Universitat Stuttgart
Software—Labor

Projekt 1.1:
Workflow—Management—Systeme

Breitwiesenstrafle 20-22
D-70565 Stuttgart

Fakultitsbericht Nr. 1996/18
Software-Labor Bericht Nr. SL-4/96
CR-Klassifikation H.2.0, H.2.4

Der Einsatz von
Workflow—Transaktionen

in FlowMark *

Hubert Bildstein
Stefan Schreyjak

Stefan.Schreyjak@informatik.uni-stuttgart.de

20. Dezember 1996

Diese Arbeit wird von der IBM Deutschland Entwicklung GmbH und dem Ministerium fiir
Wissenschaft und Forschung, Baden Wiirttemberg, unterstiitzt.

Universitdt Stuttgart

Software—Labor

Zusammenfassung

In diesem Bericht wird skizziert, wie das Konzept der Workflow—
Transaktionen im Workflowsystem FlowMark angewendet werden kann.
Dazu wird zuerst ein einfaches funktionales Modell des Workflowsy-
stems FlowMark Version 2.1 aufgestellt, das auf Veroffentlichungen
iiber FlowMark basiert. Anschlieend werden die wichtigsten Begrif-
fe des Konzepts der Workflow—Transaktionen erlautert. Die zur Rea-
lisierung von Workflow—Transaktionen notwendige Technologien, COR-
BA und OTS, werden kurz beschrieben. Ausgehend von dem funktio-
nalen Modell werden dann die notwendigen Anderungen erértert, die in
FlowMark-Systemkomponenten vorgenommen werden miissen. Verschie-
dene Losungsansitze fiir mehrere identifizierte Probleme werden vorge-
stellt und abgewédgt. Im Anschlufl wird ein Beispielprogramm vorgestellt,
mit dem SOM und OTS von uns evaluiert worden sind. Im Beispiel
wird ein einfacher Kontoserver realisiert, der im Rahmen einer Uberwei-
sungstransaktion angesprochen wird. Ausfiihrliche Codefragmente ver-
vollstandigen die Erlauterungen zum Beispielprogramm.

Universitdt Stuttgart

Inhaltsverzeichnis Software—Labor

Inhaltsverzeichnis

1

Aufbau und Funktionsweise von FlowMark 5
1.1 Die Systemarchitektur von FlowMark V2.1 5
1.2 PFunktionsweise von FlowMark 6

6

1.3 Ein funktionales Modell von FlowMark

Zugrundeliegende Technologie und Konzepte 7
2.1 Workflow—Transaktioneno 7
22 OMA und CORBA 8
2.3 Der Object Transaction Service der OMG 10
Veranderungen an FlowMark 15
3.1 Verdnderungen an der Workflow—Engine 15
3.2 Verdnderungen am Runtime-Client, 19
3.3 Verdnderungen an der Buildtime-Komponente 20
3.4 Verdnderungen an der Kommunikationsstruktur 21

Beispielhafte Anwendung von OTS: eine transaktionale Konto—Klasse 23

4.1 Interface-Definition Lo 23
4.2 Die Client-Implementierung 24
4.3 Die Implementierung der Konto—-Klasse 26
4.4 Ablaufdes 2PCo o 30

Universitdt Stuttgart

Software—Labor Inhaltsverzeichnis

Universitdt Stuttgart
Software—Labor

1 Aufbau und Funktionsweise von FlowMark

In diesem Kapitel wird beschrieben, wie FlowMark aufgebaut ist und wie die Kompo-
nenten miteinander arbeiten. Das Wissen iiber den Aufbau und die Funktionsweise
ist den bisherigen Veréffentlichungen (vor allem in [AGK95]) entnommen worden.
Mit diesem Kapitel soll die Basis fiir das Verstandnis der weiteren Kapitel gelegt
werden.

1.1 Die Systemarchitektur von FlowMark V2.1

Buildtime-
Client \
Database-
Server
FlowMark- FlowMark-
Server Server
Runtime- Runtime- Runtime-
Client Client Client
Program- Program- Program-
Execution- Execution- Execution-
Client Client Client
Application Application Application
Program Program Program

Abbildung 1: Die Systemarchitektur von FlowMark V2.1

Die Architektur von FlowMark in der Version 2.1 ist in der Abbildung 1 dargestellt.
Die Kéasten sind Komponenten von FlowMark. Die dicken Linien symbolisieren mogli-
che Netzwerkverbindungen zwischen Rechnerknoten. Das Workflowsystem besteht
aus einer zentralen Datenbank, aus einem oder mehreren FlowMark—Servern und aus
Runtime—Clients, die die Benutzerschnittstelle bilden. Ein Buildtime—Client dient
zur Modellierung von Workflows. Ein Program-Execution—Client ruft die Anwen-
dungsprogramme auf.

Die zentrale Komponente ist der Datenbankserver. Dort werden alle Prozefidefini-
tionen und die Daten zur Steuerung der Prozesse gespeichert. Die FlowMark—Server
greifen in der Rolle eines Datenbank—Clients auf die Workflow—Datenbank zu. Aufer
der Buildtimekomponente und den FlowMark—Servern diirfen keine anderen Program-
me direkt auf die Datenbank zugreifen. In der Version 2.1 wird das objektorientierte
Datenbanksystem ,,Objectstore” eingesetzt. In spiteren Versionen soll die relationale
Datenbank DB2 verwendet werden.

Universitdt Stuttgart

Software—Labor 1 Aufbau und Funktionsweise von FlowMark

Die Buildtimekomponente ist ein Programm zur grafischen Modellierung von
Geschiftsprozessen (Workflows) und Organisationsstrukturen. Die erstellten Work-
flows kénnen durch Animation getestet werden.

Im FlowMark—Server ist die Workflow—Engine enthalten, die Workflows ausfiihrt.
Der Server bestimmt die nachsten ausfiihrbaren Aktivitdten und verteilt sie anhand
des Organisationsmodells und der Workflowdefinition auf die Arbeitslisten der Bear-
beiter. Anfragen an die Datenbank werden iiber einen FlowMark—Server abgewickelt.

Ein Runtime—Client bildet die Benutzeroberfliche des Workflowsystems fiir den
Bearbeiter. Er kann damit auf seine Arbeitsliste zugreifen, Aktivitdten und Prozesse
starten und den Zustand eines laufenden Prozesses iiberwachen.

Der Program-Execution—Client wird vom FlowMark—Server zum Start eines An-
wendungsprogramms im Rahmen einer Aktivitat benutzt. Der Execution—Client in-
formiert den FlowMark—Server {iber die Beendigung der Aktivitat. Beliebige Anwen-
dungsprogramme koénnen innerhalb einer Aktivitdt ausgefithrt werden.

1.2 Funktionsweise von FlowMark

Im folgenden wird exemplarisch beschrieben, wie eine Aktivitat ausgefithrt wird. Die
Benutzer wahlt eine Aktivitdt auf seiner Arbeitsliste zum Start aus. Der Runtime-
Client schickt dem FlowMark—Server eine entsprechende Nachricht. Dieser fithrt die
entsprechenden Operationen zum Start einer Aktivitdt aus und aktualisiert den Zu-
stand auf der Datenbank. Dann wird der Program—Execution—Client angewiesen, das
entsprechende Anwendungsprogramm zu starten. Der Runtime—Client wird tiber den
Start des Programms informiert. Nach Beendigung des Anwendungsprogramms be-
nachrichtigt der Program-Execution—Client den FlowMark—Server iiber das Ereignis.
Der Server fiithrt die Operationen zum Beenden einer Aktivitét auf der Datenbank aus
und informiert den Runtime—Client vom Ende der Aktivitat. Der Server berechnet
dann die néchsten auszufithrenden Aktivitdten und verteilt sie auf die Arbeitslisten.

Das Funktionsprinzip der Workflow—Engine basiert darauf, auf Nachrichten aller
von ithm abhingigen Clients zu warten, die entsprechenden Operationen auf der Da-
tenbank auszufithren und eventuell weitere Bearbeitungsschritte mittels Nachrichten
an die Clients anzustoflen.

1.3 Ein funktionales Modell von FlowMark

Wir kénnen also vereinfachend annehmen, dafl die Workflow—Engine sukzessive Nach-
richten aus einer persistenten Warteschlange liest. Auf Nachrichten mufl im allgemei-
nen mit einem Zustandsiibergang des Workflows bzw. der Aktivitdten im Workflow
reagiert werden. Um die Workflow—Engine vor inkonsistenten Daten zu schiitzen,
die bei einem Absturz der Engine oder beim Auftreten eines anderen Fehlers erzeugt
werden kénnten, muf} dieser Zustandsiibergang durch eine Transaktion vor Fehlern
geschiitzt werden. Das Warten auf Nachrichten und das Verarbeiten der Nachrichten
im Rahmen von Transaktionen kann in einem einzigen Thread stattfinden.

Universitdt Stuttgart

Software—Labor

2 Zugrundeliegende Technologie und Konzepte

In diesem Kapitel sollen zuerst die Grundbegriffe von Workflow—Transaktionen defi-
niert werden. Danach werden die Konzepte und die Technologie von CORBA und
OTS kurz beschrieben, um eine Verstandigungsbasis zu schaffen.

2.1 Workflow—Transaktionen

Das Konzept der Workflow—Transaktionen wird ausfiithrlich in [SB96b] beschrieben.
Hier sollen nur nochmals die wesentlichen Begriffe und Konzepte erwédhnt werden.

Eine Sphdre ist eine Menge von Aktivitdten in einem Workflow. Eine Sphére muf
keine Zusammenhangskomponente im Aktivitdtennetz bilden. Eine Sphére wird zur
Modellierungszeit des Workflows spezifiziert. In der Abbildung 2 ist eine Sphéare in
ein Aktivitdtennetz eingezeichnet.

C O Legende:

O ACID-Aktivitat
O normale Aktivitat
— Daten-/Kontrollflufd

Sphére

Abbildung 2: Eine Sphére in einem Aktivitdtennetz

Als Eingang einer Sphére wird der Kontroll- bzw. Datenflufl bezeichnet, der von
einer Aktivitdt aulerhalb der Sphére zu einer Aktivitat innerhalb der Sphare fiihrt.
Entsprechen wird als Ausgang der Kontroll- bzw. Datenflufl definiert, der von einer
Aktivitat innerhalb der Sphére zu einer Aktivitdat aulerhalb der Sphére fithrt. Fine
Sphére kann mehrere Ein— und Ausgange besitzen. In der Abbildung 2 hat die Sphére
einen Fingang und zwei Ausgange.

In einer Workflow—Transaktion wird eine Menge von Aktivitéten (d. h. eine Sphéare
im Workflowmodell) als eine ACID-Transaktion ausgefithrt. Um dies im Rahmen
eines Workflowsystems machen zu kénnen, miissen bestimmte Anforderungen an die
Aktivitdaten gestellt werden.

Als ACID-Aktivitdt wird eine Aktivitdt bezeichnet, die an einer Workflow—
Transaktionen teilnehmen kann. Sie mufl die Daten, auf die sie zugreift, entweder
selbst als Resource Manager verwalten oder einen externen Resource Manager zum
Zugriff verwenden. Sie mufl eine OTS—konforme Schnittstelle besitzen.

Universitdt Stuttgart
Software—Labor 2 Zugrundeliegende Technologie und Konzepte

Mit einer Sphére wird festgelegt, welche Aktivitaten in einem Geschéftsprozefl an
einer Workflow—Transaktion teilnehmen. Folgende strukturelle Bedingungen miissen
von einer Sphére erfiillt werden [SB96D].

o Innerhalb einer Sphére darf keine SubprozeBaktivitdt vorkommen. Blécke sind
dagegen erlaubt.

o Alle Aktivitdten innerhalb einer Sphéare miissen ACID—Aktivitdten mit einer
OTS-konformen Schnittstelle sein. Fiir die Aktivitaten in einem Block innerhalb

der Sphiare muf} dieselbe Bedingung gelten.

o Iis darf keinen Pfad von einem Ausgang einer Sphiare auf einen Eingang dersel-
ben Sphéare geben.

e Sphiéren diirfen sich nicht iiberlappen. Geschachtelte Sphéaren sind erlaubt.

2.2 OMA und CORBA

Die Object Management Group (OMG) ist ein Firmenkonsortium, das im April 1989
durch eine Reihe namhafter Hersteller gegriindet worden ist. Die OMG hat sich zum
Ziel gesetzt, grundlegende Standards im Bereich der objektorientierten Softwaretech-
nologie zu entwickeln.

Unter dem Begriff Object Management Architecture (OMA) [Obj90] wurde eine
Referenzarchitektur zur Realisierung von verteilten objektorientierten Anwendungen
vorgestellt. Die OMA basiert auf einem verallgemeinerten Objektmodell, mit dem ein
moglichst breites Feld bereits bestehender und zukiinftiger Objektmodelle beschrie-
ben werden kann. In der Architektur wird eine gemeinsame Terminologie entwickelt,
mit der die verschiedenen konkreten Objektmodelle beschrieben werden kénnen. In
Abbildung 3 sind die wesentlichen Komponenten der OMA Architektur abgebildet.

Der Object Request Broker (ORB) agiert als Kommunikationsmittler zwischen Ob-
jekten und bildet so die Basis fiir die Interoperabilitdt von Objekten in heterogenen
Netzwerken. Er stellt die Infrastruktur bereit, damit Objekte plattformiibergreifend
und unabhéngig vom verwendeten Objektmodell (bzw. der Programmiersprache) mit-
einander iiber Methodenaufrufe kommunizieren kénnen.

Die Object Services stellen eine allgemeine Laufzeitumgebung bereit, die von einem
breiten Spektrum von Objekten genutzt werden kénnen, um ihre jeweiligen Aufgabe
zu erfiillen. Dazu werden in den Object Services verschiedene Funktionen standardi-
siert. So sorgen Teile des Object Services fiir die physische Speicherung der Objekte.
Andere Teile verwalten Klassendefinitionen und deren Verhéltnisse untereinander.
Es gibt Dienste, die Instanzen von Klassen erzeugen, aufrufen, kopieren, migrieren
und 16schen kénnen. Objekte oder Klassen kénnen durch Suchbedingungen gefunden
werden. Moglichkeiten zur Sicherung der Integritdt in einzelnen Objekten und der
Konsistenz zwischen mehreren Objekten werden angeboten. Object Services miissen
auf jeder Plattform verfiighar sein.

Universitdt Stuttgart
2.2 OMA und CORBA Software—Labor

Abbildung 3: Die Komponenten der Objekt Management Architecture (OMA)

Die Common Facilities miissen dagegen nur optional verflighar sein. Sie definie-
ren Objektschnittstellen fiir typische Funktionen in speziellen Anwendungsbereichen.
Beispiele fiir solche Common Facilities sind Schnittstellen zum Drucken von Doku-
menten, zum Versenden von Email oder zum Zugriff auf Datenbanken. Anwendungen
kénnen diese Funktionen in einer standardisierten Weise nutzen.

Die Application Objects sind die Anwendungen in der klassischen Sichtweise. Sie
nutzen die in den anderen Komponenten der OMA angebotenen Dienste und kombi-
nieren diese fiir ihren speziellen Anwendungsfall.

Die Common ORB Architecture and Specification (CORBA) [Obj93] definiert ein
Rahmenwerk fiir unterschiedliche ORB-Implementierungen, damit diese ihre Dienste
mit derselben Schnittstelle anbieten kénnen. Ein Client nutzt die Dienste des ORBs,
um mit einer Objektinstanz ortstransparent zu kommunizieren (siehe Abb. 4). Die
standardisierten Schnittstellen des ORBs und die standardisierte Beschreibung der
Schnittstelle der Object Implementation durch eine Interface Definition Language
(IDL) erlauben den Austausch der Object Implementation bzw. des Clients durch
eine andere Portierung, d. h. ein unterschiedlich implementiertes Objekt mit gleicher
Funktionalitét.

Das System Object Model (SOM) zusammen mit der verteilten Variante Distributed
SOM (DSOM) ist die Implementierung des CORBA Standards durch die Firma IBM.
In der Version 3.0 sind zusammen mit dem ORB auch verschiedene Object Services

realisiert. Insbesondere der Object Transaction Service (OTS) ist Gegenstand dieses
Berichts.

Universitdt Stuttgart
Software—Labor 2 Zugrundeliegende Technologie und Konzepte

Object
I mplementation

Request

ORB

Abbildung 4: Ein Client benutzt den ORB zum Aufruf einer Methode in einer Object

Implementation

2.3 Der Object Transaction Service der OMG
OTS ist die Spezifikation eines Object Services im Rahmen der OMA durch die OMG.

OTS unterstiitzt die Abwicklung von Transaktionen in verteilten Client/Server An-
wendungen. Fin Transaktions—Dienst definiert Schnittstellen zwischen Objekten. Er
unterstiitzt nicht direkt die ACID-FEigenschaften einer Transaktion, sondern imple-
mentiert einen Protokollautomaten, der die an der Transaktion teilnehmenden Ob-
jekte so koordiniert, dafl die Transaktion die ACID FEigenschaft garantieren kann.
Die teilnehmenden Objekte kénnen weitere Object Services der OMG nutzen, wie
den Persistence Object Service (POS) oder den Concurrency Control Service, um die
ACID-FEigenschaften zu erreichen. Die Aufgabe von OTS ist die Verwaltung des
Transaktionskontexts und die Durchfithrung des Zwei-Phasen—Commit—Protokolls
(2PC). OTS koordiniert dabei alle Teilnehmer einer Transaktion so, daf sie mit einem
einheitlichen Ergebnis — erfolgreich oder nicht erfolgreich — die Transaktion abschlie-
Ben. OTS stoBt dazu ein commit oder ein rollback in den teilnehmenden Objekten
an. Die Objekte miissen diese Funktionen selbst ausfithren. Gegebenenfalls miissen
diese Objekte auch ein selbstiandiges Recovery ausfithren kénnen.

Folgende Objekte spielen bei einer Transaktion, die OTS konform ausgefiihrt wird,
eine Rolle. In Abbildung 5 ist das Zusammenspiel der OTS Objekte dargestellt.

e Transactional Client:
Ein Transactional Client ist ein Anwendungsprogramm, das Aufrufe an ein
Transactional Object macht, die durch eine Transaktion geschiitzt werden sol-
len. Der Initiator einer Transaktion ist zwangslaufig ein Transactional Client,
es gibt aber auch Clients, die nicht Initiator einer Transaktion sind.

e Transactional Object:
Ein Transactional Object ist ein Objekt, das bei einem Aufruf im Rahmen ei-
ner Transaktion vom Transaktionskontext in irgendeiner Weise beeinfluflt wird.
Alle Teilnehmer an einer Transaktion sind Transactional Objects. Ein Objekt
ist ,transactional®, aber nicht ,recoverable“, wenn das Objekt seinen Zustand

10

Universitdt Stuttgart

2.3 Der Object Transaction Service der OMG Software—Labor

R

Transactional
Client

Distributed Client/Server Application

WS"reransmtiond Recoverable
ver Server

Recoverable
Object

Transactional

Object_/ Transactional
Operation

Transactional
Operation

begin or end may register prepare,
Transaction force rollback resource | commit
rollback

Transaction Service

Abbildung 5: Das Zusammenspiel der in OTS definierten Komponenten

nicht selbst wie ein Resource Manager verwaltet, sondern z.B. iiber externe
Recoverable Objects.

e Recoverable Object:

Ein Recoverable Object ist per Definition ein Transactional Object. Es verwal-
tet seine internen Daten so, daf} es jederzeit auf Anforderung des Transaktions—
Dienstes entweder ein Commit oder ein Rollback fiir einen bestimmten Trans-
aktionskontext durchfithren kann. Ein Recoverable Object mufl am Terminie-
rungsprotokoll des Transaktions—Diensts teilnehmen (typischerweise ein 2PC-

Protokoll).

Transactional Server:

Der transaktionale Server besitzt mindestens ein Transactional Object, hat aber
keinen eigenen wiederherstellbaren Zustand. Er kann den Abbruch einer Trans-
aktion erzwingen, nimmt aber nicht am 2PC teil.

Recoverable Server:

Ein Recoverable Server beinhaltet mindestens ein Recoverable Object. Er
registriert seine Recoverable Objects mittels von Resource Objects beim
Transaktions—Dienst als Teilnehmer an Transaktionen.

Resource Object:

Ein Resource Object ist das Bindeglied zwischen einem Recoverable Object und
einer Transaktion. Es muf} dafiir sorgen, dafl die Ressourcen des Recoverable

11

Universitdt Stuttgart
Software—Labor 2 Zugrundeliegende Technologie und Konzepte

Objects entsprechend der Entscheidung des 2PC—Koordinators verwaltet wer-
den. Ein Recoverable Object kann mehrere Resource Objects besitzen, falls es
an mehreren Transaktionen gleichzeitig teilnimmt, ein Resource Object kann
aber nur zu einer Transaktion gehoren (siehe Abbildung 6).

TA

Coordinator)™~.

Terminator

;)
/ \
/ \
/ \
\
\
\
\
\
\
\

TA 2

Coordinator) 4- - _

Terminator

1
1
1
1
1
1
1
1
1
1
i
é?
c
=
[@]
D

- — — - "istregistriert bei"

Abbildung 6: Zusammenhang Resource — Coordinator

Der Transaktions—Dienst besteht aus Objekten diverser Klassen mit verschiedenen
Aufgaben. Die wichtigsten davon sind:

e Factory:
Die create-Methode eines Objektes dieser Klasse erzeugt einen neuen Transakti-
onskontext (top—level) und liefert ein Control-Objekt zuriick. Uber die Factory
wird eine Transaktion initiiert. Alternativ dazu kann das Current-Objekt be-
nutzt werden (siehe unten).

e Control:
Ein Control-Objekt reprasentiert den Transaktionskontext. Es bietet die Me-
thoden get_terminator und get_coordinator an. Diese liefern Objekte der folgen-
den zwei Klassen.

e Terminator:
Diese Klasse bietet dem Client die Methoden zum Beenden einer Transaktion,
commit und rollback.

12

Universitdt Stuttgart
2.3 Der Object Transaction Service der OMG Software—Labor

e Coordinator:
Beim Coordinator-Objekt werden die Resource-Objekte einer Transaktion
registriert (Methode register_resource). Alle Recoverable Objects, die ihre
Resource-Objekte beim Coordinator-Objekt der Transaktion registriert haben,
nehmen am Terminierungsvorgang der Transaktion teil. Weiterhin bietet diese
Klasse eine Anzahl von Methoden zur Abfrage von Statusinformation an.
Coordinator und Terminator steuern zusammen den Terminierungsvorgang

(2PC).

Ein Client, der eine Transaktion beginnen will, erzeugt sich ein Factory—Objekt
und fiihrt die create-Methode darauf aus (Abb. 7 links). Der Verweis auf das Control-
Objekt, den diese Methode zuriickliefert, wird gespeichert. Um eine Transaktion zu
beenden, ruft man get_terminator auf dem Control-Objekt auf. Man erhéilt eine
Referenz auf das Terminator-Objekt der Transaktion und kann auf diesem commit
oder rollback aufrufen.

Direktes Kontextmanagement Indirektes K ontextmanagement

begin
create commit
Current | rollback
suspend
resume
get_status

get_control

|

r------=1 Coordinator | 9&-staus
liefert Ré‘ferenZ

|

\ N

|] commit

ffffffff = Terminator | (oiiback

Abbildung 7: Steuerung einer Transaktion iiber Factory — Current

Alternativ dazu kann ein Client eine Transaktion iiber ein Objekt der Klasse
Current beginnen. Ein Objekt dieser Klasse bietet zum Start einer Transaktion die
begin-Methode, zum Beenden commit und rollback, das Abfragen von diversen Sta-
tusinformationen und weitere Methoden an (Abb. 7 rechts). Die Verwendung eines
Current—Objektes anstatt der oben beschriebenen Objekte ist u. a. eine Vereinfachung
fiir den Client—Programmierer, und beide Vorgehensweisen sind bis zu einem gewis-
sen Grad dquivalent. Auch der Aufruf von begin auf dem Current—Objekt erzeugt
natiirlich die Control-, Coordinator— und Terminator—-Objekte, diese miissen aber im
Client—Code nicht explizit beriicksichtigt werden. Die Verwendung der einen oder
anderen Vorgehensweise impliziert aber auch eine bestimmte Methode der Kontext—
Propagierung.

13

Universitdt Stuttgart
Software—Labor 2 Zugrundeliegende Technologie und Konzepte

Wie wird einem Transactional Object der zugehorige Transaktionskontext mitge-
teilt, wenn ein Client nach der Initiierung einer Transaktion dieses aufruft? Hier gibt
es zwei Moglichkeiten: Die implizite Propagierung und explizite Propagierung.

Welche Propagierungsmethode verwendet werden muf}, bestimmt das Transac-
tional Object. Es ist entweder auf die eine oder auf die andere Methode ausgelegt.
Explizite Propagierung bedeutet, daf jede Methode des Transactional Objects, die un-
ter Transaktionsschutz ablaufen soll, einen explizit aufgefithrten Parameter in Form
eines Control~Objekts besitzt. Der Client tibergibt einen Verweis auf dieses Objekt
explizit bei jedem Aufruf. Das Control-Objekt reprasentiert den jeweiligen Transak-
tionskontext.

Implizite Propagierung bedeutet, daf die Ubermittlung des Transaktionskontextes
durch das System iibernommen wird.

Die Verwendung eines Current—Objektes zur Transaktionsinitiierung und Termi-
nierung nennt man indirektes Kontextmanagement, da der Transaktionskontext nicht
in Form des Control-Objektes direkt vom Client verwaltet wird. Entsprechend liegt
bei Verwendung einer Factory direktes Kontextmanagement vor. Wird eine Transak-
tion mittels eines Current—Objekts gestartet, ist automatisch der Programm-Thread,
der dies durchfiithrt, mit dem Transaktionskontext assoziiert. Dies ist die Vorausset-
zung fiir implizite Propagierung. Die explizite Propagierung hat als Voraussetzung
das Vorhandensein des Control-Objekts der Transaktion, in deren Kontext eine Ope-
ration durchgefithrt werden soll. Dies ist bei direktem Kontextmanagement gegeben.

Typischerweise wird man die Kombinationen indirektes Kontextmanagement — im-
plizite Propagierungund direktes Management — explizite Propagierung verwenden. Es
sind aber auch Mischformen moglich bzw. nétig, namlich dann, wenn zwei Transac-
tional Objects, die unterschiedliche Propagierungsarten fordern, an einer Transaktion
teilnehmen miissen. Die Kombination indirekt — explizit ist dadurch moglich, daf die
Current—Klasse die get_control-Methode anbietet, die das zur Transaktion zugehorige
Control-Objekt liefert. Dieses kann dann vom Client als Parameter an eine Methode
eines Transactional Objects tibergeben werden. Die Kombination direkt — implizit
ist dadurch zu erreichen, dafl der Client ein Current-Objekt erzeugt und mittels
der resume-Methode, mit dem Control-Objekt als Parameter, seinen Thread an die
Transaktion bindet. Ab dann sind Aufrufe mit impliziter Propagierung moglich. Es
kann jeweils zwischen den Kontextmanagementarten gewechselt werden.

Am héufigsten ist die Kombination indirekt — implizit anzutreffen, da zum einen
die Verwendung eines Current-Objekts weniger Programmieraufwand bedeutet, zum
anderen meist implizite Propagierung seitens der Transactional Objects gefordert
wird.

Es bleibt die Frage, ob die Bindung des Transaktionskontextes an den Programm-—
Thread bei Verwendung des Current—Objekts zu starr ist. Beim direkten Kontextma-
nagement kann durch geeignete Verwaltung der Transaktionskontexte eine transak-
tionale Operation in der jeweils gewiinschten Transaktion ausgefithrt werden. Beim
indirekten Management muf} dazu erst die Transaktion verlassen werden. Das tem-
porare Aufheben der Bindung zwischen Transaktion und Programmthread ist durch

14

Universitdt Stuttgart

Software—Labor

den Aufruf der Methode suspend des Current—Objekts moglich. Mit resume kann die-
ser Vorgang umgekehrt werden und der Thread wieder an einen Transaktionskontext
gebunden werden.

3 Veranderungen an FlowMark

In diesem Kapitel werden die Verdnderungen beschrieben, die einzelne FlowMark—
Komponenten erfahren miissen, damit das Konzept der Workflow—Transaktionen in
FlowMark eingesetzt werden kann. Die vorgestellten Verdnderungen basieren zum
einen auf den Vermutungen iiber die Funktionsweise der FlowMark Workflow—Engine,
die wir in Kapitel 1.2 beschrieben haben. Dort wurde ein funktionales Modell von
FlowMark entwickelt, das wir am Ende dieses Kapitels so erweitern, dafl mit der
Workflow-Engine Workflow—Transaktionen ausgefithrt werden kénnen.

Zum anderen basieren die Vorschldge auf den Erfahrungen, die aus der Implemen-
tierung des prototypischen Workflowsystems ,,Surro* gewonnen worden sind. Eine
Beschreibung des Workflowsystems Surro findet sich in [SB96a].

Falls einige der angestellten Vermutungen falsch sind, kénnen die beschriebenen
Verdnderungen unnétig oder falsch sein.

3.1 Verinderungen an der Workflow—Engine

Eine Workflow-Engine, die Workflow—Transaktionen beherrscht, unterscheidet sich
von der Workflow—Engine aus dem funktionalen Modell darin, daB sie eine ,zweite
Art“ von Transaktionen unterstiitzt. Es gibt weiterhin Transaktlonen zum Andern
eines Zustandes, die durch das Fintreffen bestimmter Nachrichten gestartet werden.
Die zweite Art der Transaktionen sind die Workflow—Transaktionen, die aus Sicht der
Engine als Verschmelzung aller Zustandsénderungs—Transaktionen innerhalb einer
Sphére angesehen werden kénnen.

Eine Sphére besteht aus einer Menge von Aktivitdten. Diese Aktivitaten durch-
laufen bei der Abarbeitung eine Menge von Zustandsiibergéngen, die jeweils in der ur-
spriinglichen Workflow—Engine durch einzelne Transaktionen geschiitzt werden. Diese
Menge von Transaktionen wird durch die neue Workflow—Engine zusammen mit den
Operationen der Aktivitdten in einer einzigen Transaktion ausgefiihrt.

Eine Workflow—Transaktion muf} spétestens nach der Zustandsénderung begon-
nen werden, mit der nach einem Rollback der Workflow—Transaktion die Sphére noch
korrekt wiederholt werden kann. Typischerweise ist dies die Zustandsdnderung der
ersten erreichten Aktivitdt in der Sphére, die die Aktivitdt in einen startbaren Zu-
stand tiberfithrt. Bei einem Zuriicksetzen auf diesen Zustand kann die Sphére wie-
derholt werden. Die Workflow—Transaktion endet, wenn die letzte Aktivitdt einer
Sphére, die noch nicht im erfolgreichen Zustand ist, in einen erfolgreichen Zustand
tiberfithrt wird, oder wenn ein Rollback ausgelost wird. Alle dazwischenliegenden Zu-
standsénderungen werden in einer einzigen Transaktion, der Workflow—Transaktion,

15

Universitdt Stuttgart

Software—Labor 3 Veranderungen an FlowMark

ausgefiihrt.

Das funktionale Modell mufl also dahingehend erweitert werden, dafl bei jeder
Nachricht aus der Warteschlange gepriift wird, ob die Nachricht Aktivitaten innerhalb
einer Sphare betrifft. Falls dies der Fall ist, wird keine neue Transaktion begonnen,
sondern die bereits mit der Sphére verbundene Transaktion wird verwendet, um den
Zustandsiibergang auszufiihren.

Die Workflow—Engine kann mehrere Sphéren und damit mehrere Workflow—Trans-
aktionen gleichzeitig in Bearbeitung haben. Sie mufl daher {iber einen langeren Zeit-
raum an unterschiedlichen Transaktionen teilnehmen kénnen. Dazu muf sie einen
Transaktionskontext vor dem eigentlichen Ende der Transaktion verlassen und in
einen anderen eintreten und ebenso wieder zuriickwechseln kénnen.

Durch die Anwendung von Workflow—Transaktionen kommt es zu der Situation,
dafl mehrere Transaktionen parallel, aber nicht unbedingt gleichzeitig, auf den Ver-
waltungsdaten des Workflowsystems arbeiten. Aufgrund der Isolationseigenschaft der
Transaktionen kann es vorkommen, dafl eine Transaktion auf Daten zugreift, die in
einer parallelen, noch nicht beendeten Transaktion, verdndert worden sind. Die Da-
ten sind daher gesperrt. Eine spéter zugreifende Transaktion muf warten. Wenn
nun die Transaktionen durch einen einzigen Thread durchgefithrt werden, ist hier
eine Verklemmung entstanden. Mit der zweiten Transaktion wartet auch der einzi-
ge Engine-Thread, und damit kann die erste Transaktion nie beendet werden. Die
Engine wartet ewig.

Aus diesem Grund muf sichergestellt sein, dafl die Transaktionen nie auf Sperren
auflaufen. Dies kann durch drei unterschiedliche Mafinahmen erreicht werden:

o Die Workflow—Verwaltungsdaten der Sphiren miissen so gespeichert werden,
dafB kein Zugriff auf gemeinsame Relationen erforderlich ist. Die Transaktionen
diirfen also nie auf gemeinsam gespeicherte Daten zugreifen. Die Erfiilllbarkeit
dieser Methode hiangt vom Datenmodell des Workflowsystems ab. Da uns das
von FlowMark benutzte Datenmodell unbekannt ist, kénnen wir keine weiteren
Aussagen dariiber machen. Weiterhin mufl eventuell im Datenmodell beriick-
sichtigt werden, in welcher Art und Weise die zugrundeliegende Datenbank ihre
Sperrverwaltung organisiert.

o Jede Transaktion kann ihren eigenen Engine-Thread besitzen. Nur dieser
Thread kann Aktionen im Kontext dieser Transaktion durchfithren. Wenn ein
Thread auf eine Sperre einer Spharen—Transaktion auflauft, muf} er solange war-
ten, bis diese Sphére beendet wird. Da Sphéren nur kurz andauern sollen, ist
die Wartezeit kurz und damit vertretbar. Mit dem Wechsel des Transaktions-
kontexts muf} ein Threadwechsel erfolgen. Die Gefahr einer zyklischen Wartesi-
tuation (Deadlock) zwischen den parallelen Transaktionen ist damit aber nicht
beseitigt. OTS bietet zu diesem Zweck einen Zeitiiberwachungsmechanismus
an, mit dem eine Verklemmung erkannt werden kann.

o Beim Zugriff auf die Workflow—Verwaltungsdaten wird in den Transaktionen

16

Universitdt Stuttgart
3.1 Veranderungen an der Workflow—Engine Software—Labor

die Isolationseigenschaft aufgegeben. Daher kénnen keine Transaktionen auf
Sperren auflaufen. Es muf} allerdings durch die Anwendung (hier die Engine)
sichergestellt werden, dafl keine inkonsistente Daten entstehen.

Bei der Implementierung des Workflowsystems Surro hat sich gezeigt, dafi die
verwendete Implementierung von OTS aus DSOM 3.0 § nicht in der Lage ist, mul-
tithreaded auf die DB2 V2.1.1 zuzugreifen. Da es wahrscheinlich ist, dafl dies ein
grundséatzliches und nicht einfach zu umgehendes Problem ist, werden im folgenden
verschiedene Realisierungsanséatze erldutert.

Multithreaded Engine
Eine multithreaded Engine ist der konzeptionell beste Ansatz. Die Ablaufstruktur ist
folgendermafBen: Mit Eintritt in eine Sphire muf} eine neue Workflow—Transaktion
und ein neuer Workflow—Thread erzeugt werden. Fiir jede Nachricht aus der zentralen
Warteschlange muf} iiberpriift werden, ob sie zu einer Sphére gehoért, und wenn ja,
zu welcher. Wenn die Nachricht eine Aktivitat betrifft, die zu keiner Sphére gehért,
dann fithrt der normale Thread der Workflow—Engine die nétigen Operationen aus.
Andernfalls muf} die Sphéare bestimmt werden zu der die Aktivitat gehort. Der Thread
dieser Sphére mufl dann angewiesen werden, die Nachricht aus der Warteschlange zu
entnehmen und mit den notwendigen Operationen zu reagieren.

Der Umbau einer Workflow—Engine, die bisher mit nur einem Thread gearbei-
tet hat, in eine, die mehrere Threads benutzt, ist voraussichtlich mit erheblichem
Aufwand verbunden.

Singlethreaded Engine

Hier besteht die Hauptaufgabe darin, das Datenmodell und die Zugriffe auf die Daten
so zu realisieren, dafl es zu den oben beschriebenen Sperrkonflikten nicht kommen
kann. Das Workflowsystem Surro ist dazu in der Lage, was aber kein Nachweis dafiir
ist, dal dies auch in FlowMark mit vertretbarem Aufwand méglich ist.

Ein einzelner Thread hat die Aufgabe, alle Nachrichten aus der Warteschlange aus-
zulesen und den jeweiligen Transaktionskontext zu aktivieren, falls sich die Nachricht
auf eine Sphére bezieht. Wenn nicht, wird eine neue Transaktion fiir die anstehenden
Operationen erzeugt. In [SB96a] wird dieser Ansatz ausfithrlicher erlautert.

Singlethreaded Engine mit Zerlegen der Spharen—Transaktion

Wenn der vorangehend beschriebene Ansatz nicht machbar oder zu riskant sein soll-
te, besteht noch die Moglichkeit, das Konzept der Workflow—Transaktionen abzu-
schwichen, um die Sperrkonflikte beim gemeinsamen Zugriff auf die Workflowdaten-
bank zu vermeiden. Dies kénnte so aussehen, dafl die Zugriffe auf den Workflowzu-
stand in der Datenbank nicht mehr in der Transaktion ablauft, in der auch die Ope-
rationen der ACID—Aktivitdten eingebunden sind. Der Zugriff erfolgt dann genauso
wie bei der Bearbeitung von Nachrichten von Aktivitédten aulerhalb einer Sphére in
eigenen kurzen Transaktionen. Die ACID-Aktivitaten einer Sphére werden nach wie
vor unter dem Schutz eines einheitlichen Transaktionskontextes durchgefithrt. Wenn

17

Universitdt Stuttgart

Software—Labor 3 Veranderungen an FlowMark

man dafiir sorgt, dafl die Ausfithrung der ACID-Aktivitaten den Engine-Thread nicht
blockieren kann, kénnen die beschriebenen Verklemmungen nicht auftreten.

Jetzt mufl aber dafiir gesorgt werden, dafl im Fehlerfall der Workflowzustand —
hergestellt durch korrekt beendete, einzelne Transaktionen — wieder auf einen Stand
gebracht wird, der konsistent mit dem Zustand der jetzt zuriickgesetzten ACID-
Aktivitaten ist. Diese Verdnderung des Workflowzustandes muf} jetzt durch eine
kompensierende Transaktion auf der Datenbank durchgefithrt werden. Diese Kom-
pensationstransaktion darf nicht fehlschlagen, ansonsten wéare der Gesamtzustand
inkonsistent. Man muf} also die zwei Transaktionen, die Sphérentransaktion und die
Kompensationstransaktion, so koppeln, dafl bei einem Rollback der Sphéarentrans-
aktion die Kompensationstransaktion angestoflen wird und dafiir gesorgt wird, daf}
diese Transaktion irgendwann erfolgreich beendet wird. Dies ist aber nicht mit letzter
Sicherheit zu garantieren.

Falls die Workflow—Transaktion fehlschlagt, wird sie zuriickgesetzt. Zusammen mit
dem Riicksetzen der Auswirkungen der Aktivitaten wird der Zustand des Workflows
automatisch so verdndert, als wéare die Sphéare nie ausgefithrt worden. Dies geschieht
auch bei der Variante mit zerlegten Transaktionen, nur nicht in einer einzigen Trans-
aktion. Die Bearbeitung des Sphére kann erneut beginnen. Hierbei ist es notwendig,
dafl man die Anzahl der Wiederholungen einer Sphéare begrenzt und nach dem Errei-
chen der Maximalzahl den gesamten Workflow mit einer Fehlermeldung abbricht oder
eine alternative Vorgehensweise wéhlt. Falls ndmlich ein nicht—transienter Fehler den
Abbruch bewirkt, wéare man in einer Endlosschleife gefangen.

Die Arbeitsweise der Workflow—Engine bei der Bearbeitung von Aktivitaten inner-
halb von Sphéren unterscheidet sich in einem wichtigen Punkt von den Bearbeitung
der Aktivitdten auflerhalb der Sphéare: Wéhrend der Ausfithrung von Operationen
innerhalb einer Sphire mufl die Workflow—Engine darauf achten, daf} sie die Isola-
tionseigenschaft der Sphéare nicht verletzt. Alle Daten— und Kontrollfliisse, die die
Sphare verlassen, diirfen nicht vor erfolgreichem Ende der Sphére aktiv werden. Sie
miissen bis zum Ende in ithrem urspriinglichen Zustand eingefroren werden. Erst nach
dem erfolgreichen Ende der Workflow—Transaktion werden die Fliisse wieder aktiv.

Die Isolation der Anwendungsdaten mufl durch die Aktivitaten, genauer durch ihre
Eigenschaft als Resource Manager, gesichert werden. Das Workflowsystem hat keine
direkten Eingriffs— oder Uberwachungsmaéglichkeiten. Im dritten Realisierungsansatz
werden die Anderungen des Workflowzustandes in eigenen Transaktionen ausgefiihrt
und sind somit auch schon vor dem Ende der Sphéire nach auflen hin sichtbar. Andere
Systemkomponenten kénnten daher inkonsistente Daten lesen. Momentan kommt als
einzige betroffene Komponente der Workflow—Monitor in Frage, der den Workflow—
Zustand visualisiert und dem Benutzer prasentiert. Er fithrt aber keine weiteren
Bearbeitungsschritte mit diesen Daten durch und ist somit unkritisch. Die Datenbank
mufl dem Monitor aber unbeschréankten Zugriff auf die Daten gewahren, sonst kénnte
der Fortschritt innerhalb einer Sphére nicht dargestellt werden.

18

Universitdt Stuttgart

3.2 Verdnderungen am Runtime—Client Software—Labor

Dead-Path—Elimination

Die Dead-Path—Elimination hat die Aufgabe, Aktivitaten im Workflow, die aufgrund
des momentanen Workflowzustandes nicht mehr erreicht werden kénnen, als , termi-
niert“ zu markieren und deren ausgehende Kontrollkonnektoren zu ,false® zu evalu-
ieren. Bei der Verwendung von Sphéren mufl die Dead-Path—Elimination folgende
Regeln beachten:

e Eine Dead-Path—Elimination, die innerhalb einer Sphére initiiert wird, darf
die Sphére nicht verlassen, bevor nicht die zugehorige Transaktion erfolgreich
beendet ist (Isolation). Dies ist notwendig, da nach einem Rollback und Wie-
deranlauf sich der Ablauf des Workflows innerhalb der Sphére dndern kénnte,
und damit die Dead—Path—Elimination eventuell nicht mehr gestartet werden
muf.

e Eine Dead—Path—Elimination, die eine Sphéare von auflen betritt, mufl die Sphére
ungehindert betreten und durchlaufen kénnen. Die Sphére kann dabei auch
vollstandig der Elimination zum Opfer fallen. Wird eine Sphére von der Dead-—
Path-Elimination betreten, aber nicht die gesamte Sphére invalidiert, kann
die Sphére ohne Beriicksichtigung der Isolation durchlaufen werden. Dies ist
moglich, da auch durch ein Rollback und Neustart einer Sphéare die von der
partiellen Elimination betroffenen Objekte keinen anderen Zustand erreichen
kénnen. Auch mufl durch das Betreten einer Sphére die Sphéarentransaktion
durch die Dead—Path—Elimination nicht aktiviert werden.

3.2 Verinderungen am Runtime—Client

Am Runtime—Client ist nur wenig zum Einbau von Workflow—Transaktionen vorzu-
nehmen. Das Starten von ACID-Aktivitdten tibernimmt der Program—FExecution—
Client. Es ist sinnvoll, dafl der Benutzer auf seiner Arbeitsliste die Aktivitaten, die in
Workflow—Transaktionen eingebettet sind, von normalen Aktivitaten unterscheiden
kann. ACID-Aktivitdten verhalten sich ndmlich anders: Auch nach einer erfolgrei-
chen Bearbeitung einer solchen Aktivitat kommt es bei einem Rollback der Workflow—
Transaktion vor, dafl die Aktivitdt nochmals auf der Arbeitsliste erscheint und erneut
bearbeitet werden muf}. Haufig diirften Spharen—Aktivitdten automatisch, also ohne
auf der Arbeitsliste eines Benutzers zu erscheinen, ausgefithrt werden.

Im Runtime—Client muf} eine neue Funktion im Menti angeboten werden, mit der
man Workflow—Transaktionen manuell abbrechen kann. Diese Funktion kann z. B. im
Monitorfenster realisiert werden. Dort mufl ebenso wie in der Buildtime-Komponente
eine Sphéare mitsamt ihrem Zustand angezeigt werden kénnen. In diesem Fenster muf
dann mit der Maus eine aktive Sphéire ausgewahlt und abgebrochen werden kénnen.
Der Abbruch von Sphéren sollte allerdings iiber die Vergabe von Rechten geschiitzt
werden koénnen. Beim Abbruch einer Sphéare miissen die betroffenen Aktivitdten
automatisch von den Arbeitslisten entfernt werden kénnen.

19

Universitdt Stuttgart
Software—Labor 3 Veranderungen an FlowMark

3.3 Veridnderungen an der Buildtime—Komponente

Die Buildtime-Komponente mufl so verandert werden, dafl mit ihr die oben be-
schriebene Art von Sphéaren modelliert werden kann. Mit der bereits bestehenden
Modellierungs—Komponente der FlowMark Version 2.1 kann ein Arbeitsorganisator
Geschéftsprozesse in der Form eines Aktivitdtennetzes modellieren. Er erzeugt dabei
Aktivitaten, fillt die Attribute der Aktivitdten mit Werten und legt die Position des
Abbilds einer Aktivitdt auf einer Zeichenfliche fest. Die Aktivitdten werden dann
manuell durch Daten— und Kontrollflissse verbunden. Beim Verbinden wird tiber-
priift, ob die neue Verbindung einen Zyklus bildet und somit nicht erlaubt wére. Die
Position einer Aktivitdt kann durch Drag—and-Drop—Technik nachtraglich verandert
werden. Die Pfeile der Daten— und Kontrollfliisse werden dabei automatisch ange-
paBt. In Abbildung 8 ist ein fertig modellierter Workflow zu sehen.

Create_Policy

/N

| g
|
|

%

/ 1
E] [3' Acceptance_Letter e B E]
——- L iR AEEE ance_| L -

! A \ 4
Find_Client Enter_Application Block E\‘/aluation Accept_Reject MaiIfDocumemsArchiveTAppIication
| | T
| | /
—— - - |
| o

I

N

|

\ I

\ eyt ey M J
ejection_Letter

\
|
Check_Policies | !

' ‘
) ‘

Update_Client_Information

Abbildung 8: Ein in FlowMark modellierter Geschaftsprozefl

Folgende Funktionen miissen in der Modellierungskomponente zusétzlich imple-
mentiert werden:

e NIMM AKTIVITAT IN SPHARE AUF
Eine bestehende Aktivitat mufl in eine Sphére aufgenommen werden kénnen.
Das kann mittels Drag—and-Drop geschehen.

e ENTFERNE AKTIVITAT AUS DER SPHARE
Eine Aktivitat in der Sphare mufl aus der Sphére genommen werden kénnen.

° UBERPRUFE STRUKTURELLE BEDINGUNGEN
Eine Funktion zur Uberpriifung, ob die geforderten strukturellen Bedingungen
der Sphére eingehalten werden, mufl beim Einfiigen und Entfernen von Akti-
vitaten aus der Sphéare ausgefithrt werden. Diese Funktion sollte auch tiber ein
Meniipunkt durch den Arbeitsorganisator abrufbar sein.

20

Universitdt Stuttgart

3.4 Veranderungen an der Kommunikationsstruktur Software—Labor

Das Erzeugen einer neuen Aktivitat in einer Sphére kann durch eine Kombination
einer bestehenden Funktion ERZEUGE AKTIVITAT und der neuen Funktion NiMm
AKTIVITAT IN SPHARE AUF realisiert werden. Das Loschen einer Aktivitdt in einer
Sphare ist mit dem normalen Loschen einer Aktivitat identisch.

Eine Sphére gruppiert eine Menge von Aktivitdten. Auf der Zeichenflache muf}
ersichtlich sein, welche Aktivitdt zu welcher Sphare gehéren. Dieses Problem wird
dadurch erschwert, dafl die Menge von Aktivitdten keine Zusammenhangskomponente
in dem Aktivitdtennetz bilden muf.

Eine Methode, die Zugehorigkeit anzeigen, ist das Einfarben aller Aktivitdaten
einer Sphére in einer einheitlichen Farbe. Der Vorteil dieser Methode liegt in der
einfachen Realisierung. Der Nachteil in der relativ beschriankten Anzahl der zur
Verfiigung stehenden Farben. Auch kann eine einzelne, abseits liegende Aktivitét
leicht {ibersehen werden. Ein— und Ausgénge von Sphédren sind so nur schwer zu
erkennen.

Eine zweite Methode ist das Umbhiillen aller Aktivitdten einer Sphéare. Auf-
grund der Bedingung, daff auch zusammenhanglose Aktivitdten Teil einer Sphére
sein kénnen, kann die Hiille der Sphére als grafisches Objekt nicht immer einfach
aufgebaut sein. Eine Ellipse oder ein Rechteck ist z. B. fiir diesen Zweck nicht geeig-
net. Es mufl daraus gefolgert werden, dafl die Hiille frei verformbar sein mufl. Wenn
die Hiille per Freihandzeichnung in das Aktivitdtennetz eingezeichnet wird, ergibt
sich das Problem, dafl beim Verschieben einer Aktivitat die Aktivitat aus der Sphére
entfernt werden kann. Es muf} daher ein Mechanismus gefunden werden, der, analog
zum Mitziehen der Daten— und Kontrollfliisse, auch ein Mitziehen der Sphare mit der
Aktivitat erlaubt. Hieraus ergibt sich aber wieder ein neues Problem. Eine vorher
nicht in der Aktivitat liegende Aktivitat darf durch das Mitziehen der Sphére nicht
in der neu erstellten Hiille zu liegen kommen. Die grafische Darstellung der Sphére
erfordert daher Heuristiken, wie ein Aktivitdtennetz mit Sphére tibersichtlich darge-
stellt werden kann. Im Monitor des Workflowsystems Surro ist eine solche einfache
Heuristik implementiert.

3.4 Verinderungen an der Kommunikationsstruktur

Als Kommunikationsprotokolle werden in der jetzigen FlowMark Version TCP/IP,
NetBIOS oder APPC eingesetzt. In Zukunft soll das IBM—Produkt MQSeries zur
Kommunikation zwischen FlowMark-Komponenten eingesetzt werden. MQSeries ga-
rantiert die sichere Auslieferung von Nachrichten iiber Rechnergrenzen hinweg in he-
terogenen Systemumgebungen. Die Kommunikationswege werden dazu als persistente
Warteschlangen modelliert. Nachrichten kénnen damit asynchron an Prozesse ver-
schickt werden, d.h. die Empfangerprozesse miissen beim Absenden nicht unbedingt
existieren. Die Nachrichten werden solange persistent in der Kommunikationswarte-
schlange gespeichert, bis der Empfangerprozefl aktiv wird und die Nachricht abholt.

Durch den Einsatz von OTS muf} eine neue Kommunikationsart in das FlowMark—
System eingefithrt werden. Mit Hilfe eines Object Request Brokers miissen Ob-

21

Universitdt Stuttgart

Software—Labor 3 Veranderungen an FlowMark

jektaufrufe systemweit durchgefiihrt werden koénnen. Schon der Beginn einer
Workflow—Transaktion erfordert mehrere Methodenaufrufe in OTS-Objekten durch
die Workflow—Engine.

Wihrend der Bearbeitung einer Workflow—Transaktion miissen beim Start ei-
ner Aktivitdt Methodenaufrufe in den Anwendungsobjekten, den ACID—-Aktivitaten,
durchgefithrt werden kénnen. Es gibt drei Moglichkeiten, wer diese Aufrufe absetzen
kann:

1. Die Engine kann den Methodenaufruf selbst absetzen. Da die Engine mei-
stens auf einem anderen Rechner als das Anwendungsprogramm lauft, muf}
hier DSOM eingesetzt werden. Der Program-Execution—Client wird bei dieser
Kommunikationsart nicht eingesetzt. Der Methodenaufruf kann entweder die
Arbeit im Anwendungsobjekt anstoflen, oder in der Methode wird die ganze
Arbeit geleistet. Im Fall des Anstoflens mufl das Objekt einen weiteren Auf-
ruf an die Engine absetzen, wenn es seine Arbeit beendet hat. Wenn in der
Methode die ganze Arbeit erledigt wird (synchroner Aufruf), bleibt die Engine
wahrend der Bearbeitungszeit blockiert. Sie mufl daher einen Thread erzeu-
gen, in dem der Methodenaufruf abgesetzt wird. Diese Aufgabe kann auch ein
Program—FExecution—Client ibernehmen, der einen Methodenaufruf im Auftrag
der Engine {ibernimmt.

2. Auch der bisher eingesetzte Program—FExecution—Client kann den Methodenauf-
ruf im Anwendungsobjekt vornehmen. Die bisherige Kommunikation zwischen
Engine und Execution—Client kann damit wie bisher genutzt werden. Als einzi-
ge Ergianzung mufl dem Auftrag an den Execution—Client, einen Methodenauf-
ruf zu tatigen, der Transaktionskontext mitgegeben werden. Der Thread des
Program—FExecution—Client assoziiert sich bei impliziter Propagierung mit der
Transaktion und fithrt den Aufruf durch. Bei expliziter Propagierung wird der
Kontext als Parameter durchgereicht. Auch hier mufl beriicksichtigt werden,
dafl der Execution—Client mehrere Threads verwendet, damit mehrere Anwen-
dungsobjekte auf einem Rechner parallel angesprochen werden kénnen.

3. Die dritte Moglichkeit besteht darin, ein Hiillenprogramm (Wrapper—
Programm) zu nutzen, das den Methodenaufruf durchfithrt. Die Kommuni-
kation zwischen Workflow—Engine und Program—Execution—Client bleibt bis
auf den zusédtzlichen Parameter, den Transaktionskontext, unverdndert. Der
Program—FExecution—Client bleibt auch weitgehend unverédndert. Er mufl nur
den mitgelieferten Transaktionskontext in einen Stringparameter konvertieren
und in der Kommandozeile dem Wrapperprogramm iibergeben. Der Thread des
Wrapper—Programms bindet sich an die Workflow—Transaktionen und macht
dann den Methodenaufruf. Der Wrapper kann wahrend des Methodenaufrufs
blockiert bleiben.

22

Universitdt Stuttgart

Software—Labor

4 Beispielhafte Anwendung von OTS: eine
transaktionale Konto—Klasse

Um die Funktionsweise von OTS besser zu verstehen und um mit den OTS- und
SOM-Aufrufen vertraut zu werden, wurde von uns ein Beispielprogramm erstellt, das
zur Transaktionverwaltung OTS benutzt. Als Anwendung wurde das klassische Bei-
spiel einer Uberweisung eines Geldbetrags von einem Konto auf ein anderes gew#hlt.
Die Implementierung benutzt SOM 3.0 von IBM, in der bereits mehrere Object Ser-
vices (insbesondere OTS) implementiert sind. SOM 3.0 ist bisher nur auf OS/2
verfiighar und noch im Beta—Zustand.

In den folgenden Abschnitten wird zuerst das IDL-Interface der Kontoklasse
erlautert. Dann folgt eine Beschreibung der Implementierung des Clients und des
Servers mit eingestreuten Codefragmenten.

4.1 Interface-Definition

Die implementierte Klasse ,account® fiir Konto-Objekt bietet folgende Schnittstellen
an (in IDL-Notation, gekiirzt):

// IDL interface definition for an account object
#include <somtran.idl>
interface accountResource;
interface account: CosTransactions::TransactionalObject
{

void accountInit(in long accNumber);

// init account object with its number

accountResource register_in_TA();
// register myself with a coordinator

float read();
// get current value of account

volid write(in float amount);
// set new value of account

void deposit(in float amount);
// add amount to account

void withdraw(in float amount);
// subtract amount from account

23

Universitdt Stuttgart

Software—Labor 4 Beispielhafte Anwendung von OTS: eine transaktionale Konto—Klasse

CosTransactions::Vote prepare();
// 2PC-methods: prepare for commit

void rollback();
// 2PC-methods: rollback Transaction

void commit();
// 2PC-methods: commit Transaction

attribute float value; // amount of money of this account

attribute long acclNumber; // account number

attribute string accfile; // name of file which contains persistent value
attribute string acctemp; // name of file which contains prepare value

attribute accountResource accRes; // stores accountResource object
attribute CosTransactions::Current current; // stores Current object

};

In den Attributen Kontostand (value) und Kontonummer (aceNumber) werden die
Daten eines Konto—Objekts gespeichert. Die anderen Attribute dienen Verwaltungs-
zwecken. An Grundfunktionalitdt bietet ein Konto—Objekt die Methoden read und
write zum Auslesen bzw. Setzen des Kontostandes, und deposit und withdraw zum
Erhohen bzw. Vermindern des Kontostandes an.

Zusétzlich miissen Methoden angeboten werden, die zur korrekten Teilnahme an
einer Transaktion notwendig sind. Dies sind prepare, commit und rollback. Durch die
Ableitung der Konto—Klasse von ,,CosTransactions::TransactionalObject® benutzt die
Klasse das Prinzip der impliziten Propagierung des Transaktionskontexts, d.h. daf}
bei jedem Methodenaufruf automatisch der Transaktionskontext mitgeliefert wird.
Dies ist eine in SOM vorkommende Spezialisierung der OTS-Definition. Dort ist
ein Transactional Object allgemein ein Objekt, dessen Verhalten vom Vorhandensein
eines Transaktionskontextes beeinflufit wird. In SOM bedeutet die Ableitung von
der Klasse , TransactionalObject® zusétzlich die Verwendung der impliziten Propa-
gierung.

Wenn der Kontext explizit propagiert werden soll, muf} in jeder transaktionalen
Methode ein zusédtzlicher Parameter fiir den Kontext aufgenommen werden. Der
Kontext wird dabei durch das Control-Objekt repréasentiert

4.2 Die Client—-Implementierung

Das Beispiel basiert auf einer Client—Server—Struktur. Der Client ruft in einer Trans-
aktion Methoden der Konto-Objekte auf und nutzt so die Funktionalitdt, die von

24

Universitdt Stuttgart

4.2 Die Client-Implementierung Software—Labor

den Konto—-Objekten, den Servern, angeboten wird. Der Client ist ein Transactional
Client und die Konto—Objekte sind gleichzeitig ,, Transactional Objects* und ,,Reco-
verable Objects“!. Der Client fiihrt folgende Operationen durch:

1.
2.

3.

Start einer Transaktion

Aufrufen der transaktionalen Methoden in den Transactional Objects. Also
z. B. das Umbuchen von einem Konto auf ein anderes.

Terminieren der Transaktion iiber Commit oder Rollback.

Der Ablauf im Client wird in den folgenden Punkten detailliert erldutert (Verglei-
che dazu auch Abb. 9):

o Die Konto—Objekte und die Client—Prozesse miissen als DSOM-Server imple-

mentiert sein. Ein DSOM-Serverprozefl hat die Fahigkeit, Methoden lokaler
Objekte nach auflen anzubieten, die dann durch die Vermittlung eines ORB von
anderen, entfernten Objekten aufgerufen werden kénnen. Da das Coordinator—
Objekt im Client erzeugt wird und dieses von den entfernten Konto-Objekten
angesprochen werden muf}, bendtigt auch der Client einen eigenen DSOM-
Server—Thread, der Aufrufe von auflen bearbeitet. Zusatzlich miissen der Cli-
ent und die Konto—Klasse im DSOM-Implementation—Repository als DSOM-
Server registriert werden.

Die Konto—Objekte sind nicht als eigenstandigen Prozesse, sondern als DLL
(dynamic link libraries) realisiert. Ein Standard-Serverprozel (somossvr.exe)
ladt diese Libraries und stellt Threads fiir die Ausfithrung von Methoden zur
Verfiigung.

Bei der Ubersetzung des Quellcodes der Konto Klasse wird fiir den Client eine
Stub—Library erzeugt, die dieser einbindet, um auf die Methoden im Konto—
Objekt zugreifen zu konnen. Ein DSOM-Daemon (somdd) sorgt fiir die Kom-
munikationsverbindung zwischen den entfernten DSOM-Objekten.

Nach der DSOM-Initialisierungsphase erzeugt der Client ein oder mehrere
Konto-Objekte. Falls die Objekte schon existieren, mufl dieser Schritt durch
eine Suche iiber den Naming Service von DSOM ersetzt werden. Der Aufruf
der accountInit-Methoden legt u.a. die Kontonummer fest, die als Parameter
tibergeben wird (s.u.). Zur Vereinfachung ist in den folgenden Codefragementen
die Fehlerbehandlung weggelassen worden.

account *const accl = (account *)somdCreate(ev,"account'",TRUE);
account *const acc?2 (account *)somdCreate(ev,"account",TRUE);

accl->accountInit(ev,371);
acc2->accountInit(ev,535);

Lsiehe Seite 10

25

Universitdt Stuttgart

Software—Labor 4 Beispielhafte Anwendung von OTS: eine transaktionale Konto—Klasse

o Der Client startet eine Transaktion, indem er ein Current-Objekt erzeugt
und die begin-Methode aufruft (indirektes Kontextmanagement). Der Client—
Thread wird durch den begin—Aufruf mit der Transaktion assoziiert:

// create CURRENT-object
CosTransactions_Current *const current = new CosTransactions_Current;

// Begin a top-level transaction
current->begin(ev);

o Jetzt kann der Client Methoden der Konto—Objekte im Kontext dieser Trans-
aktion aufrufen:

accl->withdraw(ev,350);
acc2->deposit(ev,350);

Die Methodenaufrufe enthalten den Transaktionskontext nicht als Parameter.
Der Kontext wird implizit an das Konto-Objekt iibergeben, da die Konto—
Klasse von TransactionalObject abgeleitet ist und der Client—Thread iiber das
Current—Objekt mit einer Transaktion assoziiert ist

e Zur Beendigung einer Transaktion ruft der Client eine der beiden folgenden

Methoden auf:

current->commit (ev,FALSE);

oder
current->rollback(ev) ;

Durch den Commit—Aufruf wird das 2-Phasen—Commit—Protokoll (2PC) ange-
stoflen, in dem OTS als Protokollfiihrer auftritt

4.3 Die Implementierung der Konto—Klasse

In der Konto—Objekt Implementierung wird der Kontostand persistent in einer Da-
tei gesichert. In einer weiteren Ausbaustufe kénnte man die Objekte mittels des
Persistent Object Service (POS) von SOM persistent halten.

Der Ablauf in der Konto—Klasse sieht folgendermafien aus (Vergleiche dazu auch Abb.
9):

26

Universitdt Stuttgart

4.3 Die Implementierung der Konto—Klasse Software—Labor

o Definition einer Resource—Klasse

Damit ein Konto—Objekt in das 2PC—Protokoll eingebunden wird, muf} es beim
Koordinator einer Transaktion ein Resource-Objekt registrieren. Ein Resource—
Objekt bietet dem Transaktionsmanager die zur Durchfithrung des 2PC notwen-
digen Schnittstellen an. Dies sind prepare(), commit() und rollback(). Fiir die
Klasse ,account”, die die Konto-Objekte realisiert, wird eine Klasse ,accoun-
tResource® definiert. Diese ist von der Klasse ,,Resource® abgeleitet und erbt
die erwédhnten drei Methoden. Die IDL-Definition sieht folgendermaflen aus
(gekiirzt):

// define the resource class for accounts
#include <somtran.idl> // Transaction Service
interface account; // prototype

interface accountResource: CosTransactions: :Resource

{
attribute account myAccount; // stores relationship to account object
attribute CosTransactions::Coordinator coord;
void register_resource(in CosTransactions::Coordinator coord,
in account myAccount) ;
s

Als einzige Methode wird register_resource deklariert. Mittels dieser Methode
registriert sich ein Konto-Objekt beim eigenen Resource—Objekt. Die Registrie-
rung wird im Attribut ,myAccount® gespeichert. Dies ist notwendig, damit das
Resource-Objekt einen Bezug auf sein zugehoriges Konto—-Objekt hat, um bei
der Durchfithrung der Terminierung darauf zugreifen zu kénnen.

o Initialisierung
Nach dem Erzeugen eines Konto-Objektes wird dieses durch die Methode ac-
countInit initialisiert. Dabei wird die Kontonummer gesetzt und der Kontostand
ermittelt. Der Kontostand eines Konto—Objekts wird persistent in einer Datei
gehalten. Der Name der Kontostandsdatei steht im Attribut ,accfile*. Falls
diese Datei schon existiert, wird der momentane Kontostand eingelesen.

o Ablauf eines Methodenaufrufs
Beim ersten Aufruf einer Methode eines Konto—Objektes, die einen Transakti-
onskontext benétigt, wird ein ,,accountResource“—Objekt erzeugt. Diesem wird
iiber die , register_resource“—Methode eine Referenz auf das Konto—Objekt {iber-
geben. Das Konto-Objekt registriert dann das accountResource-Objekt beim
Koordinator der Transaktion.

27

Universitdt Stuttgart

Software—Labor 4 Beispielhafte Anwendung von OTS: eine transaktionale Konto—Klasse

28

Als Beispiel ist die write-Methode dargestellt. Der Aufruf register_in_TA iiber-
priift, ob der Transaktionskontext bereits bekannt ist. Falls nicht, und falls der
Aufruf aus einer Transaktion heraus erfolgt, wird ein neues Objekt der Klasse
yaccountResource” erstellt. Dieses Objekt wird beim Koordinator registriert.
Anschlielend wird das Konto—Objekt bei seinem Resource-Objekt registriert.
Nach der Registrierungsroutine wird der neue Kontostand im value-Attribute
gespeichert. Falls die Transaktion bestétigt wird, wird in der commit-Methode
dieser Wert in die Kontostandsdatei geschrieben.

/*
* set new value of account

*/

SOM_Scope void SOMLINK write(account *somSelf, Environment *ev,
float amount)

{
accountData *somThis = accountGetData(somSelf);
accountMethodDebug("account”,"write");
accountResource *resource = somSelf->register_in_TA(ev);
somThis->value = amount; // update account in memory
b
/*
* register myself with a coordinator
*/

SOM_Scope accountResourcex SOMLINK register_in_TA(account *somSelf,
Environment *ev)
{
accountData *somThis = accountGetData(somSelf);
accountMethodDebug("account","register_in_TA");

CosTransactions_Control *ctrl = NULL;
CosTransactions_Coordinator *coord = NULL;
CosTransactions_RecoveryCoordinator *rcoord = NULL;

// only one resource object -> only one TA
// do I already have a resource object?
if (somThis->accRes != NULL) {

return (somThis->accRes);

// get control object from current object
ctrl = somThis->current->get_control(ev);

Universitdt Stuttgart

4.3 Die Implementierung der Konto—Klasse Software—Labor

error(ev,'"get_control failed");

//
//
if

get_control returns a NULL-pointer if there is no transaction
context associated with the call.

(ctrl==NULL) {

somPrintf("register_in_TA: Call to account object without TA\n");
return NULL; // no transaction

} /* endif */

coord = ctrl->get_coordinator(ev);
error(ev,"get_coordinator failed");

//

create new resource object

somThis->accRes = (accountResource *)

somdCreate(ev, "accountResource",TRUE) ;

error(ev,''creation of accountResource object failed");

if

('somIsObj(somThis->accRes)) {
somPrintf ("creation of accountResource object failed!\n");
return NULL;

} /* endif */

//
//

register your resource object at the coordinator
returns recovery coordinator

rcoord = coord—>register_resource(ev,somThis—>accRes);
error(ev,'"register_resource of coordinator failed");

//
//

register coordinator and account object (self) at the resource
(user defined method of accountResource)

somThis—>accRes—>register_resource(ev,coord,somSelf);
error(ev,'"register_resource of accountResource failed");

return somThis->accRes;

Falls es moglich ist, dafl aus mehreren unterschiedlichen Transaktionskontexten
heraus auf dasselbe Konto—Objekt zugegriffen werden kann, muf} zusétzlich eine
Verwaltung von Transaktionskontexten eingerichtet werden. Diese registriert,
an welchen Transaktionen das Objekt teilnimmt, und kann so feststellen, ob
ein Methodenaufruf aus einer neuen oder einer bereits bekannten Transaktion

heraus erfolgt und dann entsprechend reagieren. In der hier beschriebenen

Testimplementierung ist dies vorerst nicht realisiert, da immer nur ein Client
zu einem Zeitpunkt existiert.

29

Universitdt Stuttgart

Software—Labor 4 Beispielhafte Anwendung von OTS: eine transaktionale Konto—Klasse

4.4 Ablauf des 2PC

Im folgenden wird der Ablauf der Terminierung einer Transaktion ndher beschrie-
ben. Leitet der Client die Terminierung iiber einen Commit—Aufruf ein, so wird
das 2PC angestoflen. Bei einem Rollback ist dies nicht notwendig. Der Koordina-
tor ruft in allen bei ihm registrierten Resource-Objekt die prepare()-Methode auf
Im accountResource-Objekt wird der prepare—Aufruf an das Konto—Objekt durchge-
reicht.

// accountResource-Klasse

SOM_Scope CosTransactions_Vote SOMLINK prepare(accountResource *somSelf,
Environment *ev)

{
accountResourceData *somThis = accountResourceGetData(somSelf);
accountResourceMethodDebug("accountResource","prepare") ;
account *acc = somThis->myAccount;
vote = acc->prepare(ev);
return vote;

b

Aufgabe der prepare-Methode im Konto—Objekt ist es, entweder den Abbruch
der Transaktion zu initiieren, falls ein entsprechender Fehlerzustand festgestellt wird
(d.h. das Objekt votiert mit ,,VoteRollback“), oder den momentanen Zustand so zu
sichern, dafl auch nach einem Fehler beide Entscheidungen — Commit oder Rollback
— moglich sind (Objekt votiert mit ,, VoteCommit*“).

//account-Klasse

SOM_Scope CosTransactions_Vote SOMLINK prepare(account *somSelf,
Environment *ev)
{
accountData *somThis = accountGetData(somSelf);
accountMethodDebug("account","prepare") ;

// save the current value (afterimage) in a temp file;

// beforeimage is in original file

ofstream tempfile(somThis->acctemp);

if ('tempfile) {
somPrintf ("Prepare: output file %s open error\n",somThis->acctemp);
return CosTransactions_VoteRollback;

} /* endif */

tempfile << somThis->value;

tempfile.close();

30

Universitdt Stuttgart
4.4 Ablauf des 2PC Software—Labor

return CosTransactions_VoteCommit;

Hier wird der momentane Kontostand (,afterimage“) in einer temporaren Datei
gesichert. Der Wert des Kontos bei Beginn der Transaktion (,,beforeimage®) ist der In-
halt der Kontostandsdatei, die wéhrend einer Transaktion nicht gedndert wird. Falls
die Sicherung des afterimage nicht moglich ist, votiert das Objekt mit ,, Rollback®.

Wenn alle beteiligten Objekte ihr Votum abgegeben haben, ruft der Koordina-
tor — je nach Ausgang der Votierphase — die commit()— oder rollback()-Methoden
der Resource-Objekte auf. Diese werden, wie beim prepare(), direkt an das Konto—
Objekt durchgereicht. Bei einer Commit—Entscheidung ersetzt das Konto-Objekt
seinen alten Kontostand mit dem neuen. Beim Rollback wird der neue Stand verwor-
fen (die tempordre Datei wird geldscht) und der alte Kontostand bleibt unverandert

bestehen.
Crmom] o) o
begin TA
Coordinator)<ew |
WITHDRAW Xx

register_redource

amount -xX

DEPOSIT x

get_control

get_control

amount + x

register_redource

commit

prepare

prepare

commit
commit

store store

Abbildung 9: Gesamtablauf einer Transaktion

31

Universitdt Stuttgart

Software—Labor Literatur

In Abb. 9 ist noch einmal der Ablauf einer Transaktion zusammengefaBt. Aus
Ubersichtlichkeitsgriinden fehlen in der Darstellung die accountResource-Objekte
und einige Methodenaufrufe. Die account—Objekte werden als schon vorhanden vor-
ausgesetzt.

Literatur

[AGK 95] ALONsO, G. ; GUNTHOR, R. ; KAMATH, M. ; AGRAWAL, D. ; EL. AB-

[Obj90]

[Obj93]

[SB96a]

[SBYGH]

32

BADI, A. ; MOHAN, C.: Exotica/FMDC: Handling Disconnected Clients
in a Workflow Management System. In: Proc. of 3rd Int. Conference on
Cooperative Information Systems. Wien, 1995

Object Management Group (OMG): Object Management Architecture Gui-
de. November 1990

Object Management Group (OMG): The Common Object Request Broker
Architecture and Specification. Revision: 1.2. 1993

SCHREYJAK, Stefan ; BILDSTEIN, Hubert: Beschreibung des prototypisch
implementieren Workflowsystems Surro Universitat Stuttgart, Software—
Labor. 1996. - Fakultatsbericht Nr. 1996/19, Software-Labor Bericht
SL-5/96

SCHREYJAK, Stefan ; BILDSTEIN, Hubert: Fehlerbehandlung in Workflow—

Management—Systemen Universitat Stuttgart, Software—Labor. 1996. —
Fakultatsbericht Nr. 1996/17, Software-Labor Bericht SL.-3/96

