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Kapitel 1

Einleitung

1.1 Die Projektgruppe

Das Studium der Informatik vermittelt dem Studenten zwar einen gro�en Teil
des n�otigen Fachwissens, jedoch stellt das Berufsleben noch weitere Anfor-
derungen an den Informatiker. Teamf�ahigkeit und Erfahrung spielen gerade

bei der Mitarbeit an gro�en Software{Projekten eine wichtige Rolle. Hier
verfolgt die Idee der Projektgruppe folgende Ausbildungsziele:

� Arbeiten im Team

� Analyse von Problemen, Strukturierung von L�osungen und gemeinsa-

mer Entwurf geeigneter Systeme

� Selbstst�andige Erarbeitung von L�osungsvorschl�agen und deren Vorstel-

lung und Verteidigung in einer Gruppe

� �Ubernahme von Verantwortung f�ur die L�osung von Teilaufgaben und

die Erstellung von Modulen

� Mitwirkung an einer umfassenden Dokumentation

� Erstellen eines Software{Produktes, das ein Einzelner innerhalb des

vorgegebenen Zeitraumes unm�oglich bew�altigen kann

� Projekt{Planung und Kosten/Nutzen{Analyse

� Einsatz von Werkzeugen

� Pers�onlichkeitsbildung (�Ubernahme von Verantwortung, Selbstvertrau-
en, Verl�a�lichkeit, R�ucksichtnahme, Durchsetzungsf�ahigkeit usw.)
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An der Projektgruppe nehmen in der Regel acht bis zw�olf Studierende des

Hauptstudiums teil. Sie erarbeiten im Laufe eines Jahres ein Software{Pro-

dukt, welches einem Zeitaufwand von mehreren Personenjahren entspricht.

Hierbei sollen s�amtliche Phasen eines Software{Lifecycles | von der Planung

bis zur Wartung | durchlaufen werden, was in anderen Lehrveranstaltungen

nicht �ublich ist. Bei Software{ und Fachpraktika wird zumeist eine gegebene,

genau festgelegte Aufgabenstellung in ein Programm umgesetzt.

Eine Projektgruppe vereinigt die Lehrveranstaltungsformen
"
Hauptseminar\

(2 SWS),
"
Fachpraktikum\ (4 SWS) und

"
Studienarbeit\ (10 SWS) in sich.

Demzufolge ist eine Projektgruppe mit 16 SWS einzustufen.

Der Ablauf einer Projektgruppe folgt meist folgendem Schema: Seminar{,

Planungs{, Entwurfs{, Implementierungs{, Integrations{, Experimentier{

und Schlu�phase. Diese Phasen werden im folgenden genauer erl�autert.

Seminarphase: Die Themenstellung wird gr�undlich analysiert. Dazu werden

von den Mitgliedern Originalpublikationen durchgearbeitet und die Ergebnis-
se vorgetragen. Ergebnisse dieser Phase sind viel Wissen, je eine Vortragsaus-

arbeitung und eine zusammenfassende Darstellung der Literaturauswertung.

Planungsphase: Die Projektgruppe analysiert den Problembereich, stellt Ein-
satzm�oglichkeiten und Anwendungen zusammen, erarbeitet einen Anforde-

rungskatalog und diskutiert L�osungsm�oglichkeiten f�ur diese Fragestellungen.
Hierbei werden die in der Literatur bekannten L�osungsvorschl�age und eige-

ne Ideen gegeneinander abgewogen. Insbesondere wird fr�uhzeitig diskutiert,
welche Hard{ und Software f�ur die jeweiligen L�osungen erforderlich ist, wel-
che sonstigen Kosten entstehen, wie hoch der Zeitaufwand sein wird, usw.

Wichtig ist eine fr�uhe Spezi�zierung der Eigenschaften des Systems (Ro-
bustheit, Antwortverhalten, Flexibilit�at, Schutzmechanismen, Erweiterbar-

keit, Verteiltheit, . . . ).
Inhaltliches Ergebnis ist eine m�oglichst eindeutige, ausschnittsweise sogar
formale Spezi�kation. F�ur jede ins Auge gefa�te Anwendung wird dar�uber

hinaus ein Szenario bzgl. des Einsatzes, der Nutzung, der Tests und der War-
tung skizziert.

Organisatorische Ergebnisse sind ein grober Zeitplan und die erste Aufteilung

von Aufgabengebieten. Hier setzt auch eine Spezialisierung der Gruppenmit-

glieder ein.

Entwurfsphase: Voraussetzung f�ur die Entwurfsphase ist, da� Begri�sbestim-

mungen, Anwendungen und Modelle weitgehend gekl�art sind. Nach Festle-

gung des grunds�atzlichen L�osungsverfahrens werden Teilprobleme und cha-
rakteristische Objekte herauskristallisiert, miteinander in Beziehung gesetzt,
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auf ihre Realisierbarkeit gepr�uft und grundlegende Datenstrukturen und

Kommunikationswege festgelegt. Dabei werden die Schnittstellen der Ein-

zelteile des Systems untereinander genau de�niert. Ergebnis ist ein Plan des

zu erstellenden (oder zu modi�zierenden) Systems. Stehen die einzelnen Auf-

gaben fest, werden sie auf die Mitglieder verteilt. Die Implementierungsspra-

che(n) sowie die erforderliche Hardware und die zu verwendenden Werkzeuge

werden festgelegt. Eine Liste von Beispielen, die das System sp�ater positiv

bew�altigen mu�, wird f�ur die Testphase erstellt.

In der Implementationsphase und Integrationsphase wird der Programmcode

erstellt, zusammengebunden (integriert) und getestet.

Die Experimentierphase schlie�t weitere Tests mit speziellen Anwendungen

ein.

Zur Schlu�phase z�ahlt in erster Linie der Abschlu� der Dokumentation, die
st�andig parallel zur Projektgruppenarbeit erstellt und auf den neuesten Stand

gebracht wird.

Das Konzept der Projektgruppe wird bereits seit Jahren an anderen Uni-

versit�aten wie z.B. in Oldenburg und Dortmund erprobt und durchgef�uhrt.
Dort sind Projektgruppen z.T. schon P
ichtveranstaltungen im Rahmen des
Informatikstudiums.

1.2 Die Projektgruppe Evolution�are Algorith-

men

1.2.1 Aufgabenstellung

Aufgabe dieser Projektgruppe
"
Evolution�are Algorithmen\ ist es, aufbauend

auf die Ergebnisse der Projektgruppe
"
Genetische Algorithmen\ [AJJ+94,

AJK+95] und des Technischen Berichts [JW95] ein System zur Bearbeitung
hartn�ackiger (NP{harter) Probleme mit Hilfe von Evolution�aren Algorith-

men wie z.B. Evolutionsstrategien und Genetischen Algorithmen zu erstellen.

Das generelle Vorgehen sollte sich dabei in die folgenden Punkte gliedern:

� Analyse des Problems

� Spezi�kation des Systems

� Realisierung und Implementierung

8



� Erstellung von Testbibliotheken

� Durchf�uhrung von Experimenten

� Auswertung und Restrukturierungsvorschl�age

� Dokumentation

Insgesamt soll das System einem Erstellungsaufwand von ca. drei Personen-

jahren entsprechen. Als Arbeitsmittel wurde Zugri� auf eine Workstation

gew�ahrt und ein Terminalraum mit Besprechungstisch zur 50%{igen Nut-

zung bereitgestellt.

1.2.2 Ziele

Das System soll folgende Konzepte enthalten:

1. Unterscheidung zwischen Problem{ und Kodierungsstruktur. Dadurch
wird eine einheitliche Darstellung des Problems erreicht und damit

von der Sichtweise der Algorithmen getrennt. Den �Ubergang zwischen
Problem{ und Kodierungsstruktur bilden die Kodierungs{ bzw die De-
kodierungsfunktionen.

2. Verwendung verschiedener Datentypen innerhalb einer Problem{ bzw.
Kodierungsstruktur.

3. M�oglichst freie Kombinierbarkeit von Verfahren und Operatoren, um
unter R�uckgri� auf vorhandene Operatoren neue Verfahren ausprobie-

ren zu k�onnen.

4. Austauschbarkeit von Individuen verschiedener Kodierungen zwischen

Verfahren, um hybride Verfahren m�oglich zu machen.

5. Abgestufte Einstiegsm�oglichkeiten f�ur den Benutzer.

6. Nebenl�au�ge Algorithmen sollen implementierbar sein.
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Teil I

Vorbereitung
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Kapitel 2

�Uberblick �uber EAGLE

In diesem Kapitel soll ein knapper �Uberblick �uber die Funktionalit�at des

Software{Systems EAGLE gegeben werden. Die funktionale Spezi�kation
dieses Systems (vgl. den technischen Bericht [JW95]) dient als Grundlage
der Arbeit der Projektgruppe Evolution�are Algorithmen.

Dieser �Uberblick baut auf den Endbericht der Projektgruppe Genetische Al-
gorithmen [AJK+95] auf, aus dem den Kapiteln 3 bis 6 eine umfassendere

Darstellung von EAGLE entnommen werden kann.

2.1 Aufgabe von EAGLE

H�aufig werden Probleme der folgenden Form betrachtet: es wird in einem
L�osungsraum ein Punkt gesucht, der bez�uglich einer Funktion einen minima-

len bzw. maximalen Funktionswert besitzt. Ist ein solches Problem
"
schwie-

rig\ (z.B. NP{hart) und dadurch nicht effizient mit mathematischen Me-
thoden zu l�osen, werden andere Herangehensweisen notwendig. Neben der

systematischen Suche (alles durchprobieren) und verschiedenen einfachen
heuristischen Verfahren (wie z.B. reine Zufallssuche) haben sich hier auch

sogenannte evolution�are Verfahren bew�ahrt, deren Arbeitsweise an die Evo-

lution in der Natur angelehnt ist. Diese Verfahren sind der Gegenstand des
Software{Entwurfs EAGLE.

In EAGLE lassen sich nahezu beliebige Probleme mittels der Struktur des
L�osungsraums und der zu optimierenden Funktion �uber diesem L�osungsraum

beschreiben. Zus�atzlich lassen sich nahezu beliebige evolution�are Verfahren,
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die mit einer Menge von L�osungen aus einem L�osungsraum arbeiten, einge-

ben, mit denen das Optimum gesucht werden kann. H�aufig ist es notwendig,

den L�osungsraum an das jeweilige Verfahren anzupassen. Dazu gibt es die

M�oglichkeit, diesen zu kodieren.

Die Aufgabe von EAGLE ist nun die Anwendung des eingegebenen Ver-

fahrens auf das eingegebene Problem. Zu Beginn einer solchen Simulation

k�onnen noch verschiedene Einstellungen am zu simulierenden Verfahren in

der Laufinitialisierung vorgenommen werden. Neben dem durch dieses Ver-

fahren gefundenen
"
besten\ Element des L�osungsraums sind als Ausgabe

auch noch weitere spezielle Bildschirmausgaben und gefilterte Ausgaben in

Dateien notwendig. Dadurch soll insbesondere erm�oglicht werden, da� die

Arbeitsweise des Verfahrens detailliert untersucht werden kann und verschie-

dene Verfahren miteinander verglichen werden k�onnen. Interaktiv kann dabei
auch in Simulationen eingegriffen werden, und das laufende Verfahren mo-
difiziert werden. Diese Funktionsweise von EAGLE wird auch schematisch in

Abbildung 2.1 dargestellt.

2.2 Problem

Ein zu untersuchendes Problem besteht aus einer Beschreibung des L�osungs-
raum und der sogenannten Fitne�funktion dar�uber.

Der L�osungsraum wird durch ein beliebig langes Tupel aus den verschiedenen
Datentypen

� Bit

� Integer (Intervall mit unterer und oberer Grenze)

� Real (Intervall mit unterer und oberer Grenze)

� Permutation mit Angabe der Gr�o�e

angegeben.

Die Fitne�funktion wird als spezieller Fitne�operator eingegeben. Sein Auf-
bau und seine Syntax entspricht im wesentlichen den Operatoren f�ur das

evolution�are Verfahren und ist in den Abschnitten 2.5 und 2.6 dargestellt.
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Eingaben Ausgaben

Losungsraum

Fitnesfunktion

evolutionares 

Verfahren

Laufinitialisierung

EAGLE

simuliert

Verfahren

gefundenes

Optimum

weitere Ausgaben

in Dateien und

auf dem

Bildschirm

interaktiver Eingriff

Abbildung 2.1: Funktionsweise von EAGLE

2.3 Kodierung und evolution�ares Verfahren

Damit ein Verfahren im L�osungsraum eines Problems nach einem optimalen

Element suchen kann, wird der L�osungsraum durch eine Kodierung an das
Verfahren angepa�t. Diese Kodierung wird verwirklicht durch eine Kodie-

rung jedes einzelnen Datentyps im Tupel der Problemstruktur, das Einf�ugen

von weiteren Strukturen, die im Verfahren als Strategieparametern genutzt

werden k�onnen, und eine Umsortierung. Dadurch ergibt sich die Kodierungs-
struktur. Auf ihr arbeitet das evolution�are Verfahren. Der Zusammenhang

zwischen Problem- und Kodierungsstruktur ist in Abbildung 2.2 dargestellt.

Zur bin�aren Kodierung einzelner Atome wird die Anzahl der Bits eingegeben,

durch welche sie kodiert werden sollen. D.h. das reelle oder ganzzahlige Inter-

vall wird durch �aquidistante St�utzstellen repr�asentiert, wobei sich die Anzahl

der St�utzstellen aus der Anzahl der verschiedenen Bitbelegungen berechnet.
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Kodierung

Fitnesfunktion

Verfahren

Problemstruktur

Kodierungsstruktur

Abbildung 2.2: Problemstruktur und Kodierungsstruktur
Schematische Darstellung der �Uberf�uhrung einer Problemstruktur in eine

Kodierungsstruktur, bei der ein reelles Atom in einen Bitstring kodiert wird,
zwei zus�atzliche Parameter (grau schra�ert) eingef�ugt und alle Atome um-

sortiert werden.

Dadurch entstehen keine ung�ultigen Belegungen im Bitstring, allerdings ist es

m�oglich, da� bei einem kleineren ganzzahligem Intervall die Anzahl der ver-
schiedenen Bitbelegungen gr�o�er ist als die Anzahl der m�oglichen St�utzstel-
len. Dadurch kann ein ganzzahliger Wert durch mehrere verschiedene bin�are

Strings dargestellt werden. Dies ist im Beispiel in Tabelle 2.1 dargestellt.

Die verschiedenen Kodierungsm�oglichkeiten der einzelnen Datentypen

k�onnen Tabelle 2.2 entnommen werden.

Die Kodierungsstruktur bestimmt das Aussehen eines Individuums, welches

in Evolution�aren Algorithmen ja eine m�ogliche L�osung im Suchraum dar-
stellt. D.h. jedes Individuum, das im evolution�aren Verfahren verwendet wird,

hat als Wert eine m�ogliche Wertebelegung der Kodierungsstruktur. Diese Be-

legung des Individuums wird w�ahrend der evolution�aren Suche vom Verfah-
ren z.B. durch Mutation oder Crossover jeweils ge�andert. Soll die Fitne� eines

Individuums bestimmt werden, werden zun�achst die entsprechenden Werte
der Problemstruktur aus den Werten der Kodierungsstruktur des Individu-

ums bestimmt und anschlie�end wird die Fitne� durch den Fitne�operator
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Werte 1 . . . 3

000 1

001 1

010 2

011 2

100 2

101 2

110 3

111 3

Werte 1 . . . 7

000 1

001 2

010 3

011 4

100 4

101 5

110 6

111 7

Werte 1 . . . 12

000 1

001 3

010 4

011 6

100 7

101 9

110 10

111 12

Werte 1 . . . 20

000 1

001 4

010 6

011 9

100 12

101 15

110 17

111 20

Tabelle 2.1: Beispiele zur bin�aren Kodierung

Datentyp Kodierung

Bit Bit (keine Kodierung)

Integer (keine Kodierung)

Bitstring (standardbin�ar kodiert durch Angabe der
Anzahl der Bits)Integer

Bitstring (Gray{bin�ar kodiert durch Angabe der
Anzahl der Bits)

Real (keine Kodierung)

Bitstring (standardbin�ar kodiert durch Angabe der

Anzahl der Bits)Real

Bitstring (Gray{bin�ar kodiert durch Angabe der

Anzahl der Bits)

Permutation (keine Kodierung)

String reeller Zahlen (Anzahl entspricht der Gr�o�e

der Permutation)

Permutation Bitstring (durch standardbin�are Kodierung des re-

ellen Zahlenstrings unter zus�atzlicher Angabe der
Bitanzahl)

Bitstring (dito mit Gray-bin�arer Kodierung)

Tabelle 2.2: �Ubersicht �uber die verschiedenen Kodierungsm�oglichkeiten
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Kodierungsstruktur Fitnes

Problem-

struktur

zusatzliche

Atome

Individuum

Fitnes-

operator

Operator

Abbildung 2.3: Schematische Darstellung des Individuums bestehend aus ei-
ner Kodierungsstruktur und einem Fitne�wert. Aus der Belegung der Kodie-

rungsstruktur k�onnen die Belegungen der Problemstruktur und der zus�atz-
lichen Parameter dekodiert werden. Der Fitne�operator berechnet aus der

Belegung der Problemstruktur den aktuellen Fitne�wert und der Operator
greift auf die Belegung der zus�atzlichen Atome zu.

berechnet, welcher ausschlie�lich auf den Werten der Problemstruktur ar-

beitet. Die zuletzt berechnete Fitne� wird immer zus�atzlich im Individuum

gespeichert. Das Zusammenspiel zwischen Individuum, Verfahren und Fit-
ne�funktion ist in Abbildung 2.3 schematisch dargestellt. Das evolution�are

Verfahren wird durch einen Operator, den sogenannten Hauptoperator, be-

stimmt. Dieser kann noch weitere Operatoren benutzen (siehe Abschnitt 2.4).
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2.4 Konzept der Operatoren

Alle Eingaben des Benutzers, die Berechnungsvorschriften enthalten, wer-

den in EAGLE als Operatoren eingegeben. Hierzu z�ahlen insbesondere die

Fitne�funktion als Fitne�operator und das evolution�are Verfahren als Haupt-

operator. Hierbei kann der Hauptoperator noch beliebige weitere Unterope-

ratoren verwenden und aufrufen. Dieses Operatorenkonzept ist beispielhaft

in Abbildung 2.4 verdeutlicht.

BEGIN

t

crossover1(oo)

t

mutate3(oo)

t

END

Crossover1

BEGIN

t

OPERATOR oo

END

BEGIN

t

OPERATOR oo

Mutate3

Hauptop

MAIN oo

t

END

approx(oo) END

BEGIN

t

Approx

PROCEDURE oo

Abbildung 2.4: Operatorenkonzept

Die Algorithmen der Operatoren werden mittels der Programmiersprache

LEA (siehe Abschnitt 2.6) eingegeben. Der allgemeine Aufbau der Operato-

ren ist in Abschnitt 2.5 erl�autert.

Durch das Operatorkonzept soll eine hohe Wiederverwertbarkeit der Ope-

ratoren auch in weiteren Verfahren gew�ahrleistet werden. Dabei ergibt sich

17



das Problem, da� bei unterschiedlichen Kodierungen der Teil der Individuen,

der manipuliert werden soll, sich an verschiedenen Stellen in der Kodierungs-

struktur befindet. Daher wurde eine M�oglichkeit eingef�uhrt, mit der beim

Aufruf eines Unteroperators die Sichtbarkeit der Kodierungsstruktur einge-

schr�ankt werden kann. Damit l�a�t sich ein Operator allgemein f�ur den betrof-

fenen Teil einer Kodierungsstruktur formulieren, w�ahrend beim Aufruf des

Operators die anderen Teile der Struktur einfach ausgeblendet werden, wo-

mit der Operator automatisch an der richtigen Stelle im Individuum arbeitet.

Diese Funktionsweise ist beispielhaft auch in Abbildung 2.5 dargestellt.

B B B B B B B B

B B B B B B B B

B B B B B B B B beliebigen Bitstring

Unteroperator fur

beliebigen Bitstring

Unteroperator fur
R R B B B B B

R R B B B B B

eingeschrankter Aufruf

R R B B B B B

uneingeschrankter Aufruf

Kodierungsstruktur (1. Beispiel)

Kodierungsstruktur (2. Beispiel)

Abbildung 2.5: Funktionsweise des eingeschr�ankten Operatoraufrufs
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2.5 Aufbau der Operatoren

Operatoren bestehen im wesentlichen aus drei Bestandteilen:

� der Kopfzeile des Operators | sie gibt den Typ des Operators (Fitne�-

operator, Hauptoperator, etc.), die Aufrufparamter einschlie�lich der

Art des Aufrufs (call{by{value oder call{by{reference) und den R�uck-

gabetyp an.

� den lokalen Deklarationen f�ur den Algorithmenteil | hier k�onnen Kon-

stanten, Variablen und Parameter deklariert werden. Parameter sind

Konstanten, deren Werte vor jeder Simulation in der Laufinitialisie-

rung eingegeben werden. Au�erdem wird hier angegeben, welche wei-

teren Unteroperatoren ben�otigt werden.

� dem Algorithmenteil | in ihm wird mittels der Sprache LEA die Be-

rechnungsvorschrift f�ur diesen Operator angegeben.

Als Datentypen f�ur die Variablen, die Aufrufparameter und den R�uckgabe-

typ stehen Bit, Integer, reelle Zahlen, Permutation, Individuum und (nur
bei Verfahrensoperatoren) Population zur Verf�ugung. Konstanten und Pa-

rameter k�onnen nur als Bit, Integer oder reelle Zahlen deklariert werden.
F�ur Variablen stehen laut [AJK+95] auch Felder (Arrays) der Datentypen
zur Verf�ugung. Hier wird allerdings aus Gr�unden der �Ubersichtlichkeit auf

Felder verzichtet.

2.6 Sprache LEA zur Eingabe der Operato-

ren

LEA (Language for Evolutionary Algorithms) wurde direkt als Eingabe-

sprache f�ur die Operatoren in EAGLE entwickelt. Sie lehnt sich stark an
Sprachen wie Pascal ([JW74]) oder Modula{2 ([Wir82]) an. In diesem Ab-

schnitt soll nur ein �au�erst knapper �Uberblick �uber LEA gegeben werden.
Eine wesentlich detailliertere Beschreibung befindet sich in Kapitel 6 von

[AJK+95]. Deshalb werden hier haupts�achlich die Unterschiede, die zwischen

[AJK+95] und [JW95] bestehen, vorgestellt. In dieser Kurzbeschreibung wird

z.B. die Trennung zwischen dem Fitne�operator und den Verfahrensopera-

toren ber�ucksichtigt. D.h. es gibt bestimmte Befehle, die nur in einem der

beiden Operatortypen verwendet werden d�urfen.

Es stehen folgende Sprachelemente als Anweisungen zur Verf�ugung:
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� Wertzuweisungen in der Form \<Variable> := <Ausdruck>"

� IF{THEN{ELSE{END{ bzw. IF{THEN{END{Verzweigung

� WHILE{Schleife

� FOR{Schleife

� FOREACH{Schleife mit der Syntax

\FOREACH <Variable> IN <Ausdruck> DO <Anweisungen> END",

wobei die Variable vom Typ Individuum und der Ausdruck vom Typ

Population ist { dann werden f�ur jedes Individuum in der Population

die Anweisungen ausgef�uhrt.

� RETURN{Anweisung zur R�uckgabe des gesuchten Werts { sie darf nur

am Ende eines Operators stehen.

� WRITE{Anweisung zur Ausgabe von Werten oder Text auf dem Bild-

schirm

� FILTER{Anweisungen zur Filterung von Daten in verschiedene Datei-

en | die Dateien werden den Filtern allerdings erst in der Laufinitia-
lisierung zugeordnet.

Die FOREACH{Schleife und die WRITE{ und FILTER{Anweisungen stehen

nicht in Fitne�operatoren zur Verf�ugung.

Daneben gibt es auch noch weitere spezielle evolution�are Anweisungen, die

zur Manipulation von Individuen, Populationen und Permutationen dienen.
Sie k�onnen den Tabellen 2.3 bis 2.8 entnommen werden. In diesen Tabellen

sind immer in der ersten H�alfte die Befehle angegeben, die in Ausdr�ucken
verwendet werden k�onnen und in der zweiten H�alfte die Anweisungen. In
Tabelle 2.9 sind noch weitere Funktionen aufgef�uhrt.

Neben diesen Standardbefehlen k�onnen auch die importierten Operatoren

aufgerufen werden. Falls hier Individuen als Argument �ubergeben werden,

kann bei diesen die Sichtbarkeit wie in Abschnitt 2.4 beschrieben einge-

schr�ankt werden. Hier wurde allerdings die Syntax im Vergleich zu [AJK+95]
vollst�andig ge�andert. Die Einschr�ankung wird jetzt allgemein f�ur alle Indivi-

duen, die in diesem Operator vorkommen, eingegeben, und es wird zudem auf

eine genaue Angabe der Datentypen im Individuum verzichtet. Die Syntax

lautet jetzt

Operator "{" Sichtbarkeit "}""(" Aufrufparameter ")":

Die Sichtbarkeit besteht dabei aus Zahlen zwischen 1 und der L�ange der Ko-

dierungsstruktur, welche durch "," f�ur Aufz�ahlungen bzw. "-" f�ur Bereichs-
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angaben getrennt werden. So sind z.B. mit {1,3-7} nur das erste Atom und

die Atome zwischen einschlie�lich dem dritten und dem siebten Atom im

aufgerufenen Operator sichtbar.

Funktion Beschreibung

replength() liefert die Anzahl der Atome in der

Problemstruktur

numberrepbit(pos) liefert die Anzahl der zusammenh�angenden Bits

in der Problemstruktur ab der Position pos

numberrepint(pos) dito mit Integern

numberrepreal(pos) dito mit reellen Datentypen

numberrepperm(pos) dito mit Permutationen

Tabelle 2.3: Funktionen zum Zugriff auf Informationen �uber Problemstruktur
in Fitne�operatoren

Zus�atzlich k�onnen in Verfahrensoperatoren auch LABEL gesetzt werden. Ihnen

wird vor jedem Experiment ihre Bedeutung zugeordnet. Sie dienen vor allem
als definierte Halte{ oder Abbruchpunkte.

2.7 Experiment

Ein Experiment bzw. eine Simulation wird durch die Eingabe der Problem-

struktur, der Fitne�funktion, der Kodierung, des evolution�aren Verfahren
und der Laufinitialisierung bestimmt.

In der Laufinitialisierung werden den offenen Parametern der Operatoren

Werte zugewiesen, die Filter k�onnen aktiviert werden, indem sie auf eine

Datei gelenkt werden, und die Label k�onnen als Halte{ oder Abbruchlabel

gesetzt werden. Zus�atzlich wird ein Random Seed f�ur den Zufallszahlengene-

rator eingegeben, und es ist m�oglich als neue Anfangspopulation eine schon
bestehende Population aus einem anderen Experiment zu w�ahlen.

Anschlie�end beginnt die Simulation des Verfahrens f�ur das eingegebene Pro-
blem. Es wird w�ahrend des Experiments laufend die derzeitige Generations-

nummer, die beste und die mittlere Fitne� der derzeitigen Population und die

Textausgaben aus den Operatoren angezeigt. Die gefilterten Daten werden
in den Dateien der Laufinitialisierung abgelegt. W�ahrend der Simulation hat
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der Benutzer jederzeit die M�oglichkeit, den Lauf f�ur Modifikationen der Lauf-

initialisierung anzuhalten, dann stoppt EAGLE beim Erreichen des n�achsten

aktiven Haltelabels, oder das Experiment zu beenden. Wird w�ahrend der

Simulation ein aktives Abbruchlabel erreicht, wird die Simulation ebenfalls

sofort beendet.
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Funktion Beschreibung

length() liefert die Anzahl der Atome in der

Kodierungsstruktur

numberbit(pos) liefert die Anzahl der zusammenh�angenden Bits

in der Kodierungsstruktur ab der Position pos

numberint(pos) dito mit Integern

numberreal(pos) dito mit reellen Datentypen

numberperm(pos) dito mit Permutationen

stratlength() liefert die Anzahl der zus�atzlichen Atome
(Strategieparameter)

numberstratbit(pos) liefert die Anzahl der zusammenh�angenden Bits
in den zus�atzlichen Atomen ab der Position pos

numberstratint(pos) dito mit Integern

numberstratreal(pos) dito mit reellen Datentypen

numberstratperm(pos) dito mit Permutationen

Tabelle 2.4: Funktionen zum Zugriff auf Informationen �uber Kodierungs-

struktur und die zus�atzlichen Atome
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Funktion Beschreibung

getbit(ind,pos) liefert das Atom an der Position pos im

Individuum ind aus der Sicht der Ko-

dierungsstruktur, falls dort ein Bit steht

getint(ind,pos) dito mit Integer

getreal(ind,pos) dito mit reellen Datentypen

getperm(ind,pos) dito mit Permutationen

getstratbit(ind,pos) liefert das Atom an der Position pos

im Individuum ind aus der Sicht der

zus�atzlichen Atome, falls dort ein Bit

steht

getstratint(ind,pos) dito mit Integer

getstratreal(ind,pos) dito mit reellen Datentypen

getstratperm(ind,pos) dito mit Permutationen

fitness(ind) liefert die zuletzt berechnete Fitne� des

Individuums ind

setbit(ind,pos,wert) setzt das Atom an der Position pos der

Kodierungsstruktur im Individuum ind

auf den Wert wert, falls dort ein Bit
steht

setint(ind,pos,wert) dito mit Integer

setreal(ind,pos,wert) dito mit reellen Datentypen

setperm(ind,pos,wert) dito mit Permutationen

setstratbit(ind,pos,wert) setzt das Atom an der Position pos der

zus�atzlichen Atome im Individuum ind

auf den Wert wert, falls dort ein Bit

steht

setstratint(ind,pos,wert) dito mit Integer

setstratreal(ind,pos,wert) dito mit reellen Datentypen

setstratperm(ind,pos,wert) dito mit Permutationen

evaluate(ind) berechnet die Fitne� des Individuums

ind mit dem Fitne�operator und spei-
chert sie beim Individuum

Tabelle 2.5: Funktionen f�ur Individuen in Verfahrensoperatoren
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Funktion Beschreibung

getrepbit(ind,pos) liefert das Atom an der Position pos im In-

dividuum ind aus der Sicht der Problem-

struktur, falls dort ein Bit steht

getrepint(ind,pos) dito mit Integer

getrepreal(ind,pos) dito mit reellen Datentypen

getrepperm(ind,pos) dito mit Permutationen

setrepbit(ind,pos,wert) setzt das Atom an der Position pos der

Problemstruktur im Individuum ind auf

den Wert wert, falls dort ein Bit steht

setrepint(ind,pos,wert) dito mit Integer

setrepreal(ind,pos,wert) dito mit reellen Datentypen

setrepperm(ind,pos,wert) dito mit Permutationen

Tabelle 2.6: Funktionen f�ur Individuen in Fitne�operatoren

Funktion Beschreibung

getpermvalue(perm,pos) liefert den Wert der Permutation perm

an der Stelle pos

setpermvalue(perm,pos,wert) setzt den Wert der Permutation perm

an der Stelle pos auf den Wert
wert, die anderen Werte werden dabei

verschoben

xchangeperm(perm,pos1,pos2) vertauscht die Werte der Permutation

perm an den Stellen pos1 und pos2

reverseperm(perm,pos1,pos2) spiegelt das Teilst�uck der Permutati-

on perm zwischen den Stellen pos1 und
pos2 einschlie�lich

Tabelle 2.7: Funktionen f�ur Permutationen
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Funktion Beschreibung

sizeofpop(pop) liefert Anzahl der Individuen in der Population

pop

getavgfitness(pop) liefert die durchschnittliche Fitne� der Indivi-

duen in der Population pop

getbestfitness(pop) liefert die Fitne� des derzeit besten Individu-

ums in der Population pop

getworstfitness(pop) liefert die Fitne� des derzeit schlechtesten In-

dividuums in der Population pop

getind(pop,nr) liefert das Individuum mit der Nummer nr in

der Population pop

getbest(pop) liefert das Individuum mit der besten Fitne�
in der Population pop

getworst(pop) liefert das Individuum mit der schlechtesten
Fitne� in der Population pop

clearpop(pop) l�oscht alle Individuen in der Population pop

mergepop(pop1,pop2) alle Individuen aus Population pop2 werden

zus�atzlich in die Population pop1 kopiert

insertind(pop,ind,nr) das Individuum ind wird in die Population pop

an der Position nr eingef�ugt, die weitere Nu-
merierung verschiebt sich hierbei

killinpop(pop,nr) in der Population pop wird das Individuummit
der Nummer nr gel�oscht, die weitere Numerie-

rung verschiebt sich hierbei

evaluate(pop) f�ur alle Individuen in der Population pop wird
die Fitne� neu berechnet

Tabelle 2.8: Funktionen f�ur Populationen in Verfahrensoperatoren
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Funktion Beschreibung

getrandomreal() liefert eine reelle Zufallszahl zwischen 0 und 1

getrandomint(ug,og) liefert eine ganzzahlige Zufallszahl zwischen ug

und og einschlie�lich

gen() liefert den Wert des globalen Generatio-
nenz�ahlers

incgen() erh�oht den globalen Generationenz�ahler um 1

write(out) schreibt out auf den Bildschirm, dabei kann

out sowohl ein beliebiger Ausdruck als auch ein
Textstring sein

Tabelle 2.9: Weitere Funktionen in Verfahrensoperatoren
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Kapitel 3

Seminarvortr�age

3.1 Algebraische Spezi�kation und

Typ{Polymorphismus

3.1.1 Einleitung

Eine erste Entscheidung war die Wahl der Programmiersprache ML f�ur die

Projektgruppe. Weil einer der Ausgangspunkte der Projektgruppe die for-
male Spezi�kation von EAGLE war, lag es nahe, auch eine funktionale Pro-
grammiersprache zu verwenden. Da ML zus�atzlich eine relativ kompakte

Schreibweise des Quelltextes unterst�utzt, besteht die Ho�nung, damit re-
lativ schnell Prototypen und erste eingeschr�ankte Versionen des Programms

erstellen zu k�onnen. So unterst�utzt ML z.B. bei der Deklaration von Funk-
tionen ein pattern matching der Parameter. Da ML polymorphe Typen ver-
wendet, k�onnen Funktionen und Datentypen so geschrieben werden, da� sie

auf m�oglichst viele verschiedene Typen anwendbar sind und gut wiederver-

wendet werden k�onnen. Als weiteren Vorteil, insbesonders gegen�uber vielen
anderen funktionalen Sprachen, besitzt ML, trotz der Typpolymorphie, eine

strenge Typpr�ufung, mit der Typfehler schon vor Programmstart entdeckt
werden k�onnen. Der Zusammenhang zwischen dieser Typpr�ufung und der

Typpolymorphie in ML soll in diesem Abschnitt erl�autert werden.
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3.1.2 Einf�uhrung in den Lambda{Kalk�ul

Zum Verst�andnis der nachfolgenden Abschnitte erfolgt hier eine kurze Ein-

f�uhrung in die Idee des funktionalen Programmierens und den Lambda{

Kalk�ul.

3.1.2.1 Funktionales Programmieren

Beim funktionalen Programmieren bestehen das Programm und die dazu-

geh�orenden Daten aus einem Ausdruck E. Eine Reduktionsmaschine wan-

delt diese Eingabe mittels der Ersetzungsregeln solange um, bis keine dieser

Regeln mehr anwendbar ist. Die Ersetzungsregeln haben die Form P ! P 0

und geben an, da� der Teilausdruck P aus E durch P 0 ersetzt werden soll.
Wenn in einem so gewonnenen Ausdruck E 0 kein Teilausdruck P mehr vor-

kommt, der auf der linken Seite einer Ersetzungsregel steht, nennt man ihn
die Normalform von E. Dieser Ausdruck kann nicht mehr weiter umgewandelt
werden. Er ist die Ausgabe zu dem funktionalen Programm E.

3.1.2.2 Lambda{Kalk�ul

Die Menge der � {Terme (�) baut auf den Mengen der Konstanten C =

fc; c0; c00; : : :g und Variablen V = fv; v0; v00; : : :g mittels folgender Regeln auf:

1. c 2 C ) c 2 �

2. x 2 V ) x 2 �

3. M;N 2 �) (MN) 2 � (M auf N anwenden)

4. M 2 �; x 2 V ) (�x:M) 2 � (Abstraktion)

Abk�urzungen: Zum Sparen von Klammern wird beim Anwenden einer Funk-
tion Rechtsassoziativit�at und bei der Abstraktion Linksassoziativit�at verwen-

det:

FM1M2 : : :Mn entspricht dann (: : : ((FM1)M2) : : :Mn) und

�x1 : : : xn:M entspricht �x1:(: : : (�xn:M) : : :).

Freie Variablen: Freie Variablen sind alle Variablen x, die nicht von einem ent-

sprechenden �x eingeschlossen werden. Die Variablen, die zu einem umschlie-

�enden �x geh�oren, werden durch diese Abstraktion gebunden und demnach
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als gebundene Variablen bezeichnet. Die Menge FV (M) der freien Variablen

von M kann man dann induktiv de�nieren als:

FV (x) = fxg;
FV (MN) = FV (M) [ FV (N);

FV (�x:M) = FV (M)� fxg:

Der Ausdruck x(�x:xy) enth�alt z.B. die freie Variable y und die Variable x

einmal als gebundene und einmal als freie Variable. Ein Lambda-Term M

hei�t geschlossen, wenn er keine freien Variablen enth�alt, d. h. FV (M) = ;.
Die Substitution M [x := N ] ersetzt die freien Vorkommen der Variable x in

dem Term M durch N . Die freien Vorkommen werden dabei alle simultan

ersetzt. Daher ist die Substitution auch nicht rekursiv. Gebundene Variablen
x werden nicht ersetzt.

xy(�x:xy)[x := N ] = Ny(�x:xy)

xy(�x:xy)[y := N ] = xN(�x:xN)

Mit Hilfe der Substitution kann man dann die Wirkungsweise des Lambda{
Kalk�uls de�nieren.

� (�x:M)N =M [x := N ] 8M;N 2 �

� Die Regeln, die angeben, wann zwei Term gleich sein sollen:
M =M , M = N ) N =M ,
M = N;N = L)M = L, M = N )MZ = NZ,

M = N ) ZM = ZN , M = N ) �x:M = �x:N:

Beim Anwenden der ersten Regel wird das Vorkommen eines entsprechenden
�x{Ausdrucks durch die rechte Seite der Regel ersetzt. Dies wird solange
gemacht, wie in der Formel noch �x{Ausdr�ucke auf andere Ausdr�ucke an-

gewendet werden. Wenn sich die Gleichheit zweier Ausdr�ucke mit Hilfe von
diesen Regeln herleiten l�a�t (M = N), dann hei�en sie �{convertible, und

man schreibt � ` M = N . Da sich die Bedeutung von zwei Ausdr�ucken M

und N nicht unterscheidet, wenn nur die gebundenen Variablen unterschied-
lich sind, schreibt man dann M � N . So ist z.B.: (�x:x)z � (�y:y)z.

Beispiel f�ur das Ersetzen von �x{Ausdr�ucken:

((�x:(�y:(x2 + y2)))4)3 (Abk: : �xy:(x2 + y2)4 3)

(�y:(42 + y2))3

42 + 32
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Der letzte Ausdruck wird hier nicht weiter ausgewertet. Er stellt die Normal-

form des ersten Ausdrucks dar. Erst wenn man noch zus�atzliche Ersetzungs-

regeln f�ur + und 2 einf�uhrt, bekommt man als Ergebnis dann auch 25 (siehe

[Bar90]).

3.1.3 Einfache Typisierung

In diesem Abschnitt erfolgt die kurze Darstellung einer M�oglichkeit, Terme

des Lambda{Kalk�uls mit Typen zu versehen.

Die Menge der Typen (Type) wird dazu induktiv de�niert durch:

� �0; �1; : : : 2 Type (Grundtypen),

� �; �; : : : 2 Type (Typvariablen),

� � 2 Type, � 2 Type ) (� ! �) 2 Type.

Eine Basis ist eine Menge von Typzuweisungen zu Termvariablen (z.B. B =

fx : �; : : :g, wobei der Variable x hier der Typ � zugewiesen wird). Das fol-
gende Axiom und die folgenden Regeln beschreiben induktiv, wann die Ty-
pisierung eines Ausdrucks M des Lambda{Kalk�uls mit einem Typ � (M : �)

aus einer Basis B herleitbar ist.

Axiom:

� B ` x : �, falls x : � 2 B

Regeln:

1.
B `M : � ! � B ` N : �

B `MN : �

2.
B [ fx : �g `M : �

B ` �x:M : � ! �

Das folgende Beispiel zeigt die Herleitung des Typs f�ur den Ausdruck �x:yx

mit der Basis B = fy : � ! �g:

B ` y : (� ! �))
B [ fx : �g ` y : (� ! �) B [ fx : �g ` x : �

B [ fx : �g ` (yx) : �

B ` �x:yx : (� ! �)
(2)

(1)

fy : � ! �g ` �x:yx : � ! �
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Mit dieser Vorgehensweise kann jedoch nur die Korrektheit einer Typisierung

nachgewiesen werden. So mu� in diesem Beispiel der Typ f�ur die gebunde-

ne Variable x selbst korrekt bestimmt werden, da sonst die Korrektheit der

Typisierung nicht gezeigt werden kann. Ein Algorithmus, der zu einem Pro-

gramm den korrekten Typ liefert, folgt im n�achsten Abschnitt.

3.1.4 Typpolymorphismus

F�ur eine einfache Sprache Exp soll die Wirkungsweise des Algorithmus W
beschrieben werden. Er liefert eine korrekte, aber noch m�oglichst freie Typi-

sierung (falls vorhanden) zu einem beliebigen Ausdruck dieser Sprache. Da

er nicht wie andere Typpr�ufungsalgorithmen verlangt, da� der zu pr�ufende

Ausdruck in Normalform vorliegt, kann er noch vor Beginn der Reduktion des
Ausdrucks eingesetzt werden und mu� nicht bis zur Laufzeit des Programms

warten. Allerdings ist er daher auch stark vom Aufbau der entsprechenden
Sprache abh�angig.

3.1.4.1 Die Sprache Exp

Im Folgenden wird eine einfache Sprache Exp vorgestellt, f�ur die dann die
Arbeitsweise des Algorithmus W gezeigt wird. Die Sprache und mit ihr der

Algorithmus k�onnen dann sp�ater auf komplizierte Konstrukte und komple-
xere Typkombinationen erweitert werden.

Die Sprache Exp baut auf folgenden Elementen auf, wobei x eine Variable
und e, e0 und e00 Ausdr�ucke aus Exp sind:

1. x: Variable,

2. (ee0): e auf e0 angewendet,

3. if e then e0 else e00: bedingte Verzweigung,

4. �x:e: Abstraktion (siehe oben),

5. �xx:e: kleinster Fixpunkt von �x:e und

6. let x = e in e0: Binden von e an x innerhalb von e0.

Da Exp recht einfach aufgebaut ist, k�onnen zur Laufzeit nur zwei Arten
von Fehlern auftreten. Zum einen mu� bei der Verzweigung if e then e0 else e00

der Ausdruck e ein Ergebnis vom Typ boolean haben. Als zweites mu� ein
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Ausdruck e, der auf einen anderen angewendet wird (ee0), eine Funktion sein.

Dies kann durch eine Typpr�ufung erzwungen werden.

Die f�ur die Typisierung von Exp verwendeten Typen werden folgenderma�en

aufgebaut, wobei beliebige Typen im Folgenden durch �, � und � dargestellt

werden:

1. �0; �1; : : : sind die Grundtypen, wobei �0 der Typ f�ur boolsche Werte ist.

2. Weiterhin gibt es eine aufz�ahlbare Menge von Typvariablen. Diese sind

ebenfalls Typen. �; �; 
; : : : bezeichnen diese Typvariablen.

3. Der einzige Typoperator ist hier !, der den Typ f�ur eine Funktion

erzeugt. Wenn � und � Typen sind, dann ist auch �! � ein Typ.

Alle Typen, die keine Typvariablen enthalten, werden als Monotypen (mono-
types) bezeichnet. Alle, die eine oder mehrere Typvariablen enthalten, werden
als Polytypen (polytypes) bezeichnet. Diese sind es, die die Polymorphie in

einem Programm darstellen. Die Typvariablen in einem Polytyp stehen dabei
f�ur einen beliebigen Monotyp. So bedeutet z.B. � ! � 8�:� ! �, wobei �

jeder beliebige Monotyp sein kann, aber nicht ein beliebiger Typ.

Das Folgende k�onnte leicht auch auf weitere Typoperatoren ausgebaut wer-
den, wie sie z.B. auch in ML verwendet werden. So k�onnte man zus�atzlich

noch die bin�aren Operatoren � f�ur ein kartesisches Produkt und [ f�ur Ver-
einigung einf�uhren, sowie den un�aren Operator list f�ur Listen.

3.1.4.2 Typkorrektheit

Hier wird zuerst die Eigenschaft well{typed (wt) vorgestellt, die aussagt, da�

alle Teilausdr�ucke eines Programms die korrekten Typen haben. Dazu sind
erst einmal einige De�nitionen n�otig.

Ein Pr�a�x ist eine Folge von �x, �xx und let x, getrennt durch Punkte. Eine

pre�xed expression (pe) besteht aus einem Pr�a�x p und einem Ausdruck e

(geschrieben pje), wobei alle freien Variablen aus e in p vorkommen. Jeder pe
setzt sich nach folgenden Regeln aus Teilausdr�ucken mit dem dazugeh�orenden

Pr�a�x (sub{pe's) zusammen. Dabei gilt der transitive Abschlu�.

1. pj(ee0) hat die sub{pe's pje und pje0.
2. pj(if e then e0 else e00) hat die sub{pe's pje, pje0 und pje00.
3. pj(�x:e) hat die sub{pe p:�xje.
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4. pj(�xx:e) hat die sub{pe p:�x xje.
5. pj(let x = e in e0) hat die sub{pe's pje und p:let xje0.

Diese Regeln zeigen, welche De�nitionen f�ur die Teilausdr�ucke gelten. So gilt

grunds�atzlich die Gesamtde�nition p f�ur alle Teilausdr�ucke der Anweisung.

Bei �, �x und let gelten zus�atzlich die lokalen De�nitionen f�ur den Teilaus-

druck. Bei let gilt aber die De�nition von x nicht f�ur den Teilausdruck e.

Bsp.:

�x:(�y:(let g = (�x:(y(yx))) in (gx))) hat u. a. die sub{pe's

�x:�y:�xj(y(yx)) und �x:�y:�x:let gj(gx):

Eine De�nition let x, �xx oder �x ist aktiv im Pr�a�x, wenn rechts davon
keine De�nition mit x mehr vorkommt. Im Ausdruck �x:�y:�xj(y(yx)) ist
z.B. das zweite �x aktiv, das erste aber nicht. Diese Unterscheidung wird
sp�ater wichtig, wenn die beiden x verschiedene Typen haben.

Beim Typisieren eines Ausdrucks pje wird jeder De�nition �x, �xx und let x

und jedem Teilausdruck und jeder De�nition in e ein Typ zugewiesen. Dar-

gestellt als �pj�e�, wenn dem Ausdruck e der Typ � zugewiesen wurde.

Das folgende Beispiel zeigt die Typisierung eines Exp{Ausdrucks:

(�y�1:let f�!� = (�x�:x�)�!� in f�1!�1y�1)�1!�1

Die Typen f�ur die Teilausdr�ucke sind so gew�ahlt, da� sich entsprechende
Ausdr�ucke den gleichen Typ haben (oder bei let einen Typ in dem die Typ-

variablen konkrete Typen angenommen haben). Ein so typisierter Ausdruck
wird sp�ater dann als well{typed bezeichnet.

Generische Variablen: Eine Typvariable im Typ � eines let x� aus dem Pr�a�x
oder dem Ausdruck einer pe ist generisch, wenn sie in keinem Typ � eines
umschlie�enden �x� oder �xx� vorkommt. In dem Ausdruck �y�:let x�!� =

: : : in(x�!�y�)� ist f�ur das let die Typvariable � generisch, die Typvariable

� jedoch nicht. Die generischen Variablen dr�ucken den Polymorphismus aus,
der in einem mit let de�nierten Ausdruck steckt.

Eine generische Instanz von � ist eine Instanz von �, wobei nur die generi-
schen Typvariablen konkrete Typen annehmen.

Standard: Eine pe �pj�e ist standard, wenn f�ur alle sub{pe's �p0j�e0 die generischen
Typvariablen jedes let x� aus �p

0 sonst nirgends in �p0j�e0 vorkommen. Dies ver-
hindert, da� es zu Kon
ikten mit gleichnamigen Typen kommt, die anderswo

verwendet werden.

34



Eine pre�xed expression (pe) wird als well{typed (wt) bezeichnet, wenn fol-

gendes gilt:

1. �pjx� ist genau dann wt, wenn er standard ist und entweder

(a) �x� oder �x x� ist aktiv in �p, oder

(b) let x� ist aktiv in �p und � ist eine generische Instanz von �.

2. �pj(�e��e0�)� , ist genau dann wt, wenn sowohl �pj�e als auch �pj�e0 wt sind und
� = � ! � .

3. �pj (if �e� then �e0� else �e
00
�0)� ist genau dann wt, wenn �pj�e, �pj�e0 und �pj�e00 wt

sind, � = �0 und � = �0 = � .

4. �pj(�x�:�e�)� ist genau dann wt, wenn �p:�x�j�e wt ist und � = �! �.

5. �pj(�xx�:�e�)� ist genau dann wt, wenn �p:fix x�j�e wt ist und � = � = � .

6. �pj(let x� = �e�0 in �e0�)� ist genau dann wt, wenn �pj�e und �p:let x�j�e0 wt sind
und � = �0, � = � .

Grunds�atzlich gilt f�ur alle Regeln, da� die Teilausdr�ucke, aus denen ein Aus-
druck besteht, ebenfalls erst einmal wt sein m�ussen. Punkt 1 sorgt zus�atzlich
daf�ur, da� jede Variable mit dem Typ ihrer Deklaration �ubereinstimmt, und

da� jede Variable deklariert wurde. Punkt 2 stellt sicher, da� bei der Pa-
rameter�ubergabe ein Parameter mit dem richtigen Typ �ubergeben wird und
der Typ, den die Funktion zur�uckliefert, stimmt. Bei if d then e else e0 mu� der

Typ der beiden Zweige e und e0 mit dem Ergebnistyp �ubereinstimmen und
der Bedingungsteil d mu� vom Typ boolean sein. Bei den Deklarationen �x,

�x x und let x mu� der Typ des Ausdruck mit dem gesuchten Typ f�ur das
Ergebnis �ubereinstimmen. F�ur die Untersuchung des Ausdrucks e gilt dann
zus�atzlich noch die (lokale) Deklaration f�ur die Variable x. Eine Besonder-

heit ist hier die unterschiedliche Behandlung von �x (bzw. �x x) und let x.
So kann eine mit let x� = : : : in e de�nierte Variable x bei jedem Auftreten

in e einen anderen Typ haben, solange alle generische Instanzen von � sind.

Bei einem Ausdruck (�x�:e)e
0 (bzw. �xx�:e) m�ussen jedoch alle Vorkommen

von x in e0 (bzw. bei �xx in e) den Typ � haben.

Bsp.:

�f�!(�!�):let x� = : : : in ((fx�)x�)� ist daher wt.

�f�!(�!�):�x�:((fx�)x�)� ist jedoch nicht wt.

Man kann mit einer strukturellen Induktion �uber die obigen Regeln zeigen,

da� ein Programm, das nach dieser De�nition well{typed ist, w�ahrend des
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Ablaufs keine Ausdr�ucke mit falschen Typen als Operatoren oder Operanden

verwendet (siehe [Mil78]).

3.1.4.3 Der Algorithmus W

Es folgt nun der AlgorithmusW, der zu einem Deklarationsteil (mit Typen)

�p und einem Programm f das typisierte Programm �f und eine Substitution

T liefert, die Typen miteinander vereinbart. Der Algorithmus ben�otigt den

Uni�kationsalgorithmus U . Dieser liefert f�ur U(�; �) ein allgemeinstes U mit

Substitutionen f�ur die in � und � enthaltenen Typvariablen, das � und �

uni�ziert, d. h. U� = U� .

Beispiel: Uni�kation von (�! �)! �0 und (� ! �)! 
:

U(((�! �)! �0); ((� ! �)! 
)) = U = [� := �][
 := �0]

es ist dann: U(((�! �)! �0)) = U(((� ! �)! 
)) = ((�! �)! �0)

Algorithmus W: W(�p; f) = (T; �f) :

Ist f :

1. f = x:

(a) Wenn �x� oder �x x� in �p aktiv ist:
T = I; �f = x�. (I ist dabei die leere Substitution [ ])

(b) Wenn let x� in �p aktiv ist:

T = I; �f = x� , wobei � = [�i := �i]� ist.
�i sind neue Variablen und �i sind die generischen Variablen von
�.

2. f = (de):
F�uhre den Algorithmus W f�ur d und e aus:

(R; �d�) =W(�p; d); (S; �e�) =W(R�p; e).
U = U(S�; � ! �), wobei � eine neue Variable ist.

T = USR; �f = U(((S �d)�e)�).

3. f = (if d then e else e0):

(R; �d�) =W(�p; d) und U0 = U(�; �0).
(S; �e�) =W(U0R�p; e), (S

0; �e0�0) =W(SU0R�p; e
0) und U = U(S 0�; �0).

T = US 0SU0R, �f = U((if S 0SU0
�d then S 0�e else �e0)�).
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4. f = (�x:d):

(R; �d�) =W(�p:�x�; d), wobei � eine neue Variable ist.

T = R, �f = (�xR�: �d�)R�!�.

5. f = (�xx:d):

(R; �d�) =W(�p:�xx�; d), wobei � wieder eine neue Variable ist.

U = U(R�; �).
T = UR, �f = (�x xUR�:U �d)UR�.

6. f = (let x = d in e):

(R; �d�) =W(�p; d) und

(S; �e�) =W(R�p:let x�; e):

T = SR, �f = (letxS� = S �d in �e)�.

Man kann zeigen, da� ein Programm, das mit diesem Algorithmus typisiert
wurde, auch well{typed ist (siehe [Mil78]). Der Beweis erfolgt mit struktureller
Induktion �uber f , wobei die rekursive De�nition vonW ausgen�utzt wird. Ein

Exp{Programm, das diesen Algorithmus erfolgreich durchlaufen hat, wird
also nicht mehr an einem falschen Typ scheitern.

Indem der Algorithmus allen noch nicht eingeschr�ankten Ausdr�ucken eine
neue Typvariable �n zuweist, garantiert er anfangs eine gr�o�tm�ogliche Frei-
heit f�ur die Typen dieser Ausdr�ucke. Falls dann w�ahrend des weiteren Ablaufs

eine Einschr�ankung f�ur diese Typen erkannt wird (z.B. mu� der erste Teilaus-
druck einer if{Anweisung einen boolschen Typ �0 haben), werden sie, wenn

m�oglich, durch die Substitutionen entsprechend eingeschr�ankt.

Am folgenden Beispiel soll die Arbeitsweise des Algorithmus f�ur einen k�urze-

ren Ausdruck gezeigt werden.

f ist �x:(�y:(let g = (�x:(y(yx))) in gx))

W(;; f) :
1. Wegen 4. (�{Ausdruck):

(R1; �d1) =W(�x�1 ; �y:(let g = (�x:y(yx)) in gx))

2. Wegen 4. (�{Ausdruck):

(R2; �d2) =W(�x�1 :�y�2; let g = (�x:y(yx)) in gx)

3. Wegen 6. (let{Ausdruck):

� (R3; �d3) =W(�x�1 :�y�2; �x:(y(yx)))

Wegen 4. (�{Ausdruck): (R4; �d4) =W(�x�1 :�y�2:�x�3; (y(yx)))
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Wegen 2. (y angewendet auf (xy)):

{ (R5; �d5) =W(�x�1 :�y�2:�x�3 ; y)

Wegen 1.(a) (�y aktiv im Pr�a�x): R5 = I; �d5 = y�2

{ (R6; �d6) =W(�x�1 :�y�2:�x�3 ; (yx))

Wegen 2. (y angewendet auf x):

� (R7; �d7) =W(�x�1 :�y�2:�x�3 ; y)

Wegen 1.(a) (�y aktiv im Pr�a�x): R7 = I; �d7 = y�2

� (R8; �d8) =W(�x�1 :�y�2:�x�3 ; x)

Wegen 1.(a) (�x aktiv im Pr�a�x): R8 = I; �d8 = x�3

� U1 = U(�2; �3 ! �4) = [�2 := �3 ! �4]

R6 = [�2 := �3 ! �4]; �d6 = (y�3!�4x�3)�4
Hier sind die Typen f�ur den Parameter und das Ergebnis der
Funktion y noch verschieden (�3 ! �4).

{ U2 = U(R6�2; �4 ! �5) = U(�3 ! �4; �4 ! �5) = [�3 :=

�5][�4 := �5]

R4 = [�3 := �5][�4 := �5][�2 := �5 ! �5];
�d4 = (y�5!�5(y�5!�5x�5)�5)�5
Da die Funktion y jetzt auf den Ausdruck (yx) angewendet wird,

mu� der Typ des Parameters x von y gleich dem Ergebnistyp

von y sein. Weil f�ur das Ergebnis der Funktion y der neue Typ
�5 angenommen wurde, werden die benutzten Typvariablen durch

Uni�zieren entsprechend eingeschr�ankt. Man erh�alt als Typ f�ur
die Funktion y jetzt �5 ! �5.

R3 = R4; �d3 = (�x�5 :(y�5!�5(y�5!�5x�5)�5)�5)�5!�5

� (R9; �d9) =W(�x�1 :�y�5!�5:let g�5!�5; (ge))
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Wegen 2. (g angewendet auf x):

{ (R10; �d10) =W(�x�1 :�y�5!�5:let g�5!�5; g)

Wegen 1.(b) (let x aktiv im Pr�a�x):

R10 = I; �d10 = g�5!�5

Es werden hier keine neuen Variablen eingef�uhrt, da (�5 ! �5)

keine generischen Variablen enth�alt.

{ (R11; �d11) =W(�x�1 :�y�5!�5:let g�5!�5; x)

Wegen 1.(a) (�x aktiv im Pr�a�x):

R11 = I; �d11 = x�1

{ U3 = U(�5 ! �5; �1 ! �6) = [�1 := �6][�5 := �6])

R9 = U3; �d9 = (g�6!�6x�6)�6

R2 = R9R3; �d2 = (let g�6!�6 =
(�x�6 :(y�6!�6(y�6!�6x�6)�6)�6)�6!�6 in (g�6!�6x�6)�6)�6

R1 = R2; �d1 = (�y�6!�6:(: : :))(�6!�6)!�6

Ergebnis:

W(;; f) = ([�1 := �6][�5 := �6][�3 := �5][�4 := �5][�2 := �5 ! �5];

(�x�6 :(�y�6!�6:(let g�6!�6 =

(�x�6 :(y�6!�6(y�6!�6x�6)�6)�6)�6!�6

in (g�6!�6x�6)�6)�6))(�6!�6)!�6)�6!((�6!�6)!�6)

Am Anfang werden den vorkommenden Typen hier die Typvariablen �1 bis
�6 zugewiesen. Die Struktur dieses Programmst�ucks erzwingt dann die Ein-

schr�ankung dieser Typen durch die Substitutionen, bis schlie�lich nur noch

die Typvariable �6 vorkommt.

3.1.5 Fazit

Der Algorithmus W bietet die M�oglichkeit eine Typpr�ufung durchzuf�uhren,
die gleichzeitig eine relativ gro�e Freiheit f�ur die Typen der Ausdr�ucke zul�a�t.
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In der obigen Form ist der Algorithmus f�ur eine Implementierung allerdings

zu unhandlich. In [Mil78] wird zus�atzlich zum Algorithmus W noch der Al-

gorithmus J vorgestellt. Dieser leistet dasselbe, ist aber e�zienter zu imple-

mentieren, da er u. a. bei den Substitutionen mit einer globalen Variablen

arbeitet und auf die Ausf�uhrung der Substitutionen oft verzichtet. Die in

der Programmiersprache ML durchgef�uhrte Typpr�ufung basiert auf diesem

Algorithmus.
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3.2 Sammlung von Problemen und Optimie-

rungsverfahren

3.2.1 Einleitung

Im Rahmen der Projektgruppe
"
Evolution�are Algorithmen\ sollen einige Vor-

tr�age den beteiligten StudentInnen den schnellen Einstieg in das Thema

erm�oglichen. Diese Ausarbeitung zu einem Hauptseminar soll einen �Uber-

blick �uber typische Optimierungsprobleme geben und einige Optimierungs-

verfahren erl�autern.

Im ersten Teil wird auf zwei grunds�atzliche Problemklassen eingegangen: die

mathematischen Funktionen und die praktischen Anwendungen.

Der zweite Teil besch�aftigt sich mit Optimierungsverfahren, die sich in drei
gro�e Gruppen einteilen lassen:

� enumerierende Verfahren
Bei diesen Verfahren wird der gesamte L�osungsraum durchsucht und
die beste L�osung durch Vergleich ermittelt. Dies ist die simpelste Vor-

gehensweise und mu� daher nicht weiter erkl�art werden.

� kalk�ulbasierte Verfahren

Diese Verfahren lassen sich nur auf mathematische Probleme anwen-
den, d.h. ggf. mu� ein Problem erst in eine mathematische Notation

gebracht werden. Es gibt nun zwei m�ogliche Varianten, die
"
direkten\

und die
"
indirekten\ Verfahren. Letztere betrachten nicht die Werte

der Problemfunktionen selbst, sondern die von aus ihnen abgeleiteten

Funktionen. Beispielsweise werden Nullstellen der ersten Ableitung ei-
ner Funktion gesucht, da sich an diesen Stellen (lokale) Extrema be�n-
den k�onnen. Dies hat nat�urlich zur Folge, da� viele Funktionen nicht

mit diesen Verfahren untersucht werden k�onnen, da erste Ableitungen
nicht formuliert werden k�onnen oder nicht existieren.

Dagegen verwenden die direkten Verfahren die Funktionswerte der Pro-
blemfunktion selbst, um sich an ein Extremum anzun�ahern.

Die bekanntesten Vertreter der kalk�ulbasierten Verfahren sind die
"
Hill-

Climbing\ { Strategien, die im folgenden vorgestellt werden.

� zufallsgesteuerte Verfahren
Hier werden Anfangskon�gurationen zuf�allig ausgew�ahlt und nach ver-

schiedenen Methoden aus diesen neue Kon�gurationen bestimmt. Sie
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werden bewertet und entweder �ubernommen oder verworfen. Dies wird

wiederholt, bis eine Abbruchbedingung erf�ullt ist.

Rein zufallsgesteuerte Verfahren, wie z.B.
"
Monte{Carlo\ und

"
Ran-

dom Walk\, sind nicht Gegenstand dieser Ausarbeitung. Es werden

stattdessen die naturanalogen Verfahren nach physikalischen und bio-

logischen Modellen betrachtet.

3.2.2 Problem�uberblick

Es gibt zwei gro�e Gruppen von Problemen, auf die Optimierungsverfahren

angewendet werden. Zum einen existiert die Gruppe der mathematischen

Funktionen (vgl. [Wei95]), zum anderen meist nur umgangssprachlich de�-
nierte Probleme aus der Praxis.

Mathematische Funktionen Die folgenden Beispiele f�ur mathematische
Funktionen dienen weniger zur Beschreibung konkreter Probleme als zur Be-

urteilung des Verhaltens von Optimierungsverfahren. Hierf�ur ist zudem die
Kenntnis des Minimums hilfreich.

3.2.2.1 reelle Funktionen

Es gilt: ~x 2 R
n

� Schwefelfunktion ([var94] 189 �)

F1(~x) =

nX
i=1

 
iX

j=1

xj

!2

; Min(F1(~x)) = F1(~0)

� Summe verschiedener Potenzen ([var94] 189 �)

F2(~x) =

nX
i=1

jxiji+1; Min(F2(~x)) = F2(~0)

� Achsenparallele Hyperellipsoide ([var94] 189 �)

F3(~x) =

nX
i=1

(i � xi)2; Min(F3(~x)) = F3(~0)
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� Hypersph�are ([var94] 199 �) / Sph�arenmodell ([var94] 428 �)

F4(~x) =
Pn

i=1 x
2
i ; Min(F4(~x)) = F4(~0) (Abb. 3.1).

Abbildung 3.1: F4 { Hypersph�are/Sph�arenmodell

� Verallgemeinerte Rosenbrock Funktion ([var94] 189 �, 199�, 249 �)

F5(~x) =

nX
i=1

�
100 � (xi+1 � x2i )

2 + (1� xi)
2
�

Min(F5(~x)) = F5(~1); �5:12 � xi � 5:12. (Abb. 3.2).

� Griewank's Funktion ([var94] 199 �, 249 �)

F6(~x) =

nX
i=1

x2i
4000

�
nY
i=1

cos

�
xip
i

�
+ 1

Min(F6(~x)) = F6(~0), mit n = 100;�600 � xi � 600.

� Rastingin Funktion ([var94] 249 �)

F7(~x) = 3:0 � n +
nX
i=1

x2i � 3:0 � cos(2 � � � xi)

Min(F7(~x)) = F7(~0); mit n = 20;�5:12 � xi � 5:12.
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Abbildung 3.2: F5 { Verallg. Rosenbrock Funktion
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� andere Schwefel Funktion ([var94] 249 �)

F8(~x) = 418:9829 � n+
nX
i=1

xi � sin
�p

jxij
�

Min(F8(~x)) = F8(420:9687; 420:9687; : : :), mit n = 10;�500 � xi �
500.

� Ackley Funktion ([var94] 249 �)

F9(~x) = 20 + e� 20 � exp

0
@�0:2 �

vuut 1

n

nX
i=1

x2i

1
A

� exp

 
1

n

nX
i=1

cos(2 � � � xi)
!

Min(F9(~x)) = F9(~0), mit n = 30;�30:0 � xi � 30:0.

� Stufenfunktion ([var94] 428 �)

F10(~x) = 6 � n +
nX
i=1

jxij Min(F10(~x)) = F10(~0); mit n = 5:

� Quadratic + Noise ([var94] 428 �)

F11(~x) =

nX
i=1

i � x4i + gauss(0; 1)

Min(F11(~x)) = F11(~0), mit n = 30; gauss(0; 1) = Zufallszahl 2 [0; 1] �
R. (Abb. 3.3)

� Shekek's Foxholes ([var94] 428 �)

1

F12(~x)
=

1

K
+

25X
j=1

1

cj +
Pn

i=1(xi � aij)6

Min(F12(~x)) =?, mit n = 2; K; cj; aij =??. Vermutlich berechenbar in
Abh. von K;~c; (aij). (Abb. 3.4)
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Abbildung 3.3: F11 { Quadratic + Noise

� Sph�aren-Wechsel-Funktion ([var94] 428 �)

F13(~x(t)) =

�Pn

i=1 x
2
i (t) t mod a evenPn

i=1(xi(t)� b)2 t mod a odd

Min(F13(~x)) =?, mit n = 30 und a; b =?. Berechenbar in Abh�angigkeit

von a und b.

� Rechenberg Funktion ([var94] 199 �)

F14(~x) =

20X
i=1

 
(100� i) � exp

 
�

nX
k=1

�
xk � z30�i+k

�

�2
!!

wobei zj = (32 � zj�1+13(i+1)) mod 31; z0 = 1; �100 � xi � 100:

� De Jong's 3. Testfunktion
F15(~x) =

Pn

i=1 integer(xi) (Abb. 3.5)

� C-Funktion (Prof. Claus)

C : Sn ! R
+
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Abbildung 3.4: F12 { Shekek's Foxholes
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Abbildung 3.5: F15 { De Jong's 3. Testfunktion

� 7!
X
i;j=1
i6=j

j�j � �i

j � i
j = 2 �

n�1X
i=1

nX
j=i+1

j�j � �ij
j � i

3.2.2.2 Integer-Funktionen

�

F16(~x) = �jj~xjj1; ~x 2 Z
30; MinfF16(~x)g = F16(~0):

�

F17(~x) = �~xT � ~x; ~x 2 Z
30; MinfF17(~x)g = F17(~0):

�

F18(~x) =

18Y
i=0

[1� (1� xi)
xi] ; ~x 2 Z

18; xi � 0:
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3.2.2.3 Praktische Probleme

1. Stundenplan{Problem

Quelle: [var94] 557

Gegeben ist eine Menge von Ereignissen E = fe1; e2; : : : ; evg und eine

Menge von Zeiten T = ft1; t2; : : : ; tsg, sowie oft eine Menge von Orten

P = fp1; p2; : : : ; pmg und/oder Ausf�uhrenden A = fa1; a2; : : : ; ang.
Ein Auftrag ist ein 4{Tupel (e; t; p; a) mit e 2 E; t 2 T; p 2 P; a 2 A,

wobei man dies wie folgt interpretieren kann:
"
Ereignis e �ndet zur

Zeit t am Ort p statt, durchgef�uhrt von a.\ Dies kann eine Vorlesung

beschreiben, aber auch einen Fertigungsproze�.

Das zu l�osende Problem ist nun, einen Stundenplan zu �nden, der
es erm�oglicht, alle Ereignisse auszuf�uhren. Prinzipiell w�are somit ei-

ne Erf�ullung der Anforderungen ausreichend, allerdings kann auch eine
Bewertung eines Plans (nach anwendungsspezi�schen Kriterien) vorge-
nommen werden, wodurch nach einem optimalen Stundenplan gesucht

werden kann.

Es ist o�ensichtlich, da� z.B. zur selben Zeit am selben Ort nicht zwei

Ereignisse statt�nden k�onnen; ggf. sind aber zus�atzliche Rahmenbedin-
gungen zu ber�ucksichtigen, z.B.:

� Zwischen zwei Ereignissen soll ein Zeitabstand existieren.

� Bestimmte Ereignisse d�urfen zu gewissen Zeiten nicht statt�nden.

� Ein Ereignis soll zu einem bestimmten Zeitpunkt statt�nden.

� Relationen zwischen Ereignissen sollen eingehalten werden. Z.B.

soll ein bestimmtes Ereignis vor einem anderen statt�nden.

� Ereignisse seien an eine Auswahl von Orten gebunden.

2. Eisenbahn{Fahrplan Problem

Quelle: [var94] 566 �

Gegeben ist die Beschreibung eines Eisenbahnnetzes. So gibt es Bahn-

h�ofe und Z�uge in verschiedenen hierarchischen Klassen, z.B.
"
Intercity\

(IC),
"
Interregio\ (IR) und

"
Regionalbahn\ (RB). Z�uge halten nur in

Bahnh�ofen mit derselben oder h�oheren Klasse, d.h. RB{Z�uge in allen.

Au�erdem werden die Strecken erfa�t, d.h. welche Bahnh�ofe miteinan-

der verbunden sind.
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Gesucht wird nun ein Zeitplan, der einige
"
weiche\ und

"
harte\ Ein-

schr�ankungen erf�ullt.

Harte Einschr�ankungen legen fest, da� ein Zugpaar1 einen gemeinsa-

men Abschnitt mit einer gewissen Frequenz bedienen mu�. Sie setzen

einen Bereich f�ur die Umsteigezeit zwischen zwei Z�ugen an einem be-

stimmten Bahnhof fest. Z�uge m�ussen zudem einen Mindestabstand von

drei Minuten auf derselben Strecke einhalten. Schlie�lich mu� noch er-

reicht werden, da� die Z�uge sinnvolle Haltezeiten einhalten und bei

Verwendung eines Modells mit Stundentakten (d.h. ohne Beachtung

der Stunde) die Abfahrtszeiten zwischen 0 und 59 Minuten liegen.

Alle Zeitpl�ane m�ussen die harten Einschr�ankungen erf�ullen, d.h. ein

Zeitplan, der diese nicht erf�ullt, wird niemals als L�osung akzeptiert wer-

den. Um nun die Fahrpl�ane, die die harten Einschr�ankungen erf�ullen,
vergleichen zu k�onnen, bestimmen die weichen Einschr�ankungen die

Qualit�at eines Zeitplans.

Weiche Einschr�ankungen sind z.B., die Haltezeiten so gering wie m�og-

lich zu halten oder g�unstige Umsteigem�oglichkeiten anzubieten. Somit
ist es �uber die weichen Einschr�ankungen m�oglich, die Qualit�at eines
Fahrplans zu bewerten { dies ist die Voraussetzung bei der Suche nach

der optimalen L�osung.

3. n{Damen Problem

Quelle: [var94] 48, Abb. 3.6 { Beispiel mit n = 6

Gegeben ist ein Schachbrett mit n � n Feldern. Nun sollen auf diesem

Feld n Damen so plaziert werden, da� keine Dame eine andere schlagen
kann. Hier geht es also nicht um eine Optimierung, sondern nur um die

Erf�ullung einer Bedingung und eine L�osung reicht aus.

Laut den Schachregeln kann eine Dame senkrecht, waagrecht und dia-

gonal beliebig viele Felder vor- oder zur�uckziehen. Somit kann man die

Beschreibung einer Belegung vereinfachen: Zwei Damen k�onnen nicht

in derselben Reihe des Bretts stehen; man mu� also nur die Spalte

notieren. Daher reicht ein n{Tupel der Form (x1; x2; : : : ; xn); xi 2
f1; 2; : : : ; ng aus. Au�erdem kann die Diagonalenbedingung als jxi �
xjj 6= ji � jj; i 6= j notiert werden, was den Suchraum weiter ein-

schr�ankt.

4. Travelling Salesman Problem - TSP

1
Auf zweigleisigen Strecken f�ahrt jeweils ein Zug in jede Richtung.

50



Abbildung 3.6: n{Damen Problem

Quelle: [VC94] 375 f, Abb. 3.7 { Beispiel mit n = 5, optimaler Weg

Gegeben sind n Knoten k1; k2; : : : ; kn die durch ungerichtete Kanten
vollst�andig verbunden sind. Jeder Kante (ki; kj) ist ein Gewicht dij 2 R

zugeordnet.

Gesucht ist nun die Anordnung ki1 ; ki2; : : : ; kin mit i1 = 1 (o.B.d.A. sei

der Startknoten festgelegt) und 8j 2 f1; : : : ; ng 9! im : im = j (d.h.
jeder Knoten wird einmal besucht) f�ur die gilt:

n��1X
k=1

dikik+1 + dini1 ist minimal: (3.1)

5. n{Personen Spiel mit eingeschr�ankter Interaktion

Quelle: [var94] 514 �

Gegeben ist eine Menge von n Spielern N = f1; 2; : : : ; ng, eine Menge

Sk = fsk1; : : : ; skmg von Strategien f�ur jeden Spieler k 2 N und eine
Erfolgsfunktion (

"
payo� function\) uk : Sk ! R und:

(sk; sk1; sk2; : : : ; sknk) 7! uk(sk; sk1; sk2; : : : ; sknk) (3.2)
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Abbildung 3.7: Travelling Salesman Problem

die nur von den Strategien einer beschr�ankten Anzahl von Spielern
abh�angt: der eigenen sk und der der nk Nachbarn.

Das Spiel kann nun als gerichteter Graph G =< V;E > dargestellt
werden, dem sog.

"
Interaktionsgraphen\. V , die Menge der Knoten,

symbolisiert die Spieler, die Kanten E repr�asentieren Muster der Inter-
aktion zwischen den Spielern. So zeigen die von Spieler k ausgehenden
Kanten auf die Spieler, deren Erfolg von k beein
u�t wird, wie die auf

Spieler k zielenden Kanten die Spieler de�nieren, deren Strategie den
Erfolg des Spielers k beein
u�t.

Gesucht ist nun ein optimaler Ablauf des Spiels, wobei aus der Quelle
die De�nition der Optimalit�at nicht eindeutig hervorgeht. Denkbar ist

z.B., da� ein Spieler das absolute Optimum erreichen soll oder der

mittlere Erfolg aller Spieler m�oglichst gro� ist.

6. Steiner{Netz

Quelle: [var94] 197, Abb. 3.8 { Beispiel

Gegeben ist eine Menge von festen Punkten hi in einem kartesischen

Koordinatensystem. Diese Punkte sollen nun durch ein Netz verbunden
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werden, wobei n Gabelungspunkte2 eingef�uhrt werden d�urfen, die sog.

"
Steiner{Punkte\. Diese Punkte k�onnen mit drei festen oder Steiner{

Punkten verbunden werden, sie sind zudem verschiebbar. Ziel ist es

nun, die L�ange des Netzes, d.h. die Gesamtl�ange der Verbindungskan-

ten, zu minimieren. Daher wurde ein kartesisches Koordinatensystem

vorausgesetzt.

Man kann sich das Problem wie folgt vorstellen: Auf einer Insel stehen

H�auser hi, die mit Wegen verbunden werden sollen. Gesucht ist nun

das k�urzeste Netz, d.h. dasjenige, dessen Wegl�ange am geringsten ist.

Dabei k�onnen Wege auch Gabelungen haben, oben
"
Steiner{Punkte\

genannt.

Abbildung 3.8: Steiner{Netz

7. Gewichtetes Graphzweiteilungsproblem

Quelle: [var94] 618

Gegeben ist ein Graph (V;E; w) mit Knotenmenge V , die 2n Knoten
enth�alt, der Kantenmenge E und einer Gewichtsfunktion w : E !
R, die jeder Kante ein Gewicht zuordnet. Dieser Graph soll in zwei

2
Die Quelle ist in der Beschreibung nicht eindeutig!
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gleichgro�e, disjunkte Teilgraphen geteilt werden, wobei gelte: A =

fa1; a2; : : : ; ang; B = fb1; b2; : : : ; bng; A; B � V; A \ B = fg und

A [B = V .

Ziel ist nun, die Summe der Gewichte der Verbindungskanten zwischen

den Teilgraphen zu minimieren:

C(fA;Bg) := min
A;B

X
ai2A

X
bj2B

w((ai; bj)) (3.3)

8. Rucksackproblem

Quelle: [VC94] 418

Hier wird versucht, einen Rucksack so zu f�ullen, da� dieser zum einen

m�oglichst voll ist, andererseits der Wert der eingepackten Gegenst�ande
m�oglichst hoch ist.

Gegeben sind also n Gegenst�ande, denen jeweils ein Gewicht gi und ein
Wert wi; i 2 f1; 2; : : : ; ng zugeordnet ist. Gegeben ist weiterhin eine
Ladekapazit�at G. Gesucht ist nun eine Indexmenge I � f1; 2; : : : ; ng,
f�ur die gilt:

 X
i2I

wi ist maximal

!
^
 X

i2I

gi � G

!
: (3.4)

Diese Beschreibung l�a�t sich auf viele praktische Probleme anwenden.
So k�onnen z.B. statt der Gewichtswerte auch Volumengr�o�en verwandt
werden; bei Betrachtung von Fl�achen handelt es sich um das

"
Plazie-

rungsproblem\.

9. Cliquenproblem

Quelle: [VC94] 97

Gesucht wird hierbei in einem ungerichteten Graphen eine Clique von

k Knoten, die jeweils paarweise durch eine Kante verbunden sind.

Gegeben ist also ein ungerichteter GraphG = (V;E), mit Knotenmenge

V und Kantenmenge E. Gesucht wird nun die gr�o�te Teilmenge V 0 � V

mit k Elementen, f�ur die gilt:

8v; w 2 V 0 : (v; w) 2 E: (3.5)
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10. Erf�ullbarkeitsproblem

Quelle: [VC94] 192

Hierbei wird versucht, f�ur einen gegebenen Booleschen Ausdruck eine

Belegung zu �nden, die den Ausdruck erf�ullt.

Beispiel F�ur B = (�x1 _ x2 _ x3) ^ (x1 _ �x4) ^ x2 soll eine Belegung

der Variablen x1; : : : ; x4; xi 2 ftrue; falseg gefunden werden, so da�

gilt: B � true.

3.2.3 Optimierungsverfahren

Um L�osungen f�ur diese und andere schwere Probleme zu �nden, reichen
herk�ommliche Methoden oft nicht aus, da sie zu schlecht, zu langsam oder zu
aufwendig sind. Hervorzuheben sind dabei v.a. die NP{vollst�andigen/harten

Probleme, zu denen z.B. TSP (s.o.) geh�ort:

Beispiel Ein Handelsvertreter plant seine Kundenbesuche. Er sucht nun

die schnellste/kosteng�unstigste Route, die ihn wieder an den Ausgangspunkt
f�uhrt. Seien nun 10 Besuche vorgesehen. Somit gibt es 9! = 362:880 m�ogli-

che Rundreisen; der Startort sei festgelegt. M�u�te der Vertreter aber nur f�unf
Kunden mehr besuchen, so stiege die Anzahl der zu untersuchenden M�oglich-
keiten auf 14! = 87:178:291:200. Schon dieses kleine Beispiel macht deutlich,

da� eine vollst�andige Durchsuchung des Problemraums nicht praktikabel ist.

Um dennoch brauchbare L�osungen zu �nden, wurden verschiedene Algorith-

men entwickelt. Zum einen gibt es die sog. Hill{Climbing{Verfahren, die in
der Regel allerdings nur das dem Startpunkt n�achste lokaleMinimum �nden.
Es gibt hier also keine Garantie, da� nicht an anderer Stelle ein besserer Wert

erreicht werden kann. Andererseits gibt es die naturanalogen Algorithmen,
die das globale Minimum suchen.

Hierbei mu� beachtet werden, da� der hohe Aufwand dieser Strategien nur

bei Zutre�en folgender Bedingungen gerechtfertigt ist:

� Der Problemraum ist deutlich zu gro�, um ihn einfach mit den verf�ugba-

ren Rechnern zu durchsuchen. Dies tri�t besonders bei einer gro�en

Anzahl von Variablen zu.

� Das Problem l�a�t sich nicht mit �ublichen mathematischen Verfahren

analysieren und es existieren auch keine ausreichend genauen (einfa-

cheren) N�aherungen.
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� Es existieren keine herk�ommlichen heuristischen Verfahren, die hinrei-

chend gute L�osungen liefern.

� Das Problem ist NP{hart.

In allen F�allen werden eine oder mehrere Start{Kon�gurationen, d.h. Bele-

gungen der freien Variablen, zuf�allig gew�ahlt und diese solange modi�ziert,

bis eine Endbedingung erf�ullt ist.

3.2.3.1 Kalk�ulbasierte Verfahren { Hill{Climbing

Quelle: [Sch81] 20 - 86

Kann ein Problem durch eine mathematische Funktion dargestellt werden, so
bietet sich an, eine L�osung durch ein sog.

"
Hill{Climbing\ zu �nden. Es wird

hier ein lokales Extremum der Funktion,
"
Zielfunktion\ genannt, gesucht.

Hierbei spielt es keine Rolle, ob ein Maximum oder ein Minimum gesucht ist,
da gilt:

Maxff(x)g = �Minf�f(x)g: (3.6)

Handelt es sich bei der Zielfunktion um eine leicht analysierbare Funktion, so
ist es nat�urlich nicht erforderlich, eine Hill{Climbing{Strategie zu verwenden.

Folgende Eigenschaften verhindern allerdings einen solchen Ansatz:

� Extrema sind nicht mathematisch ermittelbar, da die Funktion z.B.

unstetig ist. Dies ist besonders bei Funktionen der Fall, die nicht glatt
(smooth) sind.

� Ableitungen sind nicht berechenbar.

� L�osungskandidaten sind nicht immer vom gew�unschten Typ, sondern
Minimum, Maximum oder Sattelpunkt. Hierdurch wird eine weitere

Untersuchung n�otig.

� Die zu betrachtenden Gleichungssysteme sind nicht direkt l�osbar.

F�ur die folgende Liste von Strategien wird in der Quelle [Sch81] das Problem

min~xfF (~x)j~x 2 R
ng betrachtet, d.h. die Suche nach einem Minimum. Da-

bei kann noch zwischen
"
starken\ und

"
schwachen\ Minima unterschieden

werden. Letztere besitzen eine Umgebung, deren Werte nur um " > 0 h�oher
sind; es handelt sich dann nicht um einzelne Punkte. Au�erdem kann ein

Minimum lokal oder global sein, allerdings bieten diese Verfahren keine Ga-

rantie f�ur die Art des Minimums. (Dies gilt nat�urlich nicht f�ur
"
unimodale\
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Funktionen, da hier lokale Minima auch globale Minima sind und somit keine

Unterscheidung existiert.)

1. Eindimensionale Suche

Gibt es nur eine zu betrachtende Variable, so spricht man von eindi-

mensionaler Suche. Die hier gefundenen Strategien k�onnen z.T. auf die

L�osung von Problemen mit n Variablen erweitert werden.

Um nun eine gute L�osung zu �nden, gibt u.a. drei Typen von Verfahren:

� Simultane Methoden [Sch81] 23: Es werden (bevorzugt parallel)

Werte aus dem De�nitionsbereich ausprobiert. Bei
"
Gitter{

Methode\ wird ein Intervall in gleichgro�e Teile zerlegt und je-

weils ein Funktionswert aus dem Intervall berechnet.

� N�aherungen: Polynome inkl. ihrer Ableitungen n�ahern die zu un-
tersuchende Funktion an und erlauben das Ermitteln einer L�osung.
Das Problem ist hier, eine ausreichend genaue N�aherungsfunktion

zu �nden.

� sequentielle Methoden: Diese Verfahren eignen sich besonders f�ur

sequentiell arbeitende Rechner. In jeder Iteration wird ein neuer
Punkt ermittelt, der das Minimum weiter ann�ahern soll. Dies wird

solange wiederholt, bis eine bestimmte Anzahl von Iterationen
durchlaufen und so das Minimum hinreichend genau angen�ahert
wurde.

W�ahle Startwert x0, Startintervall [a0; b0]
repeat

Berechne xi+1; ai+1; bi+1
until Abbruchbedingung

Beispiele f�ur sequentielle Methoden zur Suche eines Minimums x 2 R

mit 8y 2 R : f(y) � f(x) sind:

(a) Verfahren, die einen Punkt xi betrachten und aus diesem einen

neuen Punkt xi+1 berechnen.

�
"
Boxing the minimum\ [Sch81] 25: Man bestimmt einen Start-

wert x0 2 R, jeder weitere Wert wird �uber xk+1 = xk+s; s 2 R

ermittelt. Dies wird solange wiederholt, bis gilt f(xk+1) >

f(xk). Danach wird die Schrittweite verkleinert und in der an-

deren Richtung gesucht. Dieser Algorithmus kann verbessert

werden, z.B. indem die Schrittweite im Falle von f(xk+1) <
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f(xk) verdoppelt wird, andernfalls jedoch halbiert (und ne-

giert). Dieses Verfahren ist brauchbar, wenn das Intervall nicht

bekannt ist, in dem das Minimum liegt (oder erst bestimmt

werden soll). Andernfalls existieren bessere Algorithmen.

� Newton{Raphson - Iteration [Sch81] 32: Umsetzung des New-

ton{Verfahrens zur Bestimmung einer Nullstelle von f(x).

(Somit mu� die Zielfunktion umformuliert werden, d.h. es

wird z.B. die erste Ableitung betrachtet.)

xk+1 = xk �
f(xk)

f 0(xk)
(3.7)

(b) Verfahren, die ein Intervall [ai; bi] betrachten. In jeder Iterati-
on werden neue Werte ai+1 und bi+1 f�ur die Grenzen ermittelt

(Abb. 3.9).

x0

f(x)

a a i+1 b ii

Abbildung 3.9: Intervall{Verfahren

� Elimination [Sch81] 26: die Intervallgr�o�e wird mit � < 1

multipliziert und diejenige Grenze verschoben, die weiter vom

Minimum entfernt ist.

Ausgehend vom Intervall [a; b] werden die Grenzen aufeinan-

der zu verschoben, wobei die Schrittweite der Quotient zwei-
er Fibonacci{Zahlen ist. Schlie�lich wird das Intervall ausge-
sucht, in dem sich das Minimum be�ndet. Welches dies ist,

wird festgestellt, indem der Funktionswert an den m�oglichen
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neuen Intervallgrenzen innerhalb des alten Intervalls berech-

net wird.

Bei der Variante
"
Fibonacci{Division\ ist � der Quotient zwei-

er Fibonacci{Zahlen; eine andere Variante verwendet einen

konstanten Wert, wodurch die Berechnung der Fibonacci{

Zahlen entf�allt.

�
"
Regula{falsi\{Iteration [Sch81] 31: Nach Start mit dem In-

tervall [ak; bk] wird eine neue Grenze ck

ck = ak � f(ak)
bk � ak

f(bk)� f(ak)
(3.8)

bestimmt, die zu ak+1 (oder bk+1) wird.

(c) Interpolationsprozeduren [Sch81] 31
Es wird eine einfache Funktion durch einige Punkte der Zielfunk-
tion gelegt und das Minimum dieser Hilfsfunktion berechnet. Bei

einfachen Hilfsfunktionen kann diese Stelle direkt aus den Funk-
tionswerten der Zielfunktion ermittelt werden; sie ersetzt dann

einen der bisher verwendeten Punkte, dann wird das Verfahren
wiederholt.

� Lagrange{Interpolation [Sch81] 33: F�ur dieses Verfahren wird

nur die Zielfunktion selbst, aber keine ihrer Ableitungen ben�o-
tigt. Ein Polynom p{ter Ordnung wird durch p + 1 Punkte

der Zielfunktion gelegt. Dann wird die Minimalstelle des Po-
lynoms ermittelt; f�ur p = 2 kann dies direkt aus den Funkti-
onswerten geschehen. Der Funktionswert der Zielfunktion an

dieser Stelle wird berechnet und abh�angig vom Ergebnis er-
setzt sie einen der alten Punkte.

� Hermitische Interpolation [Sch81] 36: Ein Polynom 3. Grades
wird als Test{Funktion verwendet, allerdings wird zudem die

erste Ableitung f 0(x) ben�otigt. Daher reichen zwei Punkte der

Zielfunktion aus.

F�ur alle Interpolationsverfahren gilt: Je gr�o�er die �Uberein-

stimmung der Test{Funktion mit der Zielfunktion ist, desto

schneller und verl�a�licher konvergieren die Verfahren.

2. Multidimensionale Strategien

Die meisten Probleme lassen sich nur durch Funktionen mit n > 1
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Variablen ausdr�ucken. Somit ist die Anzahl der Funktionswerte etwa

O(Nn) gro�, wobei N die Anzahl der Werte darstellt, die eine Variable

annehmen kann. Dies macht es o�ensichtlich unm�oglich, ein Minimum

durch Ausprobieren zu �nden.

Um trotzdem ein Minimum zu �nden, wurden diverse Algorithmen ent-

wickelt. Diese unterscheiden sich zum einen in der Art der ben�otigten

Information. So gibt es
"
direkte\ Verfahren, die mit der Zielfunktion

allein auskommen. Die
"
Gradienten\{Verfahren ben�otigen dagegen die

erste(n) Ableitung(en) (rf(x);r2f(x), . . . ).

Allgemein wird eine Rekursion folgenden Zuschnitts durchlaufen:

xk+1 = xk + sk � vk; xk; vk 2 R
n ; sk 2 R: (3.9)

Hierbei ist sk die Schrittl�ange und vk die Suchrichtung.

Der Vorteil der direkten Methoden ist ihre Einfachheit und die positi-

ve Erfahrung in der Anwendung. Man
"
r�at\ einen vielversprechenden

Punkt und �uberpr�uft, ob er das Minimum besser ann�ahert; im negati-
ven Fall wird ein anderer Punkt ermittelt. Allerdings sind die Resultate

der direkten Methoden oft schlechter als die der Gradienten{Methoden.

� Koordinaten{Strategie [Sch81] 40: Von einem Startpunkt aus wird

parallel zu den Koordinatenachsen der n�achste Punkt ermittelt.
Am einfachsten geht man reihum in alle Richtungen, als Verbes-
serung wird jedoch eine vielversprechende Richtung beibehalten.

Dies kann z.B. durch die Verwendung einer eindimensionalen Stra-
tegie f�ur eine Variable geschehen.

Nat�urlich beein
u�t hier die Schrittweite den Erfolg des Verfah-
rens betr�achtlich. Ist sie zu gro� gew�ahlt, so kann das Minimum

nicht genau ermittelt werden. Ist sie andererseits zu klein, so
erh�oht sich die Anzahl der n�otigen Versuche. Au�erdem kann die-
se Methode zu prinzipiellen Problemen f�uhren, da nur parallel zu

den Achsen gesucht wird.

� Hooke, Jeeves { Mustersuche [Sch81] 43: Bei dieser Variante der

Koordinaten{Suche werden zwei Arten von Schritten vorgenom-

men. Zum einen gibt es Erforschungsschritte, d.h. es wird der Wert

der Zielfunktion an neuen Stellen ermittelt. Zum anderen wird

abh�angig vom Erfolg der einzelnen Tests eine Extrapolation in die

vielversprechendste Richtung vorgenommen.
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� Rosenbrock {
"
rotating coordinates\ [Sch81] 48: Das Koordinaten-

system wird in eine bessere Lage rotiert, analog zur Mustersuche.

Dieses Verfahren ist sehr robust, braucht keine Ableitungen und

kann auf Liniensuche verzichten. Allerdings ist die Rotation des

Koordinatensystems mit umfangreichen Matrizenoperationen ver-

bunden, die dieses Verfahren f�ur gro�e n unanwendbar machen.

� Davies, Swann, Campey (DSC) [Sch81] 53: Dieses Verfahren ver-

bindet mehrere einfachere: Es werden Liniensuchen parallel zu al-

len Koordinatenachsen vorgenommen, dann in Richtung des Ge-

samterfolgs gewandert, und schlie�lich das Koordinatensystem ent-

sprechend rotiert. Dieses Verfahren ist e�ektiv, jedoch nur bei glat-

ten Funktionen und f�ur kleine n anwendbar.

� Nelder, Mead { Simplex{Strategien [Sch81] 57: Hier werden f�ur ei-
ne Funktion mit n Variablen n+1 Punkte �aquidistant ausgew�ahlt.

F�ur n = 2 wird somit ein Dreieck verwandt; bei n = 3 handelt es
sich um einen Tetraeder. Daher der Name

"
Simplex\. Die Punkte

werden als Knoten bezeichnet.

Nun wird die Zielfunktion an allen Knoten berechnet und der
Knoten mit dem h�ochsten Wert (hier also der schlechteste Punkt)

durch seine Spiegelung an der (Hyper{) Fl�ache der restlichen Punk-
te ersetzt. Ist dieser Punkt wiederum schlechter, so wird statt des
Punktes mit dem h�ochsten Funktionswert der n�achst bessere er-

setzt. Somit wird der K�orper also einmal um den Knoten mit dem
besten Wert rotiert, danach jedoch wird die Kantenl�ange des Sim-

plex verkleinert und das Verfahren wiederholt.

�
"
Complex Strategy of Box\/

"
constrained simplex\ [Sch81] 59: Die-

se Variante der Simplex - Strategie verwendet einen K�orper mit
mehr Knoten und expandiert diesen bei jeder Spiegelung. Au-
�erdem kann dieses Verfahren Randbedingungen einbeziehen; der

Startpunkt darf sogar
"
verboten\ sein, d.h. au�erhalb des eigent-

lichen L�osungsraums liegen.

Neben den direkten Verfahren existieren noch solche, die die partiellen

Ableitungen verwenden. Dabei ist jedoch zu beachten, da� das allge-
meine Verfolgen einer mehrdimensionalen

"
Flugbahn\ ein schwereres

Problem darstellen kann, als das eigentlich zu l�osende ([Sch81] 65).

Daher kann nur iterativ gearbeitet werden, nach folgender Formel:

xk+1 = xk � sk
rf(xk)
jrf(xk)j

: (3.10)
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Aus der Verwendung des Gradienten folgt, da� die Zielfunktion stetig

partiell ableitbar und die Ableitungen eindeutig sein m�ussen. Wieder

bekommt die Schrittweite sk eine gro�e Bedeutung, da sie die Anzahl

der Tests bestimmt und auch die Konvergenz beein
u�t. Auch hier

kann die Liniensuche f�ur Verbesserungen eingesetzt werden.

� Powell { konjugierte Richtungen [Sch81] 69: Es werden linear un-

abh�angige Vektoren ~vi aus den Gradienten bestimmt, entlang de-

rer eine Liniensuche vorgenommen wird.

� Newton{Strategien [Sch81] 75: Ist die Zielfunktion f(x) beliebig

oft di�erenzierbar, so kann aus den Werten der Funktion und ih-

rer Ableitungen an der Stelle xk der Funktionswert an einer ande-

ren Stelle angen�ahert werden (vgl. Taylor{Reihe). Als Zielfunktion

wird nun die einfachere Funktion betrachtet (z.B. eine quadrati-
sche) und der Punkt bestimmt, an der die einfache ein Minimum
h�atte. Diese Stelle wird als xk+1 f�ur neue Iterationen benutzt.

Dieses Verfahren ist jedoch sehr teuer, da zum einen eine gro�e
Matrix invertiert werden mu�, zum anderen jedoch Gleichungs-

systeme zu l�osen sind ([Sch81] 76). Daher ist dieses Verfahren
weniger geeignet f�ur nicht{quadratische Zielfunktionen.

Allerdings ist dieses Verfahren Basis f�ur diverse Verbesserungen,
sog.

"
quasi{Newton { Strategien\. Stewart entwickelte z.B. eine

ableitungsfreie Variante, die zus�atzliche Werte der Zielfunktion
zum Absch�atzen der Steilheit verwendet und so auf die Berech-
nung der Ableitungen verzichten kann. ([Sch81] 79)

3.2.3.2 Naturanaloge Verfahren

Weitere Strategien zur L�osung schwieriger Probleme sind die naturana-

logen Verfahren, die sich physikalische bzw. biologische Vorg�ange in der
Natur zum Vorbild nehmen. Diese Vorg�ange werden simpli�ziert, um

sie auf allgemeine Probleme anwenden zu k�onnen.

3. Physikalische Modelle

Die folgenden Verfahren wurden in Anlehnung an Vorg�ange in der Phy-

sik entwickelt. Gemeinsam ist ihnen, da� eine neue L�osung stets �uber-
nommen wird, so sie besser als die zuletzt gemerkte ist. Die Algorith-
men unterscheiden sich nur in den Umst�anden, die zur �Ubernahme

einer schlechteren Kon�guration f�uhren. Im allgemeinen Algorithmus

62



(Abb. 3.10) wird hierzu die Funktion g verwendet, die ~xalt anhand der

alten Belegung, der neuen Belegung, der Fitne�funktion f und des Pa-

rameters T bestimmt. Der Parameter T kann danach mit der Funktion

h ver�andert werden.

W�ahle Anfangsbelegung ~xalt
W�ahle Parameter T

repeat

~xneu := kleine �Anderung(~xalt)

~xalt := g(~xalt; ~xneu; f; T )

T := h(~xalt; ~xneu; f; T )

until Abbruchbedingung

Abbildung 3.10: Allgemeiner Algorithmus physikalischer Modelle

� Simulated Annealing (SA) [var90] 445 - 454

Hier werden die Vorg�ange beim Ausk�uhlen einer Schmelze in ein
Verfahren zum Finden einer L�osung �ubertragen: Atome suchen

sich beim Abk�uhlen den energetisch
"
g�unstigsten\ Platz. Dabei

h�angt ihre Bewegungsf�ahigkeit direkt von der Temperatur ab. Ist
die Temperatur hoch, so kann sich ein Atom weit bewegen, bevor

es zur Ruhe kommt; es kann insbesondere ein energetisch ung�unsti-
geres Energieniveau durchlaufen, um einen noch besseren Platz
zu �nden. Je k�alter es wird, desto eher bleibt es auf seinem Platz

bzw. ver�andert seinen Platz nur noch zugunsten eines energetisch
besseren.

W�ahle Anfangskonfiguration ~xalt
Setze Temperatur T auf Startwert

repeat

~xneu := kleine �Anderung(~xalt)
�E := Qualit�at(~xneu)�Qualit�at(~xalt)

P ([~xalt := ~xneu]) :=
n

1 �E�0

exp(�E
T

) sonst

if lange keine Verbesserung

oder zu viele Iterationen

then verringere T

until Abbruchbedingung

Abbildung 3.11: Simulated Annealing{Algorithmus
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Das Modell (Abb. 3.11) startet nun mit einer zuf�allig gew�ahl-

ten Kon�guration und setzt den Parameter T (
"
Temperatur\) auf

einen Startwert. Im Laufe jeder Iteration wird die Kon�guration

leicht zuf�allig ver�andert. Ist diese neue Kon�guration besser als die

alte, so ersetzt sie diese in jedem Fall. Ist sie dagegen schlechter

als die Ausgangskon�guration, dann wird diese abh�angig von der

Temperatur (einem Zahlenwert) und dem Ausma� der Verschlech-

terung zuf�allig ersetzt. Dabei nimmt diese Wahrscheinlichkeit ab,

je
"
k�alter\ es wird und je gr�o�er die Verschlechterung ist (es gilt

dann: �E < 0).

Folgende Parameter haben Ein
u� auf den Ablauf des Algorith-

mus:

{ Temperaturabnahme: Es zeigt sich, da� die Wahl der Tempe-
raturabnahme gro�en Ein
u� auf den Ablauf hat.

{ �Anderungsfunktion: Das Ausma� der �Anderung an einer Kon-
�guration bestimmt, wie der Suchraum durchschritten wird.

Sind die �Anderungen zu gering, so ist das betrachtete Ge-
biet nicht ausreichend gro�, d.h. ein entfernter liegendes Mi-
nimum bliebe unbeachtet. Sind die �Anderungen dagegen zu

gro� gew�ahlt, so kann das Minimum �ubersprungen werden.

{ Abbruchbedingung: Die Suche nach einem globalen Minimum

kann abgebrochen werden, wenn eine bestimmte Anzahl von
Versuchen ausgef�uhrt wurde oder sich �uber einen bestimmten
Zeitraum die Kon�guration nicht �andert.

� Threshold Algorithmus (TA) [GD90]
Dieses Verfahren ist eine Abwandlung des Simulated Annealing,

bei der die Wahrscheinlichkeitsberechnungen entfallen. Das Kri-

terium zur �Ubernahme einer schlechteren neuen Kon�guration
ist hierbei, da� der Betrag der Verschlechterung kleiner als ei-

ne Schwelle T ist, die im Laufe der Berechnungen immer kleiner
wird.

Beein
ussende Parameter sind hier:

{ Abnahme des Schwellwertes: Analog zum Simulated Anne-

aling hat der Werteverlauf der Schwelle gro�en Ein
u� auf
die Suche, sowohl die Qualit�at des Optimums, als auch die

Suchgeschwindigkeit betre�end. Experimente haben jedoch

gezeigt, da� dieses Verfahren robuster gegen�uber der Wahl
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dieses Parameters ist als das SA.

{ �Anderungsfunktion: s. Simulated Annealing.

{ Abbruchbedingung: s. Simulated Annealing.

� Great Deluge Algorithmus (GDA) [Due93]

Dieser Algorithmus nutzt die Idee einer
"
Sint
ut\, die eine Land-

schaft �uber
utet. Dabei stellt ein Parameter den
"
Wasserstand\

dar, ein weiterer Parameter bestimmt die
"
Regengeschwindigkeit\,

also wie schnell der Wasserstand steigt.3

Im Problemraum liegen die Werte der Funktion in Form einer

mehrdimensionalen Landschaft. Nun wird diese Landschaft �uber-


utet, d.h. der Wasserstandspegel erh�oht sich immer mehr. Man

ho�t nun, da� sich die Kon�guration auf den
"
h�ochsten Berg\,

also das globale Maximum rettet.

Wieder wird eine Kon�guration zuf�allig ver�andert und ihr Funkti-
onswert berechnet. Diesmal wird jedoch diese neue Kon�guration

unabh�angig von der Qualit�at der alten dann akzeptiert, wenn ih-
re G�ute gr�o�er als der Pegelstand ist; sie sich also weiter

"
auf

dem Trockenen\ be�ndet. Danach wird der Pegelstand um einen

Bruchteil der Di�erenz zwischen neuer G�ute und Pegel erh�oht.

Dieses Verfahren produziert �uberraschend gute Resultate, birgt

jedoch die Gefahr, auf einer
"
Insel\ gefangen zu werden.

Parameter sind:

{ Wasserpegel: Der Startwert f�ur den Wasserpegel kann sehr
klein gew�ahlt werden, da dann schon fr�uhe Werte besser sein

werden und den Pegel so sehr schnell auf ein sinnvolles Niveau
anheben.

{ Regengeschwindigkeit: Der Wasserpegel wird ggf. auf einen

Wert zwischen dem alten Stand und der Qualit�at der neuen

Kon�guration erh�oht. Dieser Parameter legt fest, wo der neue

Wert liegt.

{ �Anderungsfunktion: s. Simulated Annealing.

{ Abbruchbedingung: s. Simulated Annealing.

3
Zur besseren Anschaulichkeit wird hier also nach einem Maximum gesucht.
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� Record{To{Record Travel (RRT) [Due93]

Dieses Verfahren ist eine Variante des GDA. Hierbei wird aber

nicht ein Wasserstand betrachtet, sondern der beste bisher gefun-

dene Wert. Eine neue Kon�guration wird �ubernommen, wenn sie

zumindest nur wenig schlechter als das bisherige Optimum ist; ist

sie sogar besser, so bestimmt sie den neuen Bestwert.

Diese �Anderung beschleunigt die Suche, birgt aber die selben Ge-

fahren wie GDA.

Parameter sind:

{ erlaubte Abweichung: Um diesen Wert darf eine neue Kon�gu-

ration schlechter als die alte sein, um trotzdem angenommen

zu werden.

{ �Anderungsfunktion: s. Simulated Annealing.

{ Abbruchbedingung: s. Simulated Annealing.

Das Besondere dieser Verfahren ist ihre Einfachheit. Hierdurch k�onnen
in einer kurzen Zeit viele Kon�gurationen betrachtet werden und so

ho�t man, ein Optimum mit einer hohen G�ute zu �nden.

4. Biologische Modelle

Unter den naturanalogen Verfahren gibt es neben jenen, die physika-
lische Vorg�ange zum Vorbild haben, die Evolution�aren Algorithmen.
Diese Verfahren verwenden Ideen, die aus der Evolutionstheorie, z.B.

von Charles Darwin, abgeleitet sind.

Es gibt im wesentlichen zwei biologische Verfahren, die zur die L�osung

eines Optimierungsproblems herangezogen werden: Evolutionsstrategi-
en und Genetische Algorithmen. Der gr�o�te Unterschied zu den physi-

kalisch Methoden ist, da� hier eine Population von L�osungskandidaten

betrachtet wird. Diese Kon�gurationen werden bewertet und dienen
als Eltern{Generation zur Bildung von Nachkommen durch Rekombi-

nation. Diese Nachkommen werden zus�atzlich mutiert, bevor eine neue

Eltern{Generation aus den Individuen nach verschiedenen Kriterien
ausgew�ahlt wird.

Formal wird ein allgemeiner evolution�arer Algorithmus als 9{Tupel

EA = (P (0); �; �; l; s; rpc; rpm;�; t) (3.11)

de�niert. Die Bedeutung der Parameter kann Tabelle 3.1 entnommen

werden. Die im folgenden vorgestellten Verfahren sind Instanzen des
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allgemeinen Algorithmus nach Abb. 3.12.

P (0) 2 I� Anfangspopulation

I Suchraum (Menge der Individuen)
� 2 N Populationsgr�o�e

� 2 N Nachkommenzahl

l 2 N String{L�ange
s : I�+� ! I� Selektionsoperator

rpc : I
� ! I� Crossover{Operator

pc 2 [0; 1] Crossover{Wahrscheinlichkeit

mpm : I ! I Mutationsoperator

pm 2 [0; 1] Mutationswahrscheinlichkeit
� : I ! R Fitne�{Funktion

t : I� ! f0; 1g Abbruchbedingung

Tabelle 3.1: Bedeutung der EA{Parameter

W�ahle eine Anfangspopulation

W�ahle Belegung f�ur Parameter

Bewerte Individuen

while keine ausreichend gute L�osung

und nicht genug Versuche

do Erzeuge neue Population aus alter

Mutiere die Population

Bewerte die Population

W�ahle neue Elterngeneration aus

end

Abbildung 3.12: Allgemeiner Evolution�arer Algorithmus

� Evolutionsstrategien [TB93]
Analog zu den Vorg�angen in der Natur wird hier eine Menge (Po-

pulation) von Stichproben (Individuen) betrachtet. Ein Individu-
um wird durch einen Vektor reeller Werte dargestellt und ist ein

L�osungskandidat.

Aus einer Anfangspopulation werden durch Rekombination, d.h.

Kreuzung, der Individuen Nachkommen gebildet, denen die
"
El-

tern\ ihre Eigenschaften vererben, hier also das
"
Wissen\ �uber
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den L�osungsraum. Die Nachkommen werden zuerst mutiert und

dann bewertet. Die besten bilden dann die neue Population. Da-

bei kann die Konkurrenz der Individuen die Elterngeneration mit

einbeziehen oder auch nur aus Nachkommen bestehen.

Durch die Mutation durchwandern die Kon�guration den L�osungs-

raum. Auf die Parameter wird eine normalverteilte Zufallsvariable

mit Erwartungswert 0 addiert, wobei die Standardabweichung ent-

weder fest vorgegeben, meist jedoch von einem Strategieparameter

bestimmt wird. Dies �ahnelt dem Hill{Climbing, da ein Punkt in

der Umgebung der Kon�guration betrachtet wird.

Die Kreuzung belegt jeden Parameter des Nachkommen a0 mit

einem Wert, der zwischen den Werten a1 und a2 der Elternindi-

viduen an dieser Stelle liegt (Abb. 3.13). Dies f�uhrt zu gr�o�eren
Spr�ungen im Suchraum, als es die Mutation vermag { die Suche

wird in neue Gebiete gelenkt.

0 a2a1 a’

Abbildung 3.13: Ermittlung eines neuen Parameterwerts

Jedes Individuum besteht aus Strategie- und Problemparametern.
Die Problemparameter de�nieren den Punkt im Suchraum. Es ist

also das Ziel, diese Parameter zu optimieren. Die Strategiepara-
meter andererseits beein
ussen, wie dieses Ziel erreicht wird. Sie
gehen daher nicht in die Qualit�atsbeurteilung ein.

Das Besondere dieser Strategien ist, da� die Strategieparameter

ebenfalls der Evolution unterliegen. Somit entwickeln sich nicht

nur die Parameter der Kon�gurationen auf ein Optimum hin, son-

dern auch die Art und Weise, wie der Suchraum durchwandert
wird, pa�t sich dem Suchraum an.

Folgende Parameter beein
ussen den Ablauf der Suche:

{ Populationsgr�o�e �: Anzahl der Individuen einer Population.

{ Nachkommenzahl �: Anzahl der Nachkommen, die aus einer

Population erzeugt werden.
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{ Strategieparameter: Zum Start der Suche k�onnen ihnen zuf�al-

lige Werte zugewiesen werden, da sie wie die L�osungspara-

meter optimiert werden. Sie beein
ussen die Mutation, die

Hauptoperation der evolution�aren Algorithmen. Sie geben die

Schrittweite an, mit der der Suchraum durchsucht wird und

die Wahrscheinlichkeit, mit der eine Suchrichtung ausgew�ahlt

wird.

{ Vererbungsstrategie: Dies ist die Art, auf die die Werte der

Eltern{Individuen in die Nachkommen �ubergehen. M�oglich ist

z.B., da� die Werte direkt von einem Elternteil genommen

werden oder da� ein neuer Wert zuf�allig zwischen den beiden

Werten der Eltern liegt.

{ Auswahlstrategie: Sie bestimmt, welche Individuen einer Ge-
neration �uberleben und die neue Elterngeneration bilden. Nor-

malerweise werden die � besten Exemplare �ubernommen.

� Genetische Algorithmen [HPS92]

Diese Verfahren sind den Evolutionsstrategien �ahnlich, da sie eben-
falls auf Populationen von Individuen arbeiten; jedoch betrachten
sie nur Bitvektoren. Der L�osungsraum mu� also zun�achst bin�ar

kodiert werden.

Die Rekombination (
"
Crossover\) der Individuen erfolgt durch Zu-

sammensetzen eines neuen Exemplars aus den Bits der Eltern.
Dabei wird f�ur jede Position entweder das Bit des einen oder des
anderen Elternteils �ubernommen.

Die Strategieparameter werden vor dem Start des Programms fest-
gelegt und �andern sich nicht w�ahrend der Ausf�uhrung. Sie legen

z.B. die H�au�gkeit der Mutationen fest, oder wie sehr die Fit-

ne� eines Individuums in die Wahrscheinlichkeit eingeht, f�ur die
Rekombination ausgew�ahlt zu werden.

Bei der Kreuzung wird jedes Bit entweder vom einen oder anderen
Elternindividuum genommen. �Ublich ist hierbei der

"
Einpunkt{

Crossover\, d.h. beide Individuen werden an der selben Stelle zer-
schnitten und der vordere Teil vom einen, der hintere Teil vom

anderen �ubernommen. Dies geschieht jedoch ohne Beachtung der

Bedeutung der einzelnen Bits. Daher kann der Nachkomme sehr

"
weit\ von den Eltern entfernt liegen { Somit wird vor allem durch

die Kreuzung der Suchraum durchschritten, was sie zum Haupt-

operator der Genetischen Algorithmen macht.
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Mutiert werden die Strings, indem an einer zuf�allig gew�ahlten

Stelle ein Bit negiert oder zuf�allig besetzt wird. Dies geschieht

aber nicht wie bei den Evolutionsstrategien sehr h�au�g (z.B. mit

Mutationswahrscheinlichkeit pm � 0:5), sondern nur sehr selten

(pm = 10�3) und dient nur dazu, auch andere als die zum Start

existenten Bit{Belegungen im Laufe der Zeit zu erfassen: Ist der

Wert eines Bits in allen Individuen gleich, so kann auch in den

Nachkommen durch das Crossover kein anderer Wert an dieser

Stelle erzeugt werden. Ein Teil des Suchraums w�are also ohne

Mutation nicht mehr erreichbar.

Im �ubrigen verl�auft der Algorithmus analog zu den Evolutions-

strategien. Besonders beachtet werden mu� jedoch, da� die Art

der Kodierung einen gro�en Ein
u� auf den Ablauf und die Qua-
lit�at der L�osung hat. Da nur Bin�arkodierungen m�oglich sind, mu�
eine Abbildungsfunktion verwendet werden. Zudem schr�ankt die

Anzahl der Bits die Genauigkeit �x ein:

�x =
o� u

2l � 1
(3.12)

wobei o; u Ober- und Untergrenze, l die Anzahl der Bits darstellt.
Dies ist ein weiterer Unterschied zu den Evolutionsstrategien, bei

denen oft der Vektor selbst den Punkt im Suchraum darstellt.

Folgende Parameter beein
ussen den Ablauf der Suche:

{ Populationsgr�o�e � und Nachkommenzahl �.

{ Auswahlstrategie: Die Wahrscheinlichkeit, mit der ein Indivi-
duum zur Rekombination ausgew�ahlt wird, h�angt von seiner
Fitne� ab, im einfachsten Fall proportional. Zudem kann hier-

mit die Crossover{H�au�gkeit festgelegt werden.

{ Mutationswahrscheinlichkeit: Hiermit kann die H�au�gkeit der

Mutation eingestellt werden.

{ Crossover{Verfahren: Es gibt viele M�oglichkeiten, wie Nach-

kommen aus einem Elternpaar erzeugt werden k�onnen. Neben

einfachen L�osungen wie Vertauschen der Bit{Ketten an einer
zuf�allig gew�ahlten Stelle, gibt es die M�oglichkeit, jedes Bit

zuf�allig von einem Elternteil zu �ubernehmen.

{ Kodierung: Sie hat einen gro�en Ein
u� auf die Konvergenz

des Verfahrens. Ist sie ung�unstig gew�ahlt, so verhindert dies

das schnelle Finden des Optimums.
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{ Skalierungsfunktion: Da der Qualit�atsunterschied der einzel-

nen Individuen mitunter zu gering ist, um die Auswahlwahr-

scheinlichkeit e�ektiv zu beein
ussen, m�ussen diese Unter-

schiede
"
verst�arkt\ werden. So kann eine Stagnation der Ent-

wicklung vermieden werden.

3.2.4 Fazit

Diese Sammlung von Problemen und Optimierungsverfahren stellt nat�urlich

keine vollst�andige Aufz�ahlung dar. Es sind vielmehr typische Beispiele be-

trachtet worden. Au�erdem werden st�andig neue Verfahren entwickelt und

bekannte abgewandelt. Eine neuere Entwicklung sind z.B. die
"
hybriden Ver-

fahren\, die mehrere einfache Optimierungsverfahren zu einem neuen kom-
binieren.
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3.3 Genetisches Programmieren

Programme zur Bearbeitung von Problemen mit naturanalogen Verfahren

sind bereits in gr�o�erer Anzahl verf�ugbar. Die meisten dieser Programme

sind nicht 
exibel einsetzbar, d.h. sie k�onnen nur wenige (ein) Verfahren auf

einfache
"
Standardprobleme\ anwenden. Ziel der Projektgruppe ist die Er-

stellung eines Systems, das eine gro�e Flexibilit�at bietet. Der Benutzer soll

die M�oglichkeit haben, auch kompliziertere Probleme mit dem System zu

bearbeiten. Ein solches Problem ist Genetisches Programmieren. W�ahrend

genetische Algorithmen die Punkte des Suchraums meist als Bit{Tupel fe-

ster L�ange darstellen, verwendet man bei Genetischem Programmieren Syn-

taxb�aume einer Programmiersprache. Entsprechend m�ussen die Operatoren

Teilb�aume bestimmen, entfernen und hinzuf�ugen k�onnen. Auch die Fitne�-
funktion ist komplizierter, sie mu� u.a. einen Interpreter f�ur die verwendete

Programmiersprache enthalten. Um eine Vorstellung der M�oglichkeiten, die
das System bieten soll, zu vermitteln, wurde Genetisches Programmieren im
Rahmen eines Seminarvortrags der Projektgruppe vorgestellt.

3.3.1 Einf�uhrung

Viele in der Praxis auftretende Probleme sind NP{vollst�andig, d.h. es ist

kein deterministischer Algorithmus bekannt, der das Problem mit vertretba-
rem (polynomiellem) Aufwand l�ost. Zur Bearbeitung solcher Probleme kann

man Genetische Algorithmen einsetzen, die zwar in der Regel keine optimale,
oft aber eine

"
gute\ L�osung f�ur das Problem liefern. Hier soll eine M�oglich-

keit vorgestellt werden, einen Genetischen Algorithmus zur Erzeugung von

Computerprogrammen einzusetzen. Da eine Kodierung, wie bei Genetischen
Algorithmen normalerweise verwendet, hier nicht sinnvoll erscheint, unter-

scheidet sich Genetisches Programmieren deutlich von anderen Genetischen

Algorithmen.

3.3.2 Informelle Beschreibung

3.3.2.1 Genetischer Algorithmus

Konventionelle Genetische Algorithmen arbeiten wie folgt: Gegeben ist ei-

ne reellwertige Funktion, gesucht ein Element aus der De�nitionsmenge der
Funktion, f�ur das der Funktionswert m�oglichst gro� (m�oglichst klein) ist.

72



Die Funktion bezeichnet man als Fitne�funktion, ihre De�nitionsmenge als

Suchraum oder L�osungsraum. �Ublicherweise kodieren Genetische Algorith-

men die Punkte des Suchraums in Bit{Tupel. Der Algorithmus verwaltet

einen Vektor (Population) solcher Bit{Tupel (Individuen), die er schrittweise

dem Optimum anzun�ahern versucht. In jedem Schritt (Generation) erzeugt

er durch Ver�andern der Bit{Tupel einen neuen Vektor. Zur Erzeugung der

neuen Individuen werden ein Rekombinations{ und ein Mutationsoperator

verwendet. Der Rekombinationsoperator bildet zwei neue kodierte Individu-

en durch Vermischen der Bit{Tupel zweier alter Individuen. Man versucht

dadurch,
"
gute\ Eigenschaften der Eltern in den Nachkommen zu vereinen.

Der Mutationsoperator �andert dann zuf�allig in den neuen Bit{Tupeln eini-

ge Bits, um ggf.
"
verlorengegangene\ Eigenschaften wieder herzustellen. Die

Wahrscheinlichkeit ein Individuum zu mutieren, w�ahlt man sehr klein, da

sich der Genetische Algorithmus sonst wie eine Zufallssuche verh�alt.

3.3.2.2 Genetisches Programmieren

Bei Genetischem Programmieren besteht der Suchraum aus der Menge aller
Zeichenfolgen, die syntaktisch korrekte Programme in einer beliebig gew�ahl-
ten Programmiersprache sind. Da eine Kodierung der Programme in Bit{

Tupel fester L�ange kaum m�oglich ist, arbeitet der Algorithmus f�ur Geneti-
sches Programmieren direkt auf den unkodierten Individuen [Koz92]. Prinzi-

piell kann jede Programmiersprache verwendet werden. Da Rekombinations{
und Mutationsoperator auf den Syntaxb�aumen der Programme arbeiten, sind
Lisp{�ahnliche Sprachen besonders geeignet. Der Syntaxbaum kann bei diesen

Sprachen direkt aus dem Progamm abgelesen werden, Umformungen entfal-
len. Die hier verwendete Sprache wird in Kapitel 3.3.4.1 de�niert, ein Pro-

gramm in der Sprache ist z.B.:
(ifeqz (neg (X)) (pi) (* (X) (Y)))

Der Rekombinationsoperator erzeugt aus zwei Programmen zwei neue Pro-

gramme, indem er in beiden Syntaxb�aumen zuf�allig je einen Knoten ausw�ahlt
und die an diesen Knoten beginnenden Unterb�aume austauscht. Abbildung

3.14 zeigt die beiden Eltern, in denen die ausgew�ahlten Knoten dick um-
randet sind, sowie die beiden entstehenden Nachkommen. Der Mutations-

operator w�ahlt aus einem Baum zuf�allig einen Knoten aus, und tauscht den

Unterbaum gegen einen zuf�allig erzeugten aus. Der ausgew�ahlte Knoten ist
in Abbildung 3.15 dick umrandet.

An der Rekombination und der Mutation nehmen i.A. nicht alle Individuen
der Population teil. Die Eltern f�ur die Rekombination werden durch einen

73



neg

X

pi *

ifeqz

X Y

neg

X

pi

ifeqz

+

rlog neg

+

X X

Y

+

neg

Y

*

X Y

rlog

+

X X

Eltern

Nachkommen

0

1

2

3 4

5 6

0

1

2

3 4

5

6

Abbildung 3.14: Rekombination

X YY

+ neg

X

X Y

+

X

exp

-

X Y

exp

-

X Y

zufällig erzeugter

Teilbaum

zu mutierendes

Individuum

mutiertes Individuum

0

1

2 3

4

5

Abbildung 3.15: Mutation

74



Auswahloperator bestimmt, nach der Mutation werden durch einen Selekti-

onsoperator einige Individuen aus der alten Population unver�andert in die

neue Population kopiert (siehe auch Abbildung 3.16). Auswahl{ und Selek-

tionsoperator w�ahlen Individuen mit hoher Fitne� mit gr�o�erer Wahrschein-

lichkeit aus.

Die Fitne�funktion gibt hier an, wie gut ein Programm ein vorgegebenes

Problem l�ost. Der Funktionswert wird ermittelt, indem man das Programm

mit mehreren repr�asentativen Eingaben testet und die Ergebnisse bewertet.

3.3.3 Schwierigkeiten bei der Implementierung

Bei der Bewertung der Programme ergeben sich folgende Probleme, die einige
Einschr�ankungen der Beispielsprache n�otig machen:

� Ergebnistypen der Funktionen: Rekombinations{ und Mutationsopera-
tor k�onnen Programme erzeugen, in denen Funktionen mit Argumenten
des falschen Typs aufgerufen werden. Um dieses Problem zu umgehen,

gibt es in der Beispielsprache nur einen Datentyp.

� fehlerhafte Programme: Rekombinations{ und Mutationsoperator wer-

den so de�niert, da� sie nur syntaktisch korrekte Programme erzeugen
k�onnen. Bei Funktionen mit De�nitionsl�ucken kann es zu Laufzeitfeh-
lern kommen, in der Beispielsprache werden daher nur totale Funktio-

nen zugelassen.

� Endlosschleifen: Falls ein Programm eine Schleife mit unerf�ullbarer Ab-

bruchbedingung enth�alt, terminiert die Funktion zur Berechnung der
Fitne� nicht. Die Beispielsprache l�a�t deswegen keine Schleifen oder Re-

kursionen zu. Dieses Problem wird in Kapitel 3.3.7 noch ausf�uhrlicher
diskutiert.

3.3.4 Beispielsprache

3.3.4.1 Syntax

Die Menge C der Funktionssymbole der Sprache setzt sich aus drei disjunkten

Teilmengen zusammen. Die Elemente der Mengen sind hier nur als Beispiele

angegeben, da die Mengen jeweils dem konkreten Problem angepa�t werden.

� Tconst = fnull; pi; : : :g Konstantensymbole
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� Tvar = fX; Y; : : :g Variablensymbole
� F = f+; -; *; ifeqz; : : :g Menge von mehrstelligen Funktionssymbolen

� T = Tconst [ Tvar Menge von nullstelligen Funktiossymbolen

� C = T [ F

Auf der Menge der Funktionssymbole ist eine totale Funktion z : C ! N

de�niert, die die Stelligkeit der Funktionssymbole angibt. Die Sprache wird

von der kontextfreien Grammatik G erzeugt.

G = (fSg;�; P; S) mit

� = C [ f(; )g;
P = fS ! u j u = (fSi); f 2 C; i = z(f)g

3.3.4.2 Semantik

Um die Fitne� eines Programms berechnen zu k�onnen, mu� f�ur die Beispiel-
sprache eine Semantik de�niert werden. Hier wird eine denotationelle Seman-
tik angegeben, d.h. die Semantik eines Programms in der Beispielsprache ist

eine Funktion, die eine Speicherbelegung auf einen Ergebniswert abbildet.
Eine Speicherbelegung

mem 2 MEM = (Tvar ! R)

ist eine totale Funktion, die jeder Variable einen Wert zuordnet. Die Seman-

tikfunktion
Sem : L(G)! (MEM ! R)

bildet ein Programm auf seine Semantik ab.

Analog zur Menge der Funktionssymbole wird auch deren Semantik f�ur jedes
Problem angepa�t. Beispielhaft hier die Semantik einiger Funktionssymbole:

� Sem((null)) := �mem:0

� Sem((X)) := �mem:mem(X) (analog f�ur alle Variablen aus Tvar)

� Sem((+ u v)) := �mem:Sem(u)(mem) + Sem(v)(mem)

� Sem((ifeqz u v w)) :=�
�mem:Sem(v)(mem); falls Sem(u)(mem) = 0
�mem:Sem(w)(mem); sonst
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3.3.5 Formalisierung

Der Algorithmus f�ur Genetisches Programmieren wird als Instanz des Basi-

salgorithmus [Koh95, Kapitel 4] formalisiert. In Kapitel 3.3.5.1 werden die

Parameter des Basisalgorithmus vorbelegt sowie einige zus�atzliche Parameter

eingef�uhrt, in Kapitel 3.3.5.3 werden die Operatoren de�niert. Der Algorith-

mus selbst wird in Kapitel 3.3.5.2 kurz vorgestellt. Sofern in [Koh95] und

[Koz92] unterschiedliche Bezeichnungen f�ur Parameter verwendet werden,

orientieren sie sich hier an [Koh95].

3.3.5.1 Parameter

Spezielle Parameter f�ur Genetisches Programmieren:

� tmax: Anzahl Generationen, die bis zum Abbruch erzeugt werden

� Dinitial: maximale Tiefe der Individuen in der Anfangspopulation und
der Teilausdr�ucke, die vom Mutationsoperator in existierende Indivi-

duen eingesetzt werden

� pm: Wahrscheinlichkeit, da� ein Individuum mutiert wird

� (mem1; : : : ; memn) 2 MEM n: Speicherbelegungen zur Berechnung der
Fitne�

Parameter des Basisalgorithmus (siehe [Koh95]):

� Ind 2 IND := L(G): Individuum

� � := 20n; n 2 N : Anzahl der Individuen in einer Population
Pop 2 POP := IND�

� Pop0 2 POP : Startpopulation

� � := 9
10
�: Anzahl der Individuen f�ur Rekombination

� nm =
PDinitial

k=0 (maxfz(f) j f 2 Cg)k + 1: Anzahl Zufallszahlen f�ur

lokale Mutation

� nM = (nm + 1)�: Anzahl Zufallszahlen f�ur Mutation

3.3.5.2 Algorithmus

Abbildung 3.16 veranschaulicht die Arbeitsweise des Algorithmus bei der

Erzeugung einer neuen Generation. Die Operatoren r und m sind lokale Un-

77



� Individuen

� Ind.

� Ind.

� Ind.

�� � � Ind.

Et

N1;t

N2;t

Pt

Pt+1

Rekomb. R

Mutation M

Auswahl A

Selektion S

r

m

r

m

Abbildung 3.16: Erzeugung einer neuen Generation

teroperatoren von R und M , die jeweils auf zwei bzw. einem Individuum

arbeiten.

t := 0

REPEAT

Et := A(Pt;Uniform([0; 1); �))

N1;t := R(Et;Uniform([0; 1); �))
N2;t := M(N1;t;Uniform([0; 1); nM))
Pt+1 := S(Pt; N2;t;Uniform([0; 1); �� �))

t := t + 1
UNTIL H(t)

Dabei sind die Variablen:

� Pt Population zum Zeitpunkt t

� Et Elterngeneration

� N1;t vom Rekombinationsoperator erzeugte Nachkommengeneration

� N2;t mutierte Nachkommengeneration

78



Uniform([0; 1); n) liefert n zuf�allig aus dem Intervall [0; 1) gew�ahlte reelle

Zahlen.

3.3.5.3 Operatoren

Fitne� Die Fitne� eines Individuums wird berechnet, indem man das In-

dividuum auf jeder der Speicherbelegungen (mem1; : : : ; memn) 2 MEM n

ablaufen l�a�t, und mit den Ergebnissen zun�achst eine Raw{Fitne� fraw :

IND ! R bestimmt. Diese Funktion kann z.B. so aussehen:

� falls f�ur die Speicherbelegungen Sollergebnisse (x1; : : : ; xn) bekannt

sind: fraw(u) =
Pn

i=1 j xi � Sem(u)(memi) j
� f�ur Maximierungs{ oder Minimierungsprobleme, bei denen das Ergeb-
nis nicht bekannt ist: fraw(u) =

Pn

i=1 Sem(u)(memi).

Aus der Raw{Fitne� l�a�t sich die Fitne� f : IND ! [0; 1] des Individuums
berechnen. Der Funktionswert mu� zwischen null und eins liegen und f�ur bes-

sere Individuen gr�o�er sein. Da bessere Individuen abh�angig vom Problem
eine gr�o�ere oder kleinere Raw{Fitne� haben, ist die Berechnung proble-
mabh�angig, z.B. f�ur Minimierungsprobleme, oder falls Sollwerte vorgegeben

sind, mit

f(u) =
1

1 + fraw(u)
;

bei Maximierungsproblemen mit

f(u) =
fraw(u)

1 + fraw(u)
:

Auswahl{ und Selektionsoperator verwenden proportionale Selektion und be-
n�otigen die relative Fitne� frel : f1; : : : ; �g � POP ! [0; 1], mit

frel(i; (u1; : : : ; u�)) =
f(ui)P�

k=1 f(uk)
;

die die Fitne� des i{ten Individuums in der Population ~u = (u1; : : : ; u�)
ergibt, wobei die Summe �uber die Fitne�werte aller Individuen aus ~u eins ist.

Auswahl Der Auswahloperator

A : POP � [0; 1)� ! IND�
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(~u; (a1; : : : ; a�)) 7! ~u0

bestimmt die Individuen aus der Population ~u = (u1; : : : ; u�), die an der Re-

kombination teilnehmen. Es wird proportionale Selektion angewendet, d.h.

die Wahrscheinlichkeit, da� ein bestimmtes Individuum ausgew�ahlt wird,

verh�alt sich propotional zu seiner relativen Fitne�. Dadurch werden bes-

sere Individuen mit einer gr�o�eren Wahrscheinlichkeit �ubernommen, aber

auch schlechte Individuen k�onnen in ~u0 aufgenommen werden. Ein in ~u0 ein-

gef�ugtes Individuum wird nicht aus ~u gel�oscht, so da� dasselbe Individuum

aus ~u mehrmals in ~u0 vorkommen kann.

A((u1; : : : ; u�); (a1; : : : ; a�)) = (u01; : : : ; u
0
�)

:, 8i 2 f1; : : : ; �g : u0i = uj; 1 � j � �

mit
Pj�1

k=1 frel(k; ~u) � ai <
Pj

k=1 frel(k; ~u)

Rekombination Der lokale Rekombinationsoperator tauscht zwischen
zwei Individuen zwei Teilausdr�ucke aus. Die Funktion

SubExp : L(G)� N ! L(G)

(u; n) 7! v

wird dabei verwendet, um den n{ten Teilausdruck von u zu bestimmen (Der
lokale Mutationsoperator verwendet diese Funktion ebenfalls).

SubExp(u; n) :=

�
v; falls 0 � n < FkSym(u)

"; sonst
v ist das k�urzeste Wort, so da�
9�; �; 
 2 �� : u = �v�; v = (
); ](� = n; ](v = ])v

Dabei ergibt die Funktion FkSym : L(G) ! N mit FkSym(u) := ](u die

Anzahl der Funktionssymbole in u.

Beispiel 1

Sei u = (ifeqz (neg (X)) (pi) (* (X) (Y))). Dann ist

SubExp(u; 4) = (* (X) (Y)) (siehe auch Abbildung 3.14).

Mit dem lokalen Rekombinationsoperator

r : IND � IND � [0; 1)� [0; 1)! IND � IND

(u; v; a; b) 7! (u0; v0)
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werden in zwei Individuen u und v mit den Zufallszahlen a und b zwei Teil-

ausdr�ucke bestimmt und durch Austausch der Teilausdr�ucke die neuen Indi-

viduen u0 und v0 erzeugt.

r(u; v; a; b) = (u0; v0) :, 9x; y; �; �; 
; � 2 �� :

x = SubExp(u; bFkSym(u) � ac); y = SubExp(v; bFkSym(v) � bc);
u = �x�; v = 
y�; u0 = �y�; v0 = 
x�

Der Rekombinationsoperator

R : IND� � [0; 1)� ! IND�

wendet die lokale Rekombination auf je zwei nebeneinanderstehende Indivi-

duen in der Population ~u an.

R((u1; : : : ; u�); (n1; : : : ; n�)) = (v1; : : : ; v�)

:, 8k 2 f1; : : : ; �
2
g : (v2k�1; vk) = r(u2k�1; uk; n2k�1; nk)

(�
2
2 N , da � = 18n mit n 2 N)

Mutation Der Mutationsoperator tauscht in einem Individuum einen Tei-

lausdruck gegen einen zuf�allig erzeugten aus. Der zu ersetzende Teilausdruck
wird mit der Funktion SubExp bestimmt, den neuen Teilausdruck erzeugt die

Funktion
Init : N � L0(G)� [0; 1)+ ! L0(G)

(n; u;~a) 7! v

mit L0(G) = fu 2 (� [ fSg)� j S )� ug. ~a ist ein Vektor aus Zufallszahlen,

die zur Auswahl der Funktionssymbole verwendet werden, n die maximale
Schachtelungstiefe des erzeugten Ausdrucks.

Die Funktion

Level : (� [ fSg)� ! N

gibt die Tiefe an, auf der sich das erste Nichtterminal aus G im teilweise

abgeleiteten Wort u be�ndet.

Level(u) = n :, 9v 2 ��; w 2 (� [ fSg)� : u = vSw; n = ](v � ])v

Sei PT = f(S ! (f)) j f 2 Tg � P die Menge aller Regeln in G, deren

rechte Seite kein Nichtterminal enth�alt. Seien

dT : f1; : : : ; j PT jg ! PT ; dC : f1; : : : ; j P jg ! P
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beliebige Bijektionen.

Die Funktion Init simuliert Linksableitungsschritte der Grammatik G. Bei

jedem Funktionsaufruf wird ein Nichtterminal S durch ein Funktionssymbol

ersetzt, wobei nur Symbole f�ur nullstellige Funktionen verwendet werden,

falls sich das zu ersetzende Nichtterminal auf der maximal erlaubten Tiefe n

be�ndet.

Init(n; u; (a1; : : : ; ak)) :=

8<
:

u; falls ]Su = 0

Init(n; v; (a2; : : : ; ak)); sonst

mit

8<
:

u)L v bei Anwendung der Regel dC(ba1� j P jc+ 1); falls

Level(u) < n

u)L v bei Anwendung der Regel dT (ba1� j PT jc+ 1); sonst

Beispiel 2

Sei Tconst = fg; Tvar = fX; Yg; F = fexp; -g.
Sei dT (1) = rC(1) = X; dT (2) = rC(2) = Y; dC(3) = exp; dC(4) = -.
Zur Erzeugung des Ausdrucks wurden die Zufallszahlen 0.6, 0.9, 0.2 und 0.7

gezogen. Dann gilt:
Init(2; S; (0:6; 0:9; 0:2; 0:7)) = (exp (- (X) (Y))),

wobei die Ableitung
S )L (exp S))L (exp (- S S)))L (exp (- (X) S))

)L (exp (- (X) (Y)))

durchgef�uhrt wird.

Der lokale Mutationsoperator

m : IND � [0; 1)nm ! IND

(u;~a) 7! v

bestimmt mit der Zufallszahl n1 einen Teilausdruck im Individuum u und
tauscht ihn gegen einen mit den Zufallszahlen n2; : : : ; nnm erzeugten Aus-

druck aus.

m(u; (a1; : : : ; anm)) = v :, 9x; y; �; � 2 �� :

x = SubExp(u; bFkSym(u) � a1c); y = Init(Dinitial; S; (a2; : : : ; anm));

u = �x�; v = �y�

Der Mutationsoperator

M : IND� � [0; 1)nM ! IND�
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(~u; (a1; : : : ; anM )) 7! ~u0

entscheidet zun�achst mit der Zufallszahl anm�+i, ob das i{te Individuum der

Population ~u = (u1 : : : ; u�) mutiert wird, wendet ggf. die lokale Mutation auf

das Individuum an oder kopiert es unver�andert in ~u0.

M((u1; : : : ; u�); (a1; : : : ; anM )) = (u01; : : : ; u
0
�)

:, 8i 2 f1; : : : ; �g : u0i =
�

m(ui; (a(i�1)nm+1; : : : ; ainm)); falls anm�+i � pm
ui; sonst

Selektion Der Selektionsoperator

S : POP � IND� � [0; 1)��� ! POP

(~u;~v; (a1; : : : ; a���)) 7! ~w

kopiert die vom Mutationsoperator ausgegebenen � Individuen aus ~v =

(v1; : : : ; v�) unver�andert in die n�achste Generation ~w und w�ahlt, um die
neue Generation auf � Individuen aufzuf�ullen, aus der letzten Generation
~u = (u1; : : : ; u�) weitere �� � Individuen mit proportionaler Selektion aus,

die ebenfalls unver�andert in die neue Generation �ubernommen werden.

S((u1; : : : ; u�); (v1; : : : ; v�); (a1; : : : ; a���)) = (u01; : : : ; u
0
���; v1; : : : ; v�)

:, 8i 2 f1; : : : ; �� �g : u0i = uj; 1 � j � �;

mit
Pj�1

k=1 frel(k; ~u) � ai <
Pj

k=1 frel(k; ~u)

Abbruchbedingung Es werden tmax Generationen erzeugt:

H : N ! B

H(t) :, t = tmax

Die Abbruchbedingung kann ggf. noch erweitert werden. So kann z.B. der
Algorithmus abbrechen, sobald die Fitne� des besten Individuums einer Ge-

neration einen bestimmten Wert �uberschreitet.

3.3.6 Beispiel: Symbolic Regression

Beim folgenden Beispiel handelt es sich um eine sehr einfache Anwendung

f�ur Genetisches Programmieren. Es wird kein
"
Programm\ im engeren Sinn,
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sondern nur ein arithmetischer Ausdruck erzeugt. Einige der in Kapitel 3.3.7

genannten Probleme werden dadurch umgangen.

Gegeben ist eine Menge von St�utzstellen in einem cartesischen Koordinaten-

system. Gesucht ist eine Funktion, deren Funktionswerte an den St�utzstellen

m�oglichst wenig von den vorgegebenen Werten abweicht.

Zun�achst wird die zu verwendende Sprache festgelegt, die hier nur eine Va-

riable sowie einige mathematische Funktionen enthalten mu�.

� Tconst = fg; Tvar = fXg
� F = f+; -; *; %; sin; cos; exp; rlogg
� z(X) = 0;

z(sin) = z(cos) = z(exp) = z(rlog) = 1;
z(+) = z(-) = z(*) = z(%) = 2

Die Semantik von X wurde bereits in Kapitel 3.3.4.2 de�niert. Die Semantik
der Funktionssymbole +, -, *, sin, cos, exp sind die Funktionen gleichen
Namens. Da die Division und der Logarithmus auf R keine totalen Funktionen

sind, werden sie hier durch die totalen Funktionen % und rlog ersetzt.

� Sem((% u v)) =

�
�mem:0; falls Sem(v)(mem) = 0
�mem:Sem(u)(mem)=Sem(v)(mem); sonst

� Sem((rlog u)) =

�
�mem:0; falls Sem(u)(mem) = 0
�mem:ln j Sem(u)(mem) j; sonst

Anschlie�end wird die Fitne�funktion de�niert: St�utzstellen sind die Funk-
tionswerte des Polynoms x4 + x3 + x2 + x an 20 Stellen aus dem Intervall

[�1; 1].
� mem1(X) = �19

20
; mem2(X) = �17

20
; : : : ; mem19(X) =

17
20
; mem20(X) =

19
20

� 8i 2 f1; : : : ; 20g : xi = memi(X)
4 +memi(X)

3 +memi(X)
2 +memi(X)

Die Raw{Fitness ist hier: fraw(u) =
P20

i=1 j xi � Sem(u)(memi) j. Im Ge-
gensatz zum formalisierten Algorithmus wird hier auch die Tiefe der vom
Rekombinations{ und Mutationsoperator erzeugten Individuen beschr�ankt

(Dcreated = 17), sowie in jeder Generation das beste Individuum ermittelt.

Weitere Parameter sind:

� Dinitial = 6

� � = 500

� tmax = 51
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Ergebnisse (die Klammern um die Funktionssymbole sind weggelassen):

� Bestes Individuum in Generation 0:

(* X (+ (+ (- (% X X) (% X X)) (sin (- X X)))

(rlog (exp (exp X)))))

entspricht xex

� Bestes Individuum in Generation 2:

(+ (* (* (+ X (* X (* X (% (% X X) (+ X X)))))

(+ X (* X X))) X) X)

entspricht 3
2
x4 + 3

2
x3 + x

� Bestes Individuum in Generation 34:

(+ X (* (+ X (* (* (+ X (- (cos (- X X)) (- X X)))X)X))X))

entspricht x4 + x3 + x2 + x

In Generation 34 trat ein Individuum mit bestm�oglicher Fitne� auf. Ihm ist
die �Aquivalenz zu dem zur Berechnung der Testwerte verwendten Ausdrucks

nicht mehr anzusehen (siehe auch Kapitel 3.3.7).

3.3.7 Fazit

Die Festlegung der Funktionen und Variablen der Sprache und der Parameter

des Algorithmus (Dcreated und Dinitial) setzen eine grobe Vorstellung von
der Art und Gr�o�e eines Programms, das das gestellte Problem l�osen kann,

voraus. Falsche Wahl der Parameter f�uhrt entweder zu einer langen Laufzeit
des Algorithmus oder zu einem Programm, das das Problem nur schlecht
oder gar nicht l�ost. Dasselbe gilt f�ur die Funktionen der Programmiersprache.

Das ist kein spezieller Nachteil des Genetischen Programmierens, auch bei
anderen naturanalogen Verfahren (z.B. Simulated Annealing) ist die Qualit�at

des Ergebnisses stark von der Wahl der Parameter abh�angig.

Ein gr�o�eres Problem ist die Bewertung der erzeugten Programme: Falls die

Menge der m�oglichen Eingaben f�ur das Programm sehr gro� oder unendlich

ist, kann die Fitne�funktion den Test nur auf einer Teilmenge der m�oglichen

Eingaben durchf�uhren. Man kann i.A. nicht schlie�en, da� ein Programm, das

f�ur diese Testwerte optimale Ergebnisse erzeugt, das auch f�ur alle anderen

Eingaben leistet. Die erzeugten Programme sind auch bei kleinen Problemen

sehr schwer nachvollziehbar (siehe Kapitel 3.3.6), so da� eine nachtr�agliche

Bewertung durch den Benutzer ebenfalls kaum m�oglich ist.
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Da die Berechnung der Fitne� sicher terminieren soll, mu� der Fitne�opera-

tor die M�oglichkeit haben, zu entscheiden, ob ein Programmlauf mit einer

bestimmten Eingabe terminiert. Weil das Halteproblem f�ur turingm�achtige

Sprachen nicht entscheidbar ist, darf die f�ur Genetisches Programmieren ver-

wendete Sprache nicht turingm�achtig sein.

Mit diesen Einschr�ankungen kann man mit Genetischem Programmieren

kaum ein einzelnes Programm zur Bearbeitung eines schwierigen Problems

erzeugen. Besser geeignet ist der Algorithmus f�ur Probleme, die sich mit

mehreren einfachen Programmen l�osen lassen, z.B. auf den Gebieten

� Verteilte k�unstliche Intelligenz (emergent behaviour): Beobachtungen

aus der Natur zeigen, da� viele Systeme, deren Einzelkomponenten ein

sehr einfaches Verhalten aufweisen, ein wesentlich komplexeres Verhal-

ten realisieren k�onnen (z.B. Insektenstaaten). Steuerprogramme f�ur die
Einzelkomponenten k�onnen mit Genetischem Programmieren erzeugt

werden.

� Robotik (subsumption architecture): Aufgabe ist die Steuerung eines

mobilen Roboters, der ein �ubergeordnetes Ziel verfolgt (z.B. einen be-
stimmten Punkt anfahren), dabei aber Randbedingungen beachten mu�
(z.B. Hindernisse umfahren). Der Roboter wird von mehreren Program-

men gesteuert, die jeweils ein Ziel zu erreichen versuchen. Jedes dieser
Programme erh�alt Eingaben von den Sensoren und erzeugt Steuerbe-
fehle f�ur die Motoren. Die Steuerbefehle werden gewichtet (z.B. hat

das Ausweichen vor Hindernissen eine h�ohere Priorit�at als das Errei-
chen eines Punkts), so da� die Motoren immer nur einen Steuerbefehl

gleichzeitig erhalten.
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Teil II

Erste Konzepte und Prototyp
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Kapitel 4

Zeitplan/Status

4.1 Zeitplan

4.1.1 Seminarphase

1. Es wurde ein Hauptseminar abgehalten, um das zu bearbeitende Gebiet
vorzustellen, und um einen �Uberblick daf�ur zu erhalten. Die Seminar-
vortr�age:

Polymorphe Datentypen

Problemen und Optimierungsverfahren

Verschiedene Modelle f�ur Parallele Genetische Algorithmen

Genetisches Programmieren

2. Parallel dazu : Einarbeitung in Tools und Spezialisierung einzelner Per-

sonen. Es wurden verschiedene Verantwortungs- und Spezialisierungs-
bereiche gescha�en, und diese auf die einzelnen Gruppenmitglieder auf-

geteilt. Dies waren:

(a) Ein LATEX-Experte

(b) Ein UNIX-Experte

(c) Ein Dokumentator

(d) Ein K�ummerer - dieser wurde auf die ganze Gruppe �ubertragen
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4.1.2 Planungsphase

Ziele: Festlegung der inhaltlich zu erf�ullenden Aufgaben.

1. Das entg�ultige Programm soll eher ein Werkzeug sein, um ver-

schiedene L�osungsverfahren aus dem Bereich der Evolution�aren

Algorithmen behandeln zu konnen.

2. Es soll eine m�oglichst gro�e Auswahl der in den Seminarvortr�agen

vorgestellten Verfahren und Problemen implementiert und als Bi-

bliothek bereitgestellt werden.

3. Eigenschaften

Es werden sich kleinere Gruppen von ca. 2 Personen in verschie-

denen Gebieten spezialisieren. Diese w�aren:

(a) Populationsverwaltung

(b) Kodierung(sverwaltung)

(c) Parameterverwaltung

(d) Bibliotheken (Operatoren)

(e) Graphische Ober
�ache

(f) Labels

(g) Log-Funktionen

(h) Anbindung externer Probleme

(i) Parallelit�at

4. Entscheidung f�ur Hard- und Software die verwendet wird.
Wir arbeiten mit einem UNIX-System und benutzen als Sprache
ML. Die weitere Software ist auf UNIX-Systemen verf�ugbar, bzw.

kommt aus dem Public-Domain Bereich.

4.1.3 Entwurfsphase

Begri�sbestimmungen, Anwendungen und Modelle sind weitgehend gekl�art.

T�atigkeiten:

1. L�osungsverfahren festlegen.
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2. Teilprobleme herauskristallisieren und diese durch Schnittstellen

verbinden.

3. Grundlegende Datenstrukturen und Kommunikationswege festle-

gen.

4. Prototyp entwerfen und implementieren.

Ergebnisse:

1. Formale Spezi�kation des Problems und seiner Teilprobleme

2. Entwurf und Implementierung des Prototyps

4.1.4 Zwischenphase

Die Erfahrung des Prototyps wurden zusammenfa�t und ausgewertet, sowie

der Zwischenbericht erstellt.

4.1.5 Implementierungsphase

Noch nicht eingtreten.

4.1.6 Integrations-, Experimentier- und Schlu�phase

Noch nicht eingetreten.

4.1.7 Projektbegleitende Dokumentation

Diese ensteht permanent parallel zur Projektarbeit, und soll folgende Ele-
mente enthalten:

1. Problemstellung

2. Literatur�uberblick

3. zugrundeliegende (formale) Modelle

4. Einsatz- und Anwendungsm�oglichkeiten

5. Anforderungen
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6. Spezi�kation

7. Design

8. Entwurfskriterien und -entscheidungen (vor allem
"
unlogische\)

9. Daten- und Objektstrukturen

10. Schnittstellen

11. Benutzungsober
�ache

12. Erfahrungen

13. Auswertungen

14.
"
Warnungen\

15. Organisation des Projekts

16. Anhang:

- Programmlistings

- Bedienungshinweise

- Beschreibung von Hard-, Software und Werkzeugen

- Anschlu� an andere Systeme

- Testumgebung

- Testl�aufe

- Experimente und deren maschinelle Auswertung

4.2 Entscheidungsgraph

Um einen besser �Uberblick �uber die Reihenfolge, und Dringlichkeit, verschie-

dener Entscheidungen zu erhalten, wurde folgendes Schema erstellt. Hieraus

ersieht man, welche Abh�angigkeiten bestehen und gesetzt wurden.
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DatentypenSchichtenmodell Kodierungsstruktur

Dekodierung

Kodierung/
Individuum

weitere
Informationen

Operatoren

Zwischenschicht

Exceptions

Problem Problemstruktur Fitnessfkt.

extern

Population

Aufrufe

Populations-

verwaltung
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Kapitel 5

Untergruppenberichte

5.1 Ein Schichtenmodell

Das Ziel, ein m�oglichst 
exibles System zu scha�en macht es notwendig,
den Nutzer nicht mit Aufgaben und Entscheidungen zu �uberfrachten. Ein
Benutzer soll auf eine einfache Art mit bereits vorhandenen Verfahren ex-

perimentieren k�onnen, ohne sich um die De�nition der Operatoren oder gar
um die Datenstrukturen k�ummern zu m�ussen. Andererseits soll einem Be-

nutzer dieser Zugang nicht grunds�atzlich verbaut werden. Dies soll durch das
folgende Schichtenmodell beschrieben werden:

Schicht 4 Einstellung der Parameter

Schicht 3 De�nition von Verfahren

Schicht 2 De�nition von Operatoren

Schicht 1 De�nition von Strukturen/Atomen

Auf der obersten Ebene des Schichtenmodells (Schicht 4) wird ein Verfahren

aus einer Bibliothek ausgew�ahlt und die Parameter gesetzt. Enth�alt die Bi-

bliothek nicht das gew�unschte Verfahren, so kann in Schicht 3 das Verfahren

mit Hilfe von bereits existierenden Operatoren de�niert werden. Existiert

ein Operator nicht in der gew�unschten Form, so kann er in Schicht 2 de�-

niert werden. Schicht 1 erm�oglicht schlie�lich, auch Datenstrukturen f�ur die

Problem- und Kodierungsstruktur zu de�nieren.
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5.2 Ein einheitliches Konzept f�ur Kodierungs-

strukturen

5.2.1 Ziel

Hier zwei Beispiele f�ur Strukturen, die als Kodierungsstrukturen auftreten

k�onnen. Im folgenden wird versucht, ein einheitliches Konzept zu entwickeln,

da� diese verschiedenen Strukturen beschreibt.

I K � >

Atome

Kodierung mit einer Liste

Y
I

6

Atome

Kodierung mit einer

Baumstruktur

5.2.2 Konzepte

5.2.2.1 Atome

Atome sind die elementaren, unteilbaren Bausteine, aus denen Kodierungs-

strukturen aufgebaut sind. Atome haben alle den selben Typ, n�amlich die
Vereinigung �uber alle Basistypen.

5.2.2.2 Basistypen

Basistypen sind reelle Zahlen, ganze Zahlen (beide evtl. mit Genauigkeiten),

boolesche Werte und Permutationen. Die darauf de�nierten Funktionen stellt

das System zur Verf�ugung.

5.2.2.3 Verbindung zwischen Basiselementen und Atomen

Da die Atome alle vom gleichen Typ sind, werden f�ur jeden Basistyp je eine
Funktion ben�otigt von Basiselement nach Atom und umgekehrt.
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5.2.2.4 �Ubergeordnete Struktur

Die Atome sind in einer �ubergeordneten Struktur angeordnet, die beispiels-

weise eine Liste oder ein Baum ist. Die Art der Struktur ist frei bis auf die

Einschr�ankung, da� es m�oglich sein mu�, die Position von Atomen in der

Struktur eindeutig zu de�nieren.

5.2.2.5 Kodierungssignatur

Die Kodierungssignatur hat folgende Elemente:

� Ein polymorpher Datentyp T (�).

� Einen Typ P, mit dem die Position innerhalb der Kodierungsstruktur
angezeigt werden kann.

5.2.2.6 Operatoren

Operatoren sind Funktionsterme, die mit den Funktionen aus den Abschnit-

ten 5.2.2.5 und 5.2.2.3 de�nierbar sind. Um den Zugri� sicherer zu gestalten,
kann in der Ausbaustufe eine Klasse von Termen de�niert werden, die die-
se Operatoren bilden, und dazu dann eine Auswertungsfunktion, die diese

in Funktionsterme der Abschnitte 5.2.2.5 und 5.2.2.3 �ubersetzt. Gleichzeitig
kann dann diese Auswertungsfunktion die Ablaufsteuerung mit Interrupts
etc. �ubernehmen. So w�ahren dann die Operatoren von der Ablaufsteuerung

getrennt.

5.2.3 konkretes Beispiel: EAGLE

signature KODIERUNG =

sig type 'a T;

type P;
end;

signature ATOM =
sig datatype Basistyp = reell j integer j bit j permutation;

val element typ = Basistyp;

val R : real;

val I : integer;
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val B : bool;

val P : perm;

end;

structure Listenkodierung : KODIERUNG =

struct type 'a T = 'a list;

type P = int;

end;

fun list get atom (x::l , 0) = x

list get atom (x::l , i) = list get atom (l, i-1)

list get atom ( , ) = raise
"
Falscher Funktionsname\

fun list set atom (x::l , 0, y) = y::l

list set atom (x::l , i, y) = list set atom (l, i-1, y)
. . .

fun list crossover (l1, l2, 0) = l2

list crossover (x::l, l2, i)= x::(list crossover (l, l2, i-1))
. . .

5.3 Operatorkonzept

5.3.1 Inhalt

Aufgabe der Untergruppe ist die Erarbeitung eines Konzepts f�ur die Ver-
fahrensoperatoren, das die gegen�uber EAGLE ver�anderte Struktur (mehrere
Populationen, freiere Kodierungsstruktur) ber�ucksichtigt und eine kleinere

Schnittstelle zwischen den Operatoren und dem restlichen System aufweist.
Obwohl die Operatoren auf Funktionen, zugreifen, die von der Populations-

verwaltung zur Verf�ugung gestellt werden, werden diese Funktionen hier nicht

festgelegt. Eine exakte De�nition der Schnittstelle mu� in Zusammenarbeit
mit der Untergruppe Populationsverwaltung de�niert werden. Dasselbe gilt

f�ur Problem{ und Kodierungsstruktur.

5.3.2 Aufbau

Da im System immer genau eine Populationsmenge existieren soll, ist sie in

der Populationsverwaltung gekapselt. Zum Zugri� auf die Populationen stellt
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Evolutionsstr.

enthält

die Populationsverwaltung z.B. folgende Funktionen zur Verf�ugung (unvoll-

st�andig):

� MainOp : PopBez � OpBez � ParamList f�uhrt das unter OpBez in

der Verfahrensbibliothek gespeicherte Verfahren auf der durch PopBez

bestimmten Population mit den Parametern aus ParamList aus. Bei-
spiel1:

MainOp(3,"Standard GA",[("lambda",30),("pm",0.001)]);

In einer Erweiterung k�onnte der Funktion eine Liste von Tripeln �uberge-

ben und die Verfahren parallel auf den Populationen ausgef�uhrt werden.

Jede Population ben�otigt dann einen eigenen Zufallszahlengenerator,

damit die Experimente wiederholbar sind.

� SetProblem : ProblemBez legt das Problem (Problemstruktur und Fit-

ne�funktion) f�ur alle Populationen fest.

1
Der Aufbau der Parameterliste wird hier nicht festgelegt.

97



� RndPop : KodBez � int ! PopBez Erzeugt zuf�allig eine Population

der angegebenen Gr�o�e mit der angegebenen Kodierung.

� ExchangeInd : PopBez � IndBez � PopBez � IndBez tauscht zwei In-

dividuen zwischen zwei Populationen aus.

5.3.3 Funktionalit�at der Experimentsteuerung

Die Experimentsteuerung bestimmt den gesamten Ablauf eines Experiments.

Sie

� w�ahlt das Problem aus,

� legt f�ur jede Population Gr�o�e, Kodierung und Anfangsbelegung fest,

� bestimmt, welche Verfahren mit welchen Parametern auf den Popula-

tionen arbeiten,

� tauscht Individuen zwischen Populationen aus.

Eine einfache Experimentsteuerung, die Standardverfahren auf eine Popula-
tion anwendet, ist im System enthalten. Kompliziertere Experimentsteuerun-

gen k�onnen vom Benutzer implementiert werden. F�ur jede Experimentsteue-
rung sollte eine eigene Experimentbibliothek zur Verf�ugung stehen, weil die
dort gespeicherten Parameterbelegungen stark von Problem, Verfahren und

der Experimentsteuerung selbst abh�angen.

5.3.4 Bibliotheken

Operatorbibliothek: Enth�alt Suboperatoren, die von Verfahrensoperato-
ren importiert werden k�onnen.

Verfahrensbibliothek: Enth�alt die Verfahrensoperatoren. Ein Verfahrens-

operator bildet eine Population und eine Liste von Parametern auf
eine neue Population ab. Jeder Verfahrensoperator hat einen eindeu-

tigen Namen, unter dem er von der Experimentsteuerung referenziert
werden kann.

Experimentbibliothek: Enth�alt zu einem Experiment die Belegung der
Verfahrensparameter und die Random Seeds.
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Problem{ und Kodierungsbibliothek: �Ahnlich zur Verfahrens

bibliothek lassen sich Probleme und Kodierungen �uber Namen refe-

renzieren.

5.4 Populationsverwaltung

Um eine M�oglichkeit zur Realisierung einer Populationsverwaltung mit meh-

reren Populationen aufzuzeigen, wird hier eine Erweiterung des Systems, auf-

bauend auf den bisherigen Vorstellungen, beschrieben. Die hier beschriebene

Populationsverwaltung l�a�t zu, da� die einzelnen Populationen verschieden

kodiert werden. Dazu wird auch eine Kodierungsverwaltung eingef�uhrt. Die

anderen Teile des Systems werden hier nur kurz oder gar nicht beschrieben.

Das Programmsystem besteht aus drei Hauptkomponenten:

� Populationsverwaltung

� Kodierungsverwaltung

� Operatoren

1. Populationsverwaltung:

Die Populationsverwaltung speichert einzelne Populationen. Sie stellt
Funktionen zum Erzeugen und L�oschen von Populationen zur Ver-

f�ugung, zudem innovative Konzepte zum Mischen mehrerer Populatio-
nen als auch zum Migrieren einzelner Individuen von einer Population
in eine andere.

Die einzelnen Populationen verwalten ihre Individuen und stellen Funk-
tionen zum Einf�ugen und L�oschen eines Individuums, zum Finden des

besten bzw. schlechtesten Individuums, zum Bewerten der ganzen Po-
pulation, usw. zur Verf�ugung. Au�erdem nimmt die Population die

De-/Kodierung der einzelnen Individuen vor, da sie die Kodierungs-
art speichert.

Die einzelnen Populationen speichern einen Verweis auf die Kodierungs-

art. Hierdurch k�onnen zwei Populationen dieselbe Kodierungsart ver-

wenden. Der eigentliche De-/Kodierungsvorgang wird aber von der Ko-

dierungsverwaltung vorgenommen.

Ein Individuum selbst besteht aus einem Chromosom, d.h. den ko-

dierten Atomen, und dem zuletzt berechneten Fitne�wert. Es wei�, zu
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welcher Population es geh�ort und kann daher seine Dekodierung veran-

lassen, um Operatoren Zugri� auf seine dekodierten Atome zu erm�ogli-

chen. Hierdurch kann es auch die Berechnung seiner Fitne� veranlassen.

2. Kodierungsverwaltung:

Die Kodierungsverwaltung ist eine Bibliothek von Kodierungen und

De- bzw. Kodierungsfunktionen. Sie enth�alt die Problemstruktur und

stellt Funktionen zur Verf�ugung, die eine Kodierungsstruktur in die

Problemstruktur �uberf�uhrt und umgekehrt. Sie erm�oglicht den Zugri�

auf zus�atzliche Atome (die nicht in der Problemstruktur auftauchen).

Sie erm�oglicht das Erzeugen und L�oschen neuer Kodierungen.

Eine Kodierung beschreibt ggf. die zus�atzlichen Atome und die Art der

Kodierung der einzelnen Atome. Au�erdem wird eine Sortierung der

kodierten Atome festgelegt. Sie stellt Funktionen zum Zugri� auf die
Atome zur Verf�ugung.

3. Operatoren:
Der Hauptoperator des Systems bestimmt den Ablauf der Berechnun-

gen auf den einzelnen Populationen. Von diesem Operator werden neue
Populationen erzeugt und an die einzelnen konkreten evolution�aren
Verfahren �ubergeben. Es existiert eine Bibliothek von Standardverfah-

ren, genannt op1, op2, ...

Somit wird einem Operator eine Population als Parameter zugewiesen,

dieser f�uhrt dann eine gewisse Anzahl von Schritten seines Verfahren
auf dieser Population aus und liefert nach Beendigung ein Ergebnis,
z.B. die Population, zur�uck. Der Hauptoperator kann dann mit dem

Inhalt der Population weiterarbeiten, z.B. Individuen an eine andere
Population senden. Da jede Population eine andere Kodierung verwen-

den kann, ist dieser Transfer nur in Form der Problemstruktur m�oglich.
Die Population selbst mu� dann die �Uberf�uhrung in die eigene Kodie-
rung veranlassen.

Jeder Operator kann primitivere Unteroperatoren (SubOps) verwenden,

die ebenfalls in der Bibliothek verwaltet werden.

Ein besonderer Operator ist der Fitne�operator. Seine einzige Funkti-

on ist die Berechnung der Fitne� eines Individuums, die alleine durch

die Problemparameter bestimmt wird. Daher w�are die Zuordnung des
Fitne�operators zur Kodierungsverwaltung m�oglich, zumal sonst kein

Operator auf die Problemstruktur zugreifen soll.
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Main
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Abbildung 5.1: Aufbau der Populationsverwaltung
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Kapitel 6

Prototyp

Um zu sehen wie sich die ersten Vorgaben f�ur das endg�ultige System in der

Praxis realisieren lassen, wurde beschlossen einen Prototypen zu erstellen.
Dabei sollte ein Eindruck davon gewonnen werden, welche Ideen gut um-
gesetzt werden k�onnen und welche nicht. Zus�atzlich bestand die Ho�nung,

dabei Ideen f�ur das endg�ultige System zu gewinnen. Schlie�lich sollten die
Mitglieder der Projektgruppe dadurch konkrete Erfahrungen in ML sammeln.

Der Prototyp soll nur dazu dienen, die Ideen daran auszuprobieren. Es wird
kein Teil davon direkt in das endg�ultige System �ubernommen.

In diesem Abschnitt soll ein �Uberblick �uber die wichtigsten Eigenschaften
des Prototyps und seinen Aufbau gegeben werden. Zuerst werden die Vor-
gaben geschildert, die f�ur den Prototyp festgelegt wurden. Danach folgt die

Beschreibung der konkreten Realisierung.

6.1 Vorgaben

Da der Prototyp nur einen kleineren Aufwand darstellen sollte, wurden hier

gegen�uber dem endg�ultigen System einige Einschr�ankungen getro�en. Auch

waren vor Entwurf des Prototyps zu einigen wichtigen Punkten, wie der

Kodierungsstruktur, noch keine Entscheidungen gefallen. In diesen Punkten

lehnt sich die Realisierung des Prototyps an den Entwurf von EAGLE an.

Auch sollte der Prototyp keine speziellen Funktionen zur Eingabe besitzen,

sondern sich aus einzelnen ML-Dateien zusammensetzen, die die Eingaben

enthalten. Um einen anderen Ablauf zu erhalten, m�ussen daher die entspre-

chenden ML{Dateien ge�andert werden. Insgesamt wurden f�ur den Prototyp
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folgende Entscheidungen getro�en:

� Atome sind ein Vereinigungstyp von ganzen Zahlen, Bits und reellen

Zahlen.

� Die Kodierungsstruktur ist eine Liste fester L�ange von Atomen.

� Die Problemstruktur ist ebenfalls eine Liste fester L�ange von Ato-

men.

� Kodierung: es existieren elementare Kodierungsfunktionen (Atom

nach Liste von Atomen). Mit Hilfe dieser Funktionen wird die Kodie-

rungsfunktion de�niert. Mindestanforderung sind bin�are Kodierungen

f�ur nat�urliche und reelle Zahlen mit einer angegebenen Genauigkeit,

sowie die Identit�at. Die elementaren Kodierungen bzw. Dekodierun-

gen sollen eindeutig und vollst�andig sein. Bei der Kodierung k�onnen
zus�atzliche Atome angegeben werden.

� Ein Individuum ist eine Instanz der Kodierungsstruktur (eine ko-
dierte Instanz der Problemstruktur und zus�atzlichen Atome) (bzw. ein
Genotyp).

� Die Population ist eine Menge von Individuen. Es existiert nur eine
Population. Es gibt daher keine Populationsverwaltung und nur eine

Problem- und Kodierungsstruktur.

� Die Operatoren werden als ML{Funktionen geschrieben und in eige-

nen Dateien abgelegt, die mit use in das System eingebunden werden.
Auf jeden Fall sollen ein Standard GA, eine Standard ES sowie ein
Threshold-Algorithmus realisiert werden.

� Die Eingabe wird mit ML-Dateien realisiert, die in das System einge-
bunden werden.

{ Operatorendatei:
Diese enth�alt eine ML-Funktion main (pop ! pop), die den

Hauptoperator darstellt.

{ Problemdatei:

Diese Datei enth�alt die Problemstruktur PS (atom string) und
den Fitne�operator phenofit (ind ! real).

{ Kodierungsdatei:
Hier stehen die Kodierung und die zus�atzlichen Atome.
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{ Initdatei:

Diese enth�alt eine Funktion (initpop (pop ! pop)), die eine

leere Population initialisiert und evtl. den Anfangswert des Zu-

fallszahlengenerator setzt.

� Die Ausgabe soll in eine Log-Datei geschrieben werden. Dorthin k�on-

nen auch w�ahrend der Entwicklung Debug{Ausgaben geschrieben wer-

den. Es sollen dorthin ganze Populationen und evtl. auch Individu-

en, einzelne Atome, Strings, Zahlen etc. geschrieben werden k�onnen.

In diese Log-Datei wird am Ende die Population geschrieben, die der

Hauptoperator als Ergebnis liefert. Auf diese Population kann sp�ater

vielleicht ein anderes Verfahren dann aufsetzen.

6.2 Struktur

F�ur die Realisierung des Prototyps wurde dieser in einzelne Module aufge-
teilt. Die Beziehung der Module untereinander zeigt die folgende Abbildung.

Diese Aufteilung mit festen Schnittstellen zwischen den Modulen war auch
n�otig, um die Programmierung auf die verschiedenen Mitglieder der Projekt-
gruppe aufteilen zu k�onnen.

Problemstruktur

Fitneßoperator

Kodierung

Dekodierung

Individuum

Operatoren

Initialisieren

1)

2)

3)

4)

5)

Population

Verfahren (main)

Bibliothek

etc.
Log-Funktionen
Generationszaehler
Verschiedenes:

Log-FunktionenGrundlagen, Zufallszahlengenerator

Steuerung

6)

7)

8)

9)

Abbildung 6.1: Struktur des Prototyps

Die einzelnen Teile wurden als jeweils eine ML{Struktur erstellt, die alle

Funktionen und Datentypen des entsprechenden Moduls enth�alt. Die Schnitt-
stellen zwischen den Strukturen wurden durch ML{Signaturen realisiert, de-

nen dann die Strukturen entsprechen m�ussen. Wenn ein Modul von mehr

104



als einem anderen Modul verwendet wird, kann es vorkommen, da� zu einer

Struktur auch mehr als eine Signatur existiert. Diese Struktur mu� dann bei-

den Signaturen entsprechen. Im folgenden werden die Schnittstellen bzw. die

dazugeh�orenden Module kurz beschrieben.

1. Das Modul
"
Grundlagen\ stellt Funktionen und Datentypen bereit, die

von allen anderen Modulen verwendet werden k�onnen. Die Schnittstel-

len zu den anderen Modulen sind immer gleich.

Der Datentyp atom f�ur die Atome der Kodierungs- und Problemstruk-

tur ist als Vereinigungstyp von ganzen Zahlen, Bits und reellen Zahlen

de�niert. F�ur diese Typen gibt es hier jeweils Umwandlungsfunktionen,

die diesen aus einem Atom auslesen oder aus diesem ein Atom erstellen

(z.B. atom2int und int2atom).

Der Zufallszahlengenerator be�ndet sich ebenfalls in diesem Modul. Es
gibt dazu eine Funktion randomseed, mit der der Zufallszahlengenera-

tor initialisiert wird und die Funktion random mit der die n�achste Zahl
der Zufallszahlenfolge ausgelesen wird.

Auch die Konstante f�ur den Stream, der mit der Log{Datei verbunden
ist, (log) und die Funktionen mit denen einfachere Typen in die Log{
Datei geschrieben werden k�onnen (z.B. writeatom und writestring)

sind hier f�ur alle anderen Module sichtbar.

2. Zur De�nition der Kodierungs- und Dekodierungsfunktion werden zwei

Funktionen bereitgestellt, die einzelne Atome kodieren und dekodieren.
Es sollten hier die Kodierungsart nocoding f�ur keine Kodierung und
die Kodierungsarten codintbit bzw. codrealbit f�ur eine Kodierung

von ganzen bzw. reellen Zahlen in Bitstrings unterst�utzt werden. Dies
geschieht mit den Funktionen codeatom und decodeatom, die ein Atom

mit einer angegebenen Kodierung kodieren bzw. dekodieren. Auf diese
Funktionen bauen die Funktionen des Kodierungsmoduls auf.

3. Das Modul
"
Kodierung/Fitne�\ enth�alt die Kodierungsfunktionen und

die Fitne�funktion fitness. Es de�niert einen Datentyp genotype, der
der Kodierungsstruktur entspricht und aus einer Liste fester L�ange von

Atomen besteht. Die Atome der Problemstruktur und die Strategiea-

tome sind in dieser Struktur kodiert gespeichert. Mit den Funktionen

getrepatom, setrepatom, getstratatom und setstratatom wird auf
diese Atome zugegri�en. Dabei werden sie entsprechend kodiert bzw.
dekodiert.

4. Die Funktionen, auf denen die Operatoren aufbauen, werden vom Mo-
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dul
"
Population/Individuen\ bereitgestellt. So werden hier die Daten-

typen f�ur Populationen (pop) und Individuen (ind) de�niert. Eine Po-

pulation besteht dabei aus einer Liste von Individuen. Ein Individuum

ist eine Instanz der Kodierungsstruktur, also ebenfalls eine Liste von

Atomen mit fester L�ange. Dazu gibt es hier Funktionen zum Zugri�

auf einzelne Individuen einer Population (z.B. getind und setind)

und Funktionen, die Informationen �uber die Population bzw. Indivi-

duen liefern (z.B. getbestind, getavgfitness, etc.). Alle Funktionen,

die von den Operatoren verwendet werden um die Population und die

Individuen zu ver�andern, sind hier de�niert, auch wenn manche nur

direkte Aufrufe von Funktionen des Kodierungsmoduls sind.

5. Zus�atzlich zu den Funktionen aus 4. k�onnen vom Initialisierungsmodul

aus noch Funktionen verwendet werden, mit denen Atome der Problem-
struktur gelesen und geschrieben werden (getrepatom, setrepatom).
Zus�atzlich k�onnen von hier aus auch die Strategieatome gesetzt werden.

6. Das Hauptprogramm kann auf alle Funktionen des Moduls

"
Population/Individuen\ zugreifen, die auch von den beiden anderen

Modulen
"
Operatoren\ und

"
Initialisierung\ verwendet werden. (siehe

4. und 5.).

7. In der Operatorenbibliothek be�nden sich die Hauptoperatoren f�ur
einen Threshold Algorithmus, einen genetischen Algorithmus und ei-
ne Evolutionsstrategie. Au�erdem gibt es hier die Suboperatoren, die

bei der Realisierung von eigenen Hauptoperatoren verwendet werden
k�onnen.

8. Vom Hauptprogramm aus ist vom Modul
"
Operatoren\ nur die Funkti-

on main sichtbar. Diese wendet den Hauptoperator auf eine Population

an und gibt die Population, die dabei entsteht, als Ergebnis zur�uck.

9. Das Initialisierungsmodul stellt die Funktion initpop f�ur das Haupt-

programm zur Verf�ugung. Diese Funktion initialisiert die Population,

bevor der Hauptoperator darauf angewendet wird. Im einfachsten Fall
wird einfach eine bestimmte Anzahl zuf�allig erzeugter Individuen in die

Population eingef�ugt.
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6.3 Realisierung

6.3.1 Grundlagen

Das Modul
"
Grundlagen\ stellt Funktionen und Datentypen bereit, die von

allen anderen Modulen verwendet werden. Es besteht haupts�achlich aus der

De�nition eines Datentyps f�ur die Atome und einem Zufallszahlengenerators.

6.3.1.1 Atome

Der Datentyp atomtype de�niert die Konstanten intatom, bitatom und

realatom, die den Typ eines Atoms angeben. Jedes Atom enth�alt eine Kom-
ponente diesen Typs, die angibt, um was f�ur ein Atom es sich handelt. Der

Datentyp ist folgenderma�en realisiert:

datatype atomtype = intatom | bitatom | realatom

Atome stellen einen Vereinigungstyp der ML-Typen int, bool und real

dar. Dieser ist im Prototyp als kartesisches Produkt dieser Typen de�niert.
Zus�atzlich enth�alt er eine Komponente vom Typ atomtype, in der der Typ

des Atoms gespeichert wird. Sie gibt an, welches Element des kartesischen
Produkts f�ur den Wert des Atoms relevant ist.

type atom = (atomtype * int * bool * real)

Weiterhin gibt es f�ur jeden der Typen int, bit und real eine Funktion,
mit der ein Atom in einen Wert dieses Typs umgerechnet werden kann. Dies

ist nat�urlich nur m�oglich, wenn es sich um ein Atom mit dem entsprechen-
den Atomtyp handelt (s. o.). Andernfalls wird eine Exception WrongType

ausgel�ost. Ebenso gibt es eine Funktion, mit der ein Atom aus einem Wert

dieses Typs erstellt werden kann. Bei diesen Umwandlungen wird bei den
Atomen jeweils nur das Element des kartesischen Produkts gesetzt bzw. aus-

gelesen, das dem Atomtyp entspricht. Die folgenden ML{Zeilen zeigen diese
Funktionen f�ur den Typ int:

fun atom2int ((intatom, x, _, _)) = x

| atom2int (_) = raise WrongType

fun int2atom (x) = (intatom, x, false, 0.0)
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6.3.1.2 Zufallszahlengenerator

Der Zufallszahlengenerator berechnet eine Folge mit der Berechnungsvor-

schrift Rn+1 = (a�Rn+c) mod m. Dabei bestimmen die Konstanten a, c und

m die Eigenschaften der Zufallszahlenfolge. Im Prototyp wurden a = 125,

c = 0 und m = 2796203 verwendet. Die zuletzt berechnete Zahl der Zufalls-

folge wird im Prototyp in einer globalen Variablen gespeichert. Diese wird mit

100001 initialisiert. Falls nicht ein anderer Anfangswert gesetzt wird, beginnt

also die Zufallszahlenfolge mit diesem Wert. In ML ist dies folgenderma�en

realisiert:

val x = ref 100001

Um den Zufallszahlengenerator zu initialisieren, kann der Anfangswert der

Folge mit der Funktion randseed auf einen bestimmten Wert gesetzt werden.
Dabei wird der Wert der globalen Variable auf diesen Wert gesetzt, falls es
sich um eine reelle Zahl zwischen 0 und 1 handelt.

fun randseed (seed) =

if seed < 0.0 orelse seed > 1.0

then raise OutOfScope

else (x := (floor)(seed * real(m)))

Das folgende Beispiel zeigt die Funktion rand, die erst den n�achsten Wert

der Zufallszahlenfolge nach der oben beschriebenen Formel berechnet und
danach diesen Wert, in den Bereich zwischen 0 und 1 skaliert, als reelle Zahl
zur�uckgibt.

fun rand () =

( (x := (a * !x + c) mod m);

(real(!x) / real(m)) )

Mit dieser Funktion wird auf die Zahlen der Folge zugegri�en. Zus�atzlich
gibt es noch eine Funktion randombound, die diese Zahl in einen beliebigen

Bereich skaliert.

6.3.2 Log-Datei

Das Modul
"
Log{Datei\ enth�alt die zum Zugri� auf die Log{Datei n�otigen

Funktionen und Konstanten. In diese wird die Ausgabe des Prototyps ge-
schrieben. Dazu stellt das Modul eine Konstante log vom Typ outstream

bereit, die beim Starten des Programms mit der Log{Datei verbunden wird.

val log = open_out(Files.LogFileName)
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Da es sich dabei um eine Variable vom Typ outstream handelt, k�onnen al-

le ML-Ausgabefunktionen zur Ausgabe in die Log{Datei verwendet werden.

Zus�atzlich stehen in diesem Modul Funktionen (wie writeatom), mit denen

die grundlegenden Datentypen (z. B. Atome) in einen Stream geschrieben

werden k�onnen. Sie sind daher nicht nur auf die Log{Datei beschr�ankt, son-

dern k�onnen auch f�ur andere Dateien verwendet werden. Hier wird als Bei-

spiel die Funktion zum Schreiben eines Atoms gezeigt.

fun writeatom (out, atom) =

( if (Basics.getatomtype(atom) = Basics.intatom) then

writestring(out, makestring(Basics.atom2int(atom)))

else

( if (Basics.getatomtype(atom) = Basics.bitatom) then

( if (Basics.atom2bit(atom) = true) then

writestring(out, "1")

else

writestring(out, "0"))

else

( if (Basics.getatomtype(atom) = Basics.realatom) then

writestring(out, makestring(Basics.atom2real(atom)))

else

raise Basics.WrongType))

)

Die Funktionen in diesem Modul dienen als Grundlage f�ur die Funktionen
writeindcoded, writeinddecoded, writepopcoded und writepopdecoded,
die sich im Modul Population/Individuen be�nden und dazu dienen, ganze

Individuen und Populationen in die Log{Datei zu schreiben.

6.3.3 Kodierungsfunktionen und Fitne�

Die Kodierung/Dekodierung von Individuen wurde in einem Programmteil

mit der Fitne�funktion auf Phenotypen zusammengefa�t. Dabei wurde auf
die logische Trennung unabh�angiger Teile geachtet:

� Festlegung des Problems durch De�nition des Phenotyps und der Fit-

ne�funktion auf Phenotypen.

� Festlegung des Genotyps durch Angabe der Kodierungsart f�ur jeden

Problemparameter, der Art der zus�atzlichen (Strategie-) Parameter

und deren Kodierung, sowie die Angabe einer Sortierung f�ur das ganze

Genom.
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� Funktionen, die diese Informationen benutzen um konkrete Individuen

zu de-/kodieren und die Fitne� eines kodierten Individuums berechnen.

Durch diese Unterteilung mu� z.B. bei Verwendung einer anderen Kodie-

rungsstruktur nur an einer Stelle eine �Anderung vorgenommen werden, alle

anderen Teile bleiben unver�andert. Insbesondere m�ussen die Kodierungsfunk-

tionen nicht ge�andert werden. (Au�erdem gibt es keine Beschr�ankung der

Komplexit�at der einzelnen Teile.)

Im einzelnen besteht dieser Programmteil somit aus folgenden Elementen:

� Problembeschreibung (Problem.sml)

� Kodierungsbeschreibung (Codstruct.sml)

� Kodierungsfunktionen (Coding.sml)

6.3.3.1 Problembeschreibung

In der Problembeschreibung wird das Problem de�niert, d.h. neben der Pro-
blemstruktur ist auch die Fitne�funktion hier zu �nden.

Konkret enth�alt die Datei eine Liste reptypelist von Atomtypen (Beispiel:
[realatom, intatom, bitatom]) und eine Funktion phenofit, die bei Ein-
gabe einer Liste dieses Typs einen Real-Wert liefert.

6.3.3.2 Kodierungsbeschreibung

Die Kodierungsbeschreibung enth�alt alle Informationen zur Kodierung der

Problemstruktur in die Kodierungsstruktur (und deren Dekodierung). Kon-

kret sind dies:

� codtab Eine Liste, die jedem Element der Problemstruktur eine Ko-

dierungsart und eine Kodierungsgenauigkeit zuordnet.

Beispiel: [(codintbit,4), (codrealbit,3), (nocoding,1),

(codintbit,3)]

� strattypelist Diese Liste von Atomtypen legt die Art, Anzahl und

Reihenfolge der zus�atzlichen Parameter fest, die ein Verfahren ggf.

ben�otigt. (Diese Parameter werden oft
"
Strategie-Parameter\ genannt.)
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Beispiel: [realatom, intatom, bitatom]

� strattab Mit dieser Liste wird jedem Strategie-Atom eine Kodierungs-

art und eine Kodierungsgenauigkeit zugewiesen. (Selbes Format wie

codtab.)

� sorttab In dieser Liste wird verzeichnet, an welche Position ein Pa-

rameter des kodierten Individuums r�ucken soll. Dabei mu� beachtet

werden, da� die Strategie-Atome vor der Sortierung an die Problema-

tomliste angeh�angt werden. Somit mu� diese Tabelle eine Permutation

�uber die ersten length Zahlen sein, wobei length die Gesamtl�ange

eines kodierten Individuums ist.

Beispiel: [2,4,7,1,9,3,5,8,6]

6.3.3.3 Kodierungsfunktionen

Kodierungsfunktionen kodieren die Individuen vom Phenotyp in den Geno-

typ bzw. dekodieren sie vom Genotyp in den Phenotyp.

Erw�ahnenswert ist, da� beim Auswerten der Struktur Coding schon einige im
weiteren Verlauf ben�otigte Konstanten und Listen aus der

"
Eingabe\ erzeugt

werden, die die beiden anderen Dateien darstellen. So wird z.B. die Tabelle
zum Umkehren der Sortierung des Genotyps (desorttab) aus der Tabelle

sorttab erzeugt, die in der Kodierungsbeschreibung festgelegt wurde. Es
mu� beachtet werden, da� dies nur zur Vereinfachung so gel�ost ist { man
h�atte auch das Bereitstellen verlangen k�onnen.

Funktionen des Kodierungsteils Es sollen nun beispielhaft die Funktio-

nen des Kodierungsteils betrachtet werden, die von anderen Programmteilen
benutzt werden.

� Bevor die Verfahren mit Individuen arbeiten k�onnen, m�ussen sie diese
erst erhalten. Hierzu existiert ein

"
leeres\ Individuum namens

getcodind, das als Muster benutzt werden kann. Es wird beim Er-

zeugen der Struktur Coding berechnet und ist konstant im Ablauf des
Programms.

val getcodind =

sort(makecodelist(reptypelist@strattypelist,

codtab@strattab))
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� Um ein Atom der Problemstruktur zu setzen, mu� der Genotyp erst

desortiert werden, d.h. die urspr�ungliche Reihenfolge der Atome wird

wiederhergestellt. Diese Liste wird an die Funktion changeatomgt �uber-

geben, zusammen mit der Liste der Kodierungen, dem neu einzusetzen-

den Atom und der gew�unschten Stelle. Die ver�anderte Liste wird wieder

sortiert und zur�uckgeliefert.

fun setrepatom (gt,at,n) =

sort(changeatomgt (desort(gt),codtab,at,n))

� Die �Anderung von Strategieatomen erfolgt im wesentlichen analog zur

Bearbeitung von Problematomen, jedoch mu� zuerst die Liste der Pro-

blematome, die im unsortierten Indiviuum am Anfang stehen, extra-

hiert werden (mit der Funktion headn). Daran wird dann die ver�ander-

te Liste der Strategieatome angeh�angt, wobei der Anfang dieser Liste

durch die Funktion stratstart ermittelt wird.
fun setstratatom (gt,at,n) =

let val gtdes = desort gt

in sort (headn(gtdes,lengthphenocode)

@changeatomgt(stratstart gtdes,strattab,at,n))

end

� Um die Fitne� eines Genotyps zu ermitteln, mu� dieser erst dekodiert
und dann an die Fitne�-Funktion f�ur Phenotypen �ubergeben werden.

Die Funktion phenofit wird in der Problembeschreibung de�niert.
fun fitness (gt) = phenofit (decode(gt))

� Um den Wert von Problem- oder Strategie-Parametern zu ermitteln,
mu� der Genotyp zuerst desortiert werden. Danach wird anhand der

Kodierungstabelle die Position des gesuchten Parameters ermittelt und
die dort beginnende Atomliste (bzw. das dort be�ndliche Atom) deko-
diert.

fun getrepatom (gt, n) = getra (desort(gt), n, codtab)

� Analog zur Funktion getrepatom ermittelt diese Funktion den Wert

eines Strategie-Parameters. Allerdings wird hier nur die Liste der

Strategie-Atome betrachtet.

fun getstratatom (gt, n) =

getra(stratstart(desort(gt)), n, strattab)

Hilfsfunktionen Die folgenden Funktionen sind Beispiele f�ur Hilfsfunktio-

nen, die au�erhalb des Programmteils (genauer: der Struktur Coding) nicht

sichtbar sind.
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� Umwandlung einer ganzen Zahl in eine Liste von Bit-Atomen. Das

"
Least Signi�cant Bit\ steht an erster Stelle. Man beachte, da� bei

Verwendung eines Bits jeder Wert ungleich Null in true kodiert wird.

Dies ist besonders bei �Uberschreitung des kodierbaren Bereichs bedeut-

sam.

fun int2atomlist (0, 1) = [Basics.bit2atom (false)]

| int2atomlist (_, 1) = [Basics.bit2atom (true)]

| int2atomlist (i, p) =

if p <= 0 then raise coderror

else Basics.bit2atom (1 = i mod 2)

:: int2atomlist (i div 2, p - 1)

� Mit codeatom wird jeweils ein Atom kodiert, wobei die Eintr�age der

Kodierungstabelle benutzt werden. Relle Werte werden zuerst in ganze

Zahlen umgerechnet und dann in Bits gewandelt.

fun codeatom ((nocoding, 1), a) = [a]

| codeatom ((nocoding, _), _) = raise coderror

| codeatom ((codintbit, p), a) =

if p <= 0 then raise coderror

else int2atomlist (Basics.atom2int (a), p)

| codeatom ((codrealbit, p), a) =

if p <= 0 then raise coderror

else int2atomlist (floor(Basics.atom2real(a) *

real(powerof2(p))), p)

� insertat setzt ein Atom an die angegebene Position einer Liste, wo-
bei die Liste entsprechend erweitert wird, wenn sie nicht lang genug ist.
Diese Atome werden (ho�entlich) sp�ater durch die eigentlich gew�unsch-

ten ersetzt.
fun insertat (atom, 1, nil) = [atom]

| insertat (atom, n, nil) =

if n < 1 then raise coderror

else atom::insertat(atom,n-1,nil)

| insertat (atom, 1, hd::tl) = atom::tl

| insertat (atom, n, hd::tl) =

hd::insertat(atom,n-1,tl)
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6.3.4 Populationsverwaltung

6.3.4.1 Hauptideen

Die Populationsverwaltung ist im Prototyp eher als Individuenverwaltung

anzusehen, da sie nur eine Liste von Individuen verwaltet, und nicht, wie

f�ur den Haupttyp vorgesehen, mehrere Populationen. Die Individuen sind in

einer Liste gespeichert:

Population = Individuum list

Ein Individuum ist eine Liste von Atomen :

Individuum = atom list

6.3.4.2 �Andern von einzelnen Atomen

Die �Anderung eines Atoms wird mit Standardfunktionen von SML verwirk-
licht:

� nthtail liefert den Rest einer Liste ab einer bestimmten Position,

� rev dreht die Reihenfolge einer Liste um,

� @ verkn�upft 2 Listen zu einer.

setatom(L,p,a) = rev(nthtail(rev(L),p))@a@nthtail(L,p-1)

6.3.4.3 Bestes/schlechtestes Individuum

Die Funktionen, die ein bestes bzw. schlechtestes Individuum liefern, sind

sehr �ahnlich. Deshalb betrachten wir hier nur die Funktion getbestind, die

ein bestes Individuum einer Population zur�uckgibt.

Die Funktion nimmt die Population als Liste von Individuen, wie de�niert.
Dann wird das letzte Individuum genommen, und als zeitweilig Bestes ange-

sehen. Die Liste wird nach vorne durchlaufen, und die jeweilige Fitne� des

gerade betrachteten Individuums wird mit dem aktuell besten verglichen. Ist

das betrachtete besser, merkt man sich dieses, und l�auft weiter. Ist die Liste

zu Ende, wird das gespeicherte Individuum zur�uckgegeben.
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Wird eine leere Liste als Parameter �ubergeben, so gibt die Funktion auch

eine leere Liste zur�uck.

fun getbestind(l) =

let

fun calc(nil) = []

| calc(i::nil)=i

| calc(i::r) =

let

val ib = calc(r)

in

if Coding.fitness(i) >= Coding.fitness(ib)

then i else ib end

in

calc(l)

end

Diese Funktion erh�alt eine Population und gibt ein bestes Individuum zur�uck.

6.3.4.4 Erzeugung eines neuen Individuums

Ein neues Individuum zu erzeugen hei�t hier nicht, nur eine Liste von
"
lee-

ren\ Atomen bereitzustellen, sondern diese auch mit zuf�alligen Werten zu
f�ullen. Es mu� dabei einzeln beachtet werden, um was f�ur einen Atomtyp es

sich handelt. Die Liste wird als leere Atomtyp-Liste von der Kodierung geholt
und die einzelnen Atome entsprechend Ihrer Art mit zuf�alligenWerten belegt.

fun newind(p) =

let val i = Coding.getcodind

fun help(i,0) = i

| help(l,n) =

if Basics.getatomtype(getatom(l,n)) = realatom

then setatom(help(l,n-1),n,Basics.real2atom(random()))

else if Basics.getatomtype(getatom(l,n)) = intatom

then setatom(help(l,n-1),n,Basics.int2atom(floor(

randombound(0.0,100.0))))
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else setatom(help(l,n-1),n,if random() > 0.5

then Basics.bit2atom(true)

else Basics.bit2atom(false))

in

(p@help(i,Coding.length)::nil,length(p)+1)

end

6.3.4.5 L�oschen eines Individuums

Ein Individuum wird gel�oscht, indem es aus der Liste gel�oscht wird. Das zu

l�oschende Individuum wird dabei als Index der Liste �ubergeben:

deleteind(L,i) = rev(nthtail(rev(l),length(l)-(n+1)))

@nthtail(l,n+1)

6.3.5 Operatoren

Der hier beschriebene Teil des Prototyps umfa�t die Verfahren und Operato-

ren, d.h. einen Systemteil, der sp�ater auch vom Benutzer ge�andert oder erwei-
tert werden soll. Der Schnittstelle dieses Teils zum �ubrigen System kommt

daher besondere Bedeutung zu. F�ur den Prototyp wurde ein Genetischer
Algorithmus, eine Evolutionsstrategie sowie ein Threshold{Algorithmus im-
plementiert.

6.3.5.1 Aufbau

Die Verfahren und die Operatoren sind in einzelnen Dateien abgelegt. Das

Verfahren l�adt die Operatoren aus den Dateien.

(* load sub-operators *)

use "Operators/OnePointCrossover.sml";

use "Operators/Mutation.sml";

use "Operators/PropSelect.sml";

use "Operators/SimpleTermCriterion.sml";

Alle gleichartigen Operatoren (Crossover, Mutation, Abbruchkriterium, . . . )

haben die gleichen Namen, nur die Namen der Dateien, in denen sie abgelegt
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sind, unterscheiden sich. Andere Operatoren lassen sich so durch einfaches
�Andern der Namen der einzubindenden Dateien laden.

Die Dateinamen stehen hier (wie auch alle anderen Parameter) als Konstan-

ten direkt im Programmtext.

Der Prototyp f�uhrt das Verfahren durch Aufruf von main() mit einer zuf�allig

gew�ahlten Startpopulation aus. Analog zu den Operatoren lassen sich andere

Verfahren durch �Anderen des Dateinamens im Prototyp laden. Als Beispiel

f�ur ein Verfahren ist hier der Genetische Algorithmus angegeben, der die

Operatoren termCriterion() (bricht hier das Verfahren nach 50 Generatio-

nen ab), crossover() (f�uhrt einen Crossover auf der gesamten Population

aus), mutate() und select() (gibt eine durch proportionale Selektion ent-

standene neue Population zur�uck) l�adt (s.o.).

fun main(mpop)=

let

val pc=0.6

val pm=0.001

val mu=getsize(mpop)

val lambda=mu

fun main_r(mpop)=

if termCriterion(mpop)

then mpop

else

(

writepopdecoded(Logfunct.log,mpop);

Logfunct.newline(Logfunct.log);

incgencount();

main_r(select(mutate(crossover(mpop,pc,

lambda),pm),mu)

)

in

main_r(mpop)

end;

F�ur die drei Verfahren wurden mehrere Mutations{, Rekombinations{ und

Selektionsoperatoren implementiert. Beispielhaft wird hier der Mutations-

operator f�ur den Genetischen Algorithmus vorgestellt (importiert aus
Operators/Mutation.sml).

fun mutate(mpop,pm)=

let

fun mutate_r(mpop,pm,0)=mpop
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|mutate_r(mpop,pm,num)=

mutate_r(setind(mpop,num,

mutate_ind(getind(mpop,num),pm)),

pm,num-1)

in

mutate_r(mpop,pm,getsize(mpop))

end;

Die Funktion mutate : pop ! pop mutiert alle Individuen der �ubergebenen

Population. mutate r() ist gegen�uber mutate() um einen Index erweitert,

der jeweils das zu mutierende Individuum bezeichnet. Analog ruft die Funk-

tion mutate ind(), die ein einzelnes Individuum mutiert, mutate ind r()

auf, die den Index des jeweils zu mutierenden Atoms mitf�uhrt.

fun mutate_ind(mind,pm)=

let

fun mutate_ind_r(mind,pm,0)=mind

|mutate_ind_r(mind,pm,pos)=

mutate_ind_r(if random()<pm

then setatom(mind,pos,bit2atom(not(

atom2bit(getatom(mind,pos)))))

else mind,

pm,pos-1)

in

mutate_ind_r(mind,pm,indlength)

end;

6.3.6 Initialisierung

Dem Initialisierungsoperator initpop wird vom Hauptoperator eine leere Po-
pulation �ubergeben, die er mit einer bestimmten Anzahl von Individuen f�ullt.

Dadurch kann die Gr�o�e der Population bestimmt werden, auf die der Haupt-

operator angewendet wird. Diese werden im Prototyp noch zuf�allig erzeugt,
k�onnten aber auch z. B. aus einer Datei eingelesen werden, um auf einen

fr�uheren Ablauf aufzusetzen. Die Anzahl der Individuen, die hier eingef�ugt
werden, stehen in der Konstanten initialpopsize.

val initialpopsize = 10

Die Funktion initpop ruft dann die lokale Hilfsfunktion addind mit dieser

Konstanten auf. Diese Funktion h�angt die angegebene Zahl von Individuen
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an eine �ubergebene Population an. Der folgende Programmausschnitt zeigt

Realisierungen dieser beiden Funktionen.

fun addind (pop, 0) = pop

| addind (pop, n) =

( let

val (respop, _) = InitFunct.newind(addind(pop, n-1))

in

respop

end

)

fun initpop (pop) = addind(pop, initialpopsize)

6.3.7 Hauptprogramm

Das Hauptprogramm besteht zuerst aus einem Teil, in dem die einzelnen Mo-

dule zusammengebunden werden. Diese werden in der Reihenfolge eingebun-
den, in der die Module aufeinander aufbauen. Zuerst wird das Grundlagenmo-
dul eingebunden, dann die Funktionen zur Ausgabe, das Kodierungsmodul,

die De�nition von Individuen und Population, den Initialisierungsoperator
und schlie�lich der Hauptoperator. Der folgende (gek�urzte) Ausschnitt aus

dem Programmtext zeigt diesen Vorgang.

use "Basics.sml";

use "Logfunct.sml";

use "Coding.sml";

use "Population_set.sml";

use Files.InitOpFileName;

use Files.MainOpFileName;

Der Rest des Hauptprogramms besteht dann im wesentlichen nur noch dar-

aus, eine leere Population zu erstellen und auf diese zuerst den Initialisie-

rungsoperator und dann den Hauptoperator anzuwenden. Die dadurch ge-

wonnene Population und deren bestes Individuum werden dann noch als
Ergebnis in die Log{Datei des Programms geschrieben. Die Realisierung in
ML zeigt der folgende Programmteil. Die De�nition der lokalen Hilfsfunktion

writeresult wurde dabei ausgelassen. Diese dient nur dazu die Population

und ihr bestes Individuum in die Log{Datei zu schreiben.

let

val mainpop = PopIndFunct.makeemptypop()

val initialpop = InitPop.initpop(mainpop)
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in

writeresult(Logfunct.log, MainOp.main(initialpop))

end;

6.4 Fazit und Ausblicke

In diesem Abschnitt sind die Eindr�ucke und Verbesserungsvorschl�age gesam-

melt, die sich bei der Entwicklung des Prototyps ergeben haben.

F�ur die Koordination des endg�ultigen Systems sollte folgendes beachten wer-

den. Die Trennung der einzelnen Module mit Hilfe der Signaturen hat zwar

relativ gut funktioniert, es w�are jedoch sinnvoll, die Module schon fr�uh kom-

pilieren zu k�onnen. Dazu sollten die Module in der Reihenfolge erstellt wer-
den, in der sie verwendet werden. Zumindest k�onnten in den einzelnen Mo-

dulen die wichtigsten der von au�en ben�otigten Funktionen zuerst erstellt
werden (anfangs mit eingeschr�ankter Funktionalit�at). Ebenso sollte bei der
Unterteilung der Aufgaben die zeitliche Reihenfolge ber�ucksichtigt werden,

in der die Module ben�otigt werden und bei einer umfangreicheren Version
ein (Zeit-)plan f�ur den Ablauf erstellt werden.

Bei der Populationsverwaltung wurde gew�unscht, da� mehr Informationen
von den Funktionen zur�uckgegeben werden sollen (Bsp.: bestes Indidviduum

mit Index zur�uckgeben). Ferner m�ussen Funktionen bereitgestellt werden,
um ganze Populationen bzw. Teile davon zu kopieren, l�oschen usw. Die Feh-
lerbehandlung fehlt und mu� ebenfalls bereitgestellt werden.

Da die Funktionen, die von den Operatoren verwendet werden, auch als
Grundlage von selbstde�nierten Operatoren dienen sollen, ist dieser Teil ent-

sprechend sorgf�altig zu entwerfen. Bei der Realisierung des Operatormoduls
f�ur das endg�ultige System sollte folgendes beachtet werden:

Wichtig ist die Spezi�kation der Schnittstellen. So m�ussen die Funktionen,

die das System den Verfahren zur Verf�ugung stellt, sehr sorgf�altig spezi�-
ziert werden. Unklarheiten �uber die genaue Funktionalit�at traten h�au�g erst

beim Programmieren auf, so z.B. ob die Numerierung der Individuen in ei-
ner Population bei Funktionen wie getind() oder setind() bei 0 oder 1

beginnt.

Ein weiteres Problem sind die globalen Objekte. Zum Teil wurden Ans�atze

direkt aus dem Entwurf f�ur EAGLE �ubernommen, hier z.B. der globale Ge-

nerationsz�ahler. In einer funktionalen Sprache l�a�t sich dieser schlecht im-
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plementieren, man sollte in diesem und �ahnlichen F�allen �uberdenken, ob der

Ansatz noch sinnvoll ist.

Im Prototyp sind die Typen der Funktionsresultate teilweise noch unterschied-

lich. Es mu� eine M�oglichkeit geben, eindeutig Individuen in einer Populati-

on zu bezeichnen. Im Prototyp wurde das durch Indizes realisiert. Funktio-

nen, die eine Population durch Einf�ugen oder Entfernen eines Individuums

ver�andern, erwarten diesen Index als Argument. Alle Funktionen, die ein Indi-

viduum aus einer Population aussuchen, sollten nicht ein Individuum direkt,

sondern dessen Index zur�uckliefern, um z.B. das Individuum anschlie�end

aus der Population entfernen zu k�onnen. Das Individuum selbst erh�alt man

mit der Funktion getind.

W�unschenswert ist auch die Vermeidung von Indizes in Funktionsaufrufen.

Man sollte Funktionen wie appendind : pop � ind ! pop, getfirstind()
und remfirstind() vorsehen, um das Mitf�uhren eines Index f�ur die Indivi-

duen in vielen Funktionen zu vermeiden.

Parameter der Operatoren und Namen der Dateien mit den zu verwenden-

den Operatoren sind hier als Konstanten im Programmtext abgelegt. Im
endg�ultigen System sollten diese Werte von au�en an das Verfahren �uberge-
ben werden, so da� sie ver�andert werden k�onnen, ohne das Programm �andern

zu m�ussen.

F�ur die Operatoren sollten Strukturen und Signaturen de�niert werden, um

einerseits Hilfsfunktionen vor dem System zu verbergen und andererseits eine
de�nierte Schnittstelle zu den Operatoren zu haben.

Das Hauptprogramm schlie�lich besteht im Prototyp eigentlich nur aus ei-
nem Zusammenbinden der einzelnen Module. Die Einstellung der verwende-
ten Verfahren und Probleme geschieht hier in den einzelnen Modulen. Daher

war schon beim Testen das Einstellen eines neuen Verfahrens recht m�uhsam,

da meist in 3 Modulen �Anderungen vorgenommen werden mu�ten. In sp�ate-
ren Versionen wird eine Steuerung n�otig, mit der ein bestimmtes Problem,

Kodierung und Operatoren ausgew�ahlt und zu einem Experiment zusam-
mengefa�t werden k�onnen.
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Anhang A

Glossar

A.1 Evolution�ares

Atom Ein Atom ist Teil einer Kodierungsstruktur oder einer Problemstruk-
tur und legt einen Basistyp fest.

Crossover ist ein spezieller Rekombinationsoperator bei GA's.

Dekodierungsfunktion Ist eine Funktion, die eine Belegung der Kodie-

rungsstruktur in eine Belegung der Problemstruktur abbildet.

Evolutionsstrategie Die Evolutionsstategien sind von I. Rechenberg ent-

wickelte naturanaloge Verfahren. Sie dienen zur Optimierung konkreter
technischer Probleme. Typischerweise verwenden sie eine Population

m�oglicher L�osungen, die nach dem Vorbild der biologischen Evolution

mutiert und rekombiniert werden. Sie treten dann in Konkurrenz zu-
einander, wobei die

"
�ttesten\ L�osungen ausgew�ahlt werden.

Die Bewertung der Fitne� einer L�osung �ndet durch eine Fitne�-Funktion

statt, die die Problemparameter zur Berechnung heranzieht. Daneben
kann ein Element der Population aber auch noch Strategie-Parameter

enthalten, die den weiteren Verlauf der Suche beein
ussen, daneben
aber ebenfalls optimiert werden.

Extremum L�osung, die einen ausgezeichneten Wert hat, entweder in einer
Umgebung (lokal) oder im gesamten L�osungsraum (global).

Fitness s. Qualit�at.

Genetischer Algorithmus GAs sindOptimierungsverfahren, die Vorg�ange
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in der Biologie nachbilden. Sie arbeiten auf einer Population von In-

dividuen, die als Bin�arstring kodiert dargestellt werden. Die Individu-

en werden mutiert und gekreuzt, wobei man ho�t, da� sich die guten

Eigenschaften weitervererben. Die Bewertung der Individuen erfolgt

durch eine Fitne�-Funktion, die auch die Auswahl der Individuen be-

ein
u�t.

Genotyp ist die konkrete Belegung einer Kodierungsstruktur

Great-Deluge Algorithmus (Sint
ut-Algorithmus) Dieses Optimierungs-

verfahren betrachtet einen Punkt des L�osungsraums und w�ahlt einen

neuen Punkt aus dessen Umgebung. Die Qualit�at des neuen Punkts

wird berechnet und der neue Punkt �ubernommen, so seine Qualit�at

�uber einem
"
Pegel\ liegt. Wird der Punkt �ubernommen, dann wird der

Pegel erh�oht.
Anschaulich kann man sich den Ablauf dieses Verfahrens als �Uber
u-

tung einer Landschaft vorstellen. W�ahrend
"
das Wasser steigt\, ver-

sucht die L�osung sich auf den h�ochsten Punkt, also das Maximum, zu
retten.

Individuum Element einer Population. Kann neben Problemparametern
auch Strategieparameter enthalten.

Kodierung 1. Die Kodierung besteht aus Kodierungsstruktur und Ko-
dierungsfunktion.

2. Darstellung eines Wertes (verfahrensabh�angig).

Kodierungsfunktion Ist eine Abbildung von einer Problemstruktur auf

eine Kodierungsstruktur.

Kodierungsstruktur Die Kodierungsstruktur besteht aus einer Anzahl von

Atomen. Eine Kodierungsstruktur ist genau dann mit einem Problem
vertr�aglich, wenn eine Kodierungsfunktion existiert, die die Problem-

struktur auf die Kodierungsstruktur abbildet.

L�osung Parameterbelegung, die ein Problem l�ost. (Keine Aussage �uber die

Qualit�at.)

L�osungsraum Menge der darstellbaren (nicht notwendig m�oglichen) L�osun-

gen.

Maximum Extremum mit dem gr�o�ten Wert.

Minimum Extremum mit dem kleinsten Wert.

Mutation ist ein Operator, der ein Individuum ver�andert.
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naturanaloge Verfahren Optimierungsverfahren, die Vorg�ange in der Na-

tur (physikalischer oder biologischer Art) zum Vorbild haben.

Operator (auch genetischer Operator) ist eine Funktion, die aus einem oder

mehreren Individuen neue Individuen produziert, z.B. Mutation, Cros-

sover, Selektion, Fitness.

Optimierungsverfahren Verfahren, die eine optimale Parameterbelegung

f�ur eine Funktion suchen.

Ph�anotyp ist die konkrete Belegung einer Problemstruktur.

Population Menge von Individuen.

Problem Zu optimierende/
"
l�osende\ Aufgabe, mathematisch formuliert. Be-

steht aus Problemstruktur und Fitne�funktion.

Problemparameter Parameter, der in die Berechnung der Qualit�at eines

Individuums eingeht.

Problemraum s. L�osungsraum.

Problemstruktur ist eine Struktur, die ein Individuum von der Problem-
seite beschreibt. Dekodierung der Kodierungsstruktur.

Record-to-Record Travel Optimierungsverfahren, Variante desGreat-Deluge
Algorithmus: Statt eines Pegels wird der bisherige Bestwert f�ur Verglei-
che herangezogen. Die Fitne� eines neuen Punkts im L�osungsraum wird

als neuer Bestwert �ubernommen, wenn sie besser oder nur geringf�ugig
schlechter als der bisherige Bestwert ist.

Rekombination ist ein Operator, der aus zwei oder mehreren Individuen
ein oder mehr neue Individuen produziert.

Selektion ist ein Operator, der aus einer Anzahl von Individuen (Populati-
on) eine neue Anzahl von Individuen (Population) ausw�ahlt.

Simulated Annealing Naturanaloges Optimierungsverfahren, das die phy-
sikalischen Vorg�ange in einer abk�uhlenden Schmelze nachvollzieht.
In der lokalen Umgebung eines Punktes im Suchraums wird ein neuer

Kandidat bestimmt. Dieser wird �ubernommen, so seine Fitne� besser

als die des Ausgangspunkts ist. Ist der neue Punkt schlechter, so wird

er mit einer von der
"
Temperatur\ abh�angigen Wahrscheinlichkeit den-

noch �ubernommen. Dies soll verhindern, da� die Suche in einem lokalen
Optimum stecken bleibt.
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Strategieparameter sind die Elemente der Kodierungsstruktur, die das

Verhalten der Operatoren steuern. Diese werden eventuell zun�achst als

zus�atzliche Parameter dekodiert.

Threshold Algorithmus Dieses Optimierungsverfahren ist eine Vereinfa-

chung des Simulated Annealing. Hierbei wird ein Punkt des L�osungs-

raums betrachtet und ein weiterer Punkt aus dessen Umgebung be-

stimmt. Die Qualit�at dieser Punkte wird verglichen und der neue Punkt

ersetzt den alten, so seineQualit�at besser ist, oder nur um einen Schwell-

wert schlechter. Dieser Schwellwert wird im Laufe der Berechnung ver-

kleinert.

Im Vergleich zum Simulated Annealing entfallen die Wahrscheinlich-

keitsberechnungen, wodurch der Ablauf beschleunigt wird.

Verfahrensparameter sind die Parameter, die jeweils f�ur ein ganzes Expe-
riment in der Lau�nitialisierung festgelegt werden.

A.2 Allgemeines

Ausdruck Ein Wort aus der Sprache, die von der in Kapitel 3.3.4.1 de�-

nierten Grammatik erzeugt wird.

DeJong Entwickelte die DeJong'schen Funktionen, die zur Klassi�zierung

von L�osungsverfahren verwendet werden.

eva Abk�urzung f�ur die Projektgruppe Evolution�are Algorithmen.

Grunddatentyp Die vom System vorde�nierten Datentypen. Wie z. B.
Boolean-, Integer- und Real-Datentypen.

ICGA International Conference on Genetic Algorithms

Konferenz, die alle zwei Jahre statt�ndet.

Instanz Belegung einer allgemeinen Darstellung mit konkreten Werten.

kooperatives Multitasking Verfahren zur Realisation von Parallelverar-

beitung. Hierbei mu� ein Thread die Kontrolle an das System explizit

zur�uckgeben, so da� ein anderer Thread fortgesetzt werden kann. Ge-

gensatz zu pr�aemptivem Multitasking.

NP-vollst�andig/hart Probleme der Klasse NP k�onnen von einem nicht-

deterministischen Automaten in polynomieller Zeit gel�ost werden. Ein

Problem ist NP-hart, wenn jedes andere Problem aus NP in dieses
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Problem mit polynomiellem Aufwand transformiert werden kann. Liegt

dieses Problem zudem in NP, so bezeichnet man es als NP-vollst�andig.

Somit liegen die schwierigsten Probleme in diesen Klassen.

Optimierungsverfahren Verfahren, die m�oglichst optimale Parameter f�ur

eine Funktion suchen.

PPSN Parallel Problem Solving by Nature

Konferenz, die alle zwei Jahre statt�ndet.

pr�aemtives Multitasking Verfahren zur Realisation von Parallelverarbei-

tung. Hierbei wird ein Thread vom System gestoppt und die Kontrolle

einem anderen �ubergeben. Gegensatz zu kooperativem Multitasking.

Typpolymorphismus Typpolymorphismus ist eine Art der Typzuweisung,

bei der einem Ausdruck bei verschiedenem Auftreten verschiedene Ty-
pen zugewiesen werden k�onnen.
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