
�
�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��

�

�

��

�

�

��

�

�

��

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Universit�at Stuttgart

Fakult�at Informatik

�
Institut f�ur parallele und verteilte

H�ochstleistungsrechnersysteme

Breitwiesenstra�e 20-22

D-70565 Stuttgart

Asynchronous and Synchronous

Cooperation | Demonstrated by

Deadlock Resolution in a

Distributed Robot System

W. A. Rausch, P. Levi

Report Nr. 1996/07

May 24, 1996

Abstract

Based upon an hierarchical world model with (virtual) roads we describe two di�erent forms of

cooperation. Asynchronous cooperation arises if preplanned trajectories of autonomous mobile

robots with individual goals overlap. Synchronous cooperation takes place if several robots

coordinate their actions in order to ful�ll a collective task. We concentrate on all e�ects that

result in the course of intersection passing. If a robot intends to pass an intersection and its
destination road is occupied at its beginning the robot must not enter the intersection to keep it
free. If there are mutual dependencies that result in a cycle no robot may proceed. We are faced
with a deadlock that must be detected by all involved robots and resolved. While intersection

passing in its regular form is an example for asynchronous cooperation, deadlock resolution
shows cooperative synchronous behavior. The synchronized robots constitute a vehicle forma-
tion that moves as a unit at a higher organization level. We examine possible dependency
graphs in tra�c scenarios and explain the resulting data
ow between the a�ected robots. We
have taken care about the usability of our concepts in manufacturing and tra�c.

Keywords: Decentralized robot system, asynchronous versus synchronous cooperation, deadlock
detection and resolution, navigation, vehicle formation

1 Introduction

Autonomy of mobile robots is still an important focus of research. The use of multiple robots in

a cooperative manner requires consideration on robot architectures as well as on communication

and synchronization between di�erent robot control systems. Figure 1 illustrates the di�erent

stages of cooperation.

Non cooperative mobile robot Cooperative mobile robot
(collective task)

Cooperative mobile robot
(individual task)

Asynchronous Cooperation Synchronous Cooperation
(individual task)

Figure 1: Stages of cooperation

Autonomous non cooperative robots show a certain degree of implicit cooperation capabilities.

Autonomy requires a robot control structure to interlink its sensor devices with actor devices by

several control cycles (�gure 2). All cycles are operating simultaneously and they are interlinked

with one another to ful�ll the robot's mission. Thus they constitute the overall robot control

system as an hierarchical net of control cycles where each cycle is in duty of a di�erent task. We
have already introduced our so-called \autonomy cycle" and our matrix-shaped architecture
in previous publications [Lev89, ROL95]. Each line of the architectural matrix contains cycles
of the same abstract level while the lines themselves mirror the division into the strategical,
tactical and re
exive levels.

Sensor 1

Sensor 2

Sensor m

Autonomy
Cycle

Actor 1

Actor n
S 1 S 2 S m A 1 A n

AC 1

AC 2

AC p

RCS

hiearchical relationship
data flow S: Sensor

A: Actor
AC: Autonomy cycle
RCS: Robot Control System

Figure 2: A single autonomy cycle and its embedding in a robot control system

An autonomous mobile robot is able to cope with unexpected events in its environment like

obstacle avoidance. The autonomy of multiple robots operating in the same environment evolves

into a certain degree of cooperative capabilities even if the robots' control systems are not
enhanced with respect to cooperation issues. For example, simple rules like \pass right of

obstacle" enables robots facing each other to go on. Usually each robot follows a deterministic
set of rules [Gro88] and eventually postpones its genuine intention to give way to unknown

dynamic obstacles. For instance, two robots approaching the same intersection will come close

each other until they must stop because the respective other \dynamic obstacle" intrudes into

their safety areas. The robots will be mutually blocked and wait forever if they do not cooperate.

The key for managing symmetrical behavior of the robots lies in exchanging of intentions

between robots recognizing themselves as partners (�gure 3). This way enables each robot to

calculate the impact of the other robots' plans on its own one. Intentions of other robots can be
partially extracted from observation if the robots' behavioral models are known [Par93]. But

1

the information will certainly be partial and ambiguous. This impediment is overcome if we

use active communication between robots.

C
om

m
an

ds

communication

C
om

m
un

ic
at

io
n

vehiclesensors

RCS

cycles)
(net of autonomy

Sensors Actors

RCS RCSC C
C

RCS

network
communication

RCS:
C:

Robot Control System
Communication unit

Figure 3: Communicating robots together with their interlinked robot control systems

We distinguish two di�erent forms of cooperation in a distributed robot system. In this paper
we will concentrate on all e�ects that may arise when a robot tries to pass an intersection:

1. Asynchronous cooperation arises if several robots ful�ll individual tasks in the same en-
vironment and interfere with one another due to common space for movements. The

interaction between the robots is not known a priori and may occur at any time. Mutual
exclusion to shared resources must be guaranteed without any global concept (�gure 4).

Overlapping region

Mobile robot

Obstacle

Figure 4: Asynchronous cooperation in tra�c (temporal and spatial trajectory modi�cation)

2. Synchronous cooperation implies that several robots are in duty of a common task. They
must coordinate their actions in time and space. This form of cooperation incorporates a

preplanning phase for the robots to prepare the concerted action. Thereafter the robots

use their sensors and communication devices for the maintenance of the union as well as
for their united appearance to the \outer world". The synchronized robots constitute an

abstract vehicle (principle of recursion) where each robot ful�lls its part of the overall
task. We demonstrate sychronous cooperation by deadlock detection and resolution as

illustrated in �gure 5. The robots are facing free intersections but cannot pass because

of the destination roads being congested. Additionally they are blocking themselves
mutually. The robots contribute to deadlock resolution by establishing a vehicle formation

with a certain command structure between the robots. A single master robot is tightly
coordinating the movements of all other robots.

2

Formation release

34

51

4

2

35

21

4 2

1

5 3

Formation driving

2

3

1

4

Formation establishment

5

Mutually blocked robots

Figure 5: Synchronous cooperation of robots (deadlock handling)

2 Basics for Cooperative Navigation

2.1 World model

Robots navigating in the same environment must have a common understanding of their oper-

ation area. At least they must agree upon a common coordinate system to know their mutual
spatial relationship. We supply each robot with a graph representation of its navigation space

if it is in duty of transportation tasks. For instance, factory layouts show working areas sep-
arated by hallways for transportation of raw material and part products. In addition we see
load areas, parking lots, intersections between di�erent hallways and so on. The transportation
area can adequately be modeled by a tra�c net consisting of nodes and edges (�gure 6). The
edges constitute the tra�c lines where robots are not allowed to stay for an inde�nite period
of time. The nodes form either the intersections between tra�c lines or the linkage between

a tra�c line and a ramp to the net. The dead end of a ramp symbolizes a parking area or a
loading bay, thus places where a robot may stay for an in�nite period of time. Our modeling
easily supports an hierarchical structure. Each node of a higher level may itself contain a tra�c
net with entrances corresponding to the edges incident to the node.

Usually we distinguish di�erent types of roads like highways, local roads, one-way roads and so
on. We have restricted ourselves to three types of roads: 2-way roads, static 1-way roads and
dynamic 1-way roads. A dynamic 1-way road may only be passed if the robot has succeeded in
reserving the desired direction. We are modeling the transition between a 2-way and a 1-way
road by introducing two \2-way intersections".

ghost-driver

2-way
1-way
dynamic

2-way intersection

static 1-way 3-way
intersection

Public road network Factory site (node expansion)

Figure 6: Hierarchically structured tra�c net

Navigation in our environment means graph searching and driving along the lines of the tra�c
net. We use the A

� algorithm for planning a path from the robot's starting point to its

3

destination. The possible directions of each road must be regarded in order to avoid a deadlock

situation (�gure 6 right). Cooperation necessities arise while traveling along the tra�c lines

and during passing an intersection. The latter issue is obvious. Concerning cooperation along

the lines we must consider manoeuvres like lane switching because of obstacles.

2.2 Communication primitives

Cooperation betweenmultiple robots requires them to exchange data and plans. We concentrate

on message passing instead of interpreting complex sensor data based on behavioral models:

� Periodical data exchange (location and velocity) to support sensory detection of robots

� Event-based data exchange for temporal and spatial coordination of driving manoeuvres

We see two di�erent methods for data exchange:

1. The communication unit of each robot incorporates a so-called signboard that is acting
as a mirror for the state of the robot [WP94]. The robot itself can read and write on its
signboard, all other robots may only read from it.

2. The use of directed message exchange enables a sending robot to deliver a message im-

mediately to the addressees.

In principlemessage
ow across several instances can be achieved if the instances are periodically
examining their signboards. But the more instances a message has to pass the worse transfer
time becomes as compared to directed message exchange with immediate response.

2.3 Technical requirements

� In manufacturing driving along marked lines is widely used for robot navigation. This
resembles the situation we see in tra�c. Our modeling of the world allows an easy
integration of available guiding equipment.

� In tra�c cars may not enter an intersection if they cannot pass it because of a congested

destination road. We use this constraint for supplying bu�er space for deadlock resolution.

� Radio broadcasting is limited due to technical properties. This does not a�ect data

transfer between neighboring robots using the signboard metaphor. For wider distances
we propose the use of radio telephones.

3 Asynchronous Cooperation

A typical example for asynchronous cooperation is intersection passing. In this section we as-
sume that there is no congestion on the destination road (see section 4 for congestion handling).

4

3.1 Periodical message passing

To avoid collisions between themselves all robots are periodically broadcasting odometrical and

topological data (�gure 7). Due to the limited range of radio transmission only neighboring

robots will get knowledge about one another. This is su�cient because only those robots are

potential competitors for the right to pass the intersection.

RCS RCS

RCS

C

CC

communication
network

Periodical broadcast: - odometrical data (position and orientation)

RCS: Robot Control System, C: Communication unit

radio data exchange (limited range)

- topological data (road or intersection name)

Figure 7: Periodic broadcasting between communication units

3.2 Mutual exclusive access

Mutual exclusive access to a shared resource like an intersection is achieved by using the sign-
board incorporated in the communication unit (�gure 8):

1. Initially the signboard signals state NONE. If the robot tries to access a shared resource
its state changes to REQUEST.

2. The signboards of all neighboring robots are consulted. If all signboards are in state
NONE the robot can change its state to TAKE and use the resource.

3. Finally the robot sets its state to NONE.

NONE TAKE
release

REQUEST
1. Ask other robots for their
 waiting time at the intersection
2. Determine the robot with the
 longest waiting time
3. Request this robot to pass

Negotiation protocol:

lock
failure

request

Figure 8: State-transition diagram for mutual exclusion and subsequent negotiation phase

If each robot recognizes all robots in its neighborhood the algorithm guarantees that no more

than one robot gets the right of way. However the choice of the robot is purely random. If
we want to support application speci�c protocols we can determine a random robot that is in

charge of selecting a negotiation protocol and conducting the subsequent negotiation between

all robots as a moderator. As a �rst step towards more sophisticated negotiation protocols
([LMB95]) we compare the arrival times and choose the robot that is waiting longest.

5

4 Synchronous Cooperation

In chapter 3 we have already indicated that a robot may only pass an intersection if its desti-

nation road has enough space to completely hold the robot. If this precondition is not ful�lled

the robot has got stuck in a congestion. If the robot is followed by another one waiting for it

to go on we might be confronted with a deadlock. In the following we discuss possible deadlock

dependency graphs, deadlock detection and deadlock resolution.

4.1 Deadlock dependency graphs

Each robot has a single driving intention at a time indicated by an arrow in �gure 9a. If robot a

is waiting in front of an intersection and cannot completely pass it because another robot b

is currently standing at the entrance of the destination road robot a is dependent on robot b

(indicated by an arrow in �gure 9b). A deadlock situation has occured if the dependency graph

contains a cycle. The deadlock dependency graph never branches in forward direction because
each robot is blocked by the single robot in its intended driving direction. This has two results:

1. The graph shows exactly one deadlock cycle called kernel. Every robot not being a kernel
member is a part of an attached dependency tree.

2. Several general deadlock dependency graphs are never interconnected. But they may go
across the same tra�c intersections.

= Kernel
= Tree structure

= Kernel slave

= Kernel master
(max. robotnumber)

= Kernel dummy

(a) Traffic scenario

2 3 4

5 6 7

1 2 3 4

5 6 7

8 9 10 8 9 10

1

(b) Dependency graph

Figure 9: General dependency graph in a deadlock situation

We say that a robot waiting ahead of an intersection inside the kernel is a representative for the
whole road where it is currently staying. In addition we mark an unique representative to be

the master of all others. Consequently the other representatives are called slaves. The robots
neither being master nor slaves but participating in the deadlock kernel are called dummys.

Without loss of generality the representative with the highest robot number in a deadlock

kernel takes the master's role.

4.2 Deadlock detection

Possible candidates for deadlock detection are all robots that want to pass an intersection ahead

of themselves. If they cannot enter the destination road and they are immediately followed by

6

other robots they are possibly members of a deadlock dependency graph. The deadlock is

detected by
ooding the dependency graph with messages in backward direction (�gure 10):

(max. robotnumber)

= Kernel master

= Kernel slave

(a) Traffic scenario

1 2 4

5 6 7

1 2 3 4

5 6 7

8 9 10 8 9 10
(b) Message propagation

3 = Kernel dummy

= Message sink

Figure 10: Message propagation in the general dependency graph

1. If a robot is waiting ahead of an intersection it creates a DEADLOCK REQUEST message

and sends it to its followers (backward direction). If there is a follower on the same road

the message is directed to it. Otherwise the message is directed to all robots waiting in

front of the previously passed intersection.

2. All robots receiving the message check if they are blocked by the sending robot. If they
are not blocked by it the message is destroyed. Otherwise they propagate the received
messages to their respective followers if the message hasn't been created by themselves. If
a robot stays in front of an intersection it adds its identi�cation to the forwarded message.

3. If the robot is a member of the deadlock kernel the message �nally arrives at its creator.

Now this robot has detected the deadlock cycle (Note: If the robot is a member of an
attached tree structure the message �nally reaches the \leaves" and is destroyed).

Obviously each robot waiting in front of an intersection �nally detects the deadlock kernel and
becomes a representative either a master or a slave. Furthermore this robot gets knowledge of
all robots waiting in front of other intersections. Dummy robots do not remember the existence
of a deadlock. They are enclosed by robots forward and backward and are just following the

robots ahead of them. Therefore we don't care about them during deadlock handling.

4.3 2-phase-commit protocol for deadlock resolution

Up to now each robot has pursued its individual task and message transfer has been limited to
neighboring robots. For deadlock resolution the representatives must form a union commanded
by the master robot. Due to technical limitations message exchange between representatives is

no longer possible locally. Instead we must use point-to-point connections, e. g. radio telephone.

Furthermore we must consider robot and communication failure during the concerted action of
master and slave robots. We propose the following error model :

� Each robot shows a fail-stop-behavior. It is either working or it is doing nothing. But it

is not in a state between working or failure.

� Point-to-point connection between robots can break down at any time.

7

Master

Failure
RejAck

Slave 1 Slave 2

Command Command

Figure 11: 1-phase protocol

We assume that each failure is only temporary (error re-

covery). Errors are detected by timeout mechanisms and

in general robot and communication failure cannot be

distinguished. Without taking care of transient failures

we might use a one-phase protocol (�gure 11). Because

of a missing synchronization phase between master and

slaves the master does not know which slaves are ready

for executing the command. Consequently the termina-

tion may be inconsistent between the slaves. That means some slaves will ful�ll the master's

order while others won't care about it. In case of a concerted action of all robots this results in

an inconsistent system state. We tackle this problem by using a 2-phase approach consisting of

a synchronization phase where an hierarchical command structure between master and slaves

is established followed by a command phase (�gure 12):

Synchronization phase:

1. The master asks all slaves if they are prepared for subsequent command execution.

2. If a slave is ready for execution it sends an acknowledgement otherwise a rejection.

3. If all slaves are ready the master starts command execution otherwise aborts.

Command phase:

1. The master propagates its decision to all slaves that have previously answered with an
acknowledgement. If no slave has rejected during the preparation phase the master com-
mands EXECUTION otherwise ABORT.

2. All slaves are terminating according to the master's decision.

3. The master is gathering the acknowledgements.

Figure 12 illustrates two variants of the 2-phase-commit protocol. If the distinction is necessary
we call them 2-phase-parallel-commit respective 2-phase-serial-commit.

Communication or robot failures:

Figure 13 shows recovery from di�erent failures. It is important that master and slaves must

not leave the second phase until all slaves have con�rmed command execution.

4.4 Deadlock resolution

Our deadlock resolution strategy bases upon the idea of forming a convoy of all robots that
are members of the deadlock kernel. Thereafter each robot of the convoy goes ahead until

all vehicles previously waiting in front of an intersection have entered their destination road

(�gure 5). It is very important to ensure that no robot from the attached tree structures

(�gure 9) enters the kernel. Otherwise there would be no space for applying any useful deadlock
handling strategy. At �rst we assume that the deadlock kernel chain does not overlap itself

8

RejAck

Ack
Abort

PreparePrepare

Slave 2MasterSlave 1

Ack

Ack

Prepare

Slave 1

Command

Prepare

Ack

Ack

Master

Command

Slave 2

Prepare

Slave 1

Prepare

Master Slave 2

(1) failure

Ack Ack

Command

Ack

(2b) successful execution

Ack

Command

(2a) successful execution
(parallel commanding) (serial commanding)

Figure 12: 2-phase-commit protocol (success and failure)

1

4

3

1

2 2 Master is waiting for slaves’ replies
-> Master may terminate with timeout failure

but he must enter the second phase for an abort

3

4

Prepare

Slave 1 Master Slave 2
Slave is waiting for "Prepare" message
-> Slave may terminate with timeout failure

B
lo

ck
ed

Prepare

Ack

Command

Ack

Command

Ack

Command

Ack

sy
nc

hr
on

iz
at

io
n

w
or

k

Master is waiting for slaves’ acknowledges
-> Repeated sending to all slaves that have not yet answered

-> Slave may not terminate and is blocked until it receives
the master’s decision

Slave is waiting for "Execute" or "Abort"

Figure 13: 2-phase-commit protocol (timeout)

due to representatives waiting in front of common intersections (this restriction is eliminated

in subsection 4.5). Overlaps with other deadlock dependency graphs are permitted.

As already mentioned deadlock resolution requires all robots to participate in a concerted action.

After deadlock detection all representatives are either master or slaves and each representative

is aware of its role (subsection 4.2). Thus a convoy of robots with di�erent roles has been

established. Before the robots of the deadlock kernel may proceed all representatives must
reserve their respective intersections. To minimize reservation time the master robot commands

reservation after a preceding synchronization phase. The subsequent simultaneous entering of

the intersections is also prepared by previous synchronization. In short we use the 2-phase-

commit protocol for intersection reservation as well as for intersection passing.

9

4.4.1 Intersection reservation

As already mentioned each representative detects a deadlock situation on its own. Furthermore

each robot knows about its role during deadlock resolution. We use a 2-phase-serial-commit

protocol as shown in �gure 12.

1. At �rst the master and the slaves must synchronize and all slaves must submit to the

command of the master. In case of timeout the situation for the respective robot has

not changed and the robot may perhaps calculate another route. If all slaves have sent

an acknowledgement a command hierarchy between the unique master and the slaves is

established. It is very important that the slaves are no longer allowed to terminate on

their own. They have to respect their master's decision until the protocol has �nished.

2. After synchronizing with all slaves the master calculates an occupation plan for all in-

tersections along the deadlock chain in the sequence of increasing intersection identi�ers.

The master arranges for reservation of the intersections by commanding the corresponding

slave representatives to compete for the respective intersections one after the other. The
master itself competes for its intersection if it is its turn. Thus several deadlock chains
sharing common intersections will not block mutually (second level deadlock, �gure 14).

DL1

DL = Deadlock

Allocation Sequence:Spatial Sequence:

A, B, C, D
A, B, C, D

D, C, A, B
A, B, C, D

DL-Chain 2: Intersections
DL-Chain 1: IntersectionsDL2

A B

C D

Figure 14: Avoiding mutually blocked deadlock chains during intersection allocation

4.4.2 Intersection Passing

If all intersections have successfully been reserved the master robot can command the slave
robots to enter the intersections. If the deadlock kernel chain does not overlap itself all robots
may proceed in parallel and we can use a 2-phase-parallel-commit protocol (�gure 12). Oth-
erwise the master has to calculate a driving sequence and the 2-phase-serial-commit protocol

must be applied (subsection 4.5). In general it is su�cient if a single robot in the kernel chain

can proceed. This robot uses the intersection in front of itself as a bu�ering zone. The robots
following this robot can proceed thereafter and �nally the robot itself can enter its destination

road. Thus all robots have made progress concerning their individual goal. After turning the
deadlock kernel chain for a \vehicle length" all robots are individual drivers again:

1. The synchronization phase is completely identical to synchronization in subsection 4.4.1.

2. After synchronizing the master checks the deadlock kernel for overlaps. If there is no

overlap all robots are commanded to drive in parallel. Otherwise the master calculates
a driving sequence and the slaves are commanded accordingly. It is important that each

robot or communication failure must be transient. Otherwise there is no chance for the

deadlock kernel chain to make progress.

10

Please note that a single robot does not change its role during deadlock resolution. But deadlock

resolution may result in another deadlock situation that again requires deadlock detection and

subsequent resolution. Always the robots in the kernel make progress towards their individual

destination and no robot must go back at any time. This guarantees that there will never be

an oscillation over a series of deadlock situations.

4.5 Specialities

4.5.1 Self-overlapping deadlock kernel chain

In general a robot must pass an intersection completely because it is a no stopping zone. We

have used this area as a bu�ering space during deadlock resolution. Now we want to show

theoretical restrictions of this approach. Figure 15(a) shows a deadlock chain overlapping

itself. The master robot cannot command its slave robot to enter the intersection because it is

blocked thereafter. The other way around the master robot itself cannot enter the intersection
because the slave is blocked thereafter. In general this problem can be avoided if bu�ering space

is reserved on the roads themselves or on a special region of the intersection (�gure 15(b)). If
the overlapping deadlock chain contains a single 3-way intersection the just mentioned problem
does not exist. Now there is bu�ering space inside the deadlock chain for at least the robot
waiting ahead of the 3-way intersection. The master robot can easily determine the robots that
are able to proceed and in consequence the whole chain makes progress. Deadlock kernel chains
will nearly always cover some intersections that the chain does not visit a second time.

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

(a) Self-overlapping chain (b) Road layout to avoid self-overlapping chains

= Mobile robot

= Intersection area

= Buffering area

Figure 15: A self-overlapping deadlock chain and methods to avoid blocking

4.5.2 Error model of the 2-phase-commit protocol

Recovery may be impossible in case of robot failure. The main problem consists in the second

phase of the protocol if some robots have already executed their commands while others are

faulty. In general this problem is insolvable but let us assume that the total duration time of
the protocol can be estimated. Now we can use a timeout mechanism that throws each robot

back into its idle state if the timer expires:

� A breakdown of a single robot during intersection reservation is not critical because no

robot has moved yet. If a single robot shows no further activity the timers of all other

robots will terminate and �nally each robot reaches its idle state.

11

� If a breakdown of a robot happens during intersection passing there is no general solution.

The defective robot must enter the shoulder before the timers of all other robots expire.

After leaving the tra�c net the other robots can go on.

5 Implementation

In our laboratory we use three mobile vehicles each of which is equipped with wireless ethernet.

Thus the robots can communicate with one another and with the stationary workstation cluster.

For each robot the control system is running on both a stationary workstation as well as

the robot's onboard computer. We use PVM [Sun90] for message exchange between di�erent

workstations. In the near future we intend to exploit the ethernet connection between the

robots' onboard computers. For prototyping program development is mainly done on the

stationary workstation cluster [BBR+95]. Shifting the control cycles to the robots' onboard

computers will accelerate their speed but does not a�ect our conceptual considerations. For
implementation of our concepts we have decided to experiment with real vehicles prior to

developing a simulation system:

1. By using real vehicles we have made valuable experience with the shortcomings of radio
transmission. Wireless connection is essential for cooperating robots and must cope with
these shortcomings. Furthermore practical experience with sonar sensors and actors of
our robots is necessary for developing simulation models. We have already tested mutual
exclusion strategies with two robots running on a \8"-shaped course [ROL95].

2. For testing of deadlock detection and deadlock resolution strategies at least three vehicles
are required. To speed up program development we have developed a parallel simulator.
The snapshot of our exemplary world shows a triangle-shaped obstacle named \Statue"

surrounded by roads in its center (�gure 16). By placing a robot on each of these roads
we encounter a deadlock situation if the robots try to drive around the obstacle.

The parallel simulator consists of several UNIX-processes. PVM allows the use of a worksta-

tion cluster for instantiating the UNIX-processes [Sun90]. An animation process is in duty
of preparing the graphical output as shown in �gure 16. For each robot its movement and

propagation of sensor cones are calculated by a dedicated process called \emulator". Thus the
parallel simulator consists of a system of n + 1 UNIX-processes if n robots are running (�g-

ure 17). By using a separate workstation for each of the animation process and the emulator
processes we can exploit the power of n+ 1 computers connected by ethernet.

The animation component of our parallel simulator is periodically (step 1) requesting the robot

emulation processes for the robots' actual states and sensor propagations (step 2). Each em-

ulator stores received robot control commands in a queue. Upon request each emulator scans

its queue for the actual command and calculates the robot state for the actual time. Then
each emulator sends the actual state back to the animation process (step 3). The robot control

systems are feeding the parallel simulator with commands in an asynchronous manner. By con-

necting input and output lines of the distributed robot system to device drivers of real vehicles

we are able to verify simulated scenarios in our laboratory.

12

(traffic net)Robot with specular reflected cone and successful reading
of sensor value (indicated by the path of the reflected echo)

intersection
street

Polygonobstacle

Robot with sensorcone

Figure 16: Parallel simulator

13

All emulation processes are operating in parallel. Thus we can achieve a theoretical speed-up of

n if we use a separate workstation for simulating each of n robots. In addition our time-based

simulation approach guarantees an overall timely consistent simulation progress if we neglect

message transfer times with respect to the refresh rate of the animation. As opposed to our

approach event-based simulation systems must take much more e�ort to synchronize simulation

progress of multiple robots.

Animation

Emulator 1

Emulator 2

Emulator n

2

3
Timer

1

R
ep

ly
 s

ta
te

R
eq

ue
st

 s
ta

te RCS 1 RCS n

RCS 2

C

C C

robot
commands

as
yn

ch
ro

no
us

ev
en

ts

communciation
network

C: Communication unit
RCS: Robot Control System

Parallel Simulator Distributed Robot System

Figure 17: Process structure of the parallel simulator

For technical realization of our concepts we propose short range broadcasting (neighboring
robots) via special-purpose hardware supporting the ALOHA principle [Tan89]. Radio tele-
phone provides long range communication between master and slaves. We realize the di�er-

ences between the proposed technical realization and the conditions in our laboratory. The
production use of our concepts will su�er from many lost messages. We have simulated the loss
of messages by deliberately destroying messages and by applying timeout-methods to detect
this fact.

6 Discussion and Outlook

After studying cooperation aspects using real robots we have developed a parallel simulation
tool for examining the behavior of multiple robots. Up to now we have got the following results:

� The algorithm for mutual exclusion has been implemented and thoroughly tested.

� Synchronous behavior between several robots must be controlled by a robot that is acting

as a moderator. We have shown this important fact during deadlock resolution. The
master robot coordinates the activity of all other slave and dummy robots.

� By using our simulation tool we have noticed severe sensor interferences between di�erent
robots. We want to combine cooperation concerning navigation and the use of active

sensors. We are currently implementing cooperation strategies for �ring active sensors.

14

7 Acknowledgement

Our research is funded by the German Research Foundation (DFG). We thank Mr. H.-G. Filipp

for thoroughly studying our concepts and for doing much of the implementation work.

References

[BBR+95] H. Bayer, Th. Br�aunl, A. Rausch, M. Sommerau, and P. Levi. Autonomous vehicle

control by remote computer systems. In Intelligent Autonomous Systems IAS-4,

pages 158{165, Amsterdam - Oxford - Washington DC, March 1995. IOS Press.

[Gro88] David D. Grossman. Tra�c control of multiple robot vehicles. IEEE Journal of

Robotics and Automation, 4(5):491{497, October 1988.

[Lev89] P. Levi. Architectures of individual and distributed autonomous agents. In Intelli-

gent Autonomous Systems IAS-2, pages 315{324, 1989.

[LMB95] P. Levi, M. Muscholl, and Th. Br�aunl. Cooperative mobile robots stuttgart: Ar-

chitecture and tasks. In Intelligent Autonomous Systems IAS-4, pages 310{317,
Amsterdam - Oxford - Washington DC, March 1995. IOS Press.

[Par93] Lynne E. Parker. Designing control laws for cooperative agent teams. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 582{587,
Atlanta, Georgia, May 1993.

[ROL95] W.A. Rausch, N. Oswald, and P. Levi. Cooperative crossing of tra�c intersections
in a distributed robot system. In SPIE Sensor Fusion and Networked Robotics VIII,
volume 2589, pages 218{229. SPIE, October 1995.

[Sun90] V. Sunderam. PVM: A framework for parallel distributed computing. In Concur-

rency: Practice & Experience, volume 2, pages 315{339, December 1990.

[Tan89] A. S. Tanenbaum. Computer Networks, chapter 3. Prentice-Hall International, Inc.,

2nd edition, 1989.

[WP94] J. Wang and S. Premvuti. Fully distributed tra�c regulation and control for multiple
autonomous mobile robots operating in discrete space. In H. Asama, T. Fukuda,

T. Arai, and I. Endo, editors, Distributed Autonomous Robotic Systems, pages 144{
161. Springer Verlag, 1994.

15

