
printed 1996-6-10

http://www.informatik.uni-stuttgart.de/ipvr/bv/p3

All Rights Reserved
Copies of this report may be ordered from:

Dekanat der Fakultät Informatik, Universität Stuttgart
Breitwiesenstr. 20-22, D-70565 Stuttgart

phone: +49 (711) 7816-371 fax: +49 (711) 7816-424

Parallaxis-III User Manual

Thomas Bräunl

Computer Science Report
Bericht Nr. 1996/08 June 1996

Universität Stuttgart
Fakultät Informatik

Preface

The Parallaxis project started as my Ph.D. project in 1987 at USC, Los Angeles, and
continued during my time at the Univ. Stuttgart, Germany. It has gone through
several stages of improvements and complete new starts from scratch between the
major versions listed below. The idea persisted, however, to formulate a machine
independent data-parallel programming language:

version 0 1988 implemented by Thomas Br�unl

version 1 1989 implemented by Ingo Barth (compiler), Frank Sembach (simulator)

version 2 1990 implemented by Barth, Sembach, and Stefan Engelhardt (MasPar)

version 3 1995 implemented by Eduard Kappel, Harald Lampke, Hartmut Keller (all
p3c compiler), J�rg Stippa (debugger)

The Parallaxis software, comprising compiler, debugger, numerous parallel
application programs, and documentation may be copied over the Internet via "ftp",
while some information is available from the p3 web page:

http://www.informatik.uni-stuttgart.de/ipvr/p3
ftp://ftp.informatik.uni-stuttgart.de/ipvr/p3

Several conference contributions, research reports, and books have been published
on Parallaxis, most prominently:

Br�unl: Parallel Programming, Prentice-Hall, 1993
Br�unl et al.: Parallele Bildverarbeitung, Addison-Wesley, 1995

Stuttgart, June 1996 Thomas Br�unl

Contents

1 Language Definition . 5
1.1 Introduction . 5
1.2 Specifying Virtual Processors and Connections . 6
1.3 Multiple Configurations and Iterative Connections. 9
1.4 Data Declaration . 10
1.5 Processor Positions . 12
1.6 Parallel Execution . 14
1.7 Structured Data Exchange . 16
1.8 Unstructured Data Exchange . 19
1.9 Exchange between Scalar and Vector Data . 21
1.10 Reduction . 22
1.11 Modules. 23
1.12 Input and Output. 24
1.13 Control Structures . 25
1.14 Relation to Modula-2. 26
1.15 Efficiency. 27

2 Applications . 29
2.1 Basic Applications . 29

2.1.1 Cellular Automata . 29
2.1.2 Generation of Fractals. 30
2.1.3 Sorting. 32

2.2 Image Processing . 34
2.2.1 Laplace Filter . 34
2.2.2 Dithering . 35

2.3 Simulation . 36

3 Compiler and Debugger . 39
3.1 Compiler . 39
3.2 Debugger. 41

4 Appendix. 45
4.1 Data Types . 45
4.2 Built-in Functions and Procedures . 45
4.3 Graphics Interface . 49
4.4 Parallaxis-III Syntax. 53
4.5 Literature. 58

4 Contents

Chapter 1

Language Definition

Parallaxis is a machine-independent language for data-parallel programming.
Sequential Modula-2 is used as the base language. Programming in Parallaxis is done on
a level of abstraction with virtual processors and virtual connections, which may be
deÞned by the application programmer.

1.1 Introduction
Parallaxis [Br�unl 89], [Br�unl 91], [Br�unl 93] is based on Modula-2 [Wirth 83], extended
by data-parallel concepts. The language is fully machine-independent across SIMD
architectures; therefore programs written in Parallaxis run on different SIMD parallel
computer systems. For a large number of (single-processor) workstations and personal
computers, there is also a Parallaxis simulation system with source level debugging and
tools for visualization and timing. A compiler for data-parallel programming of MIMD
computer systems in SPMD style (same program, multiple data) is being developed.
Parallel programs with small data sets can be developed, tested and debugged with this
simulation system. Then, Parallaxis compilers can be used to generate parallel code for
the MasPar MP-1 / MP-2 or the Connection Machine CM-2. The simulation environment
allows both the study of data parallel fundamentals on simple computer systems and the
development of parallel programs which can later be executed on expensive parallel
computer systems. The programming environment for Parallaxis is available as public
domain software.

We had two major goals in developing a new parallel programming language:

1. We believe that Ôstructured programmingÕ has a number of advantages in developing
sequential and parallel software, as well as for learning programming concepts in
general. Therefore, we chose Modula-2 as base language and not C like many other
approaches.

2. Almost all commercial SIMD programming languages are machine-dependent, since
they have been speciÞcally designed for a single hardware platform to achieve
maximum performance. Therefore, one may not easily port a program from one
SIMD system to another. To avoid this problem, we designed Parallaxis to be
completely machine-independent. This refers to SIMD architectures only, for
switching from SIMD to MIMD will almost always require to change the algorithm of
your program, in order to keep it efÞcient.

The central point of Parallaxis is programming on a level of abstraction with virtual
PEs and virtual connections. In addition to the algorithmic description, every program
includes a semi-dynamic connection declaration in functional form. This means that the

6 1 Language DeÞnition

desired PE network topology is speciÞed in advance for each program (or for each
procedure) and can be addressed in the algorithmic section with symbolic names
(instead of complicated arithmetic index or pointer expressions). However, for
completeness, also full-dynamic data exchange operations may be performed.

The following describes the latest version of the language, Parallaxis-III, which is
not fully compatible to older versions of the language.

1.2 Specifying Virtual Processors and Connections
One or several Ôvirtual machinesÕ consisting of processors and a connection network
may be deÞned for every Parallaxis program. This is done in two simple steps. First,
the keyword CONFIGURATION is used to specify the number of PEs and their
arrangement in analogy to an array declaration. However, at this point, no
speciÞcation has been made as to the connection structure between the PEs. This
follows by specifying mapping relations, introduced by the keyword CONNECTION (this
second step may be omitted if no connections are required). Every connection has a
symbolic name and deÞnes a mapping from a PE (any PE) to the corresponding
neighbor PE. The speciÞcation of this relative neighbor is accomplished by providing
an arithmetic expression for the index of the destination PE. Data exchanges can now
be carried out using these symbolic connection names in the parallel program.

Figure 1.1 shows a PE arrangement as a two-dimensional grid structure in a simple
Parallaxis example. The CONFIGURATION declaration provides 4 × 5 virtual processors,
which are virtually connected to one another in the following CONNECTION declaration.
In Figure 1.1, PE no. [1,1] is in the upper left corner; however, you may also choose to
put the ÔoriginÕ in the lower left corner Ð it does not matter as long as you use it
consistently in your program. Since homogeneous connection structures or topologies
are easy to declare, four connection declarations are sufÞcient to construct a grid of
any size. One connection is deÞned for each cardinal direction. The connection to the
north, for example, decrements the Þrst index. Some connections from the border PEs
lead ÔnowhereÕ, which means that these connections do not exist, and will not
participate in any data exchange operation.

Figure 1.1: Two-dimensional grid topology with representative PE

1,1 1,5

4,1 4,5

north

south

eastwest

CONFIGURATION grid [1..4],[1..5];
CONNECTION north: grid[i,j] → grid[i-1, j];
 south: grid[i,j] → grid[i+1, j];
 east : grid[i,j] → grid[i, j+1];
 west : grid[i,j] → grid[i, j-1];

1.2 Specifying Virtual Processors and Connections 7

In case one prefers a wrapped-around grid (torus) instead of an open grid for some
application, this can be easily accomplished by using the modulo-operator
(remainder). IdentiÞers h and w denote constants:

CONFIGURATION torus [0..h-1],[0..w-1];
CONNECTION north: torus[i,j] → torus[(i-1) MOD h, j];

south: torus[i,j] → torus[(i+1) MOD h, j];
east : torus[i,j] → torus[i, (j+1) MOD w];
west : torus[i,j] → torus[i, (j-1) MOD w];

There is a list of extensions to this simple process of deÞning virtual machine
structures: Several destination expressions may be speciÞed after the arrow symbol,
separated by commata. Connections may be parameterized, as with the hypercube in
Figure 1.2. With these, it is possible to perform a data exchange in a computed
direction. For the deÞnition of the binary tree network, also in Figure 1.2, bi-directional
connections (Ô↔Õ or Ô<->Õ in ASCII notation) have been used instead of uni-directional
connections (Ô→Õ or Ô->Õ). A bi-directional connection is an abbreviation for two uni-
directional connections and, therefore, requires a second connection name on the right
hand side of the connection.

So-called Ôcompound connectionsÕ may be used to have a case distinction inside a
connection. The following example connects local pairs of PEs:

A case distinction is made for the next connection. If the PE-number is odd, a
connection to the right neighbor is established, while if it is even, a connection to the
left neighbor is established. Using compound connections, arbitrary connection

Figure 1.2: Tree and hypercube topology

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

[0 ,0, 0,0] [0,0 ,0, 1]

[0 ,0,1 ,1]

[0 ,1,1 ,1]

[1,1 ,1,1]

[0,0 ,1,0]

[0,1 ,0 ,1]

Binary Tree

Hypercube

CONFIGURATION tree [1..15];
CONNECTION
 lchild: tree[i] ↔ tree[2*i] :parent;
 rchild: tree[i] ↔ tree[2*i+1] :parent;

an alternative speciÞcation without distinguishing
between left and right children is:

CONFIGURATION tree [1..15];
CONNECTION child: tree[i] → tree[2*i],

tree[2*i+1];

CONFIGURATION hyper [0..1],[0..1],[0..1],[0..1];
CONNECTION
go[1]: hyper[i,j,k,l] → hyper[(i+1)MOD 2, j,k,l];
go[2]: hyper[i,j,k,l] → hyper[i, (j+1)MOD 2, k,l];
go[3]: hyper[i,j,k,l] → hyper[i,j, (k+1)MOD 2, l];
go[4]: hyper[i,j,k,l] → hyper[i,j,k, (l+1)MOD 2];

8 1 Language DeÞnition

structures, even with irregularities, may be deÞned. If several parts of a compound
connection evaluate to TRUE for a particular PE, then for this PE all of these
connections are deÞned (one-to-many or 1:n connection).

The connection structures as deÞned by the CONNECTION declaration do not have to
be 1:1 (one-to-one) connections. For 1:n connections, an implicit broadcast is executed.
In the following example, the Þrst element of each row is connected to all elements in
this row.

CONFIGURATION grid [1..100],[1..100];
CONNECTION one2many: grid[i,1] → grid[i,1..100];

If a one-to-many connection is to be established to all PEs of a dimension, the range
may be substituted by an asterisk Ô*Õ. So the following is equivalent to the previous
example.

CONFIGURATION grid [1..100],[1..100];
CONNECTION one2many: grid[i,1] → grid[i,*];

However, for n:1 (many-to-one) connections (and the general m:n connections,
many-to-many) one must ensure that only a single value arrives at any PE's entry
port. Therefore, each data exchange operation may include a vector reduction, as will
be discussed later. In the following example, all elements of a row are connected to the
Þrst element in their column.

CONFIGURATION grid [1..3],[1..5];
CONNECTION many2one: grid[i,j] → grid[i,1];

Figure 1.3: Compound connections

Figure 1.4: Multiple connections

1 2 3 4 5 6 7 8

CONFIGURATION list [1..8];
CONNECTION next: list[i] → {ODD (i)} list[i+1],

{EVEN(i)} list[i-1];

one-to-many many-to-one

1.3 Multiple ConÞgurations and Iterative Connections 9

1.3 Multiple Configurations and Iterative Connections
In addition to the constructs shown so far, the deÞnition of multiple topologies in a
program is possible. These may be deÞned independently of each other on separate
groups of PEs Ð in which case the topologies may have different vector data
structures. Or the topologies can be deÞned as Ôdifferent viewsÕ of the same set of PEs
with identical data structure. Furthermore, local topologies may be deÞned in
procedures, thus allowing semi-dynamic connection structures.

Different conÞguration deÞnitions denote different sets of PEs. For example, the
following declaration deÞnes two distinct sets of PEs:

CONFIGURATION grid [1..200],[1..50];
 tree [1..10000];

On the other hand, conÞgurations may be deÞned as a different view of the same set
of PEs. In this case, the numbers of PEs have to be identical. In that case, each PE a

CONFIGURATION grid [1..200],[1..50];
 tree [1..10000] = grid;

Connections may be speciÞed between multiple conÞgurations, whether they
belong to the same or distinct sets of PEs:

CONFIGURATION grid [0..199],[0..49];
 tree [1..10000];
CONNECTION mix: grid[i,j] -> tree[i*50 + j];

However, a connection may only link PEs within the same or two different
conÞgurations. A connection between three or more conÞgurations is not allowed,
and a connection linking PEs within one conÞguration and PEs to another
conÞguration (by the same connection name) is not allowed.

ConÞgurations only come to life, when they are used for the declaration of a vector
variable, which is later used in a computation. A vector variable based on a
conÞguration with multiple views can make use of all connection structures deÞned
for any of the views. Such a variable is also assignment compatible to a variable of the
same type but of a different view.

An extension to the deÞnition of connections is the use of iterative connection
functions, as exempliÞed by the following alternative deÞnition for a hypercube
network of arbitrary size (the exponentiation function is denoted by Ô**Õ, n is a
constant):

CONFIGURATION hyper [0..(2**n-1)];
CONNECTION FOR k := 0 TO n-1 DO
 dir[k]: hyper[i] ↔ {EVEN(i DIV 2**k)}
 hyper[i + 2**k] :dir[k];
 END;

If n equals 10, there are 1,024 PEs deÞned together with ten bi-directional
connections. Expression EVEN(i DIV 2**k) tests, whether the k-th bit of i equals 0.

A large program may be split into several modules, which are compiled separately.
So, e.g. for a module containing library functions, it may be desirable not to specify
the size of a conÞguration. When writing routines for image processing, the size of the

10 1 Language DeÞnition

grid structure should be left unspeciÞed and will be deÞned later by the module
importing these routines. An open conÞguration is indicated by using an asterisk Ô*Õ
instead of a value range. The conÞguration size may be determined dynamically at
run time, e.g. by passing a parameter that is subsequently used as an upper bound in
the conÞguration declaration.

DEFINITION MODULE Open;
CONFIGURATION grid[*],[*];
CONNECTION left: grid[i,j] <-> grid[i ,j-1] :right;
 up : grid[i,j] <-> grid[i+1,j] :down;
PROCEDURE sum_3x3(input: grid OF INTEGER): grid OF INTEGER;
END Open.

MODULE Main;
FROM Open IMPORT grid, sum_3x3;
CONFIGURATION my_grid = grid[1..10],[1..10];
VAR a,b: my_grid OF INTEGER;
BEGIN
 a := 1;
 b := sum_3x3(a);
 WriteInt(b,5);
END Main.

Open conÞgurations are needed when a procedure is to work on a vector of
unspeciÞed size, but has to make use of connections for data exchange or position
data (DIM, see section on processor positions). If connections and position data are not
required in a procedure, which is to be used for different conÞgurations (different size
or arbitrary conÞguration), then the simpler concept of generic vector parameters
may be used (VECTOR, see section on data declaration).

1.4 Data Declaration
Parallaxis differentiates between scalar and vector variables in data declarations as
well as in procedure parameters and results. Scalar data is placed on the control
processor, while vectors are distributed component-wise among the virtual PEs (in
Figure 1.5 conÞgurations are not connected). Since a program may contain several PE

Figure 1.5: Allocation of scalar and vector data

on control
processor

a

distributed on PEs

b b b b b

b b b b b

b b b b b

b b b b b

distributed on PEs
c

c

cccc

cccccccc

c

VAR a: INTEGER; (* scalar *)
 b: grid OF REAL; (* vector *)
 c: tree OF CHAR; (* vector *)

1.4 Data Declaration 11

conÞgurations with different numbers of PEs, the name of a conÞguration is used for
specifying the vector type of a variable.

There is, of course a fundamental difference between declaring an array of vectors
and declaring a vector of arrays, as exempliÞed in Figure 1.6. However, both indexed
expressions x[1] and y[1] refer to a data structure of the same type "grid OF

INTEGER".

Unfortunately, this declaration semantics has some unpleasant effect for procedure
arguments. Imagine, e.g. writing a function factorial, for computing the factorial
value for an argument of type INTEGER. Now, a factorial function would have to be
declared for scalar arguments, and for every conÞguration deÞned in a program. Since
there is no way of knowing them in advance, it would be impossible to write general
library routines. To remedy this situation, parameters and variable declarations inside
such a procedure may use the keyword VECTOR instead of a particular conÞguration
name. This indicates that a parameter will be used in a parallel computation, without
specifying a particular conÞguration (this results in a generic procedure). All
parameters declared as generic vectors or variables in such a procedure have to
belong to the same conÞguration. Since no particular conÞguration has been speciÞed,
no data exchange may be performed in such a procedure.

PROCEDURE s_factorial(a: INTEGER): INTEGER;
VAR b: INTEGER; (* scalar *)
 ...
END s_factorial;

PROCEDURE v_factorial(a: VECTOR OF INTEGER): VECTOR OF INTEGER;
VAR b: VECTOR OF INTEGER; (* any vector *)
 ...
END v_factorial;

It is possible that several procedure parameters use the "open vector" or the "open
conÞguration" construct for possibly different conÞgurations. In this case, a local
variable declaration with the method used above is not unique. Therefore, the name

Figure 1.6: Array of vectors and vector of arrays

x [1] x [1] x[1] x[1] x[1]

x [1] x [1] x[1] x[1] x[1]

x [1] x [1] x[1] x[1] x[1]

x [1] x [1] x[1] x[1] x[1]

x [2] x[2] x[2] x[2] x [2]

x [2] x[2] x[2] x[2] x [2]

x [2] x[2] x[2] x[2] x [2]

x [2] x[2] x[2] x[2] x [2]

x[3] x[3] x[3] x [3] x [3]

x[3] x[3] x[3] x [3] x [3]

x[3] x[3] x[3] x [3] x [3]

x[3] x[3] x[3] x [3] x [3]

y [1 , 2, 3] y [1 , 2, 3] y [1 , 2, 3] y [1, 2, 3] y [1, 2 , 3]

y [1 , 2, 3] y [1 , 2, 3] y [1 , 2, 3] y [1, 2, 3] y [1, 2 , 3]

y [1 , 2, 3] y [1 , 2, 3] y [1 , 2, 3] y [1, 2, 3] y [1, 2 , 3]

y [1 , 2, 3] y [1 , 2, 3] y [1 , 2, 3] y [1, 2, 3] y [1, 2 , 3]

VAR x: ARRAY[1..3] OF grid OF INTEGER;
 y: grid OF ARRAY[1..3] OF INTEGER;

array of vector

vector of arrays

12 1 Language DeÞnition

of the "open vector" or open conÞguration parameter may follow the keyword VECTOR
or the open conÞguration name in the type speciÞcation.

PROCEDURE vec(a: VECTOR OF INTEGER; b: VECTOR OF INTEGER);
VAR x: VECTOR a OF INTEGER; (* vector type corresponding to a *)
 y: VECTOR b OF INTEGER; (* vector type corresponding to b *)
 ...
END vec;

CONFIGURATION grid[*],[*];

PROCEDURE open(a: grid OF REAL; b: grid OF REAL);
VAR x: grid b OF REAL; (* vector type corresponding to b *)
 ...
END open;

1.5 Processor Positions
There are two ways to determine a PE's current position. The Þrst is by using the
(vector-valued) standard function ID, which returns the virtual processor position as a
single number in row-major ordering (or Ôhighest-dimension-majorÕ for more than
two dimensions):

This results in each component of x being assigned the number of its virtual PE,
always starting with Ô1Õ (independent of the conÞguration range and number of
dimensions):

The second way of determining the position of a virtual PE, now with respect to its
conÞguration declaration, is to use the standard function DIM. This function takes the
conÞguration name and the number of the dimension as arguments and returns the
position of a PE within this dimension. Dimensions are numbered from right to left,
that is, the highest dimension is at the leftmost position.

The position values returned by function DIM depend on the ranges of the
conÞguration deÞnition. The DIM function will return exactly this range of values as
position data. In the following, position data for rows and columns of the grid
example above are shown:

CONFIGURATION grid [1..4],[-2..+2];
...
VAR x: grid OF INTEGER;
...
x := ID(grid); 2nd dimension

1st dimension

ID grid()
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

=

1.5 Processor Positions 13

Functions, ID and DIM, as well as the following functions, do not depend on any PE
connection. Further functions working on conÞguration data are shown below. These
functions take either conÞgurations or vector variables as arguments.

LEN(grid) = 20 returns the total number of PEs in a conÞguration
LEN(grid,1) = 5 returns the size of a dimension (here dim. 1)
LEN(grid,2) = 4 returns the size of a dimension (here dim. 2)
RANK(grid) = 2 returns the number of dimensions
LOWER(grid,1) = –2 returns the lower bound of a dim. (here dim. 1)
UPPER(grid,1) = 2 returns the upper bound of a dim. (here dim. 1)

A function and a procedure are provided to transfer ID values into DIM values and
vice versa. An array is used for DIM values. Both routines may be used with scalar or
vector parameters. These routines are especially useful for converting ID and DIM
values of multiple conÞgurations.

VAR dims: ARRAY[1..2] OF INTEGER;
 s : INTEGER;
...
dims[1] := 1;
dims[2] := 2;

s := DIM2ID(grid,dims); s becomes 9 (referring to grid deÞnition above)
...
ID2DIM(grid,12,dims); dims[1] becomes Ð1

dims[2] becomes +3

An individual PE may be selected by using an IF-selection involving parallel
position data like ID and DIM. However, supplying the position values directly for a
vector is also possible and gives a simpler way of selecting PEs. A single PE may be
selected using a component expression with scalar arguments after the identiÞer of a
vector variable:

VAR x : grid OF INTEGER; (* 2-dim. *)
 s,t: INTEGER; (* scalar *)
...

s := x <<12>>; get the value of the PE with ID 12
x <<12>> := s; set the value of the PE with ID 12

s := x <:3,t+1:>; get value of the PE in row 3 and column t+1,
according to CONFIGURATION ranges speciÞed

x <:t,1:> := s; set the value of the PE in row t and column 1

DIM grid 2,()

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

= DIM grid 1,()
2– 1– 0 1+ 2+

2– 1– 0 1+ 2+

2– 1– 0 1+ 2+

2– 1– 0 1+ 2+

=

14 1 Language DeÞnition

1.6 Parallel Execution
Parallel execution is implicit in Parallaxis-III, depending on the declaration of
variables involved in a statement or expression. PE-selection (determining which PEs
will be active during a certain statement) is also implicit. Any selection or iteration
instruction (IF, FOR, WHILE, REPEAT, CASE, LOOP) with a vector argument may be used.
Figure 1.7 shows the data-parallel execution of a statement on a selected group of PEs.

So whenever a selection is performed, e.g. by an IF statement with vector
condition, only those PEs are active during execution of the THEN branch, whose local
condition evaluates to TRUE. A THEN branch or an ELSE branch will only be executed if
the condition (or its negation, respectively) will be satisÞed by at least one PE.
Primarily, this has an effect on any scalar statements that may be in such a branch,
since in this case they will be skipped. In the general case, when the condition
evaluates to TRUE for some PEs, but evaluates to FALSE for some other PEs, then both
THEN branch and ELSE branch will be executed subsequently (first THEN, afterwards
ELSE) with the appropriate group of PEs being active (this also holds for any scalar
statements that may be contained in these branches). If vector IF statements are
nested, then in one of the inner branches only a subset of the PEs of the corresponding
outer branch is active.

VAR x: grid OF INTEGER;
...
IF x>5 THEN x := x - 3
 ELSE x := 2 * x
END;

PE-ID: 1 2 3 4 5

initial values of x: 10 4 17 1 20

starting then-branch: 10 Ð 17 Ð 20 (ÔÐÕ means inactive)
after then-branch: 7 Ð 14 Ð 17

starting else-branch: Ð 4 Ð 1 Ð
after else-branch: Ð 8 Ð 2 Ð
selection done
after if-selection: 7 8 14 2 17

Figure 1.7: Data parallel instruction

x :=a+b x :=a+b x :=a+b x :=a+b

x :=a+b x :=a+b x :=a+b x :=a+b

x :=a+b

x :=a+b

VAR x,a,b: grid OF REAL;
...
IF DIM(grid,2) IN {2,3} THEN
 x := a+b
END;

1.6 Parallel Execution 15

The possibly subsequent execution of THEN- und ELSE-branches may lead to
unexpected side effect, which are shown in the following sample program:

VAR x: grid OF INTEGER;
 s: INTEGER, (* scalar *)
...
IF x>5 THEN x := x - 3; INC(s);
 ELSE x := 2 * x; INC(s);
END;

initial values of s: 1
after then-branch: 2
after else-branch /if: 3

When entering a loop with vector condition (e.g. WHILE loop), only those PEs are
active which satisfy the condition. In subsequent iterations of this loop, the number of
PEs is always decreasing. The loop iterates until no PE is left to satisfy the loop
condition (see the following example).

VAR x: grid OF INTEGER;
...
WHILE x>5 DO
 x:= x DIV 2;
END;

PE-ID: 1 2 3 4 5

initial values of x: 10 4 17 1 20

starting 1st iteration: 10 Ð 17 Ð 20 (ÔÐÕ means inactive)
after 1st iteration: 5 Ð 8 Ð 10

starting 2nd iteration: Ð Ð 8 Ð 10
after 2nd iteration: Ð Ð 4 Ð 5

starting 3rd iteration: Ð Ð Ð Ð Ð
loop terminates
after loop: 5 4 4 1 5

Other control structures, known from sequential Modula-2 may be used as well in
vector context. The CASE-selection can be treated as a nested chain of IF-THEN-ELSIF-
selections, while FOR- and REPEAT-loops can be regarded as modiÞcations of a WHILE-
loop. The parallel LOOP-EXIT construct differs from its sequential counterpart, for it has
to specify the name of the selected conÞguration, e.g.:

LOOP OF grid DO
 ...
 IF x>0 THEN EXIT END;
 ...
END; (* loop *)

16 1 Language DeÞnition

In case one would like to perform an operation on all PEs inside a nested selection
or loop, the ALL block may be used to re-activate all PEs of a conÞguration.

IF x>0
 THEN ... (* only grid PEs are active, which satisfy condition *)
 ALL grid DO
 ... (* all grid PEs are active, regardless of condition *)
 END
 ELSE ... (* only grid PEs are active, which do not satisfy cond. *)
END;

1.7 Structured Data Exchange
Data exchanges between processors can be accomplished with simple symbolic
names, thanks to the network declaration described earlier. Data exchange of a local
vector variable between all or just a group of PEs can be invoked by calling system
function MOVE with the name of a previously deÞned connection. Only active PEs
participate in a data exchange operation. Figure 1.8 shows an example of a data
exchange in the grid structure deÞned in section 1.2. The expression returns vector
variable x shifted one step (one PE) to the east.

For the data exchange operation shown above, sender-PE and receiver-PE of a data
exchange have to be active. For the operations SEND and RECEIVE shown below, it is
sufÞcient for only the sender (or only the receiver, respectively) to be active. These
operations are especially needed for the data exchange between different topologies,
since due to the SIMD model only one PE structure can be active at a time. Unlike the
other data exchange operations, SEND is a procedure (not returning a value) and
therefore takes two arguments, Þrst the expression to be sent, and second the variable
to receive the expression.

SEND.east(4*x, y);
y := RECEIVE.north(x);

The following comparison shows the differences in data exchange operations by
using a simple list topology. In Þgures, an arrow represents data transport, while a
white space marks an inactive PE. Let us assume for the context of the following data
exchange operations that all PEs are active but one (e.g. the data exchange might
occur inside an IF-selection, which deactivated one of the PEs).

CONFIGURATION list[1..max];
CONNECTION right: list[i] -> list[i+1];
VAR x,y: list OF INTEGER;

Figure 1.8: Synchronous data exchange

y := MOVE.east(x);

1.7 Structured Data Exchange 17

a) Only the sender has to be active.
All active PEs, which have a successor, send data.
SEND.right(x,y);

active inactive active active

Example: before after
x: 1 2 3 4 x: 1 2 3 4
y: 0 0 0 0 y: 0 1 0 3

b) Only the receiver has to be active.
All active PEs, which have a predecessor, receive data.
y := RECEIVE.right(x);

Example: before after
x: 1 2 3 4 x: 1 2 3 4
y: 0 0 0 0 y: 1 0 2 3

c) Both sender and receiver have to be active.
All active PEs, which have an active successor, send data.
y := MOVE.right(x);

Example: before after
x: 1 2 3 4 x: 1 2 3 4
y: 0 0 0 0 y: 1 0 3 3

d) Neither sender nor receiver have to be active.
All PEs, which have a successor, send data Ð independent of their activation
status.
This version does not seem to make much sense, so it is not included in
Parallaxis (use ALL plus data exchange statement instead).

Please note:
¥ SEND has to be a procedure for it writes to inactive PEs, while MOVE and

RECEIVE are functions returning vector data.

¥ All data exchange operations shift data in the direction indicated by the
connection identifier (here: right). This also holds for the RECEIVE function,
so it does not have the semantics "receive from a direction" (e.g.
RECEIVE.right shifts data to the right, not to the left).

 Additional data exchange modiÞers may be speciÞed for some of the data
exchange operations. One is for multiple data movement steps and one is for an
implicit reduction; both are separated by colons.

18 1 Language DeÞnition

A data exchange operation may be executed several steps (subsequently) in a
speciÞed direction for the SEND statement. After each step, all PEs that received data
will be active, sending data in the next step. In case one data element is sent to
multiple PEs, then all of these will be active in the next step. This feature is extremely
useful when exchanging data over a tree structure.

VAR x,y: list OF INTEGER;
...
SEND.right:2 (x,y); move data two steps to the east

Example: (only PEs 1 and 2 are active, PEs 3 and 4 are inactive)
before copy expr. 1st step 2nd step assignment

x: 1 2 3 4 — — — 1 2 3 4

intermediate variable: Ð 1 2 3 4 1 1 2 4 1 1 1 2 —

y: 0 0 0 0 — — — 0 0 1 2

A problem might occur, if several PEs are connected to a single one (many-to-one
connection). There are two possibilities to avoid an undetermined result (any of the
incoming data values could be chosen). One can either deactivate unwanted PEs (IF-
selection), so they cannot participate in a data exchange, or one can use a reduction
function with the data exchange.

For example, in the tree network shown before, one might want to send only the
left children's data to the parents and discard the right children's data:

VAR u,v,w: tree OF INTEGER;
...
v := u; initializes all components of v
IF EVEN(ID(tree)) THEN moves only the left children's data up the tree
 SEND.parent (u,v)
END;

Now assume, one does not want to discard information, but one would like to add
the left and right child's data before sending to the parent node:

w := MOVE.parent:#SUM (u); moves data from both children to the
parent, resolving multiple arriving data
by adding

There is a number of system-deÞned operations to do this reduction, and also user-
deÞned operations may be speciÞed (see section on reduction below).

Figure 1.9: Move without and with reduction

u before

1

5 3

2 4 10

v after

5

2 0

2 4 10

w after

8

6 1

2 4 10

1.8 Unstructured Data Exchange 19

ConÞguration boundaries often cause trouble in SIMD programming, for they
frequently require special treatment to avoid undeÞned data. This is not the case for
Parallaxis. Here, it is allowed to send data off the edge and try to receive data from
beyond the edge of a conÞguration. After initializing the send expression with the
vector parameter value supplied, data sent offside a conÞguration is deleted, while an
attempt to read from beyond leaves the particular PE's data unchanged. Therefore,
within the same conÞguration, undeÞned values cannot occur in a data exchange
operation.

1.8 Unstructured Data Exchange
Structured data exchange makes application programs easy to write and understand.
In some cases it also makes them faster, when better use can be made of the physical
connection structure of a particular parallel system. However, it may be desirable to
perform an unstructured data exchange. This reßects an arbitrary permutation of the
components of a vector variable, which may be difÞcult to write down using only
structured data exchanges with user-deÞned connections.

For example, each component of a two-dimensional vector (a matrix) is to be sent
to a destination address, which is being computed at run-time. When only structured
data exchange is possible, e.g. via a grid, one has to program a communication
procedure, which shifts the matrix elements in several steps over the grid. This
approach will work, however, some parallel computer systems (like the MasPar MP-1
and MP-2 [MasPar 91] and the Connection Machine CM-2 [Thinking Machines 89])
have a global connection structure, which allows an arbitrary unstructured data
exchange. In this case, specifying direct destination addresses for each component of a
vector variable may result in a faster program. Please note, that despite the
availability of specialized commands for unstructured data exchange, execution of
those may be quite expensive. For example, a grid operation at the MasPar MP-1
requires about the same time as a simple arithmetic operation (addition), but a non-
grid data exchange takes about 100 times longer to execute. Please note that the
unstructured data exchange is nevertheless a machine-independent operation. If a
certain SIMD architecture does not provide a general communication structure, then
this data exchange will be routed transparently over the simpler network provided
(e.g. a grid or a ring) taking several execution steps.

In Parallaxis, the SEND and the RECEIVE operations may take an index expression
instead of a connection name. As before, when using SEND, only active PEs send data,
and when using RECEIVE, only active PEs receive data. However, these two operations
differ in their index semantics, as is shown for an example in Figure 1.10. In order to
avoid confusion, operation MOVE may not be used with an index expression.

VAR x,y,index: grid OF INTEGER;
...
SEND.<<index>>(x,y); sends data from all components of x to a

destination, determined by vector index

y := RECEIVE.<<index>>(x); receives data from all components of x to a
destination, determined by vector index,
however, on the receiver's side

20 1 Language DeÞnition

Besides using a single index, referring to the ID position of PEs, several indices
referring to DIM positions may be used as well. Also, this kind of data exchange does
not have to be a one-to-one correspondance. If several indices refer to the same PE
position, for RECEIVE (one-to-many) this results in a broadcast, while for SEND (many-
to-one) an arbitrary component is selected Ð unless a reduction operation (see section
on reduction) is speciÞed for resolving collisions.

CONFIGURATION grid [1..2],[1..3];
VAR x,y, index,d1,d2: grid OF INTEGER;
...

SEND.<:d2,d1:> (x,y); sends data from all components of x to a
destination, determined in the first
dimension by d1, and in the second
dimension by d2

SEND.<<index>>:#SUM (x,y); in case the expression index does not
provide a 1:1 permutation, it may be
desirable to perform a reduction of
multiple values arriving in one port, in
order to avoid the assignment of an
arbitrary one of these; positions not
indexed get the sender's original elements

Figure 1.10: Unstructured data exchange

PE 1 2 3 4

x

index

7 4 9 5

3 1 4 2

y4 5 7 9

PE 1 2 3 4

index

y

3 1 4 2

9 7 5 4

PE 1 2 3 4

PE 1 2 3 4

x7 4 9 5

SEND.<<index>> (x,y); y := RECEIVE.<<index>> (x);

x 7 3 5

4 2 3
= d2 1 2 1

2 1 2
= d1 3 2 1

3 2 1
= thenE.g. y 5 2 7

3 3 4
=

x 7 3 5

4 2 3
= index 1 3 2

6 6 6
= thenE.g. y 7 5 3

4 2 9
=

1.9 Exchange between Scalar and Vector Data 21

Two kinds of abbreviations are possible for data exchanges with index expressions:

a) If the positions in one dimension are to remain unchanged, one should
use the expression DIM(conf_name, dim_no) as an index. This may be
abbreviated with the symbol Ô*Õ.

SEND.<:DIM(grid,2),d1:> (x,y); is equivalent to:
SEND.<:*,d1:> (x,y);

b) If a dimension is to be collapsed, a many-to-one data exchange may be
used in combination with a reduction. For example, a matrix may be
collapsed to a single column by reducing all of its rows. This can be done
by sending all row elements to the first element in the same row with a
reduction operation. This may be abbreviated by using a reduction
operation (e.g. #SUM) instead of an index expression. Only a single
reduction may be specified in an index expression.

SEND.<:d2,1:> :#SUM (x,y); is equivalent to the general:
SEND.<:d2,LOWER(grid,1):> :#SUM (x,y); is equivalent to:

SEND.<:d2,#SUM:> (x,y); dimension 1 is reduced by addition (rows
accumulate data in their first positions)
with permutation in dimension 2
according to d2

1.9 Exchange between Scalar and Vector Data
Communication between the control processor and the parallel PEs also requires
additional language constructs or in some cases an adapted semantics. Transferring a
scalar Þeld into a parallel vector is invoked with procedure LOAD, while transferring
data back into a scalar Þeld from a vector is accomplished with STORE (Figure 1.8).
Only active PEs participate in this sequential data exchange. STORE with inactive PEs
does not result in gaps in the scalar array, but data elements are stored subsequently.
LOAD with inactive PEs assigns the next array value to the next active PE, no scalar
array elements will be skipped. Surplus elements will not be used, too few elements
leave the corresponding array elements (or vector components, respectively)
unchanged. The execution of this operation usually requires n time steps for a data
array with n elements. A scalar integer variable may be speciÞed as an optional third
parameter for LOAD and STORE, which limits the number of data items transferred and
also receives the number of data items actually transferred after the operation.

SUM

x 7 3 5

4 2 3
= d2 1 1 1

2 2 2
=E.g. then y 15 3 5

9 2 3
=

22 1 Language DeÞnition

Figure 1.8 (bottom) also shows an assignment in which a (constant or variable)
scalar data value is copied into all or a group of PEs. Every component of the vector
contains the same value as the scalar. This operation is implemented by an implicit
broadcast and therefore requires only a single time step.

1.10 Reduction
The reduction of a vector to a scalar is another important operation. The REDUCE
operation handles this task in conjunction with a system-deÞned or user-deÞned
(programmable) reduction operation (see Figure 1.12). System-deÞned operators are:

SUM, PRODUCT, MAX, MIN, AND, OR, FIRST, LAST

The operators FIRST and LAST return the value of the first or last currently
active PE, respectively, according to its identification number (ID).

Example: s := REDUCE.FIRST(x) is identical to:
pos := REDUCE.MIN(ID(x));
s := x<<pos>>;

All other reduction operators' functions can easily be deduced from their names.
The execution of a reduction operation requires about log2 n time steps for a vector
with n active components. However, this time estimation depends on the physical
connection structure of the PEs.

Figure 1.11: Data exchanges between PEs and control processor

STORE(v, s); (* from vector to scalar *)
STORE(v, s, t); (* here, t becomes num. active PEs *)
(* require n steps each *)

Scalar
Array

Vector Components

4 2 6 3 1 2

inactive

4 2 6 3 1

surplus

LOAD STORE

v := t; (* requires 1 step *)

Scalar Value

Vector Components

7

7 7 7 7 7
inactive

CONFIGURATION list[1..n];
VAR s: ARRAY[1..n] OF INTEGER;
 t: INTEGER;
 v: list OF INTEGER;
...
LOAD (v, s); (* from scalar to vector *)

1.11 Modules 23

The following example shows the use of the REDUCE operation with a user-deÞned
function. Such a function has to have two vector input parameters and has to return a
vector value of the same type. Note that the reduction function implemented by the
user should be associative and commutative, or unpredictable results may occur,
e.g. (1 Ð 2) Ð 3 ≠ 1 Ð (2 Ð3).

VAR v: grid OF BOOLEAN;
 s: BOOLEAN;
...
PROCEDURE xor (a,b: VECTOR OF BOOLEAN): VECTOR OF BOOLEAN;
BEGIN
 RETURN(a <> b);
END xor;
...
s := REDUCE.xor(v);

There are a few places, where substituting a scalar constant in lieu of a vector
variable makes sense, but lacks information about the conÞguration to be used.
Consider the problem of counting the number of active PEs for some conÞguration.
Instead of using a vector variable, the constant 1 can be used for each PE, however, it
has to be type cast to the appropriate conÞguration:

s := REDUCE.SUM(grid(1));

1.11 Modules
In Parallaxis, like in Modula-2, each module consists of two Þles: a deÞnition module
and an implementation module. The only exception is the main module, which starts
a program and does not have a deÞnition module. Parallaxis also offers a FOREIGN
module, which serves as the deÞnition part for linking routines written in another
language.

The sample module constellation above shows declaration, export, and import of
the user-deÞned procedure myproc. It is exported in the deÞnition module together
with its procedure head, showing number and type of parameters. The actual
implementation of myproc is hidden in the corresponding implementation module
(this is also used for including routines from different programming languages). If an
export list is missing in a deÞnition module, then its whole contents is being exported.

Figure 1.12: Vector reduction in Parallaxis

+ +
+

7 6 0 3

13 3
16 VAR s: INTEGER;

 x: grid OF INTEGER;

s := REDUCE.SUM(x);

Control Processor

PEs

24 1 Language DeÞnition

The module importing and using procedure myproc in the example is the main
module (it has neither keyword DEFINITION nor IMPLEMENTATION).

There are two ways of importing objects. The Þrst imports individual objects from a
module, the second includes all objects from a module (in that case, however, an object
name always requires the module name as a preÞx, in order to avoid name conßicts):

FROM sample IMPORT myproc; IMPORT sample;
... ...
myproc(k); sample.myproc(k);

1.12 Input and Output
I/O operations in Parallaxis are very similar to Modula-2. However, in Parallaxis they
are "built-in" and need not be explicitly imported as in Modula-2. This change was
required, since read- and write-operations in Parallaxis may take either scalar or
vector arguments. For vector output, spaces and line breaks are inserted to make the
printout more readable.

The major text input and output operations in Parallaxis are shown below (ASCII
data). I/O operations do not generate run-time errors (e.g. in case of inappropriate
data to be read or in case of insufÞcient disk space during a write operation). Instead,
the scalar boolean variable Done is set according to the success of the I/O operation.
This variable can be checked to perform appropriate actions, in case its value is FALSE.
When reading strings, integers, cardinals, reals, or booleans, the scalar character
variable termCH is set to the next unread character in the input stream, which was
responsible for terminating the read operation. EOL is a constant of type character,
which stands for the system-dependent end-of-line character.

Numbers are printed right-adjusted (add leading blanks), while strings/booleans
are printed left-adjusted (add trailing blanks).

WriteLn; Start a new line (no arguments)
Write(c); Write character c
WriteString(s) Write string s
WriteInt(i,l); Write integer i using l print spaces min.
WriteCard(c,l); Write cardinal c using min. l print spaces min.
WriteReal(r,l); Write real r using l print spaces min.

DEFINITION MODULE sample;
 EXPORT myproc;
 PROCEDURE myproc(VAR i:
INTEGER);
END sample.

IMPLEMENTATION MODULE sample;
 PROCEDURE myproc(VAR i:
INTEGER);
 BEGIN
 i := 2*i + 1
 END myproc;
END sample.

MODULE mymain;
FROM sample IMPORT
myproc;
VAR k: INTEGER;
BEGIN
 k:=0;
 myproc(k);
END mymain.

1.13 Control Structures 25

WriteFixPt(r,l,m); Write real r using l print sp. min. and m decimals
WriteBool(b,l); Write boolean b using l print spaces min.

Read(c); Read character c
ReadString(s) Read string s
ReadInt(i); Read integer i
ReadCard(c); Read cardinal c
ReadReal(r); Read real r
ReadBool(b); Read boolean b

OpenOutput(s); Open file with name s for writing
(following write operations write to file)

CloseOutput; Close file, redirect output back to stdout
OpenInput(s); Open file with name s for reading

(following read operations read from file)
CloseInput; Close file, redirect input back to stdin

The following gives a number of sample write operations; read operations
work the same way.

VAR i: INTEGER;
 r: REAL;
...
WriteString("Hello"); (* write string on screen *)
WriteInt(i,7); (* write integer value using 7 print spaces *)
WriteLn; (* start writing in a new line *)
OpenOutput("myfile"); (* open file, redirect output to file *)
 WriteString("Hello");(* write string to file *)
 WriteFixPt(r,9,2); (* write r to file, 9 print spaces, 2 dec.*)
CloseOutput; (* close file, output back to screen *)
WriteString("Hello"); (* write string on screen *)

1.13 Control Structures
Sequential control structures are also identical to Modula-2. Please note, that in
Modula-2 (unlike Pascal) all control structures have to be terminated with keyword
END (with the exception of REPEAT, which has a different terminating keyword) and all
procedures/functions repeat the procedure name with the Þnal END (see the following
examples). All control structures may be used with scalar or vector arguments.

IF x=0 THEN y:=1; z:=5 FOR x:=1 TO 10 DO
 ELSE y:=2 y:=2*y
END; END;

WHILE x>0 DO REPEAT
 x:=x-1; y:=2*y x:=x DIV 2
END; UNTIL x<7;

26 1 Language DeÞnition

LOOP x:=x-1; CASE x OF
 IF x<7 THEN EXIT 1,3,7: z:=5; y:=3 |
 END; 8..15: z:=1 |
END; ELSE z:=3; y:=4

END;

PROCEDURE abc(VAR c:CHAR); PROCEDURE def(x: INTEGER): INTEGER;
(* reference parameter *) (* value param. + return value *)
BEGIN (* procedure *) BEGIN (* function *)
 ... RETURN(x+1)
END abc; END def;

1.14 Relation to Modula-2
Parallaxis is a true extension of sequential Modula-2, with one exception. Nesting of
local modules (these are nested modules within the same Þle) is not allowed, as an
implementation restriction. However, nested imports of several modules are possible.

Besides this limitation, there are also some sequential extensions to the Modula-2
syntax. First, a comparison may have an arbitrary number of expressions. This allows
range checks not possible in Modula-2, like the following:

IF 7 < x < 12 THEN ... END;

Next, the power operator Ô**Õ has been included. It is also possible to specify
constant records or constant arrays by using the type name as a function identiÞer
(only for record and arrays of simple types). This is a useful feature for initializing
record or array variables:

TYPE colorR = RECORD
 red, green, blue: INTEGER;
 END;
 colorA = ARRAY [1..3] OF INTEGER;
VAR c: colorR;
 d: colorA;
...
c := colorR(255,255,0);
d := colorA(0,255,255);

Like in the programming language C, the number and string contents of the
command line parameters can be read in Parallaxis:

VAR i : INTEGER;
 buf: ARRAY [1..20] OF CHAR;
...
FOR i:=1 TO argc DO
 argv(i,buf);
 WriteString(buf); WriteLn;
END;

Mathematical and I/O operations are pre-deÞned in Parallaxis and do not have to
be explicitly imported, as in Modula-2. This is necessary, since all the procedures and
functions may take either scalar or vector parameters.

1.15 EfÞciency 27

There is some confusion about the MOD operator in Modula-2 and C
implementations. In Parallaxis, the result of a modulo operation will always be
positive, especially an expression like (-1) MOD 5 equals 4 in Parallaxis (as does 1
MOD (-5)), and not -1 as in C. This feature is heavily used in connection specifications,
e.g. to construct a torus:

CONFIGURATION ring[0..max-1];
CONNECTION left: ring[i] -> ring[(i-1) MOD max];

1.15 Efficiency
Most of the following comments apply only to the generation of parallel code for a
SIMD system and not for the simulation on a single-processor workstation. Naturally,
some Parallaxis statements require more computation time than others. This overview
summarizes remarks made throughout the text.

1. PE Data Exchange
structured data exchange may be faster than unstructured data exchange
1.a especially a structured data exchange on a grid may be much faster

(if it corresponds to the hardware, e.g. 100 times on a MasPar MP-2
system)

1.b a structured data exchange on a torus may be as fast as on a grid,
only if the torus size equals a possible torus in hardware

1.c using the open configuration construct will cause some run-time
overhead, since the connections have to be initialized

2. Reduction
2.a reduction operations require log2 n steps for n PEs, each step

comprising a data exchange and an arithmetic operation (in general
this data exchange will be unstructured)

2.b using a data exchange with reduction may be very expensive and
should therefore be avoided if possible (connection groups may
have to be executed sequentially)

3. Front End Data Exchange
data exchange to and from the front end (LOAD and STORE), as well as read
and write operations with vector data require n steps for n PEs
(sequential execution)

4. Broadcasting
4.a broadcasting a single value from the front end to all PEs requires

only 1 step
4.b broadcasting a single value from one PE to all other PEs requires 2

steps (1 from PE to front end plus 1 from front end to all PEs)

28 1 Language DeÞnition

Chapter 2

Applications

The following sections demonstrate a number of sample algorithms programmed in
Parallaxis-III. They cover a broad range of application areas and should inspire to get the
feeling of data parallel programming.

2.1 Basic Applications

2.1.1 Cellular Automata

Cellular automata are an application area well suited to SIMD systems. Every cell can be
assigned a processor and carries out the same processing instructions. One of the most
prominent cellular automata is Conway's ÔGame of LifeÕ, which is a two-dimensional
structure changing in time. The cellular automaton shown here is simpler and only one-
dimensional; however, it generates a two-dimensional image during execution (one line
on every iteration). The processing instructions are conceptually simple: Every cell has
only two possible states and computes its successor state from an exclusive-or of the
states of its left and right neighbor. The middle cell is initialized with TRUE (printed as
ÔXÕ), while all of the other cells are initialized with FALSE (printed as empty spaces).

MODULE cellular_automaton;
CONST n = 79; (* number of elements *)
 m = (n+1) DIV 2; (* number of loops := middle *)
CONFIGURATION list [1..n];
CONNECTION left: list[i] <-> list[i-1] :right;

VAR i : INTEGER;
 val: list OF BOOLEAN;
 c : list OF ARRAY BOOLEAN OF CHAR;
 (* = ARRAY[FALSE..TRUE] OF CHAR *)
BEGIN
 val := ID(list) = m; (* Init *)
 c[FALSE]:= " ";
 c[TRUE] := "X";
 FOR i := 1 TO m DO
 Write(c[val]);
 val := MOVE.left(val) <> MOVE.right(val);
 END;
END cellular_automaton.

The CONFIGURATION and CONNECTION declarations deÞne a doubly linked list of PEs.
For screen output of the current state of all PEs, every boolean state is converted to a

30 2 Applications

symbol of type CHAR. The complete character vector is then written to the screen
sequentially by a vector valued Write operation. The initialization of the main
program assigns the value TRUE only to the middle PE with number (n+1 DIV 2); all
other PEs receive the value FALSE. Finally, there is a scalar loop which prints the
current state and calculates the next cell state in each pass, using data exchange with
the left and right neighbors.

Figure 2.1 shows the states of this cellular automaton, in which time progresses
from top to bottom.

 X
 X X
 X X
 X X X X
 X X
 X X X X
 X X X X
 X X X X X X X X
 X X
 X X X X
 X X X X
 X X X X X X X X
 X X X X
 X X X X X X X X
 X X X X X X X X
 X X X X X X X X X X X X X X X X
 X X
 X X X X
 X X X X
 X X X X X X X X
 X X X X
 X X X X X X X X
 X X X X X X X X
 X X X X X X X X X X X X X X X X
 X X X X
 X X X X X X X X
 X X X X X X X X
 X X X X X X X X X X X X X X X X
 X X X X X X X X
 X X X X X X X X X X X X X X X X
 X X X X X X X X X X X X X X X X
X X

Figure 2.1: Output of cellular automaton

2.1.2 Generation of Fractals

The algorithm presented here is a problem that can be solved by a data parallel
program with the Ôdivide-and-conquerÕ method. This is, however, not possible with
all divide-and-conquer algorithms, since the different branches usually have to carry
out different program parts. The algorithm presented here generates a one-
dimensional fractal curve using midpoint displacement (see [Peitgen, Saupe 88]). It
starts with a straight line, which has its midpoint displaced up or down according to a
weighted random value. Two line segments with different slopes arise from this
process, and these are handled recursively in parallel in exactly the same way during
the following steps (see Figure 2.2). The number of line segments to be processed
doubles at every step, until the required resolution is reached. The processor structure
used here is a binary tree structure. Beginning with the root, in each step the following
tree level is activated until the leaves are reached. After computing the leaf level, the
program prints the result values of the whole tree and terminates. Since with the
exception of the communication there is only one tree level active at a time, only half as
many PEs would be sufÞcient with a more complicated connection structure.

A simple tree structure is declared in the Parallaxis program, through which start
and end points of the lines are passed (Ô**Õ denotes the exponential operator). Only
procedure MidPoint is shown, where the actual processing takes place. The tree levels
are activated successively, and the midpoint displacement is carried out for each level

2.1 Basic Applications 31

(using function Gauss not shown here, which returns a gaussian distributed random
value). While the leaves have not yet been reached, the data values low and high are
passed to the child nodes. In this method, the left child receives the values low and x
as the start and end points of its line segment, while the right child receives x and
high.

CONFIGURATION tree [1..maxnode];
CONNECTION lchild : tree[i] <-> tree[2*i] :parent;
 rchild : tree[i] <-> tree[2*i+1] :parent;

VAR low, high, x: tree OF REAL;

PROCEDURE MidPoint(delta: REAL; level: INTEGER);
BEGIN (* select level *)
 IF 2**(level-1) <= ID(tree) <= 2**level-1 THEN
 x := 0.5 * (low + high) + delta*Gauss();
 IF level < maxlevel THEN
 SEND.lchild (low,low); (* values for children *)
 SEND.lchild (x,high);
 SEND.rchild (x,low);
 SEND.rchild (high,high);
 END;
 END;

END MidPoint;

The computation time required for this program is log2 n steps for n leaf nodes
(equal to the tree's height). Figure 2.3 shows a fractal curve generated by this program
with 127 PEs, while Figure 2.3 shows the beginning of another fractal number
sequence interpreted as fractal music.

Figure 2.2: Divide-and-conquer implemented with tree topology

Figure 2.3: Fractal curve generated by program

starting
state

after 1st
step

after 2nd
step

after nth
step

PEs Arranged as a Binary Tree

32 2 Applications

2.1.3 Sorting

A number of different SIMD algorithms exist for the problem of sorting. The
Ôodd-even transposition sortÕ (OETS) is presented here as a representative,
which can be understood as a parallel version of bubble-sort. OETS sorts n data
elements with n PEs in n steps. Figure 2.5 shows the progression of the parallel
algorithm. Every PE holds one of the numbers to be sorted. During processing,
the algorithm differentiates between odd and even steps. In odd steps, all of the
PEs with odd identiÞcation numbers compare their element values with that of
their right neighbor (PEs: 1Ð2, 3Ð4, 5Ð6, etc.) and carry out a data exchange if the
value of their own element is larger than that the one of their neighbor. In the
even steps, all of the PEs with even identiÞcation numbers carry out an
analogous comparison and, if necessary, a data exchange with their right
neighbor (PEs: 2Ð3, 4Ð5, 6Ð7, etc.). After n iterations, the list is sorted. The right
part of Figure 2.5 visualizes the algorithm, with each line in the image
representing the current state of the list of PEs, while the time is progressing
from top to bottom. Each pixel in a line is represented by a gray value according
to its data value (low values are dark, high values are bright). In the beginning
(top line), the gray values (data values) are unsorted, while they become slowly
disentangled during progression of the algorithm, until the bottom line contains
the gray values in perfect order. The movement of individual cells to the left or
right reminds of bubble-sort.

In the Parallaxis program, Þrst the variable lhs determines whether a PE is
in the role of the left or the right partner of a comparison. This role changes for
each loop iteration. During each pass, the PEs get the data values of their left or
right neighbor in comp. The partner on the left-hand side uses the right

Figure 2.4: Fractal music

Figure 2.5: Example of odd-even transposition sorting

Numbers distributed among the PEs

4 1 5 2 3 3. odd

4. even

Steps:

4 5 2 1 3

4 5 1 2 3 2. even

1. odd

1 4 2 5 3

1 2 4 3 5

1 2 3 4 5

5. odd

2.1 Basic Applications 33

neighbor's value for comparison, while the partner on the right-hand side uses
the value of its left neighbor. The complicated comparison Ôlhs = (comp<val)Õ
is true for the left PE partner when the right comparison value is greater than its
own value; it is also true for the right PE partner, if the left comparison value is
smaller than its own value. So a single key comparison is sufÞcient for all PEs to
Þnd out where swapping of data values are required. By applying a more
complex compound topology, the program could be optimized further, such
that only a single data exchange operation would be required for each pass
through the loop.

MODULE sort; (* Odd-Even Transposition Sorting *)
CONST n = 10;
CONFIGURATION list [1..n];
CONNECTION left : list[i] <-> list [i-1] :right;
VAR step : INTEGER;
 a : ARRAY[1..n] OF INTEGER;
 val,comp: list OF INTEGER;
 lhs : list OF BOOLEAN;

BEGIN
 WriteString('Enter 10 values: ');
 ReadInt(val);
 lhs := ODD(ID(list)); (* PE is left-hand-side of comparison *)
 FOR step:=1 TO n DO
 IF lhs THEN comp := RECEIVE.left(val)
 ELSE comp := RECEIVE.right(val)
 END;
 IF lhs = (comp<val) THEN val:=comp END;(* lhs & (comp< val) *)
 lhs := NOT lhs; (* or rhs & (comp>=val) *)
 END;
 WriteInt(val,5);
END sort.

Figure 2.6 shows the runtime behaviour of the OETS sorting algorithm for
sorting of 100 numbers. The graph displays the number of active PEs (y-axis)
over time (simulated program steps on x-axis). The PE load curve shows a
continuous high processor utilization with repetitive steps at half load,
reßecting the IF statement.

Figure 2.6: Processor utilization of the sorting algorithm

34 2 Applications

2.2 Image Processing
Many image processing operations are ideal for SIMD processing. This holds
especially for local operators, which use image data only from a limited neighborhood
with fast data exchange. We demonstrated the versatility of our approach for a wide
range of image operations in a textbook (Br�unl et al.: Parallele Bildverarbeitung), which
is also very well suited for course work in this area. Two of these operators will be
discussed in the following.

2.2.1 Laplace Filter

The Laplace operator is one possible operator for emphasizing edges in a gray-scale
image (edge detection). The operator carries out a simple local difference pattern and
is therefore well suited to parallel execution. The Laplace operator is applied in
parallel to each pixel with its four neighbors. Figure 2.7 shows the application of the
Laplace operator with a subsequent threshold.

 A procedure for the Laplace operator with threshold in Parallaxis, using an open
grid structure is deÞned in the following:

CONFIGURATION grid[*],[*]; (* open grid *)
CONNECTION north: grid[i,j] <-> grid[i-1,j] :south;
 east : grid[i,j] <-> grid[i,j-1] :west;
...
PROCEDURE Laplace_thres(x: grid OF INTEGER): grid OF BOOLEAN;
VAR temp: grid OF INTEGER;
BEGIN
 temp := 4*x -MOVE.north(x) -MOVE.south(x)
 -MOVE.east (x) -MOVE.west (x);
 RETURN temp > 150;
END Laplace_thres;

The data from neighbor PEs is obtained by local data exchange operations, which
are directly used in the arithmetic expression to be returned. This simple procedure
does not handle range limits for gray-scale values, e.g. [0..255].

Figure 2.7: Edge detection with Laplace operator

–1

–1

–1 4 –1

2.2 Image Processing 35

2.2.2 Dithering

Dithering transforms a gray scale image to a binary image by converting the original
gray scale intensities to black and white patterns. The apparent increase of intensity
levels created by the patterns is being traded against the lower resolution in the
binary image. A simple technique with Þxed patterns is ordered dithering or halftoning.
Figure 2.8 shows dithering with 2×2 patterns, enabling the use of Þve different
intensities.

The following program is a parallel implementation of ordered dithering. The
computation is actually performed only on every fourth PE. Three quarters of the PEs
remain inactive, while only the gray scale values of the PEs in the upper left corners of
each 2×2 pattern are used. The binary result pattern is set according to this gray scale
value. A constant threshold (thres) is used to divide the whole gray scale range in Þve
areas.

The binary result value for the upper left position (res) is set (black pixel) if the gray
scale input value is less than the threshold. The binary result value for the right
neighbor is set (black pixel) if the gray scale input value is less than three times the
threshold. The remaining two neighbors are determined the same way, according to
the patterns in Figure 2.8. The movement of the neighbor pixels to the right position is
performed by standard procedure SEND (moving data to inactive PEs).

PROCEDURE dither_ordered(img: grid OF gray):
 grid OF binary;
CONST thres = g_white DIV 5;
VAR res: grid OF binary;
BEGIN
 IF ODD(DIM(grid,2)) AND ODD(DIM(grid,1)) THEN
 res := img < thres; (* upper left corner *)
 SEND.right (img < 3*thres,res);
 SEND.down (img < 4*thres,res);
 SEND.down_r(img < 2*thres,res);
 END;
 RETURN res;
END dither_ordered;

Figure 2.8: Dithering with 2x2 pattern

Figure 2.9: Ordered dithering

Intensity 0 Intensity 1 Intensity 2 Intensity 3 Intensity 4
black white

36 2 Applications

The resulting image of ordered dithering for 2×2 patterns can be seen in Figure 2.9.
Larger patterns, e.g. 3×3 or 4×4, may also be used.

2.3 Simulation
Many simulation models require only SIMD style computation and, furthermore,
exhibit a local data exchange pattern. The simulation presented here models a very
simpliÞed behavior of cars on a single lane street. If the car concentration exceeds a
certain threshold, sudden and unmotivated trafÞc jams occur.

For this simulation in Parallaxis, two disjoint conÞgurations have been used. One
conÞguration for the cars and one for the street segments. Cars may not take over
each other, so they keep their linear order. The street is modeled as a closed ring.

CONFIGURATION cars[0..max_cars-1];
CONNECTION
 next: cars[i] <-> cars[(i+1) MOD max_cars] :back;

CONFIGURATION street[0..width-1];

VAR pos, dist,
 speed, accel: cars OF REAL;
 collision : cars OF BOOLEAN;
 my_car : street OF BOOLEAN;
 time, z : INTEGER;

At initialization all cars are started at equal distance across the street.
pos := FLOAT(DIM(cars,1)) / FLOAT(max_cars);

The simulation itself is a large FOR-loop, which generates one graphics line for each
iteration. If there is sufÞcient space in front of a car, it accelerates up to a maximum
speed by a constant value plus a small random term. The randomness prevents all
cars from maintaining identical distances from each other. Collisions are detected in
parallel by measuring the distance of all pairs of subsequent cars. They cause a
sudden stop, from which the cars can again accelerate in the subsequent simulation
step. The integration required for determining velocity and position from acceleration
has been simpliÞed to summation.

FOR time := 1 TO steps DO
 ... (* show "collision" at line "time" *)
 my_car := DIM(street,1) =
 TRUNC(pos<:0:> * FLOAT(width));
 ... (* show "my_car" at line "time" *)
 dist := MOVE.back(pos) - pos;
 IF dist < 0.0 THEN dist := dist + 1.0 END;
 (* close street to loop *)

 collision := dist < 0.0;

 IF collision THEN speed := 0.0;
 ELSE (* no collision, accelerate *)
 accel := max_accel + rand_fac *
 (RandomReal(cars)-0.5);

 (* brake, if necessary *)
 IF dist < min_dist THEN accel := - max_accel END;

2.3 Simulation 37

 (* update speed, apply speed limit *)
 speed := min(speed + accel, max_speed);

 (* do not back up on autobahn ! *)
 IF speed < 0.0 THEN speed := 0.0 END;

 (* update position *)
 pos := pos + speed;

 (* leaving right, coming back in left *)
 IF pos >= 1.0 THEN pos := pos - 1.0 END;
 END;
END;

A sample simulation run of the trafÞc program is shown in Figure 2.10. The street is
modeled as a closed ring, displayed as a horizontal line, while time ßows from top to
bottom in the Þgure. Standing cars are marked as bright spots. Also, the route of one
individual car is shown, starting in the upper left corner. It is easy to recognize the
acceleration phase of the individual car (parabolic curve), leading to a phase of
continuous speed (straight line). Sudden breaks occur due to heavy trafÞc, simply
caused by too many cars on the street. Several spontaneous trafÞc jams occur in this
simulation, all slowly propagating in the direction opposite to the driving direction.
Some congestions are increasing, while others are decreasing.

Figure 2.10: Simulation of trafÞc congestion

38 2 Applications

Chapter 3

Compiler and Debugger

Several Compilers and a source-level Debugger are the tools for the Parallaxis
environment. The debugger also contains the features for performance analysis,
which used to be a separate tool in earlier versions.

Figure 3.1 shows the interaction of the Parallaxis tools (shaded boxes) with
standard Unix tools (white boxes) on workstations and the MasPar massively parallel
system.

3.1 Compiler
We have developed several compilers for Parallaxis-III. Here, the compiler for
generating sequential C-code (simulation system) will be discussed. There are further
Parallaxis compilers for the MasPar MP-1/MP-2 (SIMD) and the Intel Paragon
(MIMD, programmed in SPMD mode) or workstation clusters using PVM (parallel

Figure 3.1: Parallaxis Tools

Parallaxis source program

C program MPL program

seq. p3 compiler par. p3 compiler

gnu C compiler MPL compiler

sequential executable parallel executable

run xp3gdb debugger run MPPE debugger

40 3 Compiler and Debugger

virtual machine). All compilers generate C code (or MPL code in case of the MasPar),
so a subsequent compilation step is necessary to generate object code.

The Cocktail compiler construction tools from GMD/Univ. Karlsruhe have been
used to build the Parallaxis-III compilers. The compiler option list is shown in Figure
3.2.

NAME
 p3 -- Parallaxis-III Compiler User Interface V0.5

DESCRIPTION
 Compile some Parallaxis-III programs and call backend compiler.

SYNOPSIS
 p3 [options] [file] ...

OPTIONS
 -C Generate C-code for simulation (default)
 -casts Generate type casts to make C-programs lint free
 -cc name Name of the backend compiler to use
 -g Generate debug code (also passed to backend compiler)
 -h, -H, -help Print this usage
 -headers Generate header files for imported modules
 -Ipath Add path to import/include list (Par. and backend)
 -indent i Set indent of generated code to i blanks
 -koption Pass option directly to backend compiler
 -Lpath Add path to library path (backend only)
 -m, -mem Print statistics about used memory
 -MPL, -mpl Generate MPL-code for MasPar
 -n, -nocompile Don't compile, just show comands (implies -v)
 -nop3inc Don't use standard include paths
 -nop3lib Don't use standard library paths
 -nodefaults Same as -nop3inc -nop3lib
 -o name Name of the generated executable
 -p Parallaxis compile only, don't call backend compiler
 -c Paral. and backend compile only, don't call linker
 -Ppath Add path to import list (Parallaxis only)
 -PVM, -pvm Generate PVM-code for Paragon
 -r, -rchecks Don't generate runtime range checks
 -s, -small Generate small MPL-only model (max. 128KB)
 -t, -time Print statistics about used time (Parallaxis only)
 -tt, -total Like -t, but also for backend compiler
 -v Print version of p3 and the resulting compiler calls
 -vv Like -v, passes also -v to backend compiler
 -w Don't generate warnings
 -ww Like -w, passes also -w to backend compiler

OPTIONS ONLY AVAILABLE DURING DEVELOPMENT
 -Zw Write code tree
 -Zs Write symbols tree
 -Zq Query code tree
 -Zc Check code tree
 -Z1 Run parser only, no semantic check
 -Z2 Run parser and semantic check only, no code generation

 Every other option is passed unchanged to the backend compiler.

ENVIRONMENT
 P3CC Name of the backend compiler
 P3INC ":"-seperated list of paths where to find sources
 P3LIB ":"-seperated list of paths where to find libraries
 P3OPT Default options always to set

Figure 3.2: Compiler options

3.2 Debugger 41

The conÞgurations of Parallaxis, i.e. the PEs, are implemented by linear arrays.
Each conÞguration keeps track about which (virtual) PEs are active and which are not
(the "active-set" of the conÞguration).

3.2 Debugger
A compiler just by itself is not sufÞcient for parallel program development or even for
education purposes. Therefore, we decided to develop also a source level debugger
for Parallaxis. Despite starting from scratch, we used the gnu debugger gdb and its
graphics interface xxgdb as a base. First, this C debugger had to be taught to behave as
if being a Parallaxis source level debugger. This affects not only the source line
window and the positioning of break points, but also (and more difÞcult) the
presentation of Parallaxis data types, especially vector data.

The command names are:

p3gdb for the Parallaxis/gnu debugger in text mode
xp3gdb for the Parallaxis/gnu debugger in graphics mode

Figure 3.3 shows an excerpt of the debugger man page, while Figure 3.4 shows a
typical sample debugging session.

Second, we added a number of graphics facilities. Especially for large vectors (e.g.
two-dimensional image or simulation data), it is not very entertaining to examine
large lists of data. Instead we provided the possibility to look at vector data directly in
a graphics window. One- or two-dimensional data is displayed in a window with
little boxes representing individual PEs (Figure 3.5). Each box is colored (rainbow
colors or gray scale) according to its data value, and drawn hollow if inactive. Position
numbers may be added and the data range may be Þxed. The vector window can
display a static state (command print) or adapt dynamically to changing data
(command display).

The PE usage may also be displayed graphically. Here, the program is executed in
single step mode and the number of active PEs is determined at each step. Due to the
overhead of stepwise evaluation, execution time slows down when using this feature.
The PE usage values produce a tell-tale curve of the application programÕs parallel
characteristics and are a valuable help in localizing critical program regions for
optimization of the execution time. Figure 3.6 shows the PE usage curve for the prime
sieve sample program.

MODULE prime;
CONFIGURATION list [2..200];
CONNECTION (* none *);
VAR next_prime: INTEGER;
 removed : list OF BOOLEAN;
BEGIN
 REPEAT
 next_prime:= REDUCE.FIRST(DIM(list,1));
 WriteInt(next_prime,10); WriteLn;
 removed := DIM(list,1) MOD next_prime =0
 UNTIL removed
END prime.

42 3 Compiler and Debugger

NAME
 xp3gdb - X window system interface to the p3gdb debugger.

SYNOPSIS
 xp3gdb [-toolkitoption ...] [-xp3gdboption ...] [-
 gdboption ...] [objfile [corefile]]

DESCRIPTION
 Xp3gdb is a graphical user interface to the gdb debugger
 under the X Window System. It provides visual feedback and
 mouse input for the user to control program execution
 through breakpoints, to examine and traverse the function
 call stack, to display values of variables and data struc-
 tures, and to browse source files and functions.
...
 Special Vector Commands
 PE USAGE
 Pop up a window with a graphical representation of the
 amount of processors in use for a special configura-
 tion. When clicking in the command widget on top of the
 window, a menu will pop up. The style of view can be
 changed through the Settings entry between solid and
 point, absolute and relative. Scale lines can be
 activated. Also horizontal zooming can be modified.
 Vertical zooming is done automatically, depending on
 the window size.

 Through the menu entry Save values the current usage
 values can be saved into a file. The format of the file
 is:
 # Maximum:
 integer
 # PEs in use follow this line
 integer
 integer
 ...
 Lines starting with # are comment lines. The first
 non-comment line specifies the total number of prozes-
 sors within this configuration, all other lines specify
 the number of active prozessors through the steps done
 so far.

 print VECTOR
 Pop up a window with a graphical display of the current
 content for a vector variable. Currently only grids and
 lists are supported for processor configurations. All
 other configurations will be mapped to one of these.
 When clicking in the command widget on top of the win-
 dow, a menu will pop up with various selections.

 disp VECTOR
 Will pop up the same window as for print VECTOR, except
 that the displayed variable will be refreshed automati-
 cally each time execution is stopped.

Figure 3.3: Debugger commands

3.2 Debugger 43

Figure 3.4: Debugger Control Window

Figure 3.5: Vector display

44 3 Compiler and Debugger

This tiny program represents the parallel version of the sieve of Eratosthenes. The
list of active PEs resembles the candidates for prime numbers not yet removed. In the
beginning all PEs are active, which is reßected by the initial peak in Figure 3.6. But in
each step of the REPEAT loop, variable removed becomes true for all multiples of the just
found prime, whose PEs will no longer be active in the next iteration of the loop. This
explains the exponentially-like decrease in the PE usage diagram.

Figure 3.6: PE usage

Chapter 4

Appendix

4.1 Data Types
Parallaxis supports all data types available in Modula-2:

INTEGER integer numbers (4 bytes)
CARDINAL integer numbers greater or equal to 0 (4 bytes)
REAL ßoating point numbers (8 bytes)
CHAR character values (1 byte),

ordinal values ranging from 0 to 255
BOOLEAN truth values (1 byte), equal to (FALSE,TRUE)
ARRAY .. OF .. array of data values
RECORD .. END collecting several entries to a structured type
SET OF .. set of a simple type
BITSET equivalent to SET OF [0..31]
POINTER TO .. pointer to a type, data has to be allocated dynamically
PROCEDURE (..) procedure or function type,

e.g.TYPE function = PROCEDURE (REAL): REAL;

enumeration enumerating all values of a type (1 byte)
e.g. TYPE day = (mo, tu, we, th, fr, sa, su);

subrange limited range of values (from 1 to 4 bytes)
e.g. TYPE workday = [mo..fr];
 digit = [0..9];

4.2 Built-in Functions and Procedures
All built-in functions and procedures may be called with either scalar or vector
arguments. The return value of such a function is scalar if its argument is scalar,
and vector if its argument is vector. Type INTEGER always includes type CARDINAL.

In Modula-2, mathematical functions and I/O-procedures are separate
modules and their objects have to be imported. In Parallaxis, however, all these
functions and procedures can be used with either scalar or vector arguments.
Therefore, they had to be included as built-in functions and procedures.

General Functions

FLOAT(i) return real value of integer i
TRUNC(r) return value of real r, truncated to an integer

46 4 Appendix

ABS(i) return absolute value of i, type Integer or Real

CHR(i) return character with ordinal number i
VAL(t,i) return value of type t with ordinal number i
ORD(c) return ordinal number of c for character or

enumeration type, starting with 0

MAX(t) return maximum value of type t
MIN(t) return minimum value of type t
SIZE(t) return number of bytes required for a variable of type t
HIGH(a) return upper bound of open array a

ODD(i) return "i MOD 2 <> 0", type integer or char
EVEN(i) return "i MOD 2 = 0", type integer or char
CAP(c) return capital character, corresponding to c

General Procedures

NEW(p) allocate memory for a new data element, set p to
address

DISPOSE(p) deallocate memory for the element pointed to by p
pointer data type is POINTER TO base_type
nil element is NIL
for NEW and DISPOSE, it is required (like in Modula-2) to
import procedures ALLOCATE and DEALLOCATE from
module STORAGE

DEC(i) i := i Ð1, type integer or character
DEC(i,n) i := i Ðn, type integer or character
INC(i) i := i +1, type integer or character
INC(i,n) i := i +n, type integer or character

EXCL(s,n) exclude element n from set s
INCL(s,n) add element n to set s

HALT terminate program execution

Command Line Arguments

PROCEDURE argc: CARDINAL;

number of command line parameters
PROCEDURE argv(index: CARDINAL; VAR arg: ARRAY OF CHAR);

get command line parameters (range 1..argc)

Mathematical Functions

The following functions have real arguments and return real values (scalar or
vector).

pi constant π = 3.1415926535897932385

sqrt(r) square root,
exp(r) exponent, er

ln(r) natural logarithm, ln(r)

r

4.2 Built-in Functions and Procedures 47

sin(r) sine
arcsin(r) arcus sine, range -1 .. +1
cos(r) cosine
arccos(r) arcus cosine, range -1 .. +1
tan(r) tangent
arctan(r) arcus tangent, range Ðπ/2 .. +π/2
arctan2(r1,r2) arcus tangent of r1 / r2 in range Ðπ .. +π

The following functions have real arguments and return integer values.
ceiling(r) round r to the next higher integer
floor(r) round r to the next lower integer
round(r) round r to the closest integer

The following functions generate random numbers. For the parallel versions, a
vector variable may be used in lieu of a conÞguration name conf .

RandomInt() generate a scalar integer random (MIN(INTEGER) ..
MAX(INTEGER))

RandomCard() generate a scalar cardinal random (0..MAX(CARDINAL))
RandomReal() generate a scalar real random number (0.0 .. 1.0)
RandomChar() generate a scalar character random value (CHR(0..255))
RandomBool() generate a scalar boolean random value (TRUE or FALSE)

RandomInt(conf) generate a vector integer random (0..MAX(INTEGER))
RandomCard(conf) generate a vector cardinal random (0..MAX(CARDINAL))
RandomReal(conf) generate a vector real random number (0.0 .. 1.0)
RandomChar(conf) generate a vector character random value (CHR(0..255))
RandomBool(conf) generate a vector boolean random value (TRUE or FALSE)

Input/Output Procedures

The following procedures may take either scalar or vector arguments. I/O
operations do not generate run-time errors, but set the scalar boolean variable
Done according to the success of the operation. All read operations besides Read
set the scalar character variable termCH.

Vector data is printed in ascending ID order for all active PEs. Some
rudimentary formatting is performed, when printing vector data. All integer,
real, boolean, or string vector data (but not vector characters) will be separated
by blanks when printed. A carriage return (new line) is inserted after the end of
each dimension (e.g. this will print a two-dimensional vector in matrix format).

Numbers are printed right-adjusted (add leading blanks), while strings/booleans
are printed left-adjusted (add trailing blanks).

WriteLn Start a new line (no arguments)
Write(c) Write character c
WriteString(s) Write string s
WriteInt(i,l) Write integer i using l print spaces
WriteCard(c,l) Write cardinal c using l print spaces
WriteReal(r,l) Write real r using l print spaces
WriteFixPt(r,l,m) Write real r using l print spaces and m decimals
WriteBool(b,l) Write boolean b using l print spaces

Read(c) Read character c

48 4 Appendix

ReadString(s) Read string s
ReadInt(i) Read integer i
ReadCard(c) Read cardinal c
ReadReal(r) Read real r
ReadBool(b) Read boolean b

The following procedures take scalar arguments only.

OpenOutput(s) Open Þle with name s for writing
(if s is empty, then the user is prompted for a Þle name;
following write operations write to Þle)

CloseOutput Close Þle, redirect output back to stdout
OpenInput(s) Open Þle with name s for reading

(if s is empty, then the user is prompted for a Þle name;
following read operations read from Þle)

CloseInput Close Þle, redirect input back to stdin

Vector Functions

For the following functions and procedures, who take a conÞguration name as
argument, a vector variable may be used in lieu of a conÞguration name.
Argument num is a positive integer, dims is a vector array of integers.

ID(conf) returns a vector of identiÞcation numbers from 1 to
LEN(conf) for configuration conf

DIM(conf,num) returns a vector of position numbers according to the
dimension declaration of conf, dimensions are
numbered from right to left from 1 to RANK(conf)

LEN(conf) returns the total number of PEs of a conÞguration
LEN(conf,num) returns the size of dimension num
RANK(conf) returns the number of dimensions
UPPER(conf,num) returns the upper bound of dimension num
LOWER(conf,num) returns the lower bound of dimension num
DIM2ID(conf,dims) transforms the appropriate number of dim-values into

the corresponding id-value, may be used with scalar or
vector parameters

MOVE.dir(val) data transfer in predeÞned direction dir, sender and
receiver have to be active

RECEIVE.dir(val) data transfer in predeÞned direction dir, only receiver
has to be active

REDUCE.func(val) reduces vector val to a scalar value, by applying func
(predeÞned: SUM, PRODUCT, MAX, MIN, AND, OR,
FIRST, LAST, or user function with two input
parameters and a return value of identical type)

Vector Procedures

ID2DIM(conf,num,dims) transforms an id-value into an array of corre-
sponding dim-values, may be used with scalar or
vector parameters

SEND.dir(val, var) data transfer in predeÞned direction dir, variable
var receives expression val, only sender has to be
active

4.3 Graphics Interface 49

4.3 Graphics Interface
X Window Graphics

Module Graphics provides a convenient interface in Parallaxis for generating
graphics, based on the X window system. Type CARDINAL restricts INTEGER to
positive numbers (≥ 0).

1 DEFINITION MODULE Graphics;
2 (* ** *)

3 (* created: T. Braunl, 12.Apr.94 *)

4 (* ** *)

5

6 FROM ImageIO IMPORT binary, gray, color;

7

8 TYPE window = CARDINAL;

9 CONST GrOK = 0;

10 GrWrongWindowSize = 1;

11 GrMemoryTrouble = 2;

12 GrWindowCreationFailure = 3;

13 GrNotExistingWindow = 4;

14 GrNoWindowSelected = 5;

15 GrWrongCoordinates = 6;

16 GrWrongColors = 7;

17

18 VAR GraphicsError : CARDINAL;

19 (* will be set to the outcome of each graphics operation, 0 = OK *)

20

21 PROCEDURE OpenWindow(title: ARRAY OF CHAR; width,height: CARDINAL): window;

22 PROCEDURE OpenWindowP(title: ARRAY OF CHAR; width,height: CARDINAL): window;

23 (* open new window, version "P" for private colormap *)

24 PROCEDURE CloseWindow(window_num: window);

25 PROCEDURE SelectWindow(window_num: window);

26 (* OpenWindow: Open a new window of specified title and size in *)

27 (* pixels, return window number, activate new window *)

28 (* OpenWindowP: same a OpenWindow, but use private colormap for *)

29 (* this window *)

30 (* CloseWindow: close window; SelectWindow: activate window *)

31

32 PROCEDURE GetScreenSize(VAR width,height: CARDINAL);

33 PROCEDURE GetWindowSize(VAR width,height: CARDINAL);

34 (* Returns size in pixels of whole screen or active window, resp. *)

35

36 PROCEDURE SetArea (c: VECTOR OF color);

37 PROCEDURE SetgArea(c: VECTOR OF gray);

38 PROCEDURE SetbArea(c: VECTOR OF binary);

39 PROCEDURE SetAreaXYZ (c: VECTOR OF color; x,y,zoom: INTEGER);

40 PROCEDURE SetgAreaXYZ(c: VECTOR OF gray; x,y,zoom: INTEGER);

41 PROCEDURE SetbAreaXYZ(c: VECTOR OF binary; x,y,zoom: INTEGER);

42 (* All active PEs write one pixel each, assuming a 2-dim. grid *)

43 (* configuration of appropriate size, image will be truncated or *)

44 (* left partly unchanged if PE grid size does not match image size *)

50 4 Appendix

45 (* origin is top left corner with coordinates 0, 0 *)

46 (* version "g" for gray data, version "b" for binary data *)

47 (* versions "XYZ" with offset and zoom (both pos. or neg.) *)

48 (* zoom range determines pixel size, negative zoom reduces size *)

49

50 PROCEDURE SetLine (c: VECTOR OF color; line: CARDINAL);

51 PROCEDURE SetgLine(c: VECTOR OF gray; line: CARDINAL);

52 PROCEDURE SetbLine(c: VECTOR OF binary; line: CARDINAL);

53 PROCEDURE SetLineZ (c: VECTOR OF color; line: CARDINAL; offset, zoom: INTEGER);

54 PROCEDURE SetgLineZ(c: VECTOR OF gray; line: CARDINAL; offset, zoom: INTEGER);

55 PROCEDURE SetbLineZ(c: VECTOR OF binary; line: CARDINAL; offset, zoom: INTEGER);

56 (* print PE data along specified line, top line has no. 0 *)

57 (* versions "Z" get offset and zoom according to specification *)

58 (* from SetArea routines. *)

59

60 PROCEDURE SetColumn (c: VECTOR OF color; col: CARDINAL);

61 PROCEDURE SetgColumn(c: VECTOR OF gray; col: CARDINAL);

62 PROCEDURE SetbColumn(c: VECTOR OF binary; col: CARDINAL);

63 PROCEDURE SetColumnZ (c: VECTOR OF color; col: CARDINAL; offset, zoom: INTEGER);

64 PROCEDURE SetgColumnZ(c: VECTOR OF gray; col: CARDINAL; offset, zoom: INTEGER);

65 PROCEDURE SetbColumnZ(c: VECTOR OF binary; col: CARDINAL; offset, zoom: INTEGER);

66 (* print PE data along specified column, leftmost line has no. 0 *)

67 (* versions "Z" get offset and zoom according to specification *)

68 (* from SetArea routines. *)

69

70 PROCEDURE SetColor (c: color);

71 PROCEDURE SetgColor(c: gray);

72 PROCEDURE SetbColor(c: binary);

73 (* Specify color for subsequent pixel/line/draw commands *)

74 (* "g" and "b" version for gray and binary data *)

75

76 PROCEDURE SetPixel(x,y: CARDINAL);

77 PROCEDURE GetPixel(x,y: CARDINAL): color;

78 PROCEDURE Line(x1,y1, x2,y2: CARDINAL);

79 (* scalar functions for writing or reading a single pixel *)

80 (* scalar line: straight line from x1,y1 to x2,y2 *)

81

82 PROCEDURE DrawAt(x,y: CARDINAL);

83 (* Set drawing position for subsequent drawing commands *)

84 (* initialized with lower left character position (1,1) *)

85 (* position will be updated by each drawing command *)

86

87 PROCEDURE Draw (c: CHAR);

88 PROCEDURE DrawString(s: ARRAY OF CHAR);

89 PROCEDURE DrawInt (i,l: INTEGER);

90 PROCEDURE DrawCard (c,l: CARDINAL);

91 PROCEDURE DrawReal (r: REAL; l: CARDINAL);

92 PROCEDURE DrawFixPt (r: REAL; l,m: CARDINAL);

93 PROCEDURE DrawBool (b: BOOLEAN; l:CARDINAL);

94 PROCEDURE DrawLn;

95 (* amount of l print spaces is always minimum *)

96 (* Draw character c in window *)

4.3 Graphics Interface 51

97 (* Draw string s in window *)

98 (* Draw integer/cardinal i in window *)

99 (* Draw real r in window *)

100 (* Draw with fix point, using m decimals *)

101 (* Draw boolean value b in window left adjusted *)

102 (* DrawLn set drawing position to new line *)

103 (* Total line width depends on used font ($PARALLAXIS_FONT), *)

104 (* new line vertical placement also. *)

105

106 END Graphics.

Image File Transfer

Module ImageIO contains a number of operations for reading images from Þles
and writing images to Þles (no X window interface is needed). The binary
versions of the PPM (portable pixel map) Þle format are used for color, gray
scale, and binary images.

1 DEFINITION MODULE ImageIO;
2 (* created: T. Braunl, Oct.94 *)

3 (* *** *)

4 (* read_c_image read color image in ppm P6 format *)

5 (* into a vector variable *)

6 (* read_g_image read gray image in ppm P5 format *)

7 (* read_b_image read binary image in ppm P4 format *)

8 (* *)

9 (* write_c_image write color image in P6 format *)

10 (* write_g_image write gray image in P5 format *)

11 (* write_b_image write binary image in P4 format *)

12 (* *)

13 (* PE-ID 1 (origin) is top left *)

14 (* *** *)

15

16 TYPE binary = BOOLEAN;

17 gray = [0..255];

18 color = RECORD

19 red, green, blue: gray

20 END;

21

22 CONST b_black = TRUE;

23 b_white = FALSE;

24 g_black = 0;

25 g_white = 255;

26 c_black = color(0, 0, 0);

27 c_white = color(255,255,255);

28 c_red = color(255, 0, 0);

29 c_green = color(0,255, 0);

30 c_blue = color(0, 0,255);

31

32 PROCEDURE read_c_image (VAR im: VECTOR OF color; filename: ARRAY OF CHAR;

33 VAR width,height: CARDINAL);

34 PROCEDURE read_g_image (VAR im: VECTOR OF gray; filename: ARRAY OF CHAR;

35 VAR width,height: CARDINAL);

52 4 Appendix

36 PROCEDURE read_b_image (VAR im: VECTOR OF binary; filename: ARRAY OF CHAR;

37 VAR width,height: CARDINAL);

38

39 PROCEDURE write_c_image (im: VECTOR OF color; filename: ARRAY OF CHAR;

40 width,height: CARDINAL);

41 PROCEDURE write_g_image (im: VECTOR OF gray; filename: ARRAY OF CHAR;

42 width,height: CARDINAL);

43 PROCEDURE write_b_image (im: VECTOR OF binary; filename: ARRAY OF CHAR;

44 width,height: CARDINAL);

45

46 END ImageIO.

4.4 Parallaxis-III Syntax 53

4.4 Parallaxis-III Syntax
Parallaxis-III Syntax is speciÞed in EBNF (Extended Backus-Naur-Form).
1 CompilationUnit = ProgramModule

| DeÞnitionModule
| ImplementationModule
| ForeignModule .

2 ProgramModule = MODULE Ident ';' { Import } Block Ident '.' .
3 DeÞnitionModule = DEFINITION MODULE Ident ';'

{ Import } [Export] { DeÞnition } END Ident '.' .
4 ImplementationModule= IMPLEMENTATION MODULE Ident ';'

{ Import } Block Ident '.' .
5 ForeignModule = FOREIGN MODULE Ident ';'

{ Import } [Export] { DeÞnition } END Ident '.' .

6 DeÞnition = CONFIGURATION {ConÞgDeclaration ';'}'
| CONNECTION { ConnectionDeclaration ';'}
| CONST {ConstantDeclaration ';'}
| TYPE {Ident ['=' GeneralType] ';'}
| VAR {VariableDeclaration ';'}
| ProcedureHeading ';' .

7 Import = [FROM Ident] IMPORT IdentList ';' .
8 Export = EXPORT [QUALIFIED] IdentList ';' .
9 Block = {Declaration } [BEGIN StatementSequence] END .
10 Declaration = CONFIGURATION {ConÞgDeclaration ';'}

| CONNECTION {ConnectionDeclaration ';'}
| CONST {ConstantDeclaration ';'}
| TYPE {TypeDeclaration ';'}
| VAR {VariableDeclaration ';'}
| ProcedureDeclaration ';' .

11 ConÞgDeclarartion = ConÞg {';' ConÞg } .
12 ConÞg = [Ident ConÞgRange

| Ident '=' Qualident ConÞgRange
| Ident ConÞgRange '=' Qualident] .

13 ConÞgRange = '[' ConstExpression '..' ConstExpression ']Ô
| '[' '*' ']' .

14 ConnectionDeclaration = TransferFunction
| FOR Ident ':=' Expression TO Expression DO
TransferFunction {';' TransferFunction } END .

15 TransferFunction = [Direction ':' Qualident '[' Source {',' Source }']'
('Ð>' Dest1 {',' Dest1} | '<Ð>' Dest2 {',' Dest2})]

16 Direction = Ident ['[' Source ']'] .
17 Source = Ident

| Integer
| String
| '*' .

18 Dest1 = [Discriminant] Qualident '[' DestExprList ']' .
19 Dest2 = [Discriminant] Qualident '[' DestExprList ']' :' Ident

['[' Expression ']'] .

54 4 Appendix

20 DestExprList = DestExpr {',' DestExpr } .
21 DestExpr = Expression

| Expression '..' Expression
| '*' .

22 Discriminant = '{' Expression '}' .

23 ConstantDeclaration = Ident '=' ConstExpression .
24 ConstExpression = Expression .
25 TypeDeclaration = Ident '=' GeneralType .
26 GenaralType = SimpleType

| GeneralArrayType
| GeneralRecordType
| SetType
| PointerType
| ProcedureType
| (VECTOR | Qualident) [Qualident] OF ScalarType .

27 ScalarType = SimpleType
| ScalarArrayType
| ScalarRecordType
| SetType
| PointerType
| ProcedureType .

28 GeneralArrayType = ARRAY SimpleType { ',' SimpleType } OF GeneralType .
29 GeneralRecordType = RECORD FieldListSequence1 END .
30 FieldListSequence1 = [FieldList1 { ';' FieldList1 }] .
31 FieldList1 = IdentList ':' GeneralType

| CASE [Ident] ':' Qualident OF Variant { '|' Variant}
[ELSE FieldListSequence2] END .

32 Variant = [CaseLabelList ':' FieldListSequence2] .
33 CaseLabelList = CaseLabels { Ô,' CaseLabels } .
34 CaseLabels = ConstExpression ['..' ConstExpression] .

35 ScalarArrayType = ARRAY SimpleType { ',' SimpleType } OF ScalarType .
36 ScalarRecordType = RECORD FieldListSequence2 END .
37 FieldListSequence2 = [FieldList2 {';' FieldList2 }] .
38 FieldList2 = IdentList ':' ScalarType

| CASE [Ident] ':' Qualident OF Variant { '|' Variant }
[ELSE FieldListSequence2] END .

39 SimpleType = Qualident
| Enumeration
| SubrangeType .

40 Enumeration = '(' IdentList ')' .
41 SubrangeType = [Qualident] '[Ô ConstExpression '..' ConstExpression ']' .
42 SetType = SET OF SimpleType .
43 PointerType = POINTER TO GeneralType .
44 ProcedureType = PROCEDURE [FormalTypeList] .
45 FormalTypeList = '(' [[VAR] FormalType { ';' [VAR] FormalType }] ')'

[':' [(VECTOR | Qualident) OF] Qualident .

4.4 Parallaxis-III Syntax 55

46 FormalType = [(VECTOR | Qualident) OF] [ARRAY OF] Qualident .
47 VariableDeclaration = IdentList ':' GeneralType .

48 ProcedureDeclaration = ProcedureHeading ';' Block Ident .
49 ProcedureHeading = PROCEDURE Ident [FormalParameters] .
50 FormalParameters = '(' [Parameter { ';' Parameter }] ')' [':' Qualident] .
51 Parameter = [VAR] IdentList ':' FormalType .

52 StatementSequence = Statement {';' Statement } .
53 Statement = [Assignment

| ProcedureCall
| IfStatement
| CaseStatement
| WhileStatement
| RepeatStatemen
| LoopStatement
| ForStatement
| WithStatement
| EXIT
| RETURN [Expression]
| AllStatement
| SendStatement
| LoadStatement
| StoreStatement] .

54 Assignment = Designator ':=' Expression .
55 ExprList = Expression { ',' Expression } .
56 Expression = SimpleExpression { RelationOperator SimpleExpression }.
57 RelationOperator = '=' | '#' | '<>' | '<' | '<=' | '>' | '>=' | IN .
58 SimpleExpression = ['+' | 'Ð'] Term { AddOperator Term } .
59 AddOperator = '+' | 'Ð' | OR .
60 Term = Power { MulOperator Power } .
61 MulOperator = '*' | '/' | DIV | MOD | AND | '&' .
62 Power = Factor { '**' Factor } .
63 Factor = Number

| String
| Set
| Designator [ActualParameters]
| MoveFunction
| ReceiveFunction
| ReduceFunction
| ArrayInitializer
| RecordInitializer
| '(' Expression ')'
| NOT Factor
| '~' Factor .

64 Set = [Qualident] '{' [Element { ',' Element }] '}' .
65 Element = ConstExpression ['..' ConstExpression] .
66 ActualParameters = '(' [ExprList] ')' .

67 MoveFunction = MOVE '.' DirSpeciÞer '(' Expression ')' .

56 4 Appendix

68 DirSpeciÞer = Ident ['[' Expression ']'] [':#' ReductIdent]
| '<<' Expression '>>' [':#' ReductIdent]
| '<:' Dimension { ',' Dimension } ':>' [':#' ReductIdent].

69 SendSpeciÞer = Ident ['[' Expression ']'] [':' StepSpeciÞer] [':#' ReductIdent]
| '<<' Expression '>>' [':#' ReductIdent]
| '<:' Dimension { ',' Dimension } ':>' [':#' ReductIdent] .

70 StepSpeciÞer = '(' Expression ')' | Qualident | Integer .
71 ReductIdent = AND | OR | Qualident .

72 ReceiveFunction = RECEIVE '.' DirSpeciÞer '(' Expression ')' .
73 ReduceFunction = REDUCE '.' ReductIdent '(' Expression ')' .

74 ArrayInitializer = Qualident '(' ExprList ')' .
75 RecordInitializer = Qualident '(' ExprList ')' .
76 ProcedureCall = Designator [ActualParameters] .

77 IfStatement = IF Expression THEN StatementSequence
{ ELSIF Expression THEN StatementSequence}
[ELSE StatementSequence] END .

78 CaseStatement = CASE Expression OF Case { '|' Case }
[ELSE StatementSequence] END .

79 Case = [CaseLabelList ':' StatementSequence] .

80 WhileStatement = WHILE Expression DO StatementSequence END .
81 RepeatStatement = REPEAT StatementSequence UNTIL Expression .
82 ForStatement = FOR Ident ':=' Expression TO Expression

[BY ConstExpression] DO StatementSequence END .
83 LoopStatement = LOOP [OF Qualident DO] StatementSequence END .

84 WithStatement = WITH Designator DO StatementSequence END .
85 AllStatement = ALL Qualident DO StatementSequence END .
86 SendStatement = SEND '.' SendSpeciÞer '(' Expression ',' Designator ')' .

87 LoadStatement = LOAD '(' Designator ',' Designator [',' Designator] ')' .
88 StoreStatement = STORE '(' Designator ',' Designator [',' Designator] ')' .
89 Designator = Qualident { << Expression >> | <: ExprList :>

| '.' Ident | '[' ExprList ']' | '^' } .
90 Dimension = Expression | '*' | '#' ReductIdent .

91 Qualident = Ident ['.' Ident] .
92 IdentList = Ident { ',' Ident } .
93 Ident = Letter { Letter | Digit } .
94 Letter = ('A' .. 'Z' | 'a' .. 'z' | '_') .
95 String = ' ' ' { Character } ' ' ' | ' " ' { Character } ' " ' .
96 Number = Integer | Real .
97 Integer = Digit { Digit } ['D']

| OctalDigit { OctalDigit } ('B' | 'C')

4.4 Parallaxis-III Syntax 57

| Digit { HexDigit } 'H' .
98 Real = Digit { Digit } '.Ô { Digit } [ScaleFactor] .
99 ScaleFactor = 'E' ['+' | 'Ð'] Digit { Digit } .
100 HexDigit = Digit | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' .
101 Digit = OctalDigit | '8' | '9' .
102 OctalDigit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' .

58 4 Appendix

4.5 Literature
[Br�unl 89] T. Br�unl, Structured SIMD Programming in Parallaxis, Structured

Programming, vol. 10, no. 3, July 1989, pp. 121-132 (12)

[Br�unl 91] T. Br�unl, Designing Massively Parallel Algorithms with Parallaxis,
Proceedings of the 15th Annual International Computer Software
& Applications Conference, compsac91, Sep. 1991, pp. 612-617 (6)

[Br�unl 93] T. Br�unl, Parallel Programming Ð An Introduction, Prentice Hall,
Englewood Cliffs NJ, 1993

[Br�unl, Feyrer, Rapf, Reinhardt 95] T. Br�unl, S. Feyrer, W. Rapf, M. Reinhardt,
Parallele Bildverarbeitung, Addison-Wesley, Bonn, 1995

[MasPar 91] MasPar Computer Corporation, MasPar Programming Language
(ANSI C compatible MPL) User Guide, Software Version 2.2, MasPar
System Documentation, DPN 9302-0101, Dec. 1991

[Peitgen, Saupe 88] H.-O. Peitgen, D. Saupe (Eds.), The Science of Fractal Images,
Springer-Verlag, Berlin Heidelberg New York, 1988

[Thinking Machines 89] Thinking Machines Corporation, Connection Machine
Model CM-2 Technical Summary, version 5.1, Technical Report, May
1989

[Wirth 83] N. Wirth, Programming in Modula-2, Springer-Verlag, Berlin
Heidelberg New York, 1983

PostScript-Fehler (--nostringval--, --nostringval--)

