
�
�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��

�

�

��

�

�

��

�

�

��

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Universität Stuttgart
Fakultät Informatik

�
Institut für Informatik
Breitwiesenstraße 20-22
D-70565 Stuttgart

ChaPLin 3.2
Ein Chartparser für linguistische

Untersuchungen

Gerrit Burkert
Mathis Löthe

Report Nr. 1996/1

26.4.1996

CR-Klassifikation: I.2.7,F.4.3,J.5.3

email: Gerrit.Burkert@swisslife.ch
Mathis.Loethe@informatik.uni-stuttgart.de

Abstract

ChaPLin is a Chart Parser for Linguistic research. Using dynamic program-
ming, chart parsers like ChaPLin store partial results in a wellformed substring
table (chart). They can use all kind of context free grammars including ambigu-
ous and nondeterministic ones. ChaPLin is specially designed for the needs of
natural language processing.

• It can use various grammar formalisms such as feature grammars, that
provide extra linguistic information for the parsing process and improve
speed and accuracy. Grammar formalisms can be programmed by the
user.

• The output generator can be programmed by the user and can be costu-
mized for different kinds of lexical information.

• An ATN-based line scanner is provided.

• ChaPLin has a parse tree visualizer, documentation of data structures,
and debugging tools to enhance debugging of grammars and grammar
formalisms.

ChaPLin has been developed by Gerrit Burkert at the University of Stuttgart
between 1989 and 1994 in Common Lisp. This document describes Version 3.2,
which has been completed by Mathis Löthe in February 1995.
In this report, the basic concepts of chart parsing are described and a user
manual as well as a reference manual for ChaPLin are provided.

Zusammenfassung

ChaPLin ist ein Chart-Parser für Linguistische Untersuchungen. Chartparser
wie ChaPLin legen nach dem Prinzip der dynamischen Programmierung Teil-
resultate in einer Tabelle, der Chart, ab. ChaPLin arbeitet mit beliebigen kon-
textfreien Grammatiken (auch mit mehrdeutigen und nichtdeterministischen).
Ergebnis des Parseprozesses ist der Syntaxbaum des Eingabesatzes. ChaPLin
ist speziell auf die Bedürfnisse der Sprachverarbeitung ausgerichtet.

• Grammatikformalismen steuern den Parser durch zusätzliche linguistische
Information. Grammatikformalismen für ChaPLin können vom Benutzer
erstellt werden.

• Der Ausgabegenerator kann vom Benutzer programmiert werden, um
verschiedene Arten von Lexikoninformation zu verwerten und um den
Bedürfnissen der Weiterverarbeitung Rechnung zu tragen.

• Für die Vorverarbeitung wird ein ATN-basierter Textscanner zur Verfügung
gestellt.

• Um die Suche nach Fehlern an Grammatikformalismus und Grammatik zu
erleichtern, gibt es für ChaPLin eine graphische Anzeige für Syntaxbäume,
Dokumentation der Datenstrukturen und Fehlersuchhilfen.

ChaPLin wurde von G. Burkert zwischen 1989 und 1994 an der Universität
Stuttgart in Common Lisp entwickelt. Die hier beschriebene Version 3.2 wurde
von Mathis Löthe bis zum Februar 1995 erstellt.
Dieser Bericht erläutert die Grundbegriffe des Parsens mit einer Chart und
enthält ein Benutzer- und Referenzhandbuch für ChaPLin.

Inhaltsverzeichnis

1 Überblick 1

2 Syntaxanalyse mit Hilfe einer Chart 4
2.1 Grundlagen . 4

2.1.1 Die Chart als Darstellungsform des Syntaxbaums 4
2.1.2 Die Grundregel . 7

2.2 Parseprozeß . 9
2.2.1 Top-down Analyse . 10
2.2.2 Bottom-up Analyse . 11

3 Bedienungsanleitung 12
3.1 Analysephasen . 12
3.2 Aufruf des Parsers . 14

3.2.1 Verarbeitung unanalysierter Einzelsätze 14
3.2.2 Parsen von Eingabesequenzen 14
3.2.3 Ausgabegenerierung . 15
3.2.4 Inkrementelles Parsen . 16
3.2.5 Analysephasen . 17

3.3 Fehlersuche und Analyse . 18
3.3.1 Quantitative Analyse . 19
3.3.2 Datenausgabe . 20

3.4 Installation und Umgebung . 22

4 Aufbau und Arbeitsweise von ChaPLin 24
4.1 Der Einfluß des Grammatiktyps 24
4.2 Die Chart . 26

4.2.1 Knoten . 26
4.2.2 Kanten . 26
4.2.3 Agenda . 28

4.3 Syntaktische Analyse . 29
4.3.1 Kantenverschmelzung . 29
4.3.2 Die Arbeitsschritte der syntaktischen Analyse 30
4.3.3 Grammatiktypoptionen für die syntaktische Analyse . . . 33

4.4 Ausgabegenerierung . 34
4.4.1 Die Ausgabespezifikation 35
4.4.2 Suche nach erfolgreichen Kanten 35

I

4.4.3 Einfache Ausgabeformen 36
4.4.4 Erzeugung der Lesarten 36
4.4.5 Baumerzeugung . 37
4.4.6 Nachbearbeitung . 38
4.4.7 Grammatiktypoptionen der Ausgabegenerierung 39

5 Sprachwissen 41
5.1 Grammatiktyp . 41
5.2 Grammatik . 43
5.3 Lexikon . 45
5.4 Der Grammatiktyp :cf . 46
5.5 Der Grammatiktyp :sf . 46

5.5.1 Datenstrukturen . 48
5.5.2 Lexika für :sf-Grammatiken 48
5.5.3 :sf-Grammatikregeln . 49
5.5.4 Syntax von Grammatikregeln 53

6 Referenzhandbuch 55
6.1 Parserfunktionen . 55

6.1.1 Argumente der Parserfunktionen 55
6.1.2 Beschreibung der Parserfunktionen 56
6.1.3 Globale Defaults . 58
6.1.4 Ausgabe . 59

6.2 Untersuchung und Analyse . 61
6.2.1 Quantitative Untersuchungen 61
6.2.2 Ausgabe von Datenstrukturen 64

6.3 Umgebung . 65
6.4 Scanner . 66
6.5 ATN-Interpreter . 67

6.5.1 Netzdefinition . 67
6.5.2 Kategorien . 69
6.5.3 Aufruf des ATN-Interpreters 69
6.5.4 Beispiele für ATNs . 70

7 Implementierung 72
7.1 Verlauf der Implementierung . 72
7.2 Stand der Implementierung . 72
7.3 Weiterentwicklung und Ausblick 75

A Beispiele 76
A.1 Beispiellexikon . 76
A.2 Beispielgrammatik . 77

B Verzeichnis der zugehörigen Dateien 78
B.1 Unterverzeichnisse . 78
B.2 Codedateien von ChaPLin . 78
B.3 Dokumentationsdateien . 79

II

C Fehlertabelle 80

D Inhaltverzeichnis des Codes 83

Glossar 84

Index 86

Literaturverzeichnis 89

III

Abbildungsverzeichnis

2.1 Syntaxbaum für den Beispielsatz 6
2.2 Chart für den Syntaxbaum aus Abbildung 2.1 6
2.3 Chart mit Terminalkanten . 6
2.4 Chart mit einer Nichtterminalkante 7
2.5 Chart mit einer aktiven Schlinge 8
2.6 Chart nach dem ersten Lesevorgang 8
2.7 Chart nach der ersten Ableitung 9
2.8 Beginn der top-down Aktivierung 10
2.9 Top-down aktivierte Chart . 10
2.10 Bottom-up aktivierte Chart . 11

3.1 Aufbau von ChaPLin . 13

4.1 Aufrufstruktur von ChaPLin . 30

IV

Kapitel 1

Überblick

ChaPLin – ein ChartParser für Linguistische Untersuchungen – ist ein Par-
ser für die Verarbeitung natürlicher Sprache. Die Syntaxanalyse (Parsing) ist
ein wichtiger Schritt bei der Untersuchung natürlichsprachlicher Texte. Das
Ergebnis der Syntaxanalyse ist ein Syntaxbaum oder Parsebaum.

Die folgenden Eigenschaften des Chartparseverfahrens für kontextfreie Gram-
matiken sind wichtig, um den speziellen Anforderungen der Verarbeitung natürli-
cher Sprache und den Bedürfnissen der linguistischen Forschung gerecht zu wer-
den:

• Die Chart ist eine Datenstruktur, die alle Zwischenergebnisse und Zwi-
schenschritte beim Parsen explizit repräsentiert. Wenn kein Syntaxbaum
für den ganzen Satz gefunden wird, können Teilergebnisse aus der Chart
extrahiert werden. So kann man auch partiell parsen, d.h. nach Teil-
strukturen wie z.B. Nominalphrasen suchen. Eine Analyse der Zwischen-
ergebnisse hilft außerdem bei der Entwicklung von Grammatiken.

• Natürlichsprachliche Sätze sind syntaktisch mehrdeutig, so daß ein Parser
für natürliche Sprache mit mehrdeutigen Grammatiken arbeiten können
muß. Bei einem mehrdeutigen Satz gibt es daher nicht einen einzigen Par-
sebaum sondern eine Menge von Parsebäumen (Lesarten), den sogenann-
ten Parsewald. Die Chart ist eine kompakte Darstellung eines Parsewalds,
aus der die einzelnen Lesarten nach Bedarf extrahiert werden können.

• Die Grammatik wird nicht vorverarbeitet, so daß der Ableitungsweg durch
eine Analyse der Chart leicht nachvollzogen werden kann. ChaPLin kann
Grammatiken mit mehreren Startsymbolen und Grammatiken mit ε-Zyk-
len verwenden, so daß bei der Erstellung einer Grammatik auf deren Ei-
genschaften keine Rücksicht genommen werden muß.

Zur vollständigen Beschreibung der Syntax natürlicher Sprache sind kontext-
freie Grammatiken als Darstellungsformalismus nicht ausreichend. Die Lingui-
stik kennt daher mächtigere Grammatikformalismen, die den Einsatz zusätzli-
cher linguistischer Information erlauben. In ChaPLin wird diese Information
in den Features abgelegt, mit welchen man weitere Bedingungen für die An-
wendbarkeit einer Regel formuliert. Das Datenformat für die Features und ihre

1

KAPITEL 1. ÜBERBLICK 2

Behandlungsregeln wird im Grammatiktyp festgelegt. Ein Grammatiktyp ist
damit ein Modul für ChaPLin, das einen Grammatikformalismus implemen-
tiert.

Bei einer endlichen Menge von Featurewerten kann leicht eine äquivalente kon-
textfreie Grammatik konstruiert werden. Man kann daher die aus der theo-
retischen Informatik bekannten Resultate für kontextfreie Sprachen weiterhin
verwenden.

Der Parsebaum wird im Normalfall in Form einer geschachtelten Liste ausge-
geben, wobei das Ausgabeformat für Blätter und Zwischenknoten des Baumes
beim Aufruf des Parsers spezifiziert wird. Für diese Knoten des Syntaxbaums
kann man im Grammatiktyp Knotenattribute definieren, die bei der Ausgabege-
nerierung als synthetisierte Attribute (Z-Attribute) berechnet werden (vgl. se-
mantische Aktionen in [Aho et al. 86]). Damit ist es möglich, bei einem Einsatz
in einem größeren System semantische Information für spätere Analysephasen
bereitzustellen.

Nicht nur bei der Ausgabe, sondern auch bei der Eingabe bietet ChaPLin ver-
schiedene Möglichkeiten an.

• ChaPLin bietet bei Bedarf verschiedene Vorverarbeitungschritte für den
Eingabesatz an. Ein ATN-basierter Zeilenscanner zerlegt vom Benutzer
eingegebene Sätze in eine Folge von Wortformen und Satzzeichen, den
Eingabeelementen. Der Parser selbst arbeitet mit einer Folge von solchen
Eingabeelementen. Die Wortformen werden vor dem Parsen mit einem
Lexikon analysiert.

• Es ist möglich nacheinander mehrere Grammatiken zu verwenden. Nach-
dem man mit der ersten Grammatik geparst hat, enthält die Chart die
Ergebnisse der ersten Analyse. Eine andere Grammatik kann mit diesen
Ergebnissen weiterarbeiten.

So kann man eine einfache, effiziente Grammatik benutzen, die nur die
häufigsten Möglichkeiten berücksichtigt und im Falle eines Mißerfolgs ei-
ne genauere Analyse mit einer vollständigeren aber auch aufwendigeren
Grammatik vornehmen.

Außerdem gibt es eine Ausgabestruktur für Zwischenergebnisse, die es
ermöglicht, Folgen von Nichtterminalsymbolen mit einer anderen Gram-
matik weiterzuverarbeiten.

• Man kann inkrementell parsen, d.h. eine bestehende Chart um ein Lexem
verlängern und alle möglichen Ableitungen bestimmen. Für den Einsatz
in einem interaktiven System gibt es einen inkrementellen Scanner, der
ein Eingabeelement sofort an den Parser übergibt, nachdem es vollständig
eingegeben ist. ChaPLin beginnt dann schon mit der Analyse, während
der Benutzer noch die Eingabe vervollständigt.

• Zur Unterstützung der Suche nach Fehlern in Grammatik und Lexikon
werden Werkzeuge zur Zeitmessung, zur Visualisierung der Ergebnisse
und für Statistiken über den Ableitungsprozeß bereitgestellt.

KAPITEL 1. ÜBERBLICK 3

Diese unterschiedlichen Möglichkeiten machen ChaPLin für unterschiedliche Be-
nutzerkreise interessant. Wenn man ChaPLin als Teil eines größeren Systems
benutzt, interessiert man sich in erster Linie für die verschiedenen Arten, den
Parser aufzurufen. Bei der Erstellung einer Grammatik oder eines Lexikons
sind dagegen die Analysewerkzeuge wichtig. Um Verarbeitungskomponenten
für einen Grammatiktyp zu erstellen, ist es zudem noch nötig, die genaue Ar-
beitsweise von ChaPLin zu kennen.

Die einzelnen Kapitel dieses Berichts versuchen den unterschiedlichen Bedürf-
nissen dieser Benutzerkreise Rechnung zu tragen.

• In Kapitel 2 wird die dem Parsen mit einer Chart zugrunde liegende Theo-
rie erläutert.

• Die Benutzeranleitung in Kapitel 3 beschreibt die Einsatzmöglichkeiten
und die grundlegenden Eigenschaften der wichtigsten Schnittstellenfunk-
tionen und dient als Einführung in ChaPLin. Genauere Information zu
den einzelnen Schnittstellenfunktionen steht im Referenzhandbuch in Ka-
pitel 6.

• Kapitel 4 beschreibt die Datenstrukturen, die Arbeitsweise des Parsers
und die Schnittstellen zum Grammatiktyp. Hier werden auch die Be-
standteile für Grammatiktypen beschrieben, weil man Grammatiktypen
nur mit Kenntnissen über die Arbeitsweise von ChaPLin erstellen kann.

• Das nötige Sprachwissen erhält der Parser durch Angabe einer Gramma-
tik und eines Lexikons. Kapitel 5 erklärt, wie Grammatik und Lexikon
definiert werden und beschreibt einen Grammatiktyp, der mit flachen Fea-
turemengen arbeitet.

• Kapitel 7 gibt einen Überblick über die Implementierungsgeschichte und
zukünftige Entwicklungsmöglichkeiten für ChaPLin.

• In den Anhängen befinden sich Beispiele für Grammatik und Lexikon,
eine Fehlertabelle, ein Verzeichnis aller Dateien und ein Überblick über
den Quellcode.

• Die aus der Literatur übernommenden oder in diesem Bericht eingeführten
Fachbegriffe werden im Glossar erläutert.

Kapitel 2

Syntaxanalyse mit Hilfe einer
Chart

2.1 Grundlagen

Wie anfangs beschrieben legt ChaPLin Zwischenergebnisse in einer Chart ab.
Die Chart ist folgendermaßen definiert:

• Eine Chart ist ein gerichteter Pseudograph [Harary 74] und besteht aus
einer (linear) geordneten Menge von Knoten und einer Menge von Kanten.
Eine Kante verbindet zwei Knoten, den Anfangs- und den Endknoten der
Kante. Mehrfache Kanten (Multikanten) sind zulässig, d.h. es darf zwei
Kanten geben, die das gleiche Knotenpaar verbinden.

• Die Kantenmenge besteht aus aktiven, inaktiven und Lesartkanten.

• Alle Kanten sind vorwärtsgerichtet, d.h. der Anfangsknoten einer Kan-
te hat eine kleinere Nummer (in der o.g. Ordnung) als ihr Endknoten.
Aktive Kanten dürfen dazu noch Schlingen bilden, d.h. Anfangs- und
Endknoten sind gleich. Abgesehen von diesen aktiven Schlingen ist die
Chart zyklenfrei.

• Von einem beliebigen Knoten aus gibt es zu jedem Knoten mit größerer
Nummer einen Pfad aus inaktiven Kanten. Die inaktiven Kanten be-
schreiben damit eine lineare Ordnung auf der Knotenmenge.

• Kanten enthalten weitere Information. Insbesondere haben Kanten einen
oder mehrere Inhalte. Wenn der Inhalt der Kante eine Folge von inaktiven
Kanten ist, dann beschreiben die enthaltenen Kanten einen Pfad vom
Anfangsknoten bis zum Endknoten der Kante.

2.1.1 Die Chart als Darstellungsform des Syntaxbaums

Eine Chart kann als Variante eines Syntaxbaums gesehen werden, mit zusätz-
lichen Eigenschaften zur Darstellung alternativer Teilstrukturen und offener
Hypothesen. Die Knoten der Chart entsprechen den Zwischenräumen im Satz.

4

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 5

Die inaktiven Kanten in der Chart stehen für die Knoten des Syntaxbaums,
nämlich für die Terminalsymbole (Blätter des Syntaxbaums, Eingabeelemen-
te) und die Nichtterminalsymbole (innere Knoten des Syntaxbaums). Zu Be-
ginn des Parsevorgangs werden die Terminalsymbole als inaktive Kanten ein-
getragen; ihr Inhalt ist das Eingabeelement. Eine Terminalkante verbindet
immer einen Knoten mit dem nächstgrößeren. Die Nichtterminalkanten wer-
den während des Parsevorgangs erzeugt und erhalten die ihren Konstituenten
entsprechenden inaktiven Kanten als Inhalt.

Aktive Kanten sind Hypothesen über anwendbare Regeln. Aktive Kanten haben
einen Teil der vom Regelrumpf (rechte Seite der Regel) geforderten inaktiven
Kanten schon gefunden, den Rest noch nicht.

Der Ablauf der Syntaxanalyse wird im folgenden am Beispielsatz

The old man the boats

erläutert. Das Lexikon enthalte unter anderem folgende Kategorieinformation:

the DET
old ADJ oder N
man N oder V
the DET
boats N

Die Grammatik enthalte folgende Regeln:

S −→ NP VP
NP −→ DET N
NP −→ DET ADJ N
NP −→ PROPN
VP −→ V NP

Die Abbildungen 2.1 und 2.2 zeigen für dieses Beispiel den Syntaxbaum und des-
sen Darstellung in der Chart. Während der Analyse eines Satzes werden Kanten
in die Chart eingebaut, die immer größere Teile des Eingabesatzes überspannen.
Zu Beginn des Analysevorgangs bestimmt der Parser zu jedem Wort mit Hilfe
des Lexikons die Kategorien (Wortarten) und trägt entsprechende Terminal-
kanten in die Chart ein. Der Lexikoneintrag – das Eingabeelement – wird als
Inhalt der Terminalkante abgelegt, nicht als eigene Kante. Für manche Wörter
gibt es mehrere Kategorien, z.B. kann das Wort old in unserem Beispiel sowohl
als Substantiv als auch als Adjektiv gelesen werden. Solche Mehrdeutigkeiten
werden wie in Abbildung 2.3 einfach durch alternative Kanten dargestellt. So
entstehen die o.g. Multikanten in der Chart.

Beim Parsen werden die vorhandenen Kanten nach den Regeln der Gramma-
tik zu übergreifenden Kanten zusammengefaßt. Bei einem solchen Ableitungs-
schritt entsteht durch Anwendung einer Regel eine Nichtterminalkante, deren
Kategorie der Kopf der Regel ist. Der Inhalt der neuen Kante sind die Kanten
der Symbole des Regelrumpfs. Möchte man diesen Inhalt im Diagramm ver-
deutlichen, wird wie in Abbildung 2.4 statt der Kategorie der Kante die ganze
Regel hingeschrieben.

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 6

S

NP VP

DET N V NP

DET Nthe old man

the boats

Abbildung 2.1: Syntaxbaum für den Beispielsatz

the old man the boats

DET N V DET N

NP NP

VP

S

Abbildung 2.2: Chart für den Syntaxbaum aus Abbildung 2.1

the old man the boats

DET N V DET N

ADJ N

Abbildung 2.3: Chart mit Terminalkanten

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 7

the old man the boats

DET N V DET N

ADJ N

NP → DET N

Abbildung 2.4: Chart mit einer Nichtterminalkante

2.1.2 Die Grundregel

Inaktive Kanten stehen für erfolgreich erkannte Symbole. Deswegen ist die in
Abbildung 2.4 hergeleitete Nichtterminalkante ebenfalls inaktiv. Die aktiven
Kanten enthalten dagegen Informationen über einen aktuellen Versuch, eine
Regel anzuwenden. Sie sind eine explizite Darstellung eines Zwischenzustands
bei der Abarbeitung einer Regel. Der Notation aus [Aho et al. 86] für Elemente
einer Grammatik (parse items) folgend wird die Stelle, bis zu der der Regel-
rumpf bereits vervollständigt ist, durch einen Punkt markiert.

Grundprinzip des Chartparsens ist, alle unvollständigen Strukturen – nämlich
die aktiven Kanten – zu vervollständigen. Immer, wenn das Ende einer aktiven
Kante auf den Anfang einer inaktiven Kante trifft und die beiden Kanten zuein-
ander passen, wird eine neue Kante erzeugt. Dies führt zu folgender Grundregel
(fundamental rule) des Chartparsings:

Algorithmus 1
wenn der Endknoten einer aktiven Kante A und der Anfangsknoten einer in-

aktiven Kante I gleich sind (die Kanten sich treffen)

und die Kategorie von I das erste benötigte Symbol von A ist (die Kanten
zueinander passen),

dann erzeuge eine neue Kante K,

• deren Anfangsknoten der Anfangsknoten von A ist,

• deren Endknoten der Endknoten von I ist,

• deren Kategorie die Kategorie von A ist und

• deren Inhalt aus dem Inhalt von A und der Kante I besteht.

• Wenn I das letzte von A benötigte Symbol ist,
dann ist K inaktiv, sonst ist K aktiv.

Trage die Kante K in die Chart ein,

• wenn K aktiv ist,

• wenn K inaktiv ist,
und keine zu K äquivalente inaktive Kante I’ existiert.

Sonst verschmelze die Kante K mit der o.g. äquivalenten Kante I’.

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 8

Die genaue Realisierung der Grundregel wird in Abschnitt 4.3 beschrieben. Ab-
bildung 2.5 veranschaulicht die Grundregel anhand des Beispiels, wobei aktive
Kanten fett gedruckt werden. Die aktive Kante NP −→ . DET N versucht, die
Regel NP −→ DET N anzuwenden, d.h eine Nominalphrase NP zu erkennen,
die aus einem Artikel DET und einem Substantiv N besteht. Da die aktive
Schlinge noch kein Symbol gelesen hat, steht der Punkt vor dem ersten Symbol
im Regelrumpf.

the old man the boats

DET N V DET N

ADJ N

NP → . DET N

Abbildung 2.5: Chart mit einer aktiven Schlinge

Das Ende dieser aktiven NP-Kante trifft mit der inaktiven DET-Kante zusam-
men. Damit ist die erste Bedingung der Grundregel für die beiden Kanten
erfüllt. Auch paßt die aktive Kante NP −→ . DET N zur inaktiven Kante
DET, weil DET als nächstes Symbol nach dem Punkt steht. Abbildung 2.6
zeigt, wie die neue aktive Kante NP −→ DET . N in die Chart eingefügt wird.

the old man the boats

DET N V DET N

ADJ N

NP → . DET N

NP → DET . N

Abbildung 2.6: Chart nach dem ersten Lesevorgang

Dabei ist zu beachten, daß der Chart eine neue Kante hinzugefügt und nicht
die erste aktive Kante durch die neue ersetzt wird. Das ist wesentlich, da
alle möglichen syntaktischen Strukturen eines Satzes gefunden werden sollen.
Chartparser arbeiten grundsätzlich monoton, d.h. sie fügen neue Kanten hinzu,
ändern oder entfernen aber niemals bestehende Kanten.

Wenn eine Kante hergeleitet wird, die zu einer bereits eingetragenen inaktiven
Kante äquivalent ist, dann wird statt einer zusätzlichen Kante nur ein neuer
Inhalt – eine weitere Lesart – für die bestehende Kante angelegt. Diese Kanten-
verschmelzung verbessert die Effizienz bei mehrdeutigen Grammatiken. Nach
[Seiffert 89] beträgt der Platzbedarf dann O(n3) wobei n die Anzahl der Ein-

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 9

gabeelemente ist. Ohne Kantenverschmelzung wird für jede Lesart des Satzes
eine eigene Kante angelegt, wobei die Anzahl der Lesarten in O(kn) liegt. In
der Praxis funktioniert bei Verzicht auf Kantenverschmelzung das Verfahren
zwar in den meisten Fällen gut, jedoch überschreitet für einzelne Sätze der
Speicherbedarf die Leistungsfähigkeit des Rechners.

In Abbildung 2.7 werden die Kantenpaare NP-ADJ und NP-N betrachtet. Beim
ersten Paar passen die Kanten nicht, während beim zweiten nach der Grundre-
gel eine inaktive NP-Kante erzeugt wird.

the old man the boats

DET N V DET N

ADJ N

NP → . DET N

NP → DET . N

NP → DET N .

Abbildung 2.7: Chart nach der ersten Ableitung

Jedes Einfügen einer Kante – aktiv oder inaktiv – kann nach der Grundre-
gel weitere Regelanwendungen ermöglichen und dadurch den Einbau weiterer
Kanten nach sich ziehen.

2.2 Parseprozeß

Beim Parsen werden Symbole gelesen, d.h. aktive Kanten werden um eine
inaktive Kante verlängert. Solche nach der Grundregel passenden Kombinatio-
nen von aktiven und inaktiven Kanten nennt man Konfigurationen. Jedesmal,
wenn eine Kante eingefügt worden ist, werden die dadurch neu entstandenen
Konfigurationen in der Agenda abgelegt und nacheinander untersucht. Ist die
Agenda leer, d.h. keine nicht-untersuchte Konfiguration mehr vorhanden, ist
der Parseprozess beendet, da keine weiteren Ableitungen mehr möglich sind.

Die Agenda ist bei ChaPLin als Stapel organisiert, d.h. die zuletzt entdeckten
Konfigurationen werden zuerst bearbeitet. Im Suchbaum der Ableitungen ent-
spricht das der Tiefensuche. Die Grundregel verlangt aber keine besondere Rei-
henfolge der Abarbeitung, so daß auch eine Breitensuche mit einer Warteschlan-
ge als Agenda oder verschiedene Heuristiken mit einer Prioritätswarteschlange
als Agenda denkbar wären.

Chartparser können eine Eingabesequenz sowohl top-down als auch bottom-up
bearbeiten, wobei die beiden Modi dasselbe Endergebnis liefern. Der Parsepro-
zeß kommt nur in Gang, wenn die Chart aktiviert wird, d.h. für jede Gramma-
tikregel, die anwendbar wird, eine aktive Schlinge eingetragen wird. Die beiden
Modi prüfen die Anwendbarkeit einer Regel auf unterschiedliche Art und zu
unterschiedlichen Zeitpunkten

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 10

2.2.1 Top-down Analyse

Beim top-down Parsen geht die Analyse vom Ziel aus; dazu gibt man dem Parser
die gesuchte Kategorie als Startsymbol vor. Für jede Regel, die diese Kategorie
herleitet (die Kategorie als Regelkopf hat), wird eine aktive Schlinge angelegt.
Aktive Kanten werden entweder durch die Grundregel oder bei der Aktivierung
in die Chart eingetragen. Nach dem Eintragen einer aktiven Kante wird das
erste von ihr noch benötigte Symbol – das rechts vom Punkt – zum neuen
Zwischenziel. Wie zu Beginn beim Startsymbol legt der Parser für jede Regel,
die dieses Zwischenziel herleitet, eine aktive Schlinge an. Im top-down Modus
wird die Chart also zu Beginn des Parsevorgangs und nach jedem Einfügen
einer aktiven Kante aktiviert.

Der Analysevorgang beginnt in Abbildung 2.8 mit einer aktiven S-Kante am
ersten Knoten für jede Regel der Form S −→ Zunächst wird die aktive
S-Kante für die Regel S −→ NP VP angelegt.

the old man the boats

DET N V DET N

ADJ N

S → . NP VP

Abbildung 2.8: Beginn der top-down Aktivierung

Das erste Symbol der rechten Seite der Regel, NP, wird zum Zwischenziel.
Damit der Parser NP herleiten kann, sucht er nach Regeln mit Kopf NP in der
Grammatik und baut, wie in Abbildung 2.9 gezeigt, drei neue Kanten ein.

the old man the boats

DET N V DET N

ADJ N

S → . NP VP

NP → . DET N

NP → . PROPN

NP → . DET ADJ N

Abbildung 2.9: Top-down aktivierte Chart

KAPITEL 2. SYNTAXANALYSE MIT HILFE EINER CHART 11

Im weiteren Analyseprozeß wird nach der Grundregel die aktive Kante
NP −→ . DET N mit der inaktiven Kante DET zur aktiven Kante
NP −→ DET . N erweitert. Das neue Zwischenziel ist jetzt das Symbol N,
das rechts vom Punkt steht. Nach dem Einfügen dieser aktiven Kante durch
die Grundregel wird nach Grammatikregeln gesucht die das Symbol N herleiten.

2.2.2 Bottom-up Analyse

Das bottom-up Parsen geht von den vorhandenen Symbolen aus und versucht,
daraus neue Nichtterminalsymbole herzuleiten, bis am Ende möglicherweise das
Startsymbol hergeleitet wird. Nachdem der Parser eine inaktive Kante eingefügt
hat, untersucht er, ob sich dadurch neue Möglichkeiten ergeben, Regeln anzu-
wenden. Dies ist der Fall, wenn eine Grammatikregel existiert, deren erstes
Symbol im Regelrumpf mit der Kategorie der inaktiven Kante übereinstimmt.
Für jede solche Grammatikregel wird am Ausgangsknoten der inaktiven Kante
eine aktive Schlinge erzeugt (sofern sie nicht schon existiert). Im bottom-up
Modus wird also nach dem Einfügen einer inaktiven Kante aktiviert. Da die
Terminalsymbole inaktive Kanten sind, wird die Chart automatisch aktiviert,
wenn die Kategoriekanten eingetragen werden.

the old man the boats

DET N V DET N

ADJ N

NP → . DET N

NP → . DET ADJ N

VP → . V NP NP → . DET N

NP → . DET ADJ N

Abbildung 2.10: Bottom-up aktivierte Chart

Abbildung 2.10 zeigt die aktivierte Chart für den Beispielsatz. Beim Einfügen
der inaktiven DET-Kante werden für die beiden Regeln, die die Kategorie NP
herleiten, aktive NP-Kanten erzeugt, welche anschließend nach der Grundregel
erweitert werden können.

Der Parseprozeß beim bottom-up Parsen endet, wenn keine weiteren Schritte
mehr ausführbar sind. Ist dann eine inaktive Kante entstanden, die die ganze
Chart überspannt und deren Kategorie das (ein) Startsymbol ist, so war das
Parsen erfolgreich.

Im Gegensatz zum top-down Parsen werden beim bottom-up-Parsen auch alle
Nichtterminalsymbole für Teile des Satzes abgeleitet. Wenn also keine Satz-
struktur erkannt werden konnte, ist beim bottom-up-Parsen wenigstens eine
Folge der erkennbaren Teilstrukturen (Fragmente) verfügbar (partielles Par-
sing).

Kapitel 3

Bedienungsanleitung

ChaPLin kann auf vielfältige Art und Weise eingesetzt werden. Der Parser bie-
tet Schnittstellenfunktionen für die verschiedenen Analysephasen an, die man
durch mehrere Parameter beeinflussen kann. Dieses Kapitel stellt den typischen
Verwendungszweck der wichtigsten Funktionen und ihrer wesentlichen Parame-
ter vor. Eine genauere Beschreibung findet sich dann im Referenzhandbuch
in Kapitel 6. Einige kompliziertere Optionen des Ausgabegenerators können
nur mit Kenntnissen aus den Kapiteln 4 und 5 verwendet werden und werden
deswegen ebenfalls erst in Kapitel 6 dokumentiert.

3.1 Analysephasen

ChaPLin analysiert einen Satz in mehreren Phasen. Die Schnittstellenfunk-
tionen des Parsers stellen dem Benutzer unterschiedliche Kombinationen der
Analysephasen zur Verfügung. Abbildung 3.1 zeigt die Analysephasen und den
groben Aufbau von ChaPLin.

Algorithmus 2
1. Scanning: In Textdateien oder Benutzereingaben liegt ein Text als Folge

von Zeichen vor. Die Aufgabe des Scanners ist, einen als String gegebenen
Satz in eine Folge von Eingabeelementen (Wortformen und Satzzeichen)
zu zerlegen. ChaPLin stellt dafür einen ATN-basierten Zeilenscanner zur
Verfügung. Dieser Scanner muß allerdings nicht benutzt werden. Man
kann ChaPLin auch mit einer gescannten Eingabesequenz aufrufen.

2. Belegen der Chart: Zu Beginn werden die Kategoriekanten als Termi-
nalsymbole in die Chart eingetragen. Die lexikalische Analyse bestimmt
dazu für jede Wortform die Kategorie und eine Reihe weiterer Informatio-
nen wie morpho-syntaktische Merkmale und eine semantische Spezifika-
tion. Man kann ChaPLin auch mit einer Sequenz von Lexikoneinträgen
aufrufen.

3. syntaktische Analyse: ChaPLin analysiert die Eingabesequenz anhand
einer Grammatik eines bestimmten Grammatiktyps.

12

KAPITEL 3. BEDIENUNGSANLEITUNG 13

Zeilen-
scanner

Vorverarbeitung
der Eingabe

Initialisierung
der Chart

grundlegende
Parsing-Routinen

Lexikon-
Interface

Grammatik-
Interface

Lexikon Grammatik

Zugriffsroutinen
auf die Chart

Chart

Erzeugen der
Ausgabestruktur

Grammatik-
typ aktuell

Grammatik-
typ (cf, sf)

Daten- und teilw. Kontrollfluß
Kontrollfluß

*

**

*

Abbildung 3.1: Aufbau von ChaPLin
Mit * gekennzeichnete Komponenten werden nicht benutzt, wenn ChaPLin als
Teil eines Analysesystems mit getrennter lexikalischer Analyse eingesetzt wird.

4. Ausgabegenerierung Die Flexibilität der Ausgabegenerierung ist be-
sonders wichtig im Hinblick auf die angestrebte Verwendung. Eine ein-
fache Erfolgsmeldung oder die Anzahl der Lesarten l̈aßt sich mit wenig
Aufwand berechnen. Aufwendiger ist es dagegen, den Parsewald auszu-
geben, der in zwei Stufen berechnet wird:

Attributberechnung Nach der Analyse können zusätzliche Attribute
für die einzelnen Ableitungsschritte berechnet werden. Im Gegen-
satz zu den Features steuern diese Attribute nicht die syntaktische
Analyse. Die in ihnen enthaltene Information wird nur zur Ausgabe-
generierung benutzt. Die Ausgabe ist Information für den Benutzer
oder Grundlage für weitere Analyseschritte.

Wird das gleiche Symbol auf verschiedenen Ableitungswegen erreicht,
dann können sich verschiedene Attributwerte ergeben. Daher erzeugt
ChaPLin zur Attributberechnung für jeden Ableitungsweg eine Les-
artkante, die außer der syntaktischen Information noch die Attribute
enthält. Damit wird die Kantenverschmelzung rückgängig gemacht.

Baumerzeugung Der Parser wählt bei der Baumerzeugung die gewünsch-
te Information aus der Lesartkante aus. Außerdem kann spezifiziert
werden, daß bei der Baumerzeugung anstelle bestimmter Kanten nur
ihr Inhalt eingefügt wird (Ignorekategorien).

KAPITEL 3. BEDIENUNGSANLEITUNG 14

Die Schnittstellenfunktionen des Parsers sind sinnvolle Kombinationen der ein-
zelnen Phasen und man kann je nach Bedarf die entsprechenden Funktionen
verwenden.

3.2 Aufruf des Parsers

Dieser Abschnitt beschreibt, wie die verschiedenen Schnittstellenfunktionen und
Parameter des Parsers verwendet werden. Die Keywordparameter werden erst
in Kapitel 6 ausführlich beschrieben, es sind aber jeweils sinnvolle Defaultwerte
definiert. Die Beispiele in diesem Kapitel basieren auf dem Lexikon und der
Grammatik aus Anhang A.

3.2.1 Verarbeitung unanalysierter Einzelsätze

Für Testzwecke ist es am einfachsten, unvorverarbeitete Sätze zu analysieren.
Der Parser erhält einen String, zerlegt ihn mit seinem ATN-Scanner in Ein-
gabeelemente und parst diese Eingabesequenz. Diese Variante wird bei der
Entwicklung eingesetzt, um Parser, Grammatik oder Lexikon zu testen, weil
der Entwickler Sätze bequem eingeben kann.

Die Funktion parse-line liest nach dem Prompt -> einen Satz vom Terminal
und parst ihn.

USER(11): (parse-line)

-> Der Berg ruft.

((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

Die Funktion entdeckt eine Lesart für den Satz und gibt deren Syntaxbaum
in einer Liste zurück. parse-line deckt damit alle Analysephasen aus Abbil-
dung 3.1 ab.

Die folgenden zwei Funktionen scannen ihre Eingabe nur, d.h. sie geben eine
Liste von Eingabeelementen zurück. Die Funktion scan zerlegt ihr Argument,
einen String, in Eingabeelemente, während scan-line den String vorher vom
Terminal einliest.

USER(12): (scan-line)

-> Der Berg ruft.

("Der" "Berg" "ruft" #\.)

USER(13): (scan "Der Berg ruft.")

("Der" "Berg" "ruft" #\.)

Diese Eingabesequenz kann dann an eine der im folgenden beschriebenen Funk-
tionen weitergegeben werden.

3.2.2 Parsen von Eingabesequenzen

Bei der Verarbeitung eines fortlaufenden Texts kann es je nach dessen Herkunft
schwierig sein, ihn in einzelne Sätze zu zerlegen. Der Scanner muß z.B. zwi-
schen einem Abkürzungspunkt und dem Satzende unterscheiden und wörtliche

KAPITEL 3. BEDIENUNGSANLEITUNG 15

Rede über mehrere Sätze bearbeiten können. In diesem Fall wird der Text in
einer separaten Phase gescannt und der Parser erhält jeden Satz als Liste von
Eingabeelementen.

USER(46): (parse ’("Der" "Berg" "ruft" #\.))

((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

Mit den Defaulteinstellungen arbeitet der Parser im bottom-up-Modus und
erzeugt Syntaxbäume für alle Kanten, die die ganze Chart überdecken. Für
Nichtterminalknoten gibt er die Kategorie und für Terminalknoten zusätzlich
das Eingabeelement aus. Im Beispiel wird nur eine Lesart gefunden, so daß die
Ergebnisliste nur einen Parsebaum enthält.

Auf diese Weise kann man auch eine einzelne Nominalphrase analysieren, wobei
es mit der im Test verwendeten Grammatik wiederum eine Lesart gibt.

(USER(52): (parse ’("Der" "Berg"))

((np (det "Der") (n "Berg")))

Im folgenden Fall wird kein Ergebnis gefunden, denn der Punkt am Satzen-
de fehlt. Unsere Beispielgrammatik (siehe Anhang A.2) verlangt jedoch einen
Punkt als Satzendzeichen.

USER(53): (parse ’("Der" "Berg" "ruft"))

nil

Wenn man die lexikalische Analyse bereits durchgeführt hat, gibt man eine Fol-
ge von Lexikoneinträgen anstelle von Eingabeelementen an. Die Funktion parse

erkennt den Unterschied anhand eines Schlüsselworts für Lexikoneinträge. Die-
ser Modus erlaubt es, zur Fehlersuche die Ausgangsdaten genau zu überprüfen
und erspart bei mehrmaligem Parsen die mehrfache lexikalische Analyse.

3.2.3 Ausgabegenerierung

Bei den Parserfunktionen, die die Ausgabegenerierungsphase enthalten, kann
man die Ausgabespezifikation mit dem Keywordargument :output angeben.
Sie bestimmt, wie die Ausgabe des Parsers aussieht. Die kürzesten Ausgabe-
spezikationen sind Keywords. Bei der Ausgabeform :succ gibt der Parser t

zurück, wenn der Satz geparst werden konnte, sonst nil. Bei der Spezifikation
:count wird die Anzahl der Lesarten bestimmt, während bei :cat eine Liste
der Kategorien der Kanten, die die ganze Chart überspannen, zurückgegeben
wird. ChaPLin kann die Ausgabe durch Aufruf von build-tree beliebig oft
neu generieren, ohne daß die Syntaxanalyse wiederholt werden muß.

Defaulteinstellung ist die Ausgabe des Parsewalds als Liste aller Syntaxbäume
(:tree). ChaPLin erzeugt den Parsewald in zwei Schritten. Zuerst expandiert
der Parser die Lesarten, d.h. er macht die Kantenverschmelzung rückgängig, in-
dem er für jeden Ableitungsweg eine Lesartkante in die Chart einträgt. Das ist
nötig, um für die Ableitungswege nach den Angaben im Grammatikformalismus
und in den einzelnen Regeln weitere Attribute für die Ausgabe zu berechnen.

KAPITEL 3. BEDIENUNGSANLEITUNG 16

Bei mehrdeutigen Grammatiken wächst die Anzahl der Lesarten im schlimm-
sten Fall exponentiell mit der Satzlänge und es besteht die Gefahr, daß ChaPLin
für ihre explizite Erzeugung sehr viel Zeit und Speicherplatz benötigt oder sogar
aus Speichermangel abbricht. Der Parser erzeugt die Lesartkanten beim Zählen
der Lesarten mit :count und für die Ausgabeformen :succ und :cat nicht, so
daß dabei nur ein geringer Zeitbedarf und kein Speicherplatzbedarf entsteht.
Wenn man eine hohe Zahl von Lesarten befürchtet, empfiehlt es sich daher,
die Lesarten mit :output :count zu zählen und bei großen Lesartzahlen den
Parsewald nicht zu erzeugen.

<USER.12> (parse ’("Der" "Berg" "ruft" #\.) :output :count)

1

<USER.13> (build-tree)

((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

Aus den Lesartkanten erzeugt ChaPLin den Parsewald entprechend der Baum-
spezifikation. Der Syntaxbaum ist eine geschachtelte Liste aus dem Knoten und
den Unterbäumen. Eine Baumspezifikation gibt die Gestalt von Nichtterminal-
und Terminalknoten (Blättern) an. Das folgende Beispiel zeigt die Defaultein-
stellung für den Syntaxbaum.

<USER.7> chp::*tree-default*

(:node chp::edge-cat

:lex (:cat :lex)

:struct (:cat . :contents))

Hinter dem Keyword :node steht die Spezifikation für die Nichtterminalkno-
ten – in unserem Fall die Kategorie der Lesartkante. Die Spezifikation für
Blätter bezeichnet man mit dem Keyword :lex, denn hier werden die Anga-
ben dem Lexikoneintrag entnommen (Einzelheiten siehe Kapitel 4.4.5). Bei der
Defaulteinstellung wird eine Liste aus Kategorie und Eingabeelement als Blatt
verwendet.

3.2.4 Inkrementelles Parsen

Die bisher vorgestellten Funktionen verarbeiten ganze Sätze. Beim inkrementel-
len Parsen erhält ChaPLin dagegen den Satz Stück für Stück und bearbeitet ihn
im bottom-up-Modus, soweit es möglich ist. Setzt man ChaPLin in einem inter-
aktiven System ein, beginnen der inkrementelle Parser und die möglicherweise
zeitraubende lexikalische Analyse schon mit der Arbeit, während der Benut-
zer noch die Eingabe vervollständigt. Das Antwortzeitverhalten wird dadurch
verbessert.

Die Funktion parse-next arbeitet wortweise inkrementell. Sie verlängert die
Chart um das Eingabeelement, parst und gibt in der Defaulteinstellung eine
Liste der Kategorien der Kanten zurück, die den letzten Knoten als Endknoten
haben. In einem interaktiven System wünscht man für einen unvollständigen
Satz wie im folgenden Beispiel üblicherweise keine Ausgabestruktur sondern
nur eine Erfolgsmeldung. Bei der Ausgabespezifikation :succ gibt ChaPLin

KAPITEL 3. BEDIENUNGSANLEITUNG 17

t zurück, wenn es eine Kante gibt, die die ganze Chart überspannt. Möchte
man nur ganze Sätze erkennen, gibt man noch mit dem Parameter :find das
entsprechende Grammatiksymbol als Startsymbol an. Dann werden nur Kanten
berücksichtigt, die die ganze Chart überspannen und die richtige Kategorie
haben.

<USER.36> (build-chart ())

t

<USER.37> (parse-next "Der" :output :succ :find ’s)

nil

<USER.38> (parse-next "Berg" :output :succ :find ’s)

nil

<USER.39> (parse-next "ruft" :output :succ :find ’s)

nil

<USER.40> (parse-next #\. :output :succ :find ’s)

t

<USER.41> (build-tree)

((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

Der Aufruf von build-chart mit einer leeren Eingabesequenz erzeugt eine leere
Chart, die dann Eingabeelement für Eingabeelement verlängert wird. Der letzte
Schritt build-tree ruft den Ausgabegenerator mit der Defaulteinstellung für
den Syntaxbaum. parse-next kann auch eine Chart, die von einer anderen
Funktion wie parse oder parse-line erzeugt wurde, um ein Eingabeelement
verlängern, z.B. wenn man einmal einen Punkt am Satzende vergessen hat.

Der zeichenweise inkrementelle Parser liest den Eingabestring direkt vom Ter-
minal. Ein interaktiver Scanner gibt ein Eingabeelement dann an parse-next

weiter, wenn der Benutzer es vollständig eingegeben hat. Der zeichenweise in-
krementelle Parser verwendet also den wortweise inkrementellen Parser. Der
Benutzer kann auch Eingabezeichen löschen. Wird ein bereits weitergegebenes
Eingabeelement gelöscht, parst parse-incremental den ganzen bisher einge-
gebenen Satz erneut. Dafür wird ein spezieller Scanner benötigt, der nicht
mit dem ATN-Scanner aus scan-line äquivalent ist. Zur Interaktion mit dem
Terminal werden systemabhängige Funktionen benötigt. Eine Benutzerunter-
brechung oder ein Absturz im inkrementellen Scanner können das Terminal in
einen undefinierten Zustand bringen.

<USER.42> (parse-incremental)

=> Der Berg ru

Die Wörter
”
Der“ und

”
Berg“ des Beispielsatzes wurden bereits an parse-next

übergeben. Die Eingabe wird bei parse-incremental mit Return beendet.

3.2.5 Analysephasen

Wendet man die Phasen einzeln an, eröffnen sich weitere Einsatzmöglichkeiten.
Alle bisher genannten Parserfunktionen sind beliebig kombinierbar, sofern die

KAPITEL 3. BEDIENUNGSANLEITUNG 18

von der jeweiligen Funktion vorausgesetzten Analysephasen bereits durchgeführt
sind.

Die Funktion build-chart baut nur die Chart auf und führt ggf. die lexika-
lische Analyse durch. Sie erhält wie parse eine Folge vom Eingabeelementen
als Argument und trägt den Satz in die Chart ein. Grammatik und Modus
werden benötigt, weil im bottom-up-Modus die Chart bereits beim Eintragen
der Terminalsymbole aktiviert wird. Die Funktion parse-rest führt dann den
eigentlichen Parsevorgang aus und erzeugt die Ausgabe. parse-rest erhält
keine Eingabesequenz als Element sondern geht von einer bestehenden Chart
aus.

Mit dieser Kombination ist es möglich, einen Satz stufenweise mit verschiedenen
Grammatiken zu parsen. Da parse-rest von den Kanten der Chart ausgeht,
verwendet es die in der Chart eingetragenen Teilergebnisse der vorhergehenden
Schritte mit. Für die beiden Grammatiken *g1* und *g2* sieht der Aufruf
dann folgendermaßen aus.

> (build-chart ’(...))

t

> (parse-rest :grammar *g1*)

...

> (parse-rest :grammar *g2*)

...

Dabei sind verschiedene Anwendungen denkbar. *g1* ist z.B. eine Grammatik
mit Regeln für kleine Konstrukte bis hin zu Nominalphrasen, während *g2*

dann aus den mit *g1* abgeleiteten Symbolen ganze Sätze konstruiert.

Ein anderes Modell ist, zuerst mit einer einfachen Grammatik *g1* zu arbei-
ten und im Falle eines Mißerfolgs mit einer um zusätzliche Regeln erweiterten
Grammatik *g2* weitere Ableitungen zu bestimmen.

ChaPLin kann auch Folgen von Nichtterminalsymbolen parsen. Diese wer-
den als Struktureinträge (ähnlich Lexikoneinträgen) übergeben und genau wie
normale Lexikoneinträge in der Eingabesequenz behandelt. Der Strukturein-
trag enthält den Syntaxbaum für den Aufbau des Nichtterminalsymbols. Der
Ausgabegenerator arbeitet bei Struktureinträgen nach dem :struct-Teil der
Baumspezifikation, der normalerweise so definiert ist, daß der von einem Struk-
tureintrag erzeugte Knoten wie ein gewöhnlicher Nichtterminalknoten des Syn-
taxbaums aussieht.

3.3 Fehlersuche und Analyse

Wenn man mit Hilfe von ChaPLin eine Grammatik oder einen Grammatiktyp
entwickelt, benötigt man Werkzeuge zur Untersuchung des Parseprozesses. Bei
Effizienzproblemen oder wenn man den Fehler erst lokalisieren muß, sind quan-
titative Untersuchungen und Statistiken hilfreich. Quantitative Analysen geben
nur einen Hinweis oder eine Tendenz an, weil die Auswirkungen einzelner Effekte
von anderen Effekten überlagert werden. Einen bestimmten Ableitungsschritt

KAPITEL 3. BEDIENUNGSANLEITUNG 19

untersucht man, indem man sich die Chart oder Teile davon ausgeben läßt.
Für noch gründlichere Untersuchungen sind die Datenstrukturen der Chart in
Kapitel 4 dokumentiert.

Die Beispieluntersuchungen in diesem Abschnitt werden – wenn nicht anders
angegeben – im Anschluß an folgenden Aufruf von ChaPLin ausgeführt.

<USER.44>(parse ’("Der" "Berg" "ruft" #\.))

((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

3.3.1 Quantitative Analyse

Die Funktion describe-chart gibt die maximale Knotennummer und die ma-
ximale Kantennummer in der Chart zurück.

<ISAAC.USER.45> (describe-chart)

((:nodes . 5) (:edges . 23))

Bei einem Satz mit 4 Eingabeelementen hat die Chart 5 Knoten. Bei diesem
Analyseprozeß wurden 24 Kanten erzeugt. (Die Kantenumerierung beginnt mit
0, die Knotennumerierung mit *left-vertex* = 1.)

Die Funktion chart-analysis erstellt eine ausführliche Statistik. Die Kan-
tenzahlen werden nach aktiven Kanten, (syntaktischen) inaktiven Kanten und
Lesartkanten getrennt aufgelistet. Stillgelegte Kanten entstehen, wenn man den
Ausgabegenerator mehrmals aufruft, weil ChaPLin dann die Lesartkanten neu
berechnet und die alten Lesartkanten aus der Chart entfernt.

<USER.86> (chart-analysis)

Chartanalyse

Knoten: 5 Kanten: 24 davon

aktiv: 10 inaktiv: 7 Lesartkanten: 7 stillgelegt: 0

1 ueberspannende Kante mit zusammen 1 Lesarten

Vorkommen der inaktiven Kanten in contents

1-fach kommen 7 Kanten vor

Benutzt: 7 unbenutzt: 0 inaktive Kanten

Alternativen:

1 Alternativen bei 7 Kanten

Verteilung der Regellaengen

Laenge 1 wurde 1 mal angewendet

Laenge 2 wurde 1 mal angewendet

Laenge 3 wurde 1 mal angewendet

Terminale: 4

allg. Multikanten

1-fach parallel: 5

KAPITEL 3. BEDIENUNGSANLEITUNG 20

2-fach parallel: 1

Zusammenfassung ergaebe 6 Kanten

kategorieaequivalente Kanten

1-fach parallel: 7

Zusammenfassung ergaebe 7 Kanten

Die Statistiken über Verwendung von Kanten, Alternativen und Multikanten
berücksichtigen nur die inaktiven Kanten. Eine n-fach parallele Multikante be-
deutet, daß n inaktive Kanten dasselbe Knotenpaar verbinden. Multikanten
deuten auf Mehrdeutigkeiten in der Grammatik hin. Die Analyse für katego-
rieäquivalente Kanten zeigt, wie viele parallele Kanten mit gleicher Kategorie
es gibt. Da Kantenverschmelzung durchgeführt wird, haben parallele Kanten
mit gleicher Kategorie unterschiedliche Features. Die Analysen können auch
einzeln durchgeführt werden – eine ausführliche Beschreibung befindet sich in
Kapitel 6.

Oft ist auch der Zeitbedarf eines Funktionsaufrufs interessant. ChaPLin stellt
zwei Makros zur Zeitmessung zur Verfügung. with-time stoppt die Zeit für
die Evaluierung der Ausdrücke in seinem Rumpf und gibt Zeit und Wert des
letzten Ausdrucks zurück. Bei kleinen Laufzeiten erhält man aussagekräftigere
Werte, wenn man die Zeit für eine k-fache Auswertung mit k-with-time mißt.

<USER.71> (with-time (parse ’("Der" "Berg" "ruft" #\.)))

CPU-Zeitbedarf 0.000 sec

0.0

((s (np (det "Der") (n "Berg")) (vp (vf "ruft")) (punkt ".")))

<USER.74> (k-with-time 1000 (parse ’("Der" "Berg" "ruft" #\.)))

CPU-Zeitbedarf 3.770 sec

3.77

Es ist auch interessant, den Zeitbedarf der Analysephasen einzeln zu messen.

3.3.2 Datenausgabe

Eine genauere Vorstellung vom Ableitungsprozeß erhält man, wenn man die
Chart betrachtet. Die Funktion display-chart gibt die Chart bzw. Teile
davon aus.

<USER.53> (display-chart :edges :all)

[inactive-edge 16: 1--s-->5]

[inactive-edge 12: 1--np-->3]

[inactive-edge 0: 1--det-->2]

[active-edge 15: 1--s-->4 needed: (punkt)]

[active-edge 14: 1--s-->3 needed: (vp punkt)]

[active-edge 13: 1--s-->1 needed: (np vp punkt)]

[active-edge 11: 1--np-->2 needed: (n)]

[active-edge 10: 1--np-->2 needed: (adj n)]

KAPITEL 3. BEDIENUNGSANLEITUNG 21

[active-edge 2: 1--np-->1 needed: (det adj n)]

[active-edge 1: 1--np-->1 needed: (det n)]

[sf-edge 23: 1--s-->5]

[sf-edge 19: 1--np-->3]

[sf-edge 17: 1--det-->2]

[inactive-edge 3: 2--n-->3]

[sf-edge 18: 2--n-->3]

[inactive-edge 9: 3--vp-->4]

[inactive-edge 4: 3--vf-->4]

[active-edge 8: 3--vp-->4 needed: (np)]

[active-edge 6: 3--vp-->3 needed: (vf np)]

[active-edge 5: 3--vp-->3 needed: (vf)]

[sf-edge 21: 3--vp-->4]

[sf-edge 20: 3--vf-->4]

[inactive-edge 7: 4--punkt-->5]

[sf-edge 22: 4--punkt-->5]

nil

Am Anfang der Zeile steht Kantentyp und Kantennummer. Die Kantentypen
inactive-edge und active-edge stehen für inaktive und aktive Kanten; alle
anderen Kantentypen (wie sf-edge) bezeichnen die Lesartkanten des verwen-
deten Grammatiktyps.

Anschließend folgt die Nummer des Anfangsknotens, die Kategorie der Kan-
te und die Nummer des Endknotens. Mit dem Keywordparameter :edges

gibt man an, welcher Kantentyp angezeigt wird. Außer der Defaulteinstellung
:inactive gibt es noch :active, :tree für die Lesartkanten und :all.

Die Funktion get-edge gibt die Kante mit der angegebenen Nummer zurück.
Die print-function der Kante druckt aus Gründen der Übersichtlichkeit nur
Kurzinformation in einer Zeile. Ausführlichere Information erhält man mit
display-edge :

<ISAAC.USER.58> (display-edge (get-edge 16))

[inactive-edge 16: 1--s-->5

:features nil

:contents #S(chp::rule :lhs s :rhs (np vp punkt)

:conf 1 :rhs-name (np vp punkt)

:rhs-cond (nil nil nil)

:result nil :sem nil)

[inactive-edge 12: 1--np-->3]

[inactive-edge 9: 3--vp-->4]

[inactive-edge 7: 4--punkt-->5]

nil

Die Funktion display-agenda zeigt die Agenda. Nach erfolgreicher Beendigung
der Parsens ist die Agenda leer.

KAPITEL 3. BEDIENUNGSANLEITUNG 22

Das folgende Beispiel zeigt daher die Agenda zu Beginn, nachdem die Chart
aufgebaut und bottom-up-aktiviert ist.

<ISAAC.USER.54> (build-chart ’("Der" "Berg" "ruft" #\.))

t

<ISAAC.USER.55> (display-agenda)

Bottom of stack

1 --- np 1 --- 1 --- det 0 --- 2

1 --- np 2 --- 1 --- det 0 --- 2

3 --- vp 5 --- 3 --- vf 4 --- 4

3 --- vp 6 --- 3 --- vf 4 --- 4

nil

Die Agenda ist ein Stapel von Konfigurationen, das sind Paare aus einer aktiven
Kante und einer inaktiven Kante, die das Ende der aktiven Kante verlängert
(vgl. Kapitel 2). Jede Zeile entspricht einer Konfiguration. Links steht der
Anfangsknoten der aktiven Kante, danach deren Kategorie und Kantennum-
mer. In der Mitte steht der Endknoten der aktiven Kante, der gleichzeitig der
Anfangsknoten der inaktiven Kante ist. Für die inaktive Kante folgt ebenfalls
Kategorie und Kantennummer und rechts steht der Endknoten der inaktiven
Kante.

3.4 Installation und Umgebung

Dieser Abschnitt beschreibt, wie der Parser geladen wird und welche Dateien
und Ressourcen er benötigt. Ein Verzeichnis aller Dateien befindet sich im
Anhang B. Wenn bei der Installation eigene Änderungen nötig sind, sollte man
sich am Format der bisherigen Eintragungen orientieren.

Die Ladedatei load-parser.lisp des Parser enthält die Installation, d.h. alle
nötigen Anpassungen an das Rechnersystem. Die Datei definiert das Packa-
ge chart-parser mit Nickname chp und ruft die Funktion load-module auf.
Der Aufruf enthält eine Liste aller Dateien, die geladen werden. Steht hinter
der Datei t, dann verwendet ChaPLin kompilierten Code, bei nil lädt er den
Quellcode. Hier kann man auch eigene Dateien hinzufügen.

load-module kompiliert die angegebenen Dateien bei Bedarf und legt die kom-
pilierten Dateien (Binaries, Fasls, . . .) im Unterverzeichnis bin ab. Die kom-
pilierten Dateien sind für unterschiedliche Lispimplementierungen, Betriebs-
systeme oder Rechner (Prozessoren) inkompatibel. Möchte man im gleichen
Dateisystem mit verschiedenen Plattformen arbeiten, dann definiert man je-
weils einen Plattformnamen und eine Endung für die kompilierten Dateien in
der Variable *binary-extension*. Der Plattformname ist das letzte Argument
von load-module. Man definiert ihn am besten abhängig von der aktuellen
Plattform mit der #+-Syntax von Common Lisp [Steele 90].

Die Dateien werden in der Reihenfolge geladen, in der sie in der Dateiliste
stehen. Die Grammatikdateien und eigene Erweiterungen sollten erst nach
dem Parserkern geladen werden. Zu Beginn einer Datei kann man mit defmod

KAPITEL 3. BEDIENUNGSANLEITUNG 23

Information über das Modul ablegen. defmod erhält als erstes Argument ein
Schlüsselwort als Bezeichner für das Modul, anschließend zwei Strings, den
Namen und das Datum des Moduls. Die Funktion chp-version druckt eine
Übersicht über alle geladenen Module.

<USER.6> (chp-version)

ChaPLin Chart Parser

G. Burkert, M.Loethe

Version 3.2 6-FEB-95

Parser Version 3.2, 6-FEB-95

Grammar types cf sf 3.2.2, 6-DEZ-95

Chart Parser Utilities, 2-FEB-95

Incremental Bottom Up Parsing 3.2, 6-DEZ-95

ATN Interpreter 1.2.1, AUG-94

ATN based line scanner 1.22, 24-FEB-93

Deutsche Beispielgrammatik :sf, 13-DEZ-95

Lexikonschnittstelle Beispiel, 13-DEZ-95

ChaPLin benötigt zur Arbeit nur den Parser, den Grammatiktyp der verwende-
ten Grammatik, die Grammatik selbst und ein passendes Lexikon. Die Utilities,
den inkrementellen Parser und der Zeilenscanner muß man nur laden, wenn man
sie benötigt. Der ATN-Interpreter wird vom Zeilenscanner benutzt.

Kapitel 4

Aufbau und Arbeitsweise von
ChaPLin

Während man die in Kapitel 3 beschriebenen Funktionen ohne tiefere Kenntnis
des Systems anwenden kann, muß man sich, um auch die fortgeschritteneren
Möglichkeiten von ChaPLin zu nutzen, genauer mit dessen Arbeitsweise und da-
mit auch mit Aspekten der Implementation vertraut machen. Daher beschreibt
dieses Kapitel gleichzeitig die Arbeitsweise von ChaPLin und die Grundzüge
der Implementation.

4.1 Der Einfluß des Grammatiktyps

Entwirft man eine rein kontextfreie Grammatik zur Verarbeitung natürlicher
Sprache, so erhält man – wenn man die vielfältigen Besonderheiten und Va-
rianten des Satzbaus nicht ausschließen möchte – eine Grammatik, die einen
großen Teil der verfügbaren syntaktischen Information des Satzes nicht verwen-
det. Die verschiedenen aus der Literatur bekannten Grammatikformalismen
haben die Aufgabe, diese Information in Form von sogenannten Features zur
Steuerung des Parsers nutzbar zu machen. Die Repräsentation eines Gram-
matikformalismus in ChaPLin heißt Grammatiktyp. Ein wesentliches Element
von ChaPLin ist die Trennung zwischen dem Kern des Parsers und den zum
Grammatiktyp gehörenden Anteilen. Der Grammatiktyp bestimmt grundle-
gende Eigenschaften aller Analysephasen des Parsers.

Wie in Kapitel 2 beschrieben, erzeugt ChaPLin eine Chart, in der alle mit
der gegebenen Grammatik möglichen Ableitungen als Kanten abgelegt werden.
Die Kanten führen für den Bedarf des Parsers und für die Anwendung bei der
Sprachverarbeitung Information folgender Art mit:

• Die zentrale Information in der Chart ist vom Grammatiktyp unabhängig
und wird daher vom Kern des Parsers verwaltet. Dazu gehören z.B.
Anfangs- und Endknoten von Kanten und deren Kategorien.

• Die o.g. Features werden mit grammatiktypabhängigen Regeln behandelt.
Sie beeinflussen ebenfalls den Parsevorgang.

24

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 25

• Die Attribute nehmen dagegen am Parsevorgang nicht teil. Sie werden
vom Grammatiktyp definiert. Die Attributinformation wird erst bei der
Generierung der Ausgabestruktur berechnet. Die Attribute können zur
weiteren Analyse verwendet, oder einfach ausgegeben werden.

Ein Grammatiksymbol im Sinne der Theorie der formalen Sprachen entspricht
damit einer Kombination von Kategorie und Features. Die Attribute gehören
nicht dazu, da sie den Parsevorgang nicht beeinflussen. Die Datenstrukturen
für diese Information werden in Abschnitt 4.2 beschrieben.

Algorithmus 2 (S. 12) definiert die Analysephasen des Parsers. Da das Er-
stellen von Grammatiktypen Kenntnisse über die Arbeitsweise von ChaPLin
erfordert, erläutern die folgenden Abschnitte die einzelnen Analysephasen und
deren Grammatiktypoptionen gemeinsam. Folgende Bereiche des Parsers wer-
den vom Grammatiktyp beeinflußt:

• Bei der syntaktischen Analyse definiert der Grammatiktyp die Feature-
behandlung. Die Arbeitsweise der syntaktischen Analyse wird in Ab-
schnitt 4.3 beschrieben.

• Einen besonders tiefgreifenden Einfluß hat der Grammatiktyp auf den
Ausgabegenerator, der in Abschnitt 4.4 beschrieben wird. Der Gram-
matiktyp definiert die Attribute der Lesartkanten, ihre Berechnungsvor-
schriften und die Gestalt der semantischen Aktionen der Regeln.

• Die Schnittstelle zwischen Parser und Lexikon beschreibt Abschnitt 5.3.
Auch für Feature- und Attributwerte benötigt der Parser (grammatik-
typspezifische) Lexikoninformation.

• Da die Grammatikregeln Angaben zu Featurebedingungen und zur Attri-
butierung enthalten, ist ihr Format vom Grammatiktyp abhängig. Der
Ladevorgang für Grammatiken wird in Abschnitt 5.2 erläutert.

Die Arbeit der Parserfunktionen wird durch ihre Parameter gesteuert. Zu den
Parametern in ChaPLin gehören einfache Optionen wie der Modus aber auch
zusammengesetzte Spezifikationen. Spezifikationen in ChaPLin sind generell
Listen aus Keywords und deren Werten. Die Menge der zulässigen Spezifika-
tionsattribute ist grundsätzlich nicht beschränkt und ihre Reihenfolge ist nicht
festgelegt. Spezifikationsattribute, die ChaPLin nicht kennt, werden einfach
ignoriert. Spezifikationswerte können auch Funktionen sein, die der Parser dann
an bestimmter Stelle aufruft.

Die Interaktion zwischen dem Grammatiktyp und dem Kern von
ChaPLin ist mit folgenden Techniken realisiert:

• Der Grammatiktyp definiert Funktionen, die der Parserkern an bestimm-
ten Stellen aufruft.

• Einige dieser Funktionen werden erzeugt, indem Codestücke des Gram-
matiktyps in eine Funktionsschablone des Parsers eingesetzt werden.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 26

• Die Funktionen des Grammatiktyps verwenden Grundfunktionen des Par-
sers und steuern diese über Parameter (z.B. Spezifikationen).

• Manche Funktionen des Grammatiktyps erhalten vom Benutzer eingege-
bene Spezifikationen als Parameter. Da das Datenformat für Spezifikatio-
nen erweiterbar ist, kann der Grammatiktyp so eigene Optionen für die
Benutzerfunktionen definieren.

4.2 Die Chart

Die Chart ist die grundlegende Datenstruktur des Parsers und somit für al-
le Analysephasen wichtig. Ihre Eigenschaften sind am Anfang von Kapitel 2
beschrieben. Sie ist als abstrakter Datentyp realisiert. Alle Zugriffe sollten
über die festgelegten Zugriffsfunktionen erfolgen, da diese durch Fehlermeldun-
gen abgesichert sind. Intern ist die Chart durch einen Vektor von Knoten
(*vertices*) und einen Vektor von Kanten (*edges*) repräsentiert.

4.2.1 Knoten

Die Knoten der Chart stehen für die Zwischenräume im Satz. Die Numerierung
beginnt mit *left-vertex* = 1. Mit (get-vertex <nummer>) greift man auf
einen Knoten zu.

vertex Struktur

Ein Knoten ist eine Struktur vertex mit folgenden Komponenten:

active-in Liste der aktiven Kanten, die an diesem Knoten enden

active-out Liste der aktiven Kanten, die von diesem Knoten ausgehen

number Nummer des Knotens (entspricht dem Index in *vertices*)

inactive-in Liste der inaktiven Kanten, die an diesem Knoten enden

inactive-out Liste der inaktiven Kanten, die von diesem Knoten ausgehen

tree-in Liste der Lesartkanten, die an diesem Knoten enden

tree-out Liste der Lesartkanten, die von diesem Knoten ausgehen

Die Funktion create-vertex erzeugt einen neuen Knoten mit der nächsten
freien Nummer. Die anderen Slots werden mit nil initialisiert. Die Funktion
get-vertex mit Argument n liefert den Knoten mit der Nummer n.

4.2.2 Kanten

Es gibt drei Arten von Kanten: inaktive Kanten, aktive Kanten und Lesart-
kanten. Eine Kante wird durch einen Aufruf des Makros insert-edge erzeugt,
wobei der Kantentyp angegeben wird. Auf Kanten kann mit get-edge über
ihre Nummer zugegriffen werden.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 27

4.2.2.1 gemeinsame Information

Alle Kantentypen haben die Graphinformation und einen Teil der syntaktischen
Information gemeinsam.

edge Struktur

Die Basisstruktur edge hat folgende Slots:

number Nummer der Kante

left Nummer des Anfangsknotens.

right Nummer des Endknotens.

cat Kategorie der Kante

contents enthält je nach Kantentyp:

aktive Kante: Liste der bereits überspannten Kanten

syntaktische Terminalkante: Lexikoneintrag

syntaktische Nichtterminalkante: Bei einer mehrdeutigen Gram-
matik können verschiedene Ableitungswege auf das selbe Symbol
führen. Durch Kantenverschmelzung hat eine Kante in diesem
Fall mehrere verschiedene Inhalte. Damit man zur Berechnung
der Lesartkanten die Ableitungswege wieder rekonstruieren kann,
besitzt eine syntaktische Nichtterminalkante für jeden Ableitungs-
weg einen Wegeintrag bestehend aus der angewendeten Regel und
den enthaltenen Kanten. Der Inhalt der Kante hat dann folgende
Form:
<contents> ::= ((<rule><edge>+) ...)

terminale Lesartkante: Lexikoneintrag

nichtterminale Lesartkante: Liste der bereits überspannten Kan-
ten.

features Features der Kante entsprechend der Definition im Grammatik-
typ

4.2.2.2 Inaktive Kanten

inactive-edge Struktur

Inaktive Kanten sind Strukturen von Typ inactive-edge. Sie erben von
edge und enthalten zusätzlich einen Slot für die zur syntaktischen Kante
gehörenden Lesartkanten.

trees Eine Liste der Lesartkanten dieser Kante oder :uncomputed.

Zu Beginn enthält der Slot trees den Wert :uncomputed. Der Ausgabegene-
rator berechnet die Lesartkanten dann, wenn er sie das erste Mal benötigt und
legt sie im Slot ab. Später verwendet er die im Slot abgelegten Lesartkanten.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 28

Der Parser bietet die Möglichkeit an, Lesarten zu filtern, d.h Lesarten nach
bestimmten Kriterien aus der Lesartenliste zu streichen. Verwendet man den
Filter, so besitzt eine syntaktische Kante möglicherweise keine Lesarten und
der Wert des Slots ist nil. Deswegen unterscheidet man die Fälle nil und
:uncomputed.

4.2.2.3 aktive Kanten

Aktive Kanten sind Strukturen vom Typ active-edge und enthalten weitere
Information über den augenblicklichen Zustand der Regelanwendung.

active-edge Struktur

Aktive Kanten fügen den von edge ererbten Slots daher noch folgende Slots
hinzu:

contents-name Liste von Kategorien der Kanten, die die Kante überspannt

needed Liste von Kategorien, die eine aktive Kante noch benötigt.

needed-name Obige Liste, wobei gleichnamige Kategorien indiziert sind.
Zum Beispiel lautet die Regel NP −→ NP PP mit indizierten Kate-
gorien NP.1 −→ NP.2 PP. Featuremechanismen benötigen manchmal
einen Index zur eindeutigen Identifizierung.

needed-cond Featurebedingungen für noch benötigte Kanten

rule Die gerade untersuchte Regel

4.2.2.4 Lesartkanten

Die Struktur für die Lesartkanten wird vom jeweiligen Grammatiktyp definiert.
Dabei wird der Basistyp für Lesartkanten tree-edge um Slots für die vom
Grammatiktyp verwendeten Attribute erweitert. Attribute werden erst in der
Ausgabephase erzeugt und nehmen nicht an der syntaktischen Analyse teil (sie-
he Abschnitt 4.4)

tree-edge Struktur

Der Basistyp tree-edge erbt von edge und hat einen zusätzlichen Slot für
die angewendete Regel.

rule Bei nichtterminalen Lesartkanten steht hier die angewendete Regel,
sonst nil.

4.2.3 Agenda

Die Agenda ist zwar nicht direkt Bestandteil der Chart, gehört aber zu den
grundlegenden Datenstrukturen von ChaPLin. Jedes Zusammentreffen einer
aktiven und einer inaktiven Kante, d.h. jede Möglichkeit zur Anwendung

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 29

der Grundregel ist eine Konfiguration, die einmal betrachtet werden muß. Die
beiden Kanten werden auf einem Stack, der Agenda, abgelegt. Die Agenda ist
als Vektor mit einem fill-pointer implementiert.

4.3 Syntaktische Analyse

Dieser Abschnitt beschreibt, welche Arbeitsschritte es beim Chartaufbau und
bei der syntaktischen Analyse gibt und wie dabei die Slots der Kanten belegt
werden.

4.3.1 Kantenverschmelzung

ChaPLin erzeugt eine Chart, eine Datenstruktur, die alle mit der gegebenen
Grammatik möglichen Ableitungsbäume enthält. Grundprinzip jedes Verfah-
rens zur Berechnung des Syntaxbaums ist, festzustellen, ob man durch An-
wendung einer Grammatikregel eine bestimmte Folge von Symbolen durch ein
Nichtterminalsymbol ersetzen kann. Grammatiksymbole entsprechen in einem
Chartparser inaktiven Kanten. Für eine mögliche Regelanwendung werden ak-
tive Kanten angelegt. Solche aktiven Kanten können nach der Grundregel in-
aktive Kanten (Symbole) lesen, und es wird dann eine neue, verl̈angerte Kante
angelegt.

Bei der syntaktischen Analyse unterscheidet der Parser Kanten nur nach Ka-
tegorie und Features. Die Attribute sind für die syntaktische Analyse unwe-
sentlich. Versucht der Parser, eine inaktive Kante einzufügen, die nach Ka-
tegorie und Features äquivalent zu einer existierenden inaktiven Kante ist, so
verschmilzt er diese Kanten. Die unterschiedlichen Ableitungswege werden aber
protokolliert, denn es kann später – bei der Ausgabegenerierung – für unter-
schiedliche Ableitungswege verschiedene Attributwerte geben. Die erfolgreichen
Ableitungswege expandiert der Parser bei der Ausgabegenerierung wieder.

Der Grund für dieses komplizierte Vorgehen liegt in der Effizienz. Sei n die
Anzahl der Eingabeelemente und g die Anzahl der Grammatiksymbole. In den
folgenden Abschätzungen modelliert g den schlimmsten Fall der Mehrdeutig-
keit. Die Anzahl der Grammatiksymbole g ist bei Grammatiken für natürliche
Sprache verhältnismäßig groß, da man die verschiedenen zulässigen Feature-
werte jeweils als verschiedene Grammatiksymbole berücksichtigen muß. Bei
realen Sätzen und Grammatiken ist jedoch die Mehrdeutigkeit der Ableitung –
nämlich die Anzahl paralleler Kanten mit verschiedener Kategorie und Feature-
werten für einen Teil der Chart – ziemlich klein. Daher kann man g als kleinen
konstanten Faktor betrachten.

• Bei einem Verfahren mit Kantenverschmelzung ist die Anzahl der möglichen
Kanten durch 1

2gn
2 beschränkt, da jeder Knoten nur mit Knoten größerer

Nummer verbunden ist und alle parallelen Kanten verschieden sind.

• Verzichtet man auf Kantenverschmelzung, so kann die Kantenzahl expo-
nentiell wachsen. Dieser Fall tritt in der Praxis auf, wenn die Grammatik
einen stark mehrdeutigen Anteil enthält, z.B. für Aufzählungen.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 30

parse

build-chart run-config build-tree

add-inactive-edge

seek

add-active-edge

seek

extend

add-active-edge add-inactive-edge

seek seek

td

bu

td

td bu

m

ruft in Modus m auf ruft auf Funktion

Abbildung 4.1: Aufrufstruktur von ChaPLin

Daher arbeitet ChaPLin mit Kantenverschmelzung. Die Kantenverschmelzung
reduziert nicht die Zahl der Lesarten, sondern ist nur eine kompakte Dar-
stellung des Parsewalds. Das exponentielle Wachstum der Chart tritt dann
möglicherweise auf, wenn man die Lesarten in der Chart expandiert. Man kann
aber die Lesarten mit :output :count vor der Expansion zählen und bei pro-
blematischen Sätzen auf die Expansion verzichten. Die Kantenverschmelzung
ermöglicht es so, Problemfälle abzufangen.

4.3.2 Die Arbeitsschritte der syntaktischen Analyse

Dieser Abschnitt beschreibt die einzelnen Arbeitsschritte aus Algorithmus 1
(S. 7) genauer und nennt die zugehörigen Funktionen von ChaPLin. Abbildung
4.1 zeigt eine vereinfachte Fassung des Aufrufbaums von ChaPLin. Bei der
Definition eines Grammatiktyps gibt man 4 Behandlungsregeln für Features
an. Sie definieren das Verhalten beim Lesen eines Symbols, beim Anwenden
einer Grammatikregel, einen Äquivalenztest und einen Anwendbarkeitstest und
werden bei der Beschreibung der Grammatiktypoptionen genauer erläutert. Die

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 31

Defaultwerte entsprechen der Verwendung einer kontextfreien Grammatik ohne
Berücksichtigung von Features.

Die Zuweisungen und Bedingungen sind in Pseudocode notiert. Bei den Kan-
tenzugriffen wird edge- weggelassen. Die grammatiktypabhängigen Featurebe-
handlungsregeln werden mit einem * gekennzeichnet.

4.3.2.1 Terminalsymbol eintragen

Zu Beginn des Parsens werden die Knoten angelegt und die Lexeme als inaktive
Terminalkanten in die Chart eingetragen. Für jeden Lexikoneintrag L erzeugt
ChaPLin also eine inaktive Kante I.

Funktion add-input-item

Bedingung keine

Zuweisungen
cat := (cat L)
features := (features L)
contents := L

4.3.2.2 Aktivieren

Beim Aktivieren wird für jede anwendbare Regel R eine aktive Kante A1 in die
Chart eingetragen. A1 ist eine Schlinge (endet an ihrem Anfangsknoten), da
sie noch kein Symbol (inaktive Kante) gelesen hat.

Funktion seek

Bedingung Je nachdem ob bottom-up oder top-down geparst wird, aktiviert
der Parser die Chart zu unterschiedlichen Zeitpunkten (vgl. Kapitel 2.2).
Daher auch folgende unterschiedliche Bedingungen:

top-down Es muß eine aktive Kante A2 existieren, mit
(right A2) = (left A1)
(rule-lhs R) = (first (needed A2))

bottom-up Es muß inaktive Kante I existieren, mit
(left I) = (left A1)
(first (rule-rhs R)) = (cat I)

Diese Bedingung stellt die Anwendbarkeit der Regel fest. Die Features
werden dabei nicht berücksichtigt. Der Parser trägt Schlingen, deren
Features nicht zur Kante passen, erst einmal in die Chart ein. Er kann
sie aber später nicht mit der Grundregel verlängern.

Wenn die Chart an diesem Knoten schon einmal für die Regelkategorie
aktiviert worden ist, dann wird die Aktivierung nicht noch einmal aus-
geführt. Dadurch werden Probleme mit linksrekursiven Regeln vermieden.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 32

Die Chart ist bereits aktiviert, wenn an dem Knoten eine aktive Schlinge
A3 folgender Form existiert:
top-down (rule-lhs R) = (cat A3)
bottom-up (first (rule-rhs R)) = (car (needed A3))

Zuweisungen
(cat A1) := (lhs R)
(features A1) := derzeit: ()
(contents A1) := ()
(needed A1) := (rhs R)
(needed-cond A1) := (rhs-features R)
(rule A1) := R

Damit unterscheiden sich die beiden Modi top-down und bottom-up nur in
den Aktivierungsbedingungen und im Zeitpunkt, an dem die Funktion seek

aufgerufen wird.

4.3.2.3 Symbol lesen ohne Regel zu vervollständigen

Bei der Anwendung der Grundregel wird die aktive Kante A1 durch die inaktive
Kante I verlängert, wenn diese beiden Kanten passen. Falls der Rumpf der
Regel von A1 danach noch weitere Symbole benötigt, wird eine aktive Kante
A2 erzeugt.

Funktion extend

Bedingung
(cat I) = (first (needed A1)
(match-features* A1 I) 6= NIL

Zuweisungen
(cat A2) := (cat A1)
(features A2) := (act-features* A1 I)
(needed A2) := (rest (needed A1))
(needed-cond A2) := (rest (needed-cond A1)
(contents A2) := (cons (cat I) (contents A1))
(rule A2) := (rule A1)

4.3.2.4 Symbol lesen, Ableitung hinzufügen

Wie vorhin wird die aktive Kante A mit einer inaktiven Kante I1 verlängert.
Wenn dabei für jedes Symbol im Rumpf der Regel von A eine inaktive Kante
gelesen wurde, dann wendet der Parser die Regel an und erzeugt die inaktive
Kante I2.

Funktion extend

Bedingung
(cat I1) = (first (needed A1)
(match-features* A1 I) 6= NIL

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 33

Zuweisungen
(cat I2) := (cat A)
(features I2) := (inact-features* A I1)
(contents I2) := (list (cons (rule A)

(reverse (cons (contents I1)
(contents A)))))

4.3.2.5 Symbol lesen, Ableitungsweg hinzufügen

Ebenso wie im vorigen Fall wird nach der Grundregel die aktive Kante A mit ei-
ner inaktiven Kante I1 verlängert und die Grammatikregel ist anwendbar. Eine
Kante I2 mit der gleichen Kategorie wie die entstehende Kante und äquivalenten
Featurewerten existiert aber schon. In diesem Fall führt ChaPLin eine Kanten-
verschmelzung durch und trägt nur eine weitere Lesart für die Kante I2 ein.

Funktion extend

Bedingung
(cat I) = (first (needed A1)
(match-features* A1 I1) 6= NIL
(cat A) = (cat I2)

(fea-equalp* (inact-features* A I1)(features I2))

Zuweisungen
contents(I2) := (cons (cons (rule A)

(reverse (cons (contents I1)
(contents A))))

(contents I2))

4.3.3 Grammatiktypoptionen für die syntaktische Analyse

Bei der Erstellung eines Grammatiktyps definiert man die oben mit einem *
markierten 4 Zuweisungsregeln und Bedingungen für Features. Die Defaultwer-
te führen zu einer rein kontextfreien Grammatik ohne Verwendung von Featu-
rewerten.

Die Funktion extend-config baut bei der Definition des Grammatiktyps die
Grundregelfunktion extend aus der Funktionsschablone und 3 Codestücken zu-
sammen. Weil die Grundregel für jede Konfiguration aufgerufen wird, muß man
bei ihr auf Effizienz achten.

Die Grundregelfunktion erhält als Parameter die beiden Kanten der Konfigu-
ration act und inact, den Modus mode und die indizierte Regelmenge rules .
Diese Variablen kann man in den Codestücken verwenden. Sinnvolle Parame-
ter für die Codestücke des Featuremechanismus sind normalerweise nur die in
der aktiven Kante abgelegte aktuelle Regel, die Features (edge-features act

bzw. inact) und eventuell noch die Kategorien (edge-cat act bzw.inact)
der beiden Kanten act und inact.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 34

act-features Lesevorgang ohne Regelanwendung

Dieses Codestück zum Einbau in die Grundregelfunktion berechnet bei
der Erzeugung einer aktiven Kante deren Features, wobei die in in der
aktiven Kante abgelegte aktuelle Regel, die Features der beiden Kanten
act und inact und eventuell noch deren Kategorien sinnvolle Parameter
sind.

Default: () – bei kontextfreien Grammatiken sind alle Features nil.

inact-features Lesevorgang mit Regelanwendung

Dieses Codestück zum Einbau in die Grundregelfunktion berechnet die
Features bei der Erzeugung einer inaktiven Kante und hat ebenfalls Zu-
griff auf die Parameter der Grundregelfunktion. Jedoch sind auch hier
üblicherweise nur die aktuelle Regel, die Features und eventuell noch die
Kategorien der beiden Kanten sinnvoll.

Default: () – bei kontextfreien Grammatiken sind alle Features nil.

fea-equalp Äquivalenztest für Kantenverschmelzung

Diese Vergleichsfunktion erhält die Features zweier inaktiver Kanten mit
gleicher Kategorie als Argumente. Wenn die Funktion nil zurückgibt, legt
ChaPLin eine eigene Kante an, sonst werden die Kanten verschmolzen.

Default: #’eq – erlaubt die Verschmelzung immer, da im kontextfreien
Fall alle Features nil sind.

match-features Anwendbarkeitstest
Codestück zum Einbau in die Grundregelfunktion. Es prüft, ob die Featu-
res der inaktiven Kante zu denen der aktiven Kante passen, d.h. zulassen,
daß die aktive Kante um die inaktive Kante verlängert wird. Ist dies nicht
der Fall, muß das Codestück nil ergeben, sonst einen anderen Wert.

Default: t – bei kontextfreien Grammatiken gibt es keine zusätzliche Re-
striktion durch Features.

4.4 Ausgabegenerierung

Die letzte Analysephase aus Algorithmus 2 (S. 12) ist die Ausgabegenerierung.
Der folgende Algorithmus teilt diese Phase noch weiter auf.

Algorithmus 3
1. Expandiere die Ausgabespezifikation mit der Grammatiktypfunktion

build-fn. Algorithmus 7 (S. 60) beschreibt das Vorgehen für den Gram-
matiktyp :sf.

2. Enthält die Spezifikation das Attribut :result, dann ist der Rückgabewert
bereits bestimmt. Gib ihn zurück.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 35

3. Sonst bestimme die erfolgreichen Kanten.

(a) Wenn vollständige Parses vorhanden sind, verwende diese.

(b) Sonst, wenn gewünscht, suche Kantenfolgen in der Chart als Teiler-
gebnis (partial parsing).

4. Wenn eine Ausgabeform ohne Parsebäume gewünscht wird, erzeuge sie
und gib sie zurück.

5. Erzeuge die Lesartkanten zu jeder inaktiven Kante und filtere sie, d.h.
streiche anhand einer Bedingung Lesarten.

6. Erzeuge aus den Lesartkanten die Knoten und Blätter des Parsebaums.

7. Führe eine Nachbearbeitung auf oberster Ebene der Liste der Parsebäume
durch.

Die Arbeitsweise dieser Unterphasen wird jetzt im einzelnen vorgestellt.

4.4.1 Die Ausgabespezifikation

Die Ausgabespezifikation ist eine Liste von Keywords und deren Werten. Die
Funktionen des Ausgabegenerators greifen auf die Schlüsselwörter mit getf zu.
Es ist daher jederzeit möglich, weitere Keywords für grammatiktypspezifische
Erweiterungen einzuführen, da Keywords, die der Ausgabegenerator eines an-
deren Grammatiktyps nicht kennt, einfach ignoriert werden.

Für einfache Fälle sind im Grammatiktyp Keywords als Abkürzungen für Spe-
zifikationen definiert, die vom Spezifikationsübersetzer build-fn des Gramma-
tiktyps in die detaillierte Spezifikation übersetzt werden. Die Abkürzung :succ

wird z.B. in ’(:succ t) expandiert. Wenn der Übersetzer den Rückgabewert
ohne Zugriff auf Funktionen des Parserkerns berechnet, gibt er
’(:result <Wert>) zurück. Der Ausgabegenerator gibt dann diesen Wert aus.

4.4.2 Suche nach erfolgreichen Kanten

Nachdem die Spezifikation expandiert ist, beginnt die eigentliche Ausgabegene-
rierung. Im ersten Schritt untersucht der Ausgabegenerator, ob der Parselauf
erfolgreich war und wenn ja, welche Kanten erfolgreich sind. Normalerweise
sind die Kanten erfolgreich, die die ganze Chart überspannen. Ist der Wert
des Attributs :last t, dann sind es alle Kanten, die den letzten Knoten als
Endknoten haben.

Wenn das Parsing nicht erfolgreich ist, dann wird nach Fragmentfolgen durch
die Chart gesucht.

Die Suche nach den erfolgreichen Kanten übernimmt die Funktion
success-edges nach folgendem Verfahren:

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 36

Algorithmus 4
1. Zuerst bestimmt der Parser die Menge der Kanten mit den richtigen

Anfangs- und Endknoten. Normalerweise sind das der erste und der letzte
Knoten der Chart. Bei der Option :last ist jedoch der Anfangsknoten
beliebig und bei der Erzeugung partieller Bäume werden die entsprechen-
den Grenzen des Chartfragments verwendet.

2. Aus dieser Kantenmenge werden die ignore-Kanten gestrichen, damit das
Ergebnis so aussieht, als gäbe es diese Kategorien nicht.

3. Kanten, die nicht einer Startkategorie angehören, werden gestrichen.

4. Wenn eine Kante in dieser Menge in einer anderen Kante der Menge
enthalten ist, wird sie gestrichen.

Damit sind die erfolgreichen Kanten bestimmt.

4.4.3 Einfache Ausgabeformen

Nachdem die Menge der erfolgreichen Kanten bekannt ist, wird der Rückgabewert
für die einfachen Ausgabeformen, die ohne Erzeugung eines Parsebaums aus-
kommen, bestimmt. Bei der Spezifikation :succ t wird nil zurückgegeben,
wenn die Kantenmenge leer ist, sonst t. :cat t erzeugt eine Liste der abge-
leiteten Kategorien. Enthält die Spezifikation ’(:count t), gibt ChaPLin die
Anzahl der Lesarten zurück.

4.4.4 Erzeugung der Lesarten

Die Chart ist eine kompakte Darstellung des Parsewalds, denn durch die Kan-
tenverschmelzung können mehrere Ableitungswege auf dieselbe inaktive Kante
führen. Nach den Bedingungen für die Kantenverschmelzung sind für diese We-
ge die Features äquivalent und die Kategorie gleich. Nun möchte man aber für
die Ausgabe weitere Werte, die Attribute, berechnen. Auf den unterschiedlichen
Ableitungswegen zu einer Kante können sich jedoch unterschiedliche Attribut-
werte ergeben. Die Attribute werden vor der Baumerzeugung berechnet und
in Lesartkanten abgelegt und damit bei den Lesarten die Kantenverschmelzung
wieder expandiert.

Die Menge aller Lesarten für eine syntaktische Kanten wird im Slot trees abge-
legt, so daß der Parser die Lesarten nur einmal berechnen muß, wenn eine syn-
taktische Kante mehrmals in einem Parsebaum verwendet wird. Das Verfahren
verwendet Funktionen des Grammatiktyps, die in Abschnitt 4.4.7 beschrieben
werden. Die Lesarterzeugung für eine syntaktische Kante läuft folgendermaßen
ab:

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 37

Algorithmus 5
wenn die Lesarten der syntaktischen Kante bereits berechnet sind

dann gib sie zurück

sonst 1. Für jeden Inhalt der syntaktischen Kante

• Bei einem terminalen Inhalt rufe die Funktion term des Gram-
matiktyps.

• Bei einem nichtterminalen Inhalt

(a) Berechne die Lesarten der Kanten des Inhalts (rekursiv).

(b) Bilde das kartesische Produkt der Lesartmengen der ent-
haltenen Kanten. Damit werden die Mehrdeutigkeiten der
Unterbäume weiterpropagiert.

(c) Konstruiere für jedes Tupel aus dem kartesischen Produkt
die Lesart mit der Funktion nonterm des Grammatiktyps.

2. Vereinige die Lesartmengen der Inhalte. Dieser Schritt expandiert
die Kantenverschmelzung.

3. Filtere diese Menge mit der Filterfunktion filter des Grammatik-
typs.

4. Trage das Ergebnis in den Slot trees der syntaktischen Kante ein
und gib es zurück.

Die Terminalfunktion term entnimmt die Attributwerte für die Lesartkante aus
dem Lexikoneintrag. Der Nichtterminalfunktion nonterm stehen die enthal-
tenen Lesartkanten und die Grammatikregel zur Verfügung. Es handelt sich
damit um synthetisierte Attribute (zusammengesetzte Attribute). Die Filter-
funktion filter kann Lesarten anhand von Attributwerten entfernen und die
Lesartenliste umsortieren.

4.4.5 Baumerzeugung

In der Syntaxbaumerzeugungsphase erzeugt der Parser zu jeder erfolgreichen
Lesartkante den zugehörigen Syntaxbaum, indem er die Inhaltshierarchie der
Lesartkante durchwandert und dabei eine Präfixnotation des Parsebaums auf-
baut. Die Erzeugung der einzelnen Knoten wird von der Baumspezifikation ge-
steuert, die unter :tree in der Ausgabespezifikation abgelegt ist. Die Baumspe-
zifikation enthält Werte zu den drei Schlüsselwörtern :lex,:struct und :node.
Diese Werte sind Muster für die Knoten des jeweiligen Teils des Parsebaums
und beschreiben, welche Information aus der Lesartkante in den Parsebaum
übernommen werden soll.

• Terminalkanten können sowohl Lexikoneinträge als auch Struktureinträge
enthalten. Die :lex-Spezifikation steuert die Erzeugung von Parsebaum-
blättern aus Terminalkanten, die einen Lexikoneintrag enthalten.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 38

• Die :struct-Spezifikation behandelt den Einbau eines Unterparsebaums
für Terminalkanten, die einen Struktureintrag enthalten. Mit diesem Ver-
fahren kann ChaPLin Folgen von bereits analysierten Nichtterminalsym-
bolen parsen und einen Gesamtsyntaxbaum aufbauen.

• Die :node-Spezifikation steuert die Erzeugung eines Knotens für eine
Nichtterminalkante. So entstehen die inneren Knoten und die Wurzel
des Syntaxbaums.

Der Baumerzeugungsalgorithmus arbeitet die Knotenspezifikationen folgender-
maßen ab:

Algorithmus 6
1. Ist die Spezifikation NIL, dann gib NIL zurück.

2. Nur bei Terminalkanten:
Ist die Spezifikation = :all, so gib den ganzen Eintrag (Lexikon- oder
Struktur-) zurück.

3. Nur bei Terminalkanten:
Ist die Spezifikation ein Symbol und dieses Symbol ist als Attribut im
Eintrag enthalten, so gib dessen Wert (das dem Symbol folgende Listen-
element) zurück.

4. Ist die Spezifikation eine Liste, dann rufe diesen Algorithmus für jedes
Element und gib die Liste der Ergebnisse zurück.

5. Ist die Spezifikation eine Funktion, so rufe sie mit der Lesartkante als
Argument auf, und gib ihr Ergebnis zurück.

6. Ist die Spezifikation ein Symbol und eine Funktion mit diesem Namen
existiert, dann rufe diese Funktion mit der Lesartkante als Argument auf.

7. Gib alle anderen Symbole unverändert zurück.

8. Jeder andere Wert führt zu einem Fehler.

4.4.6 Nachbearbeitung

Das Verfahren zur Baumerzeugung bearbeitet den Parsebaum rekursiv und un-
terscheidet nicht zwischen Wurzelknoten und inneren Knoten. Erst bei der
Nachbearbeitung der Parsebäume kann man den Wurzelknoten eine andere Ge-
stalt als den inneren Knoten geben. Die Funktion tree-postproc des Gram-
matiktyps erhält den erzeugten Baum, die Lesartkante und die Ausgabespe-
zifikation als Argument. Diese Funktion kann z.B. dem Wurzelknoten eines
Parsebaums weitere Attributwerte aus der Lesartkante hinzufügen.

Die Nachbearbeitung ermöglicht auch die Erzeugung von Struktureinträgen,
das sind Parsebäume in einer Form, die der Parser in einem späteren Lauf als
Terminalsymbole verwenden kann.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 39

4.4.7 Grammatiktypoptionen der Ausgabegenerierung

Für den Ausgabegenerator gibt es ebenso wie für die syntaktische Analyse Ein-
flußmöglichkeiten durch Grammatiktypoptionen. Der Grammatiktyp definiert
bei Bedarf einen eigenen Lesartkantentyp als Spezialisierung von tree-edge.
Dieser Typ erhält für jedes Attribut, das der Grammatiktyp berechnet, einen
Slot.

In der Definition des Grammatiktyps gibt es folgende Optionen für den Ausga-
begenerator:

build-fn Der Spezifikationsübersetzer ist eine Funktion, die beim Aufruf fol-
gende Argumente erhält:

grammar Grammatik

mode Modus (:bu oder :td)

find Startkategorie

type Ausgabespezifikation

Die Funktion expandiert die Ausgabespezifikation für den Gebrauch des
Ausgabegenerators (vgl. Abschnitt 4.4.1).

Default: Eine Funktion, die die Ausgabespezifikation type unverändert
zuückgibt.

edge-constr Hier wird der Name der Konstruktorfunktion (Symbol) für die
Lesartkanten des Grammatiktyps angegeben.

Default: make-tree-edge

term-actions Die Attributierungsregeln für Terminalsymbole sind eine Liste
von Attributnamen als Keywords und Codestücken zur Berechnung der
Attributwerte. Die Codestücke werden in einen Aufruf des Lesartkanten-
konstruktors eingebaut, der immer dann gerufen wird, wenn die Lesart-
kante eines Terminalsymbols erzeugt wird. Die Slots der syntaktischen
Kante übernimmt der Ausgabegenerator automatisch und für die Attri-
bute wird der Wert des Codestücks benutzt.

Den Codestücken für die Terminalsymbole stehen zwei Variablen zur Ver-
fügung:

entry Der Lexikoneintrag der syntaktischen Terminalkante.

syntedge Die syntaktische Terminalkante selber.

Default: (), d.h. es werden keine Attribute berechnet.

nonterm-actions Ebenso wie bei den term-actions gibt man die Attribu-
tierungsregeln für die Nichtterminalsymbole als Liste von Attributnamen
und Codestücken zur Berechnung der Attributwerte an. Die syntaktischen
Slots belegt der Ausgabegenerator automatisch.

KAPITEL 4. AUFBAU UND ARBEITSWEISE VON CHAPLIN 40

Die nonterm-actions beschreiben, wie der Ausgabegenerator bei der Er-
zeugung der nichtterminalen Lesartkanten die Attributwerte berechnet.
Eine Kante wird bei Kantenverschmelzung auf mehreren Wegen erreicht,
wobei für jeden dieser Wege ist die Menge der enthaltenen Lesartkanten
und die angewendete Regel charakteristisch sind. Bei zusammengesetz-
ten Attributen hängen die Attributwerte nur vom Ableitungsweg ab, so
daß der Ausgabegenerator den Codestücken folgende drei Variablen zur
Verfügung stellt:

tree-cont Liste der bei der Ableitung verwendeten Lesartkanten. Da
zusammengesetzte Attribute von den Attributwerten der Konstitu-
enten abhängen, greift man auf die enthaltenen Lesartkanten zu und
nicht auf die syntaktischen Kanten.

rule Die angewendete Regel wird übergeben, damit man regelspezifische
Werte zur Attributberechnung mit heranziehen kann. Damit kann
der Grammatiktyp die Möglichkeit anbieten, für ein Attribut regels-
pezifische Berechnungsvorschriften – sogenannte semantische Aktio-
nen [Aho et al. 86] – zur Attributberechnung zu definieren.

syntedge Die syntaktische Terminalkante enthält Angaben wie Katego-
rie, Features, Diese Werte stehen der Attributberechnung eben-
falls zur Verfügung.

Default: (), d.h. es werden keine Attribute berechnet.

filter Der Lesartenfilter ist eine Funktion, die folgende Argumente erhält:

edges Die für eine syntaktische Kante erzeugten Lesartkanten.

spec Die Ausgabespezifikation.

Die Filterfunktion gibt eine Liste von Lesartkanten zurück, die dann als
Lesarten für die syntaktische Kante eingetragen werden. Die Filterfunk-
tion kann also Lesarten streichen und die Liste umordnen. Damit kann
die Filterfunktion bei der Lesartgenerierung für jeden Ableitungsschritt
unwahrscheinliche Lesarten ausschließen. Für weitere Ableitungsschritte
berücksichtigt der Ausgabegenerator nur die zugelassenen Lesarten der
Konstituenten.

Die Filterfunktion erhält die Ausgabespezifikation als Parameter, so daß
man verschiedene Filteroptionen definieren kann, die man beim Aufruf
des Parsers durch Angaben in der Ausgabespezifikation auswählt.

Default: Funktion, die die Kantenliste edges unverändert zurückgibt.

tree-postproc Die Funktion zur Parsebaumnachbearbeitung erhält den Par-
sebaum, die zugehörige Lesartkante und die Ausgabespezifikation als Ar-
gumente und gibt die ggf. geänderte Liste der Parsebäume zurück.

Default: Funktion, die je nach Ausgabespezifikation die Parsebäume un-
verändert zurückgibt oder daraus Struktureinträge erzeugt.

Kapitel 5

Sprachwissen

Dieses Kapitel beschreibt, wie Wissen über natürliche Sprache in ChaPLin ein-
gebracht wird. Möchte man Grammatiken eines bestimmten Grammatikfor-
malismus mit ChaPLin verwenden, definiert man einen Grammatiktyp (vgl.
Abschnitt 5.1). Bisher sind für ChaPLin drei Grammatiktypen erstellt worden,
der kontextfreie Grammatiktyp :cf, der Grammatiktyp :sf mit flachen Fea-
turelisten und ein PATR-II-Unifikationsgrammatiktyp :fu [Schmidt 92]. Die
Grammatiktypen :cf und :sf sind mit der Version 3.2 des Parsers lauffähig
und werden in den Abschnitten 5.4 und 5.5 erläutert. Abschnitt 5.3 beschreibt
die Schnittstelle zwischen dem Parser und einem Lexikon und Abschnitt 5.2
Definition und Zugriff auf die Grammatik.

5.1 Grammatiktyp

Der Grammatiktyp implementiert das Verhalten des Grammatikformalismus,
indem er Funktionen für die syntaktische Phase des Parses, den Ausgabege-
nerator und den Grammatiklader zur Verfügung stellt. Die Optionen bei der
Definition eines Grammatiktyps werden mit den zugehörigen Teilen des Par-
sers, die sie steuern, dokumentiert: die Optionen zur syntaktischen Phase in
Abschnitt 4.3.3, die Optionen zum Ausgabegenerator in Abschnitt 4.4.7 und
die Optionen des Grammatikladers am Ende des Abschnitts 5.2.

grammar-types Variable

Die globale Variable *grammar-types* enthält eine Liste der geladenen Gram-
matiktypen.

grammar-type Struktur

Jeder Grammatiktyp wird intern als eine Instanz der Struktur
grammar-type abgelegt, die alle grammatiktypspezifischen Informationen
enthält. Sie besteht aus folgenden Slots:

key Keyword, Name des Grammatiktyps. Der Grammatiktyp für kontext-
freie Grammatiken heißt :cf, der für Grammatiken mit flachen Featu-
relisten :sf.

41

KAPITEL 5. SPRACHWISSEN 42

rule-test Prädikat, das testet, ob die Syntax einer Regel in diesem Gram-
matiktyp zulässig ist.

create-rule Diese Funktion erzeugt aus der Listennotation einer Gram-
matikregel ein Regelobjekt.

extend Funktion, die die Grundregel der aktiven Chartanalyse implemen-
tiert. Sie testet für eine Konfiguration, ob eine Erweiterung möglich
ist und führt sie ggf. durch. Sie hat die Argumente:

act Die aktive Kante der augenblicklichen Konfiguration.

inact Die inaktive Kante der Konfiguration.

mode Modus: :bu für bottom-up oder :td für top-down.

rules Zugriffsfunktion auf die Grammatikregeln.

build-fn Diese Funktion expandiert die Ausgabespezifikation.

term Die Funktion erzeugt eine terminale Lesartkante.

nonterm Die Funktion erzeugt eine nichtterminale Lesartkante.

filter Die Funktion streicht unerwünschte Lesarten.

tree-postproc Die Funktion dient zur Nachbearbeitung der Parsebäume.

def-grammar-type Makro

(def-grammar-type name &key [option]*)

Dieses Makro definiert einen Grammatiktyp mit Namen name und legt ihn in
der Variable *grammar-types* ab. Wenn ein Grammatiktyp mit diesem Namen
schon existiert, wird dieser durch den gerade definierten Grammatiktyp ersetzt.
Die Optionen werden bei den zugehörigen Teilen des Parsers erläutert.

Einen Grammatiktyp implementiert man durch eine Lispdatei, die folgende
Elemente enthält:

• Die Definition des Lesartkantentyps als Spezialisierung von tree-edge ,
sofern man Attribute benutzt.

• Die Definition des Regeltyps als Spezialisierung von rule , falls der Aus-
gabegenerator Regelinformation benötigt.

• Die Definitionen aller für die Grammatiktypoptionen benötigten Funktio-
nen und globalen Parameter.

• Einen Aufruf des Definitionsmakros def-grammar-type.

Diese Datei kann erst nach dem Parserkern geladen werden.

KAPITEL 5. SPRACHWISSEN 43

5.2 Grammatik

Die Defaultgrammatik befindet sich in der Variablen *grammar*.

grammar Struktur

Eine Grammatik wird als Element der Struktur grammar mit folgenden Slots
abgelegt.

rule-list Regelmenge in Listennotation.

access-td Die Zugriffsfunktion für die Top-down-Aktivierung erhält die
Zielkategorie als Argument. Bei der Top-down-Aktivierung benötigt
man alle Regeln, die auf ein bestimmtes Zwischenziel hinführen (vgl.
Abschnitt 2.2). Die Closure access-td gibt deswegen die Regelobjekte
zurück, die die angegebene Kategorie als Regelkopf haben.

access-bu Die Zugriffsfunktion für die Bottom-up-Aktivierung erhält die
Kategorie der gerade eingetragenen Kante als Argument. Man benötigt
hier Regeln, deren Anwendung mit dem neuen Symbol beginnt. Daher
gibt die Closure access-bu die Regelobjekte zurück, die die angegebe-
ne Kategorie als erstes Symbol im Regelrumpf haben.

key Der Name des Grammatiktyps der Grammatik.

ignore Liste von Ignore-Kategorien. Sie sind nur Hilfsschritte bei der De-
finition der Grammatik. Im Parsebaum werden diese Kategorien nicht
als Unterbaum eingebaut, sondern durch ihren Inhalt ersetzt.

start Das Startsymbol der Grammatik. Beim Aufruf des Parsers kann
durch den Parameter :find ein anderes Startsymbol angegeben wer-
den.

string-cats String-Kategorien der Grammatik

Die Terminalsymbole der Grammatik sind im Normalfall nicht die Ein-
gabeelemente (wie z.B.

”
Berg“) selbst, sondern Kategorien (z.B. N). In

einigen Fällen hängen aber grammatikalische Konstruktionen von ei-
nem bestimmten Wort ab, wie z.B. die Satzreihung mit “und”. Dafür
können Regeln das Wort direkt – als Stringkategorie – enthalten.

Eine Grammatik enthält Regeln. Extern (z.B. in Dateien) werden Regeln in
einer grammatiktypabhängigen Listennotation angegeben. Intern speichert der
Parser Regelobjekte als Instanzen der folgenden Struktur:

rule Struktur

Die Basisstruktur für Regeln enthält die Slots für die syntaktische Analyse-
phase:

lhs Der Regelkopf (linke Seite) ist ein Symbol.

rhs Der Regelrumpf (rechte Seite) ist eine Liste von Symbolen. Hier kann
auch die wild card ? benutzt werden, die für eine beliebige Konstituente
steht.

KAPITEL 5. SPRACHWISSEN 44

rhs-name Regelrumpf mit indizierten Kategorien.

rhs-cond Featurebedingungen. Die Regel wird nur angewendet, wenn diese
Bedingungen erfüllt sind.

result Wenn der Parser eine Regel anwendet, erzeugt er eine inaktive
Kante. Die Features der neuen Kante werden anhand der result-
Spezifikation berechnet.

Für eine rein kontextfreie Grammatik genügen lhs und rhs, während die letzten
drei Slots Information für den Featuremechanismus enthalten. Der Gramma-
tiktyp kann die Regelstruktur um weitere Slots erweitern, wenn bei der Ausga-
begenerierung zusätzliche regelabhängige Information verwendet werden soll.

define-grammar Funktion

(define-grammar rules &key (ignore nil) start type fast)

Diese Funktion erzeugt das Grammatikobjekt und gibt es zurück. Die Para-
meter haben folgende Bedeutung:

rules Liste der Regeln, in Listennotation. Das erste Element kann auch der
Name eines Grammatiktyps sein.

ignore Liste der Kategorien, die im Parsebaum nicht erscheinen sollen.

start Startsymbol oder Liste von Startsymbolen.

type Name des Grammatiktyps der Grammatik.

fast Ist dieser Parameter ungleich NIL, dann nimmt der Grammatiklader we-
niger Überprüfungen vor und arbeitet dadurch schneller. Dies ist bei einer
ausgetesteten Grammatik sinnvoll.

Die Funktion define-grammar bestimmt zuerst den Grammatiktyp. Ist keiner
angegeben, wird nach einem Grammatiktyp gesucht, zu dem die gegebenen Re-
geln passen. Dann werden die gelesenen Regeln in Regelobjekte umgewandelt
und die Stringkategorien bestimmt. Anschließend indiziert define-grammar

die Regeln für den bottom-up- und den top-down-Modus und legt die entspre-
chenden Zugriffsclosures im Grammatikobjekt ab.

load-grammar Funktion

(load-grammar grfile &key (ignore nil) start type fast)

grfile ist ein Dateiname für die Regeldatei. In der Regeldatei kann als erstes
Element der Name des Grammatiktyps stehen. In diesem Fall muß das Argu-
ment type nicht angegeben werden. Die Argumente ignore, start und fast

entsprechen denen in define-grammar. Nachdem load-grammar die Datei ge-
lesen hat, ruft es define-grammarmit dem Grammatiktyp und der Regelmenge
auf.

KAPITEL 5. SPRACHWISSEN 45

Für den Grammatiklader sind bei der Definition eines Grammatiktyps folgende
Optionen anzugeben:

create-rule Der Regelkonstruktor ist eine Funktion, die aus der Listennota-
tion der Regel das Regelobjekt erzeugt.

Default: – , die Option muß angegeben werden.

rule-test Diese Prädikat überprüft, ob die Syntax der Regel in diesem Gram-
matiktyp zulässig ist.

Default: – , die Option muß angegeben werden.

Ein Beispiel für eine Grammatik steht in Anhang A.2.

5.3 Lexikon

Ein Lexikon definiert man, indem man eine Instanz der Struktur lex erzeugt.
Ihre Slots enthalten einen Satz von Zugriffsfunktionen. Eine solche Lexikon-
struktur kann dem Parser dann als Argument übergeben werden. Das Default-
lexikon befindet sich in der Variable *lexicon*.

Das Lexikon liefert zu einem Eingabeelement eine Liste von Einträgen zurück.
Jeder Eintrag besteht aus Attribut-Wertpaaren. Die benötigten Angaben hängen
vom Grammatiktyp ab.
lex Struktur

Die folgenden Komponenten der Struktur lex werden von allen Grammatik-
typen benötigt.

entries Diese Funktion liefert für ein Wort der Eingabesequenz eine Liste von
passenden Lexikoneinträgen. Der Aufbau der Lexikoneinträge ist beliebig.
Die Funktion hat folgende Argumente:

word Wort, das im Lexikon nachgeschlagen werden soll

ignore-cap Beim ersten Wort der Eingabesequenz gibt man für diesen
Parameter t an. In diesem Fall liefert die Groß- und Kleinschreibung
keine Kategorieinformation und sollte vom Lexikon ignoriert werden.

cat Die Funktion bestimmt für einen Lexikoneintrag die Kategorie.

word Die Funktion bestimmt zu einem Lexikoneintrag die Grundform des Wor-
tes.

Die restlichen Komponenten von lex müssen dagegen nur für bestimmte Gram-
matiktypen definiert sein.

form Die Funktion liefert zu einem Lexikoneintrag die ursprüngliche Wortform.
Default: entsprechend der Komponente word

conf Die Funktion gibt den Konfidenzfaktor des Eintrags zurück.
Default: 1

KAPITEL 5. SPRACHWISSEN 46

attr Die Funktion liefert für einen Eintrag die Featureliste.
Default: nil

sem Die Funktion gibt die semantische Information aus dem Eintrag zurück.
Default: nil

make-entry Diese Funktion erzeugt einen Lexikoneintrag.

entry-p Diese Prädikatfunktion gibt an, ob ein Objekt ein Lexikoneintrag ist.

Die beiden Slots make-entry und entry-p werden vom Parser nicht mehr be-
nutzt und dienen nur noch zur Kompatibilität mit alten Lexika. Ein Beispiel
für ein Lexikon findet sich in Anhang A.1.

5.4 Der Grammatiktyp :cf

Der Grammatiktyp :cf benützt keine Features, so daß bei den Regeln nur der
Regelkopf und der Regelrumpf wichtig ist.

In der Listennotation des Grammatiktyps :cf sind die Regeln Listen, deren
erstes Element den Regelkopf und deren restliche Elemente den Regelrumpf
darstellen. Die Regel NP −→ NP PP sieht in Listennotation folgendermaßen
aus:

(NP NP PP)

Außer den gewöhnlichen (Symbol-)Kategorien sind in den Regeln auch String-
kategorien zugelassen. Das bedeutet, daß an der entsprechenden Stelle der Ein-
gabesequenz genau dieses Wort vorkommen muß. Eine mit

”
und“ verknüpfte

Aufzählung zweier PROPN beschreibt man mit NP −→ PROPN und PROPN.
In der Listennotation der Regel ist

”
und“ ein String, während die anderen Ka-

tegorien Symbole sind.

(NP PROPN "und" PROPN)

Der :cf-Grammatiktyp verwendet keine Attribute, so daß für die Lesartkanten
der Basistyp genügt. Da dieser Grammatiktyp weder Features noch Attribute
einsetzt, benötigt er aus dem Lexikon lediglich die Kategorie und das Wort
selbst.

5.5 Der Grammatiktyp :sf

Der :sf-Grammatikformalismus arbeitet mit flachen Featurelisten, im Gegen-
satz zu den Unifikationsgrammatiken, die geschachtelte Ausdrücke verwenden.
Ziel der Entwicklung von Grammatiken mit flachen Featurelisten ist es, einfache
Tests über den morpho-syntaktischen Merkmalen in den Formalismus zu inte-
grieren. Dabei wird insbesondere auf eine effiziente Verarbeitbarkeit der Struk-
turen Wert gelegt und bestimmte Schwächen in den Ausdrucksmöglichkeiten in
Kauf genommen. Beispielsweise lassen sich keine Abhängigkeiten zwischen den

KAPITEL 5. SPRACHWISSEN 47

Werten verschiedener Features beschreiben. Diese Einschränkungen sind aller-
dings weniger gravierend, wenn man berücksichtigt, daß beim Parsen oft nach
einer möglichst effizienten Abbildung von natürlicher Sprache in eine konzeptu-
elle Struktur gesucht wird und nicht nach einer möglichst exakten Beschreibung
der Eigenschaften einer natürlichen Sprache. Ziel ist es also nicht, wohlgeformte
von nicht wohlgeformten Eingabesequenzen unterscheiden zu können, sondern
für möglichst viele der zu erwartenden Eingabesequenzen eine Ausgabestruktur
zu erzeugen, die von nachfolgenden Komponenten verarbeitet werden kann.

Die Featureangabe des Grammatiktyps :sf ist eine Liste aus Featurenamen
und deren Wertemengen in folgender Form:

〈fea-angabe〉 ::=
((〈fea-name〉〈fea-val〉)*)

〈fea-val〉 ::=
〈value〉
| (:or 〈value〉+)

Beispiel: ((num pl)(pers (:or 1 3)))

Wenn die Angabe für ein Feature fehlt, dann bedeutet das nicht etwa “leere
Wertemenge” sondern “beliebiger Wert”. Diese Definition erlaubt es, unvoll-
ständige Angaben auf einfache Art zu behandeln.

Außerdem gibt es beim Grammatiktyp :sf zwei Attribute:

• Der Konfidenzfaktor ist eine Zahl. Er gibt die Zuverlässigkeit der Infor-
mationen in einem Lexikoneintrag an und bewertet die Prioritäten von
Grammatikregeln.

• Die Semantikspezifikation einer Grammatikregel beschreibt den Aufbau
einer semantischen Struktur. So spezifiziert man Ausgaben für die Wei-
terverarbeitung.

Features und Attribute müssen an folgenden Stellen im Parser berücksichtigt
werden:

• Im Lexikoneintrag, damit die Information für die Terminalsymbole zur
Verfügung steht.

• Bei den Regeln, damit man die Propagierung der Information vom gramm-
matikalischen Konstrukt abhängig machen kann.

• In den Nichtterminalkanten, weil der Grammatiktyp dort das Ergebnis
von Ableitungen ablegt.

Der Rest des Abschnitts beschreibt die Behandlung der Information für die
einzelnen Bereiche.

KAPITEL 5. SPRACHWISSEN 48

5.5.1 Datenstrukturen

Um die zusätzliche Information abzulegen, erweitert der Grammatiktyp :sf die
Datenstrukturen für die Grammatikregeln und die Lesartkanten folgenderma-
ßen:

sf-rule Struktur

Die Regel erhält zusätzlich zu den Slots aus rule folgende Slots für :sf-
spezifische Information:

conf Konfidenzfaktor der Regel

sem Semantikspezifikation der Regel

sf-edge Struktur

Für die Attribute und Features erweitert der Kantentyp sf-edge den Basis-
typ tree-edge der Lesartkante um folgende Slots:

result Spezifikation für neue Feature-Liste. Der Wert wird aus dem Slot
result der Regel entnommen.

sem Spezifikation semantischer Information. Sie wird von einem Satz von
Makros verarbeitet.

conf Sicherheitsfaktor, eine Zahl zwischen 0 und 1. Ist kein Sicherheitsfak-
tor im Lexikon angegeben (NIL), wird 1 angenommen. Bei Regelan-
wendungen werden Sicherheitsfaktoren multipliziert.

5.5.2 Lexika für :sf-Grammatiken

Von der lexikalischen Analyse benötigt der Parser für jedes Eingabeelement eine
oder mehrere Featurelisten für die syntaktische Analyse und die Attributwerte
für den Ausgabenerator.

Für das Wort
”
Musikinstrumente“ sieht diese Information folgendermaßen aus:

(:LEX "Musikinstrumente"

:WORD "MUSIKINSTRUMENT"

:COMP ("MUSIK" "INSTRUMENT" "E")

:CAT N

:CONF 0.8

:ATTR (GEN neut NUM (sg pl)

KAS (nom gen dat akk))

:SEM "MUSIKINSTRUMENT")

Die Analysephasen des Parsers verwenden diese Information. Für die syntakti-
sche Analyse sind die Kategorie und die mit :attr markierten Features wichtig.
Der Konfidenzfaktor und die Semantikspezifikation werden für die Lesartgene-
rierung benutzt.

KAPITEL 5. SPRACHWISSEN 49

5.5.3 :sf-Grammatikregeln

Die Listennotation der Grammatikregel enthält außer dem Regelkopf und dem
Regelrumpf einen Konfidenzfaktor, Featurebedingungen, Featurezuweisungen,
die Semantikspezifikation und einen (bisher) unbenutzten Reserveslot.

Die folgende Grammatikregel besagt, daß eine Nominalphrase NP aus einem
Artikel DET und einem Nomen N bestehen kann und daß Artikel und Nomen
bezüglich Numerus, Genus und Kasus übereinstimmen müssen. Außerdem wer-
den diese Feature-Werte an die generierte NP weitergegeben. Die Semantik der
Nominalphrase NP ergibt sich einfach durch Übernahme der Semantik des No-
mens:

(NP -> (DET N)

1

((= (DET num) (N num))

(= (DET kas) (N kas))

(= (DET gen) (N gen)))

((num (DET num) (N num))

(kas (DET kas) (N kas))

(gen (DET gen) (N gen)))

(&sem N)

())

Im folgenden werden die Bestandteile der Regeln und deren Einsatzmöglichkeiten
im einzelnen beschrieben.

5.5.3.1 Kontextfreier Anteil

Die ersten drei Elemente einer solchen Regel beschreiben den kontextfreien
Anteil.

• Regelkopf (Kategorie der linken Seite)

• Pfeil

• Regelrumpf (Kategorien der rechten Seite als Liste)

Falls auf der rechten Seite eine Kategorie mehrfach vorkommt und später eine
eindeutige Referenz auf eines der Elemente benötigt wird, wird an die Katego-
rien ein Index mit einem Punkt angehängt.

In folgender Regel sind die NPs auf der rechten Seite mit einem Index versehen,
um in den Tests und Zuweisungen eine eindeutige Referenz auf die Elemente
der rechten Regelseite sicherzustellen:

(NP -> (NP.1 KONJ NP.2) ...)

5.5.3.2 Sicherheitsfaktor

Das vierte Element einer Grammatikregel besteht aus einem numerischen Wert,
der die Konfidenz (Priorität, Sicherheitsfaktor) der Regel festlegt. Normaler-
weise ist sie auf 1 gesetzt. Durch einen höheren bzw. niedrigeren Wert kann das

KAPITEL 5. SPRACHWISSEN 50

Gewicht einer Regel erhöht oder verringert werden. Zusammen mit den von der
lexikalischen Analyse gelieferten Sicherheitsfaktoren der Eingabeelemente die-
nen die Regelkonfidenzen dazu, die verschiedenen Lesarten gegeneinander zu
gewichten und gegebenenfalls eines der Resultate auszuwählen. Wie die Si-
cherheitsfaktoren der lexikalischen Analyse werden die Regelkonfidenzen nach
heuristischen Prinzipien vergeben – sie können nicht als Wahrscheinlichkeiten
aufgefaßt werden.

Im aktuellen Ansatz werden die Sicherheitsfaktoren der Resultate der lexikali-
schen Analyse mit den Konfidenzfaktoren der Regeln multipliziert. Wird ei-
ne Regel r mit Sicherheitsfaktor sr auf die Konstituenten w1 . . . wn mit den
Sicherheitsfaktoren sw1swnangewendet, so wird der Sicherheitsfaktor des
abgeleiteten Symbols u als su = sr ∗ sw1 ∗ . . . ∗ swn berechnet.

Eine solche Verarbeitung der Sicherheitsfaktoren und Regelprioriẗaten stellt si-
cher, daß Resultate mit höheren Konfidenzwerten aus der lexikalischen Analyse,
sowie Resultate, in die Regeln mit höheren Prioritäten eingehen, bevorzugt wer-
den. Der Sicherheitsfaktor ist ein Attribut und wird bei der Ausgabegenerierung
berechnet.

Sicherheitsfaktoren werden bei der Berechnung entsprechend den Angaben in
der globalen Variable *numfix* gerundet.

numfix Variable

Gibt die Anzahl der Nachkommastellen für die Rundung von Sicherheitsfakto-
ren an. Der Defaultwert ist 2.

5.5.3.3 Featuretests

Dem Konfidenzfaktor folgt eine Liste mit Tests über den morpho-syntaktischen
Merkmalen. Der Parser wendet eine Regel nur an, wenn alle Featurebedingun-
gen erfüllt sind. Mit Hilfe eines solchen Tests wird überprüft, ob die Werte
bestimmter Features von Kategorien des Regelrumpfs zueinander passen. Da
Features mehrere alternative Werte haben können, gilt ein Test als erfüllt, wenn
die Schnittmenge der jeweiligen Wertemengen nicht leer ist, d.h. die beiden Fea-
tures wenigstens einen gemeinsamen Wert haben. Auch wenn die Bedingung
mit einem = notiert wird, sollte man deswegen anstatt von “Gleichheit” eher
von “Kompatibilität” der Featurewerte sprechen.

Außerdem ist ein Test erfüllt, wenn eine der beteiligten Wertemengen nil ist,
d.h. über das betreffende Feature keine Information verfügbar ist. Oft sind
Featureinformationen während der Entwicklung einer Grammatik noch unvoll-
ständig. Die Featurebedingungen verbieten daher den Ableitungsschritt nur
bei widersprüchlichen Featurewerten und nicht, wenn eine Angabe fehlt. Da-
mit kann man eine Grammatik grob entwerfen, sie testen und ihre Wirkung
dann durch Featurebedingungen schrittweise verbessern.

Bei der Kantenverschmelzung sind die Bedingungen für die Features dage-
gen strenger. Damit zwei Kanten verschmolzen werden, müssen ihre Features
wirklich äquivalent sein, d.h. die gleichen Wertemengen besitzen. (vgl. Ab-
schnitt 4.3.2.5).

KAPITEL 5. SPRACHWISSEN 51

Wie gesagt bedeutet bei den Featuretests “=” soviel wie “ist kompatibel mit”,
d.h. die jeweiligen Schnittmengen sind nicht leer. Außer der Kompatibilität
verschiedener Featurewerte des Regelrumpfs kann ein Feature auch auf Kompa-
tibilität mit einem fest vorgegebenen Wert oder einer fest vorgegebenen Menge
alternativer Werte getestet werden. Damit gibt es folgende Möglichkeiten:

• (= (<cat1> <f1>) (<cat2> <f2>))

Der Wert des Features <f1> der Kante <cat1>muß zum Wert des Features
<f2> der Kante <cat2> kompatibel sein. Sowohl <cat1> und <cat2> als
auch <f1> und <f2> können voneinander verschieden sein, müssen aber
nicht.

Die folgende Bedingung ist erfüllt, wenn Artikel und Nomen wenigstens
in einem Wert des Numerus-Features num übereinstimmen oder einer der
beiden Featurewerte unbestimmt ist.

(= (DET num) (N num))

• (= (<cat> <f>) <atom>)

<atom> muß als Wert von <f> in <cat> vorkommen.

Die Bedingung in diesem Beispiel fordert, daß die Nominalphrase NP im
Singular steht (oder das Feature unbestimmt ist).

(= (NP num) sg)

• (= (<cat> <f>) (:or <atom> <atom> ...))

Mindestens eines der Atome muß als Wert des Features <f> in <cat>

auftreten.

Wenn die Nominalphrase NP in der dritten oder der ersten Person stehen
soll, lautet die entsprechende Featurebedingung folgendermaßen:

(= (NP pers) (:or 1 3))

5.5.3.4 Featurezuweisungen

Das sechste Element einer Grammatikregel besteht aus einer Liste von Feature-
zuweisungen für den Regelkopf. Das erste Element einer Zuweisung gibt dabei
jeweils das Feature an, an das die Zuweisung erfolgt, der Rest die Wertangabe.
Als Wertangaben sind ein konstanter Wert, eine konstante Wertemenge, die
Wertemenge eines Features des Regelrumpfs und Schnittmengen solcher Anga-
ben zulässig.

Welche Features dem Regelkopf zugewiesen werden sollen, wird durch eine An-
weisungen der Form (<f1> <val>+) spezifiziert. Dabei wird dem Feature des
Regelkopfs mit Namen <f1> der Wert <val>+ zugewiesen.

KAPITEL 5. SPRACHWISSEN 52

Die o.g. Fälle von Wertangaben werden folgendermaßen notiert:

• <atom> Der neue Wert ist <atom> (genauer: die Wertemenge ist die Men-
ge, die nur <atom> enthält)

Der Ausdruck (pers 3) setzt z.B. das Feature pers des Regelkopfs auf
den Wert 3.

• (:or <atom> <atom> ...)

Die neue Wertemenge des Features ist die Menge der angegebenen Atome.

Mit (pers (:or 1 3)) weist man dem Feature pers die Werte 1 und 3
zu.

• (<cat> <f2>)

Die neue Wertemenge wird aus dem Feature <f2> der Kategorie <cat>

entnommen. <cat> ist dabei eine Kategorie aus dem Regelrumpf.

Der Ausdruck (num (N num)) übernimmt z.B. den Wert des Features
num für das neue Symbol vom gleichen Feature der Konstituente mit der
Kategorie N.

• (<f1> <val> <val> ...)

Wenn mehrere Werte angegeben werden, belegt der Grammatiktyp das
Feature <f1> des Regelkopfs mit der Schnittmenge der angegebenen Wer-
te.

Der Ausdruck (pers (N pers) (:or 1 3)) weist dem Feature pers die
Wertemenge desselben Features der Konstituente N geschnitten mit der
Menge {1, 3} zu.

Die Trennung von Bedingungs- und Zuweisungsteil in den Grammatikregeln
hat zur Folge, daß nicht alle Informationen, die auf einer Ebene der syntakti-
schen Struktur zur Verfügung stehen, automatisch auch auf der übergeordneten
Ebene verfügbar sind. Alle Features, die auf einer höheren Ebene benötigt
werden, müssen also explizit im Zuweisungsteil einer Regel übergeben werden.
Zusätzlich können auf jeder Ebene neue Features und Featurewerte eingeführt
werden.

5.5.3.5 Semantikspezifikation

Schließlich enthält jede Grammatikregel noch eine Semantikspezifikation in
Form eines beliebigen Lisp-Ausdrucks, der dem Regelkopf eine Semantik zu-
ordnet. Die Semantikspezifikation wird bei der Ausgabegenerierung evaluiert,
wobei die Lesartkante in der special deklarierten Kantenvariablen edge im
Ausdruck zur Verfügung steht. In einer solchen Semantikspezifikation können
zwei vordefinierte Makros verwendet werden, um auf Semantikresultate von
Kategorien des Regelrumpfs oder auf Featurewerte zuzugreifen:

KAPITEL 5. SPRACHWISSEN 53

• (&sem <rhs-cat>)

Evaluiert zum Resultat der semantischen Analyse für die Kategorie
<rhs-cat> des Regelrumpfs.

• (&attr <fea-name>)

Evaluiert zum Wert des Features <fea-name> des Regelkopfs

• (&attr (<rhs-cat> <fea-name>))

Evaluiert zum Wert des Features <fea-name> für die Kategorie <rhs-cat>
des Regelrumpfs.

Diese Aufrufe kann man in beliebigen Lispcode einbetten, z.B. fügt der Aus-
druck (cons (&sem ADJ) (&sem N)) die semantische Information von ADJ als
erstes Element zur semantischen Information von N hinzu und gibt diese Struk-
tur zurück.

In einer Semantikspezifikation kann man auf Featurewerte zugreifen. Der Be-
dingungsteil einer Regel hat dagegen keinen Zugriff auf Teilresultate der se-
mantischen Analyse. Der Grund ist, daß die Features in der syntaktischen
Phase erzeugt und benutzt werden, während die Semantikspezifikation erst als
Attribut bei der Ausgabegenerierung berechnet wird.

5.5.4 Syntax von Grammatikregeln

Die Syntax von Grammatikregeln mit flachen Featurelisten ist im folgenden
zusammengefaßt:

〈rule〉 ::=
(〈lhs-cat〉 -> (〈rhs-cat〉+)
〈confidence〉
〈tests〉
〈actions〉
〈semantics〉
〈spare〉)

〈lhs-cat〉 ::=
〈symbol〉

〈rhs-cat〉 ::=
〈symbol〉
| 〈symbol〉 . 〈index〉

〈index〉 ::=
〈integer〉

〈confidence〉 ::=
〈number〉

KAPITEL 5. SPRACHWISSEN 54

〈tests〉 ::=
((= 〈fea-arg〉 〈fea-arg〉)*)

〈fea-arg〉 ::=
(〈rhs-cat〉 〈fea-name〉)
| 〈value〉
| (:or 〈value〉+)

〈actions〉 ::=
((〈fea-name〉 〈fea-arg〉+)*)

〈fea-name〉 ::=
〈symbol〉

〈value〉 ::=
〈atom〉

〈semantics〉 ::=
〈s-expression〉

〈spare〉 ::=
〈s-expression〉

Im Lispausdruck 〈s-expression〉 der Semantikspezifikation sind folgende Aufrufe
zulässig:

〈s-expression〉 ::=
(&sem 〈rhs-cat〉)
| (&attr 〈fea-name〉)
| (&attr (〈rhs-cat〉 〈fea-name〉))

Kapitel 6

Referenzhandbuch

6.1 Parserfunktionen

ChaPLin stellt eine Reihe von Parserfunktionen zur Verfügung, die die ein-
zelnen Phasen des Algorithmus 2 (S. 12) abdecken. In Phase 1 zerlegt der
Scanner einen Eingabestring in Eingabeelemente. Phase 2 umfaßt die lexikali-
sche Analyse und den Chartaufbau; sie erzeugt also die Terminalsymbole. Die
eigentliche syntaktische Analyse ist dann Phase 3 und die nachfolgende Ausga-
begenerierung Phase 4. Abbildung 3.1 stellt die beteiligten Komponenten von
ChaPLin dar. Tabelle 6.1 zeigt, welche Parserfunktionen welche Analysephasen
abdecken.

6.1.1 Argumente der Parserfunktionen

In den verschiedenen Phasen werden unterschiedliche Eingabedaten verarbei-
tet. Phase 1 erhält einen String string als Eingabe. Die Funktionen scan-line

und parse-line lesen diesen String vom Terminal. Phase 2 erhält ein Eingabe-
element item oder eine Eingabefolge seq als Argument. Die folgenden Phasen
finden die benötigte Information in der Chart.

Die Optionen werden durch Keywordargumente spezifiziert und sind bei allen
Parserfunktionen gleich. Tabelle 6.1 gibt an, welche Optionen die einzelnen
Funktionen tatsächlich berücksichtigen.

Funktion Phasen Eingabe g m l f i o

parse-line 1 2 3 4 – + + + + - +
parse 2 3 4 seq + + + + - +
parse-next 2 3 4 item + - + + + +
scan-line 1 – - - - - - -
scan 1 string - - - - - -
build-chart 2 seq + + + - - -
parse-rest 3 4 – + + - + - +
build-tree 4 – + + - + - +

Tabelle 6.1: Tabelle der Parserfunktionen

55

KAPITEL 6. REFERENZHANDBUCH 56

grammar (g) Gibt die Grammatik an. Wird keine Grammatik angegeben,
dient bei der Initialisierung der Chart *grammar* als Defaultwert. An-
schliessend wird die Grammatik in *parse-grammar* abgelegt und bis zur
nächsten Initialisierung der Chart als Defaultwert für grammar benutzt.

mode (m) :bu für bottom up, :td für top down.

lexicon (l) Das Lexikon ist eine Instanz der Struktur lex.
Defaultwert ist *lexicon*.

find (f) Startkategorie oder Liste von Startkategorien. Eine Kategorie ist ein
Symbol. Der Defaultwert ist die Startkategorie der Grammatik. Hat find
den Wert NIL, dann sind alle Symbole als Startkategorie zugelassen. Im
Top-down-Modus darf nur ein Startsymbol angegeben werden.

igncap (i) Boolscher Wert, Default ist NIL. Dieses Argument gibt an, ob die
Groß- und Kleinschreibung von der lexikalischen Analyse ignoriert werden
soll. Beim wortweise inkrementellen Parsen sollte igncap zu Beginn des
Satzes auf t gesetzt werden, da dort die Großschreibung keine lexikalische
Information liefert. Für den Rest des Satzes ist der Defaultwert NIL

angemessen.

output (o) Ausgabespezifikation, Default ist *output*
Die Ausgabespezifikation ist entweder ein Keyword als Kurzspezifikation
oder – für eine präzisere Kontrolle – eine Liste von Keywords und Werten.
Die Funktionsweise des Ausgabegenerators wird im Abschnitt 4.4 erklärt.

6.1.2 Beschreibung der Parserfunktionen

Die Schnittstellenfunktionen akzeptieren beliebige Keywordparameter. Im Kopf
sind nur die Parameter angegeben, die von der Funktion wirklich benutzt wer-
den.

build-chart Funktion

(build-chart inputseq &key mode lexicon grammar)

Die Funktion build-chart initialisiert die Chart mit der Eingabesequenz
inputseq. Dafür wird das Lexikon lexicon benötigt. Beim bottom-up-Parsen
wird die Chart automatisch mit der angegebenen Grammatik aktiviert, beim
top-down-Parsen nicht. Eine leere Chart zum wortweise inkrementellen Parsen
erzeugt man mit (build-chart ()).

build-tree Funktion

(build-tree &key output grammar lexicon find)

build-tree baut die Ausgabestruktur aus der Chart auf. Wichtig ist hier vor
allem das Startsymbol find und die Ausgabespezifikation output.

KAPITEL 6. REFERENZHANDBUCH 57

loop-parse-incremental Funktion

(loop-parse-incremental &key output lexicon grammar find edge-count)

Aufruf von parse-incremental in einer Schleife, die mit einer leeren Eingabe
beendet wird. Argumente siehe parse-incremental.

parse Funktion

(parse inputseq &key output mode grammar lexicon find)

Die Funktion parse analysiert eine Sequenz von Eingabeelementen oder Lexi-
koneinträgen und generiert eine Ausgabestruktur.

parse-and-show-time Funktion

(parse-and-show-time inputseq &key output mode grammar lexicon find)

Die Funktion arbeitet wie parse gibt aber zusätzlich die zum Parsen benötigte
Zeit aus. Für den Parameter :mode ist hier auch :both erlaubt. Dann mißt die
Funktion den Zeitbedarf für beide Modi.

parse-incremental Funktion

(parse-incremental &key output lexicon grammar find)

parse-incremental liest einen Satz vom Terminal und parst bereits während
der Eingabe. Es wird ein spezieller Scanner verwendet, der das Löschen von
Zeichen behandeln kann. Sein Verhalten kann daher vom Verhalten des üblichen
ATN-Scanners abweichen.

Hat der inkrementelle Scanner ein Eingabeelement vollständig erkannt, dann
ruft er parse-next auf. Während parse-next arbeitet, verarbeitet der inkre-
mentelle Scanner keine weiteren Tastendrucke. Wenn der Benutzer so viele Zei-
chen löscht, daß ein bereits weitergegebenes Eingabeelement zurückgenommen
werden muß, dann wird der ganze noch gültige Rest des Satzes erneut geparst.

Das genaue Verhalten hängt vom Lispsystem und dem verwendeten Terminal
ab. Wenn parse-next schnell genug ist oder das Terminal die Eingabe puffert,
nimmt der Benutzer den Zeitbedarf von parse-next nicht wahr. Das zeichen-
weise inkrementelle Parsen ist unter Allegro Common Lisp 4.2 auf SUN-SPARC
und unter MCL auf Apple Macintosh getestet.

parse-line Funktion

(parse-line &key output mode grammar lexicon find)

Die Funktion liest eine Zeile vom Terminal, zerlegt sie mit scan in Eingabe-
elemente und ruft parse auf.

parse-line-and-display-tree Funktion

(parse-line-and-display-tree &key output mode grammar ...)

Kombination aus parse-line und parse-and-display-tree.

parse-line-and-show-time Funktion

(parse-line-and-show-time &key output mode grammar lexicon find)

Kombination aus parse-line und parse-and-show-time.

KAPITEL 6. REFERENZHANDBUCH 58

parse-next Funktion

(parse-next element &key grammar lexicon find ignore-cap output)

Die Funktion parse-next parst wortweise inkrementell. Sie verlängert die
Chart um das Eingabeelement element und parst den Satz im bottom-up-
Modus.

parse-rest Funktion

(parse-rest &key grammar mode find output)

parse-rest parst mit den bereits in der Chart vorhandenen Daten. Daher
wird auch kein Satz oder Eingabeelement angegeben. Anstelle der Funktion
parse kann man auch build-chart und anschließend parse-rest aufrufen.

Es ist möglich, die Analyse einer bestehenden Chart mit einer anderen Gram-
matik fortzusetzen. Gibt man im Argument grammar eine andere Grammatik
an, als bisher verwendet wurde, dann reaktiviert die Funktion parse-rest zu-
erst die Chart mit der neuen Grammatik.

6.1.3 Globale Defaults

Die Defaultwerte für die Keywordargumente der Parserfunktionen sind in globa-
len Variablen festgelegt. Für einige dieser Variablen gibt es wiederum Default-
werte beim Laden des Parsers.

find Variable

Default für das Startsymbol.

grammar Variable

Das Symbol *grammar* wird aus dem in *nlpkg* spezifizierten Package im-
portiert. Diese Variable enthält die Defaultgrammatik. Wenn man einen neuen
Satz analysiert, d.h. die Chart initialisiert, dann wird diese Grammatik be-
nutzt. Für diese Variable gibt es keinen Defaultwert, sie wird sinnvollerweise
beim Laden einer Grammatik belegt.

lexicon Variable

Das Symbol *lexicon* wird aus dem in *nlpkg* spezifizierten Package im-
portiert. Diese Variable enthält das Defaultlexikon. Für diese Variable gibt es
keinen Defaultwert, sie wird sinnvollerweise beim Laden eines Lexikons belegt.

mode Variable

Default für den Parsemodus. Defaultwert beim Laden ist :bu für bottom-up.

output Variable

Diese Variable enthält den Default für die Ausgabespezifikation. Default ist
:tree, d.h. es werden Parsebäume erzeugt.

KAPITEL 6. REFERENZHANDBUCH 59

parse-grammar Variable

Im Normalfall möchte man für alle Phasen des Parseprozesses dieselbe Gram-
matik verwenden. In dieser Variablen wird daher die aktuelle Grammatik ab-
gelegt. Die Variable *parse-grammar* ist der Defaultwert, wenn man eine
Funktion aufruft, die mit einer bestehenden Chart weiterarbeitet. Funktionen,
die eine neue Chart anlegen, belegen *parse-grammar* mit dem Wert des Pa-
rameters grammar.

tree-default Variable

Default für die Baumspezifikation, die das Format der Parsebaumknoten be-
stimmt. Default beim Laden ist:

’(:node edge-cat

:lex (:cat :lex)

:struct (:cat . :contents)))

6.1.4 Ausgabe

Die Ausgabegenerierung verläuft nach Algorithmus 3 (S. 34). Den Ausgabe-
generator steuert man mit der Ausgabespezifikation in Form eines einzelnen
Schlüsselworts (Kurzspezifikation) oder einer Liste aus Schlüsselwörtern und
Werten.

Wenn eine Kurzspezifikation angegeben wird, expandiert die build-fn-Funktion
des Grammatiktyps das Kürzel zu einer Liste. Bei der Ausgabeform :tree setzt
die Funktion dabei die Defaults aus *tree-default* für die Baumspezifikation
ein.

In den Grammatiktypen :sf und :cf sind derzeit folgende Kurzspezifikationen
definiert:

nil Siehe :succ.

:succ Liste der Kategorien der erfolgreichen Kanten

:tree Syntaxbaum (Default)

:alt Alternativen im Syntaxbaum

:frag Fragmente, falls keine vollständige Analyse

:num Syntaxbäume mit Sicherheitsfaktor (nur beim :sf-Grammatiktyp)

:allnum Sicherheitsfaktor an allen Knoten (nur beim :sf-Grammatiktyp)

:sem Aufbau einer Struktur aus dem Semantik Slot (nur beim :sf-Grammatiktyp)

Die Hauptausgabefunktion create-output erhält die Ausgabespezifikation als
Liste aus Schlüsselwörtern und Werten. Sie wird entweder direkt angegeben
oder entsteht durch die o.g. Expansion einer Kurzspezifikation. Algorithmus 7
beschreibt, welche Ausgabeformen den Angaben in der Ausgabespezifikation
zugeordnet sind.

KAPITEL 6. REFERENZHANDBUCH 60

Algorithmus 7
Die Aktion wird ausgeführt, wenn der Wert des Schlüsselworts nicht NIL ist.

:result Gib den Spezifikationswert zurück. (Das Ergebnis wurde bereits von
Übersetzungsfunktion build-fn berechnet.)

:last Nimm die eingehenden Kanten des letzten Knotens als Kandidaten für
erfolgreiche Kanten. (Im Normalfall gehen erfolgreiche Kanten vom ersten
zum letzten Knoten der Chart.)

:cat Gib eine Liste der Kategorien der erfolgreichen Kanten zurück.

:succ Wenn erfolgreiche Kanten existieren, gib t zurück, sonst nil.

:count Gib Anzahl der Lesarten zurück.

:tree Erzeuge Parsebäume für alle erfolgreichen Kanten.

:frag Wenn es keine erfolgreichen Kanten gibt, suche nach Fragmentfolgen
(vgl. Funktion fragment-report).

Die Ausgabeformen :tree und :frag erzeugen Lesartkanten und Parsebäume,
was verhältnismäßig aufwendig ist. Die anderen Ausgabeformen lassen sich aus
der Chart dagegen sehr schnell ablesen.

In der Phase der Lesarterzeugung werden Lesartkanten erzeugt, die die Attri-
bute enthalten. Die Lesarten für eine syntaktische Kante werden noch gefiltert,
d.h. mit Hilfe der Attributinformation kann eine Auswahl der Lesarten vorge-
nommen werden. Der Lesartfilter erhält die Spezifikation als Argument. Beim
Grammatiktyp :sf erkennt der Filter folgende Spezifikationswerte:

:sort Wenn der Wert t ist, werden die Kanten nach dem Wert des Sicherheits-
faktors absteigend sortiert.

:nres Der Wert ist eine Zahl. Es werden höchstens soviele Lesarten auf jeder
Ebene eingetragen, alle anderen werden weggeworfen.

Möchte man nur die n besten Lesarten verwenden, dann sortiert man und gibt
eine Anzahlbeschränkung an (:sort t :nres n). Wenn die Filterfunktion die
Lesartliste nicht sortiert, dann ist die Reihenfolge der Lesarten undefiniert. Eine
Anzahlbeschränkung ohne Sortierung wählt die Lesarten willkürlich aus.

Bei der Baumerzeugung werden zu den Lesartkanten Syntaxbäume aufgebaut.
Die Baumspezifikation zur Steuerung der Knotenform enthält Angaben zu den
drei Schlüsselwörtern :lex, :struct und :node. Die so angegebenen Spezifika-
tionen sind Muster für die Struktur des Baumknoten, wobei jeder Bestandteil
des Musters entsprechend Algorithmus 6 (S. 38) durch seinen Wert ersetzt wird.
Die benötigte Information wird aus der Lesartkante entnommen.

Bei den Terminalsymbolen beschreiben :lex-Spezifikationen die Gestalt von
Parsebaumblättern für Lexikoneinträge und :struct-Spezifikationen den Ein-
bau von Unterparsebäumen für Struktureinträge.

KAPITEL 6. REFERENZHANDBUCH 61

Bei Nichtterminalsymbolen besteht der Parsebaum aus einem Knoten und der
Liste der Unterbäume, wobei die Gestalt des Knotens durch die :node-Spezifi-
kation gesteuert wird.

Am Ende der Ausgabegenerierung werden die Bäume auf oberster Ebene nach-
bearbeitet. Damit kann man der Wurzel des Parsebaums eine andere Form
geben als den inneren Knoten. Die entsprechende Funktion des Grammatik-
typs grammar-type-tree-postproc erhält ebenfalls die Ausgabespezifikation
als Eingabe. Es sind derzeit zwei Nachbearbeitungsvarianten implementiert:

:lex&struct Erzeugt für ein Nichtterminalsymbol einen Struktureintrag, der
als Eingabeelement für eine weitere Parsephase verwendet werden kann.
So erzeugt man also die Struktureinträge, die man mit der :struct-
Spezifikation wieder in einen Parsebaum einbauen kann. Für ein Ter-
minalsymbol wird ein :lex-Eintrag erzeugt.

:num Fügt der Wurzel jedes Parsebaums den Sicherheitsfaktor hinzu.

6.2 Untersuchung und Analyse

Alle Ausgabefunktionen erhalten als Keywordargument stream den Ausgabe-
stream. Default ist t, d.h. das Terminal.

6.2.1 Quantitative Untersuchungen

In diesem Abschnitt werden Funktionen vorgestellt, die einige interessante quan-
titative Analysen der Chart vornehmen. Quantitative Analysen sind eine wich-
tige Hilfe bei Effizienzproblemen oder bei der Entwicklung von Grammatiken.
Bei einer quantitativen Analyse werden aber Einzeleffekte leicht von anderen
Effekten überlagert und verfälscht, so daß diese Analysen nur einen Hinweis
oder eine Tendenz angeben können. Quantitative Analysen zeigen, ob eine
Grammatik zu restriktiv ist, so daß zuwenig Lesarten gefunden werden, oder
zu großzügig, so daß sie eine zu hohe Mehrdeutigkeit aufweist.

chart-analysis Funktion

(chart-analysis &key (stream t))

Diese Funktion ruft die einzelnen Analysefunktionen mit geeigneten Default-
werten auf. Die Teilanalysen werden im folgenden beschrieben.

size-report Funktion

(size-report &key (stream t))

Die Untersuchung gibt die Anzahl der Knoten aus und schlüsselt die Anzahl der
Kanten nach den verschiedenen Kantentypen auf. Die dort aufgeführten stillge-
legten Kanten entstehen, wenn auf der gleichen Chart mehrmals eine Ausgabe
erzeugt wird und dafür die Lesartkanten neu berechnet werden.

Die folgenden Untersuchungen betrachten nur noch die (syntaktischen) inakti-
ven Kanten.

KAPITEL 6. REFERENZHANDBUCH 62

parse-tree-report Funktion

(parse-tree-report &key (stream t)(succ (success-edges *parse-grammar*)))

Diese Funktion untersucht den Parsewald und gibt die Anzahl der erfolgreichen
(syntaktischen) Kanten und deren Lesarten aus. Außerdem wird bestimmt, wie-
viele Kanten wie oft im Parsewald enthalten sind.

Eine hohe Zahl unbenutzter Kanten weist darauf hin, daß der Parser viele
Ableitungen im Bereich der kürzeren Konstrukte findet, die nachher nicht zu
einem Satz vervollständigt werden können.

Hohe Benutzungsquoten für einzelne Kanten entstehen, wenn die Grammatik
bei den langen Konstrukten Mehrdeutigkeiten enthält.

fragment-report Funktion

(fragment-report &key (stream t))

Diese Untersuchung ist sinnvoll, wenn der Satz nicht erfolgreich geparst wurde.
In diesem Fall möchte man wissen, welche und wie große Teilstücke in der
Chart erfolgreich geparst werden konnten. Betrachtet man eine unvollständige
Chart, versucht man, darin möglichst große geparste, d.h. von einer Kante
überspannte, Abschnitte – Fragmente – zu finden und den Satz als Folge solcher
Fragmente darzustellen.

Bei der Suche nach Fragmentfolgen kann man zwei Teile der Chart (und damit
des Satzes) völlig unabhängig voneinander betrachten, wenn die Chart durch
Herausnehmen eines trennenden Knotens unzusammenhängend wird. Im fol-
genden steht – graphentheoretisch betrachtet – der Begriff Komponente für die
Komponenten der Chart bezüglich 2-fachem Knotenzusammenhang. Ein Kno-
ten trennt zwei Komponenten, wenn er von keiner Kante überspannt wird, d.h.
wenn es keine Kante gibt, deren Anfangsknoten echt kleiner als der Trennknoten
und deren Endknoten echt größer als der Trennknoten ist. Als erstes bestimmt
die Fragmentanalyse die Zahl dieser Komponenten. Nach dem Eintragen der
Terminalsymbole hat eine Chart soviele Komponenten wie Eingabeelemente;
nach erfolgreichem Parsen dagegen eine Komponente. Der Vergleich zwischen
der Anzahl der Komponenten und der Anzahl der Eingabeelemente ist also ein
Maß für den Grad der Erfolglosigkeit des Parsings.

Die vollständig geparsten Abschnitte der Chart sind die Grundbereiche. Eine
Menge von aufeinanderfolgenden Knoten heißt Grundbereich, wenn folgende
Bedingungen gelten:

1. Grundbereiche werden von einer Kante überspannt, d.h. die Kante ver-
bindet den ersten Knoten des Grundbereichs mit dem letzten. Damit sind
Grundbereiche immer Untermengen von Komponenten.

2. Keine Kante aus dem Inneren des Bereichs (Bereich ohne Anfangs- und
Endknoten) verlässt den Grundbereich, d.h. es gibt keine Kante, deren
Anfangsknoten im Inneren des Grundbereichs liegt und deren Endknoten
außerhalb des Bereichs liegt.

3. Keine Kante von außerhalb betritt den Grundbereich, d.h. es gibt keine

KAPITEL 6. REFERENZHANDBUCH 63

Kante, deren Anfangsknoten außerhalb des Grundbereichs liegt und deren
Endknoten im Inneren liegt.

4. Der Grundbereich ist maximal, d.h. keine echte Obermenge des Grund-
bereichs erfüllt die Bedingungen 1.-3.

Möchte man das Ergebnis des partiellen Parsens als Folge von Chartfragmenten
ausgeben, dann betrachtet man die Grundbereiche als unteilbare Einheiten.
Jedes Fragment läßt sich als Vereinigung von Grundbereichen darstellen.

Fragmentfolgen durch die Chart werden bei der Ausgabeform :frag als Folge
von Komponentenpfaden dargestellt. Jeder Komponentenpfad ist eine Liste
von Pfaden von Fragmenten vom Anfang zum Ende der Komponente. Für
jedes Fragment wird die Liste aller Parsebäume angegeben.

Wenn alle Komponenten der Chart gleichzeitig Grundbereiche sind, dann hat
der Parser den Satz in eine Folge von vollständig erkannten, voneinander un-
abhängigen Abschnitte zerlegt. Diese Komponenten heißen trivial, denn für
diesen Satz kann man auf einfache Art eine Folge von jeweils vollständig er-
kannten, voneinander unabhängigen Teilstrukturen konstruieren.

Nichttriviale Komponenten – die also nicht gleichzeitig Grundbereiche sind –
verursachen bei der Suche nach Fragmentfolgen einen erhöhten Aufwand. Z.B.
hat eine Chart, die außer den Terminalkanten nur eine Kante von Knoten 1
nach 3 und eine weitere von 2 nach 4 enthält, eine nichttriviale Komponente
zwischen den Knoten 1 und 4.

alt-report Funktion

(alt-report &key (stream t))

alt-report untersucht die Häufigkeit von Kantenverschmelzungen. Er gibt
an, wieviele Kanten jeweils wieviele verschiedene Ableitungen enthalten. Bei
stark mehrdeutigen Grammatiken gibt es eine hohe Zahl von Kantenverschmel-
zungen.

rule-length-report Funktion

(rule-length-report &key (stream t))

Untersuchung über Verteilung der angewendeten Regellängen. Eine große Zahl
von Regeln der Länge 1 deutet darauf hin, daß viele Regeln, die nur umbenen-
nen, angewendet wurden.

Anschließend wird die Anzahl der Terminalkanten angegeben. Da die lexikali-
sche Analyse für eine Wortform mehrere Kategorien finden kann, ist die Anzahl
der Terminalkanten möglicherweise größer als die Anzahl der Eingabeelemente.
Das Verhältnis von Terminalkantenzahl zur Anzahl der Eingabeelemente ist ein
Hinweis auf Mehrdeutigkeiten in der lexikalischen Analyse.

multiedge-report Funktion

(multiedge-report &key (stream t) (spec <spec>))

Diese Funktion liefert Hinweise auf Mehrdeutigkeiten in der Analyse und auf
die Wirksamkeit der Grammatikregeln und Featuremechanismen, indem sie un-
tersucht, in welchen Maße die Chart Multikanten enthält.

KAPITEL 6. REFERENZHANDBUCH 64

Im Parameter spec kann eine Liste von Spezifikationen angegeben werden. Jede
Spezifikation ist eine Liste aus einer Titelzeile für die Untersuchung und einem
Vergleichsprädikat für Kanten. Der Bericht gibt die Stärken der Äquivalenz-
klassen von Kanten bezüglich dieses Prädikats an.

Die Defaultspezifikation enthält zwei Untersuchungen:

• Bei der Untersuchung “Allgemeine Multikanten” sind zwei Kanten äqui-
valent, wenn sie die gleichen Anfangs- und Endknoten besitzen. Eine
Multikante entsteht durch Mehrdeutigkeiten in der Grammatik, denn der
Parser leitet für einen Teil der Chart mehrere Symbole ab. Da Kantenver-
schmelzung verwendet wird, handelt es sich bei diesen Mehrdeutigkeiten
wirklich um verschiedene Symbole, nicht nur um verschiedene Ableitungs-
wege zum gleichen Symbol.

• Multikanten mit gleicher Kategorie unterscheiden sich nur durch ihre Fea-
tures. Sie sind ein Hinweis darauf, daß Kanten mit verschiedenen Features
und der selben Kategorie erzeugt werden.

Die Multikantenzahlen sind gering, wenn entweder die Grammatik auf der Chart
beinahe eindeutige Lösungen findet, oder Regeln, die dasselbe Symbol ableiten,
zu einer optimalen Wirkung der Kantenverschmelzung führen. Diese Tatsache
zeigt auch, daß ChaPLin mit beiden Formen von Grammatiken gut arbeiten
kann.

6.2.2 Ausgabe von Datenstrukturen

describe-chart Funktion

(describe-chart)

Gibt ein cons aus der größten gültigen Knotennummer und der größten gültigen
Kantennummer zurück. Die Knotennumerierung beginnt mit Knoten
left-vertex = 1, die Kantennumerierung mit Kante 0.

display-agenda Funktion

(display-agenda &key (stream t))

Die Agenda ist ein Stapel von Konfigurationen, die aus einer aktiven und einer
inaktiven Kante bestehen. Sie wird von oben nach unten in folgendem Format
ausgegeben:

<links>---<akt. Kat, Nr.>---<mitte>---<inact.Kat.Nr.>---<rechts>

display-chart Funktion

(display-chart &key from edges cat to stream)

Die Funktion gibt die Kanten der Chart aus und erhält folgende Argumente:

from Wird eine Zahl angegeben, werden nur Kanten angezeigt, die von dem
Knoten mit der Nummer from ausgehen. Der Default ist NIL, dann zeigt
display-chart Kanten mit beliebigem Anfangsknoten an.

KAPITEL 6. REFERENZHANDBUCH 65

to Entsprechend für den Endknoten der Kanten.

edges Diese Option bestimmt den auszugebenden Kantentyp. Folgende Schlüs-
selwörter sind zulässig:

:inactive Nur inaktive Kanten ausgeben (Default)

:active Nur aktive Kanten ausgeben

:tree Nur Lesartkanten ausgeben.

:all Kanten aller drei Typen ausgeben.

cat display-chart gibt nur Kanten mit der hier angegebenen Kategorie aus.
Default ist nil, dann werden Kanten mit beliebiger Kategorie ausgegeben.

display-edge Funktion

(display-edge (e &key (stream t)))

Die Printfunktion der Struktur edge gibt nur eine einzeilige Kurzinformati-
on aus, die Funktion display-edge zusätzlich noch den Inhalt (bei inaktiven
Kanten alle Inhalte) der Kante.

6.3 Umgebung

chp-version Funktion

(chp-version)

Die Funktion gibt Information über die aktuelle Version des Parsers, die gela-
denen Module und für jedes Modul das Datum der letzten Änderung.

nlpkg Variable

Das Lexikon liefert Kategoriesymbole zurück, mit denen die Grammatik ar-
beitet. Diese Variable enthält das Lisp-Package für diese Symbole. Der Parser
stellt für Lexikonanfragen das Defaultpackage *package* zeitweise auf *nlpkg*
um. Damit die Grammatik die Symbole des Lexikons erkennt, muß *nlpkg*

beim Laden einer Grammatik und bei ihrer Verwendung den gleichen Wert
haben.

Default ist "USER"

do-with-timeout Makro

(do-with-timeout (time . timeoutforms) &body body)

Führt body aus. Wenn body noch nicht zu Ende gelaufen ist stoppt es nach
time Sekunden und gibt den Wert von timeoutforms zurück. Dieses Makro
verwendet bei Allegro CL und auf dem TI-Explorer systemspezifische Funktio-
nen.

Es gibt eine portable Common-Lisp Variante, die bei jedem Aufruf der Funk-
tion add-inactive-edge durch Aufruf der Funktion timer die Zeit überprüft.

KAPITEL 6. REFERENZHANDBUCH 66

Wenn add-inactive-edge nicht aufgerufen wird, bricht die Common-Lisp-
Variante bei Überschreiten des Timeouts allerdings nicht ab.

with-time Makro

(with-time &body body)

Das Makro with-time bestimmt die für die Ausführung von body benötigte
CPU-Zeit und gibt als Werte die Zeit in Sekunden und den Wert von body

zurück.

k-with-time Makro

(k-with-time k &body body)

Führt body k-mal aus und gibt die Zeit zurück. Damit kann man auch sehr
kleine Laufzeiten, die unter der Granularität des Timers liegen, vergleichen.

6.4 Scanner

Der Zeilenscanner basiert auf dem in Abschnitt 6.5 beschriebenen ATN-Interpre-
ter. Er enthält ATNs für eine Eingabezeile, Kategoriedefinitionen und Abkürzungen.

scan Funktion

(scan string)

Diese Funktion zerlegt string mit dem ATN-Scanner in Eingabeelemente.

> (scan "Der Berg ruft.")

("Der" "Berg" "ruft" #\.)

scan-line Funktion

(scan-line &key mult conv)

Diese Funktion liest eine Zeile vom Terminal und zerlegt sie mit dem ATN-
Scanner in Eingabeelemente. Ist mult wahr, liest der Scanner mehrere Zeilen.
Wenn conv wahr ist, werden Umlaute mit den Angaben aus *conv-table*

umgewandelt.

conv-table Variable

Auf verschiedenen Plattformen gibt es unterschiedliche Arten, Umlaute dar-
zustellen. Für die Portabilität von Daten kann eine beliebige ASCII-Notation
für Umlaute definiert werden, z.B. /ae für ä. Die Umwandlung wird vor dem er-
sten Verarbeitungsschritt vorgenommen. Damit kann man Umlaute auch dann
eingeben, wenn es auf einem System nicht möglich ist, Umlaute in der internen
Darstellung des Lexikons einzugeben. Der Defaultwert der Umwandlungstabel-
le ist:

’(("/ue" . "\374")

("/oe" . "\366")

("/ae" . "\344")

("/ss" . "\337")

KAPITEL 6. REFERENZHANDBUCH 67

("/Ue" . "\334")

("/Oe" . "\326")

("/Ae" . "\304")))

6.5 ATN-Interpreter

Im Compilerbau definiert man Scanner häufig durch endliche Automaten
[Aho et al. 86]. Für die Verarbeitung natürlicher Sprache genügt deren Mäch-
tigkeit in einigen Fällen nicht mehr. Die Darstellung eines endlichen Automaten
als FSTN (Übergangsnetz, Finite State Transition Network) erweitert man in
einem ersten Schritt zum RTN (Recursive Transition Network), bei dem rekur-
siv weitere Netze gerufen werden. RTNs sind äquivalent zum Kellerautomaten,
erkennen also kontextfreie Sprachen. Erlaubt man zusätzlich noch Zuweisun-
gen an Register und Bedingungen für Übergänge, dann erhält man das ATN
(Augmented Transition Network). ATNs haben die Berechnungsmächtigkeit
der Turing-Maschine. Der Einsatz von ATNs ist sinnvoll, wenn die zu erken-
nende Sprache nur in wenigen Punkten von einer regulären Sprache abweicht,
denn dann bleiben die Netze übersichtlich. Der von ChaPLin zum Scannen
von Eingabestrings eingesetzte ATN-Interpreter ist eine Erweiterung des in
[Charniak et al. 87] beschriebenen RTN-Interpreters.

6.5.1 Netzdefinition

defnet Makro

(defnet name ([register]*) [description]+)

Dieses Makro definiert ein ATN.

name Ein Symbol, das den Namen des neuen Netzes angibt.

Jedes register ist ein Symbol, das ein Register definiert. Diese Register können
im Netz verwendet werden. Die in defnet eingeführten Variablen sind innerhalb
eines Netzes lokal. Zusätzlich ist die globale Variable -hold- und das Register
-current- definiert.

Die Netzbeschreibung description gibt an, wie die Wörter der vom ATN er-
kannten Sprache aussehen. Die an reguläre Ausdrücke angelehnte Notation
erlaubt folgende Konstrukte:

• (SEQ <description> <description> ...)

Bei einer Sequenz von Kanten bzw. Beschreibungen müssen die Konsti-
tuenten nacheinander im Wort vorkommen.

• (OPTIONAL <description> <description> ...)

Die Konstituentenfolge kann im Wort vorkommen oder nicht. Der Back-
trackingalgorithmus testet das Wort zuerst ohne die optionale Folge.

• OPTIONAL* <description> <description> ...)

Wie OPTIONAL, nur daß die Konstituentenfolge beliebig oft stehen kann.

KAPITEL 6. REFERENZHANDBUCH 68

• (EITHER <description> <description> ...)

Nur eine der alternativen Beschreibungen muß beim Ablauf erfolgreich
durchlaufen werden.

• (CAT <category> [:test <expr>] [:do <expr>])

Das nächste Eingabeelements muß vom Typ <category> sein und der
Test darf nicht nil ergeben. In diesem Fall wird die Eingabe gelesen und
die :DO-Anweisung ausgeführt. Die vordefinierte Kategorie ANY liest ein
beliebiges Eingabeelement

• (WORD <word-or-list> [:test <expr>] [:do <expr>])

Entspricht CAT, nur wird anstelle einer Kategorie ein bestimmtes Einga-
beelement oder eine Liste möglicher Eingabeelemente angegeben.

Dabei ist zu unterscheiden, ob die Eingabe aus einer Liste oder von einem
String gelesen wird

Liste
table Nächstes Wort muß table sein.
(table chair) Nächstes muß table oder chair sein.
"table" String "table" muß folgen.

String
\#t Nächstes Zeichen muß \#t sein.
(\#t \#a) Nächstes Zeichen muß \#t oder \#a sein
"table " Eines der Zeichen \#t \#a \#b \#l oder \#e

muß folgen.

• (JUMP [:test <expr>] [:do <expr>])

Falls der Test erfüllt ist, wird die Aktion ausgeführt. Dabei wird kein
Eingabezeichen gelesen.

• (PUSH <name> [:test <expr>] [:do <expr>])

Falls der Test erfüllt ist, geht der Interpreter in das Netz mit Namen
<name> über. Die :DO Aktionen werden erst nach dem Rücksprung aus
dem aufgerufenen Netz ausgeführt

• (POP <expr> [:test <expr>])

Falls der Test erfüllt ist, wird das Netz verlassen. Der Rückgabewert des
Netzes ist der Wert des ersten <expr>.

Beschreibungen, die einen :TEST Parameter enthalten, werden ausgeführt, wenn
die Auswertung des Tests nicht nil ergibt. Andernfalls wird ein Backtracking
ausgelöst. Wird ein optionaler :TEST-Parameter nicht angegeben, gilt die Be-
dingung als erfüllt.

Als Netzvariable sind außer den in defnet eingeführten lokalen Variablen die
globalen Variablen -hold- und -current- definiert. Die Lisp-Ausdrücke <expr>
verwenden diese Netzvariablen. In den Testausdrücken ist -current- an das

KAPITEL 6. REFERENZHANDBUCH 69

nächste zu lesende Eingabeelement gebunden (lookahead). In den :DO-Aus-
drücken enthält -current- dagegen das gerade gelesene Eingabeelement oder
im Falle von PUSH den vom aufgerufenen Netz zurückgegebenen Wert.

eoinp Funktion

(eoinp element)

Testet, ob das Element dem Zeichen für
”
Ende der Eingabe“ entspricht. Die

Funktion benutzt man in der Form (eoinp -current-) zur Formulierung von
Testbedingungen.

6.5.2 Kategorien

Die Terminale des ATNs sind die Kategorien. Die vordefinierte Kategorie
ANY steht für ein beliebiges Eingabeelement. Sie darf nicht mit defabbrev,
getabbrev oder categoryp überdefiniert werden.

defabbrev Makro

(defabbrev category elements)

Definiert eine Kategorie durch die Liste elements ihrer Elemente.
getabbrev Makro

(getabbrev category)

Gibt die Liste der Elemente, die zu der angegebenen Kategorie gehören, zurück.

categoryp Funktion

(categoryp element category)

Testet, ob das Element von der angegebenen Kategorie ist

6.5.3 Aufruf des ATN-Interpreters

atn Funktion

(atn sentence &key start exhaustive trace level)

Beim Aufruf des ATN-Interpreters wird als Argument sentence eine Einga-
besequenz, d.h. ein String oder eine Liste übergeben. Die Keywordparameter
haben folgende Bedeutung:

start Startkategorie, der Name des top-level-Netzes (Default: S)

exhaustive Flag, das angibt, ob der Interpreterlauf nur dann erfolgreich be-
endet wird, wenn die Eingabesequenz am Ende leer ist. (Default: t)

trace Trace-Level folgender Form:

NIL kein Trace (Default)

1 nur wichtigste Informationen ausgeben,

2 nur wichtige Informationen ausgeben,

3 alle Informationen ausgeben

KAPITEL 6. REFERENZHANDBUCH 70

level In manchen Fällen gibt es mehrere Lösungen. Der Parameter level

ist ein Integer, der die Nummer der Lösung nach der durch das Netz
festgelegten Abarbeitungsreihenfolge angibt. Bei 1 wird die erste Lösung,
bei 2 die zweite ausgegeben Default ist 1.

Wenn das Netz erfolgreich durchlaufen wurde, gibt die Funktion atn zwei Werte
zurück: das Ergebnis der POP-Anweisung des top-level-Netzes und den Rest der
Eingabesequenz (NIL falls exhaustive=t).

6.5.4 Beispiele für ATNs

Die folgenden Beispiele zeigen, wie einfache Netze für den ATN-Interpreter
aussehen und wie der Interpreter aufgerufen wird. Das folgende Netz ist ein
rekursives Übergangsnetz (RTN), weil es auf Registerzuweisungen verzichtet.
Es erkennt Folgen vom Typ anbn.

(defnet demo1 ()

(optional

(word a) (push demo1) (word b)))

Der ATN-Interpreter wird folgendermaßen aufgerufen:

> (atn ’(a a a b b b) :start ’demo1)

T

NIL

> (atn ’(a a a b b b b) :start ’demo1)

NIL

NIL

> (atn ’(a a a b b b b) :start ’demo1 :exhaustive nil)

T

(a a a b b b b)

Wenn :exhaustive nil ist, dann kann das ATN auch erfolgreich durchlaufen
werden, ohne ein Eingabezeichen zu lesen. Wenn aus einem String anstatt aus
einer Liste gelesen werden soll, sieht das Netz folgendermaßen aus:

(defnet demo1-1 ()

(optional

(word "a") (push demo1-1) (word "b")))

> (atn "aaabbb" :start ’demo1-1)

T

""

Das nächste Beispiel demo2 beschreibt die gleiche Sprache wie demo1. Die Ana-
lyse wird aber in einer anderen Reihenfolge durchgeführt. Man erkennt den
Unterschied, wenn :exhaustive den Wert nil hat.

KAPITEL 6. REFERENZHANDBUCH 71

(defnet demo2 ()

(either

(seq (word a) (push demo2) (word b))

(jump)))

> (atn ’(a a a b b b b) :start ’demo2 :exhaustive nil)

T

(b)

Zur Beschreibung der Sprache anbncn reicht ein RTN nicht aus. Das Netz demo3
erkennt Folgen vom Typ anbncn. Das Subnetz demo3-1 entspricht demo1, legt
aber zusätzlich jedes gelesene a nach -hold-. Der Rest des Netzes demo3 liest
dann cn. Die auskommentierte Zeile des Netzes zeigt, wie man zur Fehlersuche
den Wert eines Registers ausdrucken kann.

(defnet demo3 ()

(push demo3-1)

;;(jump :do (print -hold-))

(optional*

(word c :test -hold- :do (pop -hold-)))

(pop t :test (null -hold-)))

Das Subnetz für anbn:

(defnet demo3-1 ()

(optional

(word a :do (push -current- -hold-))

(push demo3-1)

(word b)))

In den :do-Anweisungen sind push und pop nicht Netzschlüsselwörter sondern
bezeichnen die entsprechenden Lispfunktionen.

> (atn ’(a a b b c c) :start ’demo3)

T

NIL

> (atn ’(a a b b c c c) :start ’demo3)

NIL

NIL

Kapitel 7

Implementierung

7.1 Verlauf der Implementierung

ChaPLin ist Ergebnis einer Forschungsarbeit und ist als Hilfmittel für For-
schungsarbeiten konzipiert. Im Laufe der Zeit wurden verschiedene Möglichkeiten
und Varianten getestet und implementiert.

Ausgangpunkt der Entwicklung war die Beschreibung der Interlisp-Implemen-
tierung eines einfachen Chart-Parsers in [ThompsonRitchie 84]. Als erste Ver-
sion reimplementierte Gerrit Burkert diesen Parser mit an Common Lisp ange-
paßten, effizienteren Datenstrukturen für die Chart (4/88). Zur Version 2 wurde
der Parser erweitert. Unter anderem wurde die Möglichkeit zum Bottom-Up-
Parsen eingeführt, die Grammatik anders repräsentiert und die Effizienz ver-
bessert (11/89). In der dritten Version des Parsers wurde die Möglichkeit zur
Verarbeitung unterschiedlicher Grammatikformalismen eingeführt (4/92).

Die jetzt vorliegende Version 3.2 von ChaPLin entstand nach einer Überarbei-
tung durch Mathis Löthe bis zum Januar 1995. Die einzige Erweiterung ist die
Kantenverschmelzung, ansonsten wurden die internen Schnittstellen des Parsers
überarbeitet, die Trennung zwischen Grammatiktyp und Parserkern verbessert,
der Code innerer Schleifen optimiert und das Programm dokumentiert.

Die Überarbeitung begann am Kern des Parsers, nämlich an der Chart und
der Schnittstelle zwischen den Grammatiktypen und der syntaktischen Phase.
Darauf folgten der Ausgabegenerator, die Grammatiktypen selbst und die Uti-
lities. Bei der Überarbeitung wurden die Anforderungen für die einzelnen Teile
festgelegt.

7.2 Stand der Implementierung

Die zentralen Komponenten des Parsers sind bereits klar definiert und in ei-
nem stabilen Zustand. Die Anforderungen an Ausgabegenerator, Grammatik-
und Lexikonschnittstelle kann man dagegen nicht auf einfache Art vollständig
festschreiben. Daher sind die Begriffe und die Arbeitsweise für diese Teile noch
nicht so übersichtlich spezifiziert wie für den Kern des Parsers. Die folgen-

72

KAPITEL 7. IMPLEMENTIERUNG 73

de Aufstellung beschreibt den Zustand der einzelnen Teile und nennt mögliche
Verbesserungen:

Chart Die Chart wurde von Grund auf überarbeitet und enthält keine gram-
matiktypabhängigen Anteile mehr. ChaPLin erzeugt für jeden Satz eine
neue Chart, damit die garbage collection nach dem Parsen eines Satzes
den von der Chart verbrauchten Speicherplatz wieder vollständig freigibt.
Unter Allegro CL auf einer SUN-SPARC Station erwies sich dieses Vor-
gehen als vorteilhaft.

syntaktische Phase Die syntaktische Phase ist gründlich überarbeitet und
optimiert worden. Die Trennung zwischen Kern und Grammatiktyp ist
vollzogen. Nach einer Verbesserung der Lexikonschnittstelle kann man
noch die Mechanismen zur Behandlung von Stringkategorien vereinfachen.

Ausgabegenerator Der Ausgabegenerator wurde neu strukturiert und die
grammatiktypspezifischen Anteile ausgegliedert. Einige Vereinfachungen
und Vereinheitlichungen wären aber wünschenswert:

• Erzeugung von :alt-Bäumen klarer definieren.

• Spezifikationsübersetzung und Steuerung von Filter und Postprozes-
sor vereinheitlichen.

• Vereinfachung der Spezifikationsprache für die Baumerzeugung.

Lexikon Im Bereich der Lexikonschnittstelle sind noch einige Dinge verbesse-
rungsbedürftig:

• Die Lexikonstruktur enthält aus Kompatibilitätsgründen unbenutzte
überzählige Slots. Die alten Lexika sollten untersucht werden und
Referenzen auf diese unbenutzten Slots entfernt werden.

• Für jedes Attribut des Lexikons existiert eine Zugriffsfunktion, die
angegeben werden muß. Damit ist die Menge der Lexikonattribute
von der Lexikonschnittstelle festgelegt. Ein besseres Übergabeproto-
koll wäre: Jedes Lexikon erzeugt gleich die Liste (:lex ...). So
können Lexika verschiedene Angaben enthalten, und man kann den
Attributsatz den Bedürfnissen des Grammatiktyps anpassen.

• Die Lexikonschnittstelle enthält noch :sf-grammatiktypspezifische
Dinge (Grund s.o.).

• Die Lexikonschnittstelle sollte eine Komponente erhalten, die ein au-
tomatisches Memoizing der häufigsten Wörter betreibt. Ein Vorbild
befindet sich in der Datei textprocessor.lisp.

• Die Lexikonschnittstelle sollte Datentypfehler in Lexikondaten ab-
fangen, z.B. indem sie Defaultwerte liefert. Bisher geschieht dies
ansatzweise im Parser selber, ansonsten führt fehlerhafte Lexikonin-
formation zu einem Fehlverhalten des Parsers.

KAPITEL 7. IMPLEMENTIERUNG 74

Grammatiktypen Probleme bei den Grammatiktypen entstehen meist durch
die Arbeitsteilung zwischen den Grammatiktypmodulen und den anderen
Teilen des Parsers.

Der Grammatiktyp :fu – ein Grammatiktyp für Featureunifikationsgram-
matiken von Petra Schmidt [Schmidt 92] – ist noch nicht an die Version
3.2 angepaßt.

Grammatik Die Mechanismen zur Definition von Grammatiken sollten in ei-
nigen Punkten noch vereinfacht werden:

• Das Verfahren zum Lesen der Regeln und Überprüfen ihrer Syntax
ist noch relativ kompliziert (mehrere Überprüfungsmechanismen).

• Bisher ist es möglich, zu einer gegebenen Regelmenge den Gramma-
tiktyp zu bestimmen. Diese Funktionalität ist meist überflüssig. Ein
Verzicht darauf vereinfacht den Lademechanismus.

Beim Laden von Grammatiken werden Symbole erzeugt. Der Parser trägt
sie in das Package *nlpkg* ein. Zu diesem Zeitpunkt werden auch String-
kategorien zu Symbolen umgeformt. Bei Lexikonaufrufen muß dieses
Package auch verwendet werden, dafür muß zur Zeit die Variable *nlpkg*
richtig gesetzt sein. Ein flexiblerer Mechanismus wäre wünschenswert.

Inkrementelles Parsen Der inkrementelle Parser verwendet systemspezifi-
sche Funktionen und Konstantendefinitionen zur Ansteuerung des Ter-
minals. Diese müssen an das jeweilige System angepaßt werden.

Die augenblickliche Version des inkrementellen Parsers parst nach jedem
gelesenen Lexem und reagiert erst dann wieder auf Eingaben, wenn dieser
Teil des Parsevorgangs abgeschlossen ist. Bei Allegro CL 4.2 auf einer
SUN-SPARCstation 10 kann man problemlos damit arbeiten. Vermutlich
ist der Parser schnell genug oder die Eingabe wird sinnvoll gepuffert.

Sollte es auf einer Plattform nötig sein, auch während des Parsens die
Tastatur abzufragen, dann muß der Aufruf des inkrementellen Scanners

#+<Plattform>(when *incremental* (read-input-char))

an einer geeigneten Stelle im Parser eingefügt werden, z.B. in die Funktion
add-inactive-edge . Die Funktion parse-incremental muß dann die
globale Variable *incremental* entsprechend belegen.

Utilities Die Funktionen zur graphischen Ausgabe von Parsebäumen sind
plattformabhängig. Es existieren ältere Versionen für TI-Explorer und
CLX. Bei Bedarf sollten Ausgaben für weitere Plattformen hinzugefügt
werden, z.B. für CLIM oder Garnet.

KAPITEL 7. IMPLEMENTIERUNG 75

7.3 Weiterentwicklung und Ausblick

Ziel der Weiterentwicklung muß es sein, ein Werkzeug für die Verarbeitung na-
türlicher Sprache zu erhalten. Da verschiedene Anwendungen unterschiedliche
Anforderungen an ihren Parser stellen, ist die Flexibilität des Parsers besonders
wichtig.

In einigen Teilbereichen ist dieses Ziel bereits erreicht:

• Verschiedene Grammatiken und Grammatiktypen können einfach erstellt
und ausgetauscht werden.

• Der Parser behandelt unterschiedlich vorverarbeitete Eingaben.

• Die Ausgabeform läßt sich flexibel den Bedürfnissen der Anwendung an-
passen.

• Die genannten Möglichkeiten sind weitgehend frei miteinander kombinier-
bar.

Dennoch bleibt auch für die Zukunft noch einiges zu tun. Außer einer Korrektur
der im vorigen Abschnitt genannten Probleme der Einzelkomponenten sind noch
folgende generelle Verbesserungen wünschenswert:

• Einige Spezifikations- und Steuersprachen sind noch zu kompliziert und
zu mühsam zu erlernen, vor allem im Bereich der Ausgabegenerierung.

• Der Attributierungsmechanismus ermöglicht es, Teile der semantischen
Analyse schon in der Ausgabephase des Parsers durchzuführen. Da-
bei steht die kompakte Darstellung des Parsewalds in der Chart zur
Verfügung.

Eine erweiterte Attributierungsspezifikation nach Vorbildern aus dem Com-
pilerbau (vgl. syntaxgesteuerte Übersetzung in [Aho et al. 86]) würde
diese Möglichkeiten für den Anwender deutlicher machen.

• Der Leistungsumfang von ChaPLin sollte erweitert werden, d.h. Aufga-
ben, die jetzt noch von anderen Programmen übernommen werden, wie
das Parsen größer Textkorpora oder die Verwendung verschiedener Lexi-
ka sollten von standardisierten Zusatzbausteinen des Parsers übernommen
werden.

• Bei den Hilfsprogrammen kann eine graphische Anzeige von Ergebnissen
die Untersuchung des Parsevorgangs vereinfachen und damit den Nutzen
von ChaPLin für den Einsatz in der Spachverarbeitung erhöhen.

Trotz aller Wünsche und Verbesserungsvorschläge ist ChaPLin bereits in der
augenblicklichen Version 3.2 eine stabile und flexible Komponente für den Auf-
bau eines sprachverarbeitenden Systems. Daher:

Viel Spaß und Erfolg mit ChaPLin 3.2 !!!

Anhang A

Beispiele

A.1 Beispiellexikon

Dieses Testlexikon enthält die Einträge für das Beispiel in Kapitel 3. Es ent-
nimmt die Einträge aus einer Liste von Datensätzen, die bereits in dem vom
:sf-Grammatiktyp geforderten Format abgelegt sind. Für den Einsatz in ei-
nem Anwendungsprogramm kann der Parser an externe Lexika und ggf. eine
Morphologiekomponente angeschlossen werden.

(in-package "USER")

(if (fboundp ’chp:defmod) ;;;; VERSION STRING

(chp:defmod :lexicon "Lexikonschnittstelle Beispiel" "13-DEZ-95")

(error "** file PARSER not yet loaded **"))

;;; sample data

(setq *sample-lex-data*

’(("Der" ("Der" det "DER" 1 nil "*DER"))

("Berg" ("Berg" n "BERG" 1 ((num sg) (gen mask)) "*BERG"))

("ruft" ("ruft" vf "RUFT" 1 ((time praes) (pers p3) (num sg)) "*RUFT"))

(#\. ("." punkt "." 1 nil nil))))

;;; define lexicon format

(setq *sample-lex*

(chp:make-lex

:entries #’(lambda (word &optional igncap)

(cdr (assoc word *sample-lex-data* :test #’equal)))

:form #’first

:cat #’second

:word #’third

:conf #’fourth

:attr #’fifth

:sem #’sixth))

(setq chp:*lexicon* *sample-lex*)

76

ANHANG A. BEISPIELE 77

A.2 Beispielgrammatik

Diese Grammatik ist ebenfalls für die Beispiele aus Kapitel 3 und einfache
Tests vorgesehen. Die Regeln entsprechen dem in Abschnitt 5.5 beschriebenen
Format des :sf-Formalismus. Sie enthalten aber keine Anweisungen zur Featu-
rebehandlung, so daß es sich hier um eine rein kontextfreie Grammatik handelt.

(in-package "USER")

;;;; VERSION STRING

(if (fboundp ’chp:defmod)

(chp:defmod :grammar "Deutsche Beispielgrammatik :sf" "13-DEZ-95")

(error "** file PARSER not yet loaded **"))

;;; Grammar definition

(setq *sample-grammar*

(chp:define-grammar

’((S -> (NP VP PUNKT) 1 NIL NIL NIL -)

(NP -> (DET N) 1 NIL NIL NIL -)

(NP -> (DET ADJ N) 1 NIL NIL NIL -)

(VP -> (VF) 1 NIL NIL NIL -)

(VP -> (VF NP) 1 NIL NIL NIL -))

:type :sf

:ignore ()))

(setq chp:*grammar* *sample-grammar*)

Anhang B

Verzeichnis der zugehörigen
Dateien

Dieser Anhang beschreibt die Dateien des Parsers, deren Funktionalität in die-
sem Bericht dokumentiert oder erwähnt ist. Dateien, die darüber hinaus gehen-
de Erweiterungen darstellen, werden hier nicht aufgeführt. Sie sollten jedoch
in die Datei doc/files<version>.txt eingetragen werden.

B.1 Unterverzeichnisse

Der Quellcode liegt im Hauptverzeichnis von ChaPLin.

Binaries bin

In diesem Verzeichnis liegen die kompilierten Dateien von ChaPLin. Sie
werden von load-module automatisch verwaltet und bei Bedarf neu kom-
piliert.

Dokumentation doc

Die Dokumentationsdateien in diesem Verzeichnis sind ASCII-Texte, die
bei neuen Versionen laufend aktualisiert werden sollten.

Beispiele Examples

Dieses Verzeichnis enthält verschiedene Grammatiken und Lexikonschnitt-
stellen

B.2 Codedateien von ChaPLin

Lader load-parser.lisp

Die Startdatei enthält einen Aufruf der Funktion load-module, die den
Parser lädt und bei Bedarf (teilweise) kompiliert. In diese Datei werden
alle plattform- und installationsabhängigen Einstellungen eingetragen.

Modulverwalter load-module.lisp

Implementation der Funktion load-module. Dieser Modulverwalter kom-

78

ANHANG B. VERZEICHNIS DER ZUGEHÖRIGEN DATEIEN 79

piliert die Dateien nach Bedarf und legt die Binärdateien in das Unter-
verzeichnis bin.

Parser parser-<version>.lisp

Der Parserkern enthält die Definitionen von Chart und Parserfunktionen
und die Mechanismen zur Definition von Grammatiktypen, Grammatiken
und Lexika.

Grammatiktypen grammar-types-<version>.lisp

Diese Datei definiert die Grammatiktypen für einfach kontextfreie (:cf)
und flat feature (:sf) Grammatiken.

Utilities utilities-<version>.lisp

Spezielle Aufrufvarianten für den Parser, Zeitmessung, Timeout und Char-
tanalysen.

Scanner scan-line<version>.lisp

Schnittstellenfunktionen und Netzdefinitionen für den Zeilenscanner.

ATN-interpreter atn-interpreter-<version>.lisp

ATN (Augmented Transition Network) Interpreter

Inkrementeller Parser incremental-<version>.lisp

Liest Eingabe zeichenweise und parst sobald möglich. Enthält einen eige-
nen, inkrementellen Scanner, der Token für Token an den Parser übergibt.
Der inkrementelle Parser verwendet plattformabhängige Funktionen.

B.3 Dokumentationsdateien

Die Dokumentationsdateien liegen normalerweise im Unterverzeichnis doc. Sie
enthalten Angaben über den aktuellen Zustand der Installation und sollten
daher nach Änderungen auf den neuesten Stand gebracht werden.

Übersicht README

Diese Datei sollte im Hauptverzeichnis liegen und enthält Information
über die aktuelle Version.

Dateiliste files-<version>.text

Das Dateiverzeichnis enthält eine Beschreibung aller Dateien und ihrer
Bedeutung.

Fehlerliste error-codes.txt

Der Chartparser benutzt für seine internen Fehlermeldungen eine eigene
Numerierung. Die Fehlerliste für ChaPLin 3.2 ist in Anhang C abge-
druckt. Die Datei enthält ein Verzeichnis aller Fehlernummern und Feh-
lermeldungen und für jeden Fehler einen kurzen Hinweis auf Bedeutung
und typische Ursachen.

Anhang C

Fehlertabelle

ChaPLin erzeugt numerierte Fehlermeldungen durch Aufruf der Funktion
chp-error. Die Aufstellung enthält die Fehlermeldungen aller in diesem Be-
richt beschriebenen Teile des Parser und Hinweise auf Ursache und Lösungs-
möglichkeiten. Fehlermeldungen in eigenen Erweiterungen sollten in der Datei
doc/errors.txt dokumentiert werden.

00 Ladevorgang

01 Ladefunktion load-module nicht gefunden.

02 Grammatikdatei kann nicht vor dem Parser geladen werden.

03 Lexikondatei kann nicht vor dem Parser geladen werden.

04 Grammatiktyp kann nicht vor dem Parserkern geladen werden.

10 Initialisierung

11 Wert für den Parameter find im Top-Down-Modus unzulässig.

20 Lexicon
Die Fehler 27-29 werden von einem Patch zur Kompatibilität mit älteren
Lexika erzeugt.

21 Lexikoneinträge <item> sind inkonsistent.

22 Im Lexem <item> fehlt die Kategorie.

27 Probleme beim Zugriff auf die Kategorie.

28 Probleme beim Zugriff auf das Wort (Grundform).

29 Probleme beim Zugriff auf die ursprüngliche Wortform.

80

ANHANG C. FEHLERTABELLE 81

30 Chartzugriff

31 Undefinierter Kantentyp <edge-type> bei der Expansion des Makros
insert-edge . Zulässig sind :active, :inactive oder der Name
der Konstruktorfunktion eines vom Grammatiktyp definierten Les-
artkantentyps. Tritt meist beim Laden eines Grammatiktyps auf.

32 Unzulässige Knotennummer <number>. Die Knotennummer ist ent-
weder kein Integer oder liegt außerhalb des zulässigen Bereichs.

33 Unzulässige Kantennummer <number>. Die Kantennummer ist ent-
weder kein Integer oder liegt außerhalb des zulässigen Bereichs.

40 Ausgabegenerator
Die Fehler 41-43 entstehen durch Datenfehler in der Chart, 45-47 durch

fehlerhafte Spezifikationen.

41 chart-subtree <edge> ist keine Kante.

42 chart-subtree Terminalkante <edge> darf keine Ignore-Kante sein.
Der Ausgabegenerator kann ein Terminalsymbol nicht durch seine
Konstituenten ersetzen. Der Fehler kann auch für einen Struktur-
eintrag (:struct ...) auftreten.

43 Unzulässiger Inhalt <content> einer Terminalkante. Der Inhalt muß
mit :lex oder :struct beginnen.

45 Vom Grammatiktyp <type> erzeugte Ausgabespezifikation <spec> ist
undefiniert.

46 Fehler in der Baumspezifikation.

49 :alt-Baum kann nicht erzeugt werden.

50 Grammatik

51 Syntaxfehler in der Regel <rule>.
Regel entspricht nicht der Regelsyntax des Grammatiktyps.

52 Grammatiktyp <type-name> unbekannt.

53 Kein passender Grammatiktyp verfügbar.
Der Parser sucht nach einem Grammatiktyp zur Regelmenge. Der
beabsichtigte Typ ist nicht definiert oder die Grammatik ist fehler-
haft.

54 Unzulässiger Wert für den Parameter mode. Erlaubt sind :td für top-
down und :bu für bottom-up.

70 Grammatiktyp :cf

71 Kurzspezifikation <type> im :cf-Grammatiktyp nicht definiert.

ANHANG C. FEHLERTABELLE 82

80 Grammatiktyp :sf

Die Fehler 85-88 entstehen beim Aufbau der Semantikstruktur.

81 Kurzspezifikation <type> im :sf-Grammatiktyp nicht definiert.

82 Syntaxfehler in Regel <rule>.

85 Zugriff auf nicht vorhandene Kategorie in (&SEM cat).

86 Zugriff auf nicht vorhandenes Feature in (&ATTR fea).

87 Zugriff auf nicht vorhandenes Feature in (&ATTR (cat fea)).

88 Zugriff auf nicht vorhandene Kategorie in (&ATTR (cat fea)).

110 Utilities

111 Parserkern muß vor den Utilities geladen werden.

112 graphische Ausgabe in dieser Implementierung nicht möglich.

113 Die Baumform <tree> kann nicht angezeigt werden.

114 Unzulässige Knoten <vertex> für den Parameter :from

in display-chart .

117 Unzulässiger Kantentyp <type> in Funktion display-chart. Er-
laubt sind :all, :active, :inactive und :tree.

130 Zeilenscanner

131 Fehler im ATN-Interpreter: unbekanntes ATN Schüsselwort.

132 Fehler in der Netzbeschreibung: falsch plaziertes POP.

133 Netz in PUSH Anweisung unbekannt.

134 Keine weiteren Zeichen in der Eingabesequenz.

Anhang D

Inhaltverzeichnis des Codes

Die beiden wichtigsten Dateien von ChaPLin 3.2 sind der Parser und die Gram-
matiktypdefinition. In diesen beiden Dateien ist im Code eine Gliederung als
Suchhilfe angebracht. Die Teile 1-5 gehören zum Parserkern, Teil 6 zu den
Grammatiktypen. Zum schnelleren Überblick ist hier das Inhaltsverzeichnis
dieser Gliederung abgedruckt.

;;;; 1. basic defs

;;;; 1.1 package declaration

;;;; 1.2 module defs

;;;; 1.3 global parameters

;;;; 2. chart

;;;; 2.1 definitions

;;;; 2.2 interface functions

;;;; 3. parser

;;;; 3.1 interface functions

;;;; 3.2 fill chart with terminals

;;;; 3.3 parsing loop

;;;; 4. output generation

;;;; 4.1 main function

;;;; 4.2 form output from edges

;;;; 4.3 create tree from edge

;;;; 4.4 get success edges

;;;; 4.5 return parsed fragments

;;;; 4.6 expand edges to tree edges

;;;; 4.7 create alt trees

;;;; 5. interfaces

;;;; 5.1 grammar types

;;;; 5.2 grammars

;;;; 5.3 lexicon

;;;; 6. grammar types

;;;; 6.1 cf

;;;; 6.2 sf

83

Glossar

Ableitung (Derivation) Ergebnis einer oder mehrerer Regelanwendungen.

Aktivierung Bei der Aktivierung der Chart werden für Regeln, deren Anwen-
dung möglich erscheint, aktive Kanten in die Chart eingetragen.

Attribut Information, die die Syntaxanalyse nicht beeinflußt.

Chart ChaPLin repräsentiert die Zwischenschritte der Syntaxanalyse als Kan-
ten eines gerichteten Pseudographen [Harary 74], der Chart. Die Knoten
der Chart stehen für die Zwischenräume im Satz, die Kanten überspannen
also einen bestimmten Teil des Satzes.

Eingabeelement Eingabeelemente sind Wortformen, Zahlen oder Satzzeichen.
Der Scanner zerlegt eine Zeichenkette (String) in Eingabelemente. Im
Compilerbau entsprechen die Eingabeelemente den Tokens [Aho et al. 86].

Feature Information, die neben der Kategorie zur Steuerung der Syntaxana-
lyse herangezogen werden kann.

Grammatik Eine Menge von Ableitungsregeln [Aho et al. 86].

Grammatikformalismus Ein Grammatikformalismus definiert Form und Be-
deutung der Grammatikregeln.

Grammatiktyp Implementation eines Grammatikformalismus zur Verwen-
dung für ChaPLin.

Graph Ein Graph besteht aus Knoten, die durch Kanten verbunden sind (siehe
[Harary 74]). Sowohl die Chart als auch die verwendeten Baumstrukturen
werden hier als Graphen repräsentiert.

Grundform Die Grundform (auch Nennform) ist die unflektierte Form eines
Worts (z.B. Grundform “Haus” zur Wortform “Häuser”).

Grundregel Das von ChaPLin verwendete Ableitungsverfahren der Syntax-
analyse mit einer aktiven Chart.

Kategorie Die Kategorie ist die wichtigste Information bei der Syntaxanaly-
se (Grammatiksymbol). Bei Wörtern ist die Kategorie die Wortart, bei
Nichtterminalsymbolen benennt sie das grammatikalische Konstrukt.

84

ANHANG D. INHALTVERZEICHNIS DES CODES 85

Kantenverschmelzung Wenn mehrere Ableitungswege zum gleichen Gram-
matiksymbol führen, wird nur eine Kante angelegt.

Lesart Bei mehrdeutigen Grammatiken oder bei Mehrdeutigkeiten bei der le-
xikalischen Analyse der Eingabesequenz kann es mehrere Ableitungswege
für ein Symbol geben. Diese Ableitungswege heißen Lesarten.

Lexikon Das Lexikon bestimmt zu einer Wortform die Grundform und die
morpho-syntaktischen Merkmale.

Modus Es gibt zwei Parsemodi: Beim bottom-up-Parsen beginnt die Kon-
struktion des Syntaxbaums an den Blättern, beim top-down-Parsen an
der Wurzel [Aho et al. 86].

Natürliche Sprache Dieser Begriff wird für die Sprachen des Menschen im
Gegensatz zu formalen Sprachen oder Programmiersprachen benutzt.

Parser Programm, das entscheidet, ob der Eingabesatz in die Beschreibung der
Grammatik fällt und im Erfolgsfall dem Eingabesatz einen oder mehrere
Syntaxbäume zuordnet.

Regel Bestandteil der Grammatik.

Scanner Der Scanner zerlegt die zunächst als Zeichenkette vorliegende Einga-
be in Eingabeelemente.

Schlingen Kanten, bei denen Anfangs- und Endknoten gleich sind.

Semantik Bedeutung sprachlicher Ausdrücke [Aho et al. 86].

Spezifikation Einstellungen an ChaPLin werden mit Spezifikationen vorge-
nommen. Spezifikationen sind normalerweise Listen von Schlüsselwörtern
und zugeordneten Werten.

Startsymbol Zielkategorie der Grammatik. Die Syntaxanalyse ist erfolgreich,
wenn aus der Eingabesequenz ein (das) Startsymbol abgeleitet werden
kann.

Syntax Lehre von der Anordnung von Wörter zu Sätzen. Mögliche Anordnun-
gen werden i.A. durch ein System von Regeln (Grammatik) beschrieben.

Syntaxbaum (auch Parsebaum, Strukturbaum, Ableitungsbaum) Ergebnis
der Syntaxanalyse. Der Syntaxbaum beschreibt die syntaktische Struktur
eines Satzes.

Wortform (Vollform) Möglicherweise flektierte Form eines Wortes.

Index

Ableitung, 84
active-edge, 28
add-inactive-edge, 74
add-input-item, 31
Agenda, 9, 21, 28, 64
Aktivierung, 31, 43, 84

bottom-up, 11, 22
Re-, 58
top-down, 10

Allegro, 74
alt-report, 63
Analyse

lexikalische, 12
Phasen, 12, 17, 25
syntaktische, 12, 29, 43

ATN, 14, 67, 79, 82
atn, 69
Attribute, 13, 25, 29, 36, 39, 42, 48,

50, 53, 84
synthetisierte, 37

Aufwand, 9, 16, 29, 63
Ausgabe

Generierung, 12, 13, 15, 34, 59,
73, 81

Spezifikation, 16, 35, 59, 81

Baum
Spezifikation, 16, 37, 60, 81
Such-, 9
Syntax-, siehe Parsebaum

Benutzer, 3, 12
binary-extension, 22
bottom-up, siehe Modus,bottom-up
build-chart, 18, 55, 56
build-tree, 55, 56
build-tree, 16

categoryp, 69
Chart, 4, 17, 26, 64, 73, 81, 84

chart-analysis, 19, 61
chp-version, 23, 65
CLIM, 74
CLX, 74
conv-table, 66
create-vertex, 26

Dateien, 22, 78, 83
def-grammar-type, 42
defabbrev, 69
define-grammar, 44
defmod, 23
defnet, 67
describe-chart, 19, 64
display-agenda, 21, 64
display-chart, 20, 64, 82
display-edge, 21, 65
do-with-timeout, 65

edge, 27
edges, 26
Eingabeelement, 2, 5, 12, 14, 31, 55,

84
Eintrag

Lexikon-, 12, 31, 37, 45, 61, 76,
80

Struktur-, 18, 37, 61, 81
eoinp, 69
extend, 32

Features, 24, 30, 46, 82, 84
äquivalente, 33
flache, 41, 46, 77
Unifikation, 41, 46, 74

Fehlermeldungen, 79, 80
Filter, 28, 35, 37, 40, 42, 60
find, 58
find, 80
fragment-report, 60, 62
Fragmente, siehe Parsen,partiell

86

INDEX 87

:fu, 41
fundamental rule, siehe Grundregel

Garnet, 74
get-edge, 21, 26
get-vertex, 26
getabbrev, 69
grammar, 43, 56, 58
grammar, 43
grammar-type, 41
grammar-types, 41
Grammatik, 5, 43, 77, 84

Elemente, 7
kontextfrei, 33, 77
Laden, 44, 74, 81
mehrdeutig, 16, 30
mehrere, 18
PATR-II, 41

Grammatikformalismus, 24, 41, 84
Grammatiktyp, 24, 41, 59, 74, 83,

84
:cf, 46, 81
Optionen, 25, 33, 39
:sf, 46, 77, 82

Graph, 84
Grundbereich, 62
Grundform, 45, 84
Grundregel, 7, 32, 33, 42, 84

Heuristik, 9

inactive-edge, 27
insert-edge, 26, 81
Installation, 22

k-with-time, 66
Kanten, 26, 65, 81, 84

aktive, 4, 28
erfolgreiche, 35
ignore, 13, 36, 81
inaktive, 4, 27
Inhalt, 4, 27
Lesart-, 4, 9, 13, 15, 28, 36
Multi-, 4

allgemein, 20, 64
kategorieäquivalente, 20, 64

stillgelegte, 19, 61

Kantenverschmelzung, 7, 8, 13, 27,
29, 33, 34, 36, 50, 63, 72,
85

Kategorie, 5, 82, 84
indizierte, 28, 44, 49
Start-, 10, 17, 43, 56, 58, 80, 85
String-, 43, 46
wild card-, 43

Knoten, 26, 81, 84
Anfangs-, 4, 27
End-, 4, 27

Komponente, 63
triviale, 63

Konfiguration, 9, 22, 28

left-vertex, 26
Lesart, 33, 85
lex, 45
lexicon, 45, 56, 58
Lexikon, 5, 45, 73, 76, 80, 85
load-grammar, 44
load-module, 22
loop-parse-incremental, 57

mode, 58
Modus, 9, 32, 57, 58, 81, 85

bottom-up, 11, 58
top-down, 10, 80

monoton, 8
multiedge-report, 63

natürliche Sprache, 85
nlpkg, 65, 74
numfix, 50

output, 58

Package, 22, 65, 74, 83
parse, 15, 55, 57
parse-and-show-time, 57
parse-grammar, 56, 59
parse-incremental, 17, 57, 74
parse-line, 14, 55, 57
parse-line-and-display-tree,57
parse-line-and-show-time, 57
parse-next, 16, 55, 58
parse-rest, 18, 55, 58
parse-tree-report, 62

INDEX 88

Parsebaum, 1, 4, 85
Erzeugung, 37
innerer Knoten, 38
Nachbearbeitung, 35, 38, 40, 42,

61
Wurzel, 38

Parsen
inkrementell

wortweise, 16, 56, 58
zeichenweise, 17, 57, 74, 79

partiell, 11, 35, 36, 60, 62
Parser, 85
Parserkern, 24, 42, 79, 82, 83
Parsewald, 13, 15
parse item, siehe Grammatik,Elemente
Plattform, 22, 74, 78
Portabilität

Daten, 66
Programm, 22, 74

Quellcode, 78, 83

Regel, 43, 63, 82, 85
Kopf, 10
Listennotation, 42, 43, 46
Rumpf, 5
Zugriff, 33

rule, 42, 43
rule-length-report, 63

scan, 14, 55, 66
scan-line, 14, 55, 66
Scanner, 12, 14, 66, 79, 85
Schlingen, 4, 10, 31, 85
seek, 31
Semantik, 48, 52, 82, 85
sf-edge, 48
sf-rule, 48
size-report, 61
Speicherbedarf, 9
Spezifikation, 25, 85
Stack, 28
Startsymbol, siehe Kategorie,Start-
success-edges, 35
SUN, 73
Syntax, 85
Syntaxbaum, siehe Parsebaum

TI-Explorer, 74
Tiefensuche, 9
Timeout, 65
top-down, siehe Modus,top-down
tree-default, 59
tree-edge, 28, 42

Umlaute, 66
:uncomputed, 28
Untersuchung, 61

Datenstrukturen, 20, 64, 82
quantitative, 19, 61

Version, 23, 65, 72
vertex, 26
vertices, 26

with-time, 20, 66
Wortform, 45, 85

Zeitbedarf, 20, 66

Literaturverzeichnis

[Aho et al. 86] A. V. Aho, R. Sethi und J. D. Ullman. Compilers : principles,
techniques, and tools. Addison-Wesley, Reading, Mass., 1986. 796 S.

[Allen 87] J. Allen. Natural Language Understanding. Benjamin Cummings
Publishing Company Inc., 1987.

[Charniak et al. 87] E. Charniak, C. K. Riesbeck, D. V. MacDermott und J. R.
Meehan. Artificial intelligence programming. Erlbaum Associates, Hills-
dale, N. J. [u.a.], 2nd ed. edition, 1987. 533 S.

[GazdarMellish 89] G. Gazdar und C. Mellish. Natural Language Processing in
LISP:An Introduction in Syntactic Processing. Addison Wesley, 1989.

[Harary 74] F. Harary. Graphentheorie. R.Oldenbourg, 1974.

[Kay 80] M. Kay. Algorithm Schemata and Data Structures in Syntactic Pro-
cessing. XEROX Corporation CSL-80-12, 1980.

[King 83] M. E. King. Parsing Natural Language. Academic Press, 1983.

[Schmidt 92] P. Schmidt. Ein Chartparser für eine feature-orientierte Gramma-
tik. Studienarbeit Nr. 985, Institut für Informatik, Universität Stuttgart,
1992.

[Seiffert 87] R. Seiffert. Erarbeitung von Parsingstrategien für Unifikations-
grammatiken mit ID-LP-Regeln. Studienarbeit Nr. 591, Institut für Infor-
matik, Universität Stuttgart, 1987. 97 Bl.

[Seiffert 89] R. Seiffert. Chart-Parsing of Unification-Based Grammars with
ID/LP-Rules. LILOG Report 22, IBM Deutschland GmbH WT LILOG /
Dept 3504, P.O. Box 80 08 80, D-7000 Stuttgart 80, Germany, 1989.

[Steele 90] G. J. Steele. Common LISP: The Language. Digital Press, second
edition, 1990.

[ThompsonRitchie 84] H. Thompson und G. Ritchie. Implementing Natural
Language Parsers. In T. O’Shea und M. Eisenstadt (Hrsg.), Artificial
Intelligence, S. 245–300. Harper & Row, 1984.

[Varile 83] G. Varile. Charts: a Data Structure for Parsing. In M. King (Hrsg.),
Parsing Natural Language, S. 73–90. Academic Press, 1983.

89

