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1. Introduction

Parallelism and concurrency are fundamental concepts in computer science.
Specification and verification of concurrent programs are of first importance.
It concerns our daily life whether software written for distributed systems
behaves correctly.

It is clear that a satisfactory notion of correctness has to be based on a rig-
orous mathematical model. Several formalisms have been proposed. Among
others there are Petri nets, Hoare’s and Milner’s CSP and CCS, event struc-
tures, and branching temporal logics. The mathematical analysis of these
models may become complicated, however. Based on the behavior of ele-
mentary net systems Mazurkiewicz introduced the concept of partial com-
mutation to the computer science community. The abstract description of a
concurrent process is then called a trace, being defined as a congruence class
of a word (sequence) modulo identities of the form ab = ba for some pairs of
letters.

The success of Mazurkiewicz’ approach results from the fact that on one
hand partial commutation copes with some important phenomena in concur-
rency and on the other hand it is close to the classical theory of free monoids
describing sequential programs. In particular it is possible to transfer the
notion of finite sequential state control to the notion of finite asynchronous
state control. There is a satisfactory theory of recognizable languages relat-
ing finite semigroups, rational operations, asynchronous automata, and logic.
This leads to decidability results and various effective operations.

The theory of partial commutation and of trace monoids has been devel-
oped both by its interpretation as a model for parallel computation and by
its mathematical interest in algebra, formal languages, and combinatorics.
Since the beginning in combinatorics by Cartier and Foata (1969) and the
formulation of trace theory by Mazurkiewicz (1977) the theory has grown in
breadth and depth. It led to significant results with interesting applications.
The present contribution reflects some important topics including basic prop-
erties and infinite traces. Most of the results are from the monograph [34], but
we covered also some new material. Each section gives a short bibliographical
remark and leads to further references.
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2. Free Partially Commutative Monoids

2.1 First Definitions and Basic Properties

Let X be a finite alphabet, its elements are called letters. We denote by X*
the set of all words over X. Formally, X'* with the concatenation operation
forms the free monoid with the set of generators X', the empty word, denoted
by 1, plays the role of the unit element. For any word z of X*, |z| denotes the
length of z and |z|, denotes its a-length, i.e., ||, is the number of occurrences
of a letter a in z. The notation alph(z) = {a € X' | |z|, # 0} is used for the
set of letters of X actually appearing in the word .

Throughout we mean by I C X x X a symmetric and irreflexive relation
over the alphabet X, called the independence (or commutation) relation.
Intuitively, (a,b) € I means that a and b act on disjoint sets of resources.
As a consequence, the order in which they are performed does not matter,
ab = ba. They can also be performed in parallel or simultaneously.

For every letter a of ¥, we denote by I(a) the set of letters which commute

with a:
I(a) ={be XY | (a,b) € I}.

The pair (X, 1) is called the independence alphabet and can be conve-
niently represented by an undirected graph (also called the commutation
graph). The vertex set is X, edges are between independent letters.

Ezample 2.1. Let ¥ = {a,b,c,d} and I = {(a,d),(d,a), (b,c),(c,b)}, then
the commutation graph is given in the picture below.

The complement ¥ x X \ I of I is called the dependence relation D.
Intuitively, two letters a and b such that (a,b) ¢ I are dependent and cannot
be executed simultaneously.
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The pair (¥, D) is called the dependence alphabet. Again, we identify
(X, D) with an undirected graph (the non-commautation graph). In the pic-
tures we omit always the self-loops. If we take the same example as above,
the dependence alphabet is given by the following non-commutation graph.

For any letter a of X, D(a) denotes the set of letters which depend on a:
D(a) ={be Y| (a,b) ¢ I}.

Since I is irreflexive, we have a € D(a). We extend this notation forall A C ¥
by setting:
D(A)={be X |Ja€ A:(a,b) € D}.

The relation I induces an equivalence relation ~; over X*. Two words z
and y are equivalent under ~, denoted by = ~ y, if there exists a sequence
Z1,22,- .-, 2k of words such that x = 21, y = 2z, and for all 4, 1 < ¢ < k, there
exist words zJ, z/', and letters a;, b; satisfying:

zi = ziagbiz!',  zip1 = zibja;z!, and (a;,b;) € 1.

Thus, two words are equivalent by ~ if one can be obtained from the other
by successive transpositions of neighboring independent letters. It is easy to
verify that ~j is the least congruence over X* such that ab ~y ba for all
pairs (a,b) € I. The quotient of X* by the congruence ~7 is the free partially
commutative monoid induced by the relation I, it is denoted by M(X, I'). The
elements of M(X, I'), which are equivalence classes of words of ¥'* under the
relation ~y, are called traces. Consequently, M(X, I) is called trace monoid,
too.

If T is empty, then M(X,I) is the free monoid X*; if any two different
letters of X' commute, then M(X, I) is the free commutative monoid denoted
by N* or simply by N* where k = |X|. Other families of free partially com-
mutative monoids are the direct products of free monoids:

IIxXyx---x X
and free products of free commutative monoids:
N1 5 NP2 5. ..o NER

For a word z of ¥* the equivalence class of z under ~; is denoted by [z];.
Thus, [x]r is the set of words which are equivalent to a given word z, hence

[z]lr ={y € X" |y ~1 x}.
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For instance, if we consider I defined above, we have:
[baadcdb]r = {baadcb, baadbe, badach, badabe, bdaabe, bdaach}.

Since the relation ~7 is a congruence, the concatenation in M(X, I) is given
by [z]r[y]r = [zy]r for all z,y € X*. The class of the empty word is called
the empty trace, also denoted by 1. The definition of length, of a-length,
and of the alphabet is invariant under the commutation of letters, hence it
can be transferred to a trace from any representing word. We can write |¢],
|t|o, and alph(t) for a trace t and a letter a. Following the same example
above with ¢ = [baadcb]; we have [t| = 6, |t|l, = |t]p = 2, |t|c = |tla = 1,
and alph(t) = {a,b,c,d}. A trace t (word z, resp.) is called connected, if
alph(¢) (alph(z), resp.) induces a connected subgraph of (X, D). The trace
t = [baadcb]; above is connected, but [ad]; is not.
Two traces v and v of M(X, I) are said to be independent and this fact
is denoted by ulv, if
alph(u) x alph(v) C I.

Independence of traces is equivalent to the following condition:
wvo=ovu and alph(u)Nalph(v) = 0.

Trace monoids are placed between free and free commutative monoids.
There are two canonical homomorphisms:

p: X e M(X,I)
x > [z]r

and
m: M(X,I)
t (|t|a)a62-

The image 7(t) € N* is called the Parikh-image of t € M(X, I). The compo-
sition

& M(E, ) & N
is the usual Parikh-mapping from words to vectors.

For sake of simplicity we sometimes use words to denote the corresponding
trace. Thus, if z € X* and the context M(X, I) is clear then we may write
z € M(X,I) to denote in fact the class [z];. Following the same convention,
we view X as a subset of M(X,T), too. If z is a word or a trace then z* is
either the set of words {z" | n > 0} or the set of traces {[z"]r | n > 0}.

A trace language is any subset of M(X I). If X C X* then the trace
language ¢(X) C M(X, I) is also denoted by [X]. This allows to write

[(X] = {la]r | = € X}.



Partial Commutation and Traces 7

For any trace language T C M(X,I), the language ¢ 1(T') consists of all
representing words. The operation X ~ ¢~ 1([X]) can be viewed as a closure
operation on languages. Therefore we prefer to write X instead of ¢~ ([X])
or 1 (p(X)). A subset X of X* is said to be I-closed (or simply closed, if
there is no ambiguity), if X = X.

For example, let I be defined as in Ex. 2.1, if X = (ad)* then

X ={ze{a,d}"||alo = |zla}-

2.2 Projection Techniques and Levi’s Lemma

Let A C ¥ be a subset and I4 = (A x A)NI be the induced independence re-
lation. We may define a canonical homomorphism 74 : M(X,I) — M(A,I4)
by erasing all letters from a trace which do not belong to A, hence for a € X
we have:

wala) =a,if a € A and m4(a) = 1 otherwise.

Of particular interest is 4 = (). Then A is a clique of the dependence alphabet
and 74 a projection onto the free monoid A*. This is in particular the case
when A = {a,b} and (a,b) € D. (We shall write 7, instead of mg,3.)
The following proposition is called Projection Lemma. It states that every
trace has a unique representation as a tuple of words. For (X, I) fixed this
canonical representation is computable in linear time from any word defining
the congruence class of a trace.

Proposition 2.1. Let u and v be two traces of M(X, I), then we have u = v
if and only if
Tap(u) = mep(v)  for all (a,b) € D.

Proof. Clearly, the condition is necessary. Conversely, we prove by induction
on the length of u (and of v). If w or v is the empty trace we have nothing to
do. Let us suppose u = au’ and v = cv’, where a and ¢ are letters of X and
where v’ and v’ are traces of M(X, I).

We assume first a # c. Since |u|, = |v|q, we have |[v']|, > 1 and v’ = t'at”
with |t'| = 0. If (a,b) € D, then 7y p(u) = mq,5(v) and hence (ct')Ia. Finally
v = ct'at’” = act’t"”. Thus, we have reduced to the case a = ¢, or u = au’
and v = av"” for some traces u',v”. The inductive hypothesis yields u' = v",
hence u = v.

Since direct products of free monoids are cancellative, we deduce the same
property for trace monoids.

Corollary 2.1. The monoid M(X, I) is cancellative, i.e., the equation uzv =
uyv implies x =y for all u,v,z,y € M(X, ).

Another corollary shows the following version of an embedding theorem.
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k
Corollary 2.2. Let (¥,D) = | (44, D;) be a union of subalphabets with

i=1
I = (4; x Aj) \ D;, M; = M(A;, I;), and m; : M(X,I) — M; the canonical
homomorphism for 1 < i < k. Then we obtain a canonical injective homo-
morphism
M(X,I) & My x---x My
Eoes (m),... ().

The following proposition is called Levi’s Lemma. It is one of the most
important tools in trace theory.

Proposition 2.2. Lett, u, v, and w be traces of M(X, I). Then the following
assertions are equivalent.

i) tu = vw
it) There exist p,q,r,s € M(X,I) such that
t=pr, u=sq, v=ps, w=rq with alph(r) x alph(s) C 1.

Proof. Clearly, ii) implies 7). Conversely, we use an induction on the length
of ¢. It t is the empty trace then the property is true with p=r =1, ¢=w
and s = v. Therefore we may assume that ¢ = at' for some a € X.

— If |v|, = 0 then necessarily alv and w = aw'. As at'u = vaw' and alv we
have t'u = vw'. Now applying the inductive hypothesis we find p, q,r',s €
M(X, I) such that

t'=pr', u=sq, v=ps, w =r'q and 7r'Is.
Let r = ar’, as alv, we also have alp and als. Hence
t=at' =apr' = par’ = pr

with rIs, and the result follows.

— If |v|, > 0, then v = av’. In this case we apply the inductive hypothesis
with #'u = v'w. We find p’, ¢, r, s such that t' = p'r,u = sq,v = p's,w = rq
and rIs. The desired formula is obtained considering ¢ = at’ and p = ap'.

From this proposition, using an induction, we obtain the following more
general form of Levi’s Lemma:

Corollary 2.3. Let u,v,ty,...,t, € M(X,I) be traces. Then the following
assertions are equivalent.

i) uv =ty ty,
ii) There exist p1,...,Pn,q1,---,qn € M(X,I) such that u = pi1p> - - pn,
v=q1-qn with pig; = t; and ¢I(piy1 -.-pr) for all 1 < i <n.

Together with the existence of a positive weight, Levi’s Lemma, character-
izes free partially commutative monoids. By a positive weight we mean any
homomorphism v : M — N such that y71(0) = {1}. For trace monoids the
length-function is a positive weight.
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Proposition 2.3. A monoid M with a positive weight is isomorphic to a free
partially commutative monoid if and only if for all x,y,z,t € M the equation
xy = zt implies the existence of r,u,v,s € M such that © = ru, y = vs,
z=rv, t =us, and uv = vu.

Proof. We need a proof only for the if-part.

Let ¥ = (M \ {1})\ (M \ {1})%. A straightforward verification shows that
XY generates M and that it is contained in any set generating M: it is the
minimal generating set of M. We define the independence relation Iy on X
by (z,y) € Iy, if yr = xy in M.

Let ¢ be the canonical surjective homomorphism from X* onto M; it
induces a surjective homomorphism @ : M(X, Iy;) — M. We prove by in-
duction on the weight that @ is injective. Let t',t" € M(X,Iys) such that
2(t") = p(t"). Using induction, we assume that every proper factor of ¢’ has
exactly one inverse image. If ' € X' U {1} then ' = " since 7~ '(z) = {x}
forall z € JU{1}. If t' ¢ Y U {1} then t' = zy,t" = 2t with 2,z € X and
y # 1,t # 1. Since (2)p(y) = P(2)P(t) and P is surjective, the hypothesis
about M implies that

p(z) =2(r)p(u), »ly) =2@)e(s), @(z)=vr)p(), »(t)=pu)p(s)
and  p(uv) = P(vu),

where r,u, v, s are some traces of M(X, Is).

proper factors of p(t'), we have

r=ru, y=vs, z=rv, and t=us.

— Ifr #1 or s # 1, then p(uv) is a proper factor of (t'), it follows uv = vu
in M(X,Iy). Hence t' = ruvs = rous = t".

—Ifr=s=1,thenu =2 € Yandv = z € X; thus, u,v € X are independent
elements and ¢’ = uv = vu = t" are the same trace by definition of Ijs.

2.3 Normal Forms

Two main normal forms are defined in a free partially commutative monoid,
the lexicographic normal form (studied first by Anisimov and Knuth [3]) and
the Foata normal form. We assume that the alphabet X' is totally ordered,
and we consider the corresponding lexicographic ordering < on X*. Let X
be a set of words, the unique minimal element of X with respect to the lexi-
cographic ordering (if it exists) is denoted by Min(X). A word z is said to
be in the lexicographic normal form if it is minimal among the set of words
which are equivalent to x, i.e.,

x = Min([z]).
As the lexicographic ordering is a total order and [z] is finite, each trace has
a unique minimal representative.

Let I be the independence relation of Ex. 2.1 above, assuming that a <
b < ¢ < d, then the word baadbe is in lexicographic normal form.
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Proposition 2.4. A word x is the lexicographic normal form of a trace if
and only if for all factorizations x = ybuaz, where y,u,z € X*, (a,b) € I,
and a < b, there exists a letter of u which does not commute with a.

Proof. If x is minimal then, clearly, it satisfies the condition of the statement.

Conversely, suppose there is a word w equivalent to x such that w < x;
then z = z'bz" and w = x'az’' with a < b. The words  and w are equivalent,
thus alb. Since |z|, = |w|, we have 2" = wav with |ul, = 0. Now from
the equivalence between = and w we deduce that alu. Therefore z does not
satisfy the condition of the proposition.

From this we deduce immediately that the set LexNF of words in lexi-
cographic normal form is a regular language; indeed it is equal to the following
(star-free) set

LeeNF= 5"\ )  E*bI(a)*aX™.
(a,b)€l,a<b

A word z of X* is in the Foata normal form, if it is the empty word or if
there exist an integer n > 0 and non-empty words x; (1 < ¢ < n) such that

) z=z1 - xy,
ii) for each i, the word z; is a product of pairwise independent letters and
x; is minimal with respect to the lexicographic ordering,
iii) For each 1 < i < n and for each letter a of z;11 there exists a letter b of
x; such that (a,b) € D.

If we consider the factorization of Foata given above, each x; is called a step.
Let I be defined by the first picture, the Foata normal form of baadcb is

(b)(ad)(a)(be)-

Proposition 2.5. Every trace has a unique Foata normal form.

Proof. Let z be a word of X*. We prove the existence of a normal form by
induction on the length of x. The result is trivial if z = 1. Let z = 2'a with
a € X; let zizh -z, be a decomposition in steps for z'. If alz' then let
i =0, else let 7 be the integer such that z} is the right-most step containing
a letter b such that (a,b) € D.

Let 2" be the word obtained inserting a in xj,; with respect to the lexi-
cographic ordering. The decomposition i} - --zjz""z}, ,--- 2], is a normal
form for z.

We prove the uniqueness by contradiction. Assume that there exists a
word z with two different normal forms. We choose = with minimal length,
let zjxy - x;, and zyzy -z, be two step decompositions of . As x has
minimal length and trace monoids are cancellative, Cor. 2.1, necessarily
zj and z{ are different: 2| = yay' and z{ = yby"” with a # b. Thus,
Ty XY -2y, = yay'vy -2y, and 2wy - xy = yby"zy -z I b ¢ alph(y') we
have 5 - - x;, = 2'b2" with |2'|, = 0. As yay'2'bz" ~ yby"zy - - - ¥ necessar-
ily bI(ay'z") by Prop. 2.1. This yields a contradiction to the third condition
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of the definition of a Foata normal form; thus b € alph(y’) and by symmetry
a € alph(y"). Using once more the definition of the normal form, we have
a < b and b < a. This yields the final contradiction and the result.

2.4 A Simple Algorithm to Compute Normal Forms

Let us describe a simple method which enables to compute normal forms.
Let M(X, ) be a free partially commutative monoid, we use a stack for each
letter of the alphabet X. Let 2 be a word of X*, we scan x from right to left;
when processing a letter a it is pushed on its stack and a marker is pushed
on the stack of all the letters b (b # a) which do not commute with a.

When all of the word has been processed we can compute either the lexi-
cographic normal form or the Foata normal form.

— To get the lexicographic normal form: it suffices to take among the letters
being on the top of some stack that letter a being minimal with respect
to the given lexicographic ordering. We pop a marker on each stack corre-
sponding to a letter b (b # a) which does not commute with a. We repeat
this loop until all stacks are empty.

— To get the Foata normal form we take within a loop the set formed by
letters being on the top of stacks; arranging the letters in the lexicographic
order yields a step. As previously we pop the corresponding markers. Again
this loop is repeated until all stacks are empty.

For example, with (X, ) as in Ex. 2.1 and the word badacb we get the stacks
given below. The lexicographic normal form is baadbc, and the Foata normal
form is (b)(ad)(a)(bc).

* b

a * ® *
a * * d
* * * *
* b c *
a b c d

2.5 Mobius Functions and Normal Forms

This section presents the relation between liftings of Mdbius functions and
normal forms for trace monoids. It will not be used in the sequel. A reader
not being familiar with the basic notions might skip this section. It is worth
mentioning however that the study of the Mo6bius function was really at the
beginning of trace theory in combinatorics. In particular, Thm. 2.1 below is
from the original Lecture Notes [13] by Cartier and Foata.
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Let M = M(X,I) and ¢ : ¥* < M the canonical homomorphism. A set
of normal forms (or a cross-section) is a subset S C X* such that ¢ induces
a bijection between S and M. For example, LexNF is a set of normal forms.
By xs we denote the characteristic function of S:

xs(w) =1, if w € S and xs(w) = 0 otherwise.

We view xg as a function from X* to Z. Functions from X* (from M resp.)
to Z are called formal power series. The set of all power series is denoted by
Z((X™*)) (by Z{{M)) resp.). A convenient notation of power series is

f=) fww

The set of power series is a ring by the usual addition and the non-
commutative Cauchy-product.

(f + 9)(w) = F(w) + g(w)
=Y Fug)

The unit of this ring is 1 = xy;}, which fits perfectly to the notation of
power series above. (More general, identifying w € M with x(,} the notation
above becomes a true identity on power series.) If f(1) € {1, +1}, then
there exists a unique power series f~! such that f-f~1 = f=1. f =1, it is
called the formal inverse of f. Clearly, (f~1)~! = f.

There is a canonical ring homomorphism from Z ((X*}) onto Z{{M )), de-
noted (by abuse of language) again by ¢. We have (p(f))(t) = Z¢(w):t f(w)
for all f € Z{(X*)) and t € M. Observe that S C X* is a set of normal forms if
and only if ¢(xs) = xm- The function yu : M & Z is the constant function
with value 1. An important combinatorial property of finitely generated free
partially commutative monoids is that the formal inverse (xy) ! € Z((M ))
is a polynomial, i.e., only finitely many values are non-zero.

Definition 2.1. Denote by F = {F C X | (a,b) € I for all a,b € F,a # b}
the set of independence cliques. For each F' € F let [F] € M be the trace [F] =
[I.cr a. (The product is well-defined, since the elements of F' commute.) The
clique polynomial of M is defined as the formal power series

pa =y (e1)FIF).

FeF

Theorem 2.1. The clique polynomial uyy is the Mébius function of M(X, I),
i.e., py s the formal inverse of the constant function with value 1:

e = ()
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Proof. We have to show (uy - xm)(t) = 1, if t = 1 and (pum - xm)(t) = 0
otherwise. For ¢t € M let min(¢) be the set of minimal elements, i.e., min(t) =
{a € ¥ | t = as for some s € M}.

Clearly, min(t) € F and we have

(o) () = Y (81)7.

t=[F]-s

Since M is left cancellative we can write

(mexn)®) = Y (&)

FCmin(t)

Indeed, if t = [F]- s, then F C min(t) and s is uniquely defined by F.
Conversely, if F' C min(t), then F € F and there exists some unique s € M
such that ¢ = [F] - s. Therefore the claim follows (with n = |min(¢)|) from
the well-known identity

> @ =% (P ={ ) hrol

FCmin(t) k

Remark 2.1. For infinitely generated free partially commutative monoids
Thm. 2.1 holds as well. The only difference is that uy becomes a formal
power series with infinitely many non-zero coefficients. The classical Mdbius
inversion formula is now a corollary. Let N = {n € N | n > 0} be the mul-
tiplicative monoid of positive integers. It is a commutative monoid, freely
generated by the primes. The Mobius function from elementary number the-
ory is

o _ [ (&l)* if nis a product of k distinct primes, k > 0
piN &> 2, pln) = { 0 otherwise.

Thus, p is the Mobius function of the monoid . Let f,g : N — Z be two
functions. Mdbius inversion states the equivalence:

Vnign) =Y f(d) <= Vn:f(n) = u(dg(5).
d|n d|n

This is a direct consequence of Thm. 2.1 in the special case of the commutative
monoid I, since the equivalence states g = f - xnv < f = un + g-

Definition 2.2. A lifting of the Mébius function uy is a polynomial p €
Z{(X*)) such that first o(u) = pm and second ¢ induces a bijection between
the two sets {wp € X* | p(wr) # 0} and {[F] € M | F € F}. It is called an
unambiguous lifting if, in addition, p=t(w) > 0 for all w € X*.

Remark 2.2. If p € Z{{X*)) is an unambiguous lifting of uy then we can
write p = 3 (1) vrlwp.
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The following corollary is a direct consequence of Thm. 2.1 and of the
definition of an unambiguous lifting.

Corollary 2.4. If p € Z{{X*)) is an unambiguous lifting of pn, then the
formal inverse u~"' is the characteristic function over a set of normal forms.

Another way to obtain a set of normal forms is by complete rewriting
systems. Let us recall some basic notions and facts.

A semi-Thue system is a set of rules R C X* x X*. It defines a one-
step reduction :R> by ulv:R>urv for u,v € ¥* (I,r) € R. By :;> (and <%>,

resp.) we denote the reflexive and transitive closure (reflexive, symmetric
and transitive closure resp.) of :R>. By X*/R we mean the quotient monoid

TH s,
/R

Ezample 2.2. For an independence relation I C X x X and a partial order <
of X let
S(I) {(ab,ba) | (a,b) € I},
S(I,<) = {(ba,ad)| (a,b) € I and a < b}.

Then we have X*/S(I) = M(X,I) and if for all (a,b) € I either a < b or
b < a, then X*/S(I,<) = M(X,I).

— A semi-Thue system R is called Noetherian, if there is no infinite chain
W= wy=> - - -
1 R 2 R )

— it is called confluent, if for all u%w%v, there exists some z € X* such

that u==z<=v.
R R

— Confluence of Noetherian systems is equivalent with local confluence, i.e.,
for all u<R:w:R>U there exists some z € X* such that u:;m%v.

— A system being both Noetherian and (locally) confluent is called complete.

— For a complete system R, the set of irreducible words

Irr(R) ={w e X* | Av: (w:R>v)}

is in canonical bijection with the quotient monoid X*/R. Hence, Irr(R) is
a set of normal forms for the monoid X*/R.

Definition 2.3. Let (X, I) be an independence alphabet. A transitive orien-
tation of I is a partial order < of X' such that first T = {(a,b) € I | a < b}
is a transitive relation and second, it holds either a < b or b < a for all
(a,b) € 1.
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Lemma 2.1. i) Let < be a transitive orientation of I and the lexicograph-
ical order of X* be defined by some linear extension of <. Then S(I, <)
is complete and the set of irreducible words is the set of lexicographic
normal forms, Irr(S(I,<)) = LexNF.

ii) Let R C X* x X* be any finite complete semi-Thue system such that
Y*/R=M(X,I). Then there exists a transitive orientation < such that
S(I,<) C R. In particular, by i) we have Irr(R) = LexNF.

Proof. i): By the characterization of lexicographic normal forms, c.f. Prop. 2.4,
the following (infinite (!)) system is easily seen to be complete:

R = {(bua,abu) | a < b and al(bu)}.

Of course S(I,<) C R and Irr(R) = LexzNF. Since < is a transitive orienta-

tion, one can show that (bua,abu) € R implies bua (:*>)z for some z with
I,<

abu==z. Since R is Noetherian, we have => = == and i) follows.
R R 5(1,<)

ii): Consider the relation < satisfying a < b <= (ba,ab) € R. The
relation < is asymmetric and irreflexive and it holds a < b or b < a for all
(a,b) € I. Moreover, an easy reflection shows a*b* C Irr(R) for all a < b.
Consider a < b < ¢ and ¢"b™a™ for n > 0. Then

* *
b"c"a"?c" b"a":R>c"a" b"

Since R is finite and complete, we have ¢"a™ ¢ Irr(R) for n large enough.
Hence, (a,c) € I but we do not have ¢ < a. Therefore a < ¢, and < is
transitive. Since < is asymmetric, the relation is a partial order, and it is a
transitive orientation of I. The assertion follows.

There is a surprising relation between unambiguous liftings of Md6bius
functions, finite complete semi-Thue systems, and transitive orientations of
I. We can state the following theorem.

Theorem 2.2. Let (X,I) be an independence alphabet M(X,I). Then the
following assertions are equivalent.

i) There exists an unambiguous lifting of the Mobius function p.
it) There exists a finite complete semi- Thue system R such that X* /R = M.
iii) There exists a transitive orientation of I.

In fact, Thm. 2.2 is a corollary of Prop. 2.1 and the following more precise
theorem.

Theorem 2.3. i) Let pn € Z{{X*)) be an unambiguous lifting. For (a,b) €
I define a < b by p(ba) = 1. Then < is a transitive orientation, S(I, <)
is complete, and we have p~' = XIrr(S(1,<)) -

ii) Let < be a transitive orientation of I. Then there exists a unique un-
ambiguous lifting p such that p(ba) = 1 for all a < b,(a,b) € I. This
function p is characterized by p = (XIrr(S(I,<))71-
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2.6 Bibliographical Remarks

The theory of free partially commutative monoids (trace theory) has its ori-
gins in combinatorics. The existence of the Foata normal form and the char-
acterization of the Md&bius function as the polynomial over the independence
cliques is from [13]. In computer science trace theory became popular mainly
by the work of Mazurkiewicz, see [69, 70]. Early ideas can also be found
in the paper by Keller (1973), where the Projection Lemma is (implicitly)
stated in [64, Lem. 2.5]. The Projection Lemma in the more general context
of semi-commutations is due to Clerbout [15]. Levi’s Lemma and the Projec-
tion Lemma, as stated here, can be found in a paper of Cori and Perrin [21].
Prop. 2.3 has been shown by Duboc [40]. The characterization of lexicogra-
phic normal forms, Prop. 2.4, is due to Anisimov and Knuth [3]. The simple
algorithm to compute normal forms has been proposed by Perrin, see [84].

The characterization, when lexicographic normal forms are the irreducible
words of some finite complete semi-Thue system, is from Métivier and
Ochmaiiski [75] and Otto [82]. The bridge to unambiguous lifting of the
Mobius functions is from Diekert [23]. A generalization of Thms. 2.2 and
2.3 has been conjectured in [24] and later been shown in [26].

3. Combinatorial Properties

3.1 Equations

Let M be any monoid. Two elements z,y € M are called conjugated, if
xz = zy for some z € M. They are called transposed, if ¢ = uv and y = vu for
some u,v € M. Clearly, transposed elements are conjugated, and conjugacy
is transitive. In free commutative monoids conjugacy is the identity relation.
In free monoids conjugated elements are transposed. Moreover, if = uv and
y = vu, then u,v € r* for some word r. These results generalize immediately
to direct products of free monoids. (The word r has however to be replaced by
a tuple of pairwise independent words (r1,...,r;) such that u,v € r{---rj.)

For trace monoids where the dependence relation D is not transitive, the
situation is different. Let (X, D) = a &b <c. Then the traces abc and cba
are not transposed, but they are conjugated: (abc)(aba) = (aba)(cba), since
ac = ca. Note that abc and bca = bac are transposed, as well as bac and cba.
Thus, the conjugation of abc and cba has been realized by two transpositions.
This is a general fact: In trace monoids conjugacy is always equal to the
equivalence relation generated by transposition.

Proposition 3.1. Let z,y,z € M(X,I) be traces. Then we have xz = zy if
and only if there are traces z1,z2,u1,--.,ug, k > 0, satisfying the following
conditions

i) T=wrcccug, Y= ug U,
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i) uilu; for 1 <i<jel<kel,
ZZZ) zZ1 = (Ul se kal) se (U1U2)U1,
W) z = z120 with x1z.

Proof. Using the Projection Lemma, Prop. 2.1, an easy reflection shows that
the conditions imply zz = zy. For the converse let zz = zy. By Levi’s Lemma,
Prop. 2.2, we can write x = z'u, z = 2'y’ = 2’7/, and y = uy’ with ulz'. If
x' = 1 then we are done with z =y =w and z = 2". If 2’ # 1, then |2/| < |2|
and we can use induction. Hence we may assume ' = uy - - ug, y' = ug - - - uq,
wilujforl1 <i< jel <kel,zi = (ur--up_1)-- - (uuz)(ur) and 2" = z{ 2z,
with ¢'Izo. Putting ug4+1 = v and z; = 'z] we obtain the result, since ulzs.

The diameter of a dependence alphabet (X, D) is the maximum over the
lengths of the shortest paths connecting letters from X; e.g., if M(X,I) is
commutative, then the diameter is zero, if it is free and |X| > 2, then it is
one. For (X, D) = a &b <c the diameter is two. Observe that some of the u;
in Prop. 3.1 may be empty, this allows to regroup them. One can derive the
following statement.

Corollary 3.1. Let (¥, D) be a dependence alphabet of diameter d. Then
traces x,y € M(X | I) are conjugated if and only if they can transformed into
each other by at most d transpositions.

A basic problem is to determine the solutions of the equation zy = yx
in trace monoids. As one might hope, the equation xy = yz holds if and
only if there are pairwise independent and connected traces ti,...,%; such
that o,y € t} -- - t. This will be seen from a more general approach (making
proofs thereby simpler).

Consider X = {z,y} with z # y as an alphabet of two unknowns. A
(non-trivial) equation in two unknowns e = f is a pair of (distinct) words
e,f € X*. A solution of e = f is a homomorphism 6 : X* — M(X,I) such
that @(e) = O(f). If a solution O is defined by @(x) = u and O(y) = v, we
also say that (u,v) is a solution for e = f, or more conveniently we write that
x =u and y = v. A solution (u,v) is called cyclic, if u,v € t* for some trace
t.

Lemma 3.1. Let x = u, y = v with u,v € M(X,I) be a solution of a non-
trivial equation e = f in unknowns {x,y}. The solution is cyclic, if one of
the following conditions is satisfied:

i) M(X,1) is free, i.e., I = ).
it) arn(u) = Pr(v) for some rational numbers o, > 0, where 7(u), 7(v)
denote the Parikh-images of v and v in N~ .

Proof. Assume by contradiction that the assertion would be wrong. Let (u,v)
be a pair where |u| 4+ |v| is minimal under the condition that (u,v) is a non-
cyclic solution for some non-trivial equation e = f satisfying i) or ii). Clearly,



18 Volker Diekert and Yves Métivier

by cancellation and symmetry we may assume that e begins with x, f begins
with y, and |u| < |v|. By Levi’s Lemma we can write u = pw’ and v = pw
with wlw'. If I = @), then w’' = 1. However, the same is true for i), because
am(u) = pr(v) with a,8 > 0 and |u| < |v| imply |ul, < |v|, for all @ € X.
Hence we have v = uw in both cases. Moreover, we may assume u # 1 and
w # 1. Now replace the unknown y by xz. This yields a new non-trivial
equation e’ = f’ in the set of unknowns {z,z}. Clearly (u,w) is a solution
of ¢ = f" and we have |u| + |w| < |u| + |v|. If I = 0 then (u,w) is a cyclic
solution by minimality of |u| + |v|. If ar(u) = Bn(v), then w # 1 implies
a > B. Hence an(u) = B(n(u) + m(w)) implies (a & F)n(u) = Br(w) with
(afB), > 0. Again, by minimality of |u|+ |v|, we find that (u,w) is a cyclic
solution. Thus, in both cases u,w € t* for some ¢, hence u,v € t* being a
contradiction.

Remark 3.1. An equation e = f is called unbalanced, if the number of oc-
currences of z (or of y) in the left-hand side of the equation differs from
that of the right-hand side. Of course, if (u,v) is a solution of an unbalanced
equation e = f, then am(u) = Br(v) with o, 8 > 0. In fact we may take
o = (el ©fl)] and B = |(1fl, lely)]

The lemma above yields therefore a special case:

Proposition 3.2. FEvery solution in trace monoids of an unbalanced equation
in two unknowns is cyclic.

Lemma 3.2. Let ¢ = u, y = v be a solution of a non-trivial equation in two
unknowns in a trace monoid. Write u = Uy - Um, v = v1 - -V, such that
u;,v; are connected and u;lu;,viIv; for all i # j. Then for all (i,j) with
1<i<m and 1< j<n we have either alph(u;) = alph(v;) or u;lv;.

Proof. Let a € alph(u), b € alph(v) with (a,b) € D. Projection to {a,b}* and
applying ¢) of Lem. 3.1 yields {a, b} C alph(u)Nalph(v). The lemma follows.

Proposition 3.3. Let x = u, y = v be a solution of a non-trivial equation in
two unknowns in a trace monoid. Then there are pairwise independent traces
t1,...,tx such that u,v € t7---1}.

Proof. By Lem. 3.2 we are reduced to the case where alph(u) = alph(v)
and u is connected. Let a,b € alph(u), (a,b) € D. Choose a,3 > 0 such
that a|u|, = BJv]s. By Lem. 3.1 it is enough to show that alu|, = BJv|y. By
projection to {a,b}* and i) of the same lemma we find integers ¢,,t;, > 0 such
that |u|, = mt,, |v|a = nta, |ulp = mty, and |v|y = nt,. The above implies
am = pn and this in turn ajul, = Blvls.

A connected trace r € M(X, 1) is called a primitive root, if r = s™ implies
n = 1. From Prop. 3.3 and Lem. 3.2 we may derive the following corollaries:
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Corollary 3.2. Every non-empty connected trace is the power of a unique
primitive root. Moreover, if uv =vu € M(X,I), u # 1, and uv is connected,
then u,v € r* for the primitive root r of .

Corollary 3.3. Letuy,...,ux € M(X,I) be pairwise commuting traces, i.e.,
u;u; = uju; for all i,j. Then there are pairwise independent and connected
traces ti,...,tm such that u; € t7---t;, for all1 <i <k.

The following consequence will be used in the next section.

Corollary 3.4. Let h: N¥ — M(X,I) be an injective homomorphism. Then
Y contains at least k pairwise independent letters.

Proof. Let u; be the image under h of the i-th unit-vector, 1 < i < k.
According to Cor. 3.3 write u; = ;™" - - tm'™. The matrix (n; ;)1<i<k,1<j<m
has rank at least k. Hence m > k. It is enough to pick one letter from each

alph(t;), 1 <i < m.

3.2 Strong Homomorphisms and Codings

A homomorphism between trace monoids h : M(X,I) — M(X',I') is given
by a mapping h : ¥ — M(X',I') such that h(a)h(b) = h(b)h(a) for all
(a,b) € I. We say that h is a strong homomorphism, if moreover we have
h(a)I'h(b) for all (a,b) € I. This means that independent letters are mapped
to independent traces. In this section we show that the existence of injective
strong homomorphisms is directly related to morphisms of graphs. By minor
modifications the following correspondences could be made functorial, but
we do not intend to introduce categories here.

Definition 3.1. A morphism H of dependence alphabets from (X', D') to
(X, D) is a morphism of the underlying undirected graphs (with self-loops),
i.e., H is a mapping H : X' — X on letters such that (H(a'), H(b')) € D for
all (a',b') € D'.

Ezample 3.1. Write (¥, D) = (Uf:1 A;, Ule A; x A;) and let (X7, D) be the
disjoint union of the complete graphs (A;, 4; x A;). We obtain a morphism
H: (X', D') & (X, D) which is induced by set inclusions 4; C X,1 < i < k.

The following proposition is another variant of Prop. 2.1 and of Cor. 2.2.
The proof is an easy exercise.

Proposition 3.4. Let H : (X',D') &~ (X,D) be a morphism of de-
pendence graphs and for each a € X let h(a) € M(X',I') be a trace
such that alph(h(a)) = H '(a). Then h induces a strong homomorphism
h:M(X,I) &> M(X',I"). This homomorphism is injective if and only if H
18 surjective on vertices and edges.
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Ezample 3.2. Let H : (X',D") — (¥, D) as in Ex. 3.1 and let the homomor-
) =

phism h of Prop. 3.4 be defined by h(a Il @' Then h coincides with
a'€H~1(a)

the canonical injective homomorphism from Cor.2.2 in the special case where

M;=A; forall1 <i<k.

An injective homomorphism between trace monoids is denoted henceforth
as a coding. According to [12] we call an injective strong homomorphism
a strong coding. A strong coding allows to encode a trace in such a way
that independency is preserved. The question arises whether there exists a
strong coding for given dependence alphabets (X, D), (X', D'). In general,
the answer is at least NP-hard, due to the following fact rephrasing Cor. 3.4.

Proposition 3.5. Let (X, D) be a dependence alphabet and k > 0. Then the
following assertions are equivalent:

i) There ezists a coding from NF into M(X, I).
ii) There exists a strong coding from N into M(X,I).
iti) The dependence alphabet contains an independent set of size k.

Definition 3.2. A relational morphism H : (X', D’) &~ (X, D) of depen-
dence alphabets is a relation H C X' x X such that (a',b') € D' implies
H(a') x H(b') C D. It is called surjective on vertices and edges, if both for
all a € X there exists o' € X' with (a',a) € H and for all (a,b) € D,a # b
there exists (a',b") € D', a' #V' such that (a,b) € H(a') x H(b').

The following result shows that there exists a strong coding
h:M(X, 1) & M(X', T
if and only if there exists some relational morphism
H: (X', D) e (X,D)
being surjective on vertices and edges.

Theorem 3.1. i) Let h : M(X,I) & M(X',I') be a strong coding and
H ={(d,a) € X' x X | a € alph(h(a))}. Then H is a relational mor-
phism being surjective on vertices and edges.

ii) Let H : (X',D") & (X, D) be a relational morphism being surjective on
vertices and edges. Then we can construct a strong coding h : M(X, I) &
M(X',I') such that H = {(a’,a) € X' x X | a' € alph(h(a))}.

Proof. Part i) is easy and omitted. We sketch ii): First we order the al-
phabets, i.e., we assume Y = {al,ag...} with a1 < ay < --- and X' =
{a},a},...} with a] < a} < ---. For each i = 1,2,..., we define a set H;
by H; = {aj € X' | (] al)EH} If (a;,a;) € 1, thenH x H; C I', since
His a relatlonal mOrphlSm We have H; # () for all ¢, since H is surJectlve
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on vertices; and if (a;,a;) € D,i # j, then there are b' € H;,c¢' € H; with
(t',c') € D', b # ¢, since H is surjective on edges.
Assume that H; = {a;j,,...,aj } with aj, < .-+ < aj . Define the traces
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ﬁz =aj ---aj and ﬁi}: a; ---aj . Thus, ﬁ; is the product of aj € H; in

%
increasing order and ﬁ: is the product in decreasing order. Now define
heM(S, 1) & M(Z', 1), hia) = () H,

The equality H = {(a’,a) € X' x X | o' € alph(h(a))} is obvious. Let
us show by contradiction that h is injective. Assume h(a;z) = h(y), with
a; € XY and z,y € X* such that a;z # y. Then y must contain a letter
depending on a;, hence we can write y = wa;z with a;Iu and (a;,a;) € D.
By cancellation we may assume i # j. Therefore we find b’ € H;,c' € H;
with (o', c') € D', b # ¢'. The result now follows by projection onto {b,¢'}*
and some few calculations left to the reader.

Remark 3.2. The proof of Thm. 3.1 is valid for countable alphabets as well,
as long as we demand that {a’ € X' | (a’,a) € H} is finite for all a € X.

Corollary 3.5. It is NP-complete to decide whether there exists a strong
coding between trace monoids.

Proof. It is clearly in NP to decide whether there exists a relational morphism
being surjective on vertices and edges. The hardness follows by Prop. 3.5, iii).

Corollary 3.6. There is a strong coding of M(X, I) into a k-fold direct prod-
uct of free monoids, if and only if (X', D) has a covering by k cliques, i.e.,

k k
(X,D) = (U A 44 x Ai)) :

i=1 i=1
Little is known about the existence of codings. According to the following
example we can construct codings in some cases, where strong codings do
not exist.

a < b

Ezample 3.3. Let (¥,D) = | | and (X',D") = peqUr es. Al-
d & ¢

gebraically M; = M(X,D) is a free product of commutative monoids,

M; = N? x N2, and My = M(X',D’) is a direct product of free monoids,
My = {p,q}* x {r,s}*. By Cor. 3.6 there is no strong coding of M, into
M, . But there is a coding. Take any non-singular 2 x 2-matrix with non-zero
entries, say the matrix with columns (;) and (). Then define accordingly by
using the columns of the matrix as exponents for the letters:

h(a) = (f) hc) = (’f), h(b) = (g) and h(d) = (q;)

An easy exercise shows that the homomorphism h : M <= M, is a
coding.
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3.3 Trace Codes

Codes over words are widely studied, see [5] for a comprehensive treatise.
They play a fundamental role in computer science. There are well-known
algorithms to test whether a finite (or regular) set X C X* is a code, i.e.,
whether it generates a free submonoid with basis X. In trace monoids the
same question turns out to be undecidable.

Proposition 3.6. It is undecidable whether a finite subset X of the direct
product {a,b}* x {c,d}* generates a free submonoid (with basis X ).

Proof. An instance of the Post correspondence problem (PCP) consists of two
lists (w1, ..., up), (V1 ..., 0n) With n > 2, uz,v; € X1 for 1 <i < n. A special
solution to this instance of the PCP is a finite sequence (1,11, ...,7t,n) such
that uju, - - - Ui, Uy, = V105, - - - Vi, Uy 1t is well-known that the existence of a
special solution is undecidable. In order to reduce PCP to the problem above
one employs markers. Let # be a new symbol; replace each letter a € X' in
the words u;,1 < ¢ < n, by a#, and in the words v;,1 < i < n, replace
each letter a € X' by #a. Then, add the symbol # in front of the new word
u1, and add # at the end of the new v,. We have now two lists of words
(d1,...,Un), (U1,...,U,) over the new alphabet X U {#}. Using any coding
of (X U{#})* into {c,d}*, we may view 4;,v; € {c,d}* for 1 < i < n. Finally
define X = {(ab%,4;) | 1 <i <n}uU{(ab’,d;) |1 <i<n}. It is not difficult
to see that X generates a free submonoid (with basis X) of {a,b}* x {c,d}*
if and only if the given instance of PCP has no special solution.

Let M = M(X,I) be a trace monoid and X C M be any subset. Define
an independence relation Ix C X x X by zIxy if and only if zy = yz in M.
This yields a free partially commutative monoid My = M(X, Ix) and the
inclusion X C M induces a homomorphism hyx : Mx < M. The set X is
called a trace code, if hx is a coding.

Remark 3.3. 1) If we can decide whether X C M(X,I) is a trace code (X
being finite), then we can decide whether X generates a free monoid, i.e.,
whether X is a code. Indeed, X is a code if and only if X is a trace code
and Ix is empty. Whether or not the converse is true remains unclear.

ii) The question whether a finite subset X of M is a trace code can eas-
ily be reduced to the problem whether the intersection of two ratio-
nal sets is empty. Define any total order < on X. For x € X let
LexNF(xz,X) C X* be the rational set of lexicographic normal forms
from M(X, Ix) having as first letter z. Let px : X* & M(X,Ix) the
canonical homomorphism. Clearly, px restricted to some LezNF(z,X)
is injective and hx (px (LexNF(z,X))) is a rational set of M(X, I). Now
observe that X is a trace code if and only if hx (¢x (LexNF(z,X))) N
hx(px(LexNF(y,X))) = 0 for all z,y € X, x # y. This finishes the
reduction to the intersection problem.
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This remark and the results of the next section imply the following fact.

Proposition 3.7. Let X C M(X,I) be a finite set of connected traces. Then
it is decidable whether X is a trace code.

Proof. In the terminology of the next section, LezNF(z, X) is star-connected
by Cor. 4.3 below. Hence ¢x (LexNF(x, X)) C M(X, [x) is star-connected,
and since hx maps connected traces of M(X,Ix) to connected traces of
M(X, 1) (by definition of Ix), we see that hx (¢x (LexNF(z, X))) is recog-
nizable, c.f. Thm. 4.1. There is an effective procedure testing the emptiness
of the intersection of two recognizable sets.

Emptiness of the intersection of two rational sets is known to be decidable,
if the independence alphabet is a transitive forest, [1]. Therefore we can state
by the remark above:

Proposition 3.8. Let the independence alphabet be a transitive forest. Then
it is decidable whether a finite set X C M(X,I) is a trace code.

A transitive forest is the transitive closure of the descendant relation in
a union of trees. Another characterization says that transitive forests are
the elements of the smallest families of graphs containing the empty graph
and being closed under disjoint union and complex product with a one point
graph. It can be defined by forbidden structures, too. An independence al-
phabet is a transitive forest if and only if it does not contain neither Cy nor
Py as an induced subgraph. By Cy we mean the chordless cycle and by P
the chordless path with 4 letters.

The proof of Prop. 3.6 shows that the trace code property is undecidable
in the monoid {a, b}* x {c, d}*, which means that the independence alphabet
is the graph C4. An undecidability result for P, would have given a character-
ization theorem, but the decidability, even decidability in polynomial time,
is known in this particular case.

Proposition 3.9. If (¥,I) or (¥,D) is a Py, then the trace code property
can be decided in polynomial time.

If the trace code property can be decided for (¥, I) or for (¥, D), then
it can be decided for all induced subgraphs and for all dependence alpha-
bets, obtained by edge-contraction. Unfortunately, this is not enough to con-
clude that the undecidability of the trace code property can be characterized
by some finite list of forbidden induced subgraphs. The classification of all
independence alphabets where the (trace) code property is decidable is a
challenge.

3.4 Bibliographical Remarks

Equations over traces have been studied first by Cori and Métivier [19] and
Duboc. The results of Sect. 3.1 are due to Duboc, see [40]. The results pre-
sented here are also exposed by Choffrut and by Duchamp and Krob in [34,
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Chapt. 3,4]. A celebrated result of Makanin states that it is decidable whether
a system of equations with constants has a solution over words, [68]. The ex-
tension of the result to traces would be of great interest, but it has not been
attacked yet.

The undecidability of the trace code property is due to Hotz and Claus
[62] and Chrobak and Rytter [14]. This result and the proof techniques are
close to a classical result of Greibach [57] showing that ambiguity of context-
free grammars is undecidable. The decidability for the intersection problem
in case of transitive forests is from Aalbersberg and Hoogeboom [1]. It led
directly to Prop. 3.8. After that result the characterization of dependence
graphs where the trace code property is decidable concentrated on the graph
Py. Hoogeboom and Muscholl [61] proved the positive result Prop. 3.9 for
the code property (being therefore negative for completing the picture). It
has been independently observed by Matiyasevich, who also proposed the
notion of trace code. Matiyasevich announced another decidability result for
the code-property provided the independence relation is acyclic (personal
communication). The topic of free trace submonoids is also mentioned in the
chapter by Choffrut of [34].

The question whether the existence of codings (injective homomorphisms)
between trace monoids can be decided has been raised by Ochmaniski in [81],
where among others a variant of Prop. 3.5 is stated. The notion of a strong
coding has been defined by Bruyere et al. in [12]. Thm. 3.1 is the main result
of [33]. It answers a question of the former paper and solves the problem
above for strong codings. However, the decidability for codings is still open,
some partial results and conjectures are in [11, 33].

4. Recognizable Trace Languages

4.1 Basic Facts about Recognizable and Rational Sets

Let M be a monoid with the unit element 1, a subset T of M is said to be
recognizable if there exists a homomorphism 7 from M to a finite monoid
S such that T = n~!(F) for some subset F C S. We also say that the
homomorphism 7 recognizes T'.

For a monoid M, an M<automaton A = (M, @, d, qo, F') consists of a fi-
nite set () of states, an initial state gg € @), a subset F' C () of final states, and
a transition function § from @ x M to @ satisfying the following conditions:

VeeQ  6(g,1) =g,
VgeQ, Vmy, mye M (g, mimsa) = 6(8(gq,m1), m2).
The subset T of M recognized by the automaton A is defined by

T ={m e M |d(q,m) € F}.
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Let T' C M be any subset. The syntactic congruence = C M x M is
defined by setting x =¢ y if for all u,v € M we have uzv € T <= uyv €
T. The quotient monoid M/=r is called the syntactic monoid of T. The
canonical homomorphism M — M/=r recognizes T. If ¢ : ¥* — M is
a surjective homomorphism, then the syntactic monoids of 7' C M and of
@ Y(T) C X* are isomorphic (via ). We have a classical result:

Proposition 4.1. Let ¢ : ¥* — M be a surjective homomorphism onto a
monoid M and T C M. Then the following assertions are equivalent.

i) The set T is recognizable.
ii) The syntactic congruence =7 is of finite indexz.
iti) There exists an M -automaton recognizing T .
i) The set o *(T) is a recognizable (or reqular) subset of X*.

The family of recognizable sets is denoted by Rec(M). It is a Boolean al-
gebra. The family of rational sets, denoted by Rat(M), is inductively defined
by starting from the finite subsets of M and the closure under the operations
of union X UY, concatenation X - Y ={zy e M |z € X, Y € Y}, and iter-
ation (or Kleene-star) X* = J;5o X*, where X° = {1} and X = X(-1 . X
for i > 1.

If we replace the iteration-operation by complementation, we obtain the
family of star-free sets, denoted by SF(M).

For finitely generated free monoids Kleene’s Theorem asserts Rec(X*) =
Rat(X*); and we can speak of regular languages without ambiguity. Due
to Schiitzenberger, the star-free languages SF(X*) have been characterized
by the fact that they are recognized by some finite aperiodic monoid. (A
finite monoid S is aperiodic if and only if there exists some p > 0 such that
Pt = zP for all z € S.) For example, the language (ab)* C {a,b}* is star-
free (1), the language (aa)* C {a}* is not star-free. The commutative closure
of the star-free language (ab)* is the non-regular, context-free language {w €
{a, 03" [ |wla = |wls}-

The rational subsets of the free commutative monoid N* are exactly the
semi-linear sets. There are semi-linear sets, which are not recognizable: Con-
sider (ab)* C N{®},

Star-free trace languages are recognizable by Cor. 4.1 below. For a trace
monoid M = M(X,I) we therefore have the following situation with strict
inclusions, in general:

SF(M) C Rec(M) C Rat(M).

4.2 Recognizability and Rational Operations

A rational expression over words or traces is called star-connected, if the
Kleene-star is used over connected languages, only. Let X C X¥* (X C
M(X, 1), resp.) be a languages. A word ¢ (trace t, resp.) is called an iter-
ative factor of X, if ut*v C X for some u,v.
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Remark 4.1. If all iterative factors of X are connected, then every rational
expression for X is star-connected. Indeed, if the star is used over some word
or trace t inside the expression for some rational language L, then ¢ becomes
an iterative factor of L.

Another operation for trace languages is called concurrent-star (or c-star
for short). It is in fact the composition of two operations. For a language
X we define X * to be the Kleene-star (¢(X))*, where ¢(X) is the set of
connected components:

c(X) ={ueM(X,I)|uis connected, u #1 and Jv : wv € X, ulv}.

Thus, X¢* is the Kleene-star over the connected language of all con-
nected components.

The family of c-rational trace languages is defined as the rational sets, but
instead of the Kleene-star we allow the c-star operation, only. The following
assertion is Ochmarniski’s Theorem.

Theorem 4.1. Let ¢ : X* — M(X,I) be the canonical homomorphism and
T C M(X,1I) be a trace language. Then the following assertions are equiva-
lent.

i) T is recognizable.
ii) There exist a rational language X C X* such that every iterative factor
of X is connected and p(X) =T.
iti) T is star-connected.
i) T is a c-rational language.

Proof. The implication i) = ii) follows from Lem. 4.1 below.

i1) = iii): As we have remarked above, if every iterative factor is connected,
then X is star-connected.

i1i) = 1v): Every star-connected expression is also a c-rational expression.
iv) = 1): It remains to show that recognizable trace languages are closed un-
der taking connected components, concatenation, and the Kleene-star over
connected languages. The closure under taking connected components is triv-
ial. The closure under concatenation is stated in Cor. 4.1, and the closure
under Kleene-star over connected languages is stated in Cor. 4.2. In order to
establish these results we shall use below the notion of rank as a tool.

Remark 4.2. In Thm. 6.1 we will see that, in addition to the equivalences
above and just as for words, recognizable trace languages can also be char-
acterized by monadic second-order logic.

4.3 The Rank

The rank is defined with respect to a fixed independence relation I C X' x X
Let X C X* be a subset of words and z,y € X*. By Cor. 2.3 we have zy € X
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if and only if there are zg,yo, ..., Tn, Yo € X* such that zoyo - z,y, € X,
[z] =[zo - mn], [y] = [yo - ynl, and z;I(Yit1---yn) for 0 < i <n. For zy €

X we define Rank(x, y, X) to be the least number n such that a factorization
as above is possible. The rank of the language X is

Rank(X) = max{Rank(z,y, X) | zy € X}

(with the convention Rank(f) = 0).

We say that X has a finite rank, if there exists an integer k such that
Rank(X) = k.

For example, if we assume that alb then, considering the set of couples
{(a™, ") | n > 0}, we see that Rank((ab)*) is infinite. The rank of a*b* is
one.

Remark 4.3. A subset X of X* has a rank equal to 0, if and only if for all
couples (z,y) of words such that zy € X, there exist two words z',y’ such
that 'y’ € X, z ~ 2, and y ~ y', where ~ is a shorthand of ~7.

Theorem 4.2. If a reqular subset X of X* has a finite rank, then [X] is
recognizable.

Proof. Let T = [X], we prove that the family {u'T | u € M(X, )} is finite.
Let k£ be the rank of X. Let n be a morphism from X* to a finite monoid
S recognizing X (i.e., X = n~1(n(X))) such that in addition
n(u) = n(v) implies alph(u) = alph(v).
Clearly such an 7 exists. Define a finite set R(u) for u € M(X, I) as follows
R(u) ={(s0y.--,8k) | u=[zo- - xt], 8i = n(x;), x; € ¥*,0 <i <k}

Note that the number of different R(u) is bounded by 2151 We prove that
if R(u) = R(u'), then u=!'T = u/~'T. For this assume that R(u) = R(u') and
uv € T. We prove that u'v € T. Let z,y € X* be words such that [z] = u,
[y] = v; the set X has a finite rank equal to k and xy € X. Thus, for some
xi, yi, 0 <1 < k we have

T ~ Tox1 - Tk,

Y ~YoYr- Yk,

ToYoT1y1 - TkYk € X,
z;ly; for all ¢ < j.

As the morphism 7 recognizes X,
n ' (n(zoyor1ys - - Treyr)) C X.
Let o = n~ ' (n(zoyoz1y1 - - - Tryx)). Since x;Iy; for all i < j we can deduce

a = n 'n(@om1 - TeYoYL - Yk))
= " (n(zo)n(z1) - - nlzr)n(yoys - - yr))-
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Let 2’ € X* such that [2'] = «' and 2’ admits zf,..., 2} as a decomposition
verifying n(zg) = n(zo),...,n(z),) = n(xy). This is possible due to R(u) =
R(u'). Now

- ((g)n() - n(zh)n(yoys - -yw)) =0~ (n(@oz1 - zryoys -+ yi))-

Using the fact that n is compatible with alphabets we obtain

a = 7 (n(@pyoriys - Thyk))-
Finally, since @ C X we have z{yoz|y: - - -z}, yr € X and thus u'v € T.
Remark 4.4. Let us note that the converse of this theorem is false. For X =

{a,b} with alb, the closure of the set of words X = (ab)* - (a* U b") is
recognizable, since X = {a, b}*, but the rank of X is not finite.

Proposition 4.2. Given two sets of words X1 and Xs, if they are closed,
then the rank of the concatenated language X1 X5 is at most 1.

Proof. Let zy € X, X5, by definition we have zy ~ zy22 with z; € X; and
xs € Xo. Applying Levi’s Lemma there exist 2, 25, 2,25 € X* such that

1o 1 I m_n " !
T~ TIT), Y~ TaTy, Tl ~ T Ty, T2~ T1Ty  and xylxy.

As X; and X, are closed we have zjz, € X; and z{z] € X,. Thus
zirhrizh € X1Xs and the rank of Xy X5 is at most 1.

Corollary 4.1. The family of recognizable trace languages is closed under
concatenation.

Proposition 4.3. Let X be a set of connected words. If it is closed, then the
rank of X* is finite.

Proof. We show that the rank of X* is bounded by 2|X|. Let zy € X*. By
Cor. 2.3 we may write:

T ~p1:Pn,
Yy~qi--qn,
QiI(Pi+1 o pn) for 1 S i < n,
(pigi) € X for 1 <i<n.

Consider an index i such that p; # 1 # ¢;. Since p;q; is connected, there
exist letters a; € alph(p;) and b; € alph(g;) such that (a;,0;) € D but
biI(pit1---pn). It follows that the letters b; are pairwise distinct. Hence there
are at most |X| indices such that p; # 1 # ¢;. Next we group the factors with
index ¢ where p; = 1 or ¢; = 1 into blocks. Note that every block belongs to
X*. Therefore, for some k < |X| we can rewrite z and y as follows.
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T ~ TopiT1 " PkTk,
Y ~ S0q151 - qkSk,
sil(piv1Tiqr - -prrx) for 1 <i<n,

q@iI(riy1 - peTk) for1 <i<n,
ri,s; € X* for 0 <i <n,
(pigi) € X for 1 <i <n.

We obtain the claim about the rank by roso(p1g1)risi - -+ (Drar)rese € X*.

By Thm. 4.2 and Prop. 4.3 we obtain the following missing piece of in the
proof of the implication Thm. 4.1, iv) = 7).

Corollary 4.2. Let T be a recognizable trace language which is connected,
then T is recognizable.

4.4 Recognizability and the Lexicographic Normal Form

Consider a total order on the alphabet and the set of lexicographic normal
forms of traces LexNF. Recall that if T C M(X, ) is recognizable and if
¢ Y(T) denotes the set of representing words, then X = ¢~ *(T) N LezNF is
a recognizable word language with T' = [X].

Lemma 4.1. Let X C LexNF be a regular language. Then every iterative
factor of X is connected. In particular, [X] C M(X,I) is a recognizable trace
language.

Proof. We show a stronger assertion: Let w € LezNF such that w? € LezNF
(this condition holds for every iterative factor of X), then w is a connected
word.

Let t = [w] € M(X,I) and assume by contradiction that ¢ is not con-
nected, i.e., t = uv with u # 1, v # 1, and ulv. Then, assuming the first
letter from w being from u, we can factorize w such that

= Q17102T203T304%4 """ Up—1Tn—1AnTn,
U = a17103T3 - AT,

= A2T2QA4T4 * " AmITm

with a; € X, z; € ¥* {k,m} ={n<l,n},and m =n,if niseven and k = n
otherwise. Moreover, due to ulv we have a; < --- < a,.

Since w? € LexNF, all factors of w? belong to LexzNF, too. Hence, if n
is even, then a,,z,,a1 € LexNF. If n is odd, then n > 3 and arzraizias €
LexNF. In the first case, we have a1 < an, and (am@mm)Iar; in the second
case, we have as < ar and (apzraiz;)las. Hence, a contradiction follows in
both cases.

Note that Lem. 4.1 implies i) = 4i) of Thm. 4.1. The following statement
is a corollary. It is also a consequence of Thm. 6.1 below which will be shown
below without using results from this section.
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Corollary 4.3. For a trace language T C M(X,I) let Min(T) = {z €
LexNF | [z] € T}. Then T is a recognizable trace language if and only if
Min(T) C X* is regular.

4.5 The Star Problem and the Finite Power Property

The star problem is to decide for a given recognizable trace language T C
M(X, I') whether T™* is recognizable. It is not known whether the star problem
is decidable. There is a close connection to the finite power property (FPP).

A language T C M(X, ) is said to satisfy FPP, if T* = (T'U {1})* for
some k > 0. We say that FPP is decidable on M(X, I), if FPP for recognizable
languages of M(X, I) is decidable.

If a recognizable language T satisfies FPP, then T™ is recognizable, too.
The converse need not be true, e.g., let § # I' C X. Then I'* C M(X, ) is
recognizable, it is even star-free, but I" does not satisfy FPP.

Theorem 4.3 ([87]). If the independence alphabet (X, I) does not contain
any Cy (cycle of four letters) as an induced subgraph, then both, the star
problem and the finite power problem are decidable.

Remark 4.5. Thm. 4.3 applies to free commutative monoids. Note however
that for commutative monoids the star problem and FPP are questions about
semi-linear sets (or equivalently questions which can be formulated in Pres-
burger arithmetic), hence the decidability is also clear from classical results,
[43, 55].

Both, the star problem and FPP are semi-decidable. For FPP this is
clear, simply compute T% until 7% C T*=1' k > 1. For the star problem,
the existence of a semi-algorithm to this problem is a consequence of the
following fact:

Proposition 4.4. Let T C M(X,1) be a recognizable trace language. Then
T* is recognizable if and only if there exists a recognizable language K C
M(X,I) \ {1} such that both K? C K and (K \ K?) C (T \ {1}) C K.
Moreover, if such a K ezists, then K = T*\ {1}, and K \ K? is the minimal
set of generators for T*.

A semi-algorithm to decide the star problem computes all K, patiently,
one after the other, testing each time the three inclusions K? C K and
(K \ K?) C (T'\ {1}) C K.

Let X C X*. If X possesses the finite power property in X*, then [X]
possesses the finite power property in M(X, I'). This implication may not be
reversed, in general:

Ezample 4.1. Let ¥ = {a,b}, alb, and X = (a?)* + (b*)* + ab + ba. This set
does not possess the finite power property, since for all integer n, the word
(ab)™ belongs to X™ but not to X for all i < n. Nevertheless, the subset [X]
of M(X, I) verifies [X]* = [X]°.
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The basic relation between the star problem and FPP is due to the fol-
lowing proposition:

Proposition 4.5. Let T C M(X,I) be recognizable and let b be a new letter.
Define K = T-bT C M(X, I)xb*. Then the following assertions are equivalent

i) T satisfies the finite power property.
it) K satisfies the finite power property.
iii) K* is recognizable.

Proof. Without restriction we have 1 € T'. Clearly, if T* = T* for some k > 0,
then we have K**1 = K*. This proves i) = ii) = iii).

For the converse observe that if 2b* € K* with 2 € M(X, ), k > 1, then we
must have z € T* for some k' < k. (In fact z € T*, since 1 € T.) Now assume
that K* is recognizable. By the pumping lemma for regular languages (uvw-
Theorem) there exists some n > 0 such that whenever xb™ € K* we find
some k < n with zb* € K*. As we have just seen this implies z € T* C T",
and hence T* C T™.

As a final result of this section, let us show that FPP is decidable for
connected languages. For this we recall the notion of distance function on
automata. A path in the automaton A is a sequence C = (fi,...,fn) of
consecutive transitions f; = (i, a;,qi+1), 1 < i < n. The integer n is called
the length of the path C. The word w = ay - - - a,, is the label of C. The state
q1 is the origin of the path and the state ¢,41 its end. By convention, there
is for each state ¢ € @ a path of length 0 from ¢ to ¢. Its label is the empty
word 1. A path C from q to ¢’ is successful if ¢ is an initial state, ¢' is final,
i.e., ¢ € Qo and ¢' € F. The set recognized by A, denoted by L(A) is defined
as the set of labels of successful paths.

A distance automaton (A,d) is a pair where 4 = (X,Q,A,Q0, F) is a
non-deterministic automaton and d is a distance function

d:Qx (XU{l})xQ <> {0,1,00}

satisfying for all (¢, a,q") € @ x (¥ U{1}) x @ the property d(q,a,q") = 0o if
and only if (g,a,q") € A.

n
For a path C, we note d(C) = Z d(gi,a;,qi+1). The function d is extended
i=1
on @ x X* x @Q by : d(q,w,q') being the minimum of the d(C) over all paths
C from ¢ to ¢’ labeled by w. If there does not exist such a path, we set
d(q7 w, q,) = 0.

A distance automaton (A, d)) is called limited in distance, if there exists
an integer k such that for all w € L(A) we have d(¢q,w,q") < k for some
g€ Qoand ¢ € F.

The following result of Hashiguchi [59] will be used.

Theorem 4.4. It is decidable whether a finite distance automaton (A,d) is
limited in distance.
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As in the word case this theorem can be used for the following assertion.

Theorem 4.5. Let T be a recognizable subset of M(X', I) such that each trace
of T is connected. Then it is decidable whether T possesses the finite power

property.

Proof. From Corollary 4.2 we know that 7™ is recognizable. We describe a
finite distance automaton recognizing 7" and having limited distance if and
only if T* has the finite power property.

To simplify notations we use a finite monoid S recognizing at the same
time 7" and T™*, and where moreover the elements of S code the alphabet.
Thus, we let n be a homomorphism from M(X, T) onto S such that

- T =n""(n(T)),
- T =n"'((T)),
— and n(u) = n(v) implies alph(u) = alph(v).

Note that n(7™* \ {1}) = n(T*) \ {1} due to the assumptions above. We
now give the description of the automaton. The states are tuples of various
length (so, 81, ..., 82m) € S?™H! with m < n, where n = | ¥|. Furthermore we
have s; € n(T*), if i is even. The s;, where i is odd, are called active elements.
There is a single initial state (1) where 1 € S denotes the unit element.

There are two sorts of e<transitions.

— The first one has distance zero and is always allowed if m < n. For any
0 <i < 2m we may perform the following operation

change (80,...,Si,8i+1,...,82m) to (80,...,Si,l,l,SH_l,...,SQm).

This transition creates a new active component.

— The other estransition has distance one; it decides that an active compo-
nent is not used anymore, since a factor is completed. For s; € n(T'), i odd,
we may perform with distance one:

change (so,...,8i—1,5i,8i+1,---,52m) tO (S0,-..,8i—1 " 8i - Sit1,---,52m)

Thus, with distance one a (2m + 1)-tuple is transformed into a (2m <1)-
tuple. Now we describe the action of a letter. Let a € X; there are two types
of transitions. If 7 is odd and a is independent of the alphabets corresponding
to s; where ¢ < j, then we may perform:

reading a change (so,- .-, Si,---,S2m) t0 (S0,---, 8 n(a),..., s2m)-

This transition has distance zero.

For ¢ even, we allow the same transformation, if a is independent of the
alphabet corresponding to s; where ¢ < j and if, in addition, n(a) € n(T'). In
this case the transition has distance one.

The final states are the 1-tuples (so) with s € n(T™).
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To see the correctness of this construction, observe first that when there
is a path with label ¢ from the initial to a final state with distance k& then
t € T*. Conversely, we have to prove that if ¢ € T* then there is a path
with distance k labeled with ¢ starting at (1) and ending in some (s¢) with
so € n(T™).

Let t = uwv € T*, we can write v = uq---ug, v = v1 ---vg such that
uv; € T, uivy # 1, and v;lu; for all i < j. We call the index 4 active
when u; # 1 and v; # 1. At most n indices can be active, since T is a
connected language. Hence, if m is the number of active indices, we have
m < n. Let d = |{v; | v; = 1}|. The set {v; | v; = 1} contains the factors
which are completed. We group the corresponding neighboring u; together
into one factor, including those u; where u; = 1, and we rename them as
u; with ¢ even. We rewrite u = wuguy - - - U2y, such that wi,us, us,... agree
with the active u; from the old factorization. It follows that the wu;, ¢ even,
are products such that n(u;) € n(T*). Now, using an induction on |u| one
proves that reading u we may reach the state (n(uo),n(u1),...,n(u2m)) with
distance d. At the end of this procedure there are no active components
anymore, hence m = 0, d = k. The result follows.

4.6 An Algorithm to Compute Closures

Let (X, I) be an independence alphabet. Given two words z and y of X*,
the I-shuffle of x and y, denoted by xIll;y, is the set of words of the form
TiY1 TpYn With z =1 2p, y =y1- - yn, T5,y; € X forall 1 <i < mn,
and ;ly; for all 1 < i < j < n. The inclusion 2IIT;y C {z - y} is straightfor-
ward. The I-shuffle is extended to sets by

XILY = J{zIlLy |z € X,y € Y},

Remark 4.6. The standard shuffle operation III on words can not be ex-
pressed with the I-shuffle. We have bab € ablllb, but never bab € abIll;b,
since (b,b) ¢ I. On the other hand:

Iy = Iy for all xIy.

We will apply the I-shuffle mainly to closed languages. Then the I-shuffle
becomes more powerful.

Lemma 4.2. For all z,y € X* we have T-y =zl 7.

We are now ready to define the procedure P. This procedure adds to X
the words belonging to the sets:

zo(x1 M ryr )21 - - 2n—1(enIryn)2n

where 20219121 - Zn_1TnYnzn € X, x;,y; € X1, 20,2; € X* forall 1 < i <
n,n > 0.
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There is no need to emphasize the factors z; explicitly. Observing that
{zi} = z;I1I;1 and allowing the factors z; (and/or y;) to be the empty word
we obtain a more compact notation. Formally, let x be an element of X*,
then we define:

P)={yeX | ye (ullliy)- - (z.11y,)
T=T1Y1 T, Ty € X5, 1<i<n}.

The definition of P is extended in a natural way to a set X of words by

zeX

For example, let a and b be two letters such that alb. We have

P(a*b) = a*ba",
P({abab}) = {abab,baab,abba,aabb,baba},
P?*({abab}) = P({abab})U {bbaa} = {abab}.

Due to the definition of P, for every set of words X we have P(X)UP(Y) =
P(XUY), P(X)-PY)CP(X-Y), and (P(X))* C P(X*). If X = X*,
then we have P(X) = (P(X))*.

Moreover, we have X C P(X) C X, and X = P(X) if and only if X = X.
Note also that for any word z = ay - --ana,41, the n-fold application P"
computes the closure of z:

(@] = Plar - P+~ P(ananss) - ) C P"(a).

(The exponent n is an overestimation, Cor. 4.4 below yields that a [logn]-
fold application is enough in order to compute the closure of a word of length
n.) We have

X =JP(X) =P (X).

i>0

Remark 4.7. The procedure P is a modification of the procedure S intro-
duced by Métivier [74] The procedure S adds to X the words belonging to
the sets:

(mlmyl) e (ﬂan—[yn),

where z1y1 - znyn € X and for all i we have alph(x;) x alph(y;) C I. The
relation between both procedures is as follows:

X CS(X)cP(X)cs¥l(x)cP¥(x)cX.

Theorem 4.6. If X is recognizable, then P(X) is recognizable.
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Proof. Let n: X* & S be a homomorphism onto a finite monoid S recog-
nizing X, i.e., X = n~1(n(X)). As usual, we may assume that n(z) = n(y)
implies alph(z) = alph(y) for all z,y € X*. Thus, for p € S we define by
alph(p) = alph(z) where p = n(z). Define the state set Q@ = S x S. We allow
e-transitions and two types of a-transitions, a € X.

é((p,a),1) = (pg,1) for all (p,q) € @,
6((p,a),a) = (p,gn(a)) forall (p,q) €Q,a€ X,
0((p,q),a) = (pn(a),q) forall (p,q) € Q, a € X, alph(q) x {a} C I.

The initial state is (1, 1) and the final states are the pairs (p, 1) with p € n(X).
It is not difficult to see that the automaton just defined recognizes P(X).

The following example is due to Arnold. It shows that every finite iteration
of P may fail to compute the closure of a recognizable set even when its closure
is recognizable:

Ezample 4.2. Let X = {a,b} with alb, and X = (ab)*({1} Ua™ UbT). We
have X = ¥*, and by induction, we can prove that aerlbWJr1 ¢ P"(X) for
all n > 0. Thus, for each integer n we have P"(X) # X.

Remark 4.8. This behavior above is not a particular failure of the procedure
P. In fact, let for a moment P : P(X*) & P(X*) be any procedure satisfying
the following properties:

I P(XUY)=PX)UP(Y),
II XCPX)CX, )
ITT If X is recognizable, then P(X) is recognizable.

Then possibly P"(X) # X for all n, even when X and X are recognizable.
Indeed, assume that for X' = {a,b} with alb we would have

P"((ab)*({1}Uat UbT)) = £* for some n € N.

Then P™((ab)*) U P*((ab)*(a* U b)) = X* due to I. By II we obtain
P"((ab)*) = {w € X | |w|s = |w|p}. Finally the latter set would be rec-
ognizable by III, hence a contradiction.

We deduce from the previous remark that neither P nor any other pro-
cedure satisfying I, II, and III provides us with a semi-algorithm to compute
the I-closure on the class of recognizable languages. However, the following
results show that we can use the procedure P to compute closures in the
cases described in previous sections.

Proposition 4.6. Let (X,I) be an independence alphabet. For all I-closed
subsets X1, Xo of X*, we have:

X1 Xo =P(X; - Xo).
Proof. This follows from Lem. 4.2.
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Corollary 4.4. Let (X,I) be an independence alphabet and X,...,X,, be
I-closed subsets of X*. Then we have:

X, X, = pﬂogM(Xl...Xn)_

Theorem 4.7. Let (X, I) be an independence alphabet and w(X, 1) be the
mazximal number of pairwise independent letters. Let X be any I-closed subset
of X* containing connected words, only. Then we have:

F — P2‘E|w(2’1)(X*).

Proof. Let wy,...,wy € X \ {1} be a list of m non-empty words, and w €
X* such that w € [wy - wp]. Each w; can be identified with a (scattered)
subword w; of w. More precisely, let n = |w| and w = a(l)---a(n) with
a(j) € X. We say that a position j with a = a(j), 1 < j < n belongs to w;, if

w1+ wi-ala < la(1) - a()la < foy - wioywila.

For each w; let first(7) (last(z) resp.) be the first (last resp.) position belonging
to w;. This yields an interval

int(i) = [first(2),last(é)] C {1,...,n}.

The crucial observation is due to the fact that all words of X are connected.
As it can be seen from the proof of Prop. 4.3 (or be shown directly) there is
no position j where more than |X| intervals intersect:

i|j€eint(d)} <|X¥| foralll <j<n.
[{i ] (@)} <X j

We now use at most |X| values blue, green, red, etc. in order to give a
first coloring of w. We demand that positions belonging to the same w; have
the same color and in addition that the colors of w; and w; are different if
int(i) Nint(j) # 0 for all i # j. We need in fact a finer coloring (or a second
coloring). To define this consider a certain color, say red. Let w;,,...,w;,,
1< <--- <14, < nbe thelist of red subwords. We define a graph G(red) =
(V(red), E(red)) with vertex set V(red) = {1,...,7} and pg € E(red) if and
only if p < ¢ but first(i,) > last(ig). Since the intervals of the red subwords
do not intersect, G(red) is a permutation graph. Hence it is a perfect graph
and its chromatic number is equal to the cardinality of its largest clique. A
clique in G(red) however corresponds to pairwise independent subwords. This
is clear, since pg € E(red) implies alph(w;,) x alph(w;,) € I. Therefore at
most w(X, I) different shades of red suffice such that p and ¢ have different
colors for all pg € E(red). In total we need at most |X|w(X,I) colors such
that the following invariant is satisfied:

Whenever i # j and int(7) Nint(j) # 0 or i < j and first(7) > last(j),
then ¢ and j have different colors.
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Finally, we mark a color, if all subwords having this color are factors of
w, i.e., for all subwords w; of a marked color it holds |int(i)| = |w;|. Now let
k be the number of unmarked colors, £k < | X|w(X,I).

Since X is I-closed and we are interested in X* , it is enough to prove by
induction on k that for some permutation o of {1,...,m} we have

w € P (1) Wo(m))-

If all colors are marked, i.e., k = 0, then we have w = W,(1) -+ - Wy (m) and
the claim is true. Let £ > 0. Since X is I-closed we may henceforth assume
that w; = w; for all i. We define a new word w’ by grouping the subwords
with color k into factors. Assume that color k is purple (viewed as a shade
of red). Then formally, let w;,,...,w;, be the list of all purple subwords in
w, listed from left to right as they appear in w. Write w = uy ---u, such
that each u, contains exactly one purple subword w;,,1 < p and such that

the first letter of each ua, ..., u, is purple too. Let u; (uy, resp.) denote the
scattered subword of u, containing the positions belonging to wy, ..., w;, 1
(Wiy 41, Wm, resp.). Then u, € [ugw;, uy] and more precisely

ug € (U;HII'LUiq)HI]’U,IqI.

Next, we define

!

w' = (ujwi,uy) - (u,

pWi, Uy ).

Clearly, w € P%(w'). Moreover, w' € [w; - --wy,] and the same coloring being
inherited from w satisfies the invariant above. (This is the main point of the
proof. It is not totally obvious since in w’ there may be new intersections of
intervals.) Now the color k (= purple) can be marked. Hence, by induction
w' € P** U (wy () -+ wy(m)) for some permutation o. The result follows
from

wE p2(p2(k*1)(w0(1) ._.wa(m))) C p2\2|w(2:1)(w0(1) ...wa(m)))‘

Corollary 4.5. Let X be a recognizable set of words such that all its iterative
factors are connected or, more general, let X be star-connected. Then there
exists an integer n such that P"(X) = X.

Proof. This can be seen by structural induction over the star-connected ex-
pression for X using Cor. 4.4 and Thm. 4.7.

Corollary 4.6. Let M(X,I) be a trace monoid. There exists an integer n
such that for each subset X of X* containing Min([X]) we have P"(X) = X.

Proof. By Lem. 4.1 all iterative factors of the set of lexicographic normal
forms LezNF are connected. By Cor. 4.5 there is an integer n such that
P"(Min([z])) =T for all z € ¥*. Hence P*(X) = X, if Min([X]) C X.

The hypothesis Min([X]) C X is not always necessary.
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Ezample 4.3. Let X = {a,b} with alb and a < b. Let X = b*a™. Then
X = P(X)=bTll;at = Z*\ (a* UDb")

is recognizable. But Min(X) = a™b* (and hence Min(X) N X = ().

4.7 Bibliographical Remarks

The investigation of recognizable subsets is central in the theory of traces. The
closure under concatenation has been shown by Fliess [46], a much simpler
proof for this result has been given by Cori and Perrin [21]. The recogniz-
ability of star-connected languages, Cor. 4.3, has been independently proved
by Clerbout (for semi-commutations) [15], Métivier [72], and by Ochmariski
[80]. The notion of iterative factor is from [71]. The notion of rank has been
introduced by Hashiguchi [60] thereby allowing to shorten some proofs. The
closure properties can also be deduced from logic, see [34, Chapt. 10] for
details. Lem. 4.1 is from [80]; for a generalization to concurrency monoids
see [36]. A straightforward proof of Cor. 4.3 by monadic second order logic
(without involving c-rational operations) has been independently given by

Courcelle [22].

The relation between the star problem and FPP in Sect. 4.5 is due to

Richomme [87]. Preliminary results are shown in [49].

The procedure P has been defined first in a technical report being the
basis of [76] where the results are shown with respect to the procedure S.
This procedure is originally from the thesis [74], see also [25, Problem 246].
Thm. 4.7 is a positive answer to this problem and Cor. 4.6 leads to another

proof for showing that star-connected languages are recognizable.

5. Rational Trace Languages

This section contains some characterization- and decidability results about
rational trace languages known in the literature. Due to the lack of space
we deal with some few topics, only. In particular we do not speak about any

counting techniques.

5.1 Unambiguous Languages

Definition 5.1. A trace language T C M(X,I) is called k-sequential, k >
1, if there is a regular word language L C X* such that (L) = T and
lo Y (t)NL| < k for allt € T. The family of k-sequential languages is denoted

by Raty, (M).
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It is clear from Cor. 4.3 that every recognizable trace language is 1-
sequential. The inclusion Raty(M) C Rat(M) is trivial for all £ > 1. It has
been shown by Bertoni, Mauri, and Sabadini [6] that the following inclusions
are proper for some independence alphabets:

Rec(M) C Rat; (M) C Rato(M) C --- C | J Rat (M) C Rat(M).
k>1

Ezample 5.1. Let (a,b) € I, then (ab)* C M(X,I) is l-sequential but not
recognizable.

Ezample 5.2. Let (¥,I) = a<b<e. Then the language T' = (ab)*c*Ua* (be)*
is 2-sequential but not 1-sequential. Clearly, T' is 2-sequential. We sketch
the proof for the fact that 7" is not 1-sequential. Assume by contradiction
that there exists a regular language L C {a,b,c}* such that ¢(L) = T and
lo7t(t)N L] = 1 for all ¢ € T. Consider a deterministic finite automaton
accepting L. Replace all b-transitions by e-transitions. In this way we obtain
an automaton A accepting a*c*. (Note that this automaton has no e-loops on
accepting paths.) By the property of L there exists for a™c™, m > 0 exactly
one accepting path in A, for a™c", m # n there are exactly two. Based upon
a product automaton construction for A one can show that the following
language is regular:

{w € a*c* | there exists more than one path of A accepting w }
We obtain a contradiction since {a™c™ | n # m} is not regular.

Definition 5.2. The unambiguous rational operations are defined by the fol-
lowing restrictions of the rational operations.

— The union X UY is allowed only if X NY = 0.

— The concatenation X -Y is allowed only if for all z,2' € X, y,y' €Y the
equality zy = z'y’ implies x = 2’ and y = v'.

— The Kleene-star X™* is allowed only if X is the basis of a free monoid, i.e.,
only if £1 -+ Ty = Y1+ Yn with z;,y; € X, 1 <5 <m, 1 < j <n implies
m=mn and x; =y; forall1 <i<m.

The family of unambiguous rational languages, UR(M), is the closure of the
set of finite languages under unambiguous rational operations.

It is a classical result that regular languages are unambiguous rational.
From this statement we may derive:

Proposition 5.1. The family of unambiguous rational trace languages co-
incides with the family of 1-sequential rational languages, i.e., UR(M) =
Rat1 (M)
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Proof. The inclusion UR(M) C Rat; (M) is shown by structural induction.
For the converse, let T' € Rat; (M) and L C X* be a regular language such
that (L) = T and |p~'(t) N L] = 1 for all t+ € T.. Then any unambiguous
rational expression for L yields an unambiguous expression for 7'.

A well-known result of Eilenberg and Schiitzenberger [43] says that semi-
linear sets are unambiguous rational. This statement has a generalization:

Theorem 5.1. We have UR(M(X,I)) = Rat(M(X,I)) if and only if I is
transitive, i.e., M(X, I) is a free product of commutative monoids.

Proof. A proof of the if-part by generating functions is given in [34, Chapt. 5].
For the converse let a, b, and ¢ three distinct letters such that (a,b), (b, ¢) € I,
but (a,c) ¢ I. Let T = (ab)*c* Ua*(be)*. It is shown in Ex. 5.2 that T is not
1-sequential, hence T € Rat(M(X, 1)) \ UR(M(X, I)).

Theorem 5.2. The family of rational trace languages is an effective Boolean
algebra if and only if (X, ) is transitive.

Proof. For a proof of the if-part see [89]. The other direction is easy and
shown in the next lemma.

Lemma 5.1. If (X, 1) is not transitive, then Rat(M(X,I)) is not closed un-
der intersection.

Proof. Take three distinct letters a, b, and ¢ such that (a,b), (b,c) € I, but
(a,c) ¢ I. Consider T' = (ab)*c* Na*(bc)*. We have T' = {a™b"c" € M(X,I) |
n > 0}. If T would be rational, then 7, .(T") C {a,c}* would be rational, too.
However 7, .(T) = {a"c" € {a,c}* | n > 0}. Hence, a contradiction.

5.2 Decidability Results

Consider the following six decision problems (proposed by Berstel [4, Thm. 8.4]
for rational relations), where each instance consists of rational trace languages
R,T CM(X,I).

— Intersection INT(X I):
Question: Does RNT = () hold?
— Inclusion INC(X, I):
Question: Does R C T hold?
— Equality EQU(X, I):
Question: Does R =T hold?
— Universality UNI(X, I):
Question: Does R = M(X, I) hold?
— Complementation COM(X, I):
Question: Is M(X, I) \ R a rational (finite resp.) trace language?
— Recognizability REC(X, I):
Question: Is R recognizable?
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The intersection problem plays a special role. It turns out that it is the
easiest among the problems above.

Theorem 5.3. INT(X, D) is decidable if and only if (X,I) is a transitive
forest.

The proof of this result is given in [1]. Recall that transitive forests are
characterized by forbidden induced subgraphs C4 and Py. In particular, every
transitive independence alphabet (X, I) is a transitive forest.

Theorem 5.4. If the independence relation I is transitive, then all decision
problems above are decidable.

Proof. The decidability of INT(X, I), INC(Z, I), EQU(Z, I), and UNI(, I)
follows from Thm. 5.2. The answer to COM(X, I) is always “yes” (decidable
resp.). REC(X, D) is for commutative and free monoids a question about
semi-linear sets being decidable by Presburger arithmetic [55]. In [89] it is
shown that this property is preserved under taking free products of them
yielding the result.

Theorem 5.5. If any of the problems
INC(X,I), EQU(X,I), UNI(X,I), COM(X,I), or REC(X,I)
is decidable, then the independence relation I is transitive.

Proof. All undecidability proofs for the problems above follow the same
scheme. This scheme is due to Ibarra [63], who proved that universality of
rational transductions from {a, c}* to b* is undecidable. Our notation is bor-
rowed from [89].

Let us start with the following formulation of the PCP.

Instance: Two homomorphisms f : AT < Bt and g : AT & BT
Question: Does exist some word w € A* such that f(w) = g(w).

Let C = AUB be the disjoint union of the two alphabets and M = C* x N.
Consider the following two languages

W(f) = {(uf(u),n) eM|ue A" n=|f(u)}
W(g) = {(ug(u),n) €M |u€ AT ,n=]g(u)l}

The complements of W (f) and W(g) are rational languages. This can easily
be seen by using a non-deterministic two-tape automaton: Assume, we want
to accept all (z,n) € M not belonging to W(f). (We assume that the number
n € Nis coded in unary on the second tape.) Of course, the automaton is able
to guess and to check whether x € ATB™ or, if x = uwv, u € AT, v € BT, but
n # |f(u)| or v # n. Thus, we may assume that the input is of the form (x, n)
where © = ujaus f(u1)v,w with a € A,uy,us € A*, f(uy)v,w € BT, f(a) #
vay bt 0 = |fusaus)], Jva] = |£(@)], and Ju] = | f(a2)]. (We put £(us) = 1,
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if u; = 1,7 = 1,2.) The automaton reads non-deterministically u; on the first
tape and in parallel it scans |f(u;)] fields on the second tape. The automaton
remembers the letter ¢ and proceeds non-deterministically, on the first tape
only, to the position of the word v,. It checks that, indeed, v, # f(a). It now
accepts, if the rest of the input satisfies |w| = n &v,| | f(u1)|. Hence, W(f)

and W (g) are rational languages.
The following statements are equivalent.

he instance of the PCP has no solution, i.e., f(w) # g(w) for allw € A*.
W()NW(g) =0

)
)
i) W(f)UW(g) = M(X, 1)
) W
)

—

(f)
W(f)NW(g) is finite.

(f) UW (g) is recognizable.
vi) W(f)NW (g) is rational.

The implications i) = ii) = iii) = iv) = v) = vi) are trivial. We show vi) =
i). Assume by contradiction that f(w) = g(w) for some w € A*. The trace
language wt (f(w))™ x N is recognizable. Now, if W (f) N W (g) is rational,
then

W(HNW(g) N (f(w)™ xN) ={(@"(f(w)",n-|f(w)]) [n>1}

is again rational, since it is the intersection of a rational with a recognizable
language. However, the projection to the first component yields the non-
rational language

{w"(f(w)" |n>1} C ATBT C C".

Contradiction! So far, we have dealt with the monoid M(X,I) = C* x N.
Encoding C* into {a, c}*, we see that the results holds for M = {a, c}* x b*
as well.

This shows that the problems UNI(X, I) by iii), REC(X,I) by v), and
COM(X, I) by vi) (by iv) resp.) are undecidable, as soon as I is not transitive.
A fortiori, (by the undecidability of UNI(X, I)) the problems EQU(X, I) and
INC(X,I) are undecidable in this case.

5.3 Bibliographical Remarks

The presentation of Sect. 5. has been inspired by the work of Bertoni, Gold-
wurm, Mauri, and Sabadini [34, Chapt. 5] and by Sakarovitch [89]. The results
of the present section can be found there. Prop. 5.1 is originally stated in [8].
Thms. 5.1 and 5.2 are from [2, 8, 88]. The problems of Sect. 5.2 have been
considered for trace languages by Gibbons and Rytter [53] thereby showing
that, up to INT(X,I), the other problems become undecidable for the de-
pendence alphabet (X, D) = a <b <c. The decidability of REC(X,I) for
a transitive independence relation is due to Sakarovitch [89]. The charac-
terization by Thm. 5.3 has been obtained by Aalbersberg and Hoogeboom

[1].
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6. Dependence Graphs and Logic

6.1 Dependence Graphs

So far, a trace has been defined as a congruence class of a word modulo a
partial commutation. A trace has also a unique representation as a labeled,
directed, and acyclic graph, defining therefore a labeled partial order or a
pomset, (partially ordered multiset). We start with an abstract definition.
Let (X, D) be a dependence alphabet. A dependence graph is (an isomorphism
class of) a node-labeled acyclic graph [V, E, \], where

— V is an at most countable set of vertices,

— E CV xV is the edge (or arc) relation such that the directed graph (V, E)
is acyclic and the induced partial order is well-founded.

— X :V = X is the node-labeling such that (A(z), A(y)) € D if and only if
(z,y) € EUE ' Uidy.

Remark 6.1. A partial order is called well-founded, if every non-empty set has
minimal elements. This assumption will become crucial in Prop. 6.1 below.
However, as long as we deal with finite traces only, well-foundedness has no
significance. (Hence we can forget about it.) We are more general here, since
we want a basis which allows to include a theory of infinite traces, c.f. Sect. 8..

The set of dependence graphs is denoted by G(X, D). It is a monoid, the
empty graph 1 = [0, 0.0] is the neutral element and the concatenation of the
dependence graphs [Vi, By, \] and [Va, Es, As] is defined as follows. First,
we take the disjoint union of labeled acyclic graphs, and then we introduce
additionally arcs from V; to V5 between all nodes with dependent labels.
Formally

[V17E17>\1] : [V27E27>\2] =
[Vl U‘/Q,El UE2 U{(a:,y) eVi xV, | (Al(l'),Ag(y)) S D},)\l U)\Q]
Remark 6.2. Let a be any countable ordinal, e.g. ¢ = w, a0 =w+1lor a = w”.

Consider any subset L C G(X,D) and let ¢ : « ©— L be an arbitrary

mapping.
Then we can easily define the ordered product

=
[[s0) € 6z, D)
i€a
as follows. As above, we take the disjoint union of the labeled graphs g¢(i)
over all ¢ € a. Then we introduce additional arcs from a vertex z of the graph
g(i) to a vertex y of g(j) for all i < j and (A;(z), A;j(y)) € D.
We define

&2
L* = {Hg(i)|g:a<:>—>Lisamapping ).

i€
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In particular, for L C G(X, D) the w-product L¥ C G(X, D) is defined.
According to this definition we have the following situation for subsets con-
taining the empty graph:

L* = Useo(L\{1})? ,ifleL.

In particular:
LY = L*U(L\{1})v ,ifle L.

Finite dependence graphs form a submonoid of G(X, D). For a dependence
graph t = [V, E,\] and a letter a € X' let V, = {zx € V | A(z) = a}. Thisis a
linearly ordered set, hence a well-order and therefore a countable ordinal. This
ordinal is denoted by |t|, and gives the a-length of ¢. It leads to a standard
representation where V = {(a,i+ 1) | a € ¥,0 < i < |t|}. The intended
semantics is that (a,7 + 1) denotes the (i + 1)-st node of V' having label a.
(The notation i + 1 is used to exclude limit ordinals, it is of no importance
for the finite case.) We have A(a,i) = a, and ((a,i), (b,7)) € E if and only if
(a,b) € D and i < j.

Proposition 6.1. The monoid G(X, D) of dependence graphs is left-cancel-
lative. Its submonoid of finite graphs is cancellative.

Proof. The result for finite dependence graphs is easily seen from the stan-
dard representation. For the general case one may use ordinal arithmetic.

A letter a € X is given as a one-point graph, labeled with a. Let us denote
this graph by g (a). Then ¢g can be extended to a homomorphism

ve: X = G(X, D).

Moreover: pg(ab) = ¢g(ba) for (a,b) € I, since pg(ab) consists of two nodes,
one labeled with a the other one labeled with b, and the graph has no edges.
Thus, ¢g factorizes and we obtain a homomorphism

PG M(X ) I) & G(X, D).

Fort =ay---a, € M(X,]), a; € ¥ for all 1 < i < n we have the following
explicit description of pg(t). We take any set of n nodes, say V = {1,...,n},
then we label node i with a; and we put (4, ) € E if and only if (a;,a;) € D
and i < j.

Proposition 6.2. The monoid of traces M(X,I) can be identified with the

submonoid of finite graphs of G(X, D). The homomorphism g above then
becomes the canonical homomorphism ¢ : X* <= M(X,I).

Proof. Let t = [V, E,\] be a finite dependence graph. Choosing a linear
order of V' which refines the partial order (V,E*), we may assume that
V = {1,...,n} with (i,j) € E only if i < j. An easy reflection yields
pe(A(1)---A(n)) = t, hence pg is onto. To see that pg is injective, let



Partial Commutation and Traces 45

Pc(u) = pe(v) = [V, E,A] and (a,b) € D. Consider the set V,, = {z €
V| A(z) € {a,b}}. Since (a,b) € D, this is a labeled linear order, which
can be identified with a word of {a,b}*. From the very definition of ¢¢ this
word is equal to 7, p(u) (where 7, ;(u) denotes the projection of w to {a, b}*).
Hence 74 p(u) = a5 (v) for all (a,b) € D. Therefore u = v by Prop. 2.1.

For the rest of this section we deal with finite traces only and we think of
(X, D) as being fixed. In particular the size of (X, D) is viewed as a constant.
As we have mentioned above, it is sometimes convenient to identify a trace
t (or its dependence graph [V, E, A]) with its induced labeled partial order
[V, E*, \]. (Following standard notations E* means the reflexive, transitive
closure of E.) However, if ¢ is of length n then both [V, E,\] and [V, E*, ]
are representations of t of size ©(n?), since the dependence graph of a™ has
@ edges. Hence, often we content ourselves with representing ¢ by its
Hasse diagram [V, H, A]. In the Hasse diagram all redundant edges have been
removed. Thus, H C FE is the smallest subset such that H* = E*. In the
Hasse diagram the in- and out-degree of every node is bounded by |X|. For
a fixed alphabet it is therefore a representation which is linear in its length.
For |t| = n the Hasse diagram has size @(n) and it is computable in linear
time.

Ezample 6.1. Let

d
LN
N/

a—2Db

(X,D) = and t = [acebdac]

T —

dependence graph a %K a
b
Hasse diagram a i< e ><
c c

The Hasse diagram allows a nice visualization of factors. We say that u
is a factor of t, if we can write t = puq for some p,q € M(X,I). Given such a
factorization ¢t = puq and a representation of ¢ by its Hasse diagram [V, H, )]
we can identify p, u and ¢ as a partition of V = PUU UQ. We say that
U C V corresponds to some factor in this situation.

Proposition 6.3. Let [V, H,\] ([V, E, \] resp.) the Hasse diagram (the de-
pendence graph, resp.) of a trace and U C V. Then U corresponds to some

factor if and only if for all x,y € U every directed path from x to y is entirely
contained in [U, HN (U x U)] ([U,EN (U x U)] resp.).
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Ezample 6.2. Let (X, D) as in the previous example.

The polygon bdc is a factor of ¢, the dotted rectangle cbe is not.

Another advantage of the graph interpretation of traces is the existence
of “visual proofs”. Here is such a proof for Levi’s Lemma, Prop. 2.2.

T t u

v

The independence of u and v is clear since there is neither an arc from y to
x nor from ¢ to z.
The proof of Cor. 2.3 is no more difficult:

Pn

u P2
/ _ tl t2 . tn — D1 n

v q1 q2

There are no arcs between p; and g; for ¢ < j.

6.2 Traces and Logic

Many classical results about first- and monadic second-order logic are ex-
tendible from words to traces. Monadic second-order formulae are built up
upon first-order variables z,y, ... ranging over elements of V' and second-
order variables X, Y ... ranging over subsets of V. There are four types of
atomic formulae:

re€X,x=y, (v,y) € E,and AN(z) =a fora € X.

We also allow Boolean constants true and false, the logical connectives V, A,
=, and quantification 3, V of first- and second-order variables. A first-order
formula is a formula without any second-order variable. A sentence is a closed
formula, i.e., a formula without free variables. Identifying a trace ¢t € M(X, I)
with its dependence graph t = [V, E, )], every sentence ¥ has an obvious
interpretation over ¢. Thus, the truth value of ¢ = ¥ is well-defined. The
trace language defined by a sentence ¥ is L(¥) = {t € M(X,I) |t =¥}. We
can speak therefore of first-order definability and of second-order definability
of trace languages.
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Ezample 6.3. Let b € X be a letter. The trace (or word) language defined by
an even number of b is definable in monadic second-order logic. We divide the
set of positions where a letter b occurs in two disjoint sets X and Y. Then
we say that between any two different positions of X there is at least one
position of Y, and vice versa.

Ezample 6.4. Let X have a linear ordering and let LexNF C X* be the set
of words which are lexicographic normal forms of traces from M(X, I'). Then
LexNF is definable in first-order logic. In fact, by Prop. 2.4 a word is not in
LexNF if and only if there are positions 4, k such that i < k, A(i) > A(k), and
(A7), \k)) e I foralli <j<k.

The predicate x = y, belonging to our syntax, is redundant as long as
we work with dependence graphs. It could be viewed as an abbreviation
of AM(z) = Ay) A—(z,y) € EA-(y,z) € E, and A(z) = A(y) is the formula
V,ex(A(x) = aAX(y) = a). In general, transitive closure cannot be expressed
in first-order logic. Due to the structure of dependence graphs we can do it
here. A formula defining (x,y) € ET (meaning that there is a non-empty
path from z to y) can be written in first-order logic with the help of at most
|¥| <2 additional variables. In fact, (z,y) € E7 is equivalent with:

(@,y) € BV \/ (Bz1---3zk: (w,21) € EA N\ (2i21,2) € EA(zk,y) € E)
k<] 2|2 1<i<k

There is also a first-order expression for the edge relation in the Hasse
diagram. The assertion (z,y) € H is equivalent with:

(z,y) € EA=(3z: (z,2) € EY A(2,y) € ET)

In the word case we have E = ET and we prefer to write x < y instead
of (z,y) € E, where < refers to the total order on positions in words.

Theorem 6.1. Let p : X* & M(X | I) be the canonical homomorphism and
T CM(X,I) be a trace language.

i) Then T is definable in monadic second-order logic (first-order logic resp.)
if and only if ¢=Y(T) has this property.

ii) Let LexNF C X* denote the set of lexicographic normal forms and K C
LexNF. Then K is definable in monadic second-order logic (first-order
logic resp.) if and only if p(K) has this property.

Proof. i): First, let T = L(¥) C M(X,I) for some sentence ¥. Let ¢t =
[V, E, ] be any trace and w € X* a representing word, i.e., ¢(w) = ¢t. There
is a bijective one-to-one correspondence between positions of w and nodes of
V, and we have (z,y) € FE if and only if z < y and (A(z),A\(y)) € D in the
word w. Thus, replacing every atomic formula (z,y) € E by the first-order

conjunction
z <y A (Az),Ay)) €D,
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we obtain a sentence ¥ such that ¢ = ¥ is equivalent with w = ¥. Hence
@ Y(T) = L(¥). For the converse let K = ¢~ '(T) N LezNF. Since T = o(K)
and LezNF is a first-order language, it is enough to prove the second part of
the theorem.

ii): Let t = [V, E, )] be a trace and let t = x;---x, € LexNF be its
representation in lexicographic normal form. Every node z € V corresponds
to some z; in ¢ and vice versa. We write lex(z,y), if ¢ corresponds to z;, y
corresponds to 2, and if we have ¢ < j. Thus, lex(z,y) means that the node
x is before y in its lexicographic normal form. If this happens, then either
(z,y) € ET or there is some minimal index k such that i < k < j, where
xy, corresponds to some node z € V such that (z,y) € E*. Moreover, since
it is the lexicographic normal form we have A\(z) < A(z) with respect to the
ordering of the alphabet.

Based on this observation we obtain the following relation:

(z,y) € ET or
A(z) (y) and —lex(y,x) or
Ay) (z) and 3z : A(z) < A(2) Alex(z,2) A (z,y) € E*.

lex(z,y) =
<A
<A

Since the alphabet is finite, it is enough to unfold the recursion (2-|X|<1)
times and the unfolded formula is a first-order formula (of exponential size in
| X|) over traces. Now, let K C LezNF be defined by a sentence ¥. In ¥ we will
use the symbol lex(z, y) as the atomic formula to denote the ordering between
positions. We then replace lex(z,y) by the first-order formula above. We
obtain a formula ¥ over traces. By construction, we have for all w € LezNF
that w = ¥ holds if and only if p(w) |= . The result follows.

By classical results on words, definability in monadic second-order logic
is equivalent with recognizability. The counterpart of first-order logic over
words generalizes directly to traces, too.

Corollary 6.1. Let T C M(X,1) be a trace language. Then the following
assertions are equivalent.

i) T is recognizable by some finite (finite and aperiodic, resp.) monoid.
it) T is recognizable (star-free, resp.).
iti) T is definable in monadic second-order (first-order, resp.) logic.

Proof. Due to Thm. 6.1 and well-known results about words, it is enough to
show i7) < iii) for the assertion about first-order logic, only. Both directions
are obtained analogously to the word case: The direction ii) = i) is more
simple (in first-order logic) and we sketch the main idea for the concatenation.
Let t = [V, E, A\] be a trace and ¢t = vw a factorization. Then u,w correspond
to subsets U, W C V. In fact, we find a finite set X = {z1,...,2£}, 0 < k <
| Y], such that U = {y € V | Iz; € X : (y,z;) € E*}and W = {z € V|
Vz; € X : (x;,2) ¢ E*}. By standard techniques, see [91], we can construct
for given two first-order sentences ¥, ¥» a new first-order sentence specifying
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those traces such that there exists a finite set X as above and the dependence
graph restricted to U satisfies ¥;, whereas the dependence graph restricted
to W satisfies ¥». The implication iii) = ii) follows from Thm. 6.2 below
giving a more precise statement.

Ezample 6.5. Let (¥,D) = a ©b<cand T C M(X,I) the trace language
T = (acbcab)™. Since ac = ca, this is the set of traces

a\b/a\b b/a\b
7 w7 ~, 7

with an even number of b. By the method of the first example of this section,
this trace language is definable in monadic second-order, but it is not first-
order-definable. On the other hand, the word language T = (acbcab)™ C
{a,b,c}* has a description by a first-order sentence. It is the set of words
starting with acbcab and every occurrence of the factor ab is either the end
or the word followed by another factor acbcab.

Remark 6.3. It is known by [79] that the commutative closure of a star-free
word language is either still star-free or not recognizable anymore. The ex-
ample above shows that for (X, D) = a<<bse the image of the word language
(acbeab)™ in M(X,I) is recognizable, but not star-free. This means in par-
ticular that the result about the commutative closure of star-free languages
can not be generalized to arbitrary trace monoids M(X, I). There is a pre-
cise characterization [79]: For all star-free word languages it holds that the
I-closure is either star-free or not recognizable if and only if the dependence
relation D is transitive.

6.3 Ehrenfeucht-Fraissé-Games

Let t = [V (t), E(t), A(t)] be any node-labeled graph. Then V (¢) denotes the
set of vertices, E(t) C V(t) x V(¢) is the edge relation, and A\; : V() — X
is the node-labeling. For the moment it is not necessary to put any further
restrictions on E(t). Thus, the graphs may be finite or infinite, directed or

undirected, cyclic or acyclic, etc. By @ = (ay,...,a;) we denote a k-tuple
of nodes, @ € V¥, k > 0. If T = (z1,...,71), then ¥(T) denotes a first-
order formula with free variables x1,...,xg. Any pair (t,a) yields a natural

interpretation for ¥ (). The interpretation of z; is a; for 1 < i < k. Thus,
the expression (¢,a) |= ¥(Z) has a well-defined truth value.

An Ehrenfeucht-Fraissé-game has two players, Player I and Player II. The
players take two structures (s,@) and (t,b) as above: s = [V (s), E(s), As],
a € V(s)k, t = [V(t),E(t),\], and b € V(t)F. They first decide on the
number of rounds m with m > 0.

If m = 0, we say that Player II wins the game, if A;(a;) = A(b;) and
(ai,a;) € E(s) < (b;,b;) € E(t) for all 1 <i,j <k.If m > 1, then Player I
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begins and takes either a vertex ar+1 € V(s) or a vertex by41 € V (t). Player II
answers by taking either some bp11 € V(¢) (if Player I has chosen in the
graph s), or by taking some a1 € V(s) (otherwise). This finishes the first
round. The game is continued with (m <1) rounds over the new structures
(s,(al,...,ak,ak+4)) and @,(bl,...,bk,bk+1)). _

The relation =, 1) is defined by setting (s,@) >~ r) (t,b), if Player IT
has a winning strategy for a game on m rounds. The following lemmata are
well-known facts in logic.

Lemma 6.1. The relation ~, 1) is an equivalence relation of finite index.

The quantifier depth of a formula is defined inductively. For atomic for-
mulae it is zero, the use of the logical connectives does not change it, and
adding a quantifier in front increase the quantifier depth by one. For example,
the following formula has quantifier depth two:

Vz((Fy(A(z) # Ay))) V Bz(A(2) =bA((z,2) € EV Az) = a))))

Lemma 6.2. Let ¥(T) be a first-order formula with free variables x1, ...,z

and (s,a) &= ¥(T). If ¥(T) has quantifier depth m and (5,@) ~(pn ) (t,0),
then we have (t,b) |= ¥(T), too.
Let us denote by [s,a@;m, k] the equivalence class {(£,b) | (s,@) ~(m k) (t,D)}.

Lemma 6.3. Each equivalence class [s,a;m,k] can be specified by a first-
order formula ¥[s,a;m,k|(T) of quantifier depth m and with free variables
L1yewey Th-

Proof. For m = 0 this is clear. Consider m + 1 and assume inductively that
formulae for all classes [s, (@, ag+1);m, k + 1] are already specified. The next
formula satisfies the requirement, it defines ¥[s,a;m + 1, k](Z):

Ny O Foet1¥ls, (@ ak1);m, k + (T, 2e41)) A
Vara(\ s, @ ak1);m, k + 1(F, ze11))-

Ak +1

Observe that the conjunction A\, and the disjunction V/,,  can be made
finite by Lem. 6.1. Details are left to the reader.

Next, we need a concatenation on node-labeled graphs s = [V (s), E(s), As]-
We adopt the definition for dependence graphs. Thus, we define s -t by

[V(s)UV (), E(s) UE®) U{(z,y) € V(s)xV(t) | (As(2), Ae(y)) € D}, As U],

Having this, we can state the following Congruence Lemma. Its proof is
clear, since, due to the definition of concatenation, whether or not (z,y) €
E(s-t) for z € V(s),y € V(t) depends on the labels of z and y, only.
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Lemma 6.4. Let u be any fized node-labeled graph and {uy,...,u,} its ver-
tex set. Let (s,@) ~(mp,) (5,@") and (£,0) ~(m k,) t',75).
Then it holds:
_ - _ -1

(S “u-t, (CL,Ul, - Un, b)) = (m,k1+n+ks) (Sl “u- tl7 (CLI,Ul, <o Un, b ))
In order to close the bridge to the star-free sets, we need a finitely generated
monoid. For convenience we restrict our attention therefore again to finite
dependence graphs, only. It is a nice coincidence that we have the following
fact.

Proposition 6.4. The set of traces (i.e., the set of finite dependence graphs)
can be specified by a first-order sentence.

Proof. The first requirement for dependence graphs is a first-order statement
VaVy : (A (x),A(y)) € D & (z,y) € EV (y,z) e EVz =y.

The second requirement asks for acyclic graphs. Because of the first formula,
it is enough to exclude cycles of short length; more precisely, we do not allow
cycles of length less or equal |X'| + 1. Short cycles however can be specified
in first-order logic.

A dot-depth hierarchy for words can also be defined for traces. The empty
set ) and the set of all traces M(X, I) are of dot-depth zero. To obtain level
k of the dot-depth hierarchy, £ > 1, we define it here as the Boolean closure
of the languages L -a - K, where a € X and L, K are of level k < 1.

Theorem 6.2. Let ¥ be a first-order sentence of quantifier depth m and
LW) = {t e M(X,I) | t = ¥}. Then L(¥) is in the m-th level of the
dot-depth hierarchy, and the corresponding star-free expression for L(¥) can
effectively been constructed.

Proof. We sketch the proof, only. For m = 0 the result is true. By induction,
we assume the result to be correct for m and that the sentence ¥ has quantifier
depth m+1 and it is in fact of the form ¥ = J2¥’(z). Consider the following
union

T=\J{U-a-V]ae X, U=u,();m,0],V=v,();m,0] and uav = ¥}.

We now make several observations. The union is finite by Lem. 6.1. By in-
duction and Lem. 6.3, it is a star-free expression of dot-depth m + 1. Since
u € U,v €V, we have uav € T, hence L(¥) C T. The converse inclusion
follows by known techniques from the Congruence Lemma (Lem. 6.4) and
Lem. 6.2.
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6.4 Bibliographical Remarks

Dependence graphs for traces have been considered first by Mazurkiewicz in
[69]. In Anisimov and Knuth we find the description as labeled partial orders
[3]. The characterization of recognizable trace languages by monadic second-
order logic over traces is due to Thomas [92]. Our proof follows Ebinger
[41], see also [34, Chapt.10]. This allows to include the first-order statements
in Thm. 6.1 and, as noted earlier, Cor. 4.3 is an immediate consequence.
Independently Courcelle [22] gave another proof for Cor. 4.3 using monadic
second-order logic over traces. The equivalence of 4) and ii) of Cor. 6.1 has
been shown by Guaiana, Restivo, and Salemi [58]. The equivalence to i)
is from [42]. Thm. 6.1 and Cor. 6.1 have a generalization to concurrency
monoids by Droste and Kuske [37, 39]. Our proof technique using Ehren-
feucht-Fraissé-games follows [91]. It led to Thm. 6.2 being a partial analogue
of a result of Thomas [90] on words.

7. Asynchronous Automata

7.1 Zielonka’s Theorem

An asynchronous automaton A has a distributed finite state control such
that independent actions may be performed in parallel. The set of global
states is modeled as a Cartesian product @ = [] @, where the Q; are states
ieJ
of the local component i € J and J is someE index set. With each letter
a € X we associate a read domain R(a) C J and a write domain W(a) C J.
We henceforth assume that W(a) C R(a) being a rather natural (but techni-
cally important) restriction. The transitions are given by a family of partially
defined functions (throughout we deal for simplicity with deterministic au-
tomata, only):

g H Qi &~ H Qi

i€R(a) €W (a) wes

Thus, each a reads the status in the local components of its read domain and
changes states in local components of its write domain. Accordingly to the
read-and-write-conflicts being allowed, we distinguish four basic types:

— Concurrent-Read-Exclusive-Write (CREW),
if R(a) NW(b) =0 for all (a,b) € I.
— Concurrent-Read-Owner-Write (CROW),
if R(a) NW(b) =0 for all (a,b) € I and W(a) NW(b) =0 for all a # b.
— Exclusive-Read-Exclusive-Write (EREW),
if R(a) N R(b) =0 for all (a,b) € I.
— Exclusive-Read-Owner-Write (EROW),
if R(a) N R(b) =0 for all (a,b) € I and W (a) N W (b) = 0 for all a # b.
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The local transition functions (d4),c s give rise to a partially defined transi-
tion function on global states

s (Jlenyx 2 e [] @

icJ icJ
where 0 ((¢i);c5,a) = (¢});c; is defined if and only if 4, ((qi)ieR(a)) is de-
fined. In this case we have ¢} = (6a ((qi)iER(a))) for j € W(a) and ¢; = g;
j

otherwise. If A4 is of any of the four types above, then it is clear that we
can define the action of a trace ¢ € M(X,I) on global states. It is con-
venient to denote this function again by . Therefore, we may view it as
a partially defined function ¢ : @ x M(X,I) — @. Given an initial state
go € Q and a set F' C @, we obtain an M(X, I')-automaton. The automaton
A=1{T1] Qs (6a)aeg,qo,F> accepts the language L(A) = {t € M(X,I) |
icJ

0(qo,t) € F}. If @ is finite, then L(A) is a recognizable trace language. As
well-known in automata theory, we may add local dead states in order to
have a totally defined transition function.

Before we continue we need some more notations. Let t € M(X,I) be a
trace and a € X be a letter. By 0,(t) we denote the smallest prefix of ¢ which
contains all occurrences a of t. Thus, 9,(t) is the trace of minimal length
satisfying |0,(t)|s = |t|a such that ¢t = 9,(t)q for some ¢ € M(X, I). Viewing
t as a labeled partial order, 0,(t) contains all vertices with label @ and the
past of them. This notion is extended to subsets A C X. The trace 04(t)
is the minimal prefix of ¢ satisfying |04 (t)|s = |t|s for all a € A. Note that
9p(t) = 1, 0s(t) = t, and 0,(¢) is a prefix of d4(t) for all @ € A. Moreover,
viewing ¢ as labeled partial order, we find that 04 (t) is the union of the 9,(t),
a € A.

Definition 7.1. A mapping a : M(X, 1) — Q to some finite set Q is called
asynchronous, if the following two conditions are satisfied.
i) The value a(Oaup(t)) is computable from a(04(t)) and a(dp(t)).
i) If t = Op(q)(t), then the value a(ta) is computable from a € X and the
value a(t).

A trace language T C M(X, I) is recognized by an asynchronous mapping «,
if T =a ta(T).
The following theorem is far from being trivial. It is crucial for the general

construction of asynchronous automata.

Theorem 7.1. A trace language is recognizable if and only if it is recognized
by some asynchronous mapping.

We cannot go into details of the difficult only-if-part of the theorem. Once this
has been shown, then the proof of the if-part (c.f. Prop. 7.1) yields Zielonka’s
Theorem as a corollary.
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Corollary 7.1. A trace language is recognizable if and only if it is recognized
by some asynchronous automaton.

The next sections give explicit transformations between the different types
of asynchronous automata. Therefore we have Zielonka’s Theorem for all
types considered here.

7.2 Asynchronous Cellular Automata

Definition 7.2. An asynchronous automaton A is called asynchronous cel-

lular, if the state space ) can be decomposed as Q@ = ][] Qu. such that
acX
W(a) = {a} and R(a) = D(a) ={be X' | (a,b) € D} for alla € X.

Remark 7.1. Every CROW-type asynchronous automata can be viewed as
asynchronous cellular by a trivial transformation (regrouping components)
which does not change the number of reachable global states.

The following proposition yields the if-part of Thm. 7.1.

Proposition 7.1. Let o : M(X,T) — @ be an asynchronous mapping recog-
nizing a trace language T. Then Q% is the state space of an asynchronous
cellular automaton A with L(A) =T.

Proof. The tuple go = (a(1)), is used as initial state. The global transition
function is defined such that

Sanrt) = <”(a”“”>bez‘

The reason why this works is based on the equation d,(ta) = Op(qa)(t)a, which
holds for all ¢t € M(X,]) and a € Y. In fact, consider a tuple (gb)yep(q)
with ¢, = a(0(t)). Due to the first condition of an asynchronous mapping,
we can compute the value of a(0p(q)(t)). By the second condition, we may
compute a(Ip(q)(t)a), which is a(d,(ta)). Therefore we can change the local
state g, to the new local state ¢/, = a(0,(ta)). Finally, observe that for all
be X b# a we have 9,(ta) = 0p(t). Hence, the new global state satisfies
indeed 6(qo,ta) = (a(0p(ta))sex. It is enough to define the final states by
F = {(a(0s(t)))pcs | t € T}. The result follows.

7.3 Changing Concurrent-Read to Exclusive-Read

The original definition an asynchronous automaton demands an EREW-type
with R(a) = W(a) for all a € X. Obviously, EROW is even a stronger
condition. (Recall our general assumption W(a) C R(a) for a € X'). Therefore
we content ourselves with the following proposition.
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Proposition 7.2. For every asynchronous automaton A of CROW-type
there exists an asynchronous automaton A’ of EROW-type with the same
number of reachable global states and recognizing the same language, L(A) =

L(A).

Proof. By a remark above we may assume that the state space of A has the

form Q = J] Q. and R(a) = D(a) = {b € ¥ | (a,b) € D} for all a € X.
acX
Define P, ) = Q, for all b € D(a), a € X by using different copies. The new

set of global states is defined by P = [[ [[ Pep)- For a € ¥ we define
a€X beD(a)
the new partially defined transition function.

H P(ba) s H P(ac

beD(a) c€D(a)
@heor = (0 (@hepi))

In A’ the write domain of a letter a is W'(a) = {(a,c) | ¢ € D(a)}. The
read domain above has reduced to R'(a) = {(b,a) | b € D(a)} rather than
putting artificially R'(a) U W'(a) (only in order to satisfy our restriction
W'(a) € R'(a)). Thus, our construction realizes even an owner-read-owner-
write (OROW) concept. In any case, it is clear how to define the initial state
and the global final states in order to archive L(A) = L(A’). Note that,
although the number of global states became larger, the number of reachable
states did not change. In some sense the automaton did not change at all.

c€D(a)

7.4 Changing Exclusive-Write to Owner-Write

Let A = <H Qi, (6a)a62,qo,F> be a finite asynchronous automaton of
icJ

EREW-type. We are going to transform A into an asynchronous cellular

automaton A’ recognizing the same language. Denoting by n; the cardinality

of (); we may assume that we have Q; = Z/n;Z for all i € J. For each a € ¥

define
P, = H 7 [ni.
i€R(a)

An element of P, is denoted in the following as a tuple (q(a,7));cr(q)- The

set of global states of the asynchronous cellular automaton A’ is P = [] P,.
[P
For every local state space Q;,i € J, there exist now several copies available

for A". For i € Jlet X¥; = {a € ¥ |i € R(a)}. The idea of the construction
is to split the information about a local state ¢; € (; among the components
with a € X; such that the following invariant is satisfied

qi = Z q(a,i) mod n;.

a€EX;
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Without restriction the local initial state (go); is the value 0 € Z /n;Z for
all i € J. In order to satisfy the invariant above we simply put

Po)a =(0,...,0)€ [] z/niz

i€R(a)

and define py = (po)acy as the initial state of A’.

We have to explain how to perform an a-transition on a global state
((q¢(b,7))icr(p) Joex for some letter a € X.

For every i € R(a) we read in the components P, where b € X;. Note
that since we have started with an exclusive-read automaton this implies
(a,b) € D. Thus, reading in all these components is allowed by the definition
of an asynchronous cellular automaton. We simply compute the sum:

gi =Y q(b,i) mod n; € Z/niZ = Q;.
beX;

The transition function §, of the automaton A is used to define a value
q" = 0a((¢i)icRr(a)) being in fact a tuple ¢' = (q})jew(a) with W(a) C R(a).

The automaton A’ may change the values in the components of the local
state space P, as follows:

q'(a,i) = qla,i) for i € R(a) \ W(a),
7(a,j) = ¢;X hexgay1(bg) forje W(a).

The invariant above is verified again. It is therefore clear how to simulate A
step by step and how to define final states in order to complete the transfor-
mation.

We should add a remark on the size of the new automaton. A reasonable
definition of the size of A is the sum | Y|+ ", ; |Q:|+ length of the program
which implements the family (0,)qcx. (At first sight this definition might
look strange, but it is a quite realistic measure.) With this notion of size, we
can state the following proposition.

Proposition 7.3. For every asynchronous automaton of EREW-type we can
construct in polynomial time an asynchronous cellular automaton recognizing
the same language.

7.5 The Construction for Triangulated Dependence Alphabets

A surprisingly simple construction of asynchronous automata is known for
triangulated dependence alphabets. An undirected graph is called triangu-
lated, if all its chordless cycles are of length three. Particular cases are there-
fore complete graphs and acyclic graphs (acyclic means a disjoint union
of trees). A dependence alphabet (X, D) is called triangulated, if the un-
derlying undirected graph has this property. A perfect vertex elimination
scheme of (X, D) is a linear ordering > of X' such that for all ¢ € X' the set
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E(a) = {b € D(a) | a > b} forms a clique (i.e., a complete subgraph; (E(a))*
is therefore a free monoid). We may represent a perfect vertex elimination
scheme by a list [a1,...,ay] such that a; > a; if and only if ¢ < j. It is
well-known, see e.g. the textbook of Golumbic [56, Thm. 4.1] that (X, D) has
a perfect vertex elimination scheme if and only if it is triangulated. If e.g.
(X, D) is acyclic, then any ordering which represents a topological sorting
yields a perfect vertex elimination scheme. For a complete graph, every total
order is a perfect vertex elimination scheme.

Let (X, D) be any dependence alphabet and let < be a linear ordering of
X such that for all a,b,c € ¥, a <b<e¢, (a,¢) € D and (b,c) € D, we have
(a,b) € D, too. Thus, if ¥ = {a1,...,a,}, n = |X| is written in increasing
order a; < --- < ap, then [ay,,...,a1] is a perfect vertex elimination scheme
of (¥,D). Hence (X, D) is triangulated. Consider now a homomorphism to
a finite monoid 7 : M(X,T) <~ S.

<>
Define for I' C ¥ and s, € S (¢ € I') the ordered product H e 5 by

&
multiplying the elements according to the ordering in X'. Thus, H er e =
c

Sep  Se,, I ={ec1y. .. em}, m >0, with ¢; < --- < ¢p,. All products of

elements of S used here will be ordered ones. We are going to construct an

asynchronous automaton A recognizing a trace language T = = (n(T)).
The state set of A will be an n-fold direct product of S, n = |X|. Let

A = (]] Qa,9,q0, F) be the automaton with Q, = S for all a € X such
[P
that the global transition function

5:(J] @) x 2 o> I Qu.

[P acX

is defined for ¢ = (q)pex and a € X as follows:

<>
H qc) -1n(a) ifb=a
0(g,a) =¢ with ¢’ = a<ec, (a,c)€D
1 ifa <b, (a,b) € D
) otherwise

&2
Furthermore, let go = (1)aex and F = {(qa)acs € [] Q| H g, €n(T)}.
acy a€X

Proposition 7.4. Let T C M(X,I) be recognized by the homomorphism 1 :
M(X,I) — S to the finite monoid S. Let A be the autormnaton defined above.
Then A is asynchronous of EREW-type and we have L(A) =T.

Proof. The write-and-read domain of a letter a € X' is given by the index
set R(a) = W(a) = {b € D(a) | a < b}. Assume that for some a,b,c € ¥,
a < b < cwe have (a,¢) € D and (b,¢) € D. Then (a,b) € D follows, due to
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the ordering. Hence, if (a,b) € I, then a and b have disjoint write-and-read
domains. Thus, A is asynchronous of EREW-type. In particular, for any trace
w € M(X,I), the global state §((1)qex,w) is well-defined. We denote this
global state also by ¢go - w.
For (ga)acx = qo - w the following two invariants can be shown:
i) a < band (a,b) € I imply g, n(a) = n(a) gp-
ii) a<b<e, (a,b) € I, and (a,c) € D imply g ¢- = e Gp-

The proposition follows now from the following claim:

<>
For (Qa)aGE =(qow Wwe have H Ga = 77(“’)
a€X

The claim is satisfied for |w| = 0 since gop = (1)4ex. By induction assume
that the claim holds for ¢ = ¢o - w and let ¢’ = ¢ - a for some letter a € X.

= = =
Since H qe = (H qe) - (H qc), it is enough to show:

ceX c<a a<lc
=2 =2 =2
M@= T wn@C [ -
a<c a<c, (a,c)€D a<b, (a,b)el

However, this last formula is immediate from the two invariants above.

Remark 7.2. Note that as soon as the dependence graph contains a chordless
cycle of length greater than three, the automaton constructed above is not
asynchronous anymore. More precisely, for any ordering < of the alphabet ¥
there exist letters a < b < ¢ (on the cycle) satisfying (a,c) € D, (b,c) € D,
but (a,b) € I. In this case however, ¢ belongs to both read domains of a and
of b.

7.6 Bounded Time-Stamps in a Distributed System

Suppose that in a distributed system some agents communicate by means
of messages. Usually, to execute correctly the prescribed protocol the agents
should have some knowledge about the relative order of messages. To this
end, they add to every message a tag, called a time-stamp, enabling them
to find out the necessary information about the ordering of messages. The
importance of an appropriate stamping algorithm was for the first time em-
phasized by Lamport (1978) [67], to which we refer the reader for further
discussion. In most cases, it is a relatively easy task to construct an appro-
priate stamping system if no bounds on the size of stamps are imposed. But
if we allow only a finite set of time-stamps then the construction of an ap-
propriate stamping system becomes difficult or sometimes even impossible.
In this section we show how to use the result about asynchronous automata
to construct a special finite time-stamp system.



Partial Commutation and Traces 59

The distributed system considered here consists of a finite set X of agents
and a finite set B of boxes. The agents communicate by messages that they
leave in some boxes. Every agent a € X has access only to a subset Dom/(a) C
B of boxes (Referring to previous notations, we consider here Dom(a) =
R(a) = W(a).) Conversely, for every box i € B, ¥; = {a € ¥ | i € Dom(a)}
is the set of agents which have access to i. If i € Dom(a) then we say that
the box i and the agent a are adjacent.

By B;, for i € B, we shall denote the contents of the box i, i.e. the set
of messages contained in i. We assume that at the beginning all boxes are
empty, i.e., B; = () for all i € B.

Every message is a triple (m, a, d), where m is the contents of the message
taken from some set M of possible contents; a € X identifies the sender of the
message, and finally d is a time-stamp from some set Stamps of time-stamps.
Thus formally the Cartesian product U = M x A x Stamps is the set of all
messages. In the following, by contents, sender, and stamp we shall denote
the projection of U onto M, ¥, and Stamps respectively. Furthermore, we
assume that any box contains for any a € X at most one message sent by a.

During their moves the agents not only will send new messages but also
will retransmit messages sent by other agents. For this reason, besides mes-
sages left by agents adjacent to i, every box ¢ € B can contain messages sent
by other agents and retransmitted by agents from X;.

A single move of each agent a € X consists of four phases. During the
first phase a reads the contents of all adjacent boxes, emptying them in this
way. Let R be the set of messages that were read in this phase.

In the second phase, for every b € X'\ {a}, if R contains messages sent by
b then a selects the last of them (the most recent), denoted it ;.

In the third phase, a chooses m € M that it wishes to send and computes
a time-stamp d € Stamps. Let u, = (m,a,d).

Finally, in the last phase a transmits to all adjacent boxes all messages
from the set {u. | c € X}.

The entire move (consisting of reading, selecting, constructing a new mes-
sage, and sending) is considered to be atomic. This implies that the access
to every box is sequential, and moreover, at a given moment, an agent a has
access either to all adjacent boxes or to none of them. Note that immediately
after the move all boxes adjacent to a have the same contents: for every agent
b € X, they contain at most one message issued by b, namely the last message
sent by b and known to a. We assume that for every message u € U the field
contents(u) does not provide any information concerning the relative order of
messages. Thus during the second phase of every move, agent a can use only
the fields sender(u) and stamp(u) of u € R to find out for every b € X'\ {a}
the last message in R sent by b.

To implement this system we should specify: the set Stamps, the algo-
rithm selecting messages in the second phase of each move, and the algorithm
assigning a stamp to the new message created in the third phase.
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A simple implementation exists if we allow the set Stamps to be infinite.
Let Stamps = N, and assume that every agent is equipped with a counter
initially set to 0. Then during its move, agent a increases its counter by 1
and takes the obtained value as the time-stamp d for its new message in the
third phase, u, = (m,a,d). The selection procedure in the second phase of
the move is trivial in this implementation. For every b € X'\ {a}, a takes all
messages in R with the sender field equal to b and selects among them the
one with the greatest stamp field.

The aim of this section is to present a different implementation with a
bounded number of time-stamps. First we define some auxiliary notions. By
a serial event we shall mean any finite sequence of elements of the set M x X,
SE = (M x X)*. Any occurrence of (m,a) € M x X in a serial event = € SE
represents a move performed by the agent a such that m is the contents of
the new message sent by a during this move. Let us suppose that « is an
algorithm implementing the system. For every x € SE and ¢ € Box by B¥(z)
we denote the contents of the box i after the execution of the serial event
z in the implementation a; B{(z) can be defined in the following inductive
manner:

(i) for all i € Box, B{(e) = 0,
(ii) if y = z(m, a) € SE then
(1) for all i € B\ Dom(a), B¥(y) = B¥(z),
(2) to obtain the new contents of all boxes adjacent to a apply the algo-
rithm a to B; = B{*(z) with ¢ € Dom(a).

Ezample 7.1. Let ¥ = {a,b,c,d} and B = {Bgp, By, Bed, Baa}, Where By,
with z,y € X, denotes the box adjacent to x and y.

Let S = (my,a)(ms,b)(ms,a)(ma,c)(ms,d) be a serial event and let S;
denote the prefix of S of length i =0,...,5.

The contents of the boxes after the execution of S; in the counter imple-
mentation that was considered previously are as follows.

After So: Bap = 0, Bye =0, Bea = 0, By = 0;

After S1: Bay = {(m1,a,1)}, Bpe =0, Bea = 0, Bao = {(m1,a,1)};

After 52: ab — {(ml)av 1 )(m27b; 1)}7 By = {(mlaa; ]-)7 (mQ;ba 1)}) Beq = w:
Bda — {(mlaav 1 }a

After S3: By = {(ms, a,2), (ma,

(

)

))

) }, Bpe = {(m1,a,1),(m2,b,1)}, Beq = 0,

Bda = {(m3,a,2), ma,

)

)

)

)

};

b,1)
b, 1)
After S4: Bay = {(ms, a,2),(m2,b,1)}, Bpe = {(m1,a,1), (m2,b,1), (my,c, 1)},
Bea = {(mlva;]- 7(m2;b7 1)>(m G 1)} Bia = (m?na 2)7( 27b;1)};
After SS: Bab = {(m3>a72 )(m27b>]—)}7 Bbc - {(mlaa ]-)7 (mZ)b 1))( My, C, 1)})
B.q = {(m3,a,2),(ma,b,1), (ma,c, 1), (ms,d, 1)},
Bio = {(ms,a,2), (ma2,b, 1),(m4,c 1), (ms,d,1)}.

Let I be the independence relation over X' defined in the following way:

I ={(a,b) € ¥ x ¥ | Dom(a) N Dom(b) = 0}.
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To define time-stamps we need some definitions. First we define the set of
prime elements, denoted Pr(X,I), by

Pr(Z,I)={0,(t) |a€ ¥ and teM(Z,I)}.

We can associate to a message a trace which encodes the partial order corre-
sponding to the communication between agents. As we want bounded time-
stamps, we define a map having a finite image and carrying enough informa-
tion on a trace ¢ to know the prefix order on the traces 9,(t) for a € ¥'. We
thus define a labeling A from Pr(X,I) into the set of positive integers by

A1) = [X],
and for a € ¥, t € M(X, I) such that ta € Pr(X,I),
A(ta) =min{i € N\ {0} |[Vb e T\ {a} @ # N0 (D(2)))}-

From this mapping A we construct for every trace ¢ a mapping v; from X' x ¥
into N\ {0} setting for any pair (a,b) of letters

vi(a,b) = M3 (05(1)))-

We denote by F(X;Y") the family of all partial mappings from X to Y. It turns
out that the mapping v associating with a trace ¢ of M(X,I) the element v;
of F(¥ x X;{1,...,|X|}) is asynchronous. Its importance is emphasized by
the fact that all asynchronous mappings we need in the proof of Zielonka’s
Theorem are refinements of this basic mapping v.

We set Stamps = F(X;{1,...,n}), where n = |X|. Let tag be the map-
ping from Pr(X,I) into Stamps defined in the following way:

Vte Pr(X,I), VYaeX: tag(t)(a) =A(0.()).

Now the idea of the implementation v is to assign to messages elements of
Stamps in such a way that the following condition is satisfied (we recall that
Yi={a€ X |ie€ Dom(a)}).
Condition (I'): Vhe H,Vbe X, Vie B, Vt € M(X,I), Vk > 0: if

t = sender(h) € M(X, I),

|05 (05, ()]s = |02, ()]s = k > 0,

(m, b) is the k-th message of b in h,

then
(m, b, tag(9y (95 (t)))) € B} (h).

If Condition (I') holds, h € H, and t = sender(h), then for each i € B
the time-stamps of the messages in the box i determine the mapping Vos, (t)-
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Lemma 7.1. Suppose that an implementation ~y satisfies (I"). Let h € H,
t = sender(h) € M(X,I). Then:

n if B](h) does not contain messages sent by b

Vo, (1) (¢, b) = { f(e) if (m,b, f) € B](h).

Now we can present the details of the algorithm . Let a € X and let h € H
be the history executed up to now. Let ¢t = sender(h) € M(X,I). Inspecting
the contents of box i, a can calculate vy, () for all i € Dom(a). Now by the
property of v agent a obtains vy, (ay (t)- During the selection phase, a chooses
for every b € X'\ {a} from the reading set R the message u, = (m,b, f) such
that:

Vee X f(c) = vy, )(cb).

As v is asynchronous, a can now get vy, (1q)- Let g be the mapping from X
into {1,...,n} such that:

VCEE, g(C) :Vaa(ta)(cva')'

Then g is the time-stamp for the new message that a creates during the third
phase, u, = (m,a, g). To show the correctness of « it suffices to observe that
if Condition (I") holds for a history h then it holds for the history h(m,a)
for every (m,a) € M x X.

7.7 Bibliographical Remarks

Zielonka’s Theorem is from [93]. Proofs based on the notion of asynchronous
mappings can be found in [20, 24], and [34, Chapt.8]. Asynchronous cellular
automata have been introduced in [94]. The transformations between different
types of asynchronous automata have been studied in detail by Pighizzini
[85]. The presentation of Sect. 7.4 is from a lecture of Hoogeboom (Palermo
1996). The construction for triangulated dependence graphs is from Diekert
and Muscholl [32]. It heavily uses the main idea from Métivier [73], who
developed this method for acyclic dependence graphs. Bertoni, Mauri, and
Sabadini used in [7] a similar method for acyclic Petri nets, but the latter
paper was not widely distributed. Bounded time-stamps are from [20].

8. Infinite Traces

8.1 Real Traces

An infinite word is a mapping v : N &= X. We can write v = u(0)u(1)---
with u(i) € X. The set of infinite words is denoted by X“; hence Y =
XU X¥ is the set of finite and infinite words. The mapping ¢g : X* <—
G(X, D) from words to dependence graphs has a natural extension to X
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For u = u(0)u(l) --- € X the dependence graph pg(u) = [V, E, A] is defined
as follows: The vertex set is V' = N with A(i) = u(4). There is an arc (i,j) € E
if and only if i < j and (u(i),u(j)) € D. The image pg(u) € G, u € X*®
is called real trace. The set of real traces is denoted by R(X, D). This set
contains finite and infinite dependence graphs. For simplicity we write ¢
instead of . Hence p : ¥ < R(Y, D) is a surjective mapping. A finitary
language is a subset of M(X, ), i.e., a language over finite traces.

For a dependence graph g = [V, E, A] we infer standard notations from
the finite case. In particular, we can speak of alph(g), of g being connected,
and of a decomposition into connected components. As usual, we write gIh,
if alph(g) x alph(h) C I.

Let g =[V,E,\] € G(X,D) and = € V be a vertex. By |z we mean the
dependence graph being induced by the set {y € V' | (y,z) € E*}. Thus, it is
the dependence graph (having a unique maximal element), being induced by
all nodes below or equal to z. By Prop. 6.1 we can write g = (L z)h for some
uniquely determined h € G(X, D).

Remark 8.1. A dependence graph g = [V, E, A] is a real trace, i.e., g = p(u)
for some word u € X*°, if and only if | z is finite for all € V. This property
characterizes therefore R(X, D) C G(X, D).

Having this notation, we may define the decomposition of a dependence
graph into its real (standard) and transfinite part:
Definition 8.1. For a dependence graph g = [V, E,\] € G(X, D) we define
its real part Re(g) € R(X, D) to be the dependence graph being induced by
the set {x € V | | x is finite}. The transfinite part Tr(g) € G(X, D) is the
dependence graph which is induced by the set {x € V | |z is infinite}. The
alphabet at infinity, alphinf(g) C X, is the set of labels

alphinf(g) = {\(x) € X' | XM(x) appears infinitely often or |z is infinite}.
The following proposition is obvious.
Proposition 8.1. Let g,h € R(X, D) be real traces. Then
alphinf(g) = {A(z) € X' | A(z) appears infinitely often }.

The product g-h € G(X, D) is a real trace if and only if alphinf(g) x alph(h) C
I.

It is straightforward to define iterations and w-products for dependence
graphs. Closing the family of rational languages over finite traces under the
operation union, concatenation, Kleene-star, and w-product, we obtain the
family of w-rational (or rational for short) dependence graphs Rat(G(X, D)).
The family of rational real trace languages is defined by

Rat(R(Y, D)) = {L C R(Z, D) | L € Rat(G(Z, D))}

Using Prop. 8.1 and well-known closure properties for the family of w
regular word languages Rat(X'°) the following characterization can be shown.
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Proposition 8.2. The family of rational real trace languages is the smallest
family containing Rat(M(X,I)) and being closed under union, concatenation
with finitary languages on the left, Kleene-star and w-products over finitary
languages.

Ezample 8.1. Let a,b,c € X, (a,b) € I, (a,c) € D, t € M(X,I), and g €
G(X, D). Then we have:

— a“b? = (ab)* € Rat(R(X, D)).

— a“c is not a real trace, Re(a“c) = a¥, Tr(a”c) = ¢, and alphinf(a“c) =
{a, c}. Hence, alphinf(a“c) = alphinf(a®) if and only if a = c.

— tg? € R(¥, D) if and only if g is finite.

Proposition 8.3. A real trace language L C R(X, D) is rational if and only
if it can be written as a finite union

L= U RT¥

finite

over finitary rational trace languages R and T .

Guided by the notions on finitary languages we define the families of
star-connected, c-rational, and star-free real trace languages.

For star-connectedness: the Kleene-star and the w-product are allowed
over finitary and connected languages, only.

For c-rational: the Kleene-star and the w-product are replaced by oper-
ations, where first we take the language of connected components and then
apply the Kleene-star (w-product resp.) over this connected language.

For star-freeness: we start with the star-free finitary trace language. Then
we take the closure under Boolean operations (with respect to R(X, D)) and
under concatenation with finitary languages on the left. Neither Kleene-star
nor w-product are allowed. It is easy to verify that for all A, B C X' the set
{g € R(X, D) | alph(g) C A, alphinf(g) C B} is star-free. Note also that the
language (ab)* is star-free, whether or not (a,b) € D.

In Sect. 6.2 we have defined first-order and monadic second-order sen-
tences. Of course, being a dependence graph every real trace yields an inter-
pretation for such a sentence.

Finally, we extend the notion of recognizability from infinite words to
real traces. We say that a homomorphism n : M(X,I) & S to a finite
semigroup recognizes a real trace language L C R(X, D), if for all infinite
sequences sos182 - - - and tot1ts - -+ with n(s;) = n(t;) for all 1 > 0 we have the
equivalence

S$0S182+++ € L <= tot1ty--- € L.

Definition 8.2. A real trace language L C R(X, D) is called recognizable,
if there exists some recognizing homomorphism n: M(X,I) <— S to a finite
semigroup S.
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Let L C R(¥, D) be a real trace language. We define the syntactic con-
gruence =1, C M(X,I) x M(X,I) by setting u =, v for u,v € M(X, I) if and
only if for all z,y,z € M(X,I) we have:

ruyz” € L <= zvyz* € L
z(uy)” € L <— z(vy)® €L

As for infinite words we have the following proposition:

Proposition 8.4. A real trace language L C R(X, D) is recognizable if and
only if we have both, the syntactic congruence =y, is of finite index and the
syntactic homomorphism nr : M(X,I) <> M(X,I)/=L recognizes L.

Proposition 8.5. Let ¢ : ¥ < R(X,D) be the canonical mapping,
L C R(X¥,D) be a real trace language, and K = ¢~(L). Then the following
assertions hold:

i) The syntactic monoids ¥* [=k and M(X,I)/=k are canonically isomor-
phic.

it) The syntactic homomorphism ng : X* & X* /=g recognizes K if and
only if n, : M(X,I) s> M(X,I)/= recognizes L.

Corollary 8.1. A real trace language L C R(X, D) is recognizable if and
only if p~1(L) C X is recognizable.

A word language K C Y is called closed, if K = o~ 1p(K).

Proposition 8.6. A recognizable word language K C X is closed if and
only if ab =k ba for all (a,b) € I.

The implication “=" in the proposition above is trivial and holds for every
closed language. Unlike the finitary case the converse is less obvious. The
proof uses Ramsey-factorization and the fact that the language K is rec-
ognized by the syntactic homomorphism ng : X* & X*/=g. The formal
proof is left to the reader. The proposition above yields a decidability result
immediately.

Corollary 8.2. [t is decidable whether a recognizable word language is closed.

Bringing together the different notions introduced so far, we can state the
following theorem.

Theorem 8.1. Let ¢ : ¥ o R(X,D) be the canonical mapping, L C
R(X, D) be real trace language, and nr, : M(X,I) o> M(X,I)/=L be the
syntactic homomorphism. Then the following assertions are equivalent.

i) L is a recognizable subset of R(X, D).

ii) @ 1(L) is a recognizable subset of ¥°°.
iti) The syntactic congruence =y, is of finite index and ny,recognizes L.
i) L is star-connected.
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v) L is c-rational.
vi) L is definable in monadic second-order logic.
vii) The language L can be written as a finite union

L= |J Rr~,

finite
where R and T are finitary recognizable trace languages such that T = T*.
The first-order counterpart can be stated as follows:

Theorem 8.2. Under the same assumptions as above, the following assump-
tions are equivalent:

i) L is star-free.
ii) o~ (L) is star-free.
iii) The syntactic monoid M(X, 1)/ =, is finite, aperiodic, and ny, recognizes
L.
i) L is definable in first-order logic.
v) The language L can be written as a finite union

L= Rr~,

finite

where R and T are finitary star-free languages such that T = T*.

8.2 Asynchronous Biichi- and Muller Automata

A non-deterministic finite asynchronous cellular automaton A is a tuple A =

(Q,s,(0a)acx, T) where Q@ = [] Q, is the set of global states, s = (s4)aex
[P

beD(
and T = {Ty,...,T,} is the acceptance table for runs, and each T; satisfies
T; = ][ Ti, for some T; . C Q.
acX
The automaton is called deterministic, if the local transition relations ¢,

are partially defined functions.
A run r of A on a real trace g = [V, E, A] is a labeling function r : V <
U,exQa satisfying the following conditions:

i) If A(z) = a for x € V, then we have r(z) € Q,.

ii) Let x € V, A(z) = a, and r(z) = ¢,. For each b € D(a) let g, either
be r(xzp), if there exists the maximal vertex z, with (z,2) € E* and
Mxp) = b, or let g, = sp (the b-component of the initial state) otherwise.
Then we have

is the initial state, §, C ( IT Qb> X (), is the local transition relation,
a)

((Qb)bep(a),qa) € da.



Partial Commutation and Traces 67

We define the infinite behavior of a run r on ¢ as follows:

inf(r) = {q € Q| ¢=(ga)acx such that for each a € ¥ :

either r~!(g,) contains infinitely many vertices
or it contains the maximal vertex with label a,

or, if a ¢ alph(g), then g, = s, }

For A a Biichi- and a Muller acceptance condition are defined. Accordingly
A is called a Biichi- or Muller automaton. A real trace g € R(X, D) is Biichi-
accepted if there exist a run r on g and some T; € T such that T; C inf(r).
It is Muller-accepted if we demand equality T; = inf(r) for some T; € T.

Although the Muller acceptance is more powerful, it is easy to see that
the non-deterministic models are equivalent in the sense that they lead to
the same class of accepted languages.

Theorem 8.3. Let L C R(X, D) be a real trace language. Then the following
assertions are equivalent:

i) L is recognizable.
ii) L is accepted by some non-deterministic finite asynchronous cellular
Biichi-automaton.
iii) L is accepted by some non-deterministic finite asynchronous cellular
Muller-automaton.
i) L is accepted by some deterministic finite asynchronous cellular Muller-
automaton.

Remark 8.2. The equivalence i) < iv) above generalizes McNaughton’s The-
orem to real traces. The original proof in [31] transforms via an implicit dou-
ble exponential algorithm a given non-deterministic Biichi-automaton for a
closed word language into a deterministic finite asynchronous cellular Muller-
automaton. This proof does not use the equivalence i) < ii). Therefore the
acceptance of a recognizable language by some non-deterministic finite asyn-
chronous cellular Biichi-automaton can be viewed as a corollary. But for this
fact a much simpler and direct construction exists by [50].

8.3 Complex Traces

There is no convenient way to define a concatenation on real traces, in general.
To see this consider the following two axioms:

I a“b¥ = a* for (a,b) € D
IT a¥b” # o for (a,b) € T

There is an associative operation satisfying I and II if and only if D is tran-
sitive. Indeed: If D is transitive, then M(X,I) = X} x --- x X} is a direct
product of free monoids. The sets X are monoids with a right-absorbent
multiplication if the left-hand side is an infinite word. This definition yields
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a concatenation on R(Y, D) = X{° x --- x X satisfying I and II. If D is not
transitive then consider a“b* ¢ with (a, b), (b,c) € D, a,b, c pairwise distinct,
and (a,c) € I. An operation satisfying I and II is never associative:

(a“b*)e” = a“c” # a” = a”b” = a”(b¥ )

On the other hand, G(X, D) is a monoid and we may consider the greatest
congruence respecting real parts. The quotient monoid by this congruence
is called the monoid C(X,D) of complex traces. This monoid has a very
convenient and concrete characterization.

Theorem 8.4. Let =¢ denote the greatest congruence on G(X, D) satisfying
Re(g) = Re(h) for all g =¢ h. Then for all g,h € G(X, D) it holds:

g=c h < (Re(g) = Re(h) and D(alphinf(g)) = D(alphinf(h))) .

Hence, the quotient monoid G(X', D)/ =c can be identified with the following
set:

C(¥, D) = {(Re(g), D(alphinf(g))) € R(X, D) x P(X) | g € G(¥, D)}.

By definition C(X, D) is a monoid and the concatenation is inherited from
the concatenation of dependence graphs. It is necessary (otherwise the whole
formalism would be rather useless) to have an explicit formula. First, we need
a few more notations. Let ¢ € G(X, D) be a dependence graph and A C ¥
be a subset. We define p4(g) as the maximal real prefix g being independent
of A. If < denotes the prefix ordering on G(X, D), then it is easy to see that
every directed set of real traces has a real least upper bound. Therefore we
have

nalg) =| J{p € M(Z,1) | p < g and alph(p) x A C I} € R(Z, D).

If p is a prefix of g, we denote by p~'g the unique dependence graph such that
p(p~tg) = g, and by D(p~!g) we denote the set D(alph(p~'g)). We define

oa(g) = D(alphinf(g)) UD(ua(g)"'g)
({D(p tg) |pe M(X,I),p <g, and alph(p) x A C I}.

Note that we always have D(alphinf(g)) C 04(g). Obviously, D(A) = D(A’)
implies pa(g) = par(g) and oa(g) = oa (g) for all g € G(X, D). The follow-
ing formula yields the concatenation of complex traces:

(r, D(A)) - (s, D(B)) = (rpa(s),oa(s) U D(AU B)).

The formula above is fundamental for the calculus on complex traces. Once
one has defined when a complex trace is connected (there are several suit-
able choices, take any of them), it is straightforward to define the notion of
rational, star-connected, and c-rational complex trace languages. We can go
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even further and define an a-product of a trace language for every ordinal .
Details are left to the reader.

There are also many equivalent definitions of recognizable complex trace
languages. We content ourselves with the following

Definition 8.3. A complex trace language L C C(X, D) is called recogniz-
able, if the language of real traces

Ly={reRZX,D)|(r,D(A)) € L}
is recognizable for all A C X.

Ezample 8.2. Let D = X x X be full. Then C(X, D) = ¥*°. For L C ¥*° we
have Ly = LN X* and Ly = LN X*¥. The language L is recognizable if both
Ly C Y* and Ly C X“ are recognizable in the classical sense.

Theorem 8.5. Let L C C(X,D) be a complezr trace language. Then the
following assertions are equivalent:

i) L is recognizable.
ii) L is star-connected.
iti) L is c-rational.

8.4 Topological Properties and the Domain of §-Traces

Consider the following two functions from M(X, I) x M(X,I) to NU {co}:

lr(u,v) = sup{neN|VpeM(X,I),|p| <n:p<usp<u}
le(u,v) = sup{n € N|Vpe M(X,1),|p| <n:D(p *u)=D(p 'v)}

Note that D(p~'u) C X is defined only if p < w. Thus, the equation
D(p~'u) = D(p~'v) means that either p is a prefix of both traces u and
v or of none. The functions /g and {¢ yield two ultra-metrics on M(X, I):

da(u,v) = 2-tn(uo
de(u,v) = 2—to(uv)

Theorem 8.6. The completion of the metric space (M(X,I),dgr) is R(X, D);
the completion of (M(X,I),dc) is C(X, D). Both spaces are compact and
totally disconnected, containing the set of finite traces M(X,I) as an open
and discrete subspace.

The concatenation of (M(X,I),dc) is uniformly continuous; its continu-
ous extension to C(X, D) coincides with the concatenation defined explicitly
above. The concatenation of (M(X, I),dR) is uniformly continuous if and only
if D is transitive (if and only if dr and dc are equivalent metrics).
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As it is well-known from the sequential calculus, the concatenation is not
monotone with respect to the prefix ordering, i.e., a < ab, but we do not have
ac < abe, in general. In the sequential calculus the solution is to introduce a
special symbol for termination. Here, we provide some alphabetic information
about the set of other actions which can be executed in parallel before waiting
for termination of the process. Formally, we add to a (finite) trace a second
component of the form D(A) with A C Y. The semantics is that, before
termination, the process may perform in the future only actions a € X' such
that D(a) C D(A). Therefore the semantics of D(A) = X is that everything
is possible; the semantics of D(A) = 0 is explicit termination. Note that for
the full dependency D = X' x X the whole information reduces to explicit
termination, since there are no other sets D(A) than X or §).

We define a partially ordered monoid Ms(X,I) as follows (the sign &
refers to dependence information):

Ms(X,D) ={(u,D(A)) |u e M(X,I), A C X}.
It is the monoid with the concatenation
(u, D(A)) - (v, D(B)) = (upa(v), oa(v) UD(AU B)).
The approximation ordering C is defined by

(u, D(A)) C (v, D(B)) <= u <wv and D(u 'v) U D(B) C D(A).

Ezample 8.3.
(u,0)(v,D(B)) = (uv,D(B)),
(u, ¥)(v,D(B)) = (u, %),
(1,) C (u, D(AUalph(v))) T (uv, D(A\ alph(v))) C (uv,0),

(1,0) is the neutral element, and (1,X) is the bottom element being right-
absorbent.

It is clear that M(X,I) is a submonoid of M s(X, D). The canonical embed-
ding is u &&= (u,0). If D = ¥ x X is full, then using a new symbol +/ for ex-
plicit termination we have a canonical identification M 5(X, D) = X* U X*,/.
We identify v € X* with (u,0) and u/ with (u, X).

The set of d-traces Fs (X, D) is defined by

Fs(X,D) = {(u,D(A4)) | v € R(X, D), alphinf(u) C A}.

The same formulae for the concatenation and the approximation ordering
apply. The concatenation is well-defined since we demand alphinf(u) C A for
(uv D(A)) € I (Ev D)

The various spaces we have considered so far can be put into a commuting
diagram of inclusions.
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M(X, 1) < M (X, D)

R(¥,D) — C(¥,D) — Fs;(X, D)

The following theorem states that Fs (X, D) with the approximation or-
dering is in fact a good semantic domain.

Theorem 8.7. The set of §-traces Fs (X, D) with the ordering C is a com-
plete partial order (CPO). The concatenation is continuous in both argu-

ments, i.e.,
Ux- v =x-v)

for all directed subsets X,Y C Fs(X,D). The CPO Fs5(X, D) is coherently
complete and algebraic. In particular, it is a Scott domain. The subset of
compact (or finite) elements is M 5(X, D).

For Fs (X, D) the Scott-topology and its refinement the Lawson-topology
are defined. The Lawson-topology is induced by the extension of the metric
dc from complex traces to d-traces. Formally, let ds(z,y) = 2—ts(2:9) and

L5((u, D(A)), (v,D(B))) =sup{ n e N|Vpe M(X,I), |p| <n:
D(p~'u)UD(A) = D(p~'v) U D(B) }.

By general facts about Lawson-topology [54] we obtain a compact and
totally disconnected space. (In particular Fs (X, D) is a complete ultra-metric
space.) Every compact and totally disconnected space is a projective limit.
We make this explicit. For each n > 0 and a trace u € M(X,I) let u[n] =
L{p < u| |p| < n},ie., u[n]is the least upper bound of the prefixes of length
n in u. Using this notations we define finite and aperiodic monoids M,, and
F,, as follows:

M, = {(uln],D((uln])"'w)) | u € M(Z, 1)}
Iy {(uln], D(A)) |u e M(X, 1), A C X}

The multiplication is given in both monoids by the same formula:
(u, D(A)) - (v,D(B)) = ((upa(v))[n], D(((upa(v)[n]) " uv) U D(AU B)).

It is an exercise to verify that he formula is well-defined. It also shows that
M, is a submonoid of F,, and that for all n > 0 we have a canonical homo-
morphism

U M(Z, 1) & F,, uxs> (un], D((u[n])'u))

The image of 1, is exactly M,,. For each m > n there are surjective homo-
morphisms 1, , and ¥, , such that the following diagram commutes:
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M(X, I) Ym M,, —— F,,

1/}n ;n,n djm,n

M, —— F,

It is clear that this leads to projective systems. Recall the definition

im M, = {(zn)n>0 € H M, | zb;nn(a:m) = x, for all m > n}
- n>0
IimF,, = {(zn)n>o0 € H Ey | Ymn(Tm) = xp, for all m > n}
. >

n>0

Being finite we endow the sets M,,, F,, with the discrete topology. The pro-
jective limits are then compact (by Tychonov’s Theorem) and totally dis-
connected. They are topological monoids and the multiplication is uniformly
continuous. We have just constructed the corresponding monoids of complex
and J-traces with the Lawson-topology. The final theorem reflects most of
what we have done so far for complex and for §-traces in two lines.

Theorem 8.8. We have the following equalities of topological monoids:

C(Z,D) = limM,
im

F5(¥,D) = limF,.
im

8.5 Bibliographical Remarks and Further Reading

The theory of infinite traces has its origins in the mid eighties. F1é and Rou-
cairol [44, 45] considered the problem of serializability of iterated transactions
in data bases. Their definition of an infinite trace is equivalent to our def-
inition of an infinite real trace. Best and Devillers [9] defined the behavior
of Petri nets by an equivalence relation on X'°*°. This equivalence relation
yields real traces. A definition of a real trace as a prefix-closed and directed
subset of real traces and its characterization by dependence graphs is given
in a survey by Mazurkiewicz [70]. This characterization is the basis for an
investigation of the poset properties, as e.g. studied by Gastin and Rozoy
in [52]. Kwiatkowska [66] introduced real traces as a suitable model for dis-
tributed systems to reason about fairness, liveness, and safety properties. She
also showed that the set R(X, D) with the prefix-metric dg yields a compact
ultra-metric space. Bonizzoni, Mauri, and Pighizzini gave a Foata normal
form for infinite traces [10].

The theory of recognizable real trace languages has been initiated by
Gastin [47, 48]. The generalization of the Kleene-Biichi-Ochmariski-Theorem
to real traces (Thm. 8.1) is due to Gastin, Petit, and Zielonka [51]. (It has been
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generalized to complex trace languages in [30].) A construction of a deter-
ministic asynchronous Muller automaton accepting a given recognizable real
trace language has been exhibited by Diekert and Muscholl in [31]. A com-
plementation construction for asynchronous cellular Biichi automata based
on Klarlund’s progress measure technique has been presented by Muscholl
[77]. As a preliminary result, a determinization procedure for asynchronous
(cellular) automata for finitary trace languages is provided (see also Klar-
lund et al. [65]). Logical definability on infinite traces is investigated in [42].
Together, the results mentioned above provide a satisfactory picture and a
rather complete generalization of regular infinitary word languages to real
traces, see also [78].

A basic difference between X*° and R(Y, D) is however that a natural
associative operation of concatenation cannot be defined for real traces, in
general. This led Diekert to the notion of complex trace [27]. The results about
rational and recognizable complex trace languages have been established in
[30]. A theory of §-traces as a natural generalization of this concept has been
proposed in [29].

There are other generalizations of the theory of finite traces we have
not dealt with in this chapter. For example, it is very natural to consider
asymmetric (in-)dependencies. This leads to the notions of semi-trace and
of semi-commutation initiated successfully by Clerbout and Latteux [15, 16,
17, 18]. For an overview on semi-commutations given by Clerbout, Latteux,
and Roos we refer to [34, Chap. 12]. A generalization of semi-traces based on
the pomset model of Pratt [86] has been proposed in [28].

Another approach to express dynamic behavior is due to investigations
of Panangaden and Stark [83] who introduced the notion of trace automata.
Close to this is the notion of concurrent automata being transition systems
where the dependence relation may vary with the state and their monoids of
computations due to Droste [35]. Many important theorems of trace theory
have been generalized to these monoids, see [38].
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