
Universit�at Stuttgart

Software{Labor

Projekt 1.1:

Work
ow{Management{Systeme

Breitwiesenstra�e 20{22

D-70565 Stuttgart

Fakult�atsbericht 1996/17

Software{Labor Bericht SL{3/96

CR{Klassi�kation H.2.0, H.2.4

Fehlertolerante Abwicklung

von Gesch�aftsprozessen in

Work
ow{Management{Systemen
�

Stefan Schreyjak

Stefan.Schreyjak@informatik.uni-stuttgart.de

Hubert Bildstein

19. Dezember 1996

�Diese Arbeit wird von der IBM Deutschland Entwicklung GmbH und dem Ministerium f�ur

Wissenschaft und Forschung, Baden W�urttemberg, unterst�utzt.

Universit�at Stuttgart

Software{Labor

Zusammenfassung

Die fehlertolerante Abwicklung von Gesch�aftsprozessen ist ein wichtiges

Kriterium bei der Entwicklung von Work
owsystemen.

Dieser Bericht f�uhrt in die Problematik ein, die sich bei der Fehler-

behandlung in Work
owsystemen ergibt. Der Begri� des Fehlers wird

dabei sehr weit ausgelegt und umschlie�t alle Ausnahmesituationen, die

w�ahrend eines Gesch�aftsprozesses auftreten k�onnen. Diese Fehlerarten

werden klassi�ziert. Wir stellen daraufhin Anforderungen an die Fehler-

behandlung in einemWork
owsystem auf. Anschlie�end werden im �Uber-

blick verschiedene L�osungsans�atze vorgestellt: Durch eine Pr�aferenzrelati-

on auf den Aktivit�aten k�onnen alternative Pfade spezi�ziert werden. Ad{

hoc{Modi�kationen erm�oglichen
exible Reaktionen auf Fehler. Durch

Work
ow{Transaktionen werden ACID{Eigenschaften in Work
ows nutz-

bar. Der L�osungsansatz Kompensationssph�aren stellt besonders wenig

Anforderungen an die Aktivit�aten.

2

Inhaltsverzeichnis

Universit�at Stuttgart

Software{Labor

Inhaltsverzeichnis

1 Einf�uhrung und Motivation 5

1.1 Allgemeine Anforderungen . 6

2 Fehlermodell 7

2.1 Grundlegende Begri�e . 7

2.2 Fehlerbehandlungsmechanismen . 8

2.2.1 Fehlerdetektion . 10

2.3 Fehler in Work
ow{Management{Systemen 10

2.3.1 Systemdienstebene . 10

2.3.2 Work
owdienstebene . 11

2.3.3 Aktivit�atenebene . 11

3 Funktionale Anforderungen an die Fehlerbehandlung 13

3.1 Anforderungen an transparente Fehlerbehandlung 13

3.2 Anforderungen an automatische Fehlerbehandlung 14

3.3 Anforderungen an manuelle Fehlerbehandlung 15

4 L�osungsans�atze 17

4.1 Modellierung im Work
ow . 18

4.2 Alternative Aktivit�aten und Pfade . 19

4.3 Ad{hoc{Modi�kationen . 21

5 Work
ow{Transaktionen 23

5.1 Datenbank{Transaktionen . 23

5.2 Datenbank{Transaktionen in Work
owsystemen 24

5.3 Erweiterte Transaktionsmodelle . 27

5.4 Work
ow{Transaktionen . 29

5.4.1 Begri�e . 29

5.4.2 Das Konzept der Work
ow{Transaktionen 31

5.4.3 Anforderungen an ACID{Aktivit�aten 32

5.5 Einsatzgebiete von Work
ow{Transaktionen 34

6 Kompensations{Sph�aren 34

6.1 Begri�e . 35

6.2 Das Konzept der Kompensations{Sph�aren 35

6.3 Vergleich zwischen Transaktions{Sph�aren und Kompensations{Sph�aren 38

7 Ausblick und Zusammenfassung 39

7.1 Ausblick auf Erweiterungen . 39

7.2 Zusammenfassung . 40

3

Universit�at Stuttgart

Software{Labor Inhaltsverzeichnis

4

Universit�at Stuttgart

Software{Labor

1 Einf�uhrung und Motivation

Ein Work
ow{Management{System (WFMS) ist ein Softwaresystem zur Koordinati-

on und kooperativen Abwicklung von Gesch�aftsvorg�angen in verteilten Rechnerum-

gebungen. Gesch�aftsvorg�ange k�onnen formal in Gesch�aftsprozessen beschrieben und

modelliert werden. Ein Gesch�aftsproze� ist eine geordnete Menge von Vorgangsschrit-

ten in Verbindung mit dem organisatorischen Umfeld des Unternehmens. In einem

Gesch�aftsproze� wird in der Hauptsache spezi�ziert, in welcher Reihenfolge die Vor-

gangsschritte ausgef�uhrt werden, welche Arbeitsobjekte in den einzelnen Schritten

bearbeitet werden und welche menschlichen, technischen und organisatorischen Res-

sourcen zur Ausf�uhrung ben�otigt werden. Das Ziel eines Gesch�aftsprozesses ist das

Erreichen eines betrieblichen Ergebnisses.

Die Aufgabe eines Work
ow{Management{Systems ist die Modellierung, Steue-

rung, �Uberwachung und Protokollierung von Gesch�aftsprozessen. Durch die Modellie-

rung werden die Analyse und die anschlie�ende Optimierung von Gesch�aftsprozessen

unterst�utzt.

In vielen Work
ow{Management{Systemen werden Gesch�aftsprozesse in Form ei-

nes Aktivit�atennetzes modelliert. Eine Aktivit�at ist ein zusammenh�angendes St�uck

Arbeit, das durch eine Person oder ein Programm ausgef�uhrt wird und auf ein oder

mehrere Arbeitsobjekte wirkt. Ein Arbeitsobjekt kann ein physisches Objekt (z. B.

ein Werkst�uck) oder ein informationstechnisches Objekt (Daten oder ein Dokument)

sein. In einer Aktivit�at k�onnen zur Bearbeitung des Arbeitsobjekts beliebige An-

wenderprogramme eingesetzt werden. Der Zugri� dieser Programme auf Daten wird

dabei nicht durch das Work
owsystem kontrolliert.

Durch die Identi�kation und die anschlie�ende Spezi�kation von Gesch�aftspro-

zessen werden gro�e Optimierungspotentiale in einem Unternehmen aufgedeckt, die

durch die Neuordnung ganzer Wertsch�opfungsketten ausgenutzt werden k�onnen. Da-

durch werden nicht mehr nur lokale, sondern auch globale Optimierungen erm�oglicht.

Mit der Abkehr von abteilungsorientierten hin zu proze�orientierten Organisations-

strukturen wird die Automatisierung von Prozessen und die Integration bestehender

Computeranwendungen erleichtert. Die unternehmensweite Steuerung und die ver-

besserten Informationsf�ahigkeiten des Systems erlauben den Ablauf besser kontrol-

lierter Vorg�ange, die zu einer hohen Produktivit�atssteigung f�uhren k�onnen.

Die Einf�uhrung eines Work
ow{Management{Systems in ein Unternehmen mu�

aber wohl�uberlegt und sorgf�altig geplant sein. Die wertsch�opfenden Prozesse in-

nerhalb des Unternehmens werden dadurch unter die Kontrolle des Work
ow{

Management{Systems gestellt. Der Erfolg des Unternehmens h�angt somit direkt

von der Funktionsf�ahigkeit des Systems ab. Wenn das System einmal nicht funkti-

onsf�ahig sein sollte, kommen alle computerunterst�utzten Gesch�aftsprozesse zum Er-

liegen. Der m�ogliche Ausweg, die Prozesse kurzfristig ohne Computerunterst�utzung

durchzuf�uhren, ist meist nicht einfach gangbar, da es dadurch zu Inkonsistenzen zwi-

schen den Daten im System und der Realit�at kommt. Nach demNeustart des Systems

kann es im allgemeinen nicht sofort wieder eingesetzt werden, da zuerst der veraltete

5

Universit�at Stuttgart

Software{Labor Einf�uhrung und Motivation

Datenzustand manuell auf den neuesten Stand gebracht werden mu�. Durch eine

schrittweise Einf�uhrung und durch den Einsatz eines fehlertoleranten und stabilen

Systems kann man dieser Gefahr begegnen.

1.1 Allgemeine Anforderungen

Ein Work
ow{Management{System mu� als das
"
R�uckgrat\ eines Unternehmens an-

gesehen werden: Ein Bruch w�are t�odlich.

Oberste Strategie beim Einsatz eines solchen Systems mu� daher die Fehlerver-

meidung sein. Da in der realen Welt dieses Ziel aber nicht vollst�andig erreicht werden

kann, ben�otigt man dar�uber hinaus Mechanismen, um auf Fehler reagieren zu k�onnen.

Das ganze System mu� daher folgende allgemeine Anforderungen erf�ullen.

� Korrektheit:

Ein System ist korrekt, wenn es die Aufgabe, f�ur die es spezi�ziert ist, erf�ullt.

Voraussetzung daf�ur ist unter anderem, da� die Integrit�at der Daten, die durch

das System verwaltet werden, gew�ahrleistet ist. Nur mit konsistenten Daten

kann ein System korrekt arbeiten. Inkonsistente Daten k�onnen zu fehlerhaftem

Verhalten f�uhren.

Auch beim Auftreten von Fehlern darf das System keine inkonsistenten

Zust�ande erzeugen. Diese Forderung hat gro�e Auswirkungen auf die Fehlerbe-

handlungsmechanismen des Work
owsystems.

Diese Anforderung kann nicht alleine vomWork
owsystemen erf�ullt werden, da

es keine vollst�andige Kontrolle �uber die bearbeiteten Daten hat. In den Akti-

vit�aten k�onnen Programme oder Menschen Daten au�erhalb der Kontrolle des

Work
owsystem inkonsistent ver�andern, ohne da� das System darauf Ein
u�

hat oder die Inkonsistenz �uberhaupt bemerkt.

� Hohe Zuverl�assigkeit:

Ein System ist hoch zuverl�assig, wenn es �uber lange Zeitr�aume hinweg ohne

Auftreten eines e�ektiven Fehlers funktioniert. Ein Fehler ist dann e�ektiv,

wenn er die spezi�zierte Funktion des Systems beeintr�achtigt [GR93].

� Hohe Verf�ugbarkeit:

L�angerfristige Ausfallzeiten des Gesamtsystems verringern die Verf�ugbarkeit.

W�ahrend dieser Zeit kann keiner der Mitarbeiter eines Unternehmens oder ei-

ner Beh�orde weiterarbeiten, da bei dem umfassenden Einsatz eines Work
ow{

Management{Systems nahezu alle Arbeiten �uber das System oder zumindest

mit dessen Hilfe abgewickelt werden. Der Stillstand des Systems kann daher zu

immensen Kosten f�uhren. Die Verf�ugbarkeit kann durch hohe Zuverl�assigkeit

oder durch den Einsatz redundanter Komponenten erh�oht werden. Durch den

Einsatz von Mechanismen f�ur einen schnellen, weitgehend automatischen Wie-

deranlauf des Systems (Recovery) kann auch die Verf�ugbarkeit erh�oht werden.

6

Universit�at Stuttgart

Software{Labor

� Robustheit:

Ein robustes System verh�alt sich tolerant gegen�uber unerwarteten Eingaben und

bleibt auch in Ausnahmesituationen weiterhin funktionsf�ahig. Die Eigenschaft

Robustheit tr�agt damit zur Erh�ohung der Verf�ugbarkeit bei.

� Hohe Flexibilit�at:

Ein
exibles System erlaubt auch nach dem Auftreten eines Fehlers oder einer

Ausnahmesituation, die nicht automatisch durch Fehlerbehandlungsmechanis-

men des Systems beseitigt werden k�onnen, manuelle Eingri�e in die Kontrolle

des Systems, um den Fortgang der Prozesse zu erm�oglichen.

In einem Work
owsystem werden immer auch Fehler auftreten, die sich nicht

automatisch beheben lassen. Das sind zum einen Systemfehler, wie der Ausfall

eines Rechnerknotens, und zum anderen Fehler, die das System nicht erkennen

kann, da sie semantischer Natur sind. In einem solchen Fall ist der Benutzer

auf die Flexibilit�at des Systems angewiesen: Der Eingri� eines Menschen ist

n�otig. Er mu� die Kontrolle �ubernehmen und das System in einen Zustand

�uberf�uhren, in dem es die Kontrolle wieder selbst �ubernehmen kann. Dazu

mu� das System Methoden anbieten, die der Benutzer
"
manuell\ anwenden

kann, um die Fehlersituation zu bereinigen und den Proze� wieder in geordnete

Bahnen zu lenken. Kompetente Benutzer k�onnen so unter Ausn�utzung ihres

Fachwissens und dem Einsatz von Software{Werkzeugen die Auswirkungen von

Fehlern beseitigen und so das System reparieren.

2 Fehlermodell

In diesem Abschnitt werden grundlegende Begri�e zu Fehlern und zur Fehlerbehand-

lung de�niert und erl�autert. Dabei wird besonders auf die Sichtweise des Benutzers

und die Charakteristika von Work
ow{Management{Systemen eingegangen.

2.1 Grundlegende Begri�e

Der Begri� des Fehlers wird in diesem Bericht sehr weit gefa�t: Alle Abweichun-

gen vom Normalfall, d. h. vom vorspezi�zierten Ablauf eines Gesch�aftsprozesses, fal-

len in den Bereich der Fehlerbehandlung. Der Begri�
"
Fehler\ umfa�t daher nicht

nur Probleme des Work
owsystems, der beteiligten Softwaresysteme und des dazu-

geh�origen Rechnersystems, sondern auch Probleme, die sich aus der Spezi�kation des

Gesch�aftsprozesses ableiten. Diese Probleme werden Ausnahmesituationen im Ab-

lauf eines Work
ows genannt. Im folgenden sind mit dem Begri� Fehler meist auch

Ausnahmesituationen gemeint.

Nach dem Auftreten eines Fehlers ergeben sich zwei unterschiedliche Probleme:

Der Fehler mu� entdeckt werden (Detektion), und die Auswirkungen des Fehlers

7

Universit�at Stuttgart

Software{Labor Fehlermodell

m�ussen beseitigt werden (Fehlerbehandlung). Die Fehlerentdeckung ist Vorausset-

zung f�ur die Fehlerbehandlung.

Fehler sind transient, wenn sie nur gelegentlich auftreten [GR93]. Sie sind daher

nicht oder nur schwer reproduzierbar. Wenn das Programmsystem wiederholt in den

Zustand gebracht wird, in dem vorher der Fehler aufgetreten war, mu� der Fehler nicht

zwangsl�au�g erneut auftreten. Das System kann daher z. B. mit einer Wiederholung

der fehlgeschlagenen Funktion auf das Auftreten dieser Fehlerart reagieren. Ursachen

f�ur transiente Fehler k�onnen z.B. Timing{Probleme oder �Uberlastsituationen sein.

Fehler, die reproduzierbar in einem bestimmten Zustand des Programmsystems

auftreten, werden persistent genannt. In diese Klasse geh�oren Programmierfehler

wie die �Ubergabe falscher Parameter an Prozeduren oder Prozeduren, die von ihrem

spezi�zierten Verhalten abweichen.

Fehler k�onnen auch durch die Reichweite ihrer Auswirkungen unterschieden wer-

den:

� Kein Verlust des
�uchtigen Speichers eines Rechners

Dazu geh�oren z.B. Fehler in den Anwendungsprogrammen, Proze�abst�urze oder

Kommunikationsfehler. Das Betriebssystem des Rechners ist beim Auftreten ei-

nes solchen Fehlers nicht in Mitleidenschaft gezogen. Ein Neustart des Rechners

ist nicht erforderlich.

� Verlust des
�uchtigen Speichers

Transiente Rechnerknotenausf�alle geh�oren in diese Klasse. Ein Auftreten eines

solchen Fehlers zieht auch das Betriebssystem in Mitleidenschaft. Ein Neustart

des Rechners ist erforderlich.

� Verlust des persistenten Speichers

Unwiederbringlicher Verlust von Daten durch Zerst�orung eines Datenspeichers.

2.2 Fehlerbehandlungsmechanismen

Der Benutzer will so wenig wie m�oglich mit den Auswirkungen von Fehlern und dem

Problem der Fehlerbehandlung konfrontiert werden. Ein Hauptanliegen der Feh-

lerbehandlung ist somit, da� auftretende Fehler m�oglichst schnell erkannt und ihre

Auswirkungen beseitigt werden. Ein Eingreifen des Benutzers soll nicht notwendig

werden. Dieses Ziel ist o�ensichtlich nicht immer zu erreichen. Wir de�nieren daher

folgende drei Stufen von Fehlerbehandlungsmechanismen, die sich in der Art unter-

scheiden, wie das System aufgetretene Fehler behandelt und wie diese Behandlung

durch den Systembenutzer wahrgenommen wird:

1. Transparente Fehlerbehandlung

Die h�ochste Stufe ist die transparente Fehlerbehandlung. Diese liegt vor, wenn

auftretende Fehler automatisch erkannt und behandelt werden, so da� sie oh-

ne Auswirkungen auf die vom System zu leistende Arbeit bleiben und keinen

8

2.2 Fehlerbehandlungsmechanismen

Universit�at Stuttgart

Software{Labor

Benutzereingri� erfordern. Die Fehlerbehandlung des Systems ist durch den

Benutzer nicht beobachtbar, sie ist maskiert.

Ein typisches Beispiel f�ur eine transparente Fehlerbehandlung ist das Auftre-

ten eines transienten Netzwerkfehlers, z. B. einen vor�ubergehenden Ausfall ei-

ner Kommunikationsverbindung. Der Benutzer bemerkt dabei h�ochstens eine

Verz�ogerung des Fortgangs, aber keine Abweichung vom normalen Ablauf. Feh-

ler dieser Art werden h�au�g schon auf einer tiefer liegenden Systemschicht, z. B.

dem Betriebssystem, behandelt.

Vollst�andige Fehlertransparenz ist das Ideal des Benutzers. Das System er-

scheint ihm fehlerfrei.

2. Automatische Fehlerbehandlung

Die n�achste Stufe innerhalb dieser Klassi�kation ist die automatische Fehlerbe-

handlung. Das System behandelt hier den Fehler ohne zus�atzlichen Eingri� des

Benutzers. Im Gegensatz zur transparenten Fehlerbehandlung wird aber das

Auftreten eines Fehlers und die darauf folgende Fehlerbehandlung gegen�uber

dem Benutzer nicht maskiert. Die Fehlerbehandlung bleibt durch den Benut-

zer beobachtbar. Automatische Fehlerbehandlung bedeutet nicht, da� auch die

Fehlerdetektion automatisch erfolgen mu�. Der Benutzer kann die automatische

Fehlerbehandlung auch manuell ansto�en.

Das System besitzt Mechanismen, um die Auswirkungen des Fehlers so weit zu

minimieren, da� nach Auftreten des Fehlers wieder ein korrekter Zustand er-

reicht werden kann, von dem aus die Bearbeitung sinnvoll fortgesetzt wird. Das

Auftreten des Fehlers erzwingt somit einen Zustandswechsel, der vom Benutzer

wahrgenommen werden kann.

Ein Beispiel dazu ist ein System, das einen Fehler innerhalb einer bestimm-

ten Aktion dadurch behandelt, da� die bisher durch diese Aktion bewirkten

Zustands�anderungen r�uckg�angig gemacht werden und danach eine alternative

Vorgehensweise gew�ahlt wird. Der Benutzer mu� in diesem Fall nicht in die

Fehlerbehandlung eingreifen, hat aber keine Transparenz, da eine Alternative

eine Abweichung vom Normalablauf darstellt.

3. Manuelle Fehlerbehandlung

In der dritten Stufe, der manuellen Fehlerbehandlung, kann oder soll das System

die Fehlerbehandlung nicht selbst �ubernehmen. Das System stellt als einzige

Unterst�utzung demBenutzerWerkzeuge zur Verf�ugung, damit dieser die Fehler-

behandlung selbst durchf�uhren kann. Es gibt hier keine automatisch anlaufende

Fehlerbehandlung.

In vielen F�allen mu� auf den Ausfall von Hardware mit dieser Art der Feh-

lerbehandlung reagiert werden. Auch das Beseitigen von Programmierfehlern

f�allt in diese Kategorie. Manuelle Fehlerbehandlung sollte immer als letzter

9

Universit�at Stuttgart

Software{Labor Fehlermodell

Ausweg zur Beseitigung einer Fehlersituation verf�ugbar sein und auch durch

entsprechende Werkzeuge unterst�utzt werden.

2.2.1 Fehlerdetektion

Transparente Fehlerbehandlung setzt die automatische Detektion des Fehlers durch

das System voraus. Bei den beiden anderen Klassen wird dies nicht unbedingt vor-

ausgesetzt. Hier kann man zwischen automatischer und manueller Fehlererkennung

unterscheiden. Letzteres bedeutet, da� der Benutzer die Fehlerbehandlung selbst in-

itiieren kann oder mu�. Die Behandlung kann aber wieder vom System durchgef�uhrt

werden.

Notwendig f�ur die Fehlererkennung ist die De�nition eines korrekten Systemzu-

stands. Eine De�nition kann �uber eine Menge von Rahmenbedingungen (constraints)

auf dem Systemzustand erfolgen. Die Verletzung einer solchen Bedingung, d. h. ein

Abweichen vom korrekten Systemzustand, wird dann als Fehler bezeichnet.

2.3 Fehler in Work
ow{Management{Systemen

Es gilt nun festzulegen, welche Arten von Fehlern aus Sicht des Work
owsystems

relevant sind. Wir ordnen dazu die Fehler nach dem Ort ihres Auftretens in mehrere

Fehlerebenen ein. Ein Fehler sollte m�oglichst von den Fehlerbehandlungsmechanis-

men in der Ebene behandelt werden, in der er aufgetreten ist. Nur wenn dies nicht

m�oglich ist, kann und mu� der Fehler eine Ebene h�oher gereicht werden.

Aktivitätendienstebene

Workflowdienstebene

Systemdienstebene

Abbildung 1: Die Fehlerebenen in einen Work
ow{Management{System

2.3.1 Systemdienstebene

Diese Ebene stellt die grundlegende Funktionalit�at zum Ablauf eines Work
ow{

Management{Systems bereit [EL95]. Hier sind z.B. das Betriebssystem, das Kom-

munikationssystem (Netzwerksoftware) oder ein Datenbank{Management{System zu

�nden. Die hier auftretenden Fehler werden typischerweise entweder schon auf dieser

Ebene behandelt und haben somit keinen Ein
u� auf das Work
ow{Management{

System, oder f�uhren zu einem (zumindest partiellen) Neuanlauf des Work
owsystems

10

2.3 Fehler in Work
ow{Management{Systemen

Universit�at Stuttgart

Software{Labor

mit anschlie�endem Recovery, wenn der Fehler auf die Work
owdienstebene weiter-

gereicht wird.

Das Work
owsystem mu� daher auf das Auftreten eines weitergereichten System-

fehlers vorbereitet sein. Alle zum Recovery des Work
owsystems notwendigen Daten

m�ussen auf sicherem Speicher geschrieben werden.

Typische Beispiele f�ur Fehler auf der Systemdienstebene sind Verbindungsab-

br�uche, das Auftreten von Verklemmungen (Deadlocks), Betriebssystemausf�alle oder

Hardwaredefekte. Die angewendeten Fehlerbehandlungsmechanismen basieren h�au�g

auf bekannten Techniken, wie das Wiederholen fehlgeschlagener Funktionen, das

Verwenden abgesicherter �Ubertragungsprotokolle oder das Prinzip des Rollbacks in

Datenbank{Management{Systemen. Durch die Verwendung replizierter Software{

und Hardwarekomponenten kann ein Teil der Fehler auf dieser Ebene abgefangen

bzw. gemildert werden.

2.3.2 Work
owdienstebene

Auf dieser Ebene be�ndet sich die eigentliche Funktionalit�at des Work
owsystems.

Fehler dieser Ebene haben einen direkten Ein
u� auf das Work
owsystem und m�ussen

vom Work
owsystem behandelt werden. Beispiele f�ur Fehler aus dieser Ebene sind

Fehler in der Modellierung oder Ausf�uhrung eines Gesch�aftsprozesses.

Die Fehler bzw. Ausnahmesituationen dieser Ebene k�onnen in zwei Klassen ein-

geteilt werden.

� Vorhersehbare Fehler sind Abweichungen vom normalen Ablauf des Work
ows.

Da der Ort des Auftretens dieser Fehler vorhersagbar ist, kann mit dem Mittel

der Gesch�aftsproze�{Modellierung auf die Fehler reagiert werden. Als Beispiel

kann auf den Fehlschlag einer Aktivit�at eine alternative Aktivit�at gestartet

werden oder die Aktivit�at wiederholt werden.

� Unvorhergesehene Fehler k�onnen aufgrund ihrer Eigenschaft nicht schon zur

Spezi�kationszeit im Proze� modelliert werden. Sie treten dann auf, wenn

ver�anderte Randbedingungen oder bis dahin unbekannte oder neue Anforde-

rungen auf einen gestarteten Proze� tre�en. Ein Beispiel f�ur einen unvorherge-

sehenen Fehler kann das Fehlen einer passenden Alternative sein.

Wenn Fehler in der Systemdienstebene oder in der Aktivit�atenebene nicht beheb-

bar waren, werden sie an die Work
owdienstebene weitergereicht. Als oberste Schicht

mu� das Work
owsystem auf diese Fehler reagieren. Weitergereichte Fehler k�onnen

entweder vorhersagbar oder nicht vorhersagbar sein.

2.3.3 Aktivit�atenebene

Hier �nden sich die Fehler, die bei der Ausf�uhrung von Aktivit�aten in deren Kontroll-

bereich auftreten. Aktivit�aten bestehen aus manuell oder automatisch ausgef�uhrten

T�atigkeiten.

11

Universit�at Stuttgart

Software{Labor Fehlermodell

startbar in Bearbeitung erfolgreich

erfolglosaußer Kontrolle

Abbildung 2: Das Zustands�ubergangsdiagramm einer Aktivit�at

Die Bearbeitung einer Aktivit�at kann durch das folgende grundlegende Zu-

stands�ubergangsdiagramm modelliert werden (siehe Abbildung 2). Das Diagramm

ist f�ur diesen Bericht vereinfacht worden. Reale Implementierungen von Work
owsy-

stemen haben meistens komplexere �Ubergangsdiagramme. Ein Startzustand ist am

linken Rand schwarz markiert. Ein Endzustand ist rechten Rand markiert.

Eine Aktivit�at beginnt mit dem Initialzustand startbar. Der Start durch den

Bearbeiter �uberf�uhrt die Aktivit�at in den Zustand in Bearbeitung. Dort k�onnen

Fehler auftreten, die auf der Aktivit�atenebene angesiedelt sind. Wenn ein solcher Feh-

ler erkannt wird, wird die Aktivit�at in den Zustand erfolglos gebracht. Auf diese

Art bekommt das Work
owsystem Kenntnis vom Auftreten eines Aktivit�atenfehlers

und ein Fehlerkontext kann von der Aktivit�at an das Work
owsystem �ubergeben wer-

den. Kann eine Aktivit�at ohne Auftreten eines Fehlers beendet werden, kommt sie in

den Zustand erfolgreich. Eine Aktivit�at wird in den zus�atzlichen Zustand au�er

Kontrolle gebracht, wenn die Aktivit�at weder eine erfolgreiche, noch eine erfolglo-

se Bearbeitung melden kann. In diesem Fall ist die Aktivit�at au�er Kontrolle geraten.

Problematisch ist hierbei die Detektion des �Ubergangs in Bearbeitung nach au-

�er Kontrolle. In diesem Fall mu� das Work
owsystem ohne Hilfe der Aktivit�at

erkennen, da� ein Aktivit�atenfehler aufgetreten ist. Voraussetzung f�ur ein fehlertole-

rantes Work
owsystem ist, da� das System auch dann sinnvoll weiterarbeiten kann,

wenn einmal dieser Zustand auftritt.

Folgende Fehlersituationen sind Beispiele f�ur Fehler auf der Aktivit�atenebene:

� Ein Anwendungsprogramm in einer Aktivit�at kann aufgrund einer mangelhaften

Installation des Systems nicht gefunden werden.

� Eine Aktivit�at meldet fehlerhafte Ausf�uhrung aufgrund des Fehlschlagens einer

wichtigen Operation (z. B. Datei existiert nicht) innerhalb des Anwendungspro-

gramms. Der Fehler kann m�oglicherweise transient sein.

� Eine Aktivit�at meldet sich nicht mehr, da sie aufgrund eines Programmierfehlers

abgest�urzt ist.

� Eine Aktivit�at braucht sehr lange | zu lange! Diese Fehlerart mu� vom oben

erw�ahnten Absturz unterschieden werden, da sich die Aktivit�at aus der Sicht des

12

Universit�at Stuttgart

Software{Labor

Work
owsystems im ordnungsgem�a�en Zustand in Bearbeitung be�ndet. Es

kann au�erhalb der Aktivit�at nicht entscheidbar, ob in der Aktivit�at ein Feh-

ler aufgetreten ist. Nur aufgrund der �uberlangen Bearbeitungszeit wird eine

fehlerhafte Bearbeitung vermutet. Diese Fehlerart kann vom Work
owsystem

z.B. �uber eine Zeit�uberwachung der Aktivit�at detektiert werden. Das System

mu� deshalb darauf reagieren, da in der Aktivit�at Ressourcen belegt und damit

eventuell andere Anwendungsprogramme blockiert sein k�onnen. Ebenso k�onnen

nachfolgende Aktivit�aten vor Beendigung dieser Aktivit�at nicht gestartet wer-

den. Die Ursache f�ur diese Fehler kann in einer programmierten Endlosschleife

(Programmierfehler) oder einer nicht ausl�osbaren Wartesituation (Deadlock)

liegen, oder einfach daran, da� die Bearbeitung sehr viel l�anger als erwartet

dauert.

3 Funktionale Anforderungen an die

Fehlerbehandlung

Im erstem Kapitel wurden bereits allgemein gehaltene Anforderungen an ein Work-

owsystem vorgestellt. In diesem Kapitel werden diese Anforderungen in funktionale

Anforderungen verfeinert und so spezialisiert, da� sie die Bed�urfnisse eines Work-

owsystems in Bezug auf die Fehlerbehandlung darstellen. Mit den funktionalen

Anforderungen soll beschrieben werden, welche Funktionen der Benutzer eines Work-

owsystems von der Fehlerbehandlung erwartet. Wie diese Anforderungen realisiert

werden k�onnen, wird in dem Kapitel �uber L�osungsans�atze beschrieben.

Die Anforderungen sind nach den im Kapitel Fehlermodell de�nierten Stufen:

transparent, automatisch und manuell geordnet. Bei der Betrachtung der Fehler-

behandlung in Work
owsystemen sind zwei Benutzertypen zu unterscheiden. Zum

einen gibt es den Work
owmodellierer, der sich zur Modellierungszeit mit der Feh-

lerbehandlung von Work
ows auseinanderzusetzen hat. Zum anderen gibt es den

normalen Benutzer, der die Aktivit�aten bearbeitet, und der die Auswirkungen von

Fehlern sieht.

3.1 Anforderungen an transparente Fehlerbehandlung

Folgende Anforderungen betre�en Fehlerbehandlungsfunktionen, die automatisch

vom System beim Auftreten von Fehlern oder beim Versagen einer Work
ow{

Komponenten ausgef�uhrt werden, ohne da� der Benutzer etwas davon mitbekommt.

Die laufenden Work
ows d�urfen daher w�ahrend der Fehlerbehandlungsphase und in

der anschlie�enden Wiederanlaufphase nur blockiert sein und m�ussen danach wieder

normal weiterlaufen. Diese Eigenschaft wird auch h�au�g mit dem Begri� forward{
recovery bezeichnet. Die Arbeitsergebnisse bzw. auch die Ergebnisse von Zwischen-

schritten sollen Fehler des Systems dauerhaft �uberstehen k�onnen.

13

Universit�at Stuttgart

Software{Labor Funktionale Anforderungen

Anforderung: Persistenter Work
ow{Zustand

Der Zustand des Work
owsystems darf auch beim Versagen einer

Work
owsystem{Komponente oder beim Auftreten eines Fehlers in der Ab-

arbeitung des Work
ows nicht verloren gehen. Zum Zustand eines Work
ow-

systems geh�oren die Zust�ande aller Aktivit�aten und die internen Verwaltungs-

daten des Systems. Falls das Versagen einer Komponente zu einem Zusam-

menbruch des Systems f�uhrt, mu� sich das System selbst�andig neu initialisieren

und wiederanlaufen. Wenn sich das System in einem korrekten Zustand be-

fand, mu� es diesen Zustand ohne Datenverlust wiederherstellen. Wenn es sich

gerade in einem �Ubergang zwischen zwei Zust�anden befand, mu� entweder ein

alter, korrekter Zustand m�oglichst kurz vor dem Zusammenbruch wiederherge-

stellt werden (Backward Recovery) oder es mu� ein neuer, korrekter Zustand

erzeugt werden (Forward Recovery). Beidesmal sollen dabei m�oglichst wenig

Daten verloren gehen.

Die Anforderung kann auch etwas abgeschw�acht formuliert werden, indem man

nicht mehr fordert, da� jeder Zustand des Systems persistent sein mu�, sondern

dies nur noch von bestimmten, ausgezeichneten Zust�anden fordert. Je weniger

dieser ausgezeichneten Zust�ande man innerhalb des Work
ows hat, desto mehr

Arbeit geht beim Backward Recovery verloren, da man nur auf diese ausge-

zeichneten Zust�ande zur�ucksetzen kann.

Anforderung: Persistenter Aktivit�aten{Zustand

Ebenso wie der Work
ow{Zustand sollte auch der Zustand einer Aktivit�at bei

einem Absturz nicht verloren gehen. Zum Zustand einer Aktivit�at geh�ort nicht

nur der Status der Aktivit�at im Work
owsystem, sondern auch der Datenzu-

stand der in den Aktivit�aten aufgerufenen Anwendungsprogrammen. In diesem

Datenzustand steckt die ganze bisher in dieser Aktivit�at geleistete Arbeit.

Diese Anforderung ist nicht nur durch das Work
owsystem zu realisieren, da

ein Teil des Datenzustands von den Anwendungsprogrammen verwaltet wird.

Beispielsweise kann in einer Aktivit�at mit dem Anwendungsprogramm Text-

verarbeitung ein Text erstellt werden. Beim Auftreten eines Fehlers, sei es im

Work
owsystem oder in der Textverarbeitung, soll nicht die gesamte Arbeit

verloren gehen. Der Benutzer kann zwar zur Vermeidung des Arbeitsverlusts

beitragen, indem er den Text in regelm�a�igen Intervallen absichert, aber da aber

das Work
owsystem dies nicht erzwingen kann, ist der Nutzen nur begrenzt.

3.2 Anforderungen an automatische Fehlerbehandlung

In diesem Abschnitt werden Anforderungen an Funktionen zur Fehlerbehandlung be-

schrieben, die automatisch vom System beim Auftreten von Fehlern ausgef�uhrt wer-

den. Im Gegensatz zum vorherigen Abschnitt reagiert das System auf den Fehler, in-

dem es vom normalen Ablauf abweicht und Ma�nahmen zur Fehlerbeseitigung tri�t,

deren Auswirkungen vom Benutzer erkannt werden k�onnen.

14

3.3 Anforderungen an manuelle Fehlerbehandlung

Universit�at Stuttgart

Software{Labor

Anforderung: Automatischer Neustart einer Aktivit�at

Eine Aktivit�at, die mit einem Fehler beendet wird, d. h. in dem Zustand er-

folglos oder au�er Kontrolle �uberf�uhrt wurde, soll automatisch neu ge-

startet werden, da bei einemwiederholten Lauf ein transienter Fehler nicht mehr

unbedingt auftreten mu�. Die Aktivit�at kann dann erfolgreich beendet werden.

Eine automatisch ausgef�uhrte Aktivit�at, die an einen Informationsdienst eine

Abfrage gesandt hat und die aufgrund einer �Uberlastung des Netzes nicht erfolg-

reich durchgef�uhrt werden konnte, kann hier als Beispiel dienen. Die �Uberlast

kann nach kurzer Zeit �uberwunden sein und eine erneute Anfrage kann zum

Erfolg f�uhren.

Anforderung: Alternative Aktivit�aten

Eine weitere Methode zur Reaktion auf erfolglose oder au�er Kontrolle geratene

Aktivit�aten ist der Start einer alternativen Aktivit�at. Alternative Aktivit�aten

m�ussen in der Proze�spezi�kation zu jeder normalen Aktivit�at de�niert werden

k�onnen. Die Aufgabe einer alternativen Aktivit�at ist, dasselbe Ziel wie eine

normale Aktivit�at zu erreichen, aber auf eine unterschiedliche Art und Weise.

Ein Beispiel f�ur eine sinnvolle Anwendung einer alternativen Aktivit�at ist die

Benachrichtigung einer Person. Die normale Aktivit�at kann aus dem Ver-

schicken einer Email an eine Person bestehen. Falls dies nicht m�oglich ist,

kann als alternative Aktivit�at die Person telefonisch benachrichtigt werden.

Anforderung: Alternative Wege im Gesch�aftsproze� einschlagen

Die Verallgemeinerung des Konzepts der alternativen Aktivit�at sind alternative

Wege im Gesch�aftsproze�. Wenn eine Aktivit�at oder ein Zweig mit mehre-

ren Aktivit�aten fehlschl�agt, soll der Gesch�aftsproze� einen anderen alternativen

Ablauf verfolgen. Im Gegensatz zu den alternativen Aktivit�aten wird hier die

Alternative nicht auf eine Aktivit�at beschr�ankt, sondern auf eine ganze Reihe

von Aktivit�aten. Dazu mu� im Gesch�aftsproze� der alternative Weg modelliert

sein, der eingeschlagen wird, wenn ein Fehler aufgetreten ist.

Als Beispiel kann folgende Situation herangezogen werden: Bei der Buchung

einer Reise wird festgestellt, da� ein Flug nicht gebucht werden kann. Die

Alternative| die zweite Wahl sozusagen | wird dann versucht, eine Bahnreise

zu reservieren.

3.3 Anforderungen an manuelle Fehlerbehandlung

In diesem Abschnitt werden alle diejenigen Funktionen zur Fehlerbehandlung be-

schrieben, die manuell, d. h. durch eine explizite Aktion des Bearbeiters, ausgel�ost

werden m�ussen. Die Fehlererkennung kann dabei entweder durch das System oder

durch den Benutzer geschehen. Es mu� die M�oglichkeit bestehen, da� der Benutzer,

wenn er einen Fehler erkannt hat, manuell in den Gesch�aftsproze� eingreift und ent-

sprechende Ma�nahmen ergreift. Welche Ma�nahmen dankbar sind, werden in den

15

Universit�at Stuttgart

Software{Labor Funktionale Anforderungen

folgenden Anforderungen beschrieben. Diese Anforderungen f�uhren zu Funktionen,

die an der Bedienober
�ache des Work
owsystems angeboten werden m�ussen und dort

auch ausgef�uhrt werden k�onnen.

Anforderung: Abbruch einer Aktivit�at

W�ahrend der Bearbeitung einer Aktivit�at kann sich herausstellen, da� die wei-

tere Bearbeitung sinnlos geworden ist. Der Benutzer kann auch feststellen, da�

die bisherige Bearbeitung fehlerhaft war und da� die Arbeit von vorne begonnen

werden mu�. Er ben�otigt dazu die M�oglichkeit, die Aktivit�at abzubrechen. Die

Aktivit�at kann dabei noch auf der Arbeitsliste stehen oder schon in Bearbei-

tung gewesen sein. Je nach Situation wird sie durch das System in den Zustand

'startbar' oder 'erfolglos' versetzt. Nach dieser Ma�nahme k�onnen dann weitere

Fehlerbehandlungsmechanismen greifen.

Anforderung: Abbruch des gesamten Prozesses

Beim Abbruch eines Gesch�aftsprozesses werden alle laufenden Aktivit�aten ab-

gebrochen. W�ahrend der Bearbeitung eines Gesch�aftsprozesses kann sich her-

ausstellen, da� der gesamte Gesch�aftsproze� sinnlos geworden ist. Ursache kann

entweder ein aufgetretener Fehler oder eine �Anderung in der Ausl�osesituation

der Umwelt sein. So kann z.B. ein Kunde anrufen und seine Bestellung stor-

nieren. Der dazugeh�orige Bestellproze� mu� aufgrund der ge�anderten Situation

dann manuell durch einen Bearbeiter abgebrochen werden.

Anforderung: Geordneter Abbruch

Die erw�ahnten Abbr�uche einer Aktivit�at oder eines Prozesses m�ussen einen

konsistenten Datenzustand hinterlassen. Alle aktuellen, aber noch nicht in den

Datenzustand einge
ossenen Ergebnisse m�ussen verworfen werden oder zumin-

dest entsprechend markiert werden. Denn es kann durchaus sinnvoll sein, diese

halbfertigen Ergebnisse bei einer erneuten Bearbeitung weiterzuverwenden. Alle

stabil gespeicherten Ergebnisse m�ussen konsistent aus dem Datenbestand besei-

tigt werden, indem der urspr�ungliche Datenzustand zu Beginn des Gesch�aftspro-

zesses wiederhergestellt wird. Die Modi�kationen des Systemzustands m�ussen

aber nicht soweit gehen, da� alle Spuren des abgebrochenen Prozesses beseitigt

werden m�ussen. Im Protokoll des Prozesses sollte noch erkennbar sein, da� die-

ser Proze� bis an eine bestimmte Stelle bearbeitet und dann abgebrochen wur-

de. Beim R�uckg�angigmachen der Daten�anderungen mu� ber�ucksichtigt werden,

da� diese Ergebnisse eventuell schon von anderen Programmen weiterbearbeitet

worden sein k�onnen. Hier m�ussen entsprechende Ma�nahmen getro�en werden,

um dieses Problem zu beseitigen oder nicht entstehen zu lassen.

Anforderung: Aktivit�aten bzw. Work
owteile erneut bearbeiten

Wenn ein Bearbeiter erst einige Zeit nach dem erfolgreichen Ende einer Aktivit�at

bemerkt, da� dort ein Fehler gemacht wurde, m�ochte er diese falsch bearbeitete

16

Universit�at Stuttgart

Software{Labor

Aktivit�at wiederholen und erneut bearbeiten. Aufgrund dieser erneuten Bear-

beitung kann auch die erneute Bearbeitung nachfolgender Work
owteile n�otig

werden. Bei der Wiederholung m�ussen die Datenabh�angigkeiten der Aktivit�aten

untereinander ber�ucksichtigt werden, da sonst ein inkonsistenter Datenzustand

entstehen kann.

Ein Sonderfall dieser Anforderung kann als selektives Wiederholen bezeichnet

werden. In diesem Fall m�ochte der Benutzer eine zur�uckliegende fehlerhafte

Aktivit�at AFehler wiederholen. Dabei sollen die weniger weit zur�uckliegenden

Aktivit�aten, d. h. die Aktivit�aten, die nach AFehler beendet worden sind, un-

ver�andert gelassen werden. Dies ist dann m�oglich, wenn keine Datenabh�angig-

keit zwischen AFehler und den nachfolgenden Aktivit�aten besteht.

Anforderung: Zus�atzliche Aktivit�aten

Wenn ein Benutzer einen Fehler in der Ausf�uhrung des Gesch�aftsprozesses

erkennt, mu� er mit irgendeiner Methode in den Ablauf eingreifen k�onnen.

Diese Methode kann das Einf�ugen zus�atzlicher Aktivit�aten in die aktuelle

Gesch�aftsproze�instanz sein. In den zus�atzlichen Aktivit�aten kann der Benut-

zer beliebige Fehlerbehandlungen durchf�uhren. Auch kann damit
exibel auf

unerwartete Situationen reagiert werden. Z. B. kann auf diese Weise einfach

auf spezielle Sonderw�unsche eines wichtigen Kunden eingegangen werden.

Anforderung: �Andern ganzer Teile des gerade bearbeiteten Ablaufs

Wenn die �Anderungsw�unsche zu komplex werden, um mit zus�atzlichen, sequen-

tiell ausgef�uhrten Aktivit�aten bearbeitet werden zu k�onnen, dann m�ussen auch

ganze Gesch�aftsproze�teile zur Laufzeit neu spezi�ziert werden k�onnen. Der

ver�anderte Proze� mu� dabei weiterhin konsistent bleiben.

4 L�osungsans�atze

F�ur die oben erw�ahnten Anforderungen existieren in einigen Work
owsystemen be-

reits Ans�atze, wie die Anforderungen erf�ullt werden k�onnen. Teilweise sind die im

folgenden beschriebenen Ans�atze bisher nicht verwirklicht worden.

Die Systemdienstebene wird im folgenden nicht weiter ber�ucksichtigt. Wir be-

schr�anken uns auf Beschreibung von Ans�atze zur Fehlerbehandlung, die haupts�achlich

auf der Work
owdienstebene, teilweise auch auf der Aktivit�atendienstebene angewen-

det werden k�onnen. Die Ans�atze sollen m�oglichst unabh�angig von einen konkreten

Work
owsystem und unabh�angig von einer konkreten Betriebssystem{Plattform sein.

Die im folgenden beschriebenen Ans�atze sollen nicht als alternative Methoden zur

Fehlerbehandlung verstanden werden, sondern sollen in der Summe die im vorheri-

gen Kapitel gestellten Anforderungen �uberdecken. Daher sind die Vorschl�age nicht

unbedingt �uberschneidungsfrei.

17

Universit�at Stuttgart

Software{Labor L�osungsans�atze

4.1 Modellierung im Work
ow

Dieser Fehlerbehandlungsansatz ist der Klasse 'Automatische Fehlerbehandlung' zu-

zuordnen.

Bei der Modellierung eines Gesch�aftsprozesses werden die Eigenschaften der Ak-

tivit�aten und der Kontroll{ und Daten
u� zwischen den Aktivit�aten spezi�ziert. Es

gibt �ublicherweise keine weiteren, speziellen Konstrukte zur Behandlung von Fehlern.

In den meisten bisher �ublichen Work
owsystemen kann aber trotzdem im begrenzten

Ma�e eine Fehlerbehandlung durchgef�uhrt werden. �Uber die Auswertung eines R�uck-

gabewerts (bzw. eines Fehlerkontextes) einer Aktivit�at kann eine fehlerhafte Bearbei-

tung erkannt werden. In diesem Fall kann �uber den Kontroll
u� spezi�ziert werden,

da� anstelle des normalen Ablaufs eine Fehlerbehandlung in weiteren, zus�atzlichen

Aktivit�aten statt�nden soll. In diesen Aktivit�aten k�onnen Ma�nahmen zur Beseiti-

gung der Auswirkungen der fehlgeschlagenen Aktivit�aten durchgef�uhrt werden. In

der Modellierung sind die Aktivit�aten, die zur Fehlerbehandlung eingesetzt werden,

nicht von den
"
normalen\ Aktivit�aten zu unterschieden. Nach der Bearbeitung der

Aktivit�aten f�ur die Fehlerbehandlung wird der Kontroll
u� zur normalen Aktivit�at

weitergeleitet. In Abbildung 3 sind drei
"
normale\ Aktivit�aten (A, B, C) zu sehen und

zu jeder normalen Aktivit�at gibt es eine oder mehrere Fehlerbehandlungsaktivit�aten

(Fx).

A B C

F F FA B2 CB1F

Abbildung 3: Die Modellierung von Fehlerbehandlung mit vorhandenen Sprachmit-

teln

Der Vorteil des Nutzens der vorhandenen Modellierungsmittel zur Modellierung

der Fehlerbehandlung liegt darin, da� keine Erweiterung der bestehenden Modellie-

rungssprache n�otig ist. Die Nachteile werden im folgenden aufgelistet:

� Die Fehlerursache mu� in den Fehlerbehandlungsaktivit�aten beseitigt werden.

Ansonsten erzeugt man auf diese Weise eine Endlosschleife.

� Die Modellierung von Gesch�aftsprozessen zusammen mit der n�otigen Fehlerbe-

handlung ist sehr aufwendig. Zu jeder Aktivit�at mu� im Prinzip eine Fehlerbe-

handlung modelliert werden. Die Erstellung von Gesch�aftsprozessen wird da-

durch erschwert. Als Folge der aufwendigen Modellierung ist damit zu rechnen,

da� daher wohl h�au�g unwichtige Sonderf�alle zur Erleichterung der Modellie-

rung einfach weggelassen werden. Die Prozesse werden dadurch wenig robust.

18

4.2 Alternative Aktivit�aten und Pfade

Universit�at Stuttgart

Software{Labor

Die selten benutzten Fehlerbehandlungsaktivit�aten m�ussen genauso intensiv

entwickelt und getestet werden, wie die h�au�g benutzen normalen Aktivit�aten,

die den eigentlichen Proze� ausmachen. Die bedeutend gr�o�ere Zahl an Akti-

vit�aten bei Gesch�aftsprozessen mit Fehlerbehandlung erh�oht die Kosten f�ur die

Entwicklung und den Test der Prozesse.

� Das Gesch�aftsproze�{Modell wird durch die vielen Fehlerbehandlungsakti-

vit�aten schnell sehr un�ubersichtlich. Pro Aktivit�at k�onnen mehrere Fehler-

behandlungsaktivit�aten hinzukommen. Durch die hohe Anzahl an Aktivit�aten

l�a�t nicht mehr erkennen, aus welchenAktivit�aten der Proze� eigentlich besteht,

da keine Unterscheidung zwischen Fehlerbehandlungsaktivit�aten und normalen

Aktivit�aten besteht.

� Die Modellierung der Fehlerbehandlung kann auch wieder selbst Fehler ent-

halten. Es w�are daher eine Fehlerbehandlung f�ur die Fehlerbehandlung n�otig.

Irgendwann mu� willk�urlich angenommen werden, da� eine Aktivit�at die Aus-

wirkungen des Fehlers beseitigt und immer erfolgreich beendet wird. Diese

Annahme ist in der Realit�at nicht haltbar. Dies ist allerdings ein grundlegen-

des Problem der Fehlerbehandlung, das auch bei anderen Methoden nur schwer

umgangen werden kann.

� Die einzelnen Fehlerabfragen sind oftmals in ihrem Aufbau identisch. Sie

m�ussen aber f�ur jede Aktivit�at immer wieder neu modelliert werden. Nur wenn

das Work
owsystem entsprechende Methoden anbietet (z. B. parametrisierbare

Bl�ocke von Aktivit�aten), kann eine Fehlerbehandlung wiederverwendet werden.

� Die Modellierung aller im voraus bekannten Fehlerf�alle f�angt nicht alle m�ogli-

chen Fehler ab. Es k�onnen immer noch unerwartete Fehler auftreten, f�ur die

keine Behandlung de�niert ist. Es ist praktisch unm�oglich, alle Fehlerf�alle vor-

herzusagen und mit einer entsprechenden Reaktion abzudecken. Bei der Model-

lierung mu� immer vorausgesehen werden, wo im Gesch�aftsproze� Fehler und

Ausnahmesituationen auftreten k�onnen.

Wenn das Aktivit�atenprogramm abst�urzt und damit keinen R�uckgabewert mehr

an das Work
owsystem �ubermitteln kann, d. h. wenn die Aktivit�at in den Zustand

au�er Kontrolle �uberf�uhrt werden mu�, dann funktioniert diese Methode der

Fehlerbehandlung nicht mehr.

4.2 Alternative Aktivit�aten und Pfade

Dieser Fehlerbehandlungsansatz ist auch der Klasse 'Automatische Fehlerbehand-

lung' zuzuordnen. Im Gegensatz zum vorherigen Ansatz wird hier vorgeschlagen,

die Modellierungssprache um ein weiteres Konstrukt zu erg�anzen, das speziell f�ur die

Fehlerbehandlung geeignet ist.

19

Universit�at Stuttgart

Software{Labor L�osungsans�atze

Wenn eine Aktivit�at oder eine gruppierte Menge von Aktivit�aten fehlschl�agt, dann

sollte die M�oglichkeit bestehen, eine alternative Vorgehensweise zu versuchen. Diese

kann in der Ausf�uhrung einer alternativen Aktivit�at oder eines alternativen Pfads

im Gesch�aftsproze� geschehen. Die Umschaltung auf die alternative Vorgehensweise

wird automatisch durch das Work
owsystem beim Auftreten des Ausl�osers vollzogen.

Dieses Verhalten kann bei der Modellierung durch ein Pr�aferenzkonstrukt erreicht

werden: Wenn w�ahrend der Ausf�uhrung eines Work
ow{Pfads ein Fehler auftritt,

wird ein alternativer Pfad ausgef�uhrt. Ein Pfad besteht dabei aus einer oder mehrere

Aktivit�aten. In Abbildung 4 ist ein ordentlicher Pfad mit drei Aktivit�aten zu sehen.

Wenn bei der Ausf�uhrung ein Fehler auftritt, wird auf den alternativen Pfad mit zwei

Aktivit�aten umgeschaltet.

Präferenz

ordentlicher Pfad

alternativer Pfad

Abbildung 4: Ein im Gesch�aftsproze� spezi�zierter alternativer Pfad

Als Ausl�oser f�ur die alternative Ausf�uhrung kommen zwei Arten in Frage: Ent-

weder schlug die Ausf�uhrung einer Aktivit�at auf dem ordentlichen Pfad fehl oder

eine Aktivit�at wurde innerhalb einer vorher bestimmten Zeit nicht bearbeitet. Die

Umschaltung kann also aufgrund eines aufgetretenen Fehlers oder aufgrund des Ein-

tretens eines Ereignisses wie das Ablaufen einer Zeit�uberwachung erfolgen.

Der Start einer alternativen Aktivit�at bzw. das Umschalten auf einen alternativen

Pfad kann grunds�atzlich auf zwei Arten erfolgen: Entweder werden die alternativen

Aktivit�aten zus�atzlich oder ersetzend gestartet. Bei dem zus�atzlichen Start werden

die ordentlichen Aktivit�aten wiederholt und parallel zu den alternativen Aktivit�aten

gestartet. Diese Vorgehensweise ist dann sinnvoll, wenn z.B. eine s�aumige Bearbei-

tung einer Aktivit�at angemahnt werden soll. Die Bearbeitung der normalen Aktivit�at

hat sich aber durch die Mahnung noch nicht erledigt. Der ersetzende Start kann durch

eine Situation motiviert werden, in der etwas fehlgeschlagen ist und daher etwas an-

deres probiert werden soll.

Mit alternativen Aktivit�aten kann eine ganze Hierarchie aufgebaut werden, da die

einzelnen alternativen Aktivit�aten auch wieder fehlschlagen k�onnen. Das Konzept

der alternativen Aktivit�at l�ost damit das Problem der Fehlerbehandlung in Work-

owsystemen nicht, da immer noch die letzte alternative Aktivit�at fehlschlagen kann.

Es mindert nur das Problem.

20

4.3 Ad{hoc{Modi�kationen

Universit�at Stuttgart

Software{Labor

Alternative Aktivit�aten sind dann sinnvoll, wenn schon zur Modellierungszeit be-

kannt ist, wo Fehler oder timeouts innerhalb eines Work
ows auftreten k�onnen.

4.3 Ad{hoc{Modi�kationen

Dieser Fehlerbehandlungsansatz ist der Klasse 'Manuelle Fehlerbehandlung' zuzuord-

nen.

Unter dem Begri� Ad{hoc{Modi�kationen werden alle Ma�nahmen zusammen-

gefa�t, die ein Benutzer ergreifen kann, um manuell in die Kontrolle der Work
ow{

Engine einzugreifen. Mit solchen Modi�kationen k�onnen zur Laufzeit �Anderungen an

einemWork
ow vorgenommen werden, die im allgemeinen nur f�ur diese eine spezielle

Instanz des Prozesses gelten. �Anderungen k�onnen entweder an den Kontrolldaten

oder an der Struktur des Work
ows vorgenommen werden.

Im folgenden werden einige typische Ad{hoc{Modi�kationen aufgez�ahlt:

� Einzelne Aktivit�aten werden in Anschlu� an eine Aktivit�at in den Work
ow

eingef�ugt (Umleitung).

� Einzelne in Work
ow spezi�zierte Aktivit�aten werden ausgelassen (Abk�urzung).

� Einzelne Aktivit�aten werden zus�atzlich parallel zu einer Aktivit�at in den Work-

ow eingef�ugt (Zusatz).

Normaler Umleitung ZusatzAbkürzung
Ablauf

Abbildung 5: Die Ad{hoc{Modi�kationen Umleitung, Abk�urzung und Zusatz

� An einer Verzweigung des Kontroll
usses wird die Entscheidung der Work
ow{

Engine einen bestimmten Zweig zu verfolgen �uberstimmt. Dazu wird in die

Evaluierung des Entscheidungspr�adikats eingegri�en, indem bestimmte Werte-

belegungen manuell ge�andert werden.

� Entscheidungen der Work
ow{Engine (z. B. bez�uglich der Verteilung der Akti-

vit�aten an bestimmte Personen) k�onnen �uberstimmt werden.

� Der Abbruch eines Prozesses oder einer Aktivit�at kann auch als Ad{hoc{

Modi�kationen verstanden werden.

21

Universit�at Stuttgart

Software{Labor L�osungsans�atze

� Zur Modellierungszeit kann ein Teil des Work
ows unspezi�ziert gelassen wer-

den. Nach der Instanziierung des Work
ows kann durch das zus�atzliche

Einf�ugen von Aktivit�aten der Work
ow zuerst inkrementell spezi�ziert und

dann ausgef�uhrt werden. In Abbildung 6 ist diese Art der Feinspezi�kation

veranschaulicht.

� In einer weiteren Ausbaustufe kann man eventuell erreichen, da� der Bearbeiter

im unspezi�zierten Teil des Work
ows seine T�atigkeiten ausf�uhrt, ohne sie vor-

her zu spezi�zieren. Das Work
owsystem protokolliert diese T�atigkeiten (z. B.

Aufruf von Anwendungsprogrammen) mit, generalisiert sie und erzeugt daraus

automatisch eine Feinspezi�kation. Dieser mitprotokollierte Work
owteil kann

dann als Vorlage f�ur ein erweitertes Modell des Gesch�aftsprozesses dienen.

Teilabschnitt
Unspezifizierter

Abbildung 6: Ein unspezi�zierter Teilabschnitt wird schrittweise verfeinert

Ad{hoc{Modi�kationen sollen dem Benutzer die M�oglichkeit geben, vom starren

Ablauf des modellierten Work
ows abzuweichen und so
exibel Ausnahmesituatio-

nen behandeln zu k�onnen. Er kann damit auch auf solche Situation reagiert, die so

ungew�ohnlich sind, da� daran w�ahrend der Modellierung nicht gedacht worden ist.

Im Gegensatz zu den alternativen Aktivit�aten mu� man nicht schon zur Modellie-

rungszeit den genauen Punkt kennen, an dem ein Fehler auftreten kann.

Ein Gesch�aftsproze� wird mit dem Ziel gescha�en, eine bestimmte Aufgabe zu

erf�ullen. Sinn des Einsatzes von Work
owsystemen ist die �Uberwachung und Kon-

trolle, da� dieses Ziel auch erreicht wird. Wenn nun jeder Bearbeiter den Proze�

umde�nieren kann, dann kann nicht mehr gew�ahrleistet werden, da� das betriebli-

che Ziel des Gesch�aftsprozesses auch erreicht wird. Durch das Einf�ugen beliebiger

Aktivit�aten entsteht die Gefahr, da� eine T�atigkeit ausgef�uhrt wird, die die Daten-

integrit�at des Prozesses beeintr�achtigt. Eine Garantie des Work
owsystem, da� die

Daten nach Ausf�uhrung korrekter Work
ows konsistent sind, kann nicht mehr gege-

ben werden, da korrekte Work
ows durch Ad{hoc{Modi�kationen zu nicht{korrekten

Work
ows ver�andert werden k�onnen.

Beim Einsatz von Ad{hoc{Modi�kationen mu� daher gefordert werden, da� die

Rahmenbedingungen des Prozesses (das Erreichen des Ziels) und die Datenkonsi-

stenz durch die vorgenommenen Modi�kationen nicht verletzt werden. Dazu m�ussen

22

Universit�at Stuttgart

Software{Labor

w�ahrend der Modellierung Integrit�atsbedingungen angegeben werden, die Teil des

Work
ow{Modells werden. Ad{hoc{Modi�kationen werden nur dann zur Laufzeit

erlaubt, wenn sie keine der Integrit�atsbedingungen des Work
ows verletzen.

Die Ausf�uhrung der Funktionen, die zur Ad{hoc{Modi�kationen dienen, mu� �uber

die Vergabe von Modi�kationsrechten abgesichert werden. Falls dies nicht geschieht,

kann die Kontrollfunktion der Work
ow{Engine durch jeden Bearbeiter beliebig um-

gangen werden. Als Tr�ager solcher Rechte eignen sich die Organisationsrollen: Der

Abteilungschef darf einen Proze� ver�andern, w�ahrend seine Mitarbeiter dies nicht oh-

ne seine Erlaubnis d�urfen. Einzelne Proze�elemente im Work
ow{Modell, etwa ein

Kontroll
u�pfeil oder ein Work
owdatenobjekt, k�onnen auch durch den Einsatz von

Rechten vor Ver�anderung gesch�utzt werden.

Ad{hoc{Modi�kationen sind gerade ein aktuelles Forschungsthema im Work
ow-

bereich. Entsprechend gibt es noch keine einheitlichen Vorstellungen �uber die zu

realisierenden Funktionen und nur selten Realisierungen.

5 Work
ow{Transaktionen

In Datenbankensystemen wird das Konzept der ACID{Transaktionen zur robusten

und fehlertoleranten Abwicklung von Datenbankoperationen eingesetzt. Die �Ubertra-

gung dieses Konzepts auf Work
owsysteme birgt einige Schwierigkeiten. Nach einer

kurzen Vorstellung des Konzepts werden in diesem Abschnitt einige L�osungsans�atze

aus der Literatur kurz beschrieben und dann wird ein eingeschr�anktes Einsatzgebiet

dieses Konzepts in Work
owsystemen vorgestellt.

5.1 Datenbank{Transaktionen

Bei der Entwicklung von Datenbankanwendungssystemen sah man sich schon vor ei-

niger Zeit mit �ahnlichen Problemen zur Fehlerbehandlung konfrontiert, wie sie jetzt

auch bei Work
owsystemen auftreten: Man wollte unter allen Umst�anden die Kon-

sistenz der Daten sichern, ohne da� der Entwickler von Datenbankanwendungssyste-

men durch komplexe Fehlerbehandlungen belastet oder gar �uberlastet wird. Das Pro-

blem wird bei Datenbanken �ublicherweise mit dem Konzept der ACID{Transaktionen
gel�ost, das in [GR93] ausf�uhrlich beschrieben ist.

Eine ACID{Transaktion ist eine Menge von Operationen auf Daten mit folgenden

Eigenschaften:

� Atomicity (Atomizit�at)

Eine Transaktion wird entweder vollst�andig durchgef�uhrt oder es hat den An-

schein, als sei sie �uberhaupt nicht ausgef�uhrt worden. Sie erm�oglicht einen
�Ubergang von einem Zustand der Datenbank in den n�achsten Zustand, ohne

da� von au�en Teilschritte dieses �Ubergangs sichtbar w�aren. Falls bei dem
�Ubergang ein Fehler auftritt, be�ndet sich das Datenbanksystem wieder im ur-

23

Universit�at Stuttgart

Software{Labor Work
ow{Transaktionen

spr�unglichen Zustand und es hat den Anschein als h�atte es diesen Zustand nie

verlassen.

� Consistency (Konsistenz)

Eine Transaktion produziert nur konsistente Ergebnisse, ansonsten wird sie ab-

gebrochen. Ein Ergebnis ist konsistent, wenn der neue Datenbankzustand alle

Konsistenzbedingungen der Anwendung erf�ullt, die durch die Spezi�kation der

Datenbankanwendung gegeben sind. Die Transaktion �uberf�uhrt somit einen

konsistenten Ausgangszustand in einen neuen, ebenso konsistenten Zustand.

� Isolation

Eine Transaktion kann Operationen auf der Datenbank so ausf�uhren als w�are

sie alleine im Datenbanksystem. Das System sorgt durch den Einsatz von Da-

tensynchronisationsprotokollen daf�ur, da� die parallele Ausf�uhrung von Trans-

aktionen m�oglich wird, ohne das es zu Konsistenzverletzungen kommt. Die

Auswirkungen einer Transaktion werden damit erst nach ihrer erfolgreichen

Beendigung f�ur andere Transaktionen sichtbar.

� Durability (Dauerhaftigkeit)

Die Auswirkungen einer Transaktion sind nach dem erfolgreichen Abschlu� der

Transaktion dauerhaft gespeichert. Das System garantiert, da� es auch nach

dem Auftreten eines Systemfehlers die Daten wieder herstellen kann.

Die Datenbankanwendungsprogrammierung wird durch diese garantierten Eigen-

schaften der Transaktion erheblich vereinfacht, da die Auswirkungen eines Fehlers

(z. B. inkonsistente Datenzust�ande) nicht mehr durch das Anwendungsprogramm zu

beseitigen sind. Das Datenbanksystem garantiert, da� sich die bearbeiteten Daten

nach dem Fehlschlag einer Transaktion exakt in dem Zustand be�nden, in dem sie

zu Beginn der Transaktion waren. Es m�ussen daher keine Funktionen geschrieben

werden, die den Zustand der Daten nach einem Fehler bestimmen und die entspre-

chenden Ma�nahmen zur Wiederherstellung des Ursprungszustands durchf�uhren. Die

anwendungsabh�angige Reaktion auf die fehlgeschlagene Transaktion mu� allerdings

weiterhin durch den Anwendungsprogrammierer implementiert werden. Die vorher

in allen Anwendungsprogrammen notwendigen Fehlerbehandlungsroutinen sind durch

die Transaktionen in das Datenbanksystem �ubernommen worden.

5.2 Datenbank{Transaktionen in Work
owsystemen

Das Konzept der ACID{Transaktionen kann auch bei der Bearbeitung von Work
ows

eingesetzt werden. Transaktionen mit der ACID{Eigenschaft, die in Work
owsyste-

men eingesetzt werden, nennen wirWork
ow{Transaktionen. Ein gesamter Work
ow

oder nur Abschnitte eines Work
ows k�onnen zu einer Work
ow{Transaktion zusam-

mengefa�t werden. Eine Work
ow{Transaktion besitzt dieselben Eigenschaften wie

24

5.2 Datenbank{Transaktionen in Work
owsystemen

Universit�at Stuttgart

Software{Labor

eine Datenbank{Transaktion. Die folgenden Punkte m�ussen bei der �Ubertragung des

Transaktionen{Konzepts auf Work
owsysteme ber�ucksichtigt werden:

Innerhalb von Datenbank{Transaktionen werden nur einfache Operationen wie

das Lesen oder Schreiben eines Datums verwendet. Falls z. B. SQL{Befehle in der

Transaktion verwendet werden, werden diese in Lese{ und Schreiboperationen umge-

wandelt. Diese Operationen arbeiten nur auf Daten und nicht auf physischen Objek-

ten. Daher ist die inverse Operation einfach zu bestimmen. Leseoperationen �andern

nichts und brauchen daher keine inverse Operation. Das Schreiben eines Wertes

kann durch ein erneutes Schreiben mit dem urspr�unglichen Wert r�uckg�angig gemacht

werden. Die einfachen Operationen werden durch in Work
ow{Transaktionen durch

erheblich komplexere Aufrufe von Work
ow{Aktivit�aten ersetzt.

In einer Datenbank{Transaktion sind alle Operationen streng sequentiell ange-

ordnet. In Work
ow{Transaktion dagegen kann der Kontroll
u� zwischen den Akti-

vit�aten frei de�niert werden. Insbesondere k�onnen auch parallele Aktivit�aten statt-

�nden.

Dieser Ansatz der uneingeschr�ankten �Ubertragung von Datenbank{Transaktionen

in Work
owsysteme weist aber einige schwerwiegende Probleme auf, die den alleinigen

Einsatz der Work
ow{Transaktionen als Mittel zur fehlertoleranten Abwicklung von

Work
owsystem verhindern:

� Datenbanken bieten Resource Manager an, die die Lese{ und Schreiboperatio-

nen im Rahmen von Transaktionen implementieren.

Ein Resource Manager stellt transaktionsgesch�utzte Zugri�smethoden auf die

von ihm verwalteten Ressourcen bereit. Ressourcen k�onnen gemeinsam benutz-

te Daten oder auch allgemeineBetriebsmittel, wie Maschinen sein. Ein Resource

Manager synchronisiert gleichzeitige Zugri�e auf seine Ressourcen (concurreny

control) und h�alt dadurch die Ressourcen konsistent. Zur Synchronisation wer-

den �ublicherweise Sperrverfahren verwendet, es k�onnen aber auch andere Proto-

kolle, wie z. B. optimistische Synchronisationsverfahren eingesetzt werden. Der

Resource Manager speichert im Fall eines ordnungsgem�a�en Endes der Trans-

aktion ('commit') alle in dieser Transaktion gemachten �Anderungen an den

Ressourcen stabil ab. Bei einem Abbruch der Transaktion ('rollback') mu�

der Resource Manager den Zustand der Ressource vor Beginn der Transaktion

wieder hergestellen. Dazu protokolliert er auf dem Log des Transaktionssy-

stems alle Operationen. Dieser Log wird auch dazu benutzt, um nach einem

Systemabsturz selbst�andig den aktuellen Zustand wieder herstellen zu k�onnen

('recovery').

Work
ow{Aktivit�aten besitzen im allgemeinen keine solchen Vorkehrungen, um

an einer Transaktionen teilnehmen zu k�onnen. Sie d�urfen ihrer De�nition nach

beliebiger komplexer Natur sein. Selbst manuelle T�atigkeiten sollen als Ak-

tivit�aten modelliert werden k�onnen. In vielen F�allen werden in Aktivit�aten

bereits bestehende Software eingesetzt, die keine der ACID{Eigenschaften un-

terst�utzen.

25

Universit�at Stuttgart

Software{Labor Work
ow{Transaktionen

Ein Work
owsystem hat daher keine Kontrolle dar�uber, welche Daten durch

eine Aktivit�at ver�andert werden. Bei dem Abbruch einer Transaktion kann

daher der urspr�ungliche Zustand weder durch das Work
owsystem noch durch

die Aktivit�at wieder hergestellt werden. Die entsprechende inverse Aktivit�at

kann das System nicht automatisch ermitteln. Eine solche Operation m�u�te

von der Aktivit�at oder dem Work
ow{Modellierer bereitgestellt werden.

Nicht speziell vorbereitete Aktivit�aten k�onnen wegen der fehlenden Recovery{

F�ahigkeit und der unsynchronisierten Datenzugri�e nicht an einer Work
ow{

Transaktion teilnehmen.

� ACID{Transaktionen in Datenbanken haben im allgemeinen nur eine sehr kur-

ze Lebensdauer (Gr�o�enordnung: Sekunden bis Minuten). Das Datenbanksy-

stem ist darauf ausgelegt, m�oglichst viele Transaktionen pro Zeiteinheit durch-

zuf�uhren. Wenn eine Transaktion fehlschl�agt, kann sie nochmals gestartet wer-

den. Work
ows dauern im allgemeinen sehr lange (Gr�o�enordnung: Stunden

bis Wochen). In dieser Zeit kann sehr viel Arbeit innerhalb eines Work
ows

geleistet werden. Diese Arbeit ginge verloren, wenn der Work
ow auf den An-

fangszustand zur�uckgesetzt w�urde.

� Wie in Datenbanksystemen m�ussen auch in Work
owsystemen Transaktionen

parallel ablaufen k�onnen. Dabei kann es zu Kon
ikten kommen, wenn auf das-

selbe Datenobjekt zugegri�en wird. Zur Verhinderung von gleichzeitigen Zu-

gri�en und da� vorl�au�ge Daten vor dem Ende einer Transaktionen von anderen

Transaktionen weiterverarbeitet werden, benutzt man Datensynchronisations-

protokolle. Damit realisiert man die Isolationseigenschaft der Transaktionen.

ACID{Transaktionen benutzen h�au�g ein Sperrverfahren zur Synchronisation

der Datenzugri�e. Die Sperren werden in einer Wachstumsphase der Transak-

tionen erworben und in einer Schrumpfungsphase wieder abgegeben. Wenn eine

Sperre wieder freigegeben worden ist, d�urfen keine neue Sperren erworben wer-

den. Zusammen mit den langen Laufzeiten der Work
ows bedeutet das, da�

die Sperren in Work
ow{Transaktionen sehr lange gehalten werden m�ussen.

Es steigt somit die Wahrscheinlichkeit, da� Work
ows auf gesperrte Daten zu-

greifen wollen und deshalb warten m�ussen. Die Wartezeit kann dabei unter

Umst�anden sehr lange dauern. Dadurch wird die geforderte Parallelit�at der

Work
ows stark eingeschr�ankt. Zudem steigt mit der Dauer einer Transaktion

die Verklemmungsgefahr (Deadlock).

� Eine Aufgabe von Sperren ist es, da� die Zwischenergebnisse einer Transaktion

bis zur deren Best�atigung (Commit) nicht anderen Transaktionen zur Verf�ugung

stehen. Damit soll verhindert werden, da� andere Transaktionen mit vorl�au�gen

Daten arbeiten, die beim Abbruch einer Transaktion ung�ultig w�urden. Die

Transaktionen sind voneinander isoliert.

26

5.3 Erweiterte Transaktionsmodelle

Universit�at Stuttgart

Software{Labor

Die Isolationseigenschaft ist aber bei Work
owsystemen h�au�g unerw�unscht.

Dort existiert die Situation, da� man kooperativ auf einem gemeinsamen Da-

tenbestand (z. B. ein Dokument) arbeiten will, in dem auch vorl�au�ge Ergeb-

nisse anderer Aktivit�aten erw�unscht sind. Man m�ochte nicht abwarten, bis alle

vorherigen Ergebnisse fertig und best�atigt sind. In Gesch�aftsprozessen m�ussen

auch vorl�au�ge Zwischenergebnisse benutzt werden k�onnen.

Das Konzept der Kooperation ist viel wichtiger als das der Isolation. Der ge-

meinsame Zugri� auf Daten darf dabei aber trotzdem nicht zu kritischen In-

konsistenzen f�uhren.

Aus diesen Gr�unden erweisen sich ACID{Transaktionen als alleiniges Mittel zur

Abwicklung von fehlertoleranten Work
ows als nicht geeignet. Daher wurden in der

Literatur verschiedene erweitere Ans�atze beschrieben, die die angesprochenen Pro-

bleme st�arker ber�ucksichtigt.

5.3 Erweiterte Transaktionsmodelle

In diesem Abschnitt werden einige bekannte erweiterte Transaktionskonzepte (siehe

auch [GR93]) vorgestellt. Die ACID{Eigenschaften der Transaktionen werden dabei

teilweise aufgegeben und teilweise erweitert.

Sicherungspunkte

Eine Transaktion kann durch Sicherungspunkte in mehrere Abschnitte unterteilt wer-

den. BeimAuftreten eines Fehlers kann die Transaktion statt an den Anfang auf einen

Sicherungspunkt zur�uckgesetzt werden. Von dort aus kann die Arbeit der Trans-

aktionen wiederaufgenommen werden. Dadurch geht weniger Arbeit als bei einem

vollst�andigen R�ucksetzen verloren. Die ACID{Eigenschaften der Transaktionen blei-

ben dabei erhalten.

Geschachtelte Transaktionen

Eine geschachtelte Transaktion (nested transaction) [Mos81] besteht aus einer Hier-

archie von Transaktionen. Die oberste Transaktion besitzt als einzige alle ACID{

Eigenschaften. Alle untergeordneten Transaktionen entbehren die Dauerhaftigkeit.

Beim R�ucksetzen einer �ubergeordneten Transaktion m�ussen alle bereits best�atigten

Untertransaktionen mit zur�uckgesetzt werden. Die Ergebnisse einer Untertransaktion

sind nur f�ur die unmittelbar �ubergeordnete Transaktion sichtbar. Die Ergebnisse der

geschachtelten Transaktionen werden f�ur die Au�enwelt erst mit der Best�atigung der

obersten Transaktion sichtbar. Untertransaktionen k�onnen parallel ablaufen, d�urfen

dann aber nur auf disjunkte Datenobjekte zugreifen.

Geschachtelte Transaktionen sind damit als eine Generalisierung von Sicherungs-

punkten zu verstehen. Die Granularit�at der Bearbeitung kann wie dort beliebig ver-

feinert werden. Zudem wird aber die parallele Ausf�uhrung von Untertransaktionen

erm�oglicht und die Vergabe der Sperren an Untertransaktionen kann
exibler gesteu-

ert werden. Untertransaktionen besitzen nur die Sperren, die sich von der �uberge-

27

Universit�at Stuttgart

Software{Labor Work
ow{Transaktionen

ordneten Transaktion bekommen haben und geben neu erworbene Sperren an die

�ubergeordnete Transaktion zur�uck.

Flexible Transaktionen

Das Modell der
exiblen Transaktionen [ZNBB94] basiert auf �ubergeordneten Trans-

aktionen, die f�ur die Steuerung der untergeordneten Transaktionen verantwortlich

sind. Dieser Ansatz wird bei Transaktionen eingesetzt, die sich �uber mehrere hetero-

gene Datenbanken erstrecken. Die verteilte
exible Transaktion ist damit nicht mehr

atomar, w�ahrend es die untergeordneten Transaktionen auf einem Rechnerknoten

weithin sind.

Der Grundgedanke ist die Bereitstellung alternativer Pfade mit unterschiedlicher

Pr�aferenz innerhalb der verteilten Transaktion. Wenn eine Subtransaktion abbricht,

wird auf einen alternativen Pfad mit niedriger Pr�aferenz umgeschaltet. Eine
exible

Transaktion wird best�atigt, wenn einer der alternativen Pfade zum Erfolg gef�uhrt

hat.

Es werden drei Arten von Untertransaktion unterschieden. Eine Subtransaktion

ist kompensierbar, wenn es eine weitere Transaktion gibt, mit der die Ergebnisse

semantisch r�uckg�angig gemacht werden k�onnen. Eine wiederholbare Subtransaktion

garantiert nach endlich vielen Versuchen einen erfolgreichen Abschlu�. Eine Pivot{

Transaktion (Angelpunkttransaktion) ist weder kompensierbar noch wiederholbar.

F�ur jeden Pfad im Ausf�uhrungsgraphen markiert eine Pivot{Transaktion den kri-

tischen Punkt dieses Pfades. Vor diesem Punkt kann die Transaktion r�uckgesetzt

werden, nach diesem Punkt mu� sie zu einem erfolgreichen Ende gef�uhrt werden.

Dies kann dann garantiert werden, wenn die
exible Transaktionen wohlgeformt

ist, d. h. auf dem Pfad mit der niedrigsten Pr�aferenz sind alle Transaktionen vor dem

kritischen Punkt kompensierbar und alle Transaktionen nach dem Punkt wiederhol-

bar.

Sagas

Sagas [GMS87] bestehen aus einer linearen Kette von Transaktionen, die durch eine

h�ohere Kontrollschicht gesteuert werden. Die Untertransaktionen geben nach ihrer

Best�atigung ihre Daten�anderungen frei. Sagas sind daher nicht voneinander isoliert.

Zu jeder Untertransaktion gibt es eine Kompensations{Transaktion, die die Ergeb-

nisse der Untertransaktion semantisch r�uckg�angig machen. Eine Kompensations{

Transaktion darf nicht scheitern. Wenn eine Transaktion innerhalb der Saga ab-

bricht, werden durch die h�ohere Kontrollebene alle schon best�atigten Transaktionen

durch die Ausf�uhrung der Kompensations{Transaktionen in umgekehrter Reihenfolge

kompensiert.

ConTracts

Der ConTracts{Ansatz [WR92] geht �uber die reine Erweiterung des ACID{

Transaktionskonzepts hinaus und bietet eine Reihe von Konzepten an, die eine robuste

und fehlertolerante Abwicklung von langandauernden Abl�aufen erlauben.

In einem ConTract werden die elementaren Berechnungsschritte von der Beschrei-

28

5.4 Work
ow{Transaktionen

Universit�at Stuttgart

Software{Labor

bung der Ablaufstruktur getrennt. Die eigentliche Anwendungsprogrammierung �n-

det in rein sequentiellen Code in den elementaren Arbeitseinheiten (Steps) statt, die

als klassische ACID{Transaktionen ausgef�uhrt werden. In einem Skript wird der

Kontroll
u� zwischen den Steps beschrieben. Steps k�onnen dabei zu weiteren ACID{

Transaktionen geschachtelt werden, zwischen denen Abh�angigkeitsregeln angegeben

werden k�onnen. Zu jedem Step mu� es einen Kompensations{Step geben, der die

Auswirkungen des Steps wieder r�uckg�angig machen kann.

Als Korrektheitskriterium wird die Eigenschaft benutzt, da� Anfangs{ und End-

zust�ande eines ConTracts korrekt sind. Bei einem Systemfehler wird die Bearbei-

tung, wenn m�oglich, an derselben Stelle vorgesetzt oder der ConTract wird �uber die

Kompensations{Steps in den Anfangszustand versetzt.

Die in einem ConTract verwendeten Daten werden in einer Kontext{Datenbank

stabil verwaltet. Der Zugri� der Steps auf die gemeinsamen Daten wird �uber

Eingangs{ und Ausgangsinvarianten synchronisiert. Spezi�sch f�ur die Anwendung

k�onnen unterschiedliche Synchronisationsverfahren eingesetzt werden.

5.4 Work
ow{Transaktionen

Die Probleme bei der Verwendung von ACID{Transaktionen in langandaueren-

den Vorg�angen sind bereits angesprochen worden. Das Konzept der Work
ow{

Transaktionen eignet sich also nicht als alleiniges Konzept zur Implementierung von

fehlertolerantenWork
ows. Wenn man diese Probleme ber�ucksichtigt, zeigt sich aber,

da� dieses Konzept f�ur einen begrenzten Einsatz in Work
owsystemen durchaus ge-

eignet sein kann. Das Einsatzgebiet ergibt sich aus den folgenden Randbedingungen:

� Die Transaktionen m�ussen von kurzer Dauer sein. Ansonsten greifen die bereits

oben beschriebenen Probleme bei langandauerenden Transaktionen.

� Alle Aktivit�aten der Work
ow{Transaktionen m�ussen als Resource Manager

an der Transaktionen teilnehmen k�onnen und entsprechende Schnittstellen zur

Steuerung des Recovery anbieten. Die Schnittstellen m�ussen zu dem im Work-

owsystem verwendeten Transaktions{Service passen. Es k�onnen damit keine

beliebigen Aktivit�aten an einer Work
ow{Transaktion teilnehmen!

5.4.1 Begri�e

Eine Sph�are ist eine Menge von Aktivit�aten in einem Work
ow. Wenn zwischen

Aktivit�aten Abh�angigkeiten in der Art existieren, da� nie eine der Aktivit�aten er-

folgreich und die andere erfolglos beendet werden darf, k�onnen die Aktivit�aten zu

einer Sph�are zusammengefa�t werden. Eine Sph�are wird zur Modellierungszeit des

Work
ows spezi�ziert. In der Abbildung 7 ist eine Sph�are in einem Aktivit�atennetz

eingezeichnet.

29

Universit�at Stuttgart

Software{Labor Work
ow{Transaktionen

Eingang

Ausgang

Sphäre

ACID-Aktivität
normale Aktivität
Daten-/Kontrollfluß

Legende:

Abbildung 7: Eine Sph�are in einem Aktivit�atennetz

Eine Sph�are mu� dabei keine Zusammenhangskomponente im Aktivit�atennetz

bilden. Es m�ussen also nicht alle Aktivit�aten in einer Kontroll
u�beziehung stehen,

wie in Abbildung 8 gezeigt.

ACID-Aktivität
normale Aktivität
Daten-/Kontrollfluß

Legende:

Abbildung 8: Eine Menge von Aktivit�aten in einer Sph�are, die keine Zusammen-

hangskomponente im Aktivit�atennetz bilden

Als Eingang einer Sph�are wird der Kontroll{ bzw. Daten
u� bezeichnet, der von

einer Aktivit�at au�erhalb der Sph�are zu einer Aktivit�at innerhalb der Sph�are f�uhrt.

Entsprechend wird alsAusgang der Kontroll{ bzw. Daten
u� de�niert, der von einer

Aktivit�at innerhalb der Sph�are zu einer Aktivit�at au�erhalb der Sph�are f�uhrt. Eine

Sph�are kann mehrere Ein{ und Ausg�ange besitzen. In der Abbildung 7 hat die Sph�are

einen Eingang und zwei Ausg�ange.

Als ACID-Aktivit�aten werden Aktivit�aten bezeichnet, die die Eigenschaft ha-

ben, da� sie entweder selbst Resourcen{Manager sind oder nur auf Daten �uber

Resourcen{Manager zugreifen. Es mu� gew�ahrleistet sein, da� die in den Aktivit�aten

verwendeten Daten nur �uber Resourcen{Manager im Rahmen einer Transaktionen

gelesen oder ver�andert werden (siehe Abschnitt 5.4.3).

De�nition: Work
ow{Transaktion

Eine Work
ow{Transaktion ist eine Menge von Aktivit�aten (eine Sph�are

im Work
owmodell), die im Kontext einer ACID{Transaktion ausgef�uhrt

werden.

30

5.4 Work
ow{Transaktionen

Universit�at Stuttgart

Software{Labor

5.4.2 Das Konzept der Work
ow{Transaktionen

Ein Work
owsystem, das Work
ow{Transaktionen anbietet, tritt als Starter und

als normaler Teilnehmer der Transaktion auf. Beim Betreten einer Sph�are mu� die

Work
ow{Transaktionen durch das Work
owsystem bei einem Transaktions{Service

initiiert werden. Dann registriert sich das Work
owsystem selbst als Teilnehmer. Da-

zu mu� das Work
owsystem als Resource Manager f�ur die Work
ow{Daten auftreten

k�onnen.

Falls das Work
owsystem Daten
�usse verwaltet, �uber die Aktivit�aten mit Da-

ten versorgt werden, mu� das System daf�ur sorgen, da� die Daten die Sph�are nicht

verlassen. Dasselbe gilt f�ur den Kontroll
u�. Erst mit dem erfolgreichen Ende der

Transaktion d�urfen Aktivit�aten au�erhalb der Sph�are angesto�en werden. Das Work-

owsystem mu� als Resource Manager die Isolationseigenschaft der Transaktion be-

reitstellen, indem die Daten{ und Kontroll
�usse der Sph�are nach au�en bis zum

erfolgreichen Ende verz�ogert werden.

Durch die Teilnahme an der Transaktion kann das Work
owsystem den Bearbei-

tern eine Funktion an ihrer Bedienober
�ache anbieten, mit der sie eine Work
ow{

Transaktion interaktiv abbrechen k�onnen.

Falls die Work
ow{Transaktion r�uckgesetzt werden soll, mu� das Work
owsystem

den Zustand des Work
ows wieder in den Anfangszustand der Sph�are bringen. Al-

le bisherigen �Anderungen innerhalb der Sph�are m�ussen durch das Work
owsystem

r�uckg�angig gemacht werden. Nach dem Abbruch und R�ucksetzen der Sph�are wird

die Work
ow{Transaktion durch das Work
owsystem neu gestartet. Anstatt eines

Neustarts sind auch andere Aktionen denkbar. So k�onnte man z.B. den Neustart

x{mal versuchen und nach dem x{ten Fehlschlag eine alternativen Work
ow starten.

Eine Work
ow{Transaktion mu� zusammen mit dem Work
ow in der Mo-

dellierungskomponente des Work
owsystems spezi�ziert werden. Eine Work
ow{

Transaktionen wird durch eine Sph�are modelliert. Alle Aktivit�aten, die an Trans-

aktion teilnehmen sollen, m�ussen in eine Sph�are aufgenommen werden. Die Model-

lierungskomponente mu� auch daf�ur sorgen, da� folgende strukturellen Bedingungen

f�ur die Sph�are eingehalten werden:

� Alle Aktivit�aten der Sph�are sind Teilnehmer an der Work
ow{Transaktion. Die

Modellierungskomponente mu� daher pr�ufen, ob die an der Sph�are teilnehmen-

den Aktivit�aten die entsprechenden Randbedingungen erf�ullen, wie sie in Ab-

schnitt 5.4.3 beschrieben werden.

� Eine Schachtelung von Sph�aren ist erlaubt und dient zur Verkleinerung des

Bereichs, der zur�uckgesetzt werden soll. So kann ein feineres Recovery{

Granularit�at unterst�utzt werden. Da einmal spezi�zierte Work
ows in Form

von Subprozessen wiederverwendet werden k�onnen und in diesen Prozessen

auch Sph�aren de�niert sein k�onnen, ben�otigt man auch aus diesem Grund die

M�oglichkeit geschachtelter Work
ow{Transaktionen.

31

Universit�at Stuttgart

Software{Labor Work
ow{Transaktionen

Innerhalb der Aktivit�aten k�onnen durch Anwendungsprogramme neue Trans-

aktionen begonnen und wieder beendet werden. Diese Transaktionen sind dann

als in die Work
ow{Transaktion geschachtelte Transaktionen zu realisieren.

� Die partielle �Uberlappung von Sph�aren ist nicht m�oglich. Eine Aktivit�at darf

damit immer nur an h�ochstens einer Sph�are teilnehmen. Partiell �uberlappen-

de Sph�aren k�onnen durch eine Vereinigungsoperation in eine einzige Sph�are

�uberf�uhrt werden. Partiell �uberlappende Sph�aren erweisen sich somit als

unn�otig. Der E�ekt der feineren Transaktionsgranulat kann durch geschalte-

te Sph�aren ebenso erreicht werden.

(a) (b)

Abbildung 9: Verlassen und Wiedereintritt des Kontroll
usses (a) und partiell �uber-

lappende Sph�aren (b) sind nicht erlaubt.

� Aus der Isolationseigenschaft der Sph�are ergibt sich, da� kein Pfad von einem

Ausgang auf einen Eingang derselben Sph�are existieren darf.

Angenommen, es g�abe einen solchen Pfad. Aufgrund der Isolation wird der

Kontroll
u�ausgang erst nach Beendigung der Sph�are aktiv. Die Sph�are kann

aber noch nicht beendet sein, da der Kontroll
u�eingang auf diesem Pfad noch

nicht aktiv sein kann, d. h. es gibt eine nicht beendete Aktivit�at in der Sph�are.

Die Sph�are kann noch nicht beendet sein. Es gibt einen Widerspruch, daher

darf kein solcher Pfad existieren.

5.4.3 Anforderungen an ACID{Aktivit�aten

Damit Aktivit�aten an einer Work
ow{Transaktion teilnehmen k�onnen, m�ussen sie

bestimmtenVoraussetzungen gen�ugen. Wir unterscheiden deshalb zwischen normalen

Aktivit�aten und sogenannten ACID{Aktivit�aten, die diese Voraussetzungen erf�ullen.

� Die Aktivit�aten d�urfen nur �uber Resource Manager auf Daten zugreifen. Wenn

sie Daten selbst verwalten, m�ussen die Aktivit�aten selbst als Resource Manager

auftreten. Eine Aktivit�at, die als Resource Manager agieren m�ochte, mu� alle

notwendigen Funktionen implementiert haben, um selbst�andig ein Recovery

ausf�uhren zu k�onnen.

32

5.4 Work
ow{Transaktionen

Universit�at Stuttgart

Software{Labor

� Die Aktivit�aten m�ussen eine geeignete Schnittstelle aufweisen, �uber die be-

stimmte Funktionen der Aktivit�aten ausgel�ost werden k�onnen (z. B. das Re-

covery, das Commit, das Rollback). Ebenso m�ussen sie Schnittstellen f�ur die

Teilnahme an einem 2{Phasen{Commit{Protokoll zu erm�oglichen. Damit er-

reicht der Transaktions{Service eine gemeinsame �Ubereinkunft aller Beteiligten

Resource Manager �uber den Erfolg oder Mi�erfolg der Transaktion. Die angebo-

tene Schnittstelle mu� zu dem im Work
owsystem verwendeten Transaktions{

Service passen.

� Die Menge der von mehreren konkurrierenden Aktivit�aten benutzten Daten

m�ussen relativ klein sein, damit sich Sperren oder andere Synchronisationspro-

tokolle nicht auf die die Kooperationsf�ahigkeit der Work
ows auswirkt.

� Wenn in den Aktivit�aten physische Operationen aufgef�uhrt werden, bedarf es

der Verwendung eines erweiterten Resource Manager, der Physical{Resource{
Manager (PRM) genannt wird [Sch93]. \Real actions" haben im Gegensatz zu

Datenbankoperationen die Eigenschaft, da� ihre Auswirkungen sofort sichtbar

werden und da� diese Auswirkungen oft nicht mehr r�ucksetzbar sind. Das

klassische Beispiel f�ur eine solche Operation ist das Bohren eines Loches. Unter

der Annahme, da� nur eine physische Operation in der Work
ow{Transaktion

statt�ndet, kann das Recovery eines PRM so aussehen: Wenn der Abbruch

der Transaktion vor der physischen Operation statt�ndet, dann mu� der PRM

wie ein regul�arer RM reagieren. Es wird ein Rollback durchgef�uhrt. Wenn

der Abbruch nach der Ausf�uhrung der physischen Operation statt�ndet, wird

wiederum ein normales Rollback durchgef�uhrt. Die physische Operation wird

dabei nicht r�uckgesetzt. Beim wiederholten Starten der Transaktionen wird

dann die bereits in der vorherigen Transaktion ausgef�uhrte physische Operation

ausgelassen. Wenn der Abbruch w�ahrend der physischen Operation statt�ndet,

dann mu� eine anwendungsspezi�sche Fehlerbehebungsma�nahme durch den

PRM getro�en werden.

Wenn man mehrere physische Operation innerhalb einer Work
ow{Transaktion

benutzen will, wird die Komplexit�at des Recovery deutlich h�oher.

F�ur den Fall, da� die Auswirkungen physischer Operation zur�uckgehalten wer-

den k�onnen, z. B. das Verschicken einer Email oder eines Briefes, ist es Auf-

gabe des Resource Managers, daf�ur zu sorgen, da� die Operation erst in

der Propagierungs{Phase des Zwei{Phasen{Commit{Protokolls am Ende der

Work
ow{Transaktion ausgef�uhrt wird. So wird die Email solange verz�ogert,

bis die gesamte Transaktion erfolgreich beendet wird. Die Operation darf dann

allerdings nicht mehr fehlschlagen.

33

Universit�at Stuttgart

Software{Labor Kompensations{Sph�aren

5.5 Einsatzgebiete von Work
ow{Transaktionen

Durch den alleinigen Einsatz von Work
ow{Transaktionen kann man das Ziel eines

fehlertoleranten Ablaufs von Gesch�aftsprozessen nicht erreichen. Nur in einem eng be-

schr�ankten Einsatzfeld erweist sich das Konzept der Work
ow{Transaktionen als hilf-

reich. Ein solches Einsatzfeld k�onnen z.B. stark datenbankorientierte Gesch�aftspro-

zesse sein. Dort sind im allgemeinen schon die entsprechenden Resource Manager mit

den standardisierten Schnittstellen vorhanden.

Wichtig erweist sich dieses Konzept auch bei der Verwendung von sogenannten

business objects als Aktivit�aten. Business{Objekte sind Repr�asentanten f�ur alle in

einem Gesch�aftsproze� vorkommenden Objekte. Dies k�onnen Programme, Personen

oder Daten in der traditionellen Sichtweise sein. Business{Objekte werden zur Zeit

in der BOMSIG special interest group der OMG (Object Management Group) stan-

dardisiert. Diese Objekte bieten Methodenaufrufe an, um Operationen auf Daten

durchzuf�uhren. Die Methoden sind oftmals von kurzer Dauer und werden automa-

tisch ausgef�uhrt, d. h. es gibt kaum manuelle Interaktion. Diese Methodenaufrufe

k�onnen in einer Work
ow{Transaktion als Operationen eingebunden werden.

Als Realisierungsans�atze f�ur Work
ow{Transaktionen bieten sich die Standards

f�ur verteilte Transaktionen an: Es kommt die X/Open Spezi�kation for Distribu-

ted Transaction Processing (DTP) XA und der Object Transaction Service (OTS)

[OTS94] der Object Management Group (OMG) in Frage. Insbesondere im Verbund

mit dem Einsatz der Business{Objekte kann sich OTS als sinnvoll erweisen. Die

Aktivit�aten m�ussen die in den Standards spezi�zierten Funktionen als API anbieten.

Bei Einsatz von OTS m�ussen die Anwendungsprogramme in den Aktivit�aten ein

Objektinterface besitzen. Das Work
owsystem mu� sich der Dienste eines Corba{

kompatiblen Objekt Request Brokers (ORB) bedienen, um die Anwendungsprogram-

me in den Aktivit�aten aufzurufen.

Eine prototypische Implementierung dieses Ansatzes wurde im Rahmen des Pro-

jekts Work
ow{Management im Software{Labor der Universit�at Stuttgart durch-

gef�uhrt. Genauere Beschreibungen dieses Projekts �nden sich in [BS96] und [SB96].

6 Kompensations{Sph�aren

Das Konzept der Work
ow{Transaktionen stellt hohe Anforderungen an die Funk-

tionalit�at der Aktivit�aten, die an einer Work
ow{Transaktionen teilnehmen. In vie-

len F�allen wird aber ein Work
owsystem mit Aktivit�aten eingesetzt, die nicht die-

sen Anforderungen entsprechen. Oftmals haben die Anwendungsprogramme, die in

den Aktivit�aten aufgerufen werden, kein Wissen dar�uber, da� sie im Rahmen eines

Gesch�aftsprozesses eingesetzt werden. Sie k�onnen daher auch nicht auf die Bed�urf-

nisse der Work
ow{Transaktionen abgestimmt werden.

Aus diesem Grund ist ein weiteres Konzept bei der Bearbeitung von Work
ows

n�otig, das den Ablauf von Work
ows fehlertoleranter macht, ohne diese hohen Anfor-

34

6.1 Begri�e

Universit�at Stuttgart

Software{Labor

derungen zu besitzen. Der Ansatz der Kompensations{Sph�aren [Ley95] stellt kaum

noch Anforderungen an die Aktivit�aten. Im Gegenzug dazu mu� man aber auf

die Isolationseigenschaft und die garantierte Konsistenz der Anwenderdaten bei der

Ausf�uhrung eines Work
ow verzichten. Die Eigenschaft der Atomizit�at und der Dau-

erhaftigkeit bleiben erhalten. Das Mittel zur Erreichen dieses Ziels sind Kompensa-

tionsaktivit�aten.

6.1 Begri�e

Eine Kompensationsaktivit�at unterscheidet sich nur durch ihre Verwendung von

einer normalen Aktivit�at. Jede Kompensationsaktivit�at mu� einer normalen Akti-

vit�at bzw. einer Sph�are zugeordnet sein und soll alle Auswirkungen der normalen

Aktivit�at bzw. der gesamten Sph�are beseitigen. Das Work
owsystem bietet au�er

dem Aufruf der Kompensationsaktivit�at keine weitere Unterst�utzung, um dieses Ziel

zu erreichen. Wegen der fehlenden Isolationseigenschaft der Kompensations{Sph�aren

mu� die Kompensationsaktivit�at auch daf�ur sorgen, da� die Daten�anderungen der

normalen Aktivit�at eventuell schon von anderen Aktivit�aten gelesen und zur Weiter-

verarbeitung benutzt worden sind. Die Kompensationsaktivit�at mu� auch in diesen

F�allen geeignete Ma�nahmen tre�en.

Der Begri� Sph�are 1 bezeichnet auch hier eine nicht unbedingt zusammenh�angen-

de Menge von Aktivit�aten in einem Work
ow.

De�nition: Kompensations{Sph�are (engl.: compensation sphere)

Eine Kompensations{Sph�are ist eine Menge von Aktivit�aten, die entwe-
der alle im Zustand 'erfolgreich' oder alle im Zustand 'kompensiert' sind,
wenn der Kontroll
u� die Sph�are verlassen will.

Das Zustandsdiagramm f�ur die Aktivit�aten mu� daher wie in Abbildung 10 mo-

di�ziert werden. Es wird zus�atzlich ein Zustand kompensiert eingef�uhrt. Dieser

Zustand ist weitgehend �aquivalent zum Zustand startbar mit dem Unterschied,

da� mindestens eine Bearbeitung und eine Kompensation der Aktivit�at stattgefunden

hat. Der Endzustand erfolgreich wird dann verlassen, wenn andere Aktivit�aten

der Sph�are kompensiert werden m�ussen. Eine Sph�are ist dann kompensiert, wenn

alle Aktivit�aten der Sph�are kompensiert sind.

6.2 Das Konzept der Kompensations{Sph�aren

Zur Modellierungszeit werden Aktivit�aten zu einer Sph�are zusammengefa�t. Aus der

Sicht der Aktivit�aten au�erhalb der Sph�are werden die Aktivit�aten zu einer atomaren

Ausf�uhrungseinheit. Zum Ausf�uhrungszeitpunkt des Work
ows sorgt das Work
ow-

system daf�ur, da� die Sph�are von den Aktivit�aten au�erhalb der Sph�are isoliert wird,

1siehe De�nition Seite 29

35

Universit�at Stuttgart

Software{Labor Kompensations{Sph�aren

startbar

erfolglos

in Bearbeitung

kompensiert

erfolgreich

außer Kontrolle

Abbildung 10: Das Zustandsdiagramm f�ur Aktivit�aten bei Kompensations{Sph�aren

indem der Kontroll{ und Daten
u� bis zum Ende der Sph�are verz�ogert wird. Akti-

vit�aten au�erhalb der Sph�are k�onnen somit keine Zwischenergebnisse von Aktivit�aten

innerhalb der Sph�are �uber das Work
owsystem bekommen. Da die Anwenderpro-

gramme aber weiterhin auf beliebigen Datenbest�anden arbeiten k�onnen, die nicht

im Kontrollbereich des Work
owsystem liegen m�ussen, k�onnen Zwischenergebnisse

durchaus von anderen Programmen verarbeitet werden. Die Isolation kann daher

nicht durch das Work
owsystem garantiert werden.

Wenn ein Fehler auftritt, werden alle bereits beendeten Aktivit�aten kompensiert

und alle Aktivit�aten abgebrochen, die noch in Bearbeitung sind. Danach kann die

Sph�are entweder neu gestartet werden oder es wird ein alternativer Weg imWork
ow

eingeschlagen, wie im vorherigen Kapitel beschrieben.

Dieses Konzept fordert schw�achere Voraussetzungen an die teilnehmenden Akti-

vit�aten als die Work
ow{Transaktionen. Die Aktivit�aten m�ussen kompensierbar sein,

d. h. zu jeder Aktivit�at A in der Sph�are mu� eine Kompensationsaktivit�at A�1 exi-

stieren, die die Auswirkungen der Aktivit�at A r�uckg�angig macht. Wie diese Kompen-

sierbarkeit erreicht wird, liegt ganz in der Verantwortung des Erstellers der Aktivit�at.

Das Konzept der Kompensations{Sph�aren bietet dazu au�er dem Aufruf der Kom-

pensationsaktivit�at keine weitere Unterst�utzung an. Erg�anzend kann die Anforderung

aufgestellt werden, da� jede Aktivit�at (bzw. das Anwenderprogramm innerhalb der

Aktivit�at) an ihrer Schnittstelle eine Funktion anbieten mu�, mit der die Aktivit�at

vorzeitig abgebrochen werden kann, ohne da� dadurch der Anwenderdatenbestand in

einem inkonsistenten Zustand hinterlassen wird. Mit dieser Anforderung kann eine

Optimierung angewendet werden, die mit Hilfe des vorzeitigen Abbruchs der Akti-

vit�at die R�ucksetzzeit der Sph�are verk�urzt, indem unn�otige Arbeit nach Auftreten

eines Fehlers in der Sph�are verhindert wird. Die Aktivit�at A mu� nach ihrem Ende

oder nach einem Abbruch erneut gestartet werden k�onnen, ohne da� dadurch ein

Fehler auftritt.

Die Anforderungen an die Kompensationsaktivit�at sind daf�ur aber um so ausge-

pr�agter. Neben der Existenz die Aktivit�at mu� auch gefordert werden, da� die Ak-

tivit�at niemals fehlschl�agt. Die Aufgabe der Kompensationsaktivit�at, das Beseitigen

36

6.2 Das Konzept der Kompensations{Sph�aren

Universit�at Stuttgart

Software{Labor

der Auswirkungen der Aktivit�atA, wird dabei in keiner Weise durch das Work
owsy-

stem unterst�utzt. Der Kompensationsaktivit�at mu� diese Aufgabe v�ollig selbst�andig

und korrekt durchf�uhren.

Eine Sph�are wird dann zur�uckgesetzt, wenn eine der Aktivit�aten in einen Fehler-

zustand (siehe Abbbildung 10) �uberf�uhrt wird. Das Zur�ucksetzen einer Sph�are sollte

auch �uber den interaktiven Aufruf einer Funktion m�oglich sein, die dem Benutzer

des Work
owsystem an der Bedienober
�ache angeboten wird. �Uber diese Funktion

kann manuell ein Zur�ucksetzen ausgel�ost werden, das eventuell durch spezielle Rechte

abgesichert werden kann.

Nach der Ausl�osung der R�ucksetzvorgangs ist eine Entscheidung m�oglich, ob die

Sph�are bis zu ihrem Beginn oder zu einem weniger weit zur�uckliegenden Punkt zwi-

schen den Aktivit�aten zur�uckgesetzt werden soll. Wenn diese Auswahl, wohin zur�uck-

gesetzt werden soll, dem Benutzer interaktiv �uberlassen wird, dann hat man eine Art

\Undo"{Funktion imWork
ow realisiert. Man kann die letzten Vorgangsschritte (Ak-

tivit�aten) innerhalb der Grenzen der Sph�are r�uckg�angig machen und dann an dem

gew�unschten Punkt weiterarbeiten.

F�ur die Ausf�uhrungsreihenfolge der Kompensationsaktivit�aten gibt es verschie-

dene M�oglichkeiten. Die Kompensationsaktivit�aten k�onnen alle parallel ausgef�uhrt

werden, da alle dazu notwendigen Daten schon w�ahrend der Ausf�uhrung der nor-

malen Aktivit�aten gespeichert werden. Falls ein solches Verhalten nicht gew�unscht

ist, k�onnen die Kompensationsaktivit�aten in der umgekehrter Reihenfolge wie die

normalen Aktivit�aten ausgef�uhrt werden. Diese umgekehrte Reihenfolge kann durch

Umdrehen der Kontroll
u�beziehung bestimmt werden oder durch Auswerten der

Startzeitpunkte aller normalen Aktivit�aten. Eine dritte denkbare Methode besteht

in einer frei spezi�zierbaren Reihenfolge, die w�ahrend der Modellierung des Prozesses

festgelegt werden mu�.

Die Schachtelung von Sph�aren mu�, wie bei den Work
ow{Transaktionen auch,

aufgrund der Wiederverwendung von Work
owteilen erlaubt sein. Daraus ergibt sich

die Notwendigkeit, auch ganze Sph�aren r�uckg�angig machen zu m�ussen. Zus�atzlich zu

dem Kompensieren aller Einzelaktivit�aten einer Sph�are kann man auch die M�oglich-

keit scha�en, mit einer einzigen Kompensationsaktivit�at eine ganze Sph�are auf einmal

zu kompensieren. Dazu m�ussen dann zu Sph�aren auch Kompensationsaktivit�aten

einf�uhrt werden.

Ein �Uberlappen von Sph�aren bedeutet, da� eine Aktivit�at an mehr als an ei-

ner einzigen Kompensations{Sph�are teilnimmt. Wenn man dies zul�a�t, handelt man

sich das Problem der kaskadierenden Kompensation weiterer Sph�aren ein. Da �Uber-

lappung keinen weiteren Vorteil als eine feinere Abstufung der Sph�aren bringt und

dieser Vorteil auch �uber die Schachtelung von Sph�aren erlangt werden kann, kann das
�Uberlappen ohne Verlust an Funktionalit�at verboten werden.

37

Universit�at Stuttgart

Software{Labor Kompensations{Sph�aren

6.3 Vergleich zwischen Transaktions{Sph�aren und

Kompensations{Sph�aren

Das Konzept der Kompensations{Sph�aren unterscheidet sich in einigen wesentlichen

Punkten von dem Konzept der Work
ow{Transaktionen. Kompensations{Sph�aren

stellen haupts�achlich die Eigenschaft der Atomizit�at bereit. Dabei werden keine

besonderen Anforderungen an die Aktivit�aten gestellt. Das Work
owsystem f�uhrt

keine undurchdringbare Isolation der Sph�aren durch. Zwischenergebnisse aus den

Aktivit�aten in der Sph�are k�onnen von allen Aktivit�aten auf Kosten der Konsistenz

genutzt werden. Es wird keine standardisierte Schnittstelle zur Einbindung in einen

transaktionalen Kontext gefordert. Die Aktivit�aten m�ussen nicht an einem Zwei{

Phasen{Commit{Protokoll teilnehmen k�onnen. Die Aktivit�aten m�ussen keine Re-

source Manager sein und ihre �Anderungen auf den Daten r�uckg�angig machen k�onnen.

Sie m�ussen kein Recovery implementiert haben.

Ein Schwachpunkt der Kompensations{Sph�aren ist die Tatsache, da� f�ur eine

Garantie der R�ucksetzbarkeit einer Sph�are gefordert werden mu�, da� Kompensati-

onsaktivit�aten nicht fehlschlagen d�urfen. Diese Forderung ist aber nur schwer ver-

wirklichbar.

Die Dauerhaftigkeit der Ergebnisse der Aktivit�aten kann durch das Work
owsy-

stem nur dann gew�ahrleistet werden, wenn es auch die Kontrolle �uber die in den

Aktivit�aten bearbeiteten Daten hat. Das ist aber nur vor und nach der Bearbeitung

einer Aktivit�at der Fall. Wenn das System aber w�ahrend der Bearbeitung einer Ak-

tivit�at abst�urzt, gehen alle �Anderungen verloren, die in den laufenden Aktivit�aten

gemacht wurden. Auf diese Weise kann ein inkonsistenter Datenzustand entstehen,

der eventuell zur Folge hat, da� die anschlie�ende Wiederholung der Aktivit�at fehl-

schlagen kann.

Kompensations{Sph�aren k�onnen entweder �uber die vorhandenen Mittel der

Work
ow{Spezi�kationssprache modelliert werden oder durch eine direkte Un-

terst�utzung in der Work
ow{Engine realisiert werden. Beim Modellierungsansatz

werden die Kompensationsaktivit�aten wie normale Aktivit�aten behandelt. Der Kon-

troll
u� zwischen den Kompensationsaktivit�aten mu� explizit festgelegt werden. Im

zweiten Ansatz wird der Zustand einer Sph�are durch die Engine verwaltet. Die En-

gine st�o�t bei Bedarf die Kompensationsaktivit�aten an. Es ist keine weitere Spe-

zi�kationen des Kontroll
usses n�otig, es sei denn, man m�ochte die Reihenfolge der

Kompensationsaktivit�aten explizit festlegen.

Der Vorteil der Kompensations{Sph�aren liegt darin, da� bei einer Realisierung

nur �Anderungen imWork
owsystem n�otig sind. Auf die Realisierung der Aktivit�aten

hat dieses Konzept keine Auswirkungen.

38

Universit�at Stuttgart

Software{Labor

7 Ausblick und Zusammenfassung

Work
ow{Transaktionen �uberdecken nur einen kleinen Teil der in Kapitel 3 aufgestell-

ten Anforderungen. Nur durch den gemischten Einsatz der in den darau�olgenden

Kapiteln vorgestellten L�osungsans�atze k�onnen fehlertolerante Work
ows gescha�en

werden. Insbesondere die Kombination von Work
ow{Transaktionen und dem Kon-

zept der Kompensationsaktivit�aten erh�oht die Fehlertoleranz:

7.1 Ausblick auf Erweiterungen

Work
ow{Transaktionen verwenden das aus den Datenbanken entlieheneKonzept der

ACID{Transaktionen, um die Abwicklung von Work
ows stabiler zu machen. Das

Konzept kann aber nicht auf ganze Work
ows angewandt werden, da dann die Pro-

bleme langandauerender Abl�aufe auftreten. Das Anwendungsgebiet der Work
ow{

Transaktionen mu� daher auf kleineWork
owabschnitte beschr�ankt werden. Es bleibt

aber weiterhin die Anforderung o�en, ganze Work
ows oder zumindest gro�e Teile

des Work
ows fehlertolerant ablaufen zu lassen. Beim Auftreten eines Fehlers m�ochte

man gewisse Teile oder sogar den ganzen Work
ow r�uckg�angig machen k�onnen, um

den Work
ow von einem konsistenten Zustand aus fortsetzen zu k�onnen. Die Auswir-

kungen des Work
ows sollten dabei r�uckg�angig gemacht oder kompensiert werden.

Diese Anforderung kann durch eine Verbindung von Work
ow{Transaktionen

mit dem Konzept der Kompensationsaktivit�aten erreicht werden. Work
ow{

Transaktionen werden dabei als Grundbausteine f�ur stabile Work
ows einsetzt. Auf

Work
owebene k�onnen sie damit als atomare Schritte angesehen werden. Mit dem

erfolgreichen Abschlu� einer Work
ow{Transaktion werden die Ergebnisse externa-

lisiert, d. h. andere Aktivit�aten k�onnen mit den Ergebnissen weiterarbeiten. Falls

nach dieser Freigabe ein Fehler auftreten sollte, der ein R�uckg�angigmachen der bis-

herigen Ergebnisse des Work
ows erforderlich machen w�urde, kann man das Konzept

der Work
ow{Transaktionen nicht mehr nutzen. Eine L�osung dieses Problems erh�alt

man, wenn man jeder Sph�are eine Kompensationsaktivit�at zuordnet, die semantisch

die Ergebnisse r�uckg�angig macht. Ein Work
ow kann dann als fehlertolerant angese-

hen werden, wenn es m�oglich ist, konsistent aus jeden Zwischenzustand des Work
ows

wieder auf den Anfangszustand zu kommen2. Dabei sollte es auch korrekte Zwischen-

zust�ande geben, auf die man alternativ zur�ucksetzen kann, um nicht zuviel Arbeit zu

verlieren, wenn der Work
ow weiterbearbeitet wird.

Robustheit kann erreicht werden, indem alle Aktivit�aten eines Work
ows in

Sph�aren eingebunden werden und zu jeder Sph�are eine M�oglichkeit bereitgestellt

wird, die Auswirkungen der Sph�are zu kompensieren. Wenn eine Aktivit�at nicht

in einer Sph�are eingebunden ist, darf sie nach ihrer Ausf�uhrung keine inkonsistenten

Auswirkungen hinterlassen.

Im realen Einsatz von Work
owsystemen darf diese scharfe Anforderung an fehler-

2siehe dazu auch das ConTracts Modell in [WR92]

39

Universit�at Stuttgart

Software{Labor Ausblick und Zusammenfassung

tolerante Work
ows abgeschw�acht formuliert werden. Hier erweist es sich als sinnvoll,

nur noch zu fordern, da� die wesentlichen Teile eines Work
ows fehlertolerant ablau-

fen m�ussen. Es wird in vielen Gesch�aftsprozessen Aktivit�aten geben, die nicht abge-

sichert werden m�ussen, da sie keine kritischen T�atigkeiten enthalten, die inkonsisten-

te Daten zur�uckliessen, wenn sie fehlschl�ugen. Diese Aktivit�aten werden unwesent-

lich genannt. Durch eine Kennzeichnung der Aktivit�aten, welche f�ur den Erfolg des

Gesch�aftsprozesses wesentlich sind und welche nicht, kann beim Auftreten eines Feh-

lers entschieden werden, ob und welche Ma�nahmen ergri�en werden m�ussen [EL95].

Unwesentliche Aktivit�aten m�ussen dann nicht an Work
ow{Transaktionen teilneh-

men und ben�otigten keine Kompensationsaktivit�at. Der Vorteil dieser Methode ist

der, da� bei dem Auftreten von Fehlern in einem unwesentlichen Teil des Work
ows

keine Fehlerbehandlung statt�ndet mu�, die zum Verlust von Arbeit f�uhren k�onnte.

Allerdings m�ussen damit auch die Garantien f�ur eine fehlertolerante Ausf�uhrung auf

die wesentlichen Teile des Work
ows beschr�ankt werden.

Flankierend zu der Realisierung dieses Konzeptes sollten auch Konzepte wie Ad{

hoc{Modi�kationen und alternativer Pfade in das Work
owsystem integriert werden.

Weiterhin m�ussen auf Systemebene die notwendigen Ma�nahmen zur Erlangung von

Fehlertoleranz realisiert sein. Eine verl�a�liche Daten�ubertragung, die durch Transak-

tionen abgesichert ist, sowie die redundante Auslegung der einzelnen Softwarekom-

ponenten sind hier denkbar.

Durch den hier vorgeschlagenen Weg wird die Bearbeitung von Work
ows zu-

verl�assiger und fehlertoleranter. Das Work
owsystem kann
exibler eingesetzt werden

und erschlie�t sich damit ein gr�o�eres Anwendungsfeld.

7.2 Zusammenfassung

Zu Beginn dieses Berichts wurden allgemeine Anforderungen an ein robustes und

fehlertolerantes Work
owsystem aufgestellt. In einem Fehlermodell f�ur Work
ow{

Management{Systeme wurden verschiedene Klassen von Fehlerbehandlungen ein-

gef�uhrt und Fehlerarten nach ihrem Ort des Auftretens klassi�ziert. Geordnet nach

den Fehlerbehandlungsarten transparent, automatisch und manuell wurden anschlie-

�end die allgemeinen Anforderungen in funktionale Anforderungen verfeinert. Tei-

le diese Anforderungen k�onnen durch die vorgeschlagenen L�osungskonzepte erf�ullt

werden: Die Modellierung der Fehlerbehandlung mit vorhandenen Sprachmitteln ist

einfach, f�uhrt aber zu aufwendigen Work
ows. Wenn Aktivit�aten wegen eines Abstur-

zes keinen R�uckgabewert mehr liefern k�onnen, versagt diese Methode. Alternative

Aktivit�aten und alternative Pfade imWork
ow erh�ohen die Flexibilit�at der modellier-

ten Fehlerbehandlung im Work
ow. Mit dem Konzept der Ad{hoc{Modi�kationen

k�onnen hoch
exible Work
ow realisiert werden. Insbesondere kann man mit diesem

Konzept auf unerwartete Gegebenheiten reagiert werden.

Dem Konzept der Work
ow{Transaktionen wurde ein eigenes Kapitel gewidmet.

Darin wurde zuerst das aus demDatenbankbereich �ubernommeneKonzept der ACID{

Transaktionen erl�autert. Die direkte �Ubernahme dieses Konzepts in Work
owsysteme

40

7.2 Zusammenfassung

Universit�at Stuttgart

Software{Labor

bereitet allerdings Probleme, die insbesondere mit der langen Laufzeit von Work
ows

zusammenh�angen. Dieses Problem tritt auch bei speziellen Datenbankenanwendun-

gen auf und wurde dort mit Hilfe erweiterter Transaktionsmodelle angegangen. Ei-

nige der in der Literatur beschriebenen Modelle wurden in diesem Bericht mit ihren

wesentlichen Merkmalen umrissen.

Durch die Einschr�ankung des Einsatzbereichs von ACID{Transaktionen auf eine

kleine Menge spezieller, sogenannter ACID{Aktivit�aten erh�alt man das Konzept der

Work
ow{Transaktionen. Eine Menge von ACID{Aktivit�aten kann zu einer Sph�are

zusammengefa�t werden. In einer Sph�are l�auft genau eine Work
ow{Transaktion ab,

die dieselben Eigenschaften wie eine ACID{Transaktion in Datenbanken hat.

Da die Anforderungen an ACID{Aktivit�aten sehr hoch sind und diese �ublicher-

weise von existierenden Aktivit�aten nicht erf�ullt werden, wurde ein weiteres Konzept

vorgestellt. Kompensationssph�aren erlauben das Zur�ucksetzen der Sph�are auf den

Anfangszustand durch die Ausf�uhrung von Kompensationsaktivit�aten. Die Reihen-

folge der auszuf�uhrenden Kompensationsaktivit�aten kann dabei auf mehrere Arten

festgelegt werden.

Abschlie�end wurde kurz skizziert, wie ein Verbund der Konzepte Work
ow{

Transaktionen und Kompensationsaktivit�aten die Abwicklung eines Work
ows feh-

lertoleranter machen kann.

41

Universit�at Stuttgart

Software{Labor Literatur

Literatur

[BS96] Bildstein, Hubert ; Schreyjak, Stefan: Der Einsatz von Work
ow{

Transaktionen in FlowMark Universit�at Stuttgart, Software{Labor. 1996.

{ Fakult�atsbericht Nr. 1996/18, Software{Labor Bericht SL{4/96

[EL95] Eder, J. ; Liebhart, W.: The Work
ow Activity Model WAMO. In:

Proc. 3. Int. Conference on Cooperative Information Systems (CoopIS).

Wien, 1995, S. 87{98

[GMS87] Garcia-Molina, Hector ; Salem, Kenneth: SAGAS. In: Proceedings

ACM SIGMOD . San Francisco, 1987, S. 249{259

[GR93] Gray, Jim ; Reuter, Andreas: Transaction Processing. Morgan Kauf-

mann, 1993

[Ley95] Leymann, F.: Supporting Business Transactions via Partial Backward

Recovery in Work
ow Management Systems. In: Lausen, G. (Hrsg.):

Proc. Datenbanksysteme in B�uro, Technik und Wissenschaft . Berlin :

Springer, Maerz 1995, S. 51{70

[Mos81] Moss, J. E. B. Nested Transactions: An Approach to Reliable Distributed
Computing. MIT Laboratory for Computer Science, Cambridge, Massa-

chusetts 1981 { PhD Thesis

[OTS94] Object Management Group (OMG): Object Transaction Service. August

1994. { Document No. 94.8.4

[SB96] Schreyjak, Stefan ; Bildstein, Hubert: Beschreibung des prototypisch
implementieren Work
owsystems Surro Universit�at Stuttgart, Software{

Labor. 1996. { Fakult�atsbericht Nr. 1996/19, Software{Labor Bericht

SL{5/96

[Sch93] Schmidt, Ursula: Transaktionskonzepte in der Fertigung. In: Proc.

Datenbanksysteme in B�uro, Technik, Wissenschaft . Braunschweig, M�arz

1993

[WR92] W�achter, Helmut ; Reuter, Andreas: The ConTract Model. In:

Elmagarmid, A. K. (Hrsg.): Database Transaction Models for Advanced
Applications. San Mateo : Morgan Kaufmann, 1992, Kapitel 7, S. 219{263

[ZNBB94] Zhang, Aidong ; Nodine, Marian ; Bhargava, Bharat ; Bukhres, Om-

ran: Ensuring Relaxed Atomicity for Flexible Transactions in Multidata-

base Systems. In: ACM SIGMOD , Association of Computing Machinery,

1994, S. 67{78

42

