
Table of Contents

Partial Commutation and Traces

1. Introduction : 3
2. Free Partially Commutative Monoids : 4

2.1 First De�nitions and Basic Properties : 4
2.2 Projection Techniques and Levi's Lemma : : : : : : : : : : : : : : : : : : : 7
2.3 Normal Forms : 9
2.4 A Simple Algorithm to Compute Normal Forms : : : : : : : : : : : : : 11
2.5 M�obius Functions and Normal Forms : 11
2.6 Bibliographical Remarks : 16

3. Combinatorial Properties : 16
3.1 Equations : 16
3.2 Strong Homomorphisms and Codings : 19
3.3 Trace Codes : 22
3.4 Bibliographical Remarks : 23

4. Recognizable Trace Languages : 24
4.1 Basic Facts about Recognizable and Rational Sets : : : : : : : : : : : : 24
4.2 Recognizability and Rational Operations : 25
4.3 The Rank : 26
4.4 Recognizability and the Lexicographic Normal Form : : : : : : : : : : 29
4.5 The Star Problem and the Finite Power Property : : : : : : : : : : : : 30
4.6 An Algorithm to Compute Closures : 33
4.7 Bibliographical Remarks : 38

5. Rational Trace Languages : 38
5.1 Unambiguous Languages : 38
5.2 Decidability Results : 40
5.3 Bibliographical Remarks : 42

6. Dependence Graphs and Logic : 43
6.1 Dependence Graphs : 43
6.2 Traces and Logic : 46
6.3 Ehrenfeucht-Fra��ss�e-Games : 49
6.4 Bibliographical Remarks : 52

7. Asynchronous Automata : 52
7.1 Zielonka's Theorem : 52
7.2 Asynchronous Cellular Automata : 54

2 Table of Contents

7.3 Changing Concurrent-Read to Exclusive-Read : : : : : : : : : : : : : : : 54
7.4 Changing Exclusive-Write to Owner-Write : : : : : : : : : : : : : : : : : : 55
7.5 The Construction for Triangulated Dependence Alphabets : : : : 56
7.6 Bounded Time-Stamps in a Distributed System : : : : : : : : : : : : : : 58
7.7 Bibliographical Remarks : 62

8. In�nite Traces : 62
8.1 Real Traces : 62
8.2 Asynchronous B�uchi- and Muller Automata : : : : : : : : : : : : : : : : : 66
8.3 Complex Traces : 67
8.4 Topological Properties and the Domain of �-Traces : : : : : : : : : : : 69
8.5 Bibliographical Remarks and Further Reading : : : : : : : : : : : : : : : 72

References : 73

Partial Commutation and Traces

Volker Diekert1 and Yves M�etivier2

1 Institut f�ur Informatik, Universit�at Stuttgart
Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany

2 LaBRI, Universit�e Bordeaux I, ENSERB,
351 cours de la Lib�eration, F-33405 Talence, France

1. Introduction

Parallelism and concurrency are fundamental concepts in computer science.
Speci�cation and veri�cation of concurrent programs are of �rst importance.
It concerns our daily life whether software written for distributed systems
behaves correctly.

It is clear that a satisfactory notion of correctness has to be based on a rig-
orous mathematical model. Several formalisms have been proposed. Among
others there are Petri nets, Hoare's and Milner's CSP and CCS, event struc-
tures, and branching temporal logics. The mathematical analysis of these
models may become complicated, however. Based on the behavior of ele-
mentary net systems Mazurkiewicz introduced the concept of partial com-
mutation to the computer science community. The abstract description of a
concurrent process is then called a trace, being de�ned as a congruence class
of a word (sequence) modulo identities of the form ab = ba for some pairs of
letters.

The success of Mazurkiewicz' approach results from the fact that on one
hand partial commutation copes with some important phenomena in concur-
rency and on the other hand it is close to the classical theory of free monoids
describing sequential programs. In particular it is possible to transfer the
notion of �nite sequential state control to the notion of �nite asynchronous
state control. There is a satisfactory theory of recognizable languages relat-
ing �nite semigroups, rational operations, asynchronous automata, and logic.
This leads to decidability results and various e�ective operations.

The theory of partial commutation and of trace monoids has been devel-
oped both by its interpretation as a model for parallel computation and by
its mathematical interest in algebra, formal languages, and combinatorics.
Since the beginning in combinatorics by Cartier and Foata (1969) and the
formulation of trace theory by Mazurkiewicz (1977) the theory has grown in
breadth and depth. It led to signi�cant results with interesting applications.
The present contribution re
ects some important topics including basic prop-
erties and in�nite traces. Most of the results are from the monograph [34], but
we covered also some new material. Each section gives a short bibliographical
remark and leads to further references.

4 Volker Diekert and Yves M�etivier

Acknowledgments: This work has been partially supported by the ES-
PRIT Basic Research Action No. 6317 ASMICS II and the French-German
research program PROCOPE. We are indebted to Michael Bertol, Man-
fred Droste, Paul Gastin, Hendrik Jan Hoogeboom, Anca Muscholl, Holger
Petersen, and Wies law Zielonka. Without the help of Michael Bertol the
manuscript would not have been written in time. Last but not least, we
thank Professors Grzegorz Rozenberg and Arto Salomaa for including our
contribution in the present volume.

2. Free Partially Commutative Monoids

2.1 First De�nitions and Basic Properties

Let � be a �nite alphabet, its elements are called letters. We denote by ��

the set of all words over �. Formally, �� with the concatenation operation
forms the free monoid with the set of generators �, the empty word, denoted
by 1, plays the role of the unit element. For any word x of ��, jxj denotes the
length of x and jxja denotes its a-length, i.e., jxja is the number of occurrences
of a letter a in x. The notation alph(x) = fa 2 � j jxja 6= 0g is used for the
set of letters of � actually appearing in the word x.

Throughout we mean by I � � �� a symmetric and irre
exive relation
over the alphabet �, called the independence (or commutation) relation.
Intuitively, (a; b) 2 I means that a and b act on disjoint sets of resources.
As a consequence, the order in which they are performed does not matter,
ab = ba. They can also be performed in parallel or simultaneously.

For every letter a of �, we denote by I(a) the set of letters which commute
with a:

I(a) = fb 2 � j (a; b) 2 Ig:
The pair (�; I) is called the independence alphabet and can be conve-

niently represented by an undirected graph (also called the commutation

graph). The vertex set is �, edges are between independent letters.

Example 2.1. Let � = fa; b; c; dg and I = f(a; d); (d; a); (b; c); (c; b)g, then
the commutation graph is given in the picture below.

a

c

b

d

(�; I) =

The complement � � � n I of I is called the dependence relation D.
Intuitively, two letters a and b such that (a; b) =2 I are dependent and cannot
be executed simultaneously.

Partial Commutation and Traces 5

The pair (�;D) is called the dependence alphabet . Again, we identify
(�;D) with an undirected graph (the non-commutation graph). In the pic-
tures we omit always the self-loops. If we take the same example as above,
the dependence alphabet is given by the following non-commutation graph.

a

c

b

d

(�;D) =

For any letter a of �, D(a) denotes the set of letters which depend on a:

D(a) = fb 2 � j (a; b) =2 Ig:

Since I is irre
exive, we have a 2 D(a). We extend this notation for all A � �
by setting:

D(A) = fb 2 � j 9a 2 A : (a; b) 2 Dg:
The relation I induces an equivalence relation �I over ��. Two words x

and y are equivalent under �I , denoted by x �I y, if there exists a sequence
z1; z2; : : : ; zk of words such that x = z1, y = zk, and for all i, 1 � i < k, there
exist words z0i, z

00
i , and letters ai, bi satisfying:

zi = z0iaibiz
00
i ; zi+1 = z0ibiaiz

00
i ; and (ai; bi) 2 I:

Thus, two words are equivalent by �I if one can be obtained from the other
by successive transpositions of neighboring independent letters. It is easy to
verify that �I is the least congruence over �� such that ab �I ba for all
pairs (a; b) 2 I . The quotient of �� by the congruence �I is the free partially
commutative monoid induced by the relation I , it is denoted by M (�; I). The
elements of M (�; I), which are equivalence classes of words of �� under the
relation �I , are called traces . Consequently, M (�; I) is called trace monoid ,
too.

If I is empty, then M (�; I) is the free monoid ��; if any two di�erent
letters of � commute, then M (�; I) is the free commutative monoid denoted
by N� or simply by Nk where k = j�j. Other families of free partially com-
mutative monoids are the direct products of free monoids:

��1 ���2 � � � � ���n
and free products of free commutative monoids:

N
k1 � Nk2 � � � � � Nkn

For a word x of �� the equivalence class of x under �I is denoted by [x]I .
Thus, [x]I is the set of words which are equivalent to a given word x, hence

[x]I = fy 2 �� j y �I xg:

6 Volker Diekert and Yves M�etivier

For instance, if we consider I de�ned above, we have:

[baadcb]I = fbaadcb; baadbc; badacb; badabc; bdaabc; bdaacbg:

Since the relation �I is a congruence, the concatenation in M (�; I) is given
by [x]I [y]I = [xy]I for all x; y 2 ��. The class of the empty word is called
the empty trace, also denoted by 1. The de�nition of length, of a-length,
and of the alphabet is invariant under the commutation of letters, hence it
can be transferred to a trace from any representing word. We can write jtj,
jtja, and alph(t) for a trace t and a letter a. Following the same example
above with t = [baadcb]I we have jtj = 6, jtja = jtjb = 2, jtjc = jtjd = 1,
and alph(t) = fa; b; c; dg. A trace t (word x; resp.) is called connected, if
alph(t) (alph(x), resp.) induces a connected subgraph of (�;D). The trace
t = [baadcb]I above is connected, but [ad]I is not.

Two traces u and v of M (�; I) are said to be independent and this fact
is denoted by uIv, if

alph(u)� alph(v) � I:
Independence of traces is equivalent to the following condition:

uv = vu and alph(u) \ alph(v) = ;:

Trace monoids are placed between free and free commutative monoids.
There are two canonical homomorphisms:

' : �� �! M (�; I)

x 7�! [x]I

and

� : M (�; I) �! N
�

t 7�! (jtja)a2� :

The image �(t) 2 N� is called the Parikh-image of t 2 M (�; I). The compo-
sition

��
'�! M (�; I)

��! N
�

is the usual Parikh-mapping from words to vectors.
For sake of simplicity we sometimes use words to denote the corresponding

trace. Thus, if x 2 �� and the context M (�; I) is clear then we may write
x 2 M (�; I) to denote in fact the class [x]I . Following the same convention,
we view � as a subset of M (�; I), too. If x is a word or a trace then x� is
either the set of words fxn j n � 0g or the set of traces f[xn]I j n � 0g.

A trace language is any subset of M (�; I). If X � ��, then the trace
language '(X) � M (�; I) is also denoted by [X]. This allows to write

[X] = f[x]I j x 2 Xg:

Partial Commutation and Traces 7

For any trace language T � M (�; I), the language '�1(T) consists of all
representing words. The operation X 7! '�1([X]) can be viewed as a closure
operation on languages. Therefore we prefer to write X instead of '�1([X])
or '�1('(X)). A subset X of �� is said to be I-closed (or simply closed, if
there is no ambiguity), if X = X .

For example, let I be de�ned as in Ex. 2.1, if X = (ad)� then

X = fx 2 fa; dg� j jxja = jxjdg:

2.2 Projection Techniques and Levi's Lemma

Let A � � be a subset and IA = (A�A)\I be the induced independence re-
lation. We may de�ne a canonical homomorphism �A : M (�; I) ! M (A; IA)
by erasing all letters from a trace which do not belong to A, hence for a 2 �
we have:

�A(a) = a, if a 2 A and �A(a) = 1 otherwise:

Of particular interest is IA = ;. Then A is a clique of the dependence alphabet
and �A a projection onto the free monoid A�. This is in particular the case
when A = fa; bg and (a; b) 2 D. (We shall write �a;b instead of �fa;bg.)
The following proposition is called Projection Lemma. It states that every
trace has a unique representation as a tuple of words. For (�; I) �xed this
canonical representation is computable in linear time from any word de�ning
the congruence class of a trace.

Proposition 2.1. Let u and v be two traces of M (�; I), then we have u = v

if and only if

�a;b(u) = �a;b(v) for all (a; b) 2 D:

Proof. Clearly, the condition is necessary. Conversely, we prove by induction
on the length of u (and of v). If u or v is the empty trace we have nothing to
do. Let us suppose u = au0 and v = cv0; where a and c are letters of � and
where u0 and v0 are traces of M (�; I).

We assume �rst a 6= c. Since juja = jvja, we have jv0ja � 1 and v0 = t0at00

with jt0ja = 0. If (a; b) 2 D, then �a;b(u) = �a;b(v) and hence (ct0)Ia. Finally
v = ct0at00 = act0t00. Thus, we have reduced to the case a = c, or u = au0

and v = av00 for some traces u0; v00. The inductive hypothesis yields u0 = v00,
hence u = v.

Since direct products of free monoids are cancellative, we deduce the same
property for trace monoids.

Corollary 2.1. The monoid M (�; I) is cancellative, i.e., the equation uxv =
uyv implies x = y for all u; v; x; y 2 M (�; I).

Another corollary shows the following version of an embedding theorem.

8 Volker Diekert and Yves M�etivier

Corollary 2.2. Let (�;D) =
kS
i=1

(Ai; Di) be a union of subalphabets with

Ii = (Ai � Ai) nDi, M i = M (Ai ; Ii), and �i : M (�; I) ! M i the canonical

homomorphism for 1 � i � k. Then we obtain a canonical injective homo-

morphism
M (�; I) �! M 1 � � � � � M k

t 7�! (�1(t); : : : ; �k(t)):

The following proposition is called Levi's Lemma. It is one of the most
important tools in trace theory.

Proposition 2.2. Let t, u, v, and w be traces of M (�; I). Then the following

assertions are equivalent.

i) tu = vw

ii) There exist p; q; r; s 2 M (�; I) such that

t = pr; u = sq; v = ps; w = rq with alph(r) � alph(s) � I.

Proof. Clearly, ii) implies i). Conversely, we use an induction on the length
of t. It t is the empty trace then the property is true with p = r = 1; q = w

and s = v. Therefore we may assume that t = at0 for some a 2 �.

{ If jvja = 0 then necessarily aIv and w = aw0. As at0u = vaw0 and aIv we
have t0u = vw0. Now applying the inductive hypothesis we �nd p; q; r0; s 2
M (�; I) such that

t0 = pr0; u = sq; v = ps; w0 = r0q and r0Is:

Let r = ar0; as aIv, we also have aIp and aIs. Hence

t = at0 = apr0 = par0 = pr

with rIs; and the result follows.
{ If jvja > 0, then v = av0. In this case we apply the inductive hypothesis

with t0u = v0w. We �nd p0; q; r; s such that t0 = p0r; u = sq; v = p0s; w = rq

and rIs. The desired formula is obtained considering t = at0 and p = ap0.

From this proposition, using an induction, we obtain the following more
general form of Levi's Lemma:

Corollary 2.3. Let u; v; t1; : : : ; tn 2 M (�; I) be traces. Then the following

assertions are equivalent.

i) uv = t1 � � � tn,
ii) There exist p1; : : : ; pn; q1; : : : ; qn 2 M (�; I) such that u = p1p2 � � � pn;

v = q1 � � � qn with piqi = ti and qiI(pi+1 : : : pn) for all 1 � i < n.

Together with the existence of a positive weight, Levi's Lemma character-
izes free partially commutative monoids. By a positive weight we mean any
homomorphism
 : M ! N such that
�1(0) = f1g. For trace monoids the
length-function is a positive weight.

Partial Commutation and Traces 9

Proposition 2.3. A monoid M with a positive weight is isomorphic to a free

partially commutative monoid if and only if for all x; y; z; t 2M the equation

xy = zt implies the existence of r; u; v; s 2 M such that x = ru, y = vs,

z = rv, t = us, and uv = vu.

Proof. We need a proof only for the if-part.
Let � = (M n f1g) n (M n f1g)2. A straightforward veri�cation shows that
� generates M and that it is contained in any set generating M : it is the
minimal generating set of M . We de�ne the independence relation IM on �

by (x; y) 2 IM , if yx = xy in M .
Let ' be the canonical surjective homomorphism from �� onto M ; it

induces a surjective homomorphism ' : M (�; IM) ! M . We prove by in-
duction on the weight that ' is injective. Let t0; t00 2 M (�; IM) such that
'(t0) = '(t00). Using induction, we assume that every proper factor of t0 has
exactly one inverse image. If t0 2 � [f1g then t0 = t00 since '�1(x) = fxg
for all x 2 � [f1g. If t0 =2 � [f1g then t0 = xy; t00 = zt with x; z 2 � and
y 6= 1; t 6= 1. Since '(x)'(y) = '(z)'(t) and ' is surjective, the hypothesis
about M implies that

'(x) = '(r)'(u); '(y) = '(v)'(s); '(z) = '(r)'(v); '(t) = '(u)'(s)

and '(uv) = '(vu);

where r; u; v; s are some traces of M (�; IM). Since '(x), '(y), '(z), '(t) are
proper factors of '(t0), we have

x = ru; y = vs; z = rv; and t = us:

{ If r 6= 1 or s 6= 1, then '(uv) is a proper factor of '(t0); it follows uv = vu

in M (�; IM). Hence t0 = ruvs = rvus = t00.
{ If r = s = 1; then u = x 2 � and v = z 2 �; thus, u; v 2 � are independent

elements and t0 = uv = vu = t00 are the same trace by de�nition of IM .

2.3 Normal Forms

Two main normal forms are de�ned in a free partially commutative monoid,
the lexicographic normal form (studied �rst by Anisimov and Knuth [3]) and
the Foata normal form. We assume that the alphabet � is totally ordered,
and we consider the corresponding lexicographic ordering < on ��. Let X
be a set of words, the unique minimal element of X with respect to the lexi-
cographic ordering (if it exists) is denoted by Min(X). A word x is said to
be in the lexicographic normal form if it is minimal among the set of words
which are equivalent to x; i.e.,

x = Min([x]):

As the lexicographic ordering is a total order and [x] is �nite, each trace has
a unique minimal representative.

Let I be the independence relation of Ex. 2.1 above, assuming that a <
b < c < d; then the word baadbc is in lexicographic normal form.

10 Volker Diekert and Yves M�etivier

Proposition 2.4. A word x is the lexicographic normal form of a trace if

and only if for all factorizations x = ybuaz, where y; u; z 2 ��; (a; b) 2 I;
and a < b, there exists a letter of u which does not commute with a.

Proof. If x is minimal then, clearly, it satis�es the condition of the statement.
Conversely, suppose there is a word w equivalent to x such that w < x;

then x = x0bx00 and w = x0az0 with a < b. The words x and w are equivalent,
thus aIb. Since jxja = jwja we have x00 = uav with juja = 0. Now from
the equivalence between x and w we deduce that aIu. Therefore x does not
satisfy the condition of the proposition.

From this we deduce immediately that the set LexNF of words in lexi-
cographic normal form is a regular language; indeed it is equal to the following
(star-free) set

LexNF = �� n
[

(a;b)2I;a<b

��bI(a)�a��:

A word x of �� is in the Foata normal form, if it is the empty word or if
there exist an integer n > 0 and non-empty words xi (1 � i � n) such that

i) x = x1 � � �xn;
ii) for each i; the word xi is a product of pairwise independent letters and

xi is minimal with respect to the lexicographic ordering,
iii) For each 1 � i < n and for each letter a of xi+1 there exists a letter b of

xi such that (a; b) 2 D.

If we consider the factorization of Foata given above, each xi is called a step.
Let I be de�ned by the �rst picture, the Foata normal form of baadcb is
(b)(ad)(a)(bc).

Proposition 2.5. Every trace has a unique Foata normal form.

Proof. Let x be a word of ��. We prove the existence of a normal form by
induction on the length of x. The result is trivial if x = 1. Let x = x0a with
a 2 �; let x01x

0
2 � � �x0n be a decomposition in steps for x0. If aIx0 then let

i = 0, else let i be the integer such that x0i is the right-most step containing
a letter b such that (a; b) 2 D.

Let x00 be the word obtained inserting a in x0i+1 with respect to the lexi-
cographic ordering. The decomposition x01x

0
2 � � �x0ix00x0i+2 � � �x0n is a normal

form for x.
We prove the uniqueness by contradiction. Assume that there exists a

word x with two di�erent normal forms. We choose x with minimal length,
let x01x

0
2 � � �x0n and x001x

00
2 � � �x00p be two step decompositions of x. As x has

minimal length and trace monoids are cancellative, Cor. 2.1, necessarily
x01 and x001 are di�erent: x01 = yay0 and x001 = yby00 with a 6= b. Thus,
x01x
0
2 � � �x0n = yay0x02 � � �x0n and x001x

00
2 � � �x00p = yby00x002 � � �x00p . If b =2 alph(y0) we

have x02 � � �x0n = z0bz00 with jz0jb = 0. As yay0z0bz00 � yby00x002 � � �x00p necessar-
ily bI(ay0z0) by Prop. 2.1. This yields a contradiction to the third condition

Partial Commutation and Traces 11

of the de�nition of a Foata normal form; thus b 2 alph(y0) and by symmetry
a 2 alph(y00). Using once more the de�nition of the normal form, we have
a < b and b < a. This yields the �nal contradiction and the result.

2.4 A Simple Algorithm to Compute Normal Forms

Let us describe a simple method which enables to compute normal forms.
Let M (�; I) be a free partially commutative monoid, we use a stack for each
letter of the alphabet �. Let x be a word of ��; we scan x from right to left;
when processing a letter a it is pushed on its stack and a marker is pushed
on the stack of all the letters b (b 6= a) which do not commute with a.

When all of the word has been processed we can compute either the lexi-
cographic normal form or the Foata normal form.

{ To get the lexicographic normal form: it su�ces to take among the letters
being on the top of some stack that letter a being minimal with respect
to the given lexicographic ordering. We pop a marker on each stack corre-
sponding to a letter b (b 6= a) which does not commute with a. We repeat
this loop until all stacks are empty.

{ To get the Foata normal form we take within a loop the set formed by
letters being on the top of stacks; arranging the letters in the lexicographic
order yields a step. As previously we pop the corresponding markers. Again
this loop is repeated until all stacks are empty.

For example, with (�; I) as in Ex. 2.1 and the word badacb we get the stacks
given below. The lexicographic normal form is baadbc, and the Foata normal
form is (b)(ad)(a)(bc).

a

�

�

a

a

�

b

�

�

�

b

b

c

�

�

�

c

�

�

d

�

d

2.5 M�obius Functions and Normal Forms

This section presents the relation between liftings of M�obius functions and
normal forms for trace monoids. It will not be used in the sequel. A reader
not being familiar with the basic notions might skip this section. It is worth
mentioning however that the study of the M�obius function was really at the
beginning of trace theory in combinatorics. In particular, Thm. 2.1 below is
from the original Lecture Notes [13] by Cartier and Foata.

12 Volker Diekert and Yves M�etivier

Let M = M (�; I) and ' : �� �! M the canonical homomorphism. A set
of normal forms (or a cross-section) is a subset S � �� such that ' induces
a bijection between S and M . For example, LexNF is a set of normal forms.
By �S we denote the characteristic function of S:

�S(w) = 1; if w 2 S and �S(w) = 0 otherwise.

We view �S as a function from �� to Z. Functions from �� (from M resp.)
to Z are called formal power series . The set of all power series is denoted by
Zhh��ii (by ZhhM ii resp.). A convenient notation of power series is

f =
X
w

f(w)w:

The set of power series is a ring by the usual addition and the non-
commutative Cauchy-product.

(f + g)(w) = f(w) + g(w)

(f � g)(w) =
X
uv=w

f(u)g(v)

The unit of this ring is 1 = �f1g, which �ts perfectly to the notation of
power series above. (More general, identifying w 2 M with �fwg the notation
above becomes a true identity on power series.) If f(1) 2 f�1;+1g, then
there exists a unique power series f�1 such that f � f�1 = f�1 � f = 1, it is
called the formal inverse of f . Clearly, (f�1)�1 = f .

There is a canonical ring homomorphism from Zhh��ii onto ZhhM ii, de-
noted (by abuse of language) again by '. We have ('(f))(t) =

P
'(w)=t f(w)

for all f 2 Zhh��ii and t 2 M . Observe that S � �� is a set of normal forms if
and only if '(�S) = �M . The function �M : M �! Z is the constant function
with value 1. An important combinatorial property of �nitely generated free
partially commutative monoids is that the formal inverse (�M)�1 2 ZhhM ii
is a polynomial, i.e., only �nitely many values are non-zero.

De�nition 2.1. Denote by F = fF � � j (a; b) 2 I for all a; b 2 F; a 6= bg
the set of independence cliques. For each F 2 F let [F] 2 M be the trace [F] =Q
a2F a. (The product is well-de�ned, since the elements of F commute.) The

clique polynomial of M is de�ned as the formal power series

�M =
X
F2F

(�1)jF j[F]:

Theorem 2.1. The clique polynomial �M is the M�obius function of M (�; I),
i.e., �M is the formal inverse of the constant function with value 1:

�M = (�M)�1:

Partial Commutation and Traces 13

Proof. We have to show (�M � �M)(t) = 1, if t = 1 and (�M � �M)(t) = 0
otherwise. For t 2 M let min(t) be the set of minimal elements, i.e., min(t) =
fa 2 � j t = as for some s 2 M g.

Clearly, min(t) 2 F and we have

(�M � �M)(t) =
X

t=[F]�s

(�1)jF j:

Since M is left cancellative we can write

(�M � �M)(t) =
X

F�min(t)

(�1)jF j:

Indeed, if t = [F] � s, then F � min(t) and s is uniquely de�ned by F .
Conversely, if F � min(t), then F 2 F and there exists some unique s 2 M

such that t = [F] � s. Therefore the claim follows (with n = jmin(t)j) from
the well-known identity

X
F�min(t)

(�1)jF j =
X
k

�
n

k

�
(�1)k =

�
1 if n = 0;
0 otherwise.

Remark 2.1. For in�nitely generated free partially commutative monoids
Thm. 2.1 holds as well. The only di�erence is that �M becomes a formal
power series with in�nitely many non-zero coe�cients. The classical M�obius
inversion formula is now a corollary. Let N0 = fn 2 N j n > 0g be the mul-
tiplicative monoid of positive integers. It is a commutative monoid, freely
generated by the primes. The M�obius function from elementary number the-
ory is

� : N0 �! Z; �(n) =

�
(�1)k if n is a product of k distinct primes, k � 0
0 otherwise.

Thus, � is the M�obius function of the monoid N
0 . Let f; g : N0 ! Z be two

functions. M�obius inversion states the equivalence:

8n : g(n) =
X
djn

f(d) () 8n : f(n) =
X
djn

�(d)g(
n

d
):

This is a direct consequence of Thm. 2.1 in the special case of the commutative
monoid N0 , since the equivalence states g = f � �N0 () f = �N0 � g:

De�nition 2.2. A lifting of the M�obius function �M is a polynomial � 2
Zhh��ii such that �rst '(�) = �M and second ' induces a bijection between

the two sets fwF 2 �� j �(wF) 6= 0g and f[F] 2 M j F 2 Fg. It is called an

unambiguous lifting if, in addition, ��1(w) � 0 for all w 2 ��.

Remark 2.2. If � 2 Zhh��ii is an unambiguous lifting of �M then we can
write � =

P
(�1)jwF jwF .

14 Volker Diekert and Yves M�etivier

The following corollary is a direct consequence of Thm. 2.1 and of the
de�nition of an unambiguous lifting.

Corollary 2.4. If � 2 Zhh��ii is an unambiguous lifting of �M , then the

formal inverse ��1 is the characteristic function over a set of normal forms.

Another way to obtain a set of normal forms is by complete rewriting
systems. Let us recall some basic notions and facts.

A semi-Thue system is a set of rules R � �� � ��. It de�nes a one-
step reduction =)

R
by ulv=)

R
urv for u; v 2 ��; (l; r) 2 R. By

�
=)
R

(and
�()
R

,

resp.) we denote the re
exive and transitive closure (re
exive, symmetric
and transitive closure resp.) of =)

R
. By ��=R we mean the quotient monoid

��=
�()
R

.

Example 2.2. For an independence relation I � ��� and a partial order <
of � let

S(I) = f(ab; ba) j (a; b) 2 Ig;
S(I;<) = f(ba; ab) j (a; b) 2 I and a < bg:

Then we have ��=S(I) = M (�; I) and if for all (a; b) 2 I either a < b or
b < a, then ��=S(I;<) = M (�; I).

{ A semi-Thue system R is called Noetherian, if there is no in�nite chain
w1=)

R
w2=)

R
� � �,

{ it is called con
uent , if for all u
�(=
R
w
�

=)
R
v, there exists some z 2 �� such

that u
�

=)
R
z
�(=
R
v.

{ Con
uence of Noetherian systems is equivalent with local con
uence, i.e.,
for all u(=

R
w=)

R
v there exists some z 2 �� such that u

�
=)
R
z
�(=
R
v.

{ A system being both Noetherian and (locally) con
uent is called complete.

{ For a complete system R, the set of irreducible words

Irr(R) = fw 2 �� j6 9v : (w=)
R
v)g

is in canonical bijection with the quotient monoid ��=R. Hence, Irr(R) is
a set of normal forms for the monoid ��=R.

De�nition 2.3. Let (�; I) be an independence alphabet. A transitive orien-
tation of I is a partial order < of � such that �rst I+ = f(a; b) 2 I j a < bg
is a transitive relation and second, it holds either a < b or b < a for all

(a; b) 2 I.

Partial Commutation and Traces 15

Lemma 2.1. i) Let < be a transitive orientation of I and the lexicograph-

ical order of �� be de�ned by some linear extension of <. Then S(I;<)
is complete and the set of irreducible words is the set of lexicographic

normal forms, Irr(S(I;<)) = LexNF.

ii) Let R � �� � �� be any �nite complete semi-Thue system such that

��=R = M (�; I). Then there exists a transitive orientation < such that

S(I;<) � R. In particular, by i) we have Irr(R) = LexNF.

Proof. i): By the characterization of lexicographic normal forms, c.f. Prop. 2.4,
the following (in�nite (!)) system is easily seen to be complete:

R = f(bua; abu) j a < b and aI(bu)g:
Of course S(I;<) � R and Irr(R) = LexNF. Since < is a transitive orienta-

tion, one can show that (bua; abu) 2 R implies bua
�

=)
S(I;<)

z for some z with

abu
�

=)
R
z. Since R is Noetherian, we have

�
=)
R

=
�

=)
S(I;<)

and i) follows.

ii): Consider the relation < satisfying a < b () (ba; ab) 2 R. The
relation < is asymmetric and irre
exive and it holds a < b or b < a for all
(a; b) 2 I . Moreover, an easy re
ection shows a�b� � Irr(R) for all a < b.
Consider a < b < c and cnbnan for n � 0. Then

bncnan
�(=
R
cnbnan

�
=)
R
cnanbn

Since R is �nite and complete, we have cnan =2 Irr(R) for n large enough.
Hence, (a; c) 2 I but we do not have c < a. Therefore a < c, and < is
transitive. Since < is asymmetric, the relation is a partial order, and it is a
transitive orientation of I . The assertion follows.

There is a surprising relation between unambiguous liftings of M�obius
functions, �nite complete semi-Thue systems, and transitive orientations of
I . We can state the following theorem.

Theorem 2.2. Let (�; I) be an independence alphabet M (�; I). Then the

following assertions are equivalent.

i) There exists an unambiguous lifting of the M�obius function �M .

ii) There exists a �nite complete semi-Thue system R such that ��=R = M .

iii) There exists a transitive orientation of I.

In fact, Thm. 2.2 is a corollary of Prop. 2.1 and the following more precise
theorem.

Theorem 2.3. i) Let � 2 Zhh��ii be an unambiguous lifting. For (a; b) 2
I de�ne a < b by �(ba) = 1. Then < is a transitive orientation, S(I;<)
is complete, and we have ��1 = �Irr(S(I;<)).

ii) Let < be a transitive orientation of I. Then there exists a unique un-

ambiguous lifting � such that �(ba) = 1 for all a < b; (a; b) 2 I. This

function � is characterized by � = (�Irr(S(I;<))
�1.

16 Volker Diekert and Yves M�etivier

2.6 Bibliographical Remarks

The theory of free partially commutative monoids (trace theory) has its ori-
gins in combinatorics. The existence of the Foata normal form and the char-
acterization of the M�obius function as the polynomial over the independence
cliques is from [13]. In computer science trace theory became popular mainly
by the work of Mazurkiewicz, see [69, 70]. Early ideas can also be found
in the paper by Keller (1973), where the Projection Lemma is (implicitly)
stated in [64, Lem. 2.5]. The Projection Lemma in the more general context
of semi-commutations is due to Clerbout [15]. Levi's Lemma and the Projec-
tion Lemma, as stated here, can be found in a paper of Cori and Perrin [21].
Prop. 2.3 has been shown by Duboc [40]. The characterization of lexicogra-
phic normal forms, Prop. 2.4, is due to Anisimov and Knuth [3]. The simple
algorithm to compute normal forms has been proposed by Perrin, see [84].

The characterization, when lexicographic normal forms are the irreducible
words of some �nite complete semi-Thue system, is from M�etivier and
Ochma�nski [75] and Otto [82]. The bridge to unambiguous lifting of the
M�obius functions is from Diekert [23]. A generalization of Thms. 2.2 and
2.3 has been conjectured in [24] and later been shown in [26].

3. Combinatorial Properties

3.1 Equations

Let M be any monoid. Two elements x; y 2 M are called conjugated , if
xz = zy for some z 2M . They are called transposed , if x = uv and y = vu for
some u; v 2 M . Clearly, transposed elements are conjugated, and conjugacy
is transitive. In free commutative monoids conjugacy is the identity relation.
In free monoids conjugated elements are transposed. Moreover, if x = uv and
y = vu, then u; v 2 r� for some word r. These results generalize immediately
to direct products of free monoids. (The word r has however to be replaced by
a tuple of pairwise independent words (r1; : : : ; rk) such that u; v 2 r�1 � � � r�k .)

For trace monoids where the dependence relation D is not transitive, the
situation is di�erent. Let (�;D) = a � b � c. Then the traces abc and cba

are not transposed, but they are conjugated: (abc)(aba) = (aba)(cba), since
ac = ca. Note that abc and bca = bac are transposed, as well as bac and cba.
Thus, the conjugation of abc and cba has been realized by two transpositions.
This is a general fact: In trace monoids conjugacy is always equal to the
equivalence relation generated by transposition.

Proposition 3.1. Let x; y; z 2 M (�; I) be traces. Then we have xz = zy if

and only if there are traces z1; z2; u1; : : : ; uk, k � 0, satisfying the following

conditions

i) x = u1 � � �uk, y = uk � � �u1,

Partial Commutation and Traces 17

ii) uiIuj for 1 � i < j � 1 � k � 1,
iii) z1 = (u1 � � �uk�1) � � � (u1u2)u1,
iv) z = z1z2 with xIz2.

Proof. Using the Projection Lemma, Prop. 2.1, an easy re
ection shows that
the conditions imply xz = zy. For the converse let xz = zy. By Levi's Lemma,
Prop. 2.2, we can write x = x0u, z = z0y0 = x0z0, and y = uy0 with uIz0. If
x0 = 1 then we are done with x = y = u and z = z0. If x0 6= 1, then jz0j < jzj
and we can use induction. Hence we may assume x0 = u1 � � �uk, y0 = uk � � �u1,
uiIuj for 1 � i < j�1 � k�1, z01 = (u1 � � �uk�1) � � � (u1u2)(u1) and z0 = z01z2
with x0Iz2. Putting uk+1 = u and z1 = x0z01 we obtain the result, since uIz2.

The diameter of a dependence alphabet (�;D) is the maximum over the
lengths of the shortest paths connecting letters from �; e.g., if M (�; I) is
commutative, then the diameter is zero, if it is free and j�j � 2, then it is
one. For (�;D) = a� b� c the diameter is two. Observe that some of the ui
in Prop. 3.1 may be empty, this allows to regroup them. One can derive the
following statement.

Corollary 3.1. Let (�;D) be a dependence alphabet of diameter d. Then

traces x; y 2 M (�; I) are conjugated if and only if they can transformed into

each other by at most d transpositions.

A basic problem is to determine the solutions of the equation xy = yx

in trace monoids. As one might hope, the equation xy = yx holds if and
only if there are pairwise independent and connected traces t1; : : : ; tk such
that x; y 2 t�1 � � � t�k. This will be seen from a more general approach (making
proofs thereby simpler).

Consider X = fx; yg with x 6= y as an alphabet of two unknowns. A
(non-trivial) equation in two unknowns e = f is a pair of (distinct) words
e; f 2 X�. A solution of e = f is a homomorphism � : X� ! M (�; I) such
that �(e) = �(f). If a solution � is de�ned by �(x) = u and �(y) = v, we
also say that (u; v) is a solution for e = f , or more conveniently we write that
x = u and y = v. A solution (u; v) is called cyclic, if u; v 2 t� for some trace
t.

Lemma 3.1. Let x = u, y = v with u; v 2 M (�; I) be a solution of a non-

trivial equation e = f in unknowns fx; yg. The solution is cyclic, if one of

the following conditions is satis�ed:

i) M (�; I) is free, i.e., I = ;.
ii) ��(u) = ��(v) for some rational numbers �; � > 0, where �(u), �(v)

denote the Parikh-images of u and v in N� .

Proof. Assume by contradiction that the assertion would be wrong. Let (u; v)
be a pair where juj+ jvj is minimal under the condition that (u; v) is a non-
cyclic solution for some non-trivial equation e = f satisfying i) or ii). Clearly,

18 Volker Diekert and Yves M�etivier

by cancellation and symmetry we may assume that e begins with x, f begins
with y, and juj � jvj. By Levi's Lemma we can write u = pw0 and v = pw

with wIw0. If I = ;, then w0 = 1. However, the same is true for ii), because
��(u) = ��(v) with �; � > 0 and juj � jvj imply juja � jvja for all a 2 �.
Hence we have v = uw in both cases. Moreover, we may assume u 6= 1 and
w 6= 1. Now replace the unknown y by xz. This yields a new non-trivial
equation e0 = f 0 in the set of unknowns fx; zg. Clearly (u;w) is a solution
of e0 = f 0 and we have juj + jwj < juj + jvj. If I = ; then (u;w) is a cyclic
solution by minimality of juj + jvj. If ��(u) = ��(v), then w 6= 1 implies
� > �. Hence ��(u) = �(�(u) + �(w)) implies (� � �)�(u) = ��(w) with
(���); � > 0. Again, by minimality of juj+ jvj, we �nd that (u;w) is a cyclic
solution. Thus, in both cases u;w 2 t� for some t, hence u; v 2 t� being a
contradiction.

Remark 3.1. An equation e = f is called unbalanced, if the number of oc-
currences of x (or of y) in the left-hand side of the equation di�ers from
that of the right-hand side. Of course, if (u; v) is a solution of an unbalanced
equation e = f , then ��(u) = ��(v) with �; � > 0. In fact we may take
� = j(jejx � jf jx)j and � = j(jf jy � jejy)j.

The lemma above yields therefore a special case:

Proposition 3.2. Every solution in trace monoids of an unbalanced equation

in two unknowns is cyclic.

Lemma 3.2. Let x = u, y = v be a solution of a non-trivial equation in two

unknowns in a trace monoid. Write u = u1 � � �um, v = v1 � � � vn such that

ui; vj are connected and uiIuj ; viIvj for all i 6= j. Then for all (i; j) with

1 � i � m and 1 � j � n we have either alph(ui) = alph(vj) or uiIvj .

Proof. Let a 2 alph(u), b 2 alph(v) with (a; b) 2 D. Projection to fa; bg� and
applying i) of Lem. 3.1 yields fa; bg � alph(u)\ alph(v). The lemma follows.

Proposition 3.3. Let x = u, y = v be a solution of a non-trivial equation in

two unknowns in a trace monoid. Then there are pairwise independent traces

t1; : : : ; tk such that u; v 2 t�1 � � � t�k.

Proof. By Lem. 3.2 we are reduced to the case where alph(u) = alph(v)
and u is connected. Let a; b 2 alph(u), (a; b) 2 D. Choose �; � > 0 such
that �juja = �jvja. By Lem. 3.1 it is enough to show that �jujb = �jvjb. By
projection to fa; bg� and i) of the same lemma we �nd integers ta; tb > 0 such
that juja = mta, jvja = nta, jujb = mtb, and jvjb = ntb. The above implies
�m = �n and this in turn �jujb = �jvjb.

A connected trace r 2 M (�; I) is called a primitive root , if r = sn implies
n = 1. From Prop. 3.3 and Lem. 3.2 we may derive the following corollaries:

Partial Commutation and Traces 19

Corollary 3.2. Every non-empty connected trace is the power of a unique

primitive root. Moreover, if uv = vu 2 M (�; I), u 6= 1, and uv is connected,

then u; v 2 r� for the primitive root r of u.

Corollary 3.3. Let u1; : : : ; uk 2 M (�; I) be pairwise commuting traces, i.e.,

uiuj = ujui for all i; j. Then there are pairwise independent and connected

traces t1; : : : ; tm such that ui 2 t�1 � � � t�m for all 1 � i � k.

The following consequence will be used in the next section.

Corollary 3.4. Let h : Nk ! M (�; I) be an injective homomorphism. Then

� contains at least k pairwise independent letters.

Proof. Let ui be the image under h of the i-th unit-vector, 1 � i � k.
According to Cor. 3.3 write ui = t

ni;1
1 � � � tni;mm . The matrix (ni;j)1�i�k;1�j�m

has rank at least k. Hence m � k. It is enough to pick one letter from each
alph(ti), 1 � i � m.

3.2 Strong Homomorphisms and Codings

A homomorphism between trace monoids h : M (�; I) ! M (�0 ; I 0) is given
by a mapping h : � ! M (�0 ; I 0) such that h(a)h(b) = h(b)h(a) for all
(a; b) 2 I . We say that h is a strong homomorphism, if moreover we have
h(a)I 0h(b) for all (a; b) 2 I . This means that independent letters are mapped
to independent traces. In this section we show that the existence of injective
strong homomorphisms is directly related to morphisms of graphs. By minor
modi�cations the following correspondences could be made functorial, but
we do not intend to introduce categories here.

De�nition 3.1. A morphism H of dependence alphabets from (�0; D0) to

(�;D) is a morphism of the underlying undirected graphs (with self-loops),

i.e., H is a mapping H : �0 ! � on letters such that (H(a0); H(b0)) 2 D for

all (a0; b0) 2 D0.

Example 3.1. Write (�;D) = (
Sk

i=1 Ai;
Sk

i=1 Ai�Ai) and let (�0; D0) be the
disjoint union of the complete graphs (Ai; Ai � Ai). We obtain a morphism
H : (�0; D0) �! (�;D) which is induced by set inclusions Ai � �; 1 � i � k.

The following proposition is another variant of Prop. 2.1 and of Cor. 2.2.
The proof is an easy exercise.

Proposition 3.4. Let H : (�0; D0) �! (�;D) be a morphism of de-

pendence graphs and for each a 2 � let h(a) 2 M (�0 ; I 0) be a trace

such that alph(h(a)) = H�1(a). Then h induces a strong homomorphism

h : M (�; I) �! M (�0 ; I 0). This homomorphism is injective if and only if H

is surjective on vertices and edges.

20 Volker Diekert and Yves M�etivier

Example 3.2. Let H : (�0; D0)! (�;D) as in Ex. 3.1 and let the homomor-
phism h of Prop. 3.4 be de�ned by h(a) =

Q
a02H�1(a)

a0. Then h coincides with

the canonical injective homomorphism from Cor.2.2 in the special case where
M i = A�i for all 1 � i � k.

An injective homomorphism between trace monoids is denoted henceforth
as a coding. According to [12] we call an injective strong homomorphism
a strong coding. A strong coding allows to encode a trace in such a way
that independency is preserved. The question arises whether there exists a
strong coding for given dependence alphabets (�;D); (�0; D0). In general,
the answer is at least NP-hard, due to the following fact rephrasing Cor. 3.4.

Proposition 3.5. Let (�;D) be a dependence alphabet and k � 0. Then the

following assertions are equivalent:

i) There exists a coding from Nk into M (�; I).
ii) There exists a strong coding from Nk into M (�; I).
iii) The dependence alphabet contains an independent set of size k.

De�nition 3.2. A relational morphism H : (�0; D0) �! (�;D) of depen-

dence alphabets is a relation H � �0 � � such that (a0; b0) 2 D0 implies

H(a0) � H(b0) � D. It is called surjective on vertices and edges, if both for

all a 2 � there exists a0 2 �0 with (a0; a) 2 H and for all (a; b) 2 D; a 6= b

there exists (a0; b0) 2 D0, a0 6= b0 such that (a; b) 2 H(a0)�H(b0).

The following result shows that there exists a strong coding

h : M (�; I) �! M (�0 ; I 0)

if and only if there exists some relational morphism

H : (�0; D0) �! (�;D)

being surjective on vertices and edges.

Theorem 3.1. i) Let h : M (�; I) �! M (�0 ; I 0) be a strong coding and

H = f(a0; a) 2 �0 � � j a0 2 alph(h(a))g. Then H is a relational mor-

phism being surjective on vertices and edges.

ii) Let H : (�0; D0) �! (�;D) be a relational morphism being surjective on

vertices and edges. Then we can construct a strong coding h : M (�; I) �!
M (�0 ; I 0) such that H = f(a0; a) 2 �0 �� j a0 2 alph(h(a))g.

Proof. Part i) is easy and omitted. We sketch ii): First we order the al-
phabets, i.e., we assume � = fa1; a2 : : :g with a1 < a2 < � � � and �0 =
fa01; a02; : : :g with a01 < a02 < � � �. For each i = 1; 2; : : :, we de�ne a set Hi

by Hi = fa0j 2 �0 j (a0j ; ai) 2 Hg. If (ai; aj) 2 I , then Hi � Hj � I 0, since
H is a relational morphism. We have Hi 6= ; for all i, since H is surjective

Partial Commutation and Traces 21

on vertices; and if (ai; aj) 2 D; i 6= j, then there are b0 2 Hi; c
0 2 Hj with

(b0; c0) 2 D0; b0 6= c0, since H is surjective on edges.
Assume that Hi = fa0i1 ; : : : ; a0ikg with a0i1 < � � � < a0ik . De�ne the traces

�!
Hi = a0i1 � � �a0ik and

 �
Hi = a0ik � � � a0i1 . Thus,

�!
Hi is the product of a0il 2 Hi in

increasing order and
 �
Hi is the product in decreasing order. Now de�ne

h : M (�; I) �! M (�0 ; I 0); h(ai) = (
�!
Hi)

i �Hi:

The equality H = f(a0; a) 2 �0 � � j a0 2 alph(h(a))g is obvious. Let
us show by contradiction that h is injective. Assume h(aix) = h(y), with
ai 2 � and x; y 2 �� such that aix 6= y. Then y must contain a letter
depending on ai, hence we can write y = uajz with aiIu and (ai; aj) 2 D.
By cancellation we may assume i 6= j. Therefore we �nd b0 2 Hi; c

0 2 Hj

with (b0; c0) 2 D0; b0 6= c0. The result now follows by projection onto fb0; c0g�
and some few calculations left to the reader.

Remark 3.2. The proof of Thm. 3.1 is valid for countable alphabets as well,
as long as we demand that fa0 2 �0 j (a0; a) 2 Hg is �nite for all a 2 �.

Corollary 3.5. It is NP-complete to decide whether there exists a strong

coding between trace monoids.

Proof. It is clearly in NP to decide whether there exists a relational morphism
being surjective on vertices and edges. The hardness follows by Prop. 3.5, iii).

Corollary 3.6. There is a strong coding of M (�; I) into a k-fold direct prod-
uct of free monoids, if and only if (�;D) has a covering by k cliques, i.e.,

(�;D) =

k[
i=1

Ai;

k[
i=1

(Ai �Ai)
!
:

Little is known about the existence of codings. According to the following
example we can construct codings in some cases, where strong codings do
not exist.

Example 3.3. Let (�;D) =

a � b

j j
d � c

and (�0; D0) = p � q [r � s. Al-

gebraically M 1 = M (�;D) is a free product of commutative monoids,
M 1 = N2 � N2 , and M 2 = M (�0 ; D0) is a direct product of free monoids,
M 2 = fp; qg� � fr; sg�. By Cor. 3.6 there is no strong coding of M 1 into
M 2 . But there is a coding. Take any non-singular 2� 2-matrix with non-zero
entries, say the matrix with columns

�
1
1

�
and

�
2
1

�
. Then de�ne accordingly by

using the columns of the matrix as exponents for the letters:

h(a) =

�
p

r

�
; h(c) =

�
p2

r

�
; h(b) =

�
q

s

�
; and h(d) =

�
q2

s

�
:

An easy exercise shows that the homomorphism h : M 1 �! M2 is a
coding.

22 Volker Diekert and Yves M�etivier

3.3 Trace Codes

Codes over words are widely studied, see [5] for a comprehensive treatise.
They play a fundamental role in computer science. There are well-known
algorithms to test whether a �nite (or regular) set X � �� is a code, i.e.,
whether it generates a free submonoid with basis X . In trace monoids the
same question turns out to be undecidable.

Proposition 3.6. It is undecidable whether a �nite subset X of the direct

product fa; bg� � fc; dg� generates a free submonoid (with basis X).

Proof. An instance of the Post correspondence problem (PCP) consists of two
lists (u1; : : : ; un); (v1 : : : ; vn) with n � 2; ui; vi 2 �+ for 1 � i � n. A special

solution to this instance of the PCP is a �nite sequence (1; i1; : : : ; ik; n) such
that u1ui1 � � �uikun = v1vi1 � � � vikvn. It is well-known that the existence of a
special solution is undecidable. In order to reduce PCP to the problem above
one employs markers. Let # be a new symbol; replace each letter a 2 � in
the words ui; 1 � i � n, by a#, and in the words vi; 1 � i � n, replace
each letter a 2 � by #a. Then, add the symbol # in front of the new word
u1, and add # at the end of the new vn. We have now two lists of words
(~u1; : : : ; ~un); (~v1; : : : ; ~vn) over the new alphabet � [f#g. Using any coding
of (�[f#g)� into fc; dg�, we may view ~ui; ~vi 2 fc; dg+ for 1 � i � n. Finally
de�ne X = f(abi; ~ui) j 1 � i � ng [f(abi; ~vi) j 1 � i � ng. It is not di�cult
to see that X generates a free submonoid (with basis X) of fa; bg� � fc; dg�
if and only if the given instance of PCP has no special solution.

Let M = M (�; I) be a trace monoid and X � M be any subset. De�ne
an independence relation IX � X �X by xIXy if and only if xy = yx in M .
This yields a free partially commutative monoid M X = M (X; IX) and the
inclusion X � M induces a homomorphism hX : M X �! M . The set X is
called a trace code, if hX is a coding.

Remark 3.3. i) If we can decide whether X � M (�; I) is a trace code (X
being �nite), then we can decide whether X generates a free monoid, i.e.,
whether X is a code. Indeed, X is a code if and only if X is a trace code
and IX is empty. Whether or not the converse is true remains unclear.

ii) The question whether a �nite subset X of M is a trace code can eas-
ily be reduced to the problem whether the intersection of two ratio-
nal sets is empty. De�ne any total order < on X . For x 2 X let
LexNF(x;X) � X� be the rational set of lexicographic normal forms
from M (X; IX) having as �rst letter x. Let 'X : X� �! M (X; IX) the
canonical homomorphism. Clearly, 'X restricted to some LexNF(x;X)
is injective and hX('X (LexNF(x;X))) is a rational set of M (�; I). Now
observe that X is a trace code if and only if hX('X(LexNF(x;X))) \
hX('X (LexNF(y;X))) = ; for all x; y 2 X , x 6= y. This �nishes the
reduction to the intersection problem.

Partial Commutation and Traces 23

This remark and the results of the next section imply the following fact.

Proposition 3.7. Let X � M (�; I) be a �nite set of connected traces. Then

it is decidable whether X is a trace code.

Proof. In the terminology of the next section, LexNF(x;X) is star-connected
by Cor. 4.3 below. Hence 'X(LexNF(x;X)) � M (X; IX) is star-connected,
and since hX maps connected traces of M (X; IX) to connected traces of
M (�; I) (by de�nition of IX), we see that hX('X (LexNF(x;X))) is recog-
nizable, c.f. Thm. 4.1. There is an e�ective procedure testing the emptiness
of the intersection of two recognizable sets.

Emptiness of the intersection of two rational sets is known to be decidable,
if the independence alphabet is a transitive forest, [1]. Therefore we can state
by the remark above:

Proposition 3.8. Let the independence alphabet be a transitive forest. Then

it is decidable whether a �nite set X � M (�; I) is a trace code.

A transitive forest is the transitive closure of the descendant relation in
a union of trees. Another characterization says that transitive forests are
the elements of the smallest families of graphs containing the empty graph
and being closed under disjoint union and complex product with a one point
graph. It can be de�ned by forbidden structures, too. An independence al-
phabet is a transitive forest if and only if it does not contain neither C4 nor
P4 as an induced subgraph. By C4 we mean the chordless cycle and by P4
the chordless path with 4 letters.

The proof of Prop. 3.6 shows that the trace code property is undecidable
in the monoid fa; bg��fc; dg�, which means that the independence alphabet
is the graph C4. An undecidability result for P4 would have given a character-
ization theorem, but the decidability, even decidability in polynomial time,
is known in this particular case.

Proposition 3.9. If (�; I) or (�;D) is a P4, then the trace code property

can be decided in polynomial time.

If the trace code property can be decided for (�; I) or for (�;D), then
it can be decided for all induced subgraphs and for all dependence alpha-
bets, obtained by edge-contraction. Unfortunately, this is not enough to con-
clude that the undecidability of the trace code property can be characterized
by some �nite list of forbidden induced subgraphs. The classi�cation of all
independence alphabets where the (trace) code property is decidable is a
challenge.

3.4 Bibliographical Remarks

Equations over traces have been studied �rst by Cori and M�etivier [19] and
Duboc. The results of Sect. 3.1 are due to Duboc, see [40]. The results pre-
sented here are also exposed by Cho�rut and by Duchamp and Krob in [34,

24 Volker Diekert and Yves M�etivier

Chapt. 3,4]. A celebrated result of Makanin states that it is decidable whether
a system of equations with constants has a solution over words, [68]. The ex-
tension of the result to traces would be of great interest, but it has not been
attacked yet.

The undecidability of the trace code property is due to Hotz and Claus
[62] and Chrobak and Rytter [14]. This result and the proof techniques are
close to a classical result of Greibach [57] showing that ambiguity of context-
free grammars is undecidable. The decidability for the intersection problem
in case of transitive forests is from Aalbersberg and Hoogeboom [1]. It led
directly to Prop. 3.8. After that result the characterization of dependence
graphs where the trace code property is decidable concentrated on the graph
P4. Hoogeboom and Muscholl [61] proved the positive result Prop. 3.9 for
the code property (being therefore negative for completing the picture). It
has been independently observed by Matiyasevich, who also proposed the
notion of trace code. Matiyasevich announced another decidability result for
the code-property provided the independence relation is acyclic (personal
communication). The topic of free trace submonoids is also mentioned in the
chapter by Cho�rut of [34].

The question whether the existence of codings (injective homomorphisms)
between trace monoids can be decided has been raised by Ochma�nski in [81],
where among others a variant of Prop. 3.5 is stated. The notion of a strong
coding has been de�ned by Bruy�ere et al. in [12]. Thm. 3.1 is the main result
of [33]. It answers a question of the former paper and solves the problem
above for strong codings. However, the decidability for codings is still open,
some partial results and conjectures are in [11, 33].

4. Recognizable Trace Languages

4.1 Basic Facts about Recognizable and Rational Sets

Let M be a monoid with the unit element 1, a subset T of M is said to be
recognizable if there exists a homomorphism � from M to a �nite monoid
S such that T = ��1(F) for some subset F � S. We also say that the
homomorphism � recognizes T .

For a monoid M , an M�automaton A = (M;Q; �; q0; F) consists of a �-
nite set Q of states, an initial state q0 2 Q, a subset F � Q of �nal states, and
a transition function � from Q�M to Q satisfying the following conditions:

8q 2 Q �(q; 1) = q;

8q 2 Q; 8m1; m2 2M �(q;m1m2) = �(�(q;m1);m2):

The subset T of M recognized by the automaton A is de�ned by

T = fm 2M j �(q0;m) 2 Fg:

Partial Commutation and Traces 25

Let T � M be any subset. The syntactic congruence �T � M �M is
de�ned by setting x �T y if for all u; v 2 M we have uxv 2 T () uyv 2
T . The quotient monoid M=�T is called the syntactic monoid of T . The
canonical homomorphism M ! M=�T recognizes T . If ' : �� ! M is
a surjective homomorphism, then the syntactic monoids of T � M and of
'�1(T) � �� are isomorphic (via '). We have a classical result:

Proposition 4.1. Let ' : �� ! M be a surjective homomorphism onto a

monoid M and T �M . Then the following assertions are equivalent.

i) The set T is recognizable.

ii) The syntactic congruence �T is of �nite index.

iii) There exists an M-automaton recognizing T .

iv) The set '�1(T) is a recognizable (or regular) subset of ��.

The family of recognizable sets is denoted by Rec(M). It is a Boolean al-
gebra. The family of rational sets, denoted by Rat(M), is inductively de�ned
by starting from the �nite subsets of M and the closure under the operations
of union X [Y , concatenation X � Y = fxy 2M j x 2 X; Y 2 Y g, and iter-
ation (or Kleene-star) X� =

S
i�0X

i, where X0 = f1g and X i = X(i�1) �X
for i � 1.

If we replace the iteration-operation by complementation, we obtain the
family of star-free sets, denoted by SF(M).

For �nitely generated free monoids Kleene's Theorem asserts Rec(��) =
Rat(��); and we can speak of regular languages without ambiguity. Due
to Sch�utzenberger, the star-free languages SF(��) have been characterized
by the fact that they are recognized by some �nite aperiodic monoid. (A
�nite monoid S is aperiodic if and only if there exists some p � 0 such that
xp+1 = xp for all x 2 S.) For example, the language (ab)� � fa; bg� is star-
free (!), the language (aa)� � fag� is not star-free. The commutative closure
of the star-free language (ab)� is the non-regular, context-free language fw 2
fa; bg� j jwja = jwjbg.

The rational subsets of the free commutative monoid N� are exactly the
semi-linear sets. There are semi-linear sets, which are not recognizable: Con-
sider (ab)� � Nfa;bg .

Star-free trace languages are recognizable by Cor. 4.1 below. For a trace
monoid M = M (�; I) we therefore have the following situation with strict
inclusions, in general:

SF(M) � Rec(M) � Rat(M):

4.2 Recognizability and Rational Operations

A rational expression over words or traces is called star-connected, if the
Kleene-star is used over connected languages, only. Let X � �� (X �
M (�; I), resp.) be a languages. A word t (trace t, resp.) is called an iter-

ative factor of X , if ut�v � X for some u; v.

26 Volker Diekert and Yves M�etivier

Remark 4.1. If all iterative factors of X are connected, then every rational
expression for X is star-connected. Indeed, if the star is used over some word
or trace t inside the expression for some rational language L, then t becomes
an iterative factor of L.

Another operation for trace languages is called concurrent-star (or c-star
for short). It is in fact the composition of two operations. For a language
X we de�ne Xc�� to be the Kleene-star (c(X))�, where c(X) is the set of
connected components:

c(X) = fu 2 M (�; I) j u is connected; u 6= 1 and 9v : uv 2 X; uIvg:

Thus, Xc�� is the Kleene-star over the connected language of all con-
nected components.

The family of c-rational trace languages is de�ned as the rational sets, but
instead of the Kleene-star we allow the c-star operation, only. The following
assertion is Ochma�nski's Theorem.

Theorem 4.1. Let ' : �� ! M (�; I) be the canonical homomorphism and

T � M (�; I) be a trace language. Then the following assertions are equiva-

lent.

i) T is recognizable.

ii) There exist a rational language X � �� such that every iterative factor

of X is connected and '(X) = T .

iii) T is star-connected.

iv) T is a c-rational language.

Proof. The implication i)) ii) follows from Lem. 4.1 below.
ii)) iii): As we have remarked above, if every iterative factor is connected,
then X is star-connected.
iii)) iv): Every star-connected expression is also a c-rational expression.
iv)) i): It remains to show that recognizable trace languages are closed un-
der taking connected components, concatenation, and the Kleene-star over
connected languages. The closure under taking connected components is triv-
ial. The closure under concatenation is stated in Cor. 4.1, and the closure
under Kleene-star over connected languages is stated in Cor. 4.2. In order to
establish these results we shall use below the notion of rank as a tool.

Remark 4.2. In Thm. 6.1 we will see that, in addition to the equivalences
above and just as for words, recognizable trace languages can also be char-
acterized by monadic second-order logic.

4.3 The Rank

The rank is de�ned with respect to a �xed independence relation I � ���.
Let X � �� be a subset of words and x; y 2 ��. By Cor. 2.3 we have xy 2 X

Partial Commutation and Traces 27

if and only if there are x0; y0; : : : ; xn; yn 2 �� such that x0y0 � � �xnyn 2 X ,
[x] = [x0 � � �xn], [y] = [y0 � � � yn], and xiI(yi+1 � � � yn) for 0 � i < n. For xy 2
X we de�ne Rank(x; y;X) to be the least number n such that a factorization
as above is possible. The rank of the language X is

Rank(X) = maxfRank(x; y;X) j xy 2 Xg

(with the convention Rank(;) = 0).
We say that X has a �nite rank, if there exists an integer k such that

Rank(X) = k.
For example, if we assume that aIb then, considering the set of couples

f(an; bn) j n � 0g, we see that Rank((ab)�) is in�nite. The rank of a�b� is
one.

Remark 4.3. A subset X of �� has a rank equal to 0, if and only if for all
couples (x; y) of words such that xy 2 X, there exist two words x0; y0 such
that x0y0 2 X , x � x0, and y � y0, where � is a shorthand of �I .

Theorem 4.2. If a regular subset X of �� has a �nite rank, then [X] is
recognizable.

Proof. Let T = [X]; we prove that the family fu�1T j u 2 M (�; I)g is �nite.
Let k be the rank of X: Let � be a morphism from �� to a �nite monoid

S recognizing X (i.e., X = ��1(�(X))) such that in addition

�(u) = �(v) implies alph(u) = alph(v):

Clearly such an � exists. De�ne a �nite set R(u) for u 2 M (�; I) as follows

R(u) = f(s0; : : : ; sk) j u = [x0 � � �xk]; si = �(xi); xi 2 ��; 0 � i � kg:

Note that the number of di�erent R(u) is bounded by 2jSj
(k+1)

: We prove that
if R(u) = R(u0), then u�1T = u0�1T: For this assume that R(u) = R(u0) and
uv 2 T . We prove that u0v 2 T: Let x; y 2 �� be words such that [x] = u;

[y] = v; the set X has a �nite rank equal to k and xy 2 X . Thus, for some
xi, yi, 0 � i � k we have

x � x0x1 � � �xk;
y � y0y1 � � � yk;

x0y0x1y1 � � �xkyk 2 X;
xjIyi for all i < j:

As the morphism � recognizes X;

��1(�(x0y0x1y1 � � �xkyk)) � X:

Let � = ��1(�(x0y0x1y1 � � �xkyk)). Since xjIyi for all i < j we can deduce

� = ��1(�(x0x1 � � �xky0y1 � � � yk))

= ��1(�(x0)�(x1) � � � �(xk)�(y0y1 � � � yk)):

28 Volker Diekert and Yves M�etivier

Let x0 2 �� such that [x0] = u0 and x0 admits x01; : : : ; x
0
k as a decomposition

verifying �(x00) = �(x0); : : : ; �(x0k) = �(xk). This is possible due to R(u) =
R(u0): Now

��1(�(x00)�(x01) � � � �(x0k)�(y0y1 � � � yk)) = ��1(�(x0x1 � � �xky0y1 � � � yk)):

Using the fact that � is compatible with alphabets we obtain

� = ��1(�(x00y0x
0
1y1 � � �x0kyk)):

Finally, since � � X we have x00y0x
0
1y1 � � �x0kyk 2 X and thus u0v 2 T:

Remark 4.4. Let us note that the converse of this theorem is false. For � =
fa; bg with aIb, the closure of the set of words X = (ab)� � (a� [b�) is
recognizable, since X = fa; bg�, but the rank of X is not �nite.

Proposition 4.2. Given two sets of words X1 and X2, if they are closed,

then the rank of the concatenated language X1X2 is at most 1.

Proof. Let xy 2 X1X2; by de�nition we have xy � x1x2 with x1 2 X1 and
x2 2 X2: Applying Levi's Lemma there exist x01; x

0
2; x
00
1 ; x
00
2 2 �� such that

x � x01x001 ; y � x02x002 ; x1 � x01x02; x2 � x001x002 and x001Ix
0
2:

As X1 and X2 are closed we have x01x
0
2 2 X1 and x001x

00
2 2 X2. Thus

x01x
0
2x
00
1x
00
2 2 X1X2 and the rank of X1X2 is at most 1.

Corollary 4.1. The family of recognizable trace languages is closed under

concatenation.

Proposition 4.3. Let X be a set of connected words. If it is closed, then the

rank of X� is �nite.

Proof. We show that the rank of X� is bounded by 2j�j. Let xy 2 X�. By
Cor. 2.3 we may write:

x � p1 � � � pn;
y � q1 � � � qn;
qiI(pi+1 � � � pn) for 1 � i < n;

(piqi) 2 X for 1 � i � n:

Consider an index i such that pi 6= 1 6= qi. Since piqi is connected, there
exist letters ai 2 alph(pi) and bi 2 alph(qi) such that (ai; bi) 2 D but
biI(pi+1 � � � pn). It follows that the letters bi are pairwise distinct. Hence there
are at most j�j indices such that pi 6= 1 6= qi. Next we group the factors with
index i where pi = 1 or qi = 1 into blocks. Note that every block belongs to
X�. Therefore, for some k � j�j we can rewrite x and y as follows.

Partial Commutation and Traces 29

x � r0p1r1 � � � pkrk;
y � s0q1s1 � � � qksk;
siI(pi+1ri+1 � � � pkrk) for 1 � i < n;

qiI(ri+1 � � � pkrk) for 1 � i < n;

ri; si 2 X� for 0 � i � n;
(piqi) 2 X for 1 � i � n:

We obtain the claim about the rank by r0s0(p1q1)r1s1 � � � (pkqk)rksk 2 X�.
By Thm. 4.2 and Prop. 4.3 we obtain the following missing piece of in the

proof of the implication Thm. 4.1, iv)) i).

Corollary 4.2. Let T be a recognizable trace language which is connected,

then T � is recognizable.

4.4 Recognizability and the Lexicographic Normal Form

Consider a total order on the alphabet and the set of lexicographic normal
forms of traces LexNF. Recall that if T � M (�; I) is recognizable and if
'�1(T) denotes the set of representing words, then X = '�1(T) \ LexNF is
a recognizable word language with T = [X].

Lemma 4.1. Let X � LexNF be a regular language. Then every iterative

factor of X is connected. In particular, [X] � M (�; I) is a recognizable trace

language.

Proof. We show a stronger assertion: Let w 2 LexNF such that w2 2 LexNF

(this condition holds for every iterative factor of X), then w is a connected
word.

Let t = [w] 2 M (�; I) and assume by contradiction that t is not con-
nected, i.e., t = uv with u 6= 1, v 6= 1, and uIv. Then, assuming the �rst
letter from w being from u, we can factorize w such that

w = a1x1a2x2a3x3a4x4 � � � an�1xn�1anxn;
u = a1x1a3x3 � � � akxk ;
v = a2x2a4x4 � � � amxm

with ai 2 �, xi 2 ��, fk;mg = fn�1; ng, and m = n, if n is even and k = n

otherwise. Moreover, due to uIv we have a1 < � � � < an.
Since w2 2 LexNF, all factors of w2 belong to LexNF, too. Hence, if n

is even, then amxma1 2 LexNF. If n is odd, then n � 3 and akxka1x1a2 2
LexNF. In the �rst case, we have a1 < am and (amxm)Ia1; in the second
case, we have a2 < ak and (akxka1x1)Ia2. Hence, a contradiction follows in
both cases.

Note that Lem. 4.1 implies i)) ii) of Thm. 4.1. The following statement
is a corollary. It is also a consequence of Thm. 6.1 below which will be shown
below without using results from this section.

30 Volker Diekert and Yves M�etivier

Corollary 4.3. For a trace language T � M (�; I) let Min(T) = fx 2
LexNF j [x] 2 Tg. Then T is a recognizable trace language if and only if

Min(T) � �� is regular.

4.5 The Star Problem and the Finite Power Property

The star problem is to decide for a given recognizable trace language T �
M (�; I) whether T � is recognizable. It is not known whether the star problem
is decidable. There is a close connection to the �nite power property (FPP).

A language T � M (�; I) is said to satisfy FPP, if T � = (T [f1g)k for
some k � 0. We say that FPP is decidable on M (�; I), if FPP for recognizable
languages of M (�; I) is decidable.

If a recognizable language T satis�es FPP, then T � is recognizable, too.
The converse need not be true, e.g., let ; 6= � � �. Then � � � M (�; I) is
recognizable, it is even star-free, but � does not satisfy FPP.

Theorem 4.3 ([87]). If the independence alphabet (�; I) does not contain

any C4 (cycle of four letters) as an induced subgraph, then both, the star

problem and the �nite power problem are decidable.

Remark 4.5. Thm. 4.3 applies to free commutative monoids. Note however
that for commutative monoids the star problem and FPP are questions about
semi-linear sets (or equivalently questions which can be formulated in Pres-
burger arithmetic), hence the decidability is also clear from classical results,
[43, 55].

Both, the star problem and FPP are semi-decidable. For FPP this is
clear, simply compute T k until T k � T k�1, k � 1. For the star problem,
the existence of a semi-algorithm to this problem is a consequence of the
following fact:

Proposition 4.4. Let T � M (�; I) be a recognizable trace language. Then

T � is recognizable if and only if there exists a recognizable language K �
M (�; I) n f1g such that both K2 � K and (K n K2) � (T n f1g) � K.

Moreover, if such a K exists, then K = T � n f1g, and K nK2 is the minimal

set of generators for T �.

A semi-algorithm to decide the star problem computes all K, patiently,
one after the other, testing each time the three inclusions K2 � K and
(K nK2) � (T n f1g) � K.

Let X � ��. If X possesses the �nite power property in ��, then [X]
possesses the �nite power property in M (�; I). This implication may not be
reversed, in general:

Example 4.1. Let � = fa; bg, aIb, and X = (a2)� + (b2)� + ab+ ba. This set
does not possess the �nite power property, since for all integer n, the word
(ab)n belongs to Xn but not to X i for all i < n. Nevertheless, the subset [X]
of M (�; I) veri�es [X]� = [X]3.

Partial Commutation and Traces 31

The basic relation between the star problem and FPP is due to the fol-
lowing proposition:

Proposition 4.5. Let T � M (�; I) be recognizable and let b be a new letter.

De�ne K = T �b+ � M (�; I)�b� . Then the following assertions are equivalent

i) T satis�es the �nite power property.

ii) K satis�es the �nite power property.

iii) K� is recognizable.

Proof. Without restriction we have 1 2 T . Clearly, if T � = T k for some k � 0,
then we have Kk+1 = Kk. This proves i)) ii)) iii).
For the converse observe that if xbk 2 K� with x 2 M (�; I), k � 1, then we
must have x 2 T k0 for some k0 � k. (In fact x 2 T k, since 1 2 T .) Now assume
that K� is recognizable. By the pumping lemma for regular languages (uvw-
Theorem) there exists some n � 0 such that whenever xbm 2 K� we �nd
some k � n with xbk 2 K�. As we have just seen this implies x 2 T k � Tn,
and hence T � � Tn.

As a �nal result of this section, let us show that FPP is decidable for
connected languages. For this we recall the notion of distance function on
automata. A path in the automaton A is a sequence C = (f1; : : : ; fn) of
consecutive transitions fi = (qi; ai; qi+1), 1 � i � n. The integer n is called
the length of the path C. The word w = a1 � � � an is the label of C. The state
q1 is the origin of the path and the state qn+1 its end. By convention, there
is for each state q 2 Q a path of length 0 from q to q. Its label is the empty
word 1: A path C from q to q0 is successful if q is an initial state, q0 is �nal,
i.e., q 2 Q0 and q0 2 F . The set recognized by A, denoted by L(A) is de�ned
as the set of labels of successful paths.

A distance automaton (A; d) is a pair where A = (�;Q;�;Q0; F) is a
non-deterministic automaton and d is a distance function

d : Q� (� [f1g)�Q �! f0; 1;1g
satisfying for all (q; a; q0) 2 Q� (� [f1g)�Q the property d(q; a; q0) =1 if
and only if (q; a; q0) 62 �.

For a path C, we note d(C) =

nX
i=1

d(qi; ai; qi+1). The function d is extended

on Q��� �Q by : d(q; w; q0) being the minimum of the d(C) over all paths
C from q to q0 labeled by w. If there does not exist such a path, we set
d(q; w; q0) =1.

A distance automaton (A; d)) is called limited in distance, if there exists
an integer k such that for all w 2 L(A) we have d(q; w; q0) � k for some
q 2 Q0 and q0 2 F .

The following result of Hashiguchi [59] will be used.

Theorem 4.4. It is decidable whether a �nite distance automaton (A; d) is

limited in distance.

32 Volker Diekert and Yves M�etivier

As in the word case this theorem can be used for the following assertion.

Theorem 4.5. Let T be a recognizable subset of M (�; I) such that each trace
of T is connected. Then it is decidable whether T possesses the �nite power

property.

Proof. From Corollary 4.2 we know that T � is recognizable. We describe a
�nite distance automaton recognizing T � and having limited distance if and
only if T � has the �nite power property.

To simplify notations we use a �nite monoid S recognizing at the same
time T and T �; and where moreover the elements of S code the alphabet.
Thus, we let � be a homomorphism from M (�; I) onto S such that

{ T = ��1(�(T));
{ T � = ��1(�(T �));
{ and �(u) = �(v) implies alph(u) = alph(v):

Note that �(T � n f1g) = �(T �) n f1g due to the assumptions above. We
now give the description of the automaton. The states are tuples of various
length (s0; s1; : : : ; s2m) 2 S2m+1 with m � n, where n = j�j: Furthermore we
have si 2 �(T �), if i is even. The si, where i is odd, are called active elements.
There is a single initial state (1) where 1 2 S denotes the unit element.

There are two sorts of ��transitions.

{ The �rst one has distance zero and is always allowed if m < n: For any
0 � i � 2m we may perform the following operation

change (s0; : : : ; si; si+1; : : : ; s2m) to (s0; : : : ; si; 1; 1; si+1; : : : ; s2m):

This transition creates a new active component.
{ The other ��transition has distance one; it decides that an active compo-

nent is not used anymore, since a factor is completed. For si 2 �(T); i odd,
we may perform with distance one:

change (s0; : : : ; si�1; si; si+1; : : : ; s2m) to (s0; : : : ; si�1 � si � si+1; : : : ; s2m)

Thus, with distance one a (2m+ 1)-tuple is transformed into a (2m� 1)-
tuple. Now we describe the action of a letter. Let a 2 �; there are two types
of transitions. If i is odd and a is independent of the alphabets corresponding
to sj where i < j, then we may perform:

reading a change (s0; : : : ; si; : : : ; s2m) to (s0; : : : ; si � �(a); : : : ; s2m):

This transition has distance zero.
For i even, we allow the same transformation, if a is independent of the

alphabet corresponding to sj where i < j and if, in addition, �(a) 2 �(T): In
this case the transition has distance one.

The �nal states are the 1-tuples (s0) with s0 2 �(T �).

Partial Commutation and Traces 33

To see the correctness of this construction, observe �rst that when there
is a path with label t from the initial to a �nal state with distance k then
t 2 T k: Conversely, we have to prove that if t 2 T k then there is a path
with distance k labeled with t starting at (1) and ending in some (s0) with
s0 2 �(T �):

Let t = uv 2 T k, we can write u = u1 � � �uk; v = v1 � � � vk such that
uivi 2 T , uivi 6= 1, and viIuj for all i < j: We call the index i active
when ui 6= 1 and vi 6= 1: At most n indices can be active, since T is a
connected language. Hence, if m is the number of active indices, we have
m � n: Let d = jfvi j vi = 1gj. The set fvi j vi = 1g contains the factors
which are completed. We group the corresponding neighboring ui together
into one factor, including those ui where ui = 1; and we rename them as
ui with i even. We rewrite u = u0u1 � � �u2m such that u1; u3; u5; : : : agree
with the active ui from the old factorization. It follows that the ui, i even,
are products such that �(ui) 2 �(T �): Now, using an induction on juj one
proves that reading u we may reach the state (�(u0); �(u1); : : : ; �(u2m)) with
distance d: At the end of this procedure there are no active components
anymore, hence m = 0, d = k. The result follows.

4.6 An Algorithm to Compute Closures

Let (�; I) be an independence alphabet. Given two words x and y of ��,
the I-shu�e of x and y, denoted by xXIy, is the set of words of the form
x1y1 � � �xnyn with x = x1 � � �xn, y = y1 � � � yn , xi; yi 2 �� for all 1 � i � n,
and xjIyi for all 1 � i < j � n. The inclusion xXIy � fx � yg is straightfor-
ward. The I-shu�e is extended to sets by

XXIY =
[
fxXIy j x 2 X; y 2 Y g:

Remark 4.6. The standard shu�e operation X on words can not be ex-
pressed with the I-shu�e. We have bab 2 abXb, but never bab 2 abXIb,
since (b; b) =2 I . On the other hand:

xXy = xXIy for all xIy:

We will apply the I-shu�e mainly to closed languages. Then the I-shu�e
becomes more powerful.

Lemma 4.2. For all x; y 2 �� we have x � y = xXIy:

We are now ready to de�ne the procedure P . This procedure adds to X
the words belonging to the sets:

z0(x1XIy1)z1 � � � zn�1(xnXIyn)zn

where z0x1y1z1 � � � zn�1xnynzn 2 X; xi; yi 2 �+; z0; zi 2 �� for all 1 � i �
n; n � 0.

34 Volker Diekert and Yves M�etivier

There is no need to emphasize the factors zi explicitly. Observing that
fzig = ziXI1 and allowing the factors xi (and/or yi) to be the empty word
we obtain a more compact notation. Formally, let x be an element of ��,
then we de�ne:

P (x) = fy 2 � j y 2 (x1XIy1) � � � (xnXIyn)
x = x1y1 � � �xnyn; xi; yi 2 ��; 1 � i � n g:

The de�nition of P is extended in a natural way to a set X of words by

P (X) =
[
x2X

P (x):

For example, let a and b be two letters such that aIb. We have

P (a�b) = a�ba�;

P (fababg) = fabab; baab; abba; aabb; babag;
P 2(fababg) = P (fababg) [fbbaag = fababg:

Due to the de�nition of P , for every set of wordsX we have P (X)[P (Y) =
P (X [Y); P (X) � P (Y) � P (X � Y); and (P (X))� � P (X�): If X = X�,
then we have P (X) = (P (X))�.

Moreover, we have X � P (X) � X, and X = P (X) if and only if X = X.
Note also that for any word x = a1 � � � anan+1, the n-fold application Pn

computes the closure of x:

[x] = P (a1 � P (� � �P (anan+1) � � �)) � Pn(x):

(The exponent n is an overestimation, Cor. 4.4 below yields that a dlogne-
fold application is enough in order to compute the closure of a word of length
n.) We have

X =
[
i�0

P i(X) = P �(X):

Remark 4.7. The procedure P is a modi�cation of the procedure S intro-
duced by M�etivier [74] The procedure S adds to X the words belonging to
the sets:

(x1Xy1) � � � (xnXyn);

where x1y1 � � �xnyn 2 X and for all i we have alph(xi) � alph(yi) � I . The
relation between both procedures is as follows:

X � S(X) � P (X) � Sj�j(X) � P j�j(X) � X:

Theorem 4.6. If X is recognizable, then P (X) is recognizable.

Partial Commutation and Traces 35

Proof. Let � : �� �! S be a homomorphism onto a �nite monoid S recog-
nizing X , i.e., X = ��1(�(X)). As usual, we may assume that �(x) = �(y)
implies alph(x) = alph(y) for all x; y 2 ��. Thus, for p 2 S we de�ne by
alph(p) = alph(x) where p = �(x). De�ne the state set Q = S � S. We allow
�-transitions and two types of a-transitions, a 2 �.

�((p; q); 1) = (pq; 1) for all (p; q) 2 Q;
�((p; q); a) = (p; q�(a)) for all (p; q) 2 Q; a 2 �;
�((p; q); a) = (p�(a); q) for all (p; q) 2 Q; a 2 �; alph(q)� fag � I:

The initial state is (1; 1) and the �nal states are the pairs (p; 1) with p 2 �(X).
It is not di�cult to see that the automaton just de�ned recognizes P (X).

The following example is due to Arnold. It shows that every �nite iteration
of P may fail to compute the closure of a recognizable set even when its closure
is recognizable:

Example 4.2. Let � = fa; bg with aIb, and X = (ab)�(f1g [a+ [b+). We

have X = ��, and by induction, we can prove that a3
n+1

b3
n+1 62 Pn(X) for

all n � 0. Thus, for each integer n we have Pn(X) 6= X.

Remark 4.8. This behavior above is not a particular failure of the procedure
P . In fact, let for a moment ~P : P(��) �! P(��) be any procedure satisfying
the following properties:

I ~P (X [Y) = ~P (X) [~P (Y),
II X � ~P (X) � X,
III If X is recognizable, then ~P (X) is recognizable.

Then possibly ~Pn(X) 6= X for all n, even when X and X are recognizable.
Indeed, assume that for � = fa; bg with aIb we would have

~Pn((ab)�(f1g [a+ [b+)) = �� for some n 2 N:

Then ~Pn((ab)�) [~Pn((ab)�(a+ [b+)) = �� due to I. By II we obtain
~Pn((ab)�) = fw 2 � j jwja = jwjbg: Finally the latter set would be rec-
ognizable by III, hence a contradiction.

We deduce from the previous remark that neither P nor any other pro-
cedure satisfying I, II, and III provides us with a semi-algorithm to compute
the I-closure on the class of recognizable languages. However, the following
results show that we can use the procedure P to compute closures in the
cases described in previous sections.

Proposition 4.6. Let (�; I) be an independence alphabet. For all I-closed

subsets X1; X2 of ��, we have:

X1 �X2 = P (X1 �X2):

Proof. This follows from Lem. 4.2.

36 Volker Diekert and Yves M�etivier

Corollary 4.4. Let (�; I) be an independence alphabet and X1; : : : ; Xn be

I-closed subsets of ��. Then we have:

X1 � � �Xn = P dlogne(X1 � � �Xn):

Theorem 4.7. Let (�; I) be an independence alphabet and !(�; I) be the

maximal number of pairwise independent letters. Let X be any I-closed subset

of �� containing connected words, only. Then we have:

X� = P 2j�j!(�;I)(X�):

Proof. Let w1; : : : ; wm 2 X n f1g be a list of m non-empty words, and w 2
�� such that w 2 [w1 � � �wm]. Each wi can be identi�ed with a (scattered)
subword ŵi of w. More precisely, let n = jwj and w = a(1) � � �a(n) with
a(j) 2 �. We say that a position j with a = a(j), 1 � j � n belongs to ŵi, if

jw1 � � �wi�1ja < ja(1) � � � a(j)ja � jw1 � � �wi�1wija:

For each wi let �rst(i) (last(i) resp.) be the �rst (last resp.) position belonging
to ŵi. This yields an interval

int(i) = [�rst(i); last(i)] � f1; : : : ; ng:

The crucial observation is due to the fact that all words of X are connected.
As it can be seen from the proof of Prop. 4.3 (or be shown directly) there is
no position j where more than j�j intervals intersect:

jfi j j 2 int(i)gj � j�j for all 1 � j � n:

We now use at most j�j values blue, green, red, etc. in order to give a
�rst coloring of w. We demand that positions belonging to the same ŵi have
the same color and in addition that the colors of ŵi and ŵj are di�erent if
int(i) \ int(j) 6= ; for all i 6= j. We need in fact a �ner coloring (or a second
coloring). To de�ne this consider a certain color, say red . Let ŵi1 ; : : : ; ŵir ,
1 � i1 � � � � � ir � n be the list of red subwords. We de�ne a graph G(red) =
(V (red); E(red)) with vertex set V (red) = f1; : : : ; rg and pq 2 E(red) if and
only if p < q but �rst(ip) > last(iq). Since the intervals of the red subwords
do not intersect, G(red) is a permutation graph. Hence it is a perfect graph
and its chromatic number is equal to the cardinality of its largest clique. A
clique in G(red) however corresponds to pairwise independent subwords. This
is clear, since pq 2 E(red) implies alph(ŵip) � alph(ŵiq) � I . Therefore at
most !(�; I) di�erent shades of red su�ce such that p and q have di�erent
colors for all pq 2 E(red). In total we need at most j�j!(�; I) colors such
that the following invariant is satis�ed:

Whenever i 6= j and int(i) \ int(j) 6= ; or i < j and �rst(i) > last(j);
then i and j have di�erent colors.

Partial Commutation and Traces 37

Finally, we mark a color, if all subwords having this color are factors of
w, i.e., for all subwords ŵi of a marked color it holds jint(i)j = jwij. Now let
k be the number of unmarked colors, k � j�j!(�; I).

Since X is I-closed and we are interested in X� ; it is enough to prove by
induction on k that for some permutation � of f1; : : : ;mg we have

w 2 P 2k(ŵ�(1) � � � ŵ�(m)):

If all colors are marked, i.e., k = 0, then we have w = ŵ�(1) � � � ŵ�(m) and
the claim is true. Let k > 0. Since X is I-closed we may henceforth assume
that wi = ŵi for all i. We de�ne a new word w0 by grouping the subwords
with color k into factors. Assume that color k is purple (viewed as a shade
of red). Then formally, let wi1 ; : : : ; wip be the list of all purple subwords in
w, listed from left to right as they appear in w. Write w = u1 � � �up such
that each uq contains exactly one purple subword wiq ; 1 � p and such that
the �rst letter of each u2; : : : ; up is purple too. Let u0q (u00q , resp.) denote the
scattered subword of uq containing the positions belonging to w1; : : : ; wiq�1
(wiq+1; : : : ; wm, resp.). Then uq 2 [u0qwiqu

00
q] and more precisely

uq 2 (u0qXIwiq)XIu
00
q :

Next, we de�ne
w0 = (u01wi1u

00
1) � � � (u0pwipu00p):

Clearly, w 2 P 2(w0). Moreover, w0 2 [w1 � � �wm] and the same coloring being
inherited from w satis�es the invariant above. (This is the main point of the
proof. It is not totally obvious since in w0 there may be new intersections of
intervals.) Now the color k (= purple) can be marked. Hence, by induction
w0 2 P 2(k�1)(w�(1) � � �w�(m)) for some permutation �. The result follows
from

w 2 P 2(P 2(k�1)(w�(1) � � �w�(m))) � P 2j�j!(�;I)(w�(1) � � �w�(m))):

Corollary 4.5. Let X be a recognizable set of words such that all its iterative

factors are connected or, more general, let X be star-connected. Then there

exists an integer n such that Pn(X) = X.

Proof. This can be seen by structural induction over the star-connected ex-
pression for X using Cor. 4.4 and Thm. 4.7.

Corollary 4.6. Let M (�; I) be a trace monoid. There exists an integer n

such that for each subset X of �� containing Min([X]) we have Pn(X) = X.

Proof. By Lem. 4.1 all iterative factors of the set of lexicographic normal
forms LexNF are connected. By Cor. 4.5 there is an integer n such that
Pn(Min([x])) = x for all x 2 ��. Hence Pn(X) = X , if Min([X]) � X .

The hypothesis Min([X]) � X is not always necessary.

38 Volker Diekert and Yves M�etivier

Example 4.3. Let � = fa; bg with aIb and a < b. Let X = b+a+. Then

X = P (X) = b+XIa
+ = �� n (a� [b�)

is recognizable. But Min(X) = a+b+ (and hence Min(X) \X = ;).

4.7 Bibliographical Remarks

The investigation of recognizable subsets is central in the theory of traces. The
closure under concatenation has been shown by Fliess [46], a much simpler
proof for this result has been given by Cori and Perrin [21]. The recogniz-
ability of star-connected languages, Cor. 4.3, has been independently proved
by Clerbout (for semi-commutations) [15], M�etivier [72], and by Ochma�nski
[80]. The notion of iterative factor is from [71]. The notion of rank has been
introduced by Hashiguchi [60] thereby allowing to shorten some proofs. The
closure properties can also be deduced from logic, see [34, Chapt. 10] for
details. Lem. 4.1 is from [80]; for a generalization to concurrency monoids
see [36]. A straightforward proof of Cor. 4.3 by monadic second order logic
(without involving c-rational operations) has been independently given by
Courcelle [22].

The relation between the star problem and FPP in Sect. 4.5 is due to
Richomme [87]. Preliminary results are shown in [49].

The procedure P has been de�ned �rst in a technical report being the
basis of [76] where the results are shown with respect to the procedure S.
This procedure is originally from the thesis [74], see also [25, Problem 246].
Thm. 4.7 is a positive answer to this problem and Cor. 4.6 leads to another
proof for showing that star-connected languages are recognizable.

5. Rational Trace Languages

This section contains some characterization- and decidability results about
rational trace languages known in the literature. Due to the lack of space
we deal with some few topics, only. In particular we do not speak about any
counting techniques.

5.1 Unambiguous Languages

De�nition 5.1. A trace language T � M (�; I) is called k-sequential, k �
1, if there is a regular word language L � �� such that '(L) = T and

j'�1(t)\Lj � k for all t 2 T . The family of k-sequential languages is denoted
by Ratk(M).

Partial Commutation and Traces 39

It is clear from Cor. 4.3 that every recognizable trace language is 1-
sequential. The inclusion Ratk(M) � Rat(M) is trivial for all k � 1. It has
been shown by Bertoni, Mauri, and Sabadini [6] that the following inclusions
are proper for some independence alphabets:

Rec(M) � Rat1(M) � Rat2(M) � � � � �
[
k�1

Ratk(M) � Rat(M):

Example 5.1. Let (a; b) 2 I , then (ab)� � M (�; I) is 1-sequential but not
recognizable.

Example 5.2. Let (�; I) = a�b�c. Then the language T = (ab)�c�[a�(bc)�
is 2-sequential but not 1-sequential. Clearly, T is 2-sequential. We sketch
the proof for the fact that T is not 1-sequential. Assume by contradiction
that there exists a regular language L � fa; b; cg� such that '(L) = T and
j'�1(t) \ Lj = 1 for all t 2 T . Consider a deterministic �nite automaton
accepting L. Replace all b-transitions by �-transitions. In this way we obtain
an automaton A accepting a�c�. (Note that this automaton has no �-loops on
accepting paths.) By the property of L there exists for amcm, m � 0 exactly
one accepting path in A, for amcn, m 6= n there are exactly two. Based upon
a product automaton construction for A one can show that the following
language is regular:

fw 2 a�c� j there exists more than one path of A accepting w g

We obtain a contradiction since famcn j n 6= mg is not regular.

De�nition 5.2. The unambiguous rational operations are de�ned by the fol-
lowing restrictions of the rational operations.

{ The union X [Y is allowed only if X \ Y = ;.
{ The concatenation X � Y is allowed only if for all x; x0 2 X, y; y0 2 Y the

equality xy = x0y0 implies x = x0 and y = y0.

{ The Kleene-star X� is allowed only if X is the basis of a free monoid, i.e.,

only if x1 � � �xm = y1 � � � yn with xi; yj 2 X, 1 � i � m, 1 � j � n implies

m = n and xi = yi for all 1 � i � m.

The family of unambiguous rational languages, UR(M), is the closure of the

set of �nite languages under unambiguous rational operations.

It is a classical result that regular languages are unambiguous rational.
From this statement we may derive:

Proposition 5.1. The family of unambiguous rational trace languages co-

incides with the family of 1-sequential rational languages, i.e., UR(M) =
Rat1(M).

40 Volker Diekert and Yves M�etivier

Proof. The inclusion UR(M) � Rat1(M) is shown by structural induction.
For the converse, let T 2 Rat1(M) and L � �� be a regular language such
that '(L) = T and j'�1(t) \ Lj = 1 for all t 2 T . Then any unambiguous
rational expression for L yields an unambiguous expression for T .

A well-known result of Eilenberg and Sch�utzenberger [43] says that semi-
linear sets are unambiguous rational. This statement has a generalization:

Theorem 5.1. We have UR(M (�; I)) = Rat(M (�; I)) if and only if I is

transitive, i.e., M (�; I) is a free product of commutative monoids.

Proof. A proof of the if-part by generating functions is given in [34, Chapt. 5].
For the converse let a, b, and c three distinct letters such that (a; b); (b; c) 2 I ,
but (a; c) =2 I . Let T = (ab)�c� [a�(bc)�. It is shown in Ex. 5.2 that T is not
1-sequential, hence T 2 Rat(M (�; I)) nUR(M (�; I)).

Theorem 5.2. The family of rational trace languages is an e�ective Boolean

algebra if and only if (�; I) is transitive.

Proof. For a proof of the if-part see [89]. The other direction is easy and
shown in the next lemma.

Lemma 5.1. If (�; I) is not transitive, then Rat(M (�; I)) is not closed un-

der intersection.

Proof. Take three distinct letters a, b, and c such that (a; b); (b; c) 2 I , but
(a; c) =2 I . Consider T = (ab)�c� \a�(bc)�. We have T = fanbncn 2 M (�; I) j
n � 0g. If T would be rational, then �a;c(T) � fa; cg� would be rational, too.
However �a;c(T) = fancn 2 fa; cg� j n � 0g. Hence, a contradiction.

5.2 Decidability Results

Consider the following six decision problems (proposed by Berstel [4, Thm. 8.4]
for rational relations), where each instance consists of rational trace languages
R; T � M (�; I).

{ Intersection INT(�; I):
Question: Does R \ T = ; hold?

{ Inclusion INC(�; I):
Question: Does R � T hold?

{ Equality EQU(�; I):
Question: Does R = T hold?

{ Universality UNI(�; I):
Question: Does R = M (�; I) hold?

{ Complementation COM(�; I):
Question: Is M (�; I) nR a rational (�nite resp.) trace language?

{ Recognizability REC(�; I):
Question: Is R recognizable?

Partial Commutation and Traces 41

The intersection problem plays a special role. It turns out that it is the
easiest among the problems above.

Theorem 5.3. INT(�;D) is decidable if and only if (�; I) is a transitive

forest.

The proof of this result is given in [1]. Recall that transitive forests are
characterized by forbidden induced subgraphs C4 and P4. In particular, every
transitive independence alphabet (�; I) is a transitive forest.

Theorem 5.4. If the independence relation I is transitive, then all decision

problems above are decidable.

Proof. The decidability of INT(�; I), INC(�; I), EQU(�; I), and UNI(�; I)
follows from Thm. 5.2. The answer to COM(�; I) is always \yes" (decidable
resp.). REC(�;D) is for commutative and free monoids a question about
semi-linear sets being decidable by Presburger arithmetic [55]. In [89] it is
shown that this property is preserved under taking free products of them
yielding the result.

Theorem 5.5. If any of the problems

INC(�; I), EQU(�; I), UNI(�; I), COM(�; I), or REC(�; I)

is decidable, then the independence relation I is transitive.

Proof. All undecidability proofs for the problems above follow the same
scheme. This scheme is due to Ibarra [63], who proved that universality of
rational transductions from fa; cg� to b� is undecidable. Our notation is bor-
rowed from [89].

Let us start with the following formulation of the PCP.

Instance: Two homomorphisms f : A+ �! B+ and g : A+ �! B+

Question: Does exist some word w 2 A+ such that f(w) = g(w).

Let C = A _[B be the disjoint union of the two alphabets and M = C� � N.
Consider the following two languages

W (f) = f(uf(u); n) 2 M j u 2 A+; n = jf(u)jg
W (g) = f(ug(u); n) 2 M j u 2 A+; n = jg(u)jg

The complements of W (f) and W (g) are rational languages. This can easily
be seen by using a non-deterministic two-tape automaton: Assume, we want
to accept all (x; n) 2 M not belonging to W (f). (We assume that the number
n 2 N is coded in unary on the second tape.) Of course, the automaton is able
to guess and to check whether x 62 A+B+ or, if x = uv, u 2 A+, v 2 B+, but
n 6= jf(u)j or v 6= n. Thus, we may assume that the input is of the form (x; n)
where x = u1au2f(u1)vaw with a 2 A; u1; u2 2 A�, f(u1)vaw 2 B+, f(a) 6=
va, but n = jf(u1au2)j, jvaj = jf(a)j, and jwj = jf(u2)j. (We put f(ui) = 1,

42 Volker Diekert and Yves M�etivier

if ui = 1; i = 1; 2.) The automaton reads non-deterministically u1 on the �rst
tape and in parallel it scans jf(u1)j �elds on the second tape. The automaton
remembers the letter a and proceeds non-deterministically, on the �rst tape
only, to the position of the word va. It checks that, indeed, va 6= f(a). It now
accepts, if the rest of the input satis�es jwj = n�jvaj� jf(u1)j. Hence, W (f)
and W (g) are rational languages.

The following statements are equivalent.

i) The instance of the PCP has no solution, i.e., f(w) 6= g(w) for all w 2 A+.
ii) W (f) \W (g) = ;
iii) W (f) [W (g) = M (�; I)
iv) W (f) \W (g) is �nite.
v) W (f) [W (g) is recognizable.

vi) W (f) \W (g) is rational.

The implications i)) ii)) iii)) iv)) v)) vi) are trivial. We show vi))
i). Assume by contradiction that f(w) = g(w) for some w 2 A+. The trace
language w+(f(w))+ � N is recognizable. Now, if W (f) \W (g) is rational,
then

W (f) \W (g) \ (w+(f(w))+ � N) = f(wn(f(w))n; n � jf(w)j) j n � 1g
is again rational, since it is the intersection of a rational with a recognizable
language. However, the projection to the �rst component yields the non-
rational language

fwn(f(w))n j n � 1g � A+B+ � C�:
Contradiction! So far, we have dealt with the monoid M (�; I) = C� � N.

Encoding C� into fa; cg�, we see that the results holds for M = fa; cg� � b�
as well.

This shows that the problems UNI(�; I) by iii), REC(�; I) by v), and
COM(�; I) by vi) (by iv) resp.) are undecidable, as soon as I is not transitive.
A fortiori, (by the undecidability of UNI(�; I)) the problems EQU(�; I) and
INC(�; I) are undecidable in this case.

5.3 Bibliographical Remarks

The presentation of Sect. 5. has been inspired by the work of Bertoni, Gold-
wurm, Mauri, and Sabadini [34, Chapt. 5] and by Sakarovitch [89]. The results
of the present section can be found there. Prop. 5.1 is originally stated in [8].
Thms. 5.1 and 5.2 are from [2, 8, 88]. The problems of Sect. 5.2 have been
considered for trace languages by Gibbons and Rytter [53] thereby showing
that, up to INT(�; I), the other problems become undecidable for the de-
pendence alphabet (�;D) = a � b � c. The decidability of REC(�; I) for
a transitive independence relation is due to Sakarovitch [89]. The charac-
terization by Thm. 5.3 has been obtained by Aalbersberg and Hoogeboom
[1].

Partial Commutation and Traces 43

6. Dependence Graphs and Logic

6.1 Dependence Graphs

So far, a trace has been de�ned as a congruence class of a word modulo a
partial commutation. A trace has also a unique representation as a labeled,
directed, and acyclic graph, de�ning therefore a labeled partial order or a
pomset, (partially ordered multiset). We start with an abstract de�nition.
Let (�;D) be a dependence alphabet. A dependence graph is (an isomorphism
class of) a node-labeled acyclic graph [V;E; �], where

{ V is an at most countable set of vertices,
{ E � V �V is the edge (or arc) relation such that the directed graph (V;E)

is acyclic and the induced partial order is well-founded.
{ � : V ! � is the node-labeling such that (�(x); �(y)) 2 D if and only if

(x; y) 2 E [E�1 [idV .

Remark 6.1. A partial order is called well-founded, if every non-empty set has
minimal elements. This assumption will become crucial in Prop. 6.1 below.
However, as long as we deal with �nite traces only, well-foundedness has no
signi�cance. (Hence we can forget about it.) We are more general here, since
we want a basis which allows to include a theory of in�nite traces, c.f. Sect. 8..

The set of dependence graphs is denoted by G (�;D). It is a monoid, the
empty graph 1 = [;; ;:;] is the neutral element and the concatenation of the
dependence graphs [V1; E1; �1] and [V2; E2; �2] is de�ned as follows. First,
we take the disjoint union of labeled acyclic graphs, and then we introduce
additionally arcs from V1 to V2 between all nodes with dependent labels.
Formally

[V1; E1; �1] � [V2; E2; �2] =

[V1 _[V2; E1 _[E2 _[f(x; y) 2 V1 � V2 j (�1(x); �2(y)) 2 Dg; �1 _[�2]:

Remark 6.2. Let � be any countable ordinal, e.g. � = !; � = !+1 or � = !!.
Consider any subset L � G (�;D) and let g : � �! L be an arbitrary
mapping.

Then we can easily de�ne the ordered product

�!Y
i2�

g(i) 2 G (�;D)

as follows. As above, we take the disjoint union of the labeled graphs g(i)
over all i 2 �. Then we introduce additional arcs from a vertex x of the graph
g(i) to a vertex y of g(j) for all i < j and (�i(x); �j(y)) 2 D.

We de�ne

L� = f
�!Y
i2�

g(i) j g : � �! L is a mapping g:

44 Volker Diekert and Yves M�etivier

In particular, for L � G (�;D) the !-product L! � G (�;D) is de�ned.
According to this de�nition we have the following situation for subsets con-
taining the empty graph:

L� =
S
���(L n f1g)� ; if 1 2 L:

In particular:
L! = L� [(L n f1g)! ; if 1 2 L:

Finite dependence graphs form a submonoid of G (�;D). For a dependence
graph t = [V;E; �] and a letter a 2 � let Va = fx 2 V j �(x) = ag. This is a
linearly ordered set, hence a well-order and therefore a countable ordinal. This
ordinal is denoted by jtja and gives the a-length of t. It leads to a standard
representation where V = f(a; i + 1) j a 2 �; 0 � i < jtjag. The intended
semantics is that (a; i + 1) denotes the (i + 1)-st node of V having label a.
(The notation i+ 1 is used to exclude limit ordinals, it is of no importance
for the �nite case.) We have �(a; i) = a, and ((a; i); (b; j)) 2 E if and only if
(a; b) 2 D and i < j.

Proposition 6.1. The monoid G (�;D) of dependence graphs is left-cancel-

lative. Its submonoid of �nite graphs is cancellative.

Proof. The result for �nite dependence graphs is easily seen from the stan-
dard representation. For the general case one may use ordinal arithmetic.

A letter a 2 � is given as a one-point graph, labeled with a. Let us denote
this graph by 'G (a). Then 'G can be extended to a homomorphism

'G : �� ! G (�;D):

Moreover: 'G (ab) = 'G (ba) for (a; b) 2 I , since 'G (ab) consists of two nodes,
one labeled with a the other one labeled with b, and the graph has no edges.
Thus, 'G factorizes and we obtain a homomorphism

'G : M (�; I) �! G (�;D):

For t = a1 � � � an 2 M (�; I), ai 2 � for all 1 � i � n we have the following
explicit description of 'G (t). We take any set of n nodes, say V = f1; : : : ; ng,
then we label node i with ai and we put (i; j) 2 E if and only if (ai; aj) 2 D
and i < j.

Proposition 6.2. The monoid of traces M (�; I) can be identi�ed with the

submonoid of �nite graphs of G (�;D). The homomorphism 'G above then

becomes the canonical homomorphism ' : �� �! M (�; I).

Proof. Let t = [V;E; �] be a �nite dependence graph. Choosing a linear
order of V which re�nes the partial order (V;E�), we may assume that
V = f1; : : : ; ng with (i; j) 2 E only if i < j. An easy re
ection yields
'G (�(1) � � ��(n)) = t, hence 'G is onto. To see that 'G is injective, let

Partial Commutation and Traces 45

'G (u) = 'G (v) = [V;E; �] and (a; b) 2 D. Consider the set Va;b = fx 2
V j �(x) 2 fa; bgg. Since (a; b) 2 D, this is a labeled linear order, which
can be identi�ed with a word of fa; bg�. From the very de�nition of 'G this
word is equal to �a;b(u) (where �a;b(u) denotes the projection of u to fa; bg�).
Hence �a;b(u) = �a;b(v) for all (a; b) 2 D. Therefore u = v by Prop. 2.1.

For the rest of this section we deal with �nite traces only and we think of
(�;D) as being �xed. In particular the size of (�;D) is viewed as a constant.
As we have mentioned above, it is sometimes convenient to identify a trace
t (or its dependence graph [V;E; �]) with its induced labeled partial order
[V;E�; �]. (Following standard notations E� means the re
exive, transitive
closure of E.) However, if t is of length n then both [V;E; �] and [V;E�; �]
are representations of t of size �(n2), since the dependence graph of an has
n(n�1)

2
edges. Hence, often we content ourselves with representing t by its

Hasse diagram [V;H; �]. In the Hasse diagram all redundant edges have been
removed. Thus, H � E is the smallest subset such that H� = E�. In the
Hasse diagram the in- and out-degree of every node is bounded by j�j. For
a �xed alphabet it is therefore a representation which is linear in its length.
For jtj = n the Hasse diagram has size �(n) and it is computable in linear
time.

Example 6.1. Let

a b

c

d

e(�;D) = and t = [acebdac]

dependence graph a e d a

b cc

a e d a

b cc

Hasse diagram

The Hasse diagram allows a nice visualization of factors. We say that u
is a factor of t, if we can write t = puq for some p; q 2 M (�; I). Given such a
factorization t = puq and a representation of t by its Hasse diagram [V;H; �]
we can identify p, u and q as a partition of V = P _[U _[Q. We say that
U � V corresponds to some factor in this situation.

Proposition 6.3. Let [V;H; �] ([V;E; �] resp.) the Hasse diagram (the de-

pendence graph, resp.) of a trace and U � V . Then U corresponds to some

factor if and only if for all x; y 2 U every directed path from x to y is entirely

contained in [U;H \ (U � U)] ([U;E \ (U � U)] resp.).

46 Volker Diekert and Yves M�etivier

Example 6.2. Let (�;D) as in the previous example.

a e d a

b cc
t =

The polygon bdc is a factor of t, the dotted rectangle cbc is not.

Another advantage of the graph interpretation of traces is the existence
of \visual proofs". Here is such a proof for Levi's Lemma, Prop. 2.2.

t

z

= p

u

q

v

x

y

=

The independence of u and v is clear since there is neither an arc from y to
x nor from t to z.

The proof of Cor. 2.3 is no more di�cult:

u

v
tn

p1 p2

q2
qn

pn

q1

t2t1= =

There are no arcs between pj and qi for i < j.

6.2 Traces and Logic

Many classical results about �rst- and monadic second-order logic are ex-
tendible from words to traces. Monadic second-order formulae are built up
upon �rst-order variables x; y; : : : ranging over elements of V and second-
order variables X;Y; : : : ranging over subsets of V . There are four types of
atomic formulae:

x 2 X , x = y, (x; y) 2 E, and �(x) = a for a 2 �.

We also allow Boolean constants true and false, the logical connectives _, ^,
:, and quanti�cation 9, 8 of �rst- and second-order variables. A �rst-order
formula is a formula without any second-order variable. A sentence is a closed
formula, i.e., a formula without free variables. Identifying a trace t 2 M (�; I)
with its dependence graph t = [V;E; �], every sentence 	 has an obvious
interpretation over t. Thus, the truth value of t j= 	 is well-de�ned. The
trace language de�ned by a sentence 	 is L() = ft 2 M (�; I) j t j= 	g. We
can speak therefore of �rst-order de�nability and of second-order de�nability
of trace languages.

Partial Commutation and Traces 47

Example 6.3. Let b 2 � be a letter. The trace (or word) language de�ned by
an even number of b is de�nable in monadic second-order logic. We divide the
set of positions where a letter b occurs in two disjoint sets X and Y . Then
we say that between any two di�erent positions of X there is at least one
position of Y , and vice versa.

Example 6.4. Let � have a linear ordering and let LexNF � �� be the set
of words which are lexicographic normal forms of traces from M (�; I). Then
LexNF is de�nable in �rst-order logic. In fact, by Prop. 2.4 a word is not in
LexNF if and only if there are positions i; k such that i � k, �(i) > �(k), and
(�(j); �(k)) 2 I for all i � j < k.

The predicate x = y, belonging to our syntax, is redundant as long as
we work with dependence graphs. It could be viewed as an abbreviation
of �(x) = �(y) ^ :(x; y) 2 E ^ :(y; x) 2 E, and �(x) = �(y) is the formulaW
a2�(�(x) = a^�(y) = a). In general, transitive closure cannot be expressed

in �rst-order logic. Due to the structure of dependence graphs we can do it
here. A formula de�ning (x; y) 2 E+ (meaning that there is a non-empty
path from x to y) can be written in �rst-order logic with the help of at most
j�j � 2 additional variables. In fact, (x; y) 2 E+ is equivalent with:

(x; y) 2 E_
_

k�j�j�2

(9z1 � � � 9zk : (x; z1) 2 E^
^

1<i�k

(zi�1; zi) 2 E^(zk; y) 2 E)

There is also a �rst-order expression for the edge relation in the Hasse
diagram. The assertion (x; y) 2 H is equivalent with:

(x; y) 2 E ^ :(9z : (x; z) 2 E+ ^ (z; y) 2 E+)

In the word case we have E = E+ and we prefer to write x < y instead
of (x; y) 2 E, where < refers to the total order on positions in words.

Theorem 6.1. Let ' : �� �! M (�; I) be the canonical homomorphism and

T � M (�; I) be a trace language.

i) Then T is de�nable in monadic second-order logic (�rst-order logic resp.)

if and only if '�1(T) has this property.

ii) Let LexNF � �� denote the set of lexicographic normal forms and K �
LexNF. Then K is de�nable in monadic second-order logic (�rst-order

logic resp.) if and only if '(K) has this property.

Proof. i): First, let T = L() � M (�; I) for some sentence 	 . Let t =
[V;E; �] be any trace and w 2 �� a representing word, i.e., '(w) = t. There
is a bijective one-to-one correspondence between positions of w and nodes of
V , and we have (x; y) 2 E if and only if x < y and (�(x); �(y)) 2 D in the
word w. Thus, replacing every atomic formula (x; y) 2 E by the �rst-order
conjunction

x < y ^ (�(x); �(y)) 2 D;

48 Volker Diekert and Yves M�etivier

we obtain a sentence ~	 such that t j= ~	 is equivalent with w j= 	 . Hence
'�1(T) = L(~). For the converse let K = '�1(T)\ LexNF. Since T = '(K)
and LexNF is a �rst-order language, it is enough to prove the second part of
the theorem.

ii): Let t = [V;E; �] be a trace and let t̂ = x1 � � �xn 2 LexNF be its
representation in lexicographic normal form. Every node x 2 V corresponds
to some xi in t̂ and vice versa. We write lex(x; y), if x corresponds to xi, y
corresponds to xj , and if we have i < j. Thus, lex(x; y) means that the node
x is before y in its lexicographic normal form. If this happens, then either
(x; y) 2 E+ or there is some minimal index k such that i < k � j, where
xk corresponds to some node z 2 V such that (z; y) 2 E�. Moreover, since
it is the lexicographic normal form we have �(x) < �(z) with respect to the
ordering of the alphabet.

Based on this observation we obtain the following relation:

lex(x; y) = (x; y) 2 E+ or
�(x) < �(y) and :lex(y; x) or
�(y) < �(x) and 9z : �(x) < �(z) ^ lex(x; z) ^ (z; y) 2 E�:

Since the alphabet is �nite, it is enough to unfold the recursion (2 � j�j�1)
times and the unfolded formula is a �rst-order formula (of exponential size in
j�j) over traces. Now, let K � LexNF be de�ned by a sentence 	 . In 	 we will
use the symbol lex(x; y) as the atomic formula to denote the ordering between
positions. We then replace lex(x; y) by the �rst-order formula above. We
obtain a formula ~	 over traces. By construction, we have for all w 2 LexNF

that w j= 	 holds if and only if '(w) j= ~	 . The result follows.

By classical results on words, de�nability in monadic second-order logic
is equivalent with recognizability. The counterpart of �rst-order logic over
words generalizes directly to traces, too.

Corollary 6.1. Let T � M (�; I) be a trace language. Then the following

assertions are equivalent.

i) T is recognizable by some �nite (�nite and aperiodic, resp.) monoid.

ii) T is recognizable (star-free, resp.).

iii) T is de�nable in monadic second-order (�rst-order, resp.) logic.

Proof. Due to Thm. 6.1 and well-known results about words, it is enough to
show ii), iii) for the assertion about �rst-order logic, only. Both directions
are obtained analogously to the word case: The direction ii)) iii) is more
simple (in �rst-order logic) and we sketch the main idea for the concatenation.
Let t = [V;E; �] be a trace and t = uw a factorization. Then u;w correspond
to subsets U;W � V . In fact, we �nd a �nite set X = fx1; : : : ; xkg, 0 � k �
j�j, such that U = fy 2 V j 9xi 2 X : (y; xi) 2 E�g and W = fz 2 V j
8xi 2 X : (xi; z) =2 E�g. By standard techniques, see [91], we can construct
for given two �rst-order sentences 	1; 	2 a new �rst-order sentence specifying

Partial Commutation and Traces 49

those traces such that there exists a �nite set X as above and the dependence
graph restricted to U satis�es 	1, whereas the dependence graph restricted
to W satis�es 	2. The implication iii)) ii) follows from Thm. 6.2 below
giving a more precise statement.

Example 6.5. Let (�;D) = a � b � c and T � M (�; I) the trace language
T = (acbcab)+. Since ac = ca, this is the set of traces

c

a

c

a

c

a

� � � b bbb

with an even number of b. By the method of the �rst example of this section,
this trace language is de�nable in monadic second-order, but it is not �rst-
order-de�nable. On the other hand, the word language T = (acbcab)+ �
fa; b; cg� has a description by a �rst-order sentence. It is the set of words
starting with acbcab and every occurrence of the factor ab is either the end
or the word followed by another factor acbcab.

Remark 6.3. It is known by [79] that the commutative closure of a star-free
word language is either still star-free or not recognizable anymore. The ex-
ample above shows that for (�;D) = a�b�c the image of the word language
(acbcab)+ in M (�; I) is recognizable, but not star-free. This means in par-
ticular that the result about the commutative closure of star-free languages
can not be generalized to arbitrary trace monoids M (�; I). There is a pre-
cise characterization [79]: For all star-free word languages it holds that the
I-closure is either star-free or not recognizable if and only if the dependence
relation D is transitive.

6.3 Ehrenfeucht-Fra��ss�e-Games

Let t = [V (t); E(t); �(t)] be any node-labeled graph. Then V (t) denotes the
set of vertices, E(t) � V (t) � V (t) is the edge relation, and �t : V (t) ! �

is the node-labeling. For the moment it is not necessary to put any further
restrictions on E(t). Thus, the graphs may be �nite or in�nite, directed or
undirected, cyclic or acyclic, etc. By a = (a1; : : : ; ak) we denote a k-tuple
of nodes, a 2 V k, k � 0. If x = (x1; : : : ; xk), then 	(x) denotes a �rst-
order formula with free variables x1; : : : ; xk. Any pair (t; a) yields a natural
interpretation for 	(x). The interpretation of xi is ai for 1 � i � k. Thus,
the expression (t; a) j= 	(x) has a well-de�ned truth value.

An Ehrenfeucht-Fra��ss�e-game has two players, Player I and Player II. The
players take two structures (s; a) and (t; b) as above: s = [V (s); E(s); �s],
a 2 V (s)k, t = [V (t); E(t); �t], and b 2 V (t)k. They �rst decide on the
number of rounds m with m � 0.

If m = 0, we say that Player II wins the game, if �s(ai) = �t(bi) and
(ai; aj) 2 E(s) , (bi; bj) 2 E(t) for all 1 � i; j � k. If m � 1, then Player I

50 Volker Diekert and Yves M�etivier

begins and takes either a vertex ak+1 2 V (s) or a vertex bk+1 2 V (t). Player II
answers by taking either some bk+1 2 V (t) (if Player I has chosen in the
graph s), or by taking some ak+1 2 V (s) (otherwise). This �nishes the �rst
round. The game is continued with (m � 1) rounds over the new structures
(s; (a1; : : : ; ak; ak+1)) and (t; (b1; : : : ; bk; bk+1)).

The relation '(m;k) is de�ned by setting (s; a) '(m;k) (t; b), if Player II
has a winning strategy for a game on m rounds. The following lemmata are
well-known facts in logic.

Lemma 6.1. The relation '(m;k) is an equivalence relation of �nite index.

The quanti�er depth of a formula is de�ned inductively. For atomic for-
mulae it is zero, the use of the logical connectives does not change it, and
adding a quanti�er in front increase the quanti�er depth by one. For example,
the following formula has quanti�er depth two:

8x((9y(�(x) 6= �(y))) _ (9z(�(z) = b ^ ((x; z) 2 E _ �(x) = a))))

Lemma 6.2. Let 	(x) be a �rst-order formula with free variables x1; : : : ; xk
and (s; a) j= 	(x). If 	(x) has quanti�er depth m and (s; a) '(m;k) (t; b),

then we have (t; b) j= 	(x), too.

Let us denote by [s; a;m; k] the equivalence class f(t; b) j (s; a) '(m;k) (t; b)g.
Lemma 6.3. Each equivalence class [s; a;m; k] can be speci�ed by a �rst-

order formula 	 [s; a;m; k](x) of quanti�er depth m and with free variables

x1; : : : ; xk.

Proof. For m = 0 this is clear. Consider m+ 1 and assume inductively that
formulae for all classes [s; (a; ak+1);m; k + 1] are already speci�ed. The next
formula satis�es the requirement, it de�nes 	 [s; a;m+ 1; k](x):V

ak+1
(9xk+1	 [s; (a; ak+1);m; k + 1](x; xk+1)) ^

8xk+1(
_
ak+1

	 [s; (a; ak+1);m; k + 1](x; xk+1)):

Observe that the conjunction
V
ak+1

and the disjunction
W
ak+1

can be made
�nite by Lem. 6.1. Details are left to the reader.

Next, we need a concatenation on node-labeled graphs s = [V (s); E(s); �s].
We adopt the de�nition for dependence graphs. Thus, we de�ne s � t by

[V (s) _[V (t); E(s) _[E(t) _[f(x; y) 2 V (s)�V (t) j (�s(x); �t(y)) 2 Dg; �s _[�t]:

Having this, we can state the following Congruence Lemma. Its proof is
clear, since, due to the de�nition of concatenation, whether or not (x; y) 2
E(s � t) for x 2 V (s); y 2 V (t) depends on the labels of x and y, only.

Partial Commutation and Traces 51

Lemma 6.4. Let u be any �xed node-labeled graph and fu1; : : : ; ung its ver-
tex set. Let (s; a) '(m;k1) (s0; a0) and (t; b) '(m;k2) (t0; b

0
).

Then it holds:

(s � u � t; (a; u1; : : : ; un; b)) '(m;k1+n+k2) (s0 � u � t0; (a0; u1; : : : ; un; b
0
)):

In order to close the bridge to the star-free sets, we need a �nitely generated
monoid. For convenience we restrict our attention therefore again to �nite
dependence graphs, only. It is a nice coincidence that we have the following
fact.

Proposition 6.4. The set of traces (i.e., the set of �nite dependence graphs)

can be speci�ed by a �rst-order sentence.

Proof. The �rst requirement for dependence graphs is a �rst-order statement

8x8y : (�(x); �(y)) 2 D , (x; y) 2 E _ (y; x) 2 E _ x = y:

The second requirement asks for acyclic graphs. Because of the �rst formula,
it is enough to exclude cycles of short length; more precisely, we do not allow
cycles of length less or equal j�j + 1. Short cycles however can be speci�ed
in �rst-order logic.

A dot-depth hierarchy for words can also be de�ned for traces. The empty
set ; and the set of all traces M (�; I) are of dot-depth zero. To obtain level
k of the dot-depth hierarchy, k � 1, we de�ne it here as the Boolean closure
of the languages L � a �K, where a 2 � and L;K are of level k � 1.

Theorem 6.2. Let 	 be a �rst-order sentence of quanti�er depth m and

L() = ft 2 M (�; I) j t j= 	g. Then L() is in the m-th level of the

dot-depth hierarchy, and the corresponding star-free expression for L() can
e�ectively been constructed.

Proof. We sketch the proof, only. For m = 0 the result is true. By induction,
we assume the result to be correct form and that the sentence 	 has quanti�er
depth m+1 and it is in fact of the form 	 = 9x	 0(x). Consider the following
union

T =
[
fU � a � V j a 2 �; U = [u; ();m; 0]; V = [v; ();m; 0]; and uav j= 	g:

We now make several observations. The union is �nite by Lem. 6.1. By in-
duction and Lem. 6.3, it is a star-free expression of dot-depth m + 1. Since
u 2 U , v 2 V , we have uav 2 T , hence L() � T . The converse inclusion
follows by known techniques from the Congruence Lemma (Lem. 6.4) and
Lem. 6.2.

52 Volker Diekert and Yves M�etivier

6.4 Bibliographical Remarks

Dependence graphs for traces have been considered �rst by Mazurkiewicz in
[69]. In Anisimov and Knuth we �nd the description as labeled partial orders
[3]. The characterization of recognizable trace languages by monadic second-
order logic over traces is due to Thomas [92]. Our proof follows Ebinger
[41], see also [34, Chapt.10]. This allows to include the �rst-order statements
in Thm. 6.1 and, as noted earlier, Cor. 4.3 is an immediate consequence.
Independently Courcelle [22] gave another proof for Cor. 4.3 using monadic
second-order logic over traces. The equivalence of i) and ii) of Cor. 6.1 has
been shown by Guaiana, Restivo, and Salemi [58]. The equivalence to iii)
is from [42]. Thm. 6.1 and Cor. 6.1 have a generalization to concurrency
monoids by Droste and Kuske [37, 39]. Our proof technique using Ehren-
feucht-Fra��ss�e-games follows [91]. It led to Thm. 6.2 being a partial analogue
of a result of Thomas [90] on words.

7. Asynchronous Automata

7.1 Zielonka's Theorem

An asynchronous automaton A has a distributed �nite state control such
that independent actions may be performed in parallel. The set of global
states is modeled as a Cartesian product Q =

Q
i2J

Qi, where the Qi are states

of the local component i 2 J and J is some index set. With each letter
a 2 � we associate a read domain R(a) � J and a write domain W (a) � J .
We henceforth assume that W (a) � R(a) being a rather natural (but techni-
cally important) restriction. The transitions are given by a family of partially
de�ned functions (throughout we deal for simplicity with deterministic au-
tomata, only): 0

@�a :
Y

i2R(a)

Qi �!
Y

i2W (a)

Qi

1
A
a2�

Thus, each a reads the status in the local components of its read domain and
changes states in local components of its write domain. Accordingly to the
read-and-write-con
icts being allowed, we distinguish four basic types:

{ Concurrent-Read-Exclusive-Write (CREW),
if R(a) \W (b) = ; for all (a; b) 2 I .

{ Concurrent-Read-Owner-Write (CROW),
if R(a) \W (b) = ; for all (a; b) 2 I and W (a) \W (b) = ; for all a 6= b.

{ Exclusive-Read-Exclusive-Write (EREW),
if R(a) \ R(b) = ; for all (a; b) 2 I .

{ Exclusive-Read-Owner-Write (EROW),
if R(a) \ R(b) = ; for all (a; b) 2 I and W (a) \W (b) = ; for all a 6= b.

Partial Commutation and Traces 53

The local transition functions (�a)a2� give rise to a partially de�ned transi-
tion function on global states

� : (
Y
i2J

Qi)�� �!
Y
i2J

Qi

where �
�
(qi)i2J ; a

�
= (q0i)i2J is de�ned if and only if �a

�
(qi)i2R(a)

�
is de-

�ned. In this case we have q0j =
�
�a

�
(qi)i2R(a)

��
j

for j 2W (a) and qj = q0j

otherwise. If A is of any of the four types above, then it is clear that we
can de�ne the action of a trace t 2 M (�; I) on global states. It is con-
venient to denote this function again by �. Therefore, we may view it as
a partially de�ned function � : Q � M (�; I) ! Q. Given an initial state
q0 2 Q and a set F � Q, we obtain an M (�; I)-automaton. The automaton

A =

�Q
i2J

Qi; (�a)a2� ; q0; F

�
accepts the language L(A) = ft 2 M (�; I) j

�(q0; t) 2 Fg. If Q is �nite, then L(A) is a recognizable trace language. As
well-known in automata theory, we may add local dead states in order to
have a totally de�ned transition function.

Before we continue we need some more notations. Let t 2 M (�; I) be a
trace and a 2 � be a letter. By @a(t) we denote the smallest pre�x of t which
contains all occurrences a of t. Thus, @a(t) is the trace of minimal length
satisfying j@a(t)ja = jtja such that t = @a(t)q for some q 2 M (�; I). Viewing
t as a labeled partial order, @a(t) contains all vertices with label a and the
past of them. This notion is extended to subsets A � �. The trace @A(t)
is the minimal pre�x of t satisfying j@A(t)ja = jtja for all a 2 A. Note that
@;(t) = 1, @�(t) = t, and @a(t) is a pre�x of @A(t) for all a 2 A. Moreover,
viewing t as labeled partial order, we �nd that @A(t) is the union of the @a(t),
a 2 A.

De�nition 7.1. A mapping � : M (�; I) ! Q to some �nite set Q is called

asynchronous, if the following two conditions are satis�ed.

i) The value �(@A[B(t)) is computable from �(@A(t)) and �(@B(t)).
ii) If t = @D(a)(t), then the value �(ta) is computable from a 2 � and the

value �(t).

A trace language T � M (�; I) is recognized by an asynchronous mapping �,
if T = ��1�(T).

The following theorem is far from being trivial. It is crucial for the general
construction of asynchronous automata.

Theorem 7.1. A trace language is recognizable if and only if it is recognized

by some asynchronous mapping.

We cannot go into details of the di�cult only-if-part of the theorem. Once this
has been shown, then the proof of the if-part (c.f. Prop. 7.1) yields Zielonka's
Theorem as a corollary.

54 Volker Diekert and Yves M�etivier

Corollary 7.1. A trace language is recognizable if and only if it is recognized

by some asynchronous automaton.

The next sections give explicit transformations between the di�erent types
of asynchronous automata. Therefore we have Zielonka's Theorem for all
types considered here.

7.2 Asynchronous Cellular Automata

De�nition 7.2. An asynchronous automaton A is called asynchronous cel-
lular, if the state space Q can be decomposed as Q =

Q
a2�

Qa such that

W (a) = fag and R(a) = D(a) = fb 2 � j (a; b) 2 Dg for all a 2 �.

Remark 7.1. Every CROW-type asynchronous automata can be viewed as
asynchronous cellular by a trivial transformation (regrouping components)
which does not change the number of reachable global states.

The following proposition yields the if-part of Thm. 7.1.

Proposition 7.1. Let � : M (�; I) ! Q be an asynchronous mapping recog-

nizing a trace language T . Then Q� is the state space of an asynchronous

cellular automaton A with L(A) = T .

Proof. The tuple q0 = (�(1))a2� is used as initial state. The global transition
function is de�ned such that

�(q0; t) =

�
�(@b(t))

�
b2�

:

The reason why this works is based on the equation @a(ta) = @D(a)(t)a, which
holds for all t 2 M (�; I) and a 2 �. In fact, consider a tuple (qb)b2D(a)

with qb = �(@b(t)). Due to the �rst condition of an asynchronous mapping,
we can compute the value of �(@D(a)(t)). By the second condition, we may
compute �(@D(a)(t)a), which is �(@a(ta)). Therefore we can change the local
state qa to the new local state q0a = �(@a(ta)). Finally, observe that for all
b 2 �, b 6= a we have @b(ta) = @b(t). Hence, the new global state satis�es
indeed �(q0; ta) = (�(@b(ta))b2� . It is enough to de�ne the �nal states by
F = f(�(@b(t)))b2� j t 2 Tg. The result follows.

7.3 Changing Concurrent-Read to Exclusive-Read

The original de�nition an asynchronous automaton demands an EREW-type
with R(a) = W (a) for all a 2 �. Obviously, EROW is even a stronger
condition. (Recall our general assumption W (a) � R(a) for a 2 �). Therefore
we content ourselves with the following proposition.

Partial Commutation and Traces 55

Proposition 7.2. For every asynchronous automaton A of CROW-type

there exists an asynchronous automaton A0 of EROW-type with the same

number of reachable global states and recognizing the same language, L(A) =
L(A0).

Proof. By a remark above we may assume that the state space of A has the
form Q =

Q
a2�

Qa and R(a) = D(a) = fb 2 � j (a; b) 2 Dg for all a 2 �.

De�ne P(a;b) = Qa for all b 2 D(a), a 2 � by using di�erent copies. The new
set of global states is de�ned by P =

Q
a2�

Q
b2D(a)

P(a;b). For a 2 � we de�ne

the new partially de�ned transition function.

�0a :
Y

b2D(a)

P(b;a) �!
Y

c2D(a)

P(a;c)

(qb)b2D(a) 7�!
�
�a

�
(qb)b2D(a)

��
c2D(a)

In A0 the write domain of a letter a is W 0(a) = f(a; c) j c 2 D(a)g. The
read domain above has reduced to R0(a) = f(b; a) j b 2 D(a)g rather than
putting arti�cially R0(a) [W 0(a) (only in order to satisfy our restriction
W 0(a) � R0(a)). Thus, our construction realizes even an owner-read-owner-
write (OROW) concept. In any case, it is clear how to de�ne the initial state
and the global �nal states in order to archive L(A) = L(A0). Note that,
although the number of global states became larger, the number of reachable
states did not change. In some sense the automaton did not change at all.

7.4 Changing Exclusive-Write to Owner-Write

Let A =

�Q
i2J

Qi; (�a)a2� ; q0; F

�
be a �nite asynchronous automaton of

EREW-type. We are going to transform A into an asynchronous cellular
automaton A0 recognizing the same language. Denoting by ni the cardinality
of Qi we may assume that we have Qi = Z=niZ for all i 2 J . For each a 2 �
de�ne

Pa =
Y

i2R(a)

Z=niZ:

An element of Pa is denoted in the following as a tuple (q(a; i))i2R(a). The
set of global states of the asynchronous cellular automaton A0 is P =

Q
a2�

Pa.

For every local state space Qi; i 2 J , there exist now several copies available
for A0. For i 2 J let �i = fa 2 � j i 2 R(a)g. The idea of the construction
is to split the information about a local state qi 2 Qi among the components
with a 2 �i such that the following invariant is satis�ed

qi =
X
a2�i

q(a; i) mod ni:

56 Volker Diekert and Yves M�etivier

Without restriction the local initial state (q0)i is the value 0 2 Z=niZ for
all i 2 J . In order to satisfy the invariant above we simply put

(p0)a = (0; : : : ; 0) 2
Y

i2R(a)

Z=niZ

and de�ne p0 = (p0)a2� as the initial state of A0.
We have to explain how to perform an a-transition on a global state

((q(b; i))i2R(b))b2� for some letter a 2 �.
For every i 2 R(a) we read in the components Pb where b 2 �i. Note

that since we have started with an exclusive-read automaton this implies
(a; b) 2 D. Thus, reading in all these components is allowed by the de�nition
of an asynchronous cellular automaton. We simply compute the sum:

qi =
X
b2�i

q(b; i) mod ni 2 Z=niZ= Qi:

The transition function �a of the automaton A is used to de�ne a value
q0 = �a((qi)i2R(a)) being in fact a tuple q0 = (q0j)j2W (a) with W (a) � R(a).

The automaton A0 may change the values in the components of the local
state space Pa as follows:

q0(a; i) = q(a; i) for i 2 R(a) nW (a);
q0(a; j) = q0j �

P
b2�jnfag

q(b; j) for j 2 W (a):

The invariant above is veri�ed again. It is therefore clear how to simulate A
step by step and how to de�ne �nal states in order to complete the transfor-
mation.

We should add a remark on the size of the new automaton. A reasonable
de�nition of the size of A is the sum j�j+Pi2J jQij+ length of the program
which implements the family (�a)a2� . (At �rst sight this de�nition might
look strange, but it is a quite realistic measure.) With this notion of size, we
can state the following proposition.

Proposition 7.3. For every asynchronous automaton of EREW-type we can

construct in polynomial time an asynchronous cellular automaton recognizing

the same language.

7.5 The Construction for Triangulated Dependence Alphabets

A surprisingly simple construction of asynchronous automata is known for
triangulated dependence alphabets. An undirected graph is called triangu-

lated, if all its chordless cycles are of length three. Particular cases are there-
fore complete graphs and acyclic graphs (acyclic means a disjoint union
of trees). A dependence alphabet (�;D) is called triangulated, if the un-
derlying undirected graph has this property. A perfect vertex elimination

scheme of (�;D) is a linear ordering � of � such that for all a 2 � the set

Partial Commutation and Traces 57

E(a) = fb 2 D(a) j a � bg forms a clique (i.e., a complete subgraph; (E(a))�

is therefore a free monoid). We may represent a perfect vertex elimination
scheme by a list [a1; : : : ; an] such that ai � aj if and only if i � j. It is
well-known, see e.g. the textbook of Golumbic [56, Thm. 4.1] that (�;D) has
a perfect vertex elimination scheme if and only if it is triangulated. If e.g.
(�;D) is acyclic, then any ordering which represents a topological sorting
yields a perfect vertex elimination scheme. For a complete graph, every total
order is a perfect vertex elimination scheme.

Let (�;D) be any dependence alphabet and let � be a linear ordering of
� such that for all a; b; c 2 �, a � b � c, (a; c) 2 D and (b; c) 2 D, we have
(a; b) 2 D, too. Thus, if � = fa1; : : : ; ang, n = j�j is written in increasing
order a1 < � � � < an, then [an; : : : ; a1] is a perfect vertex elimination scheme
of (�;D). Hence (�;D) is triangulated. Consider now a homomorphism to
a �nite monoid � : M (�; I) �! S.

De�ne for � � � and sc 2 S (c 2 �) the ordered product
�!Y

c2�
sc by

multiplying the elements according to the ordering in �. Thus,
�!Y

c2�
sc =

sc1 � � � scm , if � = fc1; : : : ; cmg, m � 0, with c1 < � � � < cm. All products of
elements of S used here will be ordered ones. We are going to construct an
asynchronous automaton A recognizing a trace language T = ��1(�(T)).

The state set of A will be an n-fold direct product of S, n = j�j. Let
A = (

Q
a2�

Qa; �; q0; F) be the automaton with Qa = S for all a 2 � such

that the global transition function

� : (
Y
a2�

Qa)�� �!
Y
a2�

Qa;

is de�ned for q = (qb)b2� and a 2 � as follows:

�(q; a) = q0 with qb
0 =

8>>><
>>>:

� �!Y
a�c; (a;c)2D

qc

�
� �(a) if b = a

1 if a < b; (a; b) 2 D
qb otherwise

Furthermore, let q0 = (1)a2� and F = f(qa)a2� 2
Q
a2�

Qa j
�!Y
a2�

qa 2 �(T)g.

Proposition 7.4. Let T � M (�; I) be recognized by the homomorphism � :
M (�; I) ! S to the �nite monoid S. Let A be the automaton de�ned above.

Then A is asynchronous of EREW-type and we have L(A) = T .

Proof. The write-and-read domain of a letter a 2 � is given by the index
set R(a) = W (a) = fb 2 D(a) j a � bg. Assume that for some a; b; c 2 �,
a � b � c we have (a; c) 2 D and (b; c) 2 D. Then (a; b) 2 D follows, due to

58 Volker Diekert and Yves M�etivier

the ordering. Hence, if (a; b) 2 I , then a and b have disjoint write-and-read
domains. Thus, A is asynchronous of EREW-type. In particular, for any trace
w 2 M (�; I), the global state �((1)a2� ; w) is well-de�ned. We denote this
global state also by q0 � w.

For (qa)a2� = q0 � w the following two invariants can be shown:

i) a < b and (a; b) 2 I imply qb �(a) = �(a) qb.
ii) a < b � c, (a; b) 2 I , and (a; c) 2 D imply qb qc = qc qb.

The proposition follows now from the following claim:

For (qa)a2� = q0 � w we have
�!Y
a2�

qa = �(w):

The claim is satis�ed for jwj = 0 since q0 = (1)a2� . By induction assume
that the claim holds for q = q0 � w and let q0 = q � a for some letter a 2 �.

Since
�!Y
c2�

qc = (
�!Y
c<a

qc) � (
�!Y
a�c

qc), it is enough to show:

(
�!Y
a�c

qc) �(a) = (
�!Y

a�c; (a;c)2D

qc) �(a) (
�!Y

a<b; (a;b)2I

qb):

However, this last formula is immediate from the two invariants above.

Remark 7.2. Note that as soon as the dependence graph contains a chordless
cycle of length greater than three, the automaton constructed above is not
asynchronous anymore. More precisely, for any ordering � of the alphabet �
there exist letters a < b < c (on the cycle) satisfying (a; c) 2 D, (b; c) 2 D,
but (a; b) 2 I . In this case however, c belongs to both read domains of a and
of b.

7.6 Bounded Time-Stamps in a Distributed System

Suppose that in a distributed system some agents communicate by means
of messages. Usually, to execute correctly the prescribed protocol the agents
should have some knowledge about the relative order of messages. To this
end, they add to every message a tag , called a time-stamp, enabling them
to �nd out the necessary information about the ordering of messages. The
importance of an appropriate stamping algorithm was for the �rst time em-
phasized by Lamport (1978) [67], to which we refer the reader for further
discussion. In most cases, it is a relatively easy task to construct an appro-
priate stamping system if no bounds on the size of stamps are imposed. But
if we allow only a �nite set of time-stamps then the construction of an ap-
propriate stamping system becomes di�cult or sometimes even impossible.
In this section we show how to use the result about asynchronous automata
to construct a special �nite time-stamp system.

Partial Commutation and Traces 59

The distributed system considered here consists of a �nite set � of agents
and a �nite set B of boxes. The agents communicate by messages that they
leave in some boxes. Every agent a 2 � has access only to a subset Dom(a) �
B of boxes (Referring to previous notations, we consider here Dom(a) =
R(a) = W (a):) Conversely, for every box i 2 B, �i = fa 2 � j i 2 Dom(a)g
is the set of agents which have access to i. If i 2 Dom(a) then we say that
the box i and the agent a are adjacent.

By Bi, for i 2 B, we shall denote the contents of the box i, i.e. the set
of messages contained in i. We assume that at the beginning all boxes are
empty, i.e., Bi = ; for all i 2 B.

Every message is a triple (m; a; d), where m is the contents of the message
taken from some set M of possible contents; a 2 � identi�es the sender of the
message, and �nally d is a time-stamp from some set Stamps of time-stamps.
Thus formally the Cartesian product U = M � A� Stamps is the set of all
messages. In the following, by contents, sender, and stamp we shall denote
the projection of U onto M , �, and Stamps respectively. Furthermore, we
assume that any box contains for any a 2 � at most one message sent by a.

During their moves the agents not only will send new messages but also
will retransmit messages sent by other agents. For this reason, besides mes-
sages left by agents adjacent to i, every box i 2 B can contain messages sent
by other agents and retransmitted by agents from �i.

A single move of each agent a 2 � consists of four phases. During the
�rst phase a reads the contents of all adjacent boxes, emptying them in this
way. Let R be the set of messages that were read in this phase.

In the second phase, for every b 2 � n fag, if R contains messages sent by
b then a selects the last of them (the most recent), denoted it ub.

In the third phase, a chooses m 2M that it wishes to send and computes
a time-stamp d 2 Stamps. Let ua = (m; a; d).

Finally, in the last phase a transmits to all adjacent boxes all messages
from the set fuc j c 2 �g.

The entire move (consisting of reading, selecting, constructing a new mes-
sage, and sending) is considered to be atomic. This implies that the access
to every box is sequential, and moreover, at a given moment, an agent a has
access either to all adjacent boxes or to none of them. Note that immediately
after the move all boxes adjacent to a have the same contents: for every agent
b 2 �, they contain at most one message issued by b, namely the last message
sent by b and known to a. We assume that for every message u 2 U the �eld
contents(u) does not provide any information concerning the relative order of
messages. Thus during the second phase of every move, agent a can use only
the �elds sender(u) and stamp(u) of u 2 R to �nd out for every b 2 � n fag
the last message in R sent by b.

To implement this system we should specify: the set Stamps, the algo-
rithm selecting messages in the second phase of each move, and the algorithm
assigning a stamp to the new message created in the third phase.

60 Volker Diekert and Yves M�etivier

A simple implementation exists if we allow the set Stamps to be in�nite.
Let Stamps = N, and assume that every agent is equipped with a counter
initially set to 0. Then during its move, agent a increases its counter by 1
and takes the obtained value as the time-stamp d for its new message in the
third phase, ua = (m; a; d). The selection procedure in the second phase of
the move is trivial in this implementation. For every b 2 � n fag, a takes all
messages in R with the sender �eld equal to b and selects among them the
one with the greatest stamp �eld.

The aim of this section is to present a di�erent implementation with a
bounded number of time-stamps. First we de�ne some auxiliary notions. By
a serial event we shall mean any �nite sequence of elements of the set M��,
SE = (M ��)�. Any occurrence of (m; a) 2M �� in a serial event x 2 SE
represents a move performed by the agent a such that m is the contents of
the new message sent by a during this move. Let us suppose that � is an
algorithm implementing the system. For every x 2 SE and i 2 Box by B�

i (x)
we denote the contents of the box i after the execution of the serial event
x in the implementation �; B�

i (x) can be de�ned in the following inductive
manner:

(i) for all i 2 Box, B�
i (�) = ;,

(ii) if y = x(m; a) 2 SE then
(1) for all i 2 B nDom(a), B�

i (y) = B�
i (x),

(2) to obtain the new contents of all boxes adjacent to a apply the algo-
rithm � to Bi = B�

i (x) with i 2 Dom(a).

Example 7.1. Let � = fa; b; c; dg and B = fBab; Bbc; Bcd; Bdag, where Bxy
with x; y 2 �, denotes the box adjacent to x and y.

Let S = (m1; a)(m2; b)(m3; a)(m4; c)(m5; d) be a serial event and let Si
denote the pre�x of S of length i = 0; : : : ; 5.

The contents of the boxes after the execution of Si in the counter imple-
mentation that was considered previously are as follows.

After S0: Bab = ;, Bbc = ;, Bcd = ;, Bda = ;;
After S1: Bab = f(m1; a; 1)g, Bbc = ;, Bcd = ;, Bda = f(m1; a; 1)g;
After S2: Bab = f(m1; a; 1); (m2; b; 1)g, Bbc = f(m1; a; 1); (m2; b; 1)g, Bcd = ;,

Bda = f(m1; a; 1)g;
After S3: Bab = f(m3; a; 2); (m2; b; 1)g, Bbc = f(m1; a; 1); (m2; b; 1)g, Bcd = ;,

Bda = f(m3; a; 2); (m2; b; 1)g;
After S4: Bab = f(m3; a; 2); (m2; b; 1)g, Bbc = f(m1; a; 1); (m2; b; 1); (m4; c; 1)g,

Bcd = f(m1; a; 1); (m2; b; 1); (m4; c; 1)g, Bda = f(m3; a; 2); (m2; b; 1)g;
After S5: Bab = f(m3; a; 2); (m2; b; 1)g, Bbc = f(m1; a; 1); (m2; b; 1); (m4; c; 1)g,

Bcd = f(m3; a; 2); (m2; b; 1); (m4; c; 1); (m5; d; 1)g,
Bda = f(m3; a; 2); (m2; b; 1); (m4; c; 1); (m5; d; 1)g.

Let I be the independence relation over � de�ned in the following way:

I = f(a; b) 2 � �� j Dom(a) \Dom(b) = ;g:

Partial Commutation and Traces 61

To de�ne time-stamps we need some de�nitions. First we de�ne the set of
prime elements, denoted Pr(�; I); by

Pr(�; I) = f@a(t) j a 2 � and t 2 M (�; I)g:

We can associate to a message a trace which encodes the partial order corre-
sponding to the communication between agents. As we want bounded time-
stamps, we de�ne a map having a �nite image and carrying enough informa-
tion on a trace t to know the pre�x order on the traces @a(t) for a 2 �: We
thus de�ne a labeling � from Pr(�; I) into the set of positive integers by

�(1) = j�j;

and for a 2 �; t 2 M (�; I) such that ta 2 Pr(�; I);

�(ta) = minfi 2 N n f0g j 8b 2 � n fag i 6= �(@a(@b(t)))g:

From this mapping � we construct for every trace t a mapping �t from ���
into N n f0g setting for any pair (a; b) of letters

�t(a; b) = �(@a(@b(t))):

We denote by F (X ;Y) the family of all partial mappings fromX to Y: It turns
out that the mapping � associating with a trace t of M (�; I) the element �t
of F (� ��; f1; : : : ; j�jg) is asynchronous. Its importance is emphasized by
the fact that all asynchronous mappings we need in the proof of Zielonka's
Theorem are re�nements of this basic mapping �:

We set Stamps = F (�; f1; : : : ; ng), where n = j�j. Let tag be the map-
ping from Pr(�; I) into Stamps de�ned in the following way:

8t 2 Pr(�; I); 8a 2 � : tag(t)(a) = �(@a(t)):

Now the idea of the implementation
 is to assign to messages elements of
Stamps in such a way that the following condition is satis�ed (we recall that
�i = fa 2 � j i 2 Dom(a)g).
Condition (�): 8h 2 H , 8b 2 �, 8i 2 B, 8t 2 M (�; I), 8k > 0: if

t = sender(h) 2 M (�; I);

j@b(@�i
(t))jb = j@�i

(t)jb = k > 0;

(m; b) is the k-th message of b in h,

then
(m; b; tag(@b(@�i

(t)))) 2 B

i (h):

If Condition (�) holds, h 2 H , and t = sender(h), then for each i 2 B
the time-stamps of the messages in the box i determine the mapping �@�i (t).

62 Volker Diekert and Yves M�etivier

Lemma 7.1. Suppose that an implementation
 satis�es (�). Let h 2 H,

t = sender(h) 2 M (�; I). Then:

�@�i (t)(c; b) =

�
n if B

i (h) does not contain messages sent by b

f(c) if (m; b; f) 2 B

i (h).

Now we can present the details of the algorithm
. Let a 2 � and let h 2 H
be the history executed up to now. Let t = sender(h) 2 M (�; I). Inspecting
the contents of box i, a can calculate �@�i (t) for all i 2 Dom(a). Now by the
property of � agent a obtains �@D(a)(t). During the selection phase, a chooses
for every b 2 � n fag from the reading set R the message ub = (m; b; f) such
that:

8c 2 � f(c) = �@D(a)(t)(c; b):

As � is asynchronous, a can now get �@a(ta). Let g be the mapping from �

into f1; : : : ; ng such that:

8c 2 �; g(c) = �@a(ta)(c; a):

Then g is the time-stamp for the new message that a creates during the third
phase, ua = (m; a; g). To show the correctness of
 it su�ces to observe that
if Condition (�) holds for a history h then it holds for the history h(m; a)
for every (m; a) 2M ��.

7.7 Bibliographical Remarks

Zielonka's Theorem is from [93]. Proofs based on the notion of asynchronous
mappings can be found in [20, 24], and [34, Chapt.8]. Asynchronous cellular
automata have been introduced in [94]. The transformations between di�erent
types of asynchronous automata have been studied in detail by Pighizzini
[85]. The presentation of Sect. 7.4 is from a lecture of Hoogeboom (Palermo
1996). The construction for triangulated dependence graphs is from Diekert
and Muscholl [32]. It heavily uses the main idea from M�etivier [73], who
developed this method for acyclic dependence graphs. Bertoni, Mauri, and
Sabadini used in [7] a similar method for acyclic Petri nets, but the latter
paper was not widely distributed. Bounded time-stamps are from [20].

8. In�nite Traces

8.1 Real Traces

An in�nite word is a mapping u : N �! �. We can write u = u(0)u(1) � � �
with u(i) 2 �. The set of in�nite words is denoted by �!; hence �1 =
�� [�! is the set of �nite and in�nite words. The mapping 'G : �� �!
G (�;D) from words to dependence graphs has a natural extension to �1

Partial Commutation and Traces 63

For u = u(0)u(1) � � � 2 �! the dependence graph 'G (u) = [V;E; �] is de�ned
as follows: The vertex set is V = N with �(i) = u(i). There is an arc (i; j) 2 E
if and only if i < j and (u(i); u(j)) 2 D. The image 'G (u) 2 G , u 2 �1

is called real trace. The set of real traces is denoted by R(�;D). This set
contains �nite and in�nite dependence graphs. For simplicity we write '

instead of 'G . Hence ' : �1 �! R(�;D) is a surjective mapping. A �nitary

language is a subset of M (�; I), i.e., a language over �nite traces.
For a dependence graph g = [V;E; �] we infer standard notations from

the �nite case. In particular, we can speak of alph(g), of g being connected,
and of a decomposition into connected components. As usual, we write gIh,
if alph(g)� alph(h) � I .

Let g = [V;E; �] 2 G (�;D) and x 2 V be a vertex. By #x we mean the
dependence graph being induced by the set fy 2 V j (y; x) 2 E�g. Thus, it is
the dependence graph (having a unique maximal element), being induced by
all nodes below or equal to x. By Prop. 6.1 we can write g = (#x)h for some
uniquely determined h 2 G (�;D).

Remark 8.1. A dependence graph g = [V;E; �] is a real trace, i.e., g = '(u)
for some word u 2 �1, if and only if #x is �nite for all x 2 V . This property
characterizes therefore R(�;D) � G (�;D).

Having this notation, we may de�ne the decomposition of a dependence
graph into its real (standard) and trans�nite part:

De�nition 8.1. For a dependence graph g = [V;E; �] 2 G (�;D) we de�ne

its real part Re(g) 2 R(�;D) to be the dependence graph being induced by

the set fx 2 V j # x is �niteg. The trans�nite part Tr(g) 2 G (�;D) is the

dependence graph which is induced by the set fx 2 V j # x is in�niteg. The
alphabet at in�nity, alphinf(g) � �, is the set of labels

alphinf(g) = f�(x) 2 � j �(x) appears in�nitely often or #x is in�niteg:
The following proposition is obvious.

Proposition 8.1. Let g; h 2 R(�;D) be real traces. Then

alphinf(g) = f�(x) 2 � j �(x) appears in�nitely often g:
The product g �h 2 G (�;D) is a real trace if and only if alphinf(g)�alph(h) �
I.

It is straightforward to de�ne iterations and !-products for dependence
graphs. Closing the family of rational languages over �nite traces under the
operation union, concatenation, Kleene-star, and !-product, we obtain the
family of !-rational (or rational for short) dependence graphs Rat(G (�;D)).
The family of rational real trace languages is de�ned by

Rat(R(�;D)) = fL � R(�;D) j L 2 Rat(G (�;D))g:
Using Prop. 8.1 and well-known closure properties for the family of !

regular word languages Rat(�1) the following characterization can be shown.

64 Volker Diekert and Yves M�etivier

Proposition 8.2. The family of rational real trace languages is the smallest

family containing Rat(M (�; I)) and being closed under union, concatenation

with �nitary languages on the left, Kleene-star and !-products over �nitary

languages.

Example 8.1. Let a; b; c 2 �, (a; b) 2 I , (a; c) 2 D, t 2 M (�; I), and g 2
G (�;D). Then we have:

{ a!b! = (ab)! 2 Rat(R(�;D)).
{ a!c is not a real trace, Re(a!c) = a!, Tr(a!c) = c, and alphinf(a!c) =
fa; cg. Hence, alphinf(a!c) = alphinf(a!) if and only if a = c.

{ tg2 2 R(�;D) if and only if g is �nite.

Proposition 8.3. A real trace language L � R(�;D) is rational if and only

if it can be written as a �nite union

L =
[
�nite

RT!

over �nitary rational trace languages R and T .

Guided by the notions on �nitary languages we de�ne the families of
star-connected, c-rational, and star-free real trace languages.

For star-connectedness: the Kleene-star and the !-product are allowed
over �nitary and connected languages, only.

For c-rational: the Kleene-star and the !-product are replaced by oper-
ations, where �rst we take the language of connected components and then
apply the Kleene-star (!-product resp.) over this connected language.

For star-freeness: we start with the star-free �nitary trace language. Then
we take the closure under Boolean operations (with respect to R(�;D)) and
under concatenation with �nitary languages on the left. Neither Kleene-star
nor !-product are allowed. It is easy to verify that for all A;B � � the set
fg 2 R(�;D) j alph(g) � A; alphinf(g) � Bg is star-free. Note also that the
language (ab)! is star-free, whether or not (a; b) 2 D.

In Sect. 6.2 we have de�ned �rst-order and monadic second-order sen-
tences. Of course, being a dependence graph every real trace yields an inter-
pretation for such a sentence.

Finally, we extend the notion of recognizability from in�nite words to
real traces. We say that a homomorphism � : M (�; I) �! S to a �nite
semigroup recognizes a real trace language L � R(�;D), if for all in�nite
sequences s0s1s2 � � � and t0t1t2 � � � with �(si) = �(ti) for all i � 0 we have the
equivalence

s0s1s2 � � � 2 L () t0t1t2 � � � 2 L:

De�nition 8.2. A real trace language L � R(�;D) is called recognizable,
if there exists some recognizing homomorphism � : M (�; I) �! S to a �nite

semigroup S.

Partial Commutation and Traces 65

Let L � R(�;D) be a real trace language. We de�ne the syntactic con-
gruence �L� M (�; I) � M (�; I) by setting u �L v for u; v 2 M (�; I) if and
only if for all x; y; z 2 M (�; I) we have:

xuyz! 2 L () xvyz! 2 L
x(uy)! 2 L () x(vy)! 2 L

As for in�nite words we have the following proposition:

Proposition 8.4. A real trace language L � R(�;D) is recognizable if and

only if we have both, the syntactic congruence �L is of �nite index and the

syntactic homomorphism �L : M (�; I) �! M (�; I)=�L recognizes L.

Proposition 8.5. Let ' : �1 �! R(�;D) be the canonical mapping,

L � R(�;D) be a real trace language, and K = '�1(L). Then the following

assertions hold:

i) The syntactic monoids ��=�K and M (�; I)=�K are canonically isomor-

phic.

ii) The syntactic homomorphism �K : �� �! ��=�K recognizes K if and

only if �L : M (�; I) �! M (�; I)=�L recognizes L.

Corollary 8.1. A real trace language L � R(�;D) is recognizable if and

only if '�1(L) � �1 is recognizable.

A word language K � �1 is called closed, if K = '�1'(K).

Proposition 8.6. A recognizable word language K � �1 is closed if and

only if ab �K ba for all (a; b) 2 I.
The implication \=)" in the proposition above is trivial and holds for every
closed language. Unlike the �nitary case the converse is less obvious. The
proof uses Ramsey-factorization and the fact that the language K is rec-
ognized by the syntactic homomorphism �K : �� �! ��=�K . The formal
proof is left to the reader. The proposition above yields a decidability result
immediately.

Corollary 8.2. It is decidable whether a recognizable word language is closed.

Bringing together the di�erent notions introduced so far, we can state the
following theorem.

Theorem 8.1. Let ' : �1 �! R(�;D) be the canonical mapping, L �
R(�;D) be real trace language, and �L : M (�; I) �! M (�; I)=�L be the

syntactic homomorphism. Then the following assertions are equivalent.

i) L is a recognizable subset of R(�;D).
ii) '�1(L) is a recognizable subset of �1.

iii) The syntactic congruence �L is of �nite index and �Lrecognizes L.

iv) L is star-connected.

66 Volker Diekert and Yves M�etivier

v) L is c-rational.

vi) L is de�nable in monadic second-order logic.

vii) The language L can be written as a �nite union

L =
[
�nite

RT!;

where R and T are �nitary recognizable trace languages such that T = T �.

The �rst-order counterpart can be stated as follows:

Theorem 8.2. Under the same assumptions as above, the following assump-

tions are equivalent:

i) L is star-free.

ii) '�1(L) is star-free.
iii) The syntactic monoid M (�; I)= �L is �nite, aperiodic, and �L recognizes

L.

iv) L is de�nable in �rst-order logic.

v) The language L can be written as a �nite union

L =
[
�nite

RT!;

where R and T are �nitary star-free languages such that T = T �.

8.2 Asynchronous B�uchi- and Muller Automata

A non-deterministic �nite asynchronous cellular automaton A is a tuple A =
(Q; s; (�a)a2� ; T) where Q =

Q
a2�

Qa is the set of global states, s = (sa)a2�

is the initial state, �a �
 Q
b2D(a)

Qb

!
� Qa is the local transition relation,

and T = fT1; : : : ; Tng is the acceptance table for runs, and each Ti satis�es
Ti =

Q
a2�

Ti;a for some Ti;a � Qa.

The automaton is called deterministic, if the local transition relations �a
are partially de�ned functions.

A run r of A on a real trace g = [V;E; �] is a labeling function r : V �!
_S
a2�Qa satisfying the following conditions:

i) If �(x) = a for x 2 V , then we have r(x) 2 Qa.
ii) Let x 2 V , �(x) = a, and r(x) = qa. For each b 2 D(a) let qb either

be r(xb), if there exists the maximal vertex xb with (xb; x) 2 E� and
�(xb) = b, or let qb = sb (the b-component of the initial state) otherwise.
Then we have �

(qb)b2D(a); qa

�
2 �a:

Partial Commutation and Traces 67

We de�ne the in�nite behavior of a run r on g as follows:

inf(r) =
n
q 2 Q j q = (qa)a2� such that for each a 2 � :

either r�1(qa) contains in�nitely many vertices
or it contains the maximal vertex with label a,

or, if a =2 alph(g), then qa = sa

o
:

For A a B�uchi- and a Muller acceptance condition are de�ned. Accordingly
A is called a B�uchi- or Muller automaton. A real trace g 2 R(�;D) is B�uchi-
accepted if there exist a run r on g and some Ti 2 T such that Ti � inf(r).
It is Muller-accepted if we demand equality Ti = inf(r) for some Ti 2 T .

Although the Muller acceptance is more powerful, it is easy to see that
the non-deterministic models are equivalent in the sense that they lead to
the same class of accepted languages.

Theorem 8.3. Let L � R(�;D) be a real trace language. Then the following

assertions are equivalent:

i) L is recognizable.

ii) L is accepted by some non-deterministic �nite asynchronous cellular

B�uchi-automaton.

iii) L is accepted by some non-deterministic �nite asynchronous cellular

Muller-automaton.

iv) L is accepted by some deterministic �nite asynchronous cellular Muller-

automaton.

Remark 8.2. The equivalence i), iv) above generalizes McNaughton's The-
orem to real traces. The original proof in [31] transforms via an implicit dou-
ble exponential algorithm a given non-deterministic B�uchi-automaton for a
closed word language into a deterministic �nite asynchronous cellular Muller-
automaton. This proof does not use the equivalence i) , ii). Therefore the
acceptance of a recognizable language by some non-deterministic �nite asyn-
chronous cellular B�uchi-automaton can be viewed as a corollary. But for this
fact a much simpler and direct construction exists by [50].

8.3 Complex Traces

There is no convenient way to de�ne a concatenation on real traces, in general.
To see this consider the following two axioms:

I a!b! = a! for (a; b) 2 D
II a!b! 6= a! for (a; b) 2 I
There is an associative operation satisfying I and II if and only if D is tran-
sitive. Indeed: If D is transitive, then M (�; I) = ��1 � � � � � ��k is a direct
product of free monoids. The sets �1i are monoids with a right-absorbent
multiplication if the left-hand side is an in�nite word. This de�nition yields

68 Volker Diekert and Yves M�etivier

a concatenation on R(�;D) = �11 �� � ���1k satisfying I and II. If D is not
transitive then consider a!b!c! with (a; b); (b; c) 2 D, a; b; c pairwise distinct,
and (a; c) 2 I . An operation satisfying I and II is never associative:

(a!b!)c! = a!c! 6= a! = a!b! = a!(b!c!)

On the other hand, G (�;D) is a monoid and we may consider the greatest
congruence respecting real parts. The quotient monoid by this congruence
is called the monoid C (�;D) of complex traces . This monoid has a very
convenient and concrete characterization.

Theorem 8.4. Let �C denote the greatest congruence on G (�;D) satisfying
Re(g) = Re(h) for all g �C h. Then for all g; h 2 G (�;D) it holds:

g �C h () (Re(g) = Re(h) and D(alphinf(g)) = D(alphinf(h))) :

Hence, the quotient monoid G (�;D)= �C can be identi�ed with the following
set:

C (�;D) = f(Re(g); D(alphinf(g))) 2 R(�;D) �P(�) j g 2 G (�;D)g:

By de�nition C (�;D) is a monoid and the concatenation is inherited from
the concatenation of dependence graphs. It is necessary (otherwise the whole
formalism would be rather useless) to have an explicit formula. First, we need
a few more notations. Let g 2 G (�;D) be a dependence graph and A � �

be a subset. We de�ne �A(g) as the maximal real pre�x g being independent
of A. If � denotes the pre�x ordering on G (�;D), then it is easy to see that
every directed set of real traces has a real least upper bound. Therefore we
have

�A(g) =
G
fp 2 M (�; I) j p � g and alph(p)�A � Ig 2 R(�;D):

If p is a pre�x of g, we denote by p�1g the unique dependence graph such that
p(p�1g) = g, and by D(p�1g) we denote the set D(alph(p�1g)). We de�ne

�A(g) = D(alphinf(g)) [D(�A(g)�1g)
=

TfD(p�1g) j p 2 M (�; I); p � g; and alph(p)�A � Ig:

Note that we always have D(alphinf(g)) � �A(g). Obviously, D(A) = D(A0)
implies �A(g) = �A0(g) and �A(g) = �A0(g) for all g 2 G (�;D). The follow-
ing formula yields the concatenation of complex traces:

(r;D(A)) � (s;D(B)) = (r�A(s); �A(s) [D(A [B)):

The formula above is fundamental for the calculus on complex traces. Once
one has de�ned when a complex trace is connected (there are several suit-
able choices, take any of them), it is straightforward to de�ne the notion of
rational, star-connected, and c-rational complex trace languages. We can go

Partial Commutation and Traces 69

even further and de�ne an �-product of a trace language for every ordinal �.
Details are left to the reader.

There are also many equivalent de�nitions of recognizable complex trace
languages. We content ourselves with the following

De�nition 8.3. A complex trace language L � C (�;D) is called recogniz-
able, if the language of real traces

LA = fr 2 R(�;D) j (r;D(A)) 2 Lg

is recognizable for all A � �.

Example 8.2. Let D = ��� be full. Then C (�;D) = �1. For L � �1 we
have L; = L\�� and L� = L\�!. The language L is recognizable if both
L; � �� and L� � �! are recognizable in the classical sense.

Theorem 8.5. Let L � C (�;D) be a complex trace language. Then the

following assertions are equivalent:

i) L is recognizable.

ii) L is star-connected.

iii) L is c-rational.

8.4 Topological Properties and the Domain of �-Traces

Consider the following two functions from M (�; I) � M (�; I) to N [f1g:

`R(u; v) = supfn 2 N j 8p 2 M (�; I); jpj � n : p � u, p � vg
`C (u; v) = supfn 2 N j 8p 2 M (�; I); jpj < n : D(p�1u) = D(p�1v)g

Note that D(p�1u) � � is de�ned only if p � u. Thus, the equation
D(p�1u) = D(p�1v) means that either p is a pre�x of both traces u and
v or of none. The functions `R and `C yield two ultra-metrics on M (�; I):

dR(u; v) = 2�`R(u;v)

dC (u; v) = 2�`C(u;v):

Theorem 8.6. The completion of the metric space (M (�; I); dR) is R(�;D);
the completion of (M (�; I); dC) is C (�;D). Both spaces are compact and

totally disconnected, containing the set of �nite traces M (�; I) as an open

and discrete subspace.

The concatenation of (M (�; I); dC) is uniformly continuous; its continu-

ous extension to C (�;D) coincides with the concatenation de�ned explicitly

above. The concatenation of (M (�; I); dR) is uniformly continuous if and only

if D is transitive (if and only if dR and dC are equivalent metrics).

70 Volker Diekert and Yves M�etivier

As it is well-known from the sequential calculus, the concatenation is not
monotone with respect to the pre�x ordering, i.e., a � ab, but we do not have
ac � abc, in general. In the sequential calculus the solution is to introduce a
special symbol for termination. Here, we provide some alphabetic information
about the set of other actions which can be executed in parallel before waiting
for termination of the process. Formally, we add to a (�nite) trace a second
component of the form D(A) with A � �. The semantics is that, before
termination, the process may perform in the future only actions a 2 � such
that D(a) � D(A). Therefore the semantics of D(A) = � is that everything
is possible; the semantics of D(A) = ; is explicit termination. Note that for
the full dependency D = � � � the whole information reduces to explicit
termination, since there are no other sets D(A) than � or ;.

We de�ne a partially ordered monoid M �(�; I) as follows (the sign �

refers to dependence information):

M �(�;D) = f(u;D(A)) j u 2 M (�; I); A � �g:

It is the monoid with the concatenation

(u;D(A)) � (v;D(B)) = (u�A(v); �A(v) [D(A [B)):

The approximation ordering v is de�ned by

(u;D(A)) v (v;D(B)) () u � v and D(u�1v) [D(B) � D(A):

Example 8.3.

(u; ;)(v;D(B)) = (uv;D(B));

(u;�)(v;D(B)) = (u;�);

(1; �) v (u;D(A [alph(v))) v (uv;D(A n alph(v))) v (uv; ;);

(1; ;) is the neutral element, and (1; �) is the bottom element being right-
absorbent.

It is clear that M (�; I) is a submonoid of M �(�;D). The canonical embed-
ding is u 7�! (u; ;). If D = � �� is full, then using a new symbol

p
for ex-

plicit termination we have a canonical identi�cation M �(�;D) = �� [��p.
We identify u 2 �� with (u; ;) and u

p
with (u;�).

The set of �-traces F� (�;D) is de�ned by

F� (�;D) = f(u;D(A)) j u 2 R(�;D); alphinf(u) � Ag:

The same formulae for the concatenation and the approximation ordering
apply. The concatenation is well-de�ned since we demand alphinf(u) � A for
(u;D(A)) 2 F� (�;D).

The various spaces we have considered so far can be put into a commuting
diagram of inclusions.

Partial Commutation and Traces 71

M (�; I) � - M �(�;D)

R(�;D)
?

\

� - C (�;D) � - F� (�;D)
?

\

The following theorem states that F� (�;D) with the approximation or-
dering is in fact a good semantic domain.

Theorem 8.7. The set of �-traces F� (�;D) with the ordering v is a com-

plete partial order (CPO). The concatenation is continuous in both argu-

ments, i.e.,

(
G
X) � (

G
Y) =

G
(X � Y)

for all directed subsets X;Y � F� (�;D). The CPO F� (�;D) is coherently

complete and algebraic. In particular, it is a Scott domain. The subset of

compact (or �nite) elements is M �(�;D).

For F� (�;D) the Scott-topology and its re�nement the Lawson-topology

are de�ned. The Lawson-topology is induced by the extension of the metric
dC from complex traces to �-traces. Formally, let d�(x; y) = 2�`�(x;y) and

`�((u;D(A)); (v;D(B))) = supf n 2 N j 8p 2 M (�; I); jpj < n :
D(p�1u) [D(A) = D(p�1v) [D(B) g:

By general facts about Lawson-topology [54] we obtain a compact and
totally disconnected space. (In particular F� (�;D) is a complete ultra-metric
space.) Every compact and totally disconnected space is a projective limit.
We make this explicit. For each n � 0 and a trace u 2 M (�; I) let u[n] =Ffp � u j jpj � ng, i.e., u[n] is the least upper bound of the pre�xes of length
n in u. Using this notations we de�ne �nite and aperiodic monoids Mn and
Fn as follows:

Mn = f(u[n]; D((u[n])�1u)) j u 2 M (�; I)g
Fn = f(u[n]; D(A)) j u 2 M (�; I); A � �g

The multiplication is given in both monoids by the same formula:

(u;D(A)) � (v;D(B)) = ((u�A(v))[n]; D(((u�A(v))[n])�1uv) [D(A [B)):

It is an exercise to verify that he formula is well-de�ned. It also shows that
Mn is a submonoid of Fn and that for all n � 0 we have a canonical homo-
morphism

 n : M (�; I) �! Fn; u 7�! (u[n]; D((u[n])�1u))

The image of n is exactly Mn. For each m � n there are surjective homo-
morphisms 0m;n and m;n such that the following diagram commutes:

72 Volker Diekert and Yves M�etivier

M (�; I)
 m- Mm

� - Fm

@
@
@
@
@

 n

R
Mn

?

 0m;n

� - Fn

?

 m;n

It is clear that this leads to projective systems. Recall the de�nition

lim
 �

Mn = f(xn)n�0 2
Y
n�0

Mn j 0m;n(xm) = xn for all m � ng

lim
 �

Fn = f(xn)n�0 2
Y
n�0

Fn j m;n(xm) = xn for all m � ng

Being �nite we endow the sets Mn; Fn with the discrete topology. The pro-
jective limits are then compact (by Tychonov's Theorem) and totally dis-
connected. They are topological monoids and the multiplication is uniformly
continuous. We have just constructed the corresponding monoids of complex
and �-traces with the Lawson-topology. The �nal theorem re
ects most of
what we have done so far for complex and for �-traces in two lines.

Theorem 8.8. We have the following equalities of topological monoids:

C (�;D) = lim
 �

Mn

F� (�;D) = lim
 �

Fn:

8.5 Bibliographical Remarks and Further Reading

The theory of in�nite traces has its origins in the mid eighties. Fl�e and Rou-
cairol [44, 45] considered the problem of serializability of iterated transactions
in data bases. Their de�nition of an in�nite trace is equivalent to our def-
inition of an in�nite real trace. Best and Devillers [9] de�ned the behavior
of Petri nets by an equivalence relation on �1. This equivalence relation
yields real traces. A de�nition of a real trace as a pre�x-closed and directed
subset of real traces and its characterization by dependence graphs is given
in a survey by Mazurkiewicz [70]. This characterization is the basis for an
investigation of the poset properties, as e.g. studied by Gastin and Rozoy
in [52]. Kwiatkowska [66] introduced real traces as a suitable model for dis-
tributed systems to reason about fairness, liveness, and safety properties. She
also showed that the set R(�;D) with the pre�x-metric dR yields a compact
ultra-metric space. Bonizzoni, Mauri, and Pighizzini gave a Foata normal
form for in�nite traces [10].

The theory of recognizable real trace languages has been initiated by
Gastin [47, 48]. The generalization of the Kleene-B�uchi-Ochma�nski-Theorem
to real traces (Thm. 8.1) is due to Gastin, Petit, and Zielonka [51]. (It has been

Partial Commutation and Traces 73

generalized to complex trace languages in [30].) A construction of a deter-
ministic asynchronous Muller automaton accepting a given recognizable real
trace language has been exhibited by Diekert and Muscholl in [31]. A com-
plementation construction for asynchronous cellular B�uchi automata based
on Klarlund's progress measure technique has been presented by Muscholl
[77]. As a preliminary result, a determinization procedure for asynchronous
(cellular) automata for �nitary trace languages is provided (see also Klar-
lund et al. [65]). Logical de�nability on in�nite traces is investigated in [42].
Together, the results mentioned above provide a satisfactory picture and a
rather complete generalization of regular in�nitary word languages to real
traces, see also [78].

A basic di�erence between �1 and R(�;D) is however that a natural
associative operation of concatenation cannot be de�ned for real traces, in
general. This led Diekert to the notion of complex trace [27]. The results about
rational and recognizable complex trace languages have been established in
[30]. A theory of �-traces as a natural generalization of this concept has been
proposed in [29].

There are other generalizations of the theory of �nite traces we have
not dealt with in this chapter. For example, it is very natural to consider
asymmetric (in-)dependencies. This leads to the notions of semi-trace and
of semi-commutation initiated successfully by Clerbout and Latteux [15, 16,
17, 18]. For an overview on semi-commutations given by Clerbout, Latteux,
and Roos we refer to [34, Chap. 12]. A generalization of semi-traces based on
the pomset model of Pratt [86] has been proposed in [28].

Another approach to express dynamic behavior is due to investigations
of Panangaden and Stark [83] who introduced the notion of trace automata.
Close to this is the notion of concurrent automata being transition systems
where the dependence relation may vary with the state and their monoids of
computations due to Droste [35]. Many important theorems of trace theory
have been generalized to these monoids, see [38].

References

1. IJsbrand Jan Aalbersberg and Hendrik Jan Hoogeboom. Characterizations of
the decidability of some problems for regular trace languages. Mathematical
Systems Theory, 22:1{19, 1989.

2. IJsbrand Jan Aalbersberg and Emo Welzl. Trace languages de�ned by regu-
lar string languages. R.A.I.R.O. | Informatique Th�eorique et Applications,
20:103{119, 1986.

3. Anatolij V. Anisimov and Donald E. Knuth. Inhomogeneous sorting. Interna-
tional Journal of Computer and Information Sciences, 8:255{260, 1979.

4. Jean Berstel. Transductions and context-free languages. Teubner Studienb�ucher,
Stuttgart, 1979.

5. Jean Berstel and Dominique Perrin. Theory of Codes. Pure and Applied Math-
ematics; 117. Academic Press, Orlando, Florida, 1985.

74 Volker Diekert and Yves M�etivier

6. Alberto Bertoni, Giancarlo Mauri, and Nicoletta Sabadini. A hierarchy of regu-
lar trace languages and some combinatorial applications. In A. Ballester, D. Car-
dus, and E. Trillas, editors, Proceedings of the 2nd World Conf. on Mathematics
at the Service of Man, Las Palmas (Canary Island) Spain, pages 146{153. Uni-
versidad Politecnica de Las Palmas, 1982.

7. Alberto Bertoni, Giancarlo Mauri, and Nicoletta Sabadini. Concurrency and
commutativity. Technical report, Instituto di Cibernetica, Universit�a di Milano,
1983. Presented at the Workshop on Petri nets, Varenna (Italy), 1982.

8. Alberto Bertoni, Giancarlo Mauri, and Nicoletta Sabadini. Unambiguous reg-
ular trace languages. In G. Demetrovics, J. Katona and Arto Salomaa, editors,
Proceedings of the Coll. on Algebra, Combinatorics and Logic in Computer Sci-
ence, volume 42 of Colloquia Mathematica Soc. J. Bolyai, pages 113{123. North
Holland, Amsterdam, 1985.

9. Eike Best and Raymond Devillers. Sequential and concurrent behaviour in Petri
net theory. Theoretical Computer Science, 55:87{136, 1987.

10. Paola Bonizzoni, Giancarlo Mauri, and Giovanni Pighizzini. About in�nite
traces. In Volker Diekert, editor, Proceedings of the ASMICS workshop Free
Partially Commutative Monoids, Kochel am See, Oktober 1989, Report TUM-
I9002, Technical University of Munich, pages 1{10, 1990.

11. V�eronique Bruy�ere and Clelia De Felice. Trace codings. In E.W. Mayr and
C. Puech, editors, Proceedings of the 12th Annual Symposium on Theoretical As-
pects of Computer Science (STACS'95), 1995, number 900 in Lecture Notes in
Computer Science, pages 373{384, Berlin-Heidelberg-New York, 1995. Springer.

12. V�eronique Bruy�ere, Clelia De Felice, and Giovanna Guaiana. Coding with
traces. In P. Enjalbert, E.W. Mayr, and K. W. Wagner, editors, Proceedings
of the 11th Annual Symposium on Theoretical Aspects of Computer Science
(STACS'94), 1994, number 775 in Lecture Notes in Computer Science, pages
353{364, Berlin-Heidelberg-New York, 1994. Springer.

13. Pierre Cartier and Dominique Foata. Probl�emes combinatoires de commutation
et r�earrangements. Number 85 in Lecture Notes in Mathematics. Springer,
Berlin-Heidelberg-New York, 1969.

14. Marek Chrobak and Wojciech Rytter. Unique decipherability for partially com-
mutative alphabets. Fundamenta Informaticae, X:323{336, 1987.

15. Mireille Clerbout. Commutations Partielles et Familles de Langages. Th�ese,
Universit�e des Sciences et Technologies de Lille (France), 1984.

16. Mireille Clerbout and Michel Latteux. Partial commutations and faithful ra-
tional transductions. Theoretical Computer Science, 34:241{254, 1984.

17. Mireille Clerbout and Michel Latteux. Semi-Commutations. Information and
Computation, 73:59{74, 1987.

18. Mireille Clerbout, Michel Latteux, and Yves Roos. Decomposition of partial
commutations. In M. S. Paterson, editor, Proceedings of the 17th International
Colloquium on Automata, Languages and Programming (ICALP'90), Warwick
(England) 1990, number 443 in Lecture Notes in Computer Science, pages 501{
511, Berlin-Heidelberg-New York, 1990. Springer.

19. Robert Cori and Yves M�etivier. Recognizable subsets of some partially abelian
monoids. Theoretical Computer Science, 35:179{189, 1985.

20. Robert Cori, Yves M�etivier, and Wies law Zielonka. Asynchronous mappings
and asynchronous cellular automata. Information and Computation, 106:159{
202, 1993.

21. Robert Cori and Dominique Perrin. Automates et commutations partielles.
R.A.I.R.O. | Informatique Th�eorique et Applications, 19:21{32, 1985.

22. Bruno Courcelle. The monadic second-order logic of graphs X: linear orderings.
Theoretical Computer Science, 1996. to appear.

Partial Commutation and Traces 75

23. Volker Diekert. Transitive orientations, M�obius functions and complete semi-
Thue systems for free partially commutative monoids. In T. Lepist�o et al.,
editors, Proceedings of the 15th International Colloquium on Automata, Lan-
guages and Programming (ICALP'88), Tampere (Finland) 1988, number 317
in Lecture Notes in Computer Science, pages 176{187, Berlin-Heidelberg-New
York, 1988. Springer.

24. Volker Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in
Computer Science. Springer, Berlin-Heidelberg-New York, 1990.

25. Volker Diekert. Research topics in the theory of free partially commutative
monoids. Bulletin of the European Association for Theoretical Computer Science
(EATCS), 40:479{491, Feb 1990.

26. Volker Diekert. M�obius functions and con
uent semi-commutations. Theoretical
Computer Science, 108:25{43, 1993.

27. Volker Diekert. On the concatenation of in�nite traces. Theoretical Computer
Science, 113:35{54, 1993. Special issue STACS'91.

28. Volker Diekert. A partial trace semantics for Petri nets. Theoretical Computer
Science, 134:87{105, 1994. Special issue of ICWLC 92, Kyoto (Japan).

29. Volker Diekert and Paul Gastin. A domain for concurrent termination: A gen-
eralization of Mazurkiewicz traces. In Zolt�an F�ul�op and Ferenc G�ecseg, edi-
tors, Proceedings of the 22nd International Colloquium on Automata, Languages
and Programming (ICALP'95), Szeged (Hungary) 1995, number 944 in Lecture
Notes in Computer Science, pages 15{26. Springer, 1995.

30. Volker Diekert, Paul Gastin, and Antoine Petit. Rational and recognizable
complex trace languages. Information and Computation, 116:134{153, 1995.

31. Volker Diekert and Anca Muscholl. Deterministic asynchronous automata for
in�nite traces. Acta Informatica, 31:379{397, 1994. A preliminary version was
presented at STACS'93, Lecture Notes in Computer Science 665 (1993).

32. Volker Diekert and Anca Muscholl. A note on M�etivier's construction of asyn-
chronous automata for triangulated graphs. Fundamenta Informaticae, to ap-
pear 1996. Special issue on Formal Language Theory.

33. Volker Diekert, Anca Muscholl, and Klaus Reinhardt. On codings of traces. In
E.W. Mayr and C. Puech, editors, Proceedings of the 12th Annual Symposium
on Theoretical Aspects of Computer Science (STACS'95), 1995, number 900
in Lecture Notes in Computer Science, pages 385{396, Berlin-Heidelberg-New
York, 1995. Springer.

34. Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World
Scienti�c, Singapore, 1995.

35. Manfred Droste. Concurrent automata and domains. International Journal of
Foundations of Computer Science, 3:389{418, 1992.

36. Manfred Droste. A Kleene Theorem for recognizable languages over concur-
rency monoids. In Serge Abiteboul and Eli Shamir, editors, Proceedings of
the 21st International Colloquium on Automata, Languages and Programming
(ICALP'94), Jerusalem (Israel) 1994, number 820 in Lecture Notes in Com-
puter Science, pages 388{398, 1994.

37. Manfred Droste. Aperiodic languages over concurrency monoids. 1995. sub-
mitted.

38. Manfred Droste. Recognizable languages in concurrency monoids. To appear
in Theoretical Computer Science, 1995.

39. Manfred Droste and Dietrich Kuske. Logical de�nability of recognizable and
aperiodic languages in concurrency monoids. In Proceedings of the CSL'95 ,
Paderborn, Lecture Notes in Computer Science, Berlin-Heidelberg-New York,
1996. Springer. To appear.

76 Volker Diekert and Yves M�etivier

40. Christine Duboc. Commutations dans les mono��des libres: un cadre th�eorique
pour l'�etude du parallelisme. Th�ese, Facult�e des Sciences de l'Universit�e de
Rouen, 1986.

41. Werner Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren
durch Logiken. Dissertation, Institut f�ur Informatik, Universit�at Stuttgart, 1994.

42. Werner Ebinger and Anca Muscholl. Logical de�nability on in�nite traces. The-
oretical Computer Science, 154:67{84, 1996. A preliminary version appeared in
Proceedings of the 20th International Colloquium on Automata, Languages and
Programming (ICALP'93), Lund (Sweden) 1993, Lecture Notes in Computer
Science 700, 1993.

43. Samuel Eilenberg and Marcel Paul Sch�utzenberger. Rational sets in commuta-
tive monoids. Journal of Algebra, 13:173{191, 1969.

44. Marie-Paule Fl�e and G�erard Roucairol. On serializability of iterated transac-
tions. In Proceedings of the 15th ACM SIGACT-SIGOPS Symp. on Princ. of
Distrib. Comp., Ottawa (1982), pages 194 { 200, 1982.

45. Marie-Paule Fl�e and G�erard Roucairol. Fair serializability of iterated transac-
tions using �fo-nets. In Grzegorz Rozenberg, editor, Advances in Petri Nets,
number 188 in Lecture Notes in Computer Science, pages 154{168. Springer,
Berlin-Heidelberg-New York, 1985.

46. Michel Fliess. Matrices de Hankel. J. Math. Pures et Appl., 53:197{224, 1974.
47. Paul Gastin. In�nite traces. In I. Guessarian, editor, Proceedings of the Spring

School of Theoretical Computer Science on Semantics of Systems of Concurrent
Processes, number 469 in Lecture Notes in Computer Science, pages 277{308,
Berlin-Heidelberg-New York, 1990. Springer.

48. Paul Gastin. Recognizable and rational trace languages of �nite and in�nite
traces. In Christian Cho�rut et al., editors, Proceedings of the 8th Annual
Symposium on Theoretical Aspects of Computer Science (STACS'91), Hamburg
1991, number 480 in Lecture Notes in Computer Science, pages 89{104, Berlin-
Heidelberg-New York, 1991. Springer.

49. Paul Gastin, Edward Ochma�nski, Antoine Petit, and Brigitte Rozoy. Decidabil-
ity of the Star problem in A

�

�fbg
�. Information Processing Letters, 44:65{71,

1992.
50. Paul Gastin and Antoine Petit. Asynchronous automata for in�nite traces.

In W. Kuich, editor, Proceedings of the 19th International Colloquium on Au-
tomata, Languages and Programming (ICALP'92), Vienna (Austria) 1992,
number 623 in Lecture Notes in Computer Science, pages 583{594, Berlin-
Heidelberg-New York, 1992. Springer.

51. Paul Gastin, Antoine Petit, and Wies law Zielonka. An extension of Kleene's
and Ochma�nski's theorems to in�nite traces. Theoretical Computer Science,
125:167{204, 1994. A preliminary version was presented at ICALP'91, Lecture
Notes in Computer Science 510 (1991).

52. Paul Gastin and Brigitte Rozoy. The poset of in�nitary traces. Theoretical
Computer Science, 120:101{121, 1993.

53. Alan Gibbons and Wojciech Rytter. On the decidability of some problems about
rational subsets of free partially commutative monoids. Theoretical Computer
Science, 48:329{337, 1986.

54. Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson,
Michael W. Mislove, and Dana S. Scott. A Compendium of Continuous Lattices.
Springer, Berlin-Heidelberg-New York, 1980.

55. Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas
and languages. Paci�c Journal of Mathematics, 16(2):285{296, 1966.

56. Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

Partial Commutation and Traces 77

57. Sheila A. Greibach. The undecidability of the ambiguity problem for minimal
linear grammars. Information and Control, 6:119{125, 1963.

58. Giovanna Guaiana, Antonio Restivo, and Sergio Salemi. Star-free trace lan-
guages. Theoretical Computer Science, 97:301{311, 1992. A preliminary version
was presented at STACS'91, Lecture Notes in Computer Science 480 (1991).

59. Kosaburo Hashiguchi. Limitedness theorem on �nite automata with distance
functions. Journal of Computer and System Sciences, 24:233{244, 1982.

60. Kosaburo Hashiguchi. Recognizable closures and submonoids of free partially
commutative monoids. Theoretical Computer Science, 86:233{241, 1991.

61. Hendrik Jan Hoogeboom and Anca Muscholl. The code problem for traces {
improving the boundaries. Submitted for publication., 1995.

62. G�unter Hotz and Volker Claus. Automatentheorie und Formale Sprachen, Band
III. Bibliographisches Institut, Mannheim, 1972.

63. Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the Association of Computing Machinery, 25(1):116{133,
1978.

64. Robert M. Keller. Parallel program schemata and maximal parallelism I.
Fundamental results. Journal of the Association of Computing Machinery,
20(3):514{537, 1973.

65. Nils Klarlund, Madhavan Mukund, and Millind Sohoni. Determinizing asyn-
chronous automata. In Serge Abiteboul and Eli Shamir, editors, Proceedings
of the 21st International Colloquium on Automata, Languages and Program-
ming (ICALP'94), Jerusalem (Israel) 1994, number 820 in Lecture Notes in
Computer Science, pages 130{141, 1994.

66. Marta Z. Kwiatkowska. A metric for traces. Information Processing Letters,
35:129{135, 1990.

67. Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the Association of Computing Machinery, 21:558{
564, 1978.

68. Gennadi�� Semjonovich Makanin. The problem of solvability of equations in free
semigroups. Math. USSR Izvestiya, 21:483{546, 1983.

69. Antoni Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

70. Antoni Mazurkiewicz. Trace theory. In W. Brauer et al., editors, Petri Nets,
Applications and Relationship to other Models of Concurrency, number 255
in Lecture Notes in Computer Science, pages 279{324, Berlin-Heidelberg-New
York, 1987. Springer.

71. Yves M�etivier. On recognizable subsets of free partially commutative monoids.
In L. Kott, editor, Proceedings of the 13th International Colloquium on Au-
tomata, Languages and Programming (ICALP'86), Rennes (France) 1986,
number 226 in Lecture Notes in Computer Science, pages 254{264, Berlin-
Heidelberg-New York, 1986. Springer.

72. Yves M�etivier. Une condition su�sante de reconnaissabilit�e dans un mono��de
partiellement commutatif. R.A.I.R.O. | Informatique Th�eorique et Applica-
tions, 20:121{127, 1986.

73. Yves M�etivier. An algorithm for computing asynchronous automata in the
case of acyclic non-commutation graph. In Th. Ottmann, editor, Proceedings of
the 14th International Colloquium on Automata, Languages and Programming
(ICALP'87), Karlsruhe (FRG) 1987, number 267 in Lecture Notes in Computer
Science, pages 226{236, Berlin-Heidelberg-New York, 1987. Springer.

74. Yves M�etivier. Contribution �a l'�etude des mono��des de commutations. Th�ese
d'�etat, 1987. Universit�e Bordeaux I.

78 Volker Diekert and Yves M�etivier

75. Yves M�etivier and Edward Ochma�nski. On lexicographic semi-commutations.
Information Processing Letters, 26:55{59, 1987/88.

76. Yves M�etivier, Gw�ena�el Richomme, and Pierre-Andr�e Wacrenier. Computing
the closure of sets of words under partial commutations. In Zolt�an F�ul�op and
Ferenc G�ecseg, editors, Proceedings of the 22nd International Colloquium on
Automata, Languages and Programming (ICALP'95), Szeged (Hungary) 1995,
number 944 in Lecture Notes in Computer Science, pages 75{86. Springer, 1995.

77. Anca Muscholl. On the complementation of B�uchi asynchronous cellular
automata. In Serge Abiteboul and Eli Shamir, editors, Proceedings of the
21st International Colloquium on Automata, Languages and Programming
(ICALP'94), Jerusalem (Israel) 1994, number 820 in Lecture Notes in Com-
puter Science, pages 142{153. Springer, 1994.

78. Anca Muscholl. �Uber die Erkennbarkeit unendlicher Spuren. Teubner, 1996.
79. Anca Muscholl and Holger Petersen. A note on the commutative closure of

star-free languages. Information Processing Letters, 57:71{74, 1996.
80. Edward Ochma�nski. Regular behaviour of concurrent systems. Bulletin of the

European Association for Theoretical Computer Science (EATCS), 27:56{67,
Oct 1985.

81. Edward Ochma�nski. On morphisms of trace monoids. In Robert Cori and
M. Wirsing, editors, Proceedings of the 5th Annual Symposium on Theoretical
Aspects of Computer Science (STACS'88), number 294 in Lecture Notes in
Computer Science, pages 346{355, Berlin-Heidelberg-New York, 1988. Springer.

82. Friedrich Otto. Finite canonical rewriting systems for congruences generated
by concurrency relations. Mathematical Systems Theory, 20:253{260, 1987.

83. Prakas Panangaden and Eugene W. Stark. Computations, residuals and
the power of indeterminacy. In Timo Lepist�o et al., editors, Proceedings of
the 15th International Colloquium on Automata, Languages and Programming
(ICALP'88), Tampere (Finland) 1988, number 317 in Lecture Notes in Com-
puter Science, pages 439{454, Berlin-Heidelberg-New York, 1988. Springer.

84. Dominique Perrin. Words over a partially commutative alphabet. In Alberto
Apostolico, editor, Combinatorial Algorithms on Words, volume F12 of NATO-
ASI Series, pages 329{340. Springer, Berlin-Heidelberg-New York, 1986.

85. Giovanni Pighizzini. Asynchronous automata versus asynchronous cellular au-
tomata. Theoretical Computer Science, 132:179{207, 1994.

86. Vaughan R. Pratt. Modelling concurrency with partial orders. International
Journal of Parallel Programming, 15(1):33{71, 1986.

87. Gw�ena�el Richomme. Some trace monoids where both the Star Problem and
the Finite Power Property Problem are decidable. In I. Privara et al., editors,
Proceedings of the 19th Symposium on Mathematical Foundations of Computer
Science (MFCS'94), Ko�sice (Slovakia) 1994, number 841 in Lecture Notes in
Computer Science, pages 577{586, Berlin-Heidelberg-New York, 1994. Springer.

88. Jacques Sakarovitch. On regular trace languages. Theoretical Computer Sci-
ence, 52:59{75, 1987.

89. Jacques Sakarovitch. The \last" decision problem for rational trace languages.
In Imre Simon, editor, Proceedings of the 1st Latin American Symposium on
Theoretical Informatics (LATIN'92), number 583 in Lecture Notes in Computer
Science, pages 460{473, Berlin-Heidelberg-New York, 1992. Springer.

90. Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of
Computer and System Sciences, 25:360{376, 1982.

91. Wolfgang Thomas. Automata on in�nite objects. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 4, pages 133{191. Elsevier
Science Publishers B. V., 1990.

Partial Commutation and Traces 79

92. Wolfgang Thomas. On logical de�nability of trace languages. In Volker Diekert,
editor, Proceedings of a workshop of the ESPRIT Basic Research Action No
3166: Algebraic and Syntactic Methods in Computer Science (ASMICS), Kochel
am See, Bavaria, FRG (1989), Report TUM-I9002, Technical University of
Munich, pages 172{182, 1990.

93. Wies law Zielonka. Notes on �nite asynchronous automata. R.A.I.R.O. |
Informatique Th�eorique et Applications, 21:99{135, 1987.

94. Wies law Zielonka. Safe executions of recognizable trace languages by asyn-
chronous automata. In A. R. Mayer et al., editors, Proceedings of the Sympo-
sium on Logical Foundations of Computer Science, Logic at Botik '89, Pereslavl-
Zalessky (USSR) 1989, number 363 in Lecture Notes in Computer Science, pages
278{289, Berlin-Heidelberg-New York, 1989. Springer.

