Universitat Stuttgart
Software—Labor

Projekt 1.1:
Workflow—Management—Systeme

Breitwiesenstrafle 20-22
D-70565 Stuttgart

Fakultitsbericht 1996/17
Software—Labor Bericht SL-3/96
CR-Klassifikation H.2.0, H.2.4

Fehlertolerante Abwicklung
von (Geschaftsprozessen in
Workflow—Management—Systemen*

Stefan Schreyjak
Stefan.Schreyjak@informatik.uni-stuttgart.de

Hubert Bildstein
19. Dezember 1996

Diese Arbeit wird von der IBM Deutschland Entwicklung GmbH und dem Ministerium fiir
Wissenschaft und Forschung, Baden Wiirttemberg, unterstiitzt.

Universitdt Stuttgart

Software—Labor

Zusammenfassung

Die fehlertolerante Abwicklung von Geschéftsprozessen ist ein wichtiges
Kriterium bei der Entwicklung von Workflowsystemen.

Dieser Bericht fithrt in die Problematik ein, die sich bei der Fehler-
behandlung in Workflowsystemen ergibt. Der Begriff des Fehlers wird
dabei sehr weit ausgelegt und umschliefit alle Ausnahmesituationen, die
wahrend eines Geschéaftsprozesses auftreten kénnen. Diese Fehlerarten
werden klassifiziert. Wir stellen daraufhin Anforderungen an die Fehler-
behandlung in einem Workflowsystem auf. AnschlieBend werden im Uber-
blick verschiedene Losungsansatze vorgestellt: Durch eine Praferenzrelati-
on auf den Aktivitdten konnen alternative Pfade spezifiziert werden. Ad-
hoc—Modifikationen erméglichen flexible Reaktionen auf Fehler. Durch
Workflow—Transaktionen werden ACID—-Eigenschaften in Workflows nutz-
bar. Der Loésungsansatz Kompensationsspharen stellt besonders wenig
Anforderungen an die Aktivitaten.

Universitdt Stuttgart

Inhaltsverzeichnis Software—Labor
Inhaltsverzeichnis

1 Einfithrung und Motivation 5

1.1 Allgemeine Anforderungen Lo 6

2 Fehlermodell 7

2.1 Grundlegende Begriffe o000 7

2.2 Fehlerbehandlungsmechanismen 8

2.2.1 Fehlerdetektion oo Lo 10

2.3 Fehler in Workflow—Management—Systemen 10

2.3.1 Systemdienstebene oo 10

2.3.2 Workflowdienstebene o000 11

2.3.3 Aktivitatenebeneo oL 11

3 Funktionale Anforderungen an die Fehlerbehandlung 13

3.1 Anforderungen an transparente Fehlerbehandlung 13

3.2 Anforderungen an automatische Fehlerbehandlung 14

3.3 Anforderungen an manuelle Fehlerbehandlung 15

4 Losungsansatze 17

4.1 Modellierung im Workflow00 18

4.2 Alternative Aktivitdten und Pfadeo oL 19

4.3 Ad-hoc—Modifikationeno 21

5 Workflow—Transaktionen 23

5.1 Datenbank—Transaktionen 23

5.2 Datenbank—Transaktionen in Workflowsystemen 24

5.3 Erweiterte Transaktionsmodelle 27

5.4 Workflow—Transaktionen 0. 29

5.4.1 Begriffe . ..o 29

5.4.2 Das Konzept der Workflow—Transaktionen 31

5.4.3 Anforderungen an ACID-Aktivitaten 32

5.5 Einsatzgebiete von Workflow—Transaktionen 34

6 Kompensations—Spharen 34

6.1 Begriffe 35

6.2 Das Konzept der Kompensations—Sphéren 35

6.3 Vergleich zwischen Transaktions—Sphéren und Kompensations—Sphéren 38

7 Ausblick und Zusammenfassung 39

7.1 Ausblick auf Erweiterungeno 39

7.2 Zusammenfassung L. L Lo 40

Universitdt Stuttgart

Software—Labor Inhaltsverzeichnis

Universitdt Stuttgart

Software—Labor

1 Einfithrung und Motivation

Ein Workflow-Management—System (WFMS) ist ein Softwaresystem zur Koordinati-
on und kooperativen Abwicklung von Geschéftsvorgéngen in verteilten Rechnerum-
gebungen. Geschiftsvorgénge kénnen formal in Geschéftsprozessen beschrieben und
modelliert werden. Ein Geschiftsprozefist eine geordnete Menge von Vorgangsschrit-
ten in Verbindung mit dem organisatorischen Umfeld des Unternehmens. In einem
Geschiftsprozefl wird in der Hauptsache spezifiziert, in welcher Reihenfolge die Vor-
gangsschritte ausgefithrt werden, welche Arbeitsobjekte in den einzelnen Schritten
bearbeitet werden und welche menschlichen, technischen und organisatorischen Res-
sourcen zur Ausfithrung benétigt werden. Das Ziel eines Geschéftsprozesses ist das
Erreichen eines betrieblichen Ergebnisses.

Die Aufgabe eines Workflow—Management—Systems ist die Modellierung, Steue-
rung, Uberwachung und Protokollierung von Geschéftsprozessen. Durch die Modellie-
rung werden die Analyse und die anschliefende Optimierung von Geschéaftsprozessen
unterstitzt.

In vielen Workflow—Management—Systemen werden Geschéftsprozesse in Form ei-
nes Aktivititennetzes modelliert. Eine Aktivitdt ist ein zusammenhéngendes Stiick
Arbeit, das durch eine Person oder ein Programm ausgefithrt wird und auf ein oder
mehrere Arbeitsobjekte wirkt. Ein Arbeitsobjekt kann ein physisches Objekt (z. B.
ein Werkstiick) oder ein informationstechnisches Objekt (Daten oder ein Dokument)
sein. In einer Aktivitat konnen zur Bearbeitung des Arbeitsobjekts beliebige An-
wenderprogramme eingesetzt werden. Der Zugriff dieser Programme auf Daten wird
dabei nicht durch das Workflowsystem kontrolliert.

Durch die Identifikation und die anschlielende Spezifikation von Geschéaftspro-
zessen werden grofle Optimierungspotentiale in einem Unternehmen aufgedeckt, die
durch die Neuordnung ganzer Wertschopfungsketten ausgenutzt werden kénnen. Da-
durch werden nicht mehr nur lokale, sondern auch globale Optimierungen erméglicht.
Mit der Abkehr von abteilungsorientierten hin zu prozeflorientierten Organisations-
strukturen wird die Automatisierung von Prozessen und die Integration bestehender
Computeranwendungen erleichtert. Die unternehmensweite Steuerung und die ver-
besserten Informationsfahigkeiten des Systems erlauben den Ablauf besser kontrol-
lierter Vorgange, die zu einer hohen Produktivitdtssteigung fithren kénnen.

Die Einfithrung eines Workflow—Management—Systems in ein Unternehmen muf
aber wohliiberlegt und sorgféltig geplant sein. Die wertschépfenden Prozesse in-
nerhalb des Unternehmens werden dadurch unter die Kontrolle des Workflow—
Management—Systems gestellt. Der Erfolg des Unternehmens hangt somit direkt
von der Funktionsfihigkeit des Systems ab. Wenn das System einmal nicht funkti-
onsfahig sein sollte, kommen alle computerunterstiitzten Geschéaftsprozesse zum FEr-
liegen. Der mogliche Ausweg, die Prozesse kurzfristig ohne Computerunterstiitzung
durchzufiithren, ist meist nicht einfach gangbar, da es dadurch zu Inkonsistenzen zwi-
schen den Daten im System und der Realitdt kommt. Nach dem Neustart des Systems
kann es im allgemeinen nicht sofort wieder eingesetzt werden, da zuerst der veraltete

Universitdt Stuttgart
Software—Labor Einfiihrung und Motivation

Datenzustand manuell auf den neuesten Stand gebracht werden muf. Durch eine
schrittweise Einfithrung und durch den FEinsatz eines fehlertoleranten und stabilen
Systems kann man dieser Gefahr begegnen.

1.1 Aligemeine Anforderungen

Ein Workflow—Management—System muf als das ,,Riickgrat® eines Unternehmens an-
gesehen werden: Fin Bruch wére todlich.

Oberste Strategie beim Einsatz eines solchen Systems mufl daher die Fehlerver-
meidung sein. Da in der realen Welt dieses Ziel aber nicht vollstandig erreicht werden
kann, ben6tigt man dariiber hinaus Mechanismen, um auf Fehler reagieren zu kénnen.
Das ganze System muf} daher folgende allgemeine Anforderungen erfiillen.

e Korrektheit:
Ein System ist korrekt, wenn es die Aufgabe, fiir die es spezifiziert ist, erfiillt.
Voraussetzung dafiir ist unter anderem, daf die Integritat der Daten, die durch
das System verwaltet werden, gewéhrleistet ist. Nur mit konsistenten Daten
kann ein System korrekt arbeiten. Inkonsistente Daten kénnen zu fehlerhaftem

Verhalten fithren.

Auch beim Auftreten von Fehlern darf das System keine inkonsistenten
Zustidnde erzeugen. Diese Forderung hat grofle Auswirkungen auf die Fehlerbe-
handlungsmechanismen des Workflowsystems.

Diese Anforderung kann nicht alleine vom Workflowsystemen erfiillt werden, da
es keine vollstdndige Kontrolle {iber die bearbeiteten Daten hat. In den Akti-
vitdten kénnen Programme oder Menschen Daten auflerhalb der Kontrolle des
Workflowsystem inkonsistent verandern, ohne daff das System darauf Einfluf}
hat oder die Inkonsistenz iiberhaupt bemerkt.

e Hohe Zuverlassigkeit:
Ein System ist hoch zuverldssig, wenn es liber lange Zeitraume hinweg ohne
Auftreten eines effektiven Fehlers funktioniert. Ein Fehler ist dann effektiv,
wenn er die spezifizierte Funktion des Systems beeintrachtigt [GR93].

e Hohe Verfiigbarkeit:
Léngerfristige Ausfallzeiten des Gesamtsystems verringern die Verfiigharkeit.
Wiéhrend dieser Zeit kann keiner der Mitarbeiter eines Unternehmens oder ei-
ner Behorde weiterarbeiten, da bei dem umfassenden Einsatz eines Workflow—
Management—Systems nahezu alle Arbeiten iiber das System oder zumindest
mit dessen Hilfe abgewickelt werden. Der Stillstand des Systems kann daher zu
immensen Kosten fithren. Die Verfiigbarkeit kann durch hohe Zuverlassigkeit
oder durch den Einsatz redundanter Komponenten erhoht werden. Durch den
Einsatz von Mechanismen fiir einen schnellen, weitgehend automatischen Wie-
deranlauf des Systems (Recovery) kann auch die Verfiigharkeit erhoht werden.

Universitdt Stuttgart

Software—Labor

¢ Robustheit:
Ein robustes System verhélt sich tolerant gegentiber unerwarteten Eingaben und
bleibt auch in Ausnahmesituationen weiterhin funktionsfahig. Die Figenschaft
Robustheit tragt damit zur Erhohung der Verfiigbarkeit bei.

e Hohe Flexibilitét:
Ein flexibles System erlaubt auch nach dem Auftreten eines Fehlers oder einer
Ausnahmesituation, die nicht automatisch durch Fehlerbehandlungsmechanis-
men des Systems beseitigt werden kénnen, manuelle Eingriffe in die Kontrolle
des Systems, um den Fortgang der Prozesse zu erméglichen.

In einem Workflowsystem werden immer auch Fehler auftreten, die sich nicht
automatisch beheben lassen. Das sind zum einen Systemfehler, wie der Ausfall
eines Rechnerknotens, und zum anderen Fehler, die das System nicht erkennen
kann, da sie semantischer Natur sind. In einem solchen Fall ist der Benutzer
auf die Flexibilitat des Systems angewiesen: Der Eingriff eines Menschen ist
nétig. Er muf} die Kontrolle iibernehmen und das System in einen Zustand
iiberfithren, in dem es die Kontrolle wieder selbst {ibernehmen kann. Dazu
mufl das System Methoden anbieten, die der Benutzer ,manuell® anwenden
kann, um die Fehlersituation zu bereinigen und den Prozefl wieder in geordnete
Bahnen zu lenken. Kompetente Benutzer kénnen so unter Ausniitzung ihres
Fachwissens und dem FEinsatz von Software-Werkzeugen die Auswirkungen von
Fehlern beseitigen und so das System reparieren.

2 Fehlermodell

In diesem Abschnitt werden grundlegende Begriffe zu Fehlern und zur Fehlerbehand-
lung definiert und erldautert. Dabei wird besonders auf die Sichtweise des Benutzers
und die Charakteristika von Workflow—Management—Systemen eingegangen.

2.1 Grundlegende Begriffe

Der Begriff des Fehlers wird in diesem Bericht sehr weit gefafit: Alle Abweichun-
gen vom Normalfall, d. h. vom vorspezifizierten Ablauf eines Geschéftsprozesses, fal-
len in den Bereich der Fehlerbehandlung. Der Begriff ,Fehler® umfafit daher nicht
nur Probleme des Workflowsystems, der beteiligten Softwaresysteme und des dazu-
gehorigen Rechnersystems, sondern auch Probleme, die sich aus der Spezifikation des
Geschéftsprozesses ableiten. Diese Probleme werden Ausnahmesituationen im Ab-
lauf eines Workflows genannt. Im folgenden sind mit dem Begriff Fehler meist auch
Ausnahmesituationen gemeint.

Nach dem Auftreten eines Fehlers ergeben sich zwei unterschiedliche Probleme:
Der Fehler mufl entdeckt werden (Detektion), und die Auswirkungen des Fehlers

Universitdt Stuttgart

Software—Labor Fehlermodell

miissen beseitigt werden (Fehlerbehandlung). Die Fehlerentdeckung ist Vorausset-
zung fiir die Fehlerbehandlung.

Fehler sind transient, wenn sie nur gelegentlich auftreten [GR93]. Sie sind daher
nicht oder nur schwer reproduzierbar. Wenn das Programmsystem wiederholt in den
Zustand gebracht wird, in dem vorher der Fehler aufgetreten war, mufy der Fehler nicht
zwangslaufig erneut auftreten. Das System kann daher z. B. mit einer Wiederholung
der fehlgeschlagenen Funktion auf das Auftreten dieser Fehlerart reagieren. Ursachen
fiir transiente Fehler konnen z. B. Timing-Probleme oder Uberlastsituationen sein.

Fehler, die reproduzierbar in einem bestimmten Zustand des Programmsystems
auftreten, werden persistent genannt. In diese Klasse gehéren Programmierfehler
wie die Ubergabe falscher Parameter an Prozeduren oder Prozeduren, die von ihrem
spezifizierten Verhalten abweichen.

Fehler kénnen auch durch die Reichweite ihrer Auswirkungen unterschieden wer-
den:

o Kein Verlust des fliichtigen Speichers eines Rechners
Dazu gehoren z. B. Fehler in den Anwendungsprogrammen, Prozefabstiirze oder
Kommunikationsfehler. Das Betriebssystem des Rechners ist beim Auftreten ei-
nes solchen Fehlers nicht in Mitleidenschaft gezogen. Ein Neustart des Rechners
ist nicht erforderlich.

o Verlust des fliichtigen Speichers
Transiente Rechnerknotenausfélle gehéren in diese Klasse. Ein Auftreten eines
solchen Fehlers zieht auch das Betriebssystem in Mitleidenschaft. Ein Neustart
des Rechners ist erforderlich.

o Verlust des persistenten Speichers
Unwiederbringlicher Verlust von Daten durch Zerstérung eines Datenspeichers.

2.2 Fehlerbehandlungsmechanismen

Der Benutzer will so wenig wie méglich mit den Auswirkungen von Fehlern und dem
Problem der Fehlerbehandlung konfrontiert werden. Ein Hauptanliegen der Feh-
lerbehandlung ist somit, dafl auftretende Fehler moglichst schnell erkannt und ihre
Auswirkungen beseitigt werden. Ein Eingreifen des Benutzers soll nicht notwendig
werden. Dieses Ziel ist offensichtlich nicht immer zu erreichen. Wir definieren daher
folgende drei Stufen von Fehlerbehandlungsmechanismen, die sich in der Art unter-
scheiden, wie das System aufgetretene Fehler behandelt und wie diese Behandlung
durch den Systembenutzer wahrgenommen wird:

1. Transparente Fehlerbehandlung

Die héchste Stufe ist die transparente Fehlerbehandlung. Diese liegt vor, wenn
auftretende Fehler automatisch erkannt und behandelt werden, so daf} sie oh-
ne Auswirkungen auf die vom System zu leistende Arbeit bleiben und keinen

Universitdt Stuttgart

2.2 Fehlerbehandlungsmechanismen Software—Labor

Benutzereingriff erfordern. Die Fehlerbehandlung des Systems ist durch den
Benutzer nicht beobachtbar, sie ist maskiert.

Ein typisches Beispiel fiir eine transparente Fehlerbehandlung ist das Auftre-
ten eines transienten Netzwerkfehlers, z. B. einen voriibergehenden Ausfall ei-
ner Kommunikationsverbindung. Der Benutzer bemerkt dabei héchstens eine
Verzoégerung des Fortgangs, aber keine Abweichung vom normalen Ablauf. Feh-
ler dieser Art werden haufig schon auf einer tiefer liegenden Systemschicht, z. B.
dem Betriebssystem, behandelt.

Vollstdndige Fehlertransparenz ist das Ideal des Benutzers. Das System er-
scheint ihm fehlerfrei.

2. Automatische Fehlerbehandlung

Die néchste Stufe innerhalb dieser Klassifikation ist die automatische Fehlerbe-
handlung. Das System behandelt hier den Fehler ohne zusétzlichen Eingriff des
Benutzers. Im Gegensatz zur transparenten Fehlerbehandlung wird aber das
Auftreten eines Fehlers und die darauf folgende Fehlerbehandlung gegeniiber
dem Benutzer nicht maskiert. Die Fehlerbehandlung bleibt durch den Benut-
zer beobachtbar. Automatische Fehlerbehandlung bedeutet nicht, dafl auch die
Fehlerdetektion automatisch erfolgen mufl. Der Benutzer kann die automatische
Fehlerbehandlung auch manuell anstoflen.

Das System besitzt Mechanismen, um die Auswirkungen des Fehlers so weit zu
minimieren, daf} nach Auftreten des Fehlers wieder ein korrekter Zustand er-
reicht werden kann, von dem aus die Bearbeitung sinnvoll fortgesetzt wird. Das
Auftreten des Fehlers erzwingt somit einen Zustandswechsel, der vom Benutzer
wahrgenommen werden kann.

Ein Beispiel dazu ist ein System, das einen Fehler innerhalb einer bestimm-
ten Aktion dadurch behandelt, dafl die bisher durch diese Aktion bewirkten
Zustandsédnderungen riickgdngig gemacht werden und danach eine alternative
Vorgehensweise gewahlt wird. Der Benutzer muf in diesem Fall nicht in die
Fehlerbehandlung eingreifen, hat aber keine Transparenz, da eine Alternative
eine Abweichung vom Normalablauf darstellt.

3. Manuelle Fehlerbehandlung

In der dritten Stufe, der manuellen Fehlerbehandlung, kann oder soll das System
die Fehlerbehandlung nicht selbst ibernehmen. Das System stellt als einzige
Unterstiitzung dem Benutzer Werkzeuge zur Verfiigung, damit dieser die Fehler-
behandlung selbst durchfithren kann. Es gibt hier keine automatisch anlaufende

Fehlerbehandlung.

In vielen Fallen muf} auf den Ausfall von Hardware mit dieser Art der Feh-
lerbehandlung reagiert werden. Auch das Beseitigen von Programmierfehlern
fallt in diese Kategorie. Manuelle Fehlerbehandlung sollte immer als letzter

Universitdt Stuttgart

Software—Labor Fehlermodell

Ausweg zur Beseitigung einer Fehlersituation verfiighar sein und auch durch
entsprechende Werkzeuge unterstiitzt werden.

2.2.1 Fehlerdetektion

Transparente Fehlerbehandlung setzt die automatische Detektion des Fehlers durch
das System voraus. Bei den beiden anderen Klassen wird dies nicht unbedingt vor-
ausgesetzt. Hier kann man zwischen automatischer und manueller Fehlererkennung
unterscheiden. Letzteres bedeutet, dafl der Benutzer die Fehlerbehandlung selbst in-
itileren kann oder muf}. Die Behandlung kann aber wieder vom System durchgefiihrt
werden.

Notwendig fiir die Fehlererkennung ist die Definition eines korrekten Systemzu-
stands. Eine Definition kann tiber eine Menge von Rahmenbedingungen (constraints)
auf dem Systemzustand erfolgen. Die Verletzung einer solchen Bedingung, d.h. ein
Abweichen vom korrekten Systemzustand, wird dann als Fehler bezeichnet.

2.3 Fehler in Workflow—Management—Systemen

Es gilt nun festzulegen, welche Arten von Fehlern aus Sicht des Workflowsystems
relevant sind. Wir ordnen dazu die Fehler nach dem Ort ihres Auftretens in mehrere
Fehlerebenen ein. Ein Fehler sollte moglichst von den Fehlerbehandlungsmechanis-
men in der Ebene behandelt werden, in der er aufgetreten ist. Nur wenn dies nicht
moglich ist, kann und muf} der Fehler eine Ebene hoher gereicht werden.

Workflowdienstebene

Aktivitatendienstebene

Systemdienstebene

Abbildung 1: Die Fehlerebenen in einen Workflow—Management—System

2.3.1 Systemdienstebene

Diese Ebene stellt die grundlegende Funktionalitdt zum Ablauf eines Workflow—
Management-Systems bereit [EL95]. Hier sind z. B. das Betriebssystem, das Kom-
munikationssystem (Netzwerksoftware) oder ein Datenbank—Management—System zu
finden. Die hier auftretenden Fehler werden typischerweise entweder schon auf dieser
Ebene behandelt und haben somit keinen Einflufl auf das Workflow—Management—
System, oder fithren zu einem (zumindest partiellen) Neuanlauf des Workflowsystems

10

Universitdt Stuttgart
2.3 Fehler in Workflow—Management—Systemen Software—Labor

mit anschliefendem Recovery, wenn der Fehler auf die Workflowdienstebene weiter-
gereicht wird.

Das Workflowsystem mufl daher auf das Auftreten eines weitergereichten System-
fehlers vorbereitet sein. Alle zum Recovery des Workflowsystems notwendigen Daten
miissen auf sicherem Speicher geschrieben werden.

Typische Beispiele fiir Fehler auf der Systemdienstebene sind Verbindungsab-
briiche, das Auftreten von Verklemmungen (Deadlocks), Betriebssystemausfalle oder
Hardwaredefekte. Die angewendeten Fehlerbehandlungsmechanismen basieren haufig
auf bekannten Techniken, wie das Wiederholen fehlgeschlagener Funktionen, das
Verwenden abgesicherter Ubertragungsprotokolle oder das Prinzip des Rollbacks in
Datenbank—Management—Systemen. Durch die Verwendung replizierter Software—
und Hardwarekomponenten kann ein Teil der Fehler auf dieser Ebene abgefangen
bzw. gemildert werden.

2.3.2 Workflowdienstebene

Auf dieser Ebene befindet sich die eigentliche Funktionalitat des Workflowsystems.
Fehler dieser Ebene haben einen direkten Einflufl auf das Workflowsystem und miissen
vom Workflowsystem behandelt werden. Beispiele fiir Fehler aus dieser Ebene sind
Fehler in der Modellierung oder Ausfithrung eines Geschéaftsprozesses.

Die Fehler bzw. Ausnahmesituationen dieser Ebene kénnen in zwei Klassen ein-
geteilt werden.

o Vorhersehbare Fehler sind Abweichungen vom normalen Ablauf des Workflows.
Da der Ort des Auftretens dieser Fehler vorhersagbar ist, kann mit dem Mittel
der GeschiftsprozeB—Modellierung auf die Fehler reagiert werden. Als Beispiel
kann auf den Fehlschlag einer Aktivitdt eine alternative Aktivitdt gestartet
werden oder die Aktivitdt wiederholt werden.

o Unvorhergesehene Fehler konnen aufgrund ihrer Eigenschaft nicht schon zur
Spezifikationszeit im Prozel modelliert werden. Sie treten dann auf, wenn
verdnderte Randbedingungen oder bis dahin unbekannte oder neue Anforde-
rungen auf einen gestarteten Prozef} treffen. Ein Beispiel fiir einen unvorherge-
sehenen Fehler kann das Fehlen einer passenden Alternative sein.

Wenn Fehler in der Systemdienstebene oder in der Aktivitatenebene nicht beheb-
bar waren, werden sie an die Workflowdienstebene weitergereicht. Als oberste Schicht
muf} das Workflowsystem auf diese Fehler reagieren. Weitergereichte Fehler kénnen
entweder vorhersagbar oder nicht vorhersaghar sein.

2.3.3 Aktivitatenebene

Hier finden sich die Fehler, die bei der Ausfithrung von Aktivitidten in deren Kontroll-
bereich auftreten. Aktivitdten bestehen aus manuell oder automatisch ausgefithrten
Tatigkeiten.

11

Universitdt Stuttgart

Software—Labor Fehlermodell

-
auf3er Kontroll erfolglos

Abbildung 2: Das Zustandsiibergangsdiagramm einer Aktivitat

erfolgreich

Die Bearbeitung einer Aktivitdt kann durch das folgende grundlegende Zu-
standsiibergangsdiagramm modelliert werden (siehe Abbildung 2). Das Diagramm
ist fiir diesen Bericht vereinfacht worden. Reale Implementierungen von Workflowsy-
stemen haben meistens komplexere Ubergangsdiagramme. Ein Startzustand ist am
linken Rand schwarz markiert. Ein Endzustand ist rechten Rand markiert.

Eine Aktivitdt beginnt mit dem Initialzustand STARTBAR. Der Start durch den
Bearbeiter iiberfithrt die Aktivitdt in den Zustand IN BEARBEITUNG. Dort kénnen
Fehler auftreten, die auf der Aktivitdtenebene angesiedelt sind. Wenn ein solcher Feh-
ler erkannt wird, wird die Aktivitdt in den Zustand ERFOLGLOS gebracht. Auf diese
Art bekommt das Workflowsystem Kenntnis vom Auftreten eines Aktivitatenfehlers
und ein Fehlerkontext kann von der Aktivitét an das Workflowsystem tibergeben wer-
den. Kann eine Aktivitat ohne Auftreten eines Fehlers beendet werden, kommt sie in
den Zustand ERFOLGREICH. Fine Aktivitdt wird in den zusétzlichen Zustand AUSSER
KONTROLLE gebracht, wenn die Aktivitat weder eine erfolgreiche, noch eine erfolglo-
se Bearbeitung melden kann. In diesem Fall ist die Aktivitdt aufler Kontrolle geraten.
Problematisch ist hierbei die Detektion des Ubergangs IN BEARBEITUNG nach AU-
SSER KONTROLLE. In diesem Fall mufl das Workflowsystem ohne Hilfe der Aktivitét
erkennen, daf} ein Aktivitdtenfehler aufgetreten ist. Voraussetzung fiir ein fehlertole-
rantes Workflowsystem ist, dafl das System auch dann sinnvoll weiterarbeiten kann,
wenn einmal dieser Zustand auftritt.

Folgende Fehlersituationen sind Beispiele fiir Fehler auf der Aktivitdtenebene:

e Ein Anwendungsprogramm in einer Aktivitdt kann aufgrund einer mangelhaften
Installation des Systems nicht gefunden werden.

o Eine Aktivitdt meldet fehlerhafte Ausfithrung aufgrund des Fehlschlagens einer
wichtigen Operation (z. B. Datei existiert nicht) innerhalb des Anwendungspro-
gramms. Der Fehler kann moglicherweise transient sein.

o Eine Aktivitat meldet sich nicht mehr, da sie aufgrund eines Programmierfehlers
abgestiirzt ist.

e Eine Aktivitdt braucht sehr lange — zu lange! Diese Fehlerart mufl vom oben
erwahnten Absturz unterschieden werden, da sich die Aktivitat aus der Sicht des

12

Universitdt Stuttgart

Software—Labor

Workflowsystems im ordnungsgeméflen Zustand IN BEARBEITUNG befindet. Es
kann auflerhalb der Aktivitdt nicht entscheidbar, ob in der Aktivitat ein Feh-
ler aufgetreten ist. Nur aufgrund der {iberlangen Bearbeitungszeit wird eine
fehlerhafte Bearbeitung vermutet. Diese Fehlerart kann vom Workflowsystem
z. B. iber eine Zeitiiberwachung der Aktivitat detektiert werden. Das System
muf} deshalb darauf reagieren, da in der Aktivitat Ressourcen belegt und damit
eventuell andere Anwendungsprogramme blockiert sein kénnen. Ebenso kénnen
nachfolgende Aktivitdten vor Beendigung dieser Aktivitdt nicht gestartet wer-
den. Die Ursache fiir diese Fehler kann in einer programmierten Endlosschleife
(Programmierfehler) oder einer nicht auslosbaren Wartesituation (Deadlock)
liegen, oder einfach daran, dafl die Bearbeitung sehr viel linger als erwartet
dauert.

3 Funktionale Anforderungen an die
Fehlerbehandlung

Im erstem Kapitel wurden bereits allgemein gehaltene Anforderungen an ein Work-
flowsystem vorgestellt. In diesem Kapitel werden diese Anforderungen in funktionale
Anforderungen verfeinert und so spezialisiert, dafl sie die Bediirfnisse eines Work-
flowsystems in Bezug auf die Fehlerbehandlung darstellen. Mit den funktionalen
Anforderungen soll beschrieben werden, welche Funktionen der Benutzer eines Work-
flowsystems von der Fehlerbehandlung erwartet. Wie diese Anforderungen realisiert
werden koénnen, wird in dem Kapitel iiber Losungsanséitze beschrieben.

Die Anforderungen sind nach den im Kapitel Fehlermodell definierten Stufen:
transparent, automatisch und manuell geordnet. Bei der Betrachtung der Fehler-
behandlung in Workflowsystemen sind zwei Benutzertypen zu unterscheiden. Zum
einen gibt es den Workflowmodellierer, der sich zur Modellierungszeit mit der Feh-
lerbehandlung von Workflows auseinanderzusetzen hat. Zum anderen gibt es den

normalen Benutzer, der die Aktivitdten bearbeitet, und der die Auswirkungen von
Fehlern sieht.

3.1 Anforderungen an transparente Fehlerbehandlung

Folgende Anforderungen betreffen Fehlerbehandlungsfunktionen, die automatisch
vom System beim Auftreten von Fehlern oder beim Versagen einer Workflow—
Komponenten ausgefithrt werden, ohne dafl der Benutzer etwas davon mitbekommt.
Die laufenden Workflows diirfen daher wahrend der Fehlerbehandlungsphase und in
der anschliefenden Wiederanlaufphase nur blockiert sein und miissen danach wieder
normal weiterlaufen. Diese Figenschaft wird auch haufig mit dem Begriftf forward-
recovery bezeichnet. Die Arbeitsergebnisse bzw. auch die Ergebnisse von Zwischen-
schritten sollen Fehler des Systems dauerhaft iiberstehen kénnen.

13

Universitdt Stuttgart

Software—Labor Funktionale Anforderungen

Anforderung: Persistenter Workflow—Zustand

Der Zustand des Workflowsystems darf auch beim Versagen einer
Workflowsystem—IKomponente oder beim Auftreten eines Fehlers in der Ab-
arbeitung des Workflows nicht verloren gehen. Zum Zustand eines Workflow-
systems gehoren die Zusténde aller Aktivitdten und die internen Verwaltungs-
daten des Systems. Falls das Versagen einer Komponente zu einem Zusam-
menbruch des Systems fiihrt, muf} sich das System selbstandig neu initialisieren
und wiederanlaufen. Wenn sich das System in einem korrekten Zustand be-
fand, muf} es diesen Zustand ohne Datenverlust wiederherstellen. Wenn es sich
gerade in einem Ubergang zwischen zwei Zustinden befand, muB entweder ein
alter, korrekter Zustand moéglichst kurz vor dem Zusammenbruch wiederherge-
stellt werden (Backward Recovery) oder es muf} ein neuer, korrekter Zustand
erzeugt werden (Forward Recovery). Beidesmal sollen dabei moglichst wenig
Daten verloren gehen.

Die Anforderung kann auch etwas abgeschwécht formuliert werden, indem man
nicht mehr fordert, daf jeder Zustand des Systems persistent sein muf}, sondern
dies nur noch von bestimmten, ausgezeichneten Zusténden fordert. Je weniger
dieser ausgezeichneten Zustdnde man innerhalb des Workflows hat, desto mehr
Arbeit geht beim Backward Recovery verloren, da man nur auf diese ausge-
zeichneten Zusténde zuriicksetzen kann.

Anforderung: Persistenter Aktivitdten—Zustand
Ebenso wie der Workflow—Zustand sollte auch der Zustand einer Aktivitat bei
einem Absturz nicht verloren gehen. Zum Zustand einer Aktivitat gehort nicht
nur der Status der Aktivitat im Workflowsystem, sondern auch der Datenzu-
stand der in den Aktivitdten aufgerufenen Anwendungsprogrammen. In diesem
Datenzustand steckt die ganze bisher in dieser Aktivitat geleistete Arbeit.

Diese Anforderung ist nicht nur durch das Workflowsystem zu realisieren, da
ein Teil des Datenzustands von den Anwendungsprogrammen verwaltet wird.
Beispielsweise kann in einer Aktivitdt mit dem Anwendungsprogramm Text-
verarbeitung ein Text erstellt werden. Beim Auftreten eines Fehlers, sei es im
Workflowsystem oder in der Textverarbeitung, soll nicht die gesamte Arbeit
verloren gehen. Der Benutzer kann zwar zur Vermeidung des Arbeitsverlusts
beitragen, indem er den Text in regelméaBigen Intervallen absichert, aber da aber
das Workflowsystem dies nicht erzwingen kann, ist der Nutzen nur begrenzt.

3.2 Anforderungen an automatische Fehlerbehandlung

In diesem Abschnitt werden Anforderungen an Funktionen zur Fehlerbehandlung be-
schrieben, die automatisch vom System beim Auftreten von Fehlern ausgefiihrt wer-
den. Im Gegensatz zum vorherigen Abschnitt reagiert das System auf den Fehler, in-
dem es vom normalen Ablauf abweicht und Mafinahmen zur Fehlerbeseitigung trifft,
deren Auswirkungen vom Benutzer erkannt werden kénnen.

14

Universitdt Stuttgart

3.3 Anforderungen an manuelle Fehlerbehandlung Software—Labor

Anforderung: Automatischer Neustart einer Aktivitat
Eine Aktivitat, die mit einem Fehler beendet wird, d.h. in dem Zustand ER-
FOLGLOS oder AUSSER KONTROLLE iiberfithrt wurde, soll automatisch neu ge-
startet werden, da bei einem wiederholten Lauf ein transienter Fehler nicht mehr
unbedingt auftreten muf}. Die Aktivitdt kann dann erfolgreich beendet werden.

Eine automatisch ausgefithrte Aktivitdt, die an einen Informationsdienst eine
Abfrage gesandt hat und die aufgrund einer Uberlastung des Netzes nicht erfolg-
reich durchgefiihrt werden konnte, kann hier als Beispiel dienen. Die Uberlast
kann nach kurzer Zeit iberwunden sein und eine erneute Anfrage kann zum

Erfolg fithren.

Anforderung: Alternative Aktivitdten
Eine weitere Methode zur Reaktion auf erfolglose oder aufler Kontrolle geratene
Aktivitdten ist der Start einer alternativen Aktivitdt. Alternative Aktivitdten
miissen in der Prozefispezifikation zu jeder normalen Aktivitat definiert werden
kénnen. Die Aufgabe einer alternativen Aktivitat ist, dasselbe Ziel wie eine
normale Aktivitat zu erreichen, aber auf eine unterschiedliche Art und Weise.

Ein Beispiel fiir eine sinnvolle Anwendung einer alternativen Aktivitat ist die
Benachrichtigung einer Person. Die normale Aktivitdt kann aus dem Ver-
schicken einer Email an eine Person bestehen. Falls dies nicht moglich ist,
kann als alternative Aktivitdt die Person telefonisch benachrichtigt werden.

Anforderung: Alternative Wege im Geschiaftsprozefl einschlagen

Die Verallgemeinerung des Konzepts der alternativen Aktivitat sind alternative
Wege im Geschéftsprozel. Wenn eine Aktivitdt oder ein Zweig mit mehre-
ren Aktivitdten fehlschlagt, soll der Geschéaftsprozefl einen anderen alternativen
Ablauf verfolgen. Im Gegensatz zu den alternativen Aktivitaten wird hier die
Alternative nicht auf eine Aktivitdt beschrankt, sondern auf eine ganze Reihe
von Aktivitdten. Dazu mufl im Geschéftsprozefl der alternative Weg modelliert
sein, der eingeschlagen wird, wenn ein Fehler aufgetreten ist.

Als Beispiel kann folgende Situation herangezogen werden: Bei der Buchung
einer Reise wird festgestellt, dal ein Flug nicht gebucht werden kann. Die
Alternative — die zweite Wahl sozusagen — wird dann versucht, eine Bahnreise
7u reservieren.

3.3 Anforderungen an manuelle Fehlerbehandlung

In diesem Abschnitt werden alle diejenigen Funktionen zur Fehlerbehandlung be-
schrieben, die manuell, d.h. durch eine explizite Aktion des Bearbeiters, ausgelost
werden miissen. Die Fehlererkennung kann dabei entweder durch das System oder
durch den Benutzer geschehen. Es mufl die Moglichkeit bestehen, daff der Benutzer,
wenn er einen Fehler erkannt hat, manuell in den Geschiftsprozef eingreift und ent-
sprechende Mafinahmen ergreift. Welche Mafinahmen dankbar sind, werden in den

15

Universitdt Stuttgart

Software—Labor Funktionale Anforderungen

folgenden Anforderungen beschrieben. Diese Anforderungen fithren zu Funktionen,
die an der Bedienoberfliche des Workflowsystems angeboten werden miissen und dort
auch ausgefiithrt werden kénnen.

Anforderung: Abbruch einer Aktivitét

Wihrend der Bearbeitung einer Aktivitat kann sich herausstellen, daf die wei-
tere Bearbeitung sinnlos geworden ist. Der Benutzer kann auch feststellen, daf
die bisherige Bearbeitung fehlerhaft war und dafl die Arbeit von vorne begonnen
werden muf}. Er benétigt dazu die Méglichkeit, die Aktivitdt abzubrechen. Die
Aktivitat kann dabei noch auf der Arbeitsliste stehen oder schon in Bearbei-
tung gewesen sein. Je nach Situation wird sie durch das System in den Zustand
‘startbar’ oder ’erfolglos’ versetzt. Nach dieser Mafinahme kénnen dann weitere
Fehlerbehandlungsmechanismen greifen.

Anforderung: Abbruch des gesamten Prozesses

Beim Abbruch eines Geschéaftsprozesses werden alle laufenden Aktivitédten ab-
gebrochen. Wihrend der Bearbeitung eines Geschéftsprozesses kann sich her-
ausstellen, dafl der gesamte Geschéftsprozef} sinnlos geworden ist. Ursache kann
entweder ein aufgetretener Fehler oder eine Anderung in der Auslosesituation
der Umwelt sein. So kann z.B. ein Kunde anrufen und seine Bestellung stor-
nieren. Der dazugehorige Bestellprozefl mufl aufgrund der geédnderten Situation
dann manuell durch einen Bearbeiter abgebrochen werden.

Anforderung: Geordneter Abbruch

Die erwahnten Abbriiche einer Aktivitdt oder eines Prozesses miissen einen
konsistenten Datenzustand hinterlassen. Alle aktuellen, aber noch nicht in den
Datenzustand eingeflossenen Ergebnisse miissen verworfen werden oder zumin-
dest entsprechend markiert werden. Denn es kann durchaus sinnvoll sein, diese
halbfertigen Ergebnisse bei einer erneuten Bearbeitung weiterzuverwenden. Alle
stabil gespeicherten Ergebnisse miissen konsistent aus dem Datenbestand besei-
tigt werden, indem der urspriingliche Datenzustand zu Beginn des Geschéftspro-
zesses wiederhergestellt wird. Die Modifikationen des Systemzustands miissen
aber nicht soweit gehen, dafl alle Spuren des abgebrochenen Prozesses beseitigt
werden miissen. Im Protokoll des Prozesses sollte noch erkennbar sein, daf die-
ser Prozef bis an eine bestimmte Stelle bearbeitet und dann abgebrochen wur-
de. Beim Riickgangigmachen der Datendnderungen muf} beriicksichtigt werden,
daf} diese Ergebnisse eventuell schon von anderen Programmen weiterbearbeitet
worden sein kénnen. Hier miissen entsprechende Mafinahmen getroffen werden,
um dieses Problem zu beseitigen oder nicht entstehen zu lassen.

Anforderung: Aktivitdten bzw. Workflowteile erneut bearbeiten
Wenn ein Bearbeiter erst einige Zeit nach dem erfolgreichen Ende einer Aktivitat
bemerkt, dafl dort ein Fehler gemacht wurde, mochte er diese falsch bearbeitete

16

Universitdt Stuttgart

Software—Labor

Aktivitat wiederholen und erneut bearbeiten. Aufgrund dieser erneuten Bear-
beitung kann auch die erneute Bearbeitung nachfolgender Workflowteile nétig
werden. Bei der Wiederholung miissen die Datenabhangigkeiten der Aktivitéten
untereinander beriicksichtigt werden, da sonst ein inkonsistenter Datenzustand
entstehen kann.

Ein Sonderfall dieser Anforderung kann als selektives Wiederholen bezeichnet
werden. In diesem Fall mochte der Benutzer eine zuriickliegende fehlerhafte
Aktivitdt Apeprer wiederholen. Dabei sollen die weniger weit zuriickliegenden
Aktivitaten, d.h. die Aktivitaten, die nach Ap.ue,. beendet worden sind, un-
verdndert gelassen werden. Dies ist dann moglich, wenn keine Datenabhéngig-
keit zwischen Apcpie, und den nachfolgenden Aktivitédten besteht.

Anforderung: Zusitzliche Aktivitaten

Wenn ein Benutzer einen Fehler in der Ausfiihrung des Geschiftsprozesses
erkennt, mufl er mit irgendeiner Methode in den Ablauf eingreifen kénnen.
Diese Methode kann das Einfiigen zusatzlicher Aktivitdten in die aktuelle
Geschéftsprozeflinstanz sein. In den zusétzlichen Aktivitdten kann der Benut-
zer beliebige Fehlerbehandlungen durchfiihren. Auch kann damit flexibel auf
unerwartete Situationen reagiert werden. 7. B. kann auf diese Weise einfach
auf spezielle Sonderwiinsche eines wichtigen Kunden eingegangen werden.

Anforderung: Andern ganzer Teile des gerade bearbeiteten Ablaufs
Wenn die Anderungswiinsche zu komplex werden, um mit zuséatzlichen, sequen-
tiell ausgefithrten Aktivitdten bearbeitet werden zu kénnen, dann miissen auch
ganze Geschéftsprozefiteile zur Laufzeit neu spezifiziert werden kénnen. Der
verdnderte Prozefl mufl dabei weiterhin konsistent bleiben.

4 Losungsansatze

Fiir die oben erwéhnten Anforderungen existieren in einigen Workflowsystemen be-
reits Ansétze, wie die Anforderungen erfiillt werden konnen. Teilweise sind die im
folgenden beschriebenen Ansdtze bisher nicht verwirklicht worden.

Die Systemdienstebene wird im folgenden nicht weiter beriicksichtigt. Wir be-
schranken uns auf Beschreibung von Anséatze zur Fehlerbehandlung, die hauptsachlich
auf der Workflowdienstebene, teilweise auch auf der Aktivitatendienstebene angewen-
det werden koénnen. Die Ansétze sollen moglichst unabhéngig von einen konkreten
Workflowsystem und unabhéngig von einer konkreten Betriebssystem—Plattform sein.

Die im folgenden beschriebenen Ansétze sollen nicht als alternative Methoden zur
Fehlerbehandlung verstanden werden, sondern sollen in der Summe die im vorheri-
gen Kapitel gestellten Anforderungen iiberdecken. Daher sind die Vorschlage nicht
unbedingt iiberschneidungsfrei.

17

Universitdt Stuttgart

Software—Labor Losungsansatze

4.1 Modellierung im Workflow

Dieser Fehlerbehandlungsansatz ist der Klasse ’Automatische Fehlerbehandlung’ zu-
zuordnen.

Bei der Modellierung eines Geschéaftsprozesses werden die Eigenschaften der Ak-
tivitaten und der Kontroll- und Datenflufl zwischen den Aktivitdten spezifiziert. Es
gibt tiblicherweise keine weiteren, speziellen Konstrukte zur Behandlung von Fehlern.
In den meisten bisher iiblichen Workflowsystemen kann aber trotzdem im begrenzten
MaBe eine Fehlerbehandlung durchgefithrt werden. Uber die Auswertung eines Riick-
gabewerts (bzw. eines Fehlerkontextes) einer Aktivitat kann eine fehlerhafte Bearbei-
tung erkannt werden. In diesem Fall kann iiber den Kontrollfluf} spezifiziert werden,
daf} anstelle des normalen Ablaufs eine Fehlerbehandlung in weiteren, zusatzlichen
Aktivitaten stattfinden soll. In diesen Aktivitdten kénnen MafBlnahmen zur Beseiti-
gung der Auswirkungen der fehlgeschlagenen Aktivitdten durchgefiihrt werden. In
der Modellierung sind die Aktivitdten, die zur Fehlerbehandlung eingesetzt werden,
nicht von den ,normalen® Aktivitdten zu unterschieden. Nach der Bearbeitung der
Aktivitéten fiir die Fehlerbehandlung wird der Kontrollflufl zur normalen Aktivitét
weitergeleitet. In Abbildung 3 sind drei ,normale* Aktivitaten (A, B, C) zu sehen und
zu jeder normalen Aktivitdt gibt es eine oder mehrere Fehlerbehandlungsaktivitdten

¢

Abbildung 3: Die Modellierung von Fehlerbehandlung mit vorhandenen Sprachmit-
teln

Der Vorteil des Nutzens der vorhandenen Modellierungsmittel zur Modellierung
der Fehlerbehandlung liegt darin, dafl keine Erweiterung der bestehenden Modellie-
rungssprache nétig ist. Die Nachteile werden im folgenden aufgelistet:

o Die Fehlerursache mufl in den Fehlerbehandlungsaktivitdten beseitigt werden.
Ansonsten erzeugt man auf diese Weise eine Endlosschleife.

o Die Modellierung von Geschiftsprozessen zusammen mit der nétigen Fehlerbe-
handlung ist sehr aufwendig. Zu jeder Aktivitdt mufl im Prinzip eine Fehlerbe-
handlung modelliert werden. Die Erstellung von Geschéftsprozessen wird da-
durch erschwert. Als Folge der aufwendigen Modellierung ist damit zu rechnen,
dafl daher wohl héufig unwichtige Sonderfille zur Erleichterung der Modellie-
rung einfach weggelassen werden. Die Prozesse werden dadurch wenig robust.

18

Universitdt Stuttgart
4.2 Alternative Aktivitaten und Pfade Software—Labor

Die selten benutzten Fehlerbehandlungsaktivitdten miissen genauso intensiv
entwickelt und getestet werden, wie die haufig benutzen normalen Aktivitaten,
die den eigentlichen Prozefl ausmachen. Die bedeutend gréere Zahl an Akti-
vitaten bei Geschiftsprozessen mit Fehlerbehandlung erhéht die Kosten fiir die
Entwicklung und den Test der Prozesse.

o Das Geschiftsprozei—-Modell wird durch die vielen Fehlerbehandlungsakti-
vitdten schnell sehr uniibersichtlich. Pro Aktivitdt kénnen mehrere Fehler-
behandlungsaktivitdten hinzukommen. Durch die hohe Anzahl an Aktivitdten
1aBt nicht mehr erkennen, aus welchen Aktivitdaten der Prozef} eigentlich besteht,

da keine Unterscheidung zwischen Fehlerbehandlungsaktivitédten und normalen
Aktivitaten besteht.

e Die Modellierung der Fehlerbehandlung kann auch wieder selbst Fehler ent-
halten. Es wéare daher eine Fehlerbehandlung fiir die Fehlerbehandlung nétig.
Irgendwann muf} willkiirlich angenommen werden, dafl eine Aktivitdt die Aus-
wirkungen des Fehlers beseitigt und immer erfolgreich beendet wird. Diese
Annahme ist in der Realitdt nicht haltbar. Dies ist allerdings ein grundlegen-
des Problem der Fehlerbehandlung, das auch bei anderen Methoden nur schwer
umgangen werden kann.

o Die einzelnen Fehlerabfragen sind oftmals in ihrem Aufbau identisch. Sie
miissen aber fiir jede Aktivitdt immer wieder neu modelliert werden. Nur wenn
das Workflowsystem entsprechende Methoden anbietet (z. B. parametrisierbare
Blécke von Aktivitaten), kann eine Fehlerbehandlung wiederverwendet werden.

o Die Modellierung aller im voraus bekannten Fehlerfélle fangt nicht alle mogli-
chen Fehler ab. Es kénnen immer noch unerwartete Fehler auftreten, fiir die
keine Behandlung definiert ist. Es ist praktisch unmoglich, alle Fehlerfalle vor-
herzusagen und mit einer entsprechenden Reaktion abzudecken. Bei der Model-
lierung muf} immer vorausgesehen werden, wo im Geschéftsprozefl Fehler und
Ausnahmesituationen auftreten kénnen.

Wenn das Aktivitdtenprogramm abstiirzt und damit keinen Riickgabewert mehr
an das Workflowsystem iibermitteln kann, d.h. wenn die Aktivitdt in den Zustand
AUSSER KONTROLLE iiberfithrt werden muf}, dann funktioniert diese Methode der
Fehlerbehandlung nicht mehr.

4.2 Alternative Aktivitaten und Pfade

Dieser Fehlerbehandlungsansatz ist auch der Klasse ’Automatische Fehlerbehand-
lung’ zuzuordnen. Im Gegensatz zum vorherigen Ansatz wird hier vorgeschlagen,
die Modellierungssprache um ein weiteres Konstrukt zu erganzen, das speziell fiir die
Fehlerbehandlung geeignet ist.

19

Universitdt Stuttgart

Software—Labor Losungsansatze

Wenn eine Aktivitat oder eine gruppierte Menge von Aktivitédten fehlschlagt, dann
sollte die Moglichkeit bestehen, eine alternative Vorgehensweise zu versuchen. Diese
kann in der Ausfiihrung einer alternativen Aktivitdt oder eines alternativen Pfads
im Geschéftsprozefl geschehen. Die Umschaltung auf die alternative Vorgehensweise
wird automatisch durch das Workflowsystem beim Auftreten des Auslosers vollzogen.
Dieses Verhalten kann bei der Modellierung durch ein Préferenzkonstrukt erreicht
werden: Wenn wihrend der Ausfithrung eines Workflow—Pfads ein Fehler auftritt,
wird ein alternativer Pfad ausgefiihrt. Ein Pfad besteht dabei aus einer oder mehrere
Aktivitdten. In Abbildung 4 ist ein ordentlicher Pfad mit drei Aktivitdten zu sehen.
Wenn bei der Ausfithrung ein Fehler auftritt, wird auf den alternativen Pfad mit zwei
Aktivitdten umgeschaltet.

alternativer Pfad

O—=0)

A e
| Praferenz

O0>C~0p0

ordentlicher Pfad

Abbildung 4: Ein im Geschéaftsprozefl spezifizierter alternativer Pfad

Als Ausléser fiir die alternative Ausfithrung kommen zwei Arten in Frage: Ent-
weder schlug die Ausfithrung einer Aktivitdt auf dem ordentlichen Pfad fehl oder
eine Aktivitdt wurde innerhalb einer vorher bestimmten Zeit nicht bearbeitet. Die
Umschaltung kann also aufgrund eines aufgetretenen Fehlers oder aufgrund des Ein-
tretens eines Ereignisses wie das Ablaufen einer Zeitiiberwachung erfolgen.

Der Start einer alternativen Aktivitat bzw. das Umschalten auf einen alternativen
Pfad kann grundsétzlich auf zwei Arten erfolgen: Entweder werden die alternativen
Aktivitaten zusétzlich oder ersetzend gestartet. Bei dem zusétzlichen Start werden
die ordentlichen Aktivitdten wiederholt und parallel zu den alternativen Aktivitdten
gestartet. Diese Vorgehensweise ist dann sinnvoll, wenn z. B. eine sdumige Bearbei-
tung einer Aktivitdt angemahnt werden soll. Die Bearbeitung der normalen Aktivitét
hat sich aber durch die Mahnung noch nicht erledigt. Der ersetzende Start kann durch
eine Situation motiviert werden, in der etwas fehlgeschlagen ist und daher etwas an-
deres probiert werden soll.

Mit alternativen Aktivitdten kann eine ganze Hierarchie aufgebaut werden, da die
einzelnen alternativen Aktivitdten auch wieder fehlschlagen kénnen. Das Konzept
der alternativen Aktivitat 16st damit das Problem der Fehlerbehandlung in Work-
flowsystemen nicht, da immer noch die letzte alternative Aktivitat fehlschlagen kann.
Es mindert nur das Problem.

20

Universitdt Stuttgart
4.3 Ad-hoc—Modifikationen Software—Labor

Alternative Aktivitaten sind dann sinnvoll, wenn schon zur Modellierungszeit be-
kannt ist, wo Fehler oder timeouts innerhalb eines Workflows auftreten kénnen.

4.3 Ad-hoc—Modifikationen

Dieser Fehlerbehandlungsansatz ist der Klasse "Manuelle Fehlerbehandlung’ zuzuord-
nen.

Unter dem Begriff Ad—hoc-Modifikationen werden alle Mafinahmen zusammen-
gefafit, die ein Benutzer ergreifen kann, um manuell in die Kontrolle der Workflow—
Engine einzugreifen. Mit solchen Modifikationen kénnen zur Laufzeit Anderungen an
einem Workflow vorgenommen werden, die im allgemeinen nur fiir diese eine spezielle
Instanz des Prozesses gelten. Anderungen konnen entweder an den Kontrolldaten
oder an der Struktur des Workflows vorgenommen werden.

Im folgenden werden einige typische Ad—hoc—Modifikationen aufgezéhlt:

o Finzelne Aktivitaten werden in Anschlufl an eine Aktivitat in den Workflow
eingefiigt (Umleitung).

e Einzelne in Workflow spezifizierte Aktivitaten werden ausgelassen (Abkiirzung).

o Einzelne Aktivitaten werden zusatzlich parallel zu einer Aktivitat in den Work-
flow eingefiigt (Zusatz).

vbh

Normaler Umleitung Abklrzung Zusatz
Ablauf

Abbildung 5: Die Ad-hoc-Modifikationen Umleitung, Abkiirzung und Zusatz

o An einer Verzweigung des Kontrollflusses wird die Entscheidung der Workflow—
Engine einen bestimmten Zweig zu verfolgen iiberstimmt. Dazu wird in die
Evaluierung des Entscheidungspriadikats eingegriffen, indem bestimmte Werte-
belegungen manuell gedndert werden.

e Entscheidungen der Workflow—Engine (z. B. bezliglich der Verteilung der Akti-

vitaten an bestimmte Personen) kénnen tiberstimmt werden.

e Der Abbruch eines Prozesses oder einer Aktivitat kann auch als Ad-hoc—
Modifikationen verstanden werden.

21

Universitdt Stuttgart

Software—Labor Losungsansatze

o Zur Modellierungszeit kann ein Teil des Workflows unspezifiziert gelassen wer-
den. Nach der Instanziierung des Workflows kann durch das zusétzliche
Einfiigen von Aktivitdten der Workflow zuerst inkrementell spezifiziert und
dann ausgefithrt werden. In Abbildung 6 ist diese Art der Feinspezifikation
veranschaulicht.

e In einer weiteren Ausbaustufe kann man eventuell erreichen, dafy der Bearbeiter
im unspezifizierten Teil des Workflows seine Tétigkeiten ausfithrt, ohne sie vor-
her zu spezifizieren. Das Workflowsystem protokolliert diese Téatigkeiten (z. B.
Aufruf von Anwendungsprogrammen) mit, generalisiert sie und erzeugt daraus
automatisch eine Feinspezifikation. Dieser mitprotokollierte Workflowteil kann
dann als Vorlage fiir ein erweitertes Modell des Geschiftsprozesses dienen.

>
%&Tﬁﬁéﬁfﬁﬁiﬂw <j>
¢ ¢

Abbildung 6: Ein unspezifizierter Teilabschnitt wird schrittweise verfeinert

= =

Ad-hoc—Modifikationen sollen dem Benutzer die Méglichkeit geben, vom starren
Ablauf des modellierten Workflows abzuweichen und so flexibel Ausnahmesituatio-
nen behandeln zu kénnen. Er kann damit auch auf solche Situation reagiert, die so
ungewo6hnlich sind, dafl daran wahrend der Modellierung nicht gedacht worden ist.
Im Gegensatz zu den alternativen Aktivitaten mufl man nicht schon zur Modellie-
rungszeit den genauen Punkt kennen, an dem ein Fehler auftreten kann.

Ein Geschéftsprozefl wird mit dem Ziel geschaffen, eine bestimmte Aufgabe zu
erfitllen. Sinn des Einsatzes von Workflowsystemen ist die Uberwachung und Kon-
trolle, daf} dieses Ziel auch erreicht wird. Wenn nun jeder Bearbeiter den Prozef}
umdefinieren kann, dann kann nicht mehr gewéhrleistet werden, dafl das betriebli-
che Ziel des Geschéftsprozesses auch erreicht wird. Durch das Einfiigen beliebiger
Aktivitaten entsteht die Gefahr, dafl eine Tétigkeit ausgefithrt wird, die die Daten-
integritdt des Prozesses beeintrachtigt. Fine Garantie des Workflowsystem, daf} die
Daten nach Ausfithrung korrekter Workflows konsistent sind, kann nicht mehr gege-
ben werden, da korrekte Workflows durch Ad-hoc—Modifikationen zu nicht—korrekten
Workflows verandert werden koénnen.

Beim Einsatz von Ad-hoc—Modifikationen mufl daher gefordert werden, daf} die
Rahmenbedingungen des Prozesses (das Erreichen des Ziels) und die Datenkonsi-
stenz durch die vorgenommenen Modifikationen nicht verletzt werden. Dazu miissen

22

Universitdt Stuttgart

Software—Labor

wahrend der Modellierung Integritédtsbedingungen angegeben werden, die Teil des
Workflow—Modells werden. Ad-hoc-Modifikationen werden nur dann zur Laufzeit
erlaubt, wenn sie keine der Integritdtsbedingungen des Workflows verletzen.

Die Ausfithrung der Funktionen, die zur Ad—hoc-Modifikationen dienen, muf iiber
die Vergabe von Modifikationsrechten abgesichert werden. Falls dies nicht geschieht,
kann die Kontrollfunktion der Workflow—Engine durch jeden Bearbeiter beliebig um-
gangen werden. Als Trager solcher Rechte eignen sich die Organisationsrollen: Der
Abteilungschef darf einen Prozefl verandern, wéhrend seine Mitarbeiter dies nicht oh-
ne seine Frlaubnis diirfen. Einzelne Prozeflelemente im Workflow—Modell, etwa ein
KontrollfluBpfeil oder ein Workflowdatenobjekt, kénnen auch durch den Einsatz von
Rechten vor Veranderung geschiitzt werden.

Ad-hoc-Modifikationen sind gerade ein aktuelles Forschungsthema im Workflow-
bereich. Entsprechend gibt es noch keine einheitlichen Vorstellungen iiber die zu
realisierenden Funktionen und nur selten Realisierungen.

5 Workflow—Transaktionen

In Datenbankensystemen wird das Konzept der ACID-Transaktionen zur robusten
und fehlertoleranten Abwicklung von Datenbankoperationen eingesetzt. Die Ubertra-
gung dieses Konzepts auf Workflowsysteme birgt einige Schwierigkeiten. Nach einer
kurzen Vorstellung des Konzepts werden in diesem Abschnitt einige Lésungsansitze
aus der Literatur kurz beschrieben und dann wird ein eingeschréanktes Einsatzgebiet
dieses Konzepts in Workflowsystemen vorgestellt.

5.1 Datenbank—Transaktionen

Bei der Entwicklung von Datenbankanwendungssystemen sah man sich schon vor ei-
niger Zeit mit dhnlichen Problemen zur Fehlerbehandlung konfrontiert, wie sie jetzt
auch bei Workflowsystemen auftreten: Man wollte unter allen Umstédnden die Kon-
sistenz der Daten sichern, ohne daf} der Entwickler von Datenbankanwendungssyste-
men durch komplexe Fehlerbehandlungen belastet oder gar iiberlastet wird. Das Pro-
blem wird bei Datenbanken tiblicherweise mit dem Konzept der ACID-Transaktionen
gelost, das in [GRI3] ausfiihrlich beschrieben ist.

Eine ACID—-Transaktion ist eine Menge von Operationen auf Daten mit folgenden
Eigenschaften:

e Atomicity (Atomizitat)
Eine Transaktion wird entweder vollstandig durchgefiihrt oder es hat den An-
schein, als sei sie iiberhaupt nicht ausgefiihrt worden. Sie erméglicht einen
Ubergang von einem Zustand der Datenbank in den nichsten Zustand, ohne
daB von auBen Teilschritte dieses Ubergangs sichtbar wiren. Falls bei dem
Ubergang ein Fehler auftritt, befindet sich das Datenbanksystem wieder im ur-

23

Universitdt Stuttgart

Software—Labor Workflow—Transaktionen

spriinglichen Zustand und es hat den Anschein als hitte es diesen Zustand nie
verlassen.

e Consistency (Konsistenz)
Eine Transaktion produziert nur konsistente Ergebnisse, ansonsten wird sie ab-
gebrochen. Fin Ergebnis ist konsistent, wenn der neue Datenbankzustand alle
Konsistenzbedingungen der Anwendung erfiillt, die durch die Spezifikation der
Datenbankanwendung gegeben sind. Die Transaktion iiberfiihrt somit einen
konsistenten Ausgangszustand in einen neuen, ebenso konsistenten Zustand.

o [solation
Eine Transaktion kann Operationen auf der Datenbank so ausfithren als wére
sie alleine im Datenbanksystem. Das System sorgt durch den Einsatz von Da-
tensynchronisationsprotokollen dafiir, daf} die parallele Ausfithrung von Trans-
aktionen méglich wird, ohne das es zu Konsistenzverletzungen kommt. Die
Auswirkungen einer Transaktion werden damit erst nach ihrer erfolgreichen
Beendigung fiir andere Transaktionen sichtbar.

e Durability (Dauerhaftigkeit)
Die Auswirkungen einer Transaktion sind nach dem erfolgreichen Abschluf} der
Transaktion dauerhaft gespeichert. Das System garantiert, dafl es auch nach
dem Auftreten eines Systemfehlers die Daten wieder herstellen kann.

Die Datenbankanwendungsprogrammierung wird durch diese garantierten Figen-
schaften der Transaktion erheblich vereinfacht, da die Auswirkungen eines Fehlers
(z. B. inkonsistente Datenzustdnde) nicht mehr durch das Anwendungsprogramm zu
beseitigen sind. Das Datenbanksystem garantiert, dafl sich die bearbeiteten Daten
nach dem Fehlschlag einer Transaktion exakt in dem Zustand befinden, in dem sie
zu Beginn der Transaktion waren. Es miissen daher keine Funktionen geschrieben
werden, die den Zustand der Daten nach einem Fehler bestimmen und die entspre-
chenden Mafinahmen zur Wiederherstellung des Ursprungszustands durchfiithren. Die
anwendungsabhingige Reaktion auf die fehlgeschlagene Transaktion muf allerdings
weiterhin durch den Anwendungsprogrammierer implementiert werden. Die vorher
in allen Anwendungsprogrammen notwendigen Fehlerbehandlungsroutinen sind durch
die Transaktionen in das Datenbanksystem tibernommen worden.

5.2 Datenbank—Transaktionen in Workflowsystemen

Das Konzept der ACID—Transaktionen kann auch bei der Bearbeitung von Workflows
eingesetzt werden. Transaktionen mit der ACID-Eigenschaft, die in Workflowsyste-
men eingesetzt werden, nennen wir Workflow—Transaktionen. Ein gesamter Workflow
oder nur Abschnitte eines Workflows kénnen zu einer Workflow—Transaktion zusam-
mengefaBft werden. Eine Workflow—Transaktion besitzt dieselben Eigenschaften wie

24

Universitdt Stuttgart

5.2 Datenbank—Transaktionen in Workflowsystemen Software—Labor

eine Datenbank—Transaktion. Die folgenden Punkte miissen bei der Ubertragung des
Transaktionen—Konzepts auf Workflowsysteme beriicksichtigt werden:

Innerhalb von Datenbank—Transaktionen werden nur einfache Operationen wie
das Lesen oder Schreiben eines Datums verwendet. Falls z. B. SQL—-Befehle in der
Transaktion verwendet werden, werden diese in Lese— und Schreiboperationen umge-
wandelt. Diese Operationen arbeiten nur auf Daten und nicht auf physischen Objek-
ten. Daher ist die inverse Operation einfach zu bestimmen. Leseoperationen &ndern
nichts und brauchen daher keine inverse Operation. Das Schreiben eines Wertes
kann durch ein erneutes Schreiben mit dem urspriinglichen Wert riickgéngig gemacht
werden. Die einfachen Operationen werden durch in Workflow—Transaktionen durch
erheblich komplexere Aufrufe von Workflow—Aktivitdaten ersetzt.

In einer Datenbank—Transaktion sind alle Operationen streng sequentiell ange-
ordnet. In Workflow—Transaktion dagegen kann der Kontrollflul zwischen den Akti-
vitdten frei definiert werden. Insbesondere kénnen auch parallele Aktivitdten statt-
finden.

Dieser Ansatz der uneingeschrinkten Ubertragung von Datenbank-Transaktionen
in Workflowsysteme weist aber einige schwerwiegende Probleme auf, die den alleinigen
Einsatz der Workflow—Transaktionen als Mittel zur fehlertoleranten Abwicklung von
Workflowsystem verhindern:

o Datenbanken bieten Resource Manager an, die die Lese— und Schreiboperatio-
nen im Rahmen von Transaktionen implementieren.

Ein Resource Manager stellt transaktionsgeschiitzte Zugriffsmethoden auf die
von ithm verwalteten Ressourcen bereit. Ressourcen kénnen gemeinsam benutz-
te Daten oder auch allgemeine Betriebsmittel, wie Maschinen sein. Ein Resource
Manager synchronisiert gleichzeitige Zugriffe auf seine Ressourcen (concurreny
control) und hélt dadurch die Ressourcen konsistent. Zur Synchronisation wer-
den iiblicherweise Sperrverfahren verwendet, es kénnen aber auch andere Proto-
kolle, wie z. B. optimistische Synchronisationsverfahren eingesetzt werden. Der
Resource Manager speichert im Fall eines ordnungsgeméaflen Endes der Trans-
aktion (‘commit’) alle in dieser Transaktion gemachten Anderungen an den
Ressourcen stabil ab. Bei einem Abbruch der Transaktion ('rollback’) muf}
der Resource Manager den Zustand der Ressource vor Beginn der Transaktion
wieder hergestellen. Dazu protokolliert er auf dem Log des Transaktionssy-
stems alle Operationen. Dieser Log wird auch dazu benutzt, um nach einem
Systemabsturz selbsténdig den aktuellen Zustand wieder herstellen zu kénnen
(‘recovery’).

Workflow—Aktivitaten besitzen im allgemeinen keine solchen Vorkehrungen, um
an einer Transaktionen teilnehmen zu kénnen. Sie diirfen ihrer Definition nach
beliebiger komplexer Natur sein. Selbst manuelle Tatigkeiten sollen als Ak-
tivitdten modelliert werden kénnen. In vielen Fallen werden in Aktivitdten
bereits bestehende Software eingesetzt, die keine der ACID-Eigenschaften un-
terstiitzen.

25

Universitdt Stuttgart

Software—Labor Workflow—Transaktionen

26

Ein Workflowsystem hat daher keine Kontrolle dariiber, welche Daten durch
eine Aktivitdt verdndert werden. Bei dem Abbruch einer Transaktion kann
daher der urspriingliche Zustand weder durch das Workflowsystem noch durch
die Aktivitdt wieder hergestellt werden. Die entsprechende inverse Aktivitét
kann das System nicht automatisch ermitteln. Eine solche Operation miifite
von der Aktivitdt oder dem Workflow—Modellierer bereitgestellt werden.

Nicht speziell vorbereitete Aktivitdten kénnen wegen der fehlenden Recovery—
Fahigkeit und der unsynchronisierten Datenzugriffe nicht an einer Workflow—
Transaktion teilnehmen.

ACID-Transaktionen in Datenbanken haben im allgemeinen nur eine sehr kur-
ze Lebensdauer (Groflenordnung: Sekunden bis Minuten). Das Datenbanksy-
stem ist darauf ausgelegt, moglichst viele Transaktionen pro Zeiteinheit durch-
zufithren. Wenn eine Transaktion fehlschlégt, kann sie nochmals gestartet wer-
den. Workflows dauern im allgemeinen sehr lange (Groéflenordnung: Stunden
bis Wochen). In dieser Zeit kann sehr viel Arbeit innerhalb eines Workflows
geleistet werden. Diese Arbeit ginge verloren, wenn der Workflow auf den An-
fangszustand zuriickgesetzt wiirde.

Wie in Datenbanksystemen miissen auch in Workflowsystemen Transaktionen
parallel ablaufen kénnen. Dabei kann es zu Konflikten kommen, wenn auf das-
selbe Datenobjekt zugegriffen wird. Zur Verhinderung von gleichzeitigen Zu-
griffen und daf} vorlaufige Daten vor dem Ende einer Transaktionen von anderen
Transaktionen weiterverarbeitet werden, benutzt man Datensynchronisations-
protokolle. Damit realisiert man die Isolationseigenschaft der Transaktionen.

ACID-Transaktionen benutzen héufig ein Sperrverfahren zur Synchronisation
der Datenzugriffe. Die Sperren werden in einer Wachstumsphase der Transak-
tionen erworben und in einer Schrumpfungsphase wieder abgegeben. Wenn eine
Sperre wieder freigegeben worden ist, diirfen keine neue Sperren erworben wer-
den. Zusammen mit den langen Laufzeiten der Workflows bedeutet das, daf
die Sperren in Workflow—Transaktionen sehr lange gehalten werden miissen.
Es steigt somit die Wahrscheinlichkeit, dal Workflows auf gesperrte Daten zu-
greifen wollen und deshalb warten miissen. Die Wartezeit kann dabei unter
Umsténden sehr lange dauern. Dadurch wird die geforderte Parallelitdt der
Workflows stark eingeschrankt. Zudem steigt mit der Dauer einer Transaktion

die Verklemmungsgefahr (Deadlock).

Eine Aufgabe von Sperren ist es, daf die Zwischenergebnisse einer Transaktion
bis zur deren Bestatigung (Commit) nicht anderen Transaktionen zur Verfiigung
stehen. Damit soll verhindert werden, dafl andere Transaktionen mit vorlaufigen
Daten arbeiten, die beim Abbruch einer Transaktion ungiiltig wiirden. Die
Transaktionen sind voneinander isoliert.

Universitdt Stuttgart

5.3 Erweiterte Transaktionsmodelle Software—Labor

Die Isolationseigenschaft ist aber bei Workflowsystemen haufig unerwiinscht.
Dort existiert die Situation, dal man kooperativ auf einem gemeinsamen Da-
tenbestand (z. B. ein Dokument) arbeiten will, in dem auch vorlaufige Ergeb-
nisse anderer Aktivitaten erwiinscht sind. Man mochte nicht abwarten, bis alle
vorherigen Ergebnisse fertig und bestatigt sind. In Geschiftsprozessen miissen
auch vorlaufige Zwischenergebnisse benutzt werden kénnen.

Das Konzept der Kooperation ist viel wichtiger als das der Isolation. Der ge-
meinsame Zugriff auf Daten darf dabei aber trotzdem nicht zu kritischen In-
konsistenzen fiithren.

Aus diesen Griinden erweisen sich ACID—Transaktionen als alleiniges Mittel zur
Abwicklung von fehlertoleranten Workflows als nicht geeignet. Daher wurden in der
Literatur verschiedene erweitere Ansatze beschrieben, die die angesprochenen Pro-
bleme starker beriicksichtigt.

5.3 Erweiterte Transaktionsmodelle

In diesem Abschnitt werden einige bekannte erweiterte Transaktionskonzepte (siehe
auch [GR93]) vorgestellt. Die ACID-Eigenschaften der Transaktionen werden dabei

teilweise aufgegeben und teilweise erweitert.

Sicherungspunkte

Eine Transaktion kann durch Sicherungspunkte in mehrere Abschnitte unterteilt wer-
den. Beim Auftreten eines Fehlers kann die Transaktion statt an den Anfang auf einen
Sicherungspunkt zuriickgesetzt werden. Von dort aus kann die Arbeit der Trans-
aktionen wiederaufgenommen werden. Dadurch geht weniger Arbeit als bei einem
vollstandigen Riicksetzen verloren. Die ACID-Eigenschaften der Transaktionen blei-
ben dabei erhalten.

Geschachtelte Transaktionen

Eine geschachtelte Transaktion (nested transaction) [Mos81] besteht aus einer Hier-
archie von Transaktionen. Die oberste Transaktion besitzt als einzige alle ACID-
Eigenschaften. Alle untergeordneten Transaktionen entbehren die Dauerhaftigkeit.
Beim Riicksetzen einer iibergeordneten Transaktion miissen alle bereits bestédtigten
Untertransaktionen mit zuriickgesetzt werden. Die Ergebnisse einer Untertransaktion
sind nur fiir die unmittelbar iibergeordnete Transaktion sichtbar. Die Ergebnisse der
geschachtelten Transaktionen werden fiir die Auflenwelt erst mit der Bestatigung der
obersten Transaktion sichtbar. Untertransaktionen kénnen parallel ablaufen, diirfen
dann aber nur auf disjunkte Datenobjekte zugreifen.

Geschachtelte Transaktionen sind damit als eine Generalisierung von Sicherungs-
punkten zu verstehen. Die Granularitdt der Bearbeitung kann wie dort beliebig ver-
feinert werden. Zudem wird aber die parallele Ausfithrung von Untertransaktionen
ermoglicht und die Vergabe der Sperren an Untertransaktionen kann flexibler gesteu-
ert werden. Untertransaktionen besitzen nur die Sperren, die sich von der iiberge-

27

Universitdt Stuttgart

Software—Labor Workflow—Transaktionen

ordneten Transaktion bekommen haben und geben neu erworbene Sperren an die
iibergeordnete Transaktion zuriick.

Flexible Transaktionen

Das Modell der flexiblen Transaktionen [ZNBB94] basiert auf iibergeordneten Trans-
aktionen, die fiir die Steuerung der untergeordneten Transaktionen verantwortlich
sind. Dieser Ansatz wird bei Transaktionen eingesetzt, die sich iiber mehrere hetero-
gene Datenbanken erstrecken. Die verteilte flexible Transaktion ist damit nicht mehr
atomar, wéahrend es die untergeordneten Transaktionen auf einem Rechnerknoten
weithin sind.

Der Grundgedanke ist die Bereitstellung alternativer Pfade mit unterschiedlicher
Préferenz innerhalb der verteilten Transaktion. Wenn eine Subtransaktion abbricht,
wird auf einen alternativen Pfad mit niedriger Préiferenz umgeschaltet. Fine flexible
Transaktion wird bestdtigt, wenn einer der alternativen Pfade zum Erfolg gefithrt
hat.

Es werden drei Arten von Untertransaktion unterschieden. Eine Subtransaktion
ist kompensierbar, wenn es eine weitere Transaktion gibt, mit der die Ergebnisse
semantisch riickgéngig gemacht werden koénnen. Eine wiederholbare Subtransaktion
garantiert nach endlich vielen Versuchen einen erfolgreichen Abschlufl. Eine Pivot—
Transaktion (Angelpunkttransaktion) ist weder kompensierbar noch wiederholbar.

Fiir jeden Pfad im Ausfithrungsgraphen markiert eine Pivot—Transaktion den kri-
tischen Punkt dieses Pfades. Vor diesem Punkt kann die Transaktion riickgesetzt
werden, nach diesem Punkt muf sie zu einem erfolgreichen Ende gefiihrt werden.

Dies kann dann garantiert werden, wenn die flexible Transaktionen wohlgeformt
ist, d. h. auf dem Pfad mit der niedrigsten Praferenz sind alle Transaktionen vor dem
kritischen Punkt kompensierbar und alle Transaktionen nach dem Punkt wiederhol-

bar.

Sagas

Sagas [GMS87] bestehen aus einer linearen Kette von Transaktionen, die durch eine
héhere Kontrollschicht gesteuert werden. Die Untertransaktionen geben nach ihrer
Bestéatigung ihre Datenénderungen frei. Sagas sind daher nicht voneinander isoliert.
Zu jeder Untertransaktion gibt es eine Kompensations—Transaktion, die die Ergeb-
nisse der Untertransaktion semantisch riickgdngig machen. Eine Kompensations—
Transaktion darf nicht scheitern. Wenn eine Transaktion innerhalb der Saga ab-
bricht, werden durch die héhere Kontrollebene alle schon bestétigten Transaktionen
durch die Ausfithrung der Kompensations—Transaktionen in umgekehrter Reihenfolge
kompensiert.

ConTracts
Der ConTracts—Ansatz [WR92] geht iiber die reine Erweiterung des ACID-
Transaktionskonzepts hinaus und bietet eine Reihe von Konzepten an, die eine robuste
und fehlertolerante Abwicklung von langandauernden Ablaufen erlauben.

In einem ConTract werden die elementaren Berechnungsschritte von der Beschrei-

28

Universitdt Stuttgart
5.4 Workflow—Transaktionen Software—Labor

bung der Ablaufstruktur getrennt. Die eigentliche Anwendungsprogrammierung fin-
det in rein sequentiellen Code in den elementaren Arbeitseinheiten (Steps) statt, die
als klassische ACID-Transaktionen ausgefithrt werden. In einem Skript wird der
Kontrollflul zwischen den Steps beschrieben. Steps kénnen dabei zu weiteren ACID—
Transaktionen geschachtelt werden, zwischen denen Abhéngigkeitsregeln angegeben
werden kénnen. Zu jedem Step mufl es einen Kompensations—Step geben, der die
Auswirkungen des Steps wieder riickgdngig machen kann.

Als Korrektheitskriterium wird die Eigenschaft benutzt, da Anfangs— und Fnd-
zustdnde eines ConTracts korrekt sind. Bei einem Systemfehler wird die Bearbei-
tung, wenn moglich, an derselben Stelle vorgesetzt oder der ConTract wird iiber die
Kompensations—Steps in den Anfangszustand versetzt.

Die in einem ConTract verwendeten Daten werden in einer Kontext-Datenbank
stabil verwaltet. Der Zugriff der Steps auf die gemeinsamen Daten wird iiber
Eingangs— und Ausgangsinvarianten synchronisiert. Spezifisch fiir die Anwendung
kénnen unterschiedliche Synchronisationsverfahren eingesetzt werden.

5.4 Workflow—Transaktionen

Die Probleme bei der Verwendung von ACID-Transaktionen in langandaueren-
den Vorgdngen sind bereits angesprochen worden. Das Konzept der Workflow—
Transaktionen eignet sich also nicht als alleiniges Konzept zur Implementierung von
fehlertoleranten Workflows. Wenn man diese Probleme beriicksichtigt, zeigt sich aber,
daf dieses Konzept fiir einen begrenzten Finsatz in Workflowsystemen durchaus ge-
eignet sein kann. Das Einsatzgebiet ergibt sich aus den folgenden Randbedingungen:

e Die Transaktionen miissen von kurzer Dauer sein. Ansonsten greifen die bereits
oben beschriebenen Probleme bei langandauerenden Transaktionen.

o Alle Aktivitaten der Workflow—Transaktionen miissen als Resource Manager
an der Transaktionen teilnehmen kénnen und entsprechende Schnittstellen zur
Steuerung des Recovery anbieten. Die Schnittstellen miissen zu dem im Work-
flowsystem verwendeten Transaktions—Service passen. Es kénnen damit keine
beliebigen Aktivitdten an einer Workflow—Transaktion teilnehmen!

5.4.1 Begriffe

Eine Sphare ist eine Menge von Aktivitaten in einem Workflow. Wenn zwischen
Aktivitdten Abhédngigkeiten in der Art existieren, dafl nie eine der Aktivitdten er-
folgreich und die andere erfolglos beendet werden darf, konnen die Aktivitdten zu
einer Sphére zusammengefafit werden. FEine Sphére wird zur Modellierungszeit des
Workflows spezifiziert. In der Abbildung 7 ist eine Sphére in einem Aktivitdtennetz
eingezeichnet.

29

Universitdt Stuttgart

Software—Labor Workflow—Transaktionen

C O Legende:

O ACID-Aktivitat
O normale Aktivitat
— Daten-/Kontrollflufd

Sphére

Abbildung 7: Eine Sphére in einem Aktivitdtennetz

Eine Sphéire mufl dabei keine Zusammenhangskomponente im Aktivitdtennetz
bilden. Es miissen also nicht alle Aktivitdaten in einer KontrollfluBbeziehung stehen,
wie in Abbildung 8 gezeigt.

. Legende:

O ACID-Aktivitat
. O normale Aktivitat
— Daten-/Kontrollflufd

Abbildung 8: Eine Menge von Aktivitdten in einer Sphére, die keine Zusammen-
hangskomponente im Aktivitatennetz bilden

Als Eingang einer Sphéire wird der Kontroll- bzw. Datenflul bezeichnet, der von
einer Aktivitdt aulerhalb der Sphére zu einer Aktivitat innerhalb der Sphére fiihrt.
Entsprechend wird als Ausgang der Kontroll- bzw. Datenfluf} definiert, der von einer
Aktivitat innerhalb der Sphére zu einer Aktivitdat aulerhalb der Sphére fithrt. Fine
Sphére kann mehrere Ein— und Ausgénge besitzen. In der Abbildung 7 hat die Sphére
einen Fingang und zwei Ausgange.

Als ACID-Aktivitaten werden Aktivitdten bezeichnet, die die Eigenschaft ha-
ben, daf} sie entweder selbst Resourcen—Manager sind oder nur auf Daten iiber
Resourcen—Manager zugreifen. Es muf} gewdhrleistet sein, daf} die in den Aktivitaten
verwendeten Daten nur {iber Resourcen—-Manager im Rahmen einer Transaktionen
gelesen oder verdndert werden (siehe Abschnitt 5.4.3).

Definition: Workflow—Transaktion

Fine Workflow—Transaktion ist eine Menge von Aktivititen (eine Sphdre
im Workflowmodell), die im Kontext einer ACID-Transaktion ausgefihrt
werden.

30

Universitdt Stuttgart
5.4 Workflow—Transaktionen Software—Labor

5.4.2 Das Konzept der Workflow—Transaktionen

Ein Workflowsystem, das Workflow—Transaktionen anbietet, tritt als Starter und
als normaler Teilnehmer der Transaktion auf. Beim Betreten einer Sphiare muf} die
Workflow—Transaktionen durch das Workflowsystem bei einem Transaktions—Service
initiiert werden. Dann registriert sich das Workflowsystem selbst als Teilnehmer. Da-
zu muf das Workflowsystem als Resource Manager fiir die Workflow—Daten auftreten
kénnen.

Falls das Workflowsystem Datenfliisse verwaltet, iiber die Aktivitdten mit Da-
ten versorgt werden, mufl das System dafiir sorgen, dafl die Daten die Sphére nicht
verlassen. Dasselbe gilt fiir den Kontrollflul. Frst mit dem erfolgreichen Ende der
Transaktion diirfen Aktivitaten aulerhalb der Sphére angestoflen werden. Das Work-
flowsystem muf} als Resource Manager die Isolationseigenschaft der Transaktion be-
reitstellen, indem die Daten— und Kontrollfliisse der Sphéire nach auflen bis zum
erfolgreichen Ende verzogert werden.

Durch die Teilnahme an der Transaktion kann das Workflowsystem den Bearbei-
tern eine Funktion an ihrer Bedienoberflaiche anbieten, mit der sie eine Workflow—
Transaktion interaktiv abbrechen kénnen.

Falls die Workflow—Transaktion riickgesetzt werden soll, mufl das Workflowsystem
den Zustand des Workflows wieder in den Anfangszustand der Sphére bringen. Al-
le bisherigen Anderungen innerhalb der Sphére miissen durch das Workflowsystem
riickgédngig gemacht werden. Nach dem Abbruch und Riicksetzen der Sphére wird
die Workflow—Transaktion durch das Workflowsystem neu gestartet. Anstatt eines
Neustarts sind auch andere Aktionen denkbar. So kénnte man z.B. den Neustart
x—mal versuchen und nach dem x—ten Fehlschlag eine alternativen Workflow starten.

Eine Workflow—Transaktion mufl zusammen mit dem Workflow in der Mo-
dellierungskomponente des Workflowsystems spezifiziert werden. FEine Workflow—
Transaktionen wird durch eine Sphéire modelliert. Alle Aktivitdten, die an Trans-
aktion teilnehmen sollen, miissen in eine Sphére aufgenommen werden. Die Model-
lierungskomponente mufl auch dafiir sorgen, dafl folgende strukturellen Bedingungen
fiir die Sphére eingehalten werden:

o Alle Aktivitaten der Sphére sind Teilnehmer an der Workflow—Transaktion. Die
Modellierungskomponente mufl daher priifen, ob die an der Sphére teilnehmen-
den Aktivitdten die entsprechenden Randbedingungen erfiillen, wie sie in Ab-
schnitt 5.4.3 beschrieben werden.

e Fine Schachtelung von Sphéren ist erlaubt und dient zur Verkleinerung des
Bereichs, der zuriickgesetzt werden soll. So kann ein feineres Recovery—
Granularitdt unterstiitzt werden. Da einmal spezifizierte Workflows in Form
von Subprozessen wiederverwendet werden kénnen und in diesen Prozessen
auch Sphéren definiert sein kénnen, bendtigt man auch aus diesem Grund die
Moglichkeit geschachtelter Workflow—Transaktionen.

31

Universitdt Stuttgart

Software—Labor Workflow—Transaktionen

Innerhalb der Aktivitdten kénnen durch Anwendungsprogramme neue Trans-
aktionen begonnen und wieder beendet werden. Diese Transaktionen sind dann
als in die Workflow—Transaktion geschachtelte Transaktionen zu realisieren.

Die partielle Uberlappung von Sphéren ist nicht moglich. Eine Aktivitat darf
damit immer nur an hochstens einer Sphire teilnehmen. Partiell {iberlappen-
de Sphéren kénnen durch eine Vereinigungsoperation in eine einzige Sphére
iiberfithrt werden. Partiell iiberlappende Sphéiren erweisen sich somit als
unnoétig. Der Effekt der feineren Transaktionsgranulat kann durch geschalte-
te Sphédren ebenso erreicht werden.

@ (b)

Abbildung 9: Verlassen und Wiedereintritt des Kontrollflusses (a) und partiell tiber-

lappende Sphéren (b) sind nicht erlaubt.

o Aus der Isolationseigenschaft der Sphére ergibt sich, dafl kein Pfad von einem

Ausgang auf einen Eingang derselben Sphére existieren darf.

Angenommen, es gibe einen solchen Pfad. Aufgrund der Isolation wird der
KontrollfluBausgang erst nach Beendigung der Sphére aktiv. Die Sphére kann
aber noch nicht beendet sein, da der Kontrollfluleingang auf diesem Pfad noch
nicht aktiv sein kann, d. h. es gibt eine nicht beendete Aktivitat in der Sphére.
Die Sphére kann noch nicht beendet sein. Es gibt einen Widerspruch, daher
darf kein solcher Pfad existieren.

5.4.3 Anforderungen an ACID-Aktivitaten

Damit Aktivitaten an einer Workflow—Transaktion teilnehmen kénnen, miissen sie

bestimmten Voraussetzungen gentigen. Wir unterscheiden deshalb zwischen normalen
Aktivitdten und sogenannten ACID-Aktivititen, die diese Voraussetzungen erfiillen.

32

o Die Aktivitdten diirfen nur iiber Resource Manager auf Daten zugreifen. Wenn

sie Daten selbst verwalten, miissen die Aktivitdten selbst als Resource Manager
auftreten. Eine Aktivitdt, die als Resource Manager agieren méchte, mufy alle
notwendigen Funktionen implementiert haben, um selbsténdig ein Recovery
ausfithren zu kénnen.

Universitdt Stuttgart
5.4 Workflow—Transaktionen Software—Labor

o Die Aktivitdten miissen eine geeignete Schnittstelle aufweisen, iiber die be-
stimmte Funktionen der Aktivitdaten ausgelost werden koénnen (z.B. das Re-
covery, das Commit, das Rollback). Ebenso miissen sie Schnittstellen fiir die
Teilnahme an einem 2-Phasen—Commit—Protokoll zu erméglichen. Damit er-
reicht der Transaktions-Service eine gemeinsame Ubereinkunft aller Beteiligten
Resource Manager tiber den Erfolg oder Miflerfolg der Transaktion. Die angebo-
tene Schnittstelle mufl zu dem im Workflowsystem verwendeten Transaktions—
Service passen.

e Die Menge der von mehreren konkurrierenden Aktivitaten benutzten Daten
miissen relativ klein sein, damit sich Sperren oder andere Synchronisationspro-
tokolle nicht auf die die Kooperationsféahigkeit der Workflows auswirkt.

e Wenn in den Aktivitdten physische Operationen aufgefithrt werden, bedarf es
der Verwendung eines erweiterten Resource Manager, der Physical-Resource—
Manager (PRM) genannt wird [Sch93]. “Real actions” haben im Gegensatz zu
Datenbankoperationen die Eigenschaft, dafl ihre Auswirkungen sofort sichtbar
werden und dafl diese Auswirkungen oft nicht mehr riicksetzbar sind. Das
klassische Beispiel fiir eine solche Operation ist das Bohren eines Loches. Unter
der Annahme, dafl nur eine physische Operation in der Workflow—Transaktion
stattfindet, kann das Recovery eines PRM so aussehen: Wenn der Abbruch
der Transaktion vor der physischen Operation stattfindet, dann mufl der PRM
wie ein regularer RM reagieren. Es wird ein Rollback durchgefithrt. Wenn
der Abbruch nach der Ausfithrung der physischen Operation stattfindet, wird
wiederum ein normales Rollback durchgefithrt. Die physische Operation wird
dabei nicht riickgesetzt. Beim wiederholten Starten der Transaktionen wird
dann die bereits in der vorherigen Transaktion ausgefiihrte physische Operation
ausgelassen. Wenn der Abbruch wéhrend der physischen Operation stattfindet,
dann muf} eine anwendungsspezifische Fehlerbehebungsmafinahme durch den

PRM getroffen werden.

Wenn man mehrere physische Operation innerhalb einer Workflow—Transaktion
benutzen will, wird die Komplexitét des Recovery deutlich hoher.

Fiir den Fall, daff die Auswirkungen physischer Operation zuriickgehalten wer-
den koénnen, z. B. das Verschicken einer Email oder eines Briefes, ist es Auf-
gabe des Resource Managers, dafiir zu sorgen, dafl die Operation erst in
der Propagierungs—Phase des Zwei—-Phasen—Commit—Protokolls am Ende der
Workflow—Transaktion ausgefithrt wird. So wird die Email solange verzogert,
bis die gesamte Transaktion erfolgreich beendet wird. Die Operation darf dann
allerdings nicht mehr fehlschlagen.

33

Universitdt Stuttgart

Software—Labor Kompensations—Spharen

5.5 Einsatzgebiete von Workflow—Transaktionen

Durch den alleinigen Einsatz von Workflow—Transaktionen kann man das Ziel eines
fehlertoleranten Ablaufs von Geschéftsprozessen nicht erreichen. Nur in einem eng be-
schrankten Einsatzfeld erweist sich das Konzept der Workflow—Transaktionen als hilf-
reich. Ein solches Einsatzfeld kénnen z. B. stark datenbankorientierte Geschéftspro-
zesse sein. Dort sind im allgemeinen schon die entsprechenden Resource Manager mit
den standardisierten Schnittstellen vorhanden.

Wichtig erweist sich dieses Konzept auch bei der Verwendung von sogenannten
business objects als Aktivitdten. Business—Objekte sind Repriasentanten fiir alle in
einem Geschéftsprozefl vorkommenden Objekte. Dies kénnen Programme, Personen
oder Daten in der traditionellen Sichtweise sein. Business—Objekte werden zur Zeit
in der BOMSIG special interest group der OMG (Object Management Group) stan-
dardisiert. Diese Objekte bieten Methodenaufrufe an, um Operationen auf Daten
durchzufithren. Die Methoden sind oftmals von kurzer Dauer und werden automa-
tisch ausgefithrt, d.h. es gibt kaum manuelle Interaktion. Diese Methodenaufrufe
kénnen in einer Workflow—Transaktion als Operationen eingebunden werden.

Als Realisierungsansatze fiir Workflow—Transaktionen bieten sich die Standards
fiir verteilte Transaktionen an: Es kommt die X/Open Spezifikation for Distribu-
ted Transaction Processing (DTP) XA und der Object Transaction Service (OTS)
[OTS94] der Object Management Group (OMG) in Frage. Insbesondere im Verbund
mit dem Finsatz der Business—Objekte kann sich OTS als sinnvoll erweisen. Die
Aktivitdten miissen die in den Standards spezifizierten Funktionen als API anbieten.

Bei Einsatz von OTS miissen die Anwendungsprogramme in den Aktivitéten ein
Objektinterface besitzen. Das Workflowsystem muf} sich der Dienste eines Corba—
kompatiblen Objekt Request Brokers (ORB) bedienen, um die Anwendungsprogram-
me in den Aktivitaten aufzurufen.

Eine prototypische Implementierung dieses Ansatzes wurde im Rahmen des Pro-
jekts Workflow—Management im Software-Labor der Universitdat Stuttgart durch-
gefithrt. Genauere Beschreibungen dieses Projekts finden sich in [BS96] und [SB96].

6 Kompensations—Spharen

Das Konzept der Workflow—Transaktionen stellt hohe Anforderungen an die Funk-
tionalitdt der Aktivitaten, die an einer Workflow—Transaktionen teilnehmen. In vie-
len Féllen wird aber ein Workflowsystem mit Aktivitdten eingesetzt, die nicht die-
sen Anforderungen entsprechen. Oftmals haben die Anwendungsprogramme, die in
den Aktivitdten aufgerufen werden, kein Wissen dariiber, dafl sie im Rahmen eines
Geschéftsprozesses eingesetzt werden. Sie kénnen daher auch nicht auf die Bediirf-
nisse der Workflow—Transaktionen abgestimmt werden.

Aus diesem Grund ist ein weiteres Konzept bei der Bearbeitung von Workflows
noétig, das den Ablauf von Workflows fehlertoleranter macht, ohne diese hohen Anfor-

34

Universitdt Stuttgart
6.1 Begriffe Software—Labor

derungen zu besitzen. Der Ansatz der Kompensations—Sphdren [Ley95] stellt kaum
noch Anforderungen an die Aktivitdten. Im Gegenzug dazu mufl man aber auf
die Isolationseigenschaft und die garantierte Konsistenz der Anwenderdaten bei der
Ausfithrung eines Workflow verzichten. Die Eigenschaft der Atomizitdt und der Dau-
erhaftigkeit bleiben erhalten. Das Mittel zur Erreichen dieses Ziels sind Kompensa-
tionsaktivitéten.

6.1 Begriffe

Eine Kompensationsaktivitét unterscheidet sich nur durch ihre Verwendung von
einer normalen Aktivitdt. Jede Kompensationsaktivitdt mufl einer normalen Akti-
vitat bzw. einer Sphéire zugeordnet sein und soll alle Auswirkungen der normalen
Aktivitdt bzw. der gesamten Sphére beseitigen. Das Workflowsystem bietet aufler
dem Aufruf der Kompensationsaktivitdt keine weitere Unterstiitzung, um dieses Ziel
zu erreichen. Wegen der fehlenden Isolationseigenschaft der Kompensations—Sphéren
muf} die Kompensationsaktivitdt auch dafiir sorgen, dafl die Datenédnderungen der
normalen Aktivitdt eventuell schon von anderen Aktivitaten gelesen und zur Weiter-
verarbeitung benutzt worden sind. Die Kompensationsaktivitdt mufl auch in diesen
Fallen geeignete Mafinahmen treffen.

Der Begriff Sphére ! bezeichnet auch hier eine nicht unbedingt zusammenhingen-
de Menge von Aktivitaten in einem Workflow.

Definition: Kompensations—Sphére (engl.: compensation sphere)

Fine Kompensations—Sphdre ist eine Menge von Aktivititen, die entwe-
der alle im Zustand ’erfolgreich’ oder alle im Zustand "kompensiert’ sind,
wenn der Kontrollfluf$ die Sphdire verlassen will.

Das Zustandsdiagramm fiir die Aktivitdten mufl daher wie in Abbildung 10 mo-
difiziert werden. Es wird zusitzlich ein Zustand KOMPENSIERT eingefithrt. Dieser
Zustand ist weitgehend &quivalent zum Zustand STARTBAR mit dem Unterschied,
dafl mindestens eine Bearbeitung und eine Kompensation der Aktivitat stattgefunden
hat. Der Endzustand ERFOLGREICH wird dann verlassen, wenn andere Aktivitdten
der Sphére kompensiert werden miissen. Fine Sphére ist dann kompensiert, wenn
alle Aktivitaten der Sphére kompensiert sind.

6.2 Das Konzept der Kompensations—Spharen

Zur Modellierungszeit werden Aktivitaten zu einer Sphére zusammengefafit. Aus der
Sicht der Aktivitdten aulerhalb der Sphare werden die Aktivitaten zu einer atomaren
Ausfithrungseinheit. Zum Ausfithrungszeitpunkt des Workflows sorgt das Workflow-
system dafiir, daf} die Sphéare von den Aktivitdten auBerhalb der Sphére isoliert wird,

Lsiehe Definition Seite 29

35

Universitdt Stuttgart

Software—Labor Kompensations—Spharen

[erfolgrelch
aulder KontroIIe erfolglos
Canpener

-

Abbildung 10: Das Zustandsdiagramm fiir Aktivitdten bei Kompensations—Sphéren

indem der Kontroll- und Datenflul bis zum Ende der Sphére verzogert wird. Akti-
vitaten aulerhalb der Sphére kénnen somit keine Zwischenergebnisse von Aktivitaten
innerhalb der Sphéare iiber das Workflowsystem bekommen. Da die Anwenderpro-
gramme aber weiterhin auf beliebigen Datenbestidnden arbeiten kénnen, die nicht
im Kontrollbereich des Workflowsystem liegen miissen, kénnen Zwischenergebnisse
durchaus von anderen Programmen verarbeitet werden. Die Isolation kann daher
nicht durch das Workflowsystem garantiert werden.

Wenn ein Fehler auftritt, werden alle bereits beendeten Aktivitaten kompensiert
und alle Aktivitdten abgebrochen, die noch in Bearbeitung sind. Danach kann die
Sphére entweder neu gestartet werden oder es wird ein alternativer Weg im Workflow
eingeschlagen, wie im vorherigen Kapitel beschrieben.

Dieses Konzept fordert schwéchere Voraussetzungen an die teilnehmenden Akti-
vitdten als die Workflow—Transaktionen. Die Aktivitdten miissen kompensierbar sein,
d.h. zu jeder Aktivitit A in der Sphire muf eine Kompensationsaktivitit A~! exi-
stieren, die die Auswirkungen der Aktivitdt A riickgdngig macht. Wie diese Kompen-
sierbarkeit erreicht wird, liegt ganz in der Verantwortung des Erstellers der Aktivitét.
Das Konzept der Kompensations—Sphéren bietet dazu aufler dem Aufruf der Kom-
pensationsaktivitat keine weitere Unterstiittzung an. Ergdnzend kann die Anforderung
aufgestellt werden, dafl jede Aktivitat (bzw. das Anwenderprogramm innerhalb der
Aktivitat) an ihrer Schnittstelle eine Funktion anbieten muf}, mit der die Aktivitat
vorzeitig abgebrochen werden kann, ohne daff dadurch der Anwenderdatenbestand in
einem inkonsistenten Zustand hinterlassen wird. Mit dieser Anforderung kann eine
Optimierung angewendet werden, die mit Hilfe des vorzeitigen Abbruchs der Akti-
vitdat die Riicksetzzeit der Sphéare verkiirzt, indem unnétige Arbeit nach Auftreten
eines Fehlers in der Sphére verhindert wird. Die Aktivitit A mufl nach ihrem Ende
oder nach einem Abbruch erneut gestartet werden kénnen, ohne daff dadurch ein
Fehler auftritt.

Die Anforderungen an die Kompensationsaktivitdt sind dafiir aber um so ausge-
pragter. Neben der Existenz die Aktivitdt mufl auch gefordert werden, dafi die Ak-
tivitdt niemals fehlschlagt. Die Aufgabe der Kompensationsaktivitit, das Beseitigen

36

Universitdt Stuttgart
6.2 Das Konzept der Kompensations—Spharen Software—Labor

der Auswirkungen der Aktivitdt A, wird dabei in keiner Weise durch das Workflowsy-
stem unterstiitzt. Der Kompensationsaktivitdt mufl diese Aufgabe vollig selbstandig
und korrekt durchfiihren.

Eine Sphére wird dann zuriickgesetzt, wenn eine der Aktivitaten in einen Fehler-
zustand (siehe Abbbildung 10) tiberfiihrt wird. Das Zuriicksetzen einer Sphére sollte
auch iiber den interaktiven Aufruf einer Funktion méglich sein, die dem Benutzer
des Workflowsystem an der Bedienoberfliche angeboten wird. Uber diese Funktion
kann manuell ein Zuriicksetzen ausgelost werden, das eventuell durch spezielle Rechte
abgesichert werden kann.

Nach der Auslésung der Riicksetzvorgangs ist eine Entscheidung méglich, ob die
Sphére bis zu ihrem Beginn oder zu einem weniger weit zuriickliegenden Punkt zwi-
schen den Aktivitaten zuriickgesetzt werden soll. Wenn diese Auswahl, wohin zuriick-
gesetzt werden soll, dem Benutzer interaktiv iiberlassen wird, dann hat man eine Art
“Undo”-Funktion im Workflow realisiert. Man kann die letzten Vorgangsschritte (Ak-
tivitaten) innerhalb der Grenzen der Sphére riickgdngig machen und dann an dem
gewiinschten Punkt weiterarbeiten.

Fiir die Ausfithrungsreihenfolge der Kompensationsaktivitaten gibt es verschie-
dene Moglichkeiten. Die Kompensationsaktivitdten kénnen alle parallel ausgefiihrt
werden, da alle dazu notwendigen Daten schon wihrend der Ausfiihrung der nor-
malen Aktivitaten gespeichert werden. Falls ein solches Verhalten nicht gewiinscht
ist, kénnen die Kompensationsaktivitidten in der umgekehrter Reihenfolge wie die
normalen Aktivitdten ausgefithrt werden. Diese umgekehrte Reihenfolge kann durch
Umdrehen der Kontrollflubeziehung bestimmt werden oder durch Auswerten der
Startzeitpunkte aller normalen Aktivitdten. Eine dritte denkbare Methode besteht
in einer frei spezifizierbaren Reihenfolge, die wahrend der Modellierung des Prozesses
festgelegt werden muf.

Die Schachtelung von Sphéaren muf}, wie bei den Workflow—Transaktionen auch,
aufgrund der Wiederverwendung von Workflowteilen erlaubt sein. Daraus ergibt sich
die Notwendigkeit, auch ganze Sphéiren riickgdngig machen zu miissen. Zuséatzlich zu
dem Kompensieren aller Einzelaktivitaten einer Sphére kann man auch die Moglich-
keit schaffen, mit einer einzigen Kompensationsaktivitat eine ganze Sphére auf einmal
zu kompensieren. Dazu miissen dann zu Sphéaren auch Kompensationsaktivitdten
einfithrt werden.

Ein Uberlappen von Sphiren bedeutet, daB eine Aktivitit an mehr als an ei-
ner einzigen Kompensations—Sphére teilnimmt. Wenn man dies zuldfit, handelt man
sich das Problem der kaskadierenden Kompensation weiterer Sphéren ein. Da Uber-
lappung keinen weiteren Vorteil als eine feinere Abstufung der Sphéren bringt und
dieser Vorteil auch iiber die Schachtelung von Sphéren erlangt werden kann, kann das
Uberlappen ohne Verlust an Funktionalitit verboten werden.

37

Universitdt Stuttgart

Software—Labor Kompensations—Spharen

6.3 Vergleich zwischen Transaktions—Sphéaren und
Kompensations—Sphiren

Das Konzept der Kompensations—Sphéren unterscheidet sich in einigen wesentlichen
Punkten von dem Konzept der Workflow—Transaktionen. Kompensations—Sphéaren
stellen hauptsédchlich die Eigenschaft der Atomizitdt bereit. Dabei werden keine
besonderen Anforderungen an die Aktivitaten gestellt. Das Workflowsystem fithrt
keine undurchdringbare Isolation der Sphéren durch. Zwischenergebnisse aus den
Aktivitdten in der Sphére kénnen von allen Aktivitdten auf Kosten der Konsistenz
genutzt werden. Es wird keine standardisierte Schnittstelle zur Einbindung in einen
transaktionalen Kontext gefordert. Die Aktivitaten miissen nicht an einem Zwei—
Phasen—Commit—Protokoll teilnehmen kénnen. Die Aktivitdten miissen keine Re-
source Manager sein und ihre Anderungen auf den Daten riickgingig machen konnen.
Sie miissen kein Recovery implementiert haben.

Ein Schwachpunkt der Kompensations—Sphéren ist die Tatsache, daf} fiir eine
Garantie der Riicksetzbarkeit einer Sphére gefordert werden muf}, dal Kompensati-
onsaktivitdten nicht fehlschlagen diirfen. Diese Forderung ist aber nur schwer ver-

wirklichbar.

Die Dauerhaftigkeit der Ergebnisse der Aktivitaten kann durch das Workflowsy-
stem nur dann gewéhrleistet werden, wenn es auch die Kontrolle {iber die in den
Aktivitdten bearbeiteten Daten hat. Das ist aber nur vor und nach der Bearbeitung
einer Aktivitat der Fall. Wenn das System aber wihrend der Bearbeitung einer Ak-
tivitat abstiirzt, gehen alle Anderungen verloren, die in den laufenden Aktivititen
gemacht wurden. Auf diese Weise kann ein inkonsistenter Datenzustand entstehen,
der eventuell zur Folge hat, daf} die anschlieBende Wiederholung der Aktivitat fehl-
schlagen kann.

Kompensations—Sphéren koénnen entweder iiber die vorhandenen Mittel der
Workflow—Spezifikationssprache modelliert werden oder durch eine direkte Un-
terstiittzung in der Workflow—Engine realisiert werden. Beim Modellierungsansatz
werden die Kompensationsaktivitdten wie normale Aktivitdten behandelt. Der Kon-
trollflufl zwischen den Kompensationsaktivitaten mufl explizit festgelegt werden. Im
zweiten Ansatz wird der Zustand einer Sphére durch die Engine verwaltet. Die En-
gine stoft bei Bedarf die Kompensationsaktivitidten an. Es ist keine weitere Spe-
zifikationen des Kontrollflusses nétig, es sei denn, man mochte die Reihenfolge der
Kompensationsaktivitaten explizit festlegen.

Der Vorteil der Kompensations—Sphéren liegt darin, dafl bei einer Realisierung
nur Anderungen im Workflowsystem nétig sind. Auf die Realisierung der Aktivitaten
hat dieses Konzept keine Auswirkungen.

38

Universitdt Stuttgart

Software—Labor

7 Ausblick und Zusammenfassung

Workflow—Transaktionen tiberdecken nur einen kleinen Teil der in Kapitel 3 aufgestell-
ten Anforderungen. Nur durch den gemischten Einsatz der in den darauffolgenden
Kapiteln vorgestellten Loésungsansidtze konnen fehlertolerante Workflows geschaffen
werden. Insbesondere die Kombination von Workflow—Transaktionen und dem Kon-
zept der Kompensationsaktivitaten erhoht die Fehlertoleranz:

7.1 Ausblick auf Erweiterungen

Workflow—Transaktionen verwenden das aus den Datenbanken entliehene Konzept der
ACID-Transaktionen, um die Abwicklung von Workflows stabiler zu machen. Das
Konzept kann aber nicht auf ganze Workflows angewandt werden, da dann die Pro-
bleme langandauerender Abldufe auftreten. Das Anwendungsgebiet der Workflow—
Transaktionen mufl daher auf kleine Workflowabschnitte beschrankt werden. Es bleibt
aber weiterhin die Anforderung offen, ganze Workflows oder zumindest grofie Teile
des Workflows fehlertolerant ablaufen zu lassen. Beim Auftreten eines Fehlers méchte
man gewisse Teile oder sogar den ganzen Workflow riickgdngig machen kénnen, um
den Workflow von einem konsistenten Zustand aus fortsetzen zu kénnen. Die Auswir-
kungen des Workflows sollten dabei riickgdngig gemacht oder kompensiert werden.

Diese Anforderung kann durch eine Verbindung von Workflow—Transaktionen
mit dem Konzept der Kompensationsaktivititen erreicht werden. Workflow—
Transaktionen werden dabei als Grundbausteine fiir stabile Workflows einsetzt. Auf
Workflowebene kénnen sie damit als atomare Schritte angesehen werden. Mit dem
erfolgreichen Abschluff einer Workflow—Transaktion werden die Ergebnisse externa-
lisiert, d.h. andere Aktivitdten kénnen mit den Ergebnissen weiterarbeiten. Falls
nach dieser Freigabe ein Fehler auftreten sollte, der ein Riickgdngigmachen der bis-
herigen Ergebnisse des Workflows erforderlich machen wiirde, kann man das Konzept
der Workflow—Transaktionen nicht mehr nutzen. Eine Losung dieses Problems erhalt
man, wenn man jeder Sphére eine Kompensationsaktivitdt zuordnet, die semantisch
die Ergebnisse riickgdangig macht. Ein Workflow kann dann als fehlertolerant angese-
hen werden, wenn es moglich ist, konsistent aus jeden Zwischenzustand des Workflows
wieder auf den Anfangszustand zu kommen?. Dabei sollte es auch korrekte Zwischen-
zustédnde geben, auf die man alternativ zuriicksetzen kann, um nicht zuviel Arbeit zu
verlieren, wenn der Workflow weiterbearbeitet wird.

Robustheit kann erreicht werden, indem alle Aktivititen eines Workflows in
Sphéren eingebunden werden und zu jeder Sphére eine Moglichkeit bereitgestellt
wird, die Auswirkungen der Sphére zu kompensieren. Wenn eine Aktivitdt nicht
in einer Sphére eingebunden ist, darf sie nach ihrer Ausfithrung keine inkonsistenten
Auswirkungen hinterlassen.

Im realen Einsatz von Workflowsystemen darf diese scharfe Anforderung an fehler-

%siche dazu auch das ConTracts Modell in [WR92]

39

Universitdt Stuttgart

Software—Labor Ausblick und Zusammenfassung

tolerante Workflows abgeschwicht formuliert werden. Hier erweist es sich als sinnvoll,
nur noch zu fordern, daf} die wesentlichen Teile eines Workflows fehlertolerant ablau-
fen miissen. Es wird in vielen Geschéftsprozessen Aktivitdten geben, die nicht abge-
sichert werden miissen, da sie keine kritischen Téatigkeiten enthalten, die inkonsisten-
te Daten zuriickliessen, wenn sie fehlschliigen. Diese Aktivitdten werden unwesent-
lich genannt. Durch eine Kennzeichnung der Aktivitaten, welche fiir den Erfolg des
Geschéftsprozesses wesentlich sind und welche nicht, kann beim Auftreten eines Feh-
lers entschieden werden, ob und welche Mafinahmen ergriffen werden miissen [EL95].
Unwesentliche Aktivitdten miissen dann nicht an Workflow—Transaktionen teilneh-
men und benétigten keine Kompensationsaktivitdt. Der Vorteil dieser Methode ist
der, dafl bei dem Auftreten von Fehlern in einem unwesentlichen Teil des Workflows
keine Fehlerbehandlung stattfindet muf}, die zum Verlust von Arbeit fithren kénnte.
Allerdings miissen damit auch die Garantien fiir eine fehlertolerante Ausfithrung auf
die wesentlichen Teile des Workflows beschrénkt werden.

Flankierend zu der Realisierung dieses Konzeptes sollten auch Konzepte wie Ad—
hoc—Modifikationen und alternativer Pfade in das Workflowsystem integriert werden.
Weiterhin miissen auf Systemebene die notwendigen Mafinahmen zur Erlangung von
Fehlertoleranz realisiert sein. Eine verldfiliche Dateniibertragung, die durch Transak-
tionen abgesichert ist, sowie die redundante Auslegung der einzelnen Softwarekom-
ponenten sind hier denkbar.

Durch den hier vorgeschlagenen Weg wird die Bearbeitung von Workflows zu-
verléssiger und fehlertoleranter. Das Workflowsystem kann flexibler eingesetzt werden
und erschlielt sich damit ein grofleres Anwendungsfeld.

7.2 Zusammenfassung

Zu Beginn dieses Berichts wurden allgemeine Anforderungen an ein robustes und
fehlertolerantes Workflowsystem aufgestellt. In einem Fehlermodell fiir Workflow—
Management—Systeme wurden verschiedene Klassen von Fehlerbehandlungen ein-
gefithrt und Fehlerarten nach ihrem Ort des Auftretens klassifiziert. Geordnet nach
den Fehlerbehandlungsarten transparent, automatisch und manuell wurden anschlie-
Bend die allgemeinen Anforderungen in funktionale Anforderungen verfeinert. Tei-
le diese Anforderungen kénnen durch die vorgeschlagenen Loésungskonzepte erfiillt
werden: Die Modellierung der Fehlerbehandlung mit vorhandenen Sprachmitteln ist
einfach, fithrt aber zu aufwendigen Workflows. Wenn Aktivitaten wegen eines Abstur-
zes keinen Riickgabewert mehr liefern kénnen, versagt diese Methode. Alternative
Aktivitdten und alternative Pfade im Workflow erhhen die Flexibilitat der modellier-
ten Fehlerbehandlung im Workflow. Mit dem Konzept der Ad-hoc-Modifikationen
kénnen hochflexible Workflow realisiert werden. Insbesondere kann man mit diesem
Konzept auf unerwartete Gegebenheiten reagiert werden.

Dem Konzept der Workflow—Transaktionen wurde ein eigenes Kapitel gewidmet.
Darin wurde zuerst das aus dem Datenbankbereich ibernommene Konzept der ACID—
Transaktionen erlautert. Die direkte Ubernahme dieses Konzepts in Workflowsysteme

40

Universitdt Stuttgart

7.2 Zusammenfassung Software—Labor

bereitet allerdings Probleme, die insbesondere mit der langen Laufzeit von Workflows
zusammenhangen. Dieses Problem tritt auch bei speziellen Datenbankenanwendun-
gen auf und wurde dort mit Hilfe erweiterter Transaktionsmodelle angegangen. Ei-
nige der in der Literatur beschriebenen Modelle wurden in diesem Bericht mit ihren
wesentlichen Merkmalen umrissen.

Durch die Einschrénkung des Einsatzbereichs von ACID-Transaktionen auf eine
kleine Menge spezieller, sogenannter ACID—-Aktivitédten erhalt man das Konzept der
Workflow—Transaktionen. Eine Menge von ACID—-Aktivitdaten kann zu einer Sphére
zusammengefafit werden. In einer Sphére 1auft genau eine Workflow—Transaktion ab,
die dieselben Eigenschaften wie eine ACID-Transaktion in Datenbanken hat.

Da die Anforderungen an ACID-Aktivitaten sehr hoch sind und diese tiblicher-
weise von existierenden Aktivitdten nicht erfiillt werden, wurde ein weiteres Konzept
vorgestellt. Kompensationssphiren erlauben das Zurilicksetzen der Sphére auf den
Anfangszustand durch die Ausfithrung von Kompensationsaktivitdten. Die Reihen-
folge der auszufithrenden Kompensationsaktivitaten kann dabei auf mehrere Arten
festgelegt werden.

Abschlielend wurde kurz skizziert, wie ein Verbund der Konzepte Workflow—
Transaktionen und Kompensationsaktivitdten die Abwicklung eines Workflows feh-
lertoleranter machen kann.

41

Universitdt Stuttgart

Software—Labor Literatur
Literatur
[BS96] BILDSTEIN, Hubert ; SCHREYJAK, Stefan: Der Einsatz von Workflow-

[EL95)]

[GMSS7]

[GRO3]

[Ley95]

[Mos81]

[0TS94]

[SBY6]

[Sch93]

[WR92]

[ZNBB94]

42

Transaktionen in FlowMark Universitat Stuttgart, Software-Labor. 1996.
— Fakultatsbericht Nr. 1996/18, Software-Labor Bericht SL.-4/96

EDER, J. ; LIEBHART, W.: The Workflow Activity Model WAMO. In:
Proc. 3. Int. Conference on Cooperative Information Systems (Coopl5).
Wien, 1995, S. 87-98

GARCIA-MOLINA, Hector ; SALEM, Kenneth: SAGAS. In: Proceedings
ACM SIGMOD. San Francisco, 1987, 5. 249-259

GRAY, Jim ; REUTER, Andreas: Transaction Processing. Morgan Kauf-
mann, 1993

LEYMANN, F.: Supporting Business Transactions via Partial Backward
Recovery in Workflow Management Systems. In: LAUSEN, G. (Hrsg.):
Proc. Datenbanksysteme in Biiro, Technik und Wissenschaft. Berlin :
Springer, Maerz 1995, S. 51-70

Moss, J. E. B. Nested Transactions: An Approach to Reliable Distributed
Computing. MIT Laboratory for Computer Science, Cambridge, Massa-
chusetts 1981 — PhD Thesis

Object Management Group (OMG): Object Transaction Service. August
1994. — Document No. 94.8.4

SCHREYJAK, Stefan ; BILDSTEIN, Hubert: Beschreibung des prototypisch
implementieren Workflowsystems Surro Universitdt Stuttgart, Software—
Labor. 1996. — Fakultatsbericht Nr. 1996/19, Software-Labor Bericht
SL-5/96

SCHMIDT, Ursula: Transaktionskonzepte in der Fertigung. In: Proc.
Datenbanksysteme in Biro, Technik, Wissenschaft. Braunschweig, Marz

1993

WACHTER, Helmut ; REUTER, Andreas: The ConTract Model. In:
ELMAGARMID, A. K. (Hrsg.): Database Transaction Models for Advanced
Applications. San Mateo : Morgan Kaufmann, 1992, Kapitel 7, S. 219-263

ZHANG, Aidong ; NODINE, Marian ; BHARGAVA, Bharat ; BUKHRES, Om-
ran: Ensuring Relaxed Atomicity for Flexible Transactions in Multidata-
base Systems. In: ACM SIGMOD, Association of Computing Machinery,
1994, S. 67-78

