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Abstract

We study the power of transformation monoids, which are used as an acceptance

mechanism of nondeterministic polynomial time machines. Focussing our attention

on four types of transformation monoids (including the monoids of all transforma-

tions on k elements) we obtain exact characterizations of all investigated polynomial

time classes.

We apply these results to the cases of locally self reducible sets and of bottle-

neck Turing machines to obtain complete solutions to the formerly open problems

related to these models. Especially, the complexity of k-locally self reducible sets

for all numbers k, as well as the complexity of width-3 or width-4 bottleneck Turing

machines are determined completely. Also for m-k-locally self reducible sets (i.e. k-

locally self reducible sets, where the self reduction is given by a many-one reduction

function) we determine the complexity exactly for all k.





1. Introduction

It has been a fruitful approach in structural complexity theory to de�ne acceptance

of nondeterministic polynomial time Turing machines by conditions posed on the or-

dered set of outcomes of the di�erent computation paths of such a machine. Several

models have been considered:

� \Counting classes" were de�ned by the number of accepting paths and a

predicate which evaluated this number. As examples, see [PaZa83, CaHe89,

GNW90].

� Polynomial time bit reductions [BCS92, HLSVW93], bottleneck Turing-

machines [CaFu91], and serializable computations [Og94, HeOg95] can im-

plicitly be interpreted as machine models where acceptance is de�ned by the

sequence of outcomes of the computation paths of a nondeterministic polyno-

mial time machine.

� Local self-reductions [BeSt95] also can be reformulated to �t in the above

model. (See Section 4.)

� Locally de�nable acceptance types [He92a, He92b] were de�ned to generalize

such an approach: not only the leaves, but every node of the computation

tree in
uences the question of acceptance or rejection. However, in the case

of an associative acceptance type [He94b], locally de�nable acceptance types

are also one variant of the above described general phenomenon.

� The most explicit model of this kind is the leaf language model, which was

introduced in [BCS91, BCS92] by Bovet, Crescenzi, and Silvestri. Moreover,

Bovet et al. gave a mechanism, how to prove relativized inclusion or existence

of separating oracles for the described complexity classes by investigating the

respective leaf languages and their relations. This approach led to the solution

of a very general separation problem in [He95b]; there, an algorithm was de-

signed, which on input two classes of bounded counting type decides, whether

there exists a separating oracle.

In most of these approaches, the vehicle to obtain results, i.e. mainly character-

izations of so described complexity classes, was the monoid description. Thus for

instance in [HLSVW93] it was shown that regular leaf languages whose syntactic

monoid is solvable, describe complexity classes within MOD-PH.

In the current paper, we focus on those cases, where special kinds of transfor-

mation monoids are used as acceptance mechanism. A transformation monoid on

k items is a monoid, whose elements are mappings from f1; : : : ; kg into f1; : : : ; kg.

Acceptance of a nondeterministic machine with leaf values from a given monoid

usually is de�ned by a subset of the monoid: if the leaf string, evaluated in the

monoid, yields an element of the given subset, the input is accepted, otherwise it

is rejected. In the case of transformation monoids on k items we only allow special

kinds of subsets by the following convention: The acceptance condition is given by a
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subset of f1; : : : ; kg, i.e. the input is accepted if and only if the leaf string, evaluated

in the monoid, yields an element which maps 1 into the given subset of f1; : : : ; kg.

There are mainly two motivations for this approach: It can be shown that k-

local self reductions as introduced by Beigel and Straubing [BeSt95] are strongly

related to the monoid of all transformations on 2k items, and the many-one k-local

self reductions are similarly related to a certain submonoid of the monoid of all

transformations on k items. Secondly, the bottleneck Turing machines of width k,

introduced by Cai and Furst [CaFu91] and further investigated by Ogihara [Og94]

are strongly related to the full transformation monoid on k items.

One in some respect extreme special case of transformation monoids is the full

permutation group Sk, which contains all bijective transformations. The power of

�nite groups as acceptance mechanisms was investigated in [He96] and in [He95a].

It is an easy exercise to �nd out that acceptance by the groups S2, S3, and S4
characterizes the classes �P, MOD3 � �P, and � �MOD3 � �P, respectively. Already

in [HLSVW93] it was shown that Sk for k � 5 characterizes the class PSPACE.

These groups were also considered in [Og94], where the corresponding classes were

called perm-SFk.

The current paper is organized as follows:

Section 2 will provide the necessary de�nitions and further preliminaries. In

Section 3 we will state and prove our main results in their most general formulation.

Then in Section 4 we can apply these results to solve the problems of (m-) k-locally

self reducible sets and of width k bottleneck Turing machines.

2. Notations and De�nitions

We assume the reader to be familiar with standard complexity theory notions, as

can be found in [BDG88, BDG90, Pa94].

De�nition. Let k � 2. Then we de�ne the following two monoids:

Mk: The monoid Mk consists of all mappings f , such that f : f1; : : : ; kg !

f1; : : : ; kg. The monoid operation is composition of mappings. (This monoid

has kk elements.)

M̂k: The monoid M̂k is the submonoid of Mk that consists of all non-bijective

mappings plus the identity mapping. (This monoid has kk�(k!)+1 elements.)

Using these two monoids (for every k) we further de�ne four complexity classes:

De�nition. Let k � 2. The classes (Mk)P, (M
0
k)P, (M̂k)P, and (M̂ 0

k)P are de�ned

as follows:

(Mk)P: A set L belongs to (Mk)P, if there is a polynomial time function f with

values in 2f1;:::;kg, and a nondeterministic polynomial time machine N ,

which on every input x produces a leaf string lN(x) over Mk, such that

x 2 L if and only if lN (x), evaluated in Mk and then (as a transformation)

applied to 1 yields an element from f(x).
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(M 0
k)P: This is the subclass of (Mk)P, where only machines are allowed, which

on every input produce a leaf string lN(x) that does not yield a constant

mapping when evaluated in Mk.

(M̂k)P: This is de�ned analogously to (Mk)P with the di�erence, that on all inputs

the leaf string lN (x) has to be a string over M̂k.

(M̂ 0
k)P: This is the subclass of (M̂k)P, where only machines are allowed, which

on every input produce a leaf string lN(x) that does not yield a constant

mapping when evaluated in M̂k.

We several times will need to deal with explicit transformations on 2, 3, 4, or 5

elements. To this end we introduce the following notational de�nition:

De�nition. Let a and b be values from f1; 2g. Then by 1 2

a b
we denote the transfor-

mation t satisfying t(1) = a and t(2) = b. Analogously the transformation 1 7! a,

2 7! b, 3 7! c on three items is denoted by 1 2 3

a b c
, and similarly for transformations

on four elements (1 2 3 4

a b c d
) and on �ve elements (1 2 3 4 5

a b c d e
).

Now we would like to �x some notations regarding operators on complexity

classes. The operators 9 and 8 should be known. In analogy to them the operators

of the form MODk (for k � 2) are de�ned as follows: If C is a complexity class, then

a set L belongs to MODk � C, if and only if there is a set B 2 C and a polynomial p,

such that

x 2 L () #fy j jyj � p(jxj) ^ (x; y) 2 Bg 6� 0 mod k:

The operator MOD2 is usually denoted by �. The dot between operator and class

will often be omitted. Note that this does not cause problems, as for instance � �P

and �P indeed coincide. Similar equalities hold in all other cases considered in this

paper.

For a class C the notation PC means the complexity class of languages accepted

by a deterministic polynomial time Turing machine with access to an oracle from

the class C. If C1 and C2 are complexity classes, then by PC1 : C2 (following [HHW95])

we mean the class of languages accepted by a deterministic polynomial time Turing

machine with access to two oracles, one from C1 and the other one from C2, where

the computation is done in two phases: in the �rst phase only oracle queries to

the C1-oracle are allowed, and in the second phase only queries to the C2-oracle

are allowed. It should be emphasized that classes and operators de�ned by query

order are not at all arti�cial. Query order seems to be a very natural concept, as

can be derived from the fact that it appears in a variety of contexts. E.g. see

[HHW95, HHH96a, HHH96b].

If O is an operator and C is a complexity class, we will write PO �C to denote PO�C.

Similarly, if O1 and O2 are two operators, we write PO1 : O2 � C to denote PO1�C : O2�C.

We also use the binary operators ^ and _ for complexity classes, where C1 ^ C2
consists of all languages L, such that there are L1 2 C1 and L2 2 C2, satisfying

L = L1 \L2. Analogously, C1 _ C2 is de�ned via L = L1 [L2. Again, by (O1 ^O2)C

we mean O1C ^O2C, and analogously for _.
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3. The Acceptance Power of Transformation Monoids

In this section we will clarify the computational complexity inherent in the classes

(Mk)P, (M
0
k)P, (M̂k)P, and (M̂ 0

k)P. We start with some easily seen bounds and

relations:

3.1 Proposition.

(i) For all k � 2 we have:

P � (M̂ 0
k)P � (M 0

k)P \ (M̂k)P � (M 0
k)P [ (M̂k)P � (Mk)P � PSPACE

(ii) For all k � 2 we have:

(M 0
k)P � (M̂ 0

k+1)P and (Mk)P � (M̂k+1)P

This result seems to indicate that there might be an in�nite hierarchy built by

these classes. However, using the main result from [HLSVW93] we can show that

this hierarchy collapses down to (M 0
5
)P:

3.2 Theorem.

(i) (M5)P = (M 0
5
)P = PSPACE

(ii) For all k > 5 we have: (Mk)P = (M 0
k)P = (M̂k)P = (M̂ 0

k)P = PSPACE

Proof. It su�ces to show (M 0
5
)P = PSPACE, because by Proposition 3.1 we then

can conclude that all the other classes from the theorem are between (M 0
5
)P and

PSPACE.

Now for (M 0
5
)P note that the non-solvable group S5 is a submonoid of M5,

and no product of group elements will ever yield a constant transformation. Thus

(S5)P � (M 0
5
)P � PSPACE, but from [HLSVW93] we know that (S5)P = PSPACE.

This proves the theorem. 2

Thus there are 14 classes left, whose complexity has to be determined, namely

the four classes for k = 2, as well as those for k = 3 and k = 4, and two classes for

k = 5, the latter ones being (M̂5)P and (M̂ 0
5
)P. To this end we will develop a series

of simulation results in Lemma 3.3.

De�nition. We say, complexity class C can be simulated in (Mk)P (or in (M 0
k)P,

(M̂k)P, (M̂
0
k)P, resp.) via (

1 2 3 ::: k

a b c ::: :
= 1 2 3 ::: k

d e f ::: :
), if for all L 2 C there is a machine M ,

which is an (Mk)P-machine (or (M 0
k)P-machine, : : : ) such that for all x, if x 2 L

then M 's leaf string on input x evaluates to 1 2 3 ::: k
a b c ::: :

, but if x 62 L then M 's leaf

string on input x evaluates to 1 2 3 ::: k

d e f ::: :
.
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3.3 Lemma. The following simulations hold:

a) P can be simulated in (M2)P via (1 2

2 1
=1 2

1 2
), as well as via (1 2

1 1
=1 2

1 2
).

b) �
p
2
can be simulated in (M̂2)P via (1 2

1 1
=1 2

2 2
).

c) 8P can be simulated in (M̂3)P via (1 2 3

2 1 1
=1 2 3

1 2 2
), as well as via (1 2 3

1 1 2
=1 2 3

1 2 2
).

d) (8 ^ MOD3
�)P can be simulated in (M3)P via (1 2 3

2 1 2
=1 2 3

1 2 1
), as well as via

(1 2 3

1 1 1
=1 2 3

1 2 1
).

e) (8 ^ MOD3
�)9P can be simulated in (M̂4)P via (1 2 3 4

2 1 1 2
=1 2 3 4

1 2 1 1
), as well as

via (1 2 3 4

1 1 2 2
=1 2 3 4

1 2 1 1
).

f) (8^MOD3
�)(9_�MOD3

�)P can be simulated in (M4)P via (1 2 3 4

2 1 2 2
=1 2 3 4

1 2 1 1
),

as well as via (1 2 3 4

1 1 1 1
=1 2 3 4

1 2 1 1
).

g) (8 ^ MOD3
�)(9 _ �MOD3

�)8P can be simulated in (M̂5)P via

(1 2 3 4 5

2 1 2 2 2
=1 2 3 4 5

1 2 1 1 1
), as well as via (1 2 3 4 5

1 1 1 1 1
=1 2 3 4 5

1 2 1 1 1
).

Proof.

a) Use a computation tree with only one leaf, and produce the leaf value as

needed.

b) We use the following well known characterization of �p
2
: A set L belongs to �p

2

if and only if there is a nondeterministic machine N such that for all x we have,

x 2 L, if and only if the rightmost accepting path of N on input x is in an odd

position. (Here we use only normalized machines, where the computation tree

is a full binary tree, and without loss of generality we assume that the leftmost

path is accepting.) Now, we simulate N , but instead of rejection in a leaf we

produce the identity transformation; instead of acceptance in a leaf which is

on a path in an even position, we produce the transformation 1 2

2 2
, and instead

of acceptance in a leaf which is on a path in an odd position, we produce the

transformation 1 2

1 1
. Clearly, the whole leaf string will evaluate to 1 2

1 1
, if the

simulated computation accepts, and it will evaluate to 1 2

2 2
, otherwise.

c) We can, in a natural way, simulate 8P in (M̂3)P via (1 2 3

1 2 3
=1 2 3

1 3 3
) as well as

via (1 2 3

1 2 3
=1 2 3

2 2 3
) or via (1 2 3

1 2 3
=1 2 3

1 2 1
). Now, build a new simulation as follows:

First branch to three possible con�gurations. In the leftmost one simulate via

(1 2 3

1 2 3
=1 2 3

1 3 3
), in the middle one simulate via (1 2 3

1 2 3
=1 2 3

2 2 3
), and in the rightmost

one simulate via (1 2 3

1 2 3
=1 2 3

1 2 1
). If the input was to be accepted, then all three

parts lead to value 1 2 3

1 2 3
, thus also the whole tree evaluates to the same value.

If the input was to be rejected, then the three parts evaluate to the values
1 2 3

1 3 3
, 1 2 3

2 2 3
, and 1 2 3

1 2 1
. Thus the whole tree evaluates to their product, i.e.
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1 2 3

2 1 1
. Now add one leaf of value 1 2 3

2 1 1
to obtain 1 2 3

2 1 1
in case of acceptance,

and 1 2 3

1 2 2
in case of rejection.

For the second simulation of 8P take the easy simulation via (1 2 3

1 2 3
=1 2 3

1 3 3
) and

add one leaf of value 1 2 3

1 1 2
to obtain 1 2 3

1 1 2
for acceptance and 1 2 3

1 2 2
for rejection.

d) We use a simulation of 8P via (1 2 3

1 2 3
=1 2 3

2 1 1
) as developed in the proof of

part c). Moreover, it is easy to see that MOD3
�P can be simulated via

(1 2 3

1 2 3
=1 2 3

2 3 1
). We call the �rst simulation A, and the second one B. Now

consider a simulation consisting of seven parts, namely xBAByAz, where

x = 1 2 3

3 1 3
, y = 1 2 3

3 1 2
, and z = 1 2 3

1 2 1
. In the case that both the 8P-

computation and the MOD3
�P-computation are accepting, we obtain the leaf

value 1 2 3

3 1 3
� 1 2 3

1 2 3
� 1 2 3

1 2 3
� 1 2 3

1 2 3
� 1 2 3

3 1 2
� 1 2 3

1 2 3
� 1 2 3

1 2 1
, which equals 1 2 3

2 1 2
. But if

either A is replaced by 1 2 3

2 1 1
or B is replaced by 1 2 3

2 3 1
or both, then in every

case we obtain the value 1 2 3

1 2 1
.

For the second statement, we have to use a di�erent simulation, again consist-

ing of seven parts, namely wBAwBAz, where A, B, and z are as above, and

w = 1 2 3

1 3 1
. Then we obtain 1 2 3

1 1 1
, if A and B both equal 1 2 3

1 2 3
, and 1 2 3

1 2 1
in all

other cases.

e) Now we start by simulating 8P in (M̂4)P like in part c), leaving additional

value 4 untouched, i.e. via (1 2 3 4

2 1 1 4
=1 2 3 4

1 2 2 4
), or equivalently by exchanging the

roles of values 3 and 4, we obtain a simulation via (1 2 3 4

2 1 3 1
=1 2 3 4

1 2 3 2
). Then it

should be evident, how to simulate MOD3
�8P via (1 2 3 4

1 2 3 2
=1 2 3 4

2 3 1 3
). Recall

that MOD3
�9P = MOD3

�8P.

Then we simulate 9P in a natural way via (1 2 3 4

1 4 3 4
=1 2 3 4

1 2 3 4
). Adding

a leaf of value 1 2 3 4

1 3 3 2
on the right side, we obtain a simulation of

9P via (1 2 3 4

1 2 3 2
=1 2 3 4

1 3 3 2
). This can be extended to a simulation of 89P

via (1 2 3 4

1 2 3 2
=1 2 3 4

1 3 3 3
). Analogously we obtain simulations of 89P via

(1 2 3 4

1 2 3 1
=1 2 3 4

2 2 3 2
) or via (1 2 3 4

1 2 3 3
=1 2 3 4

1 2 1 1
). Thus, as in part c), we obtain a

simulation of 89P via (1 2 3 4

1 2 3 2
=1 2 3 4

2 1 1 1
).

Now, the same arguments as in part d), just on four values instead of three

(but with no meaning associated with the image of 4) yield both statements.

f) First note that MOD3
�P can be simulated via (1 2 3 4

1 2 3 4
=1 2 3 4

2 3 1 4
), as shown in

part d) (just add an unused value 4). Call that simulation A. Then xAx,

where x = 1 2 3 4

2 2 3 4
yields a simulation of MOD3

�P via (1 2 3 4

2 2 3 4
=1 2 3 4

3 3 2 4
). This

simulation can be used to show directly that also �MOD3
�P can be simulated

via (1 2 3 4

2 2 3 4
=1 2 3 4

3 3 2 4
). Call this simulation B.

On the other hand, again as in part d) by exchanging the roles of the

variables 3 and 4, one can also simulate MOD3
�P via (1 2 3 4

1 2 3 4
=1 2 3 4

2 4 3 1
).

Call this simulation C. Then AC simulates MOD3
�P via (1 2 3 4

1 2 3 4
=1 2 3 4

4 3 2 1
).
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Since 1 2 3 4

4 3 2 1
squared yields 1 2 3 4

1 2 3 4
, we can use this simulation also to sim-

ulate �MOD3
�P. Call this simulation D. Now, obviously BD simulates

�MOD3
�P via (1 2 3 4

2 2 3 4
=1 2 3 4

2 2 3 1
).

Clearly, 8P can be simulated via (1 2 3 4

1 2 3 4
=1 2 3 4

1 2 3 1
). If we call this simulation

E, then also 8P^�MOD3
�P can be simulated via (1 2 3 4

2 2 3 4
=1 2 3 4

2 2 3 1
) by taking

BDE as the required simulation, where B and D simulate the �MOD3
�P-

computation, and E simulates the 8P-computation. Taking complements, we

obtain that (9 _ �MOD3
�)P can be simulated via (1 2 3 4

2 2 3 1
=1 2 3 4

2 2 3 4
). Adding

a leaf of value 1 2 3 4

4 2 3 1
, we obtain a simulation of (9 _ �MOD3

�)P via

(1 2 3 4

2 2 3 4
=1 2 3 4

2 2 3 1
). Thus 8(9 _ �MOD3

�)P can naturally be simulated via

(1 2 3 4

2 2 3 4
=1 2 3 4

2 2 3 2
). This simulation works like a natural simulation of 8P on

three values 2, 3, 4, only the value 1 has got an image 2. By exchanging roles

of variables, we can also simulate 8(9 _ �MOD3
�)P via (1 2 3 4

1 2 3 3
=1 2 3 4

1 3 3 3
) or

via (1 2 3 4

1 2 3 2
=1 2 3 4

2 2 3 2
) or via (1 2 3 4

1 2 3 1
=1 2 3 4

1 2 1 1
). Thus, as in part c) we obtain a

simulation via (1 2 3 4

1 2 3 3
=1 2 3 4

2 1 1 1
). Call this simulation F .

As to the MOD3
�(9 _ �MOD3

�)P part, we use the fact that this equals

MOD3
�(9 _ MOD3

�)P, which can be easily shown using well known facts

about parity and modulo computations. From part d) we obtain a simulation

of (9 _ MOD3
�)P via (1 2 3 4

1 2 1 4
=1 2 3 4

2 1 2 4
) by adding an unused value 4. Now

on values 1, 2, 4, this simulation acts like a parity computation. Thus we

can simulate MOD3
�(9 _ MOD3

�)P via (1 2 3 4

1 2 4 4
=1 2 3 4

2 4 1 1
). Exchanging the

roles of values 3 and 4 we obtain a simulation via (1 2 3 4

1 2 3 3
=1 2 3 4

2 3 1 1
). Call this

simulation G.

Now we can proceed as in part d), taking xGFGyFz for the simulation

via (1 2 3 4

2 1 2 2
=1 2 3 4

1 2 1 1
), and wGFwGFz for the simulation via (1 2 3 4

1 1 1 1
=1 2 3 4

1 2 1 1
),

where x = 1 2 3 4

3 1 3 4
, y = 1 2 3 4

3 1 2 4
, z = 1 2 3 4

1 2 1 4
, and w = 1 2 3 4

1 3 1 4
.

g) The di�erence between f) and g) is exactly as the one between d) and e). We

will use the �fth available value to perform the inner 8-operator and change

it to a parity-like behavior for the �MOD3
�8P-part, or construct an 98P-

simulation for the second part. We leave the details to the reader.

2

The next lemma allows us to use the results of the previous lemma in order to

obtain upper bounds for the optimization classes obtained by applying the P9 :�-

operator. By dots in the mappings of the form 1 2 3 ::: k

2 1 : ::: :
, we mean that any value is

allowed as image in this place.

3.4 Lemma. Let C be a complexity class, which is closed under polynomial time

conjunctive truth-table reduction. If, for k � 2, C can be simulated in (Mk)P via

( 1 2 3 ::: k

2 1 : ::: :
= 1 2 3 ::: k

1 2 : ::: :
) as well as via ( 1 2 3 ::: k

1 1 : ::: :
= 1 2 3 ::: k

1 2 : ::: :
), then P9 :��C can be simulated

in (Mk)P via (1 2 3 ::: k

1 1 1 ::: 1
=1 2 3 ::: k

2 2 2 ::: 2
).

If k � 3, then the same statement holds for (M̂k)P instead of (Mk)P.
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Proof. Let L 2 P9 :� � C via machine N . By the assumed closure property of the

class C we obtain closure of �C under complementation as well as under conjunc-

tive and disjunctive truth-table reductions. Thus we may assume that N in every

computation asks exactly one query to the �C-oracle, and N accepts if and only if

that query is answered positively. We use a well-known technique to have a non-

deterministic machine guess the oracle answers of the 9C-oracle in such a way that

when only the YES-answers are checked, on the rightmost path where all the checks

are successful, even the NO-answers have been correct. The algorithm that achieves

this is the following:

i := 1;

LOOP

Compute i-th oracle query q(i);

Guess oracle answer a(i) on q(i):
In left subtree, let a(i) := NO;

In right subtree, let a(i) := YES;

IF no more queries to NP-oracle THEN

EXIT LOOP

ELSE i := i+ 1;

END OF LOOP

The reader may check that the computation tree produced by this algorithm in

fact has the desired property.

We obtain a subtree which looks as follows:

r

�
�
�
�
�
�
�
�
�
�
�
�
��S

S
S
S
S
S
S
S
S
S
S
S
SS

L
LL
�
�
�
JJ
�
�
@
@
@@
��

. . . . . . . . . . . . . . . . . .

Input x

Here, on every path of the subtree we have a speci�c sequence of oracle answers

a(1); : : : ; a(max).
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Now, we split into three subtrees (for each path):

�
�
�
�
�B
B
B
B
B

T3
�
�
�
�
�B
B
B
B
B�

�
�
�
�B
B
B
B
B

,
,
,
,l

l
l
l

T1 T2

a(1); : : : ; a(max)

The subtrees T1 and T3 are identical; both simulate the �nal �C-oracle query

(depending on a(1); : : : ; a(max)), using the simulation via ( 1 2 3 ::: k
2 1 : ::: :

= 1 2 3 ::: k
1 2 : ::: :

), which

can be obtained directly from the simulation of C via ( 1 2 3 ::: k

2 1 : ::: :
= 1 2 3 ::: k

1 2 : ::: :
). Thus,

the evaluated leaf string in each of these subtrees yields 1 2 3 ::: k

2 1 : ::: :
, if the �C-oracle

answers positively, and 1 2 3 ::: k

1 2 : ::: :
, otherwise. In the middle subtree T2, however, we

check by one 9C-simulation, using the simulation via ( 1 2 3 ::: k
1 1 : ::: :

= 1 2 3 ::: k
1 2 : ::: :

), which can

be obtained directly from the simulation of C via ( 1 2 3 ::: k
1 1 : ::: :

= 1 2 3 ::: k
1 2 : ::: :

), whether all

the guessed YES-answers on the 9C-oracle queries were correct. We do that by

producing leaf value 1 2 3 ::: k

1 1 : ::: :
on accepting paths, and 1 2 3 ::: k

1 2 : ::: :
on rejecting paths.

We analyze the behavior of this machine: If a wrong YES-answer is in the

list a(1); : : : ; a(max), then T2 has only rejecting paths. Thus, the leaf string of

this subtree evaluates to 1 2 3 ::: k
1 2 : ::: :

. Then, T1 and T3, which either both have value
1 2 3 ::: k
2 1 : ::: :

, or both have value 1 2 3 ::: k
1 2 : ::: :

, will together yield 1 2 3 ::: k
1 2 : ::: :

in any case. But,

if all YES-answers were correct, then T2 will yield
1 2 3 ::: k

1 1 : ::: :
, and so the combination

of T1, T2, and T3 will yield
1 2 3 ::: k

1 1 : ::: :
, if T3 rejects, or

1 2 3 ::: k

2 2 : ::: :
, if T3 accepts. Thus, the

whole computation tree on input x will yield value 1 2 3 ::: k

2 2 : ::: :
, if the rightmost guess

without wrong YES-answers leads to acceptance, and it will yield value 1 2 3 ::: k

1 1 : ::: :
,

otherwise. Now, adding one single leaf of value 1 2 3 ::: k
2 1 : ::: :

on the right, and one single

leaf of value 1 2 3 ::: k
1 1 1 ::: 1

on the left, will yield the desired simulation.

If the assumed simulations of C are possible even in (M̂k)P, then also the con-

structed simulation of P9 :� � C will be possible in (M̂k)P, provided the mappings of

the form 1 2 3 ::: k

2 1 : ::: :
, which were needed in the proof, may be used in (M̂k)P, which

can be achieved in the case k > 2 by choosing 1 as the image of 3. This completes

the proof. 2

Now we are ready to give upper bounds also for classes of the form P9 :� � C for

certain classes C.

3.5 Lemma. The following simulations hold:

a) P9 :� � P can be simulated in (M2)P via (1 2

1 1
=1 2

2 2
).

b) P9 :� � 8P can be simulated in (M̂3)P via (1 2 3

1 1 1
=1 2 3

2 2 2
).

c) P9 :� � (8 ^MOD3
�)P can be simulated in (M3)P via (1 2 3

1 1 1
=1 2 3

2 2 2
).
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d) P9 :� � (8 ^MOD3
�)9P can be simulated in (M̂4)P via (1 2 3 4

1 1 1 1
=1 2 3 4

2 2 2 2
).

e) P9 :� � (8 ^ MOD3
�)(9 _ �MOD3

�)P can be simulated in (M4)P via

(1 2 3 4

1 1 1 1
=1 2 3 4

2 2 2 2
).

f) P9 :��(8^MOD3
�)(9_�MOD3

�)8P can be simulated via (1 2 3 4 5

1 1 1 1 1
=1 2 3 4 5

2 2 2 2 2
)

in (M̂5)P.

Proof. All the statements follow if we apply Lemma 3.4 to the suitable statements

of Lemma 3.3. 2

Now we are ready to prove our main results:

3.6 Theorem. (M̂ 0
2
)P = P (M 0

2
)P = �P

(M̂2)P = �p
2

(M2)P = P9 :� �P

Proof. We prove the four statements:

(M̂ 0
2
)P: The monoid M̂2 consists of the two constant mappings and the identity

mapping. Now let L be a set in (M̂ 0
2
)P. Then there is a nondeterministic

Turing machine M , which in every leaf outputs the identity mapping, and

a polynomial time computable function f , such that the values of f are

subsets of f1; 2g, and x 2 L, if and only if 1 2 f(x). Thus L is clearly in

P.

The reverse direction is Lemma 3.3 a).

(M 0
2
)P: Now in addition to the identity mapping we may also use the mapping 1 2

2 1
.

So, obviously, (M 0
2
)P coincides with �P.

(M̂2)P: In this case we may use both constant mappings and the identity mapping.

Let L be in (M̂2)P. Then there is a nondeterministic machine, which on

every x produces a leaf string l(x) consisting of these transformations.

Further we have a polynomial time computable function f , whose value is

a subset of f1; 2g. Our simulation �rst computes f(x). Now, if f(x) is the

empty set, we reject. If f(x) = f1; 2g, we accept. In the remaining cases

f(x) is either f1g or f2g, and we have to check whether the product of

the leaf string evaluated in M̂2 maps 1 to the single value in f(x). But by

queries to an NP oracle we can certainly �nd out, which monoid element

in the leaf string is the last one, which is not the identity mapping (if any).

Once we know that, we also know the value of the whole product, which

su�ces to check, whether x 2 L. Thus L belongs to PNP.

The reverse direction is Lemma 3.3 b).

(M2)P: Let L be a set in (M2)P, and let f and N be the according function and

machine. Then, N on every input x produces a leaf string lN(x) from

M�
2
, and x 2 L if and only if lN(x), evaluated in M2, belongs to f(x). A

10



P9 :� �P-machine simulates N as follows: First, compute f(x). Then, by

queries to an oracle from NP, �nd the rightmost letter in lN (x) which is

a constant mapping. By one question to a �P-oracle �nd out the result

of lN (x) in M2. This information, together with the value of f(x) clearly

su�ces to check, whether x 2 L.

The reverse direction is Lemma 3.5 a).

2

Now we will prove the analogous theorem for the case k = 3.

3.7 Theorem. (M̂ 0
3
)P = �8P (M 0

3
)P = �(8 ^MOD3

�)P

(M̂3)P = P9 :� � 8P (M3)P = P9 :� � (8 ^MOD3
�)P

Proof. We prove the four statements:

(M̂ 0
3
)P: The monoid M̂3 consists of all those mappings on f1; 2; 3g, which have

at most two di�erent values, and the identity. Now let L be a set in

(M̂ 0
3
)P. Then there is a nondeterministic Turing machine N , which in

every leaf either outputs the identity mapping, or a mapping with two

di�erent values. Moreover, two consecutive non-identity leaves have to �t

to each other in the following sense: If the �rst one, m1, has values a

and b satisfying a < b, then the second one, m2, satis�es m2(a) 6= m2(b).

If m2(a) > m2(b), then we say that m2 is an inverting element. (Note

that m2's property of being inverting depends on m2 and on m1.) Here,

by consecutive non-identity leaves we mean two leaves with the property

that in the computation tree m1 appears to the left of m2, and moreover,

between these two leaves there are only leaves whose attached monoid

element is the identity. Without loss of generality we can assume that the

leftmost leaf is 1 2 3

1 2 2
, and that the rightmost leaf is 1 2 3

1 2 2
. We want to

check whether value 1 is �xed under the action of the leaf string.

Now, a parity-computation on input x can do the following: Let l =

m1 : : :mr be the leaf string of N on input x. Branch to all pairs p; q

of values such that 1 � p < q � r. Check that neither mp nor mq is an

identity leaf, and that all mi, where p < i < q are identity leaves. The

latter check is possible in 8P, the others even in P. If one of the checks is

unsuccessful, reject. Otherwise accept, if and only ifmq is an inverting leaf.

This simulation will have an odd number of accepting computations, if and

only if the leaf string as a whole is an inverting mapping, i.e. if and only if

it maps 1 to 2 and 2 to 1. So we can check in �8P, whether 1 is mapped to

1. Similarly we can check whether a is mapped to b for all a; b 2 f1; 2; 3g.

As �8P is closed under complement, union and intersection, this proves

the inclusion (M̂ 0
3
)P � �8P.

The reverse direction follows directly from the �rst statement in Lemma

3.3 c).
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(M 0
3
)P: Now we may also use nontrivial permutation elements of M3. We proceed

as in the claim for (M̂ 0
3
)P, but we branch on all triples p; q; �, where 1 �

p < q � r, and � is an element of S3. Then we check that neither mp nor

mq is a permutation leaf, and that allmi, where p < i < q are permutation

leaves, and additionally that the product mp+1 : : :mq�1 = �. These checks

can be done in 8P^MOD3
�P (because (S3)P = MOD3

�P). Now accept,

if and only if all checks are successful, and �mq is an inverting element.

This proves that (M 0
3
)P � �(8 ^MOD3

�)P.

The reverse direction follows directly from the �rst statement in Lemma

3.3 d).

(M̂3)P: This is very similar to the case (M̂ 0
3
)P, but as now it is not forbidden to

have a constant as value of the leaf string, we have to �nd the rightmost

position q, such that m1 : : :mq = c for some constant mapping c. Now,

a constant mapping can be given either directly, or it can be forced by a

sequence of two consecutive non �tting non-identity leaves. In any case we

can �nd the rightmost occurrence of such a case by questions to an oracle

in 98P (binary search), and then apply the �8P simulation on the rest of

the leaf string. This proves that (M̂3)P � P9 :� � 8P.

The reverse direction is Lemma 3.5 b).

(M3)P: A combination of the techniques of the previous cases shows that (M3)P �

P9 :� � (8 ^MOD3
�)P.

The reverse direction is Lemma 3.5 c).

2

We proceed with k = 4:

3.8 Theorem. (M̂ 0
4
)P = �(8 ^MOD3

�)9P

(M 0
4
)P = �(8 ^MOD3

�)(9 _ �MOD3
�)P

(M̂4)P = P9 :� �(8 ^MOD3
�)9P

(M4)P = P9 :� � (8 ^MOD3
�)(9 _ �MOD3

�)P

Proof. The lower bounds follow directly from Lemma 3.3 e) and f) in the cases of

the prime classes, and they are proven in Lemma 3.5 d) and e) for the other two

classes. As to the upper bounds, we only provide the �rst result in detail. The others

can be obtained combining the technique of this case and of the cases investigated

in Theorem 3.7.

So let L be in (M̂ 0
4
)P via machine N . We have to show that L is in

�(8 ^ MOD3
�)9P. Assume that N 's leaf string on input x is of the form

m0
0
ee : : : em1m

0
1
ee : : : em2 : : : , where e is the identity mapping on four elements,

there is at least one occurrence of e between m0
i�1 and mi, and the mi and m0

i

are mappings with exactly three di�erent values, such that mim
0
i = mi for all i � 1.

This can easily be achieved. Now branch on all 5-tuples (p; q; p0; q0; �) and accept if
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and only if p and q are pointers to some m0
i�1 and mi, p

0 and q0 are pointers to some

m0
j�1 andmj, such that i < j, and moreover m0

i�1mi as well asm
0
j�1mj are mappings

with only two values, such that the whole substring of the leaf string starting at m0
i

up to mj is inverting in the sense of the proof of Theorem 3.7. Finally, the parity of

the number of such inversions will tell us again, whether value 1 is �xed by the leaf

string. It remains to show that all the checks can be carried out in (8^MOD3
�)9P.

First we mention that the fact that p and q as well as p0 and q0 point to one group

of the leaf string each, can be checked in 8P, as it is enough to check that all leaves

in between p and q are identities, and the same for p0 and q0. Then we have to check

that each of these pairs of pointers de�nes a 2-value group, i.e. that the mappings

m0
i�1mi and m0

j�1mj have two values each. This can be done deterministically in

polynomial time. Third we have to check that there is no other 2-value group in

between. For that we need a check in 89P, because we have to check for all pairs

p00 and q00, such that q < p00 < q00 < p0 the condition: if the according leaves would

combine to a 2-value element of M4, then there is another non-identity leaf between

them. This is a typical �p
2
-question. Now it remains to check that the product of all

groups between the p; q group and the p0; q0 group viewed as a permutation on three

elements has the guessed value �: We branch to all pairs of pointers into this sub-

string in an order-preserving way. Then we check, which element of S3 the second

pointer would realize, if it would be consecutive to the �rst one. Then we assume

this element as value if all elements in between are identity, or we assume identity

otherwise. This can be achieved by a MOD3
�-computation (for the elements from

S3), applied to a 8P set (for the identity check). Thus all checks can be done either

in 89P or in MOD3
�8P, which equals MOD3

�9P. The whole check then is possible

in (8 ^MOD3
�)9P. 2

3.9 Theorem. (M̂ 0
5
)P = �(8 ^MOD3

�)(9 _ �MOD3
�)8P

(M̂5)P = P9 :� �(8 ^MOD3
�)(9 _ �MOD3

�)8P

Proof. The lower bound for (M̂ 0
5
)P follows directly from Lemma 3.3 g), the one for

(M̂5)P is Lemma 3.5 f). The upper bound proofs are identical to those given in the

above cases for k = 3 and k = 4, only lifted up to another level. 2

4. Applications

In this section we will apply the results of Section 3 to the cases of local self-

reducibility and bottleneck Turing-machines. First we recall the de�nition of a

k-local self-reducible set from [BeSt95].

De�nition. Let A � IN , and let k � 1. A is called k-local self-reducible, if there is a

number n0 � k and a polynomial-time computable function f : IN�n0 ! f0; 1g(f0;1g
k
)

such that

8n 2 IN�n0 �A(n) = f(n)(�A(n� k); : : : ; �A(n� 1)):

To obtain a smooth class we take the closure of the class of all k-local self-

reducible sets under many-one reducibility:
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De�nition. The class k-LSR is de�ned by

k � LSR = fL j 9A : L �p

m A and A is k-local self-reducibleg:

Besides the k-local self-reductions, in [BeSt95] also a many-one type of k-local

self-reductions is introduced:

De�nition. Let A � IN , and let k � 2. A is called m-k-local self-reducible, if

there is a number n0 � k and a polynomial-time computable function f : IN�n0 !

f1; : : : ; kg such that

8n 2 IN�n0 �A(n) = �A(n� f(n)):

In analogy to the de�nition of k-LSR we introduce a smooth class for the many-

one case, too:

De�nition. The class k-LSRm is de�ned by

k � LSRm = fL j 9A : L �p

m A and A is m-k-local self-reducibleg:

Remark.

1) We only require the respective relations for n � n0 to make sure that the

property of being locally self-reducible is robust against �nite variation of the

set.

2) In [BeSt95] results are of the form: all k-local self-reducible sets are in class

C, and there is a �p

m-complete set for C which is k-local self-reducible. In our

setting this just reads k-LSR = C.

3) The function f in the de�nition of k-local self-reducibility corresponds to a

k-tt reduction, while the according function in the de�nition of m-k-local self-

reducibility corresponds to a many-one reduction. Thus in the �rst case the

value f(n) has to be a k-ary boolean function, but in the second case a pointer

to one of the k previous numbers su�ces.

Now we relate these de�nitions to the classes (Mk)P and (M̂ 0
k)P from Section 3:

4.1 Theorem. k-LSR = (M2k)P
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Proof. To show k-LSR � (M2k)P it su�ces to prove that all k-local self-reducible

sets are in (M2k)P, since trivially the latter class is closed under �p

m-reductions.

Now let A be k-local self-reducible via n0 2 IN and function f . Let ci (1 �

i � n0 � 1), the values of �A(i), be computed once and for all. On input n, an

(M2k)P-machine and a function f , witnessing A 2 (M2k)P can work as follows:

If n < n0, then: Produce a trivial tree with one leaf, whose value is the identity

function. If cn = 1 then let g(n) = f1g, otherwise let g(n) = f2g.

If n � n0, then: Produce a tree with n� n0 + 2 leaves, one for each value i such

that n0 � i � n (starting with n0 on the left, ending with n on the right), and one

more leaf to the left, which is called the \initial leaf".

Let every leaf produce a transformation on 2k values, which are coded as k-bit

strings, as its leaf value. The initial leaf produces the constant mapping d0, satisfying

d0(�1 : : : �k) = �1 : : : �k, where �1 = �A(n0 � k); : : : ; �k = �A(n0 � 1). For every

i 2 fn0; n0 + 1; : : : ; ng let the according leaf produce the mapping di, where

di(�1 : : : �k) = �2 : : : �k�;

satisfying � = f(i)(�1; : : : ; �k).

Since f is polynomial-time computable, also di is for given i 2 fn0; : : : ; ng, and

moreover di can be viewed as an element of M2k for all i 2 fn0; : : : ; ng [ f0g. Then

the whole machine produces a computation tree with n�n0+2 leaves, each of which

is equipped with a transformation fromM2k , and it is an easy exercise to check that

n 2 A if and only if the sequence d = d0dn0dn0+1 : : : dn, which obviously as a product

in M2k yields a constant mapping, satis�es

d(�1 : : : �k) = 
1 : : : 
k�11

for each �1; : : : ; �k and arbitrary values 
1; : : : ; 
k�1. Now de�ne a subset of M2k by

B = fc j c = 
1 : : : 
k is a constant mapping, and 
k = 1g, then n 2 A () d 2 B,

so choosing g(x) = B we complete the proof that A 2 (M2k)P.

For the reverse direction, let A 2 (M2k)P. We have to construct a k-local self-

reducible set B such that A �p

m B. Here, one di�culty arises from the fact that

we have an independent computation tree for every input to the (M2k)P-machine

M deciding A, but we may only construct one universal characteristic sequence

de�ning B. Thus we will proceed in stages: we choose a value for n0, then a

section of the characteristic sequence, say �B(n0); : : : ; �B(n1�1) for the \�rst" string

(the empty string), another section, say �B(n1); : : : ; �B(n2 � 1) for the next string

(string \0"), and so on. Thus on input x we virtually concatenate exponentially

long sequences of the exponentially many (measured in the input size) strings that

are less than x in lexicographic ordering, which still results in an exponentially

long sequence. We only have to make sure that the sections for all strings of a

given length m have an easily computable �xed length (like 2m or 22m). Each

section will start with a sequence of k mappings each of which has value 0. Thus

the characteristic sequence in the beginning of the section for the i-th string x is

�B(ni�1) = �B(ni�1+1) = � � � = �B(ni�1+k�1) = 0, and we will view 0k as the code

for number 1 (in the coding of f1; : : : ; 2kg by k-bit strings). Let further 0k�11 be the
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code for number 2 and assume w.l.o.g. that the result of the leaf string ofM on input

x is either the constant 1 or the constant 2. Now we would like to map the whole

leaf string b1; : : : ; br into the characteristic sequence directly. But unfortunately we

obviously can only simulate mappings of the form �1 : : : �k 7! �2 : : : �k� directly,

but the b� (1 � � � r) can be any element of M2k . Thus it remains to prove that

all elements of M2k can be simulated by �nite sequences of mappings of the form

�1 : : : �k 7! �2 : : : �k�. For this we remark that M2k is generated by the following

2k elements:

a) tj (1 � j � 2k � 1),

where tj(j) = j + 1, tj(j + 1) = j, and tj(j
0) = j 0 if j 0 62 fj; j + 1g.

b) s, where s(j) = max(j; 2) for all j.

It is clear that s can be simulated:

s = s1s0s0 : : : s0

(with k � 1 times s0), where s1(0
k) = 0k�11, and s1(�1 : : : �k) = �2 : : : �k�1, other-

wise, and s0(�1 : : : �k) = �2 : : : �k�1, in all cases.

For the tj we assume that our coding of f1; : : : ; 2kg in k-bit strings is a Gray-

code, i.e. two consecutive numbers di�er only in one place. With the above example

of s it should be clear how to simulate tj.

Now we can build the values b1; : : : ; br into the characteristic sequence, each b� by

a number k � l of characteristic bits, where l depends on the number of steps needed

to simulate b� by elements tj and s. We will always use the maximum l (inserting

dummy elements, if necessary) to obtain a �xed a priori computable length of r �k � l.

Then, if ni+1 = ni + r � k � l, it is easy to compute ni+1 � 1, and obviously the input

x belongs to A, if and only if ni+1 � 1 belongs to B, the set whose characteristic

sequence is implicitly constructed in this proof, and which is obviously in k-LSR.

This completes the proof of the theorem. 2

Similarly we can show:

4.2 Theorem. k-LSRm = (M̂ 0
k)P

Proof. The proof is quite analogous to the previous one. We only give a sketch of

where the di�erences come from:

1) The self-reduction in the �rst case was a k-tt reduction with 2k di�erent values,

which leads to M2k . Now our many-one reduction has only k possible places

to refer to, this leads to Mk.

2) A constant mapping would mean that k consecutive elements all depend on the

same one of the k previous elements. But then trivially all elements beyond

these k elements either all are in the set, or all are not. Thus the considered set

would be �nite or co-�nite, and thus in P. So it is su�cient (and necessary)

to only allow leaf strings that do not evaluate to constant mappings, thus

explaining the prime in (M̂ 0
k)P.
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3) The implicit mapping �1 : : : �k 7! �2 : : : �k� in a many-one fashion can only

keep all the information if � = �1. Thus after k such steps we would obtain

the same sequence �1 : : : �k again. This means, essentially the only allowed

permutations are identity permutations, thus explaining the hat in (M̂ 0
k)P.

The reader will be able to �ll in the details. 2

Combining these two theorems with the results in Section 3 we obtain the fol-

lowing corollaries:

4.3 Corollary.

a) 1-LSR = P9 :� �P

2-LSR = P9 :� �(8 ^MOD3
�)(9 _ �MOD3

�)P

k-LSR = PSPACE, (k � 3)

b) 2-LSRm = P

3-LSRm = �8P

4-LSRm = �(8 ^MOD3
�)9P

5-LSRm = �(8 ^MOD3
�)(9 _ �MOD3

�)8P

k-LSRm = PSPACE, (k � 6)

Note that the equalities for k-LSR (k 6= 2) and k-LSRm (k � 6) were already

proven in [BeSt95].

It can easily be seen that the de�nitions of the classes SFk and shr-SFk from

[CaFu91] and [Og94] coincide with our classes (Mk)P and (M̂k)P. Thus we obtain:

4.4 Corollary.

a) SF2 = P9 :� �P

SF3 = P9 :� �(8 ^MOD3
�)P

SF4 = P9 :� �(8 ^MOD3
�)(9 _ �MOD3

�)P

SFk = PSPACE, (k � 5)

b) shr-SF2 = �p
2

shr-SF3 = P9 :� � 8P

shr-SF4 = P9 :� �(8 ^MOD3
�)9P

shr-SF5 = P9 :� �(8 ^MOD3
�)(9 _ �MOD3

�)8P

shr-SFk = PSPACE, (k � 6)

Note that the equalities for SF2, shr-SF2, SFk (k � 5), and shr-SFk (k � 6)

have already been proven in [CaFu91] and [Og94], resp.

The classes P9 :� �(8^MOD3
�)P and P9 :� �(8^MOD3

�)(9_�MOD3
�)P have

nice closure properties, especially they are closed under boolean operations. Thus

we can answer a question posed in [HeOg95]:
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4.5 Corollary. SF3 and SF4, and generally all SFk and shr-SFk classes, are closed

under complement, union, and intersection.

5. Conclusion, Extensions, and Problems

We completely characterized all classes of the form (M)P and (M 0)P, where M is

one of the monoids M̂k or Mk (k � 2). We solved all open questions concerning

local self-reductions and many-one local self-reductions. We also obtained exact

characterizations for the classes de�ned via so-called bottleneck Turing machines.

The results can even be slightly strengthened: As already mentioned, the classes

k-LSR could be denoted by k-LSRk-tt, because the actually occurring reduction type

is a k-truth-table reduction. Thus we know from [BeSt95] (and from Corollary 4.3)

that 3-LSR3-tt = PSPACE. In fact we can show:

5.1 Theorem. 3-LSR2-tt = PSPACE

Proof. It su�ces to show that the permutation group S5 can be simulated by 2-tt

mappings in a 3-local self reduction. Let three consecutive bits of the characteristic

sequence of a set code the values 1, 2, 3, 4, 5 as follows: 1 = 111, 2 = 110,

3 = 100, 4 = 001, 5 = 011. It is an easy exercise to show that the group S5 is

generated by the elements 1 2 3 4 5

1 3 2 4 5
, 1 2 3 4 5

1 2 4 3 5
, 1 2 3 4 5

1 2 3 5 4
, and 1 2 3 4 5

3 1 2 4 5
. We use the

following 2-tt mappings: ci for i 2 f1; 2; 3g maps the sequence a3a2a1 to a2a1ai.

ei;j for i; j 2 f1; 2; 3g maps the sequence a3a2a1 to a2a1x, where x = 1, if ai = aj,

and x = 0, otherwise. di;j for i; j 2 f1; 2; 3g maps the sequence a3a2a1 to a2a1x,

where x = 1, if ai 6= aj, and x = 0, otherwise. vi;j for i; j 2 f1; 2; 3g maps the

sequence a3a2a1 to a2a1x, where x = 0, if ai = aj = 0, and x = 1, otherwise.

ui;j for i; j 2 f1; 2; 3g maps the sequence a3a2a1 to a2a1x, where x = 0, if ai = 1

and aj = 0, and x = 1, otherwise. One can easily check that the sequence c3e2;3c3
maps 111 to 111, 110 to 100, 100 to 110, 001 to 001, and 011 to 011. Thus this

sequence realizes the generator 1 2 3 4 5

1 3 2 4 5
. Similarly, the sequence e2;3c3e1;3 realizes

the generator 1 2 3 4 5

1 2 4 3 5
, the sequence c3e1;3c3 realizes the generator 1 2 3 4 5

1 2 3 5 4
, and

�nally c3d1;3e1;3c3v2;3u2;3 realizes the generator
1 2 3 4 5

3 1 2 4 5
. 2

What do we know about 1-tt reductions? Certainly 6-LSR1-tt = PSPACE, and

1-LSR1-tt = 1-LSR = P9 :� �P. As an open question we would like to ask for a

characterization of k-LSR1-tt for k 2 f2; 3; 4; 5g.

Another open question is the relation between (Mk)P and (M̂ 0
k+1)P. Certainly

for k = 2 and k � 5 we have inclusion from left to right. But is that also true

for k = 3 and k = 4? Note that (M4)P contains 98�P, and thus by Toda's result

[To91] the whole polynomial time hierarchy. However, it would be surprising, if

(M̂ 0
5
)P, which equals �(8 ^MOD3

�)(9 _ �MOD3
�)8P, would contain the PH.
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