i Universitét Stuttgart
: Fakultat Informatik

printed 1996-6-10

Parallaxis-IlIl User Manual

Thomas Braunl

Computer Science Report
Bericht Nr. 1996/08 June 1996

http://ww. informatik.uni-stuttgart.de/ipvr/bv/p3

All Rights Reserved

Copies of this report may be ordered from:

Dekanat der Fakultat Informatik, Universitat Stuttgart
Breitwiesenstr. 20-22, D-70565 Stuttgart

phone: +49 (711) 7816-371 fax: +49 (711) 7816-424

Preface

The Parallaxis project started as my Ph.D. project in 1987 at USC, Los Angeles, and
continued during my time at the Univ. Stuttgart, Germany. It has gone through
several stages of improvements and complete new starts from scratch between the
major versions listed below. The idea persisted, however, to formulate a machine
independent data-parallel programming language:

version 0 1988 implemented by Thomas Braunl
version 1 1989 implemented by Ingo Barth (compiler), Frank Sembach (simulator)
version 2 1990 implemented by Barth, Sembach, and Stefan Engelhardt (MasPar)

version 3 1995 implemented by Eduard Kappel, Harald Lampke, Hartmut Keller (all
p3c compiler), Jorg Stippa (debugger)
The Parallaxis software, comprising compiler, debugger, numerous parallel
application programs, and documentation may be copied over the Internet via "ftp",
while some information is available from the p3 web page:

http://ww informatik. uni-stuttgart. de/ipvr/p3
ftp://ftp.informatik.uni-stuttgart.de/ipvr/p3

Several conference contributions, research reports, and books have been published
on Parallaxis, most prominently:

Bréaunl: Parallel Programming, Prentice-Hall, 1993
Brdunl et al.: Parallele Bildverarbeitung, Addison-Wesley, 1995

Stuttgart, June 1996 Thomas Braunl

Contents

1 Language Definition............... 5
1.1 Introductiono et 5

1.2 Specifying Virtual Processors and Connections 6

1.3 Multiple Configurations and Iterative Connections. 9

1.4 DataDeclaration it 10

1.5 Processor Positionst 12

1.6 Parallel Execution 14

1.7 Structured Data Exchange, 16

1.8 Unstructured Data Exchange.................. 19

1.9 Exchange between Scalar and VectorData 21
1.10 Reduction e e e 22
111 Modules. . ..o 23
112 Inputand Output. 24
1.13 Control Structuresttt e e 25
1.14 RelationtoModula-2....... 26
1.15 Efficiency.ot 27

2 Applications........ ... 29
2.1 BasicApplications i 29
2.1.1 Cellular AULOMEtA.ottt 29

212 Generationof Fractals. 30

213 SOMING. -« ettt e 32

2.2 ImageProcessing...............iiiiiiiiiii i 34
221 LaplaceFilter 34

222 DIthering. .. oot 35

2.3 Simulation. e 36

3 Compiler and Debugger........... L. 39
31 Compiler...... ..o 39

32 Debugger..... ... 41

4 Appendix............ 45
41 DataTypeso 45

4.2 Built-in Functions and Procedures 45

4.3 GraphicsInterface ... 49

4.4 Parallaxis-IIISyntax........... ... i i 53

4.5 Literature.ovo e e 58

Contents

Language Definition

Parallaxis is a machine-independent language for data-parallel programming.
Sequential Modula-2 is used as the base language. Programming in Parallaxis is done on
a level of abstraction with virtual processors and virtual connections, which may be
defined by the application programmer.

1.1 Introduction

Parallaxis [Braunl 89], [Braunl 91], [Braunl 93] is based on Modula-2 [Wirth 83], extended
by data-parallel concepts. The language is fully machine-independent across SIMD
architectures; therefore programs written in Parallaxis run on different SIMD parallel
computer systems. For a large number of (single-processor) workstations and personal
computers, there is also a Parallaxis simulation system with source level debugging and
tools for visualization and timing. A compiler for data-parallel programming of MIMD
computer systems in SPMD style (same program, multiple data) is being developed.
Parallel programs with small data sets can be developed, tested and debugged with this
simulation system. Then, Parallaxis compilers can be used to generate parallel code for
the MasPar MP-1 / MP-2 or the Connection Machine CM-2. The simulation environment
allows both the study of data parallel fundamentals on simple computer systems and the
development of parallel programs which can later be executed on expensive parallel
computer systems. The programming environment for Parallaxis is available as public
domain software.
We had two major goals in developing a new parallel programming language:

1. We believe that ‘structured programming’ has a number of advantages in developing
sequential and parallel software, as well as for learning programming concepts in
general. Therefore, we chose Modula-2 as base language and not C like many other
approaches.

2. Almost all commercial SIMD programming languages are machine-dependent, since
they have been specifically designed for a single hardware platform to achieve
maximum performance. Therefore, one may not easily port a program from one
SIMD system to another. To avoid this problem, we designed Parallaxis to be
completely machine-independent. This refers to SIMD architectures only, for
switching from SIMD to MIMD will almost always require to change the algorithm of
your program, in order to keep it efficient.

The central point of Parallaxis is programming on a level of abstraction with virtual

PEs and virtual connections. In addition to the algorithmic description, every program

includes a semi-dynamic connection declaration in functional form. This means that the

6 1 Language Definition

desired PE network topology is specified in advance for each program (or for each
procedure) and can be addressed in the algorithmic section with symbolic names
(instead of complicated arithmetic index or pointer expressions). However, for
completeness, also full-dynamic data exchange operations may be performed.

The following describes the latest version of the language, Parallaxis-I1II, which is
not fully compatible to older versions of the language.

1.2 Specifying Virtual Processors and Connections

One or several ‘virtual machines’ consisting of processors and a connection network
may be defined for every Parallaxis program. This is done in two simple steps. First,
the keyword CONFI GURATION is used to specify the number of PEs and their
arrangement in analogy to an array declaration. However, at this point, no
specification has been made as to the connection structure between the PEs. This
follows by specifying mapping relations, introduced by the keyword CONNECTI ON (this
second step may be omitted if no connections are required). Every connection has a
symbolic name and defines a mapping from a PE (any PE) to the corresponding
neighbor PE. The specification of this relative neighbor is accomplished by providing
an arithmetic expression for the index of the destination PE. Data exchanges can now
be carried out using these symbolic connection names in the parallel program.

north
west east
south

CONFI GURATION grid [1..4],[1..5];

CONNECTION north: grid[i,j] - grid[i-1, j];
south: grid[i,j] - grid[i+1, j];
east : grid[i,j] - grid[i, j+1];
west @ grid[i,j] - grid[i, j-1];

Figure 1.1: Two-dimensional grid topology with representative PE

Figure 1.1 shows a PE arrangement as a two-dimensional grid structure in a simple
Parallaxis example. The CONFI GURATI ON declaration provides 4 x 5 virtual processors,
which are virtually connected to one another in the following CONNECTI ON declaration.
In Figure 1.1, PE no. [1,1] is in the upper left corner; however, you may also choose to
put the ‘origin’ in the lower left corner — it does not matter as long as you use it
consistently in your program. Since homogeneous connection structures or topologies
are easy to declare, four connection declarations are sufficient to construct a grid of
any size. One connection is defined for each cardinal direction. The connection to the
north, for example, decrements the first index. Some connections from the border PEs
lead ‘nowhere’, which means that these connections do not exist, and will not
participate in any data exchange operation.

1.2 Specifying Virtual Processors and Connections 7

In case one prefers a wrapped-around grid (torus) instead of an open grid for some
application, this can be easily accomplished by using the modulo-operator
(remainder). Identifiers h and w denote constants:

CONFI GURATI ON torus [0..h-1],[0..w1];

CONNECTION north: torus[i,j] - torus[(i-1) MO h, j];
south: torus[i,j] - torus[(i+1l) MOD h, j]
east : torus[i,j] - torus[i, (j+1) MDD wW;
west : torus[i,j] - torus[i, (j-1) MDD W;

There is a list of extensions to this simple process of defining virtual machine
structures: Several destination expressions may be specified after the arrow symbol,
separated by commata. Connections may be parameterized, as with the hypercube in
Figure 1.2. With these, it is possible to perform a data exchange in a computed
direction. For the definition of the binary tree network, also in Figure 1.2, bi-directional
connections (‘- or ‘<->" in ASCII notation) have been used instead of uni-directional
connections (‘-’ or ‘->"). A bi-directional connection is an abbreviation for two uni-
directional connections and, therefore, requires a second connection name on the right
hand side of the connection.

Bi nary Tree

CONFI GURATION tree [1..15];

CONNECTI ON

Ichild: tree[i] - tree[2*i] :parent;
rchild: tree[i] o tree[2*i+1] :parent;

an alternative specification without distinguishing
between left and right children is:

CONFI GURATION tree [1..15]; _
8 9 10 11 12 13 14 15 CONNECTION child: tree[i] -tree[2*i],
tree[2*i +1];

Hyper cube

(01011 CONFI GURATI ON hyper [0..1],[0..1],[0..1],[0..1];
CONNECTI ON
go[1]: hyper[i,j,Kk,

Il - hyper[(i+1)MOD 2, j,Kk,I
go[2] : hyper[i,j,k,I

I

I

-~ hyper[i, (]+1)MD 2, k,}
go[3]: hyper[i,]|,Kk, i

- hyper[i,j, (k+1)MD 2,
go[4]: hyper[i,j,k, i

- hyper[i,j,k, (I+1)MD 2];

——

[0,0,1,1]

[0,0,0,0] [0,0,0,1]
Figure 1.2: Tree and hypercube topology

So-called ‘compound connections’ may be used to have a case distinction inside a
connection. The following example connects local pairs of PEs:

A case distinction is made for the next connection. If the PE-number is odd, a
connection to the right neighbor is established, while if it is even, a connection to the
left neighbor is established. Using compound connections, arbitrary connection

8 1 Language Definition

CONFI GURATION |ist [1..8];
CONNECTI ON next: list[i] - {ODD (i)} list[i+1],
{BEVEN(i)} list[i-1];

> > | > »

1 2 3 4 5 6 7 8

Figure 1.3: Compound connections

structures, even with irregularities, may be defined. If several parts of a compound
connection evaluate to TRUE for a particular PE, then for this PE all of these
connections are defined (one-to-many or 1:n connection).

The connection structures as defined by the CONNECTI ON declaration do not have to
be 1:1 (one-to-one) connections. For 1:n connections, an implicit broadcast is executed.
In the following example, the first element of each row is connected to all elements in
this row.

CONFI GURATION grid [1..100],[1..100];
CONNECTI ON one2many: grid[i,1] - grid[i,1..100];

If a one-to-many connection is to be established to all PEs of a dimension, the range
may be substituted by an asterisk . So the following is equivalent to the previous
example.

CONFI GURATION grid [1..100],[1..100];
CONNECTI ON one2many: grid[i,1] - grid[i,*];

However, for n:1 (many-to-one) connections (and the general m:n connections,
many-to-many) one must ensure that only a single value arrives at any PE's entry
port. Therefore, each data exchange operation may include a vector reduction, as will
be discussed later. In the following example, all elements of a row are connected to the
first element in their column.

CONFI GURATI ON grid [1..3],[1..5];

CONNECTI ON nmany2one: grid[i,j] - grid[i,1];

EERERE:

Figure 1.4: Multiple connections

1.3 Multiple Configurations and Iterative Connections 9

1.3 Multiple Configurations and Iterative Connections

In addition to the constructs shown so far, the definition of multiple topologies in a
program is possible. These may be defined independently of each other on separate
groups of PEs — in which case the topologies may have different vector data
structures. Or the topologies can be defined as ‘different views’ of the same set of PEs
with identical data structure. Furthermore, local topologies may be defined in
procedures, thus allowing semi-dynamic connection structures.

Different configuration definitions denote different sets of PEs. For example, the
following declaration defines two distinct sets of PEs:

CONFI GURATION grid [1..200],[1..50];
tree [1..10000];

On the other hand, configurations may be defined as a different view of the same set
of PEs. In this case, the numbers of PEs have to be identical. In that case, each PE a

CONFI GURATION grid [1..200],[1..50];
tree [1..10000] = grid;

Connections may be specified between multiple configurations, whether they
belong to the same or distinct sets of PEs:

CONFI GURATION grid [0..199],[0..49];
tree [1..10000];
CONNECTION m x: grid[i,j] -> tree[i*50 + j];

However, a connection may only link PEs within the same or two different
configurations. A connection between three or more configurations is not allowed,
and a connection linking PEs within one configuration and PEs to another
configuration (by the same connection name) is not allowed.

Configurations only come to life, when they are used for the declaration of a vector
variable, which is later used in a computation. A vector variable based on a
configuration with multiple views can make use of all connection structures defined
for any of the views. Such a variable is also assignment compatible to a variable of the
same type but of a different view.

An extension to the definition of connections is the use of iterative connection
functions, as exemplified by the following alternative definition for a hypercube
network of arbitrary size (the exponentiation function is denoted by “**’, n is a
constant):

CONFI GURATI ON hyper [0..(2**n-1)];
CONNECTION FOR k := 0 TO n-1 DO
dir[k]: hyper[i] o {EVEN(i DV 2**k)}
hyper[i + 2**k] :dir[Kk];
END;

If n equals 10, there are 1,024 PEs defined together with ten bi-directional
connections. Expression EVEN(i DIV 2**k) tests, whether the k-th bit of i equals 0.

Alarge program may be split into several modules, which are compiled separately.
So, e.g. for a module containing library functions, it may be desirable not to specify
the size of a configuration. When writing routines for image processing, the size of the

10 1 Language Definition

grid structure should be left unspecified and will be defined later by the module
importing these routines. An open configuration is indicated by using an asterisk “*’
instead of a value range. The configuration size may be determined dynamically at
run time, e.g. by passing a parameter that is subsequently used as an upper bound in
the configuration declaration.

DEFI NI TI ON MODULE Qpen:
CONFI GURATI ON gri d[*], [*]:

CONNECTION left: grid[i,j] <->grid[i ,j-1] :right;

up = grid[fi,j] <->grid[i+1,j] :down;
PROCEDURE sum 3x3(input: grid OF INTEGER): grid OF | NTEGER,
END Open.
MODULE Mai n;

FROM Open | MPORT grid, sum 3x3;
CONFI GURATION ny_grid = grid[1..10],[1..10];
VAR a, b: nmy _grid OF | NTEGER;
BEG N
a:=1;
b := sum 3x3(a);
Witelnt(b,5);
END Mai n.

Open configurations are needed when a procedure is to work on a vector of
unspecified size, but has to make use of connections for data exchange or position
data (DI M see section on processor positions). If connections and position data are not
required in a procedure, which is to be used for different configurations (different size
or arbitrary configuration), then the simpler concept of generic vector parameters
may be used (VECTOR, see section on data declaration).

1.4 Data Declaration

Parallaxis differentiates between scalar and vector variables in data declarations as
well as in procedure parameters and results. Scalar data is placed on the control
processor, while vectors are distributed component-wise among the virtual PEs (in
Figure 1.5 configurations are not connected). Since a program may contain several PE

VAR a: | NTECER, (* scalar *)
b: grid OF REAL; (* vector *)
c: tree OF CHAR, (* vector *)

on control distributed on PEs distributed on PEs
[—b b}

- -
L&

1P|

processor

®

[o=

Figure 1.5: Allocation of scalar and vector data

1.4 Data Declaration 11

configurations with different numbers of PEs, the name of a configuration is used for
specifying the vector type of a variable.

There is, of course a fundamental difference between declaring an array of vectors
and declaring a vector of arrays, as exemplified in Figure 1.6. However, both indexed
expressions x[1] and y[1] refer to a data structure of the same type "grid OF
| NTEGER'.

VAR x: ARRAY[1..3] OF grid OF | NTECGER,
y: grid OF ARRAY[1..3] OF | NTEGER,

array of vector

vector of arrays
v I1, 2, 3]}—y 1, 2, 3]}— [1, 2, 3]1}— [1, 2, 3] b—F [1, 2, 3] |
v [1,:2, 31— [1,:2, 31—y [1,:2, 31—y [1,: 23—y [1,: 2,3 |
b1z 2 31—y 11, 2, 371} 11, 2. 37— 1L 2, 31 }—F (1. 2, 31 |
v [1,|2, 31— [1,I2, 31—y ll,lz, 31—V [LI 2,3 —y [1,| 2,31

Figure 1.6: Array of vectors and vector of arrays

Unfortunately, this declaration semantics has some unpleasant effect for procedure
arguments. Imagine, e.g. writing a function factori al, for computing the factorial
value for an argument of type | NTEGER. Now, a factori al function would have to be
declared for scalar arguments, and for every configuration defined in a program. Since
there is no way of knowing them in advance, it would be impossible to write general
library routines. To remedy this situation, parameters and variable declarations inside
such a procedure may use the keyword VECTCR instead of a particular configuration
name. This indicates that a parameter will be used in a parallel computation, without
specifying a particular configuration (this results in a generic procedure). All
parameters declared as generic vectors or variables in such a procedure have to
belong to the same configuration. Since no particular configuration has been specified,
no data exchange may be performed in such a procedure.

PROCEDURE s factorial (a: | NTEGER): | NTEGER;
VAR b: | NTEGER; (* scalar *)

END s factorial;

PROCEDURE v_factorial (a: VECTOR OF | NTEGER): VECTOR OF | NTEGER,
VAR b: VECTOR OF | NTECER; (* any vector *)
END v_factorial;

It is possible that several procedure parameters use the "open vector" or the "open
configuration” construct for possibly different configurations. In this case, a local
variable declaration with the method used above is not unique. Therefore, the name

12 1 Language Definition

of the "open vector" or open configuration parameter may follow the keyword VECTOR
or the open configuration name in the type specification.

PROCEDURE vec(a: VECTOR OF | NTEGER, b: VECTOR OF | NTEGER);
VAR x: VECTOR a OF I NTECER; (* vector type corresponding to a *)
y: VECTOR b OF | NTEGER, (* vector type corresponding to b *)

END vec;
CONFI GURATION grid[*],[*];

PROCEDURE open(a: grid OF REAL; b: grid OF REAL);
VAR x: grid b OF REAL; (* vector type corresponding to b *)

END open,;

1.5 Processor Positions

There are two ways to determine a PE's current position. The first is by using the
(vector-valued) standard function I D, which returns the virtual processor position as a
single number in row-major ordering (or ‘highest-dimension-major” for more than
two dimensions):

QONFI GURATION grid [1..4],[-2..+2];
VAR x: grid CF | NTEGER 1st dimension
x 1= 1D0(grid); 2nd dimension

This results in each component of x being assigned the number of its virtual PE,
always starting with ‘1" (independent of the configuration range and number of
dimensions):

123 45
ID(grid)=|6 7 8 910
11 12 13 14 15
16 17 18 19 20

The second way of determining the position of a virtual PE, now with respect to its
configuration declaration, is to use the standard function DI M This function takes the
configuration name and the number of the dimension as arguments and returns the
position of a PE within this dimension. Dimensions are numbered from right to left,
that is, the highest dimension is at the leftmost position.

The position values returned by function DIM depend on the ranges of the
configuration definition. The DI M function will return exactly this range of values as
position data. In the following, position data for rows and columns of the grid
example above are shown:

1.5 Processor Positions

13

11111

DIMgrid, 2)= (22222
33333

44444

-2 -1 0 +1 +2
: -2 -1 0 +1 +2
DI Mgrid, 1) =
-2 -1 0 +1 +2
-2 -1 0 +1 +2

Functions, | Dand DI M as well as the following functions, do not depend on any PE
connection. Further functions working on configuration data are shown below. These
functions take either configurations or vector variables as arguments.

LEN(gri d) = 20 returns the total number of PEs in a configuration
LEN(gri d, 1) = returns the size of a dimension (here dim. 1)
LEN(gri d, 2) = 4 returns the size of a dimension (here dim. 2)
RANK(gri d) = returns the number of dimensions

LOAER(grid, 1) = -2 returns the lower bound of a dim. (here dim. 1)
UPPER(grid,1) = 2 returns the upper bound of a dim. (here dim. 1)

A function and a procedure are provided to transfer | D values into DI Mvalues and
vice versa. An array is used for DI Mvalues. Both routines may be used with scalar or
vector parameters. These routines are especially useful for converting | D and DI M

values of multiple configurations.

VAR di ms: ARRAY[1..2] OF | NTEGER

S . I NTEGER;
dins[1] := 1:
dins[2] := 2

s := DMID(grid, dinmns);

| D2DI M grid, 12, di ms) ;

s becomes 9 (referring to grid definition above)

dims[1] becomes -1
dims|[2] becomes +3

An individual PE may be selected by using an | F-selection involving parallel
position data like | D and DI M However, supplying the position values directly for a
vector is also possible and gives a simpler way of selecting PEs. A single PE may be
selected using a component expression with scalar arguments after the identifier of a

vector variable:

VAR x : grid OF | NTEGER

s, t: | NTEGER

s = X <<12>>;

X <<12>> : = s;
S = X <:3,t+1:>;

X <t,1l:>:=s5;

(* 2-dim *)
(* scalar *)

get the value of the PE with ID 12
set the value of the PE with ID 12

get value of the PE in row 3 and column t +1,
according to CONFI GURATI ON ranges specified

set the value of the PE in row t and column 1

14 1 Language Definition

1.6 Parallel Execution

Parallel execution is implicit in Parallaxis-III, depending on the declaration of
variables involved in a statement or expression. PE-selection (determining which PEs
will be active during a certain statement) is also implicit. Any selection or iteration
instruction (I F, FOR, WHI LE, REPEAT, CASE, LOOP) with a vector argument may be used.
Figure 1.7 shows the data-parallel execution of a statement on a selected group of PEs.

VAR x,a, b: grid OF REAL;

|E DIMgrid, 2) IN{2, 3 THEN
X := atb
END;

Figure 1.7: Data parallel instruction

So whenever a selection is performed, e.g. by an IF statement with vector
condition, only those PEs are active during execution of the THEN branch, whose local
condition evaluates to TRUE. A THEN branch or an ELSE branch will only be executed if
the condition (or its negation, respectively) will be satisfied by at least one PE.
Primarily, this has an effect on any scalar statements that may be in such a branch,
since in this case they will be skipped. In the general case, when the condition
evaluates to TRUE for some PEs, but evaluates to FALSE for some other PEs, then both
THEN branch and ELSE branch will be executed subsequently (first THEN, afterwards
ELSE) with the appropriate group of PEs being active (this also holds for any scalar
statements that may be contained in these branches). If vector | F statements are
nested, then in one of the inner branches only a subset of the PEs of the corresponding
outer branch is active.

VAR x: grid OF | NTEGER,

I F x>5 THEN x :

=x -3
ELSE x := 2 * x
END;
PE-ID: 1 2 3 4 5
initial values of x: 10 4 17 1 20
starting then-branch: 10 - 17 - 20 ('~ means inactive)
after then-branch: 7 - 14 - 17
starting else-branch: - 4 - 1 -
after else-branch: - 8 - 2 -

selection done
after if-selection: 7 8 14 2 17

1.6 Parallel Execution 15

The possibly subsequent execution of THEN- und ELSE-branches may lead to
unexpected side effect, which are shown in the following sample program:

VAR x: grid OF | NTEGER,
s: INTEGER, (* scalar *)

| F x>5 THEN x :

= x - 3; INC(s);
ELSE x := 2 * x; INC(S);
END;
initial values of s: 1
after then-branch:
after else-branch /if: 3

When entering a loop with vector condition (e.g. WHI LE loop), only those PEs are
active which satisfy the condition. In subsequent iterations of this loop, the number of
PEs is always decreasing. The loop iterates until no PE is left to satisfy the loop
condition (see the following example).

VAR x: grid OF | NTECER

VWH LE x>5 DO

x:= x DV 2;
END;
PE-ID: 1 2 3 4 5
initial values of x: 10 4 17 1 20
starting 1st iteration: 10 - 17 - 20 (‘~ means inactive)
after 1st iteration: 5 - 8 - 10
starting 2nd iteration:. - - 8 - 10
after 2nd iteration: - - 4 - 5

starting 3rd iteration: - - - - -
loop terminates
after loop: 5 4 4 1 5

Other control structures, known from sequential Modula-2 may be used as well in
vector context. The CASE-selection can be treated as a nested chain of | F- THEN- ELSI F-
selections, while FOR- and REPEAT-loops can be regarded as modifications of a WHI LE-
loop. The parallel LOOP-EXI T construct differs from its sequential counterpart, for it has
to specify the name of the selected configuration, e.g.:

LOOP OF grid DO
IF x>0 THEN EXI T END;

END; (* loop *)

16 1 Language Definition

In case one would like to perform an operation on all PEs inside a nested selection
or loop, the ALL block may be used to re-activate all PEs of a configuration.

I F x>0
THEN ... (* only grid PEs are active, which satisfy condition *)
ALL grid DO
. (* all grid PEs are active, regardl ess of condition *)
END
ELSE ... (* only grid PEs are active, which do not satisfy cond. *)
END;

1.7 Structured Data Exchange

Data exchanges between processors can be accomplished with simple symbolic
names, thanks to the network declaration described earlier. Data exchange of a local
vector variable between all or just a group of PEs can be invoked by calling system
function MOVE with the name of a previously defined connection. Only active PEs
participate in a data exchange operation. Figure 1.8 shows an example of a data
exchange in the grid structure defined in section 1.2. The expression returns vector
variable x shifted one step (one PE) to the east.

y := MOVE. east (x);

Figure 1.8: Synchronous data exchange

For the data exchange operation shown above, sender-PE and receiver-PE of a data
exchange have to be active. For the operations SEND and RECEI VE shown below, it is
sufficient for only the sender (or only the receiver, respectively) to be active. These
operations are especially needed for the data exchange between different topologies,
since due to the SIMD model only one PE structure can be active at a time. Unlike the
other data exchange operations, SEND is a procedure (not returning a value) and
therefore takes two arguments, first the expression to be sent, and second the variable
to receive the expression.

SEND. east (4*x, VY);
y : = RECEI VE. nort h(x);

The following comparison shows the differences in data exchange operations by
using a simple list topology. In figures, an arrow represents data transport, while a
white space marks an inactive PE. Let us assume for the context of the following data
exchange operations that all PEs are active but one (e.g. the data exchange might
occur inside an | F-selection, which deactivated one of the PEs).

CONFI GURATI ON |ist[1..max];
CONNECTION right: list[i] -> list[i+1];
VAR x,y: list OF | NTEGER,

1.7 Structured Data Exchange 17

a) Only the sender has to be active.
All active PEs, which have a successor, send data.
SEND. ri ght (X, Y);

—> | >

active inactive active active

Example: before after
X:1234 X:1234
y: 0000 y:0103

b) Only the receiver has to be active.
All active PEs, which have a predecessor, receive data.
y := RECEIVE right(x);

> 1>

Example: before after
X:1234 Xx:1234
y:0000 y:1023

c¢) Both sender and receiver have to be active.
All active PEs, which have an active successor, send data.
y := MOE. right(x);

_»

Example: before after
X:1234 X:1234
y: 0000 y:1033

d) Neither sender nor receiver have to be active.
All PEs, which have a successor, send data — independent of their activation
status.
This version does not seem to make much sense, so it is not included in
Parallaxis (use ALL plus data exchange statement instead).

Please note:
e SEND has to be a procedure for it writes to inactive PEs, while MOVE and
RECEIVE are functions returning vector data.

e All data exchange operations shift data in the direction indicated by the
connection identifier (here: right). This also holds for the RECEIVE function,
so it does not have the semantics "receive from a direction" (e.g.
RECEIVE.right shifts data to the right, not to the left).

Additional data exchange modifiers may be specified for some of the data
exchange operations. One is for multiple data movement steps and one is for an
implicit reduction; both are separated by colons.

18 1 Language Definition

A data exchange operation may be executed several steps (subsequently) in a
specified direction for the SEND statement. After each step, all PEs that received data
will be active, sending data in the next step. In case one data element is sent to
multiple PEs, then all of these will be active in the next step. This feature is extremely
useful when exchanging data over a tree structure.

VAR x,y: list OF | NTEGER,
SEND.right:2 (x,Vy); move data two steps to the east

Example: (only PEs 1 and 2 are active, PEs 3 and 4 are inactive)

before copy expr. 1st step 2nd step assignment
x: 1234 — — — 1234

intermediate variable: — 1234 1124 1112 —
y: 0000 — — — 0012

A problem might occur, if several PEs are connected to a single one (many-to-one
connection). There are two possibilities to avoid an undetermined result (any of the
incoming data values could be chosen). One can either deactivate unwanted PEs (I F-
selection), so they cannot participate in a data exchange, or one can use a reduction
function with the data exchange.

For example, in the tree network shown before, one might want to send only the
left children's data to the parents and discard the right children's data:

VAR u,v,w. tree OF | NTEGER

voi= oy initializes all components of v

| F EVEN(I D(tree)) THEN moves only the left children's data up the tree
SEND. parent (u, V)

END;

Now assume, one does not want to discard information, but one would like to add
the left and right child's data before sending to the parent node:

w : = MOVE. parent: #SUM (u); moves data from both children to the
parent, resolving multiple arriving data
by adding

u before v after w after

1 5 8
7\ /7N /N
5 3 2 0 6 1
/N /N /N)\ /N)\
2 4 0 1 2 4 0 1 2 4 0 1
Figure 1.9: Move without and with reduction

There is a number of system-defined operations to do this reduction, and also user-
defined operations may be specified (see section on reduction below).

1.8 Unstructured Data Exchange 19

Configuration boundaries often cause trouble in SIMD programming, for they
frequently require special treatment to avoid undefined data. This is not the case for
Parallaxis. Here, it is allowed to send data off the edge and try to receive data from
beyond the edge of a configuration. After initializing the send expression with the
vector parameter value supplied, data sent offside a configuration is deleted, while an
attempt to read from beyond leaves the particular PE's data unchanged. Therefore,
within the same configuration, undefined values cannot occur in a data exchange
operation.

1.8 Unstructured Data Exchange

Structured data exchange makes application programs easy to write and understand.
In some cases it also makes them faster, when better use can be made of the physical
connection structure of a particular parallel system. However, it may be desirable to
perform an unstructured data exchange. This reflects an arbitrary permutation of the
components of a vector variable, which may be difficult to write down using only
structured data exchanges with user-defined connections.

For example, each component of a two-dimensional vector (a matrix) is to be sent
to a destination address, which is being computed at run-time. When only structured
data exchange is possible, e.g. via a grid, one has to program a communication
procedure, which shifts the matrix elements in several steps over the grid. This
approach will work, however, some parallel computer systems (like the MasPar MP-1
and MP-2 [MasPar 91] and the Connection Machine CM-2 [Thinking Machines 89])
have a global connection structure, which allows an arbitrary unstructured data
exchange. In this case, specifying direct destination addresses for each component of a
vector variable may result in a faster program. Please note, that despite the
availability of specialized commands for unstructured data exchange, execution of
those may be quite expensive. For example, a grid operation at the MasPar MP-1
requires about the same time as a simple arithmetic operation (addition), but a non-
grid data exchange takes about 100 times longer to execute. Please note that the
unstructured data exchange is nevertheless a machine-independent operation. If a
certain SIMD architecture does not provide a general communication structure, then
this data exchange will be routed transparently over the simpler network provided
(e.g. a grid or a ring) taking several execution steps.

In Parallaxis, the SEND and the RECEI VE operations may take an index expression
instead of a connection name. As before, when using SEND, only active PEs send data,
and when using RECEI VE, only active PEs receive data. However, these two operations
differ in their index semantics, as is shown for an example in Figure 1.10. In order to
avoid confusion, operation MOVE may not be used with an index expression.

VAR x,y,index: grid OF | NTEGER

SEND. <<i ndex>>(x, Yy); sends data from all components of x to a
destination, determined by vector index

y := RECEI VE. <<i ndex>>(x); receives data from all components of x to a
destination, determined by vector index,
however, on the receiver's side

20 1 Language Definition

SEND. <<i ndex>> (Xx,Yy); y : = RECEl VE. <<index>> (X);
PE 1 2 3 4 PE 1 2 3 4
7 4 9 5 X 7 4 9 5 X

Pava ———

PE 1 2 3 4 PE 1 2 3 4

Figure 1.10: Unstructured data exchange

Besides using a single index, referring to the 1D position of PEs, several indices
referring to DI Mpositions may be used as well. Also, this kind of data exchange does
not have to be a one-to-one correspondance. If several indices refer to the same PE
position, for RECEI VE (one-to-many) this results in a broadcast, while for SEND (many-
to-one) an arbitrary component is selected — unless a reduction operation (see section
on reduction) is specified for resolving collisions.

CONFI GURATION grid [1..2],[1..3];
VAR X,y, index,dl,d2: grid OF | NTEGER;

SEND. <: d2, d1: > (X, Y); sends data from all components of x to a
destination, determined in the first
dimension by di, and in the second
dimension by d2

423 212 321 334

SEND. <<i ndex>>: #SUM (x,y); in case the expression index does not
provide a 1:1 permutation, it may be
desirable to perform a reduction of
multiple values arriving in one port, in
order to avoid the assignment of an
arbitrary one of these; positions not
indexed get the sender's original elements

E.g. X = 735 index = 132 ihen y = 753
423 666 429

1.9 Exchange between Scalar and Vector Data 21

Two kinds of abbreviations are possible for data exchanges with index expressions:

a) If the positions in one dimension are to remain unchanged, one should
use the expression DIM(conf_name, dim_no) as an index. This may be
abbreviated with the symbol .

SEND. <: DIMgrid, 2),dl:> (x,y); is equivalent to:
SEND. <: *,d1: > (X,Y);

b) If a dimension is to be collapsed, a many-to-one data exchange may be
used in combination with a reduction. For example, a matrix may be
collapsed to a single column by reducing all of its rows. This can be done
by sending all row elements to the first element in the same row with a
reduction operation. This may be abbreviated by using a reduction
operation (e.g. #5UM) instead of an index expression. Only a single
reduction may be specified in an index expression.

SEND. <: d2, 1: > : #SUM (X, y); is equivalent to the general:
SEND. <: d2, LOAER(gri d, 1):> :#SUM (x,y); isequivalent to:

SEND. <: d2, #SUM > (X, Y); dimension 1 is reduced by addition (rows
accumulate data in their first positions)
with permutation in dimension 2
according to d2

Eg x=|735 d2=| 1Y then y=|1°35
423 222 9 23

1.9 Exchange between Scalar and Vector Data

Communication between the control processor and the parallel PEs also requires
additional language constructs or in some cases an adapted semantics. Transferring a
scalar field into a parallel vector is invoked with procedure LOAD, while transferring
data back into a scalar field from a vector is accomplished with STORE (Figure 1.8).
Only active PEs participate in this sequential data exchange. STORE with inactive PEs
does not result in gaps in the scalar array, but data elements are stored subsequently.
LOAD with inactive PEs assigns the next array value to the next active PE, no scalar
array elements will be skipped. Surplus elements will not be used, too few elements
leave the corresponding array elements (or vector components, respectively)
unchanged. The execution of this operation usually requires 1 time steps for a data
array with n elements. A scalar integer variable may be specified as an optional third
parameter for LOAD and STORE, which limits the number of data items transferred and
also receives the number of data items actually transferred after the operation.

22 1 Language Definition

CONFI GURATION list[1..n];

VAR s: ARRAY[1l..n] OF | NTECER
t: | NTEGER;
v: |ist OF | NTEGER,

LOAD (v, s); (* fromscalar to vector *)

STORE(v, s); (* fromvector to scalar *)

STORE(V, s, t); (* here, t beconmes num active PEs *)
(* require n steps each *)

surplus
|4 21613112 i::raalsr
LOAD /ﬂ : ‘ STCRE
inactive

Vector Components

v :=1t; (* requires 1 step *)

Scalar Value

/
7| [[

inactive
Vector Components

Figure 1.11: Data exchanges between PEs and control processor

Figure 1.8 (bottom) also shows an assignment in which a (constant or variable)
scalar data value is copied into all or a group of PEs. Every component of the vector
contains the same value as the scalar. This operation is implemented by an implicit
broadcast and therefore requires only a single time step.

1.10 Reduction

The reduction of a vector to a scalar is another important operation. The REDUCE
operation handles this task in conjunction with a system-defined or user-defined

(programmable) reduction operation (see Figure 1.12). System-defined operators are:
SUM PRODUCT, MAX, M N, AND, OR, FIRST, LAST

The operators FIRST and LAST return the value of the first or last currently
active PE, respectively, according to its identification number (D).

Example: s = REDUCE. FI RST(x) is identical to:
pos := REDUCE. M N(ID(x));
s = X<<pOS>>;

All other reduction operators' functions can easily be deduced from their names.
The execution of a reduction operation requires about logp n time steps for a vector
with 7 active components. However, this time estimation depends on the physical
connection structure of the PEs.

1.11 Modules 23

Control Processor

VAR s: | NTEGER;

13 + 3 x: grid OF I NTEGER;
%g_)g(/ % s : = REDUCE. SUM x) ;

7 6 0 3| PEs

Figure 1.12: Vector reduction in Parallaxis

The following example shows the use of the REDUCE operation with a user-defined
function. Such a function has to have two vector input parameters and has to return a
vector value of the same type. Note that the reduction function implemented by the
user should be associative and commutative, or unpredictable results may occur,
eg. (1-2)-3£1-(2-3).

VAR v: grid OF BOOLEAN,
s: BOOLEAN,

PROCEDURE xor (a,b: VECTOR OF BOOLEAN): VECTOR OF BOOLEAN,
BEG N

RETURN(a <> b);
END xor ;

s = REDUCE. xor (Vv);

There are a few places, where substituting a scalar constant in lieu of a vector
variable makes sense, but lacks information about the configuration to be used.
Consider the problem of counting the number of active PEs for some configuration.
Instead of using a vector variable, the constant 1 can be used for each PE, however, it
has to be type cast to the appropriate configuration:

s := REDUCE. SUM grid(1));

1.11 Modules

In Parallaxis, like in Modula-2, each module consists of two files: a definition module
and an implementation module. The only exception is the main module, which starts
a program and does not have a definition module. Parallaxis also offers a FOREI GN
module, which serves as the definition part for linking routines written in another
language.

The sample module constellation above shows declaration, export, and import of
the user-defined procedure nyproc. It is exported in the definition module together
with its procedure head, showing number and type of parameters. The actual
implementation of nyproc is hidden in the corresponding implementation module
(this is also used for including routines from different programming languages). If an
export list is missing in a definition module, then its whole contents is being exported.

24 1 Language Definition

The module importing and using procedure nyproc in the example is the main
module (it has neither keyword DEFI NI TI ONnor | MPLEMVENTATI ON).

DEFI NI TI ON MODULE sanpl €;

EXPORT nyproc;

PROCEDURE nyproc(VAR i : MODULE nymai n;
| NTEGER) ; FROM sanpl e | MPORT
END sanpl e. nypr oc;

VAR k: | NTECER;
| MPLEMENTATI ON MODULE sanpl e; BEG N

PROCEDURE nyproc(VAR i : k: =0;
| NTEGER) ; nyproc(Kk);

BEG N END mymai n.

o= 2% + 1

END nyproc;
END sanpl e.

There are two ways of importing objects. The first imports individual objects from a
module, the second includes all objects from a module (in that case, however, an object
name always requires the module name as a prefix, in order to avoid name conflicts):

FROM sanpl e | MPORT myproc; | MPORT sanpl e;

myproc(k); sanpl e. nyproc(k);

1.12 Input and Output

I/O operations in Parallaxis are very similar to Modula-2. However, in Parallaxis they
are "built-in" and need not be explicitly imported as in Modula-2. This change was
required, since read- and write-operations in Parallaxis may take either scalar or
vector arguments. For vector output, spaces and line breaks are inserted to make the
printout more readable.

The major text input and output operations in Parallaxis are shown below (ASCII
data). I/ O operations do not generate run-time errors (e.g. in case of inappropriate
data to be read or in case of insufficient disk space during a write operation). Instead,
the scalar boolean variable Done is set according to the success of the I/O operation.
This variable can be checked to perform appropriate actions, in case its value is FALSE.
When reading strings, integers, cardinals, reals, or booleans, the scalar character
variable ternCH is set to the next unread character in the input stream, which was
responsible for terminating the read operation. EQL is a constant of type character,
which stands for the system-dependent end-of-line character.

Numbers are printed right-adjusted (add leading blanks), while strings/booleans
are printed left-adjusted (add trailing blanks).

Witeln; Start a new line (no arguments)

Wite(c); Write character ¢

WiteString(s) Write string s

Witelnt(i,l); Write integer i using | print spaces min.
WiteCard(c,1); Write cardinal ¢ using min. 1 print spaces min.

WiteReal (r,1); Write real r using | print spaces min.

1.13 Control Structures

25

WiteFixPt(r,l,n);
Wi teBool (b, 1);

Read(c);
ReadsStri ng(s)
Readl nt (i);
ReadCar d(c);
ReadReal (r);
ReadBool (b);

QpenQut put (s);

Cl oseQut put ;
Qpenl nput (s) ;

Cl osel nput ;

Write real r using 1 print sp. min. and m decimals
Write boolean b using 1 print spaces min.

Read character c
Read string s
Read integer i
Read cardinal ¢
Read real r
Read boolean b

Open file with name s for writing
(following write operations write to file)
Close file, redirect output back to stdout
Open file with name s for reading
(following read operations read from file)
Close file, redirect input back to stdin

The following gives a number of sample write operations; read operations

work the same way.

VAR i: | NTEGER;
r. REAL;

WiteString("Hello"); (*
Witelnt(i,7); (*
WitelLn; (*
QpenQut put ("nyfile"); (*

WiteString("Hello"); (*

WiteFixPt(r,9,2); (*
Cl oseQut put ; (*
WiteString("Hello"); (*

wite string on screen *)

wite integer value using 7 print spaces *)
start witing in a newline *)

open file, redirect output to file *)

wite string to file *)

witer to file, 9 print spaces, 2 dec.*)
close file, output back to screen *)

wite string on screen *)

1.13 Control Structures

Sequential control structures are also identical to Modula-2. Please note, that in
Modula-2 (unlike Pascal) all control structures have to be terminated with keyword
END (with the exception of REPEAT, which has a different terminating keyword) and all
procedures / functions repeat the procedure name with the final END (see the following
examples). All control structures may be used with scalar or vector arguments.

IF x=0 THEN y: =1; z:=5

FOR x:=1 TO 10 DO

ELSE y: =2 y: =2*%y
END; END;
VWH LE x>0 DO REPEAT
X:=x-1; y:=2%y x:=x DIV 2

END;

UNTI L x<7;

26 1 Language Definition

LOOP x: =x-1; CASE x OF

I F x<7 THEN EXIT 1,3,7: z:=5; y:=3 |

END; 8..15: z:=1 |
END; ELSE z:=3; y:=4

END;

PROCEDURE abc(VAR c: CHAR); PRCCEDURE def (x: | NTEGER): | NTECER
(* reference paraneter *) (* value param + return val ue *)
BEA N (* procedure *) BEA@ N (* function *)

RETURN(x+1)
END abc; END def;

1.14 Relation to Modula-2

Parallaxis is a true extension of sequential Modula-2, with one exception. Nesting of
local modules (these are nested modules within the same file) is not allowed, as an
implementation restriction. However, nested imports of several modules are possible.

Besides this limitation, there are also some sequential extensions to the Modula-2
syntax. First, a comparison may have an arbitrary number of expressions. This allows
range checks not possible in Modula-2, like the following;:

IF 7 < x <12 THEN ... END;

Next, the power operator **’ has been included. It is also possible to specify
constant records or constant arrays by using the type name as a function identifier
(only for record and arrays of simple types). This is a useful feature for initializing
record or array variables:

TYPE col orR = RECORD
red, green, blue: | NTECER;
END;
colorA = ARRAY [1..3] OF | NTECER
VAR c: colorR

d: col orA;
¢ := col orR(255, 255, 0);
d := col or A(0, 255, 255) ;

Like in the programming language C, the number and string contents of the
command line parameters can be read in Parallaxis:

VAR i : | NTECGER;
buf: ARRAY [1..20] OF CHAR;

FOR i:=1 TO argc DO

argv(i, buf);
WiteString(buf); WitelLn;
END;

Mathematical and I/O operations are pre-defined in Parallaxis and do not have to
be explicitly imported, as in Modula-2. This is necessary, since all the procedures and
functions may take either scalar or vector parameters.

1.15 Efficiency 27

There is some confusion about the MOD operator in Modula-2 and C
implementations. In Parallaxis, the result of a modulo operation will always be
positive, especially an expression like (-1) MOD 5 equals 4 in Parallaxis (as does 1
MDD (-5)), and not - 1 as in C. This feature is heavily used in connection specifications,
e.g. to construct a torus:

CONFI GURATION ring[0. . max-1];
CONNECTI ON left: ring[i] ->ring[(i-1) MXD nex];

1.15 Efficiency

Most of the following comments apply only to the generation of parallel code for a
SIMD system and not for the simulation on a single-processor workstation. Naturally,
some Parallaxis statements require more computation time than others. This overview
summarizes remarks made throughout the text.

1. PE Data Exchange

structured data exchange may be faster than unstructured data exchange

l.a especially a structured data exchange on a grid may be much faster
(if it corresponds to the hardware, e.g. 100 times on a MasPar MP-2
system)

1.b astructured data exchange on a torus may be as fast as on a grid,
only if the torus size equals a possible torus in hardware

l.c using the open configuration construct will cause some run-time
overhead, since the connections have to be initialized

2. Reduction
2.a reduction operations require logy n steps for n PEs, each step
comprising a data exchange and an arithmetic operation (in general
this data exchange will be unstructured)
2b using a data exchange with reduction may be very expensive and
should therefore be avoided if possible (connection groups may
have to be executed sequentially)

3. Front End Data Exchange
data exchange to and from the front end (LOAD and STORE), as well as read
and write operations with vector data require n steps for n PEs
(sequential execution)

4. Broadcasting
4.a broadcasting a single value from the front end to all PEs requires
only 1 step
4b broadcasting a single value from one PE to all other PEs requires 2
steps (1 from PE to front end plus 1 from front end to all PEs)

28

1 Language Definition

Applications

The following sections demonstrate a number of sample algorithms programmed in
Parallaxis-III. They cover a broad range of application areas and should inspire to get the
teeling of data parallel programming.

2.1 Basic Applications

2.1.1 Cellular Automata

Cellular automata are an application area well suited to SIMD systems. Every cell can be
assigned a processor and carries out the same processing instructions. One of the most
prominent cellular automata is Conway's ‘Game of Life’, which is a two-dimensional
structure changing in time. The cellular automaton shown here is simpler and only one-
dimensional; however, it generates a two-dimensional image during execution (one line
on every iteration). The processing instructions are conceptually simple: Every cell has
only two possible states and computes its successor state from an exclusive-or of the
states of its left and right neighbor. The middle cell is initialized with TRUE (printed as
‘X’), while all of the other cells are initialized with FALSE (printed as empty spaces).

MODULE cel | ul ar _aut omat on;

CONST n = 79; (* nunber of elenents *)
m= (n+l) DIV 2; (* nunber of loops := niddle *)

CONFI GURATION list [1..n];

CONNECTION left: list[i] <-> list[i-1] :right;
VAR i : | NTEGER;
val: |ist OF BOOLEAN
¢ : list OF ARRAY BOOLEAN OF CHAR;
(* = ARRAY[FALSE.. TRUE] OF CHAR *)
BEGA N
val = ID(list) =m (* Init *)
c[FALSE]:= " ";
c[TRUE] := "X";
FORi :=1 TO m DO
Wite(c[val]);
val := MOVE. left(val) <> MOVE.right(val);
END;

END cel | ul ar _aut onat on.

The CONFI GURATI ON and CONNECTI ON declarations define a doubly linked list of PEs.
For screen output of the current state of all PEs, every boolean state is converted to a

30 2 Applications

symbol of type CHAR The complete character vector is then written to the screen
sequentially by a vector valued Wite operation. The initialization of the main
program assigns the value TRUE only to the middle PE with number (n+1 DIV 2); all
other PEs receive the value FALSE. Finally, there is a scalar loop which prints the
current state and calculates the next cell state in each pass, using data exchange with
the left and right neighbors.

Figure 2.1 shows the states of this cellular automaton, in which time progresses
from top to bottom.

X
X X

X X
X X X X
X X
X X X X
X X X X
XX XXXXXX
X X
X X X X
X X X X
X X XX X X XX
X X X X
X X X X X X X X
X X X X X X X X
XXXXXXXXXXXXXXXX
X X
X X X X

X X X X
X X X X X X XX
X X X X
X X X X X X X X
X X X X X X X X
XXX XXXXX XXX XXXXX
X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X X X X X X X X X

X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 2.1: Output of cellular automaton

2.1.2 Generation of Fractals

The algorithm presented here is a problem that can be solved by a data parallel
program with the “divide-and-conquer’ method. This is, however, not possible with
all divide-and-conquer algorithms, since the different branches usually have to carry
out different program parts. The algorithm presented here generates a one-
dimensional fractal curve using midpoint displacement (see [Peitgen, Saupe 88]). It
starts with a straight line, which has its midpoint displaced up or down according to a
weighted random value. Two line segments with different slopes arise from this
process, and these are handled recursively in parallel in exactly the same way during
the following steps (see Figure 2.2). The number of line segments to be processed
doubles at every step, until the required resolution is reached. The processor structure
used here is a binary tree structure. Beginning with the root, in each step the following
tree level is activated until the leaves are reached. After computing the leaf level, the
program prints the result values of the whole tree and terminates. Since with the
exception of the communication there is only one tree level active at a time, only half as
many PEs would be sufficient with a more complicated connection structure.

A simple tree structure is declared in the Parallaxis program, through which start
and end points of the lines are passed ("**’ denotes the exponential operator). Only
procedure M dPoi nt is shown, where the actual processing takes place. The tree levels
are activated successively, and the midpoint displacement is carried out for each level

2.1 Basic Applications 31

(using function Gauss not shown here, which returns a gaussian distributed random
value). While the leaves have not yet been reached, the data values | ow and hi gh are
passed to the child nodes. In this method, the left child receives the values | ow and x
as the start and end points of its line segment, while the right child receives x and
hi gh.

/ starting PEs Arranged as a Binary Tree
State
/_L after 1st
step
/_'—-\ after 2nd
step
W after nth
step

Figure 2.2: Divide-and-conquer implemented with tree topology

CONFI GURATI ON tree [1..naxnode];
CONNECTI ON lchild : tree[i] <-> tree[2*%i] I parent;
rchild : tree[i] <-> tree[2*i+1] :parent;

VAR | ow, high, x: tree OF REAL;

PRCCEDURE M dPoi nt (del ta: REAL; |evel: |NTECER);
BEG N (* select |level *)
IF 2**(level-1) <= ID(tree) <= 2**|evel -1 THEN
x :=0.5* (low + high) + delta*CGauss();
I F level < maxlevel THEN
SEND. I child (low, low); (* values for children *)
SEND. | chi l d (x, high);
SEND. rchild (x,|ow);
SEND. rchi I d (hi gh, hi gh);
END,;
END,;
END M dPoi nt;

Figure 2.3: Fractal curve generated by program

The computation time required for this program is logy n steps for n leaf nodes
(equal to the tree's height). Figure 2.3 shows a fractal curve generated by this program
with 127 PEs, while Figure 2.3 shows the beginning of another fractal number
sequence interpreted as fractal music.

32 2 Applications

Figure 2.4: Fractal music

2.1.3 Sorting

A number of different SIMD algorithms exist for the problem of sorting. The
‘odd-even transposition sort’” (OETS) is presented here as a representative,
which can be understood as a parallel version of bubble-sort. OETS sorts 1 data
elements with 1 PEs in n steps. Figure 2.5 shows the progression of the parallel
algorithm. Every PE holds one of the numbers to be sorted. During processing,
the algorithm differentiates between odd and even steps. In odd steps, all of the
PEs with odd identification numbers compare their element values with that of
their right neighbor (PEs: 1-2, 34, 5-6, etc.) and carry out a data exchange if the
value of their own element is larger than that the one of their neighbor. In the
even steps, all of the PEs with even identification numbers carry out an
analogous comparison and, if necessary, a data exchange with their right
neighbor (PEs: 2-3, 4-5, 6-7, etc.). After n iterations, the list is sorted. The right
part of Figure 2.5 visualizes the algorithm, with each line in the image
representing the current state of the list of PEs, while the time is progressing
from top to bottom. Each pixel in a line is represented by a gray value according
to its data value (low values are dark, high values are bright). In the beginning
(top line), the gray values (data values) are unsorted, while they become slowly
disentangled during progression of the algorithm, until the bottom line contains
the gray values in perfect order. The movement of individual cells to the left or
right reminds of bubble-sort.

Numbers distributed among the PEs

teps: : n
e (@] Parallaxis [}
'

‘ ' 3. odd
[sps

2. even

4. even

Figure 2.5: Example of odd-even transposition sorting

In the Parallaxis program, first the variable | hs determines whether a PE is
in the role of the left or the right partner of a comparison. This role changes for
each loop iteration. During each pass, the PEs get the data values of their left or
right neighbor in conp. The partner on the left-hand side uses the right

2.1 Basic Applications

33

neighbor's value for comparison, while the partner on the right-hand side uses
the value of its left neighbor. The complicated comparison ‘I hs = (conp<val)’
is true for the left PE partner when the right comparison value is greater than its
own value; it is also true for the right PE partner, if the left comparison value is
smaller than its own value. So a single key comparison is sufficient for all PEs to
find out where swapping of data values are required. By applying a more
complex compound topology, the program could be optimized further, such
that only a single data exchange operation would be required for each pass
through the loop.

MODULE sort; (* Odd-Even Transposition Sorting *)
CONST n = 10;
CONFI GURATION list [1..n];

CONNECTION left : list[i] <-> list [i-1] :right;
VAR st ep . | NTEGER;

a : ARRAY[1..n] OF | NTEGER;

val ,conp: list OF | NTEGER,

| hs : list OF BOOLEAN,
BEA N

WiteString('Enter 10 values: ');

Readl nt (val) ;

lhs := ODD(ID(list)); (* PEis left-hand-side of conparison *)
FOR step: =1 TO n DO

I F Il hs THEN conp := RECEIVE. | eft(val)

ELSE conp : = RECEI VE. right (val)
END;
IF Il hs = (conp<val) THEN val : =conp END; (* | hs & (conp< val) *)
I hs := NOT | hs; (* or rhs & (conp>=val) *)
END;
Witelnt(val,5);
END sort.

Figure 2.6 shows the runtime behaviour of the OETS sorting algorithm for
sorting of 100 numbers. The graph displays the number of active PEs (y-axis)
over time (simulated program steps on x-axis). The PE load curve shows a
continuous high processor utilization with repetitive steps at half load,
reflecting the | F statement.

[@] Usage Popup FT]
list:PE USAGE

0 50 100 150 200 250 200 350 400 450 500

Figure 2.6: Processor utilization of the sorting algorithm

34 2 Applications

2.2 Image Processing

Many image processing operations are ideal for SIMD processing. This holds
especially for local operators, which use image data only from a limited neighborhood
with fast data exchange. We demonstrated the versatility of our approach for a wide
range of image operations in a textbook (Brdunl et al.: Parallele Bildverarbeitung), which
is also very well suited for course work in this area. Two of these operators will be
discussed in the following.

2.2.1 Laplace Filter

The Laplace operator is one possible operator for emphasizing edges in a gray-scale
image (edge detection). The operator carries out a simple local difference pattern and
is therefore well suited to parallel execution. The Laplace operator is applied in
parallel to each pixel with its four neighbors. Figure 2.7 shows the application of the
Laplace operator with a subsequent threshold.

Figure 2.7: Edge detection with Laplace operator

A procedure for the Laplace operator with threshold in Parallaxis, using an open
grid structure is defined in the following;:

CONFI GURATION grid[*],[*]; (* open grid *)
CONNECTION north: grid[i,j] <->grid[i-1,j] :south;
east : grid[i,j] <->grid[i,j-1] :west;

PROCEDURE Lapl ace thres(x: grid OF | NTEGER): grid OF BOOLEAN;
VAR tenp: grid OF | NTEGER,
BEG N
temp := 4*x - MOVE. north(x) -MOVE. sout h(x)
- MOVE. east (x) -MOVE. west (X);
RETURN temp > 150;
END Lapl ace_t hres;

The data from neighbor PEs is obtained by local data exchange operations, which
are directly used in the arithmetic expression to be returned. This simple procedure
does not handle range limits for gray-scale values, e.g. [0. . 255] .

2.2 Image Processing 35

2.2.2 Dithering

Dithering transforms a gray scale image to a binary image by converting the original
gray scale intensities to black and white patterns. The apparent increase of intensity
levels created by the patterns is being traded against the lower resolution in the
binary image. A simple technique with fixed patterns is ordered dithering or halftoning.
Figure 2.8 shows dithering with 2x2 patterns, enabling the use of five different
intensities.

A4

Intensity 0 Intensity 1 Intensity 2 Intensity 3 Intensity 4
black white

Figure 2.8: Dithering with 2x2 pattern

The following program is a parallel implementation of ordered dithering. The
computation is actually performed only on every fourth PE. Three quarters of the PEs
remain inactive, while only the gray scale values of the PEs in the upper left corners of
each 2x2 pattern are used. The binary result pattern is set according to this gray scale
value. A constant threshold (t hr es) is used to divide the whole gray scale range in five
areas.

The binary result value for the upper left position (r es) is set (black pixel) if the gray
scale input value is less than the threshold. The binary result value for the right
neighbor is set (black pixel) if the gray scale input value is less than three times the
threshold. The remaining two neighbors are determined the same way, according to
the patterns in Figure 2.8. The movement of the neighbor pixels to the right position is
performed by standard procedure SEND (moving data to inactive PEs).

PROCEDURE di t her _ordered(ing: grid OF gray):
grid OF binary;
CONST thres = g_white DV 5;
VAR res: grid OF binary;
BEG N
|IF ODD(DIMgrid,2)) AND ODD(DI M grid, 1)) THEN
res :=img < thres; (* upper left corner *)
SEND.right (inmg < 3*thres,res);
SEND. down (ing < 4*thres,res);
SEND. down_r (i mg < 2*thres,res);
END,
RETURN r es;
END di t her _ordered;

Figure 2.9: Ordered dithering

36 2 Applications

The resulting image of ordered dithering for 2x2 patterns can be seen in Figure 2.9.
Larger patterns, e.g. 3x3 or 4x4, may also be used.

2.3 Simulation

Many simulation models require only SIMD style computation and, furthermore,
exhibit a local data exchange pattern. The simulation presented here models a very
simplified behavior of cars on a single lane street. If the car concentration exceeds a
certain threshold, sudden and unmotivated traffic jams occur.

For this simulation in Parallaxis, two disjoint configurations have been used. One
configuration for the cars and one for the street segments. Cars may not take over
each other, so they keep their linear order. The street is modeled as a closed ring.

CONFI GURATI ON cars[0..max_cars-1];
CONNECTI ON
next: cars[i] <-> cars[(i+1) MOD nmax_cars] : back;

CONFI GURATI ON street[O0..w dth-1];

VAR pos, dist,
speed, accel: cars OF REAL;

col lision . cars OF BOOLEAN;
my_car . street OF BOOLEAN;
tinme, z . | NTEGER,

At initialization all cars are started at equal distance across the street.
pos := FLOAT(DI M cars, 1)) / FLOAT(max_cars);

The simulation itself is a large FOR-loop, which generates one graphics line for each
iteration. If there is sufficient space in front of a car, it accelerates up to a maximum
speed by a constant value plus a small random term. The randomness prevents all
cars from maintaining identical distances from each other. Collisions are detected in
parallel by measuring the distance of all pairs of subsequent cars. They cause a
sudden stop, from which the cars can again accelerate in the subsequent simulation
step. The integration required for determining velocity and position from acceleration
has been simplified to summation.

FOR time := 1 TO steps DO
... (* show "collision" at line "tinme" *)
my_car := DIMstreet,1) =

TRUNC(pos<: 0: > * FLOAT(w dth));
... (* show "nmy_car" at line "tine" *)
di st := MOVE. back(pos) - pos;
IF dist < 0.0 THEN dist := dist + 1.0 END,
(* close street to |loop *)

collision := dist < 0.0;

I F collision THEN speed : = 0.0;
ELSE (* no collision, accelerate *)
accel := max_accel + rand fac *
(RandonReal (cars)-0.5);

(* brake, if necessary *)
IF dist < min_dist THEN accel := - max_accel END,

2.3 Simulation 37

(* update speed, apply speed linmt *)
speed := mn(speed + accel, max_speed);

(* do not back up on autobahn ! *)
I F speed < 0.0 THEN speed := 0.0 END;

(* update position *)
pos : = pos + speed;

(* leaving right, com ng back in left *)
IF pos >= 1.0 THEN pos := pos - 1.0 END
END;
END;

Figure 2.10: Simulation of traffic congestion

A sample simulation run of the traffic program is shown in Figure 2.10. The street is
modeled as a closed ring, displayed as a horizontal line, while time flows from top to
bottom in the figure. Standing cars are marked as bright spots. Also, the route of one
individual car is shown, starting in the upper left corner. It is easy to recognize the
acceleration phase of the individual car (parabolic curve), leading to a phase of
continuous speed (straight line). Sudden breaks occur due to heavy traffic, simply
caused by too many cars on the street. Several spontaneous traffic jams occur in this
simulation, all slowly propagating in the direction opposite to the driving direction.
Some congestions are increasing, while others are decreasing.

38

2 Applications

Compiler and Debugger

Several Compilers and a source-level Debugger are the tools for the Parallaxis
environment. The debugger also contains the features for performance analysis,
which used to be a separate tool in earlier versions.

Figure 3.1 shows the interaction of the Parallaxis tools (shaded boxes) with
standard Unix tools (white boxes) on workstations and the MasPar massively parallel
system.

Parallaxis source program

<seq p3 comp11er> <par p3 compﬂer)

I
C program MPL program

|
< gnu C compllel> (MPL compller >

sequent1a1 executable parallel executable

R G
@ (xpgab debugger) @ (MPPE debuger)

Figure 3.1: Parallaxis Tools

3.1 Compiler

We have developed several compilers for Parallaxis-IIl. Here, the compiler for
generating sequential C-code (simulation system) will be discussed. There are further
Parallaxis compilers for the MasPar MP-1/MP-2 (SIMD) and the Intel Paragon
(MIMD, programmed in SPMD mode) or workstation clusters using PVM (parallel

40 3 Compiler and Debugger

virtual machine). All compilers generate C code (or MPL code in case of the MasPar),
so a subsequent compilation step is necessary to generate object code.

The Cocktail compiler construction tools from GMD/Univ. Karlsruhe have been
used to build the Parallaxis-III compilers. The compiler option list is shown in Figure
3.2.

NAME
p3 -- Parallaxis-11l Conpiler UWser Interface V0.5
DESCR PTI ON
Conpi | e some Parallaxis-111 progranms and call backend conpil er.
SYNCPS| S
p3 [options] [file]
CPTI ONS
-C CGenerate G code for simulation (default)
-casts CGenerate type casts to make G prograns lint free
-CcC nane Nane of the backend conpiler to use
-g CGenerate debug code (al so passed to backend conpil er)
-h, -H -help Print this usage
- headers Generate header files for inported nodul es
-l path Add path to inport/include |ist (Par. and backend)
-indent i Set indent of generated code to i bl anks
- koption Pass option directly to backend conpil er
-Lpath Add path to library path (backend only)
-m -nem Print statistics about used nenory
-MPL, -npl Generate MPL-code for MasPar
-n, -noconpile Don't conpile, just show conands (inplies -v)
- nop3i nc Don't use standard incl ude paths
-nop3lib Don't use standard |ibrary paths
-nodef aul ts Sane as -nop3inc -nop3lib
-0 name Nane of the generated executabl e
-p Paral l axis conpile only, don't call backend conpiler
-C Paral . and backend conpile only, don't call I|inker
- Ppat h Add path to inport list (Parallaxis only)

-PW -pvm Generate PVM code for Paragon
-r, -rchecks Don't generate runtime range checks

-s, -small CGenerate small MPL-only nodel (max. 128KB)

-t, -time Print statistics about used tinme (Parallaxis only)
-tt, -total Like -t, but also for backend conpiler

-V Print version of p3 and the resulting conpiler calls
- VvV Li ke -v, passes also -v to backend conpiler

-w Don't generate warni ngs

- W Li ke -w, passes also -w to backend conpiler

CPTI ONS O\LY AVAI LABLE DUR NG DEVELCPMENT

-Zw Wite code tree

-Zs Wite synbols tree

-Zq Query code tree

-Zc Check code tree

-Z1 Run parser only, no semantic check

-Z2 Run parser and semantic check only, no code generation

Every other option is passed unchanged to the backend conpiler.

ENVI RONVENT
P3CC Nare of the backend conpiler
P31 NC ":"-seperated |list of paths where to find sources
P3LI B ":"-seperated list of paths where to find libraries
P3CPT Default options always to set

Figure 3.2: Compiler options

3.2 Debugger 41

The configurations of Parallaxis, i.e. the PEs, are implemented by linear arrays.
Each configuration keeps track about which (virtual) PEs are active and which are not
(the "active-set" of the configuration).

3.2 Debugger

A compiler just by itself is not sufficient for parallel program development or even for
education purposes. Therefore, we decided to develop also a source level debugger
for Parallaxis. Despite starting from scratch, we used the gnu debugger gdb and its
graphics interface xxgdb as a base. First, this C debugger had to be taught to behave as
if being a Parallaxis source level debugger. This affects not only the source line
window and the positioning of break points, but also (and more difficult) the
presentation of Parallaxis data types, especially vector data.
The command names are:

p3gdb for the Parallaxis/gnu debugger in text mode
xp3gdb for the Parallaxis/gnu debugger in graphics mode

Figure 3.3 shows an excerpt of the debugger man page, while Figure 3.4 shows a
typical sample debugging session.

Second, we added a number of graphics facilities. Especially for large vectors (e.g.
two-dimensional image or simulation data), it is not very entertaining to examine
large lists of data. Instead we provided the possibility to look at vector data directly in
a graphics window. One- or two-dimensional data is displayed in a window with
little boxes representing individual PEs (Figure 3.5). Each box is colored (rainbow
colors or gray scale) according to its data value, and drawn hollow if inactive. Position
numbers may be added and the data range may be fixed. The vector window can
display a static state (command print) or adapt dynamically to changing data
(command display).

The PE usage may also be displayed graphically. Here, the program is executed in
single step mode and the number of active PEs is determined at each step. Due to the
overhead of stepwise evaluation, execution time slows down when using this feature.
The PE usage values produce a tell-tale curve of the application program’s parallel
characteristics and are a valuable help in localizing critical program regions for
optimization of the execution time. Figure 3.6 shows the PE usage curve for the prime
sieve sample program.

MODULE pri ne;
CONFI GURATI ON i st [2..200];
CONNECTION (* none *);
VAR next _prinme: | NTECER;
removed : list OF BOOLEAN,
BEG N
REPEAT
next prinme: = REDUCE. FIRST(DIMlist,1));
Witelnt(next _prinme,10); Witeln;
renoved := DIMIlist,1) MDD next_prinme =0
UNTIL renoved
END pri ne.

42

3 Compiler and Debugger

xp3gdb - X wi ndow systeminterface to the p3gdb debugger.

SYNCPS| S

xp3gdb [-toolkitoption ...] [-xp3gdboption ...] [-
gdboption ...] [objfile [corefile]]

DESCR PTI ON

Xp3gdb is a graphical user interface to the gdb debugger
under the X Wndow System It provides visual feedback and
mouse input for the wuser to control program execution
through breakpoints, to examne and traverse the function
call stack, to display values of variables and data struc-
tures, and to browse source files and functions.

Speci al Vector Commands

PE USAGE

Pop up a window with a graphical representation of the
anount of processors in use for a special configura-
tion. Wien clicking in the command wi dget on top of the
window, a nenu wll pop up. The style of view can be
changed through the Settings entry between solid and
point, absolute and relative. Scale lines can be
activated. Also horizontal zooming can be nodified.
Vertical zooming is done automatically, depending on
t he wi ndow si ze.

Through the menu entry Save values the current usage
val ues can be saved into a file. The fornat of the file
is:

Maxi mum

i nt eger

PEs in use followthis line

i nt eger

i nt eger

Lines starting with # are comrent lines. The first
non-comment |ine specifies the total nunber of prozes-
sors within this configuration, all other lines specify
the nunber of active prozessors through the steps done
so far.

print VECTCR
Pop up a wi ndow with a graphical display of the current
content for a vector variable. Qurrently only grids and
lists are supported for processor configurations. Al
other configurations will be mapped to one of these.
Wien clicking in the coomand w dget on top of the win-
dow, a nenu will pop up with various selections.

di sp VECTOR
WIIl pop up the sane window as for print VECTOR except
that the displayed variable will be refreshed automati -
cally each tine execution is stopped.

Figure 3.3: Debugger commands

3.2 Debugger

43

xp3gdb 0.93

thome/braunl/tmp/matrix.pm 23

shiftB: gridli,jl -» grid({i-j MOD max,jl:

WAR i.j + INTEGER:
a.b,ct grid OF REAL:

PROCEDURE matrix_mult{WAR a.b.c i arid OF REAL}:
VAR k: IMWTEGER: (% c 1= a #% b #}

BEGIN
a 1= MOVE,shiftAlal:
b 1= HOWE,shiftB(b}:
ci=a%*b:
FOR k = 2 T0 max I0
a 1= MOVE,leftiar:
b := MOVE,up thi:
=, cizct+akb:
END:

EMD matrix_mult:

BEGIN
(% preset input matrices "a" and "b" {or read from file} #})
a 1= FLOAT{DIM{grid.23 # 10 + DIM{grid, 1} UWriteFixPtia,7,10:

80,0 a1.0 82,0 82,0 24,0 86,0 86,0 87,0 23,0 23,0
90,0 91.0 92,0 93,0 94,0 95,0 96,0 g7.0 93,0 93,0

0,0 1,0 2,0 3.0 4,0 5.0 .0 7.0 8.0 3.0
1,0 2,0 3.0 4,0 5.0 .0 7.0 8.0 9.0 10,0
2,0 3.0 4,0 5.0 .0 7.0 8.0 9.0 10,0 11,0
3.0 4,0 5.0 .0 7.0 8.0 9,0 10,0 10 12,0
4,0 5.0 .0 7.0 8.0 .0 1,0 11,0 12,0 13,0
5.0 .0 7.0 8.0 9,0 10,0 11,0 12,0 13,0 14,0
.0 7.0 8.0 9.0 1,0 11,0 12,0 130 140 150
7.0 8.0 9.0 10,0 1,0 12,0 130 14,0 15,0 16,0
8.0 9.0 10,0 11,0 12,0 130 14,0 150 160 17,0
9,0 10,0 11,0 12,0 13,0 140 150 16,0 170 18,0

Breakpoint 1, mult {a#grid=0x112c0, b#grid=0x115e0, c#grid=0x11900} at matrix,pmiZ3
Current language: auto: currently parallaxis—3
{xp3adby

b := FLOAT{DIM{grid,2} + DIM{grid,1¥)s MWriteFixPtib,7.13:
matrix_multia.b,ch: WriteFixPtic,7.1):
|
Current language: auto; currently parallaxis-3
| run || cont || next || =tep || finish || break
| threak || delete || delete all || up || down || print
| print % ||print VEETDR|| dizplay || dizp VECTOR || undisplay ||undisplay alq
|3h0w display| | args || locals || =tack || edit || zearch |
| interrupt || file || zhow brkpts || yes || no || quit |
|

Figure 3.4: Debugger Control Window

Data Popup Data Popup

bufferipic

Figure 3.5: Vector display

44 3 Compiler and Debugger

This tiny program represents the parallel version of the sieve of Eratosthenes. The
list of active PEs resembles the candidates for prime numbers not yet removed. In the
beginning all PEs are active, which is reflected by the initial peak in Figure 3.6. But in
each step of the REPEAT loop, variable r enoved becomes true for all multiples of the just
found prime, whose PEs will no longer be active in the next iteration of the loop. This
explains the exponentially-like decrease in the PE usage diagram.

Data Popup HT]
list:PE USAGE

180
160
140
120
100
a0
G0
40
20

0
0 25 B0 V5 100 125 150

Figure 3.6: PE usage

Appendix

4.1 Data Types

Parallaxis supports all data types available in Modula-2:
| NTEGER integer numbers (4 bytes)

CARDI NAL integer numbers greater or equal to 0 (4 bytes)
REAL floating point numbers (8 bytes)
CHAR character values (1 byte),

ordinal values ranging from 0 to 255
BOOLEAN truth values (1 byte), equal to (FALSE, TRUE)
ARRAY .. OF .. array of data values

RECORD .. END

collecting several entries to a structured type

SET OF .. set of a simple type
Bl TSET equivalent to SET OF [0. . 31]
PO NTER TO .. pointer to a type, data has to be allocated dynamically

PROCEDURE (. .) procedure or function type,

e.g.TYPE function = PROCEDURE (REAL): REAL;

enumeration enumerating all values of a type (1 byte)
e.g. TYPE day = (no, tu, we, th, fr, sa, su);
subrange limited range of values (from 1 to 4 bytes)
e.g. TYPE workday = [no..fr];
digit =[0..9];

4.2 Built-in Functions and Procedures

All built-in functions and procedures may be called with either scalar or vector
arguments. The return value of such a function is scalar if its argument is scalar,
and vector if its argument is vector. Type | NTEGER always includes type CARDI NAL.
In Modula-2, mathematical functions and I/O-procedures are separate
modules and their objects have to be imported. In Parallaxis, however, all these
functions and procedures can be used with either scalar or vector arguments.
Therefore, they had to be included as built-in functions and procedures.

General Functions

FLOAT(i) return real value of integer i
TRUNC(1) return value of real 7, truncated to an integer

46

4 Appendix

ABS(i) return absolute value of i, type Integer or Real

CHR(i) return character with ordinal number i

VAL(t, i) return value of type t with ordinal number i

ORD(¢) return ordinal number of ¢ for character or
enumeration type, starting with 0

MAX(t) return maximum value of type ¢

M N(t) return minimum value of type ¢

SI ZE(t) return number of bytes required for a variable of type ¢

HI GH(a) return upper bound of open array a

oDD(i) return "i MOD 2 <> 0", type integer or char

EVEN(i) return "I MOD 2 = 0", type integer or char

CAP(c) return capital character, corresponding to ¢

General Procedures

NEW(p) allocate memory for a new data element, set p to
address

DI SPOSE(p) deallocate memory for the element pointed to by p
pointer data type is PO NTER TO base_t ype
nil element is NI L
for NEwand DI SPCSE, it is required (like in Modula-2) to
import procedures ALLOCATE and DEALLOCATE from
module STORAGE

DEC(i) i:=1-1, type integer or character

DEC(i , n) i :=1i-n, type integer or character

I NC(i) i:=1i+1, type integer or character

I NC(i, n) i:=1+n, type integer or character

EXCL(s, n) exclude element # from set s

I NCL(s, n) add element 7 to set s

HALT terminate program execution

Command Line Arguments

PROCEDURE ar gc: CARDI NAL;

number of command line parameters
PROCEDURE ar gv(i ndex: CARDI NAL; VAR arg: ARRAY OF CHAR);

get command line parameters (range 1..argc)

Mathematical Functions

The following functions have real arguments and return real values (scalar or
vector).
pi constant 1= 3.1415926535897932385

sqrt(r)
exp(r)
In(r)

square root, ﬁ

exponent, e’
natural logarithm, In(r)

4.2 Built-in Functions and Procedures 47

sin(r)
arcsin(r)
cos(r)
arccos(r)
tan(r)
arctan(r)
arctan2(rl1,r2)

sine

arcus sine, range -1 .. +1

cosine

arcus cosine, range -1 .. +1

tangent

arcus tangent, range —Tt/2 .. +11/2

arcus tangent of r1 / rp in range —Tt.. +TT

The following functions have real arguments and return integer values.

ceiling(r)
floor(r)
round(r)

round r to the next higher integer
round r to the next lower integer
round 7 to the closest integer

The following functions generate random numbers. For the parallel versions, a
vector variable may be used in lieu of a configuration name conf .

Randomni nt ()

Randontar d()
RandonReal ()
Randonthar ()
RandonBool ()

Random nt (conf)

Randontar d(conf)
RandonReal (conf)
Randonthar (conf)
RandonBool (conf)

Input/Output Procedures

generate a scalar integer random (M N(| NTEGER)

MAX(| NTEGER))

generate a scalar cardinal random (0. . MAX(CARDI NAL))
generate a scalar real random number (0.0 .. 1.0)
generate a scalar character random value (CHR(0. . 255))
generate a scalar boolean random value (TRUE or FALSE)

generate a vector integer random (0. . MAX(| NTEGER))
generate a vector cardinal random (0. . MAX(CARDI NAL))
generate a vector real random number (0.0 .. 1.0)
generate a vector character random value (CHR(0. . 255))
generate a vector boolean random value (TRUE or FALSE)

The following procedures may take either scalar or vector arguments. I/O
operations do not generate run-time errors, but set the scalar boolean variable
Done according to the success of the operation. All read operations besides Read
set the scalar character variable t er nCH.

Vector data is printed in ascending I D order for all active PEs. Some
rudimentary formatting is performed, when printing vector data. All integer,
real, boolean, or string vector data (but not vector characters) will be separated
by blanks when printed. A carriage return (new line) is inserted after the end of
each dimension (e.g. this will print a two-dimensional vector in matrix format).

Numbers are printed right-adjusted (add leading blanks), while strings/booleans
are printed left-adjusted (add trailing blanks).

WitelLn

Wite(c)
WiteString(s)
Witelnt(i,l)
WiteCard(c,|)
WiteReal (r,I)
WiteFixPt(r,l,m
Wit eBool (b, 1)

Read(c)

Start a new line (no arguments)

Write character ¢

Write string s

Write integer i using [print spaces

Write cardinal c using [print spaces

Write real r using [print spaces

Write real r using [print spaces and m decimals
Write boolean b using [print spaces

Read character ¢

48

4 Appendix

ReadsStri ng(s)
Readl nt (i)
ReadCar d(c¢)
ReadReal (r)
ReadBool (b)

Read string s
Read integer i
Read cardinal ¢
Read real r
Read boolean b

The following procedures take scalar arguments only.

QpenCQut put (s)

Cl oseQut put
Openl nput (s)

Cl osel nput

Vector Functions

Open file with name s for writing

(if s is empty, then the user is prompted for a file name;
following write operations write to file)

Close file, redirect output back to stdout

Open file with name s for reading

(if s is empty, then the user is prompted for a file name;
following read operations read from file)

Close file, redirect input back to stdin

For the following functions and procedures, who take a configuration name as
argument, a vector variable may be used in lieu of a configuration name.
Argument numis a positive integer, di ns is a vector array of integers.

I D(conf)

DI M conf, num
LEN(conf)

LEN(conf, num
RANK(conf)

UPPER(conf, num)
LOAER(conf, num)
DI M2I D(conf, di nrs)
MOVE. di r (val)

RECEI VE. di r (val)

REDUCE. f unc(val)

Vector Procedures
| D2DI M conf, num di rs)

SEND. di r (val , var)

returns a vector of identification numbers from 1 to
LEN(conf) for configuration conf

returns a vector of position numbers according to the
dimension declaration of conf, dimensions are
numbered from right to left from 1 to RANK(conf)
returns the total number of PEs of a configuration
returns the size of dimension num

returns the number of dimensions

returns the upper bound of dimension num

returns the lower bound of dimension num
transforms the appropriate number of dim-values into
the corresponding id-value, may be used with scalar or
vector parameters

data transfer in predefined direction dir, sender and
receiver have to be active

data transfer in predefined direction dir, only receiver
has to be active

reduces vector val to a scalar value, by applying func
(predefined: SUM PRODUCT, MAX, M N, AND, OR,

FI RST, LAST, or user function with two input
parameters and a return value of identical type)

transforms an id-value into an array of corre-
sponding dim-values, may be used with scalar or
vector parameters

data transfer in predefined direction dir, variable
var receives expression val, only sender has to be
active

4.3 Graphics Interface 49

4.3 Graphics Interface

X Window Graphics

Module G aphics provides a convenient interface in Parallaxis for generating
graphics, based on the X window system. Type CARDI NAL restricts | NTEGER to
positive numbers (= 0).

© 00N O 0Ol b W DN

A A DD DB OWWWWWWWWWWNDNDNDNDNDNDNNMDNMNNNNREPRPRPEREPRERRERPRELPR
A WNPFPOOOWONOOOMNWDMNMPEPOOONOUVPMAAWDNPRPEPOOOOLONOOGDRMMWDNEDO

DEFI NI TI N MCDULE G aphi cs;

(* RE R R o I R o R Rk Sk kT ok R AR Rk S S R R R R R *)

(* created: T. Braunl, 12.Apr.94 *)

(* khkkhkhkkkhhkkhhkkhhhkdhkhhhkkhhhdhkkhhhkkdhhkkhhkdhkdhkkdhkrhxdhkx*x%x *)

FRCM | magel O | MPCRT bi nary, gray, color;

TYPE wi ndow = CARDI NAL;

QONST G K =
QG WongW ndowSi ze =
Q Menor yTroubl e =
QG WndowCreationFailure =
Q Not Exi sti hgW ndow =
Q NoW ndowsel ect ed =
G W ongCoor di nat es =
Q@ WongCol ors =

NoaArdMNRO

VAR G aphi csError : CARD NAL;
(* will be set to the outcome of each graphics operation, 0 = K *)

PROCEDURE QpenWndow(title: ARRAY OF CHAR width, hei ght: CARDI NAL): wi ndow,
PROCEDURE QpenW ndowP(title: ARRAY CF CHAR width, height: CARDI NAL): wi ndow;
(* open new wi ndow, version "P' for private col ormap *)

PROCEDURE d oseW ndow(wi ndow_num w ndow) ;
PROCEDURE Sel ect W ndow(w ndow_num wi ndow) ;
(* GpenWndow pen a new w ndow of specified title and size in *)
(* pixels, return w ndow nunber, activate new w ndow *)
(* QpenWndowP: sane a QpenWndow, but use private colornap for *)
(* this window *)
(* AdoseWndow close wi ndow, SelectWndow activate w ndow *)

PROCEDURE Cet ScreenSi ze(VAR wi dt h, hei ght: CARDI NAL);
PROCEDURE CGet W ndowSi ze(VAR wi dt h, hei ght: CARDI NAL) ;
(* Returns size in pixels of whole screen or active w ndow, resp. *)

PROCEDURE Set Area (c: VECTCR CF color);

PROCEDURE Set gArea(c: VECTOR CF gray);

PROCEDURE Set bArea(c: VECTOR CF bi nary);

PROCEDURE Set AreaXYZ (c: VECTCR CF color; Xx,y,zoom |NTEGER);

PROCEDURE Set gAr eaXYZ(c: VECTCR CF gray; X, Y, zoom | NTECER);

PROCEDURE Set bAreaXYZ(c: VECTCR CF binary; X,y,zoom |NTECER);
(* All active PEs wite one pixel each, assuning a 2-dim grid *)
(* configuration of appropriate size, inage will be truncated or *)
(* left partly unchanged if PE grid size does not match inage size *)

50

4 Appendix

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

(* originis top left corner with coordinates 0, O
(* version "g" for gray data, version "b" for binary data
(* versions "XYZ" with offset and zoom (both pos. or neg.)

(* zoomrange determnes pixel size, negative zoomreduces size

PROCEDURE SetLine (c: VECTOR CF color; line: CARD NAL);
PROCEDURE Set gLi ne(c: VECTCR CF gray; line: CARDI NAL);
PROCEDURE Set bLi ne(c: VECTOR CF binary; line: CARD NAL);
PROCEDURE SetLineZ (c: VECTOR CF color; line: CARD NAL; offset, zoom
PROCEDURE Set gLi neZ(c: VECTCR CF gray; line: CARDI NAL; offset, zoom

PROCEDURE Set bLi neZ(c: VECTCR CF binary; line: CARD NAL; offset, zoom
(* print PE data al ong specified line, top line has no. 0
(* versions "Z" get offset and zoom according to specification *)
(* from Set Area routines. *)

PROCEDURE Set Col umm (c: VECTOR CF color; col: CARD NAL);
PROCEDURE Set gCol um(c: VECTOR CF gray; col: CARDI NAL);
PROCEDURE Set bCol umm(c: VECTOR CF binary; col: CARDI NAL);
PROCEDURE Set Col unmmZ (c: VECTCR CF color; col: CARD NAL; offset, zoom
PROCEDURE Set gCol umZ(c: VECTOR CF gray; col: CARDI NAL; offset, zoom
PROCEDURE Set bCol umZ(c: VECTCR CF binary; col: CARD NAL; offset, zoom

(* versions "Z" get offset and zoom according to specification *)
(* fromSetArea routines. *)

PROCEDURE Set Col or (c: color);

PROCEDURE Set gCol or(c: gray);

PROCEDURE Set bCol or (c: binary);
(* Specify color for subsequent pixel/line/draw commands *)
(* "g" and "b" version for gray and binary data *)

PROCEDURE Set Pi xel (x,y: CARDI NAL);

PROCEDURE Get Pi xel (x,y: CARDINAL): col or;

PROCEDURE Li ne(x1,yl1, x2,y2: CARDI NAL);
(* scalar functions for witing or reading a single pixel *)
(* scalar line: straight line fromx1,yl to x2,y2 *)

PROCEDURE Dr awAt (X, y: CARD NAL);
(* Set drawi ng position for subsequent draw ng commands *)
(* initialized with |ower |eft character position (1,1) *)

(* position will be updated by each draw ng comrand *)
PROCEDURE Dr aw (c: CHAR);
PROCEDURE Drawstring(s: ARRAY CF CHAR);
PROCEDURE Dr awl nt (i,1: INTEGER;

PROCEDURE DrawCard (c,|: CARD NAL);
PROCEDURE DrawReal (r: REAL; |: CARDI NAL);
PROCEDURE DrawFi xPt (r: REAL; |, m CARDI NAL);
PROCEDURE DrawBool (b: BOOLEAN |: CARDI NAL);
PROCEDURE Dr awLn;
(* amount of | print spaces is always m ni mum
(* Draw character c in w ndow

| NTEGER) ;
| NTEGER) ;
| NTEGER) ;

(* print PE data al ong specified colum, leftnost line has no. 0

*)
*)

*)
*)
*)
)

| NTECER) ;
| NTEGER) ;
| NTEGER) ;
*)

*)

4.3 Graphics Interface

97 (* Draw string s in w ndow *)
98 (* Draw integer/cardinal i in w ndow *)
99 (* Drawreal r in w ndow *)
100 (* Drawwith fix point, using mdecinals *)
101 (* Draw bool ean value b in window | eft adjusted *)
102 (* DrawLn set drawi ng position to new line *)
103 (* Total line width depends on used font ($PARALLAXIS FONT), *)
104 (* new line vertical placement also. *)
105

106 END G aphi cs.

Image File Transfer

Module I magel O contains a number of operations for reading images from files
and writing images to files (no X window interface is needed). The binary
versions of the PPM (portable pixel map) file format are used for color, gray
scale, and binary images.

1 DEFINTICON MDUWE | magel Q

2 (* created: T. Braunl, Cct.94 *)
3 (* R R R RS SRR R RS SRR RS R EEE R EEEEEEEEEEEEEEEEEEEEE S *)
4 (* read_c_inage read color inmage in ppmP6 fornmat *)
5 (* into a vector variable *)
6 (* read_g_image read gray inage in ppmP5 format *)
7 (* read_b_image read binary inage in ppmP4 format *)
8 (* *)
9 (* wite c_image wite color inage in P6 fornat *)
10 (* wite_g_image wite gray inage in P5 fornat *)
11 (* wite_b_ inage wite binary inmage in P4 fornat *)
12 (* *)
13 (* PE-ID1 (origin) is top left *)
14 (* R EE S *)
15

16 TYPE binary = BOOLEAN

17 gray = [0..255];

18 color = RECCRD

19 red, green, blue: gray

20 END;

21

22 CONST b_bl ack = TR

23 b white = FALSE;

24 g_bl ack = 0;

25 g_white = 255;

26 c_bl ack =color(O, 0O, 0);

27 c_white = col or (255, 255, 255) ;

28 c_red = color(255 0, O0);

29 c_green = color(0,255 0);

30 c_bl ue =color(0, O0,255);

31

32 PROCEDURE read _c_inmage (VAR im VECTOR CF color; filename: ARRAY OF CHAR
33 VAR wi dt h, hei ght: CARDI NAL) ;

34 PROCEDURE read_g_image (VAR im VECTOR CF gray; filename: ARRAY CF CHAR
35 VAR wi dt h, hei ght: CARDI NAL) ;

52 4 Appendix
36 PROCEDURE read_b_image (VAR im VECTOR OF binary; filename: ARRAY CF CHAR
37 VAR wi dt h, hei ght: CARDI NAL);

38

39 PROCEDURE wite c_image (im VECTOR OF color; filenane: ARRAY OF CHAR
40 W dt h, hei ght: CARD NAL);

41 PROCEDURE wite_g_ image (im VECTCR CF gray; filename: ARRAY CF CHAR
42 wi dt h, hei ght: CARDI NAL);

43 PROCEDURE wite b image (im VECTOR CF binary; filename: ARRAY OF CHAR
44 wi dt h, hei ght: CARD NAL) ;

45

46 END | magel O

4.4 Parallaxis-I1I Syntax

53

4.4 Parallaxis-Ill Syntax

Parallaxis-III Syntax is specified in EBNF (Extended Backus-Naur-Form).

1 CompilationUnit = ProgramModule
| DefinitionModule
| ImplementationModule
| ForeignModule .
2 ProgramModule = MODULE Ident";' {Import} Block Ident".".

3 DefinitionModule DEFINITION MODULE Ident ;'
{Import } [Export] {Definition} END Ident".'.
4 ImplementationModule= IMPLEMENTATION MODULE Ident ;'

{ Import } Block Ident "." .

FOREIGN MODULE Ident ;'
{Import } [Export] {Definition} END Ident".'.

5 ForeignModule

6 Definition = CONFIGURATION ({ConfigDeclaration ';'}'
| CONNECTION { ConnectionDeclaration ';'}
| CONST {ConstantDeclaration ';'}
| TYPE {Ident['=" GeneralType]';'}
| VAR {VariableDeclaration ;'}
| ProcedureHeading ;' .

7 Import = [FROM Ident] IMPORT IdentList";".

8 Export — EXPORT [QUALIFIED | IdentList ;' .

9 Block = {Declaration } [BEGIN StatementSequence] END .
10 Declaration = CONFIGURATION ({ConfigDeclaration ';'}

| CONNECTION {ConnectionDeclaration ';'}
| CONST {ConstantDeclaration ';'}

| TYPE {TypeDeclaration ';'}

| VAR {VariableDeclaration ';'}

(K]

| ProcedureDeclaration ;' .

11 ConfigDeclarartion = = Config {';' Config} .

12 Config = [Ident ConfigRange
| Ident '=" Qualident ConfigRange
| Ident ConfigRange '=' Qualident] .

13 ConfigRange = '[' ConstExpression'.." ConstExpression ']’
[R

14 ConnectionDeclaration= TransferFunction
| FOR Ident =" Expression TO Expression DO
TransferFunction {';' TransferFunction} END .

15 TransferFunction = [Direction "' Qualident '[' Source {',' Source }'|'
('—='Destl {',' Destl} | '<—>'Dest2 {!,' Dest2})]
16 Direction = Ident['[' Source']'].
17 Source = Ident
| Integer
| String
| 1% .
18 Destl = [Discriminant] Qualident '[' DestExprList T .
19 Dest2 = [Discriminant] Qualident '[' DestExprList] :' Ident

['[Expression']'].

54 4 Appendix
20 DestExprList = DestExpr {',' DestExpr} .
21 DestExpr = Expression
| Expression '.." Expression
| 1% .
22 Discriminant = '{'Expression '}'.
23 ConstantDeclaration = Ident'=" ConstExpression .
24 ConstExpression = Expression.
25 TypeDeclaration = Ident'=" GeneralType .
26 GenaralType = SimpleType
| GeneralArrayType
| GeneralRecordType
| SetType
| PointerType
| ProcedureType
| (VECTOR | Qualident) [Qualident] OF ScalarType .
27 ScalarType = SimpleType
| ScalarArrayType
| ScalarRecord Type
| SetType
| PointerType
| ProcedureType .
28 GeneralArrayType = ARRAY SimpleType {',' SimpleType } OF GeneralType .
29 GeneralRecordType = RECORD FieldListSequencel END .
30 FieldListSequencel = [FieldListl {';' FieldListl}].
31 FieldListl = IdentList "' GeneralType
| CASE [Ident]":' Qualident OF Variant {'l' Variant}
[ELSE FieldListSequence2] END .
32 Variant = [CaseLabelList ' FieldListSequence2] .
33 CaseLabelList = CaseLabels {‘,' CaseLabels} .
34 CaseLabels = ConstExpression[".." ConstExpression] .
35 ScalarArrayType = ARRAY SimpleType {',' SimpleType } OF ScalarType .
36 ScalarRecordType = RECORD FieldListSequence2 END .
37 FieldListSequence? = [FieldList2 {;' FieldList2}].
38 FieldList2 = IdentList " ScalarType
| CASE [Ident]":' Qualident OF Variant {'l' Variant }
[ELSE FieldListSequence2] END .
39 SimpleType = Qualident
| Enumeration
| SubrangeType .
40 Enumeration = '("IdentList")'.
41 SubrangeType = [Qualident] '[" ConstExpression '.." ConstExpression']'.
42 SetType = SET OF SimpleType.
43 PointerType = POINTER TO Generallype .
44 ProcedureType = PROCEDURE [FormalTypeList].
45 FormalTypeList = '('[[VAR] FormalType { ;' [VAR | FormalType }]")

[[(VECTOR | Qualident) OF] Qualident .

4.4 Parallaxis-I1I Syntax

55

46
47

48
49
50
51

52
53

54
55
56
57
58
59
60
61
62
63

64
65
66

67

FormalType

VariableDeclaration

ProcedureDeclaration

ProcedureHeading
FormalParameters
Parameter

StatementSequence
Statement

Assignment
ExprList
Expression
RelationOperator
SimpleExpression
AddOperator
Term
MulOperator
Power

Factor

Set
Element

ActualParameters

MoveFunction

[(VECTOR | Qualident) OF] [ARRAY OF] Qualident .
IdentList ' GeneralType .

ProcedureHeading ;' Block Ident .

PROCEDURE Ident [FormalParameters] .

'(" [Parameter {';' Parameter}]')'["' Qualident].
[VAR] IdentList ' FormalType .

Statement {';' Statement } .

[Assignment

| ProcedureCall

| IfStatement

| CaseStatement

| WhileStatement

| RepeatStatemen
| LoopStatement

| ForStatement

| WithStatement

| EXIT

| RETURN [Expression]
| AllStatement

| SendStatement

| LoadStatement

| StoreStatement | .

Designator =" Expression .
Expression {',' Expression} .

SimpleExpression { RelationOperator SimpleExpression }.

=l < '<=" IS I '>=" | IN .
[+ | '="]Term { AddOperator Term} .
'+ |- | OR .

Power { MulOperator Power } .
=1 '/ 1 DIV | MOD | AND | '&' .
Factor {"*' Factor} .

Number

| String

| Set

| Designator [ActualParameters]
| MoveFunction

| ReceiveFunction
| ReduceFunction
| Arraylnitializer
| RecordInitializer
| '(" Expression ')'
| NOT Factor

| '~" Factor .

[Qualident | '{' [Element {',' Element }]'}".
ConstExpression [".." ConstExpression] .
'('[ExprList]")".

MOVE "' DirSpecifier '(' Expression ')' .

56

68

69

70
71

72
73

74
75
76

77

78

79

80
81
82

83

84
85
86

87
88
89

90

91
92
93
94
95
96
97

DirSpecifier

SendSpecifier

StepSpecifier
Reductldent

ReceiveFunction
ReduceFunction

Arraylnitializer
RecordInitializer
ProcedureCall

IfStatement

CaseStatement

Case

WhileStatement
RepeatStatement
ForStatement

LoopStatement

WithStatement
AllStatement
SendStatement

LoadStatement
StoreStatement

Designator

Dimension

Qualident
IdentList
Ident
Letter
String
Number
Integer

Ident ['[' Expression ']'] [":#' Reductldent]
| '<<'Expression '>>' [":#' Reductldent |
| '<:'Dimension {',' Dimension } =>' [:#' Reductldent].

Ident ['[' Expression']'] ["' StepSpecifier] [:#' Reductldent]

| '<<' Expression >>' [":#' Reductldent]

| '<:'Dimension { ', Dimension } :>' [":#' Reductldent] .
'(' Expression ')’ | Qualident | Integer.

AND | OR | Qualident .

RECEIVE "' DirSpecifier '(' Expression ')’ .
REDUCE "' Reductldent '(' Expression ')'.

Qualident '(' ExprList ')".
Qualident '(' ExprList ')".
Designator [ActualParameters] .

IF Expression THEN StatementSequence
{ ELSIF Expression THEN StatementSequence}
[ELSE StatementSequence | END .

CASE Expression OF Case {'|' Case }
[ELSE StatementSequence] END .

[CaseLabelList ' StatementSequence | .

WHILE Expression DO StatementSequence END .
REPEAT StatementSequence UNTIL Expression .

FOR Ident =" Expression TO Expression
[BY ConstExpression] DO StatementSequence END .

LOOP [OF Qualident DO] StatementSequence END .

WITH Designator DO StatementSequence END .
ALL Qualident DO StatementSequence END .
SEND "' SendSpecifier '(' Expression ',' Designator ')' .

LOAD '(' Designator '' Designator [',' Designator]')'.
STORE '(' Designator ', Designator [',' Designator] ')".
Qualident { << Expression >> | <:ExprList :>

| "' Ident | '[" ExprList'] | 'A" }.

Expression | ™' | '#' Reductldent .

Ident ["' Ident].

Ident {',' Ident}.

Letter { Letter | Digit}.
('A"..'Z7 At Lz
""" {Character }''" | '"' { Character }"'"".
Integer | Real.

Digit { Digit} ['D']

| OctalDigit { OctalDigit} ('B' | 'C")

4 Appendix

4.4 Parallaxis-I1I Syntax

57

98 Real

99 ScaleFactor
100 HexDigit

101 Digit

102 OctalDigit

| Digit { HexDigit} 'H' .

Digit { Digit } ' {Digit} [ScaleFactor] .
'E' [+ | '-']Digit { Digit} .

Digit | 'A" | B | 'C | 'D' | 'E' | 'F .
OctalDigit | '8" | '9' .

L0 Y B A R R T A N < N A

58 4 Appendix

4.5 Literature

[Braunl 89] T. Brdunl, Structured SIMD Programming in Parallaxis, Structured
Programming, vol. 10, no. 3, July 1989, pp. 121-132 (12)

[Braunl 91] T. Braunl, Designing Massively Parallel Algorithms with Parallaxis,
Proceedings of the 15th Annual International Computer Software
& Applications Conference, compsac91, Sep. 1991, pp. 612-617 (6)

[Braunl 93] T. Brédunl, Parallel Programming — An Introduction, Prentice Hall,
Englewood Cliffs NJ, 1993

[Brdunl, Feyrer, Rapf, Reinhardt 95] T. Braunl, S. Feyrer, W. Rapf, M. Reinhardt,
Parallele Bildverarbeitung, Addison-Wesley, Bonn, 1995

[MasPar 91] MasPar Computer Corporation, MasPar Programming Language
(ANSI C compatible MPL) User Guide, Software Version 2.2, MasPar
System Documentation, DPN 9302-0101, Dec. 1991

[Peitgen, Saupe 88] H.-O. Peitgen, D. Saupe (Eds.), The Science of Fractal Images,
Springer-Verlag, Berlin Heidelberg New York, 1988

[Thinking Machines 89] Thinking Machines Corporation, Connection Machine
Model CM-2 Technical Summary, version 5.1, Technical Report, May
1989

[Wirth 83] N. Wirth, Programming in Modula-2, Springer-Verlag, Berlin
Heidelberg New York, 1983

Post Scri pt - Fehl er (--nostringval --, --nostringval--)

