o0
0’0

4
L 4
&

OOA
éﬁ&

3
&

&

o

A
*
olele%e
825264
*
*
*Je

PR 4

PR AARS

* 00
,0’%&&%

*

*

o*

LR RIS
* :a:’o
0000

IR R XJ
<

®

@,

o O
%

&

*
*
*
&
’0

too00

Universitat Stuttgart
Fakultat Informatik

Institut fur parallele und verteilte
Hochstleistungsrechnersysteme
Breitwiesenstrafle 20-22

D-70565 Stuttgart

Asynchronous and Synchronous
Cooperation — Demonstrated by

Deadlock Resolution in a
Distributed Robot System

W. A. Rausch, P. Levi

Report Nr. 1996/07

May 24, 1996

Abstract

Based upon an hierarchical world model with (virtual) roads we describe two different forms of
cooperation. Asynchronous cooperation arises if preplanned trajectories of autonomous mobile
robots with individual goals overlap. Synchronous cooperation takes place if several robots
coordinate their actions in order to fulfill a collective task. We concentrate on all effects that
result in the course of intersection passing. If a robot intends to pass an intersection and its
destination road is occupied at its beginning the robot must not enter the intersection to keep it
free. If there are mutual dependencies that result in a cycle no robot may proceed. We are faced
with a deadlock that must be detected by all involved robots and resolved. While intersection
passing in its regular form is an example for asynchronous cooperation, deadlock resolution
shows cooperative synchronous behavior. The synchronized robots constitute a vehicle forma-
tion that moves as a unit at a higher organization level. We examine possible dependency
graphs in traffic scenarios and explain the resulting data flow between the affected robots. We
have taken care about the usability of our concepts in manufacturing and traffic.

Keywords: Decentralized robot system, asynchronous versus synchronous cooperation, deadlock
detection and resolution, navigation, vehicle formation

1 Introduction

Autonomy of mobile robots is still an important focus of research. The use of multiple robots in
a cooperative manner requires consideration on robot architectures as well as on communication
and synchronization between different robot control systems. Figure 1 illustrates the different
stages of cooperation.

(individual task) (individual task) (collective task)

Non cooperative mobile robot ~ Cooperative mobile robot Cooperative mobile robot
Asynchronous Cooper ation Synchronous Cooperation

Figure 1: Stages of cooperation

Autonomous non cooperative robots show a certain degree of implicit cooperation capabilities.
Autonomy requires a robot control structure to interlink its sensor devices with actor devices by
several control cycles (figure 2). All cycles are operating simultaneously and they are interlinked
with one another to fulfill the robot’s mission. Thus they constitute the overall robot control
system as an hierarchical net of control cycles where each cycle is in duty of a different task. We
have already introduced our so-called “autonomy cycle” and our matrix-shaped architecture
in previous publications [Lev89, ROL95]. Fach line of the architectural matrix contains cycles
of the same abstract level while the lines themselves mirror the division into the strategical,
tactical and reflexive levels.

Sensor
N\

S Autonomy
Sor
cle
4 Actor n)
Soor
——= dataflow S: Sensor AC: Autonomy cycle
——— hiearchical relationship A:Actor RCS: Robot Control System

Figure 2: A single autonomy cycle and its embedding in a robot control system

An autonomous mobile robot is able to cope with unexpected events in its environment like
obstacle avoidance. The autonomy of multiple robots operating in the same environment evolves
into a certain degree of cooperative capabilities even if the robots’ control systems are not
enhanced with respect to cooperation issues. For example, simple rules like “pass right of
obstacle” enables robots facing each other to go on. Usually each robot follows a deterministic
set of rules [Gro88] and eventually postpones its genuine intention to give way to unknown
dynamic obstacles. For instance, two robots approaching the same intersection will come close
each other until they must stop because the respective other “dynamic obstacle” intrudes into
their safety areas. The robots will be mutually blocked and wait forever if they do not cooperate.

The key for managing symmetrical behavior of the robots lies in exchanging of intentions
between robots recognizing themselves as partners (figure 3). This way enables each robot to
calculate the impact of the other robots’ plans on its own one. Intentions of other robots can be
partially extracted from observation if the robots’ behavioral models are known [Par93]. But

the information will certainly be partial and ambiguous. This impediment is overcome if we
use active communication between robots.

((((g»))) (g) (o) ((((é»)))

1%
§ sensors | vehicle S/_.S7 communication
EE communication @ oo T T T ~network
S res | _|8 X X
(net of autonomy é RCS 4 C C 4 RCS
cycles) = N C /
S N ,
O > RCS: Robot Control Systen
RCS ——=______-
(Sensors) (Actors) C: Communication unit

Figure 3: Communicating robots together with their interlinked robot control systems

We distinguish two different forms of cooperation in a distributed robot system. In this paper
we will concentrate on all effects that may arise when a robot tries to pass an intersection:

1. Asynchronous cooperation arises if several robots fulfill individual tasks in the same en-
vironment and interfere with one another due to common space for movements. The
interaction between the robots is not known a priori and may occur at any time. Mutual
exclusion to shared resources must be guaranteed without any global concept (figure 4).

=] - Overlapping region
A ST
| m ‘ . Obstacle

Figure 4: Asynchronous cooperation in traffic (temporal and spatial trajectory modification)

\/
WA

2. Synchronous cooperation implies that several robots are in duty of a common task. They
must coordinate their actions in time and space. This form of cooperation incorporates a
preplanning phase for the robots to prepare the concerted action. Thereafter the robots
use their sensors and communication devices for the maintenance of the union as well as
for their united appearance to the “outer world”. The synchronized robots constitute an
abstract vehicle (principle of recursion) where each robot fulfills its part of the overall
task. We demonstrate sychronous cooperation by deadlock detection and resolution as
illustrated in figure 5. The robots are facing free intersections but cannot pass because
of the destination roads being congested. Additionally they are blocking themselves
mutually. The robots contribute to deadlock resolution by establishing a vehicle formation
with a certain command structure between the robots. A single master robot is tightly
coordinating the movements of all other robots.

©® © ©® @ @ @ ©® 6
= EW === %Ii- ===
57 \
® @M@ Mol Gm ol 9flelu
== ---EK &=
Mutually blocked robots Formation establishment Formation driving Formation release

Figure 5: Synchronous cooperation of robots (deadlock handling)

2 Basics for Cooperative Navigation

2.1 World model

Robots navigating in the same environment must have a common understanding of their oper-
ation area. At least they must agree upon a common coordinate system to know their mutual
spatial relationship. We supply each robot with a graph representation of its navigation space
if it 1s in duty of transportation tasks. For instance, factory layouts show working areas sep-
arated by hallways for transportation of raw material and part products. In addition we see
load areas, parking lots, intersections between different hallways and so on. The transportation
area can adequately be modeled by a traffic net consisting of nodes and edges (figure 6). The
edges constitute the traffic lines where robots are not allowed to stay for an indefinite period
of time. The nodes form either the intersections between traffic lines or the linkage between
a traffic line and a ramp to the net. The dead end of a ramp symbolizes a parking area or a
loading bay, thus places where a robot may stay for an infinite period of time. Our modeling
easily supports an hierarchical structure. Each node of a higher level may itself contain a traffic
net with entrances corresponding to the edges incident to the node.

Usually we distinguish different types of roads like highways, local roads, one-way roads and so
on. We have restricted ourselves to three types of roads: 2-way roads, static 1-way roads and
dynamic 1-way roads. A dynamic 1-way road may only be passed if the robot has succeeded in
reserving the desired direction. We are modeling the transition between a 2-way and a 1-way
road by introducing two “2-way intersections”.

= _
f\ /\ yramic ; 2w i
H Tway 1 -way Intersection
. 3-
saticlway in%’é’raéction
Public road network Factory site (node expansion) — M ﬁ‘ T
g ost-driver

Figure 6: Hierarchically structured traffic net

Navigation in our environment means graph searching and driving along the lines of the traffic
net. We use the A* algorithm for planning a path from the robot’s starting point to its

destination. The possible directions of each road must be regarded in order to avoid a deadlock
situation (figure 6 right). Cooperation necessities arise while traveling along the traffic lines
and during passing an intersection. The latter issue is obvious. Concerning cooperation along
the lines we must consider manoeuvres like lane switching because of obstacles.

2.2 Communication primitives

Cooperation between multiple robots requires them to exchange data and plans. We concentrate
on message passing instead of interpreting complex sensor data based on behavioral models:

e Periodical data exchange (location and velocity) to support sensory detection of robots

e Event-based data exchange for temporal and spatial coordination of driving manoeuvres
We see two different methods for data exchange:

1. The communication unit of each robot incorporates a so-called signboard that is acting
as a mirror for the state of the robot [WP94]. The robot itself can read and write on its
signboard, all other robots may only read from it.

2. The use of directed message exchange enables a sending robot to deliver a message im-
mediately to the addressees.

In principle message flow across several instances can be achieved if the instances are periodically
examining their signboards. But the more instances a message has to pass the worse transfer
time becomes as compared to directed message exchange with immediate response.

2.3 Technical requirements

e In manufacturing driving along marked lines is widely used for robot navigation. This
resembles the situation we see in traffic. Our modeling of the world allows an easy
integration of available guiding equipment.

o In traffic cars may not enter an intersection if they cannot pass it because of a congested
destination road. We use this constraint for supplying buffer space for deadlock resolution.

e Radio broadcasting is limited due to technical properties. This does not affect data
transfer between neighboring robots using the signboard metaphor. For wider distances
we propose the use of radio telephones.

3 Asynchronous Cooperation

A typical example for asynchronous cooperation is intersection passing. In this section we as-
sume that there is no congestion on the destination road (see section 4 for congestion handling).

4

3.1 Periodical message passing

To avoid collisions between themselves all robots are periodically broadcasting odometrical and
topological data (figure 7). Due to the limited range of radio transmission only neighboring
robots will get knowledge about one another. This is sufficient because only those robots are
potential competitors for the right to pass the intersection.

Lo T N Periodical broadcast: - odometrical data (position and orientation)
- topological data (road or intersection name)

’communication —Z—= radio dataexchange (limited range)
network RCS: Robot Control System, C: Communication unit

Figure 7: Periodic broadcasting between communication units

3.2 Mutual exclusive access

Mutual exclusive access to a shared resource like an intersection is achieved by using the sign-
board incorporated in the communication unit (figure 8):

1. Initially the signboard signals state NONE. If the robot tries to access a shared resource
its state changes to REQUEST.

2. The signboards of all neighboring robots are consulted. If all signboards are in state
NONE the robot can change its state to TAKE and use the resource.

3. Finally the robot sets its state to NONE.

Negoti ati on protocol :
1. Ask other robots for their
waiting time at the intersection
2. Determne the robot with the
| ongest waiting tine
3. Request this robot to pass

Figure 8: State-transition diagram for mutual exclusion and subsequent negotiation phase

It each robot recognizes all robots in its neighborhood the algorithm guarantees that no more
than one robot gets the right of way. However the choice of the robot is purely random. If
we want to support application specific protocols we can determine a random robot that is in
charge of selecting a negotiation protocol and conducting the subsequent negotiation between
all robots as a moderator. As a first step towards more sophisticated negotiation protocols
([LMB95]) we compare the arrival times and choose the robot that is waiting longest.

5

4 Synchronous Cooperation

In chapter 3 we have already indicated that a robot may only pass an intersection if its desti-
nation road has enough space to completely hold the robot. If this precondition is not fulfilled
the robot has got stuck in a congestion. If the robot is followed by another one waiting for it
to go on we might be confronted with a deadlock. In the following we discuss possible deadlock
dependency graphs, deadlock detection and deadlock resolution.

4.1 Deadlock dependency graphs

Each robot has a single driving intention at a time indicated by an arrow in figure 9a. If robot «
is waiting in front of an intersection and cannot completely pass it because another robot b
is currently standing at the entrance of the destination road robot a is dependent on robot b
(indicated by an arrow in figure 9b). A deadlock situation has occured if the dependency graph
contains a cycle. The deadlock dependency graph never branches in forward direction because
each robot is blocked by the single robot in its intended driving direction. This has two results:

1. The graph shows exactly one deadlock cycle called kernel. Every robot not being a kernel
member is a part of an attached dependency tree.

2. Several general deadlock dependency graphs are never interconnected. But they may go
across the same traffic intersections.

1 2 3 4
5 6 }/ 7 3/

8 9 10
(a) Traffic scenario (b) Dependency graph

-“7~« =Kernd
= Tree structure

7

I =Kernel dummy

O = Kernd dave

@ = Kernel master
(max. robotnumber)

Figure 9: General dependency graph in a deadlock situation

We say that a robot waiting ahead of an intersection inside the kernel is a representative for the
whole road where it is currently staying. In addition we mark an unique representative to be
the master of all others. Consequently the other representatives are called slaves. The robots
neither being master nor slaves but participating in the deadlock kernel are called dummys.
Without loss of generality the representative with the highest robot number in a deadlock
kernel takes the master’s role.

4.2 Deadlock detection

Possible candidates for deadlock detection are all robots that want to pass an intersection ahead
of themselves. If they cannot enter the destination road and they are immediately followed by

other robots they are possibly members of a deadlock dependency graph. The deadlock is
detected by flooding the dependency graph with messages in backward direction (figure 10):

- 2 2 . T N 5 Kernel dummy
EW FZ 4 L
5 6 7 VE ! ¢ O = Kernel dave
@i@i@ ! @ = Kernel master
8 9 10 g ol (max. robotnumber)
(8) Traffic scenario (b) Mess%ée propagation |] = Message sink

Figure 10: Message propagation in the general dependency graph

1. If a robot is waiting ahead of an intersection it creates a DEADLOCK REQUEST message
and sends it to its followers (backward direction). If there is a follower on the same road
the message is directed to it. Otherwise the message is directed to all robots waiting in
front of the previously passed intersection.

2. All robots receiving the message check if they are blocked by the sending robot. If they
are not blocked by it the message is destroyed. Otherwise they propagate the received
messages to their respective followers if the message hasn’t been created by themselves. If
a robot stays in front of an intersection it adds its identification to the forwarded message.

3. If the robot is a member of the deadlock kernel the message finally arrives at its creator.
Now this robot has detected the deadlock cycle (Note: If the robot is a member of an
attached tree structure the message finally reaches the “leaves” and is destroyed).

Obviously each robot waiting in front of an intersection finally detects the deadlock kernel and
becomes a representative either a master or a slave. Furthermore this robot gets knowledge of
all robots waiting in front of other intersections. Dummy robots do not remember the existence
of a deadlock. They are enclosed by robots forward and backward and are just following the
robots ahead of them. Therefore we don’t care about them during deadlock handling.

4.3 2-phase-commit protocol for deadlock resolution

Up to now each robot has pursued its individual task and message transfer has been limited to
neighboring robots. For deadlock resolution the representatives must form a union commanded
by the master robot. Due to technical limitations message exchange between representatives is
no longer possible locally. Instead we must use point-to-point connections, e. g. radio telephone.
Furthermore we must consider robot and communication failure during the concerted action of
master and slave robots. We propose the following error model:

e Each robot shows a fail-stop-behavior. It is either working or it is doing nothing. But it
is not in a state between working or failure.

e Point-to-point connection between robots can break down at any time.

We assume that each failure is only temporary (error re-
covery). Errors are detected by timeout mechanisms and
in general robot and communication failure cannot be
distinguished. Without taking care of transient failures
we might use a one-phase protocol (figure 11). Because
of a missing synchronization phase between master and
slaves the master does not know which slaves are ready
for executing the command. Consequently the termina-
tion may be inconsistent between the slaves. That means some slaves will fulfill the master’s

Figure 11: 1-phase protocol

order while others won’t care about it. In case of a concerted action of all robots this results in
an inconsistent system state. We tackle this problem by using a 2-phase approach consisting of
a synchronization phase where an hierarchical command structure between master and slaves
is established followed by a command phase (figure 12):

Synchronization phase:

1. The master asks all slaves if they are prepared for subsequent command execution.
2. If a slave is ready for execution it sends an acknowledgement otherwise a rejection.

3. If all slaves are ready the master starts command execution otherwise aborts.
Command phase:

1. The master propagates its decision to all slaves that have previously answered with an
acknowledgement. If no slave has rejected during the preparation phase the master com-

mands EXECUTION otherwise ABORT.
2. All slaves are terminating according to the master’s decision.

3. The master is gathering the acknowledgements.

Figure 12 illustrates two variants of the 2-phase-commit protocol. If the distinction is necessary
we call them 2-phase-parallel-commit respective 2-phase-sertal-commit.

Communication or robot failures:

Figure 13 shows recovery from different failures. It is important that master and slaves must
not leave the second phase until all slaves have confirmed command execution.

4.4 Deadlock resolution

Our deadlock resolution strategy bases upon the idea of forming a convoy of all robots that
are members of the deadlock kernel. Thereafter each robot of the convoy goes ahead until
all vehicles previously waiting in front of an intersection have entered their destination road
(figure 5). It is very important to ensure that no robot from the attached tree structures
(figure 9) enters the kernel. Otherwise there would be no space for applying any useful deadlock
handling strategy. At first we assume that the deadlock kernel chain does not overlap itself

Slave 1

\
W

A

e
Ack
K

Master

LY
Y

(1) fai

lure

Slave2 Slavel

prepd®

Ack

}

Ack

/
}

Master

C

Aok

(2a) successful execution
(parallel commanding)

Slave?2 Slavel

prepd®
Ack

oﬂ‘man
Ack

/

Master

G

et

(2b) successful execution

(serid co

Figure 12: 2-phase-commit protocol (success and failure)

Slavel Master Save?2

(&

[]

S

Slave iswaiting for "Prepare” message

-> Slave may terminate with timeout failure
Master iswaiting for slaves' replies

-> Master may terminate with timeout failure

[

mmanding)

but he must enter the second phase for an abort

the master

'sdecision

Slave iswaiting for "Execute" or "Abort"
-> Slave may not terminate and is blocked until it receives

Master iswaiting for slaves acknowledges
-> Repeated sending to all slavesthat have not yet answered

Figure 13: 2-phase-commit protocol (timeout)

Slave 2

synchronization

work

due to representatives waiting in front of common intersections (this restriction is eliminated

in subsection 4.5). Overlaps with other deadlock dependency graphs are permitted.

As already mentioned deadlock resolution requires all robots to participate in a concerted action.

After deadlock detection all representatives are either master or slaves and each representative

is aware of its role (subsection 4.2). Thus a convoy of robots with different roles has been
established. Before the robots of the deadlock kernel may proceed all representatives must

reserve their respective intersections. To minimize reservation time the master robot commands

reservation after a preceding synchronization phase. The subsequent simultaneous entering of

the intersections is also prepared by previous synchronization. In short we use the 2-phase-

commit protocol for intersection reservation as well as for intersection passing.

9

4.4.1 Intersection reservation

As already mentioned each representative detects a deadlock situation on its own. Furthermore
each robot knows about its role during deadlock resolution. We use a 2-phase-serial-commit
protocol as shown in figure 12.

1. At first the master and the slaves must synchronize and all slaves must submit to the
command of the master. In case of timeout the situation for the respective robot has
not changed and the robot may perhaps calculate another route. If all slaves have sent
an acknowledgement a command hierarchy between the unique master and the slaves is
established. It is very important that the slaves are no longer allowed to terminate on
their own. They have to respect their master’s decision until the protocol has finished.

2. After synchronizing with all slaves the master calculates an occupation plan for all in-
tersections along the deadlock chain in the sequence of increasing intersection identifiers.
The master arranges for reservation of the intersections by commanding the corresponding
slave representatives to compete for the respective intersections one after the other. The
master itself competes for its intersection if it is its turn. Thus several deadlock chains
sharing common intersections will not block mutually (second level deadlock, figure 14).

| Spatial Sequence: | Allocation Sequence:

DL1 DL2 |/ DL-Chain 1: Intersections |A, B, C, D A,B,C,D
< DL-Chain 2: Intersections |D, C, A, B A,B,C D
DL = Deadlock

Figure 14: Avoiding mutually blocked deadlock chains during intersection allocation

4.4.2 Intersection Passing

If all intersections have successfully been reserved the master robot can command the slave
robots to enter the intersections. If the deadlock kernel chain does not overlap itself all robots
may proceed in parallel and we can use a 2-phase-parallel-commit protocol (figure 12). Oth-
erwise the master has to calculate a driving sequence and the 2-phase-serial-commit protocol
must be applied (subsection 4.5). In general it is sufficient if a single robot in the kernel chain
can proceed. This robot uses the intersection in front of itself as a buffering zone. The robots
following this robot can proceed thereafter and finally the robot itself can enter its destination
road. Thus all robots have made progress concerning their individual goal. After turning the
deadlock kernel chain for a “vehicle length” all robots are individual drivers again:

1. The synchronization phase is completely identical to synchronization in subsection 4.4.1.

2. After synchronizing the master checks the deadlock kernel for overlaps. If there is no
overlap all robots are commanded to drive in parallel. Otherwise the master calculates
a driving sequence and the slaves are commanded accordingly. It is important that each
robot or communication failure must be transient. Otherwise there is no chance for the
deadlock kernel chain to make progress.

10

Please note that a single robot does not change its role during deadlock resolution. But deadlock
resolution may result in another deadlock situation that again requires deadlock detection and
subsequent resolution. Always the robots in the kernel make progress towards their individual
destination and no robot must go back at any time. This guarantees that there will never be
an oscillation over a series of deadlock situations.

4.5 Specialities
4.5.1 Self-overlapping deadlock kernel chain

In general a robot must pass an intersection completely because it is a no stopping zone. We
have used this area as a buffering space during deadlock resolution. Now we want to show
theoretical restrictions of this approach. Figure 15(a) shows a deadlock chain overlapping
itself. The master robot cannot command its slave robot to enter the intersection because it is
blocked thereafter. The other way around the master robot itself cannot enter the intersection
because the slave is blocked thereafter. In general this problem can be avoided if buffering space
is reserved on the roads themselves or on a special region of the intersection (figure 15(b)). If
the overlapping deadlock chain contains a single 3-way intersection the just mentioned problem
does not exist. Now there is buffering space inside the deadlock chain for at least the robot
waiting ahead of the 3-way intersection. The master robot can easily determine the robots that
are able to proceed and in consequence the whole chain makes progress. Deadlock kernel chains
will nearly always cover some intersections that the chain does not visit a second time.

J L =] = Mobile robot
I = Intersection area

‘N f . = Buffering area

(a) Self-overlapping chain (b) Road Iayout to avoid self-overlapping chains

Figure 15: A self-overlapping deadlock chain and methods to avoid blocking

4.5.2 Error model of the 2-phase-commit protocol

Recovery may be impossible in case of robot failure. The main problem consists in the second
phase of the protocol if some robots have already executed their commands while others are
faulty. In general this problem is insolvable but let us assume that the total duration time of
the protocol can be estimated. Now we can use a timeout mechanism that throws each robot
back into its idle state if the timer expires:

o A breakdown of a single robot during intersection reservation is not critical because no
robot has moved yet. If a single robot shows no further activity the timers of all other

robots will terminate and finally each robot reaches its idle state.

11

o If a breakdown of a robot happens during intersection passing there is no general solution.
The defective robot must enter the shoulder before the timers of all other robots expire.
After leaving the traffic net the other robots can go on.

5 Implementation

In our laboratory we use three mobile vehicles each of which is equipped with wireless ethernet.
Thus the robots can communicate with one another and with the stationary workstation cluster.
For each robot the control system is running on both a stationary workstation as well as
the robot’s onboard computer. We use PVM [Sun90] for message exchange between different
workstations. In the near future we intend to exploit the ethernet connection between the
robots’ onboard computers. For prototyping program development is mainly done on the
stationary workstation cluster [BBR195]. Shifting the control cycles to the robots” onboard
computers will accelerate their speed but does not affect our conceptual considerations. For
implementation of our concepts we have decided to experiment with real vehicles prior to
developing a simulation system:

1. By using real vehicles we have made valuable experience with the shortcomings of radio
transmission. Wireless connection is essential for cooperating robots and must cope with
these shortcomings. Furthermore practical experience with sonar sensors and actors of
our robots is necessary for developing simulation models. We have already tested mutual
exclusion strategies with two robots running on a “8”-shaped course [ROL95].

2. For testing of deadlock detection and deadlock resolution strategies at least three vehicles
are required. To speed up program development we have developed a parallel simulator.
The snapshot of our exemplary world shows a triangle-shaped obstacle named “Statue”
surrounded by roads in its center (figure 16). By placing a robot on each of these roads
we encounter a deadlock situation if the robots try to drive around the obstacle.

The parallel simulator consists of several UNIX-processes. PVM allows the use of a worksta-
tion cluster for instantiating the UNIX-processes [Sun90]. An animation process is in duty
of preparing the graphical output as shown in figure 16. For each robot its movement and
propagation of sensor cones are calculated by a dedicated process called “emulator”. Thus the
parallel simulator consists of a system of n + 1 UNIX-processes if n robots are running (fig-
ure 17). By using a separate workstation for each of the animation process and the emulator
processes we can exploit the power of n + 1 computers connected by ethernet.

The animation component of our parallel simulator is periodically (step 1) requesting the robot
emulation processes for the robots’ actual states and sensor propagations (step 2). Each em-
ulator stores received robot control commands in a queue. Upon request each emulator scans
its queue for the actual command and calculates the robot state for the actual time. Then
each emulator sends the actual state back to the animation process (step 3). The robot control
systems are feeding the parallel simulator with commands in an asynchronous manner. By con-
necting input and output lines of the distributed robot system to device drivers of real vehicles
we are able to verify simulated scenarios in our laboratory.

12

Polygon

[] Robot with sensorcone

.

intersection
street

i
Robot with specular reflected cone and successful reading (traffic net)
of sensor value (indicated by the path of the reflected echo)

Figure 16: Parallel simulator

13

All emulation processes are operating in parallel. Thus we can achieve a theoretical speed-up of
n if we use a separate workstation for simulating each of n robots. In addition our time-based
simulation approach guarantees an overall timely consistent simulation progress if we neglect
message transfer times with respect to the refresh rate of the animation. As opposed to our
approach event-based simulation systems must take much more effort to synchronize simulation
progress of multiple robots.

Parallel Smulator § Distributed Robot System

A D) & © 777 .=77=< communciation |
Q) . Eg. - ~_networ |
& h o 58| [RCSIRIC |
v B il g T 88 TR g |
= % | ' robot CCTE- T !
ig %@ 3 3 commands 3
| | |

.i

RCS:. Robot Control System
C: Communication unit

Figure 17: Process structure of the parallel simulator

For technical realization of our concepts we propose short range broadcasting (neighboring
robots) via special-purpose hardware supporting the ALOHA principle [Tan89]. Radio tele-
phone provides long range communication between master and slaves. We realize the differ-
ences between the proposed technical realization and the conditions in our laboratory. The
production use of our concepts will suffer from many lost messages. We have simulated the loss
of messages by deliberately destroying messages and by applying timeout-methods to detect
this fact.

6 Discussion and Outlook

After studying cooperation aspects using real robots we have developed a parallel simulation
tool for examining the behavior of multiple robots. Up to now we have got the following results:

e The algorithm for mutual exclusion has been implemented and thoroughly tested.

e Synchronous behavior between several robots must be controlled by a robot that is acting
as a moderator. We have shown this important fact during deadlock resolution. The
master robot coordinates the activity of all other slave and dummy robots.

e By using our simulation tool we have noticed severe sensor interferences between different
robots. We want to combine cooperation concerning navigation and the use of active
sensors. We are currently implementing cooperation strategies for firing active sensors.

14

7 Acknowledgement

Our research is funded by the German Research Foundation (DFG). We thank Mr. H.-G. Filipp

for thoroughly studying our concepts and for doing much of the implementation work.

References

[BBR195] H. Bayer, Th. Braunl, A. Rausch, M. Sommerau, and P. Levi. Autonomous vehicle

[Gro88]

[Lev89]

[LMB95]

[Par93]

[ROLYS]

[Sun90]

[Tan89]

[WP94]

control by remote computer systems. In Intelligent Autonomous Systems [AS-/,

pages 158-165, Amsterdam - Oxford - Washington DC, March 1995. IOS Press.

David D. Grossman. Traffic control of multiple robot vehicles. [EEE Journal of
Robotics and Automation, 4(5):491-497, October 1988.

P. Levi. Architectures of individual and distributed autonomous agents. In Intelli-
gent Autonomous Systems [AS-2, pages 315-324, 1989.

P. Levi, M. Muscholl, and Th. Braunl. Cooperative mobile robots stuttgart: Ar-
chitecture and tasks. In Intelligent Autonomous Systems IAS-4, pages 310-317,
Amsterdam - Oxford - Washington DC, March 1995. 105 Press.

Lynne E. Parker. Designing control laws for cooperative agent teams. In Proceedings
of the IEEFE International Conference on Robotics and Automation, pages 5H82-587,
Atlanta, Georgia, May 1993.

W.A. Rausch, N. Oswald, and P. Levi. Cooperative crossing of traffic intersections
in a distributed robot system. In SPIFE Sensor Fusion and Networked Robotics VIII,
volume 2589, pages 218-229. SPIE, October 1995.

V. Sunderam. PVM: A framework for parallel distributed computing. In Concur-
rency: Practice & Frperience, volume 2, pages 315-339, December 1990.

A.S. Tanenbaum. Computer Networks, chapter 3. Prentice-Hall International, Inc.,

2nd edition, 1989.

J. Wang and S. Premvuti. Fully distributed traffic regulation and control for multiple
autonomous mobile robots operating in discrete space. In H. Asama, T. Fukuda,
T. Arai, and 1. Endo, editors, Distributed Autonomous Robotic Systems, pages 144—
161. Springer Verlag, 1994.

15

