
Universit�at Stuttgart
Software{Labor
Projekt 1.1:
Work
ow{Management{Systeme
Breitwiesenstra�e 20{22
D-70565 Stuttgart

Fakult�atsbericht Nr. 1996/18

Software{Labor Bericht Nr. SL{4/96

CR{Klassi�kation H.2.0, H.2.4

Der Einsatz von

Work
ow{Transaktionen

in FlowMark
�

Hubert Bildstein

Stefan Schreyjak

Stefan.Schreyjak@informatik.uni-stuttgart.de

20. Dezember 1996

�Diese Arbeit wird von der IBM Deutschland Entwicklung GmbH und dem Ministerium f�ur

Wissenschaft und Forschung, Baden W�urttemberg, unterst�utzt.

Universit�at Stuttgart

Software{Labor

Zusammenfassung

In diesem Bericht wird skizziert, wie das Konzept der Work
ow{
Transaktionen im Work
owsystem FlowMark angewendet werden kann.
Dazu wird zuerst ein einfaches funktionales Modell des Work
owsy-
stems FlowMark Version 2.1 aufgestellt, das auf Ver�o�entlichungen
�uber FlowMark basiert. Anschlie�end werden die wichtigsten Begrif-
fe des Konzepts der Work
ow{Transaktionen erl�autert. Die zur Rea-
lisierung von Work
ow{Transaktionen notwendige Technologien, COR-
BA und OTS, werden kurz beschrieben. Ausgehend von dem funktio-
nalen Modell werden dann die notwendigen �Anderungen er�ortert, die in
FlowMark{Systemkomponenten vorgenommen werden m�ussen. Verschie-
dene L�osungsans�atze f�ur mehrere identi�zierte Probleme werden vorge-
stellt und abgew�agt. Im Anschlu� wird ein Beispielprogramm vorgestellt,
mit dem SOM und OTS von uns evaluiert worden sind. Im Beispiel
wird ein einfacher Kontoserver realisiert, der im Rahmen einer �Uberwei-
sungstransaktion angesprochen wird. Ausf�uhrliche Codefragmente ver-
vollst�andigen die Erl�auterungen zum Beispielprogramm.

2

Inhaltsverzeichnis

Universit�at Stuttgart

Software{Labor

Inhaltsverzeichnis

1 Aufbau und Funktionsweise von FlowMark 5

1.1 Die Systemarchitektur von FlowMark V2.1 5
1.2 Funktionsweise von FlowMark . 6
1.3 Ein funktionales Modell von FlowMark 6

2 Zugrundeliegende Technologie und Konzepte 7

2.1 Work
ow{Transaktionen . 7
2.2 OMA und CORBA . 8
2.3 Der Object Transaction Service der OMG 10

3 Ver�anderungen an FlowMark 15

3.1 Ver�anderungen an der Work
ow{Engine 15
3.2 Ver�anderungen am Runtime{Client 19
3.3 Ver�anderungen an der Buildtime{Komponente 20
3.4 Ver�anderungen an der Kommunikationsstruktur 21

4 Beispielhafte Anwendung von OTS: eine transaktionale Konto{Klasse 23

4.1 Interface-De�nition . 23
4.2 Die Client{Implementierung . 24
4.3 Die Implementierung der Konto{Klasse 26
4.4 Ablauf des 2PC . 30

3

Universit�at Stuttgart

Software{Labor Inhaltsverzeichnis

4

Universit�at Stuttgart

Software{Labor

1 Aufbau und Funktionsweise von FlowMark

In diesem Kapitel wird beschrieben, wie FlowMark aufgebaut ist und wie die Kompo-
nenten miteinander arbeiten. Das Wissen �uber den Aufbau und die Funktionsweise
ist den bisherigen Ver�o�entlichungen (vor allem in [AGK95]) entnommen worden.
Mit diesem Kapitel soll die Basis f�ur das Verst�andnis der weiteren Kapitel gelegt
werden.

1.1 Die Systemarchitektur von FlowMark V2.1

FlowMark-

Server

FlowMark-

Server

Buildtime-

Client

Server

Database-

Program-

Execution-

Client

Program-

Execution-

Client

Program-

Execution-

Client

Client

Runtime-

Program

Client

Runtime-

Program

Application

Client

Runtime-

Program

ApplicationApplication

Abbildung 1: Die Systemarchitektur von FlowMark V2.1

Die Architektur von FlowMark in der Version 2.1 ist in der Abbildung 1 dargestellt.
Die K�asten sind Komponenten von FlowMark. Die dicken Linien symbolisierenm�ogli-
che Netzwerkverbindungen zwischen Rechnerknoten. Das Work
owsystem besteht
aus einer zentralen Datenbank, aus einem oder mehreren FlowMark{Servern und aus
Runtime{Clients, die die Benutzerschnittstelle bilden. Ein Buildtime{Client dient
zur Modellierung von Work
ows. Ein Program{Execution{Client ruft die Anwen-
dungsprogramme auf.

Die zentrale Komponente ist der Datenbankserver. Dort werden alle Proze�de�ni-
tionen und die Daten zur Steuerung der Prozesse gespeichert. Die FlowMark{Server
greifen in der Rolle eines Datenbank{Clients auf die Work
ow{Datenbank zu. Au�er
der Buildtimekomponente und den FlowMark{Servern d�urfen keine anderen Program-
me direkt auf die Datenbank zugreifen. In der Version 2.1 wird das objektorientierte
Datenbanksystem

"
Objectstore\ eingesetzt. In sp�ateren Versionen soll die relationale

Datenbank DB2 verwendet werden.

5

Universit�at Stuttgart

Software{Labor 1 Aufbau und Funktionsweise von FlowMark

Die Buildtimekomponente ist ein Programm zur gra�schen Modellierung von
Gesch�aftsprozessen (Work
ows) und Organisationsstrukturen. Die erstellten Work-

ows k�onnen durch Animation getestet werden.

Im FlowMark{Server ist die Work
ow{Engine enthalten, die Work
ows ausf�uhrt.
Der Server bestimmt die n�achsten ausf�uhrbaren Aktivit�aten und verteilt sie anhand
des Organisationsmodells und der Work
owde�nition auf die Arbeitslisten der Bear-
beiter. Anfragen an die Datenbank werden �uber einen FlowMark{Server abgewickelt.

Ein Runtime{Client bildet die Benutzerober
�ache des Work
owsystems f�ur den
Bearbeiter. Er kann damit auf seine Arbeitsliste zugreifen, Aktivit�aten und Prozesse
starten und den Zustand eines laufenden Prozesses �uberwachen.

Der Program{Execution{Client wird vom FlowMark{Server zum Start eines An-
wendungsprogramms im Rahmen einer Aktivit�at benutzt. Der Execution{Client in-
formiert den FlowMark{Server �uber die Beendigung der Aktivit�at. Beliebige Anwen-
dungsprogramme k�onnen innerhalb einer Aktivit�at ausgef�uhrt werden.

1.2 Funktionsweise von FlowMark

Im folgenden wird exemplarisch beschrieben, wie eine Aktivit�at ausgef�uhrt wird. Die
Benutzer w�ahlt eine Aktivit�at auf seiner Arbeitsliste zum Start aus. Der Runtime{
Client schickt dem FlowMark{Server eine entsprechende Nachricht. Dieser f�uhrt die
entsprechenden Operationen zum Start einer Aktivit�at aus und aktualisiert den Zu-
stand auf der Datenbank. Dann wird der Program{Execution{Client angewiesen, das
entsprechende Anwendungsprogramm zu starten. Der Runtime{Client wird �uber den
Start des Programms informiert. Nach Beendigung des Anwendungsprogramms be-
nachrichtigt der Program{Execution{Client den FlowMark{Server �uber das Ereignis.
Der Server f�uhrt die Operationen zumBeenden einer Aktivit�at auf der Datenbank aus
und informiert den Runtime{Client vom Ende der Aktivit�at. Der Server berechnet
dann die n�achsten auszuf�uhrenden Aktivit�aten und verteilt sie auf die Arbeitslisten.

Das Funktionsprinzip der Work
ow{Engine basiert darauf, auf Nachrichten aller
von ihm abh�angigen Clients zu warten, die entsprechenden Operationen auf der Da-
tenbank auszuf�uhren und eventuell weitere Bearbeitungsschritte mittels Nachrichten
an die Clients anzusto�en.

1.3 Ein funktionales Modell von FlowMark

Wir k�onnen also vereinfachend annehmen, da� die Work
ow{Engine sukzessive Nach-
richten aus einer persistenten Warteschlange liest. Auf Nachrichten mu� im allgemei-
nen mit einem Zustands�ubergang des Work
ows bzw. der Aktivit�aten im Work
ow
reagiert werden. Um die Work
ow{Engine vor inkonsistenten Daten zu sch�utzen,
die bei einem Absturz der Engine oder beim Auftreten eines anderen Fehlers erzeugt
werden k�onnten, mu� dieser Zustands�ubergang durch eine Transaktion vor Fehlern
gesch�utzt werden. Das Warten auf Nachrichten und das Verarbeiten der Nachrichten
im Rahmen von Transaktionen kann in einem einzigen Thread statt�nden.

6

Universit�at Stuttgart

Software{Labor

2 Zugrundeliegende Technologie und Konzepte

In diesem Kapitel sollen zuerst die Grundbegri�e von Work
ow{Transaktionen de�-
niert werden. Danach werden die Konzepte und die Technologie von CORBA und
OTS kurz beschrieben, um eine Verst�andigungsbasis zu scha�en.

2.1 Work
ow{Transaktionen

Das Konzept der Work
ow{Transaktionen wird ausf�uhrlich in [SB96b] beschrieben.
Hier sollen nur nochmals die wesentlichen Begri�e und Konzepte erw�ahnt werden.

Eine Sph�are ist eine Menge von Aktivit�aten in einemWork
ow. Eine Sph�are mu�
keine Zusammenhangskomponente im Aktivit�atennetz bilden. Eine Sph�are wird zur
Modellierungszeit des Work
ows spezi�ziert. In der Abbildung 2 ist eine Sph�are in
ein Aktivit�atennetz eingezeichnet.

Eingang

Ausgang

Sphäre

ACID-Aktivität
normale Aktivität
Daten-/Kontrollfluß

Legende:

Abbildung 2: Eine Sph�are in einem Aktivit�atennetz

Als Eingang einer Sph�are wird der Kontroll{ bzw. Daten
u� bezeichnet, der von
einer Aktivit�at au�erhalb der Sph�are zu einer Aktivit�at innerhalb der Sph�are f�uhrt.
Entsprechen wird als Ausgang der Kontroll{ bzw. Daten
u� de�niert, der von einer
Aktivit�at innerhalb der Sph�are zu einer Aktivit�at au�erhalb der Sph�are f�uhrt. Eine
Sph�are kann mehrere Ein{ und Ausg�ange besitzen. In der Abbildung 2 hat die Sph�are
einen Eingang und zwei Ausg�ange.

In einerWork
ow{Transaktion wird eine Menge von Aktivit�aten (d. h. eine Sph�are
im Work
owmodell) als eine ACID{Transaktion ausgef�uhrt. Um dies im Rahmen
eines Work
owsystems machen zu k�onnen, m�ussen bestimmte Anforderungen an die
Aktivit�aten gestellt werden.

Als ACID{Aktivit�at wird eine Aktivit�at bezeichnet, die an einer Work
ow{
Transaktionen teilnehmen kann. Sie mu� die Daten, auf die sie zugreift, entweder
selbst als Resource Manager verwalten oder einen externen Resource Manager zum
Zugri� verwenden. Sie mu� eine OTS{konforme Schnittstelle besitzen.

7

Universit�at Stuttgart

Software{Labor 2 Zugrundeliegende Technologie und Konzepte

Mit einer Sph�are wird festgelegt, welche Aktivit�aten in einem Gesch�aftsproze� an
einer Work
ow{Transaktion teilnehmen. Folgende strukturelle Bedingungen m�ussen
von einer Sph�are erf�ullt werden [SB96b].

� Innerhalb einer Sph�are darf keine Subproze�aktivit�at vorkommen. Bl�ocke sind
dagegen erlaubt.

� Alle Aktivit�aten innerhalb einer Sph�are m�ussen ACID{Aktivit�aten mit einer
OTS-konformen Schnittstelle sein. F�ur die Aktivit�aten in einemBlock innerhalb
der Sph�are mu� dieselbe Bedingung gelten.

� Es darf keinen Pfad von einem Ausgang einer Sph�are auf einen Eingang dersel-
ben Sph�are geben.

� Sph�aren d�urfen sich nicht �uberlappen. Geschachtelte Sph�aren sind erlaubt.

2.2 OMA und CORBA

Die Object Management Group (OMG) ist ein Firmenkonsortium, das im April 1989
durch eine Reihe namhafter Hersteller gegr�undet worden ist. Die OMG hat sich zum
Ziel gesetzt, grundlegende Standards im Bereich der objektorientierten Softwaretech-
nologie zu entwickeln.

Unter dem Begri� Object Management Architecture (OMA) [Obj90] wurde eine
Referenzarchitektur zur Realisierung von verteilten objektorientierten Anwendungen
vorgestellt. Die OMA basiert auf einem verallgemeinerten Objektmodell, mit dem ein
m�oglichst breites Feld bereits bestehender und zuk�unftiger Objektmodelle beschrie-
ben werden kann. In der Architektur wird eine gemeinsame Terminologie entwickelt,
mit der die verschiedenen konkreten Objektmodelle beschrieben werden k�onnen. In
Abbildung 3 sind die wesentlichen Komponenten der OMA Architektur abgebildet.

Der Object Request Broker (ORB) agiert als Kommunikationsmittler zwischen Ob-
jekten und bildet so die Basis f�ur die Interoperabilit�at von Objekten in heterogenen
Netzwerken. Er stellt die Infrastruktur bereit, damit Objekte plattform�ubergreifend
und unabh�angig vom verwendeten Objektmodell (bzw. der Programmiersprache)mit-
einander �uber Methodenaufrufe kommunizieren k�onnen.

DieObject Services stellen eine allgemeine Laufzeitumgebung bereit, die von einem
breiten Spektrum von Objekten genutzt werden k�onnen, um ihre jeweiligen Aufgabe
zu erf�ullen. Dazu werden in den Object Services verschiedene Funktionen standardi-
siert. So sorgen Teile des Object Services f�ur die physische Speicherung der Objekte.
Andere Teile verwalten Klassende�nitionen und deren Verh�altnisse untereinander.
Es gibt Dienste, die Instanzen von Klassen erzeugen, aufrufen, kopieren, migrieren
und l�oschen k�onnen. Objekte oder Klassen k�onnen durch Suchbedingungen gefunden
werden. M�oglichkeiten zur Sicherung der Integrit�at in einzelnen Objekten und der
Konsistenz zwischen mehreren Objekten werden angeboten. Object Services m�ussen
auf jeder Plattform verf�ugbar sein.

8

2.2 OMA und CORBA

Universit�at Stuttgart

Software{Labor

Application Object Common Facilitites

Object Request Service

Object Services

Abbildung 3: Die Komponenten der Objekt Management Architecture (OMA)

Die Common Facilities m�ussen dagegen nur optional verf�ugbar sein. Sie de�nie-
ren Objektschnittstellen f�ur typische Funktionen in speziellen Anwendungsbereichen.
Beispiele f�ur solche Common Facilities sind Schnittstellen zum Drucken von Doku-
menten, zum Versenden von Email oder zum Zugri� auf Datenbanken. Anwendungen
k�onnen diese Funktionen in einer standardisierten Weise nutzen.

Die Application Objects sind die Anwendungen in der klassischen Sichtweise. Sie
nutzen die in den anderen Komponenten der OMA angebotenen Dienste und kombi-
nieren diese f�ur ihren speziellen Anwendungsfall.

Die Common ORB Architecture and Speci�cation (CORBA) [Obj93] de�niert ein
Rahmenwerk f�ur unterschiedliche ORB{Implementierungen, damit diese ihre Dienste
mit derselben Schnittstelle anbieten k�onnen. Ein Client nutzt die Dienste des ORBs,
um mit einer Objektinstanz ortstransparent zu kommunizieren (siehe Abb. 4). Die
standardisierten Schnittstellen des ORBs und die standardisierte Beschreibung der
Schnittstelle der Object Implementation durch eine Interface De�nition Language
(IDL) erlauben den Austausch der Object Implementation bzw. des Clients durch
eine andere Portierung, d. h. ein unterschiedlich implementiertes Objekt mit gleicher
Funktionalit�at.

Das System Object Model (SOM) zusammenmit der verteiltenVarianteDistributed
SOM (DSOM) ist die Implementierung des CORBA Standards durch die Firma IBM.
In der Version 3.0 sind zusammen mit dem ORB auch verschiedene Object Services
realisiert. Insbesondere der Object Transaction Service (OTS) ist Gegenstand dieses
Berichts.

9

Universit�at Stuttgart

Software{Labor 2 Zugrundeliegende Technologie und Konzepte

Client
Object

Implementation

ORB

Request

Abbildung 4: Ein Client benutzt den ORB zum Aufruf einer Methode in einer Object
Implementation

2.3 Der Object Transaction Service der OMG

OTS ist die Spezi�kation eines Object Services im Rahmen der OMA durch die OMG.
OTS unterst�utzt die Abwicklung von Transaktionen in verteilten Client/Server An-
wendungen. Ein Transaktions{Dienst de�niert Schnittstellen zwischen Objekten. Er
unterst�utzt nicht direkt die ACID{Eigenschaften einer Transaktion, sondern imple-
mentiert einen Protokollautomaten, der die an der Transaktion teilnehmenden Ob-
jekte so koordiniert, da� die Transaktion die ACID Eigenschaft garantieren kann.
Die teilnehmenden Objekte k�onnen weitere Object Services der OMG nutzen, wie
den Persistence Object Service (POS) oder den Concurrency Control Service, um die
ACID{Eigenschaften zu erreichen. Die Aufgabe von OTS ist die Verwaltung des
Transaktionskontexts und die Durchf�uhrung des Zwei{Phasen{Commit{Protokolls
(2PC). OTS koordiniert dabei alle Teilnehmer einer Transaktion so, da� sie mit einem
einheitlichen Ergebnis { erfolgreich oder nicht erfolgreich { die Transaktion abschlie-
�en. OTS st�o�t dazu ein commit oder ein rollback in den teilnehmenden Objekten
an. Die Objekte m�ussen diese Funktionen selbst ausf�uhren. Gegebenenfalls m�ussen
diese Objekte auch ein selbst�andiges Recovery ausf�uhren k�onnen.

Folgende Objekte spielen bei einer Transaktion, die OTS konform ausgef�uhrt wird,
eine Rolle. In Abbildung 5 ist das Zusammenspiel der OTS Objekte dargestellt.

� Transactional Client:
Ein Transactional Client ist ein Anwendungsprogramm, das Aufrufe an ein
Transactional Object macht, die durch eine Transaktion gesch�utzt werden sol-
len. Der Initiator einer Transaktion ist zwangsl�au�g ein Transactional Client,
es gibt aber auch Clients, die nicht Initiator einer Transaktion sind.

� Transactional Object:
Ein Transactional Object ist ein Objekt, das bei einem Aufruf im Rahmen ei-
ner Transaktion vom Transaktionskontext in irgendeiner Weise beein
u�t wird.
Alle Teilnehmer an einer Transaktion sind Transactional Objects. Ein Objekt
ist

"
transactional\, aber nicht

"
recoverable\, wenn das Objekt seinen Zustand

10

2.3 Der Object Transaction Service der OMG

Universit�at Stuttgart

Software{Labor

Client
Transactional

Server

Object

Server

Transactional

Transactional

Recoverable

Transaction Service

Distributed Client/Server Application

Transactional
Operation

Transactional
Operation

begin or end
Transaction

rollback

may

force rollback

register prepare,
commit,resource

Object
Recoverable

Abbildung 5: Das Zusammenspiel der in OTS de�nierten Komponenten

nicht selbst wie ein Resource Manager verwaltet, sondern z.B. �uber externe
Recoverable Objects.

� Recoverable Object:
Ein Recoverable Object ist per De�nition ein Transactional Object. Es verwal-
tet seine internen Daten so, da� es jederzeit auf Anforderung des Transaktions{
Dienstes entweder ein Commit oder ein Rollback f�ur einen bestimmten Trans-
aktionskontext durchf�uhren kann. Ein Recoverable Object mu� am Terminie-
rungsprotokoll des Transaktions{Diensts teilnehmen (typischerweise ein 2PC{
Protokoll).

� Transactional Server:
Der transaktionale Server besitzt mindestens ein Transactional Object, hat aber
keinen eigenen wiederherstellbaren Zustand. Er kann den Abbruch einer Trans-
aktion erzwingen, nimmt aber nicht am 2PC teil.

� Recoverable Server:
Ein Recoverable Server beinhaltet mindestens ein Recoverable Object. Er
registriert seine Recoverable Objects mittels von Resource Objects beim
Transaktions{Dienst als Teilnehmer an Transaktionen.

� Resource Object:
Ein Resource Object ist das Bindeglied zwischen einemRecoverable Object und
einer Transaktion. Es mu� daf�ur sorgen, da� die Ressourcen des Recoverable

11

Universit�at Stuttgart

Software{Labor 2 Zugrundeliegende Technologie und Konzepte

Objects entsprechend der Entscheidung des 2PC{Koordinators verwaltet wer-
den. Ein Recoverable Object kann mehrere Resource Objects besitzen, falls es
an mehreren Transaktionen gleichzeitig teilnimmt, ein Resource Object kann
aber nur zu einer Transaktion geh�oren (siehe Abbildung 6).

Coordinator

Terminator

TA 1

Coordinator

Terminator

Recov. Object

Recov. Object

Resource

Resource

TA 2

Resource

"ist registriert bei"

Abbildung 6: Zusammenhang Resource { Coordinator

Der Transaktions{Dienst besteht aus Objekten diverser Klassen mit verschiedenen
Aufgaben. Die wichtigsten davon sind:

� Factory:
Die create{Methode eines Objektes dieser Klasse erzeugt einen neuen Transakti-
onskontext (top{level) und liefert ein Control{Objekt zur�uck. �Uber die Factory
wird eine Transaktion initiiert. Alternativ dazu kann das Current{Objekt be-
nutzt werden (siehe unten).

� Control:
Ein Control{Objekt repr�asentiert den Transaktionskontext. Es bietet die Me-
thoden get terminator und get coordinator an. Diese liefern Objekte der folgen-
den zwei Klassen.

� Terminator:
Diese Klasse bietet dem Client die Methoden zum Beenden einer Transaktion,
commit und rollback.

12

2.3 Der Object Transaction Service der OMG

Universit�at Stuttgart

Software{Labor

� Coordinator:
Beim Coordinator{Objekt werden die Resource{Objekte einer Transaktion
registriert (Methode register resource). Alle Recoverable Objects, die ihre
Resource{Objekte beim Coordinator{Objekt der Transaktion registriert haben,
nehmen am Terminierungsvorgang der Transaktion teil. Weiterhin bietet diese
Klasse eine Anzahl von Methoden zur Abfrage von Statusinformation an.
Coordinator und Terminator steuern zusammen den Terminierungsvorgang
(2PC).

Ein Client, der eine Transaktion beginnen will, erzeugt sich ein Factory{Objekt
und f�uhrt die create{Methode darauf aus (Abb. 7 links). Der Verweis auf das Control{
Objekt, den diese Methode zur�uckliefert, wird gespeichert. Um eine Transaktion zu
beenden, ruft man get terminator auf dem Control{Objekt auf. Man erh�alt eine
Referenz auf das Terminator{Objekt der Transaktion und kann auf diesem commit

oder rollback aufrufen.

Factory

Control

Coordinator

Terminator
commit

rollback

get_status

...

create

erzeugt Objekteliefert Referenz

liefert Referenz

get_coordinator
get_terminator

Current
begin
commit
rollback
suspend
resume
get_status
get_control
...

Direktes Kontextmanagement Indirektes Kontextmanagement

Abbildung 7: Steuerung einer Transaktion �uber Factory { Current

Alternativ dazu kann ein Client eine Transaktion �uber ein Objekt der Klasse
Current beginnen. Ein Objekt dieser Klasse bietet zum Start einer Transaktion die
begin{Methode, zum Beenden commit und rollback, das Abfragen von diversen Sta-
tusinformationen und weitere Methoden an (Abb. 7 rechts). Die Verwendung eines
Current{Objektes anstatt der oben beschriebenen Objekte ist u. a. eine Vereinfachung
f�ur den Client{Programmierer, und beide Vorgehensweisen sind bis zu einem gewis-
sen Grad �aquivalent. Auch der Aufruf von begin auf dem Current{Objekt erzeugt
nat�urlich die Control{, Coordinator{ und Terminator{Objekte, diese m�ussen aber im
Client{Code nicht explizit ber�ucksichtigt werden. Die Verwendung der einen oder
anderen Vorgehensweise impliziert aber auch eine bestimmte Methode der Kontext{
Propagierung.

13

Universit�at Stuttgart

Software{Labor 2 Zugrundeliegende Technologie und Konzepte

Wie wird einem Transactional Object der zugeh�orige Transaktionskontext mitge-
teilt, wenn ein Client nach der Initiierung einer Transaktion dieses aufruft? Hier gibt
es zwei M�oglichkeiten: Die implizite Propagierung und explizite Propagierung.

Welche Propagierungsmethode verwendet werden mu�, bestimmt das Transac-
tional Object. Es ist entweder auf die eine oder auf die andere Methode ausgelegt.
Explizite Propagierung bedeutet, da� jede Methode des Transactional Objects, die un-
ter Transaktionsschutz ablaufen soll, einen explizit aufgef�uhrten Parameter in Form
eines Control{Objekts besitzt. Der Client �ubergibt einen Verweis auf dieses Objekt
explizit bei jedem Aufruf. Das Control{Objekt repr�asentiert den jeweiligen Transak-
tionskontext.

Implizite Propagierung bedeutet, da� die �Ubermittlung des Transaktionskontextes
durch das System �ubernommen wird.

Die Verwendung eines Current{Objektes zur Transaktionsinitiierung und Termi-
nierung nennt man indirektes Kontextmanagement, da der Transaktionskontext nicht
in Form des Control{Objektes direkt vom Client verwaltet wird. Entsprechend liegt
bei Verwendung einer Factory direktes Kontextmanagement vor. Wird eine Transak-
tion mittels eines Current{Objekts gestartet, ist automatisch der Programm{Thread,
der dies durchf�uhrt, mit dem Transaktionskontext assoziiert. Dies ist die Vorausset-
zung f�ur implizite Propagierung. Die explizite Propagierung hat als Voraussetzung
das Vorhandensein des Control{Objekts der Transaktion, in deren Kontext eine Ope-
ration durchgef�uhrt werden soll. Dies ist bei direktem Kontextmanagement gegeben.

Typischerweise wird man die Kombinationen indirektes Kontextmanagement { im-

plizite Propagierung und direktes Management { explizite Propagierung verwenden. Es
sind aber auch Mischformen m�oglich bzw. n�otig, n�amlich dann, wenn zwei Transac-
tional Objects, die unterschiedliche Propagierungsarten fordern, an einer Transaktion
teilnehmen m�ussen. Die Kombination indirekt { explizit ist dadurch m�oglich, da� die
Current{Klasse die get control{Methode anbietet, die das zur Transaktion zugeh�orige
Control{Objekt liefert. Dieses kann dann vom Client als Parameter an eine Methode
eines Transactional Objects �ubergeben werden. Die Kombination direkt { implizit

ist dadurch zu erreichen, da� der Client ein Current{Objekt erzeugt und mittels
der resume{Methode, mit dem Control{Objekt als Parameter, seinen Thread an die
Transaktion bindet. Ab dann sind Aufrufe mit impliziter Propagierung m�oglich. Es
kann jeweils zwischen den Kontextmanagementarten gewechselt werden.

Am h�au�gsten ist die Kombination indirekt { implizit anzutre�en, da zum einen
die Verwendung eines Current{Objekts weniger Programmieraufwand bedeutet, zum
anderen meist implizite Propagierung seitens der Transactional Objects gefordert
wird.

Es bleibt die Frage, ob die Bindung des Transaktionskontextes an den Programm{
Thread bei Verwendung des Current{Objekts zu starr ist. Beim direkten Kontextma-
nagement kann durch geeignete Verwaltung der Transaktionskontexte eine transak-
tionale Operation in der jeweils gew�unschten Transaktion ausgef�uhrt werden. Beim
indirekten Management mu� dazu erst die Transaktion verlassen werden. Das tem-
por�are Aufheben der Bindung zwischen Transaktion und Programmthread ist durch

14

Universit�at Stuttgart

Software{Labor

den Aufruf der Methode suspend des Current{Objekts m�oglich. Mit resume kann die-
ser Vorgang umgekehrt werden und der Thread wieder an einen Transaktionskontext
gebunden werden.

3 Ver�anderungen an FlowMark

In diesem Kapitel werden die Ver�anderungen beschrieben, die einzelne FlowMark{
Komponenten erfahren m�ussen, damit das Konzept der Work
ow{Transaktionen in
FlowMark eingesetzt werden kann. Die vorgestellten Ver�anderungen basieren zum
einen auf den Vermutungen �uber die Funktionsweise der FlowMark Work
ow{Engine,
die wir in Kapitel 1.2 beschrieben haben. Dort wurde ein funktionales Modell von
FlowMark entwickelt, das wir am Ende dieses Kapitels so erweitern, da� mit der
Work
ow{Engine Work
ow{Transaktionen ausgef�uhrt werden k�onnen.

Zum anderen basieren die Vorschl�age auf den Erfahrungen, die aus der Implemen-
tierung des prototypischen Work
owsystems

"
Surro\ gewonnen worden sind. Eine

Beschreibung des Work
owsystems Surro �ndet sich in [SB96a].
Falls einige der angestellten Vermutungen falsch sind, k�onnen die beschriebenen

Ver�anderungen unn�otig oder falsch sein.

3.1 Ver�anderungen an der Work
ow{Engine

Eine Work
ow{Engine, die Work
ow{Transaktionen beherrscht, unterscheidet sich
von der Work
ow{Engine aus dem funktionalen Modell darin, da� sie eine

"
zweite

Art\ von Transaktionen unterst�utzt. Es gibt weiterhin Transaktionen zum �Andern
eines Zustandes, die durch das Eintre�en bestimmter Nachrichten gestartet werden.
Die zweite Art der Transaktionen sind die Work
ow{Transaktionen, die aus Sicht der
Engine als Verschmelzung aller Zustands�anderungs{Transaktionen innerhalb einer
Sph�are angesehen werden k�onnen.

Eine Sph�are besteht aus einer Menge von Aktivit�aten. Diese Aktivit�aten durch-
laufen bei der Abarbeitung eine Menge von Zustands�uberg�angen, die jeweils in der ur-
spr�unglichenWork
ow{Engine durch einzelne Transaktionen gesch�utzt werden. Diese
Menge von Transaktionen wird durch die neue Work
ow{Engine zusammen mit den
Operationen der Aktivit�aten in einer einzigen Transaktion ausgef�uhrt.

Eine Work
ow{Transaktion mu� sp�atestens nach der Zustands�anderung begon-
nen werden, mit der nach einem Rollback der Work
ow{Transaktion die Sph�are noch
korrekt wiederholt werden kann. Typischerweise ist dies die Zustands�anderung der
ersten erreichten Aktivit�at in der Sph�are, die die Aktivit�at in einen startbaren Zu-
stand �uberf�uhrt. Bei einem Zur�ucksetzen auf diesen Zustand kann die Sph�are wie-
derholt werden. Die Work
ow{Transaktion endet, wenn die letzte Aktivit�at einer
Sph�are, die noch nicht im erfolgreichen Zustand ist, in einen erfolgreichen Zustand
�uberf�uhrt wird, oder wenn ein Rollback ausgel�ost wird. Alle dazwischenliegenden Zu-
stands�anderungen werden in einer einzigen Transaktion, der Work
ow{Transaktion,

15

Universit�at Stuttgart

Software{Labor 3 Ver�anderungen an FlowMark

ausgef�uhrt.
Das funktionale Modell mu� also dahingehend erweitert werden, da� bei jeder

Nachricht aus der Warteschlange gepr�uft wird, ob die Nachricht Aktivit�aten innerhalb
einer Sph�are betri�t. Falls dies der Fall ist, wird keine neue Transaktion begonnen,
sondern die bereits mit der Sph�are verbundene Transaktion wird verwendet, um den
Zustands�ubergang auszuf�uhren.

Die Work
ow{Engine kann mehrere Sph�aren und damit mehrereWork
ow{Trans-
aktionen gleichzeitig in Bearbeitung haben. Sie mu� daher �uber einen l�angeren Zeit-
raum an unterschiedlichen Transaktionen teilnehmen k�onnen. Dazu mu� sie einen
Transaktionskontext vor dem eigentlichen Ende der Transaktion verlassen und in
einen anderen eintreten und ebenso wieder zur�uckwechseln k�onnen.

Durch die Anwendung von Work
ow{Transaktionen kommt es zu der Situation,
da� mehrere Transaktionen parallel, aber nicht unbedingt gleichzeitig, auf den Ver-
waltungsdaten des Work
owsystems arbeiten. Aufgrund der Isolationseigenschaft der
Transaktionen kann es vorkommen, da� eine Transaktion auf Daten zugreift, die in
einer parallelen, noch nicht beendeten Transaktion, ver�andert worden sind. Die Da-
ten sind daher gesperrt. Eine sp�ater zugreifende Transaktion mu� warten. Wenn
nun die Transaktionen durch einen einzigen Thread durchgef�uhrt werden, ist hier
eine Verklemmung entstanden. Mit der zweiten Transaktion wartet auch der einzi-
ge Engine{Thread, und damit kann die erste Transaktion nie beendet werden. Die
Engine wartet ewig.

Aus diesem Grund mu� sichergestellt sein, da� die Transaktionen nie auf Sperren
au
aufen. Dies kann durch drei unterschiedliche Ma�nahmen erreicht werden:

� Die Work
ow{Verwaltungsdaten der Sph�aren m�ussen so gespeichert werden,
da� kein Zugri� auf gemeinsame Relationen erforderlich ist. Die Transaktionen
d�urfen also nie auf gemeinsam gespeicherte Daten zugreifen. Die Erf�ullbarkeit
dieser Methode h�angt vom Datenmodell des Work
owsystems ab. Da uns das
von FlowMark benutzte Datenmodell unbekannt ist, k�onnen wir keine weiteren
Aussagen dar�uber machen. Weiterhin mu� eventuell im Datenmodell ber�uck-
sichtigt werden, in welcher Art und Weise die zugrundeliegende Datenbank ihre
Sperrverwaltung organisiert.

� Jede Transaktion kann ihren eigenen Engine{Thread besitzen. Nur dieser
Thread kann Aktionen im Kontext dieser Transaktion durchf�uhren. Wenn ein
Thread auf eine Sperre einer Sph�aren{Transaktion au
�auft, mu� er solange war-
ten, bis diese Sph�are beendet wird. Da Sph�aren nur kurz andauern sollen, ist
die Wartezeit kurz und damit vertretbar. Mit dem Wechsel des Transaktions-
kontexts mu� ein Threadwechsel erfolgen. Die Gefahr einer zyklischen Wartesi-
tuation (Deadlock) zwischen den parallelen Transaktionen ist damit aber nicht
beseitigt. OTS bietet zu diesem Zweck einen Zeit�uberwachungsmechanismus
an, mit dem eine Verklemmung erkannt werden kann.

� Beim Zugri� auf die Work
ow{Verwaltungsdaten wird in den Transaktionen

16

3.1 Ver�anderungen an der Work
ow{Engine

Universit�at Stuttgart

Software{Labor

die Isolationseigenschaft aufgegeben. Daher k�onnen keine Transaktionen auf
Sperren au
aufen. Es mu� allerdings durch die Anwendung (hier die Engine)
sichergestellt werden, da� keine inkonsistente Daten entstehen.

Bei der Implementierung des Work
owsystems Surro hat sich gezeigt, da� die
verwendete Implementierung von OTS aus DSOM 3.0 � nicht in der Lage ist, mul-
tithreaded auf die DB2 V2.1.1 zuzugreifen. Da es wahrscheinlich ist, da� dies ein
grunds�atzliches und nicht einfach zu umgehendes Problem ist, werden im folgenden
verschiedene Realisierungsans�atze erl�autert.

Multithreaded Engine

Eine multithreaded Engine ist der konzeptionell beste Ansatz. Die Ablaufstruktur ist
folgenderma�en: Mit Eintritt in eine Sph�are mu� eine neue Work
ow{Transaktion
und ein neuer Work
ow{Thread erzeugt werden. F�ur jede Nachricht aus der zentralen
Warteschlange mu� �uberpr�uft werden, ob sie zu einer Sph�are geh�ort, und wenn ja,
zu welcher. Wenn die Nachricht eine Aktivit�at betri�t, die zu keiner Sph�are geh�ort,
dann f�uhrt der normale Thread der Work
ow{Engine die n�otigen Operationen aus.
Andernfalls mu� die Sph�are bestimmtwerden zu der die Aktivit�at geh�ort. Der Thread
dieser Sph�are mu� dann angewiesen werden, die Nachricht aus der Warteschlange zu
entnehmen und mit den notwendigen Operationen zu reagieren.

Der Umbau einer Work
ow{Engine, die bisher mit nur einem Thread gearbei-
tet hat, in eine, die mehrere Threads benutzt, ist voraussichtlich mit erheblichem
Aufwand verbunden.

Singlethreaded Engine

Hier besteht die Hauptaufgabe darin, das Datenmodell und die Zugri�e auf die Daten
so zu realisieren, da� es zu den oben beschriebenen Sperrkon
ikten nicht kommen
kann. Das Work
owsystem Surro ist dazu in der Lage, was aber kein Nachweis daf�ur
ist, da� dies auch in FlowMark mit vertretbarem Aufwand m�oglich ist.

Ein einzelner Thread hat die Aufgabe, alle Nachrichten aus der Warteschlange aus-
zulesen und den jeweiligen Transaktionskontext zu aktivieren, falls sich die Nachricht
auf eine Sph�are bezieht. Wenn nicht, wird eine neue Transaktion f�ur die anstehenden
Operationen erzeugt. In [SB96a] wird dieser Ansatz ausf�uhrlicher erl�autert.

Singlethreaded Engine mit Zerlegen der Sph�aren{Transaktion

Wenn der vorangehend beschriebene Ansatz nicht machbar oder zu riskant sein soll-
te, besteht noch die M�oglichkeit, das Konzept der Work
ow{Transaktionen abzu-
schw�achen, um die Sperrkon
ikte beim gemeinsamen Zugri� auf die Work
owdaten-
bank zu vermeiden. Dies k�onnte so aussehen, da� die Zugri�e auf den Work
owzu-
stand in der Datenbank nicht mehr in der Transaktion abl�auft, in der auch die Ope-
rationen der ACID{Aktivit�aten eingebunden sind. Der Zugri� erfolgt dann genauso
wie bei der Bearbeitung von Nachrichten von Aktivit�aten au�erhalb einer Sph�are in
eigenen kurzen Transaktionen. Die ACID{Aktivit�aten einer Sph�are werden nach wie
vor unter dem Schutz eines einheitlichen Transaktionskontextes durchgef�uhrt. Wenn

17

Universit�at Stuttgart

Software{Labor 3 Ver�anderungen an FlowMark

man daf�ur sorgt, da� die Ausf�uhrung der ACID{Aktivit�aten den Engine{Thread nicht
blockieren kann, k�onnen die beschriebenen Verklemmungen nicht auftreten.

Jetzt mu� aber daf�ur gesorgt werden, da� im Fehlerfall der Work
owzustand |
hergestellt durch korrekt beendete, einzelne Transaktionen | wieder auf einen Stand
gebracht wird, der konsistent mit dem Zustand der jetzt zur�uckgesetzten ACID{
Aktivit�aten ist. Diese Ver�anderung des Work
owzustandes mu� jetzt durch eine
kompensierende Transaktion auf der Datenbank durchgef�uhrt werden. Diese Kom-
pensationstransaktion darf nicht fehlschlagen, ansonsten w�are der Gesamtzustand
inkonsistent. Man mu� also die zwei Transaktionen, die Sph�arentransaktion und die
Kompensationstransaktion, so koppeln, da� bei einem Rollback der Sph�arentrans-
aktion die Kompensationstransaktion angesto�en wird und daf�ur gesorgt wird, da�
diese Transaktion irgendwann erfolgreich beendet wird. Dies ist aber nicht mit letzter
Sicherheit zu garantieren.

Falls die Work
ow{Transaktion fehlschl�agt, wird sie zur�uckgesetzt. Zusammen mit
dem R�ucksetzen der Auswirkungen der Aktivit�aten wird der Zustand des Work
ows
automatisch so ver�andert, als w�are die Sph�are nie ausgef�uhrt worden. Dies geschieht
auch bei der Variante mit zerlegten Transaktionen, nur nicht in einer einzigen Trans-
aktion. Die Bearbeitung des Sph�are kann erneut beginnen. Hierbei ist es notwendig,
da� man die Anzahl der Wiederholungen einer Sph�are begrenzt und nach dem Errei-
chen der Maximalzahl den gesamten Work
ow mit einer Fehlermeldung abbricht oder
eine alternative Vorgehensweise w�ahlt. Falls n�amlich ein nicht{transienter Fehler den
Abbruch bewirkt, w�are man in einer Endlosschleife gefangen.

Die Arbeitsweise der Work
ow{Engine bei der Bearbeitung von Aktivit�aten inner-
halb von Sph�aren unterscheidet sich in einem wichtigen Punkt von den Bearbeitung
der Aktivit�aten au�erhalb der Sph�are: W�ahrend der Ausf�uhrung von Operationen
innerhalb einer Sph�are mu� die Work
ow{Engine darauf achten, da� sie die Isola-
tionseigenschaft der Sph�are nicht verletzt. Alle Daten{ und Kontroll
�usse, die die
Sph�are verlassen, d�urfen nicht vor erfolgreichem Ende der Sph�are aktiv werden. Sie
m�ussen bis zum Ende in ihrem urspr�unglichen Zustand eingefroren werden. Erst nach
dem erfolgreichen Ende der Work
ow{Transaktion werden die Fl�usse wieder aktiv.

Die Isolation der Anwendungsdaten mu� durch die Aktivit�aten, genauer durch ihre
Eigenschaft als Resource Manager, gesichert werden. Das Work
owsystem hat keine
direkten Eingri�s{ oder �Uberwachungsm�oglichkeiten. Im dritten Realisierungsansatz
werden die �Anderungen des Work
owzustandes in eigenen Transaktionen ausgef�uhrt
und sind somit auch schon vor dem Ende der Sph�are nach au�en hin sichtbar. Andere
Systemkomponenten k�onnten daher inkonsistente Daten lesen. Momentan kommt als
einzige betro�ene Komponente der Work
ow{Monitor in Frage, der den Work
ow{
Zustand visualisiert und dem Benutzer pr�asentiert. Er f�uhrt aber keine weiteren
Bearbeitungsschritte mit diesen Daten durch und ist somit unkritisch. Die Datenbank
mu� dem Monitor aber unbeschr�ankten Zugri� auf die Daten gew�ahren, sonst k�onnte
der Fortschritt innerhalb einer Sph�are nicht dargestellt werden.

18

3.2 Ver�anderungen am Runtime{Client

Universit�at Stuttgart

Software{Labor

Dead-Path{Elimination

Die Dead{Path{Elimination hat die Aufgabe, Aktivit�aten imWork
ow, die aufgrund
des momentanen Work
owzustandes nicht mehr erreicht werden k�onnen, als

"
termi-

niert\ zu markieren und deren ausgehende Kontrollkonnektoren zu
"
false\ zu evalu-

ieren. Bei der Verwendung von Sph�aren mu� die Dead{Path{Elimination folgende
Regeln beachten:

� Eine Dead{Path{Elimination, die innerhalb einer Sph�are initiiert wird, darf
die Sph�are nicht verlassen, bevor nicht die zugeh�orige Transaktion erfolgreich
beendet ist (Isolation). Dies ist notwendig, da nach einem Rollback und Wie-
deranlauf sich der Ablauf des Work
ows innerhalb der Sph�are �andern k�onnte,
und damit die Dead{Path{Elimination eventuell nicht mehr gestartet werden
mu�.

� Eine Dead{Path{Elimination, die eine Sph�are von au�en betritt, mu� die Sph�are
ungehindert betreten und durchlaufen k�onnen. Die Sph�are kann dabei auch
vollst�andig der Elimination zum Opfer fallen. Wird eine Sph�are von der Dead{
Path{Elimination betreten, aber nicht die gesamte Sph�are invalidiert, kann
die Sph�are ohne Ber�ucksichtigung der Isolation durchlaufen werden. Dies ist
m�oglich, da auch durch ein Rollback und Neustart einer Sph�are die von der
partiellen Elimination betro�enen Objekte keinen anderen Zustand erreichen
k�onnen. Auch mu� durch das Betreten einer Sph�are die Sph�arentransaktion
durch die Dead{Path{Elimination nicht aktiviert werden.

3.2 Ver�anderungen am Runtime{Client

Am Runtime{Client ist nur wenig zum Einbau von Work
ow{Transaktionen vorzu-
nehmen. Das Starten von ACID{Aktivit�aten �ubernimmt der Program{Execution{
Client. Es ist sinnvoll, da� der Benutzer auf seiner Arbeitsliste die Aktivit�aten, die in
Work
ow{Transaktionen eingebettet sind, von normalen Aktivit�aten unterscheiden
kann. ACID{Aktivit�aten verhalten sich n�amlich anders: Auch nach einer erfolgrei-
chen Bearbeitung einer solchen Aktivit�at kommt es bei einemRollback der Work
ow{
Transaktion vor, da� die Aktivit�at nochmals auf der Arbeitsliste erscheint und erneut
bearbeitet werden mu�. H�au�g d�urften Sph�aren{Aktivit�aten automatisch, also ohne
auf der Arbeitsliste eines Benutzers zu erscheinen, ausgef�uhrt werden.

Im Runtime{Client mu� eine neue Funktion im Men�u angeboten werden, mit der
man Work
ow{Transaktionen manuell abbrechen kann. Diese Funktion kann z.B. im
Monitorfenster realisiert werden. Dort mu� ebenso wie in der Buildtime{Komponente
eine Sph�are mitsamt ihrem Zustand angezeigt werden k�onnen. In diesem Fenster mu�
dann mit der Maus eine aktive Sph�are ausgew�ahlt und abgebrochen werden k�onnen.
Der Abbruch von Sph�aren sollte allerdings �uber die Vergabe von Rechten gesch�utzt
werden k�onnen. Beim Abbruch einer Sph�are m�ussen die betro�enen Aktivit�aten
automatisch von den Arbeitslisten entfernt werden k�onnen.

19

Universit�at Stuttgart

Software{Labor 3 Ver�anderungen an FlowMark

3.3 Ver�anderungen an der Buildtime{Komponente

Die Buildtime{Komponente mu� so ver�andert werden, da� mit ihr die oben be-
schriebene Art von Sph�aren modelliert werden kann. Mit der bereits bestehenden
Modellierungs{Komponente der FlowMark Version 2.1 kann ein Arbeitsorganisator
Gesch�aftsprozesse in der Form eines Aktivit�atennetzes modellieren. Er erzeugt dabei
Aktivit�aten, f�ullt die Attribute der Aktivit�aten mit Werten und legt die Position des
Abbilds einer Aktivit�at auf einer Zeichen
�ache fest. Die Aktivit�aten werden dann
manuell durch Daten{ und Kontroll
�usse verbunden. Beim Verbinden wird �uber-
pr�uft, ob die neue Verbindung einen Zyklus bildet und somit nicht erlaubt w�are. Die
Position einer Aktivit�at kann durch Drag{and{Drop{Technik nachtr�aglich ver�andert
werden. Die Pfeile der Daten{ und Kontroll
�usse werden dabei automatisch ange-
pa�t. In Abbildung 8 ist ein fertig modellierter Work
ow zu sehen.

Accept_Reject

Acceptance_Letter

Archive_ApplicationBlock_Evaluation

Check_Policies

Create_Policy

Enter_Application

Enter_Client_Information

Find_Client Mail_Documents

Rejection_Letter

Update_Client_Information

Abbildung 8: Ein in FlowMark modellierter Gesch�aftsproze�

Folgende Funktionen m�ussen in der Modellierungskomponente zus�atzlich imple-
mentiert werden:

� Nimm Aktivit�at in Sph�are auf

Eine bestehende Aktivit�at mu� in eine Sph�are aufgenommen werden k�onnen.
Das kann mittels Drag{and{Drop geschehen.

� Entferne Aktivit�at aus der Sph�are

Eine Aktivit�at in der Sph�are mu� aus der Sph�are genommen werden k�onnen.

�
�Uberpr�ufe strukturelle Bedingungen

Eine Funktion zur �Uberpr�ufung, ob die geforderten strukturellen Bedingungen
der Sph�are eingehalten werden, mu� beim Einf�ugen und Entfernen von Akti-
vit�aten aus der Sph�are ausgef�uhrt werden. Diese Funktion sollte auch �uber ein
Men�upunkt durch den Arbeitsorganisator abrufbar sein.

20

3.4 Ver�anderungen an der Kommunikationsstruktur

Universit�at Stuttgart

Software{Labor

Das Erzeugen einer neuen Aktivit�at in einer Sph�are kann durch eine Kombination
einer bestehenden Funktion Erzeuge Aktivit�at und der neuen Funktion Nimm

Aktivit�at in Sph�are auf realisiert werden. Das L�oschen einer Aktivit�at in einer
Sph�are ist mit dem normalen L�oschen einer Aktivit�at identisch.

Eine Sph�are gruppiert eine Menge von Aktivit�aten. Auf der Zeichen
�ache mu�
ersichtlich sein, welche Aktivit�at zu welcher Sph�are geh�oren. Dieses Problem wird
dadurch erschwert, da� die Menge von Aktivit�aten keine Zusammenhangskomponente
in dem Aktivit�atennetz bilden mu�.

Eine Methode, die Zugeh�origkeit anzeigen, ist das Einf�arben aller Aktivit�aten
einer Sph�are in einer einheitlichen Farbe. Der Vorteil dieser Methode liegt in der
einfachen Realisierung. Der Nachteil in der relativ beschr�ankten Anzahl der zur
Verf�ugung stehenden Farben. Auch kann eine einzelne, abseits liegende Aktivit�at
leicht �ubersehen werden. Ein{ und Ausg�ange von Sph�aren sind so nur schwer zu
erkennen.

Eine zweite Methode ist das Umh�ullen aller Aktivit�aten einer Sph�are. Auf-
grund der Bedingung, da� auch zusammenhanglose Aktivit�aten Teil einer Sph�are
sein k�onnen, kann die H�ulle der Sph�are als gra�sches Objekt nicht immer einfach
aufgebaut sein. Eine Ellipse oder ein Rechteck ist z. B. f�ur diesen Zweck nicht geeig-
net. Es mu� daraus gefolgert werden, da� die H�ulle frei verformbar sein mu�. Wenn
die H�ulle per Freihandzeichnung in das Aktivit�atennetz eingezeichnet wird, ergibt
sich das Problem, da� beim Verschieben einer Aktivit�at die Aktivit�at aus der Sph�are
entfernt werden kann. Es mu� daher ein Mechanismus gefunden werden, der, analog
zum Mitziehen der Daten{ und Kontroll
�usse, auch ein Mitziehen der Sph�are mit der
Aktivit�at erlaubt. Hieraus ergibt sich aber wieder ein neues Problem. Eine vorher
nicht in der Aktivit�at liegende Aktivit�at darf durch das Mitziehen der Sph�are nicht
in der neu erstellten H�ulle zu liegen kommen. Die gra�sche Darstellung der Sph�are
erfordert daher Heuristiken, wie ein Aktivit�atennetz mit Sph�are �ubersichtlich darge-
stellt werden kann. Im Monitor des Work
owsystems Surro ist eine solche einfache
Heuristik implementiert.

3.4 Ver�anderungen an der Kommunikationsstruktur

Als Kommunikationsprotokolle werden in der jetzigen FlowMark Version TCP/IP,
NetBIOS oder APPC eingesetzt. In Zukunft soll das IBM{Produkt MQSeries zur
Kommunikation zwischen FlowMark{Komponenten eingesetzt werden. MQSeries ga-
rantiert die sichere Auslieferung von Nachrichten �uber Rechnergrenzen hinweg in he-
terogenen Systemumgebungen. Die Kommunikationswege werden dazu als persistente
Warteschlangen modelliert. Nachrichten k�onnen damit asynchron an Prozesse ver-
schickt werden, d. h. die Empf�angerprozesse m�ussen beim Absenden nicht unbedingt
existieren. Die Nachrichten werden solange persistent in der Kommunikationswarte-
schlange gespeichert, bis der Empf�angerproze� aktiv wird und die Nachricht abholt.

Durch den Einsatz von OTS mu� eine neue Kommunikationsart in das FlowMark{
System eingef�uhrt werden. Mit Hilfe eines Object Request Brokers m�ussen Ob-

21

Universit�at Stuttgart

Software{Labor 3 Ver�anderungen an FlowMark

jektaufrufe systemweit durchgef�uhrt werden k�onnen. Schon der Beginn einer
Work
ow{Transaktion erfordert mehrere Methodenaufrufe in OTS{Objekten durch
die Work
ow{Engine.

W�ahrend der Bearbeitung einer Work
ow{Transaktion m�ussen beim Start ei-
ner Aktivit�at Methodenaufrufe in den Anwendungsobjekten, den ACID{Aktivit�aten,
durchgef�uhrt werden k�onnen. Es gibt drei M�oglichkeiten, wer diese Aufrufe absetzen
kann:

1. Die Engine kann den Methodenaufruf selbst absetzen. Da die Engine mei-
stens auf einem anderen Rechner als das Anwendungsprogramm l�auft, mu�
hier DSOM eingesetzt werden. Der Program{Execution{Client wird bei dieser
Kommunikationsart nicht eingesetzt. Der Methodenaufruf kann entweder die
Arbeit im Anwendungsobjekt ansto�en, oder in der Methode wird die ganze
Arbeit geleistet. Im Fall des Ansto�ens mu� das Objekt einen weiteren Auf-
ruf an die Engine absetzen, wenn es seine Arbeit beendet hat. Wenn in der
Methode die ganze Arbeit erledigt wird (synchroner Aufruf), bleibt die Engine
w�ahrend der Bearbeitungszeit blockiert. Sie mu� daher einen Thread erzeu-
gen, in dem der Methodenaufruf abgesetzt wird. Diese Aufgabe kann auch ein
Program{Execution{Client �ubernehmen, der einen Methodenaufruf im Auftrag
der Engine �ubernimmt.

2. Auch der bisher eingesetzte Program{Execution{Client kann den Methodenauf-
ruf im Anwendungsobjekt vornehmen. Die bisherige Kommunikation zwischen
Engine und Execution{Client kann damit wie bisher genutzt werden. Als einzi-
ge Erg�anzung mu� dem Auftrag an den Execution{Client, einen Methodenauf-
ruf zu t�atigen, der Transaktionskontext mitgegeben werden. Der Thread des
Program{Execution{Client assoziiert sich bei impliziter Propagierung mit der
Transaktion und f�uhrt den Aufruf durch. Bei expliziter Propagierung wird der
Kontext als Parameter durchgereicht. Auch hier mu� ber�ucksichtigt werden,
da� der Execution{Client mehrere Threads verwendet, damit mehrere Anwen-
dungsobjekte auf einem Rechner parallel angesprochen werden k�onnen.

3. Die dritte M�oglichkeit besteht darin, ein H�ullenprogramm (Wrapper{
Programm) zu nutzen, das den Methodenaufruf durchf�uhrt. Die Kommuni-
kation zwischen Work
ow{Engine und Program{Execution{Client bleibt bis
auf den zus�atzlichen Parameter, den Transaktionskontext, unver�andert. Der
Program{Execution{Client bleibt auch weitgehend unver�andert. Er mu� nur
den mitgelieferten Transaktionskontext in einen Stringparameter konvertieren
und in der Kommandozeile demWrapperprogramm �ubergeben. Der Thread des
Wrapper{Programms bindet sich an die Work
ow{Transaktionen und macht
dann den Methodenaufruf. Der Wrapper kann w�ahrend des Methodenaufrufs
blockiert bleiben.

22

Universit�at Stuttgart

Software{Labor

4 Beispielhafte Anwendung von OTS: eine

transaktionale Konto{Klasse

Um die Funktionsweise von OTS besser zu verstehen und um mit den OTS{ und
SOM{Aufrufen vertraut zu werden, wurde von uns ein Beispielprogramm erstellt, das
zur Transaktionverwaltung OTS benutzt. Als Anwendung wurde das klassische Bei-
spiel einer �Uberweisung eines Geldbetrags von einem Konto auf ein anderes gew�ahlt.
Die Implementierung benutzt SOM 3.0 von IBM, in der bereits mehrere Object Ser-
vices (insbesondere OTS) implementiert sind. SOM 3.0 ist bisher nur auf OS/2
verf�ugbar und noch im Beta{Zustand.

In den folgenden Abschnitten wird zuerst das IDL{Interface der Kontoklasse
erl�autert. Dann folgt eine Beschreibung der Implementierung des Clients und des
Servers mit eingestreuten Codefragmenten.

4.1 Interface-De�nition

Die implementierte Klasse
"
account\ f�ur Konto-Objekt bietet folgende Schnittstellen

an (in IDL-Notation, gek�urzt):

// IDL interface definition for an account object

#include <somtran.idl>

interface accountResource;

interface account: CosTransactions::TransactionalObject

{

void accountInit(in long accNumber);

// init account object with its number

accountResource register_in_TA();

// register myself with a coordinator

float read();

// get current value of account

void write(in float amount);

// set new value of account

void deposit(in float amount);

// add amount to account

void withdraw(in float amount);

// subtract amount from account

23

Universit�at Stuttgart

Software{Labor 4 Beispielhafte Anwendung von OTS: eine transaktionale Konto{Klasse

CosTransactions::Vote prepare();

// 2PC-methods: prepare for commit

void rollback();

// 2PC-methods: rollback Transaction

void commit();

// 2PC-methods: commit Transaction

attribute float value; // amount of money of this account

attribute long accNumber; // account number

attribute string accfile; // name of file which contains persistent value

attribute string acctemp; // name of file which contains prepare value

attribute accountResource accRes; // stores accountResource object

attribute CosTransactions::Current current; // stores Current object

...

};

In den Attributen Kontostand (value) und Kontonummer (accNumber) werden die
Daten eines Konto{Objekts gespeichert. Die anderen Attribute dienen Verwaltungs-
zwecken. An Grundfunktionalit�at bietet ein Konto{Objekt die Methoden read und
write zum Auslesen bzw. Setzen des Kontostandes, und deposit und withdraw zum
Erh�ohen bzw. Vermindern des Kontostandes an.

Zus�atzlich m�ussen Methoden angeboten werden, die zur korrekten Teilnahme an
einer Transaktion notwendig sind. Dies sind prepare, commit und rollback. Durch die
Ableitung der Konto{Klasse von

"
CosTransactions::TransactionalObject\ benutzt die

Klasse das Prinzip der impliziten Propagierung des Transaktionskontexts, d. h. da�
bei jedem Methodenaufruf automatisch der Transaktionskontext mitgeliefert wird.
Dies ist eine in SOM vorkommende Spezialisierung der OTS{De�nition. Dort ist
ein Transactional Object allgemein ein Objekt, dessen Verhalten vom Vorhandensein
eines Transaktionskontextes beein
u�t wird. In SOM bedeutet die Ableitung von
der Klasse

"
TransactionalObject\ zus�atzlich die Verwendung der impliziten Propa-

gierung.
Wenn der Kontext explizit propagiert werden soll, mu� in jeder transaktionalen

Methode ein zus�atzlicher Parameter f�ur den Kontext aufgenommen werden. Der
Kontext wird dabei durch das Control{Objekt repr�asentiert.

4.2 Die Client{Implementierung

Das Beispiel basiert auf einer Client{Server{Struktur. Der Client ruft in einer Trans-
aktion Methoden der Konto{Objekte auf und nutzt so die Funktionalit�at, die von

24

4.2 Die Client{Implementierung

Universit�at Stuttgart

Software{Labor

den Konto{Objekten, den Servern, angeboten wird. Der Client ist ein Transactional

Client und die Konto{Objekte sind gleichzeitig
"
Transactional Objects\ und

"
Reco-

verable Objects\1. Der Client f�uhrt folgende Operationen durch:

1. Start einer Transaktion

2. Aufrufen der transaktionalen Methoden in den Transactional Objects. Also
z. B. das Umbuchen von einem Konto auf ein anderes.

3. Terminieren der Transaktion �uber Commit oder Rollback.

Der Ablauf im Client wird in den folgenden Punkten detailliert erl�autert (Verglei-
che dazu auch Abb. 9):

� Die Konto{Objekte und die Client{Prozesse m�ussen als DSOM{Server imple-
mentiert sein. Ein DSOM{Serverproze� hat die F�ahigkeit, Methoden lokaler
Objekte nach au�en anzubieten, die dann durch die Vermittlung eines ORB von
anderen, entfernten Objekten aufgerufen werden k�onnen. Da das Coordinator{
Objekt im Client erzeugt wird und dieses von den entfernten Konto{Objekten
angesprochen werden mu�, ben�otigt auch der Client einen eigenen DSOM{
Server{Thread, der Aufrufe von au�en bearbeitet. Zus�atzlich m�ussen der Cli-
ent und die Konto{Klasse im DSOM{Implementation{Repository als DSOM{
Server registriert werden.

Die Konto{Objekte sind nicht als eigenst�andigen Prozesse, sondern als DLL
(dynamic link libraries) realisiert. Ein Standard{Serverproze� (somossvr.exe)
l�adt diese Libraries und stellt Threads f�ur die Ausf�uhrung von Methoden zur
Verf�ugung.

Bei der �Ubersetzung des Quellcodes der Konto{Klasse wird f�ur den Client eine
Stub{Library erzeugt, die dieser einbindet, um auf die Methoden im Konto{
Objekt zugreifen zu k�onnen. Ein DSOM{Daemon (somdd) sorgt f�ur die Kom-
munikationsverbindung zwischen den entfernten DSOM{Objekten.

� Nach der DSOM{Initialisierungsphase erzeugt der Client ein oder mehrere
Konto{Objekte. Falls die Objekte schon existieren, mu� dieser Schritt durch
eine Suche �uber den Naming Service von DSOM ersetzt werden. Der Aufruf
der accountInit-Methoden legt u. a. die Kontonummer fest, die als Parameter
�ubergeben wird (s.u.). Zur Vereinfachung ist in den folgenden Codefragementen
die Fehlerbehandlung weggelassen worden.

account *const acc1 = (account *)somdCreate(ev,"account",TRUE);

account *const acc2 = (account *)somdCreate(ev,"account",TRUE);

acc1->accountInit(ev,371);

acc2->accountInit(ev,535);

1siehe Seite 10

25

Universit�at Stuttgart

Software{Labor 4 Beispielhafte Anwendung von OTS: eine transaktionale Konto{Klasse

� Der Client startet eine Transaktion, indem er ein Current{Objekt erzeugt
und die begin-Methode aufruft (indirektes Kontextmanagement). Der Client{
Thread wird durch den begin{Aufruf mit der Transaktion assoziiert:

// create CURRENT-object

CosTransactions_Current *const current = new CosTransactions_Current;

// Begin a top-level transaction

current->begin(ev);

� Jetzt kann der Client Methoden der Konto{Objekte im Kontext dieser Trans-
aktion aufrufen:

acc1->withdraw(ev,350);

acc2->deposit(ev,350);

Die Methodenaufrufe enthalten den Transaktionskontext nicht als Parameter.
Der Kontext wird implizit an das Konto{Objekt �ubergeben, da die Konto{
Klasse von TransactionalObject abgeleitet ist und der Client{Thread �uber das
Current{Objekt mit einer Transaktion assoziiert ist.

� Zur Beendigung einer Transaktion ruft der Client eine der beiden folgenden
Methoden auf:

current->commit(ev,FALSE);

oder

current->rollback(ev);

Durch den Commit{Aufruf wird das 2{Phasen{Commit{Protokoll (2PC) ange-
sto�en, in dem OTS als Protokollf�uhrer auftritt.

4.3 Die Implementierung der Konto{Klasse

In der Konto{Objekt Implementierung wird der Kontostand persistent in einer Da-
tei gesichert. In einer weiteren Ausbaustufe k�onnte man die Objekte mittels des
Persistent Object Service (POS) von SOM persistent halten.
Der Ablauf in der Konto{Klasse sieht folgenderma�en aus (Vergleiche dazu auch Abb.
9):

26

4.3 Die Implementierung der Konto{Klasse

Universit�at Stuttgart

Software{Labor

� De�nition einer Resource{Klasse
Damit ein Konto{Objekt in das 2PC{Protokoll eingebunden wird, mu� es beim
Koordinator einer Transaktion ein Resource{Objekt registrieren. Ein Resource{
Objekt bietet demTransaktionsmanager die zur Durchf�uhrung des 2PC notwen-
digen Schnittstellen an. Dies sind prepare(), commit() und rollback(). F�ur die
Klasse

"
account\, die die Konto-Objekte realisiert, wird eine Klasse

"
accoun-

tResource\ de�niert. Diese ist von der Klasse
"
Resource\ abgeleitet und erbt

die erw�ahnten drei Methoden. Die IDL-De�nition sieht folgenderma�en aus
(gek�urzt):

// define the resource class for accounts

#include <somtran.idl> // Transaction Service

interface account; // prototype

interface accountResource: CosTransactions::Resource

{

attribute account myAccount; // stores relationship to account object

attribute CosTransactions::Coordinator coord;

void register_resource(in CosTransactions::Coordinator coord,

in account myAccount);

...

};

Als einzige Methode wird register resource deklariert. Mittels dieser Methode
registriert sich ein Konto{Objekt beim eigenen Resource{Objekt. Die Registrie-
rung wird im Attribut

"
myAccount\ gespeichert. Dies ist notwendig, damit das

Resource{Objekt einen Bezug auf sein zugeh�origes Konto{Objekt hat, um bei
der Durchf�uhrung der Terminierung darauf zugreifen zu k�onnen.

� Initialisierung
Nach dem Erzeugen eines Konto{Objektes wird dieses durch die Methode ac-

countInit initialisiert. Dabei wird die Kontonummer gesetzt und der Kontostand
ermittelt. Der Kontostand eines Konto{Objekts wird persistent in einer Datei
gehalten. Der Name der Kontostandsdatei steht im Attribut

"
acc�le\. Falls

diese Datei schon existiert, wird der momentane Kontostand eingelesen.

� Ablauf eines Methodenaufrufs
Beim ersten Aufruf einer Methode eines Konto{Objektes, die einen Transakti-
onskontext ben�otigt, wird ein

"
accountResource\{Objekt erzeugt. Diesem wird

�uber die
"
register resource\{Methode eine Referenz auf das Konto{Objekt �uber-

geben. Das Konto{Objekt registriert dann das accountResource{Objekt beim
Koordinator der Transaktion.

27

Universit�at Stuttgart

Software{Labor 4 Beispielhafte Anwendung von OTS: eine transaktionale Konto{Klasse

Als Beispiel ist die write{Methode dargestellt. Der Aufruf register in TA �uber-
pr�uft, ob der Transaktionskontext bereits bekannt ist. Falls nicht, und falls der
Aufruf aus einer Transaktion heraus erfolgt, wird ein neues Objekt der Klasse

"
accountResource\ erstellt. Dieses Objekt wird beim Koordinator registriert.
Anschlie�end wird das Konto{Objekt bei seinem Resource{Objekt registriert.
Nach der Registrierungsroutine wird der neue Kontostand im value{Attribute
gespeichert. Falls die Transaktion best�atigt wird, wird in der commit{Methode
dieser Wert in die Kontostandsdatei geschrieben.

/*

* set new value of account

*/

SOM_Scope void SOMLINK write(account *somSelf, Environment *ev,

float amount)

{

accountData *somThis = accountGetData(somSelf);

accountMethodDebug("account","write");

accountResource *resource = somSelf->register_in_TA(ev);

somThis->value = amount; // update account in memory

}

/*

* register myself with a coordinator

*/

SOM_Scope accountResource* SOMLINK register_in_TA(account *somSelf,

Environment *ev)

{

accountData *somThis = accountGetData(somSelf);

accountMethodDebug("account","register_in_TA");

CosTransactions_Control *ctrl = NULL;

CosTransactions_Coordinator *coord = NULL;

CosTransactions_RecoveryCoordinator *rcoord = NULL;

// only one resource object -> only one TA

// do I already have a resource object?

if (somThis->accRes != NULL) {

return (somThis->accRes);

}

// get control object from current object

ctrl = somThis->current->get_control(ev);

28

4.3 Die Implementierung der Konto{Klasse

Universit�at Stuttgart

Software{Labor

error(ev,"get_control failed");

// get_control returns a NULL-pointer if there is no transaction

// context associated with the call.

if (ctrl==NULL) {

somPrintf("register_in_TA: Call to account object without TA\n");

return NULL; // no transaction

} /* endif */

coord = ctrl->get_coordinator(ev);

error(ev,"get_coordinator failed");

// create new resource object

somThis->accRes = (accountResource *)

somdCreate(ev,"accountResource",TRUE);

error(ev,"creation of accountResource object failed");

if (!somIsObj(somThis->accRes)) {

somPrintf("creation of accountResource object failed!\n");

return NULL;

} /* endif */

// register your resource object at the coordinator

// returns recovery coordinator

rcoord = coord->register_resource(ev,somThis->accRes);

error(ev,"register_resource of coordinator failed");

// register coordinator and account object (self) at the resource

// (user defined method of accountResource)

somThis->accRes->register_resource(ev,coord,somSelf);

error(ev,"register_resource of accountResource failed");

return somThis->accRes;

}

Falls es m�oglich ist, da� aus mehreren unterschiedlichen Transaktionskontexten
heraus auf dasselbe Konto{Objekt zugegri�en werden kann, mu� zus�atzlich eine
Verwaltung von Transaktionskontexten eingerichtet werden. Diese registriert,
an welchen Transaktionen das Objekt teilnimmt, und kann so feststellen, ob
ein Methodenaufruf aus einer neuen oder einer bereits bekannten Transaktion
heraus erfolgt und dann entsprechend reagieren. In der hier beschriebenen
Testimplementierung ist dies vorerst nicht realisiert, da immer nur ein Client
zu einem Zeitpunkt existiert.

29

Universit�at Stuttgart

Software{Labor 4 Beispielhafte Anwendung von OTS: eine transaktionale Konto{Klasse

4.4 Ablauf des 2PC

Im folgenden wird der Ablauf der Terminierung einer Transaktion n�aher beschrie-
ben. Leitet der Client die Terminierung �uber einen Commit{Aufruf ein, so wird
das 2PC angesto�en. Bei einem Rollback ist dies nicht notwendig. Der Koordina-
tor ruft in allen bei ihm registrierten Resource{Objekt die prepare(){Methode auf.
Im accountResource{Objekt wird der prepare{Aufruf an das Konto{Objekt durchge-
reicht.

// accountResource-Klasse

SOM_Scope CosTransactions_Vote SOMLINK prepare(accountResource *somSelf,

Environment *ev)

{

accountResourceData *somThis = accountResourceGetData(somSelf);

accountResourceMethodDebug("accountResource","prepare");

account *acc = somThis->myAccount;

vote = acc->prepare(ev);

return vote;

}

Aufgabe der prepare{Methode im Konto{Objekt ist es, entweder den Abbruch
der Transaktion zu initiieren, falls ein entsprechender Fehlerzustand festgestellt wird
(d. h. das Objekt votiert mit

"
VoteRollback\), oder den momentanen Zustand so zu

sichern, da� auch nach einem Fehler beide Entscheidungen { Commit oder Rollback
{ m�oglich sind (Objekt votiert mit

"
VoteCommit\).

//account-Klasse

SOM_Scope CosTransactions_Vote SOMLINK prepare(account *somSelf,

Environment *ev)

{

accountData *somThis = accountGetData(somSelf);

accountMethodDebug("account","prepare");

// save the current value (afterimage) in a temp file;

// beforeimage is in original file

ofstream tempfile(somThis->acctemp);

if (!tempfile) {

somPrintf("Prepare: output file %s open error\n",somThis->acctemp);

return CosTransactions_VoteRollback;

} /* endif */

tempfile << somThis->value;

tempfile.close();

30

4.4 Ablauf des 2PC

Universit�at Stuttgart

Software{Labor

return CosTransactions_VoteCommit;

}

Hier wird der momentane Kontostand (
"
afterimage\) in einer tempor�aren Datei

gesichert. Der Wert des Kontos bei Beginn der Transaktion (
"
beforeimage\) ist der In-

halt der Kontostandsdatei, die w�ahrend einer Transaktion nicht ge�andert wird. Falls
die Sicherung des afterimage nicht m�oglich ist, votiert das Objekt mit

"
Rollback\.

Wenn alle beteiligten Objekte ihr Votum abgegeben haben, ruft der Koordina-
tor | je nach Ausgang der Votierphase | die commit(){ oder rollback(){Methoden
der Resource{Objekte auf. Diese werden, wie beim prepare(), direkt an das Konto{
Objekt durchgereicht. Bei einer Commit{Entscheidung ersetzt das Konto{Objekt
seinen alten Kontostand mit dem neuen. Beim Rollback wird der neue Stand verwor-
fen (die tempor�are Datei wird gel�oscht) und der alte Kontostand bleibt unver�andert
bestehen.

Client

Current

Coordinator

Account 2

Current

amount -x

store

Account 1

Current

store

new

begin TAnew

register_resource

commit

prepareprepareprepare

commit
commit

register_resource

prepare

new

get_control

new

get_control

amount + x

DEPOSIT x

WITHDRAW x

Abbildung 9: Gesamtablauf einer Transaktion

31

Universit�at Stuttgart

Software{Labor Literatur

In Abb. 9 ist noch einmal der Ablauf einer Transaktion zusammengefa�t. Aus
�Ubersichtlichkeitsgr�unden fehlen in der Darstellung die accountResource{Objekte
und einige Methodenaufrufe. Die account{Objekte werden als schon vorhanden vor-
ausgesetzt.

Literatur

[AGK95] Alonso, G. ; G�unth�or, R. ; Kamath, M. ; Agrawal, D. ; El Ab-

badi, A. ; Mohan, C.: Exotica/FMDC: Handling Disconnected Clients
in a Work
ow Management System. In: Proc. of 3rd Int. Conference on

Cooperative Information Systems. Wien, 1995

[Obj90] Object Management Group (OMG): Object Management Architecture Gui-

de. November 1990

[Obj93] Object Management Group (OMG): The Common Object Request Broker

Architecture and Speci�cation. Revision: 1.2 . 1993

[SB96a] Schreyjak, Stefan ; Bildstein, Hubert: Beschreibung des prototypisch

implementieren Work
owsystems Surro Universit�at Stuttgart, Software{
Labor. 1996. { Fakult�atsbericht Nr. 1996/19, Software{Labor Bericht
SL{5/96

[SB96b] Schreyjak, Stefan ; Bildstein, Hubert: Fehlerbehandlung in Work
ow{

Management{Systemen Universit�at Stuttgart, Software{Labor. 1996. {
Fakult�atsbericht Nr. 1996/17, Software{Labor Bericht SL{3/96

32

