Zwischenbericht der Projektgruppe
Evolutinare Algorithmen

M. Grofimann
D. Ivancan
A. Leonhardi
T. Schmidt

1. August 1996

Prof. Dr. Volker Claus
Abteilung Formale Konzepte
Institut fiir Informatik
Universitdt Stuttgart

Breitwiesenstr. 20-22
D-70565 Stuttgart
Telefon:

0711-7816-300 (Prof. Dr. V. Claus)
0711-7816-301 (Sekretariat)
0711-7816-330 (FAX)

E-Mail: claus@informatik.uni-stuttgart.de

Inhaltsverzeichnis

1 Einleitung
1.1 Die Projektgruppe oL
1.2 Die Projektgruppe Evolutionédre Algorithmen.
1.2.1 Aufgabenstellung
1.2.2 Ziele

I Vorbereitung

2 Uberblick iiber EAGLE
2.1 Aufgabe von EAGLE o
2.2 Problem
2.3 Kodierung und evolutionéres Verfahren
2.4 Konzept der Operatoren
2.5 Aufbau der Operatoren
2.6 Sprache LEA zur Eingabe der Operatoren
2.7 Experiment

3 Seminarvortrige

3.1 Algebraische Spezifikation und
Typ—Polymorphismus

3.1.1 Einleitung oo

3.1.2
3.1.3
3.1.4
3.1.5

Einfiihrung in den Lambda-Kalkil
Einfache Typisierung
Typpolymorphismus

3.2 Sammlung von Problemen und Optimierungsverfahren

3.2.1
3.2.2
3.2.3
3.2.4

Einleitung oL
Problemiiberblick

3.3 Genetisches Programmieren

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

Einfithrung L
Informelle Beschreibung
Schwierigkeiten bei der Implementierung
Beispielsprache 000000
Formalisierung

Beispiel: Symbolic Regression

IT Erste Konzepte und Prototyp

4 Zeitplan/Status

4.1 Zeitplan

41.1
4.1.2
4.1.3
414
4.1.5

Seminarphase
Planungsphase
Entwurfsphase 0oL
Zwischenphase L.

Implementierungsphase

4.1.6 Integrations-, Experimentier- und Schlulphase 90

4.1.7 Projektbegleitende Dokumentation 90
4.2 Entscheidungsgraph L. 91
Untergruppenberichte 93
5.1 Ein Schichtenmodell 93
5.2 Ein einheitliches Konzept fiir Kodierungsstrukturen 94
5.2.1 Ziel 94
5.2.2 Konzepte L 94
5.2.3 konkretes Beispiel: EAGLE 95
5.3 Operatorkonzept 96
5.3.1 Imbhalt 96
532 Autbau. 96
5.3.3 Funktionalitit der Experimentsteuerung 98
5.3.4 Bibliothekeno o000 98
5.4 Populationsverwaltungo 99
Prototyp 102
6.1 Vorgaben 102
6.2 Struktur 104
6.3 Realisierungo 107
6.3.1 Grundlagen 0oL 107
6.3.2 Log-Datei 108
6.3.3 Kodierungsfunktionen und Fitnef3 109
6.3.4 Populationsverwaltung 114
6.3.5 Operatoren 116
6.3.6 Initialisierung oL 118
6.3.7 Hauptprogramm 119

6.4 Fazit und Ausblicke 120

Literaturverzeichnis 121
A Glossar 124
A.1 Evolutionidres 124
A2 Allgemeines Lo 127
Index 128

Kapitel 1

Einleitung

1.1

Die Projektgruppe

Das Studium der Informatik vermittelt dem Studenten zwar einen grofien Teil
des notigen Fachwissens, jedoch stellt das Berufsleben noch weitere Anfor-
derungen an den Informatiker. Teamfihigkeit und Erfahrung spielen gerade
bei der Mitarbeit an groflen Software-Projekten eine wichtige Rolle. Hier
verfolgt die Idee der Projektgruppe folgende Ausbildungsziele:

Arbeiten im Team

Analyse von Problemen, Strukturierung von Lésungen und gemeinsa-
mer Entwurf geeigneter Systeme

Selbststidndige Erarbeitung von Lésungsvorschligen und deren Vorstel-
lung und Verteidigung in einer Gruppe

Ubernahme von Verantwortung fiir die Losung von Teilaufgaben und
die Erstellung von Modulen

Mitwirkung an einer umfassenden Dokumentation

Erstellen eines Software—Produktes, das ein Einzelner innerhalb des
vorgegebenen Zeitraumes unmoglich bewiltigen kann

Projekt-Planung und Kosten/Nutzen—Analyse
Einsatz von Werkzeugen

Personlichkeitsbildung (Ubernahme von Verantwortung, Selbstvertrau-
en, VerlaBlichkeit, Riicksichtnahme, Durchsetzungsfihigkeit usw.)

An der Projektgruppe nehmen in der Regel acht bis zwolf Studierende des
Hauptstudiums teil. Sie erarbeiten im Laufe eines Jahres ein Software—Pro-
dukt, welches einem Zeitaufwand von mehreren Personenjahren entspricht.
Hierbei sollen simtliche Phasen eines Software-Lifecycles — von der Planung
bis zur Wartung — durchlaufen werden, was in anderen Lehrveranstaltungen
nicht {iblich ist. Bei Software— und Fachpraktika wird zumeist eine gegebene,
genau festgelegte Aufgabenstellung in ein Programm umgesetzt.

Eine Projektgruppe vereinigt die Lehrveranstaltungsformen , Hauptseminar*
(2 SWS), , Fachpraktikum* (4 SWS) und , Studienarbeit* (10 SWS) in sich.
Demzufolge ist eine Projektgruppe mit 16 SWS einzustufen.

Der Ablauf einer Projektgruppe folgt meist folgendem Schema: Seminar—,
Planungs—, Entwurfs—, Implementierungs—, Integrations—, Experimentier—
und Schluflphase. Diese Phasen werden im folgenden genauer erldutert.

Seminarphase: Die Themenstellung wird griindlich analysiert. Dazu werden
von den Mitgliedern Originalpublikationen durchgearbeitet und die Ergebnis-
se vorgetragen. Ergebnisse dieser Phase sind viel Wissen, je eine Vortragsaus-
arbeitung und eine zusammenfassende Darstellung der Literaturauswertung.

Planungsphase: Die Projektgruppe analysiert den Problembereich, stellt Ein-
satzmoglichkeiten und Anwendungen zusammen, erarbeitet einen Anforde-
rungskatalog und diskutiert Losungsmoglichkeiten fiir diese Fragestellungen.
Hierbei werden die in der Literatur bekannten Losungsvorschlige und eige-
ne Ideen gegeneinander abgewogen. Insbesondere wird friihzeitig diskutiert,
welche Hard— und Software fiir die jeweiligen Losungen erforderlich ist, wel-
che sonstigen Kosten entstehen, wie hoch der Zeitaufwand sein wird, usw.
Wichtig ist eine friihe Spezifizierung der Eigenschaften des Systems (Ro-
bustheit, Antwortverhalten, Flexibilitéit, Schutzmechanismen, Erweiterbar-
keit, Verteiltheit, ...).

Inhaltliches Ergebnis ist eine moglichst eindeutige, ausschnittsweise sogar
formale Spezifikation. Fiir jede ins Auge gefalite Anwendung wird dariiber
hinaus ein Szenario bzgl. des Einsatzes, der Nutzung, der Tests und der War-
tung skizziert.

Organisatorische Ergebnisse sind ein grober Zeitplan und die erste Aufteilung
von Aufgabengebieten. Hier setzt auch eine Spezialisierung der Gruppenmit-
glieder ein.

Entwurfsphase: Voraussetzung fiir die Entwurfsphase ist, daf} Begriffsbestim-
mungen, Anwendungen und Modelle weitgehend geklart sind. Nach Festle-
gung des grundsitzlichen Losungsverfahrens werden Teilprobleme und cha-
rakteristische Objekte herauskristallisiert, miteinander in Beziehung gesetzt,

auf ihre Realisierbarkeit gepriift und grundlegende Datenstrukturen und
Kommunikationswege festgelegt. Dabei werden die Schnittstellen der Ein-
zelteile des Systems untereinander genau definiert. Ergebnis ist ein Plan des
zu erstellenden (oder zu modifizierenden) Systems. Stehen die einzelnen Auf-
gaben fest, werden sie auf die Mitglieder verteilt. Die Implementierungsspra-
che(n) sowie die erforderliche Hardware und die zu verwendenden Werkzeuge
werden festgelegt. Eine Liste von Beispielen, die das System spéter positiv
bewiltigen muf}, wird fiir die Testphase erstellt.

In der Implementationsphase und Integrationsphase wird der Programmcode
erstellt, zusammengebunden (integriert) und getestet.

Die Ezperimentierphase schlieit weitere Tests mit speziellen Anwendungen
ein.

Zur Schlufiphase zahlt in erster Linie der Abschlufl der Dokumentation, die
standig parallel zur Projektgruppenarbeit erstellt und auf den neuesten Stand
gebracht wird.

Das Konzept der Projektgruppe wird bereits seit Jahren an anderen Uni-
versititen wie z.B. in Oldenburg und Dortmund erprobt und durchgefiihrt.
Dort sind Projektgruppen z.T. schon Pflichtveranstaltungen im Rahmen des
Informatikstudiums.

1.2 Die Projektgruppe Evolutionire Algorith-
men

1.2.1 Aufgabenstellung

Aufgabe dieser Projektgruppe ,,Evolutionire Algorithmen* ist es, aufbauend
auf die Ergebnisse der Projektgruppe ,,Genetische Algorithmen* [AJJ"94,
AJK*95] und des Technischen Berichts [JW95] ein System zur Bearbeitung
hartnéickiger (NP-harter) Probleme mit Hilfe von Evolutionéren Algorith-
men wie z.B. Evolutionsstrategien und Genetischen Algorithmen zu erstellen.

Das generelle Vorgehen sollte sich dabei in die folgenden Punkte gliedern:
e Analyse des Problems
e Spezifikation des Systems

e Realisierung und Implementierung

e Erstellung von Testbibliotheken

e Durchfiihrung von Experimenten

e Auswertung und Restrukturierungsvorschlige

e Dokumentation

Insgesamt soll das System einem Erstellungsaufwand von ca. drei Personen-
jahren entsprechen. Als Arbeitsmittel wurde Zugriff auf eine Workstation
gewihrt und ein Terminalraum mit Besprechungstisch zur 50%—igen Nut-
zung bereitgestellt.

1.2.2 Ziele

Das System soll folgende Konzepte enthalten:

1.

Unterscheidung zwischen Problem— und Kodierungsstruktur. Dadurch
wird eine einheitliche Darstellung des Problems erreicht und damit
von der Sichtweise der Algorithmen getrennt. Den Ubergang zwischen
Problem— und Kodierungsstruktur bilden die Kodierungs— bzw die De-
kodierungsfunktionen.

. Verwendung verschiedener Datentypen innerhalb einer Problem— bzw.

Kodierungsstruktur.

Moglichst freie Kombinierbarkeit von Verfahren und Operatoren, um
unter Riickgriff auf vorhandene Operatoren neue Verfahren ausprobie-
ren zu konnen.

. Austauschbarkeit von Individuen verschiedener Kodierungen zwischen

Verfahren, um hybride Verfahren moglich zu machen.

. Abgestufte Einstiegsmoglichkeiten fiir den Benutzer.

Nebenlaufige Algorithmen sollen implementierbar sein.

Teil 1

Vorbereitung

10

Kapitel 2

Uberblick iitber EAGLE

In diesem Kapitel soll ein knapper Uberblick iiber die Funktionalitit des
Software-Systems EAGLE gegeben werden. Die funktionale Spezifikation
dieses Systems (vgl. den technischen Bericht [JW95]) dient als Grundlage
der Arbeit der Projektgruppe Evolutiondre Algorithmen.

Dieser Uberblick baut auf den Endbericht der Projektgruppe Genetische Al-
gorithmen [AJKT95] auf, aus dem den Kapiteln 3 bis 6 eine umfassendere
Darstellung von EAGLE entnommen werden kann.

2.1 Aufgabe von EAGLE

Haufig werden Probleme der folgenden Form betrachtet: es wird in einem
Losungsraum ein Punkt gesucht, der beziiglich einer Funktion einen minima-
len bzw. maximalen Funktionswert besitzt. Ist ein solches Problem ,,schwie-
rig* (z.B. NP-hart) und dadurch nicht effizient mit mathematischen Me-
thoden zu l6sen, werden andere Herangehensweisen notwendig. Neben der
systematischen Suche (alles durchprobieren) und verschiedenen einfachen
heuristischen Verfahren (wie z.B. reine Zufallssuche) haben sich hier auch
sogenannte evolutiondre Verfahren bewihrt, deren Arbeitsweise an die Evo-
lution in der Natur angelehnt ist. Diese Verfahren sind der Gegenstand des
Software—Entwurfs EAGLE.

In EAGLE lassen sich nahezu beliebige Probleme mittels der Struktur des
Losungsraums und der zu optimierenden Funktion {iber diesem Losungsraum
beschreiben. Zusitzlich lassen sich nahezu beliebige evolutionédre Verfahren,

11

die mit einer Menge von Losungen aus einem Ldsungsraum arbeiten, einge-
ben, mit denen das Optimum gesucht werden kann. Héiufig ist es notwendig,
den Losungsraum an das jeweilige Verfahren anzupassen. Dazu gibt es die
Moglichkeit, diesen zu kodieren.

Die Aufgabe von EAGLE ist nun die Anwendung des eingegebenen Ver-
fahrens auf das eingegebene Problem. Zu Beginn einer solchen Simulation
kénnen noch verschiedene Einstellungen am zu simulierenden Verfahren in
der Laufinitialisierung vorgenommen werden. Neben dem durch dieses Ver-
fahren gefundenen ,besten“ Element des Losungsraums sind als Ausgabe
auch noch weitere spezielle Bildschirmausgaben und gefilterte Ausgaben in
Dateien notwendig. Dadurch soll insbesondere ermdglicht werden, dafl die
Arbeitsweise des Verfahrens detailliert untersucht werden kann und verschie-
dene Verfahren miteinander verglichen werden kénnen. Interaktiv kann dabei
auch in Simulationen eingegriffen werden, und das laufende Verfahren mo-
difiziert werden. Diese Funktionsweise von EAGLE wird auch schematisch in
Abbildung 2.1 dargestellt.

2.2 Problem

Ein zu untersuchendes Problem besteht aus einer Beschreibung des Losungs-
raum und der sogenannten Fitneffunktion dariiber.

Der Losungsraum wird durch ein beliebig langes Tupel aus den verschiedenen
Datentypen

e Bit
e Integer (Intervall mit unterer und oberer Grenze)
e Real (Intervall mit unterer und oberer Grenze)
e Permutation mit Angabe der Grofie
angegeben.

Die Fitnefifunktion wird als spezieller Fitneoperator eingegeben. Sein Auf-
bau und seine Syntax entspricht im wesentlichen den Operatoren fiir das
evolutiondre Verfahren und ist in den Abschnitten 2.5 und 2.6 dargestellt.

12

Eingaben Ausgaben

Losungsraum FAGLE gefundenes
Fitnesfunktion Optimum
simuliert
evolutionares Verfahren weitere Ausgaben
Verfahren in Dateien und
auf dem
Bildschirm

Laufinitialisierung

interaktiver Eingriff

Abbildung 2.1: Funktionsweise von EAGLE

2.3 Kodierung und evolutionires Verfahren

Damit ein Verfahren im Losungsraum eines Problems nach einem optimalen
Element suchen kann, wird der Losungsraum durch eine Kodierung an das
Verfahren angepaflt. Diese Kodierung wird verwirklicht durch eine Kodie-
rung jedes einzelnen Datentyps im Tupel der Problemstruktur, das Einfiigen
von weiteren Strukturen, die im Verfahren als Strategieparametern genutzt
werden konnen, und eine Umsortierung. Dadurch ergibt sich die Kodierungs-
struktur. Auf ihr arbeitet das evolutionére Verfahren. Der Zusammenhang
zwischen Problem- und Kodierungsstruktur ist in Abbildung 2.2 dargestellt.

Zur bindren Kodierung einzelner Atome wird die Anzahl der Bits eingegeben,
durch welche sie kodiert werden sollen. D.h. das reelle oder ganzzahlige Inter-
vall wird durch dquidistante Stiitzstellen repriasentiert, wobei sich die Anzahl
der Stiitzstellen aus der Anzahl der verschiedenen Bitbelegungen berechnet.

13

Problemstruktur

R |1 R |[B |[P |B | <-—— Fitnesfunktion

Kodierung

Kodierungsstruktur

Abbildung 2.2: Problemstruktur und Kodierungsstruktur

Schematische Darstellung der Uberfithrung einer Problemstruktur in eine
Kodierungsstruktur, bei der ein reelles Atom in einen Bitstring kodiert wird,
zwel zusétzliche Parameter (grau schraffiert) eingefiigt und alle Atome um-
sortiert werden.

Dadurch entstehen keine ungiiltigen Belegungen im Bitstring, allerdings ist es
moglich, dal bei einem kleineren ganzzahligem Intervall die Anzahl der ver-
schiedenen Bitbelegungen grofler ist als die Anzahl der méglichen Stiitzstel-
len. Dadurch kann ein ganzzahliger Wert durch mehrere verschiedene binére
Strings dargestellt werden. Dies ist im Beispiel in Tabelle 2.1 dargestellt.

Die verschiedenen Kodierungsméglichkeiten der einzelnen Datentypen
konnen Tabelle 2.2 entnommen werden.

Die Kodierungsstruktur bestimmt das Aussehen eines Individuums, welches
in Evolutionidren Algorithmen ja eine mogliche Losung im Suchraum dar-
stellt. D.h. jedes Individuum, das im evolutiondren Verfahren verwendet wird,
hat als Wert eine mogliche Wertebelegung der Kodierungsstruktur. Diese Be-
legung des Individuums wird wéihrend der evolutionidren Suche vom Verfah-
ren z.B. durch Mutation oder Crossover jeweils gedindert. Soll die Fitnef§ eines
Individuums bestimmt werden, werden zunéchst die entsprechenden Werte
der Problemstruktur aus den Werten der Kodierungsstruktur des Individu-
ums bestimmt und anschlielend wird die Fitnefl durch den Fitnefoperator

14

| Werte 1...3 || Werte 1...7 || Werte 1...12 || Werte 1...20

000 11} 000 11} 000 1 (| 000 1
001 1| 001 21| 001 3 || 001 4
010 21 010 31| 010 411 010 6
011 21 011 411 011 6 || 011 9
100 2 || 100 4 11 100 71| 100 12
101 21| 101 o || 101 91| 101 15
110 31| 110 6| 110 10 || 110 17
111 31| 111 7 111 12 |} 111 20

Tabelle 2.1: Beispiele zur bindren Kodierung

Datentyp | Kodierung

Bit Bit (keine Kodierung)
Integer (keine Kodierung)

Bitstring (standardbinér kodiert durch Angabe der
Integer Anzahl der Bits)

Bitstring (Gray-binér kodiert durch Angabe der
Anzahl der Bits)

Real (keine Kodierung)

Bitstring (standardbinér kodiert durch Angabe der
Real Anzahl der Bits)

Bitstring (Gray—bindr kodiert durch Angabe der
Anzahl der Bits)

Permutation (keine Kodierung)

String reeller Zahlen (Anzahl entspricht der Grofe
der Permutation)

Permutation | Bitstring (durch standardbinére Kodierung des re-

ellen Zahlenstrings unter zusétzlicher Angabe der
Bitanzahl)

Bitstring (dito mit Gray-binédrer Kodierung)

Tabelle 2.2: Ubersicht iiber die verschiedenen Kodierungsméglichkeiten

15

Fitnes-

operator

Problem- /

struktur

Individuum
K odierungsstruktur l Fitnes
zusatzliche
Atome ¢

Operator

Abbildung 2.3: Schematische Darstellung des Individuums bestehend aus ei-
ner Kodierungsstruktur und einem Fitnefliwert. Aus der Belegung der Kodie-
rungsstruktur kénnen die Belegungen der Problemstruktur und der zusitz-
lichen Parameter dekodiert werden. Der Fitneloperator berechnet aus der
Belegung der Problemstruktur den aktuellen FitneSwert und der Operator
greift auf die Belegung der zusétzlichen Atome zu.

berechnet, welcher ausschliellich auf den Werten der Problemstruktur ar-
beitet. Die zuletzt berechnete Fitnel wird immer zusitzlich im Individuum
gespeichert. Das Zusammenspiel zwischen Individuum, Verfahren und Fit-
neBfunktion ist in Abbildung 2.3 schematisch dargestellt. Das evolutionére
Verfahren wird durch einen Operator, den sogenannten Hauptoperator, be-
stimmt. Dieser kann noch weitere Operatoren benutzen (siehe Abschnitt 2.4).

16

2.4 Konzept der Operatoren

Alle Eingaben des Benutzers, die Berechnungsvorschriften enthalten, wer-
den in EAGLE als Operatoren eingegeben. Hierzu zéhlen insbesondere die
FitneBfunktion als Fitnefloperator und das evolutionére Verfahren als Haupt-
operator. Hierbei kann der Hauptoperator noch beliebige weitere Unterope-
ratoren verwenden und aufrufen. Dieses Operatorenkonzept ist beispielhaft

in Abbildung 2.4 verdeutlicht.

Die Algorithmen der Operatoren werden mittels der Programmiersprache
LEA (siehe Abschnitt 2.6) eingegeben. Der allgemeine Aufbau der Operato-

ren ist in Abschnitt 2.5 erldutert.

Durch das Operatorkonzept soll eine hohe Wiederverwertbarkeit der Ope-
ratoren auch in weiteren Verfahren gewihrleistet werden. Dabei ergibt sich

17

Hauptop | Crossoverl | Approx
MAIN oo OPERATOR 00 PROCEDURE oo
BEGIN BEGIN BEGIN
crossover1(oo) o approx(0o) ®— | END
t t
mutate3(00) @ END
t
END
Mutate3
OPERATOR 00
BEGIN
t
END

Abbildung 2.4: Operatorenkonzept

das Problem, dafl bei unterschiedlichen Kodierungen der Teil der Individuen,
der manipuliert werden soll, sich an verschiedenen Stellen in der Kodierungs-
struktur befindet. Daher wurde eine Moglichkeit eingefiihrt, mit der beim
Aufruf eines Unteroperators die Sichtbarkeit der Kodierungsstruktur einge-
schrankt werden kann. Damit 1&8t sich ein Operator allgemein fiir den betrof-
fenen Teil einer Kodierungsstruktur formulieren, wahrend beim Aufruf des
Operators die anderen Teile der Struktur einfach ausgeblendet werden, wo-
mit der Operator automatisch an der richtigen Stelle im Individuum arbeitet.
Diese Funktionsweise ist beispielhaft auch in Abbildung 2.5 dargestellt.

Kodierungsstruktur (1. Beispiel)

B

B

B

B

B

B

B

B

—_——

777777777777777777777777777

uneingeschrankter Aufruf

B |[B B |B |B |B B |B
|
Kodierungsstruktur (2. Beispiel)
R |R |B |B |B |B |B
|
\—/ |
|
7
eingeschrankter Aufruf 1
|
1
|
R |R |B |B |B |B [B |=—
|
|

Abbildung 2.5: Funktionsweise des eingeschrinkten Operatoraufrufs

18

2.5 Aufbau der Operatoren

Operatoren bestehen im wesentlichen aus drei Bestandteilen:

e der Kopfzeile des Operators — sie gibt den Typ des Operators (Fitnef3-
operator, Hauptoperator, etc.), die Aufrufparamter einschliefflich der
Art des Aufrufs (call-by—value oder call-by-reference) und den Riick-
gabetyp an.

e den lokalen Deklarationen fiir den Algorithmenteil — hier kénnen Kon-
stanten, Variablen und Parameter deklariert werden. Parameter sind
Konstanten, deren Werte vor jeder Simulation in der Laufinitialisie-
rung eingegeben werden. Auflerdem wird hier angegeben, welche wei-
teren Unteroperatoren benotigt werden.

e dem Algorithmenteil — in ihm wird mittels der Sprache LEA die Be-
rechnungsvorschrift fiir diesen Operator angegeben.

Als Datentypen fiir die Variablen, die Aufrufparameter und den Riickgabe-
typ stehen Bit, Integer, reelle Zahlen, Permutation, Individuum und (nur
bei Verfahrensoperatoren) Population zur Verfiigung. Konstanten und Pa-
rameter konnen nur als Bit, Integer oder reelle Zahlen deklariert werden.
Fiir Variablen stehen laut [AJKT95] auch Felder (Arrays) der Datentypen
zur Verfiigung. Hier wird allerdings aus Griinden der Ubersichtlichkeit auf
Felder verzichtet.

2.6 Sprache LEA zur Eingabe der Operato-
ren

LEA (Language for Evolutionary Algorithms) wurde direkt als Eingabe-
sprache fiir die Operatoren in EAGLE entwickelt. Sie lehnt sich stark an
Sprachen wie Pascal ([JW74]) oder Modula—2 ([Wir82]) an. In diesem Ab-
schnitt soll nur ein duBerst knapper Uberblick iiber LEA gegeben werden.
Eine wesentlich detailliertere Beschreibung befindet sich in Kapitel 6 von
[AJK*95]. Deshalb werden hier hauptsichlich die Unterschiede, die zwischen
[AJKT95] und [JW95] bestehen, vorgestellt. In dieser Kurzbeschreibung wird
z.B. die Trennung zwischen dem Fitnefoperator und den Verfahrensopera-
toren beriicksichtigt. D.h. es gibt bestimmte Befehle, die nur in einem der
beiden Operatortypen verwendet werden diirfen.

Es stehen folgende Sprachelemente als Anweisungen zur Verfiigung:

19

e Wertzuweisungen in der Form “<Variable> := <Ausdruck>”
e [F-THEN-ELSE-END- bzw. [F-THEN-END-Verzweigung
e WHILE-Schleife

e FOR-Schleife

e FOREACH-Schleife mit der Syntax
“FOREACH <Variable> IN <Ausdruck> DO <Anweisungen> END”,
wobei die Variable vom Typ Individuum und der Ausdruck vom Typ
Population ist — dann werden fiir jedes Individuum in der Population
die Anweisungen ausgefiihrt.

e RETURN—-Anweisung zur Riickgabe des gesuchten Werts — sie darf nur
am Ende eines Operators stehen.

e WRITE-Anweisung zur Ausgabe von Werten oder Text auf dem Bild-
schirm

e FILTER-Anweisungen zur Filterung von Daten in verschiedene Datei-
en — die Dateien werden den Filtern allerdings erst in der Laufinitia-
lisierung zugeordnet.

Die FOREACH-Schleife und die WRITE- und FILTER-Anweisungen stehen
nicht in Fitnefloperatoren zur Verfiigung.

Daneben gibt es auch noch weitere spezielle evolutionére Anweisungen, die
zur Manipulation von Individuen, Populationen und Permutationen dienen.
Sie konnen den Tabellen 2.3 bis 2.8 entnommen werden. In diesen Tabellen
sind immer in der ersten Hilfte die Befehle angegeben, die in Ausdriicken
verwendet werden konnen und in der zweiten Halfte die Anweisungen. In
Tabelle 2.9 sind noch weitere Funktionen aufgefiihrt.

Neben diesen Standardbefehlen konnen auch die importierten Operatoren
aufgerufen werden. Falls hier Individuen als Argument {ibergeben werden,
kann bei diesen die Sichtbarkeit wie in Abschnitt 2.4 beschrieben einge-
schrinkt werden. Hier wurde allerdings die Syntax im Vergleich zu [AJKT95]
vollsténdig gedndert. Die Einschriankung wird jetzt allgemein fiir alle Indivi-
duen, die in diesem Operator vorkommen, eingegeben, und es wird zudem auf
eine genaue Angabe der Datentypen im Individuum verzichtet. Die Syntax
lautet jetzt

Operator "{" Sichtbarkeit "}""(" Aufrufparameter ")".
Die Sichtbarkeit besteht dabei aus Zahlen zwischen 1 und der Linge der Ko-

dierungsstruktur, welche durch "," fiir Aufzihlungen bzw. "-" fiir Bereichs-

20

angaben getrennt werden. So sind z.B. mit {1,3-7} nur das erste Atom und
die Atome zwischen einschliellich dem dritten und dem siebten Atom im
aufgerufenen Operator sichtbar.

Funktion Beschreibung
replength() liefert die Anzahl der Atome in der
Problemstruktur

numberrepbit (pos) | liefert die Anzahl der zusammenhéngenden Bits
in der Problemstruktur ab der Position pos

numberrepint (pos) | dito mit Integern

numberrepreal (pos) | dito mit reellen Datentypen

numberrepperm(pos) | dito mit Permutationen

Tabelle 2.3: Funktionen zum Zugriff auf Informationen iiber Problemstruktur
in Fitnefoperatoren

Zusitzlich konnen in Verfahrensoperatoren auch LABEL gesetzt werden. Thnen
wird vor jedem Experiment ihre Bedeutung zugeordnet. Sie dienen vor allem
als definierte Halte— oder Abbruchpunkte.

2.7 Experiment

Ein Experiment bzw. eine Simulation wird durch die Eingabe der Problem-
struktur, der FitneBfunktion, der Kodierung, des evolutiondren Verfahren
und der Laufinitialisierung bestimmt.

In der Laufinitialisierung werden den offenen Parametern der Operatoren
Werte zugewiesen, die Filter konnen aktiviert werden, indem sie auf eine
Datei gelenkt werden, und die Label kénnen als Halte— oder Abbruchlabel
gesetzt werden. Zusétzlich wird ein Random Seed fiir den Zufallszahlengene-
rator eingegeben, und es ist moglich als neue Anfangspopulation eine schon
bestehende Population aus einem anderen Experiment zu wihlen.

Anschlieflend beginnt die Simulation des Verfahrens fiir das eingegebene Pro-
blem. Es wird wihrend des Experiments laufend die derzeitige Generations-
nummer, die beste und die mittlere Fitnef} der derzeitigen Population und die
Textausgaben aus den Operatoren angezeigt. Die gefilterten Daten werden
in den Dateien der Laufinitialisierung abgelegt. Wahrend der Simulation hat

21

der Benutzer jederzeit die Moglichkeit, den Lauf fiir Modifikationen der Lauf-
initialisierung anzuhalten, dann stoppt EAGLE beim Erreichen des néchsten
aktiven Haltelabels, oder das Experiment zu beenden. Wird wihrend der
Simulation ein aktives Abbruchlabel erreicht, wird die Simulation ebenfalls
sofort beendet.

22

Funktion Beschreibung

length() liefert die Anzahl der Atome in der
Kodierungsstruktur

numberbit (pos) liefert die Anzahl der zusammenhéngenden Bits
in der Kodierungsstruktur ab der Position pos

numberint (pos) dito mit Integern

numberreal (pos) dito mit reellen Datentypen

numberperm(pos) dito mit Permutationen

stratlength() liefert die Anzahl der zusidtzlichen Atome
(Strategieparameter)

numberstratbit (pos) | liefert die Anzahl der zusammenhéngenden Bits
in den zusétzlichen Atomen ab der Position pos

numberstratint (pos) | dito mit Integern

numberstratreal (pos) | dito mit reellen Datentypen

numberstratperm(pos) | dito mit Permutationen

Tabelle 2.4: Funktionen zum Zugriff auf Informationen {iber Kodierungs-
struktur und die zuséitzlichen Atome

23

Funktion

Beschreibung

getbit(ind,pos)

liefert das Atom an der Position pos im
Individuum ind aus der Sicht der Ko-
dierungsstruktur, falls dort ein Bit steht

getint (ind,pos)

dito mit Integer

getreal (ind,pos) dito mit reellen Datentypen

getperm(ind,pos) dito mit Permutationen

getstratbit (ind,pos) liefert das Atom an der Position pos
im Individuum ind aus der Sicht der
zusitzlichen Atome, falls dort ein Bit
steht

getstratint (ind,pos) dito mit Integer

getstratreal(ind,pos)

dito mit reellen Datentypen

getstratperm(ind,pos)

dito mit Permutationen

fitness(ind)

liefert die zuletzt berechnete Fitnef3 des
Individuums ind

setbit(ind,pos,wert)

setzt das Atom an der Position pos der
Kodierungsstruktur im Individuum ind
auf den Wert wert, falls dort ein Bit
steht

setint (ind,pos,wert)

dito mit Integer

setreal(ind,pos,wert)

dito mit reellen Datentypen

setperm(ind,pos,wert)

dito mit Permutationen

setstratbit(ind,pos,wert)

setzt das Atom an der Position pos der
zusétzlichen Atome im Individuum ind
auf den Wert wert, falls dort ein Bit
steht

setstratint (ind,pos,wert)

dito mit Integer

setstratreal(ind,pos,wert)

dito mit reellen Datentypen

setstratperm(ind,pos,wert)

dito mit Permutationen

evaluate (ind)

berechnet die Fitnef3 des Individuums
ind mit dem Fitnefloperator und spei-
chert sie beim Individuum

Tabelle 2.5: Funktionen fiir Individuen in Verfahrensoperatoren

24

Funktion

Beschreibung

getrepbit (ind,pos)

getrepint (ind,pos) dito mit Integer

getrepreal (ind,pos)

dito mit reellen Datentypen

getrepperm(ind,pos) dito mit Permutationen

setrepbit(ind,pos,wert)

setrepint (ind,pos,wert) dito mit Integer

setrepreal (ind,pos,wert)

dito mit reellen Datentypen

setrepperm(ind,pos,wert) | dito mit Permutationen

Tabelle 2.6: Funktionen fiir Individuen in FitneSoperatoren

Funktion

Beschreibung

getpermvalue (perm,pos)

an der Stelle pos

setpermvalue (perm,pos,wert)

verschoben

xchangeperm(perm,posl,pos2)

reverseperm(perm,posl,pos2)

pos2 einschlief3lich

Tabelle 2.7: Funktionen fiir Permutationen

25

liefert das Atom an der Position pos im In-
dividuum ind aus der Sicht der Problem-
struktur, falls dort ein Bit steht

setzt das Atom an der Position pos der
Problemstruktur im Individuum ind auf
den Wert wert, falls dort ein Bit steht

liefert den Wert der Permutation perm

setzt den Wert der Permutation perm
an der Stelle pos auf den Wert
wert, die anderen Werte werden dabei

vertauscht die Werte der Permutation
perm an den Stellen pos1 und pos2

spiegelt das Teilstiick der Permutati-
on perm zwischen den Stellen pos1 und

Funktion

Beschreibung

sizeofpop(pop) liefert Anzahl der Individuen in der Population
pop

getavgfitness (pop) liefert die durchschnittliche Fitnefl der Indivi-
duen in der Population pop

getbestfitness (pop) liefert die Fitnef} des derzeit besten Individu-
ums in der Population pop

getworstfitness(pop) | liefert die Fitnefl des derzeit schlechtesten In-
dividuums in der Population pop

getind (pop,nr) liefert das Individuum mit der Nummer nr in
der Population pop

getbest (pop) liefert das Individuum mit der besten Fitnefl
in der Population pop

getworst (pop) liefert das Individuum mit der schlechtesten
Fitnef} in der Population pop

clearpop (pop) 16scht alle Individuen in der Population pop

mergepop (popl,pop2)

alle Individuen aus Population pop2 werden
zusdtzlich in die Population popl kopiert

insertind(pop,ind,nr)

das Individuum ind wird in die Population pop
an der Position nr eingefiigt, die weitere Nu-
merierung verschiebt sich hierbei

killinpop(pop,nr)

in der Population pop wird das Individuum mit
der Nummer nr geloscht, die weitere Numerie-
rung verschiebt sich hierbei

evaluate (pop)

fiir alle Individuen in der Population pop wird
die Fitnefl neu berechnet

Tabelle 2.8: Funktionen fiir Populationen in Verfahrensoperatoren

26

Funktion

Beschreibung

getrandomreal ()

liefert eine reelle Zufallszahl zwischen 0 und 1

getrandomint (ug,og)

liefert eine ganzzahlige Zufallszahl zwischen ug
und og einschliefSlich

gen() liefert den Wert des globalen Generatio-
nenzihlers
incgen() erhoht den globalen Generationenzéhler um 1

write(out)

schreibt out auf den Bildschirm, dabei kann
out sowohl ein beliebiger Ausdruck als auch ein
Textstring sein

Tabelle 2.9: Weitere Funktionen in Verfahrensoperatoren

27

Kapitel 3

Seminarvortrage

3.1 Algebraische Spezifikation und
Typ—Polymorphismus

3.1.1 Einleitung

Eine erste Entscheidung war die Wahl der Programmiersprache ML fiir die
Projektgruppe. Weil einer der Ausgangspunkte der Projektgruppe die for-
male Spezifikation von EAGLE war, lag es nahe, auch eine funktionale Pro-
grammiersprache zu verwenden. Da ML zusédtzlich eine relativ kompakte
Schreibweise des Quelltextes unterstiitzt, besteht die Hoffnung, damit re-
lativ schnell Prototypen und erste eingeschrinkte Versionen des Programms
erstellen zu kénnen. So unterstiitzt ML z.B. bei der Deklaration von Funk-
tionen ein pattern matching der Parameter. Da ML polymorphe Typen ver-
wendet, kénnen Funktionen und Datentypen so geschrieben werden, daf sie
auf moglichst viele verschiedene Typen anwendbar sind und gut wiederver-
wendet werden konnen. Als weiteren Vorteil, insbesonders gegeniiber vielen
anderen funktionalen Sprachen, besitzt ML, trotz der Typpolymorphie, eine
strenge Typpriifung, mit der Typfehler schon vor Programmstart entdeckt
werden konnen. Der Zusammenhang zwischen dieser Typpriifung und der
Typpolymorphie in ML soll in diesem Abschnitt erlautert werden.

28

3.1.2 Einfiihrung in den Lambda—Kalkiil

Zum Versténdnis der nachfolgenden Abschnitte erfolgt hier eine kurze Ein-
fiihrung in die Idee des funktionalen Programmierens und den Lambda—
Kalkiil.

3.1.2.1 Funktionales Programmieren

Beim funktionalen Programmieren bestehen das Programm und die dazu-
gehorenden Daten aus einem Ausdruck E. Eine Reduktionsmaschine wan-
delt diese Eingabe mittels der Ersetzungsregeln solange um, bis keine dieser
Regeln mehr anwendbar ist. Die Ersetzungsregeln haben die Form P — P’
und geben an, dafl der Teilausdruck P aus E durch P’ ersetzt werden soll.
Wenn in einem so gewonnenen Ausdruck E’ kein Teilausdruck P mehr vor-
kommt, der auf der linken Seite einer Ersetzungsregel steht, nennt man ihn
die Normalform von E. Dieser Ausdruck kann nicht mehr weiter umgewandelt
werden. Er ist die Ausgabe zu dem funktionalen Programm E.

3.1.2.2 Lambda—Kalkiil
Die Menge der A —Terme (A) baut auf den Mengen der Konstanten C' =
{¢,d,c",...} und Variablen V = {v,v',v", ...} mittels folgender Regeln auf:
l.ceC=ceA
2.z€eV=>xe€A
3. M,N € A= (MN) € A (M auf N anwenden)
4. M e Nz eV = (Ax.M) € A (Abstraktion)

Abkiirzungen: Zum Sparen von Klammern wird beim Anwenden einer Funk-
tion Rechtsassoziativitat und bei der Abstraktion Linksassoziativitéit verwen-
det:

FM M, ... M, entspricht dann (... ((FM;)M,)...M,) und
ATy ... %, .M entspricht Azy.(... (Ax,.M)...).

Freie Variablen: Freie Variablen sind alle Variablen x, die nicht von einem ent-
sprechenden \x eingeschlossen werden. Die Variablen, die zu einem umschlie-
Benden Ax gehoren, werden durch diese Abstraktion gebunden und demnach

29

als gebundene Variablen bezeichnet. Die Menge F'V (M) der freien Variablen
von M kann man dann induktiv definieren als:

FV(z) = {z};
FV(MN)=FV(M)UFV(N);
FV(Ax.M) =FV(M) <{x}.
Der Ausdruck z(Az.zy) enthilt z.B. die freie Variable y und die Variable x

einmal als gebundene und einmal als freie Variable. Ein Lambda-Term M
heiflt geschlossen, wenn er keine freien Variablen enthélt, d. h. FV (M) = .

Die Substitution M|z := N] ersetzt die freien Vorkommen der Variable = in
dem Term M durch N. Die freien Vorkommen werden dabei alle simultan
ersetzt. Daher ist die Substitution auch nicht rekursiv. Gebundene Variablen
x werden nicht ersetzt.

zy(Az.zy)[x := N| = Ny(\z.zy)
zy(Az.zy)ly := N] = xN(Az.xN)

Mit Hilfe der Substitution kann man dann die Wirkungsweise des Lambda—
Kalkiils definieren.
e (\t.M)N = M[z:= N]VM,N € A

e Die Regeln, die angeben, wann zwei Term gleich sein sollen:

M = M, M=N= N=M,
M=NN=L=M=L, M=N= MZ=NZ,
M =N = ZM = ZN, M =N = \z.M = \z.N.

Beim Anwenden der ersten Regel wird das Vorkommen eines entsprechenden
Ax—Ausdrucks durch die rechte Seite der Regel ersetzt. Dies wird solange
gemacht, wie in der Formel noch Ax—Ausdriicke auf andere Ausdriicke an-
gewendet werden. Wenn sich die Gleichheit zweier Ausdriicke mit Hilfe von
diesen Regeln herleiten 18t (M = N), dann heilen sie 3—convertible, und
man schreibt A - M = N. Da sich die Bedeutung von zwei Ausdriicken M
und N nicht unterscheidet, wenn nur die gebundenen Variablen unterschied-
lich sind, schreibt man dann M = N. So ist z.B.: (Az.x)z = (A\y.y)z.

Beispiel fiir das Ersetzen von A\z—Ausdriicken:

(Dz.(Ay. (2?2 +yH)))4)3 (Abk.: Avy.(2® +y*)4 3)
(Ay-(4% +9%))3
42 + 32

30

Der letzte Ausdruck wird hier nicht weiter ausgewertet. Er stellt die Normal-
form des ersten Ausdrucks dar. Erst wenn man noch zusétzliche Ersetzungs-
regeln fiir + und ? einfiihrt, bekommt man als Ergebnis dann auch 25 (siche
[Bar90]).

3.1.3 Einfache Typisierung

In diesem Abschnitt erfolgt die kurze Darstellung einer Moglichkeit, Terme
des Lambda—Kalkiils mit Typen zu versehen.

Die Menge der Typen (Type) wird dazu induktiv definiert durch:
® ig,L1,... € Type (Grundtypen),
e a,f3,...€ Type (Typvariablen),
e 0 € Type, 7 € Type = (0 — 1) € Type.

Eine Basis ist eine Menge von Typzuweisungen zu Termvariablen (z.B. B =
{z : 0,...}, wobei der Variable z hier der Typ o zugewiesen wird). Das fol-
gende Axiom und die folgenden Regeln beschreiben induktiv, wann die Ty-
pisierung eines Ausdrucks M des Lambda-Kalkiils mit einem Typ o (M : o)
aus einer Basis B herleitbar ist.

Axiom:
e Brz:o,fallszx:0€B

Regeln:

BrrM:0—+7 BFN:o
B+FMN :1

BU{z:o}FM:71

BFXeM:0—rT1

Das folgende Beispiel zeigt die Herleitung des Typs fiir den Ausdruck A\z.yx
mit der Basis B={y:0 — o}:

Bty:(oc—o0)=
BU{zx:0}Fy:(c—0) BU{z:0}txz:0
BU{z:0}F (yx):0)

BF Az.yz: (0 — o)

(1)

{y:o—=0}FAzyzr:0—o0

31

Mit dieser Vorgehensweise kann jedoch nur die Korrektheit einer Typisierung
nachgewiesen werden. So muf} in diesem Beispiel der Typ fiir die gebunde-
ne Variable x selbst korrekt bestimmt werden, da sonst die Korrektheit der
Typisierung nicht gezeigt werden kann. Ein Algorithmus, der zu einem Pro-
gramm den korrekten Typ liefert, folgt im nichsten Abschnitt.

3.1.4 Typpolymorphismus

Fiir eine einfache Sprache Ezp soll die Wirkungsweise des Algorithmus W
beschrieben werden. Er liefert eine korrekte, aber noch moglichst freie Typi-
sierung (falls vorhanden) zu einem beliebigen Ausdruck dieser Sprache. Da
er nicht wie andere Typpriifungsalgorithmen verlangt, dafl der zu priifende
Ausdruck in Normalform vorliegt, kann er noch vor Beginn der Reduktion des
Ausdrucks eingesetzt werden und muf} nicht bis zur Laufzeit des Programms
warten. Allerdings ist er daher auch stark vom Aufbau der entsprechenden
Sprache abhéngig.

3.1.4.1 Die Sprache Exp

Im Folgenden wird eine einfache Sprache Exp vorgestellt, fiir die dann die
Arbeitsweise des Algorithmus W gezeigt wird. Die Sprache und mit ihr der
Algorithmus konnen dann spiter auf komplizierte Konstrukte und komple-
xere Typkombinationen erweitert werden.

Die Sprache Exp baut auf folgenden Elementen auf, wobei x eine Variable
und e, € und e” Ausdriicke aus Exp sind:

1. z: Variable,

2. (e€'): e auf ¢’ angewendet,

3. ife thene elsee”: bedingte Verzweigung,

4. A\x.e: Abstraktion (siehe oben),

5. fizz.e: kleinster Fixpunkt von Ax.e und

6. letx = eine': Binden von e an x innerhalb von e’

Da Exp recht einfach aufgebaut ist, konnen zur Laufzeit nur zwei Arten
von Fehlern auftreten. Zum einen muf} bei der Verzweigung ife thene' elsee”
der Ausdruck e ein Ergebnis vom Typ boolean haben. Als zweites muf} ein

32

Ausdruck e, der auf einen anderen angewendet wird (ee’), eine Funktion sein.
Dies kann durch eine Typpriifung erzwungen werden.

Die fiir die Typisierung von Exp verwendeten Typen werden folgendermaflen
aufgebaut, wobei beliebige Typen im Folgenden durch p, o und 7 dargestellt
werden:

1. tg,t1,...sind die Grundtypen, wobei ¢y der Typ fiir boolsche Werte ist.

2. Weiterhin gibt es eine aufzéhlbare Menge von Typvariablen. Diese sind
ebenfalls Typen. a, 3,7, ... bezeichnen diese Typvariablen.

3. Der einzige Typoperator ist hier —, der den Typ fiir eine Funktion
erzeugt. Wenn p und o Typen sind, dann ist auch p — o ein Typ.

Alle Typen, die keine Typvariablen enthalten, werden als Monotypen (mono-
types) bezeichnet. Alle, die eine oder mehrere Typvariablen enthalten, werden
als Polytypen (polytypes) bezeichnet. Diese sind es, die die Polymorphie in
einem Programm darstellen. Die Typvariablen in einem Polytyp stehen dabei
fiir einen beliebigen Monotyp. So bedeutet z.B. @« = a Va.ao — «a, wobei «
jeder beliebige Monotyp sein kann, aber nicht ein beliebiger Typ.

Das Folgende konnte leicht auch auf weitere Typoperatoren ausgebaut wer-
den, wie sie z.B. auch in ML verwendet werden. So konnte man zuséitzlich
noch die bindren Operatoren X fiir ein kartesisches Produkt und U fiir Ver-
einigung einfiihren, sowie den unéren Operator [ist fiir Listen.

3.1.4.2 Typkorrektheit

Hier wird zuerst die Eigenschaft well-typed (wt) vorgestellt, die aussagt, daf3
alle Teilausdriicke eines Programms die korrekten Typen haben. Dazu sind
erst einmal einige Definitionen notig.

Ein Prifixz ist eine Folge von Az, fizx und let z, getrennt durch Punkte. Eine
prefized expression (pe) besteht aus einem Préfix p und einem Ausdruck e
(geschrieben ple), wobei alle freien Variablen aus e in p vorkommen. Jeder pe
setzt sich nach folgenden Regeln aus Teilausdriicken mit dem dazugehorenden
Prifix (sub—pe’s) zusammen. Dabei gilt der transitive Abschluf.

1. p|(e€') hat die sub—pe’s ple und ple’.
2. p|(ife thene elsee”) hat die sub—pe’s ple, ple’ und p|e”.
3. p|(Az.e) hat die sub—pe p.\z|e.

33

4. p|(fixz.e) hat die sub—pe p.fizx|e.
5. p|(letx = eine’) hat die sub—pe’s ple und p.letx|e’.

Diese Regeln zeigen, welche Definitionen fiir die Teilausdriicke gelten. So gilt
grundsétzlich die Gesamtdefinition p fiir alle Teilausdriicke der Anweisung.
Bei A, fiz und let gelten zusétzlich die lokalen Definitionen fiir den Teilaus-
druck. Bei let gilt aber die Definition von x nicht fiir den Teilausdruck e.

Bsp.:
Az.(Ay.(letg = (Az.(y(yx))) in (gz))) hat u. a. die sub-pe’s
Az Ay x| (y(yx)) und Az \y. \x.let g|(gx).

Eine Definition letx, firx oder Ax ist aktiv im Préfix, wenn rechts davon
keine Definition mit x mehr vorkommt. Im Ausdruck Az.\y.\z|(y(yz)) ist
z.B. das zweite Ax aktiv, das erste aber nicht. Diese Unterscheidung wird
spater wichtig, wenn die beiden x verschiedene Typen haben.

Beim Typisieren eines Ausdrucks ple wird jeder Definition Az, fizz und letx
und jedem Teilausdruck und jeder Definition in e ein Typ zugewiesen. Dar-
gestellt als p|é,, wenn dem Ausdruck e der Typ o zugewiesen wurde.

Das folgende Beispiel zeigt die Typisierung eines Exp—Ausdrucks:

()\y“.let fasa = (>\$a-$a)a—>a in le—)LlyLl)Ll—Hl

Die Typen fiir die Teilausdriicke sind so gewéhlt, daf} sich entsprechende
Ausdriicke den gleichen Typ haben (oder bei let einen Typ in dem die Typ-
variablen konkrete Typen angenommen haben). Ein so typisierter Ausdruck
wird spéater dann als well-typed bezeichnet.

Generische Variablen: Eine Typvariable im Typ o eines let x, aus dem Prifix
oder dem Ausdruck einer pe ist generisch, wenn sie in keinem Typ 7 eines
umschlieBenden Az, oder fizz, vorkommt. In dem Ausdruck Ay,.letz, .5 =
oo in(Ta—pYa)p ist fiir das let die Typvariable 3 generisch, die Typvariable
a jedoch nicht. Die generischen Variablen driicken den Polymorphismus aus,
der in einem mit let definierten Ausdruck steckt.

Eine generische Instanz von o ist eine Instanz von o, wobei nur die generi-
schen Typvariablen konkrete Typen annehmen.

Standard: Eine pe p|é ist standard, wenn fiir alle sub—pe’s p’|é’ die generischen
Typvariablen jedes letx, aus p’ sonst nirgends in p'|é’ vorkommen. Dies ver-
hindert, daf} es zu Konflikten mit gleichnamigen Typen kommt, die anderswo
verwendet werden.

34

Eine prefized expression (pe) wird als well-typed (wt) bezeichnet, wenn fol-
gendes gilt:

1. p|z, ist genau dann wt, wenn er standard ist und entweder
(a) Az, oder fizz, ist aktiv in p, oder
(b) letx, ist aktiv in p und 7 ist eine generische Instanz von o.

2. p|(é,€,), ist genau dann wt, wenn sowohl p|é als auch p|e’ wt sind und
p=0—T.

3. p| (ife, then €, else€l,), ist genau dann wt, wenn p|é, p|e’ und ple” wt
sind, p=1pund 0 =0’ = 7.

4. p|(Az,.€,), ist genau dann wt, wenn p.A\z,le wt ist und 7 = p — o.
5. p|(firx,.€,) ist genau dann wt, wenn p. fix x,|€ wt ist und p =0 = 7.

6. p|(letx, = €, in€.,), ist genau dann wt, wenn ple und p.letz,|e’ wt sind
und p=p, 0 =r.

Grundsatzlich gilt fiir alle Regeln, daf} die Teilausdriicke, aus denen ein Aus-
druck besteht, ebenfalls erst einmal wt sein miissen. Punkt 1 sorgt zusétzlich
dafiir, dafl jede Variable mit dem Typ ihrer Deklaration iibereinstimmt, und
daB3 jede Variable deklariert wurde. Punkt 2 stellt sicher, daf} bei der Pa-
rameteriibergabe ein Parameter mit dem richtigen Typ {ibergeben wird und
der Typ, den die Funktion zuriickliefert, stimmt. Bei ifd thene elsee’ muf} der
Typ der beiden Zweige e und €' mit dem Ergebnistyp iibereinstimmen und
der Bedingungsteil d mufl vom Typ boolean sein. Bei den Deklarationen Az,
firz und letx mufl der Typ des Ausdruck mit dem gesuchten Typ fiir das
Ergebnis iibereinstimmen. Fiir die Untersuchung des Ausdrucks e gilt dann
zusitzlich noch die (lokale) Deklaration fiir die Variable z. Eine Besonder-
heit ist hier die unterschiedliche Behandlung von Az (bzw. fizz) und letz.
So kann eine mit letx, = ... ine definierte Variable x bei jedem Auftreten
in e einen anderen Typ haben, solange alle generische Instanzen von o sind.
Bei einem Ausdruck (Az,.e)e’ (bzw. fizx,.e) miissen jedoch alle Vorkommen
von x in €' (bzw. bei fizz in e) den Typ o haben.

Bsp.:
Mopos(oony-letza = ... in((fr,)Ts)r ist daher wt.

Moo (oo ALa.((f2,)2s)7 ist jedoch nicht wt.

Man kann mit einer strukturellen Induktion iiber die obigen Regeln zeigen,
da} ein Programm, das nach dieser Definition well-typed ist, wihrend des

35

Ablaufs keine Ausdriicke mit falschen Typen als Operatoren oder Operanden
verwendet (siehe [Mil78]).

3.1.4.3 Der Algorithmus W

Es folgt nun der Algorithmus W, der zu einem Deklarationsteil (mit Typen)
p und einem Programm f das typisierte Programm f und eine Substitution
T liefert, die Typen miteinander vereinbart. Der Algorithmus benétigt den
Unifikationsalgorithmus Y. Dieser liefert fiir U (o, 7) ein allgemeinstes U mit

Substitutionen fiir die in ¢ und 7 enthaltenen Typvariablen, das ¢ und 7
unifiziert, d. h. Uo = UT.

Beispiel: Unifikation von (o« —) — 1o und (8 — «) — 7

U(((a = B) =), (B —a) =) =U=[8:=ally =]
es ist dann: U(((a =) = 1)) = U(((F — a) = 7)) = ((a = a) = 1p)

Algorithmus W: W(p, f) = (T, f) :

Ist f:
1. f=ux
(a) Wenn Az, oder firz, in p aktiv ist:
T =1, f=ux,. (I ist dabei die leere Substitution [])
(b) Wenn letz, in p aktiv ist:
T=1,f=ux,;, wobei 7 = [o; := B;]o ist.
B; sind neue Variablen und «; sind die generischen Variablen von
0.
2. [=(de):

Fiihre den Algorithmus W fiir d und e aus:

(R,d,) =W(p,d), (S,e,) = W(Rp,e).

U =U(Sp,0 — (3), wobei 3 eine neue Variable ist.
T = USR, f = U(((Sd)2)s).

3. f = (ifdthene elsee):
(R,d,) = W(p,d) und Uy = U(p, 10).
(,8,) = W(UyRp, e), (5',€,) = W(SUyRp,e') und U = U(S'0,0").
=US'SUyR, f = ((sz’SUodthenS’eelsee)).

36

=
N
I

= W(p.\z3,d), wobei (8 eine neue Variable ist.
= (ATRg-dp) RG—p-

(@
I
=
&
& [
=

- N
I

7dﬂ = W(ﬁa d) und
,€,) = W(Rp.letz,,e).
= (letxg, = Sdine),.

B

~

I
N
=y
Ay

b

Man kann zeigen, dafl ein Programm, das mit diesem Algorithmus typisiert
wurde, auch well-typed ist (siehe [Mil78]). Der Beweis erfolgt mit struktureller
Induktion iiber f, wobei die rekursive Definition von W ausgeniitzt wird. Ein
Exp—Programm, das diesen Algorithmus erfolgreich durchlaufen hat, wird
also nicht mehr an einem falschen Typ scheitern.

Indem der Algorithmus allen noch nicht eingeschréinkten Ausdriicken eine
neue Typvariable (3, zuweist, garantiert er anfangs eine grofitmogliche Frei-
heit fiir die Typen dieser Ausdriicke. Falls dann wéhrend des weiteren Ablaufs
eine Einschriankung fiir diese Typen erkannt wird (z.B. muf} der erste Teilaus-
druck einer if-Anweisung einen boolschen Typ ¢y haben), werden sie, wenn
moglich, durch die Substitutionen entsprechend eingeschrinkt.

Am folgenden Beispiel soll die Arbeitsweise des Algorithmus fiir einen kiirze-
ren Ausdruck gezeigt werden.

fist Ax.(Ay.(letg = (A\x.(y(yx))) ingx))

w(@, f) :

1. Wegen 4. (A-Ausdruck):
(By,di) = W(Azg,, Ay.(letg = (Az.y(yz)) ingz))

2. Wegen 4. (A-Ausdruck):
(Ra, d2) = W(Azg,. Ayg,, letg = (Av.y(yx)) in gz)

3. Wegen 6. (let—Ausdruck):
o (B, d3) = W(Az, . Ays,, Az.(y(yx)))

Wegen 4. (A-Ausdruck): (Ry,ds) = W(Axg, - \ys, - A\s;, (y(yr)))

37

Wegen 2. (y angewendet auf (zy)):

- (R5, Jg)) = W(Axgl.Ay52.Axg3, y) ~
Wegen 1.(a) (A\y aktiv im Prifix): Rs = I, ds = yg,

- (RG, CZG) == W()‘Iﬁl')‘yﬂy}‘xﬁa? (yl‘))

Wegen 2. (y angewendet auf x):

* (R7, CZ"() = W()‘Iﬁl')‘yﬂy}‘xﬁa? y) B
Wegen 1.(a) (A\y aktiv im Prifix): R; = I,d; = yg,

* (Rg,dg) = W(Ars,.\ys, - ATs,, T))
Wegen 1.(a) (Az aktiv im Préfix): Rg = I,ds = xp3

* Uy =U(Bs, B3 — B4) = [B2 := P3 — (4]

Ry = [52 = 53 — 54]7 JG - (yﬁ?,%ﬂ‘lxﬁs)ﬂz;
Hier sind die Typen fiir den Parameter und das Ergebnis der
Funktion y noch verschieden (33 — ;).

— Uy = U(Ref2, 81 — B5) = U(Bz — B4, B4 — B5) = [B5 :=
55][54 = 55]

Ry = [B5 1= B5][01 := Bs][B2 := Bs — [Bs],

dy = (yﬁsﬁﬂsy (yﬂ5‘>ﬂ5xﬁ5)ﬂ5)ﬂ5

Da die Funktion y jetzt auf den Ausdruck (yz) angewendet wird,
mufl der Typ des Parameters x von y gleich dem Ergebnistyp
von y sein. Weil fiir das Ergebnis der Funktion y der neue Typ
[Bs angenommen wurde, werden die benutzten Typvariablen durch
Unifizieren entsprechend eingeschréinkt. Man erhilt als Typ fiir
die Funktion y jetzt O5 — fs.

Ry = Ry, ds = (A2, (g5 (Yss—0:055) 85) 85) 555
b (R97 Ci9) = W()‘xﬂl')‘yﬂsy%ﬂsy'letgﬁs%ﬂm (ge))

38

Wegen 2. (g angewendet auf x):

— (R, CZ10) = W()‘xﬂl')‘yﬂsﬂﬂs'letgﬂs)%ﬂsa 9)
Wegen 1.(b) (letx aktiv im Préfix):

Rig =1,dvo = ggy-sps
Es werden hier keine neuen Variablen eingefiihrt, da (85 — fs)
keine generischen Variablen enthilt.

— (B, CZ11) = W()‘xﬂl')‘yﬂsﬂﬂs'letgﬂs)%ﬂsa z)
Wegen 1.(a) (Az aktiv im Préfix):

RH = I, du =Tp
— Us =U(B5 = B5, 01 — Bs) = [B1 := B6][B5 := Be])

Ry = U?n JQ = (gﬂs—)ﬁ6xﬂ6)ﬁ6

R2 = RgRg,dQ = (l@tgﬂb,*),ﬁﬁ ==
()\',‘Uﬂ(i'(yﬂ(}‘)/gﬁ (yﬁaﬂﬁaxﬂb‘)ﬁa)ﬁa)ﬁa%ﬁa m (gﬁaﬁﬂb’xﬁa)ﬂ(s)ﬂb’

R, = Ry, Jl = ()‘yﬂs%ﬂs-(- : -))(ﬁe—ﬂis)—ws

Ergebnis:

= ([B1 = B6][0B5 := Bs][B3 := B5][Bs 1= B5][B2 := B5 — Bs),
(A 85 (AYBs—6- (et 9By — 85 =
()\Iﬁ6‘(yﬁ6_>/36 (yﬂsﬁﬂexﬁﬁ)ﬂs)ﬂs)ﬂsﬁﬂs
012 (85867 86) Bs) B)) (86— B) — 86) Ba— ((B6—>86)— o)

wW(0, f)

Am Anfang werden den vorkommenden Typen hier die Typvariablen ; bis
B zugewiesen. Die Struktur dieses Programmstiicks erzwingt dann die Ein-
schrinkung dieser Typen durch die Substitutionen, bis schliefllich nur noch
die Typvariable g vorkommt.

3.1.5 Fazit

Der Algorithmus W bietet die Moglichkeit eine Typpriifung durchzufiihren,
die gleichzeitig eine relativ grofie Freiheit fiir die Typen der Ausdriicke zulafit.

39

In der obigen Form ist der Algorithmus fiir eine Implementierung allerdings
zu unhandlich. In [Mil78] wird zusétzlich zum Algorithmus W noch der Al-
gorithmus 7 vorgestellt. Dieser leistet dasselbe, ist aber effizienter zu imple-
mentieren, da er u. a. bei den Substitutionen mit einer globalen Variablen
arbeitet und auf die Ausfiithrung der Substitutionen oft verzichtet. Die in
der Programmiersprache ML durchgefiihrte Typpriifung basiert auf diesem
Algorithmus.

40

3.2 Sammlung von Problemen und Optimie-
rungsverfahren

3.2.1 Einleitung

Im Rahmen der Projektgruppe ,,Evolutionére Algorithmen® sollen einige Vor-
trage den beteiligten Studentlnnen den schnellen Einstieg in das Thema
ermoglichen. Diese Ausarbeitung zu einem Hauptseminar soll einen Uber-
blick iiber typische Optimierungsprobleme geben und einige Optimierungs-
verfahren erldutern.

Im ersten Teil wird auf zwei grundsétzliche Problemklassen eingegangen: die
mathematischen Funktionen und die praktischen Anwendungen.

Der zweite Teil beschiftigt sich mit Optimierungsverfahren, die sich in drei
grofle Gruppen einteilen lassen:

e enumerierende Verfahren
Bei diesen Verfahren wird der gesamte Losungsraum durchsucht und
die beste Losung durch Vergleich ermittelt. Dies ist die simpelste Vor-
gehensweise und mufl daher nicht weiter erkléirt werden.

e kalkiilbasierte Verfahren

Diese Verfahren lassen sich nur auf mathematische Probleme anwen-
den, d.h. ggf. muf} ein Problem erst in eine mathematische Notation
gebracht werden. Es gibt nun zwei mogliche Varianten, die ,,direkten®
und die ,indirekten“ Verfahren. Letztere betrachten nicht die Werte
der Problemfunktionen selbst, sondern die von aus ihnen abgeleiteten
Funktionen. Beispielsweise werden Nullstellen der ersten Ableitung ei-
ner Funktion gesucht, da sich an diesen Stellen (lokale) Extrema befin-
den konnen. Dies hat natiirlich zur Folge, dal viele Funktionen nicht
mit diesen Verfahren untersucht werden kénnen, da erste Ableitungen
nicht formuliert werden kénnen oder nicht existieren.

Dagegen verwenden die direkten Verfahren die Funktionswerte der Pro-
blemfunktion selbst, um sich an ein Extremum anzunihern.

Die bekanntesten Vertreter der kalkiilbasierten Verfahren sind die ,,Hill-
Climbing*“ — Strategien, die im folgenden vorgestellt werden.

o zufallsgesteuerte Verfahren
Hier werden Anfangskonfigurationen zuféllig ausgewéhlt und nach ver-
schiedenen Methoden aus diesen neue Konfigurationen bestimmt. Sie

41

werden bewertet und entweder iibernommen oder verworfen. Dies wird
wiederholt, bis eine Abbruchbedingung erfiillt ist.

Rein zufallsgesteuerte Verfahren, wie z.B. ,Monte-Carlo“ und ,,Ran-
dom Walk®, sind nicht Gegenstand dieser Ausarbeitung. Es werden
stattdessen die naturanalogen Verfahren nach physikalischen und bio-
logischen Modellen betrachtet.

3.2.2 Problemiiberblick

Es gibt zwei grofle Gruppen von Problemen, auf die Optimierungsverfahren
angewendet werden. Zum einen existiert die Gruppe der mathematischen
Funktionen (vgl. [Wei95]), zum anderen meist nur umgangssprachlich defi-
nierte Probleme aus der Praxis.

Mathematische Funktionen Die folgenden Beispiele fiir mathematische
Funktionen dienen weniger zur Beschreibung konkreter Probleme als zur Be-
urteilung des Verhaltens von Optimierungsverfahren. Hierfiir ist zudem die
Kenntnis des Minimums hilfreich.

3.2.2.1 reelle Funktionen
Es gilt: 7 € R?
e Schwefelfunktion ([var94] 189 ff)
n i 2
Fi(7) =) (Z fﬂj) . Min(F\ (%)) = Fi(0)
i=1 \j=1

e Summe verschiedener Potenzen ([var94] 189 ff)
F@) =S [al ™ Min(Fy(#) = F(0)
i=1

e Achsenparallele Hyperellipsoide ([var94] 189 ff)

n

Fy(#) =) (i-2;)% Min(F(1)) = F3(0)

=1

42

e Hypersphire ([var94] 199 ff) / Sphérenmodell ([var94] 428 ff)
Fy(@) =30, a2 Min(Fy(Z)) = F4(0) (Abb. 3.1).

Abbildung 3.1: F;, — Hypersphére/Sphérenmodell

e Verallgemeinerte Rosenbrock Funktion ([var94] 189 ff, 1991f, 249 ff)

n

F5(@) =) (100 - (2501 ©a7)° + (1 &1,)°)

=1
Min(F5(2)) = F5(1); <5.12 < x; < 5.12. (Abb. 3.2).
e Griewank’s Funktion ([var94] 199 ff, 249 ff)

n 2

- Z; - Li
Fys(Z) = Z 1000 <:>Hcos (W) +1
i=1

=1

Min(F5(%)) = F5(0), mit n = 100, <600 < z; < 600.
e Rastingin Funktion ([var94] 249 ff)

F:(¥)=3.0-n+ fo &3.0-cos(2-m-x;)

=1

Min(F; (%)) = F7(0), mit n = 20,<5.12 < x; < 5.12.

43

Abbildung 3.2: F5 — Verallg. Rosenbrock Funktion

44

andere Schwefel Funktion ([var94] 249 ff)
Fy(#) = 4189829 -0+ Y a; -sin (\/|g;i|>

=1
Min(Fy(7)) = Fs(420.9687,420.9687,...), mit n = 10,500 < z; <

500.
Ackley Funktion ([var94] 249 ff)

0.2 -

20 + e <20 - exp

Fy(7) =

Fy(0), mit n = 30,<30.0 < z; < 30.0

Min(Fy(Z)) =
Stufenfunktion ([var94] 428 ff)

“n+ Z lz;| Min(Fyo(Z))

= F10(6)7 mit n = 5.

FIU

Quadratic + Noise ([var94] 428 ff)

Fi (%) = Zz z} 4+ gauss(0,1)
=1

F11(0), mit n = 30, gauss(0,1) = Zufallszahl € [0,1] C

Min(Fy; (%)) =
R. (Abb. 3.3)
e Shekek’s Foxholes ([var94] 428 ff)
25
1 1 1
= = =+ n
Fi2(2) K ; ¢+ D i (i Sa)°
Min(Fi2(Z)) =7, mit n = 2, K, ¢;, a;; =?7. Vermutlich berechenbar in
Abh. von K, ¢, (a;;). (Abb. 34)

45

e Sphiren-Wechsel-Funktion ([var94] 428 ff)
- A t mod a even
Fa(a) = { 2 0
S (xi(t) ©b)2 tmod a odd

Min(Fi3(%)) =7, mit n = 30 und a,b =?. Berechenbar in Abhingigkeit
von @ und b.

e Rechenberg Funktion ([var94] 199 ff)

Fiuy(7) = i: ((100 &) - exp (@kz: (%)2»

wobei z; = (32-2;_1 +13(i+ 1)) mod 31, 2y = 1; <100 < z; < 100.

e De Jong’s 3. Testfunktion

Fi5(2) = Y7, integer(z;) (Abb. 3.5)
e C-Funktion (Prof. Claus)

c:S, — R

46

Abbildung 3.4: Fi5 — Shekek’s Foxholes

47

Abbildung 3.5: Fi5 — De Jong’s 3. Testfunktion

n—1 n
T =T |7Tj <:>7Ti|
— UERsSLY By =)
mo DS =) T
le;é_jl 1=1 j=i+1

3.2.2.2 Integer-Funktionen

°
Flﬁ(f) :<:>||f||1, fEZgO, Mln{FlG(f)}:Fw(ﬁ)
°
Fir(?) =<z -2, #eZ*, Min{F;(@)} = Fy-(0).
°
18
Fig(7) = H 1o en)™], FeZ¥ ;>0.
=0

48

3.2.2.3 Praktische Probleme

1. Stundenplan—Problem
Quelle: [var94] 557

Gegeben ist eine Menge von Ereignissen F = {ej, ey,...,€,} und eine
Menge von Zeiten T' = {t1,ts, ..., ts}, sowie oft eine Menge von Orten
P ={p1,p2,...,pm} und/oder Ausfithrenden A = {a;,as,...,a,}.

Ein Auftrag ist ein 4-Tupel (e,t,p,a) mit e € E;t € T,p € P,a € A,
wobei man dies wie folgt interpretieren kann: ,Ereignis e findet zur
Zeit t am Ort p statt, durchgefiihrt von a.“ Dies kann eine Vorlesung
beschreiben, aber auch einen Fertigungsprozef.

Das zu lésende Problem ist nun, einen Stundenplan zu finden, der
es ermoglicht, alle Ereignisse auszufiihren. Prinzipiell wére somit ei-
ne Erfillung der Anforderungen ausreichend, allerdings kann auch eine
Bewertung eines Plans (nach anwendungsspezifischen Kriterien) vorge-
nommen werden, wodurch nach einem optimalen Stundenplan gesucht
werden kann.

Es ist offensichtlich, daf} z.B. zur selben Zeit am selben Ort nicht zwei
Ereignisse stattfinden kdnnen; ggf. sind aber zusitzliche Rahmenbedin-
gungen zu beriicksichtigen, z.B.:

e Zwischen zwei Ereignissen soll ein Zeitabstand existieren.
e Bestimmte Ereignisse diirfen zu gewissen Zeiten nicht stattfinden.
e Ein Ereignis soll zu einem bestimmten Zeitpunkt stattfinden.

e Relationen zwischen Ereignissen sollen eingehalten werden. Z.B.
soll ein bestimmtes Ereignis vor einem anderen stattfinden.

e Ereignisse seien an eine Auswahl von Orten gebunden.

2. Eisenbahn—Fahrplan Problem
Quelle: [var94] 566 ff

Gegeben ist die Beschreibung eines Eisenbahnnetzes. So gibt es Bahn-
héfe und Ziige in verschiedenen hierarchischen Klassen, z.B. | Intercity*
(IC), ,Interregio“ (IR) und , Regionalbahn®“ (RB). Ziige halten nur in
Bahnhofen mit derselben oder héheren Klasse, d.h. RB-Ziige in allen.
AuBerdem werden die Strecken erfafit, d.h. welche Bahnho6fe miteinan-
der verbunden sind.

49

Gesucht wird nun ein Zeitplan, der einige ,, weiche“ und ,harte“ Ein-
schrinkungen erfiillt.

Harte Einschrinkungen legen fest, daf ein Zugpaar® einen gemeinsa-
men Abschnitt mit einer gewissen Frequenz bedienen muf. Sie setzen
einen Bereich fiir die Umsteigezeit zwischen zwei Ziigen an einem be-
stimmten Bahnhof fest. Ziige miissen zudem einen Mindestabstand von
drei Minuten auf derselben Strecke einhalten. Schliellich muf3 noch er-
reicht werden, daf} die Ziige sinnvolle Haltezeiten einhalten und bei
Verwendung eines Modells mit Stundentakten (d.h. ohne Beachtung
der Stunde) die Abfahrtszeiten zwischen 0 und 59 Minuten liegen.

Alle Zeitplane miissen die harten Einschrinkungen erfiillen, d.h. ein
Zeitplan, der diese nicht erfiillt, wird niemals als Losung akzeptiert wer-
den. Um nun die Fahrplidne, die die harten Einschrinkungen erfiillen,
vergleichen zu konnen, bestimmen die weichen Einschriankungen die
Qualitit eines Zeitplans.

Weiche Einschrinkungen sind z.B., die Haltezeiten so gering wie mog-
lich zu halten oder giinstige Umsteigemdglichkeiten anzubieten. Somit
ist es {iber die weichen Einschrinkungen moglich, die Qualitéit eines
Fahrplans zu bewerten — dies ist die Voraussetzung bei der Suche nach
der optimalen Lésung.

3. n—Damen Problem
Quelle: [var94] 48, Abb. 3.6 — Beispiel mit n =6

Gegeben ist ein Schachbrett mit n x n Feldern. Nun sollen auf diesem
Feld n Damen so plaziert werden, dafl keine Dame eine andere schlagen
kann. Hier geht es also nicht um eine Optimierung, sondern nur um die
Erfilllung einer Bedingung und eine Losung reicht aus.

Laut den Schachregeln kann eine Dame senkrecht, waagrecht und dia-
gonal beliebig viele Felder vor- oder zuriickziehen. Somit kann man die
Beschreibung einer Belegung vereinfachen: Zwei Damen kénnen nicht
in derselben Reihe des Bretts stehen; man muf} also nur die Spalte
notieren. Daher reicht ein n-Tupel der Form (x,zs,...,2,); z; €
{1,2,...,n} aus. AuBerdem kann die Diagonalenbedingung als |z; <
z;| # i 4], ¢ # j notiert werden, was den Suchraum weiter ein-
schrinkt.

4. Travelling Salesman Problem - TSP

L Auf zweigleisigen Strecken fihrt jeweils ein Zug in jede Richtung.

50

Abbildung 3.6: n-Damen Problem

Quelle: [VC94] 375 f, Abb. 3.7 — Beispiel mit n = 5, optimaler Weg

Gegeben sind n Knoten ki, ko, ..., k, die durch ungerichtete Kanten
vollstiandig verbunden sind. Jeder Kante (k;, k;) ist ein Gewicht d;; € R
zugeordnet.

Gesucht ist nun die Anordnung k;,, k;,, . .., k;, mit i = 1 (0.B.d.A. sei
der Startknoten festgelegt) und V5 € {1,...,n} 3 iy : ip = j (d.h.
jeder Knoten wird einmal besucht) fiir die gilt:

n——1

Z dikik+1 + dinil ist minimal. (31)
k=1

n—Personen Spiel mit eingeschrinkter Interaktion
Quelle: [var94] 514 ff

Gegeben ist eine Menge von n Spielern N = {1,2,...,n}, eine Menge
Sk = {Sk1,-.-,Skm} von Strategien fiir jeden Spieler k¥ € N und eine
Erfolgsfunktion (,,payoff function) uy, : Sy, — R und:

(Sk7 Sk1ls Sk2y- -+ Sknk) = uk)(ska Sk1y Sk2y - - - Sk:nk) (32)

51

16 10

DO

Abbildung 3.7: Travelling Salesman Problem

die nur von den Strategien einer beschrinkten Anzahl von Spielern
abhingt: der eigenen s, und der der nj, Nachbarn.

Das Spiel kann nun als gerichteter Graph G =< V, E > dargestellt
werden, dem sog. , Interaktionsgraphen®. V', die Menge der Knoten,
symbolisiert die Spieler, die Kanten F reprasentieren Muster der Inter-
aktion zwischen den Spielern. So zeigen die von Spieler k£ ausgehenden
Kanten auf die Spieler, deren Erfolg von k beeinflufit wird, wie die auf
Spieler k zielenden Kanten die Spieler definieren, deren Strategie den
Erfolg des Spielers k beeinflufit.

Gesucht ist nun ein optimaler Ablauf des Spiels, wobei aus der Quelle
die Definition der Optimalitit nicht eindeutig hervorgeht. Denkbar ist
z.B., da} ein Spieler das absolute Optimum erreichen soll oder der
mittlere Erfolg aller Spieler moglichst grof3 ist.

. Steiner—Netz
Quelle: [var94] 197, Abb. 3.8 — Beispiel

Gegeben ist eine Menge von festen Punkten h; in einem kartesischen
Koordinatensystem. Diese Punkte sollen nun durch ein Netz verbunden

52

werden, wobei n Gabelungspunkte? eingefiihrt werden diirfen, die sog.
yoteiner-Punkte®. Diese Punkte konnen mit drei festen oder Steiner—
Punkten verbunden werden, sie sind zudem verschiebbar. Ziel ist es
nun, die Linge des Netzes, d.h. die Gesamtlinge der Verbindungskan-
ten, zu minimieren. Daher wurde ein kartesisches Koordinatensystem
vorausgesetzt.

Man kann sich das Problem wie folgt vorstellen: Auf einer Insel stehen
Héauser h;, die mit Wegen verbunden werden sollen. Gesucht ist nun
das kiirzeste Netz, d.h. dasjenige, dessen Weglidnge am geringsten ist.
Dabei konnen Wege auch Gabelungen haben, oben , Steiner-Punkte*

Q
N A
& NN
X
A

Abbildung 3.8: Steiner—Netz

7. Gewichtetes Graphzweiteilungsproblem
Quelle: [var94] 618

Gegeben ist ein Graph (V) E, w) mit Knotenmenge V', die 2n Knoten
enthilt, der Kantenmenge E und einer Gewichtsfunktion w : E —
R, die jeder Kante ein Gewicht zuordnet. Dieser Graph soll in zwei

’Die Quelle ist in der Beschreibung nicht eindeutig!

53

gleichgrofle, disjunkte Teilgraphen geteilt werden, wobei gelte: A =
{ai,as,...,;a,}, B = {by,by,...,0,}, A B CV, AnNB = {} und
AUB=1V.

Ziel ist nun, die Summe der Gewichte der Verbindungskanten zwischen
den Teilgraphen zu minimieren:

C({A. BY) = min 3 3 w((anby) (3.3

a;EA bjEB

. Rucksackproblem
Quelle: [VC94] 418

Hier wird versucht, einen Rucksack so zu fiillen, daf§ dieser zum einen
moglichst voll ist, andererseits der Wert der eingepackten Gegensténde
moglichst hoch ist.

Gegeben sind also n Gegensténde, denen jeweils ein Gewicht g; und ein
Wert w;, i € {1,2,...,n} zugeordnet ist. Gegeben ist weiterhin eine
Ladekapazitit G. Gesucht ist nun eine Indexmenge I C {1,2,...,n},
fiir die gilt:

(Z w; st maximal) A (Z g; < G)) (3.4)

el el

Diese Beschreibung 1483t sich auf viele praktische Probleme anwenden.
So konnen z.B. statt der Gewichtswerte auch Volumengroflen verwandt
werden; bei Betrachtung von Flichen handelt es sich um das , Plazie-
rungsproblem®.

. Cliquenproblem
Quelle: [VC94] 97

Gesucht wird hierbei in einem ungerichteten Graphen eine Clique von
k Knoten, die jeweils paarweise durch eine Kante verbunden sind.

Gegeben ist also ein ungerichteter Graph G = (V, F'), mit Knotenmenge
V und Kantenmenge E. Gesucht wird nun die grifste Teilmenge V' C V
mit £ Elementen, fiir die gilt:

Vo,weV': (v,w) € E. (3.5)

54

10. Erfiillbarkeitsproblem
Quelle: [VC94] 192

Hierbei wird versucht, fiir einen gegebenen Booleschen Ausdruck eine
Belegung zu finden, die den Ausdruck erfiillt.

Beispiel Fiir B = (71 V 23 V 23) A (1 V T4) A 22 soll eine Belegung
der Variablen xq,...,x4; z; € {true, false} gefunden werden, so daf
gilt: B = true.

3.2.3 Optimierungsverfahren

Um Losungen fiir diese und andere schwere Probleme zu finden, reichen
herkémmliche Methoden oft nicht aus, da sie zu schlecht, zu langsam oder zu
aufwendig sind. Hervorzuheben sind dabei v.a. die NP-vollstdndigen /harten
Probleme, zu denen z.B. TSP (s.0.) gehort:

Beispiel Ein Handelsvertreter plant seine Kundenbesuche. Er sucht nun
die schnellste/kostengiinstigste Route, die ihn wieder an den Ausgangspunkt
fithrt. Seien nun 10 Besuche vorgesehen. Somit gibt es 9! = 362.880 mogli-
che Rundreisen; der Startort sei festgelegt. Miifite der Vertreter aber nur fiinf
Kunden mehr besuchen, so stiege die Anzahl der zu untersuchenden Mo6glich-
keiten auf 14! = 87.178.291.200. Schon dieses kleine Beispiel macht deutlich,
daB eine vollstindige Durchsuchung des Problemraums nicht praktikabel ist.

Um dennoch brauchbare Losungen zu finden, wurden verschiedene Algorith-
men entwickelt. Zum einen gibt es die sog. Hill-Climbing-Verfahren, die in
der Regel allerdings nur das dem Startpunkt néchste [okale Minimum finden.
Es gibt hier also keine Garantie, daf nicht an anderer Stelle ein besserer Wert
erreicht werden kann. Andererseits gibt es die naturanalogen Algorithmen,
die das globale Minimum suchen.

Hierbei mufl beachtet werden, da} der hohe Aufwand dieser Strategien nur
bei Zutreffen folgender Bedingungen gerechtfertigt ist:

e Der Problemraum ist deutlich zu grof}, um ihn einfach mit den verfiigha-
ren Rechnern zu durchsuchen. Dies trifft besonders bei einer groflen
Anzahl von Variablen zu.

e Das Problem l48t sich nicht mit {iblichen mathematischen Verfahren
analysieren und es existieren auch keine ausreichend genauen (einfa-
cheren) Niherungen.

%)

e Es existieren keine herkommlichen heuristischen Verfahren, die hinrei-
chend gute Losungen liefern.

e Das Problem ist NP-hart.

In allen Féllen werden eine oder mehrere Start—Konfigurationen, d.h. Bele-
gungen der freien Variablen, zufillig gewihlt und diese solange modifiziert,
bis eine Endbedingung erfiillt ist.

3.2.3.1 Kalkiilbasierte Verfahren — Hill-Climbing

Quelle: [Sch81] 20 - 86

Kann ein Problem durch eine mathematische Funktion dargestellt werden, so
bietet sich an, eine Losung durch ein sog. ,,Hill-Climbing® zu finden. Es wird
hier ein lokales Extremum der Funktion, ,Zielfunktion® genannt, gesucht.
Hierbei spielt es keine Rolle, ob ein Maximum oder ein Minimum gesucht ist,
da gilt:

Max{f(z)} = eMin{<f(z)}. (3.6)

Handelt es sich bei der Zielfunktion um eine leicht analysierbare Funktion, so
ist es natiirlich nicht erforderlich, eine Hill-Climbing—-Strategie zu verwenden.
Folgende Eigenschaften verhindern allerdings einen solchen Ansatz:

e Extrema sind nicht mathematisch ermittelbar, da die Funktion z.B.
unstetig ist. Dies ist besonders bei Funktionen der Fall, die nicht glatt
(smooth) sind.

e Ableitungen sind nicht berechenbar.

e Losungskandidaten sind nicht immer vom gewiinschten Typ, sondern
Minimum, Maximum oder Sattelpunkt. Hierdurch wird eine weitere
Untersuchung notig.

e Die zu betrachtenden Gleichungssysteme sind nicht direkt l6sbar.

Fiir die folgende Liste von Strategien wird in der Quelle [Sch81] das Problem
ming{F(Z)|Z € R"} betrachtet, d.h. die Suche nach einem Minimum. Da-
bei kann noch zwischen ,starken® und ,,schwachen® Minima unterschieden
werden. Letztere besitzen eine Umgebung, deren Werte nur um ¢ > 0 hoher
sind; es handelt sich dann nicht um einzelne Punkte. Auflerdem kann ein
Minimum lokal oder global sein, allerdings bieten diese Verfahren keine Ga-
rantie fiir die Art des Minimums. (Dies gilt natiirlich nicht fiir ,unimodale“

56

Funktionen, da hier lokale Minima auch globale Minima sind und somit keine
Unterscheidung existiert.)

1. Eindimensionale Suche
Gibt es nur eine zu betrachtende Variable, so spricht man von eindi-
mensionaler Suche. Die hier gefundenen Strategien kénnen z.T. auf die
Losung von Problemen mit n Variablen erweitert werden.

Um nun eine gute Losung zu finden, gibt u.a. drei Typen von Verfahren:

e Simultane Methoden [Sch81] 23: Es werden (bevorzugt parallel)
Werte aus dem Definitionsbereich ausprobiert. Bei ,Gitter—
Methode“ wird ein Intervall in gleichgrofle Teile zerlegt und je-
weils ein Funktionswert aus dem Intervall berechnet.

e Niherungen: Polynome inkl. ihrer Ableitungen nahern die zu un-
tersuchende Funktion an und erlauben das Ermitteln einer Losung.
Das Problem ist hier, eine ausreichend genaue Ndherungsfunktion
zu finden.

e sequentielle Methoden: Diese Verfahren eignen sich besonders fiir
sequentiell arbeitende Rechner. In jeder Iteration wird ein neuer
Punkt ermittelt, der das Minimum weiter annidhern soll. Dies wird
solange wiederholt, bis eine bestimmte Anzahl von Iterationen
durchlaufen und so das Minimum hinreichend genau angendhert
wurde.

Wihle Startwert z,, Startintervall lay, by
repeat

Berechne Tit1, Ajt1, bi+1
until Abbruchbedingung

Beispiele fiir sequentielle Methoden zur Suche eines Minimums z € R
mit Vy € R: f(y) > f(x) sind:

(a) Verfahren, die einen Punkt x; betrachten und aus diesem einen
neuen Punkt x;,; berechnen.

e ,Boxing the minimum* [Sch81] 25: Man bestimmt einen Start-
wert ¢ € R, jeder weitere Wert wird {iber 51 = x5 +s,s € R
ermittelt. Dies wird solange wiederholt, bis gilt f(zry1) >
f(z). Danach wird die Schrittweite verkleinert und in der an-
deren Richtung gesucht. Dieser Algorithmus kann verbessert
werden, z.B. indem die Schrittweite im Falle von f(zx41) <

57

f(zx) verdoppelt wird, andernfalls jedoch halbiert (und ne-
giert). Dieses Verfahren ist brauchbar, wenn das Intervall nicht
bekannt ist, in dem das Minimum liegt (oder erst bestimmt
werden soll). Andernfalls existieren bessere Algorithmen.

e Newton—Raphson - Iteration [Sch81] 32: Umsetzung des New-
ton—Verfahrens zur Bestimmung einer Nullstelle von f(z).
(Somit mufl die Zielfunktion umformuliert werden, d.h. es
wird z.B. die erste Ableitung betrachtet.)

f ()
f' (k)

Tpy1 = Tk <= (37)

(b) Verfahren, die ein Intervall [a;, b;] betrachten. In jeder Iterati-
on werden neue Werte a;;1 und b;4q fiir die Grenzen ermittelt

(Abb. 3.9).

f(x)

L

a; Aj+1 b;

Abbildung 3.9: Intervall-Verfahren

e Elimination [Sch81] 26: die Intervallgrofie wird mit o < 1
multipliziert und diejenige Grenze verschoben, die weiter vom
Minimum entfernt ist.

Ausgehend vom Intervall [a, b] werden die Grenzen aufeinan-
der zu verschoben, wobei die Schrittweite der Quotient zwei-
er Fibonacci-—Zahlen ist. Schliellich wird das Intervall ausge-
sucht, in dem sich das Minimum befindet. Welches dies ist,
wird festgestellt, indem der Funktionswert an den moglichen

58

neuen Intervallgrenzen innerhalb des alten Intervalls berech-
net wird.

Bei der Variante ,,Fibonacci—-Division*“ ist a der Quotient zwei-
er Fibonacci—Zahlen; eine andere Variante verwendet einen
konstanten Wert, wodurch die Berechnung der Fibonacci—
Zahlen entfillt.

e Regula—falsi“—Iteration [Sch81] 31: Nach Start mit dem In-
tervall [ag, bx] wird eine neue Grenze ¢

bk = ag

f(bx) & f(ax)

bestimmt, die zu ayy1 (oder byyq) wird.

cr = ap < f(ay) (3.8)

(c) Interpolationsprozeduren [Sch81] 31
Es wird eine einfache Funktion durch einige Punkte der Zielfunk-
tion gelegt und das Minimum dieser Hilfsfunktion berechnet. Bei
einfachen Hilfsfunktionen kann diese Stelle direkt aus den Funk-
tionswerten der Zielfunktion ermittelt werden; sie ersetzt dann
einen der bisher verwendeten Punkte, dann wird das Verfahren
wiederholt.

e Lagrange-Interpolation [Sch81] 33: Fiir dieses Verfahren wird
nur die Zielfunktion selbst, aber keine ihrer Ableitungen beno-
tigt. Ein Polynom p-ter Ordnung wird durch p 4+ 1 Punkte
der Zielfunktion gelegt. Dann wird die Minimalstelle des Po-
lynoms ermittelt; fiir p = 2 kann dies direkt aus den Funkti-
onswerten geschehen. Der Funktionswert der Zielfunktion an
dieser Stelle wird berechnet und abhingig vom Ergebnis er-
setzt sie einen der alten Punkte.

e Hermitische Interpolation [Sch81] 36: Ein Polynom 3. Grades
wird als Test—Funktion verwendet, allerdings wird zudem die
erste Ableitung f'(z) bendtigt. Daher reichen zwei Punkte der
Zielfunktion aus.

Fiir alle Interpolationsverfahren gilt: Je grofer die Uberein-
stimmung der Test—Funktion mit der Zielfunktion ist, desto
schneller und verlafilicher konvergieren die Verfahren.

2. Multidimensionale Strategien
Die meisten Probleme lassen sich nur durch Funktionen mit n > 1

59

Variablen ausdriicken. Somit ist die Anzahl der Funktionswerte etwa
O(N™) grof}, wobei N die Anzahl der Werte darstellt, die eine Variable
annehmen kann. Dies macht es offensichtlich unméoglich, ein Minimum
durch Ausprobieren zu finden.

Um trotzdem ein Minimum zu finden, wurden diverse Algorithmen ent-
wickelt. Diese unterscheiden sich zum einen in der Art der benétigten
Information. So gibt es ,direkte Verfahren, die mit der Zielfunktion

allein auskommen. Die ,Gradienten“—Verfahren benotigen dagegen die
erste(n) Ableitung(en) (Vf(z), V2f(x), ...).

Allgemein wird eine Rekursion folgenden Zuschnitts durchlaufen:
Th41 = Tk + Sk Ug; ri, v € R, 5 € R (3.9)

Hierbei ist s die Schrittlinge und vy die Suchrichtung.

Der Vorteil der direkten Methoden ist ihre Einfachheit und die positi-
ve Erfahrung in der Anwendung. Man ,rét“ einen vielversprechenden
Punkt und {iberpriift, ob er das Minimum besser annéhert; im negati-
ven Fall wird ein anderer Punkt ermittelt. Allerdings sind die Resultate
der direkten Methoden oft schlechter als die der Gradienten—Methoden.

e Koordinaten—Strategie [Sch81] 40: Von einem Startpunkt aus wird
parallel zu den Koordinatenachsen der nichste Punkt ermittelt.
Am einfachsten geht man reihum in alle Richtungen, als Verbes-
serung wird jedoch eine vielversprechende Richtung beibehalten.
Dies kann z.B. durch die Verwendung einer eindimensionalen Stra-
tegie fiir eine Variable geschehen.

Natiirlich beeinfluflt hier die Schrittweite den Erfolg des Verfah-
rens betrichtlich. Ist sie zu grofl gewéhlt, so kann das Minimum
nicht genau ermittelt werden. Ist sie andererseits zu klein, so
erhoht sich die Anzahl der notigen Versuche. Aulerdem kann die-
se Methode zu prinzipiellen Problemen fiihren, da nur parallel zu
den Achsen gesucht wird.

e Hooke, Jeeves — Mustersuche [Sch81] 43: Bei dieser Variante der
Koordinaten—Suche werden zwei Arten von Schritten vorgenom-
men. Zum einen gibt es Erforschungsschritte, d.h. es wird der Wert
der Zielfunktion an neuen Stellen ermittelt. Zum anderen wird
abhingig vom Erfolg der einzelnen Tests eine Extrapolation in die
vielversprechendste Richtung vorgenommen.

60

e Rosenbrock — ,rotating coordinates“ [Sch81] 48: Das Koordinaten-
system wird in eine bessere Lage rotiert, analog zur Mustersuche.
Dieses Verfahren ist sehr robust, braucht keine Ableitungen und
kann auf Liniensuche verzichten. Allerdings ist die Rotation des
Koordinatensystems mit umfangreichen Matrizenoperationen ver-
bunden, die dieses Verfahren fiir grofle n unanwendbar machen.

e Davies, Swann, Campey (DSC) [Sch81] 53: Dieses Verfahren ver-
bindet mehrere einfachere: Es werden Liniensuchen parallel zu al-
len Koordinatenachsen vorgenommen, dann in Richtung des Ge-
samterfolgs gewandert, und schliellich das Koordinatensystem ent-
sprechend rotiert. Dieses Verfahren ist effektiv, jedoch nur bei glat-
ten Funktionen und fiir kleine n anwendbar.

e Nelder, Mead — Simplex—Strategien [Sch81] 57: Hier werden fiir ei-
ne Funktion mit n Variablen n+1 Punkte dquidistant ausgewéhlt.
Fiir n = 2 wird somit ein Dreieck verwandt; bei n = 3 handelt es
sich um einen Tetraeder. Daher der Name ,,Simplex“. Die Punkte
werden als Knoten bezeichnet.

Nun wird die Zielfunktion an allen Knoten berechnet und der
Knoten mit dem hochsten Wert (hier also der schlechteste Punkt)
durch seine Spiegelung an der (Hyper—) Fliche der restlichen Punk-
te ersetzt. Ist dieser Punkt wiederum schlechter, so wird statt des
Punktes mit dem hochsten Funktionswert der néchst bessere er-
setzt. Somit wird der Korper also einmal um den Knoten mit dem
besten Wert rotiert, danach jedoch wird die Kantenléinge des Sim-
plex verkleinert und das Verfahren wiederholt.

e ,Complex Strategy of Box*/, constrained simplex* [Sch81] 59: Die-
se Variante der Simplex - Strategie verwendet einen Koérper mit
mehr Knoten und expandiert diesen bei jeder Spiegelung. Au-
Berdem kann dieses Verfahren Randbedingungen einbeziehen; der
Startpunkt darf sogar ,verboten“ sein, d.h. auflerhalb des eigent-
lichen Losungsraums liegen.

Neben den direkten Verfahren existieren noch solche, die die partiellen
Ableitungen verwenden. Dabei ist jedoch zu beachten, dafl das allge-
meine Verfolgen einer mehrdimensionalen ,Flughahn® ein schwereres
Problem darstellen kann, als das eigentlich zu l16sende ([Sch81] 65).
Daher kann nur iterativ gearbeitet werden, nach folgender Formel:

V f ()

Thtl = Tk Sk 77 (310)

IV f ()|

61

Aus der Verwendung des Gradienten folgt, dafl die Zielfunktion stetig
partiell ableitbar und die Ableitungen eindeutig sein miissen. Wieder
bekommt die Schrittweite s; eine grofle Bedeutung, da sie die Anzahl
der Tests bestimmt und auch die Konvergenz beeinflufit. Auch hier
kann die Liniensuche fiir Verbesserungen eingesetzt werden.

e Powell — konjugierte Richtungen [Sch81] 69: Es werden linear un-
abhéngige Vektoren #; aus den Gradienten bestimmt, entlang de-
rer eine Liniensuche vorgenommen wird.

e Newton—Strategien [Sch81] 75: Ist die Zielfunktion f(z) beliebig
oft differenzierbar, so kann aus den Werten der Funktion und ih-
rer Ableitungen an der Stelle z;, der Funktionswert an einer ande-
ren Stelle angenihert werden (vgl. Taylor-Reihe). Als Zielfunktion
wird nun die einfachere Funktion betrachtet (z.B. eine quadrati-
sche) und der Punkt bestimmt, an der die einfache ein Minimum
hitte. Diese Stelle wird als x4 fiir neue Iterationen benutzt.

Dieses Verfahren ist jedoch sehr teuer, da zum einen eine grofe
Matrix invertiert werden muf}, zum anderen jedoch Gleichungs-
systeme zu l6sen sind ([Sch81] 76). Daher ist dieses Verfahren
weniger geeignet fiir nicht—quadratische Zielfunktionen.

Allerdings ist dieses Verfahren Basis fiir diverse Verbesserungen,
sog. ,quasi-Newton — Strategien“. Stewart entwickelte z.B. eine
ableitungsfreie Variante, die zusétzliche Werte der Zielfunktion
zum Abschéitzen der Steilheit verwendet und so auf die Berech-
nung der Ableitungen verzichten kann. ([Sch81] 79)

3.2.3.2 Naturanaloge Verfahren

Weitere Strategien zur Losung schwieriger Probleme sind die naturana-
logen Verfahren, die sich physikalische bzw. biologische Vorgénge in der
Natur zum Vorbild nehmen. Diese Vorgénge werden simplifiziert, um
sie auf allgemeine Probleme anwenden zu kénnen.

. Physikalische Modelle

Die folgenden Verfahren wurden in Anlehnung an Vorgénge in der Phy-
sik entwickelt. Gemeinsam ist ihnen, daf eine neue Ldsung stets iiber-
nommen wird, so sie besser als die zuletzt gemerkte ist. Die Algorith-
men unterscheiden sich nur in den Umstinden, die zur Ubernahme
einer schlechteren Konfiguration fiihren. Im allgemeinen Algorithmus

62

(Abb. 3.10) wird hierzu die Funktion g verwendet, die 7, anhand der
alten Belegung, der neuen Belegung, der Fitneffunktion f und des Pa-
rameters 7" bestimmt. Der Parameter 7" kann danach mit der Funktion
h verdndert werden.

Wahle Anfangsbelegung X

Wahle Parameter T

repeat
i&ml:::khﬂneAAnderung(fgh)
Tayp 1= g(falta Tneu, / T)
T = h(falta fneua fa T)

until Abbruchbedingung

Abbildung 3.10: Allgemeiner Algorithmus physikalischer Modelle

e Simulated Annealing (SA) [var90] 445 - 454

Hier werden die Vorgédnge beim Auskiihlen einer Schmelze in ein
Verfahren zum Finden einer Losung iibertragen: Atome suchen
sich beim Abkiihlen den energetisch , giinstigsten® Platz. Dabei
héngt ihre Bewegungsfihigkeit direkt von der Temperatur ab. Ist
die Temperatur hoch, so kann sich ein Atom weit bewegen, bevor
es zur Ruhe kommt; es kann insbesondere ein energetisch ungiinsti-
geres Energieniveau durchlaufen, um einen noch besseren Platz
zu finden. Je kilter es wird, desto eher bleibt es auf seinem Platz
bzw. verdndert seinen Platz nur noch zugunsten eines energetisch
besseren.

Wahle Anfangskonfiguration Xy
Setze Temperatur 7 auf Startwert
repeat

Tpeu = kleine_Anderung(falt)

AE = Qualitat(Ze,) < Qualitit(Zyay)

- > 1 AE>0
P ([xa.lt = xneu]) ::{ exp(%) son_st
if lange keine Verbesserung

oder zu viele Iterationen
then verringere T
until Abbruchbedingung

Abbildung 3.11: Simulated Annealing—Algorithmus

63

Das Modell (Abb. 3.11) startet nun mit einer zufillig gewihl-
ten Konfiguration und setzt den Parameter T' (,, Temperatur®) auf
einen Startwert. Im Laufe jeder Iteration wird die Konfiguration
leicht zufillig verdndert. Ist diese neue Konfiguration besser als die
alte, so ersetzt sie diese in jedem Fall. Ist sie dagegen schlechter
als die Ausgangskonfiguration, dann wird diese abhéingig von der
Temperatur (einem Zahlenwert) und dem Ausmaf} der Verschlech-
terung zufillig ersetzt. Dabei nimmt diese Wahrscheinlichkeit ab,
je ,kilter® es wird und je grofler die Verschlechterung ist (es gilt
dann: AF < 0).

Folgende Parameter haben Einflul auf den Ablauf des Algorith-
mus:

— Temperaturabnahme: Es zeigt sich, dafl die Wahl der Tempe-
raturabnahme groflen Einflufy auf den Ablauf hat.

— Anderungsfunktion: Das AusmaB der Anderung an einer Kon-
figuration bestimmt, wie der Suchraum durchschritten wird.
Sind die Anderungen zu gering, so ist das betrachtete Ge-
biet nicht ausreichend grof}, d.h. ein entfernter liegendes Mi-
nimum bliebe unbeachtet. Sind die Anderungen dagegen zu
grof} gewihlt, so kann das Minimum iibersprungen werden.

— Abbruchbedingung: Die Suche nach einem globalen Minimum
kann abgebrochen werden, wenn eine bestimmte Anzahl von
Versuchen ausgefiihrt wurde oder sich iiber einen bestimmten
Zeitraum die Konfiguration nicht &ndert.

Threshold Algorithmus (TA) [GD90]

Dieses Verfahren ist eine Abwandlung des Simulated Annealing,
bei der die Wahrscheinlichkeitsberechnungen entfallen. Das Kri-
terium zur Ubernahme einer schlechteren neuen Konfiguration
ist hierbei, dal der Betrag der Verschlechterung kleiner als ei-
ne Schwelle 7" ist, die im Laufe der Berechnungen immer kleiner
wird.

Beeinflussende Parameter sind hier:

— Abnahme des Schwellwertes: Analog zum Simulated Anne-
aling hat der Werteverlauf der Schwelle groflen Einflufl auf
die Suche, sowohl die Qualitdt des Optimums, als auch die
Suchgeschwindigkeit betreffend. Experimente haben jedoch
gezeigt, dafl dieses Verfahren robuster gegeniiber der Wahl

64

dieses Parameters ist als das SA.
— Anderungsfunktion: s. Simulated Annealing.
— Abbruchbedingung: s. Simulated Annealing.

e Great Deluge Algorithmus (GDA) [Due93]

Dieser Algorithmus nutzt die Idee einer ,,Sintflut*, die eine Land-
schaft iiberflutet. Dabei stellt ein Parameter den , Wasserstand*
dar, ein weiterer Parameter bestimmt die ,, Regengeschwindigkeit®,
also wie schnell der Wasserstand steigt.?

Im Problemraum liegen die Werte der Funktion in Form einer
mehrdimensionalen Landschaft. Nun wird diese Landschaft iiber-
flutet, d.h. der Wasserstandspegel erhoht sich immer mehr. Man
hofft nun, dafl sich die Konfiguration auf den , héchsten Berg®,
also das globale Maximum rettet.

Wieder wird eine Konfiguration zufillig verdndert und ihr Funkti-
onswert berechnet. Diesmal wird jedoch diese neue Konfiguration
unabhdngig von der Qualitdt der alten dann akzeptiert, wenn ih-
re Giite grofler als der Pegelstand ist; sie sich also weiter ,auf
dem Trockenen“ befindet. Danach wird der Pegelstand um einen
Bruchteil der Differenz zwischen neuer Giite und Pegel erhoht.

Dieses Verfahren produziert iiberraschend gute Resultate, birgt
jedoch die Gefahr, auf einer ,Insel“ gefangen zu werden.

Parameter sind:

— Wasserpegel: Der Startwert fiir den Wasserpegel kann sehr
klein gew&hlt werden, da dann schon friithe Werte besser sein
werden und den Pegel so sehr schnell auf ein sinnvolles Niveau
anheben.

— Regengeschwindigkeit: Der Wasserpegel wird ggf. auf einen
Wert zwischen dem alten Stand und der Qualitit der neuen
Konfiguration erhoht. Dieser Parameter legt fest, wo der neue
Wert liegt.

— Anderungsfunktion: s. Simulated Annealing.

— Abbruchbedingung: s. Simulated Annealing.

3Zur besseren Anschaulichkeit wird hier also nach einem Mazimum gesucht.

65

e Record—-To—Record Travel (RRT) [Due93|
Dieses Verfahren ist eine Variante des GDA. Hierbei wird aber
nicht ein Wasserstand betrachtet, sondern der beste bisher gefun-
dene Wert. Eine neue Konfiguration wird iibernommen, wenn sie
zumindest nur wenig schlechter als das bisherige Optimum ist; ist
sie sogar besser, so bestimmt sie den neuen Bestwert.

Diese Anderung beschleunigt die Suche, birgt aber die selben Ge-
fahren wie GDA.

Parameter sind:

— erlaubte Abweichung: Um diesen Wert darf eine neue Konfigu-
ration schlechter als die alte sein, um trotzdem angenommen
zu werden.

— Anderungsfunktion: s. Simulated Annealing.

— Abbruchbedingung: s. Simulated Annealing.

Das Besondere dieser Verfahren ist ihre Einfachheit. Hierdurch kénnen
in einer kurzen Zeit viele Konfigurationen betrachtet werden und so
hofft man, ein Optimum mit einer hohen Giite zu finden.

. Biologische Modelle

Unter den naturanalogen Verfahren gibt es neben jenen, die physika-
lische Vorgéinge zum Vorbild haben, die Ewvolutiondren Algorithmen.
Diese Verfahren verwenden Ideen, die aus der Evolutionstheorie, z.B.
von Charles Darwin, abgeleitet sind.

Es gibt im wesentlichen zwei biologische Verfahren, die zur die Losung
eines Optimierungsproblems herangezogen werden: Evolutionsstrategi-
en und Genetische Algorithmen. Der gréfite Unterschied zu den physi-
kalisch Methoden ist, daf3 hier eine Population von Losungskandidaten
betrachtet wird. Diese Konfigurationen werden bewertet und dienen
als Eltern-Generation zur Bildung von Nachkommen durch Rekombi-
nation. Diese Nachkommen werden zuséitzlich mutiert, bevor eine neue
Eltern-Generation aus den Individuen nach verschiedenen Kriterien
ausgewdahlt wird.

Formal wird ein allgemeiner evolutionédrer Algorithmus als 9-Tupel
EA = (P(0),\ 1, 8,mp.,7p,, P, 1) (3.11)

definiert. Die Bedeutung der Parameter kann Tabelle 3.1 entnommen
werden. Die im folgenden vorgestellten Verfahren sind Instanzen des

66

allgemeinen Algorithmus nach Abb. 3.12.

P(0) € I* Anfangspopulation
I Suchraum (Menge der Individuen)
A € N Populationsgrofie
i € N Nachkommenzahl
[€ N String-Lénge
s: [M* — TN Selektionsoperator
rp. : I* = I* Crossover-Operator
pe € [0,1] Crossover—Wahrscheinlichkeit
my,, : I — 1 Mutationsoperator
Pm € [0,1] Mutationswahrscheinlichkeit
®:] — R Fitne—Funktion
t: I —{0,1} Abbruchbedingung

Tabelle 3.1: Bedeutung der EA—Parameter

Wahle eine Anfangspopulation
Wahle Belegung fir Parameter
Bewerte Individuen
while keine ausreichend gute Losung
und nicht genug Versuche
do Erzeuge neue Population aus alter
Mutiere die Population
Bewerte die Population
Wahle neue Elterngeneration aus
end

Abbildung 3.12: Allgemeiner Evolutiondrer Algorithmus

e Evolutionsstrategien [TB93]
Analog zu den Vorgéngen in der Natur wird hier eine Menge (Po-
pulation) von Stichproben (Individuen) betrachtet. Ein Individu-
um wird durch einen Vektor reeller Werte dargestellt und ist ein
Losungskandidat.

Aus einer Anfangspopulation werden durch Rekombination, d.h.
Kreuzung, der Individuen Nachkommen gebildet, denen die ,,El-
tern“ ihre Eigenschaften vererben, hier also das ,,Wissen®“ {iiber

67

den Losungsraum. Die Nachkommen werden zuerst mutiert und
dann bewertet. Die besten bilden dann die neue Population. Da-
bei kann die Konkurrenz der Individuen die Elterngeneration mit
einbeziehen oder auch nur aus Nachkommen bestehen.

Durch die Mutation durchwandern die Konfiguration den Lésungs-
raum. Auf die Parameter wird eine normalverteilte Zufallsvariable
mit Erwartungswert 0 addiert, wobei die Standardabweichung ent-
weder fest vorgegeben, meist jedoch von einem Strategieparameter
bestimmt wird. Dies dhnelt dem Hill-Climbing, da ein Punkt in
der Umgebung der Konfiguration betrachtet wird.

Die Kreuzung belegt jeden Parameter des Nachkommen a’ mit
einem Wert, der zwischen den Werten a; und a, der Elternindi-
viduen an dieser Stelle liegt (Abb. 3.13). Dies fiihrt zu gréBeren
Spriingen im Suchraum, als es die Mutation vermag — die Suche
wird in neue Gebiete gelenkt.

al 0 a a2

H—t+t+— T+—=

Abbildung 3.13: Ermittlung eines neuen Parameterwerts

Jedes Individuum besteht aus Strategie- und Problemparametern.
Die Problemparameter definieren den Punkt im Suchraum. Es ist
also das Ziel, diese Parameter zu optimieren. Die Strategiepara-
meter andererseits beeinflussen, wie dieses Ziel erreicht wird. Sie
gehen daher nicht in die Qualitdtsbeurteilung ein.

Das Besondere dieser Strategien ist, dafy die Strategieparameter
ebenfalls der Evolution unterliegen. Somit entwickeln sich nicht
nur die Parameter der Konfigurationen auf ein Optimum hin, son-
dern auch die Art und Weise, wie der Suchraum durchwandert
wird, pafit sich dem Suchraum an.

Folgende Parameter beeinflussen den Ablauf der Suche:
— Populationsgréfie A: Anzahl der Individuen einer Population.

— Nachkommenzahl p: Anzahl der Nachkommen, die aus einer
Population erzeugt werden.

68

— Strategieparameter: Zum Start der Suche konnen ihnen zufél-
lige Werte zugewiesen werden, da sie wie die Losungspara-
meter optimiert werden. Sie beeinflussen die Mutation, die
Hauptoperation der evolutiondren Algorithmen. Sie geben die
Schrittweite an, mit der der Suchraum durchsucht wird und
die Wahrscheinlichkeit, mit der eine Suchrichtung ausgewihlt
wird.

— Vererbungsstrategie: Dies ist die Art, auf die die Werte der
Eltern—-Individuen in die Nachkommen iibergehen. M6glich ist
z.B., daf} die Werte direkt von einem Elternteil genommen
werden oder dafl ein neuer Wert zuféllig zwischen den beiden
Werten der Eltern liegt.

— Auswahlstrategie: Sie bestimmt, welche Individuen einer Ge-
neration iiberleben und die neue Elterngeneration bilden. Nor-
malerweise werden die y besten Exemplare iibernommen.

e Genetische Algorithmen [HPS92]
Diese Verfahren sind den Evolutionsstrategien dhnlich, da sie eben-
falls auf Populationen von Individuen arbeiten; jedoch betrachten
sie nur Bitvektoren. Der Losungsraum mufl also zunéchst binér
kodiert werden.

Die Rekombination (,,Crossover®) der Individuen erfolgt durch Zu-
sammensetzen eines neuen Exemplars aus den Bits der Eltern.
Dabei wird fiir jede Position entweder das Bit des einen oder des
anderen Elternteils iibernommen.

Die Strategieparameter werden vor dem Start des Programms fest-
gelegt und dndern sich nicht wihrend der Ausfiihrung. Sie legen
z.B. die Haufigkeit der Mutationen fest, oder wie sehr die Fit-
nef eines Individuums in die Wahrscheinlichkeit eingeht, fiir die
Rekombination ausgewihlt zu werden.

Bei der Kreuzung wird jedes Bit entweder vom einen oder anderen
Elternindividuum genommen. Ublich ist hierbei der ,Einpunkt—
Crossover®, d.h. beide Individuen werden an der selben Stelle zer-
schnitten und der vordere Teil vom einen, der hintere Teil vom
anderen {ibernommen. Dies geschieht jedoch ohne Beachtung der
Bedeutung der einzelnen Bits. Daher kann der Nachkomme sehr
,weit“ von den Eltern entfernt liegen — Somit wird vor allem durch
die Kreuzung der Suchraum durchschritten, was sie zum Haupt-
operator der Genetischen Algorithmen macht.

69

Mutiert werden die Strings, indem an einer zufillig gewédhlten
Stelle ein Bit negiert oder zuféllig besetzt wird. Dies geschieht
aber nicht wie bei den Evolutionsstrategien sehr hiufig (z.B. mit
Mutationswahrscheinlichkeit p,, ~ 0.5), sondern nur sehr selten
(pm = 1073) und dient nur dazu, auch andere als die zum Start
existenten Bit—Belegungen im Laufe der Zeit zu erfassen: Ist der
Wert eines Bits in allen Individuen gleich, so kann auch in den
Nachkommen durch das Crossover kein anderer Wert an dieser
Stelle erzeugt werden. Ein Teil des Suchraums wire also ohne
Mutation nicht mehr erreichbar.

Im iibrigen verlduft der Algorithmus analog zu den Evolutions-
strategien. Besonders beachtet werden mufl jedoch, da} die Art
der Kodierung einen groflen Einfluf} auf den Ablauf und die Qua-
litdt der Losung hat. Da nur Bindrkodierungen moglich sind, muf
eine Abbildungsfunktion verwendet werden. Zudem schrinkt die
Anzahl der Bits die Genauigkeit Ax ein:

_ osu
C2sl
wobei 0, u Ober- und Untergrenze, [die Anzahl der Bits darstellt.

Dies ist ein weiterer Unterschied zu den Evolutionsstrategien, bei
denen oft der Vektor selbst den Punkt im Suchraum darstellt.

Az (3.12)

Folgende Parameter beeinflussen den Ablauf der Suche:
— Populationsgrole A und Nachkommenzahl p.

— Auswahlstrategie: Die Wahrscheinlichkeit, mit der ein Indivi-
duum zur Rekombination ausgewédhlt wird, hingt von seiner
Fitnef} ab, im einfachsten Fall proportional. Zudem kann hier-
mit die Crossover-Haufigkeit festgelegt werden.

— Mutationswahrscheinlichkeit: Hiermit kann die Haufigkeit der
Mutation eingestellt werden.

— Crossover—Verfahren: Es gibt viele Moglichkeiten, wie Nach-
kommen aus einem Elternpaar erzeugt werden konnen. Neben
einfachen Losungen wie Vertauschen der Bit-Ketten an einer
zufillig gewdhlten Stelle, gibt es die Moglichkeit, jedes Bit
zufillig von einem Elternteil zu {ibernehmen.

— Kodierung: Sie hat einen groflen Einflufl auf die Konvergenz
des Verfahrens. Ist sie ungiinstig gewéhlt, so verhindert dies
das schnelle Finden des Optimums.

70

— Skalierungsfunktion: Da der Qualitdtsunterschied der einzel-
nen Individuen mitunter zu gering ist, um die Auswahlwahr-
scheinlichkeit effektiv zu beeinflussen, miissen diese Unter-
schiede ,,verstiarkt® werden. So kann eine Stagnation der Ent-
wicklung vermieden werden.

3.2.4 Fazit

Diese Sammlung von Problemen und Optimierungsverfahren stellt natiirlich
keine vollstindige Aufzdhlung dar. Es sind vielmehr typische Beispiele be-
trachtet worden. Auflerdem werden stéindig neue Verfahren entwickelt und
bekannte abgewandelt. Eine neuere Entwicklung sind z.B. die ,hybriden Ver-
fahren“, die mehrere einfache Optimierungsverfahren zu einem neuen kom-
binieren.

71

3.3 Genetisches Programmieren

Programme zur Bearbeitung von Problemen mit naturanalogen Verfahren
sind bereits in groflerer Anzahl verfiigbar. Die meisten dieser Programme
sind nicht flexibel einsetzbar, d.h. sie konnen nur wenige (ein) Verfahren auf
einfache ,,Standardprobleme® anwenden. Ziel der Projektgruppe ist die Er-
stellung eines Systems, das eine grofle Flexibilitit bietet. Der Benutzer soll
die Moglichkeit haben, auch kompliziertere Probleme mit dem System zu
bearbeiten. Ein solches Problem ist Genetisches Programmieren. Wihrend
genetische Algorithmen die Punkte des Suchraums meist als Bit—Tupel fe-
ster Linge darstellen, verwendet man bei Genetischem Programmieren Syn-
taxbdume einer Programmiersprache. Entsprechend miissen die Operatoren
Teilbdume bestimmen, entfernen und hinzufiigen kénnen. Auch die Fitnef3-
funktion ist komplizierter, sie mufl u.a. einen Interpreter fiir die verwendete
Programmiersprache enthalten. Um eine Vorstellung der Moglichkeiten, die
das System bieten soll, zu vermitteln, wurde Genetisches Programmieren im
Rahmen eines Seminarvortrags der Projektgruppe vorgestellt.

3.3.1 Einfiihrung

Viele in der Praxis auftretende Probleme sind NP-vollstéindig, d.h. es ist
kein deterministischer Algorithmus bekannt, der das Problem mit vertretba-
rem (polynomiellem) Aufwand 16st. Zur Bearbeitung solcher Probleme kann
man Genetische Algorithmen einsetzen, die zwar in der Regel keine optimale,
oft aber eine ,gute” Losung fiir das Problem liefern. Hier soll eine Moglich-
keit vorgestellt werden, einen Genetischen Algorithmus zur Erzeugung von
Computerprogrammen einzusetzen. Da eine Kodierung, wie bei Genetischen
Algorithmen normalerweise verwendet, hier nicht sinnvoll erscheint, unter-
scheidet sich Genetisches Programmieren deutlich von anderen Genetischen
Algorithmen.

3.3.2 Informelle Beschreibung
3.3.2.1 Genetischer Algorithmus
Konventionelle Genetische Algorithmen arbeiten wie folgt: Gegeben ist ei-

ne reellwertige Funktion, gesucht ein Element aus der Definitionsmenge der
Funktion, fiir das der Funktionswert moglichst grofi (moglichst klein) ist.

72

Die Funktion bezeichnet man als Fitneffunktion, ihre Definitionsmenge als
Suchraum oder Lésungsraum. Ublicherweise kodieren Genetische Algorith-
men die Punkte des Suchraums in Bit-Tupel. Der Algorithmus verwaltet
einen Vektor (Population) solcher Bit-Tupel (Individuen), die er schrittweise
dem Optimum anzundhern versucht. In jedem Schritt (Generation) erzeugt
er durch Verdndern der Bit-Tupel einen neuen Vektor. Zur Erzeugung der
neuen Individuen werden ein Rekombinations— und ein Mutationsoperator
verwendet. Der Rekombinationsoperator bildet zwei neue kodierte Individu-
en durch Vermischen der Bit—Tupel zweier alter Individuen. Man versucht
dadurch, ,gute* Eigenschaften der Eltern in den Nachkommen zu vereinen.
Der Mutationsoperator dndert dann zufillig in den neuen Bit—Tupeln eini-
ge Bits, um ggf. ,verlorengegangene* Eigenschaften wieder herzustellen. Die
Wahrscheinlichkeit ein Individuum zu mutieren, wihlt man sehr klein, da
sich der Genetische Algorithmus sonst wie eine Zufallssuche verhélt.

3.3.2.2 Genetisches Programmieren

Bei Genetischem Programmieren besteht der Suchraum aus der Menge aller
Zeichenfolgen, die syntaktisch korrekte Programme in einer beliebig gewéhl-
ten Programmiersprache sind. Da eine Kodierung der Programme in Bit—
Tupel fester Linge kaum moglich ist, arbeitet der Algorithmus fiir Geneti-
sches Programmieren direkt auf den unkodierten Individuen [Ko0z92]. Prinzi-
piell kann jede Programmiersprache verwendet werden. Da Rekombinations—
und Mutationsoperator auf den Syntaxbdumen der Programme arbeiten, sind
Lisp—&dhnliche Sprachen besonders geeignet. Der Syntaxbaum kann bei diesen
Sprachen direkt aus dem Progamm abgelesen werden, Umformungen entfal-
len. Die hier verwendete Sprache wird in Kapitel 3.3.4.1 definiert, ein Pro-
gramm in der Sprache ist z.B.:

(ifeqz (neg (X)) (pi) (x (X) (Y)))

Der Rekombinationsoperator erzeugt aus zwei Programmen zwei neue Pro-
gramme, indem er in beiden Syntaxbdumen zufillig je einen Knoten auswéhlt
und die an diesen Knoten beginnenden Unterbdume austauscht. Abbildung
3.14 zeigt die beiden Eltern, in denen die ausgewéhlten Knoten dick um-
randet sind, sowie die beiden entstehenden Nachkommen. Der Mutations-
operator wihlt aus einem Baum zufillig einen Knoten aus, und tauscht den
Unterbaum gegen einen zufillig erzeugten aus. Der ausgewihlte Knoten ist
in Abbildung 3.15 dick umrandet.

An der Rekombination und der Mutation nehmen i.A. nicht alle Individuen
der Population teil. Die Eltern fiir die Rekombination werden durch einen

73

Eltern

l), O,

@ Nachkommen ‘
ORO (-
() O ©

Abbildung 3.14: Rekombination

° zu mutierendes @
@ Individuum ‘
4
: ORO

zufallig erzeugter
Teilbaum

S0

° mutiertes Individuum

Abbildung 3.15: Mutation

74

Auswahloperator bestimmt, nach der Mutation werden durch einen Selekti-
onsoperator einige Individuen aus der alten Population unverdndert in die
neue Population kopiert (siehe auch Abbildung 3.16). Auswahl- und Selek-
tionsoperator wiahlen Individuen mit hoher Fitnefl mit groflerer Wahrschein-
lichkeit aus.

Die Fitneflifunktion gibt hier an, wie gut ein Programm ein vorgegebenes
Problem 16st. Der Funktionswert wird ermittelt, indem man das Programm
mit mehreren reprisentativen Eingaben testet und die Ergebnisse bewertet.

3.3.3 Schwierigkeiten bei der Implementierung

Bei der Bewertung der Programme ergeben sich folgende Probleme, die einige
Einschriankungen der Beispielsprache notig machen:

o FErgebnistypen der Funktionen: Rekombinations— und Mutationsopera-
tor konnen Programme erzeugen, in denen Funktionen mit Argumenten
des falschen Typs aufgerufen werden. Um dieses Problem zu umgehen,
gibt es in der Beispielsprache nur einen Datentyp.

e fehlerhafte Programme: Rekombinations— und Mutationsoperator wer-
den so definiert, daf sie nur syntaktisch korrekte Programme erzeugen
konnen. Bei Funktionen mit Definitionsliicken kann es zu Laufzeitfeh-
lern kommen, in der Beispielsprache werden daher nur totale Funktio-
nen zugelassen.

e FEndlosschleifen: Falls ein Programm eine Schleife mit unerfiillbarer Ab-
bruchbedingung enthilt, terminiert die Funktion zur Berechnung der
Fitne nicht. Die Beispielsprache 148t deswegen keine Schleifen oder Re-
kursionen zu. Dieses Problem wird in Kapitel 3.3.7 noch ausfiihrlicher
diskutiert.

3.3.4 Beispielsprache
3.3.4.1 Syntax
Die Menge C' der Funktionssymbole der Sprache setzt sich aus drei disjunkten

Teilmengen zusammen. Die Elemente der Mengen sind hier nur als Beispiele
angegeben, da die Mengen jeweils dem konkreten Problem angepafit werden.

e Tionst = {null,pi,...} Konstantensymbole

75

Tvar = {X,Y,...} Variablensymbole

e FF={+ - * ifeqz,...} Menge von mehrstelligen Funktionssymbolen
o I'="T, s UT, Menge von nullstelligen Funktiossymbolen

e C=TUF

Auf der Menge der Funktionssymbole ist eine totale Funktion z : ¢ — N
definiert, die die Stelligkeit der Funktionssymbole angibt. Die Sprache wird
von der kontextfreien Grammatik G erzeugt.

G = ({S},%, P,S) mit

S=CU{(},
P={S—u|lu=(fS),feC,i=z(f)}

3.3.4.2 Semantik

Um die Fitnef} eines Programms berechnen zu konnen, muf fiir die Beispiel-
sprache eine Semantik definiert werden. Hier wird eine denotationelle Seman-
tik angegeben, d.h. die Semantik eines Programms in der Beispielsprache ist
eine Funktion, die eine Speicherbelegung auf einen Ergebniswert abbildet.
Eine Speicherbelegung

mem € MEM = (T,o, — R)

ist eine totale Funktion, die jeder Variable einen Wert zuordnet. Die Seman-
tikfunktion
Sem : L(G) - (MEM — R)

bildet ein Programm auf seine Semantik ab.

Analog zur Menge der Funktionssymbole wird auch deren Semantik fiir jedes
Problem angepaf}t. Beispielhaft hier die Semantik einiger Funktionssymbole:

Sem((null)) := Amem.0

Sem((X)) := Amem.mem(X) (analog fiir alle Variablen aus T,)

Sem((+ u v)) := Amem.Sem(u)(mem) + Sem(v)(mem)

Sem((ifeqz u v w)) :=
Amem.Sem(v)(mem), falls Sem(u)(mem) = 0
Amem.Sem(w)(mem), sonst

76

3.3.5 Formalisierung

Der Algorithmus fiir Genetisches Programmieren wird als Instanz des Basi-
salgorithmus [Koh95, Kapitel 4] formalisiert. In Kapitel 3.3.5.1 werden die
Parameter des Basisalgorithmus vorbelegt sowie einige zuséitzliche Parameter
eingefiihrt, in Kapitel 3.3.5.3 werden die Operatoren definiert. Der Algorith-
mus selbst wird in Kapitel 3.3.5.2 kurz vorgestellt. Sofern in [KKoh95] und
[Koz92] unterschiedliche Bezeichnungen fiir Parameter verwendet werden,
orientieren sie sich hier an [Koh95].

3.3.5.1 Parameter

Spezielle Parameter fiir Genetisches Programmieren:
® t4:0 Anzahl Generationen, die bis zum Abbruch erzeugt werden

® D;nisia: maximale Tiefe der Individuen in der Anfangspopulation und
der Teilausdriicke, die vom Mutationsoperator in existierende Indivi-
duen eingesetzt werden

e p,,: Wahrscheinlichkeit, daf} ein Individuum mutiert wird

e (memy,...,mem,) € MEM": Speicherbelegungen zur Berechnung der
Fitnef3

Parameter des Basisalgorithmus (sieche [Koh95]):
e Ind € IND := L(G): Individuum

1= 20n,n € N: Anzahl der Individuen in einer Population
Pop € POP := IND*

Popy € POP: Startpopulation

A := -tz Anzahl der Individuen fiir Rekombination

N = oot (maz{z(f) | f € C})* + 1: Anzahl Zufallszahlen fiir
lokale Mutation

ny = (nm + 1)A: Anzahl Zufallszahlen fiir Mutation

3.3.5.2 Algorithmus

Abbildung 3.16 veranschaulicht die Arbeitsweise des Algorithmus bei der
Erzeugung einer neuen Generation. Die Operatoren r und m sind lokale Un-

77

1 Individuen P,
Auswahl A

Et)\ Ind
r ?{ Rekomb. R r}{

Ny, A Ind.

m Mutation M m

Y Y

Noy A Ind.

Selektion S
EA A Ind. Py

Abbildung 3.16: Erzeugung einer neuen Generation

teroperatoren von R und M, die jeweils auf zwei bzw. einem Individuum
arbeiten.

t:=0

REPEAT

Ey = A(P;, Uniform([0,1),)))

Nl,t = R(Et7 Umform([(), 1)))‘))

Ny := M(Ny 4, Uniform([0,1),na))

Py := S(Py, Nog, Uniform([0,1), p <))

t:=t+1

UNTIL H(t)

Dabei sind die Variablen:
e P, Population zum Zeitpunkt ¢
e [, Elterngeneration
e N;; vom Rekombinationsoperator erzeugte Nachkommengeneration

e N,, mutierte Nachkommengeneration

78

Uniform([0,1),n) liefert n zufillig aus dem Intervall [0,1) gewihlte reelle
Zahlen.

3.3.5.3 Operatoren

Fitnef3 Die Fitnef§ eines Individuums wird berechnet, indem man das In-
dividuum auf jeder der Speicherbelegungen (mem;,..., mem,) € MEM"
ablaufen 148t, und mit den Ergebnissen zunéchst eine Raw—Fitnefl f,q., :
IND — R bestimmt. Diese Funktion kann z.B. so aussehen:

e falls fiir die Speicherbelegungen Sollergebnisse (zy,...,x,) bekannt
sind: fraw(u) = > 0, | ; < Sem(u)(mem;) |

e fiir Maximierungs— oder Minimierungsprobleme, bei denen das Ergeb-
nis nicht bekannt ist: fyq,(u) =Y 1, Sem(u)(mem;).

Aus der Raw-Fitnef it sich die Fitnel f : IND — [0, 1] des Individuums
berechnen. Der Funktionswert muf} zwischen null und eins liegen und fiir bes-
sere Individuen grofler sein. Da bessere Individuen abhéngig vom Problem
eine groflere oder kleinere Raw-Fitnefl haben, ist die Berechnung proble-
mabhingig, z.B. fiir Minimierungsprobleme, oder falls Sollwerte vorgegeben
sind, mit

1
U ey AW\
bei Maximierungsproblemen mit
_ Jraw(u)
Uy O]

Auswahl- und Selektionsoperator verwenden proportionale Selektion und be-
notigen die relative Fitne f.; : {1,...,u} x POP — [0, 1], mit

. S (us)
fre Z) u PARE '7u = ?
l((1 u)) Z:1 f(uk)
die die Fitnef des i—ten Individuums in der Population @ = (uy,...,u,)

ergibt, wobei die Summe iiber die Fitnewerte aller Individuen aus 4 eins ist.

Auswahl Der Auswahloperator

A: POP x [0,1)* — IND*

79

(@, (ar,...,ay)) —d

bestimmt die Individuen aus der Population @ = (u4, ..., u,), die an der Re-
kombination teilnehmen. Es wird proportionale Selektion angewendet, d.h.
die Wahrscheinlichkeit, dafl ein bestimmtes Individuum ausgewéhlt wird,
verhélt sich propotional zu seiner relativen Fitnefl. Dadurch werden bes-
sere Individuen mit einer grofleren Wahrscheinlichkeit iibernommen, aber
auch schlechte Individuen kénnen in @' aufgenommen werden. Ein in @’ ein-
gefiigtes Individuum wird nicht aus « geloscht, so dafl dasselbe Individuum
aus ¢ mehrmals in @' vorkommen kann.

A((ug, .. uy), (@1, .-,
e Vie{l, . A iy = w1 <5 <p

mit 3070 fra(k, @) < a; < oh_ fral(k, @)

a) = (ul,...,u})
. !

Rekombination Der lokale Rekombinationsoperator tauscht zwischen
zweil Individuen zwei Teilausdriicke aus. Die Funktion

SubExp : L(G) x N — L(G)

(u,n) —»wv

wird dabei verwendet, um den n—ten Teilausdruck von u zu bestimmen (Der
lokale Mutationsoperator verwendet diese Funktion ebenfalls).

v, falls 0 < n < FkSym(u)
€, sonst
v ist das kiirzeste Wort, so daf}

Ja, B,y € ¥ tu=avB,v = (), fx=n,fv=1Hv

SubEzp(u,n) :=

Dabei ergibt die Funktion FkSym : L(G) — N mit FkSym(u) = fu die
Anzahl der Funktionssymbole in w.

Beispiel 1
Sei u = (ifeqz (neg (X)) (pi) (x (X) (Y))). Dann ist
SubExp(u,4) = (* (X) (Y)) (siehe auch Abbildung 3.14).

Mit dem lokalen Rekombinationsoperator
r: IND x IND x [0,1) x [0,1) — IND x IND

(u,v,a,b) — (u',v")

80

werden in zwei Individuen v und v mit den Zufallszahlen ¢ und b zwei Teil-
ausdriicke bestimmt und durch Austausch der Teilausdriicke die neuen Indi-
viduen u' und v’ erzeugt.

r(u,v,a,b) = (v, 0v") & 3z, y, o, 5,7, € T*:
r = SubFrp(u, | FkSym(u) - a|),y = SubEzp(v, | FkSym(v) - b)),
u=axfl,v="yyd,u = ayl,v =yxd

Der Rekombinationsoperator
R: IND* x [0,1)* — IND*

wendet die lokale Rekombination auf je zwei nebeneinanderstehende Indivi-
duen in der Population « an.

R((u1, ... uyp), (n1,...,nz)) = (v1,...,0)
= VEe{l,..., %} : (vok—1,vk) = 1 (U1, U, Mok 1, Nk

(3 €N, da A =18n mit n € N)

Mutation Der Mutationsoperator tauscht in einem Individuum einen Tei-
lausdruck gegen einen zufillig erzeugten aus. Der zu ersetzende Teilausdruck
wird mit der Funktion SubEzp bestimmt, den neuen Teilausdruck erzeugt die
Funktion
Init : Nx L'(G) x [0,1)" = L'(G)
(n,u,d) — v
mit L'(G) = {u € (SU{S}H)* | S =* u}. d ist ein Vektor aus Zufallszahlen,

die zur Auswahl der Funktionssymbole verwendet werden, n die maximale
Schachtelungstiefe des erzeugten Ausdrucks.

Die Funktion
Level : (X U{S})" - N

gibt die Tiefe an, auf der sich das erste Nichtterminal aus G im teilweise
abgeleiteten Wort u befindet.

Level(u) =n & Jv e ¥ w e (BU{S})" 1 u=vSw,n=fw &t

Sei Pr = {(S — (f)) | f € T} C P die Menge aller Regeln in G, deren
rechte Seite kein Nichtterminal enthélt. Seien

dp:{1,...,| Pr|} = Pp, de: {1,...,| P|} = P

81

beliebige Bijektionen.

Die Funktion Init simuliert Linksableitungsschritte der Grammatik G. Bei
jedem Funktionsaufruf wird ein Nichtterminal S durch ein Funktionssymbol
ersetzt, wobei nur Symbole fiir nullstellige Funktionen verwendet werden,
falls sich das zu ersetzende Nichtterminal auf der maximal erlaubten Tiefe n
befindet.

u, falls fgu =0
Init(n,u, (ay,...,a;)) =
Init(n,v, (ag,...,ax)), sonst
u =, v bei Anwendung der Regel dc(|ar- | P || + 1), falls
mit Level(u) < n
u =1, v bei Anwendung der Regel dr(|as- | Pr|] + 1), sonst

Beispiel 2

Sei Teonst = {}, Tvar = {X, Y}, F = {exp, -}.

Sei dr(1) =re(1) =X, dr(2) = r¢(2) = Y,dc(3) = exp,dc(4) = -.

Zur Erzeugung des Ausdrucks wurden die Zufallszahlen 0.6, 0.9, 0.2 und 0.7
gezogen. Dann gilt:

Init(2,S,(0.6,0.9,0.2,0.7)) = (exp (- (X) (Y))),

wobei die Ableitung

S = (exp S) = (exp (- § 5)) = (exp (- (X) 5))

= (exp (- (X) (V)))

durchgefiihrt wird.

Der lokale Mutationsoperator
m : IND x [0,1)"" — IND

(u,d) — v

bestimmt mit der Zufallszahl n; einen Teilausdruck im Individuum u» und
tauscht ihn gegen einen mit den Zufallszahlen ns,...,n, erzeugten Aus-
druck aus.

m

m(u, (ay,...,a,,)) =v:& 3z, y, o, € X :
x = SubExp(u, | FESym(u) - a1),y = Init(Dinitiar, S, (ag, . . ., an,,)),
u=axrf,v=ayf

Der Mutationsoperator

M : IND* x [0,1)"™ — IND*

82

(d, (a1, .., an,,)) — @

entscheidet zunédchst mit der Zufallszahl a,, 1, ob das i—te Individuum der
Population @ = (u; ..., u,) mutiert wird, wendet ggf. die lokale Mutation auf
das Individuum an oder kopiert es unveridndert in .

M((ugy...,up), (ag, ..., an,,)) = (u),...,u)

) iy 1— g o0y Wyn ,fll n Z< m
:@VZE{I,...,A}:u;:{ umi(USOl(]CSLJ(Ez D +1 Qin,,)), falls an, i <p

Selektion Der Selektionsoperator
S : POP x IND* x [0,1)** — POP

(4,7, (a1, ...,a,-1)) — T

kopiert die vom Mutationsoperator ausgegebenen A Individuen aus ¢ =
(v1,...,vy) unverdndert in die néichste Generation @ und wihlt, um die
neue Generation auf p Individuen aufzufiillen, aus der letzten Generation
@ = (uy,...,u,) weitere ;<X Individuen mit proportionaler Selektion aus,
die ebenfalls unverindert in die neue Generation iibernommen werden.

S((ury ey up)s (V-5 00), (A, ooy @ n)) = (U, Uy, V1,0, V)
e Vie{l. . ueAtiup=u;,1 <j <y,

mit Y300 fra(k, i) < a; < 4y fralk, i)
Abbruchbedingung Es werden t,,,, Generationen erzeugt:
H:N—B

H(t) &t =t

Die Abbruchbedingung kann ggf. noch erweitert werden. So kann z.B. der
Algorithmus abbrechen, sobald die Fitnef§ des besten Individuums einer Ge-
neration einen bestimmten Wert iiberschreitet.

3.3.6 Beispiel: Symbolic Regression

Beim folgenden Beispiel handelt es sich um eine sehr einfache Anwendung
fiir Genetisches Programmieren. Es wird kein ,,Programm® im engeren Sinn,

83

sondern nur ein arithmetischer Ausdruck erzeugt. Einige der in Kapitel 3.3.7
genannten Probleme werden dadurch umgangen.

Gegeben ist eine Menge von Stiitzstellen in einem cartesischen Koordinaten-
system. Gesucht ist eine Funktion, deren Funktionswerte an den Stiitzstellen
moglichst wenig von den vorgegebenen Werten abweicht.

Zunichst wird die zu verwendende Sprache festgelegt, die hier nur eine Va-
riable sowie einige mathematische Funktionen enthalten mu$f.

® Lconst — {}, T’uar = {X}
e FF={+ - % U, sin, cos, exp,rlog}

e 2(X) =0,
2(sin) = z(cos) = z(exp) = z(rlog) =1,
2(*) = 2(-) = 2(*) = 2(%) = 2

Die Semantik von X wurde bereits in Kapitel 3.3.4.2 definiert. Die Semantik
der Funktionssymbole +, - * sin, cos, exp sind die Funktionen gleichen
Namens. Da die Division und der Logarithmus auf R keine totalen Funktionen
sind, werden sie hier durch die totalen Funktionen % und rlog ersetzt.

Amem.0, falls Sem(v)(mem) =0
Amem.Sem(u)(mem)/Sem(v)(mem), sonst

o Sem((h uwv))= {

Amem.0, falls Sem(u)(mem) =0
Amem.in | Sem(u)(mem) |, sonst

e Sem((rlog u)) = {

Anschlielend wird die Fitnefifunktion definiert: Stiitzstellen sind die Funk-
tionswerte des Polynoms z* + 2° + 22 + x an 20 Stellen aus dem Intervall
<1, 1)

o memy(X) = 53, mems(X) = &35, ... memg(X) = 35, memay(X) = 53

o Vie{1,...,20} : & = mem;(X)* + mem;(X)* + mem;(X)* + mem;(X)

Die Raw-Fitness ist hier: fya,(u) = S0, | 2; < Sem(u)(mem;) |. ITm Ge-
gensatz zum formalisierten Algorithmus wird hier auch die Tiefe der vom
Rekombinations— und Mutationsoperator erzeugten Individuen beschréinkt
(D¢reatea = 17), sowie in jeder Generation das beste Individuum ermittelt.
Weitere Parameter sind:

® Dinitiat = 6
e 1 =500
® lar =51

84

Ergebnisse (die Klammern um die Funktionssymbole sind weggelassen):

e Bestes Individuum in Generation O:
X (+ (+ (- GXX) (%hXX) (sin (- X X)))
(rlog (exp (exp X)))))

entspricht xe”

e Bestes Individuum in Generation 2:
+ x (x (+X XX GXXD XN
+X (xXX))) XX

entspricht 3z* + 323 + x

e Bestes Individuum in Generation 34:
+X (x (+ X (x (x (+X (- (os (-XX)) (-XXDNDXNX)

entspricht z* + 23 + 22 + o

In Generation 34 trat ein Individuum mit bestmoglicher Fitnefl auf. Thm ist
die Aquivalenz zu dem zur Berechnung der Testwerte verwendten Ausdrucks
nicht mehr anzusehen (siehe auch Kapitel 3.3.7).

3.3.7 Fazit

Die Festlegung der Funktionen und Variablen der Sprache und der Parameter
des Algorithmus (Dereated Und Dijpiiar) setzen eine grobe Vorstellung von
der Art und Grofe eines Programms, das das gestellte Problem 16sen kann,
voraus. Falsche Wahl der Parameter fiihrt entweder zu einer langen Laufzeit
des Algorithmus oder zu einem Programm, das das Problem nur schlecht
oder gar nicht 16st. Dasselbe gilt fiir die Funktionen der Programmiersprache.
Das ist kein spezieller Nachteil des Genetischen Programmierens, auch bei
anderen naturanalogen Verfahren (z.B. Simulated Annealing) ist die Qualitét
des Ergebnisses stark von der Wahl der Parameter abhiingig.

Ein grofleres Problem ist die Bewertung der erzeugten Programme: Falls die
Menge der moéglichen Eingaben fiir das Programm sehr grof§ oder unendlich
ist, kann die Fitnelfunktion den Test nur auf einer Teilmenge der moglichen
Eingaben durchfiihren. Man kann i.A. nicht schlieflen, dafl ein Programm, das
fiir diese Testwerte optimale Ergebnisse erzeugt, das auch fiir alle anderen
Eingaben leistet. Die erzeugten Programme sind auch bei kleinen Problemen
sehr schwer nachvollziehbar (siehe Kapitel 3.3.6), so daf} eine nachtrigliche
Bewertung durch den Benutzer ebenfalls kaum moglich ist.

85

Da die Berechnung der Fitnef§ sicher terminieren soll, mufl der Fitneopera-
tor die Md6glichkeit haben, zu entscheiden, ob ein Programmlauf mit einer
bestimmten Eingabe terminiert. Weil das Halteproblem fiir turingméchtige
Sprachen nicht entscheidbar ist, darf die fiir Genetisches Programmieren ver-
wendete Sprache nicht turingméchtig sein.

Mit diesen Einschrinkungen kann man mit Genetischem Programmieren
kaum ein einzelnes Programm zur Bearbeitung eines schwierigen Problems
erzeugen. Besser geeignet ist der Algorithmus fiir Probleme, die sich mit
mehreren einfachen Programmen 16sen lassen, z.B. auf den Gebieten

e Verteilte kiinstliche Intelligenz (emergent behaviour): Beobachtungen
aus der Natur zeigen, daf3 viele Systeme, deren Einzelkomponenten ein
sehr einfaches Verhalten aufweisen, ein wesentlich komplexeres Verhal-
ten realisieren konnen (z.B. Insektenstaaten). Steuerprogramme fiir die
Einzelkomponenten kénnen mit Genetischem Programmieren erzeugt
werden.

e Robotik (subsumption architecture): Aufgabe ist die Steuerung eines
mobilen Roboters, der ein iibergeordnetes Ziel verfolgt (z.B. einen be-
stimmten Punkt anfahren), dabei aber Randbedingungen beachten muf
(z.B. Hindernisse umfahren). Der Roboter wird von mehreren Program-
men gesteuert, die jeweils ein Ziel zu erreichen versuchen. Jedes dieser
Programme erhilt Eingaben von den Sensoren und erzeugt Steuerbe-
fehle fiir die Motoren. Die Steuerbefehle werden gewichtet (z.B. hat
das Ausweichen vor Hindernissen eine hohere Prioritdt als das Errei-
chen eines Punkts), so daf die Motoren immer nur einen Steuerbefehl
gleichzeitig erhalten.

86

Teil 11

Erste Konzepte und Prototyp

87

Kapitel 4

Zeitplan/Status

4.1

Zeitplan

4.1.1 Seminarphase

1.

Es wurde ein Hauptseminar abgehalten, um das zu bearbeitende Gebiet
vorzustellen, und um einen Uberblick dafiir zu erhalten. Die Seminar-
vortrage:

Polymorphe Datentypen
Problemen und Optimierungsverfahren
Verschiedene Modelle fiir Parallele Genetische Algorithmen

Genetisches Programmieren

. Parallel dazu : Einarbeitung in Tools und Spezialisierung einzelner Per-

sonen. Es wurden verschiedene Verantwortungs- und Spezialisierungs-
bereiche geschaffen, und diese auf die einzelnen Gruppenmitglieder auf-
geteilt. Dies waren:

(a) Ein BTEX-Experte

(b) Ein UNIX-Experte

(c) Ein Dokumentator
)

(d) Ein Kiimmerer - dieser wurde auf die ganze Gruppe iibertragen

88

4.1.2 Planungsphase

Ziele: Festlegung der inhaltlich zu erfiillenden Aufgaben.

1. Das entgiiltige Programm soll eher ein Werkzeug sein, um ver-
schiedene Losungsverfahren aus dem Bereich der Evolutiondren
Algorithmen behandeln zu konnen.

2. Es soll eine moglichst grole Auswahl der in den Seminarvortrégen
vorgestellten Verfahren und Problemen implementiert und als Bi-
bliothek bereitgestellt werden.

3. Eigenschaften
Es werden sich kleinere Gruppen von ca. 2 Personen in verschie-
denen Gebieten spezialisieren. Diese wiren:
(a) Populationsverwaltung
(b) Kodierung(sverwaltung)
c) Parameterverwaltung
(d) Bibliotheken (Operatoren)
(

)
)
)
(e) Graphische Oberfldche
)
)
)

(
(f) Labels
g) Log-Funktionen

(h) Anbindung externer Probleme
(i) Parallelitét

4. Entscheidung fiir Hard- und Software die verwendet wird.
Wir arbeiten mit einem UNIX-System und benutzen als Sprache
ML. Die weitere Software ist auf UNIX-Systemen verfiigbar, bzw.
kommt aus dem Public-Domain Bereich.

4.1.3 Entwurfsphase

Begriffsbestimmungen, Anwendungen und Modelle sind weitgehend geklért.
Tatigkeiten:

1. Losungsverfahren festlegen.

89

2. Teilprobleme herauskristallisieren und diese durch Schnittstellen
verbinden.

3. Grundlegende Datenstrukturen und Kommunikationswege festle-
gen.

4. Prototyp entwerfen und implementieren.
Ergebnisse:
1. Formale Spezifikation des Problems und seiner Teilprobleme

2. Entwurf und Implementierung des Prototyps

4.1.4 Zwischenphase

Die Erfahrung des Prototyps wurden zusammenfafit und ausgewertet, sowie
der Zwischenbericht erstellt.

4.1.5 Implementierungsphase

Noch nicht eingtreten.

4.1.6 Integrations-, Experimentier- und Schluf3phase

Noch nicht eingetreten.

4.1.7 Projektbegleitende Dokumentation
Diese ensteht permanent parallel zur Projektarbeit, und soll folgende Ele-
mente enthalten:
1. Problemstellung
Literaturiiberblick
zugrundeliegende (formale) Modelle

Einsatz- und Anwendungsmoglichkeiten

ATl B

Anforderungen

90

10.
11.
12.
13.
14.
15.
16.

R B

Spezifikation
Design
Entwurfskriterien und -entscheidungen (vor allem ,,unlogische®)
Daten- und Objektstrukturen
Schnittstellen
Benutzungsoberfliche
Erfahrungen
Auswertungen
, Warnungen*
Organisation des Projekts
Anhang:
- Programmlistings
- Bedienungshinweise
- Beschreibung von Hard-, Software und Werkzeugen
- Anschluf} an andere Systeme
- Testumgebung
- Testlaufe

- Experimente und deren maschinelle Auswertung

4.2 Entscheidungsgraph

Um einen besser Uberblick iiber die Reihenfolge, und Dringlichkeit, verschie-
dener Entscheidungen zu erhalten, wurde folgendes Schema erstellt. Hieraus
ersiecht man, welche Abhéngigkeiten bestehen und gesetzt wurden.

91

Schichtenmodell}——{ Datentypen H Kodierungsstruktur Exceptions

L A

Individuum Operatoren Populations-

Kodierung/

verwaltung

Dekodierung

weitere
Informationen

Problem }—»‘ Problemstruktur H Fitnessfkt. ‘ Population

92

Kapitel 5

Untergruppenberichte

5.1 Ein Schichtenmodell

Das Ziel, ein moglichst flexibles System zu schaffen macht es notwendig,
den Nutzer nicht mit Aufgaben und Entscheidungen zu iiberfrachten. Ein
Benutzer soll auf eine einfache Art mit bereits vorhandenen Verfahren ex-
perimentieren kénnen, ohne sich um die Definition der Operatoren oder gar
um die Datenstrukturen kiimmern zu miissen. Andererseits soll einem Be-
nutzer dieser Zugang nicht grundsétzlich verbaut werden. Dies soll durch das
folgende Schichtenmodell beschrieben werden:

Schicht 4 Einstellung der Parameter
Schicht 3 Definition von Verfahren
Schicht 2 Definition von Operatoren
Schicht 1 | Definition von Strukturen/Atomen

Auf der obersten Ebene des Schichtenmodells (Schicht 4) wird ein Verfahren
aus einer Bibliothek ausgewihlt und die Parameter gesetzt. Enthélt die Bi-
bliothek nicht das gewiinschte Verfahren, so kann in Schicht 3 das Verfahren
mit Hilfe von bereits existierenden Operatoren definiert werden. Existiert
ein Operator nicht in der gewiinschten Form, so kann er in Schicht 2 defi-
niert werden. Schicht 1 ermdoglicht schliellich, auch Datenstrukturen fiir die
Problem- und Kodierungsstruktur zu definieren.

93

5.2 Ein einheitliches Konzept fiir Kodierungs-
strukturen

5.2.1 Ziel

Hier zwei Beispiele fiir Strukturen, die als Kodierungsstrukturen auftreten
konnen. Im folgenden wird versucht, ein einheitliches Konzept zu entwickeln,

daf} diese verschiedenen Strukturen beschreibt.

tome

[+ H]
N e
ome Kodierung mit einer

Kodierung mit einer Liste Baumstruktur

5.2.2 Konzepte
5.2.2.1 Atome
Atome sind die elementaren, unteilbaren Bausteine, aus denen Kodierungs-

strukturen aufgebaut sind. Atome haben alle den selben Typ, némlich die
Vereinigung iiber alle Basistypen.

5.2.2.2 Basistypen
Basistypen sind reelle Zahlen, ganze Zahlen (beide evtl. mit Genauigkeiten),

boolesche Werte und Permutationen. Die darauf definierten Funktionen stellt
das System zur Verfiigung.

5.2.2.3 Verbindung zwischen Basiselementen und Atomen

Da die Atome alle vom gleichen Typ sind, werden fiir jeden Basistyp je eine
Funktion benétigt von Basiselement nach Atom und umgekehrt.

94

5.2.2.4 Ubergeordnete Struktur

Die Atome sind in einer iibergeordneten Struktur angeordnet, die beispiels-
weise eine Liste oder ein Baum ist. Die Art der Struktur ist frei bis auf die
Einschrinkung, dafl es moglich sein mufl, die Position von Atomen in der
Struktur eindeutig zu definieren.

5.2.2.5 Kodierungssignatur

Die Kodierungssignatur hat folgende Elemente:

e Ein polymorpher Datentyp T'(«).

e Einen Typ P, mit dem die Position innerhalb der Kodierungsstruktur
angezeigt werden kann.

5.2.2.6 Operatoren

Operatoren sind Funktionsterme, die mit den Funktionen aus den Abschnit-
ten 5.2.2.5 und 5.2.2.3 definierbar sind. Um den Zugriff sicherer zu gestalten,
kann in der Ausbaustufe eine Klasse von Termen definiert werden, die die-
se Operatoren bilden, und dazu dann eine Auswertungsfunktion, die diese
in Funktionsterme der Abschnitte 5.2.2.5 und 5.2.2.3 iibersetzt. Gleichzeitig
kann dann diese Auswertungsfunktion die Ablaufsteuerung mit Interrupts
etc. iibernehmen. So wihren dann die Operatoren von der Ablaufsteuerung
getrennt.

5.2.3 konkretes Beispiel: EAGLE

signature KODIERUNG =
sig type 'a T;
type P;
end;

signature ATOM =
sig datatype Basistyp = reell | integer | bit | permutation;
val element_typ = Basistyp;
val R : real;
val I : integer;

95

val B : bool;
val P : perm;
end;

structure Listenkodierung : KODIERUNG =
struct type 'a T = a list;

type P = int;
end;
fun list_get_atom (x::1, 0) = x
list_get_atom (x::1 , i) = list_get_atom (I, i-1)
list_get_atom (-, -) = raise , Falscher Funktionsname“

fun list_set_atom (x::1, 0, y) = y:l
list_set_atom (x::1 , i, y) = list_set_atom (1, i-1, y)

fun list_crossover (11,12, 0) = 12
list_crossover (x::1, 12, i)= x::(list_crossover (1, 12, i-1))

5.3 Operatorkonzept

5.3.1 Inhalt

Aufgabe der Untergruppe ist die Erarbeitung eines Konzepts fiir die Ver-
fahrensoperatoren, das die gegeniiber EAGLE verénderte Struktur (mehrere
Populationen, freiere Kodierungsstruktur) beriicksichtigt und eine kleinere
Schnittstelle zwischen den Operatoren und dem restlichen System aufweist.
Obwohl die Operatoren auf Funktionen, zugreifen, die von der Populations-
verwaltung zur Verfiigung gestellt werden, werden diese Funktionen hier nicht
festgelegt. Eine exakte Definition der Schnittstelle mufl in Zusammenarbeit
mit der Untergruppe Populationsverwaltung definiert werden. Dasselbe gilt
fiir Problem— und Kodierungsstruktur.

5.3.2 Aufbau

Da im System immer genau eine Populationsmenge existieren soll, ist sie in
der Populationsverwaltung gekapselt. Zum Zugriff auf die Populationen stellt

96

. 3 S| S|
IS 2 = 3 £
2 2 3 = @
s|-—"= g IS S €

_C S .:
o] % 2 [}
Q = o) ° a
=3 (3} = o x
O > o ~ i
\ / s |
\ / - - |
\ 4 e I
\ // s - !
\ , e I
A\l 4 » *
PopVerwaltung - Experimentsteuerung
\
Populationen Genetischer Alg
— ™ Funktionsaufrufe =~ e > enthalt

,,,,,, | |iest aus - |nterakti0n

die Populationsverwaltung z.B. folgende Funktionen zur Verfiigung (unvoll-
standig):

e MainOp : PopBez x OpBez x ParamlList fiihrt das unter OpBez in
der Verfahrensbibliothek gespeicherte Verfahren auf der durch PopBez
bestimmten Population mit den Parametern aus ParamlList aus. Bei-
spiel!:

MainOp(3,"Standard GA",[("lambda",30),("pm",0.001)1);

In einer Erweiterung kénnte der Funktion eine Liste von Tripeln iiberge-
ben und die Verfahren parallel auf den Populationen ausgefiihrt werden.
Jede Population benotigt dann einen eigenen Zufallszahlengenerator,
damit die Experimente wiederholbar sind.

e SetProblem : ProblemBez legt das Problem (Problemstruktur und Fit-
nefifunktion) fiir alle Populationen fest.

'Der Aufbau der Parameterliste wird hier nicht festgelegt.

97

e RndPop : KodBez x int — PopBez Erzeugt zufillig eine Population
der angegebenen Grofle mit der angegebenen Kodierung.

e Fxchangelnd : PopBez x IndBez x PopBez x IndBez tauscht zwei In-
dividuen zwischen zwei Populationen aus.

5.3.3 Funktionalitit der Experimentsteuerung

Die Experimentsteuerung bestimmt den gesamten Ablauf eines Experiments.
Sie
e wihlt das Problem aus,

e legt fiir jede Population Grofle, Kodierung und Anfangsbelegung fest,

e bestimmt, welche Verfahren mit welchen Parametern auf den Popula-
tionen arbeiten,

e tauscht Individuen zwischen Populationen aus.

Eine einfache Experimentsteuerung, die Standardverfahren auf eine Popula-
tion anwendet, ist im System enthalten. Kompliziertere Experimentsteuerun-
gen konnen vom Benutzer implementiert werden. Fiir jede Experimentsteue-
rung sollte eine eigene Experimentbibliothek zur Verfiigung stehen, weil die
dort gespeicherten Parameterbelegungen stark von Problem, Verfahren und
der Experimentsteuerung selbst abhéngen.

5.3.4 Bibliotheken

Operatorbibliothek: Enthélt Suboperatoren, die von Verfahrensoperato-
ren importiert werden konnen.

Verfahrensbibliothek: Enthilt die Verfahrensoperatoren. Ein Verfahrens-
operator bildet eine Population und eine Liste von Parametern auf
eine neue Population ab. Jeder Verfahrensoperator hat einen eindeu-
tigen Namen, unter dem er von der Experimentsteuerung referenziert
werden kann.

Experimentbibliothek: Enthélt zu einem Experiment die Belegung der
Verfahrensparameter und die Random Seeds.

98

Problem— und Kodierungsbibliothek: Ahnlich zur Verfahrens
bibliothek lassen sich Probleme und Kodierungen {iber Namen refe-
renzieren.

5.4 Populationsverwaltung

Um eine Moglichkeit zur Realisierung einer Populationsverwaltung mit meh-
reren Populationen aufzuzeigen, wird hier eine Erweiterung des Systems, auf-
bauend auf den bisherigen Vorstellungen, beschrieben. Die hier beschriebene
Populationsverwaltung 148t zu, daf§ die einzelnen Populationen verschieden
kodiert werden. Dazu wird auch eine Kodierungsverwaltung eingefiihrt. Die
anderen Teile des Systems werden hier nur kurz oder gar nicht beschrieben.

Das Programmsystem besteht aus drei Hauptkomponenten:
e Populationsverwaltung
e Kodierungsverwaltung

e Operatoren

1. Populationsverwaltung:
Die Populationsverwaltung speichert einzelne Populationen. Sie stellt
Funktionen zum Erzeugen und Loschen von Populationen zur Ver-
fiigung, zudem innovative Konzepte zum Mischen mehrerer Populatio-
nen als auch zum Migrieren einzelner Individuen von einer Population
in eine andere.

Die einzelnen Populationen verwalten ihre Individuen und stellen Funk-
tionen zum Einfiigen und Loschen eines Individuums, zum Finden des
besten bzw. schlechtesten Individuums, zum Bewerten der ganzen Po-
pulation, usw. zur Verfiigung. Auflerdem nimmt die Population die
De-/Kodierung der einzelnen Individuen vor, da sie die Kodierungs-
art speichert.

Die einzelnen Populationen speichern einen Verweis auf die Kodierungs-
art. Hierdurch konnen zwei Populationen dieselbe Kodierungsart ver-
wenden. Der eigentliche De-/Kodierungsvorgang wird aber von der Ko-
dierungsverwaltung vorgenommen.

Ein Individuum selbst besteht aus einem Chromosom, d.h. den ko-
dierten Atomen, und dem zuletzt berechneten Fitnewert. Es weif3, zu

99

welcher Population es gehort und kann daher seine Dekodierung veran-
lassen, um Operatoren Zugriff auf seine dekodierten Atome zu ermogli-
chen. Hierdurch kann es auch die Berechnung seiner Fitnef§ veranlassen.

. Kodierungsverwaltung:

Die Kodierungsverwaltung ist eine Bibliothek von Kodierungen und
De- bzw. Kodierungsfunktionen. Sie enthilt die Problemstruktur und
stellt Funktionen zur Verfiigung, die eine Kodierungsstruktur in die
Problemstruktur iiberfiihrt und umgekehrt. Sie erméglicht den Zugriff
auf zusétzliche Atome (die nicht in der Problemstruktur auftauchen).
Sie ermoglicht das Erzeugen und Loéschen neuer Kodierungen.

Eine Kodierung beschreibt ggf. die zusétzlichen Atome und die Art der
Kodierung der einzelnen Atome. Auflerdem wird eine Sortierung der
kodierten Atome festgelegt. Sie stellt Funktionen zum Zugriff auf die
Atome zur Verfiigung.

. Operatoren:

Der Hauptoperator des Systems bestimmt den Ablauf der Berechnun-
gen auf den einzelnen Populationen. Von diesem Operator werden neue
Populationen erzeugt und an die einzelnen konkreten evolutionéren
Verfahren {ibergeben. Es existiert eine Bibliothek von Standardverfah-
ren, genannt opl, op2,

Somit wird einem Operator eine Population als Parameter zugewiesen,
dieser fiihrt dann eine gewisse Anzahl von Schritten seines Verfahren
auf dieser Population aus und liefert nach Beendigung ein Ergebnis,
z.B. die Population, zuriick. Der Hauptoperator kann dann mit dem
Inhalt der Population weiterarbeiten, z.B. Individuen an eine andere
Population senden. Da jede Population eine andere Kodierung verwen-
den kann, ist dieser Transfer nur in Form der Problemstruktur moglich.
Die Population selbst muff dann die Uberfiihrung in die eigene Kodie-
rung veranlassen.

Jeder Operator kann primitivere Unteroperatoren (SubOps) verwenden,
die ebenfalls in der Bibliothek verwaltet werden.

Ein besonderer Operator ist der Fitneoperator. Seine einzige Funkti-
on ist die Berechnung der Fitnef} eines Individuums, die alleine durch
die Problemparameter bestimmt wird. Daher wire die Zuordnung des
FitneBoperators zur Kodierungsverwaltung moglich, zumal sonst kein
Operator auf die Problemstruktur zugreifen soll.

100

Zugriffe
Funktionsaufrufe

Verweise

Abbildung 5.1: Aufbau der Populationsverwaltung

101

Kodierungsverwaltung

‘ Problemstruktur

% Kodierung

% Kodierung

Kapitel 6

Prototyp

Um zu sehen wie sich die ersten Vorgaben fiir das endgiiltige System in der
Praxis realisieren lassen, wurde beschlossen einen Prototypen zu erstellen.
Dabei sollte ein Eindruck davon gewonnen werden, welche Ideen gut um-
gesetzt werden konnen und welche nicht. Zusétzlich bestand die Hoffnung,
dabei Ideen fiir das endgiiltige System zu gewinnen. SchlieBlich sollten die
Mitglieder der Projektgruppe dadurch konkrete Erfahrungen in ML sammeln.

Der Prototyp soll nur dazu dienen, die Ideen daran auszuprobieren. Es wird
kein Teil davon direkt in das endgiiltige System {ibernommen.

In diesem Abschnitt soll ein Uberblick iiber die wichtigsten Eigenschaften
des Prototyps und seinen Aufbau gegeben werden. Zuerst werden die Vor-
gaben geschildert, die fiir den Prototyp festgelegt wurden. Danach folgt die
Beschreibung der konkreten Realisierung.

6.1 Vorgaben

Da der Prototyp nur einen kleineren Aufwand darstellen sollte, wurden hier
gegeniiber dem endgiiltigen System einige Einschriankungen getroffen. Auch
waren vor Entwurf des Prototyps zu einigen wichtigen Punkten, wie der
Kodierungsstruktur, noch keine Entscheidungen gefallen. In diesen Punkten
lehnt sich die Realisierung des Prototyps an den Entwurf von EAGLE an.
Auch sollte der Prototyp keine speziellen Funktionen zur Eingabe besitzen,
sondern sich aus einzelnen ML-Dateien zusammensetzen, die die Eingaben
enthalten. Um einen anderen Ablauf zu erhalten, miissen daher die entspre-
chenden ML—-Dateien gedndert werden. Insgesamt wurden fiir den Prototyp

102

folgende Entscheidungen getroffen:

Atome sind ein Vereinigungstyp von ganzen Zahlen, Bits und reellen
Zahlen.

Die Kodierungsstruktur ist eine Liste fester Linge von Atomen.

Die Problemstruktur ist ebenfalls eine Liste fester Linge von Ato-
men.

Kodierung: es existieren elementare Kodierungsfunktionen (Atom
nach Liste von Atomen). Mit Hilfe dieser Funktionen wird die Kodie-
rungsfunktion definiert. Mindestanforderung sind bindre Kodierungen
fiir natiirliche und reelle Zahlen mit einer angegebenen Genauigkeit,
sowie die Identitdt. Die elementaren Kodierungen bzw. Dekodierun-
gen sollen eindeutig und vollstdndig sein. Bei der Kodierung koénnen
zuséitzliche Atome angegeben werden.

Ein Individuum ist eine Instanz der Kodierungsstruktur (eine ko-
dierte Instanz der Problemstruktur und zusétzlichen Atome) (bzw. ein
Genotyp).

Die Population ist eine Menge von Individuen. Es existiert nur eine
Population. Es gibt daher keine Populationsverwaltung und nur eine
Problem- und Kodierungsstruktur.

Die Operatoren werden als ML—Funktionen geschrieben und in eige-
nen Dateien abgelegt, die mit use in das System eingebunden werden.
Auf jeden Fall sollen ein Standard GA, eine Standard ES sowie ein
Threshold-Algorithmus realisiert werden.

Die Eingabe wird mit ML-Dateien realisiert, die in das System einge-
bunden werden.

— Operatorendatei:
Diese enthilt eine ML-Funktion main (pop — pop), die den
Hauptoperator darstellt.

— Problemdatei:
Diese Datei enthilt die Problemstruktur PS (atom string) und
den Fitnefoperator phenofit (ind — real).

— Kodierungsdatei:
Hier stehen die Kodierung und die zusétzlichen Atome.

103

— Initdatei:
Diese enthélt eine Funktion (initpop (pop — pop)), die eine
leere Population initialisiert und evtl. den Anfangswert des Zu-
fallszahlengenerator setzt.

e Die Ausgabe soll in eine Log-Datei geschrieben werden. Dorthin kon-
nen auch wihrend der Entwicklung Debug—-Ausgaben geschrieben wer-
den. Es sollen dorthin ganze Populationen und evtl. auch Individu-
en, einzelne Atome, Strings, Zahlen etc. geschrieben werden koénnen.
In diese Log-Datei wird am Ende die Population geschrieben, die der
Hauptoperator als Ergebnis liefert. Auf diese Population kann spéter
vielleicht ein anderes Verfahren dann aufsetzen.

6.2 Struktur

Fiir die Realisierung des Prototyps wurde dieser in einzelne Module aufge-
teilt. Die Beziehung der Module untereinander zeigt die folgende Abbildung.
Diese Aufteilung mit festen Schnittstellen zwischen den Modulen war auch
notig, um die Programmierung auf die verschiedenen Mitglieder der Projekt-
gruppe aufteilen zu kénnen.

I
Grundlagen, Zufallszahlengenerator ! Log-Funktionen
] E]]
Problemstruktur Population Operatoren Steuerung
FitneRoperator Individuum 4) Verfahren (main) 8)
,,,,,,,,,,,,,,
I
Bibliothek !
3) 7) |
F--—p - - - - - ————— =
I
I .
: Kodierung 5) | Initialisieren 9)
| Dekodierung | |[F-------------- B]
2 | Verschiedenes: |
I Generationszaehler |
| Log-Funktionen | 6)
I
; etc. |
I

Abbildung 6.1: Struktur des Prototyps

Die einzelnen Teile wurden als jeweils eine ML-Struktur erstellt, die alle
Funktionen und Datentypen des entsprechenden Moduls enthélt. Die Schnitt-
stellen zwischen den Strukturen wurden durch ML-Signaturen realisiert, de-
nen dann die Strukturen entsprechen miissen. Wenn ein Modul von mehr

104

als einem anderen Modul verwendet wird, kann es vorkommen, dafl zu einer
Struktur auch mehr als eine Signatur existiert. Diese Struktur mufl dann bei-
den Signaturen entsprechen. Im folgenden werden die Schnittstellen bzw. die
dazugehorenden Module kurz beschrieben.

1. Das Modul ,,Grundlagen® stellt Funktionen und Datentypen bereit, die
von allen anderen Modulen verwendet werden konnen. Die Schnittstel-
len zu den anderen Modulen sind immer gleich.

Der Datentyp atom fiir die Atome der Kodierungs- und Problemstruk-
tur ist als Vereinigungstyp von ganzen Zahlen, Bits und reellen Zahlen
definiert. Fiir diese Typen gibt es hier jeweils Umwandlungsfunktionen,
die diesen aus einem Atom auslesen oder aus diesem ein Atom erstellen
(z.B. atom2int und int2atom).

Der Zufallszahlengenerator befindet sich ebenfalls in diesem Modul. Es
gibt dazu eine Funktion randomseed, mit der der Zufallszahlengenera-
tor initialisiert wird und die Funktion random mit der die néchste Zahl
der Zufallszahlenfolge ausgelesen wird.

Auch die Konstante fiir den Stream, der mit der Log—Datei verbunden
ist, (Log) und die Funktionen mit denen einfachere Typen in die Log—
Datei geschrieben werden konnen (z.B. writeatom und writestring)
sind hier fiir alle anderen Module sichtbar.

2. Zur Definition der Kodierungs- und Dekodierungsfunktion werden zwei
Funktionen bereitgestellt, die einzelne Atome kodieren und dekodieren.
Es sollten hier die Kodierungsart nocoding fiir keine Kodierung und
die Kodierungsarten codintbit bzw. codrealbit fiir eine Kodierung
von ganzen bzw. reellen Zahlen in Bitstrings unterstiitzt werden. Dies
geschieht mit den Funktionen codeatom und decodeatom, die ein Atom
mit einer angegebenen Kodierung kodieren bzw. dekodieren. Auf diese
Funktionen bauen die Funktionen des Kodierungsmoduls auf.

3. Das Modul ,,Kodierung/Fitne* enthilt die Kodierungsfunktionen und
die Fitneflfunktion fitness. Es definiert einen Datentyp genotype, der
der Kodierungsstruktur entspricht und aus einer Liste fester Linge von
Atomen besteht. Die Atome der Problemstruktur und die Strategiea-
tome sind in dieser Struktur kodiert gespeichert. Mit den Funktionen
getrepatom, setrepatom, getstratatom und setstratatom wird auf
diese Atome zugegriffen. Dabei werden sie entsprechend kodiert bzw.
dekodiert.

4. Die Funktionen, auf denen die Operatoren aufbauen, werden vom Mo-

105

dul ,,Population/Individuen bereitgestellt. So werden hier die Daten-
typen fiir Populationen (pop) und Individuen (ind) definiert. Eine Po-
pulation besteht dabei aus einer Liste von Individuen. Ein Individuum
ist eine Instanz der Kodierungsstruktur, also ebenfalls eine Liste von
Atomen mit fester Linge. Dazu gibt es hier Funktionen zum Zugriff
auf einzelne Individuen einer Population (z.B. getind und setind)
und Funktionen, die Informationen iiber die Population bzw. Indivi-
duen liefern (z.B. getbestind, getavgfitness, etc.). Alle Funktionen,
die von den Operatoren verwendet werden um die Population und die
Individuen zu verdndern, sind hier definiert, auch wenn manche nur
direkte Aufrufe von Funktionen des Kodierungsmoduls sind.

. Zusétzlich zu den Funktionen aus 4. kénnen vom Initialisierungsmodul
aus noch Funktionen verwendet werden, mit denen Atome der Problem-
struktur gelesen und geschrieben werden (getrepatom, setrepatom).
Zusitzlich konnen von hier aus auch die Strategieatome gesetzt werden.

. Das Hauptprogramm kann auf alle Funktionen des Moduls
,Population/Individuen® zugreifen, die auch von den beiden anderen

Modulen ,Operatoren* und , Initialisierung® verwendet werden. (siehe
4. und 5.).

. In der Operatorenbibliothek befinden sich die Hauptoperatoren fiir
einen Threshold Algorithmus, einen genetischen Algorithmus und ei-
ne Evolutionsstrategie. Auflerdem gibt es hier die Suboperatoren, die
bei der Realisierung von eigenen Hauptoperatoren verwendet werden
konnen.

. Vom Hauptprogramm aus ist vom Modul ,,Operatoren® nur die Funkti-
on main sichtbar. Diese wendet den Hauptoperator auf eine Population
an und gibt die Population, die dabei entsteht, als Ergebnis zuriick.

. Das Initialisierungsmodul stellt die Funktion initpop fiir das Haupt-
programm zur Verfiigung. Diese Funktion initialisiert die Population,
bevor der Hauptoperator darauf angewendet wird. Im einfachsten Fall
wird einfach eine bestimmte Anzahl zuféllig erzeugter Individuen in die
Population eingefiigt.

106

6.3 Realisierung

6.3.1 Grundlagen

Das Modul ,,Grundlagen® stellt Funktionen und Datentypen bereit, die von
allen anderen Modulen verwendet werden. Es besteht hauptséchlich aus der
Definition eines Datentyps fiir die Atome und einem Zufallszahlengenerators.

6.3.1.1 Atome

Der Datentyp atomtype definiert die Konstanten intatom, bitatom und
realatom, die den Typ eines Atoms angeben. Jedes Atom enthilt eine Kom-
ponente diesen Typs, die angibt, um was fiir ein Atom es sich handelt. Der
Datentyp ist folgendermaflen realisiert:

datatype atomtype = intatom | bitatom | realatom

Atome stellen einen Vereinigungstyp der ML-Typen int, bool und real
dar. Dieser ist im Prototyp als kartesisches Produkt dieser Typen definiert.
Zusétzlich enthélt er eine Komponente vom Typ atomtype, in der der Typ
des Atoms gespeichert wird. Sie gibt an, welches Element des kartesischen
Produkts fiir den Wert des Atoms relevant ist.

type atom = (atomtype * int * bool * real)

Weiterhin gibt es fiir jeden der Typen int, bit und real eine Funktion,
mit der ein Atom in einen Wert dieses Typs umgerechnet werden kann. Dies
ist natiirlich nur moglich, wenn es sich um ein Atom mit dem entsprechen-
den Atomtyp handelt (s. o.). Andernfalls wird eine Exception WrongType
ausgelost. Ebenso gibt es eine Funktion, mit der ein Atom aus einem Wert
dieses Typs erstellt werden kann. Bei diesen Umwandlungen wird bei den
Atomen jeweils nur das Element des kartesischen Produkts gesetzt bzw. aus-
gelesen, das dem Atomtyp entspricht. Die folgenden ML—Zeilen zeigen diese
Funktionen fiir den Typ int:

fun atom2int ((intatom, x, _, _)) = X
| atom2int (_) = raise WrongType
fun int2atom (x) = (intatom, x, false, 0.0)

107

6.3.1.2 Zufallszahlengenerator

Der Zufallszahlengenerator berechnet eine Folge mit der Berechnungsvor-
schrift R, .1 = (a*x R, +c) mod m. Dabei bestimmen die Konstanten a, ¢ und
m die Eigenschaften der Zufallszahlenfolge. Im Prototyp wurden a = 125,
¢ =0 und m = 2796203 verwendet. Die zuletzt berechnete Zahl der Zufalls-
folge wird im Prototyp in einer globalen Variablen gespeichert. Diese wird mit
100001 initialisiert. Falls nicht ein anderer Anfangswert gesetzt wird, beginnt
also die Zufallszahlenfolge mit diesem Wert. In ML ist dies folgendermafien
realisiert:

val x = ref 100001

Um den Zufallszahlengenerator zu initialisieren, kann der Anfangswert der
Folge mit der Funktion randseed auf einen bestimmten Wert gesetzt werden.
Dabei wird der Wert der globalen Variable auf diesen Wert gesetzt, falls es
sich um eine reelle Zahl zwischen 0 und 1 handelt.

fun randseed (seed) =
if seed < 0.0 orelse seed > 1.0
then raise 0OutOfScope
else (x := (floor)(seed * real(m)))

Das folgende Beispiel zeigt die Funktion rand, die erst den néchsten Wert
der Zufallszahlenfolge nach der oben beschriebenen Formel berechnet und
danach diesen Wert, in den Bereich zwischen 0 und 1 skaliert, als reelle Zahl
zuriickgibt.

fun rand () =
((x :=(a* !'x +c) mod m);
(real(!'x) / real(m)))

Mit dieser Funktion wird auf die Zahlen der Folge zugegriffen. Zusétzlich
gibt es noch eine Funktion randombound, die diese Zahl in einen beliebigen
Bereich skaliert.

6.3.2 Log-Datei

Das Modul ,,Log-Datei* enthilt die zum Zugriff auf die Log—Datei nétigen
Funktionen und Konstanten. In diese wird die Ausgabe des Prototyps ge-
schrieben. Dazu stellt das Modul eine Konstante 1log vom Typ outstream
bereit, die beim Starten des Programms mit der Log—Datei verbunden wird.

val log = open_out(Files.LogFileName)

108

Da es sich dabei um eine Variable vom Typ outstream handelt, konnen al-
le ML-Ausgabefunktionen zur Ausgabe in die Log—Datei verwendet werden.
Zusitzlich stehen in diesem Modul Funktionen (wie writeatom), mit denen
die grundlegenden Datentypen (z. B. Atome) in einen Stream geschrieben
werden konnen. Sie sind daher nicht nur auf die Log—Datei beschrankt, son-
dern kénnen auch fiir andere Dateien verwendet werden. Hier wird als Bei-
spiel die Funktion zum Schreiben eines Atoms gezeigt.

fun writeatom (out, atom) =
(if (Basics.getatomtype(atom) = Basics.intatom) then
writestring(out, makestring(Basics.atom2int(atom)))
else
(if (Basics.getatomtype(atom) = Basics.bitatom) then
(if (Basics.atom2bit(atom) = true) then
writestring(out, "1")
else
writestring(out, "0"))
else
(if (Basics.getatomtype(atom) = Basics.realatom) then
writestring(out, makestring(Basics.atom2real(atom)))
else
raise Basics.WrongType))

)

Die Funktionen in diesem Modul dienen als Grundlage fiir die Funktionen
writeindcoded, writeinddecoded, writepopcoded und writepopdecoded,
die sich im Modul Population/Individuen befinden und dazu dienen, ganze
Individuen und Populationen in die Log—Datei zu schreiben.

6.3.3 Kodierungsfunktionen und Fitnef

Die Kodierung/Dekodierung von Individuen wurde in einem Programmteil
mit der Fitneffunktion auf Phenotypen zusammengefaf3t. Dabei wurde auf
die logische Trennung unabhéngiger Teile geachtet:

e Festlegung des Problems durch Definition des Phenotyps und der Fit-
nefifunktion auf Phenotypen.

e Festlegung des Genotyps durch Angabe der Kodierungsart fiir jeden
Problemparameter, der Art der zusitzlichen (Strategie-) Parameter
und deren Kodierung, sowie die Angabe einer Sortierung fiir das ganze
Genom.

109

e Funktionen, die diese Informationen benutzen um konkrete Individuen
zu de-/kodieren und die Fitnef eines kodierten Individuums berechnen.

Durch diese Unterteilung muf3 z.B. bei Verwendung einer anderen Kodie-
rungsstruktur nur an einer Stelle eine Anderung vorgenommen werden, alle
anderen Teile bleiben unveréndert. Insbesondere miissen die Kodierungsfunk-
tionen nicht gedndert werden. (AuBerdem gibt es keine Beschrinkung der
Komplexitét der einzelnen Teile.)

Im einzelnen besteht dieser Programmteil somit aus folgenden Elementen:

e Problembeschreibung (Problem.sml)
e Kodierungsbeschreibung (Codstruct.sml)

e Kodierungsfunktionen (Coding.sml)

6.3.3.1 Problembeschreibung

In der Problembeschreibung wird das Problem definiert, d.h. neben der Pro-
blemstruktur ist auch die Fitnefunktion hier zu finden.

Konkret enthélt die Datei eine Liste reptypelist von Atomtypen (Beispiel:
[realatom, intatom, bitatom]) und eine Funktion phenofit, die bei Ein-
gabe einer Liste dieses Typs einen Real-Wert liefert.

6.3.3.2 Kodierungsbeschreibung

Die Kodierungsbeschreibung enthélt alle Informationen zur Kodierung der
Problemstruktur in die Kodierungsstruktur (und deren Dekodierung). Kon-
kret sind dies:

e codtab Eine Liste, die jedem Element der Problemstruktur eine Ko-
dierungsart und eine Kodierungsgenauigkeit zuordnet.

Beispiel: [(codintbit,4), (codrealbit,3), (nocoding,1),
(codintbit,3)]

e strattypelist Diese Liste von Atomtypen legt die Art, Anzahl und
Reihenfolge der zusétzlichen Parameter fest, die ein Verfahren ggf.
benétigt. (Diese Parameter werden oft , Strategie-Parameter* genannt.)

110

Beispiel: [realatom, intatom, bitatom]

e strattab Mit dieser Liste wird jedem Strategie-Atom eine Kodierungs-
art und eine Kodierungsgenauigkeit zugewiesen. (Selbes Format wie
codtab.)

e sorttab In dieser Liste wird verzeichnet, an welche Position ein Pa-
rameter des kodierten Individuums riicken soll. Dabei muf3 beachtet
werden, dafl die Strategie-Atome vor der Sortierung an die Problema-
tomliste angehidngt werden. Somit mufl diese Tabelle eine Permutation
iiber die ersten length Zahlen sein, wobei length die Gesamtlénge
eines kodierten Individuums ist.

Beispiel: [2,4,7,1,9,3,5,8,6]

6.3.3.3 Kodierungsfunktionen

Kodierungsfunktionen kodieren die Individuen vom Phenotyp in den Geno-
typ bzw. dekodieren sie vom Genotyp in den Phenotyp.

Erwdhnenswert ist, dal beim Auswerten der Struktur Coding schon einige im
weiteren Verlauf benotigte Konstanten und Listen aus der ,Eingabe® erzeugt
werden, die die beiden anderen Dateien darstellen. So wird z.B. die Tabelle
zum Umkehren der Sortierung des Genotyps (desorttab) aus der Tabelle
sorttab erzeugt, die in der Kodierungsbeschreibung festgelegt wurde. Es
muf} beachtet werden, dafl dies nur zur Vereinfachung so geldst ist — man
hétte auch das Bereitstellen verlangen kénnen.

Funktionen des Kodierungsteils Es sollen nun beispielhaft die Funktio-
nen des Kodierungsteils betrachtet werden, die von anderen Programmteilen
benutzt werden.

e Bevor die Verfahren mit Individuen arbeiten konnen, miissen sie diese
erst erhalten. Hierzu existiert ein ,leeres” Individuum namens
getcodind, das als Muster benutzt werden kann. Es wird beim Er-
zeugen der Struktur Coding berechnet und ist konstant im Ablauf des
Programmes.

val getcodind =
sort (makecodelist (reptypelist@strattypelist,
codtab@strattab))

111

e Um ein Atom der Problemstruktur zu setzen, mufl der Genotyp erst
desortiert werden, d.h. die urspriingliche Reihenfolge der Atome wird
wiederhergestellt. Diese Liste wird an die Funktion changeatomgt iiber-
geben, zusammen mit der Liste der Kodierungen, dem neu einzusetzen-
den Atom und der gewiinschten Stelle. Die verénderte Liste wird wieder
sortiert und zuriickgeliefert.

fun setrepatom (gt,at,n) =
sort (changeatomgt (desort(gt),codtab,at,n))

e Die Anderung von Strategieatomen erfolgt im wesentlichen analog zur
Bearbeitung von Problematomen, jedoch muf} zuerst die Liste der Pro-
blematome, die im unsortierten Indiviuum am Anfang stehen, extra-
hiert werden (mit der Funktion headn). Daran wird dann die verénder-
te Liste der Strategieatome angehéngt, wobei der Anfang dieser Liste
durch die Funktion stratstart ermittelt wird.

fun setstratatom (gt,at,n) =
let val gtdes = desort gt
in sort (headn(gtdes,lengthphenocode)
Qchangeatomgt (stratstart gtdes,strattab,at,n))
end

e Um die Fitnef} eines Genotyps zu ermitteln, mufy dieser erst dekodiert
und dann an die Fitnef}-Funktion fiir Phenotypen iibergeben werden.
Die Funktion phenofit wird in der Problembeschreibung definiert.

fun fitness (gt) = phenofit (decode(gt))

e Um den Wert von Problem- oder Strategie-Parametern zu ermitteln,
mufl der Genotyp zuerst desortiert werden. Danach wird anhand der
Kodierungstabelle die Position des gesuchten Parameters ermittelt und
die dort beginnende Atomliste (bzw. das dort befindliche Atom) deko-
diert.

fun getrepatom (gt, n) = getra (desort(gt), n, codtab)

e Analog zur Funktion getrepatom ermittelt diese Funktion den Wert
eines Strategie-Parameters. Allerdings wird hier nur die Liste der
Strategie-Atome betrachtet.

fun getstratatom (gt, n) =
getra(stratstart(desort(gt)), n, strattab)

Hilfsfunktionen Die folgenden Funktionen sind Beispiele fiir Hilfsfunktio-
nen, die auflerhalb des Programmteils (genauer: der Struktur Coding) nicht
sichtbar sind.

112

e Umwandlung einer ganzen Zahl in eine Liste von Bit-Atomen. Das
,Least Significant Bit“ steht an erster Stelle. Man beachte, dafi bei
Verwendung eines Bits jeder Wert ungleich Null in true kodiert wird.
Dies ist besonders bei Uberschreitung des kodierbaren Bereichs bedeut-
sam.

fun int2atomlist (0, 1)

| int2atomlist (_, 1)

| int2atomlist (i, p)
if p <= 0 then raise coderror

else Basics.bit2atom (1 = i mod 2)

int2atomlist (i div 2, p - 1)

[Basics.bit2atom (false)]
[Basics.bit2atom (true)]

e Mit codeatom wird jeweils ein Atom kodiert, wobei die Eintrige der
Kodierungstabelle benutzt werden. Relle Werte werden zuerst in ganze
Zahlen umgerechnet und dann in Bits gewandelt.

fun codeatom ((nocoding, 1), a) = [al

| codeatom ((nocoding, _), _) = raise coderror

| codeatom ((codintbit, p), a) =

if p <= 0 then raise coderror
else int2atomlist (Basics.atom2int (a), p)

| codeatom ((codrealbit, p), a) =

if p <= 0 then raise coderror

else int2atomlist (floor(Basics.atom2real(a) *

real (powerof2(p))), p)

e insertat setzt ein Atom an die angegebene Position einer Liste, wo-
bei die Liste entsprechend erweitert wird, wenn sie nicht lang genug ist.
Diese Atome werden (hoffentlich) spiter durch die eigentlich gewiinsch-
ten ersetzt.

fun insertat (atom, 1, nil)
| insertat (atom, n, nil)
if n < 1 then raise coderror
else atom::insertat(atom,n-1,nil)
| insertat (atom, 1, hd::tl) = atom::tl
| insertat (atom, n, hd::tl) =
hd::insertat(atom,n-1,tl)

[atom]

113

6.3.4 Populationsverwaltung
6.3.4.1 Hauptideen

Die Populationsverwaltung ist im Prototyp eher als Individuenverwaltung
anzusehen, da sie nur eine Liste von Individuen verwaltet, und nicht, wie
fiir den Haupttyp vorgesehen, mehrere Populationen. Die Individuen sind in
einer Liste gespeichert:

Population = Individuum list
Ein Individuum ist eine Liste von Atomen :

Individuum = atom 1list

6.3.4.2 Andern von einzelnen Atomen

Die Anderung eines Atoms wird mit Standardfunktionen von SML verwirk-
licht:

e nthtail liefert den Rest einer Liste ab einer bestimmten Position,
e rev dreht die Reihenfolge einer Liste um,

e @ verkniipft 2 Listen zu einer.

setatom(L,p,a) = rev(nthtail(rev(L),p))@a@nthtail(L,p-1)

6.3.4.3 Bestes/schlechtestes Individuum

Die Funktionen, die ein bestes bzw. schlechtestes Individuum liefern, sind
sehr dhnlich. Deshalb betrachten wir hier nur die Funktion getbestind, die
ein bestes Individuum einer Population zuriickgibt.

Die Funktion nimmt die Population als Liste von Individuen, wie definiert.
Dann wird das letzte Individuum genommen, und als zeitweilig Bestes ange-
sehen. Die Liste wird nach vorne durchlaufen, und die jeweilige Fitnefy des
gerade betrachteten Individuums wird mit dem aktuell besten verglichen. Ist
das betrachtete besser, merkt man sich dieses, und lauft weiter. Ist die Liste
zu Ende, wird das gespeicherte Individuum zuriickgegeben.

114

Wird eine leere Liste als Parameter iibergeben, so gibt die Funktion auch
eine leere Liste zuriick.

fun getbestind (1)
let
fun calc(nil)
| calc(i::nil)=i
| calc(i::r) =
let
val ib = calc(r)
in
if Coding.fitness(i) >= Coding.fitness(ib)
then i else ib end
in
calc(l)
end

(]

Diese Funktion erhilt eine Population und gibt ein bestes Individuum zuriick.

6.3.4.4 Erzeugung eines neuen Individuums

Ein neues Individuum zu erzeugen heifit hier nicht, nur eine Liste von ,lee-
ren“ Atomen bereitzustellen, sondern diese auch mit zufélligen Werten zu
fiilllen. Es mufl dabei einzeln beachtet werden, um was fiir einen Atomtyp es
sich handelt. Die Liste wird als leere Atomtyp-Liste von der Kodierung geholt
und die einzelnen Atome entsprechend Threr Art mit zufilligen Werten belegt.

fun newind(p) =
let val i = Coding.getcodind
fun help(i,0) =i
| help(1l,n) =
if Basics.getatomtype(getatom(l,n)) = realatom
then setatom(help(l,n-1),n,Basics.real2atom(random()))
else if Basics.getatomtype(getatom(l,n)) = intatom
then setatom(help(l,n-1),n,Basics.int2atom(floor(
randombound (0.0,100.0))))

115

else setatom(help(l,n-1),n,if random() > 0.5
then Basics.bit2atom(true)
else Basics.bit2atom(false))

in
(pOhelp(i,Coding.length)::nil,length(p)+1)
end

6.3.4.5 Loschen eines Individuums

Ein Individuum wird gelscht, indem es aus der Liste geloscht wird. Das zu
l6schende Individuum wird dabei als Index der Liste iibergeben:
deleteind(L,i) = rev(nthtail(rev(l),length(1l)-(n+1)))
Onthtail(1,n+1)

6.3.5 Operatoren

Der hier beschriebene Teil des Prototyps umfaf3t die Verfahren und Operato-
ren, d.h. einen Systemteil, der spéter auch vom Benutzer gedndert oder erwei-
tert werden soll. Der Schnittstelle dieses Teils zum {ibrigen System kommt
daher besondere Bedeutung zu. Fiir den Prototyp wurde ein Genetischer
Algorithmus, eine Evolutionsstrategie sowie ein Threshold-Algorithmus im-
plementiert.

6.3.5.1 Aufbau

Die Verfahren und die Operatoren sind in einzelnen Dateien abgelegt. Das
Verfahren ladt die Operatoren aus den Dateien.

(* load sub-operators x)

use "Operators/OnePointCrossover.sml";
use "Operators/Mutation.sml";

use "Operators/PropSelect.sml";

use "Operators/SimpleTermCriterion.sml";

Alle gleichartigen Operatoren (Crossover, Mutation, Abbruchkriterium, ...)
haben die gleichen Namen, nur die Namen der Dateien, in denen sie abgelegt

116

sind, unterscheiden sich. Andere Operatoren lassen sich so durch einfaches
Andern der Namen der einzubindenden Dateien laden.

Die Dateinamen stehen hier (wie auch alle anderen Parameter) als Konstan-
ten direkt im Programmtext.

Der Prototyp fiihrt das Verfahren durch Aufruf von main() mit einer zufillig
gewihlten Startpopulation aus. Analog zu den Operatoren lassen sich andere
Verfahren durch Anderen des Dateinamens im Prototyp laden. Als Beispiel
fiir ein Verfahren ist hier der Genetische Algorithmus angegeben, der die
Operatoren termCriterion() (bricht hier das Verfahren nach 50 Generatio-
nen ab), crossover () (fithrt einen Crossover auf der gesamten Population
aus), mutate() und select() (gibt eine durch proportionale Selektion ent-
standene neue Population zuriick) lddt (s.o.).
fun main(mpop)=
let
val pc=0.6
val pm=0.001
val mu=getsize (mpop)
val lambda=mu
fun main_r (mpop)=
if termCriterion(mpop)
then mpop
else
(
writepopdecoded(Logfunct.log,mpop) ;
Logfunct.newline (Logfunct.log) ;
incgencount () ;
main_r(select (mutate(crossover (mpop,pc,
lambda) ,pm) ,mu)
)
in
main_r (mpop)
end;

Fiir die drei Verfahren wurden mehrere Mutations—, Rekombinations— und
Selektionsoperatoren implementiert. Beispielhaft wird hier der Mutations-
operator fiir den Genetischen Algorithmus vorgestellt (importiert aus
Operators/Mutation.sml).
fun mutate (mpop,pm)=
let
fun mutate_r (mpop,pm,0)=mpop

117

|mutate_r (mpop,pm,num)=
mutate_r(setind (mpop,num,
mutate_ind(getind (mpop,num) ,pm)),
pm,num-1)
in
mutate_r (mpop,pm,getsize (mpop))
end;

Die Funktion mutate : pop — pop mutiert alle Individuen der iibergebenen
Population. mutate_r() ist gegeniiber mutate() um einen Index erweitert,
der jeweils das zu mutierende Individuum bezeichnet. Analog ruft die Funk-
tion mutate_ind (), die ein einzelnes Individuum mutiert, mutate_ind_r ()
auf, die den Index des jeweils zu mutierenden Atoms mitfiihrt.

fun mutate_ind(mind,pm)=

let
fun mutate_ind_r(mind,pm,0)=mind
|mutate_ind_r(mind,pm,pos)=
mutate_ind_r(if random()<pm
then setatom(mind,pos,bit2atom(not(
atom2bit (getatom(mind,pos)))))
else mind,
pm,pos-1)
in
mutate_ind_r(mind,pm,indlength)
end;

6.3.6 Initialisierung

Dem Initialisierungsoperator initpop wird vom Hauptoperator eine leere Po-
pulation iibergeben, die er mit einer bestimmten Anzahl von Individuen fiillt.
Dadurch kann die Gréfle der Population bestimmt werden, auf die der Haupt-
operator angewendet wird. Diese werden im Prototyp noch zufillig erzeugt,
konnten aber auch z. B. aus einer Datei eingelesen werden, um auf einen
fritheren Ablauf aufzusetzen. Die Anzahl der Individuen, die hier eingefiigt
werden, stehen in der Konstanten initialpopsize.

val initialpopsize = 10

Die Funktion initpop ruft dann die lokale Hilfsfunktion addind mit dieser
Konstanten auf. Diese Funktion hingt die angegebene Zahl von Individuen

118

an eine iibergebene Population an. Der folgende Programmausschnitt zeigt
Realisierungen dieser beiden Funktionen.
fun addind (pop, 0) = pop
| addind (pop, n) =
(let
val (respop, _) = InitFunct.newind(addind(pop, n-1))
in
respop
end

fun initpop (pop) = addind(pop, initialpopsize)

6.3.7 Hauptprogramm

Das Hauptprogramm besteht zuerst aus einem Teil, in dem die einzelnen Mo-
dule zusammengebunden werden. Diese werden in der Reihenfolge eingebun-
den, in der die Module aufeinander aufbauen. Zuerst wird das Grundlagenmo-
dul eingebunden, dann die Funktionen zur Ausgabe, das Kodierungsmodul,
die Definition von Individuen und Population, den Initialisierungsoperator
und schlieflich der Hauptoperator. Der folgende (gekiirzte) Ausschnitt aus
dem Programmtext zeigt diesen Vorgang.

use '"Basics.sml";

use "Logfunct.sml";

use "Coding.sml";

use "Population_set.sml";
use Files.InitOpFileName;
use Files.MainOpFileName;

Der Rest des Hauptprogramms besteht dann im wesentlichen nur noch dar-
aus, eine leere Population zu erstellen und auf diese zuerst den Initialisie-
rungsoperator und dann den Hauptoperator anzuwenden. Die dadurch ge-
wonnene Population und deren bestes Individuum werden dann noch als
Ergebnis in die Log-Datei des Programms geschrieben. Die Realisierung in
ML zeigt der folgende Programmteil. Die Definition der lokalen Hilfsfunktion
writeresult wurde dabei ausgelassen. Diese dient nur dazu die Population
und ihr bestes Individuum in die Log—Datei zu schreiben.

let
val mainpop = PopIndFunct.makeemptypop ()
val initialpop = InitPop.initpop(mainpop)

119

in
writeresult(Logfunct.log, MainOp.main(initialpop))
end;

6.4 Fazit und Ausblicke

In diesem Abschnitt sind die Eindriicke und Verbesserungsvorschlige gesam-
melt, die sich bei der Entwicklung des Prototyps ergeben haben.

Fiir die Koordination des endgiiltigen Systems sollte folgendes beachten wer-
den. Die Trennung der einzelnen Module mit Hilfe der Signaturen hat zwar
relativ gut funktioniert, es wire jedoch sinnvoll, die Module schon friih kom-
pilieren zu kénnen. Dazu sollten die Module in der Reihenfolge erstellt wer-
den, in der sie verwendet werden. Zumindest konnten in den einzelnen Mo-
dulen die wichtigsten der von auflen bendtigten Funktionen zuerst erstellt
werden (anfangs mit eingeschrinkter Funktionalitit). Ebenso sollte bei der
Unterteilung der Aufgaben die zeitliche Reihenfolge beriicksichtigt werden,
in der die Module benétigt werden und bei einer umfangreicheren Version
ein (Zeit-)plan fiir den Ablauf erstellt werden.

Bei der Populationsverwaltung wurde gewiinscht, dafl mehr Informationen
von den Funktionen zuriickgegeben werden sollen (Bsp.: bestes Indidviduum
mit Index zuriickgeben). Ferner miissen Funktionen bereitgestellt werden,
um ganze Populationen bzw. Teile davon zu kopieren, 16schen usw. Die Feh-
lerbehandlung fehlt und muf} ebenfalls bereitgestellt werden.

Da die Funktionen, die von den Operatoren verwendet werden, auch als
Grundlage von selbstdefinierten Operatoren dienen sollen, ist dieser Teil ent-
sprechend sorgfiltig zu entwerfen. Bei der Realisierung des Operatormoduls
fiir das endgiiltige System sollte folgendes beachtet werden:

Wichtig ist die Spezifikation der Schnittstellen. So miissen die Funktionen,
die das System den Verfahren zur Verfiigung stellt, sehr sorgfiltig spezifi-
ziert werden. Unklarheiten iiber die genaue Funktionalitéit traten hiufig erst
beim Programmieren auf, so z.B. ob die Numerierung der Individuen in ei-
ner Population bei Funktionen wie getind() oder setind() bei 0 oder 1
beginnt.

Ein weiteres Problem sind die globalen Objekte. Zum Teil wurden Ansétze
direkt aus dem Entwurf fiir EAGLE iibernommen, hier z.B. der globale Ge-
nerationszéihler. In einer funktionalen Sprache 1483t sich dieser schlecht im-

120

plementieren, man sollte in diesem und &hnlichen Fillen iiberdenken, ob der
Ansatz noch sinnvoll ist.

Im Prototyp sind die Typen der Funktionsresultate teilweise noch unterschied-
lich. Es muf} eine Moglichkeit geben, eindeutig Individuen in einer Populati-
on zu bezeichnen. Im Prototyp wurde das durch Indizes realisiert. Funktio-
nen, die eine Population durch Einfiigen oder Entfernen eines Individuums
verindern, erwarten diesen Index als Argument. Alle Funktionen, die ein Indi-
viduum aus einer Population aussuchen, sollten nicht ein Individuum direkt,
sondern dessen Index zuriickliefern, um z.B. das Individuum anschlieffend
aus der Population entfernen zu konnen. Das Individuum selbst erhdlt man
mit der Funktion getind.

Wiinschenswert ist auch die Vermeidung von Indizes in Funktionsaufrufen.
Man sollte Funktionen wie appendind : pop x ind — pop, getfirstind()
und remfirstind () vorsehen, um das Mitfiihren eines Index fiir die Indivi-
duen in vielen Funktionen zu vermeiden.

Parameter der Operatoren und Namen der Dateien mit den zu verwenden-
den Operatoren sind hier als Konstanten im Programmtext abgelegt. Im
endgiiltigen System sollten diese Werte von auflien an das Verfahren iiberge-
ben werden, so daf} sie verdndert werden kénnen, ohne das Programm &ndern
Zu miissen.

Fiir die Operatoren sollten Strukturen und Signaturen definiert werden, um
einerseits Hilfsfunktionen vor dem System zu verbergen und andererseits eine
definierte Schnittstelle zu den Operatoren zu haben.

Das Hauptprogramm schliellich besteht im Prototyp eigentlich nur aus ei-
nem Zusammenbinden der einzelnen Module. Die Einstellung der verwende-
ten Verfahren und Probleme geschieht hier in den einzelnen Modulen. Daher
war schon beim Testen das Einstellen eines neuen Verfahrens recht miihsam,
da meist in 3 Modulen Anderungen vorgenommen werden muBten. In spite-
ren Versionen wird eine Steuerung nétig, mit der ein bestimmtes Problem,
Kodierung und Operatoren ausgewéhlt und zu einem Experiment zusam-
mengefaflt werden kénnen.

121

Literaturverzeichnis

[AJJ+04]

[AJK*95]

[Bar90]

[Due93]

[GDYO]

[HPS92]
[TW74]

[TW95]

Frank Amos, Karsten Jung, Kurt Jaeger, Bernd Kawetzki, Wil-
fried Kuhn, Oliver Pertler, Ralf Reifling, and Markus Schaal. Zwi-
schenbericht der Projektgruppe Genetische Algorithmen. Techni-
cal report, Universitiat Stuttgart, Fakultdt Informatik, Institut fiir
Informatik, Abteilung Formale Konzepte, 1994.

Frank Amos, Karsten Jung, Bernd Kawetzki, Wilfried Kuhn, Oli-
ver Pertler, Ralf Reifling, and Markus Schaal. Endbericht der Pro-
jektgruppe Genetische Algorithmen. Technical Report FK95/1,
Universitit Stuttgart, Fakultdat Informatik, Institut fiir Informa-
tik, Abteilung Formale Konzepte, 1995.

Hendrink Barendregt. Functional Programming and Lambda Cal-
culus, pages 321-363. Elsvier Science Publishers B. V., 1990.

G. Dueck. New optimization heuristics, the great deluge algo-
rithm and the record-to-record travel. Journal of Computational
Physics, 104:86-92, 1993.

T. Scheuer G. Dueck. Threshold accepting — a general purpose
optimization algorithm appearing superior to simulated annealing.
Fournal of Computanional Physics, 90:161-175, 1990.

Th. Béck H.-P. Schwefel. Kiinstliche evolution — eine intelligente
problemlosungsstrategie 7 | pages 1-20, 1992.

Kathleen Jensen and Niklaus Wirth. PASCAL : user manual and
report. Springer, 1974.

Karsten Jung and Nicole Weicker. Funktionale Spezifikation des
Software-Tools EAGLE. Technical Report FK 2/95, Universitét
Stuttgart, Fakultdt Informatik, Institut fiir Informatik, Abteilung
Formale Konzepte, 1995.

122

[Koh95]
[K0z92]
[Mil78]
[Sch81]

[TB93]

[var90]

[var94|

[VC94]

[Wei95]

[Wirg2]

Michael Kohler. Analyse naturanaloger optimierungsverfahren.
Master’s thesis, Universitit Stuttgart, Fakultit Informatik, 1995.

J. Koza. Genetic Programming: on the programming of computers
by means of natural selection. MIT Press, 1992.

Robin Milner. A theory of type polymorphism in programming.
Journal of Computer Science, pages 348-375, 1978.

Hans-Paul Schwefel. Numerical optimization of computer models.
John Wiley & Sons, 1981.

H.-P. Schwefel Th. Béck. An overview of evolutionary algorithms
for parameter optimization. Fvolutionary Computation, The Mas-
sachusetts Institute of Technologie, pages 1-23, 1993.

various, editor. Parallel Problem Solving from Nature, 1st Work-
shop — PPSN I. Springer Verlag, 1990.

various, editor. Parallel Problem Solving from Nature - PPSN,
Lectured Notes in Computer Science 866. Springer Verlag, 1994.

A. Schwill (Hrsg.) V. Claus. Schiilerdiden ,Die Informatik“. Bi-
bliographisches Institut, Mannheim, 1994.

N. Weicker. Naturanaloge optimierungsverfahren. Technical re-
port, Ifl Stuttgart, Formale Konzepte, Projektgruppe Genetische
Algorithmen, 1995.

Niklaus Wirth. Programming in MODULA-2. Springer, 1982.

123

Anhang A

Glossar

A.1 Evolutionires

Atom Ein Atom ist Teil einer Kodierungsstruktur oder einer Problemstruk-
tur und legt einen Basistyp fest.

Crossover ist ein spezieller Rekombinationsoperator bei GA’s.

Dekodierungsfunktion Ist eine Funktion, die eine Belegung der Kodie-
rungsstruktur in eine Belegung der Problemstruktur abbildet.

Evolutionsstrategie Die Evolutionsstategien sind von I. Rechenberg ent-
wickelte naturanaloge Verfahren. Sie dienen zur Optimierung konkreter
technischer Probleme. Typischerweise verwenden sie eine Population
moglicher Losungen, die nach dem Vorbild der biologischen Evolution
mutiert und rekombiniert werden. Sie treten dann in Konkurrenz zu-
einander, wobei die ,fittesten“ Losungen ausgewéhlt werden.

Die Bewertung der Fitnef§ einer Losung findet durch eine Fitnefs- Funktion
statt, die die Problemparameter zur Berechnung heranzieht. Daneben
kann ein Element der Population aber auch noch Strategie- Parameter
enthalten, die den weiteren Verlauf der Suche beeinflussen, daneben
aber ebenfalls optimiert werden.

Extremum Losung, die einen ausgezeichneten Wert hat, entweder in einer
Umgebung (lokal) oder im gesamten Losungsraum (global).

Fitness s. Qualitét.

Genetischer Algorithmus GAs sind Optimierungsverfahren, die Vorgange

124

in der Biologie nachbilden. Sie arbeiten auf einer Population von In-
dividuen, die als Binérstring kodiert dargestellt werden. Die Individu-
en werden mutiert und gekreuzt, wobei man hofft, daf sich die guten
Eigenschaften weitervererben. Die Bewertung der Individuen erfolgt
durch eine Fitnef-Funktion, die auch die Auswahl der Individuen be-
einflu3t.

Genotyp ist die konkrete Belegung einer Kodierungsstruktur

Great-Deluge Algorithmus (Sintflut-Algorithmus) Dieses Optimierungs-

verfahren betrachtet einen Punkt des Losungsraums und wéhlt einen
neuen Punkt aus dessen Umgebung. Die Qualitit des neuen Punkts
wird berechnet und der neue Punkt iibernommen, so seine Qualitét
iiber einem , Pegel“ liegt. Wird der Punkt iibernommen, dann wird der
Pegel erhoht.
Anschaulich kann man sich den Ablauf dieses Verfahrens als Uberflu-
tung einer Landschaft vorstellen. Wéhrend ,,das Wasser steigt®, ver-
sucht die Losung sich auf den héchsten Punkt, also das Maximum, zu
retten.

Individuum Element einer Population. Kann neben Problemparametern
auch Strategieparameter enthalten.

Kodierung 1. Die Kodierung besteht aus Kodierungsstruktur und Ko-
dierungsfunktion.

2. Darstellung eines Wertes (verfahrensabhéngig).

Kodierungsfunktion Ist eine Abbildung von einer Problemstruktur auf
eine Kodierungsstruktur.

Kodierungsstruktur Die Kodierungsstruktur besteht aus einer Anzahl von
Atomen. Eine Kodierungsstruktur ist genau dann mit einem Problem
vertraglich, wenn eine Kodierungsfunktion existiert, die die Problem-
struktur auf die Kodierungsstruktur abbildet.

Losung Parameterbelegung, die ein Problem 16st. (Keine Aussage iiber die
Qualitit.)

Losungsraum Menge der darstellbaren (nicht notwendig moglichen) Losun-
gen.

Maximum Extremum mit dem grofiten Wert.
Minimum Extremum mit dem kleinsten Wert.

Mutation ist ein Operator, der ein Individuum verdndert.

125

naturanaloge Verfahren Optimierungsverfahren, die Vorginge in der Na-
tur (physikalischer oder biologischer Art) zum Vorbild haben.

Operator (auch genetischer Operator) ist eine Funktion, die aus einem oder
mehreren Individuen neue Individuen produziert, z.B. Mutation, Cros-
sover, Selektion, Fitness.

Optimierungsverfahren Verfahren, die eine optimale Parameterbelegung
fiir eine Funktion suchen.

Phéanotyp ist die konkrete Belegung einer Problemstruktur.
Population Menge von Individuen.

Problem Zu optimierende/,16sende® Aufgabe, mathematisch formuliert. Be-
steht aus Problemstruktur und Fitneffunktion.

Problemparameter Parameter, der in die Berechnung der Qualitéit eines
Individuums eingeht.

Problemraum s. Lésungsraum.

Problemstruktur ist eine Struktur, die ein Individuum von der Problem-
seite beschreibt. Dekodierung der Kodierungsstruktur.

Record-to-Record Travel Optimierungsverfahren, Variante des Great-Deluge
Algorithmus: Statt eines Pegels wird der bisherige Bestwert fiir Verglei-
che herangezogen. Die Fitnef$ eines neuen Punkts im Losungsraum wird
als neuer Bestwert iibernommen, wenn sie besser oder nur geringfiigig
schlechter als der bisherige Bestwert ist.

Rekombination ist ein Operator, der aus zwei oder mehreren Individuen
ein oder mehr neue Individuen produziert.

Selektion ist ein Operator, der aus einer Anzahl von Individuen (Populati-
on) eine neue Anzahl von Individuen (Population) auswéhlt.

Simulated Annealing Naturanaloges Optimierungsverfahren, das die phy-
sikalischen Vorgénge in einer abkiihlenden Schmelze nachvollzieht.
In der lokalen Umgebung eines Punktes im Suchraums wird ein neuer
Kandidat bestimmt. Dieser wird iibernommen, so seine Fitnefl besser
als die des Ausgangspunkts ist. Ist der neue Punkt schlechter, so wird
er mit einer von der ,, Temperatur® abhéngigen Wahrscheinlichkeit den-
noch {ibernommen. Dies soll verhindern, daf3 die Suche in einem lokalen
Optimum stecken bleibt.

126

Strategieparameter sind die Elemente der Kodierungsstruktur, die das
Verhalten der Operatoren steuern. Diese werden eventuell zunéchst als
zusdtzliche Parameter dekodiert.

Threshold Algorithmus Dieses Optimierungsverfahren ist eine Vereinfa-
chung des Simulated Annealing. Hierbei wird ein Punkt des Losungs-
raums betrachtet und ein weiterer Punkt aus dessen Umgebung be-
stimmt. Die Qualitit dieser Punkte wird verglichen und der neue Punkt
ersetzt den alten, so seine Qualitdt besser ist, oder nur um einen Schwell-
wert, schlechter. Dieser Schwellwert wird im Laufe der Berechnung ver-
kleinert.

Im Vergleich zum Simulated Annealing entfallen die Wahrscheinlich-
keitsberechnungen, wodurch der Ablauf beschleunigt wird.

Verfahrensparameter sind die Parameter, die jeweils fiir ein ganzes Fxpe-
riment in der Laufinitialisierung festgelegt werden.

A.2 Allgemeines

Ausdruck Ein Wort aus der Sprache, die von der in Kapitel 3.3.4.1 defi-
nierten Grammatik erzeugt wird.

DeJong Entwickelte die DeJong’schen Funktionen, die zur Klassifizierung
von Ldsungsverfahren verwendet werden.

eva Abkiirzung fiir die Projektgruppe Evolutionére Algorithmen.

Grunddatentyp Die vom System vordefinierten Datentypen. Wie z. B.
Boolean-, Integer- und Real-Datentypen.

ICGA International Conference on Genetic Algorithms
Konferenz, die alle zwei Jahre stattfindet.

Instanz Belegung einer allgemeinen Darstellung mit konkreten Werten.

kooperatives Multitasking Verfahren zur Realisation von Parallelverar-
beitung. Hierbei muf} ein Thread die Kontrolle an das System explizit
zuriickgeben, so dafl ein anderer Thread fortgesetzt werden kann. Ge-
gensatz zu prdaemptivem Multitasking.

NP-vollstindig/hart Probleme der Klasse NP koénnen von einem nicht-
deterministischen Automaten in polynomieller Zeit gelost werden. Ein
Problem ist NP-hart, wenn jedes andere Problem aus NP in dieses

127

Problem mit polynomiellem Aufwand transformiert werden kann. Liegt
dieses Problem zudem in NP, so bezeichnet man es als NP-vollstindig.
Somit liegen die schwierigsten Probleme in diesen Klassen.

Optimierungsverfahren Verfahren, die méglichst optimale Parameter fiir
eine Funktion suchen.

PPSN Parallel Problem Solving by Nature
Konferenz, die alle zwei Jahre stattfindet.

priemtives Multitasking Verfahren zur Realisation von Parallelverarbei-
tung. Hierbei wird ein Thread vom System gestoppt und die Kontrolle
einem anderen iibergeben. Gegensatz zu kooperativem Multitasking.

Typpolymorphismus Typpolymorphismus ist eine Art der Typzuweisung,
bei der einem Ausdruck bei verschiedenem Auftreten verschiedene Ty-
pen zugewiesen werden koénnen.

128

Index

Abbruchbedingung, 64
Anfangskonfigurationen, 41

Cliquenproblem, 54

Eltern, 67

Evolution, 68
Evolutionsstrategien, 67
Experiment, 21
Extremum, 56

Fahrplan, 49
Hill-Climbing, 56

Individuen, 67
Individuum, 14
Interpolationsprozeduren, 59

Kodierung, 13, 70
Kodierungsstruktur, 13, 14
Konfigurationen, 41
Kreuzung, 67, 69

LEA, 19
Mutation, 68

Nachkommen, 67
naturanalogen Verfahren, 62

Operator, 19

Population, 67
Problem, 11, 12
Problemstruktur, 13

129

Rekombination, 67, 69
Rucksackproblem, 54

Strategieparameter, 69
Strategieparametern, 13
Stundenplan, 49

Typisierung, 31
Typkorrektheit, 33
Typpolymorphismus, 32

Zeitplan, 50

