement — wird als
Inhalt der Terminalkante abgelegt, nicht als eigene Kante. Fiir manche Wérter
gibt es mehrere Kategorien, z.B. kann das Wort old in unserem Beispiel sowohl
als Substantiv als auch als Adjektiv gelesen werden. Solche Mehrdeutigkeiten
werden wie in Abbildung 2.3 einfach durch alternative Kanten dargestellt. So
entstehen die o.g. Multikanten in der Chart.

Beim Parsen werden die vorhandenen Kanten nach den Regeln der Gramma-
tik zu iibergreifenden Kanten zusammengefafit. Bei einem solchen Ableitungs-
schritt entsteht durch Anwendung einer Regel eine Nichtterminalkante, deren
Kategorie der Kopf der Regel ist. Der Inhalt der neuen Kante sind die Kanten
der Symbole des Regelrumpfs. Mochte man diesen Inhalt im Diagramm ver-
deutlichen, wird wie in Abbildung 2.4 statt der Kategorie der Kante die ganze
Regel hingeschrieben.

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART

S
/ \
NP VP
VANV

DET N Vv NP
/\

the old man DET N

the boats

Abbildung 2.1: Syntaxbaum fiir den Beispielsatz

> > > >

the old man the boats -

Abbildung 2.2: Chart fiir den Syntaxbaum aus Abbildung 2.1

ADJ N

DET DET N

the old man the boats

Abbildung 2.3: Chart mit Terminalkanten

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 7

NP - DET N

the old man the boats

Abbildung 2.4: Chart mit einer Nichtterminalkante

2.1.2 Die Grundregel

Inaktive Kanten stehen fiir erfolgreich erkannte Symbole. Deswegen ist die in
Abbildung 2.4 hergeleitete Nichtterminalkante ebenfalls inaktiv. Die aktiven
Kanten enthalten dagegen Informationen iiber einen aktuellen Versuch, eine
Regel anzuwenden. Sie sind eine explizite Darstellung eines Zwischenzustands
bei der Abarbeitung einer Regel. Der Notation aus [Aho et al. 86] fiir Elemente
einer Grammatik (parse items) folgend wird die Stelle, bis zu der der Regel-
rumpf bereits vervollstindigt ist, durch einen Punkt markiert.

Grundprinzip des Chartparsens ist, alle unvollstdndigen Strukturen — ndmlich
die aktiven Kanten — zu vervollstindigen. Immer, wenn das Ende einer aktiven
Kante auf den Anfang einer inaktiven Kante trifft und die beiden Kanten zuein-
ander passen, wird eine neue Kante erzeugt. Dies fithrt zu folgender Grundregel
(fundamental rule) des Chartparsings:

Algorithmus 1
wenn der Endknoten einer aktiven Kante A und der Anfangsknoten einer in-
aktiven Kante I gleich sind (die Kanten sich treffen)

und die Kategorie von I das erste benétigte Symbol von A ist (die Kanten
zueinander passen),

dann erzeuge eine neue Kante K,

e deren Anfangsknoten der Anfangsknoten von A ist,

deren Endknoten der Endknoten von I ist,

deren Kategorie die Kategorie von A ist und
deren Inhalt aus dem Inhalt von A und der Kante I besteht.

Wenn I das letzte von A bendtigte Symbol ist,
dann ist K inaktiv, sonst ist K aktiv.

Trage die Kante K in die Chart ein,

e wenn K aktiv ist,

e wenn K inaktiv ist,
und keine zu K &dquivalente inaktive Kante I’ existiert.

Sonst verschmelze die Kante K mit der o.g. dquivalenten Kante I’.

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 8

Die genaue Realisierung der Grundregel wird in Abschnitt 4.3 beschrieben. Ab-
bildung 2.5 veranschaulicht die Grundregel anhand des Beispiels, wobei aktive
Kanten fett gedruckt werden. Die aktive Kante NP — . DET N versucht, die
Regel NP — DET N anzuwenden, d.h eine Nominalphrase NP zu erkennen,
die aus einem Artikel DET und einem Substantiv N besteht. Da die aktive
Schlinge noch kein Symbol gelesen hat, steht der Punkt vor dem ersten Symbol
im Regelrumpf.

NP - .DETN
ADJ N
DET DET N
the old man the boats

Abbildung 2.5: Chart mit einer aktiven Schlinge

Das Ende dieser aktiven NP-Kante trifft mit der inaktiven DET-Kante zusam-
men. Damit ist die erste Bedingung der Grundregel fiir die beiden Kanten
erfiillt. Auch pafit die aktive Kante NP — . DET N zur inaktiven Kante
DET, weil DET als néchstes Symbol nach dem Punkt steht. Abbildung 2.6
zeigt, wie die neue aktive Kante NP — DET . N in die Chart eingefiigt wird.

NP - .DET N
Abbildung 2.6: Chart nach dem ersten Lesevorgang

Dabei ist zu beachten, dal der Chart eine neue Kante hinzugefiigt und nicht
die erste aktive Kante durch die neue ersetzt wird. Das ist wesentlich, da
alle moglichen syntaktischen Strukturen eines Satzes gefunden werden sollen.
Chartparser arbeiten grundsétzlich monoton, d.h. sie fiigen neue Kanten hinzu,
dndern oder entfernen aber niemals bestehende Kanten.

Wenn eine Kante hergeleitet wird, die zu einer bereits eingetragenen inaktiven
Kante dquivalent ist, dann wird statt einer zusétzlichen Kante nur ein neuer
Inhalt — eine weitere Lesart — fiir die bestehende Kante angelegt. Diese Kanten-
verschmelzung verbessert die Effizienz bei mehrdeutigen Grammatiken. Nach
[Seiffert 89] betrigt der Platzbedarf dann O(n3) wobei n die Anzahl der Ein-

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 9

gabeelemente ist. Ohne Kantenverschmelzung wird fiir jede Lesart des Satzes
eine eigene Kante angelegt, wobei die Anzahl der Lesarten in O(k™) liegt. In
der Praxis funktioniert bei Verzicht auf Kantenverschmelzung das Verfahren
zwar in den meisten Fillen gut, jedoch iiberschreitet fiir einzelne Sétze der
Speicherbedarf die Leistungsfihigkeit des Rechners.

In Abbildung 2.7 werden die Kantenpaare NP-ADJ und NP-N betrachtet. Beim
ersten Paar passen die Kanten nicht, wihrend beim zweiten nach der Grundre-
gel eine inaktive NP-Kante erzeugt wird.

NP - DET.N

NP - .DETN
NP - DETN.

Abbildung 2.7: Chart nach der ersten Ableitung

Jedes Einfiigen einer Kante — aktiv oder inaktiv — kann nach der Grundre-
gel weitere Regelanwendungen ermoglichen und dadurch den Einbau weiterer
Kanten nach sich ziehen.

2.2 Parseprozefl

Beim Parsen werden Symbole gelesen, d.h. aktive Kanten werden um eine
inaktive Kante verldngert. Solche nach der Grundregel passenden Kombinatio-
nen von aktiven und inaktiven Kanten nennt man Konfigurationen. Jedesmal,
wenn eine Kante eingefiigt worden ist, werden die dadurch neu entstandenen
Konfigurationen in der Agenda abgelegt und nacheinander untersucht. Ist die
Agenda leer, d.h. keine nicht-untersuchte Konfiguration mehr vorhanden, ist
der Parseprozess beendet, da keine weiteren Ableitungen mehr méglich sind.

Die Agenda ist bei ChaPLin als Stapel organisiert, d.h. die zuletzt entdeckten
Konfigurationen werden zuerst bearbeitet. Im Suchbaum der Ableitungen ent-
spricht das der Tiefensuche. Die Grundregel verlangt aber keine besondere Rei-
henfolge der Abarbeitung, so dafl auch eine Breitensuche mit einer Warteschlan-
ge als Agenda oder verschiedene Heuristiken mit einer Prioritdtswarteschlange
als Agenda denkbar wéren.

Chartparser konnen eine Eingabesequenz sowohl top-down als auch bottom-up
bearbeiten, wobei die beiden Modi dasselbe Endergebnis liefern. Der Parsepro-
zefl kommt nur in Gang, wenn die Chart aktiviert wird, d.h. fiir jede Gramma-
tikregel, die anwendbar wird, eine aktive Schlinge eingetragen wird. Die beiden
Modi priifen die Anwendbarkeit einer Regel auf unterschiedliche Art und zu
unterschiedlichen Zeitpunkten

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 10

2.2.1 Top-down Analyse

Beim top-down Parsen geht die Analyse vom Ziel aus; dazu gibt man dem Parser
die gesuchte Kategorie als Startsymbol vor. Fiir jede Regel, die diese Kategorie
herleitet (die Kategorie als Regelkopf hat), wird eine aktive Schlinge angelegt.
Aktive Kanten werden entweder durch die Grundregel oder bei der Aktivierung
in die Chart eingetragen. Nach dem Eintragen einer aktiven Kante wird das
erste von ihr noch benétigte Symbol — das rechts vom Punkt — zum neuen
Zwischenziel. Wie zu Beginn beim Startsymbol legt der Parser fiir jede Regel,
die dieses Zwischenziel herleitet, eine aktive Schlinge an. Im top-down Modus
wird die Chart also zu Beginn des Parsevorgangs und nach jedem Einfiigen
einer aktiven Kante aktiviert.

Der Analysevorgang beginnt in Abbildung 2.8 mit einer aktiven S-Kante am
ersten Knoten fiir jede Regel der Form S — Zunéchst wird die aktive
S-Kante fiir die Regel S — NP VP angelegt.

S L .NPVP
ADJ N
DET DET N
the old man the boats

Abbildung 2.8: Beginn der top-down Aktivierung

Das erste Symbol der rechten Seite der Regel, NP, wird zum Zwischenziel.
Damit der Parser NP herleiten kann, sucht er nach Regeln mit Kopf NP in der
Grammatik und baut, wie in Abbildung 2.9 gezeigt, drei neue Kanten ein.

S - .NP VP

NP - . PROPN
NP - .DET N

NP - .DET ADJ N

Abbildung 2.9: Top-down aktivierte Chart

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 11

Im weiteren Analyseprozefi wird nach der Grundregel die aktive Kante
NP — . DET N mit der inaktiven Kante DET zur aktiven Kante
NP — DET . N erweitert. Das neue Zwischenziel ist jetzt das Symbol N,
das rechts vom Punkt steht. Nach dem Einfiigen dieser aktiven Kante durch
die Grundregel wird nach Grammatikregeln gesucht die das Symbol N herleiten.

2.2.2 Bottom-up Analyse

Das bottom-up Parsen geht von den vorhandenen Symbolen aus und versucht,
daraus neue Nichtterminalsymbole herzuleiten, bis am Ende moglicherweise das
Startsymbol hergeleitet wird. Nachdem der Parser eine inaktive Kante eingefiigt
hat, untersucht er, ob sich dadurch neue Méglichkeiten ergeben, Regeln anzu-
wenden. Dies ist der Fall, wenn eine Grammatikregel existiert, deren erstes
Symbol im Regelrumpf mit der Kategorie der inaktiven Kante iibereinstimmt.
Fiir jede solche Grammatikregel wird am Ausgangsknoten der inaktiven Kante
eine aktive Schlinge erzeugt (sofern sie nicht schon existiert). Im bottom-up
Modus wird also nach dem Einfiigen einer inaktiven Kante aktiviert. Da die
Terminalsymbole inaktive Kanten sind, wird die Chart automatisch aktiviert,
wenn die Kategoriekanten eingetragen werden.

ADJ N

NP - .DET N VP - .V NP NP - .DET N

NP - . DET ADJ N NP - .DET ADJ N

Abbildung 2.10: Bottom-up aktivierte Chart

Abbildung 2.10 zeigt die aktivierte Chart fiir den Beispielsatz. Beim Einfiigen
der inaktiven DET-Kante werden fiir die beiden Regeln, die die Kategorie NP
herleiten, aktive NP-Kanten erzeugt, welche anschliefend nach der Grundregel
erweitert werden konnen.

Der Parseprozel beim bottom-up Parsen endet, wenn keine weiteren Schritte
mehr ausfithrbar sind. Ist dann eine inaktive Kante entstanden, die die ganze
Chart iiberspannt und deren Kategorie das (ein) Startsymbol ist, so war das
Parsen erfolgreich.

Im Gegensatz zum top-down Parsen werden beim bottom-up-Parsen auch alle
Nichtterminalsymbole fiir Teile des Satzes abgeleitet. Wenn also keine Satz-
struktur erkannt werden konnte, ist beim bottom-up-Parsen wenigstens eine
Folge der erkennbaren Teilstrukturen (Fragmente) verfiighbar (partielles Par-

sing).

Kapitel 3

Bedienungsanleitung

ChaPLin kann auf vielfdltige Art und Weise eingesetzt werden. Der Parser bie-
tet Schnittstellenfunktionen fiir die verschiedenen Analysephasen an, die man
durch mehrere Parameter beeinflussen kann. Dieses Kapitel stellt den typischen
Verwendungszweck der wichtigsten Funktionen und ihrer wesentlichen Parame-
ter vor. FKine genauere Beschreibung findet sich dann im Referenzhandbuch
in Kapitel 6. Einige kompliziertere Optionen des Ausgabegenerators kénnen
nur mit Kenntnissen aus den Kapiteln 4 und 5 verwendet werden und werden
deswegen ebenfalls erst in Kapitel 6 dokumentiert.

3.1 Analysephasen

ChaPLin analysiert einen Satz in mehreren Phasen. Die Schnittstellenfunk-
tionen des Parsers stellen dem Benutzer unterschiedliche Kombinationen der
Analysephasen zur Verfiigung. Abbildung 3.1 zeigt die Analysephasen und den
groben Aufbau von ChaPLin.

Algorithmus 2
1. Scanning: In Textdateien oder Benutzereingaben liegt ein Text als Folge
von Zeichen vor. Die Aufgabe des Scanners ist, einen als String gegebenen
Satz in eine Folge von Eingabeelementen (Wortformen und Satzzeichen)
zu zerlegen. ChaPLin stellt dafiir einen ATN-basierten Zeilenscanner zur
Verfiigung. Dieser Scanner muf} allerdings nicht benutzt werden. Man
kann ChaPLin auch mit einer gescannten Eingabesequenz aufrufen.

2. Belegen der Chart: Zu Beginn werden die Kategoriekanten als Termi-
nalsymbole in die Chart eingetragen. Die lexikalische Analyse bestimmt
dazu fiir jede Wortform die Kategorie und eine Reihe weiterer Informatio-
nen wie morpho-syntaktische Merkmale und eine semantische Spezifika-
tion. Man kann ChaPLin auch mit einer Sequenz von Lexikoneintrigen
aufrufen.

3. syntaktische Analyse: ChaPLin analysiert die Eingabesequenz anhand
einer Grammatik eines bestimmten Grammatiktyps.

12

KAPITEL 3. BEDIENUNGSANLEITUNG 13

*
Lexikon Grammatik
h 4 h 4 4
Zeilen- * Lexikon- * Grammatik- || Grammatik- [€T | Grammatik-
scanner Interface Interface |\ typ aktuell | typ (cf, sf)
w h 4 h 4 h 4
*
__’ Vorverarbeitung N Initialisierung ___’ grundlegende | __ } Erzeugen der A
der Eingabe ¥l der Chart Parsing-Routinen Ausgabestruktur 4
>~ >~
y
a| Zugriffsroutinen
14

auf die Chart

—} Daten- und teilw. Kontrollflu
===p KontrollfluR

Abbildung 3.1: Aufbau von ChaPLin
Mit * gekennzeichnete Komponenten werden nicht benutzt, wenn ChaPLin als
Teil eines Analysesystems mit getrennter lexikalischer Analyse eingesetzt wird.

4. Ausgabegenerierung Die Flexibilitit der Ausgabegenerierung ist be-
sonders wichtig im Hinblick auf die angestrebte Verwendung. Eine ein-
fache Erfolgsmeldung oder die Anzahl der Lesarten 1t sich mit wenig
Aufwand berechnen. Aufwendiger ist es dagegen, den Parsewald auszu-
geben, der in zwei Stufen berechnet wird:

Attributberechnung Nach der Analyse konnen zusétzliche Attribute
fiir die einzelnen Ableitungsschritte berechnet werden. Im Gegen-
satz zu den Features steuern diese Attribute nicht die syntaktische
Analyse. Die in ihnen enthaltene Information wird nur zur Ausgabe-
generierung benutzt. Die Ausgabe ist Information fiir den Benutzer
oder Grundlage fiir weitere Analyseschritte.

Wird das gleiche Symbol auf verschiedenen Ableitungswegen erreicht,
dann konnen sich verschiedene Attributwerte ergeben. Daher erzeugt
ChaPLin zur Attributberechnung fiir jeden Ableitungsweg eine Les-
artkante, die aufler der syntaktischen Information noch die Attribute
enthilt. Damit wird die Kantenverschmelzung riickgéngig gemacht.

Baumerzeugung Der Parser wihlt bei der Baumerzeugung die gewiinsch-
te Information aus der Lesartkante aus. Auflerdem kann spezifiziert
werden, dafl bei der Baumerzeugung anstelle bestimmter Kanten nur
ihr Inhalt eingefiigt wird (Ignorekategorien).

KAPITEL 3. BEDIENUNGSANLEITUNG 14

Die Schnittstellenfunktionen des Parsers sind sinnvolle Kombinationen der ein-
zelnen Phasen und man kann je nach Bedarf die entsprechenden Funktionen
verwenden.

3.2 Aufruf des Parsers

Dieser Abschnitt beschreibt, wie die verschiedenen Schnittstellenfunktionen und
Parameter des Parsers verwendet werden. Die Keywordparameter werden erst
in Kapitel 6 ausfiihrlich beschrieben, es sind aber jeweils sinnvolle Defaultwerte
definiert. Die Beispiele in diesem Kapitel basieren auf dem Lexikon und der
Grammatik aus Anhang A.

3.2.1 Verarbeitung unanalysierter Einzelsitze

Fiir Testzwecke ist es am einfachsten, unvorverarbeitete Sitze zu analysieren.
Der Parser erhélt einen String, zerlegt ihn mit seinem ATN-Scanner in Ein-
gabeelemente und parst diese Eingabesequenz. Diese Variante wird bei der
Entwicklung eingesetzt, um Parser, Grammatik oder Lexikon zu testen, weil
der Entwickler Sétze bequem eingeben kann.

Die Funktion parse-line liest nach dem Prompt -> einen Satz vom Terminal
und parst ihn.

USER(11): (parse-line)
-> Der Berg ruft.
((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

Die Funktion entdeckt eine Lesart fiir den Satz und gibt deren Syntaxbaum
in einer Liste zuriick. parse-line deckt damit alle Analysephasen aus Abbil-
dung 3.1 ab.

Die folgenden zwei Funktionen scannen ihre Eingabe nur, d.h. sie geben eine
Liste von Eingabeelementen zuriick. Die Funktion scan zerlegt ihr Argument,
einen String, in Eingabeelemente, wihrend scan-line den String vorher vom
Terminal einliest.

USER(12): (scan-line)

-> Der Berg ruft.

("Der" "Berg" "ruft" #\.)
USER(13): (scan "Der Berg ruft.")
("Der" "Berg" "ruft" #\.)

Diese Eingabesequenz kann dann an eine der im folgenden beschriebenen Funk-
tionen weitergegeben werden.
3.2.2 Parsen von Eingabesequenzen

Bei der Verarbeitung eines fortlaufenden Texts kann es je nach dessen Herkunft
schwierig sein, ihn in einzelne Sétze zu zerlegen. Der Scanner muf} z.B. zwi-
schen einem Abkiirzungspunkt und dem Satzende unterscheiden und wortliche

KAPITEL 3. BEDIENUNGSANLEITUNG 15

Rede iiber mehrere Sétze bearbeiten kénnen. In diesem Fall wird der Text in
einer separaten Phase gescannt und der Parser erhilt jeden Satz als Liste von
Eingabeelementen.

USER(46): (parse ’("Der" "Berg" "ruft" #\.))
((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

Mit den Defaulteinstellungen arbeitet der Parser im bottom-up-Modus und
erzeugt Syntaxbdume fiir alle Kanten, die die ganze Chart iiberdecken. Fiir
Nichtterminalknoten gibt er die Kategorie und fiir Terminalknoten zusétzlich
das Eingabeelement aus. Im Beispiel wird nur eine Lesart gefunden, so daf} die
Ergebnisliste nur einen Parsebaum enthélt.

Auf diese Weise kann man auch eine einzelne Nominalphrase analysieren, wobei
es mit der im Test verwendeten Grammatik wiederum eine Lesart gibt.

(USER(52): (parse ’("Der" "Berg"))
((np (det "Der") (n "Berg")))

Im folgenden Fall wird kein Ergebnis gefunden, denn der Punkt am Satzen-
de fehlt. Unsere Beispielgrammatik (siche Anhang A.2) verlangt jedoch einen
Punkt als Satzendzeichen.

USER(53): (parse ’("Der" "Berg" "ruft"))
nil

Wenn man die lexikalische Analyse bereits durchgefiihrt hat, gibt man eine Fol-
ge von Lexikoneintréigen anstelle von Eingabeelementen an. Die Funktion parse
erkennt den Unterschied anhand eines Schliisselworts fiir Lexikoneintriage. Die-
ser Modus erlaubt es, zur Fehlersuche die Ausgangsdaten genau zu iiberpriifen
und erspart bei mehrmaligem Parsen die mehrfache lexikalische Analyse.

3.2.3 Ausgabegenerierung

Bei den Parserfunktionen, die die Ausgabegenerierungsphase enthalten, kann
man die Ausgabespezifikation mit dem Keywordargument :output angeben.
Sie bestimmt, wie die Ausgabe des Parsers aussieht. Die kiirzesten Ausgabe-
spezikationen sind Keywords. Bei der Ausgabeform :succ gibt der Parser t
zuriick, wenn der Satz geparst werden konnte, sonst nil. Bei der Spezifikation
:count wird die Anzahl der Lesarten bestimmt, wihrend bei :cat eine Liste
der Kategorien der Kanten, die die ganze Chart iiberspannen, zuriickgegeben
wird. ChaPLin kann die Ausgabe durch Aufruf von build-tree beliebig oft
neu generieren, ohne dafl die Syntaxanalyse wiederholt werden mu$.

Defaulteinstellung ist die Ausgabe des Parsewalds als Liste aller Syntaxbdume
(:tree). ChaPLin erzeugt den Parsewald in zwei Schritten. Zuerst expandiert
der Parser die Lesarten, d.h. er macht die Kantenverschmelzung riickgingig, in-
dem er fiir jeden Ableitungsweg eine Lesartkante in die Chart eintréigt. Das ist
notig, um fiir die Ableitungswege nach den Angaben im Grammatikformalismus
und in den einzelnen Regeln weitere Attribute fiir die Ausgabe zu berechnen.

KAPITEL 3. BEDIENUNGSANLEITUNG 16

Bei mehrdeutigen Grammatiken wéchst die Anzahl der Lesarten im schlimm-
sten Fall exponentiell mit der Satzlédnge und es besteht die Gefahr, daff ChaPLin
fiir ihre explizite Erzeugung sehr viel Zeit und Speicherplatz benétigt oder sogar
aus Speichermangel abbricht. Der Parser erzeugt die Lesartkanten beim Zé&hlen
der Lesarten mit :count und fiir die Ausgabeformen :succ und :cat nicht, so
dafl dabei nur ein geringer Zeitbedarf und kein Speicherplatzbedarf entsteht.
Wenn man eine hohe Zahl von Lesarten befiirchtet, empfiehlt es sich daher,
die Lesarten mit :output :count zu zdhlen und bei grolen Lesartzahlen den
Parsewald nicht zu erzeugen.

<USER.12> (parse °’("Der" "Berg" "ruft" #\.) :output :count)

1

<USER. 13> (build-tree)

((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

Aus den Lesartkanten erzeugt ChaPLin den Parsewald entprechend der Baum-
spezifikation. Der Syntaxbaum ist eine geschachtelte Liste aus dem Knoten und
den Unterbdumen. Eine Baumspezifikation gibt die Gestalt von Nichtterminal-
und Terminalknoten (Blédttern) an. Das folgende Beispiel zeigt die Defaultein-
stellung fiir den Syntaxbaum.

<USER.7> chp: :*tree-default*
(:node chp::edge-cat

:lex (:cat :lex)

:struct (:cat . :contents))

Hinter dem Keyword :node steht die Spezifikation fiir die Nichtterminalkno-
ten — in unserem Fall die Kategorie der Lesartkante. Die Spezifikation fiir
Blatter bezeichnet man mit dem Keyword :1lex, denn hier werden die Anga-
ben dem Lexikoneintrag entnommen (Einzelheiten siehe Kapitel 4.4.5). Bei der
Defaulteinstellung wird eine Liste aus Kategorie und Eingabeelement als Blatt
verwendet.

3.2.4 Inkrementelles Parsen

Die bisher vorgestellten Funktionen verarbeiten ganze Sétze. Beim inkrementel-
len Parsen erhiilt ChaPLin dagegen den Satz Stiick fiir Stiick und bearbeitet ihn
im bottom-up-Modus, soweit es moglich ist. Setzt man ChaPLin in einem inter-
aktiven System ein, beginnen der inkrementelle Parser und die moglicherweise
zeitraubende lexikalische Analyse schon mit der Arbeit, wihrend der Benut-
zer noch die Eingabe vervollstindigt. Das Antwortzeitverhalten wird dadurch
verbessert.

Die Funktion parse-next arbeitet wortweise inkrementell. Sie verldngert die
Chart um das Eingabeelement, parst und gibt in der Defaulteinstellung eine
Liste der Kategorien der Kanten zuriick, die den letzten Knoten als Endknoten
haben. In einem interaktiven System wiinscht man fiir einen unvollstéindigen
Satz wie im folgenden Beispiel iiblicherweise keine Ausgabestruktur sondern
nur eine Erfolgsmeldung. Bei der Ausgabespezifikation :succ gibt ChaPLin

KAPITEL 3. BEDIENUNGSANLEITUNG 17

t zuriick, wenn es eine Kante gibt, die die ganze Chart iiberspannt. Mochte
man nur ganze Sitze erkennen, gibt man noch mit dem Parameter :find das
entsprechende Grammatiksymbol als Startsymbol an. Dann werden nur Kanten
beriicksichtigt, die die ganze Chart iiberspannen und die richtige Kategorie
haben.

<USER.36> (build-chart ())

t

<USER.37> (parse-next "Der" :output :succ :find ’s)
nil

<USER.38> (parse-next "Berg" :output :succ :find ’s)
nil

<USER.39> (parse-next "ruft" :output :succ :find ’s)
nil

<USER.40> (parse-next #\. :output :succ :find ’s)

t

<USER.41> (build-tree)

((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

Der Aufruf von build-chart mit einer leeren Eingabesequenz erzeugt eine leere
Chart, die dann Eingabeelement fiir Eingabeelement verlangert wird. Der letzte
Schritt build-tree ruft den Ausgabegenerator mit der Defaulteinstellung fiir
den Syntaxbaum. parse-next kann auch eine Chart, die von einer anderen
Funktion wie parse oder parse-line erzeugt wurde, um ein Eingabeelement
verldngern, z.B. wenn man einmal einen Punkt am Satzende vergessen hat.
Der zeichenweise inkrementelle Parser liest den Eingabestring direkt vom Ter-
minal. Ein interaktiver Scanner gibt ein Eingabeelement dann an parse-next
weiter, wenn der Benutzer es vollstéandig eingegeben hat. Der zeichenweise in-
krementelle Parser verwendet also den wortweise inkrementellen Parser. Der
Benutzer kann auch Eingabezeichen 16schen. Wird ein bereits weitergegebenes
Eingabeelement geloscht, parst parse-incremental den ganzen bisher einge-
gebenen Satz erneut. Dafiir wird ein spezieller Scanner benétigt, der nicht
mit dem ATN-Scanner aus scan-line fdquivalent ist. Zur Interaktion mit dem
Terminal werden systemabhéngige Funktionen benétigt. Eine Benutzerunter-
brechung oder ein Absturz im inkrementellen Scanner kénnen das Terminal in
einen undefinierten Zustand bringen.

<USER.42> (parse-incremental)
=> Der Berg ru

Die Worter ,,Der“ und ,,Berg*“ des Beispielsatzes wurden bereits an parse-next
iibergeben. Die Eingabe wird bei parse-incremental mit Return beendet.
3.2.5 Analysephasen

Wendet man die Phasen einzeln an, er6ffnen sich weitere Einsatzmoglichkeiten.
Alle bisher genannten Parserfunktionen sind beliebig kombinierbar, sofern die

KAPITEL 3. BEDIENUNGSANLEITUNG 18

von der jeweiligen Funktion vorausgesetzten Analysephasen bereits durchgefiihrt
sind.

Die Funktion build-chart baut nur die Chart auf und fithrt ggf. die lexika-
lische Analyse durch. Sie erhélt wie parse eine Folge vom Eingabeelementen
als Argument und tragt den Satz in die Chart ein. Grammatik und Modus
werden benétigt, weil im bottom-up-Modus die Chart bereits beim Eintragen
der Terminalsymbole aktiviert wird. Die Funktion parse-rest fithrt dann den
eigentlichen Parsevorgang aus und erzeugt die Ausgabe. parse-rest erhilt
keine Eingabesequenz als Element sondern geht von einer bestehenden Chart
aus.

Mit dieser Kombination ist es mdglich, einen Satz stufenweise mit verschiedenen
Grammatiken zu parsen. Da parse-rest von den Kanten der Chart ausgeht,
verwendet es die in der Chart eingetragenen Teilergebnisse der vorhergehenden
Schritte mit. Fiir die beiden Grammatiken *gl* und *g2* sieht der Aufruf
dann folgendermaflen aus.

> (build-chart ’(...))

t

> (parse-rest :grammar *glx)
> (parse-rest :grammar *g2%*)

Dabei sind verschiedene Anwendungen denkbar. *glx* ist z.B. eine Grammatik
mit Regeln fiir kleine Konstrukte bis hin zu Nominalphrasen, wahrend xg2%
dann aus den mit *glx abgeleiteten Symbolen ganze Sétze konstruiert.

Ein anderes Modell ist, zuerst mit einer einfachen Grammatik *gl* zu arbei-
ten und im Falle eines Miflerfolgs mit einer um zusétzliche Regeln erweiterten
Grammatik *g2* weitere Ableitungen zu bestimmen.

ChaPLin kann auch Folgen von Nichtterminalsymbolen parsen. Diese wer-
den als Struktureintrdge (dhnlich Lexikoneintrigen) iibergeben und genau wie
normale Lexikoneintridge in der Eingabesequenz behandelt. Der Strukturein-
trag enthélt den Syntaxbaum fiir den Aufbau des Nichtterminalsymbols. Der
Ausgabegenerator arbeitet bei Struktureintrigen nach dem :struct-Teil der
Baumspezifikation, der normalerweise so definiert ist, dafl der von einem Struk-
tureintrag erzeugte Knoten wie ein gewohnlicher Nichtterminalknoten des Syn-
taxbaums aussieht.

3.3 Fehlersuche und Analyse

Wenn man mit Hilfe von ChaPLin eine Grammatik oder einen Grammatiktyp
entwickelt, benttigt man Werkzeuge zur Untersuchung des Parseprozesses. Bei
Effizienzproblemen oder wenn man den Fehler erst lokalisieren muf, sind quan-
titative Untersuchungen und Statistiken hilfreich. Quantitative Analysen geben
nur einen Hinweis oder eine Tendenz an, weil die Auswirkungen einzelner Effekte
von anderen Effekten iiberlagert werden. Einen bestimmten Ableitungsschritt

KAPITEL 3. BEDIENUNGSANLEITUNG 19

untersucht man, indem man sich die Chart oder Teile davon ausgeben l4ft.
Fiir noch griindlichere Untersuchungen sind die Datenstrukturen der Chart in
Kapitel 4 dokumentiert.

Die Beispieluntersuchungen in diesem Abschnitt werden — wenn nicht anders
angegeben — im Anschlufl an folgenden Aufruf von ChaPLin ausgefiihrt.

<USER.44>(parse ’("Der" "Berg" "ruft" #\.))
((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

3.3.1 Quantitative Analyse

Die Funktion describe-chart gibt die maximale Knotennummer und die ma-
ximale Kantennummer in der Chart zuriick.

<ISAAC.USER.45> (describe-chart)
((:nodes . 5) (:edges . 23))

Bei einem Satz mit 4 Eingabeelementen hat die Chart 5 Knoten. Bei diesem
Analyseproze wurden 24 Kanten erzeugt. (Die Kantenumerierung beginnt mit
0, die Knotennumerierung mit *left-vertex* = 1.)

Die Funktion chart-analysis erstellt eine ausfiihrliche Statistik. Die Kan-
tenzahlen werden nach aktiven Kanten, (syntaktischen) inaktiven Kanten und
Lesartkanten getrennt aufgelistet. Stillgelegte Kanten entstehen, wenn man den
Ausgabegenerator mehrmals aufruft, weil ChaPLin dann die Lesartkanten neu
berechnet und die alten Lesartkanten aus der Chart entfernt.

<USER.86> (chart-analysis)
Chartanalyse

Knoten: 5 Kanten: 24 davon
aktiv: 10 inaktiv: 7 Lesartkanten: 7 stillgelegt: O

1 ueberspannende Kante mit zusammen 1 Lesarten
Vorkommen der inaktiven Kanten in contents
1-fach kommen 7 Kanten vor

Benutzt: 7 unbenutzt: O inaktive Kanten

Alternativen:
1 Alternativen bei 7 Kanten

Verteilung der Regellaengen
Laenge 1 wurde 1 mal angewendet
Laenge 2 wurde 1 mal angewendet
Laenge 3 wurde 1 mal angewendet
Terminale: 4

allg. Multikanten
1-fach parallel: 5

KAPITEL 3. BEDIENUNGSANLEITUNG 20

2-fach parallel: 1
Zusammenfassung ergaebe 6 Kanten

kategorieaequivalente Kanten
1-fach parallel: 7
Zusammenfassung ergaebe 7 Kanten

Die Statistiken iiber Verwendung von Kanten, Alternativen und Multikanten
beriicksichtigen nur die inaktiven Kanten. Eine n-fach parallele Multikante be-
deutet, dafl n inaktive Kanten dasselbe Knotenpaar verbinden. Multikanten
deuten auf Mehrdeutigkeiten in der Grammatik hin. Die Analyse fiir katego-
riedquivalente Kanten zeigt, wie viele parallele Kanten mit gleicher Kategorie
es gibt. Da Kantenverschmelzung durchgefiihrt wird, haben parallele Kanten
mit gleicher Kategorie unterschiedliche Features. Die Analysen koénnen auch
einzeln durchgefiihrt werden — eine ausfiihrliche Beschreibung befindet sich in
Kapitel 6.

Oft ist auch der Zeitbedarf eines Funktionsaufrufs interessant. ChaPLin stellt
zwei Makros zur Zeitmessung zur Verfiigung. with-time stoppt die Zeit fiir
die Evaluierung der Ausdriicke in seinem Rumpf und gibt Zeit und Wert des
letzten Ausdrucks zuriick. Bei kleinen Laufzeiten erhélt man aussagekriftigere
Werte, wenn man die Zeit fiir eine k-fache Auswertung mit k-with-time mif}t.

<USER.71> (with-time (parse ’("Der" "Berg" "ruft" #\.)))
CPU-Zeitbedarf 0.000 sec

0.0

((s (np (det "Der") (m "Berg")) (vp (vf "ruft")) (punkt ".")))
<USER.74> (k-with-time 1000 (parse ’("Der" "Berg" "ruft" #\.)))
CPU-Zeitbedarf 3.770 sec

3.77

Es ist auch interessant, den Zeitbedarf der Analysephasen einzeln zu messen.

3.3.2 Datenausgabe

Eine genauere Vorstellung vom Ableitungsprozefi erhélt man, wenn man die
Chart betrachtet. Die Funktion display-chart gibt die Chart bzw. Teile
davon aus.

<USER.53> (display-chart :edges :all)
[inactive-edge 16: 1--s—->5]

[inactive-edge 12: 1--np-->3]

[inactive-edge 0: 1--det-->2]

[active-edge 15: 1--s-->4 needed: (punkt) 1]
[active-edge 14: 1--s-->3 needed: (vp punkt)]
[active-edge 13: 1--s-->1 needed: (np vp punkt)]
[active-edge 11: 1--np-->2 needed: (n)]
[active-edge 10: 1--np-->2 needed: (adj n)]

KAPITEL 3. BEDIENUNGSANLEITUNG 21

[active-edge 2: 1--np-->1 needed: (det adj n) 1]
[active-edge 1: 1--np-->1 needed: (det n) 1]
[sf-edge 23: 1--s-->5]

[sf-edge 19: 1--np-->3]

[sf-edge 17: 1--det-->2]

[inactive-edge 3: 2--n-->3]
[sf-edge 18: 2--n-->3]

[inactive-edge 9: 3--vp-—>4]
[inactive-edge 4: 3--vf-->4]

[active-edge 8: 3--vp-->4 needed: (np)]
[active-edge 6: 3--vp-->3 needed: (vf np)]
[active-edge 5: 3--vp-->3 needed: (vf) 1]
[sf-edge 21: 3--vp-—>4]

[sf-edge 20: 3--vf-->4]

[inactive-edge 7: 4--punkt-->5]
[sf-edge 22: 4--punkt-->5]
nil

Am Anfang der Zeile steht Kantentyp und Kantennummer. Die Kantentypen
inactive-edge und active-edge stehen fiir inaktive und aktive Kanten; alle
anderen Kantentypen (wie sf-edge) bezeichnen die Lesartkanten des verwen-
deten Grammatiktyps.

Anschlieflend folgt die Nummer des Anfangsknotens, die Kategorie der Kan-
te und die Nummer des Endknotens. Mit dem Keywordparameter :edges
gibt man an, welcher Kantentyp angezeigt wird. Aufler der Defaulteinstellung
:inactive gibt es noch :active, :tree fiir die Lesartkanten und :all.

Die Funktion get-edge gibt die Kante mit der angegebenen Nummer zuriick.
Die print-function der Kante druckt aus Griinden der Ubersichtlichkeit nur
Kurzinformation in einer Zeile. Ausfiihrlichere Information erh< man mit
display-edge :

<ISAAC.USER.58> (display-edge (get-edge 16))
[inactive-edge 16: 1--s-->5
:features nil
:contents #S(chp::rule :1hs s :rhs (np vp punkt)
:conf 1 :rhs-name (np vp punkt)
:rhs-cond (nil nil nil)
:result nil :sem nil)
[inactive-edge 12: 1--np-->3]
[inactive-edge 9: 3--vp-—->4]
[inactive-edge 7: 4--punkt-->5]
nil

Die Funktion display-agenda zeigt die Agenda. Nach erfolgreicher Beendigung
der Parsens ist die Agenda leer.

KAPITEL 3. BEDIENUNGSANLEITUNG 22

Das folgende Beispiel zeigt daher die Agenda zu Beginn, nachdem die Chart
aufgebaut und bottom-up-aktiviert ist.

<ISAAC.USER.54> (build-chart ’("Der" "Berg" "ruft" #\.))
t

<ISAAC.USER.55> (display-agenda)

Bottom of stack

1 -—np1l---1---det 0 -— 2
1 -—-np2-—-—-1---—det 0 --- 2
3-—vwpb5-—3-—vE4d--—-4
3-——vp6 -—-3-—vfd-——4
nil

Die Agenda ist ein Stapel von Konfigurationen, das sind Paare aus einer aktiven
Kante und einer inaktiven Kante, die das Ende der aktiven Kante verlingert
(vgl. Kapitel 2). Jede Zeile entspricht einer Konfiguration. Links steht der
Anfangsknoten der aktiven Kante, danach deren Kategorie und Kantennum-
mer. In der Mitte steht der Endknoten der aktiven Kante, der gleichzeitig der
Anfangsknoten der inaktiven Kante ist. Fiir die inaktive Kante folgt ebenfalls
Kategorie und Kantennummer und rechts steht der Endknoten der inaktiven
Kante.

3.4 Installation und Umgebung

Dieser Abschnitt beschreibt, wie der Parser geladen wird und welche Dateien
und Ressourcen er benétigt. Ein Verzeichnis aller Dateien befindet sich im
Anhang B. Wenn bei der Installation eigene Anderungen nétig sind, sollte man
sich am Format der bisherigen Eintragungen orientieren.

Die Ladedatei load-parser.lisp des Parser enthélt die Installation, d.h. alle
notigen Anpassungen an das Rechnersystem. Die Datei definiert das Packa-
ge chart-parser mit Nickname chp und ruft die Funktion load-module auf.
Der Aufruf enthilt eine Liste aller Dateien, die geladen werden. Steht hinter
der Datei t, dann verwendet ChaPLin kompilierten Code, bei nil l&dt er den
Quellcode. Hier kann man auch eigene Dateien hinzufiigen.

load-module kompiliert die angegebenen Dateien bei Bedarf und legt die kom-
pilierten Dateien (Binaries, Fasls, ...) im Unterverzeichnis bin ab. Die kom-
pilierten Dateien sind fiir unterschiedliche Lispimplementierungen, Betriebs-
systeme oder Rechner (Prozessoren) inkompatibel. Mochte man im gleichen
Dateisystem mit verschiedenen Plattformen arbeiten, dann definiert man je-
weils einen Plattformnamen und eine Endung fiir die kompilierten Dateien in
der Variable *binary-extension*. Der Plattformname ist das letzte Argument
von load-module. Man definiert ihn am besten abhéngig von der aktuellen
Plattform mit der #+-Syntax von Common Lisp [Steele 90].

Die Dateien werden in der Reihenfolge geladen, in der sie in der Dateiliste
stehen. Die Grammatikdateien und eigene Erweiterungen sollten erst nach
dem Parserkern geladen werden. Zu Beginn einer Datei kann man mit defmod

KAPITEL 3. BEDIENUNGSANLEITUNG 23

Information iiber das Modul ablegen. defmod erhilt als erstes Argument ein
Schliisselwort als Bezeichner fiir das Modul, anschlieBend zwei Strings, den
Namen und das Datum des Moduls. Die Funktion chp-version druckt eine
Ubersicht iiber alle geladenen Module.

<USER.6> (chp-version)
ChaPLin Chart Parser
G. Burkert, M.Loethe
Version 3.2 6-FEB-95

Parser Version 3.2, 6-FEB-95

Grammar types cf sf 3.2.2, 6-DEZ-95

Chart Parser Utilities, 2-FEB-95
Incremental Bottom Up Parsing 3.2, 6-DEZ-95
ATN Interpreter 1.2.1, AUG-94

ATN based line scanner 1.22, 24-FEB-93
Deutsche Beispielgrammatik :sf, 13-DEZ-95
Lexikonschnittstelle Beispiel, 13-DEZ-95

ChaPLin benétigt zur Arbeit nur den Parser, den Grammatiktyp der verwende-
ten Grammatik, die Grammatik selbst und ein passendes Lexikon. Die Utilities,
den inkrementellen Parser und der Zeilenscanner mufl man nur laden, wenn man
sie benotigt. Der ATN-Interpreter wird vom Zeilenscanner benutzt.

Kapitel 4

Aufbau und Arbeitsweise von
ChaPLin

Waihrend man die in Kapitel 3 beschriebenen Funktionen ohne tiefere Kenntnis
des Systems anwenden kann, mufl man sich, um auch die fortgeschritteneren
Moglichkeiten von ChaPLin zu nutzen, genauer mit dessen Arbeitsweise und da-
mit auch mit Aspekten der Implementation vertraut machen. Daher beschreibt
dieses Kapitel gleichzeitig die Arbeitsweise von ChaPLin und die Grundziige
der Implementation.

4.1 Der Einflufl des Grammatiktyps

Entwirft man eine rein kontextfreie Grammatik zur Verarbeitung natiirlicher
Sprache, so erhilt man — wenn man die vielfialtigen Besonderheiten und Va-
rianten des Satzbaus nicht ausschlieen mochte — eine Grammatik, die einen
groflen Teil der verfiigbaren syntaktischen Information des Satzes nicht verwen-
det. Die verschiedenen aus der Literatur bekannten Grammatikformalismen
haben die Aufgabe, diese Information in Form von sogenannten Features zur
Steuerung des Parsers nutzbar zu machen. Die Repréisentation eines Gram-
matikformalismus in ChaPLin heiit Grammatiktyp. Ein wesentliches Element
von ChaPLin ist die Trennung zwischen dem Kern des Parsers und den zum
Grammatiktyp gehérenden Anteilen. Der Grammatiktyp bestimmt grundle-
gende Eigenschaften aller Analysephasen des Parsers.

Wie in Kapitel 2 beschrieben, erzeugt ChaPLin eine Chart, in der alle mit
der gegebenen Grammatik moglichen Ableitungen als Kanten abgelegt werden.
Die Kanten fiihren fiir den Bedarf des Parsers und fiir die Anwendung bei der
Sprachverarbeitung Information folgender Art mit:

e Die zentrale Information in der Chart ist vom Grammatiktyp unabhéngig
und wird daher vom Kern des Parsers verwaltet. Dazu gehoéren z.B.
Anfangs- und Endknoten von Kanten und deren Kategorien.

e Die o.g. Features werden mit grammatiktypabhéngigen Regeln behandelt.
Sie beeinflussen ebenfalls den Parsevorgang.

24

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 25

e Die Attribute nehmen dagegen am Parsevorgang nicht teil. Sie werden
vom Grammatiktyp definiert. Die Attributinformation wird erst bei der
Generierung der Ausgabestruktur berechnet. Die Attribute konnen zur
weiteren Analyse verwendet, oder einfach ausgegeben werden.

Ein Grammatiksymbol im Sinne der Theorie der formalen Sprachen entspricht
damit einer Kombination von Kategorie und Features. Die Attribute gehoren
nicht dazu, da sie den Parsevorgang nicht beeinflussen. Die Datenstrukturen
fiir diese Information werden in Abschnitt 4.2 beschrieben.

Algorithmus 2 (S. 12) definiert die Analysephasen des Parsers. Da das Er-
stellen von Grammatiktypen Kenntnisse iiber die Arbeitsweise von ChaPLin
erfordert, erldutern die folgenden Abschnitte die einzelnen Analysephasen und
deren Grammatiktypoptionen gemeinsam. Folgende Bereiche des Parsers wer-
den vom Grammatiktyp beeinflufit:

e Bei der syntaktischen Analyse definiert der Grammatiktyp die Feature-
behandlung. Die Arbeitsweise der syntaktischen Analyse wird in Ab-
schnitt 4.3 beschrieben.

e Einen besonders tiefgreifenden Einflul hat der Grammatiktyp auf den
Ausgabegenerator, der in Abschnitt 4.4 beschrieben wird. Der Gram-
matiktyp definiert die Attribute der Lesartkanten, ihre Berechnungsvor-
schriften und die Gestalt der semantischen Aktionen der Regeln.

e Die Schnittstelle zwischen Parser und Lexikon beschreibt Abschnitt 5.3.
Auch fir Feature- und Attributwerte benétigt der Parser (grammatik-
typspezifische) Lexikoninformation.

e Da die Grammatikregeln Angaben zu Featurebedingungen und zur Attri-
butierung enthalten, ist ihr Format vom Grammatiktyp abhéngig. Der
Ladevorgang fiir Grammatiken wird in Abschnitt 5.2 erldutert.

Die Arbeit der Parserfunktionen wird durch ihre Parameter gesteuert. Zu den
Parametern in ChaPLin gehoren einfache Optionen wie der Modus aber auch
zusammengesetzte Spezifikationen. Spezifikationen in ChaPLin sind generell
Listen aus Keywords und deren Werten. Die Menge der zuldssigen Spezifika-
tionsattribute ist grundséatzlich nicht beschrinkt und ihre Reihenfolge ist nicht
festgelegt. Spezifikationsattribute, die ChaPLin nicht kennt, werden einfach
ignoriert. Spezifikationswerte kénnen auch Funktionen sein, die der Parser dann
an bestimmter Stelle aufruft.

Die Interaktion zwischen dem Grammatiktyp und dem Kern von
ChaPLin ist mit folgenden Techniken realisiert:

e Der Grammatiktyp definiert Funktionen, die der Parserkern an bestimm-
ten Stellen aufruft.

e Einige dieser Funktionen werden erzeugt, indem Codestiicke des Gram-
matiktyps in eine Funktionsschablone des Parsers eingesetzt werden.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 26

e Die Funktionen des Grammatiktyps verwenden Grundfunktionen des Par-
sers und steuern diese iiber Parameter (z.B. Spezifikationen).

e Manche Funktionen des Grammatiktyps erhalten vom Benutzer eingege-
bene Spezifikationen als Parameter. Da das Datenformat fiir Spezifikatio-
nen erweiterbar ist, kann der Grammatiktyp so eigene Optionen fiir die
Benutzerfunktionen definieren.

4.2 Die Chart

Die Chart ist die grundlegende Datenstruktur des Parsers und somit fiir al-
le Analysephasen wichtig. Ihre Eigenschaften sind am Anfang von Kapitel 2
beschrieben. Sie ist als abstrakter Datentyp realisiert. Alle Zugriffe sollten
iiber die festgelegten Zugriffsfunktionen erfolgen, da diese durch Fehlermeldun-
gen abgesichert sind. Intern ist die Chart durch einen Vektor von Knoten
(*vertices*) und einen Vektor von Kanten (*edges*) représentiert.

4.2.1 Knoten

Die Knoten der Chart stehen fiir die Zwischenrdume im Satz. Die Numerierung
beginnt mit *left-vertex* = 1. Mit (get-vertex <nummer>) greift man auf
einen Knoten zu.

vertex Struktur

Ein Knoten ist eine Struktur vertex mit folgenden Komponenten:

active-in Liste der aktiven Kanten, die an diesem Knoten enden
active-out Liste der aktiven Kanten, die von diesem Knoten ausgehen
number Nummer des Knotens (entspricht dem Index in *verticesx)
inactive-in Liste der inaktiven Kanten, die an diesem Knoten enden
inactive-out Liste der inaktiven Kanten, die von diesem Knoten ausgehen
tree—-in Liste der Lesartkanten, die an diesem Knoten enden

tree-out Liste der Lesartkanten, die von diesem Knoten ausgehen

Die Funktion create-vertex erzeugt einen neuen Knoten mit der néchsten
freien Nummer. Die anderen Slots werden mit nil initialisiert. Die Funktion
get-vertex mit Argument n liefert den Knoten mit der Nummer n.

4.2.2 Kanten

Es gibt drei Arten von Kanten: inaktive Kanten, aktive Kanten und Lesart-
kanten. Eine Kante wird durch einen Aufruf des Makros insert-edge erzeugt,
wobei der Kantentyp angegeben wird. Auf Kanten kann mit get-edge iiber
ihre Nummer zugegriffen werden.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN

4.2.2.1 gemeinsame Information

27

Alle Kantentypen haben die Graphinformation und einen Teil der syntaktischen

Information gemeinsam.
edge

Die Basisstruktur edge hat folgende Slots:

number Nummer der Kante

left Nummer des Anfangsknotens.
right Nummer des Endknotens.

cat Kategorie der Kante

contents enthilt je nach Kantentyp:

aktive Kante: Liste der bereits iiberspannten Kanten
syntaktische Terminalkante: Lexikoneintrag

Struktur

syntaktische Nichtterminalkante: Bei einer mehrdeutigen Gram-
matik konnen verschiedene Ableitungswege auf das selbe Symbol
fiilhren. Durch Kantenverschmelzung hat eine Kante in diesem
Fall mehrere verschiedene Inhalte. Damit man zur Berechnung
der Lesartkanten die Ableitungswege wieder rekonstruieren kann,
besitzt eine syntaktische Nichtterminalkante fiir jeden Ableitungs-
weg einen Wegeintrag bestehend aus der angewendeten Regel und
den enthaltenen Kanten. Der Inhalt der Kante hat dann folgende

Form:
<contents> ::= ((<rule><edge>+) ...)
terminale Lesartkante: Lexikoneintrag

nichtterminale Lesartkante: Liste der bereits iiberspannten Kan-

ten.

features Features der Kante entsprechend der Definition im Grammatik-

typ

4.2.2.2 Inaktive Kanten

inactive-edge

Struktur

Inaktive Kanten sind Strukturen von Typ inactive-edge. Sie erben von
edge und enthalten zusétzlich einen Slot fiir die zur syntaktischen Kante

gehorenden Lesartkanten.

trees FKine Liste der Lesartkanten dieser Kante oder :uncomputed.

Zu Beginn enthélt der Slot trees den Wert :uncomputed. Der Ausgabegene-
rator berechnet die Lesartkanten dann, wenn er sie das erste Mal benétigt und
legt sie im Slot ab. Spéter verwendet er die im Slot abgelegten Lesartkanten.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 28

Der Parser bietet die Moglichkeit an, Lesarten zu filtern, d.h Lesarten nach
bestimmten Kriterien aus der Lesartenliste zu streichen. Verwendet man den
Filter, so besitzt eine syntaktische Kante moglicherweise keine Lesarten und
der Wert des Slots ist nil. Deswegen unterscheidet man die Félle nil und
:uncomputed.

4.2.2.3 aktive Kanten

Aktive Kanten sind Strukturen vom Typ active-edge und enthalten weitere
Information iiber den augenblicklichen Zustand der Regelanwendung.

active-edge Struktur

Aktive Kanten fiigen den von edge ererbten Slots daher noch folgende Slots
hinzu:

contents-name Liste von Kategorien der Kanten, die die Kante iiberspannt
needed Liste von Kategorien, die eine aktive Kante noch benoétigt.

needed-name Obige Liste, wobei gleichnamige Kategorien indiziert sind.
Zum Beispiel lautet die Regel NP — NP PP mit indizierten Kate-
gorien NP.1 — NP.2 PP. Featuremechanismen benéttigen manchmal
einen Index zur eindeutigen Identifizierung.

needed-cond Featurebedingungen fiir noch benétigte Kanten

rule Die gerade untersuchte Regel

4.2.2.4 Lesartkanten

Die Struktur fiir die Lesartkanten wird vom jeweiligen Grammatiktyp definiert.
Dabei wird der Basistyp fiir Lesartkanten tree-edge um Slots fiir die vom
Grammatiktyp verwendeten Attribute erweitert. Attribute werden erst in der
Ausgabephase erzeugt und nehmen nicht an der syntaktischen Analyse teil (sie-
he Abschnitt 4.4)

tree-edge Struktur

Der Basistyp tree-edge erbt von edge und hat einen zusétzlichen Slot fiir
die angewendete Regel.

rule Bei nichtterminalen Lesartkanten steht hier die angewendete Regel,
sonst nil.

4.2.3 Agenda

Die Agenda ist zwar nicht direkt Bestandteil der Chart, gehort aber zu den
grundlegenden Datenstrukturen von ChaPLin. Jedes Zusammentreffen einer
aktiven und einer inaktiven Kante, d.h. jede Mboglichkeit zur Anwendung

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 29

der Grundregel ist eine Konfiguration, die einmal betrachtet werden mufl. Die
beiden Kanten werden auf einem Stack, der Agenda, abgelegt. Die Agenda ist
als Vektor mit einem fill-pointer implementiert.

4.3 Syntaktische Analyse

Dieser Abschnitt beschreibt, welche Arbeitsschritte es beim Chartaufbau und
bei der syntaktischen Analyse gibt und wie dabei die Slots der Kanten belegt
werden.

4.3.1 Kantenverschmelzung

ChaPLin erzeugt eine Chart, eine Datenstruktur, die alle mit der gegebenen
Grammatik moglichen Ableitungsbdume enthélt. Grundprinzip jedes Verfah-
rens zur Berechnung des Syntaxbaums ist, festzustellen, ob man durch An-
wendung einer Grammatikregel eine bestimmte Folge von Symbolen durch ein
Nichtterminalsymbol ersetzen kann. Grammatiksymbole entsprechen in einem
Chartparser inaktiven Kanten. Fiir eine mogliche Regelanwendung werden ak-
tive Kanten angelegt. Solche aktiven Kanten kénnen nach der Grundregel in-
aktive Kanten (Symbole) lesen, und es wird dann eine neue, verlingerte Kante
angelegt.

Bei der syntaktischen Analyse unterscheidet der Parser Kanten nur nach Ka-
tegorie und Features. Die Attribute sind fiir die syntaktische Analyse unwe-
sentlich. Versucht der Parser, eine inaktive Kante einzufiigen, die nach Ka-
tegorie und Features dquivalent zu einer existierenden inaktiven Kante ist, so
verschmilzt er diese Kanten. Die unterschiedlichen Ableitungswege werden aber
protokolliert, denn es kann spiter — bei der Ausgabegenerierung — fiir unter-
schiedliche Ableitungswege verschiedene Attributwerte geben. Die erfolgreichen
Ableitungswege expandiert der Parser bei der Ausgabegenerierung wieder.

Der Grund fiir dieses komplizierte Vorgehen liegt in der Effizienz. Sei n die
Anzahl der Eingabeelemente und g die Anzahl der Grammatiksymbole. In den
folgenden Abschitzungen modelliert g den schlimmsten Fall der Mehrdeutig-
keit. Die Anzahl der Grammatiksymbole g ist bei Grammatiken fiir natiirliche
Sprache verhéltnisméfig grofl, da man die verschiedenen zuléssigen Feature-
werte jeweils als verschiedene Grammatiksymbole beriicksichtigen muf}. Bei
realen Sitzen und Grammatiken ist jedoch die Mehrdeutigkeit der Ableitung —
némlich die Anzahl paralleler Kanten mit verschiedener Kategorie und Feature-
werten fiir einen Teil der Chart — ziemlich klein. Daher kann man g als kleinen
konstanten Faktor betrachten.

e Bei einem Verfahren mit Kantenverschmelzung ist die Anzahl der méglichen
Kanten durch % gn? beschrinkt, da jeder Knoten nur mit Knoten gréBerer
Nummer verbunden ist und alle parallelen Kanten verschieden sind.

e Verzichtet man auf Kantenverschmelzung, so kann die Kantenzahl expo-
nentiell wachsen. Dieser Fall tritt in der Praxis auf, wenn die Grammatik
einen stark mehrdeutigen Anteil enthélt, z.B. fiir Aufzéhlungen.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 30

bui | d-chart | run-config | [build-treg
l g
\J
|add- i nacti ve- edge |
- \
\J
| caerd [add- acti ve- edgd [add-i nacti ve- edge |
l lt d lbu
[add- act i ve- edge | [seek | [seek]
td
I | m
L L
Funktion ruft auf ruft in Modus m auf

Abbildung 4.1: Aufrufstruktur von ChaPLin

Daher arbeitet ChaPLin mit Kantenverschmelzung. Die Kantenverschmelzung
reduziert nicht die Zahl der Lesarten, sondern ist nur eine kompakte Dar-
stellung des Parsewalds. Das exponentielle Wachstum der Chart tritt dann
moglicherweise auf, wenn man die Lesarten in der Chart expandiert. Man kann
aber die Lesarten mit :output :count vor der Expansion zéhlen und bei pro-
blematischen Satzen auf die Expansion verzichten. Die Kantenverschmelzung
ermoglicht es so, Problemfille abzufangen.

4.3.2 Die Arbeitsschritte der syntaktischen Analyse

Dieser Abschnitt beschreibt die einzelnen Arbeitsschritte aus Algorithmus 1
(S. 7) genauer und nennt die zugehorigen Funktionen von ChaPLin. Abbildung
4.1 zeigt eine vereinfachte Fassung des Aufrufbaums von ChaPLin. Bei der
Definition eines Grammatiktyps gibt man 4 Behandlungsregeln fiir Features
an. Sie definieren das Verhalten beim Lesen eines Symbols, beim Anwenden
einer Grammatikregel, einen Aquivalenztest und einen Anwendbarkeitstest und
werden bei der Beschreibung der Grammatiktypoptionen genauer erldutert. Die

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 31

Defaultwerte entsprechen der Verwendung einer kontextfreien Grammatik ohne
Beriicksichtigung von Features.

Die Zuweisungen und Bedingungen sind in Pseudocode notiert. Bei den Kan-
tenzugriffen wird edge- weggelassen. Die grammatiktypabhingigen Featurebe-
handlungsregeln werden mit einem * gekennzeichnet.

4.3.2.1 Terminalsymbol eintragen

Zu Beginn des Parsens werden die Knoten angelegt und die Lexeme als inaktive
Terminalkanten in die Chart eingetragen. Fiir jeden Lexikoneintrag L erzeugt
ChaPLin also eine inaktive Kante I.

Funktion add-input-item

Bedingung keine

Zuweisungen
cat = (cat L)
features := (features L)
contents := L

4.3.2.2 Aktivieren

Beim Aktivieren wird fiir jede anwendbare Regel R eine aktive Kante Al in die
Chart eingetragen. Al ist eine Schlinge (endet an ihrem Anfangsknoten), da
sie noch kein Symbol (inaktive Kante) gelesen hat.

Funktion seek

Bedingung Je nachdem ob bottom-up oder top-down geparst wird, aktiviert
der Parser die Chart zu unterschiedlichen Zeitpunkten (vgl. Kapitel 2.2).
Daher auch folgende unterschiedliche Bedingungen:

top-down Es mufl eine aktive Kante A2 existieren, mit
(right A2) = (left A1)
(rule-lhs R) = (first (needed A2))
bottom-up Es muf} inaktive Kante I existieren, mit
(left T) = (left A1)
(first (rule-ths R)) = (cat I)

Diese Bedingung stellt die Anwendbarkeit der Regel fest. Die Features
werden dabei nicht beriicksichtigt. Der Parser tridgt Schlingen, deren
Features nicht zur Kante passen, erst einmal in die Chart ein. Er kann
sie aber spéter nicht mit der Grundregel verldngern.

Wenn die Chart an diesem Knoten schon einmal fiir die Regelkategorie
aktiviert worden ist, dann wird die Aktivierung nicht noch einmal aus-
gefiihrt. Dadurch werden Probleme mit linksrekursiven Regeln vermieden.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 32

Die Chart ist bereits aktiviert, wenn an dem Knoten eine aktive Schlinge
A3 folgender Form existiert:

top-down (rule-lhs R) = (cat A3)

bottom-up (first (rulerths R)) = (car (needed A3))
Zuweisungen

(cat Al) = (lhs R)

(features A1) = derzeit: ()

(contents Al) = ()

(needed A1) = (rthsR)

(needed-cond A1) := (rhs-features R)

(rule A1) = R

Damit unterscheiden sich die beiden Modi top-down und bottom-up nur in
den Aktivierungsbedingungen und im Zeitpunkt, an dem die Funktion seek
aufgerufen wird.

4.3.2.3 Symbol lesen ohne Regel zu vervollsténdigen

Bei der Anwendung der Grundregel wird die aktive Kante A1 durch die inaktive
Kante I verlingert, wenn diese beiden Kanten passen. Falls der Rumpf der
Regel von Al danach noch weitere Symbole benétigt, wird eine aktive Kante
A2 erzeugt.

Funktion extend

Bedingung
(cat I) = (first (needed A1)
(match-features* A1I) # NIL

Zuweisungen
(cat A2) = (cat A1)
(features A2) := (act-features®* A1 1)
(needed A2) := (rest (needed Al))
(needed-cond A2) := (rest (needed-cond Al)
(contents A2) := (cons (cat I) (contents Al))
(rule A2) = (rule Al)

4.3.2.4 Symbol lesen, Ableitung hinzufiigen

Wie vorhin wird die aktive Kante A mit einer inaktiven Kante I1 verlingert.
Wenn dabei fiir jedes Symbol im Rumpf der Regel von A eine inaktive Kante
gelesen wurde, dann wendet der Parser die Regel an und erzeugt die inaktive
Kante 12.

Funktion extend

Bedingung
(cat I1) = (first (needed A1)
(match-features® A1 1) # NIL

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 33

Zuweisungen
(cat 12) = (cat A)
(features I12) := (inact-features®* A I1)
(contents 12) := (list (cons (rule A)

(reverse (cons (contents I1)
(contents A)))))

4.3.2.5 Symbol lesen, Ableitungsweg hinzufiigen

Ebenso wie im vorigen Fall wird nach der Grundregel die aktive Kante A mit ei-
ner inaktiven Kante I1 verlangert und die Grammatikregel ist anwendbar. Eine
Kante 12 mit der gleichen Kategorie wie die entstehende Kante und dquivalenten
Featurewerten existiert aber schon. In diesem Fall fithrt ChaPLin eine Kanten-
verschmelzung durch und tragt nur eine weitere Lesart fiir die Kante 12 ein.

Funktion extend

Bedingung
(cat I) = (first (needed A1)
(match-features* A111) # NIL
(cat A) = (cat I2)
(fea-equalp™ (inact-features® A I1)(features 12))
Zuweisungen
contents(I2) := (cons (cons (rule A)

(reverse (cons (contents I1)

(contents A))))
(contents 12))

4.3.3 Grammatiktypoptionen fiir die syntaktische Analyse

Bei der Erstellung eines Grammatiktyps definiert man die oben mit einem *

markierten 4 Zuweisungsregeln und Bedingungen fiir Features. Die Defaultwer-
te fithren zu einer rein kontextfreien Grammatik ohne Verwendung von Featu-
rewerten.

Die Funktion extend-config baut bei der Definition des Grammatiktyps die
Grundregelfunktion extend aus der Funktionsschablone und 3 Codestiicken zu-
sammen. Weil die Grundregel fiir jede Konfiguration aufgerufen wird, mufi man
bei ihr auf Effizienz achten.

Die Grundregelfunktion erhilt als Parameter die beiden Kanten der Konfigu-
ration act und inact, den Modus mode und die indizierte Regelmenge rules .
Diese Variablen kann man in den Codestiicken verwenden. Sinnvolle Parame-
ter fiir die Codestiicke des Featuremechanismus sind normalerweise nur die in
der aktiven Kante abgelegte aktuelle Regel, die Features (edge-features act
bzw. inact) und eventuell noch die Kategorien (edge-cat act bzw.inact)
der beiden Kanten act und inact.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 34

act-features Lesevorgang ohne Regelanwendung

Dieses Codestiick zum Einbau in die Grundregelfunktion berechnet bei
der Erzeugung einer aktiven Kante deren Features, wobei die in in der
aktiven Kante abgelegte aktuelle Regel, die Features der beiden Kanten
act und inact und eventuell noch deren Kategorien sinnvolle Parameter
sind.

Default: () — bei kontextfreien Grammatiken sind alle Features nil.

inact-features Lesevorgang mit Regelanwendung

Dieses Codestiick zum Einbau in die Grundregelfunktion berechnet die
Features bei der Erzeugung einer inaktiven Kante und hat ebenfalls Zu-
griff auf die Parameter der Grundregelfunktion. Jedoch sind auch hier
iiblicherweise nur die aktuelle Regel, die Features und eventuell noch die
Kategorien der beiden Kanten sinnvoll.

Default: () — bei kontextfreien Grammatiken sind alle Features nil.

fea-equalp Aquivalenztest fiir Kantenverschmelzung

Diese Vergleichsfunktion erhélt die Features zweier inaktiver Kanten mit
gleicher Kategorie als Argumente. Wenn die Funktion nil zuriickgibt, legt
ChaPLin eine eigene Kante an, sonst werden die Kanten verschmolzen.

Default: #’eq — erlaubt die Verschmelzung immer, da im kontextfreien
Fall alle Features nil sind.

match-features Anwendbarkeitstest
Codestiick zum Einbau in die Grundregelfunktion. Es priift, ob die Featu-
res der inaktiven Kante zu denen der aktiven Kante passen, d.h. zulassen,
daf} die aktive Kante um die inaktive Kante verléngert wird. Ist dies nicht
der Fall, muf} das Codestiick nil ergeben, sonst einen anderen Wert.

Default: t — bei kontextfreien Grammatiken gibt es keine zusétzliche Re-
striktion durch Features.

4.4 Ausgabegenerierung

Die letzte Analysephase aus Algorithmus 2 (S. 12) ist die Ausgabegenerierung.
Der folgende Algorithmus teilt diese Phase noch weiter auf.

Algorithmus 3
1. Expandiere die Ausgabespezifikation mit der Grammatiktypfunktion
build-fn. Algorithmus 7 (S. 60) beschreibt das Vorgehen fiir den Gram-
matiktyp :sf.

2. Enthailt die Spezifikation das Attribut : result, dann ist der Riickgabewert
bereits bestimmt. Gib ihn zuriick.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 35

3. Sonst bestimme die erfolgreichen Kanten.

(a) Wenn vollsténdige Parses vorhanden sind, verwende diese.

(b) Sonst, wenn gewiinscht, suche Kantenfolgen in der Chart als Teiler-
gebnis (partial parsing).

4. Wenn eine Ausgabeform ohne Parsebidume gewiinscht wird, erzeuge sie
und gib sie zuriick.

5. Erzeuge die Lesartkanten zu jeder inaktiven Kante und filtere sie, d.h.
streiche anhand einer Bedingung Lesarten.

6. Erzeuge aus den Lesartkanten die Knoten und Blitter des Parsebaums.

7. Fiihre eine Nachbearbeitung auf oberster Ebene der Liste der Parsebdume
durch.

Die Arbeitsweise dieser Unterphasen wird jetzt im einzelnen vorgestellt.

4.4.1 Die Ausgabespezifikation

Die Ausgabespezifikation ist eine Liste von Keywords und deren Werten. Die
Funktionen des Ausgabegenerators greifen auf die Schliisselworter mit getf zu.
Es ist daher jederzeit moglich, weitere Keywords fiir grammatiktypspezifische
Erweiterungen einzufiihren, da Keywords, die der Ausgabegenerator eines an-
deren Grammatiktyps nicht kennt, einfach ignoriert werden.

Fiir einfache Falle sind im Grammatiktyp Keywords als Abkiirzungen fiir Spe-
zifikationen definiert, die vom Spezifikationsiibersetzer build-fn des Gramma-
tiktyps in die detaillierte Spezifikation iibersetzt werden. Die Abkiirzung : succ
wird z.B. in ’ (:succ t) expandiert. Wenn der Ubersetzer den Riickgabewert
ohne Zugriff auf Funktionen des Parserkerns berechnet, gibt er
’(:result <Wert>) zuriick. Der Ausgabegenerator gibt dann diesen Wert aus.

4.4.2 Suche nach erfolgreichen Kanten

Nachdem die Spezifikation expandiert ist, beginnt die eigentliche Ausgabegene-
rierung. Im ersten Schritt untersucht der Ausgabegenerator, ob der Parselauf
erfolgreich war und wenn ja, welche Kanten erfolgreich sind. Normalerweise
sind die Kanten erfolgreich, die die ganze Chart iiberspannen. Ist der Wert
des Attributs :last t, dann sind es alle Kanten, die den letzten Knoten als
Endknoten haben.

Wenn das Parsing nicht erfolgreich ist, dann wird nach Fragmentfolgen durch
die Chart gesucht.

Die Suche nach den erfolgreichen Kanten iibernimmt die Funktion
success-edges nach folgendem Verfahren:

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 36

Algorithmus 4
1. Zuerst bestimmt der Parser die Menge der Kanten mit den richtigen
Anfangs- und Endknoten. Normalerweise sind das der erste und der letzte
Knoten der Chart. Bei der Option :last ist jedoch der Anfangsknoten
beliebig und bei der Erzeugung partieller Bdéume werden die entsprechen-
den Grenzen des Chartfragments verwendet.

2. Aus dieser Kantenmenge werden die ignore-Kanten gestrichen, damit das
Ergebnis so aussieht, als géibe es diese Kategorien nicht.

3. Kanten, die nicht einer Startkategorie angehdren, werden gestrichen.

4. Wenn eine Kante in dieser Menge in einer anderen Kante der Menge
enthalten ist, wird sie gestrichen.

Damit sind die erfolgreichen Kanten bestimmt.

4.4.3 Einfache Ausgabeformen

Nachdem die Menge der erfolgreichen Kanten bekannt ist, wird der Riickgabewert
fiir die einfachen Ausgabeformen, die ohne Erzeugung eines Parsebaums aus-
kommen, bestimmt. Bei der Spezifikation :succ t wird nil zuriickgegeben,
wenn die Kantenmenge leer ist, sonst t. :cat t erzeugt eine Liste der abge-
leiteten Kategorien. Enthilt die Spezifikation ’ (:count t), gibt ChaPLin die
Anzahl der Lesarten zuriick.

4.4.4 Erzeugung der Lesarten

Die Chart ist eine kompakte Darstellung des Parsewalds, denn durch die Kan-
tenverschmelzung kénnen mehrere Ableitungswege auf dieselbe inaktive Kante
fithren. Nach den Bedingungen fiir die Kantenverschmelzung sind fiir diese We-
ge die Features dquivalent und die Kategorie gleich. Nun mdchte man aber fiir
die Ausgabe weitere Werte, die Attribute, berechnen. Auf den unterschiedlichen
Ableitungswegen zu einer Kante kénnen sich jedoch unterschiedliche Attribut-
werte ergeben. Die Attribute werden vor der Baumerzeugung berechnet und
in Lesartkanten abgelegt und damit bei den Lesarten die Kantenverschmelzung
wieder expandiert.

Die Menge aller Lesarten fiir eine syntaktische Kanten wird im Slot trees abge-
legt, so dafl der Parser die Lesarten nur einmal berechnen muf}; wenn eine syn-
taktische Kante mehrmals in einem Parsebaum verwendet wird. Das Verfahren
verwendet Funktionen des Grammatiktyps, die in Abschnitt 4.4.7 beschrieben
werden. Die Lesarterzeugung fiir eine syntaktische Kante lduft folgendermaflen
ab:

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 37

Algorithmus 5
wenn die Lesarten der syntaktischen Kante bereits berechnet sind

dann gib sie zuriick

sonst 1. Fiir jeden Inhalt der syntaktischen Kante

e Bei einem terminalen Inhalt rufe die Funktion term des Gram-
matiktyps.
e Bei einem nichtterminalen Inhalt
(a) Berechne die Lesarten der Kanten des Inhalts (rekursiv).
(b) Bilde das kartesische Produkt der Lesartmengen der ent-
haltenen Kanten. Damit werden die Mehrdeutigkeiten der
Unterbdume weiterpropagiert.
(c) Konstruiere fiir jedes Tupel aus dem kartesischen Produkt
die Lesart mit der Funktion nonterm des Grammatiktyps.

2. Vereinige die Lesartmengen der Inhalte. Dieser Schritt expandiert
die Kantenverschmelzung.

3. Filtere diese Menge mit der Filterfunktion filter des Grammatik-
typs.

4. Trage das Ergebnis in den Slot trees der syntaktischen Kante ein
und gib es zuriick.

Die Terminalfunktion term entnimmt die Attributwerte fiir die Lesartkante aus
dem Lexikoneintrag. Der Nichtterminalfunktion nonterm stehen die enthal-
tenen Lesartkanten und die Grammatikregel zur Verfiigung. Es handelt sich
damit um synthetisierte Attribute (zusammengesetzte Attribute). Die Filter-
funktion filter kann Lesarten anhand von Attributwerten entfernen und die
Lesartenliste umsortieren.

4.4.5 Baumerzeugung

In der Syntaxbaumerzeugungsphase erzeugt der Parser zu jeder erfolgreichen
Lesartkante den zugehorigen Syntaxbaum, indem er die Inhaltshierarchie der
Lesartkante durchwandert und dabei eine Prifixnotation des Parsebaums auf-
baut. Die Erzeugung der einzelnen Knoten wird von der Baumspezifikation ge-
steuert, die unter :tree in der Ausgabespezifikation abgelegt ist. Die Baumspe-
zifikation enthélt Werte zu den drei Schliisselwortern :1lex,:struct und :node.
Diese Werte sind Muster fiir die Knoten des jeweiligen Teils des Parsebaums
und beschreiben, welche Information aus der Lesartkante in den Parsebaum
iibernommen werden soll.

e Terminalkanten kénnen sowohl Lexikoneintrage als auch Struktureintrége
enthalten. Die :1lex-Spezifikation steuert die Erzeugung von Parsebaum-
blattern aus Terminalkanten, die einen Lexikoneintrag enthalten.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 38

e Die :struct-Spezifikation behandelt den Einbau eines Unterparsebaums
fiir Terminalkanten, die einen Struktureintrag enthalten. Mit diesem Ver-
fahren kann ChaPLin Folgen von bereits analysierten Nichtterminalsym-
bolen parsen und einen Gesamtsyntaxbaum aufbauen.

e Die :node-Sperzifikation steuert die Erzeugung eines Knotens fiir eine
Nichtterminalkante. So entstehen die inneren Knoten und die Wurzel
des Syntaxbaums.

Der Baumerzeugungsalgorithmus arbeitet die Knotenspezifikationen folgender-
maflen ab:

Algorithmus 6
1. Ist die Spezifikation NIL, dann gib NIL zuriick.

2. Nur bei Terminalkanten:
Ist die Spezifikation = :all, so gib den ganzen Eintrag (Lexikon- oder
Struktur-) zurtick.

3. Nur bei Terminalkanten:
Ist die Spezifikation ein Symbol und dieses Symbol ist als Attribut im
Eintrag enthalten, so gib dessen Wert (das dem Symbol folgende Listen-
element) zuriick.

4. Ist die Spezifikation eine Liste, dann rufe diesen Algorithmus fiir jedes
Element und gib die Liste der Ergebnisse zuriick.

5. Ist die Spezifikation eine Funktion, so rufe sie mit der Lesartkante als
Argument auf, und gib ihr Ergebnis zuriick.

6. Ist die Spezifikation ein Symbol und eine Funktion mit diesem Namen
existiert, dann rufe diese Funktion mit der Lesartkante als Argument auf.

7. Gib alle anderen Symbole unverdndert zuriick.

8. Jeder andere Wert fiihrt zu einem Fehler.

4.4.6 Nachbearbeitung

Das Verfahren zur Baumerzeugung bearbeitet den Parsebaum rekursiv und un-
terscheidet nicht zwischen Wurzelknoten und inneren Knoten. Erst bei der
Nachbearbeitung der Parsebdume kann man den Wurzelknoten eine andere Ge-
stalt als den inneren Knoten geben. Die Funktion tree-postproc des Gram-
matiktyps erhilt den erzeugten Baum, die Lesartkante und die Ausgabespe-
zifikation als Argument. Diese Funktion kann z.B. dem Wurzelknoten eines
Parsebaums weitere Attributwerte aus der Lesartkante hinzufiigen.

Die Nachbearbeitung erméglicht auch die Erzeugung von Struktureintrigen,
das sind Parsebdume in einer Form, die der Parser in einem spéteren Lauf als
Terminalsymbole verwenden kann.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 39

4.4.7 Grammatiktypoptionen der Ausgabegenerierung

Fiir den Ausgabegenerator gibt es ebenso wie fiir die syntaktische Analyse Ein-
fluBmoglichkeiten durch Grammatiktypoptionen. Der Grammatiktyp definiert
bei Bedarf einen eigenen Lesartkantentyp als Spezialisierung von tree-edge.
Dieser Typ erhélt fiir jedes Attribut, das der Grammatiktyp berechnet, einen
Slot.

In der Definition des Grammatiktyps gibt es folgende Optionen fiir den Ausga-
begenerator:

build-fn Der Spezifikationsiibersetzer ist eine Funktion, die beim Aufruf fol-
gende Argumente erhélt:

grammar Grammatik
mode Modus (:bu oder :td)
find Startkategorie
type Ausgabespezifikation
Die Funktion expandiert die Ausgabespezifikation fiir den Gebrauch des
Ausgabegenerators (vgl. Abschnitt 4.4.1).
Default: Eine Funktion, die die Ausgabespezifikation type unveréindert
zuiickgibt.

edge-constr Hier wird der Name der Konstruktorfunktion (Symbol) fir die
Lesartkanten des Grammatiktyps angegeben.
Default: make-tree-edge

term-actions Die Attributierungsregeln fiir Terminalsymbole sind eine Liste
von Attributnamen als Keywords und Codestiicken zur Berechnung der
Attributwerte. Die Codestiicke werden in einen Aufruf des Lesartkanten-
konstruktors eingebaut, der immer dann gerufen wird, wenn die Lesart-
kante eines Terminalsymbols erzeugt wird. Die Slots der syntaktischen

Kante iibernimmt der Ausgabegenerator automatisch und fiir die Attri-
bute wird der Wert des Codestiicks benutzt.

Den Codestiicken fiir die Terminalsymbole stehen zwei Variablen zur Ver-
fiigung;:
entry Der Lexikoneintrag der syntaktischen Terminalkante.

syntedge Die syntaktische Terminalkante selber.
Default: (), d.h. es werden keine Attribute berechnet.

nonterm-actions Ebenso wie bei den term-actions gibt man die Attribu-
tierungsregeln fiir die Nichtterminalsymbole als Liste von Attributnamen
und Codestiicken zur Berechnung der Attributwerte an. Die syntaktischen
Slots belegt der Ausgabegenerator automatisch.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 40

Die nonterm-actions beschreiben, wie der Ausgabegenerator bei der Er-
zeugung der nichtterminalen Lesartkanten die Attributwerte berechnet.
Eine Kante wird bei Kantenverschmelzung auf mehreren Wegen erreicht,
wobei fiir jeden dieser Wege ist die Menge der enthaltenen Lesartkanten
und die angewendete Regel charakteristisch sind. Bei zusammengesetz-
ten Attributen hingen die Attributwerte nur vom Ableitungsweg ab, so
dafl der Ausgabegenerator den Codestiicken folgende drei Variablen zur
Verfiigung stellt:

tree-cont Liste der bei der Ableitung verwendeten Lesartkanten. Da
zusammengesetzte Attribute von den Attributwerten der Konstitu-
enten abhingen, greift man auf die enthaltenen Lesartkanten zu und
nicht auf die syntaktischen Kanten.

rule Die angewendete Regel wird iibergeben, damit man regelspezifische
Werte zur Attributberechnung mit heranziehen kann. Damit kann
der Grammatiktyp die Moglichkeit anbieten, fiir ein Attribut regels-
pezifische Berechnungsvorschriften — sogenannte semantische Aktio-
nen [Aho et al. 86] — zur Attributberechnung zu definieren.

syntedge Die syntaktische Terminalkante enthilt Angaben wie Katego-
rie, Features, Diese Werte stehen der Attributberechnung eben-
falls zur Verfiigung.

Default: (), d.h. es werden keine Attribute berechnet.
filter Der Lesartenfilter ist eine Funktion, die folgende Argumente erhilt:

edges Die fiir eine syntaktische Kante erzeugten Lesartkanten.

spec Die Ausgabespezifikation.

Die Filterfunktion gibt eine Liste von Lesartkanten zuriick, die dann als
Lesarten fiir die syntaktische Kante eingetragen werden. Die Filterfunk-
tion kann also Lesarten streichen und die Liste umordnen. Damit kann
die Filterfunktion bei der Lesartgenerierung fiir jeden Ableitungsschritt
unwahrscheinliche Lesarten ausschlieffen. Fiir weitere Ableitungsschritte
beriicksichtigt der Ausgabegenerator nur die zugelassenen Lesarten der
Konstituenten.

Die Filterfunktion erhalt die Ausgabespezifikation als Parameter, so dafl
man verschiedene Filteroptionen definieren kann, die man beim Aufruf
des Parsers durch Angaben in der Ausgabespezifikation auswéhlt.

Default: Funktion, die die Kantenliste edges unveréndert zuriickgibt.
tree-postproc Die Funktion zur Parsebaumnachbearbeitung erhélt den Par-

sebaum, die zugehorige Lesartkante und die Ausgabespezifikation als Ar-
gumente und gibt die ggf. gednderte Liste der Parsebdume zuriick.

Default: Funktion, die je nach Ausgabespezifikation die Parsebdume un-
verdndert zuriickgibt oder daraus Struktureintrige erzeugt.

Kapitel 5

Sprachwissen

Dieses Kapitel beschreibt, wie Wissen iiber natiirliche Sprache in ChaPLin ein-
gebracht wird. Mo6chte man Grammatiken eines bestimmten Grammatikfor-
malismus mit ChaPLin verwenden, definiert man einen Grammatiktyp (vgl.
Abschnitt 5.1). Bisher sind fiir ChaPLin drei Grammatiktypen erstellt worden,
der kontextfreie Grammatiktyp :cf, der Grammatiktyp :sf mit flachen Fea-
turelisten und ein PATR-II-Unifikationsgrammatiktyp :fu [Schmidt 92]. Die
Grammatiktypen :cf und :sf sind mit der Version 3.2 des Parsers lauffihig
und werden in den Abschnitten 5.4 und 5.5 erldutert. Abschnitt 5.3 beschreibt
die Schnittstelle zwischen dem Parser und einem Lexikon und Abschnitt 5.2
Definition und Zugriff auf die Grammatik.

5.1 Grammatiktyp

Der Grammatiktyp implementiert das Verhalten des Grammatikformalismus,
indem er Funktionen fiir die syntaktische Phase des Parses, den Ausgabege-
nerator und den Grammatiklader zur Verfiigung stellt. Die Optionen bei der
Definition eines Grammatiktyps werden mit den zugehorigen Teilen des Par-
sers, die sie steuern, dokumentiert: die Optionen zur syntaktischen Phase in
Abschnitt 4.3.3, die Optionen zum Ausgabegenerator in Abschnitt 4.4.7 und
die Optionen des Grammatikladers am Ende des Abschnitts 5.2.

grammar-typesx Variable
Die globale Variable *grammar-types* enthélt eine Liste der geladenen Gram-
matiktypen.

grammar-type Struktur

Jeder Grammatiktyp wird intern als eine Instanz der Struktur
grammar-type abgelegt, die alle grammatiktypspezifischen Informationen
enthélt. Sie besteht aus folgenden Slots:

key Keyword, Name des Grammatiktyps. Der Grammatiktyp fiir kontext-
freie Grammatiken heifit : cf, der fiir Grammatiken mit flachen Featu-
relisten :sf.

41

KAPITEL 5. SPRACHWISSEN 42

rule-test Prédikat, das testet, ob die Syntax einer Regel in diesem Gram-
matiktyp zuléssig ist.

create-rule Diese Funktion erzeugt aus der Listennotation einer Gram-
matikregel ein Regelobjekt.

extend Funktion, die die Grundregel der aktiven Chartanalyse implemen-
tiert. Sie testet fiir eine Konfiguration, ob eine Erweiterung mdglich
ist und fiihrt sie ggf. durch. Sie hat die Argumente:
act Die aktive Kante der augenblicklichen Konfiguration.
inact Die inaktive Kante der Konfiguration.
mode Modus: :bu fiir bottom-up oder :td fiir top-down.
rules Zugriffsfunktion auf die Grammatikregeln.

build-fn Diese Funktion expandiert die Ausgabespezifikation.
term Die Funktion erzeugt eine terminale Lesartkante.
nonterm Die Funktion erzeugt eine nichtterminale Lesartkante.
filter Die Funktion streicht unerwiinschte Lesarten.

tree-postproc Die Funktion dient zur Nachbearbeitung der Parsebdume.

def-grammar-type Makro

(def-grammar-type name &key [option]*)

Dieses Makro definiert einen Grammatiktyp mit Namen name und legt ihn in
der Variable *grammar-types* ab. Wenn ein Grammatiktyp mit diesem Namen
schon existiert, wird dieser durch den gerade definierten Grammatiktyp ersetzt.
Die Optionen werden bei den zugehorigen Teilen des Parsers erléautert.

Einen Grammatiktyp implementiert man durch eine Lispdatei, die folgende
Elemente enthilt:

e Die Definition des Lesartkantentyps als Spezialisierung von tree-edge ,
sofern man Attribute benutzt.

e Die Definition des Regeltyps als Spezialisierung von rule , falls der Aus-
gabegenerator Regelinformation benétigt.

e Die Definitionen aller fiir die Grammatiktypoptionen benétigten Funktio-
nen und globalen Parameter.

e Einen Aufruf des Definitionsmakros def-grammar-type.

Diese Datei kann erst nach dem Parserkern geladen werden.

KAPITEL 5. SPRACHWISSEN 43

5.2 Grammatik

Die Defaultgrammatik befindet sich in der Variablen *grammarx.

grammar Struktur

Eine Grammatik wird als Element der Struktur grammar mit folgenden Slots
abgelegt.

rule-list Regelmenge in Listennotation.

access-td Die Zugriffsfunktion fiir die Top-down-Aktivierung erhilt die
Zielkategorie als Argument. Bei der Top-down-Aktivierung benétigt
man alle Regeln, die auf ein bestimmtes Zwischenziel hinfiihren (vgl.
Abschnitt 2.2). Die Closure access-td gibt deswegen die Regelobjekte
zuriick, die die angegebene Kategorie als Regelkopf haben.

access-bu Die Zugriffsfunktion fiir die Bottom-up-Aktivierung erhélt die
Kategorie der gerade eingetragenen Kante als Argument. Man benétigt
hier Regeln, deren Anwendung mit dem neuen Symbol beginnt. Daher
gibt die Closure access-bu die Regelobjekte zuriick, die die angegebe-
ne Kategorie als erstes Symbol im Regelrumpf haben.

key Der Name des Grammatiktyps der Grammatik.

ignore Liste von Ignore-Kategorien. Sie sind nur Hilfsschritte bei der De-
finition der Grammatik. Im Parsebaum werden diese Kategorien nicht
als Unterbaum eingebaut, sondern durch ihren Inhalt ersetzt.

start Das Startsymbol der Grammatik. Beim Aufruf des Parsers kann
durch den Parameter :find ein anderes Startsymbol angegeben wer-
den.

string-cats String-Kategorien der Grammatik
Die Terminalsymbole der Grammatik sind im Normalfall nicht die Ein-
gabeelemente (wie z.B. ,,Berg*) selbst, sondern Kategorien (z.B. N). In
einigen Féllen hidngen aber grammatikalische Konstruktionen von ei-
nem bestimmten Wort ab, wie z.B. die Satzreihung mit “und”. Dafiir
konnen Regeln das Wort direkt — als Stringkategorie — enthalten.

Eine Grammatik enthilt Regeln. Extern (z.B. in Dateien) werden Regeln in
einer grammatiktypabhéngigen Listennotation angegeben. Intern speichert der
Parser Regelobjekte als Instanzen der folgenden Struktur:

rule Struktur

Die Basisstruktur fiir Regeln enthalt die Slots fiir die syntaktische Analyse-
phase:

1hs Der Regelkopf (linke Seite) ist ein Symbol.

rhs Der Regelrumpf (rechte Seite) ist eine Liste von Symbolen. Hier kann
auch die wild card ? benutzt werden, die fiir eine beliebige Konstituente
steht.

KAPITEL 5. SPRACHWISSEN 44

rhs-name Regelrumpf mit indizierten Kategorien.

rhs-cond Featurebedingungen. Die Regel wird nur angewendet, wenn diese
Bedingungen erfiillt sind.

result Wenn der Parser eine Regel anwendet, erzeugt er eine inaktive
Kante. Die Features der neuen Kante werden anhand der result-
Sperzifikation berechnet.

Fiir eine rein kontextfreie Grammatik geniigen 1hs und rhs, wihrend die letzten
drei Slots Information fiir den Featuremechanismus enthalten. Der Gramma-
tiktyp kann die Regelstruktur um weitere Slots erweitern, wenn bei der Ausga-
begenerierung zusétzliche regelabhéingige Information verwendet werden soll.

define-grammar Funktion
(define-grammar rules &key (ignore nil) start type fast)

Diese Funktion erzeugt das Grammatikobjekt und gibt es zuriick. Die Para-
meter haben folgende Bedeutung:

rules Liste der Regeln, in Listennotation. Das erste Element kann auch der
Name eines Grammatiktyps sein.

ignore Liste der Kategorien, die im Parsebaum nicht erscheinen sollen.
start Startsymbol oder Liste von Startsymbolen.
type Name des Grammatiktyps der Grammatik.

fast Ist dieser Parameter ungleich NIL, dann nimmt der Grammatiklader we-
niger Uberpriifungen vor und arbeitet dadurch schneller. Dies ist bei einer
ausgetesteten Grammatik sinnvoll.

Die Funktion define-grammar bestimmt zuerst den Grammatiktyp. Ist keiner
angegeben, wird nach einem Grammatiktyp gesucht, zu dem die gegebenen Re-
geln passen. Dann werden die gelesenen Regeln in Regelobjekte umgewandelt
und die Stringkategorien bestimmt. Anschlieflend indiziert define-grammar
die Regeln fiir den bottom-up- und den top-down-Modus und legt die entspre-
chenden Zugriffsclosures im Grammatikobjekt ab.

load-grammar Funktion
(load-grammar grfile &key (ignore nil) start type fast)

grfile ist ein Dateiname fiir die Regeldatei. In der Regeldatei kann als erstes
Element der Name des Grammatiktyps stehen. In diesem Fall mufl das Argu-
ment type nicht angegeben werden. Die Argumente ignore, start und fast
entsprechen denen in define-grammar. Nachdem load-grammar die Datei ge-
lesen hat, ruft es define-grammar mit dem Grammatiktyp und der Regelmenge
auf.

KAPITEL 5. SPRACHWISSEN 45

Fiir den Grammatiklader sind bei der Definition eines Grammatiktyps folgende
Optionen anzugeben:

create-rule Der Regelkonstruktor ist eine Funktion, die aus der Listennota-
tion der Regel das Regelobjekt erzeugt.

Default: — , die Option mufl angegeben werden.

rule-test Diese Préadikat iiberpriift, ob die Syntax der Regel in diesem Gram-
matiktyp zuléssig ist.

Default: —, die Option mufl angegeben werden.

Ein Beispiel fiir eine Grammatik steht in Anhang A.2.

5.3 Lexikon

Ein Lexikon definiert man, indem man eine Instanz der Struktur lex erzeugt.

Thre Slots enthalten einen Satz von Zugriffsfunktionen. Eine solche Lexikon-

struktur kann dem Parser dann als Argument iibergeben werden. Das Default-

lexikon befindet sich in der Variable *1exiconx.

Das Lexikon liefert zu einem Eingabeelement eine Liste von Eintrigen zurtick.

Jeder Eintrag besteht aus Attribut-Wertpaaren. Die benétigten Angaben héngen

vom Grammatiktyp ab.

lex Struktur
Die folgenden Komponenten der Struktur lex werden von allen Grammatik-

typen benoétigt.

entries Diese Funktion liefert fiir ein Wort der Eingabesequenz eine Liste von
passenden Lexikoneintrigen. Der Aufbau der Lexikoneintréige ist beliebig.
Die Funktion hat folgende Argumente:

word Wort, das im Lexikon nachgeschlagen werden soll

ignore-cap Beim ersten Wort der Eingabesequenz gibt man fiir diesen
Parameter t an. In diesem Fall liefert die Grof3- und Kleinschreibung
keine Kategorieinformation und sollte vom Lexikon ignoriert werden.

cat Die Funktion bestimmt fiir einen Lexikoneintrag die Kategorie.

word Die Funktion bestimmt zu einem Lexikoneintrag die Grundform des Wor-
tes.

Die restlichen Komponenten von lex miissen dagegen nur fiir bestimmte Gram-
matiktypen definiert sein.

form Die Funktion liefert zu einem Lexikoneintrag die urspriingliche Wortform.
Default: entsprechend der Komponente word

conf Die Funktion gibt den Konfidenzfaktor des Eintrags zuriick.
Default: 1

KAPITEL 5. SPRACHWISSEN 46

attr Die Funktion liefert fiir einen Eintrag die Featureliste.
Default: nil

sem Die Funktion gibt die semantische Information aus dem Eintrag zuriick.
Default: nil

make-entry Diese Funktion erzeugt einen Lexikoneintrag.

entry-p Diese Pradikatfunktion gibt an, ob ein Objekt ein Lexikoneintrag ist.

Die beiden Slots make-entry und entry-p werden vom Parser nicht mehr be-
nutzt und dienen nur noch zur Kompatibilitit mit alten Lexika. Ein Beispiel
fiir ein Lexikon findet sich in Anhang A.1.

5.4 Der Grammatiktyp :cf

Der Grammatiktyp :cf beniitzt keine Features, so dal bei den Regeln nur der
Regelkopf und der Regelrumpf wichtig ist.

In der Listennotation des Grammatiktyps :cf sind die Regeln Listen, deren
erstes Element den Regelkopf und deren restliche Elemente den Regelrumpf
darstellen. Die Regel NP — NP PP sieht in Listennotation folgendermaflen
aus:

(NP NP PP)

AuBler den gewdhnlichen (Symbol-)Kategorien sind in den Regeln auch String-
kategorien zugelassen. Das bedeutet, dal an der entsprechenden Stelle der Ein-
gabesequenz genau dieses Wort vorkommen mufl. Eine mit ,,und“ verkniipfte
Aufzahlung zweier PROPN beschreibt man mit NP — PROPN und PROPN.
In der Listennotation der Regel ist ,,und“ ein String, wihrend die anderen Ka-
tegorien Symbole sind.

(NP PROPN "und" PROPN)

Der :cf-Grammatiktyp verwendet keine Attribute, so daf fiir die Lesartkanten
der Basistyp geniigt. Da dieser Grammatiktyp weder Features noch Attribute
einsetzt, benotigt er aus dem Lexikon lediglich die Kategorie und das Wort
selbst.

5.5 Der Grammatiktyp :sf

Der :sf-Grammatikformalismus arbeitet mit flachen Featurelisten, im Gegen-
satz zu den Unifikationsgrammatiken, die geschachtelte Ausdriicke verwenden.
Ziel der Entwicklung von Grammatiken mit flachen Featurelisten ist es, einfache
Tests {iber den morpho-syntaktischen Merkmalen in den Formalismus zu inte-
grieren. Dabei wird insbesondere auf eine effiziente Verarbeitbarkeit der Struk-
turen Wert gelegt und bestimmte Schwéchen in den Ausdrucksmoglichkeiten in
Kauf genommen. Beispielsweise lassen sich keine Abhéngigkeiten zwischen den

KAPITEL 5. SPRACHWISSEN 47

Werten verschiedener Features beschreiben. Diese Einschrinkungen sind aller-
dings weniger gravierend, wenn man beriicksichtigt, dafl beim Parsen oft nach
einer moglichst effizienten Abbildung von natiirlicher Sprache in eine konzeptu-
elle Struktur gesucht wird und nicht nach einer méglichst exakten Beschreibung
der Eigenschaften einer natiirlichen Sprache. Ziel ist es also nicht, wohlgeformte
von nicht wohlgeformten Eingabesequenzen unterscheiden zu kénnen, sondern
fiir moglichst viele der zu erwartenden Eingabesequenzen eine Ausgabestruktur
zu erzeugen, die von nachfolgenden Komponenten verarbeitet werden kann.
Die Featureangabe des Grammatiktyps :sf ist eine Liste aus Featurenamen
und deren Wertemengen in folgender Form:

(fea-angabe) ::=
({feaname) (fea-val))*)

(fea-val) ::=
(value)
| (:or (value)+)

Beispiel: ((num pl) (pers (:or 1 3)))

Wenn die Angabe fiir ein Feature fehlt, dann bedeutet das nicht etwa “leere
Wertemenge” sondern “beliebiger Wert”. Diese Definition erlaubt es, unvoll-
stdndige Angaben auf einfache Art zu behandeln.

Auflerdem gibt es beim Grammatiktyp :sf zwei Attribute:

e Der Konfidenzfaktor ist eine Zahl. Er gibt die Zuverldssigkeit der Infor-
mationen in einem Lexikoneintrag an und bewertet die Prioritdten von
Grammatikregeln.

e Die Semantikspezifikation einer Grammatikregel beschreibt den Aufbau
einer semantischen Struktur. So spezifiziert man Ausgaben fiir die Wei-
terverarbeitung.

Features und Attribute miissen an folgenden Stellen im Parser beriicksichtigt
werden:

e Im Lexikoneintrag, damit die Information fiir die Terminalsymbole zur
Verfiigung steht.

e Bei den Regeln, damit man die Propagierung der Information vom gramm-
matikalischen Konstrukt abhéngig machen kann.

e In den Nichtterminalkanten, weil der Grammatiktyp dort das Ergebnis
von Ableitungen ablegt.

Der Rest des Abschnitts beschreibt die Behandlung der Information fiir die
einzelnen Bereiche.

KAPITEL 5. SPRACHWISSEN 48

5.5.1 Datenstrukturen

Um die zusétzliche Information abzulegen, erweitert der Grammatiktyp :sf die
Datenstrukturen fiir die Grammatikregeln und die Lesartkanten folgenderma-
Ben:

sf-rule Struktur

Die Regel erhilt zusétzlich zu den Slots aus rule folgende Slots fiir :sf-
spezifische Information:

conf Konfidenzfaktor der Regel
sem Semantikspezifikation der Regel

sf-edge Struktur

Fiir die Attribute und Features erweitert der Kantentyp sf-edge den Basis-
typ tree-edge der Lesartkante um folgende Slots:

result Spezifikation fiir neue Feature-Liste. Der Wert wird aus dem Slot
result der Regel entnommen.

sem Spezifikation semantischer Information. Sie wird von einem Satz von
Makros verarbeitet.

conf Sicherheitsfaktor, eine Zahl zwischen 0 und 1. Ist kein Sicherheitsfak-
tor im Lexikon angegeben (NIL), wird 1 angenommen. Bei Regelan-
wendungen werden Sicherheitsfaktoren multipliziert.

5.5.2 Lexika fiir :sf-Grammatiken

Von der lexikalischen Analyse benétigt der Parser fiir jedes Eingabeelement eine
oder mehrere Featurelisten fiir die syntaktische Analyse und die Attributwerte
fiir den Ausgabenerator.

Fiir das Wort ,,Musikinstrumente“ sieht diese Information folgendermaflen aus:

(:LEX "Musikinstrumente"
:WORD "MUSIKINSTRUMENT"
:COMP ("MUSIK" "INSTRUMENT" "E")
:CAT N
:CONF 0.8
:ATTR (GEN neut NUM (sg pl)
KAS (nom gen dat akk))
:SEM "MUSIKINSTRUMENT")

Die Analysephasen des Parsers verwenden diese Information. Fiir die syntakti-
sche Analyse sind die Kategorie und die mit :attr markierten Features wichtig.
Der Konfidenzfaktor und die Semantikspezifikation werden fiir die Lesartgene-
rierung benutzt.

KAPITEL 5. SPRACHWISSEN 49

5.5.3 :sf-Grammatikregeln

Die Listennotation der Grammatikregel enthélt aufler dem Regelkopf und dem
Regelrumpf einen Konfidenzfaktor, Featurebedingungen, Featurezuweisungen,
die Semantikspezifikation und einen (bisher) unbenutzten Reserveslot.

Die folgende Grammatikregel besagt, dafl eine Nominalphrase NP aus einem
Artikel DET und einem Nomen N bestehen kann und daf Artikel und Nomen
beziiglich Numerus, Genus und Kasus {ibereinstimmen miissen. Auflerdem wer-
den diese Feature-Werte an die generierte NP weitergegeben. Die Semantik der
Nominalphrase NP ergibt sich einfach durch Ubernahme der Semantik des No-
mens:

(NP -> (DET N)
1
((= (DET num) (N num))
(= (DET kas) (N kas))
(= (DET gen) (N gen)))
((num (DET num) (N num))
(kas (DET kas) (N kas))
(gen (DET gen) (N gen)))
(&sem N)
0))

Im folgenden werden die Bestandteile der Regeln und deren Einsatzméglichkeiten
im einzelnen beschrieben.

5.5.3.1 Kontextfreier Anteil

Die ersten drei Elemente einer solchen Regel beschreiben den kontextfreien
Anteil.

e Regelkopf (Kategorie der linken Seite)
o Pfeil
e Regelrumpf (Kategorien der rechten Seite als Liste)

Falls auf der rechten Seite eine Kategorie mehrfach vorkommt und spéter eine
eindeutige Referenz auf eines der Elemente benttigt wird, wird an die Katego-
rien ein Index mit einem Punkt angehéngt.

In folgender Regel sind die NPs auf der rechten Seite mit einem Index versehen,
um in den Tests und Zuweisungen eine eindeutige Referenz auf die Elemente
der rechten Regelseite sicherzustellen:

(NP -> (NP.1 KONJ NP.2) ...)

5.5.3.2 Sicherheitsfaktor

Das vierte Element einer Grammatikregel besteht aus einem numerischen Wert,
der die Konfidenz (Prioritdt, Sicherheitsfaktor) der Regel festlegt. Normaler-
weise ist sie auf 1 gesetzt. Durch einen héheren bzw. niedrigeren Wert kann das

KAPITEL 5. SPRACHWISSEN 50

Gewicht einer Regel erh6ht oder verringert werden. Zusammen mit den von der
lexikalischen Analyse gelieferten Sicherheitsfaktoren der Eingabeelemente die-
nen die Regelkonfidenzen dazu, die verschiedenen Lesarten gegeneinander zu
gewichten und gegebenenfalls eines der Resultate auszuwéhlen. Wie die Si-
cherheitsfaktoren der lexikalischen Analyse werden die Regelkonfidenzen nach
heuristischen Prinzipien vergeben — sie konnen nicht als Wahrscheinlichkeiten
aufgefafit werden.

Im aktuellen Ansatz werden die Sicherheitsfaktoren der Resultate der lexikali-
schen Analyse mit den Konfidenzfaktoren der Regeln multipliziert. Wird ei-
ne Regel r mit Sicherheitsfaktor s, auf die Konstituenten w; ...w, mit den
Sicherheitsfaktoren s,s,, angewendet, so wird der Sicherheitsfaktor des
abgeleiteten Symbols u als s, = s, * 8y, * ... * 8y, berechnet.

Eine solche Verarbeitung der Sicherheitsfaktoren und Regelprioritdten stellt si-
cher, dafl Resultate mit hoheren Konfidenzwerten aus der lexikalischen Analyse,
sowie Resultate, in die Regeln mit hoheren Prioritdten eingehen, bevorzugt wer-
den. Der Sicherheitsfaktor ist ein Attribut und wird bei der Ausgabegenerierung
berechnet.

Sicherheitsfaktoren werden bei der Berechnung entsprechend den Angaben in
der globalen Variable *numfix* gerundet.

numf ix Variable
Gibt die Anzahl der Nachkommastellen fiir die Rundung von Sicherheitsfakto-
ren an. Der Defaultwert ist 2.

5.5.3.3 Featuretests

Dem Konfidenzfaktor folgt eine Liste mit Tests iiber den morpho-syntaktischen
Merkmalen. Der Parser wendet eine Regel nur an, wenn alle Featurebedingun-
gen erfiillt sind. Mit Hilfe eines solchen Tests wird tiberpriift, ob die Werte
bestimmter Features von Kategorien des Regelrumpfs zueinander passen. Da
Features mehrere alternative Werte haben konnen, gilt ein Test als erfiillt, wenn
die Schnittmenge der jeweiligen Wertemengen nicht leer ist, d.h. die beiden Fea-
tures wenigstens einen gemeinsamen Wert haben. Auch wenn die Bedingung
mit einem = notiert wird, sollte man deswegen anstatt von “Gleichheit” eher
von “Kompatibilitdt” der Featurewerte sprechen.

AufBlerdem ist ein Test erfiillt, wenn eine der beteiligten Wertemengen nil ist,
d.h. iiber das betreffende Feature keine Information verfiigbar ist. Oft sind
Featureinformationen wéhrend der Entwicklung einer Grammatik noch unvoll-
stindig. Die Featurebedingungen verbieten daher den Ableitungsschritt nur
bei widerspriichlichen Featurewerten und nicht, wenn eine Angabe fehlt. Da-
mit kann man eine Grammatik grob entwerfen, sie testen und ihre Wirkung
dann durch Featurebedingungen schrittweise verbessern.

Bei der Kantenverschmelzung sind die Bedingungen fiir die Features dage-
gen strenger. Damit zwei Kanten verschmolzen werden, miissen ihre Features
wirklich #quivalent sein, d.h. die gleichen Wertemengen besitzen. (vgl. Ab-
schnitt 4.3.2.5).

KAPITEL 5. SPRACHWISSEN o1

Wie gesagt bedeutet bei den Featuretests “=" soviel wie “ist kompatibel mit”,

d.h. die jeweiligen Schnittmengen sind nicht leer. Aufler der Kompatibilitdt
verschiedener Featurewerte des Regelrumpfs kann ein Feature auch auf Kompa-
tibilitdt mit einem fest vorgegebenen Wert oder einer fest vorgegebenen Menge
alternativer Werte getestet werden. Damit gibt es folgende Moglichkeiten:

e (= (<catl> <f1>) (<cat2> <£2>))
Der Wert des Features <£1> der Kante <cat1> mufi zum Wert des Features
<£2> der Kante <cat2> kompatibel sein. Sowohl <cat1> und <cat2> als
auch <f1> und <f2> kénnen voneinander verschieden sein, miissen aber
nicht.

Die folgende Bedingung ist erfiillt, wenn Artikel und Nomen wenigstens
in einem Wert des Numerus-Features num iibereinstimmen oder einer der
beiden Featurewerte unbestimmt ist.

(= (DET num) (N num))

o (= (Kcat> <f>) <atom>)
<atom> muf als Wert von <f> in <cat> vorkommen.

Die Bedingung in diesem Beispiel fordert, dafl die Nominalphrase NP im
Singular steht (oder das Feature unbestimmt ist).

(= (NP num) sg)

o (= (<cat> <f>) (:or <atom> <atom> ...))

Mindestens eines der Atome mufl als Wert des Features <f> in <cat>
auftreten.

Wenn die Nominalphrase NP in der dritten oder der ersten Person stehen
soll, lautet die entsprechende Featurebedingung folgendermafien:

(= (NP pers) (:or 1 3))

5.5.3.4 Featurezuweisungen

Das sechste Element einer Grammatikregel besteht aus einer Liste von Feature-
zuweisungen fiir den Regelkopf. Das erste Element einer Zuweisung gibt dabei
jeweils das Feature an, an das die Zuweisung erfolgt, der Rest die Wertangabe.
Als Wertangaben sind ein konstanter Wert, eine konstante Wertemenge, die
Wertemenge eines Features des Regelrumpfs und Schnittmengen solcher Anga-
ben zuléissig.

Welche Features dem Regelkopf zugewiesen werden sollen, wird durch eine An-
weisungen der Form (<f1> <val>+) spezifiziert. Dabei wird dem Feature des
Regelkopfs mit Namen <£1> der Wert <val>+ zugewiesen.

KAPITEL 5. SPRACHWISSEN 52

Die o.g. Fille von Wertangaben werden folgendermaflen notiert:

e <atom> Der neue Wert ist <atom> (genauer: die Wertemenge ist die Men-
ge, die nur <atom> enthlt)

Der Ausdruck (pers 3) setzt z.B. das Feature pers des Regelkopfs auf
den Wert 3.

e (:or <atom> <atom> ...)
Die neue Wertemenge des Features ist die Menge der angegebenen Atome.

Mit (pers (:or 1 3)) weist man dem Feature pers die Werte 1 und 3
zu.

o (<cat> <f2>)

Die neue Wertemenge wird aus dem Feature <£2> der Kategorie <cat>
entnommen. <cat> ist dabei eine Kategorie aus dem Regelrumpf.

Der Ausdruck (num (N num)) iibernimmt z.B. den Wert des Features
num fiir das neue Symbol vom gleichen Feature der Konstituente mit der
Kategorie N.

o (<f1> <val> <val> ...)

Wenn mehrere Werte angegeben werden, belegt der Grammatiktyp das
Feature <f1> des Regelkopfs mit der Schnittmenge der angegebenen Wer-
te.

Der Ausdruck (pers (N pers) (:or 1 3)) weist dem Feature pers die
Wertemenge desselben Features der Konstituente N geschnitten mit der
Menge {1, 3} zu.

Die Trennung von Bedingungs- und Zuweisungsteil in den Grammatikregeln
hat zur Folge, daf} nicht alle Informationen, die auf einer Ebene der syntakti-
schen Struktur zur Verfiigung stehen, automatisch auch auf der iibergeordneten
Ebene verfiighbar sind. Alle Features, die auf einer htheren Ebene benétigt
werden, miissen also explizit im Zuweisungsteil einer Regel iibergeben werden.
Zusétzlich konnen auf jeder Ebene neue Features und Featurewerte eingefiihrt
werden.

5.5.3.5 Semantikspezifikation

Schliefllich enthalt jede Grammatikregel noch eine Semantikspezifikation in
Form eines beliebigen Lisp-Ausdrucks, der dem Regelkopf eine Semantik zu-
ordnet. Die Semantikspezifikation wird bei der Ausgabegenerierung evaluiert,
wobei die Lesartkante in der special deklarierten Kantenvariablen edge im
Ausdruck zur Verfiigung steht. In einer solchen Semantikspezifikation kénnen
zwei vordefinierte Makros verwendet werden, um auf Semantikresultate von
Kategorien des Regelrumpfs oder auf Featurewerte zuzugreifen:

KAPITEL 5. SPRACHWISSEN 93

e (&sem <rhs-cat>)

Evaluiert zum Resultat der semantischen Analyse fiir die Kategorie
<rhs-cat> des Regelrumpfs.

o (&attr <fea-name>)

Evaluiert zum Wert des Features <fea-name> des Regelkopfs

o (&attr (<rhs-cat> <fea-name>))

Evaluiert zum Wert des Features <fea-name> fiir die Kategorie <rhs-cat>
des Regelrumpfs.

Diese Aufrufe kann man in beliebigen Lispcode einbetten, z.B. fiigt der Aus-
druck (cons (&sem ADJ) (&sem N)) die semantische Information von ADJ als
erstes Element zur semantischen Information von N hinzu und gibt diese Struk-
tur zurtick.

In einer Semantikspezifikation kann man auf Featurewerte zugreifen. Der Be-
dingungsteil einer Regel hat dagegen keinen Zugriff auf Teilresultate der se-
mantischen Analyse. Der Grund ist, daf} die Features in der syntaktischen
Phase erzeugt und benutzt werden, wihrend die Semantikspezifikation erst als
Attribut bei der Ausgabegenerierung berechnet wird.

5.5.4 Syntax von Grammatikregeln

Die Syntax von Grammatikregeln mit flachen Featurelisten ist im folgenden
zusammengefaft:

(rule) ::

(lhs-cat) ::=
(symbol)

(rhs-cat) ::=
(symbol)
| (symbol) . (index)

(index) ::=
(integer)

(confidence) ::=
(number)

KAPITEL 5. SPRACHWISSEN o4

(tests) ::=
(= (fea-arg) (fea-arg))*)

(fea-arg) :=
({rhs-cat) (fea-name))
| (value)
| (zor (value)+)

(actions) ::=
(({fea-name) (fea-arg)+)*)

(fea-name) ::=
(symbol)

(value) ::=
{atom)

(semantics) ::=
(s-expression)

(spare) ::=
(s-expression)

Im Lispausdruck (s-expression) der Semantikspezifikation sind folgende Aufrufe
zuléssig:

(s-expression) ::=
(&sem (rhs-cat))
| (&attr (fea-name))
| (&attr ((rhs-cat) (fea-name)))

Kapitel 6

Referenzhandbuch

6.1 Parserfunktionen

ChaPLin stellt eine Reihe von Parserfunktionen zur Verfiigung, die die ein-
zelnen Phasen des Algorithmus 2 (S. 12) abdecken. In Phase 1 zerlegt der
Scanner einen Eingabestring in Eingabeelemente. Phase 2 umfafit die lexikali-
sche Analyse und den Chartaufbau; sie erzeugt also die Terminalsymbole. Die
eigentliche syntaktische Analyse ist dann Phase 3 und die nachfolgende Ausga-
begenerierung Phase 4. Abbildung 3.1 stellt die beteiligten Komponenten von
ChaPLin dar. Tabelle 6.1 zeigt, welche Parserfunktionen welche Analysephasen
abdecken.

6.1.1 Argumente der Parserfunktionen

In den verschiedenen Phasen werden unterschiedliche Eingabedaten verarbei-
tet. Phase 1 erhélt einen String string als Eingabe. Die Funktionen scan-1line
und parse-line lesen diesen String vom Terminal. Phase 2 erhilt ein Eingabe-
element item oder eine Eingabefolge seq als Argument. Die folgenden Phasen
finden die benétigte Information in der Chart.

Die Optionen werden durch Keywordargumente spezifiziert und sind bei allen
Parserfunktionen gleich. Tabelle 6.1 gibt an, welche Optionen die einzelnen
Funktionen tatsédchlich beriicksichtigen.

Funktion Phasen Eingabe | g m 1 f 1 o
parse-line 1 2 3 4)|- + 4+ + 4+ - 4+
parse 2 3 4] seq + + + + - +
parse-next 2 3 4| item + - 4+ 4+ 4+ +
scan-line 1 - - - - - o
scan 1 string | - - - - - -
build-chart 2 seq + + + - - -
parse-rest 3 4 - + 4+ - 4+ - 4+
build-tree 4| - + + - 4+ - 4+

Tabelle 6.1: Tabelle der Parserfunktionen
55

KAPITEL 6. REFERENZHANDBUCH o6

grammar (g) Gibt die Grammatik an. Wird keine Grammatik angegeben,
dient bei der Initialisierung der Chart *grammar* als Defaultwert. An-
schliessend wird die Grammatik in *parse-grammar* abgelegt und bis zur
néchsten Initialisierung der Chart als Defaultwert fiir grammar benutzt.

mode (m) :bu fiir bottom up, :td fiir top down.

lexicon (1) Das Lexikon ist eine Instanz der Struktur lex.
Defaultwert ist *1exiconx.

find (f) Startkategorie oder Liste von Startkategorien. Eine Kategorie ist ein
Symbol. Der Defaultwert ist die Startkategorie der Grammatik. Hat find
den Wert NIL, dann sind alle Symbole als Startkategorie zugelassen. Im
Top-down-Modus darf nur ein Startsymbol angegeben werden.

igncap (i) Boolscher Wert, Default ist NIL. Dieses Argument gibt an, ob die
Grof3- und Kleinschreibung von der lexikalischen Analyse ignoriert werden
soll. Beim wortweise inkrementellen Parsen sollte igncap zu Beginn des
Satzes auf t gesetzt werden, da dort die Grofischreibung keine lexikalische
Information liefert. Fiir den Rest des Satzes ist der Defaultwert NIL
angemessen.

output (o) Ausgabespezifikation, Default ist *output*
Die Ausgabespezifikation ist entweder ein Keyword als Kurzspezifikation
oder — fiir eine prézisere Kontrolle — eine Liste von Keywords und Werten.
Die Funktionsweise des Ausgabegenerators wird im Abschnitt 4.4 erklirt.

6.1.2 Beschreibung der Parserfunktionen

Die Schnittstellenfunktionen akzeptieren beliebige Keywordparameter. Im Kopf
sind nur die Parameter angegeben, die von der Funktion wirklich benutzt wer-
den.

build-chart Funktion
(build-chart inputseq &key mode lexicon grammar)

Die Funktion build-chart initialisiert die Chart mit der Eingabesequenz
inputseq. Dafiir wird das Lexikon lexicon benétigt. Beim bottom-up-Parsen
wird die Chart automatisch mit der angegebenen Grammatik aktiviert, beim
top-down-Parsen nicht. Eine leere Chart zum wortweise inkrementellen Parsen
erzeugt man mit (build-chart ()).

build-tree Funktion
(build-tree &key output grammar lexicon find)

build-tree baut die Ausgabestruktur aus der Chart auf. Wichtig ist hier vor
allem das Startsymbol find und die Ausgabespezifikation output.

KAPITEL 6. REFERENZHANDBUCH 57

loop—-parse-incremental Funktion
(loop-parse-incremental &key output lexicon grammar find edge-count)
Aufruf von parse-incremental in einer Schleife, die mit einer leeren Eingabe
beendet wird. Argumente sieche parse-incremental.

parse Funktion
(parse inputseq &key output mode grammar lexicon find)

Die Funktion parse analysiert eine Sequenz von Eingabeelementen oder Lexi-
koneintrigen und generiert eine Ausgabestruktur.

parse-and-show-time Funktion
(parse-and-show-time inputseq &key output mode grammar lexicon find)
Die Funktion arbeitet wie parse gibt aber zusétzlich die zum Parsen benotigte
Zeit aus. Fiir den Parameter :mode ist hier auch :both erlaubt. Dann mifit die
Funktion den Zeitbedarf fiir beide Modi.

parse-incremental Funktion
(parse-incremental &key output lexicon grammar find)
parse-incremental liest einen Satz vom Terminal und parst bereits wéhrend
der Eingabe. Es wird ein spezieller Scanner verwendet, der das Loschen von
Zeichen behandeln kann. Sein Verhalten kann daher vom Verhalten des iiblichen
ATN-Scanners abweichen.

Hat der inkrementelle Scanner ein Eingabeelement vollstdndig erkannt, dann
ruft er parse-next auf. Wihrend parse-next arbeitet, verarbeitet der inkre-
mentelle Scanner keine weiteren Tastendrucke. Wenn der Benutzer so viele Zei-
chen 16scht, daf} ein bereits weitergegebenes Eingabeelement zuriickgenommen
werden muf}, dann wird der ganze noch giiltige Rest des Satzes erneut geparst.
Das genaue Verhalten hingt vom Lispsystem und dem verwendeten Terminal
ab. Wenn parse-next schnell genug ist oder das Terminal die Eingabe puffert,
nimmt der Benutzer den Zeitbedarf von parse-next nicht wahr. Das zeichen-
weise inkrementelle Parsen ist unter Allegro Common Lisp 4.2 auf SUN-SPARC
und unter MCL auf Apple Macintosh getestet.

parse-line Funktion
(parse-line &key output mode grammar lexicon find)

Die Funktion liest eine Zeile vom Terminal, zerlegt sie mit scan in Eingabe-
elemente und ruft parse auf.

parse-line-and-display-tree Funktion
(parse-line-and-display-tree &key output mode grammar ...)
Kombination aus parse-line und parse-and-display-tree.

parse-line-and-show-time Funktion
(parse-line-and-show-time &key output mode grammar lexicon find)
Kombination aus parse-line und parse-and-show-time.

KAPITEL 6. REFERENZHANDBUCH o8

parse-next Funktion
(parse-next element &key grammar lexicon find ignore-cap output)
Die Funktion parse-next parst wortweise inkrementell. Sie verldngert die
Chart um das Eingabeelement element und parst den Satz im bottom-up-
Modus.

parse-rest Funktion
(parse-rest &key grammar mode find output)

parse-rest parst mit den bereits in der Chart vorhandenen Daten. Daher
wird auch kein Satz oder Eingabeelement angegeben. Anstelle der Funktion
parse kann man auch build-chart und anschliefend parse-rest aufrufen.
Es ist moglich, die Analyse einer bestehenden Chart mit einer anderen Gram-
matik fortzusetzen. Gibt man im Argument grammar eine andere Grammatik
an, als bisher verwendet wurde, dann reaktiviert die Funktion parse-rest zu-
erst die Chart mit der neuen Grammatik.

6.1.3 Globale Defaults

Die Defaultwerte fiir die Keywordargumente der Parserfunktionen sind in globa-
len Variablen festgelegt. Fiir einige dieser Variablen gibt es wiederum Default-
werte beim Laden des Parsers.

find Variable
Default fiir das Startsymbol.

grammar Variable
Das Symbol *grammar* wird aus dem in *nlpkg* spezifizierten Package im-
portiert. Diese Variable enthilt die Defaultgrammatik. Wenn man einen neuen
Satz analysiert, d.h. die Chart initialisiert, dann wird diese Grammatik be-
nutzt. Fir diese Variable gibt es keinen Defaultwert, sie wird sinnvollerweise
beim Laden einer Grammatik belegt.

]lexiconx Variable
Das Symbol *lexicon* wird aus dem in *nlpkg* spezifizierten Package im-
portiert. Diese Variable enthélt das Defaultlexikon. Fiir diese Variable gibt es
keinen Defaultwert, sie wird sinnvollerweise beim Laden eines Lexikons belegt.

mode Variable
Default fiir den Parsemodus. Defaultwert beim Laden ist :bu fiir bottom-up.

output Variable
Diese Variable enthilt den Default fiir die Ausgabespezifikation. Default ist
:tree, d.h. es werden Parsebdume erzeugt.

KAPITEL 6. REFERENZHANDBUCH 99

parse-grammar Variable
Im Normalfall méchte man fiir alle Phasen des Parseprozesses dieselbe Gram-
matik verwenden. In dieser Variablen wird daher die aktuelle Grammatik ab-
gelegt. Die Variable *parse-grammar* ist der Defaultwert, wenn man eine
Funktion aufruft, die mit einer bestehenden Chart weiterarbeitet. Funktionen,
die eine neue Chart anlegen, belegen *parse-grammar* mit dem Wert des Pa-
rameters grammar.

tree-defaultx Variable
Default fiir die Baumspezifikation, die das Format der Parsebaumknoten be-
stimmt. Default beim Laden ist:

’(:node edge-cat
:lex (:cat :lex)
:struct (:cat . :contents)))

6.1.4 Ausgabe

Die Ausgabegenerierung verlduft nach Algorithmus 3 (S. 34). Den Ausgabe-
generator steuert man mit der Ausgabespezifikation in Form eines einzelnen
Schliisselworts (Kurzspezifikation) oder einer Liste aus Schliisselwortern und
Werten.

Wenn eine Kurzspezifikation angegeben wird, expandiert die build-fn-Funktion
des Grammatiktyps das Kiirzel zu einer Liste. Bei der Ausgabeform :tree setzt
die Funktion dabei die Defaults aus *tree-defaultx fiir die Baumspezifikation
ein.

In den Grammatiktypen :sf und :cf sind derzeit folgende Kurzspezifikationen
definiert:

nil Siehe :succ.

:succ Liste der Kategorien der erfolgreichen Kanten

:tree Syntaxbaum (Default)

:alt Alternativen im Syntaxbaum

:frag Fragmente, falls keine vollstdndige Analyse

:num Syntaxbdume mit Sicherheitsfaktor (nur beim :sf-Grammatiktyp)
:allnum Sicherheitsfaktor an allen Knoten (nur beim :sf-Grammatiktyp)

:sem Aufbau einer Struktur aus dem Semantik Slot (nur beim : sf-Grammatiktyp)

Die Hauptausgabefunktion create-output erhilt die Ausgabespezifikation als
Liste aus Schliisselwortern und Werten. Sie wird entweder direkt angegeben
oder entsteht durch die o.g. Expansion einer Kurzspezifikation. Algorithmus 7
beschreibt, welche Ausgabeformen den Angaben in der Ausgabespezifikation
zugeordnet sind.

KAPITEL 6. REFERENZHANDBUCH 60

Algorithmus 7
Die Aktion wird ausgefiihrt, wenn der Wert des Schliisselworts nicht NIL ist.

:result Gib den Spezifikationswert zuriick. (Das Ergebnis wurde bereits von
Ubersetzungsfunktion build-fn berechnet.)

:last Nimm die eingehenden Kanten des letzten Knotens als Kandidaten fiir
erfolgreiche Kanten. (Im Normalfall gehen erfolgreiche Kanten vom ersten
zum letzten Knoten der Chart.)

:cat Gib eine Liste der Kategorien der erfolgreichen Kanten zuriick.
:succ Wenn erfolgreiche Kanten existieren, gib t zuriick, sonst nil.
:count Gib Anzahl der Lesarten zuriick.

:tree Erzeuge Parsebdume fiir alle erfolgreichen Kanten.

:frag Wenn es keine erfolgreichen Kanten gibt, suche nach Fragmentfolgen
(vgl. Funktion fragment-report).

Die Ausgabeformen :tree und :frag erzeugen Lesartkanten und Parsebdume,
was verhiltnisméiflig aufwendig ist. Die anderen Ausgabeformen lassen sich aus
der Chart dagegen sehr schnell ablesen.

In der Phase der Lesarterzeugung werden Lesartkanten erzeugt, die die Attri-
bute enthalten. Die Lesarten fiir eine syntaktische Kante werden noch gefiltert,
d.h. mit Hilfe der Attributinformation kann eine Auswahl der Lesarten vorge-
nommen werden. Der Lesartfilter erhélt die Spezifikation als Argument. Beim
Grammatiktyp :sf erkennt der Filter folgende Spezifikationswerte:

:sort Wenn der Wert t ist, werden die Kanten nach dem Wert des Sicherheits-
faktors absteigend sortiert.

:nres Der Wert ist eine Zahl. Es werden hochstens soviele Lesarten auf jeder
Ebene eingetragen, alle anderen werden weggeworfen.

Mochte man nur die n besten Lesarten verwenden, dann sortiert man und gibt
eine Anzahlbeschrinkung an (:sort t :nres n). Wenn die Filterfunktion die
Lesartliste nicht sortiert, dann ist die Reihenfolge der Lesarten undefiniert. Eine
Anzahlbeschrinkung ohne Sortierung w#hlt die Lesarten willkiirlich aus.

Bei der Baumerzeugung werden zu den Lesartkanten Syntaxbidume aufgebaut.
Die Baumsperzifikation zur Steuerung der Knotenform enthélt Angaben zu den
drei Schliisselwortern :1lex, :struct und :node. Die so angegebenen Spezifika-
tionen sind Muster fiir die Struktur des Baumknoten, wobei jeder Bestandteil
des Musters entsprechend Algorithmus 6 (S. 38) durch seinen Wert ersetzt wird.
Die benétigte Information wird aus der Lesartkante entnommen.

Bei den Terminalsymbolen beschreiben :lex-Spezifikationen die Gestalt von
Parsebaumbléattern fiir Lexikoneintrige und :struct-Spezifikationen den Ein-
bau von Unterparsebdumen fiir Struktureintréige.

KAPITEL 6. REFERENZHANDBUCH 61

Bei Nichtterminalsymbolen besteht der Parsebaum aus einem Knoten und der
Liste der Unterbdume, wobei die Gestalt des Knotens durch die :node-Spezifi-
kation gesteuert wird.

Am Ende der Ausgabegenerierung werden die Baume auf oberster Ebene nach-
bearbeitet. Damit kann man der Wurzel des Parsebaums eine andere Form
geben als den inneren Knoten. Die entsprechende Funktion des Grammatik-
typs grammar-type-tree-postproc erhilt ebenfalls die Ausgabespezifikation
als Eingabe. Es sind derzeit zwei Nachbearbeitungsvarianten implementiert:

:lex&struct Erzeugt fiir ein Nichtterminalsymbol einen Struktureintrag, der
als Eingabeelement fiir eine weitere Parsephase verwendet werden kann.
So erzeugt man also die Struktureintrige, die man mit der :struct-
Spezifikation wieder in einen Parsebaum einbauen kann. Fiir ein Ter-
minalsymbol wird ein :1lex-Eintrag erzeugt.

:num Fiigt der Wurzel jedes Parsebaums den Sicherheitsfaktor hinzu.

6.2 Untersuchung und Analyse

Alle Ausgabefunktionen erhalten als Keywordargument stream den Ausgabe-
stream. Default ist t, d.h. das Terminal.

6.2.1 Quantitative Untersuchungen

In diesem Abschnitt werden Funktionen vorgestellt, die einige interessante quan-
titative Analysen der Chart vornehmen. Quantitative Analysen sind eine wich-
tige Hilfe bei Effizienzproblemen oder bei der Entwicklung von Grammatiken.
Bei einer quantitativen Analyse werden aber Einzeleffekte leicht von anderen
Effekten iiberlagert und verfilscht, so dafl diese Analysen nur einen Hinweis
oder eine Tendenz angeben konnen. Quantitative Analysen zeigen, ob eine
Grammatik zu restriktiv ist, so dafl zuwenig Lesarten gefunden werden, oder
zu grofiziigig, so dafl sie eine zu hohe Mehrdeutigkeit aufweist.

chart-analysis Funktion
(chart-analysis &key (stream t))

Diese Funktion ruft die einzelnen Analysefunktionen mit geeigneten Default-
werten auf. Die Teilanalysen werden im folgenden beschrieben.

size-report Funktion
(size-report &key (stream t))

Die Untersuchung gibt die Anzahl der Knoten aus und schliisselt die Anzahl der
Kanten nach den verschiedenen Kantentypen auf. Die dort aufgefiihrten stillge-
legten Kanten entstehen, wenn auf der gleichen Chart mehrmals eine Ausgabe
erzeugt wird und dafiir die Lesartkanten neu berechnet werden.

Die folgenden Untersuchungen betrachten nur noch die (syntaktischen) inakti-
ven Kanten.

KAPITEL 6. REFERENZHANDBUCH 62

parse-tree-report Funktion
(parse-tree-report &key (stream t) (succ (success-edges *parse-grammarx*)))
Diese Funktion untersucht den Parsewald und gibt die Anzahl der erfolgreichen
(syntaktischen) Kanten und deren Lesarten aus. Auflerdem wird bestimmt, wie-

viele Kanten wie oft im Parsewald enthalten sind.

Eine hohe Zahl unbenutzter Kanten weist darauf hin, dafl der Parser viele
Ableitungen im Bereich der kiirzeren Konstrukte findet, die nachher nicht zu
einem Satz vervollstdndigt werden kénnen.

Hohe Benutzungsquoten fiir einzelne Kanten entstehen, wenn die Grammatik
bei den langen Konstrukten Mehrdeutigkeiten enthélt.

fragment-report Funktion
(fragment-report &key (stream t))

Diese Untersuchung ist sinnvoll, wenn der Satz nicht erfolgreich geparst wurde.
In diesem Fall m6chte man wissen, welche und wie grofie Teilstiicke in der
Chart erfolgreich geparst werden konnten. Betrachtet man eine unvollsténdige
Chart, versucht man, darin moglichst grofle geparste, d.h. von einer Kante
iiberspannte, Abschnitte — Fragmente — zu finden und den Satz als Folge solcher
Fragmente darzustellen.

Bei der Suche nach Fragmentfolgen kann man zwei Teile der Chart (und damit
des Satzes) vollig unabhéngig voneinander betrachten, wenn die Chart durch
Herausnehmen eines trennenden Knotens unzusammenhéingend wird. Im fol-
genden steht — graphentheoretisch betrachtet — der Begriff Komponente fiir die
Komponenten der Chart beziiglich 2-fachem Knotenzusammenhang. Ein Kno-
ten trennt zwei Komponenten, wenn er von keiner Kante iiberspannt wird, d.h.
wenn es keine Kante gibt, deren Anfangsknoten echt kleiner als der Trennknoten
und deren Endknoten echt groler als der Trennknoten ist. Als erstes bestimmt
die Fragmentanalyse die Zahl dieser Komponenten. Nach dem Eintragen der
Terminalsymbole hat eine Chart soviele Komponenten wie Eingabeelemente;
nach erfolgreichem Parsen dagegen eine Komponente. Der Vergleich zwischen
der Anzahl der Komponenten und der Anzahl der Eingabeelemente ist also ein
Ma# fiir den Grad der Erfolglosigkeit des Parsings.

Die vollsténdig geparsten Abschnitte der Chart sind die Grundbereiche. Eine
Menge von aufeinanderfolgenden Knoten heifit Grundbereich, wenn folgende
Bedingungen gelten:

1. Grundbereiche werden von einer Kante {iberspannt, d.h. die Kante ver-
bindet den ersten Knoten des Grundbereichs mit dem letzten. Damit sind
Grundbereiche immer Untermengen von Komponenten.

2. Keine Kante aus dem Inneren des Bereichs (Bereich ohne Anfangs- und
Endknoten) verldsst den Grundbereich, d.h. es gibt keine Kante, deren
Anfangsknoten im Inneren des Grundbereichs liegt und deren Endknoten
auBerhalb des Bereichs liegt.

3. Keine Kante von auflerhalb betritt den Grundbereich, d.h. es gibt keine

KAPITEL 6. REFERENZHANDBUCH 63

Kante, deren Anfangsknoten auerhalb des Grundbereichs liegt und deren
Endknoten im Inneren liegt.

4. Der Grundbereich ist maximal, d.h. keine echte Obermenge des Grund-
bereichs erfiillt die Bedingungen 1.-3.

Mochte man das Ergebnis des partiellen Parsens als Folge von Chartfragmenten
ausgeben, dann betrachtet man die Grundbereiche als unteilbare Einheiten.
Jedes Fragment 148t sich als Vereinigung von Grundbereichen darstellen.

Fragmentfolgen durch die Chart werden bei der Ausgabeform :frag als Folge
von Komponentenpfaden dargestellt. Jeder Komponentenpfad ist eine Liste
von Pfaden von Fragmenten vom Anfang zum Ende der Komponente. Fiir
jedes Fragment wird die Liste aller Parsebdume angegeben.

Wenn alle Komponenten der Chart gleichzeitig Grundbereiche sind, dann hat
der Parser den Satz in eine Folge von vollstéindig erkannten, voneinander un-
abhingigen Abschnitte zerlegt. Diese Komponenten heiflen trivial, denn fiir
diesen Satz kann man auf einfache Art eine Folge von jeweils vollstindig er-
kannten, voneinander unabhéngigen Teilstrukturen konstruieren.

Nichttriviale Komponenten — die also nicht gleichzeitig Grundbereiche sind —
verursachen bei der Suche nach Fragmentfolgen einen erhéhten Aufwand. Z.B.
hat eine Chart, die aufler den Terminalkanten nur eine Kante von Knoten 1
nach 3 und eine weitere von 2 nach 4 enthélt, eine nichttriviale Komponente
zwischen den Knoten 1 und 4.

alt-report Funktion
(alt-report &key (stream t))

alt-report untersucht die Hiufigkeit von Kantenverschmelzungen. Er gibt
an, wieviele Kanten jeweils wieviele verschiedene Ableitungen enthalten. Bei
stark mehrdeutigen Grammatiken gibt es eine hohe Zahl von Kantenverschmel-
zungen.

rule-length-report Funktion
(rule-length-report &key (stream t))

Untersuchung iiber Verteilung der angewendeten Regellingen. Eine grofie Zahl
von Regeln der Linge 1 deutet darauf hin, daf viele Regeln, die nur umbenen-
nen, angewendet wurden.

Anschlielend wird die Anzahl der Terminalkanten angegeben. Da die lexikali-
sche Analyse fiir eine Wortform mehrere Kategorien finden kann, ist die Anzahl
der Terminalkanten moglicherweise grofler als die Anzahl der Eingabeelemente.
Das Verhiltnis von Terminalkantenzahl zur Anzahl der Eingabeelemente ist ein
Hinweis auf Mehrdeutigkeiten in der lexikalischen Analyse.

multiedge-report Funktion
(multiedge-report &key (stream t) (spec <spec>))

Diese Funktion liefert Hinweise auf Mehrdeutigkeiten in der Analyse und auf
die Wirksamkeit der Grammatikregeln und Featuremechanismen, indem sie un-
tersucht, in welchen Mafle die Chart Multikanten enthalt.

KAPITEL 6. REFERENZHANDBUCH 64

Im Parameter spec kann eine Liste von Spezifikationen angegeben werden. Jede
Sperzifikation ist eine Liste aus einer Titelzeile fiir die Untersuchung und einem
Vergleichspridikat fiir Kanten. Der Bericht gibt die Stéirken der Aquivalenz-
klassen von Kanten beziiglich dieses Pradikats an.

Die Defaultspezifikation enthilt zwei Untersuchungen:

e Bei der Untersuchung “Allgemeine Multikanten” sind zwei Kanten dqui-
valent, wenn sie die gleichen Anfangs- und Endknoten besitzen. FEine
Multikante entsteht durch Mehrdeutigkeiten in der Grammatik, denn der
Parser leitet fiir einen Teil der Chart mehrere Symbole ab. Da Kantenver-
schmelzung verwendet wird, handelt es sich bei diesen Mehrdeutigkeiten
wirklich um verschiedene Symbole, nicht nur um verschiedene Ableitungs-
wege zum gleichen Symbol.

e Multikanten mit gleicher Kategorie unterscheiden sich nur durch ihre Fea-
tures. Sie sind ein Hinweis darauf, daff Kanten mit verschiedenen Features
und der selben Kategorie erzeugt werden.

Die Multikantenzahlen sind gering, wenn entweder die Grammatik auf der Chart
beinahe eindeutige Losungen findet, oder Regeln, die dasselbe Symbol ableiten,
zu einer optimalen Wirkung der Kantenverschmelzung fiihren. Diese Tatsache
zeigt auch, dafl ChaPLin mit beiden Formen von Grammatiken gut arbeiten
kann.

6.2.2 Ausgabe von Datenstrukturen

describe-chart Funktion
(describe-chart)

Gibt ein cons aus der grofiten giiltigen Knotennummer und der grofiten giiltigen
Kantennummer zuriick. Die Knotennumerierung beginnt mit Knoten
xleft-vertex* = 1, die Kantennumerierung mit Kante 0.

display-agenda Funktion
(display-agenda &key (stream t))

Die Agenda ist ein Stapel von Konfigurationen, die aus einer aktiven und einer
inaktiven Kante bestehen. Sie wird von oben nach unten in folgendem Format
ausgegeben:

<links>---<akt. Kat, Nr.>---<mitte>---<inact.Kat.Nr.>---<rechts>

display-chart Funktion
(display-chart &key from edges cat to stream)
Die Funktion gibt die Kanten der Chart aus und erhélt folgende Argumente:

from Wird eine Zahl angegeben, werden nur Kanten angezeigt, die von dem
Knoten mit der Nummer from ausgehen. Der Default ist NIL, dann zeigt
display-chart Kanten mit beliebigem Anfangsknoten an.

KAPITEL 6. REFERENZHANDBUCH 65

to Entsprechend fiir den Endknoten der Kanten.

edges Diese Option bestimmt den auszugebenden Kantentyp. Folgende Schliis-
selworter sind zuldssig:

:inactive Nur inaktive Kanten ausgeben (Default)
:active Nur aktive Kanten ausgeben
:tree Nur Lesartkanten ausgeben.

:all Kanten aller drei Typen ausgeben.

cat display-chart gibt nur Kanten mit der hier angegebenen Kategorie aus.
Default ist nil, dann werden Kanten mit beliebiger Kategorie ausgegeben.

display-edge Funktion
(display-edge (e &key (stream t)))

Die Printfunktion der Struktur edge gibt nur eine einzeilige Kurzinformati-
on aus, die Funktion display-edge zusétzlich noch den Inhalt (bei inaktiven
Kanten alle Inhalte) der Kante.

6.3 Umgebung

chp-version Funktion
(chp-version)

Die Funktion gibt Information iiber die aktuelle Version des Parsers, die gela-
denen Module und fiir jedes Modul das Datum der letzten Anderung.

nlpkg Variable
Das Lexikon liefert Kategoriesymbole zuriick, mit denen die Grammatik ar-
beitet. Diese Variable enthélt das Lisp-Package fiir diese Symbole. Der Parser
stellt fiir Lexikonanfragen das Defaultpackage *packagex* zeitweise auf *nlpkg*
um. Damit die Grammatik die Symbole des Lexikons erkennt, mufl *nlpkg*
beim Laden einer Grammatik und bei ihrer Verwendung den gleichen Wert
haben.

Default ist "USER"

do-with-timeout Makro

(do-with-timeout (time . timeoutforms) &body body)

Fiihrt body aus. Wenn body noch nicht zu Ende gelaufen ist stoppt es nach
time Sekunden und gibt den Wert von timeoutforms zuriick. Dieses Makro
verwendet bei Allegro CL und auf dem TI-Explorer systemspezifische Funktio-
nen.

Es gibt eine portable Common-Lisp Variante, die bei jedem Aufruf der Funk-
tion add-inactive-edge durch Aufruf der Funktion timer die Zeit {iberpriift.

KAPITEL 6. REFERENZHANDBUCH 66

Wenn add-inactive-edge nicht aufgerufen wird, bricht die Common-Lisp-
Variante bei Uberschreiten des Timeouts allerdings nicht ab.

with-time Makro
(with-time &body body)

Das Makro with-time bestimmt die fiir die Ausfithrung von body benétigte
CPU-Zeit und gibt als Werte die Zeit in Sekunden und den Wert von body
zuriick.

k-with-time Makro
(k-with-time k &body body)

Fiihrt body k-mal aus und gibt die Zeit zuriick. Damit kann man auch sehr
kleine Laufzeiten, die unter der Granularitéit des Timers liegen, vergleichen.

6.4 Scanner

Der Zeilenscanner basiert auf dem in Abschnitt 6.5 beschriebenen ATN-Interpre-
ter. Er enthélt ATNs fiir eine Eingabezeile, Kategoriedefinitionen und Abkiirzungen.

scan Funktion
(scan string)
Diese Funktion zerlegt string mit dem ATN-Scanner in Eingabeelemente.

> (scan "Der Berg ruft.")
("Der" "Berg" "ruft" #\)

scan-line Funktion
(scan-line &key mult conv)

Diese Funktion liest eine Zeile vom Terminal und zerlegt sie mit dem ATN-
Scanner in Eingabeelemente. Ist mult wahr, liest der Scanner mehrere Zeilen.
Wenn conv wahr ist, werden Umlaute mit den Angaben aus *conv-table*
umgewandelt.

conv-tablex Variable

Auf verschiedenen Plattformen gibt es unterschiedliche Arten, Umlaute dar-
zustellen. Fiir die Portabilitdt von Daten kann eine beliebige ASCII-Notation
fiir Umlaute definiert werden, z.B. /ae fiir & Die Umwandlung wird vor dem er-
sten Verarbeitungsschritt vorgenommen. Damit kann man Umlaute auch dann
eingeben, wenn es auf einem System nicht moglich ist, Umlaute in der internen
Darstellung des Lexikons einzugeben. Der Defaultwert der Umwandlungstabel-
le ist:

P (("/ue™ . "\374")
("/oe" . "\366")
("/ae"™ . "\344")
("/ss" . "\337")

KAPITEL 6. REFERENZHANDBUCH 67

("/Ue" . ||\334u)
(n/oen . "\326")
("/Ae" . u\304u)))

6.5 ATN-Interpreter

Im Compilerbau definiert man Scanner h#ufig durch endliche Automaten
[Aho et al. 86]. Fiir die Verarbeitung natiirlicher Sprache geniigt deren Méch-
tigkeit in einigen Fillen nicht mehr. Die Darstellung eines endlichen Automaten
als FSTN (Ubergangsnetz, Finite State Transition Network) erweitert man in
einem ersten Schritt zum RTN (Recursive Transition Network), bei dem rekur-
siv weitere Netze gerufen werden. RTNs sind dquivalent zum Kellerautomaten,
erkennen also kontextfreie Sprachen. Erlaubt man zusétzlich noch Zuweisun-
gen an Register und Bedingungen fiir Ubergéinge, dann erhilt man das ATN
(Augmented Transition Network). ATNs haben die Berechnungsméchtigkeit
der Turing-Maschine. Der Einsatz von ATNs ist sinnvoll, wenn die zu erken-
nende Sprache nur in wenigen Punkten von einer reguldren Sprache abweicht,
denn dann bleiben die Netze iibersichtlich. Der von ChaPLin zum Scannen
von Eingabestrings eingesetzte ATN-Interpreter ist eine Erweiterung des in
[Charniak et al. 87] beschriebenen RTN-Interpreters.

6.5.1 Netzdefinition

defnet Makro
(defnet name ([register]*) [description]+)
Dieses Makro definiert ein ATN.

name Ein Symbol, das den Namen des neuen Netzes angibt.

Jedes register ist ein Symbol, das ein Register definiert. Diese Register kénnen
im Netz verwendet werden. Die in defnet eingefiihrten Variablen sind innerhalb
eines Netzes lokal. Zusétzlich ist die globale Variable ~hold- und das Register
-current- definiert.

Die Netzbeschreibung description gibt an, wie die Worter der vom ATN er-
kannten Sprache aussehen. Die an reguldre Ausdriicke angelehnte Notation
erlaubt folgende Konstrukte:

e (SEQ <description> <description> ...)

Bei einer Sequenz von Kanten bzw. Beschreibungen miissen die Konsti-
tuenten nacheinander im Wort vorkommen.

o (OPTIONAL <description> <description> ...)
Die Konstituentenfolge kann im Wort vorkommen oder nicht. Der Back-
trackingalgorithmus testet das Wort zuerst ohne die optionale Folge.

e OPTIONAL* <description> <description> ...)
Wie OPTIONAL, nur dafl die Konstituentenfolge beliebig oft stehen kann.

KAPITEL 6. REFERENZHANDBUCH 68

e (EITHER <description> <description> ...)
Nur eine der alternativen Beschreibungen mufi beim Ablauf erfolgreich
durchlaufen werden.

e (CAT <category> [:test <expr>] [:do <expr>])

Das néchste Eingabeelements mufi vom Typ <category> sein und der
Test darf nicht nil ergeben. In diesem Fall wird die Eingabe gelesen und
die :DO-Anweisung ausgefiihrt. Die vordefinierte Kategorie ANY liest ein
beliebiges Eingabeelement

e (WORD <word-or-list> [:test <expr>] [:do <expr>])

Entspricht CAT, nur wird anstelle einer Kategorie ein bestimmtes Einga-
beelement oder eine Liste moglicher Eingabeelemente angegeben.

Dabei ist zu unterscheiden, ob die Eingabe aus einer Liste oder von einem
String gelesen wird

Liste
table Nichstes Wort mufl table sein.
(table chair) Nichstes mufl table oder chair sein.
"table" String "table" muf folgen.

String
\#t Nichstes Zeichen mufl \#t sein.
(\#t \#a) Néchstes Zeichen mufl \#t oder \#a sein
"table " FEines der Zeichen \#t \#a \#b \#1 oder \#e

muf} folgen.

e (JUMP [:test <expr>] [:do <expr>])

Falls der Test erfiillt ist, wird die Aktion ausgefiihrt. Dabei wird kein
Eingabezeichen gelesen.

e (PUSH <name> [:test <expr>] [:do <expr>])

Falls der Test erfiillt ist, geht der Interpreter in das Netz mit Namen
<name> iiber. Die :D0 Aktionen werden erst nach dem Riicksprung aus
dem aufgerufenen Netz ausgefiihrt

e (POP <expr> [:test <expr>])

Falls der Test erfiillt ist, wird das Netz verlassen. Der Riickgabewert des
Netzes ist der Wert des ersten <expr>.

Beschreibungen, die einen : TEST Parameter enthalten, werden ausgefiihrt, wenn
die Auswertung des Tests nicht nil ergibt. Andernfalls wird ein Backtracking
ausgelost. Wird ein optionaler : TEST-Parameter nicht angegeben, gilt die Be-
dingung als erfiillt.

Als Netzvariable sind aufler den in defnet eingefiihrten lokalen Variablen die
globalen Variablen ~hold- und -current- definiert. Die Lisp-Ausdriicke <expr>
verwenden diese Netzvariablen. In den Testausdriicken ist ~current- an das

KAPITEL 6. REFERENZHANDBUCH 69

ndchste zu lesende Eingabeelement gebunden (lookahead). In den :DO0-Aus-
driicken enthélt —current- dagegen das gerade gelesene Eingabeelement oder
im Falle von PUSH den vom aufgerufenen Netz zuriickgegebenen Wert.

eoinp Funktion
(eoinp element)
Testet, ob das Element dem Zeichen fiir ,,Ende der Eingabe“ entspricht. Die
Funktion benutzt man in der Form (eoinp -current-) zur Formulierung von
Testbedingungen.

6.5.2 Kategorien

Die Terminale des ATNs sind die Kategorien. Die vordefinierte Kategorie
ANY steht fiir ein beliebiges Eingabeelement. Sie darf nicht mit defabbrev,
getabbrev oder categoryp iiberdefiniert werden.

defabbrev Makro
(defabbrev category elements)

Definiert eine Kategorie durch die Liste elements ihrer Elemente.
getabbrev Makro
(getabbrev category)

Gibt die Liste der Elemente, die zu der angegebenen Kategorie gehoren, zuriick.

categoryp Funktion
(categoryp element category)
Testet, ob das Element von der angegebenen Kategorie ist

6.5.3 Aufruf des ATN-Interpreters

atn Funktion
(atn sentence &key start exhaustive trace level)

Beim Aufruf des ATN-Interpreters wird als Argument sentence eine Einga-
besequenz, d.h. ein String oder eine Liste iibergeben. Die Keywordparameter
haben folgende Bedeutung:

start Startkategorie, der Name des top-level-Netzes (Default: S)

exhaustive Flag, das angibt, ob der Interpreterlauf nur dann erfolgreich be-
endet wird, wenn die Eingabesequenz am Ende leer ist. (Default: t)

trace Trace-Level folgender Form:

NIL kein Trace (Default)
1 nur wichtigste Informationen ausgeben,
2 nur wichtige Informationen ausgeben,

3 alle Informationen ausgeben

KAPITEL 6. REFERENZHANDBUCH 70

level In manchen Féllen gibt es mehrere Losungen. Der Parameter level
ist ein Integer, der die Nummer der Losung nach der durch das Netz
festgelegten Abarbeitungsreihenfolge angibt. Bei 1 wird die erste Losung,
bei 2 die zweite ausgegeben Default ist 1.

Wenn das Netz erfolgreich durchlaufen wurde, gibt die Funktion atn zwei Werte
zuriick: das Ergebnis der POP-Anweisung des top-level-Netzes und den Rest der
Eingabesequenz (NIL falls exhaustive=t).

6.5.4 Beispiele fiir ATNs

Die folgenden Beispiele zeigen, wie einfache Netze fiir den ATN-Interpreter
aussehen und wie der Interpreter aufgerufen wird. Das folgende Netz ist ein
rekursives Ubergangsnetz (RTN), weil es auf Registerzuweisungen verzichtet.
Es erkennt Folgen vom Typ a™b™.

(defnet demol ()
(optional
(word a) (push demol) (word b)))

Der ATN-Interpreter wird folgendermaflien aufgerufen:

> (atn ’(a a abbb) :start ’demol)

T

NIL

> (atn ’(a a abbbb) :start ’demol)

NIL

NIL

> (atn ’(a a abbbb) :start ’demol :exhaustive nil)
T

(aaabbbb)

Wenn :exhaustive nil ist, dann kann das ATN auch erfolgreich durchlaufen
werden, ohne ein Eingabezeichen zu lesen. Wenn aus einem String anstatt aus
einer Liste gelesen werden soll, sieht das Netz folgendermafien aus:

(defnet demol-1 ()
(optional
(word "a") (push demol-1) (word "b")))
> (atn "aaabbb" :start ’demol-1)
T

Das néchste Beispiel demo2 beschreibt die gleiche Sprache wie demo1. Die Ana-
lyse wird aber in einer anderen Reihenfolge durchgefithrt. Man erkennt den
Unterschied, wenn :exhaustive den Wert nil hat.

KAPITEL 6. REFERENZHANDBUCH 71

(defnet demo2 ()
(either
(seq (word a) (push demo2) (word b))
(jump)))

> (atn ’(a aabbbb) :start ’demo2 :exhaustive nil)
T
(b)

Zur Beschreibung der Sprache ab"c" reicht ein RTN nicht aus. Das Netz demo3
erkennt Folgen vom Typ ab"c™. Das Subnetz demo3-1 entspricht demo1, legt
aber zusétzlich jedes gelesene a nach -hold-. Der Rest des Netzes demo3 liest
dann c™. Die auskommentierte Zeile des Netzes zeigt, wie man zur Fehlersuche
den Wert eines Registers ausdrucken kann.

(defnet demo3 ()
(push demo3-1)
;3 (ump :do (print -hold-))
(optionalx*
(word ¢ :test -hold- :do (pop -hold-)))
(pop t :test (null -hold-)))

Das Subnetz fiir a™b™:

(defnet demo3-1 ()
(optional
(word a :do (push -current- -hold-))
(push demo3-1)
(word b)))

In den :do-Anweisungen sind push und pop nicht Netzschliisselworter sondern
bezeichnen die entsprechenden Lispfunktionen.

> (atn ’(a a bbcc) :start ’demo3)
T

NIL

> (atn ’(a abbccc) :start ’demo3)
NIL

NIL

Kapitel 7

Implementierung

7.1 Verlauf der Implementierung

ChaPLin ist Ergebnis einer Forschungsarbeit und ist als Hilfmittel fiir For-
schungsarbeiten konzipiert. Im Laufe der Zeit wurden verschiedene Moglichkeiten
und Varianten getestet und implementiert.

Ausgangpunkt der Entwicklung war die Beschreibung der Interlisp-Implemen-
tierung eines einfachen Chart-Parsers in [ThompsonRitchie 84]. Als erste Ver-
sion reimplementierte Gerrit Burkert diesen Parser mit an Common Lisp ange-
pafiten, effizienteren Datenstrukturen fiir die Chart (4/88). Zur Version 2 wurde
der Parser erweitert. Unter anderem wurde die Moglichkeit zum Bottom-Up-
Parsen eingefiihrt, die Grammatik anders représentiert und die Effizienz ver-
bessert (11/89). In der dritten Version des Parsers wurde die Moglichkeit zur
Verarbeitung unterschiedlicher Grammatikformalismen eingefiihrt (4/92).

Die jetzt vorliegende Version 3.2 von ChaPLin entstand nach einer Uberarbei-
tung durch Mathis Lothe bis zum Januar 1995. Die einzige Erweiterung ist die
Kantenverschmelzung, ansonsten wurden die internen Schnittstellen des Parsers
liberarbeitet, die Trennung zwischen Grammatiktyp und Parserkern verbessert,
der Code innerer Schleifen optimiert und das Programm dokumentiert.

Die Uberarbeitung begann am Kern des Parsers, nimlich an der Chart und
der Schnittstelle zwischen den Grammatiktypen und der syntaktischen Phase.
Darauf folgten der Ausgabegenerator, die Grammatiktypen selbst und die Uti-
lities. Bei der Uberarbeitung wurden die Anforderungen fiir die einzelnen Teile
festgelegt.

7.2 Stand der Implementierung

Die zentralen Komponenten des Parsers sind bereits klar definiert und in ei-
nem stabilen Zustand. Die Anforderungen an Ausgabegenerator, Grammatik-
und Lexikonschnittstelle kann man dagegen nicht auf einfache Art vollstindig
festschreiben. Daher sind die Begriffe und die Arbeitsweise fiir diese Teile noch
nicht so iibersichtlich spezifiziert wie fiir den Kern des Parsers. Die folgen-

72

KAPITEL 7. IMPLEMENTIERUNG 73

de Aufstellung beschreibt den Zustand der einzelnen Teile und nennt mogliche
Verbesserungen:

Chart Die Chart wurde von Grund auf iiberarbeitet und enthilt keine gram-
matiktypabhingigen Anteile mehr. ChaPLin erzeugt fiir jeden Satz eine
neue Chart, damit die garbage collection nach dem Parsen eines Satzes
den von der Chart verbrauchten Speicherplatz wieder vollsténdig freigibt.
Unter Allegro CL auf einer SUN-SPARC Station erwies sich dieses Vor-
gehen als vorteilhaft.

syntaktische Phase Die syntaktische Phase ist griindlich tiberarbeitet und
optimiert worden. Die Trennung zwischen Kern und Grammatiktyp ist
vollzogen. Nach einer Verbesserung der Lexikonschnittstelle kann man
noch die Mechanismen zur Behandlung von Stringkategorien vereinfachen.

Ausgabegenerator Der Ausgabegenerator wurde neu strukturiert und die
grammatiktypspezifischen Anteile ausgegliedert. Einige Vereinfachungen
und Vereinheitlichungen wiren aber wiinschenswert:

Erzeugung von :alt-Bdumen klarer definieren.

Spezifikationsiibersetzung und Steuerung von Filter und Postprozes-
sor vereinheitlichen.

Vereinfachung der Spezifikationsprache fiir die Baumerzeugung.

Lexikon Im Bereich der Lexikonschnittstelle sind noch einige Dinge verbesse-
rungsbediirftig:

Die Lexikonstruktur enthélt aus Kompatibilitédtsgriinden unbenutzte
iiberzéihlige Slots. Die alten Lexika sollten untersucht werden und
Referenzen auf diese unbenutzten Slots entfernt werden.

Fiir jedes Attribut des Lexikons existiert eine Zugriffsfunktion, die
angegeben werden mufl. Damit ist die Menge der Lexikonattribute
von der Lexikonschnittstelle festgelegt. Ein besseres Ubergabeproto-
koll wire: Jedes Lexikon erzeugt gleich die Liste (:lex ...). So
konnen Lexika verschiedene Angaben enthalten, und man kann den
Attributsatz den Bediirfnissen des Grammatiktyps anpassen.

Die Lexikonschnittstelle enthélt noch :sf-grammatiktypspezifische
Dinge (Grund s.o.).

Die Lexikonschnittstelle sollte eine Komponente erhalten, die ein au-
tomatisches Memoizing der hiufigsten Worter betreibt. Ein Vorbild
befindet sich in der Datei textprocessor.lisp.

Die Lexikonschnittstelle sollte Datentypfehler in Lexikondaten ab-
fangen, z.B. indem sie Defaultwerte liefert. Bisher geschieht dies
ansatzweise im Parser selber, ansonsten fiihrt fehlerhafte Lexikonin-
formation zu einem Fehlverhalten des Parsers.

KAPITEL 7. IMPLEMENTIERUNG 74

Grammatiktypen Probleme bei den Grammatiktypen entstehen meist durch
die Arbeitsteilung zwischen den Grammatiktypmodulen und den anderen
Teilen des Parsers.

Der Grammatiktyp :fu — ein Grammatiktyp fiir Featureunifikationsgram-
matiken von Petra Schmidt [Schmidt 92] — ist noch nicht an die Version
3.2 angepaflt.

Grammatik Die Mechanismen zur Definition von Grammatiken sollten in ei-
nigen Punkten noch vereinfacht werden:

e Das Verfahren zum Lesen der Regeln und Uberpriifen ihrer Syntax
ist noch relativ kompliziert (mehrere Uberpriifungsmechanismen).

e Bisher ist es moglich, zu einer gegebenen Regelmenge den Gramma-
tiktyp zu bestimmen. Diese Funktionalitit ist meist tiberfliissig. Ein
Verzicht darauf vereinfacht den Lademechanismus.

Beim Laden von Grammatiken werden Symbole erzeugt. Der Parser tragt
sie in das Package *nlpkg* ein. Zu diesem Zeitpunkt werden auch String-
kategorien zu Symbolen umgeformt. Bei Lexikonaufrufen mufl dieses
Package auch verwendet werden, dafiir mufl zur Zeit die Variable *nlpkg*
richtig gesetzt sein. Ein flexiblerer Mechanismus wire wiinschenswert.

Inkrementelles Parsen Der inkrementelle Parser verwendet systemspezifi-
sche Funktionen und Konstantendefinitionen zur Ansteuerung des Ter-
minals. Diese miissen an das jeweilige System angepafit werden.

Die augenblickliche Version des inkrementellen Parsers parst nach jedem
gelesenen Lexem und reagiert erst dann wieder auf Eingaben, wenn dieser
Teil des Parsevorgangs abgeschlossen ist. Bei Allegro CL 4.2 auf einer
SUN-SPARCstation 10 kann man problemlos damit arbeiten. Vermutlich
ist der Parser schnell genug oder die Eingabe wird sinnvoll gepuffert.

Sollte es auf einer Plattform noétig sein, auch wihrend des Parsens die
Tastatur abzufragen, dann mufl der Aufruf des inkrementellen Scanners

#+<Plattform>(when *incremental* (read-input-char))

an einer geeigneten Stelle im Parser eingefiigt werden, z.B. in die Funktion
add-inactive-edge . Die Funktion parse-incremental mufl dann die
globale Variable *incremental* entsprechend belegen.

Utilities Die Funktionen zur graphischen Ausgabe von Parsebdumen sind
plattformabhéngig. Es existieren <ere Versionen fiir TI-Explorer und
CLX. Bei Bedarf sollten Ausgaben fiir weitere Plattformen hinzugefiigt
werden, z.B. fiir CLIM oder Garnet.

KAPITEL 7. IMPLEMENTIERUNG 75

7.3

Weiterentwicklung und Ausblick

Ziel der Weiterentwicklung muf es sein, ein Werkzeug fiir die Verarbeitung na-
tiirlicher Sprache zu erhalten. Da verschiedene Anwendungen unterschiedliche
Anforderungen an ihren Parser stellen, ist die Flexibilitdt des Parsers besonders
wichtig.

In einigen Teilbereichen ist dieses Ziel bereits erreicht:

Verschiedene Grammatiken und Grammatiktypen koénnen einfach erstellt
und ausgetauscht werden.

Der Parser behandelt unterschiedlich vorverarbeitete Eingaben.

Die Ausgabeform ld8t sich flexibel den Bediirfnissen der Anwendung an-
passen.

Die genannten Moglichkeiten sind weitgehend frei miteinander kombinier-
bar.

Dennoch bleibt auch fiir die Zukunft noch einiges zu tun. AuBer einer Korrektur
der im vorigen Abschnitt genannten Probleme der Einzelkomponenten sind noch
folgende generelle Verbesserungen wiinschenswert:

Einige Spezifikations- und Steuersprachen sind noch zu kompliziert und
zu miithsam zu erlernen, vor allem im Bereich der Ausgabegenerierung.

Der Attributierungsmechanismus ermoglicht es, Teile der semantischen
Analyse schon in der Ausgabephase des Parsers durchzufiihren. Da-
bei steht die kompakte Darstellung des Parsewalds in der Chart zur
Verfiigung.

Eine erweiterte Attributierungsspezifikation nach Vorbildern aus dem Com-
pilerbau (vgl. syntaxgesteuerte Ubersetzung in [Aho et al. 86]) wiirde
diese Moglichkeiten fiir den Anwender deutlicher machen.

Der Leistungsumfang von ChaPLin sollte erweitert werden, d.h. Aufga-
ben, die jetzt noch von anderen Programmen iibernommen werden, wie
das Parsen grofler Textkorpora oder die Verwendung verschiedener Lexi-
ka sollten von standardisierten Zusatzbausteinen des Parsers iibernommen
werden.

Bei den Hilfsprogrammen kann eine graphische Anzeige von Ergebnissen
die Untersuchung des Parsevorgangs vereinfachen und damit den Nutzen
von ChaPLin fiir den Einsatz in der Spachverarbeitung erhéhen.

Trotz aller Wiinsche und Verbesserungsvorschldge ist ChaPLin bereits in der
augenblicklichen Version 3.2 eine stabile und flexible Komponente fiir den Auf-
bau eines sprachverarbeitenden Systems. Daher:

Viel Spafl und Erfolg mit ChaPLin 3.2 !!!

Anhang A

Beispiele

A.1 Beispiellexikon

Dieses Testlexikon enthélt die Eintrdge fiir das Beispiel in Kapitel 3. Es ent-
nimmt die Eintrége aus einer Liste von Datensétzen, die bereits in dem vom
:sf-Grammatiktyp geforderten Format abgelegt sind. Fiir den Einsatz in ei-
nem Anwendungsprogramm kann der Parser an externe Lexika und ggf. eine
Morphologiekomponente angeschlossen werden.

(in-package "USER")

(if (fboundp ’chp:defmod) N VERSION STRING
(chp:defmod :lexicon "Lexikonschnittstelle Beispiel" "13-DEZ-95")
(error "x* file PARSER not yet loaded *x"))

;53 sample data
(setq *sample-lex-datax
>(("Der" ("Der" det "DER" 1 nil "*DER"))
("Berg" ("Berg" n "BERG" 1 ((num sg) (gen mask)) "*BERG"))
("ruft" ("ruft" vf "RUFT" 1 ((time praes) (pers p3) (num sg)) "*RUFT"))
(#\. ("." punkt "." 1 nil nil))))

;;; define lexicon format
(setq *sample-lex*
(chp:make-lex
tentries #’(lambda (word &optional igncap)
(cdr (assoc word *sample-lex-data* :test #’equal)))
:form #’first
:cat #’second
:word #’third
:conf #’fourth
rattr #’fifth
:sem #’sixth))

(setq chp:*lexicon* *sample-lexx*)

76

ANHANG A. BEISPIELE 7

A.2 Beispielgrammatik

Diese Grammatik ist ebenfalls fiir die Beispiele aus Kapitel 3 und einfache
Tests vorgesehen. Die Regeln entsprechen dem in Abschnitt 5.5 beschriebenen
Format des :sf-Formalismus. Sie enthalten aber keine Anweisungen zur Featu-
rebehandlung, so daf} es sich hier um eine rein kontextfreie Grammatik handelt.

(in-package "USER")

M VERSION STRING

(if (fboundp ’chp:defmod)
(chp:defmod :grammar "Deutsche Beispielgrammatik :sf" "13-DEZ-95")
(error "x* file PARSER not yet loaded **"))

;33 Grammar definition

(setq *sample-grammar*
(chp:define-grammar

>((8 -> (NP VP PUNKT) 1 NIL NIL NIL -)
(NP -> (DET N) 1 NIL NIL NIL -)
(NP -> (DET ADJ N) 1 NIL NIL NIL -)
(vP -> (VF) 1 NIL NIL NIL -)
(VP -> (VF NP) 1 NIL NIL NIL -))

:type :sf

:ignore ()))

(setq chp:*grammar* *sample-grammar*)

Anhang B

Verzeichnis der zugehorigen
Dateien

Dieser Anhang beschreibt die Dateien des Parsers, deren Funktionalitit in die-
sem Bericht dokumentiert oder erwahnt ist. Dateien, die dariiber hinaus gehen-
de Erweiterungen darstellen, werden hier nicht aufgefiihrt. Sie sollten jedoch
in die Datei doc/files<version>.txt eingetragen werden.

B.1 Unterverzeichnisse

Der Quellcode liegt im Hauptverzeichnis von ChaPLin.

Binaries bin
In diesem Verzeichnis liegen die kompilierten Dateien von ChaPLin. Sie
werden von load-module automatisch verwaltet und bei Bedarf neu kom-
piliert.

Dokumentation doc
Die Dokumentationsdateien in diesem Verzeichnis sind ASCII-Texte, die
bei neuen Versionen laufend aktualisiert werden sollten.

Beispiele Examples
Dieses Verzeichnis enthilt verschiedene Grammatiken und Lexikonschnitt-
stellen

B.2 Codedateien von ChaPLin

Lader load-parser.lisp
Die Startdatei enthélt einen Aufruf der Funktion load-module, die den
Parser lddt und bei Bedarf (teilweise) kompiliert. In diese Datei werden
alle plattform- und installationsabhéngigen Einstellungen eingetragen.

Modulverwalter load-module.lisp
Implementation der Funktion 1oad-module. Dieser Modulverwalter kom-

78

ANHANG B. VERZEICHNIS DER ZUGEHORIGEN DATEIEN 79

piliert die Dateien nach Bedarf und legt die Binédrdateien in das Unter-
verzeichnis bin.

Parser parser-<version>.lisp
Der Parserkern enthélt die Definitionen von Chart und Parserfunktionen
und die Mechanismen zur Definition von Grammatiktypen, Grammatiken
und Lexika.

Grammatiktypen grammar-types-<version>.lisp
Diese Datei definiert die Grammatiktypen fiir einfach kontextfreie (:cf)
und flat feature (:sf) Grammatiken.

Utilities utilities-<version>.lisp
Spezielle Aufrufvarianten fiir den Parser, Zeitmessung, Timeout und Char-
tanalysen.

Scanner scan-line<version>.lisp
Schnittstellenfunktionen und Netzdefinitionen fiir den Zeilenscanner.

ATN-interpreter atn-interpreter-<version>.lisp
ATN (Augmented Transition Network) Interpreter

Inkrementeller Parser incremental-<version>.lisp
Liest Eingabe zeichenweise und parst sobald mdoglich. Enthélt einen eige-
nen, inkrementellen Scanner, der Token fiir Token an den Parser iibergibt.
Der inkrementelle Parser verwendet plattformabhéingige Funktionen.

B.3 Dokumentationsdateien

Die Dokumentationsdateien liegen normalerweise im Unterverzeichnis doc. Sie
enthalten Angaben iiber den aktuellen Zustand der Installation und sollten
daher nach Anderungen auf den neuesten Stand gebracht werden.

Ubersicht README
Diese Datei sollte im Hauptverzeichnis liegen und enthilt Information
iiber die aktuelle Version.

Dateiliste files-<version>.text
Das Dateiverzeichnis enthélt eine Beschreibung aller Dateien und ihrer
Bedeutung.

Fehlerliste error-codes.txt
Der Chartparser benutzt fiir seine internen Fehlermeldungen eine eigene
Numerierung. Die Fehlerliste fiir ChaPLin 3.2 ist in Anhang C abge-
druckt. Die Datei enthélt ein Verzeichnis aller Fehlernummern und Feh-
lermeldungen und fiir jeden Fehler einen kurzen Hinweis auf Bedeutung
und typische Ursachen.

Anhang C

Fehlertabelle

ChaPLin erzeugt numerierte Fehlermeldungen durch Aufruf der Funktion
chp-error. Die Aufstellung enthilt die Fehlermeldungen aller in diesem Be-
richt beschriebenen Teile des Parser und Hinweise auf Ursache und Losungs-
moglichkeiten. Fehlermeldungen in eigenen Erweiterungen sollten in der Datei
doc/errors.txt dokumentiert werden.

00 Ladevorgang

01 Ladefunktion load-module nicht gefunden.
02 Grammatikdatei kann nicht vor dem Parser geladen werden.
03 Lexikondatei kann nicht vor dem Parser geladen werden.

04 Grammatiktyp kann nicht vor dem Parserkern geladen werden.

10 Initialisierung

11 Wert fiir den Parameter £ind im Top-Down-Modus unzulissig.

20 Lexicon
Die Fehler 27-29 werden von einem Patch zur Kompatibilitdt mit dlteren
Lexika erzeugt.
21 Lexikoneintrige <item> sind inkonsistent.
22 Im Lexem <item> fehlt die Kategorie.
27 Probleme beim Zugriff auf die Kategorie.
28 Probleme beim Zugriff auf das Wort (Grundform).
29 Probleme beim Zugriff auf die urspriingliche Wortform.

80

ANHANG C. FEHLERTABELLE 81

30 Chartzugriff

31 Undefinierter Kantentyp <edge-type> bei der Expansion des Makros
insert-edge . Zulissig sind :active, :inactive oder der Name
der Konstruktorfunktion eines vom Grammatiktyp definierten Les-
artkantentyps. Tritt meist beim Laden eines Grammatiktyps auf.

32 Ungzuléssige Knotennummer <number>. Die Knotennummer ist ent-
weder kein Integer oder liegt auflerhalb des zuldssigen Bereichs.

33 Unzuléssige Kantennummer <number>. Die Kantennummer ist ent-

weder kein Integer oder liegt auflerhalb des zuldssigen Bereichs.

40 Ausgabegenerator
Die Fehler 41-43 entstehen durch Datenfehler in der Chart, 45-47 durch
fehlerhafte Spezifikationen.

41 chart-subtree <edge> ist keine Kante.

42 chart-subtree Terminalkante <edge> darf keine Ignore-Kante sein.
Der Ausgabegenerator kann ein Terminalsymbol nicht durch seine
Konstituenten ersetzen. Der Fehler kann auch fiir einen Struktur-
eintrag (:struct ...) auftreten.

43 Unzuléssiger Inhalt <content> einer Terminalkante. Der Inhalt mufl
mit :lex oder :struct beginnen.

45 Vom Grammatiktyp <type> erzeugte Ausgabespezifikation <spec> ist
undefiniert.

46 Fehler in der Baumspezifikation.

49 :alt-Baum kann nicht erzeugt werden.
50 Grammatik
51 Syntaxfehler in der Regel <rule>.
Regel entspricht nicht der Regelsyntax des Grammatiktyps.

52 Grammatiktyp <type-name> unbekannt.

53 Kein passender Grammatiktyp verfiighar.
Der Parser sucht nach einem Grammatiktyp zur Regelmenge. Der
beabsichtigte Typ ist nicht definiert oder die Grammatik ist fehler-
haft.

54 Unzuléssiger Wert fiir den Parameter mode. Erlaubt sind :td fiir top-
down und :bu fiir bottom-up.

70 Grammatiktyp :cf

71 Kurzspezifikation <type> im :cf-Grammatiktyp nicht definiert.

ANHANG C. FEHLERTABELLE 82

80 Grammatiktyp :sf
Die Fehler 85-88 entstehen beim Aufbau der Semantikstruktur.
81 Kurzsperzifikation <type> im :sf-Grammatiktyp nicht definiert.
82 Syntaxfehler in Regel <rule>.
85 Zugriff auf nicht vorhandene Kategorie in (&SEM cat).
86 Zugriff auf nicht vorhandenes Feature in (¥ATTR fea).
87 Zugriff auf nicht vorhandenes Feature in (&ATTR (cat fea)).
88 Zugriff auf nicht vorhandene Kategorie in (&ATTR (cat fea)).

110 Utilities

111 Parserkern muf} vor den Utilities geladen werden.
112 graphische Ausgabe in dieser Implementierung nicht moglich.
113 Die Baumform <tree> kann nicht angezeigt werden.

114 Unzulissige Knoten <vertex> fiir den Parameter :from
in display-chart .

117 Unzuléssiger Kantentyp <type> in Funktion display-chart. Er-
laubt sind :all, :active, :inactive und :tree.

130 Zeilenscanner

131 Fehler im ATN-Interpreter: unbekanntes ATN Schiisselwort.
132 Fehler in der Netzbeschreibung: falsch plaziertes POP.
133 Netz in PUSH Anweisung unbekannt.

134 Keine weiteren Zeichen in der Eingabesequenz.

Anhang D

Inhaltverzeichnis des Codes

Die beiden wichtigsten Dateien von ChaPLin 3.2 sind der Parser und die Gram-
matiktypdefinition. In diesen beiden Dateien ist im Code eine Gliederung als
Suchhilfe angebracht. Die Teile 1-5 gehoren zum Parserkern, Teil 6 zu den
Grammatiktypen. Zum schnelleren Uberblick ist hier das Inhaltsverzeichnis
dieser Gliederung abgedruckt.

;355 1. basic defs

N 1.1 package declaration
HHH 1.2 module defs

HHH 1.3 global parameters

53535 2. chart

I 2.1 definitions

N 2.2 interface functions
;555 3. parser

N 3.1 interface functions
I 3.2 fill chart with terminals
HHHH 3.3 parsing loop

;335 4. output generation

.1 main function

form output from edges
create tree from edge
get success edges
return parsed fragments
expand edges to tree edges
HHH .7 create alt trees

;555 5. interfaces

HHHH 5.1 grammar types

HHH 5.2 grammars

5555
5335
5335
5555
5335

399

O NS N NS
o O W N

- 5.3 lexicon
;555 6. grammar types
- 6.1 cf

- 6.2 sf

83

Glossar

Ableitung (Derivation) Ergebnis einer oder mehrerer Regelanwendungen.

Aktivierung Bei der Aktivierung der Chart werden fiir Regeln, deren Anwen-
dung moglich erscheint, aktive Kanten in die Chart eingetragen.

Attribut Information, die die Syntaxanalyse nicht beeinflufit.

Chart ChaPLin reprisentiert die Zwischenschritte der Syntaxanalyse als Kan-
ten eines gerichteten Pseudographen [Harary 74|, der Chart. Die Knoten
der Chart stehen fiir die Zwischenrdume im Satz, die Kanten iiberspannen
also einen bestimmten Teil des Satzes.

Eingabeelement Eingabeelemente sind Wortformen, Zahlen oder Satzzeichen.
Der Scanner zerlegt eine Zeichenkette (String) in Eingabelemente. Im
Compilerbau entsprechen die Eingabeelemente den Tokens [Aho et al. 86].

Feature Information, die neben der Kategorie zur Steuerung der Syntaxana-
lyse herangezogen werden kann.

Grammatik Eine Menge von Ableitungsregeln [Aho et al. 86].

Grammatikformalismus Ein Grammatikformalismus definiert Form und Be-
deutung der Grammatikregeln.

Grammatiktyp Implementation eines Grammatikformalismus zur Verwen-
dung fiir ChaPLin.

Graph Ein Graph besteht aus Knoten, die durch Kanten verbunden sind (siehe
[Harary 74]). Sowohl die Chart als auch die verwendeten Baumstrukturen
werden hier als Graphen représentiert.

Grundform Die Grundform (auch Nennform) ist die unflektierte Form eines
Worts (z.B. Grundform “Haus” zur Wortform “H#user”).

Grundregel Das von ChaPLin verwendete Ableitungsverfahren der Syntax-
analyse mit einer aktiven Chart.

Kategorie Die Kategorie ist die wichtigste Information bei der Syntaxanaly-
se (Grammatiksymbol). Bei Wortern ist die Kategorie die Wortart, bei
Nichtterminalsymbolen benennt sie das grammatikalische Konstrukt.

84

ANHANG D. INHALTVERZEICHNIS DES CODES 85

Kantenverschmelzung Wenn mehrere Ableitungswege zum gleichen Gram-
matiksymbol fithren, wird nur eine Kante angelegt.

Lesart Bei mehrdeutigen Grammatiken oder bei Mehrdeutigkeiten bei der le-
xikalischen Analyse der Eingabesequenz kann es mehrere Ableitungswege
fiir ein Symbol geben. Diese Ableitungswege heiflen Lesarten.

Lexikon Das Lexikon bestimmt zu einer Wortform die Grundform und die
morpho-syntaktischen Merkmale.

Modus Es gibt zwei Parsemodi: Beim bottom-up-Parsen beginnt die Kon-
struktion des Syntaxbaums an den Blattern, beim top-down-Parsen an
der Wurzel [Aho et al. 86].

Natiirliche Sprache Dieser Begriff wird fiir die Sprachen des Menschen im
Gegensatz zu formalen Sprachen oder Programmiersprachen benutzt.

Parser Programm, das entscheidet, ob der Eingabesatz in die Beschreibung der
Grammatik fillt und im Erfolgsfall dem Eingabesatz einen oder mehrere
Syntaxbdume zuordnet.

Regel Bestandteil der Grammatik.

Scanner Der Scanner zerlegt die zunéchst als Zeichenkette vorliegende Einga-
be in Eingabeelemente.

Schlingen Kanten, bei denen Anfangs- und Endknoten gleich sind.
Semantik Bedeutung sprachlicher Ausdriicke [Aho et al. 86].

Spezifikation Einstellungen an ChaPLin werden mit Spezifikationen vorge-
nommen. Spezifikationen sind normalerweise Listen von Schliisselwortern
und zugeordneten Werten.

Startsymbol Zielkategorie der Grammatik. Die Syntaxanalyse ist erfolgreich,
wenn aus der Eingabesequenz ein (das) Startsymbol abgeleitet werden
kann.

Syntax Lehre von der Anordnung von Worter zu Sétzen. Mogliche Anordnun-
gen werden i.A. durch ein System von Regeln (Grammatik) beschrieben.

Syntaxbaum (auch Parsebaum, Strukturbaum, Ableitungsbaum) Ergebnis
der Syntaxanalyse. Der Syntaxbaum beschreibt die syntaktische Struktur
eines Satzes.

Wortform (Vollform) Mdoglicherweise flektierte Form eines Wortes.

Index

Ableitung, 84
active-edge, 28
add-inactive-edge, 74
add-input-item, 31
Agenda, 9, 21, 28, 64
Aktivierung, 31, 43, 84
bottom-up, 11, 22

Re-, 58

top-down, 10
Allegro, 74
alt-report, 63
Analyse

lexikalische, 12
Phasen, 12, 17, 25
syntaktische, 12, 29, 43
ATN, 14, 67, 79, 82
atn, 69
Attribute, 13, 25, 29, 36, 39, 42, 48,
50, 53, 84
synthetisierte, 37
Aufwand, 9, 16, 29, 63
Ausgabe
Generierung, 12, 13, 15, 34, 59,
73, 81
Spezifikation, 16, 35, 59, 81

Baum

Spezifikation, 16, 37, 60, 81

Such-, 9

Syntax-, siehe Parsebaum
Benutzer, 3, 12
binary-extension, 22
bottom-up, siehe Modus,bottom-up
build-chart, 18, 55, 56
build-tree, 55, 56
build-tree, 16

categoryp, 69
Chart, 4, 17, 26, 64, 73, 81, 84

chart-analysis, 19, 61
chp-version, 23, 65
CLIM, 74

CLX, 74
conv-table, 66
create-vertex, 26

Dateien, 22, 78, 83
def-grammar-type, 42
defabbrev, 69
define-grammar, 44
defmod, 23

defnet, 67
describe-chart, 19, 64
display-agenda, 21, 64
display-chart, 20, 64, 82
display-edge, 21, 65
do-with-timeout, 65

edge, 27
xedges*, 26
Eingabeelement, 2, 5, 12, 14, 31, 55,
84
Eintrag
Lexikon-, 12, 31, 37, 45, 61, 76,
80
Struktur-, 18, 37, 61, 81
eoinp, 69
extend, 32

Features, 24, 30, 46, 82, 84
dquivalente, 33
flache, 41, 46, 77
Unifikation, 41, 46, 74
Fehlermeldungen, 79, 80
Filter, 28, 35, 37, 40, 42, 60
find, 58
find, 80
fragment-report, 60, 62
Fragmente, siehe Parsen,partiell

INDEX

:fu, 41
fundamental rule, siehe Grundregel

Garnet, 74
get-edge, 21, 26
get-vertex, 26
getabbrev, 69
grammar, 43, 56, 58
grammar, 43
grammar-type, 41
*grammar-typesx, 41
Grammatik, 5, 43, 77, 84
Elemente, 7
kontextfrei, 33, 77
Laden, 44, 74, 81
mehrdeutig, 16, 30
mehrere, 18
PATR-II, 41
Grammatikformalismus, 24, 41, 84
Grammatiktyp, 24, 41, 59, 74, 83,

84
:cf, 46, 81
Optionen, 25, 33, 39
:sf, 46, 77, 82
Graph, 84

Grundbereich, 62
Grundform, 45, 84
Grundregel, 7, 32, 33, 42, 84

Heuristik, 9

inactive-edge, 27
insert-edge, 26, 81
Installation, 22

k-with-time, 66
Kanten, 26, 65, 81, 84
aktive, 4, 28
erfolgreiche, 35
ignore, 13, 36, 81
inaktive, 4, 27
Inhalt, 4, 27
Lesart-, 4, 9, 13, 15, 28, 36
Multi-, 4
allgemein, 20, 64
kategoriedquivalente, 20, 64
stillgelegte, 19, 61

87

Kantenverschmelzung, 7, 8, 13, 27,
29, 33, 34, 36, 50, 63, 72,
85
Kategorie, 5, 82, 84
indizierte, 28, 44, 49
Start-, 10, 17, 43, 56, 58, 80, 85
String-, 43, 46
wild card-, 43
Knoten, 26, 81, 84
Anfangs-, 4, 27
End-, 4, 27
Komponente, 63
triviale, 63
Konfiguration, 9, 22, 28

left-vertexx, 26

Lesart, 33, 85

lex, 45
xlexicon*, 45, 56, 58
Lexikon, 5, 45, 73, 76, 80, 85
load-grammar, 44
load-module, 22
loop-parse-incremental, 57

mode, 58

Modus, 9, 32, 57, 58, 81, 85
bottom-up, 11, 58
top-down, 10, 80

monoton, 8

multiedge-report, 63

natiirliche Sprache, 85
xnlpkg, 65, 74
numfix, 50

output, 58

Package, 22, 65, 74, 83
parse, 15, 55, 57
parse-and-show-time, 57
*parse-grammarx, 56, 59
parse-incremental, 17, 57, 74
parse-line, 14, 55, 57
parse-line-and-display-tree, 57
parse-line-and-show-time, 57
parse—-next, 16, 55, 58
parse-rest, 18, 55, 58
parse-tree-report, 62

INDEX

Parsebaum, 1, 4, 85
Erzeugung, 37
innerer Knoten, 38
Nachbearbeitung, 35, 38, 40, 42,
61
Wurzel, 38
Parsen
inkrementell
wortweise, 16, 56, 58
zeichenweise, 17, 57, 74, 79
partiell, 11, 35, 36, 60, 62
Parser, 85
Parserkern, 24, 42, 79, 82, 83
Parsewald, 13, 15
parse item, siehe Grammatik,Elemente
Plattform, 22, 74, 78
Portabilitét
Daten, 66
Programm, 22, 74

Quellcode, 78, 83

Regel, 43, 63, 82, 85
Kopf, 10
Listennotation, 42, 43, 46
Rumpf, 5
Zugrift, 33
rule, 42, 43
rule-length-report, 63

scan, 14, 55, 66

scan-line, 14, 55, 66
Scanner, 12, 14, 66, 79, 85
Schlingen, 4, 10, 31, 85

seek, 31

Semantik, 48, 52, 82, 85
sf-edge, 48

sf-rule, 48

size-report, 61
Speicherbedarf, 9
Spezifikation, 25, 85

Stack, 28

Startsymbol, siehe Kategorie,Start-
success-edges, 35

SUN, 73

Syntax, 85

Syntaxbaum, siehe Parsebaum

88

TI-Explorer, 74

Tiefensuche, 9

Timeout, 65

top-down, siehe Modus,top-down
tree-default, 59

tree-edge, 28, 42

Umlaute, 66

:uncomputed, 28

Untersuchung, 61
Datenstrukturen, 20, 64, 82
quantitative, 19, 61

Version, 23, 65, 72
vertex, 26
vertices, 26

with-time, 20, 66
Wortform, 45, 85

Zeitbedarf, 20, 66

Literaturverzeichnis

[Aho et al. 86] A. V. Aho, R. Sethi und J. D. Ullman. Compilers : principles,
techniques, and tools. Addison-Wesley, Reading, Mass., 1986. 796 S.

[Allen 87] J. Allen. Natural Language Understanding. Benjamin Cummings
Publishing Company Inc., 1987.

[Charniak et al. 87] E. Charniak, C. K. Riesbeck, D. V. MacDermott und J. R.
Meehan. Artificial intelligence programming. Erlbaum Associates, Hills-
dale, N. J. [u.a.], 2nd ed. edition, 1987. 533 S.

[GazdarMellish 89] G. Gazdar und C. Mellish. Natural Language Processing in
LISP:An Introduction in Syntactic Processing. Addison Wesley, 1989.

[Harary 74| F. Harary. Graphentheorie. R.Oldenbourg, 1974.

[Kay 80] M. Kay. Algorithm Schemata and Data Structures in Syntactic Pro-
cessing. XEROX Corporation CSL-80-12, 1980.

[King 83] M. E. King. Parsing Natural Language. Academic Press, 1983.

[Schmidt 92] P. Schmidt. Ein Chartparser fiir eine feature-orientierte Gramma-
tik. Studienarbeit Nr. 985, Institut fiir Informatik, Universitat Stuttgart,
1992.

[Seiffert 87] R. Seiffert. Erarbeitung von Parsingstrategien fiir Unifikations-
grammatiken mit ID-LP-Regeln. Studienarbeit Nr. 591, Institut fiir Infor-
matik, Universitdt Stuttgart, 1987. 97 Bl

[Seiffert 89] R. Seiffert. Chart-Parsing of Unification-Based Grammars with
ID/LP-Rules. LILOG Report 22, IBM Deutschland GmbH WT LILOG /
Dept 3504, P.O. Box 80 08 80, D-7000 Stuttgart 80, Germany, 1989.

[Steele 90] G. J. Steele. Common LISP: The Language. Digital Press, second
edition, 1990.

[ThompsonRitchie 84] H. Thompson und G. Ritchie. Implementing Natural
Language Parsers. In T. O’Shea und M. Eisenstadt (Hrsg.), Artificial
Intelligence, S. 245-300. Harper & Row, 1984.

[Varile 83] G. Varile. Charts: a Data Structure for Parsing. In M. King (Hrsg.),
Parsing Natural Language, S. 73-90. Academic Press, 1983.

89

