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Abstract

We study the power of transformation monoids, which are used as an acceptance
mechanism of nondeterministic polynomial time machines. Focussing our attention
on four types of transformation monoids (including the monoids of all transforma-
tions on k elements) we obtain exact characterizations of all investigated polynomial
time classes.

We apply these results to the cases of locally self reducible sets and of bottle-
neck Turing machines to obtain complete solutions to the formerly open problems
related to these models. Especially, the complexity of k-locally self reducible sets
for all numbers k, as well as the complexity of width-3 or width-4 bottleneck Turing
machines are determined completely. Also for m-k-locally self reducible sets (i.e. k-
locally self reducible sets, where the self reduction is given by a many-one reduction
function) we determine the complexity exactly for all k.






1. Introduction

It has been a fruitful approach in structural complexity theory to define acceptance
of nondeterministic polynomial time Turing machines by conditions posed on the or-
dered set of outcomes of the different computation paths of such a machine. Several
models have been considered:

e “Counting classes” were defined by the number of accepting paths and a
predicate which evaluated this number. As examples, see [PaZa83, CaHe89,
GNW90].

e Polynomial time bit reductions [BCS92, HLSVWO3]|, bottleneck Turing-
machines [CaFu91], and serializable computations [Og94, HeOg95] can im-
plicitly be interpreted as machine models where acceptance is defined by the
sequence of outcomes of the computation paths of a nondeterministic polyno-
mial time machine.

e Local self-reductions [BeSt95] also can be reformulated to fit in the above
model. (See Section 4.)

e Locally definable acceptance types [He92a, He92b| were defined to generalize
such an approach: not only the leaves, but every node of the computation
tree influences the question of acceptance or rejection. However, in the case
of an associative acceptance type [He94b], locally definable acceptance types
are also one variant of the above described general phenomenon.

e The most explicit model of this kind is the leaf language model, which was
introduced in [BCS91, BCS92] by Bovet, Crescenzi, and Silvestri. Moreover,
Bovet et al. gave a mechanism, how to prove relativized inclusion or existence
of separating oracles for the described complexity classes by investigating the
respective leaf languages and their relations. This approach led to the solution
of a very general separation problem in [He95b|; there, an algorithm was de-
signed, which on input two classes of bounded counting type decides, whether
there exists a separating oracle.

In most of these approaches, the vehicle to obtain results, i.e. mainly character-
izations of so described complexity classes, was the monoid description. Thus for
instance in [HLSVW93] it was shown that regular leaf languages whose syntactic
monoid is solvable, describe complexity classes within MOD-PH.

In the current paper, we focus on those cases, where special kinds of transfor-
mation monoids are used as acceptance mechanism. A transformation monoid on
k items is a monoid, whose elements are mappings from {1,...,k} into {1,...,k}.
Acceptance of a nondeterministic machine with leaf values from a given monoid
usually is defined by a subset of the monoid: if the leaf string, evaluated in the
monoid, yields an element of the given subset, the input is accepted, otherwise it
is rejected. In the case of transformation monoids on k items we only allow special
kinds of subsets by the following convention: The acceptance condition is given by a



subset of {1, ..., k}, i.e. the input is accepted if and only if the leaf string, evaluated
in the monoid, yields an element which maps 1 into the given subset of {1,...,k}.

There are mainly two motivations for this approach: It can be shown that k-
local self reductions as introduced by Beigel and Straubing [BeSt95] are strongly
related to the monoid of all transformations on 2* items, and the many-one k-local
self reductions are similarly related to a certain submonoid of the monoid of all
transformations on k items. Secondly, the bottleneck Turing machines of width &,
introduced by Cai and Furst [CaFu91] and further investigated by Ogihara [Og94]
are strongly related to the full transformation monoid on £ items.

One in some respect extreme special case of transformation monoids is the full
permutation group Sk, which contains all bijective transformations. The power of
finite groups as acceptance mechanisms was investigated in [He96] and in [He95al.
It is an easy exercise to find out that acceptance by the groups S5, S3, and Sy
characterizes the classes ©P, MOD;3 - ©P, and ® - MOD; - ®P, respectively. Already
in [HLSVWO3] it was shown that Sy for k& > 5 characterizes the class PSPACE.
These groups were also considered in [Og94], where the corresponding classes were
called perm-SFj,.

The current paper is organized as follows:

Section 2 will provide the necessary definitions and further preliminaries. In
Section 3 we will state and prove our main results in their most general formulation.
Then in Section 4 we can apply these results to solve the problems of (m-) k-locally
self reducible sets and of width k£ bottleneck Turing machines.

2. Notations and Definitions

We assume the reader to be familiar with standard complexity theory notions, as
can be found in [BDG88, BDG90, Pa94].

Definition. Let k£ > 2. Then we define the following two monoids:

Mj: The monoid Mj consists of all mappings f, such that f: {1,... .k} —
{1,...,k}. The monoid operation is composition of mappings. (This monoid
has k* elements.)

My.: The monoid M, is the submonoid of M, that consists of all non-bijective
mappings plus the identity mapping. (This monoid has k¥ — (k!) +1 elements.)

Using these two monoids (for every k) we further define four complexity classes:

Definition. Let k > 2. The classes (Mj)P, (M)P, (M;)P, and (M.)P are defined
as follows:

(My)P: A set L belongs to (My)P, if there is a polynomial time function f with
values in 2{1*} and a nondeterministic polynomial time machine N,
which on every input z produces a leaf string (y(x) over My, such that
x € L if and only if Iy (x), evaluated in My and then (as a transformation)
applied to 1 yields an element from f(x).

2



(M;)P: This is the subclass of (M)P, where only machines are allowed, which
on every input produce a leaf string [y (z) that does not yield a constant
mapping when evaluated in Mj.

(My)P: This is defined analogously to (My)P with the difference, that on all inputs
the leaf string [y () has to be a string over M.

(M!)P: This is the subclass of (M;)P, where only machines are allowed, which
on every input produce a leaf string [y(z) that does not yield a constant
mapping when evaluated in Mj.

We several times will need to deal with explicit transformations on 2, 3, 4, or 5
elements. To this end we introduce the following notational definition:

Definition. Let a and b be values from {1,2}. Then by % we denote the transfor-
mation ¢ satisfying ¢(1) = a and ¢(2) = b. Analogously the transformation 1 — a,
2+ b, 3 — c on three items is denoted by 22 and similarly for transformations

abc
on four elements (1-2-22) and on five elements (1-2242),
abcd abcde

Now we would like to fix some notations regarding operators on complexity
classes. The operators 4 and V should be known. In analogy to them the operators
of the form MODy, (for k > 2) are defined as follows: If C is a complexity class, then
a set L belongs to MODy, - C, if and only if there is a set B € C and a polynomial p,
such that

v€L <= #{yllyl <p(z)) A(z,y) € B} Z0 mod k.

The operator MODs is usually denoted by ©. The dot between operator and class
will often be omitted. Note that this does not cause problems, as for instance @ - P
and ©P indeed coincide. Similar equalities hold in all other cases considered in this
paper.

For a class C the notation P® means the complexity class of languages accepted
by a deterministic polynomial time Turing machine with access to an oracle from
the class C. If C; and C, are complexity classes, then by P ¢ (following [HHW95])
we mean the class of languages accepted by a deterministic polynomial time Turing
machine with access to two oracles, one from C; and the other one from C,, where
the computation is done in two phases: in the first phase only oracle queries to
the Ci-oracle are allowed, and in the second phase only queries to the Cs-oracle
are allowed. It should be emphasized that classes and operators defined by query
order are not at all artificial. Query order seems to be a very natural concept, as
can be derived from the fact that it appears in a variety of contexts. E.g. see
[HHW95, HHH96a, HHH96bD)|.

If O is an operator and C is a complexity class, we will write P©-C to denote PO,
Similarly, if O; and O, are two operators, we write P91: 92 . C to denote P91¢: 02€,

We also use the binary operators A and V for complexity classes, where C; A Cy
consists of all languages L, such that there are L; € C; and Ly € C,, satisfying
L = Ly N Ly. Analogously, C; V Cy is defined via L = Ly U Ly. Again, by (O; A O3)C
we mean O1C A OC, and analogously for V.



3. The Acceptance Power of Transformation Monoids

In this section we will clarify the computational complexity inherent in the classes
(My)P, (M;)P, (M)P, and (M;)P. We start with some easily seen bounds and
relations:

3.1 Proposition.

(i) For all k > 2 we have:

P C (Mp)P C (M})P N (M;)P C (M})P U (M;)P C (Mj,)P C PSPACE

(ii) For all k > 2 we have:

(MP C (V)P and  (My)P C (Vj1)P

This result seems to indicate that there might be an infinite hierarchy built by
these classes. However, using the main result from [HLSVWO93] we can show that
this hierarchy collapses down to (M})P:

3.2 Theorem.
(i) (Ms)P = (M!)P = PSPACE
(ii) For all k > 5 we have: (M)P = (M})P = (M,)P = (M})P = PSPACE

Proof. 1t suffices to show (M!)P = PSPACE, because by Proposition 3.1 we then
can conclude that all the other classes from the theorem are between (M{)P and
PSPACE.

Now for (M:)P note that the non-solvable group Ss is a submonoid of Ms;,
and no product of group elements will ever yield a constant transformation. Thus
(S5)P C (M;)P C PSPACE, but from [HLSVW93] we know that (S5)P = PSPACE.
This proves the theorem. O

Thus there are 14 classes left, whose complexity has to be determined, namely
the four classes for k£ = 2, as well as those for £ = 3 and k£ = 4, and two classes for
k = 5, the latter ones being (M;)P and (M})P. To this end we will develop a series
of simulation results in Lemma 3.3.

Definition. We say, complexity class C can be simulated in (M)P (or in (M})P,

(M;,)P, (M})P, resp.) via (L2 3.k /12 ;k), if for all L € C there is a machine M,

which is an (Mj)P-machine (or (M} )P-machine, ...) such that for all z, if z € L
then M’s leaf string on input x evaluates to M, but if x ¢ L then M’s leaf

abc..
string on input z evaluates to 2 ?c k.




3.3 Lemma. The following simulations hold:
a) P can be simulated in (M)P via (53/12), as well as via (13/13).

b) AL can be simulated in (My)P via (T3/53).

¢) VP can be simulated in (Ms)P via (532 /153), as well as via (152 /153).

d) ((Y é\gh;ll()?gEB)P can be simulated in (M3)P via (33-3/122), as well as via
T11/121/"

e) (Y AMODs®)3P can be simulated in (M,)P via (FE33/1232) as well as

. 1234,1234 ti2ilzil
via (1555/ 1751 1)

f) (YAMOD;®)(3VEMOD;®)P can be simulated in (M,)P via (3232 /1 231

S 123471234 bz2il2 1y
as well as via (377 /7571)-

g) (v A MODs®)(3 vV ®MODs®)VP can be simulated in (Ms)P  via

12345712345 S 192345712345
(3i523/1To111) as well as via (7/175111)-

Proof.

a) Use a computation tree with only one leaf, and produce the leaf value as
needed.

b) We use the following well known characterization of Ab: A set L belongs to A}
if and only if there is a nondeterministic machine N such that for all x we have,
x € L, if and only if the rightmost accepting path of NV on input z is in an odd
position. (Here we use only normalized machines, where the computation tree
is a full binary tree, and without loss of generality we assume that the leftmost
path is accepting.) Now, we simulate N, but instead of rejection in a leaf we
produce the identity transformation; instead of acceptance in a leaf which is
22, and instead

of acceptance in a leaf which is on a path in an odd position, we produce the

transformation % Clearly, the whole leaf string will evaluate to %, if the
12

simulated computation accepts, and it will evaluate to 5=, otherwise.

on a path in an even position, we produce the transformation

1237123
123133

). Now, build a new simulation as follows:

¢) We can, in a natural way, simulate VP in (Ms)P via ( ) as well as

/1237123 . /1237123
via (1535/353) or via (;55/157

First branch to three possible configurations. In the leftmost one simulate via
(133 /123), in the middle one simulate via (153 /32-2), and in the rightmost
one simulate via (} ; g } g i’) If the input was to be accepted, then all three

parts lead to value +2-3, thus also the whole tree evaluates to the same value.

123"
If the input was to be rejected, then the three parts evaluate to the values
} § g, ; ; g, and } g i’ Thus the whole tree evaluates to their product, i.e.



; f i’ Now add one leaf of value ; f i’ to obtain ; f ‘I’ in case of acceptance,
and } ; g in case of rejection.

23) and

3 for reJectlon

For the second simulation of VP take the easy simulation via (

123 123 1
add one leaf of value 5 to obtain {=— for acceptance and { 2 5

} 3 g 5T i’) as developed in the proof of

part ¢). Moreover, it is easy to see that MOD3®P can be simulated via

(153/5%2). We call the first simulation A, and the second one B. Now

consider a simulation consisting of seven parts, namely tBAByAz, where

r = éfg, y = éf;, and z = }3? In the case that both the VP-

computation and the MOD3®P-computation are accepting, we obtain the leaf

123 123 123 123 123 123 123 . 123 .
value 315155 193 153 3132 153 151 Which equals 35— But if

; 23 12 i’ or both, then in every

case we obtain the value 1

We use a simulation of VP via (

. or B is replaced by 3
2 3
121

either A is replaced by

For the second statement, we have to use a different simulation, again consist-
ing of seven parts, namely wBAwBAz, where A, B, and z are as above, and

123 123 123 123
57+ Then we obtain , if A'and B both equal =, and {7 in all

other cases.

w =

Now we start by simulating VP in (M,)P like in part c), leaving additional

1234/1234
211471224

roles of values 3 and 4, we obtain a simulation via (32-3-1/153-). Then it

should be evident, how to simulate MOD3®VP via (155-/3%>=). Recall
that MOD3®dP = MOD3;®VP.

value 4 untouched, i.e. via ( ), or equivalently by exchanging the

Then we simulat? 2E|P4in a natural way via (1334/1232).  Adding

33 on the right side, we obtain a simulation of
3 4 This can be extended to a simulation of VIP

Analogously we obtain simulations of VAP via

. /123471234
)0rv1a(1233 1)
12341234y
1232/2111/)

a leaf of wvalue

2
I via (1555/155)-
via (

1234 1234)

1232/1333/°
(1234 1234
1231/2232

simulation of V3P via (

Thus, as in part c), we obtain a

Now, the same arguments as in part d), just on four values instead of three
(but with no meaning associated with the image of 4) yield both statements.

First note that MOD3®P can be simulated via (1557 /352-), as shown in

part d) (just add an unused value 4). Call that simulation A. Then zAx,

_ 1234 - - (123471234 -
where & = 55— yields a simulation of MOD3®P via (5555/555)- This

simulation can be used to show directly that also ®MOD3®P can be simulated

(123471234 S :
via (5557/3351)- Call this simulation B.

On the other hand, again as in part d) by exchanging the roles of the

variables 3 and 4, one can also simulate MOD3®P via (155-3/523-1).

Call this simulation C. Then AC simulates MOD3®P via (1555 /1557).




. 1234 . 1234 o . .
Since 55— squared yields 52—, we can use this simulation also to sim-

ulate @MOD3®@P. Call this simulation D. Now, obviously BD simulates

®MOD;®P via (3351/53557)-

Clearly, VP can be simulated via (15-5—/15-57). If we call this simulation

E, then also VP A®MOD;®P can be simulated via (35— /32-5-1) by taking

BDE' as the required simulation, where B and D simulate the ®MOD3;®P-
computation, and E simulates the VP-computation. Taking complements, we

obtain that (3 vV @MOD;®)P can be simulated via (3-23-1/123%)  Adding

a leaf of value 1231, we obtain a simulation of (3 Vv ®MOD;®)P via

E% g g % ﬁ;. Thus V(3 V ®MOD3;®)P can naturally be simulated via

2234/2232/)
three values 2, 3, 4, only the value 1 has got an image 2. By exchanging roles

of variables, we can also simulate V(3 V ®@MOD3;®)P via (+225/1231) or

1233/1333
(1234/1234 123471234 : :
via (7555/555%) of via (7557/7551)- Thus, as in part c) we obtain a

simulation via (155 /32-3-1). Call this simulation F.

As to the MOD3®(3 vV ®MOD3®)P part, we use the fact that this equals
MOD;®(3 vV MOD3®)P, which can be easily shown using well known facts
about parity and modulo computations. From part d) we obtain a simulation

of (3V MOD3®)P via (15-33/32-52) by adding an unused value 4. Now

on values 1, 2, 4, this simulation acts like a parity computation. Thus we

can simulate MOD3®(3 vV MOD3®)P via (55— /35-2-1). Exchanging the

roles of values 3 and 4 we obtain a simulation via (123-3/223-2). Call this

This simulation works like a natural simulation of VP on

simulation G.

Now we can proceed as in part d), taking *GFGyFz for the simulation
via (2232/123 ) and wGFwGFz for the simulation via (+232/1231)

2122 0201 1234 1234 1934 ELIILZLAY
where » = =5, vy =375, 2 = 151 and w = 55

The difference between f) and g) is exactly as the one between d) and e). We
will use the fifth available value to perform the inner V-operator and change
it to a parity-like behavior for the ©@MOD3;®VP-part, or construct an 3VP-
simulation for the second part. We leave the details to the reader.

(I

The next lemma allows us to use the results of the previous lemma in order to

obtain upper bounds for the optimization classes obtained by applying the P7:®-
operator. By dots in the mappings of the form
allowed as image in this place.

123..k

51 , we mean that any value is

3.4 Lemma. Let C be a complexity class, which is closed under polynomial time

conjunctive truth-table reduction. If, for k > 2, C can be simulated in (My)P via
123,

21..

’“/123 k) as well as via (1 2? k/l 2? k) then P3°®.C can be simulated

m(Mk)Pma(lQ?’ k 12 3. k)

111. 222.

If k > 3, then the same statement holds for (Mk)P instead of (My)P



Proof. Let L € P?*®.C via machine N. By the assumed closure property of the
class C we obtain closure of ©C under complementation as well as under conjunc-
tive and disjunctive truth-table reductions. Thus we may assume that N in every
computation asks exactly one query to the @©C-oracle, and N accepts if and only if
that query is answered positively. We use a well-known technique to have a non-
deterministic machine guess the oracle answers of the dC-oracle in such a way that
when only the YES-answers are checked, on the rightmost path where all the checks
are successful, even the NO-answers have been correct. The algorithm that achieves
this is the following:

1:=1;
LOOP
Compute i-th oracle query q(i)
Guess oracle answer a(i) on ¢(i):
In left subtree, let a(i):= NO;
In right subtree, let a(i):= YES;
IF no more queries to NP-oracle THEN

b

EXIT LOOP
ELSE 7:=7+1;
END OF LOOP

The reader may check that the computation tree produced by this algorithm in
fact has the desired property.
We obtain a subtree which looks as follows:

Input x

Here, on every path of the subtree we have a specific sequence of oracle answers
a(1),...,a(max).



Now, we split into three subtrees (for each path):

The subtrees 177 and T3 are identical; both simulate the final ©C-oracle query

(depending on a(1),. .., a(max)), using the simulation via (322 /1 23k} which
can be obtained directly from the simulation of C via (32-2== k/l E 3k) Thus,
the evaluated leaf string in each of these subtrees yields ; f ?f::: = 1f the @©C-oracle

answers positively, and }gﬂ, otherwise. In the middle subtree TQ, however, we

check by one 3C-simulation, using the simulation via (£ 23k 12 3.0k) which can

11
be obtained directly from the simulation of C via ({32 k/l z 3 . ), whether all
the guessed YES-answers on the dJC-oracle queries were correct. We do that by

producing leaf value M d };ﬂ

We analyze the behav10r of this machine: If a wrong YES-answer is in the
list a(1),...,a(max), then Ty has only rejecting paths. Thus, the leaf string of
this subtree evaluates to M. Then T7 and T3, which either both have value

12 .
123k o1 both have value { 2 3.k will together y1eld 123.k
123,

if all YES-answers were correct, then T2 will yield ;= and so the combination
of Ty, T, and T3 will yield i f 3.k if Ty rejects, or 12 ?.".:. -, if T3 accepts. Thus, the

) ) 2 2
whole computation tree on input z will yield value 32-3-=-%

on accepting paths, an on rejecting paths.

in any case. But,

, if the rightmost guess

123...k
11 ...

on the right, and one single

without wrong YES-answers leads to acceptance, and it will yield value

otherwise. Now, addlng one single leaf of value M

123
111...1

If the assumed simulations of C are possible even in (My)P, then also the con-
structed s1mulat1on of P¥*®. C will be possible in (Mk)P provided the mappings of
the form } 23k . which were needed in the proof, may be used in (M;)P, which
can be achieved in the case k > 2 by choosing 1 as the image of 3. This completes
the proof. O

on the left, will yield the desﬁed simulation.

leaf of value

Now we are ready to give upper bounds also for classes of the form P7'®. C for
certain classes C.

3.5 Lemma. The following simulations hold:

a) PT®.P can be simulated in (Ms)P via (13 2—2)

b) PTP.YP can be simulated in (Ms)

c) PFY. (Y AMOD3®)P can be simulated in ( ) via } 23/ 23)

9



d) P#®. (VY AMODs®)3P can be simulated in (M,)P via (A2-34/1234

T111/2222/
e) PFY . (VY A MOD3®)(3 vV DMOD3®)P can be simulated in (M,)P wvia
(L234/1234)
1111/2222/
f) Pa:EB;(V/\MOD;),@)(E'V@MOD?,@)VP can be simulated vig (12312 /12345

Proof. All the statements follow if we apply Lemma 3.4 to the suitable statements
of Lemma 3.3. O

Now we are ready to prove our main results:

3.6 Theorem. (M})P =P (M)P = ®P

~

(My)P = AS (My)P = PF®.P
Proof. We prove the four statements:

(M3)P: The monoid M, consists of the two constant mappings and the identity
mapping. Now let L be a set in (M})P. Then there is a nondeterministic
Turing machine M, which in every leaf outputs the identity mapping, and
a polynomial time computable function f, such that the values of f are
subsets of {1,2}, and = € L, if and only if 1 € f(z). Thus L is clearly in
P.

The reverse direction is Lemma 3.3 a).

(M3)P: Now in addition to the identity mapping we may also use the mapping 2.

1
So, obviously, (M})P coincides with ©P.

(Ms)P: In this case we may use both constant mappings and the identity mapping.
Let L be in (M)P. Then there is a nondeterministic machine, which on
every x produces a leaf string [(x) consisting of these transformations.
Further we have a polynomial time computable function f, whose value is
a subset of {1,2}. Our simulation first computes f(z). Now, if f(z) is the
empty set, we reject. If f(x) = {1,2}, we accept. In the remaining cases
f(z) is either {1} or {2}, and we have to check whether the product of
the leaf string evaluated in A5 maps 1 to the single value in f(x). But by
queries to an NP oracle we can certainly find out, which monoid element
in the leaf string is the last one, which is not the identity mapping (if any).
Once we know that, we also know the value of the whole product, which
suffices to check, whether z € L. Thus L belongs to P,

The reverse direction is Lemma 3.3 b).

(M3)P: Let L be a set in (M,)P, and let f and N be the according function and
machine. Then, N on every input z produces a leaf string (y(x) from
M;, and z € L if and only if [y (z), evaluated in Ms, belongs to f(z). A

10



P3®. P.machine simulates N as follows: First, compute f(x). Then, by
queries to an oracle from NP, find the rightmost letter in [y (z) which is
a constant mapping. By one question to a @©P-oracle find out the result
of Iy(x) in M,. This information, together with the value of f(z) clearly
suffices to check, whether x € L.

The reverse direction is Lemma 3.5 a).

Now we will prove the analogous theorem for the case k£ = 3.

~

3.7 Theorem. (M})P = ®VP (M3)P = ®(Y A MOD;®)P
(Ms)P = PF®.vp (Ms)P = P¥*®. (Y A MOD3®)P

Proof. We prove the four statements:

(M?’,)P: The monoid M; consists of all those mappings on {1,2,3}, which have
at most two different values, and the identity. Now let L be a set in
(M3)P. Then there is a nondeterministic Turing machine N, which in
every leaf either outputs the identity mapping, or a mapping with two
different values. Moreover, two consecutive non-identity leaves have to fit
to each other in the following sense: If the first one, m;, has values a
and b satisfying a < b, then the second one, my, satisfies ma(a) 7# ma(b).
If ma(a) > ma(b), then we say that msy is an inverting element. (Note
that my’s property of being inverting depends on my and on m;.) Here,
by consecutive non-identity leaves we mean two leaves with the property
that in the computation tree m;, appears to the left of ms, and moreover,
between these two leaves there are only leaves whose attached monoid
element is the identity. Without loss of generality we can assume that the
leftmost leaf is 123 and that the rightmost leaf is 222, We want to

122 122
check whether value 1 is fixed under the action of the leaf string.

Now, a parity-computation on input x can do the following: Let [ =
my ...m, be the leaf string of N on input x. Branch to all pairs p,q
of values such that 1 < p < ¢ < r. Check that neither m, nor m, is an
identity leaf, and that all m;, where p < ¢ < ¢ are identity leaves. The
latter check is possible in VP, the others even in P. If one of the checks is
unsuccessful, reject. Otherwise accept, if and only if m, is an inverting leaf.
This simulation will have an odd number of accepting computations, if and
only if the leaf string as a whole is an inverting mapping, i.e. if and only if
it maps 1 to 2 and 2 to 1. So we can check in ®VP, whether 1 is mapped to
1. Similarly we can check whether a is mapped to b for all a,b € {1,2,3}.
As @VP is closed under complement, union and intersection, this proves
the inclusion (M})P C &VP.

The reverse direction follows directly from the first statement in Lemma
3.3 ¢).
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(M3)P: Now we may also use nontrivial permutation elements of M;. We proceed
as in the claim for (M3)P, but we branch on all triples p, ¢, o, where 1 <
p < q <r,and o is an element of S3. Then we check that neither m, nor
my is a permutation leaf, and that all m;, where p < i < ¢ are permutation
leaves, and additionally that the product my,;...my_1 = 0. These checks
can be done in VP A MOD3®P (because (S3)P = MOD3®P). Now accept,
if and only if all checks are successful, and om, is an inverting element.
This proves that (M})P C &(V AMOD;3;®)P.

The reverse direction follows directly from the first statement in Lemma
3.3 d).

(Ms5)P: This is very similar to the case (M3)P, but as now it is not forbidden to
have a constant as value of the leaf string, we have to find the rightmost
position ¢, such that m;...m, = ¢ for some constant mapping c. Now,
a constant mapping can be given either directly, or it can be forced by a
sequence of two consecutive non fitting non-identity leaves. In any case we
can find the rightmost occurrence of such a case by questions to an oracle
in VP (binary search), and then apply the @VP simulation on the rest of
the leaf string. This proves that (M;)P C PF*®. VP,

The reverse direction is Lemma 3.5 b).

(M3)P: A combination of the techniques of the previous cases shows that (M;)P C
P39, (VY A MOD;®)P.

The reverse direction is Lemma 3.5 ¢).

We proceed with k£ = 4:

~

3.8 Theorem. (M})P = &(V A MOD3®)3P
(M))P = &(V A MOD3®)(3 vV &MOD;®)P
(M,)P = PF®.(¥ A MOD3®)3P
(M)P = P¥9. (Y AMOD3®)(3 vV ®MOD;®)P

Proof. The lower bounds follow directly from Lemma 3.3 e) and f) in the cases of
the prime classes, and they are proven in Lemma 3.5 d) and e) for the other two
classes. As to the upper bounds, we only provide the first result in detail. The others
can be obtained combining the technique of this case and of the cases investigated
in Theorem 3.7.

So let L be in (M})P via machine N. We have to show that L is in
(VY A MOD3®)JP.  Assume that N’s leaf string on input x is of the form
myee . ..emymiee...ems..., where e is the identity mapping on four elements,
there is at least one occurrence of e between m)_, and m;, and the m; and m;
are mappings with exactly three different values, such that m;m} = m; for all i > 1.
This can easily be achieved. Now branch on all 5-tuples (p, ¢, 7', ¢’, o) and accept if
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and only if p and ¢ are pointers to some m;_, and m;, p’ and ¢' are pointers to some
!

m;_, and my, such that 7 < j, and moreover m;_,;m; as well as mj_,m; are mappings
with only two values, such that the whole substring of the leaf string starting at m;
up to mj; is inverting in the sense of the proof of Theorem 3.7. Finally, the parity of
the number of such inversions will tell us again, whether value 1 is fixed by the leaf
string. It remains to show that all the checks can be carried out in (VAMOD3®)3P.
First we mention that the fact that p and ¢ as well as p’ and ¢’ point to one group
of the leaf string each, can be checked in VP, as it is enough to check that all leaves
in between p and ¢ are identities, and the same for p’ and ¢’. Then we have to check
that each of these pairs of pointers defines a 2-value group, i.e. that the mappings
m;_ym; and m}_;m; have two values each. This can be done deterministically in
polynomial time. Third we have to check that there is no other 2-value group in
between. For that we need a check in V4P, because we have to check for all pairs
p" and ¢”, such that ¢ < p” < ¢” < p’ the condition: if the according leaves would
combine to a 2-value element of My, then there is another non-identity leaf between
them. This is a typical IT5-question. Now it remains to check that the product of all
groups between the p, ¢ group and the p', ¢’ group viewed as a permutation on three
elements has the guessed value o: We branch to all pairs of pointers into this sub-
string in an order-preserving way. Then we check, which element of S5 the second
pointer would realize, if it would be consecutive to the first one. Then we assume
this element as value if all elements in between are identity, or we assume identity
otherwise. This can be achieved by a MOD3;®-computation (for the elements from
S3), applied to a VP set (for the identity check). Thus all checks can be done either
in VAP or in MOD3®VP, which equals MOD3®dP. The whole check then is possible
in (Vv AMOD;®)3P. O

3.9 Theorem. (M.)P = ®(Y A MOD;®)(3V &MOD;®)VP
(M5)P = PF®.(Y A MOD3®)(3 V ®MOD;®)VP

Proof. The lower bound for (M)P follows directly from Lemma 3.3 g), the one for
(M5)P is Lemma 3.5 f). The upper bound proofs are identical to those given in the
above cases for £k = 3 and k£ = 4, only lifted up to another level. O

4. Applications

In this section we will apply the results of Section 3 to the cases of local self-
reducibility and bottleneck Turing-machines. First we recall the definition of a
k-local self-reducible set from [BeSt95].

Definition. Let A C IV, and let £ > 1. A is called k-local self-reducible, if there is a,
number ny > k and a polynomial-time computable function f: IN="" — {0, 1}({0’1}k)
such that

Vn € IN=m xa(n) = f(n)(xa(n —k),...,xa(n —1)).

To obtain a smooth class we take the closure of the class of all k-local self-
reducible sets under many-one reducibility:
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Definition. The class £-LSR is defined by
k—LSR ={L|3A: L <P A and A is k-local self-reducible}.

Besides the k-local self-reductions, in [BeSt95] also a many-one type of k-local
self-reductions is introduced:

Definition. Let A C IV, and let £ > 2. A is called m-k-local self-reducible, if
there is a number ny > k and a polynomial-time computable function f: IN="° —
{1,...,k} such that

Vn e IN"™  xa(n) = xa(n — f(n)).

In analogy to the definition of £-LSR we introduce a smooth class for the many-
one case, too:

Definition. The class k-LSR,, is defined by

k —LSRy, ={L|3A: L <P A and A is m-k-local self-reducible}.

Remark.

1) We only require the respective relations for n > ng to make sure that the
property of being locally self-reducible is robust against finite variation of the
set.

2) In [BeSt95] results are of the form: all k-local self-reducible sets are in class
C, and there is a <P -complete set for C which is k-local self-reducible. In our
setting this just reads k-LSR = C.

3) The function f in the definition of k-local self-reducibility corresponds to a
k-tt reduction, while the according function in the definition of m-k-local self-
reducibility corresponds to a many-one reduction. Thus in the first case the
value f(n) has to be a k-ary boolean function, but in the second case a pointer
to one of the k previous numbers suffices.

Now we relate these definitions to the classes (My)P and (M},)P from Section 3:

4.1 Theorem. k-LSR = (Mo )P
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Proof. To show k-LSR C (M )P it suffices to prove that all k-local self-reducible
sets are in (Mo )P, since trivially the latter class is closed under <P -reductions.

Now let A be k-local self-reducible via ny € IV and function f. Let ¢; (1 <
i < ng — 1), the values of x4(i), be computed once and for all. On input n, an
(Mo, )P-machine and a function f, witnessing A € (My: )P can work as follows:

If n < ng, then: Produce a trivial tree with one leaf, whose value is the identity
function. If ¢, = 1 then let g(n) = {1}, otherwise let g(n) = {2}.

If n > ng, then: Produce a tree with n — ng + 2 leaves, one for each value ¢ such
that ny < i < n (starting with ny on the left, ending with n on the right), and one
more leaf to the left, which is called the “initial leaf”.

Let every leaf produce a transformation on 2* values, which are coded as k-bit
strings, as its leaf value. The initial leaf produces the constant mapping dy, satisfying
do(ay ...ag) = By... 0k, where By = xa(ng — k),..., Bk = xa(no — 1). For every
i € {ng,no+1,...,n} let the according leaf produce the mapping d;, where

di(Oél Oék) = Oég...Oékﬂ,

satisfying 8 = f(i)(aq,. .., a).

Since f is polynomial-time computable, also d; is for given i € {no,...,n}, and
moreover d; can be viewed as an element of My for all i € {ng,...,n}U{0}. Then
the whole machine produces a computation tree with n—ng—+2 leaves, each of which
is equipped with a transformation from Mk, and it is an easy exercise to check that
n € Aif and only if the sequence d = dyd,,,dy+1 - - - d, Which obviously as a product
in My, yields a constant mapping, satisfies

d(Ozl Oék) =M ...")/k,11

for each ay, ..., a; and arbitrary values 7y, ...,v:_1. Now define a subset of My: by
B ={c|c=m...7 is a constant mapping, and vy, = 1}, thenn € A <= d € B,
so choosing ¢g(z) = B we complete the proof that A € (My)P.

For the reverse direction, let A € (M, )P. We have to construct a k-local self-
reducible set B such that A <P B. Here, one difficulty arises from the fact that
we have an independent computation tree for every input to the (My:)P-machine
M deciding A, but we may only construct one universal characteristic sequence
defining B. Thus we will proceed in stages: we choose a value for ng, then a
section of the characteristic sequence, say x(no), - - ., x5(n1—1) for the “first” string
(the empty string), another section, say xp(n1),. .., x5(ne — 1) for the next string
(string “0”), and so on. Thus on input z we virtually concatenate exponentially
long sequences of the exponentially many (measured in the input size) strings that
are less than x in lexicographic ordering, which still results in an exponentially
long sequence. We only have to make sure that the sections for all strings of a
given length m have an easily computable fixed length (like 2™ or 22™). Each
section will start with a sequence of k£ mappings each of which has value 0. Thus
the characteristic sequence in the beginning of the section for the i-th string x is
xB(ni 1) = xB(ni1+1) =+ = xp(n;_1+k—1) = 0, and we will view 0* as the code
for number 1 (in the coding of {1,...,2*} by k-bit strings). Let further 0*='1 be the
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code for number 2 and assume w.l.o.g. that the result of the leaf string of M on input
x is either the constant 1 or the constant 2. Now we would like to map the whole
leaf string by, ..., b, into the characteristic sequence directly. But unfortunately we
obviously can only simulate mappings of the form «y...a; — ay... a8 directly,
but the b, (1 < p < r) can be any element of Myr. Thus it remains to prove that
all elements of Myr can be simulated by finite sequences of mappings of the form
ay...0x — as...ox. For this we remark that My is generated by the following
2F elements:

a) t; (1<j<2F—1),
where t;(j) =7+ 1,t;(j +1) =4, and t;(j') = 7" if 7 & {4, j + 1}.

b) s, where s(j) = max(j,2) for all j.
It is clear that s can be simulated:
S = 815050 .--50

(with k£ — 1 times sg), where s;(0%) = 0¥7'1, and s;(ay ... ;) = @y ... axa, other-
wise, and sp(aq ...ax) = ay...axaq, in all cases.

For the ¢; we assume that our coding of {1,...,2*} in k-bit strings is a Gray-
code, i.e. two consecutive numbers differ only in one place. With the above example
of s it should be clear how to simulate ;.

Now we can build the values by, ..., b, into the characteristic sequence, each b, by
a number k - [ of characteristic bits, where [ depends on the number of steps needed
to simulate b, by elements ¢t; and s. We will always use the maximum [ (inserting
dummy elements, if necessary) to obtain a fixed a priori computable length of r-k-1[.
Then, if n;41y =n; +1r- k-1, it is easy to compute n; 1 — 1, and obviously the input
x belongs to A, if and only if n;,; — 1 belongs to B, the set whose characteristic
sequence is implicitly constructed in this proof, and which is obviously in k-LSR.
This completes the proof of the theorem. O

Similarly we can show:
4.2 Theorem. k-LSR,, = (M})P

Proof. The proof is quite analogous to the previous one. We only give a sketch of
where the differences come from:

1) The self-reduction in the first case was a k-tt reduction with 2* different values,
which leads to My:. Now our many-one reduction has only £ possible places
to refer to, this leads to M.

2) A constant mapping would mean that k consecutive elements all depend on the
same one of the k previous elements. But then trivially all elements beyond
these k elements either all are in the set, or all are not. Thus the considered set
would be finite or co-finite, and thus in P. So it is sufficient (and necessary)
to only allow leaf strings that do not evaluate to constant mappings, thus
explaining the prime in (M})P.
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3) The implicit mapping «; ...qx — s ... in a many-one fashion can only
keep all the information if 7 = a;. Thus after k such steps we would obtain
the same sequence «; ... again. This means, essentially the only allowed
permutations are identity permutations, thus explaining the hat in (M +)P.

The reader will be able to fill in the details. O

Combining these two theorems with the results in Section 3 we obtain the fol-
lowing corollaries:

4.3 Corollary.

a) 1-LSR = PP
2-LSR = P¥F®.(VAMOD;®)(3 VvV ®&MOD3;®)P
k-LSR = PSPACE, (k>3)
b) 2-LSR, = P
3-LSR,, = ®VYP
4-LSR,, = ®(¥AMOD;®)3P
5-LSR,, = ©(YAMOD;®)(3V OMOD;D)VP
k-LSR,, = PSPACE, (k>6)

Note that the equalities for k-LSR (k # 2) and k-LSR,, (k > 6) were already
proven in [BeSt95].

It can easily be seen that the definitions of the classes 5:Fk and shr-SFj, from
[CaFu91] and [Og94] coincide with our classes (My)P and (My)P. Thus we obtain:

4.4 Corollary.

a) SF = PP
SF;, = P¥F¥9(VAMOD;®)P
SF, = P¥(VYAMODs®)(3VS&MOD;®)P
SF, = PSPACE, (k>5)
b) shr-SF, = A}
shr-SF; = PI®.vyp
shr-SF, = P¥%.(V AMOD;®)3P
shr-SFs = PP (VY AMOD;®)(3 Vv ®MOD3®)vYP
shr-SF, = PSPACE, (k>6)

Note that the equalities for SFy, shr-SFy, SF; (k > 5), and shr-SFy (k > 6)
have already been proven in [CaFu91] and [Og94], resp.

The classes P7*? (VY AMOD3®)P and P7*®.(VY AMOD;®)(3 vV ®MOD3®)P have
nice closure properties, especially they are closed under boolean operations. Thus
we can answer a question posed in [HeOg95]:
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4.5 Corollary. SF5 and SFy, and generally all SFy, and shr-SFy, classes, are closed
under complement, union, and intersection.

5. Conclusion, Extensions, and Problems

We completely characterized all classes of the form (M)P and (M')P, where M is
one of the monoids M or My (k > 2). We solved all open questions concerning
local self-reductions and many-one local self-reductions. We also obtained exact
characterizations for the classes defined via so-called bottleneck Turing machines.

The results can even be slightly strengthened: As already mentioned, the classes
k-LSR could be denoted by k-LSRy_i;, because the actually occurring reduction type
is a k-truth-table reduction. Thus we know from [BeSt95] (and from Corollary 4.3)
that 3-LSRs.; = PSPACE. In fact we can show:

5.1 Theorem. 3-LSRy.;; = PSPACE

Proof. 1t suffices to show that the permutation group S5 can be simulated by 2-tt
mappings in a 3-local self reduction. Let three consecutive bits of the characteristic
sequence of a set code the values 1, 2, 3, 4, 5 as follows: 1 = 111, 2 = 110,
3 =100, 4 = 001, 5 = 011. It is an easy exercise to show that the group Sj is
generated by the elements } § g i g, } ; Z 3 g, } ; g g Z, and %. We use the
following 2-tt mappings: ¢; for i € {1,2,3} maps the sequence azasa; to asaia;.
e;; for 7,7 € {1,2,3} maps the sequence azasa; to asa;x, where x = 1, if a; = a;,
and x = 0, otherwise. d;; for 7,5 € {1,2,3} maps the sequence azasa; to aza;z,
where z = 1, if a; # a;j, and © = 0, otherwise. v;; for i,j € {1,2,3} maps the
sequence asaza; to asa;x, where x = 0, if ¢; = a; = 0, and 2 = 1, otherwise.
u;j for i,j € {1,2,3} maps the sequence azasa; to asa;r, where x = 0, if a; = 1
and a; = 0, and x = 1, otherwise. One can easily check that the sequence czes 3cs
maps 111 to 111, 110 to 100, 100 to 110, 001 to 001, and 011 to 011. Thus this

sequence realizes the generator %. Similarly, the sequence ej 3cseq 3 realizes

12345 . 12345
the generator 5——=-2, the sequence cze; 3c3 rlethgef 5the generator 55—+, and
finally c3d; 3e13c3v03us 3 Tealizes the generator s————2. O

What do we know about 1-tt reductions? Certainly 6-LSR;_; = PSPACE, and
1-LSRy4; = 1-LSR = P7*®.P. As an open question we would like to ask for a
characterization of k-LSR; for k € {2,3,4,5}.

Another open question is the relation between (Mj)P and (M,’CH)P. Certainly
for k = 2 and k£ > 5 we have inclusion from left to right. But is that also true
for k = 3 and k = 47 Note that (M,)P contains 3V@P, and thus by Toda’s result
[To91] the whole polynomial time hierarchy. However, it would be surprising, if
(ML)P, which equals &(¥ A MOD3&®)(3 vV ®MOD3®)VP, would contain the PH.
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