
Universität Stuttgart
Fakultät Informatik

Fakultät Informatik
Institut für Parallele und

Verteilte Höchstleistungsrechner
Universität Stuttgart

Breitwiesenstraße 20 - 22
D-70565 Stuttgart

Problem Formulations, Models
and Algorithms for Mapping

Distributed Multimedia Applications
to Distributed Computer Systems

Problem Formulations, Models
and Algorithms for Mapping

Distributed Multimedia Applications
to Distributed Computer Systems

Alexander Hagin, Gabriel Dermler, Kurt Rothermel

CR-Klassifikation: C.2.4, C.4, G.1.6, G.2.2, I.6

Fakultätsbericht 3/1996
Technical Report

Februar 1996



G.Dermler, K.Rothermel A.A.Hagin

University of Stuttgart/IPVR Technical University of St.-Petersburg
Breitwiesenstr. 20 - 22 Polytechnicheskaja str. 29
D-70565 Stuttgart 195251 Saint-Petersburg
Germany Russia

Abstract

In the report, the problem of optimal allocation of Distributed Multimedia Applications

(DMA) into Distributed Computer Systems (DCS) is examined. We are given precedence

graphs representing topologies of the DMA and data streams between components of

DMA. Nodes and arcs of the graphs are weighted by the computational and communica-

tion resources needed to meet quality of service requirements of DMA. A special-purpose

precedence graph model is proposed to present the structure of DCS including computers,

virtual channel connections and communication resources of DCS over which the chan-

nels are routed. Nodes and links of the graph are weighted by the computational resources

and capacities of communication resources available to mapped DMA.

An approach, based on the solving two kinds of the mapping problem, is proposed. The

first one is formulated as a nonlinear integer programming problem with cost function

under constraints on DCS resources available to mapped DMA. If the first one has not an

acceptable solution, then other problem, formulated as minimax nonlinear integer one to

find the DMAlocation into the DCS with minimum DCS resource gap, is solved. To solve

both problems, effective algorithms based on the branch-bound method are proposed.

Computational efficiency of the algorithms is examined and illustrated by numerical

examples.
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1 Introduction

Recent technological developments in high speed networks and multimedia workstations have
given rise to entirely new classes of distributed applications such as distance learning, desktop
videoconferencing, remote multimedia database access and so on. Multimedia systems combine
a variety of information sources, such as voice, graphics, animation, images, audio, and full-
motion video, into a wide range of applications. Research and development efforts in multime-
dia computing can be divided into two groups. One group centers on the stand-alone multimedia
workstation and associated software systems and tools. The other combines multimedia com-
puting with distributed systems. Potential new applications are based on distributed multimedia
systems [1].

1.1  Framework for DMA implementation

A distributed multimedia application (DMA) needs a convenient framework for its implemen-
tation in a distributed computer system (DCS). One successful approach is the CINEMA (Con-
figurable INtEgrated Multimedia Architecture) development platform providing abstractions
for dynamic configuration of DMA and for arbitrary complex stream synchronization require-
ments [2].

Distributed multimedia applications (DMA) are employed to generate, process and consume
(e.g. present) continuous (e.g. audio, video) data streams across distributed locations into com-
puter network.

CINEMA allows a client to compose an application out of components and links as one or some
data flow graphs. A component is an individually schedulable unit (e.g. by mapping to a thread).
In the graph the nodes represent components, while links (arcs) represent the data streams
between components. The streams may have different rates. A component accesses the data
units of streams via ports.

Further, the initial configuration may be dynamically changed during run time as need. Dynamic
configuration of DMA allows to take into account changes of available resources in distributed
computer system (DCS) and changes of the required quality of service the user asks for at run
time. Moreover DMA are often highly dynamic in the sense that users may join and leave the
application during run time that causes necessity of the reconfiguration of DMA without session
interruption. On the other hand, DCS is a dynamic system with set of different changeable DMA
executed, changeable available computational and communication resources for allocation and
execution of a new DMA.

Components encapsulate processing of multimedia data, e.g. for generating (source compo-
nents), presenting (sink components) or manipulating (filters and mixers) data. To provide a uni-
form data access point for the components, ports are used that deliver data units to the compo-
nent (input port) or take the data units from the component (output port). A component designer
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has to associate with each component port the streamtype to be used making all related infor-
mation available at the port. A client constructs an application by specifying a topology of com-
ponents interconnected via links. A link provides an abstraction from underlying communica-
tion mechanisms which may be used to perform the transport of data units.

A data flow graph may be arbitrary distributed over several nodes of a distributed computer sys-
tem. Components are configuration independent, which means that their internal logic is inde-
pendent of the configuration they are used in.Thus, from the client’s point of view, there is no
conceptual difference whether two adjacent components run either on the same computer-node
or on different computer-nodes connected by a remote link.

Before using an application, a client has to specify desired QoS (Quality of Service) to CIN-
EMA with respect to output data generated by sink components (e.g. presented video frame size
and rate). Client requests are related to sink component ports, assuming that the client has
knowledge about sensed output QoS and corresponding media specific QoS required as input to
sink components.

CINEMA offers the concept of a session allowing the client to specify the application to be
instantiated and the QoS expected with respect to output generated by sink components. A ses-
sion is the unit of resource reservation and QoS negotiation. By creating a session, a client
causes the CINEMA system to reserve the resources that are needed to guarantee the specified
quality of service requirements. After a session has been established, the transmission and pro-
cessing of multimedia data may be started.

A session encompasses parts of the data flow graph which is defined by a client. Its actual exten-
sion is defined by specifying a set of source and sink components. Intermediate components and
interconnecting data paths are determined from the data flow graph by the CINEMA system.

In CINEMA, a new protocol type termed negotiation and resource reservation protocol NRP is
proposed. NRP is carried out by a corresponding protocol engine (PE) in three phases during
which (in phase 1) the so-called application flowspec (AFS) available at the sink port is propa-
gated towards the source components for resource reservation, (in phase 2) AFS from source
ports propagated back to the sink to prepare resource relaxation, and (in phase 3) resource res-
ervation are relaxed while propagating the AFS towards source again.

Thus, general framework supported by CINEMA session is following.

1. Constructing and specifying by client an DMA (data flow graphs) and QoS with respect to
consumed data.

2. Checking the logical correctness (agreement) between application specification and QoS
requirements taking into account limited functional capabilities of components. (For
instance, all components connected to an output port of the same mixer have to get a picture
with same characteristics of size, rate and so on. Two interconnected component ports have
to be associated with the same streamtype. A limited resource availability of any compo-
nent or intermediate link affects QoS to be provided by all other components or links and
so on).
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3. Mapping media specific parameter values (e.g. video frame size and rate and so on) to com-
putational and communication resource requirements that agree QoS requests of client.

4. Mapping weighted data flow (application) graphs of DMA to DCS taking into account
required computational and communication resources of DMA and, on the other hand,
available computational and communication resources of DCS, and cost expenses of DCS
resources that will be reserved.

5. Resource reservation in DCS by NRP protocol.

Return(s) from each of these 5 stage to previous one may be needed depending on result
obtained on the stage.

The paper deals with the problem 4 of mapping a DMA to a DCS.

1.2  Mapping problem

A DMA can be represented by one or some application precedence graphs [2]. In an application
graph (or simply DMA graph), nodes represent components that are interconnected by arcs rep-
resenting data streams between components. Each component is associated with at least one
device that produces (a source component) or processes (an intermediate component - filter or
mixer) or consumes (a sink component) data streams. Each node of the application graph is
weighted by computational requirements of the corresponding component and each arc is
weighted by the channel capacity needed for remote communication between adjacent compo-
nents. Media streams can originate at multiple sources, traverse a number of intermediate com-
ponents and end at multiple sinks.

The DCS considered is heterogeneous and consists of computers (workstations) communicating
with each other through point-to-point physical link, local area network(s) (LAN) and/or wide
area network(s) (WAN). For every DMA, the part of the DCS that will always be considered
consists of computers each of which can be used for executing the functions of one or more
components. The communication structure of a DCS is described by a system oriented graph
(or simply DCS graph). In the system graph, nodes represent computers that are interconnected
by arcs representing virtual channels of the DCS. The DCS graph includes weights per nodes
(values of available computational resources and cost functions for such resources) and per arcs
(values of available channel capacity and capacity cost functions).

The mapping problem has been thoroughly investigated for parallel systems [3]; if usually
arises when the number of computational modules required by the application exceeds that of
processors available, or when the interconnection structure of the application computational
modules differs from that of the parallel machine [4,5]. In [6], the mapping problem is defined
as the assignment of modules to processors and maximizing the number of pairs of communi-
cating modules that are allocated to pairs of directly connected processors. It is shown that the
mapping problem is equivalent to the graph isomorphism problem, or to the bandwidth reduc-
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tion problem. In either case, an exact and simple algorithm for the mapping problem is
extremely difficult to develop. Research in this area has concentrated on efficient heuristics
which give good solutions in most cases [3 -6].

The problem of mapping a DMA to a DCS differs from the one mentioned above in the follow-
ing: a) a DCS is heterogeneous, b) the relevant part of the DCS network with computational and
communication resources available may not be fully interconnected, in particular because of the
channel utilization by other currently performed applications, c) communication is performed
via data passing between the computers through a point-to point channel, local and/or global
networks by using access to channel resources belonging to an adjacent computer pair or shared
by some computer pairs connected to the same transmission media, d) the purpose of the DMA
allocation scheduling in a DCS is to minimize the cost of DCS resources used for the DMA allo-
cation, provided the DCS provides resources for the DMA needed to satisfy the quality of user
service requirements.

Mapping a DMA to a DCS can be used to provide two kinds of service: an advance reservation
service and an immediate one [10]. In the first case the provider has to do some planning for
future allocations using two time parameters of the client request - the starting time and the
duration of DMA. The mapping server takes into account all accepted requests of advance ser-
vice, time parameters of which are overlapped by the ones of the arrived request. The mecha-
nism of interval tables [10] can be used to determine resources of DCS available for the DMA
request. Such advance reservation service mode allows to assume that the utilization state of the
DCS will be not changed in the future interval of the DMA execution and therefore mapping
server deals with the static state of DCS resource utilization.

The immediate reservation service has to do in the real-time mode. The mapping is made during
the session establishment phase and is adjustable depending on the current utilization states of
the DCS computers and channels.

In the paper a mathematical formulation of the mapping problem is considered. Algorithms for
its solution is proposed. The algorithms can be used for an advance reservation service and, after
some modifications, an immediate ones.

In section 2, the graph models for DMA and DCS resource specification as input data for map-
ping problem are presented. In section 3, an approach to the mapping problem solution is pro-
posed. In section 4, problem formulation of the mapping a DMA to a DCS is presented. In sec-
tion 5, pre-starting procedure for locating attached (source and sink) components of DMA onto
DCS are examined. In section 6, some algorithms, based on the branch-bound method, for
obtaining the optimal location of DMA onto DCS are considered. In section 7, a problem for-
mulation and an algorithm of reduction procedure, based on the branch-bound method, for
obtaining a feasible location of DMA onto DCS with minimum resource requirement relaxation
are presented. Reduction procedure is performed if available resources of DCS can not meet
resource requirements of DMA. In section 8, numerical examples are used to demonstrate the
algorithms and to evaluate its computing efficiency. In section 9, conclusions about this
approach and its use for DCSs are discussed.
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2 Graph models for DMA and DCS specification

2.1  Parametrization of DMA graph

Let us consider a DMA graph and determine the values of node and arc weights.

Every node is weighted by computational requirements of the corresponding component of the
DMA. Let  denote the arrival rate (messages per second) of input data streams to component
 in the DMA graph. To process every message, component  needs  processor operations.

Let  denote the component computational requirement (operations per second). To exclude
computer saturation, it is necessary that . In this case we get utilization factor

 for computer with virtual processor speed . To calculate the component com-
putational requirement, we must construct a model for computer performance evaluation and
take into account the quality of service parameters of the DMA. For instance, if we use the sim-
ple classic M/M/1 queueing system model and acceptable mean delay  of a message in the
component , then the computational requirement of component  is .
On the other hand virtual processor speed  is a function of real processor speed and values of
main (high-speed) and disk memories used for storage and distribution of program modules and
data.

We could use more detailed and exact models for computer performance evaluation, for exam-
ple [7]. For the present, it is important that we can weight every node  of the DMA graph by
computational requirement  of the corresponding component.
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Figure 2.1. An example of DMA graph
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Every arc  in the DMA graph is weighted by capacity requirement  (bits per second)
that can be calculated similarly to component computational requirement .

An example of a DMA graph is presented in Figure 2.1. The topology of DMA is composed of
three source-components  connected to two mixing components  and  last of which
provides data streams to two sink components  and . Numbers at nodes and arcs denote com-
putational and communication resource requirements respectively.

2.2  Parametrization of DCS graph

Let us now consider a system graph of the DCS. Every node  is weighted by computational
resource  available (operations per second) and cost functions  of used computational
resource .

If  is the total computational resource of computer  in the DCS and  is its computational
resource already used by all applications processed in the DCS, then the computational resource
available of computer  is

The system graph representation of the DCS shows possiblevirtual channel connections(VC)
between the computers of the DCS. A VC1 is a direct oriented logical connection between two
computers (endsystems) with some assigned capacity. A VC is routed over one or more com-
munication resources of DCS (physical links, networks) to achieve sender-computer to
receiver-computer connectivity. Bya communication resource of DCSwe shall basically mean
maximum aggregated physical communication unit of DCS that is characterized by bandwidth
(capacity), transmission direction and is used for connecting at least one computer pair of DCS.

1 A VC concept is similarly to virtual path concept in an ATM network [8] excluding that here it is used to the
application level.

i j,( ) Cij
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Figure 2.2,a) DCS example,

b) Representation of computer connections
by VCs in the system graph
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For DMA mapping problem we consider only such VCs each of that includes only two comput-
ers of DCS, first one as a sender and second one as a receiver, and is not routed over other com-
puters, as intermediate ones. For example Figure 2.2 presents the DCS structure and system
graph using acceptable VCs. A VC begins from the output interface of a computer-sender and
ends at the input interface of a computer-receiver, i.e. a VC includes the interfaces of the end-
systems.

The available capacity of a VC is equal to minimum available capacities of all DCS communi-
cation resources over which the VC is routed. Let  be the capacity of DCS communication
resource ;  be the set of DCS communication resources used by VC  from com-
puter  to computer  of DCS. Then the available capacity of the VC  is

(2.1)

Let us consider following basic kinds of computer connections:

by an individual point-to-point (physical) channel,

through a wide area network (WAN),

through a local area network (LAN).

In the first case (see Fig. 2.3) the capacity of the point-to-point physical channel belongs to the
pair of computers connected by this channel. However the capacity of output and input inter-
faces of each computer are shared by all VCs routed over the output and input interfaces of the
computer.

Therefore, if

 is the available capacity of the channel in direction from computer  to computer ,

 are available capacities of the output and input interfaces of computer ,

then the capacity of VC  available for the mapped DMA is

(2.2)

In the second case (computer connection through a WAN, see Figurte 2.4) the system graph rep-
resentation is similar to one shown in Figure 2.3,b. Formula (2.2) can be used also but here
denotes the throughput of the WAN from network access point of computer  to one of com-
puter . To calculate the throughput of gigabit networks, the relation between latency and
bandwidth must be taken into account [9].
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In the third case the capacity of the LAN transmission (see Figure 2.5) line does not belong to
any pair of computers but is distributed among all computers of the LAN. The LAN provides a
virtual channel between any pair of computers. Therefore, a system graph for the LAN is a log-
ical graph representing all possible VCs between computers connected to the LAN (see Figure

In
out Im

in

In
in Im

out

 Anm

 Amn
Computer n Computer m

point-to-point channel

a)

n m
VC (n,m) , Rnm

VC (m,n) , Rmn

b)

Figure 2.3, a) Computer connection by point-to point physical channel,

b) Representation of computer connection by VCs
in the system graph

I n
out I m

in

I n
in I m

out

A

 Amn

Computer n Computer m

nm

WAN

Figure 2.4. Connections in the DCS through wide area network
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2.6). Available capacity  of the LAN transmission line is distributed among all data-exchang-
ing computer pairs. Therefore

,

(2.3)

Capacity  is available for every possible VC in the system graph. It means that if the capac-
ity available of the LAN, for example, is decreased by , then the capacity available of every
possible virtual channel with  decreases by the same value , too.

Note that interfaces of computers are distributed among all channels routed over the interfaces.
Therefore for every interface of a computer  routed by some VCs the following capacity con-
straints have to be satisfied .

Figure 2.6,a illustrates a more complicated case of the DCS structure that can be represented by
the logical system graph in Figure 2.6,b. Here the capacities available for every computer pair
connection are the following: ,

, etc.
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Figure 2.5,a,b) Connections in the DCS through local area network,
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Further every arc of the system graph represents corresponding VC  of DCS and
is weighted by available capacity  (bits per second) and communication cost function

 of the VC .

Let us consider an example of system graph construction for DCS depicted in Figure 2.7. DCS
is composed of two LANs Ethernet, WAN and endsystems.

Points indexed by 1 and 2 denote points through which LAN1 and LAN2 are connected to
WAN. Points 3, 4, and 5 denote WAN access points for LANs and computer .

Suppose, that each of LANs has bus with transmission rateC = 10 Mb/s and physical lengthL
= 0.8 Km, length of network packetl = 1 Kb. Assuming the signal propagation delay equal to
5 mcs/Km we get one for the bus  = 4 mcs/Km. Then the packet delayt = l/C = 100
mcsand maximum throughput of the LAN Ethernet is determined by formula [13]A = C / [1 +
(2e + 1)p/t] = 8 Mb/s. Suppose that LAN1 has  and LAN2 has  of
available capacities for a DMA location.

Let us assume that WAN access points 3, 4, 5 have available capacities ,
 and  respectively.

In Figure 2.8 the DCS is represented by the system graph. The points on links indexed by num-
bers correspond to access points to communication resources of DCS. (We shall name the points
shortly commpoints). The commpoint representation in the system graph is useful to compute
available capacity of every virtual channel connection using formula (2.1). For example, capac-
ity of channel (A,C) is .

n m,( ) n m,( )
Rnm

gnm x( ) n m,( )

WAN

1 2

3 4

a)

LAN1

LAN2

1 3

2 4

LAN1 WAN LAN2

b)

Figure 2.6, a) Communications in the DCS through some differnet networcs.
b) Representation of computer connections by VCs in the system graph

C

p 5 L⋅=

A1 5Mb s⁄= A2 6Mb s⁄=

A3 3Mb s⁄=
A4 10Mb s⁄= A5 20Mb s⁄=

RAC min A1 A3 A4, ,{ } 3Mb s⁄= =
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Preliminary analysis of commpoint capacities allows to simplify DCS graph and further capac-
ity computations. For example, summary capacity of all virtual channels routed over access
point 4 (line of all commpoints 4) is less than capacity of the access point, i.e.

,

,

and consequently

 = .

Therefore we can discard commpoint 4. In the same way commpoint 5, for which
, , , can be

discarded too. In Figure 2.9, the final system graph is presented. Commpoints 1, 2, 3 corre-
sponds to DCS communication resources of LAN1, LAN2 and WAN respectively.

Assuming that available resources of computers are
, one can represent initial values of DCS

resources available to mapped DMA by following matrixR

(2.3) .

Note that capacities of virtual channels are interdependent through common communication
resources used (see Figure 2.9).

A B C D E

A 5 5 3 3 3

B 5 4 3 3 3

C 3 3 6 6 6

D 3 3 6 8 6

E 3 3 6 6 7

RAC RCA RBC RCB+ + + min A1 A3 A4, ,{ } A3 3= = =

RDC RCD+ R+
EC

RCE+ min A2 A4 A5, ,{ } A2 6= = =

RAC RCA RBC RCB REC RCE RDC RCD+ + + + + + + A3 A2+ 9 A4< 10= =

min A1 A3 A5, ,{ } A3= min A2 A4 A5, ,{ } A2= A3 A2+ 3 6+ 9 A5< 20= = =

RA 5 RB, 4 RC, 6 RD, 8 RE, 7= = = = =
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3 Approach to the Mapping Problem Solution

An approach proposed consists of following procedures (see Fig. 3.1):

1. Attached Component Location Procedure for locating attached components1 of DMA onto
DCS.

If not all attached components can be assigned because of a gap of DCS resources then
Reduction Procedure is performed as next one to obtain a relaxed solution for DMA allo-
cation.

1  For such component there is only one particular computer that the component  is assigned to. Such components
are called attached ones. Generally, set of computers on which a component  can be assigned depends on whe-
ther the computer configuration has devices and resources required to perform multimedia functions of a certain
component type. On the other hand, source-components and/or sink-components can be assigned to certain
computers in advance. Then the components are attached ones too.
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WAN
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LAN 2
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11
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3 3 3
3

3 3
1 1

1
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2

2
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Figure 2.9. Final DCS graph representation with commpoints
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2. Optimal Solution Procedure.

The procedure obtains the solution of the mapping problem with cost objective function
and unrelaxed resource requirements. This procedure uses Forward procedure, that exe-
cutes component assignments, and Roll-back Procedure, that allows to look possible com-
ponent assignments over. SubAlgorithm 1 and subAlgorithm 2 solve relaxed subProblems
of computing bounding functions used in the branch-bound method.

3. Reduction Procedure

The procedure is performed only if DCS resources available to mapped DMA are not
enough to meet resource requirements of DMA. The procedure obtains the location of

Attached Component

SubAlgorithm 1

SubAlgorithm 2

Forward Procedure

Roll-back Procedure

Optimal Solution Procedure

Location Procedure

Figure 3.1. Scheme of the approach to mapping problem solution

Reduction Procedure
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DMA that guarantees minimum resource requirement relaxation for components and links
of DMA.

4 Problem Formulation

We are given

• application graph of DMA with

set of nodes (components) ,

set of directed arcs connecting components with each other ,

set of required computational resources for components  and required commu-
nication resources ,

• DCS graph with

set of nodes (computers) ,

set of VCs (or simply channels) connecting computers with each other
,

set of available (vacant) computational resources of computers ,

set of communication resources  in the DCS1,

set of communication resources of DCS  used by channel ,
,

set of channels  routed over shared communication resource , ,

set of communication resource capacities available to mapped DMA ,

set of resource cost functions for computers  and for channels
,

set of acceptable locations of every component in the DCS ,

The solution variables are  such that , if component  is assigned to computer ,
and  otherwise.

Then the Original Mapping Problem is

, (4.1)

1 Interfaces of DCS computers can be also included into set .

η
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subject to

(4.2)

(4.3)

(4.4)

where  is the cost function for channel ;  if ;  if
and ;  if  or . Here  is the available capac-
ity of channel  that is not enough to satisfy a resource requirement of any arc of
component graph, ;

In this formulation, objective function  minimizes the summary cost of computational and
communication resources used for the DMA allocation in the DCS. The first term in the objec-
tive function identifies the cost of resources of computers that components are assigned to. The
second term represents the cost of communication resources of channels on which DMA arcs
are placed.

Constraint set (4.2) guarantees that every component  will be placed into the DCS and
only onto one computer.

Constraint set (4.3) guarantees that resources used by components assigned to a computer do
not exceed the available resource of the computer.

Constraint set (4.4) guarantees that capacity of communication resource  in DCS used by all
DMA arcs placed on resource  do not exceed the available capacity of the resource.

Analysis of the objective function and constraints of the mapping problem (4.1) - (4.4) shows
that it is, in general, a nonlinear integer programming problem with Boolean variables.

5 Procedure for Location of Attached Components

Let us present an additional notation of variable sets used further:

 be the set of components assigned to computers, ;

 be the set of components that are not yet assigned to computers, ;

 be the set of components assigned to computer , ;

 be the function returning the index of DCS computer  to which component
 is assigned;

xin
n ζi∈
∑ 1 i η∈∀,=

xindi Rn n ζ∈∀,≤
i η∈
∑

xin
i j,( ) λ∈
∑ xjmdij As s ρ∈∀,≤

n m,( ) πs∈
∑

gnm d( ) n m,( ) gnm 0= n m= gnm 0≥ n m≠
n m,( ) π∈ gnm ∞= n m,( ) π∉ Rnm εnm 0≥= εnm

n m,( ) π∈
εnm min Dij{ }<

F

i η∈

s
s

ηa ηa η⊆

ηu ηu η\ηa
=

ηn n ζ∈ ηn
n ζ∈
∪ ηa

=

c i( ) n ζ∈
i ηa∈



5 Procedure for Location of Attached Components 19

 be the set of computers on which component  may be assigned provided that
components of the  are already allocated in the DCS,

;

 be the set of computers that are acceptable for component locations provided that
components of the  are already allocated in the DCS, ,

, .

 be the set of DMA arcs already assigned, 1;

 be the set DMA arcs that are not yet assigned, ;

 be the set of DMA arcs assigned to DCS channel ;

 be the set of DMA arcs assigned to communication resource ,
;

 be the available capacity of channel ;

The algorithm of the procedure is as follows:

1. Initializing work variables:

; ,

; ;

;

; ;

;

2. Assigning attached components and their adjacent arcs:

for  every attached component

; ; ; ;

for  every output arc  such that

; ; ;

for  every communication resource

; ;

for  every input arc  such that

1 We treat that a DMA arc is assigned if it is located into a DCS channel or components, connected by the arc,
are placed into a same DCS computer. The last case we call as arc absorption.
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; ;

for  every communication resource

; ;

3. Computing capacities of DCS channels:

for  every channel

4. Checking a resource gap of the DCS and computing cost  of such assignments:

If  resources of DCS was enough for allocation of attached components, i.e.
 and ,

then computing initial value of the cost function
 and go to Optimization Procedure

else go to Reduction Procedure.

6 Optimal Solution Procedure

The procedure obtains the optimal solution of the Original Mapping Problem (4.1) - (4.6) with
cost objective function and unrelaxed resource requirements.

6.1  Problem Solution Technique

A solution technique proposed is based on a branch-bound method [11]. Performance of the
method can be represented by a directed search-tree (see Figure 6.1). The vertices of the tree
correspond to the subsets of complete set  = {  or 1, } of possible
DMA locations into DCS. The vertices are partitioned into levels in the following way:

There is a single vertex of level 0 (called the root of the tree) which corresponds to the complete
set  consisting of  elements1, where  is number of components in DMA and

 is number of computers in DCS.

To construct the level 1 of the tree, we must first choose a component, for example indexed by
1. The level 1 contains  vertices denoted by (1,1), (1,2),..., (1,N). The first one corresponds to
the subset  of  for which , i.e. component 1 is
assigned to compute 1. The last vertex  of level 1 corresponds to the subset  of
for which , i.e. component 1 is assigned to computer

1 In accordance with constraint (4.2), every component can be placed into only one computer. Therefore set
consists of  feasible elements.
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. We have, evidently, . Subsets  form a partition of set
. We say that we have ‘branched’  with respect to the component 1.

In the same way for every vertex of level 1, we construct level 2. In Figure 6.1 set  is
branched with respect to the component 2 and obtained subsets , form a
partition of set .

The lowest level  of the tree corresponds to placements of the last component  of DMA.
Every subset of terminal vertex of level  corresponds to a single element of  and determines
one of DMA placements. The placement is determined by all vertices intersected by the branch
joining the root to the terminal vertex. For example vertex  determines DMA placement

, other .

N S 1 n,( ) S n,⊂ 1 N,= S 1 n,( ) n, 1 N,=
S S

. . .1,1 1,2 1,n 1,N possible placements
of component 1

Level 1:

Level 0

. . .

S0

S(1,1)
S(1,N)S(1,n)

. . .2,1 1,2 2,n 2,N possible placements
of component 2

Level 2:

. . .

S(1,n)(2,n)

. . .I,1 I,2 I,n I,N possible placements
of component I

Level I:

. . .

. . . . . . . . . . . . . . .

I-1,m
S(1,n)(2,n)...(I-1,m)

S(1,n)(2,n)...(I-1,m)(I,N)
S(1,n)(2,n)...(I-1,m)(1,N)

Figure 6.1. A search-tree of the branch-bound method
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To find the optimal solution of the mapping problem of important size without having to con-
struct complete search-tree, the concept of bounding function [1] is used.

We present a branch-bound method, that take into account peculiarities of the mapping problem
(4.1)-(4.4) by choosing

(a) the bounding function,

(b) the branching vertex at each stage,

(c) the component (variable ) relative to which the branching of the chosen vertex has to
be done.

Let us examine these three points.

At each stage of an algorithm for every terminal vertex  of the search-tree, we construct a lower
bound  of objective function (1). For the choice of (b) we use the so-called ‘depth first search’
method [1], which chooses a vertex of maximum depth among those vertices not yet branched.
If there is more than one, then one could choose that which corresponds to the lowest bounding
value. This method aims at exhibiting a (good) solution of the problem as soon as possible. Then
value  of the got solution is used for narrowing the domain of optimal solution search by
rejection of those vertices  for which . By limiting, at each stage, the computation of
the bounds to the successors of only those vertices  for which , a considerable reduction
of the number of vertices actually examined can be obtained, a reduction sufficient to deal with
problems of a fairly large size.

When a terminal vertex with objective function value  of a DMA location into DCS is
reached, one attempts to improve obtained solution by choosing and branching terminal vertices
with bounds . The consideration of such terminals is started from the terminal vertex of
the obtained solution towards the root of the search tree. This approach aims to improve the
solution as soon as possible and, using the improved solution, allows to decrease the set of ter-
minal vertices examined at upper levels of the search tree.

Every obtained solution is checked whether it is optimal. An obtained one is optimal if

• the bounding value for a terminal vertex of the lowest level  is satisfied to equality
, where  is an initial value of lower bound for the root of the search-tree,

• or all terminal vertices of all levels have bounding values .

For the choice of (c), two approaches are presented:

• one is based on a fixed ordering components is presented;

• other is based on the so-called ‘penalty’ method that associates with every pair  -
acceptable location of not yet assigned component  to computer  - a number  equal
to the penalty if this assignment will be not done. If the branching is then carried out relative
to the pair  associated with the largest penalty , then one obtains two new subsets,
one of which has a much better chance of containing an optimal solution than the other.
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In some way it is a question of the ‘most informative and quick’ choice. It leads to minimizing
the risk of having to explore in vain a branch of the tree while the optimal solution is contained
in the other branch.

Further, we refer to the first algorithm based on the fixed ordering components as Ord-Algo-
rithm and to the second one as Penalty-Algorithm.

Computational efficiency of algorithms, based on the branch-bound method, depends on an
accuracy and computational complexity of a method for construction of an objective function
bound for vertices of the search-tree. The accurate is the method the more unpromising branches
are rejected during an optimization procedure. However increasing an accuracy of bounds
causes increasing the computational complexity.

Let us consider the construction of an objective function bound for every vertex of the search-
tree.

Assume that some components  and arcs connecting their with each other are already
assigned. Using formula (4.1), one can computes the placement cost  for these compo-
nents.

The cost is an exact partial of the complete cost , where  is the
cost of placement of other components  and their arcs that are not yet assigned. To construct
a lower bound  for , we propose an approach based on a search of independent best place-
ment (with minimum cost) of every unassigned component into DCS taking into account only
available resources of DCS not used. Then for every vertex one has to examine not more than

 acceptable placements for every yet unassigned component . Therefore for every ver-
tex one has to examine not more than  placements of individual components. Sum-
mary number of component placements examined is not more than , where  is the
number of vertices examined in the search tree.

Thus solving the mapping problem is advantageous if number of examined vertices  is con-
siderable less than summary number of vertices in the search-tree, i.e. . Value of
depends on an accuracy of lower bound construction.

Two methods of independent component placements are proposed:

• the first one (see Figure 6.2,a) bases on a placement of a component with his adjacent arcs
and components that are not yet assigned,

• the second one (see Figure 6.2,b) bases on a placement of an unassigned component only.

Evidently, the first method is characterized by more exact bound  construction but more
tedious complexity of bound computation too. However it allows to take into account resource
requirements of adjacent arcs and components. Therefore it rejects more unpromising vertices
in the search-tree and can obtain a considerable reduction of the number of vertices actually
examined.

On the other hand, the second method can be useful for the case when channels of DCS have
the same cost and DCS has sufficiently much communication resources such that constraints
(4.4) have a faint effect on the problem solution.
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Further we consider in detail the first method of bound construction which is more general.

Now let us examine constructing the search tree.

Suppose that, for any terminal vertex of the search-tree,  component assignments
 have already been made, . The DMA arc assignments to DCS

channels ,  depends in a unique fashion on the

component assignments. On the other hand, having the arc assignments to channels, one can get
corresponding arc assignments to DCS communication resources .

Thus, components of set  have already been located and computers of set  are accept-
able for location of not yet assigned components . This means that every computer

1

2

3

4 DCS graph

DMA graphs

a) b)

Figure 6.2. Mapping a DMA component to DCS

components ora) with his adjacent arcs and

b) without ones
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 has enough resources to locate at least one of components . For terminal ver-
tex , the Original Problem (4.1)-(4.4) can be rewritten as follows:

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

subject to

(6.6)

(6.7)

(6.8)

where  is the set of components that are adjacent to component  and are direct senders
to component ;  is the set of components that are adjacent to component  and are
direct recipients from the component in the DMA graph.

In formula (6.1)  characterizes the cost of component and their arcs assignments that
have been already done.  is the objective function of minimization problem for further
placement of not yet assigned components  and their arcs.

Term  of  takes into account computational resource cost of component
placed onto computer  and the cost of communications of component  with already assigned
components . Term  determines the cost of communications of component
with not yet assigned components.
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Constraints (6.6) - (6.8) take into account resources of computers  and
capacities of communication resources  remaining after previous
assignments.

The factor of 1/2 is used in (6.5) in order that the responsibility for the communication costs
common to the two assignments, component  and adjacent component , will be divided
equally between these assignments1.

6.2  Problem Relaxation

Let us derive a lower bound of  in (6.1) for a terminal vertex that is characterized by vector
of already executed component assignments . The derivation is based on the
assumption that every unassigned component  and unassigned arcs adjacent to him can
be placed independent of other unassigned ones. Cost term  in formula (6.1) is a con-
stant. Therefore let us derive a lower bound of .

 >=

,

, (6.9)

where  and  are determined by formula (6.4) and (6.5) respectively.

Thus the lower bound is

(6.10)

Using lower bound  we can relax the problem (6.3) - (6.8) to two subprob-
lems:

subProblem 1. For every component , the potential best assignment is deduced by solv-
ing the problem

(6.11)

1This approach allows to take into account communication resource expenses, caused by all output and input arcs
of a component, each time when the component is assigned to a computer, and therefore to get more exact value
of bounfing function further.
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subject to1

subProblem 2. For every acceptable assignments of component  to computer
, the potential best placement of unassigned arcs adjacent to the component is

deduced by solving the problem

=

= (6.12)

subject to

for every computer  adjacent to computer , i.e. ,

(6.13)

for every communication resource over which output channel  and input ones

 of computer  are routed, i.e. , ,

(6.14)

Thus the bounding function  is computed by formula (6.10) that needs, for every
unassigned component, to solve the subProblem 1 of the potential best assignment of the com-
ponent. At that the solution of subProblem 1 needs to solve, for every acceptable assignment of
the component, subProblem 2 of the potential best placement of his unassigned arcs.

6.3  Forward Procedure

The Forward Procedure executes following key operations:

1 The form of objective function (6.11) allows us to argue: if subProblem 1 has solution then constraints (6.6)
will be necessary satisfied else component can not be allocated and the corresponding vertex  does
not contain an acceptable solution. If the vertex is one of level 0, i.e.  (called the root of the directed
search-tree) and component  can not be allocated, then the original problem (4.1) - (4.4) has not a solution.
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• Choosing next component for location.

• Examining all acceptable locations of the component.

• Computing by formula (6.10) the bounding value for every acceptable location of the com-
ponent using subAlgorithm 1 (see below).

• Choosing the best location of the component using the bounding values.

• Checking an obtained acceptable component location whether it is optimal.

The Forward Procedure is based on the fixed ordering of component assignments and it’s pre-
sentation is as follows:

1. If  there are ‘non-alternative’ assignments1 for components yet unassigned

then

executing the assignments;

increasing cost  in the value of expenses for such assignments;

If  at least one ‘non-alternative’ component can not be assigned

then go to Roll-back Procedure;

If  all components are assignedthen the optimal solution is obtained; stop.

2. Ordering and renumbering components  in decreasing with respect to  (or

, where  and  are cost functions of an arbitrary computer

and channel of DCS respectively)2.

3. Computing initial bounding value for current state of assignments performed

in accordance with formula (6.10) using subAlgorithm 1, step 2 (see below).

4. If  there are ‘non-alternative’ assignments for components yet unassigned

then

executing the assignments;

increasing cost  in the value of expenses for such assignments;

if  at least one ‘non-alternative’ component can not be assigned

then go to Roll-back Procedure

else go to step 10

1 We say that component  has the ‘non-alternative’ assignment if and only if one computer of DCS, for example
, can meet computational resource requirements of component , i.e. constraint  is

satisfied only for computer  and fails for all other computers.
2 At this step an order of summation with respect to index  in (6.10) is determined.

i
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5. Choosing the next component  from ordered set  to perform his assignment, i.e.

6.  terminal vertices will be built at level  of the search-tree. Each of such

vertices  corresponds to one computer , that component
could be assigned to.

For all terminal vertices of level , corresponding bounding values  are
computed in accordance with formula (6.10) by subAlgorithms 1 and 2 solving subProb-
lems 1 and subProblems 2.

7. Choosing theterminal vertex of level  that has the lowest bounding value in set

. Suppose element  corresponding to placement of

component  into computer  is found.

8. If then  go to Roll-back Procedure

9. Assigning component  to computer  and recomputing cost function:

; ; ;

; .

Assigning arcs adjacent to component  and recomputing cost function:

Every output arc  and input one  of component , that were not yet
assigned and connects the component with already assigned components , are
assigned to channel  and  respectively and are included in sets of
assigned arcs .

Recomputing capacities of communication resources  and channels , of
DCS that the arcs are assigned to.

The algorithm for arc assignments is as follows:

for  every component

for  every shared resource

; ;

;

; ;

l ηu

l l 1+⇐

ζl ηu
 
 

0> l

v 1 ζl ηu
 
 

,= n ζl ηu
 
 

∈ l

l Bln ηa
l∪ ηu

\l, 
 

l

Bln ηa
l ηu

\l,∪ 
 

n ζl ηu
 
 

∈,{ } B̂lk

l k

B̂lk Fbest≥

l k

ηa ηa
l∪⇐ ηu ηu

\l⇐ ηn ηn l∪⇐

∆Rk ∆Rk dl–⇐ F0 F0 fk dl( )+⇐

l

l j,( ) j l,( ) l
j ηa∈

k c j( ),( ) c j( ) k,( )
λa λk c j( ), λc j( ) k, λs, , ,

∆As Rkm Rmk

j Out l( ) ηa∩∈

s ρk c j( ),∈

λa λa
l j,( )∪⇐ λu λu

\ l j,( )⇐

λs λs l j,( )∪⇐ λk c j( ), λk c j( ), l j,( )∪⇐

∆As ∆As dlj–⇐ F0 F0 gs dlj( )+=



6 Optimal Solution Procedure 30

for  every component

for  every shared resource

; ;

;

; ;

for  every component

;

for  every component

10. If  all components are assigned, i.e.  or in other terms

then

a. the vertex with value  determines an acceptable solution of problem
(4.1) - (4.4).If another acceptable solution was obtained before,then choosing the best
one out of the both and now  characterizes the cost of the current best solution.
(At the beginning of Forward Procedure ).

b. Vertices for which

(6.15)

are not promising because they do not contain the optimal solution and, therefore, they
are eliminated from further consideration.

c. If  is equal to initial value of bounding function , i.e. , or rela-
tion (6.15) is satisfied for all terminal vertices

then found value  is optimal and, therefore, , stop

else the terminal vertices showing promise are branched and the search-tree is con-
structed further (by choosing the vertex and corresponding level  that is nearest one
to the obtained solution and has a bounding value less than )1 till relation (6.16)
will be satisfied for all remaining terminal vertices. For that go to step 7.

11. If  not all components are assigned, i.e. then go to step 4.

Let us consider in detail some steps of the algorithm.

At step 1 and 4 ‘non-alternative’ component assignments are detected. For every such compo-
nent  that have to be assigned to computer  it is checked whether capacities of adjacent chan-
nels of the computer are enough to place yet unassigned arcs of the component.

1 For the vertex, all parameters have to be reset.
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Note that assignment of component  to computer  may be possible if at least the following
relations are satisfied:

• computer  has enough computational resource to locate component , i.e.

(6.16)

• communication resources used for location of output and input arcs of component  (which

are not yet assigned and connect the component with already assigned components) have

enough available capacities, i.e.

, (6.17)

, .

Therefore the condition of resource capability to allocate a ‘non-alternative’ components is
checked by following operation:

If  for any ‘non-alternative’ component , at least one relations of (6.17) is not satisfied

then go to Roll-back Procedure

elseassigning the component  to computer  using procedure of step 9.

6.3.1  SubAlgorithm 1

The subAgorithm 1 computes bounding values for all vertices of a same level in the search-tree
by examination every acceptable location of a component not yet assigned by the Forward Pro-
cedure. The locations of the components are considered as mutually independent. The subAl-
gorithm executes following key operations:

• Examining all acceptable locations of a not yet assigned component.

• Computing by formula (6.10) the bounding value for every acceptable location of the com-
ponent using subAlgorithm 2 (see below).

• Choosing the best location of the component using the bounding values.

Suppose that we examine a level  of the search-tree at which we construct  terminal
vertices, each for one possible assignment of component  to corresponding computer of set

. Let us consider level  of the search-tree including vertices corresponding to possible
assignments of component . Then a representation of the subAlgorithm 1 is as follows.

i n
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for  every computer , i.e. for every possible assignment of component

1. Checking the resource capability of computer  and his adjacent channels to locate compo-
nent  with his adjacent arcs:

if relations (6.16) - (6.17) are satisfied for assignment of component  to computer

then ‘virtual’ assigning1 component  to computer  and output and input arcs of compo-
nent , that were not yet assigned and connect component  with already assigned compo-
nents , to corresponding channels of computer .

else corresponding terminal vertex of level  in the search-tree get bounding value
 and considering the next possible location of component , i.e the next computer

, by return to the beginning of step 1.

2. Best placing of not yet assigned components :

for  every unassigned component

; (here  is cost value of the potential best placement of component
)

a. for  every computer , i.e. for every possible assignment of componenti

if  the DCS has potentially sufficient computational and communication resources
for assignment of component  to computer , i.e. relations (6.16), (6,17) are sat-
isfied

then ‘virtual’ assigning component  and its arcs connecting with already
assigned components ; computing cost initial value
of such assignments  using formula (6.4)

else component  can not be assigned to computer , , and go to step f

b. if  there are ‘non-alternative’ assignments of any component(s) adjacent to component
, i.e. of set

then

‘virtual’ assigning ‘non-alternative’ components and their arcs connecting with
component ; increasing cost  in the value of expenses for such assignments

if  not all ‘non-alternative’ components can be assigned

then component  can not be assigned to computer , , and go to step f

else go to step f

c. If  all components of  are assigned

1 ‘Virtual’ assignment means that only computational and communication resource expenses are calculated wit-
hout real assignment of component to computers. The procedure of assignment is the same with one of step 9
of Forward procedure (see section 6.3) but work state-parameters are used instead of

, cost parameter  is used instead of  and  instead of .
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then an assignment of component  to computer  is acceptable and costs , go
to step f

d. Solving of subProblem 2 for given  to deduce the best potential placement of
unassigned arcs of component  assigned (virtually) to computer

e. if  a solution of subProblem 2 is obtained

then increasing cost  in the got value  of subProblem 2

else there is no solution for assignment of component  to computer , .

f. if then

Recomputing lower bounding value for the terminal vertex corresponding to the assign-

ment of component  to computer :

6.3.2  SubAlgorithm 2

The subAlgorithm 2 is used for problem (6.12) - (6.14) solution and performs locating all not
yet assigned adjacent arcs of a component by the branch-bound method. It executes following
key operations:

• Choosing next adjacent arc of given component

• Examining all acceptable locations of the arc.

• Computing the bounding value for every acceptable location of the arc.

• Choosing the best location of the arc using the bounding values.

The objective function (6.12) of subProblem 2 takes into account only communication resource
cost of mapping not yet assigned components adjacent to component  provided that component
 is assigned to computer . Constraints (6.13) guarantee that computational resources used by

the adjacent components assigned to a computer do not exceed the available resource of the
computer. Constraints (6.14) guarantee that summary capacity of the output and input arcs of
component  placed onto communication resource  does not exceed the available capacity of
the resource.

Let us consider an approach based on the branch-bound method to solve the problem (6.12) -
(6.14).

Let us denote additional work parameters:

 be the set of components assigned to computers including ‘virtual’ assignments per-

formed by Forward Procedure;
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in
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i
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 be the set of components assigned to computer  including ‘virtual’ assignments,

;

 be the set of arcs assigned to communication resource  including ‘virtual’ assign-

ments;

 be the set of components that are not yet assigned taking into account ‘virtual’ assign-

ments performed, . Note, that subAlgorithm 2 gets sets , ,  and

from the subAlgorithm 1 and does not change its;

,  be the variable sets of unassigned components, adjacent to component ,

that are connected to component  by his output arcs and input ones respectively. The initial

values of the sets , ,

;

,  be the variable sets of components, adjacent to component  and corre-

sponding to output and input arcs of the component, that are assigned by subAlgorithm 2.

Initial values of the sets , , . Always

during the performance of subAlgorithm 2, the following relations are satisfied

, ;

 be the initial number of arcs adjacent to component  that are not yet assigned,

;

 be the set of arcs  assigned by subAlgorithm 1 to communication resource ;

 be the set of such computers that are connected to computer  by corresponding out-

put channels  which can be used for placing yet unassigned output arcs of compo-

nent ;

 be the set analogous with  but for input channels  of computer  and

input arcs of component ;

Inasmuch as index of component  is fixed and there is only one arc between any pair of adja-
cent components, we can use for numbering output and input arcs of component  the same
indexes of components that are adjacent to component .
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A search-tree construction will be carried out with respect to levels  corresponding to
arcs . Each vertex of level  is characterized by corresponding set

 which determines assignments of first  arcs to chan-
nels. Here pair  denotes that arc  is assigned to channel1 and

.

Let us derive a lower bound of objective function (6.12) for the vertex of level . Taking into
account that  arcs, adjacent to component , are already assigned, the objective function
can be rewritten as

,

, (6.18)

where  determines the cost of assignments of first  arcs  that were already per-
formed. The term  is a cost value of further placements of arcs  that are not
yet assigned.

To obtain a lower bound of  we relax the integer programming problem (6.12) -
(6.14) to continuous one. The relaxation allows to place arcs and components adjacent to com-
ponent  fractionally, i.e. more than one instance of an arc or a component may exist with each
instance handling just a fraction of load imposed for the (individual, atomic, not replicated) arc
or the component respectively. Let us define new solution variables

• , , that determines a part of capacity of arc  absorbed by computer  to which

corresponding fraction of component  is assigned, i.e.

, (6.19)

where  is the available resource of computer ;

•  ( , , ) denoting a value of capacity allocated for arc  into

channel . Arc  may obtain required capacity from one or some different channels. Thus

, (6.20)

, (6.21)

1 To simplify notation we assume if  is an output arc of component  then  is the input channel of computer
 (and the output channel of computer ). Otherwise if  is an input arc of component  then  is the output

channel of computer  (and the input channel of computer ).
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, (6.22)

, (6.23)

Now, taking into account formulation of suProblem 2 (6.12) - 6.14) and relations (6.19) - (6.22),
the minimization problem for solving lower bound  of  in (6.18) can be formu-
lated as

(6.24)

subject to

(6.25)

,(6.26)

,

where

 if ,

 if ,

and , since (6.27)

Here  is the cost of capacity  allocated for arc  in channel  if

, and in channel  if . If component  is placed into the same
computer  already containing component  then arc connecting components  and  does not
need a communication resource and therefore .

Problem (6.24) - (6.26) can be solved, for example, by the simplex method. However we present
a more simple and economical computation approach.

Let us order output channels  and input ones  so that
, and .

For every arc  adjacent to component  the row of cost values  and  of assignments to
corresponding channels are determined. (Note that ). If arc  can not be assigned, for
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example to channel , then we set  and do not take into account this channel,
when arc  is considered.

Now the solution of problem (6.24) - (6.26) can be obtained by sequential filling

• at first, computer  by unassigned components , adjacent to component  and ordered (in
accordance with their arcs) in decreasing with respect to , till relation (6.25) is satisfied.

• then channels, ordered in increasing of cost functions  and , by unassigned arcs
adjacent to component  and ordered as mentioned above.

Let us present the algorithm for the problem (6.12) - (6.14) solution.

1. Ordering the output and input channels of computer  in increasing with respect to  and
, as mentioned above. Ordering the output and input arcs of component  in decreasing

with respect to .

2. .

3. Constructing the next level of the search tree (by considering all possible placements of the
next unassigned arc  adjacent to component )

;

4.  terminal vertices will be built at level  of the search-tree. (Here  denotes a num-
ber of acceptable assignments of arc  including the case of absorption the arc by computer

). For every such vertex corresponding to assignment  considered at level , the
bounding value is computed

, (6.28)

where the first term is calculated by formula (6.18). For computing , the problem (6.24)
- (6.26) is solved by sequential filling at first computer  then channels in the order as men-
tioned above by components and arcs respectively.

5. Choosing the terminal vertex of level  that has the lowest bounding value
. Here chosen vertex corresponds to placement of arc

 into channel (computer)

6. If then

return to the previous level  of the search tree resetting state parameters of
assignments corresponding to this level.If then  go to step 5 else the original
problem (6.12) - (6.14) has not an acceptable solution.

7. Assigning arc  to channel (computer) .

8. If  all arcs are assigned, i.e.  then

a. The vertex with value  determines
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an acceptable solution of problem (6.12) - (6.14). If another acceptable solution was
obtained before, then choosing the best one from these both and restoring it’s cost as

b. Vertices for which

(6.29)

are not promising because they do not contain the optimal solution and, therefore, they
are eliminated from further consideration.

c. If  relation (6.29) is satisfied for all terminal vertices

then found value  is optimal and, therefore,

else the terminal vertices showing promise are branched and the search-tree is

constructed further (by choosing theterminal vertex that is nearest one to the
obtained solution and has a bounding value less than )1 till relation (6.29)
will be right for all remaining terminal vertices. Go to step 4.

9. If then  the vertex of level  with lowest bounding value  will be branched with
respect to the variable , go to step 3.

At step 2and step 4 computing bounding values  is performed:

a. Computing bounding value  for the case of absorption of arc  by computer
:

if  component  has enough resource to place adjacent component  (in other words,
to absorb arc ), i.e.

then

‘virtual’ assigning component  to computer  (that means absorption of arc  by
computer );

best ‘virtual’ placing yet unassigned arcs  adjacent to component  by sequen-
tial filling, at first computer  by absorbing the arcs, and then ordered channel, adja-
cent to the computer, by ordered arcs;

computing bounding value

else ;

b. Computing bounding values  of placements of output arc  into every output
channel :

if  arc  is output one with respect to component

then

1 All parameters of the vertex have to be reset.
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for  every output channel  of computer , i.e. for every possible assign-
ment of arc

if  channel  has enough resource to place arc , i.e.

then

‘virtual’ assigning arc  to channel

best ‘virtual’ placing yet unassigned arcs  adjacent to component  by
sequential filling, at first computer  by absorbing the arcs, and then ordered
channel, adjacent to the computer, by ordered arcs;

computing bounding value

else ;

c. Computing bounding values  of placements of input arc  into every input
channel :

if  arc  is input one with respect to component

then

for  every input channel  of computer , i.e. for every possible assignment
of arc

if  channel  has enough resource to place arc , i.e.

then

‘virtual’ assigning arc  to channel

best ‘virtual’ placing yet unassigned arcs  adjacent to component  by
sequential filling, at first computer  by absorbing the arcs, and then ordered
channel, adjacent to the computer, by ordered arcs;

computing bounding value

else

At step 7 assignment of arc  to channel (or computer)  is as follows:

, , ;

if  arc  is absorbed by computer , i.e.

then ;

else

if  arc  is output one of component

then for every shared resource

; ; ;

Recomputing available capacity of output channel :

n m,( ) n
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;

if  arc  is input one of component

then for every shared resource

; ;

Recomputing available capacity of output channel :

.

6.3.3  Example using SubAlgorithm 2

Let us consider an example of locating arcs of componentd (see Figure 2.1). Assume that com-
ponentd is assigned to computerC (see Figure 2.9) and no other components are yet assigned.
In Figure 6.3 the part of DMA graph, that have to be assigned, and the part of DCS graph, used
for the assignment, are depicted.

Table 6.1 presents initial data of components, arcs and channels ordered in accordance with step
1 of subAlgorithm 2. (The initial data are chosen to present more general and interesting case).

Every arc adjacent to componentd is presented in the table by two columns: the first one for a
component adjacent to componentd and the second one for the arc connecting the component
to componentd.

Cells of the last row contain values of required resources of components and arcs adjacent to
component d. Last four columns are used for values of available DCS resources: column R - for

∆Rnkt
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∈∀,{ }=
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Figure 6.3,a) Component d of DMA graph with adjacent arcs and components,
b) Computer C of DCS graph with adjacent channels
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resource of computerC and for capacities of virtual channels, columns  - for capac-
ities of communication resources over which corresponding channels are routed.

Cost values  computed by formula (6.27) and used for ordering arcs and channels are pre-
sented in columns of components and arcs. The filling in the table by  takes into account that
input arcs of componentd can be placed only into input channels of computer C and output arcs
- into output channels. Rows of the table follow the order: the row for computerC, the rows for
input channels of computerC and the rows for output channels.

The second row of the table corresponds to computerC which componentd is assigned to. The
computer can absorb (completely or partly) an arc adjacent to componentd. A partly absorption
of an arc in accord with formula (6.19) is acceptable provided that at least one not yet assigned
component adjacent to componentd can be previously completely allocated into computerC1.

Table 6.1

Arc allocation are executed by filling in the table from link to right and from top to down direc-
tions. An illustration of arc(b,d) allocation will make this clear.

The search-tree of possible alternatives is depicted in Figure 6.4. The vertexC of the first level
gets bounding value  since computerC has not enough resource to locate componentb and to
absorb arc(b,d). Let us consider the next vertex(D,C) of the first level. The allocation of arc
(b,d) into channel(D,C) causes decrease (by ) of capacity of:

• channel(D,C),

• all communication resources over which channel(D,C) is routed,

• all other channels that are routed over the communication resources, capacity of which
were decreased.

1 This condition allows to get more exact bounding value.

b (b,d) e (d,e) c (c,d) R A1 A2 A3

C 0 0 0 2

(D,C) 4 2 5 5

(E,C) 4 2 5 5

(A,C) 5 3 3 4 3

(B,C) 5 3 3 4 3

(C,D) 3 5 5

(C,E) 3 5 5

(C,A) 4 3 4 3

(C,B) 4 3 4 3

d 3 3 4 3 2 2

A1 A2 A3, ,

ajk
ajk

∞

dbd 3=
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Table 6.2 represents the resource state of DCS after assignment of arc(b,d) to channel(D,C). In
the cell corresponding to allocation arc(b,d) into channel(D,C), value 3 shows that arc(b,d)
gets completely required capacity  by placing into channel(D,C). In columnR andA2,
capacities of channel(D,C), communication resource 2 involved into the channel, and other
channels that are routed over communication resource 2 are decreased from 5 to 2 by .

Table 6.2

b (b,d) e (d,e) c (c,d) R A1 A2 A3

C 0 0 0 2

(D,C) 4
3

2
2 5 25

(E,C) 4 2 2 5 25

(A,C) 5 3 3 4 3

(B,C) 5 3 3 4 3

(C,D) 3 2 5 25

(C,E) 3 2 5 25

(C,A) 4 3 4 3

(C,B) 4 3 4 3

d 3 3 4 3 2 2

dbd 3=

dbd 3=

DC

∞

∞∞∞

C DC EC AC BC

C CD CE CA CB C CD CE CA CB

C DC EC AC BC

22 22 26 26

24 24 24 24

24 28 28 30 30

∞∞∞

assigning arc (b,d)

arc (d,e)

arc (c,d)

Figure 6.4. Search-tree for optimal assigning arc adjacent to component d
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In accordance with the table, next must be assigned arc(d,e). First one attempts to locate com-
ponente into computerC. However available resource of computerC  is not enough
to locate componentecompletely. To locate componente partly, first one must to locate at least
one not yet assigned component into computerC completely. Next componentc in the table is
such one. After allocation of componentc into computerC, available resource of computerC
decrease to . Therefore arc(e,d) now can not be absorbed by computerC and it must
be allocated into an input channel of computerC. One uses the following rule: locate an arc into
the cheapest acceptable channel. Following the rule, arc(e,d) is located partly: 2 units of
required capacity to channel(C,D) and 1 unit - to channel(C,A). Table 6.3 represents the
resource state of DCS after these assignments and allows to compute the bounding value of the
vertex(D,C) by formula (6.24): .

Table 6.3

Using the proposed procedure of filling in the table 6.1 for other vertices of the first level, one
obtains bounding values for the vertices. Choosing the vertex(D,C) with minimum value, one
continues the branching search-tree. At the third level one gets the first acceptable solution: arc
(b,d) assigned to channel(D,C), arc(d,e) - to channel(C,A) and arc(c,d) is absorbed by com-
puterC. The solution has value of objective functionL = 24.

Only one vertex(E,C) of the first level has value 22 less thanL. Therefore one executes branch-
ing the vertex. However new bounding values, obtained at the second level, are not less thanL.
Thus the first solution obtained is optimal.

b (b,d) e (d,e) c (c,d) R A1 A2 A3

C 0 0 0
2 0 2

(D,C) 4
3

2
02 5 02 5

(E,C) 4 2 02 5 02 5

(A,C) 5 3 3 4 3

(B,C) 5 3 3 4 3

(C,D) 3
2 02 5 02 5

(C,E) 3 02 5 02 5

(C,A) 4
1 2 3

3 4 23

(C,B) 4
2 3

3 4 23

d 3 3 4 3 2 2

∆RC 2=

∆RC 0=

PDC ajkzjk
j k,
∑ 0 2 4 3 3 2 4 1⋅+⋅+⋅+⋅ 22= = =
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6.4  Roll-back Procedure

The Roll-back Procedure is as follows:

1. Storing the reached ‘not full’ DMA location in set  that can be used further by Reduction
Procedure if it will be performed.

2. Rolling back to the nearest level of the search-tree.

3. If  the level is highest one, i.e. indexed by 0 and consists of a single root-vertex

then there is no solution of Original Mapping Problem for given data, go to Reduction

Procedure

else the acceptable solution obtained is optimal, stop

4. If  at the level there is at least one acceptable vertex (with bounding cost value )

not yet examined

then choosing the best one, resetting state-parameters of the vertex
( ), and go to step 7of the Forward
Procedure

else go to step 2

6.5  Penalty Algorithm

6.5.1  Criteria and method of choosing next assignment

The structure of the Penalty Algorithm is analogous with one of the Ord-Algorithm presented
in Figure 6. However the content of the Forward Procedure distinguishes from the one of the
Ord-Algorithm and will be considered below.

Let us examine the Forward Procedure.

A criteria of choosing next assignment  of component  to computer  based on cost
matrix  and suggested by Vogel’s Approximation Method [4]. Ele-
ment  computed by formula (6.9) determines the minimum attainable cost associated with
assigning component  to computer . The Vogel’s Method, used for solving transportation
problems, falls into a class of so-called penalty methods. It is based on the ‘difference’ associ-
ated with each row and column in the matrix . A row or column ‘difference’ is here
defined as the arithmetic difference between the second smallest and the smallest element in that
row or column. This quantity provides a measure of priorities for making allocations to the
respective rows and columns since it indicates the minimum unit penalty incurred by failing to
make the assignment to the smallest cost cell in that row or column. The selection of an element

Ψ

B̂ Fbest<

ηa ηu ηn λa λu λnm λs ∆Rn ∆Rnm ∆As Bin,,,, , , , , , ,

i n,( ) i n
Sin i ηu

n ζ ηu
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 is then made by selecting the row or column with the largest difference and choosing the
smallest cost cell in that row or column.

Thus determination the assignment by the penalty method is as follows.

1. Computing the row difference by finding the arithmetical difference between the second
smallest and the smallest element in each row of matrix .

2. Computing the column differences in the same way.

3. Finding the largest of the row and column differences and then the smallest cost cell in that
row or column. Suppose element  has been located in this way. Then assignment
will be done next.

6.5.2  Forward Procedure

Let us present the Forward Procedure.

1. Checking and executing ‘non-alternative’ assignments similarly to step 1 of Forward Pro-
cedure of Ord-Algorithm (see section 6.3).

2. Computing initial value of bounding function similarly to step 3 of Forward Procedure of
Ord-Algorithm.

3. Checking and executing ‘non-alternative’ assignments similarly to step 4 of Forward Pro-
cedure of Ord-Algorithm.

4. Computing the bounding cost matrix  by formula (6.9) using the
subAlgorithm 1 for every component .

5. If  there is at least one component yet unassigned that can not be assignedthen go to Roll-
back procedure.

6. Applying the penalty method to determine assignment  of component  to computer
 that will be done next.

7. Assigning component  to computer . Increasing cost  in the value of expenses of such
assignment.

8. If all components are assigned then checking whether the solution obtained is optimal sim-
ilarly to step 10 of Forward Procedure of Ord-Algorithm.

9. If the current value of cost  does not exceed the cost  of the best solution found
previouslythen go to step 3else go to Roll-back Procedure.

Sin

Sin{ }

Sin i n,( )

Sin i ηu
n ζ ηu
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7 Reduction Procedure

The procedure obtains the DMA placement into DCS with minimum relaxation of resource
requirements.

7.1  Problem Formulation

Let

 be the summary resource of computer  used by components

assigned to the computer;

 be the summary capacity of channel  used by DMA

arcs  assigned to the channel.

Let us consider ratio  which means a fraction of computer resource  used by all
components assigned to computer . If  then location of the components can be done
onto computer  without resource requirement relaxation. Otherwise,  is the measure
of resource gap of computer . If we have a procedure for a distribution of the resource gap
between all components assigned to the computer1, then we can get the resource gap  of the
computer with respect to individual component . Value  can be used further for evaluation
of QoS relaxation.

The communication resource requirement relaxation can be determined similarly by utilization
factor  for every DCS communication resource .

Following mapping problem formulation allows to get an acceptable DMA location if DCS
resources are enough to meet resource requirements of DMA, otherwise to get an optimal DMA
location that guarantees minimum resource requirement relaxation with respect to computers
and communication resources of DCS:

(7.1)

subject to

(7.2)

1 This is another optimization problem does not examined here.
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7.2  Problem Solution Technique

An algorithm proposed is based on a branch-bound method that is analogous with one of Opti-
mization Procedure (see section 6.1).

Suppose that for any terminal vertex of the search-tree,  component assignments

, have already been made, . The DMA arc assignments to DCS chan-

nels , , depends in a unique fashion on the component

assignments. On the other hand, having the arc assignments to channels one can get correspond-

ing arc assignments to DCS communication resources .

To take into account different features of component and arc locations some lower bounds of

objective function (7.1) are proposed.

Evidently, maximum utilization of DCS computers produced by assigned components can be
used as one of bounds:

(7.3)

For computing lower bound for a terminal vertex of the search tree, best placements of not yet
assigned components are sought. Suppose that placement of such component k to computerl is
examined. Then the conditional utilization of the computer will be

.

The placement of componentk calls for locations of his adjacent arcs that connect the compo-
nent to already assigned components. These arc locations onto channels adjacent to computerl
can cause an utilization change of DCS communication resources over which the channels are
routed. Let  be maximum utilization of such communication resources provided that com-
ponentk is placed into computerl, i.e.

,

where  and(n,m) are the channels adjacent to computerl.

Therefore maximum utilization of DCS resources obtained provided that componentk is placed
into computerl is

.

The best placement of componentk is characterized by utilization factor

.
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Thus the other bound of objective function can be maximum utilization reached by best place-
ment of one of not yet assigned components:

(7.4)

If there is a gap of computational resources in the DCS, next third bound of objective function
is useful too.

Let us order computers  in decreasing with respect to computational resources
available to mapped DMA:

(7.5)

where ,

If available resources of two (or more) computers are equal, then these computers are ordered
in increasing with respect to utilization factors

(7.6)

Assume that not yet assigned components  will be distributed between computers with most
available resources such that the utilization of these computers would be uniform. Indexes of
these computers are the first  elements of the sequence

 ordered corresponding to relation (7.5) and (7.6). Then the average uti-
lization factor of each such computer is

(7.7)

Evidently, objective function .

Thus a lower bound of the objective function (7.1) for the vertex of performed assignments
 can be computed as follows:

(7.8)

Efficiency of the bound proposed depends on the order of not yet assigned components used for
construction of next level of the search-tree, i.e. the method of choosing next component rela-
tive to which the branching of the chosen vertex has to be done is important. We propose to
choose such component using following criterions:

a. component with most number of adjacent arcs that connect, the component to already
assigned components (this property is important for the bound ),

b. if there are some components that have equal most numbers of such adjacent arcs, then
one chooses the component of these ones that requires most computational resource
(this property is important for  and ),
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c. if there is no component with such adjacent arcs, then one chooses the component with
most required resource.

7.3  Algorithm

The algorithm of the Reduction Procedure is as follows:

1. Computing initial lower bound  using formulas (7.4), (7.7), (7.8) for  and
including only attached components that are already placed by the Attached Component
Location Procedure. Let .

2. If  not all components are assigned, i.e.

then choosing next component  using criterions mentioned above

else go to step 6

3. Constructing terminal vertices at level  of the search-tree. Each of such verti-
ces corresponds to one computer  that component  could be assigned to.

For every terminal vertex, bounding value  are computed using formula
(7.3) (7.4), (7.7), (7.8) provided that component  is placed into corresponding computer

4. Choosing the terminal vertex of level  that has the lowest bounding value. Suppose, it is
the vertex with value .If then  go to step 7.

5. Including the vertex into the current solution. Assigning component  to computer . Go
to step 2.

6. An acceptable solution is obtained. Suppose, value of the solution is .

If then  the solution is optimal, stop.

If then  storing the solution and let .

7. Excluding the last vertex from the solution.

Rolling back to the previous level .

If

then stop, optimal the solution is obtained

else restoring vertices of level  and go to step 4.

Remark. Reduction Procedure can use set  of ‘not full’ solutions of DMA that are storing by
Roll-back Procedure (see section 6.4). Then before step 2, one has to choose the best ‘not full’
solution of set  and to restore the state parameters  of the solution as initial
ones. The best ‘not full’ solution could be a solution with maximum number of assigned com-
ponents, . The proposed approach allows to obtain quickly an acceptable solution,
value of which can be used further to improve the solution.

The obtained optimal solution could be used further in the following ways:
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• Distributing the resource gap in every overflowed computer and channel between compo-
nents and arcs assigned to them respectively.

• Checking the reduction level of QoS caused by the DCS resource gap.

• If  the reduction level of QoS is held within allowable limits vertices then an acceptable
relaxed solution is obtained, stop.

8 Examples

8.1  Example 1

Let us consider an example of mapping DMA depicted in Figure 2.1 to DCS depicted in Figure
2.7, system graph of which is presented in Figure 2.9. Required computational resources of
components and capacities for component communications are shown in Figure 2.1 as weights
of nodes and links of DMA graph respectively. Available capacities of DCS communication
resources LAN1, LAN2 and WAN are  respectively. Initial data of
available capacities of virtual channels and components of DCS are presented by matrix (2.3).

Let us determine cost functions. To simplify computations, we consider linear cost functions of
capacity and computational resource. Suppose, that costs of one unit of the computational
resource for computers of DCS are following: .
Costs of one unit of capacity for LAN1 is , for LAN2 -  and for WAN -

. Then one can calculate cost factor for every channel  of DCS by formula
, where  is the set of communication resources of DCS over which channel

 is routed. So the final cost factors for computers and virtual channels of DCS can be
represented by matrix :

Assume, that components  and  are attached to computers  and  respectively. Now all
input data are given.

A B C D E

A 2 2 5 6 6

B 2 1 5 6 6

C 5 5 2 4 4

D 6 6 4 2 1

E 6 6 4 1 1

A1 5 A2, 6 A3, 3= = =

αA 2 αB, 1 αC 2 αD, 2 αE 1=,= =,= =
α1 2= α2 1=

α3 3= n m,( )
αnm αi

i ρnm∈
∑= ρnm

n m,( )
α

f g E D
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In accord with the procedure for location of attached components (see section 5), one gets:

• ; ;

• constant term of cost objective function ;

• modified matrix of required resourcesd:

• modified matrix of available resourcesR:

Further computations are executed in accord with Optimization Procedure (see section 6).

At step 1 of Forward Procedure, ‘non-alternative’ assignments are not found.

At step 2, ordering components, using for example cost function
, results in the sequence of componentse, d, b, c, a with cost

values 14, 12, 6, 4, 2 respectively. This component sequence is used further to construct levels
of the search-tree depicted in Figure 8.1.

a b c d e f g

a 1 1

b 3 3

c 2 2

d 4 3

e 4 3 3

f 0

g 0

A B C D E

A 5 5 3 3 3

B 5 4 3 3 3

C 3 3 6 6 6

D 3 3 6 5 6

E 3 3 6 6 4

xfE 1 xfn, 0 n, A B C D, , ,= = = xgD 1 xgn, 0 n, A B C E, , ,= = =

F0 αE df αD dg⋅+⋅ 1 3 2 3⋅+⋅ 9= = =

fE di( ) gE dij( ) gE dji( )+[ ]
j

∑+
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At step 3 for the vertex of level 0, one computes initial bounding value  of best independent
placements of all unassigned components  using subAlgorithm 1.

In Figure 8.2, bounding values computed by subAlgorithms 1 and 2 are presented for all possi-
ble placements of every unassigned component. The value in brackets corresponds to term
in formula (6.4), i.e. to cost of placements of componenti into computern and arcs that are adja-
cent to the component and connect it to already assigned components. For example, bounding
value for assignment of componente to computerC is equal to 39.5, the part of which 32 cor-
responds to summary cost of placement of componente to computerC and placements of arcs
(e,f) and(e,g) connecting component eto already assigned componentsf andg (see Figure 2.1).
Therefore 39.5 - 32 = 7.5 is the bounding value of  in formula (6.5) that is the half of the cost
of placements yet unassigned adjacent arcs(a,e) and(b,e).

B0
ηu

e d b c a, , , ,{ }=

Min

Lin

DC

A B C D E

∞ ∞

∞∞ ∞∞

A B C D E

∞ ∞

48.5
(17)

48.5 (9)

64
(40)

A B C D E
∞∞ ∞

A B C D E
∞∞∞

A B C D E
∞∞

∞

64
(42)

67
(63)

64
(60)

64
(64)

Assigning

component d
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component a

component b
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Figure 8.1. Search-tree constrained by Optimization Procedure
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Choosing the best placement of every unassigned component that is characterized by minimum
cost value, one obtains the initial bounding value

. In Figure 8.1, value of already assigned compo-
nentsf andg  is shown in brackets near the value 48.5. In the process of  computa-
tion, one obtains cost bounding values matrixM of all possible placements of every isolated
unassigned component:

A B C D E

a 2 2 2 2 1.5

b 9 6 12 7.5 4.5

c 6 4 4 5 3

d 20

e 39.5 12.510.5

B0 F0 10.5 20 4.5 3 1.5+ + + + + 48.5= =
F0 9= B0

∞ ∞ ∞ ∞
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The matrix contains lowest bounding values for every possible placements of every component
and shows:

• componentd can not be placed into computersA,B,D,E;

• componente can not be placed into computersA andB;

• componentd can be placed only into one computer that isC.

This information allows not to compute bounding values for vertices of next levels correspond-
ing to such placements of componentsd ande.

In accord with step 4 of Forward Procedure, ‘non-alternative’ assignment of componentd to
computerC is considered at the next first level of the tree (see Figure 8.1). The bounding value
of the vertexC is equal to 48.5 and value in brackets 17 shows the cost of already assigned com-
ponents and arcs. Other vertices obtain value  in accord with matrixM without additional
computations. (In Figure 8.1 these values  are enclosed in rectangles). After this assignment,
computational resource of computerC is decreased to .

At the second level of the tree, possible assignments of componente are examined. In accord
with bounding matrixM verticesA andB get value . Computations by subAlgorithm 2 (see
section 6.3.2 and 6.3.3) result in value  for verticesC andE. Really, assignment of component
e to computerC is impossible because available resource of the computer  is not
enough to meet resource requirement  of componente. Assignment of the component
to computerE is not acceptable too because, after this assignment, available capacity of com-
munication resource  and then arc(a,e) of componenta can not be placed.

SubAlgorithm 2 obtains value 64 for vertexD of second level. Value 40 in brackets corresponds
to the cost of already assigned componentsf, g, d, e and their arcs(e,f), (e,d), (d,e) connecting
the components with each other.

At the step 7 of Forward Procedure the vertexD of second level is chosen for further branching.
In the process of computing bounding value of the vertexD (at step 6), rows of cost bounding
matrixM that correspond to not yet assigned componentsa,b,c are modified:

Following Forward Procedure, one returns from step11 to step 4 and can see from these rows of
matrixM that componenta has ‘non-alternative’ assignment to computerD. This assignment is
done at the next third level of the search-tree. At that vertices A, B, C, E get value  in accor-
dance with matrix M without additional computations.

A B C D E

a 2

b 14 12

c 21 18

∞
∞

∆RC 2=

∞
∞

∆RC 2=
de 4=

∆A2 0=

∞ ∞ ∞ ∞

∞ ∞ ∞

∞ ∞ ∞

∞
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As shown in Figure 8.1 the first acceptable solution obtained has cost value 64 and is optimal.
Figure 8.3 depicts the solution.
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e
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Figure 8.3. Optimal solution
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Note, that checking ‘non-alternative’ assignments at step 1 and step 4 of Forward Procedure
allows to reduce the search-tree by decrease of number of vertices examined. By way of com-
parison, Figure 8.4 depicts the search-tree constructing without use of the ‘non-alternative’
assignments and consisting of 31 vertices examined (instead of 26 ones in Figure 8.1).

8.2  Example 2

Let us consider the previous example of mapping the DMA graph depicted in Figure 2.1 to the
DCS graph depicted in Figure 2.9. However suppose, that componentsf, g anda are attached to
computersE, D andC respectively, and componentsb andc can be placed only into computers
A andB. For this case, Optimization Procedure obtains initial value  = 80.5 and matrixM
with following initial cost bounding values of all possible placements of unassigned compo-
nents

The matrix shows that componentsd ande have ‘non-alternative’ assignments to computerC.
However the computer has not enough resource to locate the components. Therefore the Reduc-
tion Procedure is used to obtain the DMA placement into DCS with minimum resource gap.

To compute bounds  of objective function (7.1), following tables are useful: table 8.1
presenting values concerned with allocations of components onto computers and table 8.2 dis-
playing the interdependence between capacities of virtual channels and communication
resources. The tables contains initial data for Reduction Procedure.

To compute bound  (see formula (7.7)), in table 8.1 computers are arranged in decreasing
order with respect to computational resource available to mapped DMA . Com-
putersC and D, having the same available resources ( ), are ordered in
increasing with respect to utilization factor . The column next to the last contains sums of
utilization factors. The element, that isi-th of the order in this column, is equal to the sum ofi

first values , i.e. . Similarly, the last column contains sums of available resources of
computers.

The row  contains values of required resources of unassigned components. The row

A B C D E

b 9 6

c 6 4

d 20

e 39.5

B0

∞ ∞ ∞

∞ ∞ ∞
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I1 I23 I4, ,

I4
∆Rn Rn Dn–=
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used for computing bound  contains sums of required resources of unassigned components.
The element, that isi-th of the order in this row is equal to the sum of all last elements  of
the previous row, starting from element .

In table 8.1, components are arranged in decreasing order with respect to required computa-
tional resources. However each time, when next component have to be chosen for placement
(see step 2 of Reduction Procedure in section 7.3), components are rearranged so that the first
component must be one with most number of adjacent arcs that connect the component to
already assigned components. At the start of Reduction Procedure, such component ise.

Table 8.1

Table 8.2

Com-
puter

C o m p o n e n t

unassigned attached

e d b c a e f

A 0 5 5 0 0 5

C 1 1 6 5 1/6 1/6 10

D 3 3 8 5 3/8 13/24 15

B 0 4 4 0 13/24 19

E 3 3 7 4 3/7 163
168

23

4 4 3 2 1 3 3 max
3/7

13 9 5 2
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Table 8.2 is used for computation of utilization factors  of communication resources
over which virtual channels are routed. For example, if an arc with required capacity 3 is
assigned to channel(A,E), then the table shows (see symbols *) that this assignment causes uti-
lization of 3 units of capacity of communication resources LAN1, LAN2 and WAN, utilization
factors of which become equal to 5/3, 6/3 and 3/3 respectively.

The search-tree constructed by Reduction Procedure is depicted in Figure 8.5. The optimal solu-
tion is to assign componente to computerC, componentd to A, componentb to B, and compo-
nentc toA. Figure 8.6 depicts the solution obtained and tables 8.3 and 8.4 present computational
resources and capacities of communication resources used by mapped DMA. ComputerA has
20% of the resource gap ( ,gap = 6 - 5 = 1) and communication resource LAN1 has
20% of the capacity gap ( , gap = 6 - 5 = 1) that causes the capacity gap of virtual
channels(B,A) and (A,C)which are routed over LAN1.

If the gap of the computer resource can be divided between assigned componentsd andc pro-

portional to resource required for the components, then the resource relaxation for component

d is equal to , i.e. % = 16.6% and for component c: , i.e.
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% = 16.6%. Thus componentc gets 1.67 units of computational resource instead of
required 2 units, and componentd gets 3.33 units instead of 4.

Table 8.3

Com-
puter

C o m p o n e n t

assigned attached

e d b c a g f

A 4 2 6 5 -1 6/5

B 3 3 4 3 3/4

C 4 1 5 6 1 5/6

D 3 3 8 5 3/8

E 3 3 7 4 3/7

4 4 3 2 1 3 3 max
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Figure 8.6. Optimal solution obtained by Reduction Procedure
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Similarly for the communication resources. Let us divide the gap of LAN1 capacity between
channels(B,A) and (A,C), routed over LAN1, proportional to the capacity required by data
streams from componentd to componente and fromb to d. Then the first stream gets 2.5 units
of the capacity instead of required 3 units (that corresponds to 16.6% of the capacity require-
ment relaxation) and the second stream is characterized by the same values.

Table 8.4

Let us illustrate computing the bound for one of vertices using the tables 8.1 and 8.2. Suppose,
that componente is assigned to computerD and location of componentd into computerA is
examined. The corresponding vertex is depicted in Figure 8.1 by the bold circle. Tables 8.5 and
8.6, corresponding to this vertex, are used to compute bounds  andBG in accor-
dance with formulas (7.3), (7.4), (7.7), (7.8).

Note that in two last columns of table 8.5, only two first elements are computed and used further
for calculation of bound . The number of these elements is not more than the number of
unassigned components (see parameterz in formula (7.7)). Moreover, unassigned components
b andc can be placed only into componentsA andB. Therefore only these computers are
ordered in the table.

The bound  equal 7/8 is presented in table 8.5.

In accord with formula (7.7) and table 8.5 the bound .

To compute bound  for the vertex, the best placement for every unassigned component is
determined. Taking into account that unassigned componentsb andc can be placed only into
computersA andB, one can calculate utilization factors of computers ,  and of commu-
nication resources ,  for every acceptable placements of these components,n = A,B.
Results of the computations of bounds  and , that correspond to the best placements of
componentsb andc, are presented in tables 8.7 and 8.8 respectively.
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In accord with formula (7.4), maximum utilization reached by the best placement of unassigned
componentsb andc is = 6/5.

Table 8.5

Table 8.6
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A 4 4 4 1 4/5 4/5 9

C 1 5 6 1 1/6

D 4 3 7 8 1 7/8

E 3 3 7 4 3/7

4 4 3 2 1 3 3 max
7/8

13 9 5 2

Com
muni
cat-
ion

resou
rce

Virtual channel connections

A,
B

A,
C

A,
D

A,
E

B,
A

B,
C

B,
D

B,
E

C,
A

C,
B

C,
D

C,
E

D,
A

D,
B

D,
C

D,
E

E,
A

E,
B

E,
C

E,
D

1 * * * * * * * * * * 5 3 3/5

2 * * * * * * * * * * * * * * 6 7 7/6

3 * * * * * * * * * * * * 3 3 3/3

3 1 3 max

6/5

G23 max G23
b

G23
c,{ }=

Dn
Rn ∆Rn δn δnk

k
∑ ∆Rnk

k
∑

dik

dik
k
∑

As Dnm
nm( )
∑ εs

Dnm



8 Examples 62

Table 8.7

Table 8.8

Table 8.9 illustrates computing utilization factors of communication resources provided that
componentb is placed into computerB. In accord with formula (7.8), the final bound of the ver-
tex examined is .

Table 8.9
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9 Computational Complexity Analysis of Algorithms

9.1  Algorithms of Optimization Procedure

Let us evaluate the computational efficiency of the algorithms. The complete set of all possible
locations of DMA, consisting ofI = 5 unassigned components, into DCS, consisting ofN = 5
computers connected with each other, is consists of  alternatives. The algorithm pro-
posed have constructed the search-tree depicted in Figure 8.1 that consists of 26 vertices from
which only for 9 ones bounding values are computed.

Bounding values of the root has most computational complexity: 25 possible independent loca-
tions of 5 isolated components onto 5 computers are examined (see cost bounding matrixM).
In general case for a vertex of level i, number of examined such locations is equal to(I - i) N +
1. Then summary number of such independent locations needed to get first (may be optimal, as
for the example considered) acceptable solution, provided that Roll-back Procedure will be not
used is not more than

 = (9.1)

For the example consideredL = 300. Really, excluding vertices that obtain value  without
computations (see values  enclosed in rectangles in Figure 8.1), one gets

, where the first and third 1 cor-
respond to ‘non-alternative’ assignments.

Thus only 88 independent locations of isolated components were examined by the algorithm
instead of 3125 possible locations of DMA into DCS. The gain increases with increase of values
N andI.

If componenti can be placed only into  computers, then following relations evaluates
computational complexity

(9.2)

The computational complexity of one component location is determined by the computational
complexity of subAlgorithm 2, based on the branch-bound method, and depends on numberK
of unassigned arcs adjacent to the component and numberW of channels adjacent to computer
which the component is assigned to. A high bound of the summary number ofunassigned arc
locations is

determined by following formula
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If necessary, some approaches can be proposed to decrease the computational complexity of arc
locations:

1. First to assign components that have large number of adjacent arcs. For that at step 4 of For-

ward Procedure, the ordering of components have to be done in accord with the criterion.

This approach allows to decrease valueK.

2. Instead of subAlgorithm 2 to use an exhaustive method for  to find an optimal

placement of K adjacent unassigned arcs.

3. Instead of subAlgorithm 2 to use approximate trivial one that locate arcs (without fractional

distribution), ordered in decreasing required capacity, into channels in sequence of increase

of capacity cost. This approach gets approximate values for vertices of the search-tree con-

structed by Forward Procedure and therefore obtains a suboptimal solution.

9.2  Algorithm of Reduction Procedure

To estimate computational complexity of Reduction Procedure based on the branch-bound
method, formulas (9.1) and (9.2) can be used to determine summary number of independent
component locations needed to get a first acceptable solution provided that Roll-back Procedure
will be not used. Taking into account numbers of arithmetical and logical operations needed for
computation of parameters , order of computational complexity can be
evaluated by value  arithmetical and logical operations, wherea is a constant.

More detailed evaluation of computational complexity of algorithms proposed can be obtain by
computer statistical experiments.

10 Conclusions and Future Works

In this paper, the problem of mapping DMA to a DCS is examined. We have proposed models
of weighted precedence graphs both for DMA description (including representation of topol-
ogy, data streams between components, computational and communication resource require-
ments) and for DCS description (including representation of feasible channel connections
between computers, communication resources over which the channels are routed, parameters
of computational and communication resources available to mapped DMA).

An approach based on the solving two kinds of the mapping problem is proposed. The first one
is formulated as a nonlinear integer programming problem with cost function under constraints
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on DCS resources available to mapped DMA. If the first one has not an acceptable solution,
then other problem, formulated as minimax nonlinear integer one to find the DMA location into
the DCS with minimum DCS resource gap, is solved. To solve both problems, effective algo-
rithms based on the branch-bound method are proposed. Computational efficiency of the algo-
rithms is examined and illustrated by numerical examples.

The nearest future work is to evaluate computational complexity of the algorithms proposed by
computer statistical experiments and to develop algorithms taking into account the results of the
experiments. We plan to implement the developed algorithms in CINEMA project [2] aimed at
developing powerful abstractions for multimedia processing in distributed environments.

The proposed algorithms can be successfully used for an advance reservation service when the
provider has to do some planning for future allocations using such parameters of the client
requests as the starting time, duration and resource requirements of DMA. We plan to adapt
algorithms proposed for an immediate reservation service done in real-time mode.

Other algorithm developments includes taking into account multicasting mode and peculiarities
of variable filters used in DMA [14].

At last there is another problem addressed in the paper: development of a method for division
the resource gaps of DCS between components and data streams of DMA, if DCS resources
available to mapped DMA can not meet the DMA resource requirements.
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