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Abstract

Distributed multimedia applications require negotiation of quality of service (QoS) and
resource reservation for distributed application components and communication links. Negoti-
ation of QoS for an application session is a balancing process between the QoS specified by a
client, the resource capabilities of the distributed system and the functional capabilities of the
distributed application. Negotiation requires application level QoS descriptions and an end-to-
end view spanning the whole distributed application. XNRP, introduced in this paper, is a pro-
tocol meeting these requirements. XNRP performs negotiation based on client specified QoS
value ranges and is independent of application level QoS semantics. It allows QoS negotiation
and resource reservation in three phases and supports arbitrarily interconnected flowgraphs of

application components.



1 Introduction

Advances in the computer and communication technology have stimulated the integration of digital audio and vid-

eo with computing, leading to the development of distributed multimedia systems. This class of systems combines
the advantages of distributed computing with the capability of processing discrete media and continuous media,
such as audio or video, in an integrated fashion. The capability of integrated multimedia processing not only en-

hances conventional application environments, but also opens the door for new and innovative applications ranging
from on-demand teleservices and teleconferencing systems to distributed game and virtual reality applications.

Resource reservation is required in order to provide deterministic service for networked multimedia systems. In
the past, various reservation protocols have been developed for the transport and network level (e.g, Tenet Protocol
Suite [1], ST-1[2], RSVP[3], XTPX[4]). Resource reservation at this level aims at providing QoS guarantees for

the real-time data transfer between end systems. QoS is specified in terms of parameters, such as packet size, packet
rate and delay, jitter and loss rate. Those QoS parameters are generic in the sense that they do not specify media-
specific stream characteristics, such as frame size, frame rate and color depth in the case of a video stream.

However, if we consider multimedia systems on a higher level - the application level - media specific-parameters
have to be taken into account. Firstly, the QoS specified at the application level will include media-specific param-
eters, e.g., an observer of a video might want to specify the desired frame size. Secondly, multimedia processing
elements, such as video sources, filters, and mixers, might have limited capabilities with regard to the stream “for-
mats” they are able to consume and/or produce. For example, a filter might be able to consume a stream of type
“MPEG_encoded -video” only up to a certain frame size. We call those limitations on media parameters format
constraints. Thirdly, there might be various dependencies between streams concerning their media-specific param-
eters. For example, the frame size expected at a video mixer may vary, however the same frame size is required at
each of its input streams. We call those dependencies stream relations. Finally, if resource reservation is done at
the application level, in many cases media-specific parameters have to be taken into account to determine the re-
source requirements. For example, the computational resources required by a class of video filters directly depend
on the frame size and frame rate rather than “bandwidth”.

When setting up sessions at the application level, stream-specific QoS requests, format constraints, stream relations
as well as the resources available at set-up time are to be considered. Taking into account all this information the
set-up process negotiates media-specific parameters and reserves the required resources. Moreover, set-up must be
able to operate on rather complex structures since multimedia processing elements can be configured into arbitrari-

ly structured flow graphs, which may be distributed over any number of end systems.

Only few application-level set-up protocols have been proposed so far. In [5] a negotiation protocol is proposed,

which is limited to client/server settings (i.e. one/ or many recipients connected to a media source). In [6], the Ne-

gotiation and Resource Reservation (NRP) protocol was introduced. While this protocol already supports rather
complex application topologies, there are still some limitations on the type of flow graphs supported: each flow

graph has to be subdivided into a mixing and multicasting zone. NRP has been extended to XNRP, which now sup-
ports arbitrarily structured flow graphs.

XNRP is an application-level session set-up protocol for the deterministic service model. It is based on a determin-
istic transport-level service, which can be provided by one of the reservation protocols mentioned above. Though
designed for a deterministic service, the proposed mechanisms for the negotiation media-specific parameters in
complex flow graphs can be also applied in best-effort environments.

The remainder of the paper is structured as follows. In Section 2, we introduce the underlying application model,
and then briefly describe our QoS architecture in Section 3. The concepts of stream relations, format constraints
and variable filters are motivated and defined in Section 4 before XNRP is presented in section 5. First, an overview
of the protocol is given, which is followed by a comprehensive protocol description and a detailed example. The
paper concludes with a short summary.

2 Application Model

We briefly introduce our abstractions for modeling distributed multimedia applications. Similar concepts have been
proposed by various other groups (e.g. [7], [8], [9]), including the consortium defining IMA MMS [10]. Here, we
describe the terminology used for our CINEMA development platform [11].



In CINEMA, distributed multimedia applications are built by configuring so-called flow graphs, consisting of a
number of component objects interconnected via links. Components are processing elements encapsulating func-
tions for capturing, storing, presenting and manipulating continuous data streams. They are associated with ports,
which allow them to communicate stream data. Flow graphs are configured by linking the ports of components,
where a link is an abstraction of a unidirectional communication channel, conveying stream data from one output
port to one or more input ports. We distinguish source components, associated with output ports only, sink compo-
nents, which only have input ports, and intermediate components, which receive data from a number of input ports,
perform some operation on the received data, and send the result via a number of output ports. Examples of the
latter component type are filters, having one input port, and mixers, having several input ports.

Figure 1 shows an example video conferencing scenario. The flow graph is composed of two video source compo-
nents connected to a picture-in-picture mixing component, which provides a data stream multicasted to two sink
components. Prior to each sink component a filter component is included.
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Figure 1 : Video Conferencing Scenario with Mixer and Multicast
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In CINEMA, data streams are typed. For example, the media type of a stream may be "uncompressed_video",
JPEG_encoded_video" or "G.711_encoded_audio". Each media type defines a set of so-called media parameters,
which specify the characteristics of a particular stream instance. For example, "uncompressed_video" may be as-
sociated with parameters, such as frame rate, picture size and color depth, given that these parameters describe the
degrees of freedom for a specific stream instance (see [10]). As streams are communicated via ports, port objects
are typed and can only be linked if they are of compatible type. Type checking is performed during instantiation of
application topologies.

The CINEMA system provides a service interface for configuring and controlling distributed multimedia applica-
tions. These services are employed by software entities, referred to as clients. Three services classes are provided,
configuration management, session management, and stream control & synchronisation management. Configura-
tion management allows a client to construct a distributed component topology [12], and session management pro-
vides for setting up (and tearing down) sessions, taking into account the client's QoS requirements. Sessions, which
may encompass arbitrarily complex flow graphs, are the units of resource allocation for stream communication and
processing. Finally, the control & synchronisation services enable clients to control and synchronise the flow of
individual streams as well as client-defined groups of streams ([13], [14]).

3 QoS Architecture

The design of session set-up in CINEMA is based on a QoS architecture distinguishing between the client level,
session level and transport level (Figure 2). The objects considered at the upper two layers are clients and flow
graphs as described above. Link objects, which at the session level abstract from a concrete communication mech-
anism, employ some transport level mechanism whenever components residing on different sites are to be linked.
According to the layered architecture, three levels of QoS are considered: client-level QoS (C-QoS), session level
QoS (S-QoS) and transport level QoS (T-QoS).

At the highest level, C-QoS is specified in a manner appropriate to end users, and hence is end user-specific. For
example, it is conceivable that for end users terms such as "high, medium, low" quality are sufficient to express
QoS requirements for a video presentation. Of course, the semantics of those terms highly depend on the particular
application class, and hence may vary from application to application. It is even conceivable that for a given appli-
cation different types of C-QoS specs are provided for different classes of users.
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Figure 2 : QoS Architecture

The QoS specified at the session level interface is media-specific. S-QoS of a stream is defined by the media pa-
rameters of the stream's type and a number of generic parameters, such as delay, jitter and loss rate. The media-
specific parameters of S-QoS allow to express the desired media-specific characteristics of the data stream, such
as frame rate, picture size, color depth for an "uncompressed_video" stream. S-QoS is specified at the (typed) input
ports of sink components. A session may comprise several sink components, for each of which an individual S-
QoS can be requested. In our example depicted in Figure 1, S-QoS would be spdaifischatiDsp2

The client is responsible to map the C-QoS specified by the end user to the S-QoS at the session level. Of course,
for a given type of S-QoS, various types of C-QoS and mappings are conceivable. For example, the C-QoS value
range of high, medium, low" can be mapped in many ways to the value ranges of the media parameters of an
"uncompressed_video" stream. Obviously, this mapping depends on the class of application and end users.

At the transport level, T-QoS is specified in a media independent fashion. QoS at this level (and the network level)
has been and still is subject to intensive research. Various QoS models have been proposed (e.g. see [1]), defining
parameters, such as packet size, packet rate, burst size, delay, and jitter.

At all levels, we allow value ranges to be specified for QoS parameters. For a value range we assume the semantics
as motivated in [1]: a max value denoting the desired QoS value and a min value denoting the worst acceptable
one. The concept of value ranges is supported by the majority of real-time transport (and network) protocols (e.g.,
see Tenet Suite [1], or ST-1l [2], RSVP [3] or XTPX [4]).

During session establishment, flowspecs are used to convey QoS information at the session and transport level. At
the transport level, a flowspec carries media-independent parameters (e.g., see the ST-1l flowspec [2]) and is com-
municated along the selected network path. At the session level, a flowspec (SFS) contains media specific and ge-
neric parameters and is passed along the flow graph structure, where both links and components are involved in
QoS negotiation. The way how the flow specs are passed is defined by the respective negotiation and resource res-
ervation protocol. At the transport level, one may apply one of the protocols mentioned above. For the session lev-
el, we propose the XNRP protocol presented in this paper.

In the CINEMA system, the mapping from media-specific QoS parameters to the T-QoS parameters is done within
the link objects [15]. The media parameter values received in an SFS are mapped to the T-QoS parameter values
of the transport mechanism encapsulated by the link. Whenever a link is requested to reserve resources for a data
stream characterized by a set of media parameter values (e.g., values for frame rate and frame size), it derives the
corresponding T-QoS values (e.g. packet size and rate values) and delivers them to the transport mechanism when
issuing the connect request. Note that encapsulating this mapping in links makes the system rather independent of
the underlying transport mechanism(s).

4 Refinement of the Application Model

In the following, we will refine the application model described in Section 2 by introducing the concepts of format
constraints, stream relations and variable filters.



As ports are typed, only a certain type of stream can be communicated via a given port. However, the instances of
a particular stream type may significantly differ in their media parameter values. It cannot be assumed that com-
ponents support the entire value range for each media parameter. For example, an uncompressed_video filter may
only support an 8 bit color depth and picture sizes up to a value of 1024x768. To express the capabilities of com-
ponents with regard to the stream formats they are able to consume and/or produce, we introducésaiaslled
constraints.. Each port is associated with a (possibly empty) set of format constraints. For a given port the associ-
ated format constraint set may contain a constraint for each media parameter defined for the port type. A constraint
for a media parameter indicates the value range that can be supported by the component at that port.

In addition to format constraints, so-calktdeam relationshave to be considered by the negotiation process. For
example, an audio mixer mixing several audio streams usually requires the same quality to be delivered at all input
ports, while a video mixer component mixing two videos into a picture-in-picture video, may require a fixed ratio

of the picture sizes of the two video streams received at its input ports. In addition, the stream generated by the
mixer is usually related to the stream received at one of the input ports. For instance, the video mixer may generate
a video with the same frame size as available at the input port designated to receive the “larger” video. Similar
dependencies may exist for filters. While there might be filters that do not change a stream's media parameters at
all, others may reduce them by a certain factor, e.g., a video filter halving the picture size of the received video
stream. Of course, those dependencies impact media parameter negotiation and hence must be provided by com-
ponent designers in form of stream relations.

For mixer components, mixing relations are defined between pairs of input ports. They have tiparfam:
@inport_i =f; j*@inport_j, meaning that the value of media parameter param at inpuport_i is to bef;; times

the value of this parameteriaport_j. To describe the relation between an output port and an input port of a mixer,

a similar relation, termed filter relation, is definecou@ort_i=f; ;*@inport_j. This type of relation can be used

to model the dependencies in our mixer examples above. A similar relation is defined for a fixed filter changing
media parametgraram @outport=F*@inport, whereF denotes the filter factor.

Obviously, the stream relations defined at a component not only affect the media parameters of this component's
input and output streams but may impact the entire flow graph. Consider for instance the topology depicted in Fig-

ure 1. Assuming that at the input ports of the mixer the same video frame size is expected and that neither mixer
norF1 andF2 change the frame size, it is clear that session establishment requires the same frame size value at all
ports in the flow graph. Hence, any combinations of S-QoS requests and format constraints violating this require-

ment causes the negotiation process to fail.

Multicast links cause similar dependencies. For instance, if in Figure 1 the S-QoS spapd fordDsp2request

frame size value ranges that do not overlap, negotiation will fail due to the multicast dependency imposed by the
link leading toF1 andF2. Even if the ranges overlap, the resulting frame size forDspli andDsp2would (at

best) correspond to the intersection of the two ranges, i.e. the more modest request would govern the S-QoS for
both sinks. Similarly, a resource shortage in one part of the flow graph may affect S-QoS in other parts due to the
dependencies described above. For example, a resource shortage of the link leading to Dsp1, would impose an ef-
fect onDsp2as well, even if the path froMix to Dsp2would not suffer from any resource shortage.

In order to avoid such situations, we consider two classes of filters: fixachaalle filters Fixed filters corre-

spond to the filters (with the relation type) described above. Variable filters are introduced to limit the scope of the
dependencies imposed by multicast links and stream relations. A variable filter is supposed to be able to reduce a
media parameter (e.g. frame size) value supported at its input port to any lower value supported at its output port,
i.e., the stream relation is of the forparam @inport >= @outport The main difference to a fixed filter is that

the filter factor is not determined in advance (i.e., by design), but is determined during negotiation. As will be seen
later, the negotiation process determines and adjusts the filter factors of all variable filters in the flow graph, based
on the format constraints, the S-QoS requests and the availability of resources at negotiation time.

Assume in our example of Figure 1 tRatandF2 are variable filters for reducing frame_size. Now the negotiation
process succeeds even if the frame_size ranges requesipiandDsp2do not overlap becausdl andF2

can reduce the frame_size providedMtiy individually. This usage of variable filters makes it possible to provide

for DsplandDsp2(at best) their highest requested frame_size. Similarly, resource shortages of the output link of

1. A similar concept has been introduced by IMA [10]



F1, for instance, will not have any effect on the S-QoBss2sinceF1 is able to reduce the incoming frame size
down to the frame size for which the bandwidth available on the liblspd suffices.

5 The XNRP Protocol

XNRP (eXtended Negotiation and Resource Reservation Protocol) was designed to support session establishment
for arbitrarily complex flow graphs, composed out of sink and source components, mixers, fixed and variable filters
interconnected via unicast and multicast links. When establishing a session, XNRP takes into account S-QoS specs,
the various format constraints as well as the resources available at set-up time.

For the sake of simplicity, we make the following assumptions for the subsequent discussion. First, we will focus
discussion on the negotiation of media-specific parameters. Generic parameters, such as delay and jitter are treated
in a similar way as in existing network-level reservation protocols. For example, the delay introduced by links and
components is accumulated during the second phase of our protocol and adapted during relaxation in phase 3.

Second, when specifying XNRP below, we will relate to one media parameter only. Third, we constrain the number
of ports for the components introduced in Section 2. Source and sink components are assumed to have just one
output resp. input port, while filters are assumed to have one input and one output port. Mixing components are
supposed to have several input ports and one output port (with an equality stream relation to a specific input port).
Much more general classes can be supported. As a plausibility argument take the possibility to model more com-
plex components out of components defined. For instance, a multicaster component (with one input port and sev-
eral output ports) can be modelled as a sequence of a filter connected via a multicast link to a set of filters.

Protocol Overview

XNRP proceeds in three phases. In each phase, Session Flow Specs (SFSs) are “swept” through the whole flow-
graph, either in source-to-sink (i.e. downstream) direction or in sink-to-source (i.e. upstream) direction. During
each phase, SFSs are delivered to the components and links being passed along the flow graph. The delivered SFS
is interpreted, possibly modified and then returned to XNRP for further passing.

When SFSs are passed in a downstream direction, components and links receive an SFS for each input port and
return a (possibly modified) SFS for each output port. In case of upstream passing, an SFS is received for each
output port, and one SFS is returned for each input port. (We assume that links “share” ports with components.)

In thefirst phaseof XNRP, information concerning the functional capabilities of components is propagated in a
downstream direction. Receiving this information, sinks know which media parameter ranges are functionally sup-
ported by the upstream components. Phase 1 starts at the sources of the flow graph with the generation of the initial
SFSs, indicating source format constraints. XNRP passes the SFS to subsequent (downstream) components. A
component receiving SFS, intersects the included (media) parameter ranges with its format constraints and returns
the possibly modified SFS to XNRP for further passing. Upon reaching a sink, XNRP passes the SFS and the spec-
ified S-QoS to the sink. From this sink’s point of view, at this point, the second phas% starts.

Thesecond phasethe reservation phase, serves to reserve resources for components én'dhmpdnase starts

at sinks, where reservation is done according to received SFS, the local format constraints and the specified S-QoS.
In case of a resource shortage, reservation is done for the best possible parameter value. In the case of shortages,
the SFS range is reduced correspondingly and returned to XNRP. XNRP passes the SFSs successively to the links
and components in an upstream direction. Each of them attempts to reserve resources for the upper range boundary
indicated in the received SFS. In case of resource shortages, they reserve for the best possible value and return an
SFS with a reduced range, observing their respective stream relations. From a source’s point of view, phase 2 ends
after it has reserved resources and returned the possibly modified SFS to XNRP. Of course, if some component or
link is unable to reserve enough resources (i.e., to keep the media parameter values within the acceptable ranges),
XNRP terminates.

1. Note that during the first phase, only format constraints are taken into account (and no resource reservation is pérksrared)mitted
in this phase, since they do not have such constraints.

2. A component interacts with resource managers (e.g. for CPU, buffer) for obtaining required resources. A link emptayssthated
transport reservation protocol to set-up a required connection.



As will be shown below, observing stream relations only inside components is not sufficient. In order to capture
flow graph-wide dependencies, in the second phase XNRP additionally collects stream relations and passes them
to a central entity, called QoS orchestrator. The QoS orchestrator uses this information to compute the optimal val-
ue setting of variable filters and sources included in the flow graph. The computation results are returned to the
variable filters and sources, which exploit this information during phase 3.

In thethird phase the relaxation phase, SFSs are propagated from sinks to sources incorporating results returned

by the orchestrator. They are used by components and links to derive their reservation relaxation. Upon reaching
all source components, XNRP has installed at all component ports the best possible media parameter values. At
this point, session establishment ends.

It is important to point out that the orchestrator can be a different entity for each session and can be located on a
node hosting essential components of the session anyway. Thus, this architecture is in line with the fate-sharing
principle introduced in [16].

Need for Central Orchestration

Why do we need a central entity for exploiting stream relations at all ? Consider the flow graph depicted in Figure

4 and assume that the (one) media parameter, frame_size is to be negotiated. Assume fuvthdr doadiviix2

are associated with a mixing relation that requires the same frame_size at the mixer input ports. Finally, it is as-
sumed that all components and links have abundant resources and no format constraints are given for component
ports. Nevertheless, the flow graph implies global dependencies. For instance, all three sources have to provide the
maximum of the frame_sizes requeste®splandDsp2 This is due to the stream relation introduce¥ixtl

andMix2. If, for instance, the biggest frame_size is specified&p1], this value has to be taken into account at

V3as well, in order to provide the appropriate frame_size and to reserve properly.

An intuitive approach is to propagate the QoS information following the structure of the flow graph. In the second
phase, starting at sinks, the QoS information specifi@djat can be propagated only ¥¥-1, Mix1, V1 andV2.

In the third phase, starting at the sources, this information will tdach VF2 andDsp2 and only after the third

phase, it could be available\&8. Therefore, with this approach, at least four phases are needed for the given flow
graph. Obviously, the number of required phases depends on the structure of the underlying flow graph. For exam-
ple, additional phases would be needed if the flow graph of Figure 4 were extended by adding more sources and
mixers, coupling pairwise adjacent sources. In consequence, if this approach is applied on arbitrarily structured
flow graphs, no upper bound on the number of phases required for session set-up can be given.

XNRP adopts a different approach. Dependency information that can be derived from stream relations is collected
in the second phase and sent to the orchestrator. With this information the orchestrator has a global view on the
dependencies in the flow graph, and hence is able compute the optimal settings for sources and variable filters. Be-
low we will describe the basic principles of this approach.

Variable filters and sources have variable output within the limitations given by their format constraints. This fact
is indicated in XNRP by means of so-called filter variables. Each source and each variable filter generates a filter
variable, which is included in the SFS and propagated downstream in phase one. A filter variable is propagated
until it hits another variable filter or it reaches a sink. At a mixer, one variable reaches each input port, but only one
(arbitrary) is propagated. In Fig.¥1, V2, V3, VF1 andVF2 are assumed to generate filter variables2, v3, vfl

andvf2, respectively. The illustration indicates for each input port the filter variable received at this port.

For each source, mixer and variable filter XNRP interacts with the orchestrator. For each mixingpatation
@inport2=f, ,*inportl defined at a mixer the following equation is sent to the orchestpatam v;=f; ;*v;, where

it is assumed that filter variablgsandy; were received ahport2 andinportl, respectively. In our example, the
equationw1=v2 andv2=v3are sent foMix1 andMix2, respectively. (Since we consider only one media parameter,
we have omitted thparamspecifier).

For a variable filter reducing parameter param XNRP sends an inequationyparamto the orchestrator, where

itis assumed that was received at the filter’s input port ands the filter variable generated by this filter. More-

over, XNRP includes the “guaranteed” range;af the message sent to the orchestrator. Since this range is deter-
mined in phase 2 after the variable filter and all downstream components and links have already reserved resources
for this range, it is called “guaranteed”. In our examylel andVF2 would contribute inequationsl>=vf1 and

v2>=vf2 and a guaranteed range 6t andvf2, respectively. As sources are not associated with stream relations,



they only contribute guaranteed ranges for their filter variables. In our example, XNRP delivers the guaranteed
ranges fovl, v2 andv3to the orchestrator.

After having received all informatidnthe orchestrator starts to solve the system of received in/equations taking
into account the guaranteed variable ranges. As a result, it will compute an optimal value for each filter variable.
Optimal means that - given all format constraints, S-QoS requests and the resource availability - the best possible
S-QoS is achieved at every sink. It additionally means that the variable values are determined in a way that filtering
(i.e. QoS reduction) is done as close as possible to the sources.

The orchestrator delivers the computed values to the variable filters and sources of the flow graph. During the third
phase of XNRP, this information is used by the sources to determine the media parameters of their output, while it
is used by variable filters to determine their actual filter factor.

The advantage of the XNRP approach is obvious: Independent of the structure of the flow graph only three phases
are needed for session establishment. The price is the additional communication overhead with the orchestrator
function: two extra messages for each variable filter, source and mixer in the flow graph.

Structure of SFS, OReq and OResp
The SFS employed by XNRP consists of a part carrying information for media parameters and a second part fore-
seen for generic parameters (delay, etc.).

SFS{ MediaParameterPart(
record_for_param1(

varld /I variable representing the closest upstream source or variable filter
factor /I proportionality factor relating varld to current value range
valR) /l value range for parameter at current port: min, max values

record_for_paramN(...))
GenericParameterPart(...) }
The structure for an OReq allows to include a list of stream relations and one value range per media parameter:

OReq{record_for_parami(

varld /I'ld of variable for which range is given
valR /I value range: min, max values
s _rel_1(
type I/l equality, inequality
varl /'1d of first variable in stream relation
var2 //'1d of second variable in stream relation
factor) /I relation factor (e.g. varl * factor >= var2)
s_rel_M(...))

record_for_paramN(...)}
Finally, an OResp contains a value for media parameters at a specific source or variable filter output port:

OResp{record_for_parami(
varld /I'ld of variable for which value is given
value )
... record_for_paramN(...)}

1. To decide that it has received all information, the orchestrator at least must know the number of sources, mixeldesfiltevaria
included in a particular flow graph. This information could be provided by a management function maintaining informatiqphtmut a
tions. However, it could be also a parameter of the session, which is delivered to the orchestrator when set-up is initiated.
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Protocol specification

NRP is performed by a set of protocol agents (PA). Figure 3 shows a realization with one PA per component (C)
and link (L), where PAs are interconnected according to the component topology of the application.

c o 2 i < C s = Data Stream

—O— —— —» SFS flow
ﬁ * ﬁ O Port
<<= | PA || PA || PA | = Q Control Interface
~-—
Orchestrator messages
( QoS OrchestratoD

Figure 3 : Implementation Architecture

An important feature of XNRP is that it allows components and links to take a local view to negotiation. They only
have to support a few methods (see below) which are invoked by XNRP (PAs) during negotiation. A component
or link is only required to interact with its associated PA. XNRP provides for correct SFS passing between compo-
nents and links. This passing is done towards components and links via component and link method invocations.
In addition, interconnected XNRP PAs exchange SFS according to the direction of the protocol phase. In the sec-
ond phase PAs of source components, mixers and variable filters send orchestration requests to the orchestrator.
The orchestrator return responses to the corresponding PAs which are used in the third phase.

XNRP requires each component and each link to provide a generic interface for negotiation consisting of a set of
methodsPrepare_Reservatiofinvoked during phase 1lReservdinvoked during phase 2), afklax(invoked

during phase 3). A fourth methétgeehas to be offered to indicate to a component or link that a reservation session

is to be terminated. In the following, we focus on component and link behavior in each phase.

Phase 1 (Prepare Reservation)

In this phase, each component receives at once a set;pf(@keSfor each input port) and calculates angH6r

its output port. First, for each input port, the GfSintersected with the port's format constraint. Second, if mixing
relations exist between input ports, they are used to intersect g|l $Fi&d, the filter relation between the output
port and the (the selected) input port is applied, to calculatg, SE®pending on the component type, a fixed re-
lation is used with a fixed factor f (for fixed filters and mixers) or a variable relation (for variable filters).

A source componengenerates an Sk indicating its format constraints: Sfgsourceld, factor(1),
valR(max..min)), where sourceld is the variable representing the stream at the source port, factor indicates the ini-
tial proportionality factor of 1, while valR gives the supportable range (format constraint) at the source port.

A fixed filterreceives an SKRvarld, factor, valR(max..min)) indicating the requested value range at its input port
and its stream relation to the upstream source or variable filter denoted by varld. This relation is described by the
proportionality factor. The filter calculates for its output port §gSarld, f * factor, valR(*max..f*min)), where

f indicates the filter factor used in the filter relation.

A mixer receives for each input port i an §F8varld, factog, valR(max...min)). The mixer produces an SF-
Sout(Varld,, factog, valR(max..min)). The mixer relates the stream at its output port to the varld received at the
input port k to which it has a defined relation. As mentioned, for a mixer this relation is set to equality, so the cor-
responding factor is not changed. Thus, valR inggH8flects the value range obtained for inport k. This is ob-
tained by intersection of all received value ranges (observing mixing relations defined between k and the other in-
put ports), i.e. max in Skg is given by Min(maf; ) and min is given by Max(miff; ). In addition, a mixer

stores for each input port the received gk %for later use during phase 2).

A variable filterreceives an SkQvarld, factor, valR(max..min)) and generates an gf@&vn_varld, factor(1),
valR(max..own_min)). The filter inserts its own varld, given that downstream components can relate in a fixed way
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their port parameter now to the output port of this variable filter, but not to other upstream components (since a
variable filter is in between). Obeying its variable relation (param: @inport >= @outport), the filter inserts in valR
the lower limit of its output format constraint as min, while taking min(received max, upper bound of output format
constraint) as the new max. In addition, the filter stores the SFS received at the input port (for phase 2).

A sinkcomponent receives SE@arld, factor, valR(max...min)) and the S-QoS(valR(max..min)) requirement of
the client. The generation of an $fSs part of the second phase.

Linksare not invoked by XNRP during the first phase.

Phase 2 (Resource Reservation)

In the reservation phase each component is invoked with an SFS for its output port. Each component tries to reserve
resources according to received SFS. If resources do not suffice, the upper limit of the SFS range is reduced to a
value (in the range) for which reservation is possible. Based on reservation, an SFS is derived for each input port

of the component, observing the stream relation(s) of the component defined between input and output ports. In

this phase, in addition, stream relations and value ranges are derived for filter variables and indicated to XNRP.

A link is invoked with one SFS for each connected (receiving) input port. Based on this, the link invokes an un-
derlying transport system with calculated T-QoS values for setting up a (unicast or multicast) connection. T-QoS
values accepted by the transport system are calculated into the media representation of an SFS for the sending side
of the link (see [15] for details). This SFS is handed back to XNRP.

In the second phase, only some parts of SFS are relevant. We omit mentioning the other parts, where unnecessary.

A sinkcomponent reserves resources according to intersected ranges of recejyéof A&se 1), S-QoS and its
own format constraints. It generates a S&8IR(val...min)) with val reflecting the value for which was reserved.

A fixed filterreceives at its output port an §fgfsalR(max...min)) and tries to reserve accordingly. Assuming that
it could reserve for value val with respect to its output port, the SFS to be generated for its input port has to be
SFS,(valR(val/f...min/f)) where f denotes the filter factor.

A mixer receives SF§(valR(max...min)) for its output port and tries to reserve accordingly. Assuming that it
could reserve for value val with respect to its output port, the SFS to be generated for the input ports are as follows.
For the input port k for which the equality relation with the output port was defined, the SFS is derived: SF-
Sink(valR(val...min)). The SFS for all other input ports are derived from this SFS using the corresponding mixing
relations between input ports: S§E@valR(val*f; ,...min*f; \) with f; , denoting mixing factors.

In addition, a mixer uses its mixing relations to derive relations between the filter variables received (and stored)
in the first phase at the input ports. Assuming that at port k (vafiddto) has been stored and at another input
porti (varld, factor ), the mixer derives a relation s j(glpe(equal), varlg varld , new_factor). new_factor is
derived from the mixing relation between inports i and k: y&fédtor; = factor , *varldy *factor, and is given as
factof*factor;  /factor . Both the SFg; and the s_rebre relayed to XNRP. The s_jrate relayed to the orches-

trator via an OReq(list_of_s_feINo value ranges are relayed for the variables of;s_rel

A variable filterreceives an Skg(valR(max...min)) for its output port. It tries to reserve according to this tange
Assuming the filter could reserve for value val with respect to its output port, the SFS generated for its input port
is SFS,(valR(new_max..new_min)), where new_max is the max value stored for the input port in the first phase.
new_min is given as Max( min value of input port stored in phase 1, min received in phase 2 for the output port).
new_min has to be calculated in this way, since any value at the input port has to have a possible value at the output
port (given that a variable filter can only reduce values).

In addition, a variable filter relays a stream relation coupling the filter variable received in phase 1 to its own (output
port) filter variable. Assuming that at the input port (varfector ) has been stored in phase 1, the following re-
lation is compiled: s_rel( type(ineq), varjdwn_varld, factor). factor is derived from the filter's stream relation
between input and output port vgridactor; >= own_varld and is given as fagtdBoth the SFg and the s_rel

1. Avariable filter, depending on its specific implementation, may reserve resources either to received SFS for the outpuhpd®FS
received and stored in the first phase for the input port.We consider here only variable filters which are “output drivanigcoesmirce
demand,. A filter selecting parts (e.g. pixels) of received data unit is an example for this. We assume that the buftgrisgzhbg hecom-
ing data is reserved by the link prior to the filter.
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are relayed to XNRP. In addition, a variable filter indicates the “guaranteed” value range for its output port for
which resource reservation was possible: (own_varld, valR(val..min)). XNRP forms a corresponding
OReg(own_varld, valR(val..min), s_rel()) which it relays to the orchestrator.

A source componeméceives an Skg(valR(max...min)) for its output port. Assuming that it can reserve for value
val with respect to its output port, it compiles g@®wn_varld, valR(val...min)) as response to XNRP. XNRP
forms a corresponding OReqg(own_varld, valR(val..min)) which it relays to the orchestrator.

The QoS orchestrator solves the system of equalities and inequalites for the filter variables received in OReq. For
each variable, it returns in an OResp(varld, value) the final value to the respective PA (for use in phase 3).

Phase 3 (Resource Relaxation)

In this phase SFS are propagated containing only one value in valR. The other parts are omitted below.

A source componeXNRP receives an SFS(valR(value)), relaxes reservation, if reservation in phase 2 covered a
higher value, and returns the SFS unchanged to XNRP.

A fixed filterreceives SK§valR(value)), possibly relaxes reservation and returng gF&R(f*value)) to XNRP,
where f denotes the filter factor.

A mixer receives an SKg(valR(valug) for each input port, possibly relaxes reservation, and returns SF-
Sou(valR(valug) ) to XNRP, where k denotes the input port to which the output port has its equality relation.

A variable filteris given by XNRP at once two SFS, one for its input and one for its output port. The SF-
Sin(valR(valug,)) is received from upstream direction and contains the value to be installed at the input port. The
SFSuvalR(valugy) is relayed by the XNRP PA to the component, after receiving a corresponding OResp mes-
sage. It installs the final value at the filter output port. The filter possibly relaxes reservation and responds with an
unchanged SKg(valR(valug,,)) to indicate the end of relaxation. Note, by installing input and output value, the
filter fixes the previously variable relation between its input and output port.

A sink componenteceives SFS(valR(value)), possibly relaxes reservation, and returns the SFS to XNRP. Upon
receiving all sink responses, a session is set up and communication can take place.

A link is passed an SE8salR(value)) for its sending side. It calculates corresponding T-QoS values, and initiates
relaxation for the encapsulated transport connection. It returns to XNRP an SFS for each receiving side of the link.

Negotiation Example

Figure 4 depicts a video application scenario with two participants. Each participant can view two videos at once
in form of a picture-in-picture mixture. Participant 1 can control Mix1 to select which of the two videos V1, V2
shall be the large one. P2 can control Mix2 similarly for videos V2 and V3. Variable filters VF1 and VF2 allow for
individual provision of S-QoS at Dspl and Dsp2.We use here frame size as the media parameter to be negotiated.
In order to keep description simple, we leave out the links (unless they are explicitly mentioned), assuming that
they can reserve resources as required. We assume that all component ports have a format constraint of
(1024x768...120x90) pixels. The client specifies at Dspl S-Qo0S(800x600...480x360), and at Dsp2 S-
Q0S(480x360...240x180). We assume that Mix1 requires the same frame size at its input ports. In addition, the
frame size of Mix1’s output port shall be related to the upper input port (dotted line in the figure). Analogous as-
sumptions are made for Mix2.

XNRP starts at sources with SFS(v1, 1, 1024x768...120x90) generated by V1, SFS(v2, 1, 1024x768...120x90) gen-
erated by V2 and SFS(v3, 1, 1024x768...120x90) generatedby8 SFSs from V1 and V2 are propagated to

Mix1, which generates SFS(v1, 1, 1024x768...120x90). The SFS from V2 and V3 are passed to Mix2 which gen-

erates SFS(v2, 1, 1024x768...120x90). VF1 is passed the SFS from Mix1, upon which it generates SFS(vfl, 1,
1024x768...120x90). VF2 is passed the SFS coming from Mix2 and generates SFS(vf2, 1, 1024x768...120x90).
Dspl is passed the SFS from VF1, Dsp2 the SFS from VF2. In this phase, received SFS are stored by Mix1, Mix2
VF1 and VF2. The phase ends upon reaching Dspl and Dsp2.

1. We use this shorter notation SFS(v1, 1, 1024x768...120x90) instead of SFS(varld(v1), factor(1), valR(1024x768...120x90)).
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Figure 4 : Video Application Scenario

The second phase proceeds from the sinks towards the sources. The SFS range received by a sink is intersected
with the respective S-QoS request and the own format constraint. For Dsp1 this yields valR((800x600...480x360),
for Dsp2 valR(480x360...240x180). Assuming that reservation is successful for best values in both cases, Dspl re-
turns SFS(valR((800x600...480x360)), while Dsp2 returns valR(480x360...240x180). Assuming that the link be-
tween VF1 and Dspl could only reserve for (640x480) due to limited bandwidth, the SFS passed to the link is
changed to SFS(640x480...480x360). This SFS is returned by the link and passed to variable filter VF1.

VF1 can reserve for the whole received range. It generates an SFS(1024x768...480x360) for its input port. It com-
piles a stream relation between the variable received in phase 1 (v1) and its own variable (vf1): s_rel(ineq, v1, vf1,
1). SFS, the stream relation and the “guaranteed” value range for vfl are passed to XNRP. XNRP sends an
OReq(vfl, 640x480...480x360, s_rel) to the QoS Orchestrator. VF2 is passed the SFS(valR(480x360...240x180))
from Dsp2. Assuming it can reserve for the best value, it generates an SFS(1024x768...240x180) for its input port.
In addition s_rel(ineq, v2, vf2, 1) is derived. SFS, s_rel and the range for vf2 are passed to XNRP. XNRP sends an
OReq(vf2, 480x360...240x180), s_rel).

Mix1 receives the SFS from VF1 and shall be able to reserve for the best value. It generates two similar
SFS(1024x768...480x360) for its input ports. In addition, it compiles an s_rel(eq, v1, v2, 1). Both SFS and s_rel
are passed to XNRP. XNRP sends an OReq(s_rel) to the orchestrator. Mix2 is passed the
SFS(1024x768...240x180). It shall be able to reserve for the best value. It generates two similar
SFS(1024x768...240x180) for each of its input ports. In addition, it compiles an s_rel(eq, v2, v3, 1). Both SFS and
s_rel are passed to XNRP. XNRP sends an OReq(s_rel) to the orchestrator.

V1 receives the SFS from Mix1. It shall be able to reserve for the best value. It return SFS(v1, 1024x768...480x360)
to XNRP, which compiles an OReq(v1, 1024x768...480x360). The multicast link between V2, Mix1 and Mix2 in-
tersects the ranges of the AFS received for Mix1 and Mix2. It returns SFS(1024x768....480x360) which is passed
to V2. V2 shall be able to reserve for the best value. It returns SFS(v2, 1024x768....480x360) which is used by
XNRP to send an OReq(v2, 1024x768....480x360). V3 is passed the SFS(1024x768...240x180) from Mix2. It shall
be able to reserve for the best value. It returns SFS(v3, 1024x768...240x180) which is used by XNRP to send an
OReq(v3, 1024x768...240x180).

During the second phase the orchestrator has received the following (in)equalities, variables and (guaranteed) val-
ue ranges: v1>=vfl, v2>=vf2, vi=v2, v2=v3, (1024x768...480x360) for v1 and v2, (1024x768...240x180) for v3,
(640x480...480x360) for vfl and (480x360...240x180) for vf2. The orchestrator solves this system, such that all
relations are observed. For vf1 and vf2 it finds the best providable values: 640x480 resp. 480x360. For v1, v2, v3
it finds the lowest values which ensure best values for vf1 and vf2. In this case, v1, v2, v3 are set to 640x480. These
values are passed to XNRP in corresponding OResp messages and used in the third phase.

In the third phase, V1 is passed SFS(640x480) for v1. It relaxes reservation according to that frame size and returns
the SFS unchanged. V2 and V3 act similarly. Mix1 is passed an SFS(640x480) for each of its input port. It relaxes
reservation and returns the SFS unchanged. Mix2 acts similarly.

VF1 receives from XNRP two SFS: SFS(640x480) for its input port and SFS(640x480) for its output port. The
filter deduces that no processing is required at all, and relinguishes resources acquired during phase 1. It returns
SFS(640x480). VF2 receives SFS(640x480) for its input port, and SFS(480x360) for its output port. It deduces that
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a corresponding frame size reduction is required and fixes its internal processing accordingly. It returns
SFS(480x360).

Dspl is passed SFS(640x480) and relaxes reservation accordingly. Dsp2 is passed SFS(480x360). It does not have
to relax reservation. At this point, session establishement is finished.

QoS Orchestrator

The orchestrator receives a set of OReq containing equality and inequality relations between filter variables. The
number of equations equals the number of mixing relations (m), while the number of inequalities is bounded by
the number of sources plus variable filters (n). In addition, for each variable, a value range is received indicating
possible “guaranteed” variable values. The algorithm used to solve the system of relations is performed in two
steps. The first step solves the system, determining for each variable filter the highest possible value. The second
parts leaves values for variables unchanged which are related in a fixed (proportional) way to sinks, while mini-
mising all other variable values. We give below an overview of the algorithm performed, and refer to [17] for a
more formal and detailed description.

The first step is performed in several iterations. Each iteration starts with a value for each variable. Initially, the
upper bounds of the received ranges are used. Each relation which is not satisfied by the current two variable val-
ues, changes one or both values to satisfy the relation. Values are always reduced, and reduction is done stepwise,
i.e. from one value to the next lower one. When reductions have rendered the relation satisfied, the new (reduced)
values are inserted for the related variables. All relations are considered in this manner in each iteration (the se-
guence of relation consideration can be arbitrary).

Once an iteration did not change any variable value, the first step is finished, since the variable values satisfy all
relations. If at least one change occurred, the next iteration is triggered. Let k denote the number of values which
are maximally possible for a media parameter, i.e. for any of the n considered variables. Correspondingly, the max-
imal number of value reductions is bounded by (k-1)*n. After this number of reductions, the smallest media values
are reached for all variables. Any further reduction indicates non-solvability of the relation system. Since per iter-
ation, at least one of these variables is reduced, at whole maximally k*n iterations can occur. Since per iteration
(m+n) relations are considered (touched), the worst complexity of this step is of order O((m+n)*n*k).

The second step distinguishes the variables to which sink output ports are related in a fixed (proportional) way. In
[17] it is shown that these variables can be identified in the relation system (basically the variables are considered
which do not have a greater-than relation to other varidblEksg values for these variables are retained from the

first step. For all other variables, the minimal values from their respective value ranges are inserted initially and

adjustions are applied, until all stream relations are satisfied again.

The adjustions increase variable values. Otherwise the procedure is the same as for the reductions of the first step.
In particular, the computation complexity is again bounded by O((m+n)*n*k). Note that if the first step yielded a
solution, the second step cannot miss it, i.e. the second step renders a solution with lower or equal values to the
ones found in the first step. Also note, that the first step already delivers a possible solution fixing (implicitly) the
final values for sink ports. The second step merely serves to reduce variable values as early (i.e. close to sources)
as possible in the flowgraph, in order to save resources. This reduction is done such that the sink port values implied
in the first step are not changed.

For the example in Figure 1, the first step starts with values: 1024x768 for v1, v2, v3, 640x480 for vf1 and 480x360
for vf2. Given that all relations are already satisifed, the first step ends here. The second step leaves values for vfl
and vf2 unchanged, since they are related in a fixed way to sink ports Dsp1 and Dsp2. Starting values for the second
step for the other variables are: 480x360 for v1, v2 and 240x180 for v3. Applying the stream relations iteratively,
yields 640x480 for v1, v2 and v3. All final values are returned to corresponding XNRP PAs.

The QoS Orchestrator has been implemented and evaluated for performance. For a flowgraph containing m mixers,
and n sources resp. variable filters the following (worst-case) results have been obtained for computation time on
a SunSparc10 machine running at 50 MHz:

1. One may assume, that XNRP indicates in OReq (in a yes/no flag) whether or not a contained variable is related inta fixeidkvagrt.
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(m=2, n=2, k=5): computation time = 0.5 ms
(m=16, n=16, k=5): computation time =5 ms
(m=100, n=100, k=5): computation time = 180 ms.

These results indicate that the computation time is low, even for quite large flowgraphs. In consequence, for any
flowgraph of such or lower size, the QoS orchestrator will not add undue overhead to negotiation.

6 Conclusion

The Cinema system allows a client to set up and control distributed multimedia applications composed of compo-
nents interconnected via links. A client is offered three service classes: configuration management, session man-
agement and synchronisation management. Session management allows to instantiate an application according to
QoS specified by a client.

Session set-up is based on a QoS architecture distinguishing between client, session and transport level QoS. Ses-
sion level negotiation is performed by Beema Session management. Its purpose is to orchestrate between client
A-QoS requests given in form of parameter value ranges and constraints imposed on an application: format con-
straints at component ports, resource availability for components and links as well as stream relations defined be-
tween component ports. This orchestration has to be performed at the session level, i.e. in terms of media param-
eters associated with component ports.

XNRP is a protocol performing negotiation and resource reservation at the session level. It was design to be appli-
cable to arbitrary flowgraphs containing source components, sink components and intermediate ones, such as mix-
ers, fixed and variable filters. Variable filters allow to decouple topology dependencies of a flowgraph. XNRP is
performed in three phases during which flowgraph capabilities (format constraints) are signalled to sinks, resources
are reserved, final media values are calculated based on reservations and resource reservation is relaxed according
to calculated values.

In order to bound the required number of protocol phases, final media value calculation is done by a central QoS
orchestrator. XNRP obtains stream relations and value ranges for filter variables during its reservation phase and
relays these to the orchestrator. The orchestrator solves the system of relations optimally and returns final media
values which are used by XNRP for reservation relaxation. Performance results obtained for an implemented QoS
orchestrator show that required computation time is low, even for large flowgraphs. Overall negotiation overhead
is not unduly increased by the orchestrator.
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