BERICHT NR. 1996/12
PERFORMANCE IN MULTIPROCESSOR SYSTEMS*

Walter H. Burkhardt
Institut far Informatik, Universitat Stuttgart
Breitwiesenstr. 20., D-70565 Stuttgart
e-mail: burkhardt@informatik.uni-stuttgart.de
Fax: +49-711-781-6220

Abstract.

The performance degradation in multiprocessor systems by input/output has
been investigated again theoretically for a linear systemsconfiguration and by
experiment with programs in a functional language on a Transputer multipro-
cessor systems of up to 16 modules. Processing the results from our exper-
iments shows excellent correlation with the theory and aperformance degrada-
tion of up to an order of magnitude, depending on systemsconfiguration and pro-
blem type.

Keywords : Multiprocessors, parallel systems, degradation, Transputers

1. Introduction.

This study aims at identifying the influence of input/output and other commun-
ication overhead on systems performance in multiprocessor systems analytically
and experimentally. The problem of input/output and its influence on systems
performance has been neglected in most previous investigations of parallel pro-
cessor systems [1]. Raw estimates given in literature diverge extremely from a
zero influence by supposed overlapping with processing [2] to several orders of
magnitude of performance degradation [3].

2. Theoretical Investigation.

A polynomial approach had been applied in a previous investigation [4]. It of-
fers very good correlation with the experimental results, but it has the dis-
advantage of not correctly explaining the behaviour of the computational for a
large number of processor modules. The polynomial approach misses all the
cases where some processors still do some useful work, despite the total
loading of others for input/output or communications. Here, we use another
approach, leading to a solution with an exponential function. Only one model is
reported here, due to space limitations, a simple linear array of processor mod-
ules.

2.1. Linear Model.

This is the simplest possiblility for a multiprocessor system, consisting of a
linear array of n equal processors, each with its own memory and the input and
output for processing entering and leaving at one end, see Fig. 1. This type of
architecture cannot, of course, be employed for applications with a large degree
of communication requirements, because the single bus will saturate with a small
number (less than two) of processors with average applications, already. Of help
is the use of cash memories for extending this range to about six processors [5].
Any average consists of a wide disparity of cases, so we wanted to check differ-
ent applications for their communication requirements, especially with transputer
systems.

/O = P1|— PE—IFS—ﬂﬂﬂ'— Pn

Fig. 1: Linear Processor Array

Let p be the computing power of one processor module, and all processors
executing the same, or similar, tasks, e.g. the same routines on different sets of
data of the same length. Also, let k be the communications requirements factor,
as a fraction of p, for transferring data between input and output to one
processor in the row. Then let's assume an arbitrary point in the linear array for
consideration. At this point the computational power to be p. This computa-
tional power is then at a distance of d.x to the right, if equally distributed, the
value

p + d.x * dp/dx (1)

according to Taylor's theorem. During the transition by d.x into the processor
array we suffer the input/output or communications overhead d.k. This could be
overlappedd by a factor r with computation. Thus we obtain for the decrease of
the computational power, or the communications requirement during a step of
d.x the expression

dk=r*k* d.p (2)

which increases proportionally with the step size d.x in the processor array. The

computational power at this point is p + d.p, with d.p proportional to the rem-
aining power to the maximal value of po. Therefore, with the current increment in

power dp=p,-p (3)
we obtain alltogether:

p=p+ dx*dp/dx-r*k*(p, -p)* dx 4)

From this we derive the differential equation for the change of systems power

in the direction of x for stated problem to:
dp/dx =r*k* (p, - p) (5)

as the solution for the computational power p in the system by integration as:
p=p,* (1-exp(-rkx) (6)

as a function of x, where x is the running depth of the linear processor array and
p,the maximally achievable power of the parallel system.

We can have some estimate for the product of overlap factor and
communications factor k* = r*k from equation 6 from the highest obtained
computational power p. We assume that for the value of x = 0 the computational
power is p=1. This gives the equation:

k * =-In(1-1/po) (7)

for a determination of the overlap and communications factors from the known
maximal systems power, or vice versa.

2.1.1. Total Overlap of Input and Output or Communication.

This case reduces to the usual assumption of the computational power
increasing linearly with he number of processors. This option is, however, not
available in real world systems, as our and the experience from literature shows,
despite some claims to the contrary.

2.1.2. No Overlap of Input and Output or Communication

Here, the bare eponential function covers the increase in computational
power with the further addition of processors. The maximally reachable power
rests at po and shows no additonal gains for adding any more processors. We
combine the factor r to k for simplicity reasons. If r is known, then the true value
of k can be obtained easily.

3. Experimental Results.

Several experiments have been run with input/output on a Transputer
system of selectable dimension D of 1 to 4 with up to 16 processors, running a
variety of applications programs in a functional programming language [6]. All
results show saturation of systems performance at different optimal processor
numbers N. These results are compared with the ones reported in literature [7]
and the theory above. We obtain communications factors between .8% and 4%
without external input/output and between .2 and .9 with input/output, depending

on experiment settings. The values for N between 25 and 120 without and bet-
ween 3 and 10 with external input/output of our own and the results from liter-
ature correspond closely to the amount predicted by the theory above. This
indicates that input/output and other communications tasks can degradate
performance of multiprocessor systems by up to an order of magnitude.

3.1. Transputer System.

The configuration of the Transputer system consists of eight processor
modules, connected as in Fig. 1. One module has the 32-bit Transputer pro-
cessor, 1 Mbyte local memory, the clock and 5 simple integrated circuits. The
Transputer chip contains a 2 Kbyte internal memory, refresh control for the
dynamic memory, programmable wait-state generators, 4 fast serial link
connectors with a 20 Kbit/s data transfer rate, and the boot logic. The link
connections can communicate, after initiation of a transfer by the CPU, without
interference by the processor.

3.2. Programs Performed.

Previous investigations have shown little exploitable parallelism, aside from
vector- or matrix-loops, in programs in procedural languages [9]. The
assumption arose that the serial pattern of thinking in such languages could be
the reason. The limitations should then disappear with programs in a language
of the next higher level of the declarative languages [10]. Functional Pro-
gramming languages are one group among them. Programs on this level are free
from side-effects and extremely terse. This means that modifications and add-
itions can be applied without problems and the productivity of the programmers
is increased by nearly an order of magnitude. Execution of such programs
needs, however, immense computational resources.

The application programs, that were run on the Transputer system, are
written in a language derived from KRC [10] with the most important additional
features of global and local functions for reasons of modularity. They were: The
matrix inversion (Mat20D1), quicksort program (Qs600D1), Hartley transform
(Hart50D1), knapsack problem(Knapl3D1), differential quotient (Dif1500D1),
Fibonacci-Series (Fib20D1), Towers of Hanoi (Han10D1), and the Queens pro-
blem (Queen7D1). The number after the shorthand description of the problem in-
dicates the size of the data set, D1 refers to the dimension of the Transputer
array, as a linear string. The programs are listed in [4]. They are translated by a
compiler into an intermediate language with the detection of exploitable parallel
paths as the most interesting feature [12]. Several different strategies (FIFO,
LIFO; queue length; degree of parallelization; etc.) have been investigated for
the distribution of the parallel portions to the modules during execution of the
programs. The results reflect the best options thereof [6].

3.3. Measurements and Results.

Measurements performed were the run-time of the various programs and the
distribution of the computational load on the different modules. Three data sets
of differing size have been used for excluding the influence of this size. The
results of the required time for computing the problems have been transformed
to the speedup in reference to the number of modules, relative to the time for
one module, as a function of the number of modules working on the problem,
see Table 1.

Fib20D1 Hanl10D1 Har50D1 Knal3D1 Qs600D1 Mat20D1 Di1500D1

1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.926 1.700 1.899 1.970 1.709 1.830 1.873
2780 1.832 2.642 2.672 2.016 2.480 2.617
3.398 1.905 3.233 3.343 2.205 2.89 3.001
4.163 1.983 3.810 3.789 2.267 3.04 3.399
4.294 1.861 3.959 3.875 2.267 3.09 3.626
4557 1.796 4.039 3.804 2.269 3.11 3.663
4560 1.751 4.286 3.875 2.272 3.10 3.656

Table 1. Speedup for the problems.

As can be seen, the Fibonacci program reaches the best performance with a
measured speedup of 4.5; the Towers of Hanoi program the worst with a
speedup of only 1.75, running on the system with eight processing modules.
The other problems range in between these values. .4. Analysis of the results.

The results, as they appear in Table 1, have been analyzed by a least-
squares regression program for the function y=a*(1-exp(-bx)), similar to the ap-
proach in [14], see Appendix B. We obtain correlation factors of over 99%, ex-
cept in one case, when reduced to the performance equation from the theoretical
section, see Table 2 for the data and Appendix A for the diagrams. The variable
a in the equation is our maximal achievable systems power po and b represents
the communications factor k.

Problem k po R
Fib20D1 226 5.70 99.59
Hart50D1 .251 5.04 99.78
Knapl3D1 .323 4.39 99.31
Dif1500D1 .324 4.11 99.73
Queen7D1 .419 3.57 99.31
Mat20D1 429 3.33 99.56
Qs600D1 .673 2.33 99.59
Hanl0D1 .927 1.89 98.80

Table 2: Results of data analysis.

The values for k are the communications factors, po the values for the
highest possible system powers at the optimal module number, and R the cor-
relation coefficients for the problems. The communications factors for all of these
problems range from about .2 to about .9, giving at best an optimal module
number of about six to seven, considering the law of diminishing returns, and
maximal systems power of between two to six. see Figs. 2-9. The correlation
ctors are all well above 99%, except in one case. This exception for the wers of
Hanoi problem indicates a lack of feasibility for parallelization, which translates
also into low systems power.

Most interesting is the penalty to be paid for a given amount of com-
munication or input/output in a multiprocessor system. The data in Table 2 has
been analysed, therefore, by a linear, an exponetial, a power, and a logarithmic
regression program. The power function gives the best results with a correlation
factor of over 99.7%. The performance p decreases then with the communica-
tion factor k according to the steep hyperbolic function:

p=175%k"(-.782) (8)

see Fig 10. Even a small amount of communcation decreases systems power,
according to a power function.

This picture changes, however, if we add the obvious data points for the
extrem values of k = 1 then po = 1, and for k = O then po = 8 to the measured
ones. Then we obtain different approximations, as in Table 3. The wanted
function is to be assumed in the form

y = a+ f(b*x). Old Values New Values
Linear Fktn. 6.03 -5.02 .929 6.69 -6.02 .942
Exponential 7.11-1.53 .975 7.96 -1.85 .977
Power Fkin. 1.75-0.78 .997 2.79-0.11 .617
Logarithm 1.38 -2.64 .982 3.04 -0.47 .801

Table 3: Communications Penalty.

Now the exponential approximates the data points much better than the
other functions with a regression factor of 97.7%, see Fig. 11. All other functions
fail considerably. The exponential also gives the boundary values best with an
error at the upper limit of less than 4%, but at the lower end with 25%. Thus, we
obtain for the computational power with a communications penalty the function

p=7.97 * exp (-1.85%k) 9)

These results indicate that even a small amount of communication or in-
put/output decreases computational power considerably. Because we obtain
very similar results for the maximally obtainable systems power for similar com-

munication factors at completely different problems, e.g. for the problems
Knap13D1 and Dif1500D1, we can assume with high probability that equations
(8 and 9) hold independently of the type of problem for any other cases.

Bibliography.

1. Burkhardt, W. H.: Aspects of multiprocessors systems - A brief survey and
new concepts. Proc. COMPEURO 87, pp. 99-105.

2. Rettberg, R. and R. Thomas: Contention is no problem to shared memory
multiprocessors. Communications ACM Vol. 29, pp. 1202-1212 (Dec. 1986).

3. Hack, J.J.: Peak vs. Sustained Performance in Highly Concurrent Vector
Machines. IEEE Computer Sept. 1986, pp. 11-19.

4. Burkhardt, W. H.: Performance degradation by input/output in multipro-
cessors systems. Proceedings 32nd Midwest Symposium on Circuits and
Systems, 19809.

5. Burkhardt, W. H.: Locality aspects and cache memory utility in microcom-
puters. Microprocessing and Microprogramming, Vol. 26 (1989), 51-62.

6. Bodenschatz, W.: Multi-Tranputer-Maschine zur parallelen Reduktion von
Funktionalsprachenprogrammen. Doctoral Dissertation Universitat Stuttgart
(June 1989).

7. Budenbender, H.-W.: Aufbau und Leistungsverhalten eines modularen
Multiprozessor-Systems mit dezentral gesteuertem Kreuzschienenschalter. Doc-
toral Diss. Universitat Stuttgart (Febr. 1982).

8. Fuller, S. H. et. al.: Multi-microprocessors: An overview and working example.
Proc. IEEE, Vol 66, No. 2, pp. 216-228 (Febr. 1978).

9. Makram, E. N.: Automatic analysis for the detection of inherent concurrency
in programs for parallel computing. Diplomarbeit, Universitat Stuttgart (May
1984).

10. Burkhardt, W. H.: Universal programming languages and processors. Proc.
FJCC 1965, Vol. I, pp. 1-21 and Vol. II, pp. 163-164.

language. In Functional programming and its applications, pp. 1-22, Cambridge
University Press 1982.

12. Burkhardt, W. H.: Automation of program-speedup on parallel-processor
computers. Computing, Vol. 3, pp. 297-310 (1968).

13. Bhuyan, L. N. et. al.: Performance of multiprocessor interconnection net-
works. IEEE Computer (Febr. 1989), 25-37.

14. Hartung, J. et. al.: Statistik. Oldenbourgh, Munich 1991, p.648, ff.

Appendix A: Diagrams.

R —
T //" - L e
| .__I"‘""-. -"'__/-F‘f

F
0
;-"

R - Il
LT Tikxi [T ooy k= 15h ENiAH

Figure 2: Systems power for Fib20D1. Figure 3: Systems power for Hart50D1

"t ' - i ¢ ing "y

4 < | W71
r.l'.;u[.n Wil il e e TSN ;H[;‘,:

Figure 4: Systems power f. Knap13D1 Figure 5: Systems power Dif1500D1

5B . n mm——
AT L : IEE:H;! 1 :

- e
¥] T
e - BI4 ENE LML b4

Figure 6: Systems power f. Queen7D1 Figure 7: Systems power f. Mat20D1

it B

- 1T SHE- I'E;.m-ﬁ RaniB B
Figure 8: Systems power f. Qs600D1 F_i'guré o: System-s ;3'5\;vef f. Han10D1
]
Bt
4]
4
h.,\“
.
ITTE=42 \‘—-—.
b S,
* e il (7 e

Figure 10: Decrease of systems power
Appendix B: Logistic Function Least-Squares Approximation.

We follow [14] for the approximation of our measured results to the function
y =a* (1 - exp(-b*x)).
For a least-squares method we have to minimize the function:
O [y,- a*(1-exp(-b*x))]"2.

This will be achieved, if the partial derivations for the coefficients a and b are set
to zero. Thus, we obtain two equations for the unknowns a and b from:

[y, x.exp(-b*x .- a* 8[(1-exp(-b*x*x.exp(-b*x)] = O
and o[y,(1-exp(-b*x)] - a* 8[(1-exp(-b*x(1-exp(-b*x] =0

for all the values of xi and yi of a given set of data.

The unknown a can be expressed and eliminated for the equation to
determine b:

Ay x*exp(-b*x)]*8[(1-exp(-b*x))] - B[y *(1-exp(b*x))]* S[x*exp(-b*x)*(1-
exp(-b*x))] = 0

This is, unfortunately, a transcendential equation that can be solved only by
approximation methods. We obtain with such a program, e.g. using the regula

falsi, the required value for b from an appropriately chosen starting value. Then
the value for a arrives with the equation:

a = 3y)/3(1-exp(b*x))]

for the pair of coefficients a and b.

