
Universit�at Stuttgart
Software{Labor
Projekt 1.1:
Work
ow{Management{Systeme
Breitwiesenstra�e 20{22
D-70565 Stuttgart

Fakult�atsbericht Nr. 1996/19

Software{Labor Bericht Nr. SL{5/96

CR{Klassi�kation H.2.0, H.2.4

Beschreibung des

prototypisch implementierten

Work
owsystems Surro1

Stefan Schreyjak

Stefan.Schreyjak@informatik.uni-stuttgart.de

Hubert Bildstein

20. Dezember 1996

1Diese Arbeit wird von der IBM Deutschland Entwicklung GmbH und dem Ministerium

f�ur Wissenschaft und Forschung, Baden W�urttemberg, unterst�utzt.

Zusammenfassung

In diesem Bericht wird das im Rahmen des Software{Labors, Projekt Work
ow{
Management, erstellte Work
owsystem Surro vorgestellt. Zielsetzung des Projekts ist
es, Konzepte zur Verbesserung der Fehlertoleranz von Work
owsystemen zu evaluie-
ren. Dazu wurde auf Basis des FlowMark{Work
owmodells eine Work
ow{Engine,
ein Aktivit�atenmanager, ein Work
ow{Session{Manager und ein Work
ow{Monitor
erstellt.

In der Work
ow Spezi�kation k�onnen Sph�aren (Gruppen von Aktivit�aten) de�-
niert werden, die zur Erh�ohung der Fehlertoleranz dienen. Es gibt zwei Arten von
Sph�aren. In den Transaktions{Sph�aren sind alle Operationen der Engine und al-
le T�atigkeiten in den Anwendungsprogrammen, die in den Aktivit�aten verwendet
werden, in einer gro�en Work
ow{Transaktion gesch�utzt. Wenn w�ahrend der Bear-
beitung der Sph�are ein Fehler auftritt, wird die Sph�are automatisch in ihren Initi-
alzustand zur�uckgesetzt und alle Daten�anderungen werden r�uckg�angig gemacht. In
den Kompensations{Sph�aren m�ussen alle Aktivit�aten eine zus�atzliche Kompensati-
onsaktivit�at besitzen, die die Auswirkungen der normalen Aktivit�at kompensieren
k�onnen. Wenn ein Fehler in dieser Sph�are auftritt, dann werden alle notwendigen
Kompensationsaktivit�aten automatisch durch das Work
owsystem aktiviert.

Nach einer Einf�uhrung in die Aufgabenstellung und Terminologie von Work
ow{
Management werden die Work
ow{Transaktionen und Kompensations{Sph�aren als
Konzepte zur Fehlertoleranz ausf�uhrlich vorgestellt. Ihre Implementierung und die
dabei gesammelten Erfahrungen im Umgang mit der CORBA{Implementierung von
IBM (DSOM 3.0) und dem Transaktionsdienst (OTS) werden beschrieben. Das zu-
grundeliegende Datenmodell f�ur die Beschreibung der Work
ows wird erl�autert. Der
Aufbau des Work
owsystems Surro wird aufgezeigt und einzelne Implementierungs-
aspekte werden beschrieben. Das System wurde mit einem ebenfalls beschriebenen
Beispielwork
ow zur Bearbeitung einer Beschwerde bei einer Kreditkartenabrechnung
getestet.

Universit�at Stuttgart

Software{Labor

4

Inhaltsverzeichnis

1. Work
ow{Management{Systeme 9

1.1. Begri�e . 9
1.1.1. Modell eines Gesch�aftsprozesses 9
1.1.2. Modell einer Aktivit�at . 10
1.1.3. Die Systemkomponenten eines Work
owsystems 11

1.2. Motivation von Work
owsystemen . 12
1.3. Die Kernidee des Work
ow{Management 12

2. Fehlertoleranz in Work
owsystemen 15

2.0.1. Allgemeine Anforderungen . 15
2.1. Work
ow{Transaktionen . 17

2.1.1. Begri�e . 17
2.1.2. Das Konzept der Work
ow{Transaktion 19
2.1.3. Anforderungen an ACID{Aktivit�aten 21
2.1.4. Einsatzgebiete von Work
ow{Transaktionen 22
2.1.5. Einbindung von Legacy{Software 23
2.1.6. Realisierungsans�atze . 23

2.2. Kompensations{Sph�aren . 24
2.2.1. Begri�e . 24
2.2.2. Das Konzept der Kompensations{Sph�aren 25
2.2.3. Vergleich zwischen Transaktions{ und Kompensations{Sph�aren 27

3. Motivation weiterer Work
ow{Konzepte 29

3.1. Ereignisse . 29
3.1.1. Problemstellung und L�osungsans�atze 29
3.1.2. Die unterschiedlichen Arten von Ereignissen 30
3.1.3. Externe Ereignisse . 30
3.1.4. Interne Ereignisse . 31

3.2. Ersatzaktivit�aten . 31
3.3. Programm{Pool . 31

3.3.1. Probleme bei der Einbindung von Anwendungen in ein
Work
ow{Management{System 32

3.3.2. Ein L�osungskonzept . 34

5

Universit�at Stuttgart

Software{Labor Inhaltsverzeichnis

3.4. Ein transaktionales Dateisystem . 35
3.4.1. Motivation . 35

3.4.2. Das Konzept . 36
3.4.3. Integration in ein WFMS . 37

4. Der Aufbau des Work
owsystems Surro 38

4.1. Motivation des Prototypen . 38
4.1.1. Vorgeschichte und Entstehung 39

4.2. Aufbau des Surro Prototypen . 39
4.2.1. Aufgaben der Systemkomponenten 40

4.3. Kommunikation . 45
4.3.1. Die Schnittstellen zwischen den Systemkomponenten 46

5. Das Datenmodell von Surro 49

5.1. Begri�e . 49
5.2. Instanziierung von Work
ows . 50

5.3. Das ER{Modell . 50
5.4. Die Relationen . 52

5.4.1. Die Template{Relationen . 52

5.4.2. Die Organisations{Relationen 57
5.4.3. Die Verwaltungs{Relationen 59

5.4.4. Die Instanz{Relationen . 61
5.5. Randbedingungen im Datenmodell 63

6. Die Funktionsweise von Surro 65

6.1. Die Work
ow{Engine . 65
6.1.1. Der strukturelle Aufbau der Work
ow{Engine 65

6.1.2. Die Nachrichtenwarteschlange 66
6.1.3. Das Transaktionskontext{Verwaltungsobjekt 69

6.1.4. Das Work
ow Objekt . 69
6.1.5. Das Proze�ebenen Objekt . 70

6.1.6. Das Aktivit�aten Objekt . 70

6.1.7. Das Block Objekt . 71
6.1.8. Das Subproze� Objekt . 71

6.1.9. Das Transaktions{Sph�aren Objekt 72
6.1.10. Das Kompensations{Sph�aren Objekt 72

6.1.11. Das Organisationsmodul . 73
6.1.12. Das Kommunikationsprotokoll 73

6.2. Interne Abarbeitung eines Work
ows 74
6.2.1. Die Transaktionsgrenzen innerhalb und au�erhalb von Sph�aren 74

6.3. Der Programm{Pool{Manager . 75

6.4. Der Aktivit�aten{Manager . 77

6

Inhaltsverzeichnis

Universit�at Stuttgart

Software{Labor

7. Erfahrungen und Ergebnisse 79

7.1. Erfahrungen bez�uglich der Entwicklungsumgebungen 79
7.1.1. Implementierung unter DSOM 79
7.1.2. Implementierung mit OTS . 79
7.1.3. Das Zusammenspiel von DB2 und OTS 80
7.1.4. Implementierung mit Java . 81
7.1.5. Implementierung mit Tcl/Tk 82

7.2. Work
ow{Transaktionen . 82
7.3. Kompensations{Sph�aren . 83
7.4. Kritik am FlowMark Work
ow Modell 83

A. Die erstellte Software 85

A.1. Der Beispielproze�
"
Beschwerde �uber Kreditkartenabrechnung\ 85

A.2. Einschr�ankungen der aktuellen Implementierung (Stand Ende 1996) . 87
A.3. Die Softwaremodule . 87

7

Universit�at Stuttgart

Software{Labor Inhaltsverzeichnis

8

1. Work
ow{Management{Systeme

In diesem Abschnitt werden die wesentlichen Begri�e auf dem Gebiet des Work
ow{
Managements eingef�uhrt [WfM96]. Anschlie�end wird motiviert, welche Vorteile der
Einsatz von Work
owsystemen bringt. Aufgrund eines Vergleichs mit der heutzuta-
ge existierenden betrieblichen Softwareausstattung wird die Kernidee des Work
ow{
Managements herausgestellt.

1.1. Begri�e

Ein Work
ow{Management{System (WFMS) ist ein Softwaresystem zur Koor-
dination und kooperativen Abwicklung von Gesch�aftsvorg�angen in verteilten hete-
rogenen Rechnerumgebungen. Die Aufgaben eines Work
ow{Management{Systems
liegen in einer ersten Phase in der Modellierung der Aufbau{ und Ablauforganisation
eines Unternehmens und in der zweiten Phase in der Steuerung, �Uberwachung und
Protokollierung der modellierten Abl�aufe.

Die Ablauforganisation wird formal in Gesch�aftsprozessen modelliert, in denen
die Reihenfolgebeziehungen der einzelnen Vorgangsschritte spezi�ziert werden. Zu
jedem Schritt wird bestimmt, welche Arbeitsobjekte (Daten bzw. Dokumente) und
welche menschlichen und technischen Ressourcen zur Ausf�uhrung ben�otigt werden.
Ein Gesch�aftsproze� bzw. ein work
ow kann als Graph modelliert werden mit Vor-
gangsschritten als Knoten und Kontroll
u�{ und Daten
u�beziehungen als Kanten.

Eine Vorgangsschritt, im Gesch�aftsproze� Aktivit�at genannt, ist ein St�uck zu-
sammenh�angender Arbeit, die von einer Person ausgef�uhrt wird. Zur Bearbeitung
der Aufgabe in einer Aktivit�at k�onnen vom Bearbeiter interaktive Anwendungspro-
gramme eingesetzt werden. Alternativ sind auch manuelle Aktivit�aten ohne Com-
puterunterst�utzung m�oglich, oder automatische Aktivit�aten, die ohne menschliche
Interaktion auskommen.

1.1.1. Modell eines Gesch�aftsprozesses

In Abbildung 1.1 ist das Modell eines Gesch�aftsprozesses dargestellt. Hierbei wird das
von FlowMark benutzte Modell vorgestellt [LR94]. Die Aktivit�aten sind durch Kon-
troll
u�konnektoren miteinander verbunden. Die Aktivit�at A2 wird sequentiell nach
Beendigung von A1 ausgef�uhrt. A3 und B1 werden parallel ausgef�uhrt. Nach A1 wird

9

Universit�at Stuttgart

Software{Labor 1 Work
ow{Management{Systeme

Datenfluß
Kontrollfluß

Aktivität

Block

Legende:

Input/Output

Source/Sink

Datencontainer:

condition

condition

A1 A2

A3

B1

A4

A5

Abbildung 1.1.: Das Modell eines Gesch�aftsprozesses

entsprechend den Bedingungen an den Kontrollkonnektoren der obere Zweig und/oder
der untere Zweig mit A4 ausgef�uhrt. Die Bedingungen sind frei w�ahlbar. Es sind al-
so entweder beide (parallele Ausf�uhrung), eine von beiden (alternative Ausf�uhrung)
oder keine (Ende der Ausf�uhrung) der Bedingungen erf�ullt. Nach Ausf�uhrung eines
Zweiges wird A5 bearbeitet, wobei vor Ausf�uhrung von A5 alle dessen eingehenden
Konnektoren evaluiert sein m�ussen. Jede Aktivit�at besitzt Inputcontainer und Out-
putcontainer f�ur Daten. Die Weitergabe von Daten wird durch die Daten
u�konnek-
toren gesteuert. Die speziellen Datencontainer Source und Sink sind die Input{ und
Outputcontainer eines Gesch�aftsprozesses.

1.1.2. Modell einer Aktivit�at

Inputcontainer Outputcontainer

Ereignis

Startbedingung

Vorbedingung

Nachbedingung

Zustand

Aufgaben-
beschreibung

Rolle/Akteur

Dokumente

benötigte Programme

WertVariable WertVariable

Abbildung 1.2.: Die innere Struktur einer Aktivit�at

In Abbildung 1.2 ist eine Aktivit�at mit ihrer inneren Struktur dargestellt. Der Date-
ninputcontainer besteht aus einer Menge von Variablen, die zu Beginn einer Aktivit�at

10

1.1 Begri�e

Universit�at Stuttgart

Software{Labor

�uber die Daten
u�konnektoren belegt werden, und von der Anwendung ausgelesen
werden k�onnen. Die Variablen im Datenoutputcontainer werden durch das Anwen-
dungsprogramm gesetzt. Die eingehenden Kontroll
u�konnektoren werden �uber die
Startbedingung logisch miteinander verkn�upft. Falls die Startbedingung wahr wird,
wird auf das Eintreten eines Ereignisses gewartet. Falls dieses eingetreten ist oder
falls kein Ereignis angegeben ist, wird die Vorbedingung gepr�uft. Falls auch diese
erf�ullt ist, wird die Aktivit�at einem Bearbeiter zugeteilt und diesem auf die Arbeits-
liste gelegt. Der oder diejenige f�uhrt das zugeh�orige Programm aus, das dann den
Datencontainer als die Eingabedaten verarbeitet und die Ausgabedaten in den Out-
putcontainer schreibt. Anhand der Nachbedingung kann das System noch Kontrollen
durchf�uhren, ob die gestellte Aufgabe wirklich erfolgreich erledigt worden ist. Falls
nicht, erh�alt derselbe Bearbeiter die Aktivit�at erneut.

1.1.3. Die Systemkomponenten eines Work
owsystems

Abbildung 1.3.: Die Systemkomponenten eines Work
owsystems

Die zentrale Komponente eines Work
owsystem ist die Work
ow{Engine, die die Spe-
zi�kation eines Gesch�aftsprozesses einliest, diesen instanziiert und die Aktivit�aten
zu den richtigen Zeitpunkten auf die Bearbeiter verteilt, sowie f�ur den Trans-
port der Daten und Dokumente zu den Bearbeitern sorgt. Die Anwendungsdaten
und Dokumente, sowie die Work
ow{Verwaltungsdaten werden in Datenbank{ und
Dokumenten{Management{Systemen gespeichert. Die Engine benutzt eine Orga-
nisationskomponente, die Kenntnis �uber die Aufbauorganisation des Unternehmens
hat, zur Au
�osung einer Rolle (z. B. Sachbearbeiter) in einen konkreten Bearbeiter.
Zudem kann die Organisationskomponente noch eine Ressourcenverwaltung realisie-
ren. Die Spezi�kation der Gesch�aftsprozesse und die Aufbauorganisation werden im

11

Universit�at Stuttgart

Software{Labor 1 Work
ow{Management{Systeme

Work
ow{Editor gra�sch eingegeben. Das Vorgangsinformationssystem liefert ver-
schiedene Sichten auf den aktuellen Zustand des Work
owsystems und auf die Histo-
rie. Der Aktivit�atenmanager stellt die Benutzerober
�ache des Bearbeiters zum Sy-
stem dar. Durch ihn kann der Bearbeiter seine ihm zugeteilten Aktivit�aten ausf�uhren
und neue Vorg�ange starten.

1.2. Motivation von Work
owsystemen

Durch die Identi�kation und die anschlie�ende Spezi�kation von Gesch�aftsprozessen
werden nicht nur lokale, sondern auch globale Optimierungspotentiale im Unterneh-
men aufgedeckt, die durch die Neuordnung ganzer Wertsch�opfungsketten ausgenutzt
werden k�onnen. Mit der Abkehr von abteilungsorientierten hin zu proze�orientier-
ten Organisationsstrukturen wird die Automatisierung von Prozessen erleichtert. Die
unternehmensweite Steuerung und die verbesserten Informationsf�ahigkeiten des Sy-
stems erlauben es, den Zustand aller Vorg�ange detailliert zu kontrollieren. Die Au-
tomatisierung der Prozesse birgt das Potential zu einem erheblich geringeren Anteil
von Transport- und Liegezeiten im Gesamtvorgang. Die informationstechnische Mo-
dellierung der Prozesse erlaubt eine wesentlich
exiblere, schnellere und einfachere
dynamische Anpassung an ge�anderte Randbedingungen. Die Integration der f�ur ein
Unternehmen lebenswichtigen bestehenden Computeranwendungen (legacy systems)
ist m�oglich.

Der Einsatz von Work
owsystem kann so zu einer hohen Produktivit�atssteigerung
f�uhren.

1.3. Die Kernidee des Work
ow{Management

Heutzutage l�a�t sich die Situation der betrieblichen EDV in vielen F�allen so charak-
terisieren:

Die Mitarbeiter einer Firma werden funktionsorientiert durch Computerprogram-
me in ihrer Arbeit unterst�utzt. Typische Beispiele sind hier Programme f�ur die
Unterst�utzung der B�uroarbeit, wie Tabellenkalkulation oder Textverarbeitung. Die
kooperative Bearbeitung eines Dokuments wird durch solche Programme im allgemei-
nen nicht angeboten. Die Vorgeschichte der Bearbeitung und die noch zu leistenden
zuk�unftigen Arbeiten �nden in funktionsorientierten Systemen keine Unterst�utzung.
Die Computerprogramme werden als

"
Insell�osungen\ eingesetzt: Es besteht kaum ein

Bezug zum gesamten Vorgang.

Neben diesen funktionsorientierten Programmen existieren noch st�arker proze�-
orientierte Anwendungen, die meist als gro�e monolithische Anwendungen auf Host-
rechnern realisiert sind. Solche Anwendungen implementieren

"
hartverdrahtet\ einen

oder mehrere Gesch�aftsvorg�ange. Andere Gesch�aftsprozesse k�onnen damit nicht aus-
gef�uhrt werden und �Anderungen imGesch�aftsproze� k�onnen nur mit gro�em Aufwand

12

1.3 Die Kernidee des Work
ow{Management

Universit�at Stuttgart

Software{Labor

eingebracht werden.
Die Idee der Work
owsysteme ist nun, den Proze�begri� explizit im Software-

system sichtbar zu machen und auf diese Weise ein kon�gurierbares System f�ur die
Abwicklung von Gesch�aftsprozessen zu scha�en. Der Gesch�aftsproze� wird dazu in
Arbeitsschritte aufgegliedert, in denen funktionsorientiert gearbeitet wird. Die Ar-
beitsschritte werden durch Kontroll{ und Daten
u�{Beziehungen zu einem Proze�
verkn�upft. Das Work
owsystem erm�oglicht die Modellierung und
exible �Anderung
dieser Beziehungen und stellt bei der Ausf�uhrung des Prozesses deren Einhaltung si-
cher. Zus�atzlich nutzt das System noch weitere Informationen, wie z. B. die Aufbau-
organisation, um eine bestm�ogliche Proze�unterst�utzung und Kontrolle zu gew�ahrlei-
sten.

Die Kernidee der Datenbanksysteme ist das Herausl�osen des Datenmanagements
aus den Anwendungen. Analog dazu l�osen Work
owsystem das Proze�management
aus den Anwendungen.

Das hat den Vorteil, da� das Work
owsystem bei der Ausf�uhrung beliebiger
Gesch�aftsprozesse verwendet werden kann, und da� �Anderungen aufgrund des An-
satzes

"
Modellierung statt Programmierung\ leichter zu realisieren sind.

13

Universit�at Stuttgart

Software{Labor 1 Work
ow{Management{Systeme

14

2. Fehlertoleranz in

Work
owsystemen

Die Einf�uhrung eines Work
ow{Management{Systems in ein Unternehmenmu� wohl-
�uberlegt und sorgf�altig geplant sein. Die wertsch�opfenden Prozesse innerhalb des Un-
ternehmens werden dadurch unter die Kontrolle des Work
ow{Management{Systems
gestellt. Der Erfolg des Unternehmens h�angt somit direkt von der Funktionsf�ahigkeit
des Systems ab. Wenn das System einmal nicht funktionsf�ahig sein sollte, kommen
alle computerunterst�utzten Gesch�aftsprozesse zum Erliegen. Der m�ogliche Ausweg,
die Prozesse kurzfristig ohne Computerunterst�utzung durchzuf�uhren, ist meist nicht
einfach gangbar, da es dadurch zu Inkonsistenzen zwischen den Daten im System
und der Realit�at kommt. Nach dem Neustart des Systems kann es im allgemeinen
nicht sofort wieder eingesetzt werden, da zuerst der veraltete Datenzustand manuell
auf den neuesten Stand gebracht werden mu�. Durch eine schrittweise Einf�uhrung
und durch den Einsatz eines fehlertoleranten und stabilen Systems kann man dieser
Gefahr begegnen. In [SB96] wird die hier angesprochene Problematik ausf�uhrlich
behandelt.

2.0.1. Allgemeine Anforderungen

Ein Work
ow{Management{System mu� als das
"
R�uckgrat\ eines Unternehmens an-

gesehen werden: Ein Bruch w�are t�odlich.

Oberste Strategie beim Einsatz eines solchen Systems mu� daher die Fehlerver-
meidung sein. Da in der realen Welt dieses Ziel aber nicht vollst�andig erreicht werden
kann, ben�otigt man dar�uber hinaus Mechanismen, um auf Fehler reagieren zu k�onnen.
Das ganze System mu� daher folgende allgemeine Anforderungen erf�ullen.

� Korrektheit:

Ein System ist korrekt, wenn es die Aufgabe, f�ur die es spezi�ziert ist, erf�ullt.
Voraussetzung daf�ur ist unter anderem, da� die Integrit�at der Daten, die durch
das System verwaltet werden, gew�ahrleistet ist. Nur mit konsistenten Daten
kann ein System korrekt arbeiten. Inkonsistente Daten k�onnen zu fehlerhaftem
Verhalten f�uhren.

Auch beim Auftreten von Fehlern darf das System keine inkonsistenten

15

Universit�at Stuttgart

Software{Labor 2 Fehlertoleranz in Work
owsystemen

Zust�ande erzeugen. Diese Forderung hat gro�e Auswirkungen auf die Fehlerbe-
handlungsmechanismen des Work
owsystems.

Diese Anforderung kann nicht alleine vomWork
owsystemen erf�ullt werden, da
es keine vollst�andige Kontrolle �uber die bearbeiteten Daten hat. In den Akti-
vit�aten k�onnen Programme oder Menschen Daten au�erhalb der Kontrolle des
Work
owsystem inkonsistent ver�andern, ohne da� das System darauf Ein
u�
hat oder die Inkonsistenz �uberhaupt bemerkt.

� Hohe Zuverl�assigkeit:

Ein System ist hoch zuverl�assig, wenn es �uber lange Zeitr�aume hinweg ohne
Auftreten eines e�ektiven Fehlers funktioniert. Ein Fehler ist dann e�ektiv,
wenn er die spezi�zierte Funktion des Systems beeintr�achtigt [GR93].

� Hohe Verf�ugbarkeit:

L�angerfristige Ausfallzeiten des Gesamtsystems verringern die Verf�ugbarkeit.
W�ahrend dieser Zeit kann keiner der Mitarbeiter eines Unternehmens oder ei-
ner Beh�orde weiterarbeiten, da bei dem umfassenden Einsatz eines Work
ow{
Management{Systems nahezu alle Arbeiten �uber das System oder zumindest
mit dessen Hilfe abgewickelt werden. Der Stillstand des Systems kann daher zu
immensen Kosten f�uhren. Die Verf�ugbarkeit kann durch hohe Zuverl�assigkeit
oder durch den Einsatz redundanter Komponenten erh�oht werden. Durch den
Einsatz von Mechanismen f�ur einen schnellen, weitgehend automatischen Wie-
deranlauf des Systems (Recovery) kann auch die Verf�ugbarkeit erh�oht werden.

� Robustheit:

Ein robustes System verh�alt sich tolerant gegen�uber unerwarteten Eingaben und
bleibt auch in Ausnahmesituationen weiterhin funktionsf�ahig. Die Eigenschaft
Robustheit tr�agt damit zur Erh�ohung der Verf�ugbarkeit bei.

� Hohe Flexibilit�at:

Ein
exibles System erlaubt auch nach dem Auftreten eines Fehlers oder einer
Ausnahmesituation, die nicht automatisch durch Fehlerbehandlungsmechanis-
men des Systems beseitigt werden k�onnen, manuelle Eingri�e in die Kontrolle
des Systems, um den Fortgang der Prozesse zu erm�oglichen.

In einem Work
owsystem werden immer auch Fehler auftreten, die sich nicht
automatisch beheben lassen. Das sind zum einen Systemfehler, wie der Ausfall
eines Rechnerknotens, und zum anderen Fehler, die das System nicht erkennen
kann, da sie semantischer Natur sind. In einem solchen Fall ist der Benutzer
auf die Flexibilit�at des Systems angewiesen: Der Eingri� eines Menschen ist
n�otig. Er mu� die Kontrolle �ubernehmen und das System in einen Zustand
�uberf�uhren, in dem es die Kontrolle wieder selbst �ubernehmen kann. Dazu
mu� das System Methoden anbieten, die der Benutzer

"
manuell\ anwenden

kann, um die Fehlersituation zu bereinigen und den Proze� wieder in geordnete

16

2.1 Work
ow{Transaktionen

Universit�at Stuttgart

Software{Labor

Bahnen zu lenken. Kompetente Benutzer k�onnen so unter Ausn�utzung ihres
Fachwissens und dem Einsatz von Software{Werkzeugen die Auswirkungen von
Fehlern beseitigen und so das System reparieren.

Aufgrund der Bedeutung des Problemgebiets der Fehlertoleranz bei Work
owsy-
stemen wurden die Konzepte Work
ow{Transaktionen und Kompensations{Sph�aren

entwickelt und im Work
owsystem Surro implementiert. In den folgenden Abschnit-
ten werden diese zwei Konzepte erl�autert.

2.1. Work
ow{Transaktionen

Probleme bei der Verwendung von ACID{Transaktionen in langandauerenden
Vorg�angen sind der hohe Verlust bereits geleisteter Arbeit bei einem

"
rollback\ und

die Akkumulation von Sperren auf Daten, was zu schlechterer Kooperation f�uhrt
[SB96]. Der Einsatz von Transaktionen eignet sich also nicht als alleiniges Konzept
zur Implementierung von fehlertoleranten Work
ows. Wenn man diese Probleme
ber�ucksichtigt, zeigt sich aber, da� dieses Konzept f�ur einen begrenzten Einsatz in
Work
owsystemen durchaus geeignet sein kann. Das Einsatzgebiet ergibt sich aus
den folgenden Randbedingungen:

� Die Transaktionen m�ussen \klein" sein. Dies bezieht sich zum einen auf eine
kurze Zeitdauer, zum anderen auf die Datenmengen, die sie anfassen und so-
mit sperren. Ansonsten greifen die bereits oben beschriebenen Probleme bei
langandauernden Transaktionen.

� Alle Aktivit�aten der Work
ow{Transaktionen m�ussen als Resource{Manager
an der Transaktion teilnehmen k�onnen und entsprechende Schnittstellen zur
Steuerung des Recovery anbieten. Die Schnittstellen m�ussen zu dem im Work-

owsystem verwendeten Transaktions{Service passen. Es k�onnen damit keine
beliebigen Aktivit�aten an einer Work
ow{Transaktion teilnehmen!

2.1.1. Begri�e

Eine Sph�are ist eine Menge von Aktivit�aten in einem Work
ow. Wenn zwischen
Aktivit�aten Abh�angigkeiten in der Art existieren, da� nie eine der Aktivit�aten er-
folgreich und eine andere erfolglos beendet werden darf, k�onnen die Aktivit�aten zu
einer Sph�are zusammengefa�t werden. Eine Sph�are wird zur Modellierungszeit des
Work
ows spezi�ziert. In der Abbildung 2.1 ist eine Sph�are in einem Aktivit�atennetz
eingezeichnet.

Eine Sph�are mu� dabei keine Zusammenhangskomponente im Aktivit�atennetz
bilden. Es m�ussen also nicht alle Aktivit�aten in einer Kontroll
u�beziehung stehen,
wie in Abbildung 2.2 gezeigt.

17

Universit�at Stuttgart

Software{Labor 2 Fehlertoleranz in Work
owsystemen

ACID-Aktivität
normale Aktivität
Daten-/Kontrollfluß

Legende:

Eingang

Ausgang

Sphäre

Abbildung 2.1.: Eine Sph�are in einem Aktivit�atennetz

ACID-Aktivität
normale Aktivität
Daten-/Kontrollfluß

Legende:

Abbildung 2.2.: Eine Menge von Aktivit�aten in einer Sph�are, die keine Zusammen-
hangskomponente im Aktivit�atennetz bilden

Als Eingang einer Sph�are wird der Kontroll{ bzw. Daten
u� bezeichnet, der von
einer Aktivit�at au�erhalb der Sph�are zu einer Aktivit�at innerhalb der Sph�are f�uhrt.
Entsprechend wird alsAusgang der Kontroll{ bzw. Daten
u� de�niert, der von einer
Aktivit�at innerhalb der Sph�are zu einer Aktivit�at au�erhalb der Sph�are f�uhrt. Eine
Sph�are kann mehrere Ein{ und Ausg�ange besitzen. In der Abbildung 2.1 hat die
Sph�are einen Eingang und zwei Ausg�ange.

Als ACID-Aktivit�aten werden Aktivit�aten bezeichnet, die die Eigenschaft ha-
ben, da� sie entweder selbst Resource{Manager sind oder nur auf Daten �uber
Resource{Manager zugreifen. Es mu� gew�ahrleistet sein, da� die in den Aktivit�aten
verwendeten Daten nur �uber Resource{Manager im Rahmen einer Transaktionen ge-
lesen oder ver�andert werden (siehe Abschnitt 2.1.3).

De�nition: Work
ow{Transaktion

Eine Work
ow{Transaktion ist eine Menge von Aktivit�aten (eine Sph�are

im Work
owmodell), die im Kontext einer ACID{Transaktion ausgef�uhrt

werden.

Die Bearbeitung einer Aktivit�at kann durch das folgende grundlegende Zu-
stands�ubergangsdiagramm modelliert werden (siehe Abbildung 2.3). Das Diagramm
ist zum besseren Verst�andnis gegen�uber realen Implementierungen vereinfacht wor-
den. Ein Startzustand ist am linken Rand schwarz markiert. Ein Endzustand ist
rechten Rand markiert.

18

2.1 Work
ow{Transaktionen

Universit�at Stuttgart

Software{Labor

startbar in Bearbeitung erfolgreich

erfolglosaußer Kontrolle

rollback

rollback

rollback

Abbildung 2.3.: Das (vereinfachte) Zustands�ubergangsdiagramm einer Aktivit�at

Eine Aktivit�at beginnt mit dem Initialzustand startbar. Der Start durch den
Bearbeiter �uberf�uhrt die Aktivit�at in den Zustand in Bearbeitung. Dort k�onnen
Fehler auftreten, die auf der Aktivit�atenebene angesiedelt sind. Wenn ein solcher Feh-
ler erkannt wird, wird die Aktivit�at in den Zustand erfolglos gebracht. Auf diese
Art bekommt das Work
owsystem Kenntnis vom Auftreten eines Aktivit�atenfehlers
und ein Fehlerkontext kann von der Aktivit�at an das Work
owsystem �ubergeben wer-
den. Kann eine Aktivit�at ohne Auftreten eines Fehlers beendet werden, kommt sie
in den Zustand erfolgreich. Eine Aktivit�at wird in den zus�atzlichen Zustand au-
�er Kontrolle gebracht, wenn die Aktivit�at weder eine erfolgreiche, noch eine
erfolglose Bearbeitung melden kann. In diesem Fall ist die Aktivit�at au�er Kontrolle
geraten. Problematisch ist hierbei die Detektion des �Ubergangs in Bearbeitung

nach au�er Kontrolle. In diesem Fall mu� das Work
owsystem ohne Hilfe der
Aktivit�at erkennen, da� ein Aktivit�atenfehler aufgetreten ist. Voraussetzung f�ur ein
fehlertolerantes Work
owsystem ist, da� das System auch dann sinnvoll weiterarbei-
ten kann, wenn einmal dieser Zustand auftritt. Innerhalb von Transaktions{Sph�aren
gibt es noch weitere Zustands�uberg�ange, die implizit durch ein Rollback der Sph�aren{
Transaktionen ausgel�ost werden.

2.1.2. Das Konzept der Work
ow{Transaktion

Ein Work
owsystem, das Work
ow{Transaktionen anbietet, tritt als Starter und
als normaler Teilnehmer der Transaktion auf. Beim Betreten einer Sph�are mu� die
Work
ow{Transaktion durch das Work
owsystem bei einemTransaktions{Service in-
itiiert werden. Dann registriert sich das Work
owsystem selbst als Teilnehmer. Dazu
mu� das Work
owsystem als Resource{Manager f�ur die Work
ow{Daten auftreten
k�onnen.

Falls das Work
owsystem Daten
�usse verwaltet, �uber die Aktivit�aten mit Daten
versorgt werden, mu� das System daf�ur sorgen, da� die Daten die Sph�are nicht vor-
zeitig verlassen. Dasselbe gilt f�ur den Kontroll
u�. Erst mit dem erfolgreichen Ende

19

Universit�at Stuttgart

Software{Labor 2 Fehlertoleranz in Work
owsystemen

der Transaktion d�urfen Aktivit�aten au�erhalb der Sph�are angesto�en werden. Das
Work
owsystem mu� als Resource{Manager die Isolationseigenschaft der Transakti-
on bereitstellen, indem die Daten{ und Kontroll
�usse der Sph�are nach au�en bis zum
erfolgreichen Ende verz�ogert werden.

Durch die Teilnahme an der Transaktion kann das Work
owsystem den Bearbei-
tern eine Funktion an ihrer Bedienober
�ache anbieten, mit der sie eine Work
ow{
Transaktion interaktiv abbrechen k�onnen.

Falls die Work
ow{Transaktion zur�uckgesetzt werden soll, mu� das Work
owsy-
stem den Zustand des Work
ows wieder in den Anfangszustand der Sph�are bringen.
Alle bisherigen �Anderungen innerhalb der Sph�are m�ussen durch das Work
owsystem
r�uckg�angig gemacht werden. Nach dem Abbruch und R�ucksetzen der Sph�are wird
die Work
ow{Transaktion durch das Work
owsystem neu gestartet. Anstatt eines
Neustarts sind auch andere Aktionen denkbar. So k�onnte man z.B. den Neustart
x{mal versuchen und nach dem x{ten Fehlschlag eine alternativen Work
ow starten.

Eine Work
ow{Transaktion mu� zusammen mit dem Work
ow in der Mo-
dellierungskomponente des Work
owsystems spezi�ziert werden. Eine Work
ow{
Transaktionen wird durch eine Sph�are modelliert. Alle Aktivit�aten, die an Trans-
aktion teilnehmen sollen, m�ussen in eine Sph�are aufgenommen werden. Die Model-
lierungskomponente mu� auch daf�ur sorgen, da� folgende strukturellen Bedingungen
f�ur die Sph�are eingehalten werden:

� Alle Aktivit�aten der Sph�are sind Teilnehmer an der Work
ow{Transaktion. Die
Modellierungskomponente mu� daher pr�ufen, ob die an der Sph�are teilnehmen-
den Aktivit�aten die entsprechenden Randbedingungen erf�ullen, wie sie in Ab-
schnitt 2.1.3 beschrieben werden.

� Eine Schachtelung von Sph�aren ist erlaubt und dient zur Verkleinerung des Be-
reichs, der zur�uckgesetzt werden soll. So kann ein feineres Recovery{Granulat
unterst�utzt werden. Da einmal spezi�zierte Work
ows in Form von Subprozes-
sen wiederverwendbar sein sollen und in diesen Prozessen auch Sph�aren de�niert
sein k�onnen, ben�otigt man auch aus diesem Grund die M�oglichkeit geschachtel-
ter Work
ow{Transaktionen.

Innerhalb der Aktivit�aten k�onnen durch Anwendungsprogramme neue Trans-
aktionen begonnen und wieder beendet werden. Diese Transaktionen sind dann
als in die Work
ow{Transaktion geschachtelte Transaktionen zu realisieren.

� Aus der Isolationseigenschaft der Sph�are ergibt sich, da� kein Pfad von einem
Ausgang auf einen Eingang derselben Sph�are existieren darf (Abb. 2.4a).

Angenommen, es g�abe einen solchen Pfad. Aufgrund der Isolation wird der
Kontroll
u�ausgang erst nach Beendigung der Sph�are aktiv. Die Sph�are kann
aber noch nicht beendet sein, da der Kontroll
u�eingang auf diesem Pfad noch
nicht aktiv sein kann, d. h. es gibt eine nicht beendete Aktivit�at in der Sph�are.

20

2.1 Work
ow{Transaktionen

Universit�at Stuttgart

Software{Labor

(a) (b)

Abbildung 2.4.: Verlassen und Wiedereintritt des Kontroll
usses (a) und partiell
�uberlappende Sph�aren (b) sind nicht erlaubt.

Die Sph�are kann noch nicht beendet sein. Es gibt einen Widerspruch, daher
darf kein solcher Pfad existieren.

� Die partielle �Uberlappung von Sph�aren (Abb. 2.4b) ist nicht m�oglich. Ei-
ne Aktivit�at darf immer nur an h�ochstens einer Sph�are teilnehmen. Partiell
�uberlappende Sph�aren k�onnen durch eine Vereinigungsoperation in eine einzige
Sph�are �uberf�uhrt werden. Partiell �uberlappende Sph�aren erweisen sich somit als
unn�otig. Der E�ekt des feineren Transaktionsgranulats kann durch geschach-
telte Sph�aren ebenso erreicht werden.

2.1.3. Anforderungen an ACID{Aktivit�aten

Damit Aktivit�aten an einer Work
ow{Transaktion teilnehmen k�onnen, m�ussen sie
bestimmtenVoraussetzungen gen�ugen. Wir unterscheiden deshalb zwischen normalen
Aktivit�aten und sogenannten ACID{Aktivit�aten, die diese Voraussetzungen erf�ullen.

� Die Aktivit�aten d�urfen nur �uber Resource{Manager auf Daten zugreifen. Wenn
sie Daten selbst verwalten, m�ussen die Aktivit�aten selbst als Resource{Manager
auftreten. Eine Aktivit�at, die als Resource{Manager agieren m�ochte, mu� alle
notwendigen Funktionen implementiert haben, um selbst�andig ein Recovery
ausf�uhren zu k�onnen.

� Die Aktivit�aten m�ussen eine geeignete Schnittstelle aufweisen, �uber die be-
stimmte Funktionen der Aktivit�aten ausgel�ost werden k�onnen (z. B. das Reco-
very). Ebenso m�ussen sie Schnittstellen f�ur die Teilnahme an einem 2{Phasen{
Commit{Protokoll besitzen (Prepare, Commit, Rollback). Damit erreicht der
Transaktions{Service eine gemeinsame �Ubereinkunft aller an einer Transaktion
beteiligten Resource{Manager �uber den Erfolg oder Mi�erfolg der Transakti-
on. Die angebotene Schnittstelle mu� zu dem im Work
owsystem verwendeten
Transaktions{Service passen.

21

Universit�at Stuttgart

Software{Labor 2 Fehlertoleranz in Work
owsystemen

� Wenn in den Aktivit�aten physische Operationen aufgef�uhrt werden, bedarf es
der Verwendung eines erweiterten Resource{Manager, der Physical{Resource{
Manager (PRM) genannt wird [Sch93]. \Real actions" haben im Gegensatz
zu Datenbankoperationen die Eigenschaft, da� ihre Auswirkungen sofort sicht-
bar werden und da� diese Auswirkungen oft nicht mehr r�ucksetzbar sind. Das
klassische Beispiel f�ur eine solche Operation ist das Bohren eines Loches in ein
Werkst�uck. Unter der Annahme, da� nur eine einzige physischeOperation in der
Work
ow{Transaktion statt�ndet, kann das Recovery eines PRM so aussehen:
Wenn der Abbruch der Transaktion vor der physischen Operation statt�ndet,
dann mu� der PRM wie ein regul�arer Resource{Manager reagieren. Es wird ein
Rollback durchgef�uhrt. Wenn der Abbruch nach der Ausf�uhrung der physischen
Operation statt�ndet, wird wiederum ein normales Rollback durchgef�uhrt. Die
physische Operation wird dabei nicht zur�uckgesetzt. Beimwiederholten Starten
der Transaktion wird dann die bereits in der vorherigen Transaktion ausgef�uhrte
physische Operation ausgelassen. Wenn der Abbruch w�ahrend der physischen
Operation statt�ndet, dann mu� eine anwendungsspezi�sche Fehlerbehebungs-
ma�nahme durch den PRM getro�en werden.

Wenn man mehrere physische Operation innerhalb einer Work
ow{Transaktion
benutzen will, wird die Komplexit�at des Recovery deutlich h�oher.

F�ur den Fall, da� die Auswirkungen physischer Operation verz�ogert werden
k�onnen, z. B. das Verschicken einer Email oder eines Briefes, ist es Auf-
gabe des Resource{Managers, daf�ur zu sorgen, da� die Operation erst in
der Propagierungs{Phase des Zwei{Phasen{Commit{Protokolls am Ende der
Work
ow{Transaktion ausgef�uhrt wird. So wird die Email solange verz�ogert,
bis die gesamte Transaktion erfolgreich beendet wird. Die Operation darf dann
allerdings nicht mehr fehlschlagen.

2.1.4. Einsatzgebiete von Work
ow{Transaktionen

Durch den alleinigen Einsatz von Work
ow{Transaktionen kann man das Ziel eines
fehlertoleranten Ablaufs von Gesch�aftsprozessen nicht erreichen. Die Nachteile und
Einschr�ankungen, wie schon zu Beginn von Abschnitt 2.1 beschrieben, �uberwiegen
in diesem Fall meist die Vorteile bis hin zur Unbenutzbarkeit. Nur in einem eng
beschr�ankten Einsatzfeld erweist sich das Konzept der Work
ow{Transaktionen als
hilfreich. In Abschnitt A.1 wird ein Beispielproze� n�aher beschrieben, in dem zwei
Work
ow{Transaktionen zum Einsatz kommen. Das Umfeld des Einsatzes liegt im
Datenbankbereich, wo im allgemeinen schon die entsprechenden Resource{Manager
mit den standardisierten Schnittstellen vorhanden sind, und in dem auch die An-
wendungen h�au�g Sicherheitsanforderungen haben, die nur durch den Einsatz von
Transaktionen abgedeckt werden k�onnen.

Wichtig erweist sich dieses Konzept auch bei der Verwendung von sogenannten
business objects als Aktivit�aten. Business{Objekte sind Repr�asentanten f�ur alle in

22

2.1 Work
ow{Transaktionen

Universit�at Stuttgart

Software{Labor

einem Gesch�aftsproze� vorkommenden Objekte. Dies k�onnen Programme, Personen
oder Daten in der traditionellen Sichtweise sein. Business{Objekte werden zur Zeit
in der BOMSIG special interest group der OMG (Object Management Group) stan-
dardisiert. Diese Objekte bieten Methodenaufrufe an, um Operationen auf Daten
durchzuf�uhren. Die Methoden sind oftmals von kurzer Dauer und werden automa-
tisch ausgef�uhrt, d. h. es gibt kaum manuelle Interaktion. Diese Methodenaufrufe
k�onnen in einer Work
ow{Transaktion als Operationen eingebunden werden, falls die
Objekte als Resource{Manager implementiert sind.

2.1.5. Einbindung von Legacy{Software

Eine M�oglichkeit, vorhandene Softwareprogramme (Legacy{Software) in Work
ow{
Transaktionen einzubinden, stellt der Ansatz in [T�au96] dar. Der Hauptansatzpunkt
besteht darin, das Dateisystem selbst zu einem Resource{Manager zu machen. Damit
k�onnen alle Programme, die nur das Dateisystem zur Speicherung von Daten verwen-
den, in Transaktionen eingebettet werden, indem alle Dateizugri�e unter Transakti-
onsschutz gestellt werden. Dieses Konzept funktioniert aber nicht bei Programmen,
die eine Datenbank zur Speicherung verwenden. Aber in diesen F�allen kann die Da-
tenbank in die Work
ow{Transaktion eingebunden werden.

�Anderungen auf Dateien bzw. Teilen von Dateien k�onnen durch das modi�zier-
te Dateisystem nach au�en hin isoliert und bei einem Rollback wieder ungesche-
hen gemacht werden. Unter der Voraussetzung, da� die Anwendung ihren Zustand
vollst�andig in Dateien sichert, ist dies eine M�oglichkeit, nichttransaktional implemen-
tierte Anwendungen in Work
ow{Transaktionen zu verwenden.

Die Einbindung eines solchen Konzepts in ein Work
ow{Management{System er-
fordert, da� das Work
owsystem vor dem Start einer Alt{Anwendung dem Datei-
system als Resource{Manager mitteilt, unter welchem Transaktionskontext die Da-
teioperationen der Anwendung ablaufen m�ussen. Die Legacy{Software kann dazu
keine Hilfestellung geben, da sie keine Kenntnis �uber Transaktionen hat. Siehe dazu
Abschnitt 3.4.

2.1.6. Realisierungsans�atze

Als Realisierungsans�atze f�ur Work
ow{Transaktionen bieten sich die Standards f�ur
verteilte Transaktionen an: Es kommt die X/Open Spezi�kation for Distributed Tran-
saction Processing (DTP) XA und der Object Transaction Service (OTS) [OTS94]
der Object Management Group (OMG) in Frage. Insbesondere im Verbund mit dem
Einsatz der Business{Objekte kann sich OTS als sinnvoll erweisen. Die Aktivit�aten
m�ussen die in den Standards spezi�zierten Funktionen als API anbieten.

Bei Einsatz von OTS m�ussen die Anwendungsprogramme in den Aktivit�aten ein
Objektinterface besitzen. Das Work
owsystem mu� sich der Dienste eines CORBA{
kompatiblen Objekt Request Brokers (ORB) bedienen, um die Anwendungsprogram-
me in den Aktivit�aten aufzurufen.

23

Universit�at Stuttgart

Software{Labor 2 Fehlertoleranz in Work
owsystemen

2.2. Kompensations{Sph�aren

Das Konzept der Work
ow{Transaktionen stellt hohe Anforderungen an die Funk-
tionalit�at der Aktivit�aten, die an einer Work
ow{Transaktionen teilnehmen. In vie-
len F�allen wird aber ein Work
owsystem mit Aktivit�aten eingesetzt, die nicht die-
sen Anforderungen entsprechen. Oftmals haben die Anwendungsprogramme, die in
den Aktivit�aten aufgerufen werden, kein Wissen dar�uber, da� sie im Rahmen eines
Gesch�aftsprozesses eingesetzt werden. Sie k�onnen daher auch nicht oder nur sehr
schwer auf die Bed�urfnisse der Work
ow{Transaktionen abgestimmt werden.

Aus diesem Grund ist ein weiteres Konzept bei der Bearbeitung von Work
ows
n�otig, das den Ablauf von Work
ows fehlertoleranter macht, ohne diese hohen Anfor-
derungen zu besitzen. Der Ansatz der Kompensations{Sph�aren [Ley95] stellt kaum
noch Anforderungen an die Aktivit�aten. Im Gegenzug dazu mu� man aber auf
die Isolationseigenschaft und die garantierte Konsistenz der Anwenderdaten bei der
Ausf�uhrung eines Work
ow verzichten. Die Eigenschaft der Atomizit�at und der Dau-
erhaftigkeit bleiben erhalten. Das Mittel zur Erreichen dieses Ziels sind Kompensa-
tionsaktivit�aten.

2.2.1. Begri�e

Eine Kompensationsaktivit�at unterscheidet sich nur durch ihre Verwendung von
einer normalen Aktivit�at. Jede Kompensationsaktivit�at mu� einer normalen Akti-
vit�at bzw. einer Sph�are zugeordnet sein und soll alle Auswirkungen der normalen
Aktivit�at bzw. der gesamten Sph�are beseitigen. Das Work
owsystem bietet au�er
dem Aufruf der Kompensationsaktivit�at keine weitere Unterst�utzung, um dieses Ziel
zu erreichen. Wegen der fehlenden Isolationseigenschaft f�ur die Anwendungsdaten der
Kompensations{Sph�aren mu� die Kompensationsaktivit�at auch ber�ucksichtigen, da�
die Daten�anderungen der normalen Aktivit�at eventuell schon von anderen Aktivit�aten
gelesen und zur Weiterverarbeitung benutzt worden sind. Die Kompensationsakti-
vit�at mu� auch in diesen F�allen geeignete Ma�nahmen tre�en.

Der Begri� Sph�are 1 bezeichnet auch hier eine nicht unbedingt zusammenh�angen-
de Menge von Aktivit�aten in einem Work
ow.

De�nition: Kompensations{Sph�are (engl.: compensation sphere)

Eine Kompensations{Sph�are ist eine Menge von Aktivit�aten, die entwe-

der alle im Zustand 'erfolgreich' oder alle im Zustand 'kompensiert' sind,

wenn der Kontroll
u� die Sph�are verl�asst.

Das Zustandsdiagramm f�ur die Aktivit�aten mu� daher wie in Abbildung 2.5 mo-
di�ziert werden. Es wird zus�atzlich ein Zustand kompensiert eingef�uhrt. Dieser
Zustand ist weitgehend �aquivalent zum Zustand startbar mit dem Unterschied,

1siehe De�nition Seite 17

24

2.2 Kompensations{Sph�aren

Universit�at Stuttgart

Software{Labor

da� mindestens eine Bearbeitung und eine Kompensation der Aktivit�at stattgefunden
hat. Der Endzustand erfolgreich wird dann verlassen, wenn andere Aktivit�aten
der Sph�are kompensiert werden m�ussen. Eine Sph�are ist dann kompensiert, wenn
alle Aktivit�aten der Sph�are kompensiert sind.

startbar

erfolglos

in Bearbeitung

kompensiert

erfolgreich

außer Kontrolle

Abbildung 2.5.: Das (vereinfachte) Zustandsdiagramm f�ur Aktivit�aten bei Kompen-
sations{Sph�aren

2.2.2. Das Konzept der Kompensations{Sph�aren

Zur Modellierungszeit werden Aktivit�aten zu einer Sph�are zusammengefa�t. Aus der
Sicht der Aktivit�aten au�erhalb der Sph�are werden die Aktivit�aten zu einer atomaren
Ausf�uhrungseinheit. Zum Ausf�uhrungszeitpunkt des Work
ows sorgt das Work
ow-
system daf�ur, da� die Sph�are von den Aktivit�aten au�erhalb der Sph�are isoliert wird,
indem der Kontroll{ und Daten
u� bis zum Ende der Sph�are verz�ogert wird. Akti-
vit�aten au�erhalb der Sph�are k�onnen somit keine Zwischenergebnisse von Aktivit�aten
innerhalb der Sph�are �uber das Work
owsystem bekommen. Da die Anwenderpro-
gramme aber weiterhin auf beliebigen Datenbest�anden arbeiten k�onnen, die nicht im
Kontrollbereich des Work
owsystem liegen, k�onnen Zwischenergebnisse durchaus von
anderen Programmen verarbeitet werden. Die Isolation kann daher nicht durch das
Work
owsystem garantiert werden.

Wenn ein Fehler auftritt, werden alle bereits beendeten Aktivit�aten kompensiert
und alle Aktivit�aten abgebrochen, die noch in Bearbeitung sind. Danach kann die
Sph�are entweder neu gestartet werden oder es wird ein alternativer Weg imWork
ow
eingeschlagen, wie im vorherigen Kapitel beschrieben.

Dieses Konzept fordert schw�achere Voraussetzungen an die teilnehmenden Akti-
vit�aten als die Work
ow{Transaktionen. Die Aktivit�aten m�ussen kompensierbar sein,
d. h. zu jeder Aktivit�at A in der Sph�are mu� eine Kompensationsaktivit�at A�1 exi-
stieren, die die Auswirkungen der Aktivit�at A r�uckg�angig macht. Wie diese Kompen-
sierbarkeit erreicht wird, liegt ganz in der Verantwortung des Erstellers der Aktivit�at.
Das Konzept der Kompensations{Sph�aren bietet dazu au�er dem Aufruf der Kom-
pensationsaktivit�at keine weitere Unterst�utzung an. Erg�anzend kann die Anforderung

25

Universit�at Stuttgart

Software{Labor 2 Fehlertoleranz in Work
owsystemen

aufgestellt werden, da� jede Aktivit�at (bzw. das Anwenderprogramm innerhalb der
Aktivit�at) an ihrer Schnittstelle eine Funktion anbieten mu�, mit der die Aktivit�at
vorzeitig abgebrochen werden kann, ohne da� dadurch der Anwenderdatenbestand in
einem inkonsistenten Zustand hinterlassen wird. Mit dieser Anforderung kann eine
Optimierung angewendet werden, die mit Hilfe des vorzeitigen Abbruchs der Akti-
vit�at die R�ucksetzzeit der Sph�are verk�urzt, indem unn�otige Arbeit nach Auftreten
eines Fehlers in der Sph�are verhindert wird. Die Aktivit�at A mu� nach ihrem Ende
oder nach einem Abbruch erneut gestartet werden k�onnen, ohne da� dadurch ein
Fehler auftritt.

Die Anforderungen an die Kompensationsaktivit�at sind daf�ur aber um so ausge-
pr�agter. Neben der Existenz die Aktivit�at mu� auch gefordert werden, da� die Ak-
tivit�at niemals fehlschl�agt. Die Aufgabe der Kompensationsaktivit�at, das Beseitigen
der Auswirkungen der Aktivit�at A, wird dabei in keiner Weise durch das Work
owsy-
stem unterst�utzt. Der Kompensationsaktivit�at mu� diese Aufgabe v�ollig selbst�andig
und korrekt durchf�uhren.

Eine Sph�are wird dann zur�uckgesetzt, wenn eine der Aktivit�aten in einen Fehler-
zustand (siehe Abbbildung 2.5) �uberf�uhrt wird. Das Zur�ucksetzen einer Sph�are sollte
auch �uber den interaktiven Aufruf einer Funktion m�oglich sein, die dem Benutzer
des Work
owsystem an der Bedienober
�ache angeboten wird. �Uber diese Funktion
kann manuell ein Zur�ucksetzen ausgel�ost werden, das eventuell durch spezielle Rechte
abgesichert werden kann.

Nach der Ausl�osung des R�ucksetzvorgangs ist eine Entscheidung m�oglich, ob die
Sph�are bis zu ihrem Beginn oder zu einem weniger weit zur�uckliegenden Punkt zwi-
schen den Aktivit�aten zur�uckgesetzt werden soll. Wenn diese Auswahl, wohin zur�uck-
gesetzt werden soll, dem Benutzer interaktiv �uberlassen wird, dann hat man eine Art
\Undo"{Funktion imWork
ow realisiert. Man kann die letzten Vorgangsschritte (Ak-
tivit�aten) innerhalb der Grenzen der Sph�are r�uckg�angig machen und dann an dem
gew�unschten Punkt weiterarbeiten.

F�ur die Ausf�uhrungsreihenfolge der Kompensationsaktivit�aten gibt es verschie-
dene M�oglichkeiten. Die Kompensationsaktivit�aten k�onnen alle parallel ausgef�uhrt
werden, da alle dazu notwendigen Daten schon w�ahrend der Ausf�uhrung der nor-
malen Aktivit�aten gespeichert werden. Falls ein solches Verhalten nicht gew�unscht
ist, k�onnen die Kompensationsaktivit�aten in der umgekehrter Reihenfolge wie die
normalen Aktivit�aten ausgef�uhrt werden. Diese umgekehrte Reihenfolge kann durch
Umdrehen der Kontroll
u�beziehung bestimmt werden oder durch Auswerten der
Startzeitpunkte aller normalen Aktivit�aten. Eine dritte denkbare Methode besteht
in einer frei spezi�zierbaren Reihenfolge, die w�ahrend der Modellierung des Prozesses
festgelegt werden mu�.

Die Schachtelung von Sph�aren mu�, wie bei den Work
ow{Transaktionen auch,
aufgrund der Wiederverwendung von Work
owteilen erlaubt sein. Daraus ergibt sich
die Notwendigkeit, auch ganze Sph�aren r�uckg�angig machen zu m�ussen. Zus�atzlich zu
dem Kompensieren aller Einzelaktivit�aten einer Sph�are kann man auch die M�oglich-
keit scha�en, mit einer einzigen Kompensationsaktivit�at eine ganze Sph�are auf einmal

26

2.2 Kompensations{Sph�aren

Universit�at Stuttgart

Software{Labor

zu kompensieren. Dazu m�ussen dann zu Sph�aren auch Kompensationsaktivit�aten
einf�uhrt werden.

Ein �Uberlappen von Sph�aren bedeutet, da� eine Aktivit�at an mehr als an ei-
ner einzigen Kompensations{Sph�are teilnimmt. Wenn man dies zul�a�t, handelt man
sich das Problem der kaskadierenden Kompensation weiterer Sph�aren ein. Da �Uber-
lappung keinen weiteren Vorteil als eine feinere Abstufung der Sph�aren bringt und
dieser Vorteil auch �uber die Schachtelung von Sph�aren erlangt werden kann, kann das
�Uberlappen ohne Verlust an Funktionalit�at verboten werden.

2.2.3. Vergleich zwischen Transaktions{ und

Kompensations{Sph�aren

Das Konzept der Kompensations{Sph�aren unterscheidet sich in einigen wesentlichen
Punkten von dem Konzept der Work
ow{Transaktionen. Kompensations{Sph�aren
stellen haupts�achlich die Eigenschaft der Atomizit�at bereit. Dabei werden keine
besonderen Anforderungen an die Aktivit�aten gestellt. Das Work
owsystem f�uhrt
keine undurchdringbare Isolation der Sph�aren durch. Zwischenergebnisse aus den
Aktivit�aten in der Sph�are k�onnen von allen Aktivit�aten auf Kosten der Konsi-
stenz genutzt werden. Es wird keine standardisierte Schnittstelle zur Einbindung
in einen transaktionalen Kontext gefordert. Die Aktivit�aten m�ussen nicht an einem
Zwei{Phasen{Commit{Protokoll teilnehmen k�onnen. Die Aktivit�aten m�ussen kei-
ne Resource{Manager sein und ihre �Anderungen auf den Daten r�uckg�angig machen
k�onnen. Sie m�ussen kein Recovery implementiert haben.

Ein Schwachpunkt der Kompensations{Sph�aren ist die Tatsache, da� f�ur eine
Garantie der R�ucksetzbarkeit einer Sph�are gefordert werden mu�, da� Kompensati-
onsaktivit�aten nicht fehlschlagen d�urfen. Diese Forderung ist aber nur schwer ver-
wirklichbar. Die Dauerhaftigkeit der Ergebnisse kann zwischen der Bearbeitung von
Aktivit�aten gesichert werden, da dann das Work
owsystem die Kontrolle hat. Wenn
das System aber w�ahrend der Bearbeitung einer Aktivit�at abst�urzt, gehen alle �Ande-
rungen verloren, die in den laufenden Aktivit�aten gemacht wurden. Auf diese Weise
kann ein inkonsistenter Datenzustand entstehen, der eventuell zur Folge hat, da� die
anschlie�ende Wiederholung der Aktivit�at fehlschlagen kann.

Kompensations{Sph�aren k�onnen entweder �uber die vorhandenen Mittel der Work-

ow{Spezi�kationssprache modelliert oder durch eine direkte Unterst�utzung in der
Work
ow{Engine realisiert werden. Beim Modellierungsansatz werden die Kompen-
sationsaktivit�aten wie normale Aktivit�aten behandelt. Der Kontroll
u� zwischen den
Kompensationsaktivit�aten mu� explizit festgelegt werden. Im zweiten Ansatz wird
der Zustand einer Sph�are durch die Engine verwaltet. Die Engine st�o�t bei Bedarf
die Kompensationsaktivit�aten an. Es ist keine weitere Spezi�kationen des Kontroll-

usses n�otig, es sei denn, man m�ochte die Reihenfolge der Kompensationsaktivit�aten
explizit festlegen.

Der Vorteil der Kompensations{Sph�aren liegt darin, da� bei einer Realisierung

27

Universit�at Stuttgart

Software{Labor 2 Fehlertoleranz in Work
owsystemen

nur �Anderungen imWork
owsystem n�otig sind. Auf die Realisierung der Aktivit�aten
hat dieses Konzept keine Auswirkungen.

28

3. Motivation weiterer

Work
ow{Konzepte

Eine �Uberpr�ufung des Konzepts der Work
ow{Transaktionen und der
Kompensations{Sph�aren waren die Hauptbeweggr�unde f�ur die Erstellung des
Surro Prototyps. Dadurch ergab sich die Gelegenheit, auch noch weitere Konzepte
zu verwirklichen und auf ihre Tauglichkeit zu testen. Die weitergehenden Konzepte,
die in Surro implementiert wurden, werden in diesem Kapitel beschrieben.

3.1. Ereignisse

3.1.1. Problemstellung und L�osungsans�atze

Ereignisse (Events) sind ein wichtiges Konzept inWork
owsystemen, das die Reaktion
auf Umweltein
�usse, die Synchronisation zwischen Work
ows und Aktivit�aten, sowie
die Ausnahmebehandlung erlaubt.

Durch das Einf�uhren von Ereignissen kann ein Work
owsystem auf Ein
�usse der
Umwelt, d. h. der Welt au�erhalb des Work
owsystems, reagieren. Ein typisches Bei-
spiel f�ur einen solchen externen Ein
u� auf ein Work
owsystem ist das Eintre�en
eines Briefes mit der Post. Dieser Ereignis mu� vom System erkannt werden. Eine
entsprechende Reaktion mu� darauf statt�nden k�onnen. Die Aufgabe der Ereignisver-
arbeitungskomponente eines Work
owsystems besteht im Erkennen von Ereignissen,
im Verteilen der Ereignisse und im Reagieren auf Ereignisse. Typische Reaktionen
auf das Auftreten eines Ereignisse sind der Start einer Aktivit�at oder eines ganzen
Gesch�aftsprozesses. Ereignisse dienen somit als Ausl�oser (Trigger) einer Aktion.

Ereignisse k�onnen auch zur Synchronisation zwischen unterschiedlichenGesch�afts-
prozessen eingesetzt werden. Es kann vorkommen, da� ein Proze� solange angehalten
werden mu�, bis sich ein anderer Proze� in einem bestimmten Zustand be�ndet.
Zus�atzlich zur reinen Synchronisation sollte an diesem Zeitpunkt auch Kommunika-
tion (Datenaustausch) zwischen den Gesch�aftsprozessen statt�nden k�onnen.

Ereignisse k�onnen auch f�ur eine Art generische Fehler- und Ausnahmebehandlung
eingesetzt werden. So kann ein Fehler oder eine Ausnahme ein Signal (Ereignis)
ausl�osen. Wenn f�ur dieses Ereignis kein Aktion innerhalb des Gesch�aftsprozesses
de�niert ist, dann wird das Ereignis an den n�achsth�oheren Proze� weitergeben. Dieser

29

Universit�at Stuttgart

Software{Labor 3 Motivation weiterer Work
ow{Konzepte

Proze� versucht dann, auf das Ereignis zu reagieren. Der oberste Proze� mu� f�ur
jedes de�nierte Signal ein Defaultaktion besitzen. Dieses Konzept ist analog zu dem
Konzept der exceptions in den Programmiersprachen Ada oder C++.

3.1.2. Die unterschiedlichen Arten von Ereignissen

Ein Ereignis wird als ein atomares Auftreten [CM94] de�niert. Vor dem Auftreten ist
es noch nicht da, nach dem Auftreten ist es eingetreten. Zustands�anderungen der Au-
�enwelt (aus der Sicht des Work
owsystem) werden als externe Ereignisse bezeichnet.
Externe Ereignisse werden mit einem eindeutigen Namen identi�ziert. Das Eintre-
ten eines bestimmten Zeitpunktes wird Zeitereignis genannt. Zeitereignisse k�onnen
absolut oder relativ sein. Ereignisse k�onnen entweder einfach oder zusammengesetzt
sein. Primitive Ereignisse sind nicht weiter zerlegbar. Zusammengesetzte Ereignisse

sind Verkn�upfungen von einfachen oder zusammengesetzten Ereignissen. Typische
Verkn�upfungen k�onnen z.B. logische Operatoren sein.

Im Surro{Work
owsystem wird zwischen work
ow{lokalen und work
ow{globalen
Ereignissen unterscheiden. Lokale Ereignisse sind nur innerhalb eines Vorgangs g�ultig.
Globale Ereignisse haben einen globalen G�ultigkeitsbereich, d. h. ein Ereignis kann in
mehreren Vorg�angen referenziert werden. Lokale Ereignisse k�onnen zur vorgangsin-
ternen Synchronisation eingesetzt werden. Globale Ereignisse werden zur Synchroni-
sation zwischen Aktivit�aten unterschiedlicher Vorg�ange verwendet.

3.1.3. Externe Ereignisse

Wenn ein Ereignis auftritt, meldet der Initiator das Ereignis der Work
ow{Engine,
die den Zeitpunkt des Auftretens des Ereignisses in die Datenbank schreibt und das
Auftreten des Ereignisses an alle Knoten weitergibt, die auf dieses Ereignis war-
ten. Ein Initiator eines Ereignisses kann z.B. ein Bearbeiter sein, der das Auftreten
des Ereignisses bemerkt hat. Im Beispiel mit dem Brief w�urde derjenige als Initia-
tor auftreten, der den Brief bekommen hat. Im Aktivit�aten{Manager gibt es einen
Men�upunkt, mit dem er das Auftreten des Ereignisses melden kann. Ein Programm
kann auch die Rolle des Initiators �ubernehmen und ein Ereignis melden.

Vor der Bearbeitung einer Aktivit�at wird �uberpr�uft, ob ein in einem Attribut der
Aktivit�at spezi�ziertes Ereignis eingetreten ist. Falls das Ereignis noch nicht einge-
treten ist, wird die Bearbeitung der Aktivit�at solange verz�ogert, bis das Auftreten des
Ereignisses gemeldet wird. Falls das Ereignis schon eingetreten ist, wird mit der Be-
arbeitung der Aktivit�at fortgefahren. Es kann dann die Vorbedingung der Aktivit�at
gepr�uft werden. Falls keine Aktivit�at mehr Interesse an einem Ereignis hat, wird das
Ereignis aus der Datenbank gel�oscht.

30

3.2 Ersatzaktivit�aten

Universit�at Stuttgart

Software{Labor

3.1.4. Interne Ereignisse

Als interne Ereignisse werden Nachrichten bezeichnet, die zur Steuerung der
Work
ow{Engine �uber die zentrale Warteschlange eingesetzt werden. Interne Er-
eignisse sind h�au�g Ausl�oser von Zustands�uberg�angen bei Aktivit�aten, Bl�ocken und
Sph�aren.

3.2. Ersatzaktivit�aten

Ersatzaktivit�aten [Sch95] und [SB96] sind ein Konzept, um
exibel auf Fehlersitua-
tionen oder zeitliche Engp�asse reagieren zu k�onnen. Ersatzaktivit�aten bzw. Ersatz-
knoten sind einer normalen Aktivit�at bzw. Knoten zugeordnet. Die Ausf�uhrung von
Ersatzaktivit�aten wird entweder durch einen Timeout oder durch das Fehlschlagen
einer Aktivit�at ausgel�ost. Mit Hilfe der Ersatzaktivit�aten kann eine di�erenzierte
Reaktion des Work
owsystems auf den Ausl�oser erfolgen. �Uber den timeout kann
z.B. eine ausbleibende Bearbeitung einer Aktivit�at angemahnt werden. Eine Ersatz-
aktivit�at wird entweder zus�atzlich zur normalen Aktivit�at gestartet oder die normale
Aktivit�at wird beendet und durch die Ersatzaktivit�at ersetzt. Der ersetzende Start
kann z.B. beim Fehlschlagen einer Aktivit�at angewendet werden, um eine alternative
L�osung des Arbeitsschritts zu erm�oglichen. Es kann z.B. auch der Fall auftreten, da�
aufgrund der ausgebliebenen Bearbeitung in der Zwischenzeit sich die Vorgehensweise
ge�andert hat. So kann z.B. ein Dokument nicht mehr per Post verschickt werden,
sondern mu� gefaxt werden. Da der Ausl�oser f�ur die Ersatzaktivit�at mehrfach auftre-
ten kann, kann �uber das Attribut replaceMode eingestellt werden, ob der zus�atzliche
Start einer Ersatzaktivit�at einmal oder mehrmal durchgef�uhrt werden darf. Ersatzak-
tivit�aten m�ussen dieselben Input- und Outputcontainer wie die normalen Aktivit�aten
besitzen, da sie die Stelle der normalen Aktivit�aten einnehmen, wenn sie gestartet
werden.

Ersatzaktivit�aten sind momentan (Stand Ende 1996) noch nicht vollst�andig im-
plementiert.

3.3. Programm{Pool

Eine ausf�uhrlichere Beschreibung �ndet sich in [Ros96].

Work
ow{Management{Systeme werden typischerweise in heterogenen Syste-
mumgebungen eingesetzt, d. h. die Benutzer arbeiten auf unterschiedlichen Rechne-
rarchitekturen und Betriebssystemen. Diese Heterogenit�at darf die Funktionalit�at
des Work
owsystems nicht beeintr�achtigen. Daher m�ussen die Applikationen, die zur
Bearbeitung von Aktivit�aten verwendet werden, f�ur die unterschiedlichsten Rechner-
systemen zur Verf�ugung stehen. Oft ist es jedoch nicht m�oglich, ein und dieselbe
Applikation auf verschiedenen Plattformen zu erwerben bzw. zu erstellen. In einem

31

Universit�at Stuttgart

Software{Labor 3 Motivation weiterer Work
ow{Konzepte

solchen Fall m�ussen Ersatzapplikationen gefunden werden, um die problemlose Ab-
wicklung der Gesch�aftsprozesse zu gew�ahrleisten.

Der Bearbeiter eines Gesch�aftsprozesses steht beim Wechsel seines Arbeitsplatzes
vor dem Problem, die ihm zugeteilten Aktivit�aten mit einer ungewohnten Applikati-
on zu bearbeiten, weil seine gewohnte Applikation auf dem aktuellen Rechnersystem
nicht zur Verf�ugung steht. Au�erdem mu� bei der Proze�spezi�kation die Existenz
der Anwendungen f�ur alle m�oglichen Plattformen sichergestellt werden, was die Pro-
ze�spezi�kation komplexer werden l�a�t.

Eine M�oglichkeit zur L�osung dieser Probleme besteht darin, plattformunabh�angige
Anwendungsprogramme zu verwenden, die auf allen Arbeitsplatzrechnern eingesetzt
werden k�onnen. Diese Anwendungsprogramme k�onnen bei Bedarf von einer zentraler
Stelle aus auf die Arbeitsplatzrechner kopiert werden, was die individuelle Installation
auf jedem Rechner erspart.

3.3.1. Probleme bei der Einbindung von Anwendungen in ein

Work
ow{Management{System

Dieser Abschnitt beschreibt Probleme, die bei der Ausf�uhrung von Anwendungs-
programmen in Work
owsystemen entstehen. Die Probleme werden aus der Sicht
der Proze�spezi�kation, der Proze�bearbeitung und der Anwendungsentwicklung be-
schrieben. Die Probleme r�uhren meist aus der Heterogenit�at der verwendeten Rech-
nersysteme her. Heterogene Rechnerstrukturen sind meist historisch gewachsen. Ein
Unternehmen vermehrt mit der Zeit ihre Rechnerausstattung und scha�t bestimmte
Rechnerarten f�ur spezielle Aufgaben an, die nur mit diesem System zu l�osen sind.
Dies hat zur Folge, da� in einem Unternehmen Rechner mit unterschiedlicher Hard-
ware und verschiedener Software (Betriebssysteme und Anwendersoftware) existieren.
Wenn jetzt ein Work
owsystem zum Einsatz kommt, mu� das Unternehmen auf die
bestehende informationstechnische Infrastruktur zur�uckgreifen, weil die Versorgung
mit neuen Rechner und der dazugeh�origen Software zu kostspielig w�are (Investitions-
schutz).

Durch die Heterogenit�at der Rechnersysteme, die als gegeben angenommenwerden
mu�, entstehen sowohl f�ur die Softwareentwickler (Anwendungsentwicklung, Work-

owsystem{Entwicklung, Gesch�aftsproze�spezi�kation) als auch f�ur die Anwender
(Bearbeiter des Gesch�aftsprozesses) Probleme.

Proze�spezi�kation

Aus der Sicht der Proze�spezi�kation besteht das Problem, da� f�ur die Bearbeitung
der gleichen Aktivit�at verschiedene Anwendungen verwendet werden m�ussen, wenn
die Aufgaben von Benutzern auf verschiedenen Rechnersystemen bearbeitet werden
m�ussen. Normalerweise wird der Bearbeiter dynamisch ermittelt, was zur Folge hat,
da� f�ur jede m�ogliche Plattform eine Anwendung angef�uhrt werden mu�. Dies erh�oht
den Aufwand und die Fehlerwahrscheinlichkeit in der Proze�spezi�kation. Au�erdem

32

3.3 Programm{Pool

Universit�at Stuttgart

Software{Labor

mu� das Work
ow-System selbst je nach Plattform die ad�aquaten Mechanismen zur
Einbindung einer Anwendung verwenden (Aufruf �uber Kommandozeile, Aufruf einer
Funktionsbibliothek usw.). Dies f�uhrt dazu, da� die Komplexit�at des Work
owsy-
stems selbst zunimmt.

Um einen funktionierenden Gesch�aftsproze� zu spezi�zieren, gen�ugt es nicht, den
Aktivit�aten die entsprechenden Anwendungen zuzuordnen, es mu� auch daf�ur gesorgt
werden, da� die Anwendungen auf allen am Work
owsystem teilnehmenden Arbeits-
platzrechnern installiert sind. Durch die Installation und Wartung der Anwendungen
auf jedem Arbeitsplatzrechner entsteht ein nicht zu vernachl�assigender Arbeitsauf-
wand. Je gr�o�er die Zahl der verwendeten Rechnersysteme ist, um so gr�o�er ist der
Aufwand f�ur die Spezi�kation eines ausf�uhrbaren Gesch�aftsprozesses, weil f�ur jedes
verwendete Rechnersystem die entsprechenden Anwendungsprogramme eingebunden
und installiert werden m�ussen.

Proze�bearbeitung

F�ur den Bearbeiter eines Gesch�aftsprozesses ergeben sich ebenfalls Probleme, die
durch die Heterogenit�at der Rechnerinfrastruktur hervorgerufen werden. Wenn ein
Bearbeiter seinen Arbeitsplatz wechselt, weil beispielsweise sein Rechner ausgefal-
len ist, steht er vor dem Problem, sich in einer v�ollig anderen Arbeitsumgebung
zurecht�nden zu m�ussen, weil der Ersatzrechner m�oglicherweise mit einem anderen
Betriebsystem arbeitet, das andere Befehlsformate akzeptiert. Au�erdem hat der Er-
satzrechner m�oglicherweise eine andere Benutzerober
�ache, mit deren Bedienung der
Bearbeiter nicht vertraut ist. Ein wichtiger Aspekt sind in diesem Zusammenhang
die Kosten f�ur die Schulung des Mitarbeiters, die notwendig werden k�onnen, wenn
der Arbeitsplatz gewechselt wird.

Ein weitaus gr�o�eres Problem als die ungewohnte Bedienung eines fremden Be-
triebssystems stellt das Fehlen bestimmter Anwendungsprogramme auf dem Ersatz-
rechner dar. Der Bearbeiter steht dabei oft vor dem Problem, da� er seine Aufgabe
mit einer nicht vertrauten Anwendung erledigen mu�, was die Fehlerwahrscheinlich-
keit erh�oht. Im Extremfall kann der Fall eintreten, da� die ben�otigte Anwendung auf
dem Ersatzrechner �uberhaupt nicht vorhanden ist und die Arbeit somit nicht erledigt
werden kann. Work
owsysteme werden nicht zuletzt deswegen eingesetzt, weil man
sich davon eine Beschleunigung der Vorgangsbearbeitung und eine Verringerung der
Fehler w�ahrend der Proze�bearbeitung verspricht. Diese Vorteile k�onnen durch die
oben angef�uhrten Probleme zerst�ort werden, weil ein Proze�bearbeiter, der in einer
ungewohnten Arbeitsumgebung arbeiten mu�, fast zwangsl�au�g mehr Fehler macht.
Au�erdem wird dadurch auch die Bearbeitungsgeschwindigkeit negativ beein
u�t.
Um die optimale Leistung zu erbringen, ist der Mitarbeiter an seinen angestammten
Arbeitsplatz gebunden, was nicht immer gew�ahrleistet werden kann.

Ein weiteres Problem sind diejenigen Anwendungsprogramme, die ein Proze�-
bearbeiter f�ur die Bearbeitung von Aktivit�aten benutzt, die ihm die Wahl des zu
benutzenden Werkzeugs freistellen. Hierf�ur wird er wahrscheinlich seine eigenen spe-

33

Universit�at Stuttgart

Software{Labor 3 Motivation weiterer Work
ow{Konzepte

ziellen Programme benutzen, die beim Wechsel des Arbeitsplatzes nat�urlich nicht
mehr zug�anglich sind. Durch diese Probleme, die durch die verwendeten Rechnersy-
steme entstehen, kann die Akzeptanz des Work
owsystems bei den Bearbeitern leiden
und sogar dazu f�uhren, da� der Einsatz eines WFMS als hinderlich angesehen wird.

Anwendungsentwicklung

Aus der Sicht des Anwendungsentwicklers besteht das Problem, da� die Anwendungen
auf unterschiedliche Plattformen portiert werden m�ussen. F�ur Anwendungen, die aus
verschiedenen Gr�unden nicht portiert werden k�onnen, m�ussen Ersatzanwendungen
gefunden bzw. implementiert werden, die aber eventuell nicht die volle Funktionalit�at
der Originalanwendung bieten.

Einen anderen Aspekt der Anwendungsentwicklung stellt das Work
owsystem
selbst dar, und zwar mu� dieses die M�oglichkeit bieten, je nach verwendeter Platt-
form des Proze�bearbeiters, unterschiedliche Anwendungsprogramme zu benutzen.
Dies ist z. B. bei FlowMark der Fall. FlowMark bietet die M�oglichkeit, je nach
Plattform des Runtime{Clients (Windows, OS/2 oder AIX), unterschiedliche An-
wendungen einzubinden. Au�erdem bietet FlowMark unterschiedliche Mechanismen
f�ur die Einbindung von Anwendungsprogrammen. So k�onnen z.B. OS/2{Programme,
OS/2{DLL{Funktionen und REXX{Command�les ausgef�uhrt werden. F�ur die An-
wendungsentwicklung ergibt sich ein nicht zu vernachl�assigender Aufwand, um die
angesprochenen Probleme zu l�osen. Durch diesen Aufwand entstehen dem Unterneh-
men zus�atzliche Kosten, die die Rentabilit�at eines Work
owsystems in Frage stellen
k�onnen.

3.3.2. Ein L�osungskonzept

Dieser Abschnitt stellt die Anforderungen an ein Konzept auf, das in der Lage ist,
die oben angef�uhrten Probleme bei der Ausf�uhrung von Anwendungsprogrammen in
einemWork
owsystem zu l�osen. Die wohl wichtigste Anforderung ist, da� ein Proze�-
bearbeiter seine Aufgabe unabh�angig von dem Rechnersystem, an dem er arbeitet,
l�osen kann. Dies impliziert, da� die Anwendungsprogramme, die zur Bearbeitung
einer Aktivit�at verwendet werden, unabh�angig von der Plattform, auf der sie ver-
wendet werden, immer das gleiche Aussehen und die gleiche Funktionalit�at bieten
(Transparenz der Heterogenit�at der verwendeten Rechnerinfrastruktur). Das ange-
strebte Konzept soll die Installation von Anwendungsprogrammen vereinfachen, dabei
soll eine Mehrfachinstallation einer Anwendung vermieden werden, so da� eine An-
wendung einmal installiert auf allen Arbeitsplatzrechnern eingesetzt werden kann.
Das Konzept soll m�oglichst in Verbindung mit jedem beliebigen Work
owsystem ver-
wendet werden k�onnen. Das hei�t, da� m�oglichst keine speziellen Mechanismen eines
speziellen Work
owsystem verwendet werden sollen.

Als L�osung dieser Probleme bietet sich an, in Aktivit�aten Programme zu verwen-
den, die auf jeder Plattform ausgef�uhrt werden k�onnen. Diese Programme m�ussen

34

3.4 Ein transaktionales Dateisystem

Universit�at Stuttgart

Software{Labor

dazu in einer Programmiersprache implementiertwerden, mit der es m�oglich ist, platt-
formunabh�angige Programme zu erstellen. Typische Vertreter solcher Sprachen sind
Interpretersprachen wie Java oder Tcl/Tk. Diese Programme werden zentral in einem
Programm{Pool gespeichert. Wenn ein Aktivit�aten{Manager ein solches Programm
ausf�uhren mu�, dann stellt er eine Anfrage an den Programm{Pool und das frag-
liche Programm wird lokal auf dem Arbeitsplatzrechner des Aktivit�aten{Managers
installiert.

Die Verwendung von plattformunabh�angigen Anwendungsprogrammen beseitigt
die Probleme der heterogenen Work
ow{Systemumgebung. Die zentrale Verwaltung
dieser Programme in einem Programm{Pool vereinfacht den Installations{ und War-
tungsaufwand f�ur die Anwendungsprogramme des Work
owsystems.

3.4. Ein transaktionales Dateisystem

Im Rahmen von [T�au96] wird ein Konzept f�ur ein Dateiverwaltungssystem als
Resource{Manager mit Recovery{F�ahigkeit und Dokumentenverwaltungsfunktiona-
lit�at entworfen. Das zugeh�orige System ist teilweise realisiert. Dieses Konzept bietet
interessante Ans�atze f�ur den Einsatz im Dokumentenmanagement und in Work
ow{
Management{Systemen im allgemeinen und f�ur die Work
ow{Transaktionen im be-
sonderen.

3.4.1. Motivation

Das Konzept bezieht seine Motivation zum einen | analog zu den Work
ow{Trans-
aktionen | aus der mangelnden Zuverl�assigkeit und Fehlertoleranz bestehender
Work
ow{Management{Systeme, zum anderen aus der Notwendigkeit, strukturier-
te Dokumente mit umfangreichen Zugri�smechanismen und -kontrollen als Basis f�ur
eine Dokumentenverwaltung anzubieten.

Die Verwaltung von Dokumenten in Multi{User{Entwicklungsumgebungen stellt
ein nicht zu untersch�atzendes Problem dar. Beispiele f�ur solche Umgebungen sind
Software- oder CAD{Entwicklungssysteme. Dabei m�ussen mehrere Personen, typi-
scherweise quasi gleichzeitig, an einer Vielzahl von Dokumenten arbeiten. �Anderun-
gen m�ussen synchronisiert werden, damit die Konsistenz des Zustands eines Doku-
mentes gew�ahrleistet werden kann. Die Synchronisation darf aber nicht zu streng
sein, damit Parallelarbeit nicht zu sehr eingeschr�ankt wird. In dieselbe Richtung
geht das Granulat der Dokumente, also welche minimale Gr�o�e die Dokumente oder
Dokumentteile besitzen, auf die sich Synchronisationsmassnahmen beziehen k�onnen.

Wenn man bestehende Speicherungssysteme zur Verwaltung von Dokumenten ver-
wenden will, gibt es zwei o�ensichtliche Ans�atze:

� Die Verwendung klassischer Dateisysteme

� Die Verwendung einer (relationalen) Datenbank

35

Universit�at Stuttgart

Software{Labor 3 Motivation weiterer Work
ow{Konzepte

Die Verwendung eines klassischen Dateisystems besitzt gro�e Flexibilit�at, da man
relativ viele Freiheiten bei der Verwendung von Speicherungsstrukturen besitzt. Dem-
gegen�uber stehen aber hohe Kosten f�ur die Implementierung der notwendigen Mecha-
nismen (Synchronisation, Replikation, Speicherungsstrukturen und allgemeine Zu-
gri�sfunktionen) und eine schwierige Portierung auf andere Umgebungen. Ein trans-
aktionaler Zugri�sschutz ist nur sehr aufwendig zu erreichen.

Bei Verwendung einer relationalen Datenbank sind durch die Abstraktion der Spei-
cherungsdetails und die Abfragesprachen einige der eben angesprochenen Probleme
beseitigt. Eine relationale Datenbank ist aber auf die Verwaltung und Bearbeitung
gro�er Mengen von sehr kleinen, �ahnlich strukturierten Dateneinheiten mittels kur-
zer Operationen ausgerichtet, und nicht auf die kooperative Bearbeitung gr�o�erer
Dokumente �uber l�angere Zeit.

3.4.2. Das Konzept

Das objektstrukturierte Filesystem (ObjFS) aus [T�au96] ist eine Dateisystemerweite-
rung mit Funktionalit�at zur transaktionalen Dokumentenverwaltung. Ein Dokument
entspricht dabei in erster Stufe einer Datei, die eine Anwendung verwendet. Diese
Dokumente k�onnen aber schon auf Ebene des Dateisystems weiter hierarchisch in ein-
zelne Objekte strukturiert werden. Es bietet unter anderem folgende Eigenschaften:

� Kompatibilit�at zum bisherigen Dateisystem
Der Zugri� auf die Dokumente erfolgt �uber eine Schnittstelle, die die Standard{
Dateisystemschnittstelle als Untermenge beinhaltet. Somit kann bei einge-
schr�ankter Funktionalit�at auch mit Alt{Software auf die Dokumente zugegri�en
werden. Zus�atzlich gibt es Zugri�sfunktionen, die die erweiterte Funktionalit�at
(Kontrolle der Transaktionsgrenzen, Verwaltung von Teildokumenten, usw.)
anbieten.

� Transaktionaler Schutz mit der Vorbereitung zur Unterst�utzung abgeschw�achter
Transaktionsmodelle
Das Dateisystem ist als Resource{Manager mit OTS{Schnittstelle realisiert und
kann somit in Transaktionen eingebunden werden. Es f�uhrt einen Log und
besitzt eine Sperrverwaltung.

� Synchronisation auf feinem Granulat
Dokumente k�onnen hierarchisch strukturiert werden. Die Objekte, die dabei
als kleinste Einheit entstehen, k�onnen einzeln mit Sperrmechanismen gesch�utzt
werden. Die Gr�o�e der Objekte bestimmt die erstellende Anwendung selbst.
Sie hat somit Ein
u� auf den m�oglichen Kooperationsgrad.

� Varianten- und Referenzenverwaltung
Zu jedem Objekt k�onnen Varianten erstellt und automatisch verwaltet werden.
�Uber Referenzen kann �uber Dokumentteile navigiert werden.

36

3.4 Ein transaktionales Dateisystem

Universit�at Stuttgart

Software{Labor

3.4.3. Integration in ein WFMS

Das ObjFS l�a�t sich als reines Dokumentenverwaltungssystem au�assen und in dieser
Funktion in ein Work
owsystem einbinden. Dies wird hier nicht weiter betrachtet.
Die zweite, schon beimKonzept der Work
ow{Transaktionen angesprochene M�oglich-
keit, besteht darin, den Integrationscharakter des Dateisystems f�ur die Work
ow{
Transaktionen auszunutzen.

Dadurch da� das transaktionale Dateisystem die Standard{
Dateisystemschnittstelle implementiert, kann Alt{Software das Dateisystem
zur Speicherung ihrer Dateien verwenden. �Uber die Resource{Manager Eigen-
schaft k�onnen die Operationen transaktional gesch�utzt werden. Im Falle der
Work
ow{Transaktionen ist ein Schutz durch klassische Transaktionen mit den
ACID{Eigenschaften verlangt. Die �Anderungen auf den entsprechenden Dateien
werden nach au�en isoliert. Ein Rollback macht die Datei�anderungen komplett
r�uckg�angig.

Wenn die Alt{Software ihren Zustand komplett auf dem Dateisystem ablegt, kann
somit aus Sicht eines Beobachters ein echt transaktionales Verhalten erreicht werden,
obwohl die Anwendung nicht darauf vorbereitet ist. Somit kann die Alt{Software auch
als ACID{Aktivit�at sinnvoll in einer Work
ow{Transaktion eingesetzt werden. Man
mu� dabei aber ber�ucksichtigen, da� noch zur Laufzeit der Anwendung ein Rollback
erfolgen kann, der ihr quasi ihre bisherige Arbeit

"
unter den F�u�en wegzieht\. Da dies

zwangsl�au�g zu massiven Inkonsistenzen f�uhren w�urde (Die Anwendung bekommtvon
einemRollback vorerst einmal nichts mit), mu� daf�ur gesorgt werden, da� nach einem
Rollback keine weiteren Dateizugri�e dieser Anwendung mehr ausgef�uhrt werden.
Die Anwendung sollte so schnell wie m�oglich abgebrochen werden. Wenn die Alt{
Anwendung fehlerhaft abbricht, ist dies ein Grund, die Transaktion abzubrechen.
Dies mu� vom System erkannt werden k�onnen.

Aus Sicht des Work
owsystems m�ussen spezielle Vorkehrungen getro�en werden,
um eine solche Integration einer nicht{transaktionalen Aktivit�at in eine Sph�are zu
erreichen. Nur die Work
ow{Engine kennt den Transaktionskontext, mit dem die
Sph�are gesch�utzt wird. Diesen Kontext mu� das transaktionale Dateisystem f�ur die
Ausf�uhrung der Dateioperationen der Anwendung verwenden. Normalerweise gibt
der aufrufende Client (in diesem Fall die Alt{Anwendung) den Transaktionskontext
implizit oder explizit beim Aufruf mit. Dies ist in diesem Fall nicht m�oglich, da die
Anwendung kein Wissen �uber Transaktionen besitzt. Deshalb mu� das transaktio-
nale Dateisystem eine Abbildungsfunktion besitzen, die den aufrufenden Betriebssy-
stemproze� der Alt{Anwendung dem korrekten Transaktionskontext zuordnet. Um
wiederum diese Funktion realisieren zu k�onnen, mu� das Work
owsystem dem trans-
aktionalen Dateisystem jeweils mitteilen, welcher Anwendungsproze� welchen Trans-
aktionskontext ben�otigt.

Das ObjFS ist in Grundz�ugen auf OS/2 als
"
installable Filesystem\ implementiert.

Die Integration in das Work
owsystem Surro ist bisher nicht erfolgt.

37

4. Der Aufbau des Work
owsystems

Surro

4.1. Motivation des Prototypen

In diesemAbschnitt soll kurz dargelegt werden, aus welchenGr�unden und mit welchen
Zielen imRahmen dieses Projekts ein Prototyp einesWork
ow{Management{Systems
erstellt worden ist.

� Erstes Ziel des Prototypen ist der Nachweis der Realisierbarkeit der in Ab-
schnitt 2 beschriebenen Konzepte zur Fehlertoleranz. Dabei stehen an erster
Stelle die Work
ow{Transaktionen und an zweiter Stelle die Kompensations{
Transaktionen. Es soll dabei der Aspekt des Realisierungsaufwandes betrachtet
und beurteilt werden. Es soll herausgefunden werden, ob sich eine Kombina-
tion des Transaktionsdienstes Object Transaction Service (OTS) [OTS94], der
CORBA{Implementierung DSOM und der Datenbank DB2 f�ur die Realisierung
geeignet. Es soll �uberpr�uft werden, inwieweit sich Sperren auf den Work
ow{
Verwaltungsdaten bei der Abarbeitung von Sph�aren auswirken. Kann es an den
Grenzen von Sph�aren zu Problemen kommen?

� Ein weiteres Hauptziel ist das Sammeln von praktischer Erfahrung im
Umgang mit dem Transaktionssystem OTS als Bestandteil der CORBA{
Implementierung DSOM 3.0 von IBM. Dabei steht die Zusammenarbeit von
OTS als externer Transaktionsmanager mit der Datenbank DB2 im Vorder-
grund, da hier aufgrund des Beta{Stadiums der Version 3.0 von DSOM nicht
auf Erfahrungen und auch nicht auf vorhandene Dokumentation zur�uckgegri�en
werden kann. Der allgemeine Umgang mit CORBA als Programmierplattform
ist ebenfalls ein wichtiger Punkt.

� Der Prototyp soll zuk�unftig als Experimentierplattform f�ur weitere Konzepte
dienen, beispielsweise Ad{hoc{Modi�kationen von Work
ows, Ereignisverwal-
tung oder die Integration von Componentware{Systemen. Der Prototyp soll
auch als Vorbereitung auf k�unftige Objekttechnologien, die in Aktivit�aten ein-
gesetzt werden, verstanden werden.

38

4.2 Aufbau des Surro Prototypen

Universit�at Stuttgart

Software{Labor

4.1.1. Vorgeschichte und Entstehung

Zum Verst�andnis einiger strukturell relevanter Entscheidungen bez�uglich des Proto-
typen ist ein kurzer Abri� der Entstehungsgeschichte sinnvoll.

Das im Prototyp Surro1 verwendete Work
ow{Modell orientiert sich stark am
Work
ow{Modell des IBM{Produkts FlowMark. Dies soll die �Ubertragbarkeit der
Ergebnisse aus der Prototypentwicklung auf FlowMark erm�oglichen. Aus dem glei-
chen Grund wurde auch teilweise die Terminologie von FlowMark (z. B. PEC) �uber-
nommen.

Als Ausgangspunkt f�ur die Surro Prototypentwicklung wurde ein an der Uni-
versit�at Stuttgart erstelltes Work
owsystem verwendet, das im Rahmen einer Di-
plomarbeit entstanden ist. Konzepte und Programmcode konnten so wiederverwertet
werden. Eine ausf�uhrliche Beschreibung dieses Systems ist in [Sch95] zu �nden. Die-
ses Ausgangssystem wurde so weit modi�ziert, da� es Grundkonzepte verwendet,
die zu FlowMark weitgehend identisch sind. Das Ausgangssystem, und somit auch
die momentane Version der Engine, ist in der Programmiersprache Tcl/Tk [Ous94]
implementiert, die sich gut zum Erstellen von Prototypen mitsamt der gra�schen
Benutzungsober
�ache eignet. Aufgrund dieser Eigenschaft sind auch andere, sp�ater
dazugekommene Komponenten in dieser Sprache implementiert (z. B. der Monitor).
Der Aktivit�aten{Manager und der Programm{Pool sind im Rahmen einer Studien-
arbeit in Java realisiert.

Aufgrund des Projektziels, den Transaktionsverwalter OTS aus der DSOM{
CORBA{Implementierung von IBM f�ur den Einsatz bei der Realisierung von
Work
ow{Transaktionen zu evaluieren, und aufgrund der Tatsache, das OTS mo-
mentan nur auf OS/2 in einer Betaversion verf�ugbar ist, mu�te der gesamte Teil der
Engine, der die Dienste von DSOM und OTS nutzt, auf OS/2 implementiert wer-
den. Die Implementierungssprachen auf der OS/2{Plattform sind C und C++. Dies
f�uhrt zu dem im folgenden Abschnitt beschriebenen strukturellen Aufbau des Surro
Prototypen.

4.2. Aufbau des Surro Prototypen

In diesem Abschnitt werden die Entstehung, Eigenschaften und die Struktur des
Prototypen erl�autert. In Abb. 4.1 ist ein �Ubersichtsbild �uber die Struktur des ent-
wickelten Prototypen zu sehen.

Der Prototyp zeigt eine deutlich zweigeteilte Struktur. Die Aufteilung auf zwei
Betriebssysteme ist historisch bedingt und aus vorgegebenen Randbedingungen zu
erkl�aren. Der Prototyp existiert in zwei Varianten. Zum einen gibt es die M�oglich-
keit, das System ohne Einbeziehung der OS/2{Seite zu betreiben. Dabei besteht die
Einschr�ankung, da� f�ur die Realisierung der Sph�aren keine echten Transaktionen zur
Verf�ugung stehen. Die in dieser rein UNIX{basierten Variante verwendete Datenbank

1Surro steht f�ur Surrogat

39

Universit�at Stuttgart

Software{Labor 4 Der Aufbau des Work
owsystems Surro

Abbildung 4.1.: Struktureller Aufbau des Surro Prototypen

mSQL [Hug96] ist nicht transaktionsf�ahig, ebensowenig wie die auf dieser Plattform
vorhandenen Aktivit�atenprogramme. Diese Variante ist zum Test der Grundfunktio-
nalit�at des Work
owsystems gut geeignet.

Involviert man die OS/2{basierten Komponenten, f�allt die Verwendung der
mSQL{Datenbank weg. Daf�ur wird die transaktionsf�ahige DB2 herangezogen. �Uber
OTS als globalen Protokoll{Koordinator ist dann echtes Transaktions{Management
m�oglich. Ebenso sind transaktionale Aktivit�aten vorhanden.

4.2.1. Aufgaben der Systemkomponenten

Die n�ahere Funktionsweise und Implementierungsdetails des Gesamtsystems werden
im Kapitel 6 erl�autert. In diesem Abschnitt folgt eine Beschreibung der Aufgaben
der einzelnen Systemkomponenten.

Work
ow{Engine

Die zentrale Komponente des Systems ist die Work
ow{Engine. Sie hat die Aufgabe,
den Ablauf der Prozesse zu steuern und zu �uberwachen. Sie ermittelt anhand der ihr
zur Verf�ugung stehenden Informationen die n�achsten zu unternehmenden Arbeits-
schritte (Aktivit�aten). Dabei kontrolliert sie die Zustands�anderungen der laufenden
Prozesse und Aktivit�aten. An Informationen verwendet die Engine die statischen
Proze�{ und Ressourcende�nitionen in der Work
ow{Datenbank und die Meldun-

40

4.2 Aufbau des Surro Prototypen

Universit�at Stuttgart

Software{Labor

gen der anderen Komponenten des Systems �uber eingetretene Ereignisse. Sie schickt
Informationen �uber zu bearbeitende Aktivit�aten an die Aktivit�aten{Manager. Sie
reagiert auf Beendigungen von Aktivit�aten durch die Bearbeiter und kontrolliert da-
bei die Zustands�anderungen. Sie informiert den Monitor �uber Zustands�anderungen.
Sie f�uhrt Datenbankzugri�e im Auftrag f�ur andere Systemkomponenten durch.

Abbildung 4.2.: Ober
�ache der Engine und des WFS{Managers

Work
ow{Session{Manager

Der Work
ow{Session{Manager (WFS{Manager) ist im Prototyp ein eigenst�andiger
Proze�, hat aber eine sehr enge Bindung zur Engine. Aus diesem Grund ist er in
Abb. 4.1 nicht als eigenst�andiges Objekt dargestellt. Er ist f�ur die Kommunikation
mit den Benutzerkomponenten (Aktivit�aten{Manager, PEC) und f�ur die Verwaltung
der Session{Daten der Benutzer zust�andig. Er verf�ugt �uber die Informationen, wer
momentan im System angemeldet ist.

Die Benutzungsober
�achen von Engine und WFS{Manager (Abb. 4.2) haben
vorerst reine Debug{Funktionalit�at.

Datenbank (mSQL / DB2)

Die Datenbank speichert zum einen statische Informationen, d. h. die De�nitionen der
verf�ugbaren Prozesse (Aktivit�aten, Kontroll
u�, Daten
u�, Datencontainer, usw.)
und das Organisationsmodell. Zum anderen beinhaltet sie dynamische Informationen
in Form des momentanen Zustands jedes derzeit ablaufenden Prozesses. Die Engine
sichert jede Zustands�anderung eines Prozesses sofort in der Datenbank.

Der Prototyp hat die M�oglichkeit, alternativ die mSQL{Datenbank auf UNIX{
Seite oder die DB2{Datenbank auf OS/2{Seite zu verwenden. Da nur die DB2{
Datenbank Transaktionen beherrscht, ist bei Verwendung der mSQL{Datenbank die
Transaktionseigenschaft der Sph�aren nicht gegeben.

41

Universit�at Stuttgart

Software{Labor 4 Der Aufbau des Work
owsystems Surro

TA{Adapter, transaktionale Queue, Kontextverwaltung

Der Transaktions{Adapter ist der eigentliche Client zur DB2{Datenbank. Nur er ruft,
stellvertretend f�ur die Engine, das API der DB2 auf. Daneben ist seine Hauptaufgabe
die Verwaltung der Transaktionskontexte und einer transaktionalen Message{Queue
(jeweils in einem eigenen DSOM{Objekt). Die transaktionale Queue wird von der
Engine zur sicheren Zwischenspeicherung von internen Nachrichten verwendet. Der
Adapter ist der Proze�, der die Transaktions{Management{Objekte, die OTS de�-
niert (Coordinator, Terminator, usw.), erzeugt und aufruft.

Der TA{Adapter geh�ort logisch zur Engine, mu� aber als getrennter Proze� auf
der OS/2{Seite implementiert werden, da die Engine keine M�oglichkeit hat, DSOM
3.0 und damit OTS zu verwenden. Der Adapter bietet der Engine eine Schnittstelle
zumAufruf der Datenbankfunktionen auf die DB2 und des Transaktionsmanagements
an.

Aktivit�aten{Manager

Der Aktivit�aten{Manager [Ros96] ist die Schnittstelle des Systems zum normalen
Benutzer. Der Aktivit�aten{Manager besitzt eine graphische Benutzungsober
�ache
(siehe Abb. 4.3), die die Arbeitsliste zeigt. Der Benutzer erh�alt �uber den Akti-
vit�aten{Manager Informationen �uber die anstehenden Arbeiten (oberste Liste), die
momentan in Bearbeitung be�ndlichen (mittlere Liste) und die unterbrochenen Akti-
vit�aten (untere Liste, leer). Er hat unter anderem folgende Interaktionsm�oglichkeiten:

� Starten, Unterbrechen, Wiederaufnehmen, Auslassen von Aktivit�aten

� Starten von neuen Prozessen

� Meldung von externen Ereignissen

� Aufruf des Vorgangsinformationssystems (bzw. des Monitors)

PEC

Der Program Execution Client (PEC) ist ein Programm, das f�ur die Ausf�uhrung
und �Uberwachung von Aktivit�atenprogrammen zust�andig ist. Er bietet den Akti-
vit�aten ein API an, das die Abfrage von Proze�informationen durch das Aktivit�aten-
programm erlaubt, z. B. den Inhalt von Datencontainern, und das Beschreiben der
Daten{Outputcontainer erm�oglicht.

Auf UNIX{Seite ist der PEC in den Aktivit�aten{Manager integriert. Dort hat
er auch zus�atzlich die Aufgabe, mit dem Programm{Pool zu kommunizieren (sie-
he dort). Auf OS/2{Seite gibt es zur Zeit keinen Aktivit�aten{Manager mit Benut-
zungsober
�ache. Der OS/2{PEC hat allein die Aufgabe, transaktionale Sph�aren{
Aktivit�aten automatisch auszuf�uhren. Die Durchf�uhrung einer transaktionalen Akti-
vit�at besteht aus dem Aufruf einer Methode eines transaktionalen Objekts im richti-
gen Transaktions{Kontext.

42

4.2 Aufbau des Surro Prototypen

Universit�at Stuttgart

Software{Labor

Abbildung 4.3.: Aktivit�aten{Manager und eine Aktivit�at

Transaktionale Objekte

Transaktionale Objekte sind DSOM{Objekte, die ein OTS{konforme Schnittstelle
besitzen und somit in einen Transaktionskontext eingebunden werden k�onnen. Me-
thodenaufrufe auf diese Objekte werden, vorausgesetzt der Aufruf erfolgt in einem
entsprechenden Kontext, transaktional gesch�utzt. Ein derartiger Methodenaufruf ist
eine transaktionale Aktivit�at und kann innerhalb von Work
ow{Transaktionen aus-
gef�uhrt werden.

Programm-Pool

Der Programm{Pool stellt an zentraler Stelle Programme zur Verf�ugung, die zur
Ausf�uhrung von Aktivit�aten ben�otigt werden. Auf Anfrage vom PEC installiert der
Programm{Pool{Manager Programme zur Ausf�uhrung einer Aktivit�at auf einer Ma-
schine, die noch keine lokale Kopie des Programms besitzt. Der Programm{Pool
ber�ucksichtigt dabei verschiedene Plattformen und kann auch Programme anhand
von bestimmten Attributen ausw�ahlen (Beispielanfrage: Liefere mir ein Programm
zum Anzeigen einer MS Word-Datei f�ur eine Windows 3.x{Plattform). �Uber die-
se Verteilungsmethode k�onnen auch plattformunh�angige Programme verteilt werden,
damit wird der Anschlu� eines neuen Rechners am Work
owsystem vereinfacht, da
die ganzen Installationsarbeiten nicht n�otig sind.

Monitor

Der Monitor ist die bisher einzige Komponente des Vorgangsinformationssystems.
Er zeigt Proze�de�nitionen (die Templates) und den momentanen Zustand laufender
Prozesse (Instanzen) graphisch an (siehe Abb. 4.4). �Uber den Monitor k�onnen auch

43

Universit�at Stuttgart

Software{Labor 4 Der Aufbau des Work
owsystems Surro

Abbildung 4.4.: Work
ow{Monitor mit Darstellung des Beispielprozesses aus A.1

Detailinformationen �uber die Bestandteile und den Zustand des Prozesses abgefragt
werden. Der Monitor holt sich die ben�otigten strukturellen Informationen direkt aus
der Datenbank. Zus�atzlich erh�alt er von der Engine Nachrichten �uber Zustands�ande-
rungen der Aktivit�aten und Konnektoren.

Organisationsmodul

Das Organisationsmodul ist f�ur die Verwaltung der zugrundeliegenden Aufbauorga-
nisation und f�ur die Auswahl geeigneter Bearbeiter (allgemeiner: Ressourcen) f�ur die
Ausf�uhrung einer Aktivit�at zust�andig. Die Aufbauorganisation spiegelt die Struktur
des Unternehmens bzw. der Organisation wieder, die das Work
owsystem einsetzt.
Relevant f�ur ein Work
owsystem sind Informationen �uber die Ressourcen (Personen,
Standorte, Maschinen) und deren Eigenschaften und F�ahigkeiten. Dazu kommen Be-
ziehungen zwischen den Ressourcen, wie Untergebenenverh�altnisse zwischen Personen
und Mengen von Personen mit �ahnlichen F�ahigkeiten (Rollen).

Das Organisationsmodul erh�alt von der Engine Anfragen nach Ressourcen mit
bestimmten Auswahlkriterien und liefert einen oder mehrere in Frage kommenden
Bearbeiter zur�uck. Dabei kann das Modul noch Informationen von der Engine erfra-
gen, typischerweise bez�uglich der Historie des Prozesses.

44

4.3 Kommunikation

Universit�at Stuttgart

Software{Labor

Gra�scher Work
ow{Editor

Diese Systemkomponente wurde bisher 2 nicht implementiert. Ihre Aufgabe ist die
interaktive gra�sche Erstellung von Gesch�aftsproze�{Spezi�kationen, die Modellie-
rung der Aufbauorganisation und die Speicherung der entsprechenden Daten in der
Datenbank. Alle bisher implementierten Gesch�aftsproze�{Modelle sind bisher direkt
in SQL angegeben.

4.3. Kommunikation

Die einzelnen Komponenten kommunizieren untereinander �uber festgelegte Schnitt-
stellen. Aufgrund der Entscheidung f�ur die Weiterverwendung des bestehenden Pro-
totypen aus [Sch95] und der durch IBM vorgegebenen Verwendung von OTS ist es
leider nicht m�oglich bzw. sinnvoll, eine einheitliche Kommunikationsart zu verwen-
den. Anzustreben w�are, die gesamte Kommunikation �uber den CORBA Methoden-
aufruf (bzw. einen RPC{Mechanismus) abzuwickeln, was aber daran scheitert, da�
die f�ur OTS ben�otigte Version 3.0 von DSOM noch nicht auf UNIX verf�ugbar ist.
Zum anderen existieren keine Tcl/Tk{Schnittstellen zu DSOM. Aus diesem Grund
wird auf die n�achsttiefere Schicht zur�uckgegri�en, die allen Systemkomponenten zur
Verf�ugung steht: TCP/IP{Sockets. Zus�atzlich wird die von Tcl/Tk angebotene, auf
eine Maschine beschr�ankte Interproze�{Kommunikation (IPC) verwendet, da dieser
Mechanismus �au�erst einfach zu verwenden ist. Dies f�uhrt zu folgender Kommunika-
tionsstruktur:

In Abb. 4.1 wird unterschieden zwischen (TCP/IP-)Socket- und Interproze�{
Kommunikation. Zwischen UNIX und OS/2 wird �uber TCP/IP{Sockets kommu-
niziert, da zwangsl�au�g verschiedene Maschinen involviert sind. Dies betri�t die
Kommunikation zwischen Engine und TA{Adapter, zwischen WFS{Manager und
dem OS/2{PEC und zwischen dem Monitor und dem TA{Adapter. Zwischen WFS{
Manager und Aktivit�aten{Manager werden ebenfalls Sockets verwendet, da die Ak-
tivit�aten{Manager prinzipiell auf beliebigen Maschinen ablaufen k�onnen. Analoges
gilt f�ur den Programm{Pool.

Zwischen Prozessen auf der UNIX{Seite, die in Tcl/Tk implementiert sind, wird
der Tk-Befehl send verwendet, der �au�erst einfach zu verwenden ist. Mit send kann
man an einen anderen Tcl/Tk{Interpreter einen beliebigen Befehlsstring senden, den
dieser dann ausf�uhrt3. Mit diesem Befehl kann eine Art Remote Procedure Call
(RPC) realisiert werden. Diese RPC{Kommunikation wird zwischen der Engine und
dem WFS{Manager und zwischen der Engine und dem Monitor verwendet. Das hat
die Auswirkung, da� diese Prozesse auf derselben Maschine unter demselben X{Server
ablaufen m�ussen.

2Stand 1996
3Die Sicherheitsprobleme, die daraus entstehen, und wie sie behandelt werden, wird hier nicht

n�aher dargestellt

45

Universit�at Stuttgart

Software{Labor 4 Der Aufbau des Work
owsystems Surro

Die Kommunikation zwischen der Engine und der mSQL{Datenbank erfolgt �uber
das API, das mSQL zur Verf�ugung stellt. Auf der OS/2{Seite erfolgt die Kommunika-
tion entweder �uber vorgegebene API's (zwischen dem TA-Adapter und der DB2 wird
das DB2 Call Level Interface CLI benutzt) oder �uber den objektorientierten RPC, den
DSOM als CORBA{Implementierung zur Verf�ugung stellt. Alle �ubrige Kommunikati-
on auf der OS/2{Seite verwendet diesen Mechanismus. Die CORBA{Kommunikation
ist prinzipiell ortstransparent. Die Komponenten (z. B. die transaktionalen Objekte)
k�onnten auch auf verschiedenen Maschinen ablaufen, ohne da� die Implementierung
ge�andert werden m�u�te.

4.3.1. Die Schnittstellen zwischen den Systemkomponenten

Im folgenden werden kurz die wichtigsten Schnittstellen erl�autert, die im Rahmen des
Prototypen de�niert und/oder verwendet werden.

mSQL{Datenbank

Die mSQL{Datenbank bietet ein C{API an, mit dessen Hilfe ein Tcl{Interface reali-
siert ist.

TA{Adapter

Der TA{Adapter bietet der Engine (und dem Monitor) eine Schnittstelle an, die
weitgehend identisch zu der Schnittstelle ist, die die mSQL{Datenbank gegen�uber
der Programmiersprache Tcl anbietet. Der Vorteil dieser Vorgehensweise ist, da�
man ohne gro�en Programmieraufwand zwischen der mSQL- und der DB2{Datenbank
wechseln kann.

Die Schnittstelle bietet Aufrufe zur Ausf�uhrung von SQL{Befehlen, zum Abfragen
von Ergebnismengen von SELECT{Statements, zum Abfragen von Informationen
�uber Relationen, zum Verwalten mehrerer logischer Verbindungen analog zur mSQL{
Schnittstelle. Dazu kommen spezielle Funktionen zur Transaktionsverwaltung, die in
der mSQL{Schnittstelle nicht vorhanden sind. Dies sind Aufrufe zum Begin, Commit
und Rollback einer Transaktion und zum Ver�andern des Transaktionskontextes.

Dazu bietet der TA{Adapter Aufrufe zur transaktionalen Queue an, also unter
anderem zum Einf�ugen eines Elements (Enqueue), Abholen (Dequeue) und Abfrage
der Anzahl der Elemente in der Queue.

DB2 () TA{Adapter

Zum Zugri� auf die DB2 wird das Call Level Interface (CLI) verwendet. Zur Anbin-
dung des externen Transaktionsmanagers wird das X/Open XA{Interface [X/O91]
herangezogen. DSOM OTS besitzt Vorkehrungen zur Verwendung dieser Schnittstel-
le.

WFS{Manager () Aktivit�aten{Manager und PEC

Zwischen diesen Komponenten wird ein API de�niert, das sich stark an das WAPI{
Interface (Interface 2) der WfMC{Interface{Spezi�kation anlehnt. Hier werden Funk-

46

4.3 Kommunikation

Universit�at Stuttgart

Software{Labor

tionen zum An- und Abmelden vom System, �Ubergeben von Aktivit�aten, Beenden
von Aktivit�aten, Abfragen von Datencontainern usw. de�niert. Eine ausf�uhrliche
Beschreibung �ndet sich in [Ros96].

Zwischen demOS/2{PEC und demWFS{Manager wird nur ein kleiner Ausschnitt
des API's ben�otigt, da der PEC noch keine Benutzerinteraktion kennt.

Work
ow{Engine () Monitor

Diese Schnittstelle beschr�ankt sich auf den RPC{Aufruf einer einzigen Funktion des
Monitors durch die Engine, wobei demMonitor die Zustands�anderung eines Prozesses
mitgeteilt wird. Der Monitor aktualisiert daraufhin seine Anzeige.

PEC () Programm{Pool

Der Programm{Pool stellt ein Interface zur Verf�ugung, das unter anderem Funktio-
nen zur Auswahl von Programmen anhand bestimmter Kriterien, zum Abfragen von
Attributen und zum Anfordern von Programmen enth�alt, die dann lokal installiert
werden.

Work
ow{Engine () Organisationsmodul
Das Organisationsmodul stellt zur Zeit eine RPC{Funktion zur Verf�ugung, die an-
hand der mitgelieferten Ressourcenbeschreibung einen geeigneten Bearbeiter zur�uck-
liefert. Dabei kann z.B. unter anderem noch angegeben werden, ob Vertretungs-
regelungen ber�ucksichtigt werden sollen oder nicht. Ein Zugri� auf die Benutzer{
Verwaltungsdaten des Work
ow{Session{Manager durch das Organisationsmodul ist
m�oglich.

47

Universit�at Stuttgart

Software{Labor 4 Der Aufbau des Work
owsystems Surro

48

5. Das Datenmodell von Surro

In diesem Kapitel wird das dem Work
ow{Management{System Surro zugrunde-
liegende Datenmodell beschrieben. Der Aufbau des Datenmodells, die die Proze�-
de�nitionen und das Organisationsmodell beinhalten, wird anhand eines Entity{
Relationship{Diagramms erl�autert. Danach werden alle Relationen im einzelnen auf-
gef�uhrt und dokumentiert.

5.1. Begri�e

Die Relationen k�onnen in vier Klassen eingeteilt werden. In der Klasse der
Template{Relationen sind alle Relationen zu �nden, die f�ur die Spezi�kation der
Gesch�aftsprozesse ben�otigt werden. Ein gro�es T am Ende des Namens einer Re-
lation kennzeichnet diese Klasse. Die Daten in den Template{Relationen m�ussen
durch den Work
ow{Editor bei der Modellierung eines Gesch�aftsprozesses erzeugt
werden. Die Klasse der Instanz{Relationen besitzt dieselben Relationen wie die
Template{Klasse, wobei das T am Ende des Namens fehlt. Bei der Instanziierung
eines Work
ows werden alle Daten des Prozesses aus den Template{Relationen in
die entsprechenden Instanz{Relationen kopiert. Zus�atzlich besitzen die Instanz{
Relationen weitere Schl�usselattribute, die die Instanz eindeutig identi�zieren und
die nur in Work
ow{Instanzen ben�otigt werden. Die dritte Klasse von Relationen
(Organisations{Relationen) werden f�ur die Beschreibung der Aufbauorganisation
des Unternehmens oder der Beh�orde ben�otigt. In der vierte Klassen sind Relationen
f�ur die Verwaltung von internenWork
owdaten, z. B. Instanz{Z�ahler (Verwaltungs{
Relationen).

Der Begri� Knoten wird als Generalisierung f�ur eine Aktivit�at, einen Block oder
ein Proze� bzw. Subproze� benutzt. Bei der Modellierung eines Gesch�aftsprozesses
als Graph treten diese Objekte als Knoten auf, w�ahrend Daten{ und Kontroll
u�-
konnektoren die Kanten repr�asentieren.

Als Proze�ebene wird in diesem Zusammenhang eine Menge von Knoten be-
zeichnet, die auf einer Ebene im Gesch�aftsproze�{Modell liegen. Auf der obersten
(der Toplevel{) Ebene 0 liegt ein einziger Proze�knoten. Die Realisierung dieses
Prozesses �ndet sich auf der darunterliegenden Proze�ebene 1. Die Realisierung des
Blockes �ndet sich auf Proze�ebene 2 (siehe Abbildung 5.1). Auf dieseWeise wird eine
Hierarchie von Proze�ebenen gebildet, die in ihrer Gesamtheit einen Gesch�aftsproze�

49

Universit�at Stuttgart

Software{Labor 5 Das Datenmodell von Surro

Prozeßebene 1

Prozeßebene 2

Prozeßebene 0 (toplevel)

Aktivität

Block

Kontrollfluß

Toplevelprocess/S

Legende:

Abbildung 5.1.: Die Proze�ebenen bei der Gesch�aftsproze�{Beschreibung

modellieren.

5.2. Instanziierung von Work
ows

Die Instanziierung eines Work
ows wird durch die interne Nachricht startWorkflow
ausgel�ost. Daraufhin wird der toplevel{Proze�knoten instanziiert. Mit diesemKnoten
wird auch die oberste Proze�ebene instanziiert, die �uber das Attribut processID

identi�zierbar ist. Die jeweils in Bl�ocken oder Unterprozessen enthaltenen n�achsten
Proze�ebenen werden erst dann instanziiert, wenn der Kontroll
u� den Knoten des
Block oder des Prozesses erreicht. Eine Proze�ebene wird work
ow{lokal �uber eine
blockInstanceID identi�ziert, d. h. die blockInstanceID beginnt in jedem Work
ow
mit 1.

Wenn am Ende eines Blocks �uber das Attribut exitcondition festgestellt wird,
da� ein weiterer Durchlauf des Blocks n�otig ist, dann wird die Proze�ebene des Blocks
neu instanziiert. Ein Block wird auf diese Weise als ein Schleifenkonstrukt benutzt.

Nach der Instanziierung eines Work
ows kann dieser durch ein geeignetes Modi�-
kationsmodul jederzeit in den Instanzrelationen ge�andert werden. Dieses Modul mu�
daf�ur sorgen, da� nur konsistente �Anderungen zur Ad{hoc{Modi�kationen des Work-

ows durchgef�uhrt werden. Dieses Modul ist aber bisher noch nicht implementiert
(Stand Ende 1996).

5.3. Das ER{Modell

In den Abbildungen 5.2 und 5.3 sind die Klassen der Template{Relationen und
der Organisations{Relationen als ER{Diagramme dargestellt. Die Instanzrelatio-
nen werden nicht dargestellt, da diese sich von den Templates nur durch zus�atzliche
Prim�arschl�usselattribute unterscheiden. Auf die Darstellung der Nicht{Schl�ussel{

50

5.3 Das ER{Modell

Universit�at Stuttgart

Software{Labor

NodeT ContainerT VariableT

is-member-of

SphereT ConnectorT
Data-

"nimmt 1-n mal an Beziehung teil"

"nimmt genau 1 mal an Beziehung teil"

Entity

Relationship

Spezialisierung
"nimmt 0-n mal an Beziehung teil"

"nimmt höchstens 1 mal an Beziehung teil"

xyz Primärschlüssel

Legende:

Programs

is-implemented-by

programID

NodeActivityTNodeProcessTNodeBlockT

Input

Output

consists-of

from to

NodeID

SphereID connectorID

co
nt

ai
ne

rI
D

variableID

MappingT

from to

Abbildung 5.2.: ER{Diagramm des Proze�modells

Attribute wird aus Platzgr�unden verzichtet. Diese Attribute sind in der Beschreibun-
gen der Relationen zu �nden.

Bei einer direkten Umsetzung des ER{Diagramms (Abb. 5.2) in ein Relationen-
schema m�u�te eine Relation mit Namen VariableT entstehen. Um zu einer Verein-
fachung des Relationenschemas zu kommen wurden die Relationen VariableT und
ContainerT zu einer einzigen zusammengefa�t, die ContainerT hei�t.

Einige der Entities fallen im Relationenmodell weg, da sie au�er dem
Prim�arschl�ussel keine Attribute besitzen und keine relevante Information beinhal-
ten. Meist wird dann der Name des Entities f�ur eine Relation verwendet, die aus
einer zugeh�origen Relationship entsteht. Dazu geh�oren:

� \is-member-of"(Abb. 5.2) wird zur Relation SphereT

� \is-in-relation" (Abb. 5.3) wird zur Relation Relationship

51

Universit�at Stuttgart

Software{Labor 5 Das Datenmodell von Surro

� \belongs-to" (Abb. 5.3) wird zur Relation Role

� \has-competence" (Abb. 5.3) wird zur Relation Competences

� \has-skill" (Abb. 5.3) wird zur Relation Skills

5.4. Die Relationen

Das Relationenschema enth�alt die im folgenden detailliert aufgef�uhrten Relationen.
Es sind alle benutzten Relationen aufgef�uhrt, nicht nur die, die aus dem ER{
Diagramm abgeleitet sind.

5.4.1. Die Template{Relationen

Relation: NodeT
In dieser Relation werden alle grundlegenden Daten eines Knotens gespeichert.

nodeID Eindeutiger Identi�kator f�ur einen Knoten.

processID Identi�ziert die Proze�ebene, die diesen Knoten realisiert.

type = {activity, block, subprocess, toplevel}

Gibt den Typ des Knoten an.

x, y, w, h Koordinaten f�ur die gra�sche Darstellung des Knotens innerhalb des Mo-
nitors und des Work
ow{Editors

icon Pfad bzw. Dateiname eines Icons, das einen Knoten symbolisieren soll. Der
vollst�andige Pfadname wird mit Hilfe einer Environmentvariable auf folgende
Art bestimmt: $SURRO SPECPATH/icon/hWert von Attribut iconi

iconText Beschriftung des Icons in der gra�schen Darstellung, wird auch als Akti-
vit�atenname verwendet.

startCondition Logischer Ausdruck, welcher die Auswertung der Kontrollverbindun-
gen de�niert. Innerhalb des Ausdrucks wird jedem Identi�kator eines Kontroll-
konnektors (connectorID) ein %{Zeichen vorangestellt.

event Ereignisausdruck, welches vor dem Starten der Aktivit�at eingetreten sein mu�.
Als Ereignisse k�onnen externe Ereignisse, absolute und relative Zeitereignisse,
sowie zusammengesetzte Ereignisse spezi�ziert werden. Es kann auch zwischen
proze�lokalen und proze�globalen Ereignissen unterschieden werden.

preCondition Logischer Ausdruck, welcher ausgewertet wird, nachdem das Ereignis
(beschrieben in Attribut event) eingetreten ist.

52

5.4 Die Relationen

Universit�at Stuttgart

Software{Labor

exitCondition Logischer Ausdruck, welcher bei einem Block als Wiederholbedingung
verwendet wird und bei einer Aktivit�at dazu benutzt wird, festzustellen, ob die
Aktivit�at als beendet angesehen werden kann (eine Nachbedingung).

successCondition momentan nicht benutzt

description Ausf�uhrliche Beschreibung des Knotens und des Arbeitsschrittes, den
der Bearbeiter ausf�uhren soll.

inputContainerID Identi�ziert den Container, welcher die Eingabedaten f�ur diesen
Knoten enth�alt.

outputContainerID Identi�ziert den Container, welcher die Ausgabedaten dieses
Knotens enth�alt.

failedCompNodeID Der hier angegebene Knoten wird gestartet, wenn der aktuelle
Knoten erfolglos beendet wurde. Mit diesem Knoten soll der Arbeitsschritt des
Knotens kompensiert werden.

successCompNodeID Dieser Kompensationsknoten wird dazu benutzt, wenn der
erfolgreich ausgef�uhrte Knoten kompensiert werden mu�.

Relation: NodeActivityT
Die Relation stellt eine Spezialisierung der Relation NodeT dar. In dieser Relation
werden die zus�atzlichen Attribute eines Knotens gespeichert, wenn dieser eine Akti-
vit�at ist.

nodeID Eindeutiger Identi�kator f�ur einen Knoten (vgl. Relation NodeT).

programID Fremdschl�ussel zu der Relation Programs. Beschreibt, welches Pro-
gramm innerhalb dieser Aktivit�at zu starten ist.

humanResource Ausdruck zur Beschreibung der Auswahl eines Bearbeiters f�ur diese
Aktivit�at. Kann auch eine Rolle, etc. enthalten.

quantity Gibt an, wieviele Instanzen dieser Aktivit�at angelegt werden sollen. Mo-
mentan nicht benutzt.

priority Gibt die Priorit�at dieser Aktivit�at an. Je h�oher der Wert, umso h�oher ist die
Priorit�at.

skill Au
istung (Tcl{Liste) der F�ahigkeiten, die ein Bearbeiter haben mu�, um diese
Aktivit�at auszuf�uhren.

competence Au
istung (Tcl{Liste) der Kompetenzen, die ein Bearbeiter haben mu�,
um diese Aktivit�at auszuf�uhren.

53

Universit�at Stuttgart

Software{Labor 5 Das Datenmodell von Surro

responsibility Au
istung (Tcl{Liste) der Personen, die benachrichtigt werden sollen,
wenn diese Aktivit�at nicht erfolgreich ausgef�uhrt werden konnte.

clearUp Diese Funktion im Anwendungsprogramm wird aufgerufen, wenn eine Akti-
vit�at vorzeitig abgebrochen werden soll. Das Programm hat so die Gelegenheit,
einen sicheren Zustand zu reichen, bevor es abgebrochen wird. Momentan nicht
benutzt.

timeoutReady Zeitangabe, nach der ein Alarm aktiviert wird, wenn die Aktivit�at im
Ready{Zustand ist und in dieser Zeit nicht durch den Benutzer aktiviert wurde
(Angabe in Sekunden).

timeoutRunning Zeitangabe, nach der ein Alarm aktiviert wird, wenn die Aktivit�at
im Running{Zustand ist und in dieser Zeit nicht durch den Benutzer beendet
wurde (Angabe in Sekunden).

timeoutNodeID Ersatzaktivit�at, welche gestartet werden soll, wenn diese Aktivit�at
einen Timeout erreicht hat.

timeoutMode Gibt an, wie das System reagieren soll, wenn diese Aktivit�at einen
Timeout erreicht hat. M�ogliche Modi sind: replace (Der normale Knoten wird
abgebrochen und durch den Ersatzknoten ersetzt), onceAdditional (Der normale
Knoten l�auft weiter und der Ersatzknoten wird einmal zus�atzlich gestartet, d. h.
der Timeout wird nicht mehr gesetzt), manyAdditional (Nach den Timeout wird
ein zus�atzlicher Ersatzknoten gestartet), noMore (d. h. keine weiteren Knoten
starten).

replaceNodeID Ersatzaktivit�at, welche gestartet werden soll, wenn diese Aktivit�at
nicht erfolgreich terminieren konnte.

replaceMode Gibt an, wie das System reagieren soll, wenn diese Aktivit�at ersetzt
werden soll. M�ogliche Modi sind: replace, onceAdditional, manyAdditional,
noMore.

Relation: NodeBlockT
Die Relation stellt eine Spezialisierung der Relation NodeT dar. In dieser Relation
werden die zus�atzlichen Attribute gespeichert, wenn dieser ein Block ist.

nodeID Eindeutiger Identi�kator f�ur einen Knoten.

defProcessID Dieser Block ist in dieser Proze�ebene de�niert.

Relation: NodeProcessT
Sie stellt eine Spezialisierung der Relation NodeT dar. In dieser Relation werden die
zus�atzlichen Attribute gespeichert, wenn dieser ein Proze� ist.

54

5.4 Die Relationen

Universit�at Stuttgart

Software{Labor

nodeID Eindeutiger Identi�kator f�ur einen Knoten.

defProcessID Dieser Proze� ist in dieser Proze�ebene de�niert.

processCompID Alle Kompensationsknoten werden auf dieser Proze�ebene gespei-
chert.

processReplaceID Alle Ersatzknoten werden auf dieser Proze�ebene gespeichert.

version Versionsnummer des Prozesses. Wird ben�otigt bei Ad{hoc{Modi�kationen.

portfolio Verweis auf ein Verzeichnis mit Dokumenten, die zum Vorgang geh�oren.

Relation: Programs
Diese Relation stellt einen Pool von Programmen zur Verf�ugung, die in den einzelnen
Aktivit�aten aufgerufen werden k�onnen.

programID Eindeutiger Identi�kator eines Programms.

platform Plattform auf der das Programm ausgef�uhrt werden kann (z.B. java, tcl,
unix, win, linux, sunOS, AIX, OS2, HPUX, obj).

command Kommandozeile, um das Programm aufzurufen.

programName Name des Programms. Wird vom Programmpool zur Identi�kation
der Anwendung benutzt, die gegebenfalls installiert wird.

Relation: ContainerT
Die Relation enth�alt alle Variablen der Input{ und Outputcontainer.

variableID Eindeutiger Identi�kator f�ur eine Variable. Eine Variable ist einem Con-
tainer eindeutig zugeordnet.

containerID Eindeutiger Identi�kator eines Containers. Ein Container enth�alt eine
Menge von Variablen.

processID Dieser Proze�ebene ist der Container zugeordnet.

containerType Gibt an, umwelchenTyp von Container es sich handelt (xput, source,
sink). xput steht f�ur Input{ oder Outputcontainer.

name Name der Containervariablen.

type Datentyp der Containervariablen.

value Wert der Containervariablen in einer Zeichenfolge.

55

Universit�at Stuttgart

Software{Labor 5 Das Datenmodell von Surro

Relation: ControlConnectorT
Die Relation enth�alt alle Kontrollkonnektoren, die zwischen den Aktivit�aten bestehen.

connectorID Eindeutiger Identi�kator eines Kontrollkonnektors.

processID Der Konnektor ist dieser Proze�ebene zugeordnet.

condition Bedingung, die erf�ullt sein mu�, da� diese Verbindung zu \true\ evaluiert
wird.

fromNodeID Startknoten, von dem der Kontrollkonnektor ausgeht.

toNodeID Endeknoten, auf den der Kontrollkonnektor zeigt.

Relation: DataConnectorT
Die Relation enth�alt alle Datenkonnektoren, die zwischen den Aktivit�aten bestehen.

connectorID Eindeutiger Identi�kator eines Datenkonnektores.

processID Der Konnektor ist dieser Proze�ebene zugeordnet.

fromContainerID Aus diesem Container werden die Variablen herauskopiert.

toContainerID In diesen Container werden die Variablen hineinkopiert.

Relation: MappingT
Die Relation beschreibt die Umsetzung der Variablen von einem Container in einen
anderen.

connectorID Eindeutiger Identi�kator eines Datenkonnektores.

fromVariableID Datenquelle f�ur die Umsetzung.

toVariableID Datensenke f�ur die Umsetzung.

function Diese Funktion wird beim Umkopieren auf die Variable angewendet.

Relation: SphereT
Die Relation beschreibt eine Sph�are

sphereID Eindeutiger Identi�kator f�ur eine Sph�are.

processID Dieser Proze�ebene ist die Sph�are zugeordnet.

type Gibt den Type der Sph�are an (TaS oder CS) (d. h. transaction sphere oder
compensation sphere).

56

5.4 Die Relationen

Universit�at Stuttgart

Software{Labor

compensationNodeID Die gesamte Sph�are kann mit diesem Kompensationsknoten
kompensiert werden.

restartMode Gibt an, was nach einem R�ucksetzen der Sph�are gemacht werden soll
(retry, undo). Momantan nicht benutzt.

Relation: SphereMemberT
Die Relation beschreibt, welcher Knoten an welcher Sph�are teilnimmt.

sphereID Eindeutiger Identi�kator f�ur eine Sph�are.

nodeID Eindeutiger Identi�kator f�ur einen Knoten.

5.4.2. Die Organisations{Relationen

Mit den nachfolgenden Relationen kann die Aufbauorganisation eines Unternehmens
oder Beh�orde beschrieben werden. Das Organisationsmodul verwendet die folgenden
Relationen zur Bestimmung des Bearbeiters einer Aktivit�at.

Skills

skill

Role

role

Competences

competence

Relation

relation

Person

belongs-to

has-skill

has-competence

name

is-in-relation

Abbildung 5.3.: Das ER{Diagramm zur Beschreibung der Aufbauorganisation

In Abb. 5.3 bezieht das Entity \Relation" seine Existenzberechtigung aus der
Tatsache, da� zwischen denselben zwei Personen mehrere verschiedene Beziehungen

57

Universit�at Stuttgart

Software{Labor 5 Das Datenmodell von Surro

bestehen k�onnen. Ansonsten w�are dieses Entity sinnvollerweise eine (wie der Name
schon sagt) Relationship.

In der Relation NodeActivity(T)wird in einem \humanResource"{Ausdruck be-
stimmt, welche Person die Aktivit�at ausf�uhren soll. Der Ausdruck folgt der hier in
EBNF angegebenen Syntax:

humanResource ::= (person j role j relationship (person j role))

Eine konkrete Person kann also direkt angegeben werden (z. B. humanResource
= 'Schreyjak'). Es kann eine Rolle spezi�ziert werden (z. B. humanResource = 'Mit-
arbeiter'). Es kann auch auf eine Beziehung zur�uckgegri�en werden und so z.B. der
Chef der Mitarbeiter angegeben werden (humanResource = 'is chef of Mitarbeiter').
Eine Rolle ist als eine Menge von Personen de�niert. Eine Beziehung dr�uckt ein be-
liebiges Verh�altnis zwischen Rollen oder Personen aus. Jede Person kann mehrere
F�ahigkeiten oder Kompetenzen besitzen, die frei gew�ahlt werden k�onnen.

Relation: Person
Diese Relation beschreibt alle Attribute, die einer Person direkt zugeordnet werden
k�onnen.

name eindeutiger Verwaltungsname einer amWork
owsystem teilnehmenden Person

icon Filename, in dem ein Bild der Person gespeichert ist.

organisation Name der Organisation, in der diese Person angestellt ist.

�rstname Vorname der Person

lastname Nachname der Person

occupation Beruf der Person

substitute Mit diesem Ausdruck wird die Vertreterregelung angegeben: Wenn der
Ausdruck leer ist, gibt es keine Vertreterregel f�ur diese Person. Steht der Name
eine anderen Person darin, werden die zu bearbeitenden Aktivit�aten an diese
Person weitergeleitet. Wenn eine Rolle angegeben ist, wird die Rolle in eine
konkrete Person aufgel�ost. Steht im Ausdruck eine Beziehung zu einer Rolle
oder einer Person, so wird diese Beziehung verfolgt und dann entsprechend eine
Ausl�osung vorgenommen.

Relation: RoleMapping
In dieser Relation wird beschrieben, welche Personen an welchen Rollen teilnehmen.

role Bezeichnung der Rolle.

name Name der Person, die dieser Rolle wahrnimmt.

58

5.4 Die Relationen

Universit�at Stuttgart

Software{Labor

Relation: Competences
In dieser Relation wird beschrieben, welche Kompetenzen die Personen besitzen.

person Name der Person, deren Kompetenzen beschrieben werden.

competence Die Kompetenz, die diese Person hat.

Relation: Skills
In dieser Relation wird beschrieben, welche F�ahigkeiten die Personen besitzen.

person Name der Person, deren F�ahigkeit beschrieben wird.

skill Die F�ahigkeit, die diese Person hat.

Relation: Relationship
In dieser Relation wird beschrieben, welche Beziehungen der Personen bzw. Rollen
untereinander haben. Um keine explizite Unterscheidung zwischen Person und Rolle
machen zu m�ussen, wird von Ressourcen gesprochen.

resource1 Die erste Ressource innerhalb einer Beziehung.

relation Die Beziehung zwischen den beiden Ressourcen.

resource2 Die zweite Ressource innerhalb einer Beziehung.

Relation: Participation
In dieser Relation wird beschrieben, welche Personen an welcher Warteschlage teil-
nehmen. Bei einer Warteschlage mu� der Bearbeiter seine Aktivit�aten selber abholen.
Eine Aktivit�at kann nur von einer Person bearbeitet werden. Momentan nicht be-
nutzt.

person Name einer Person, die an der Warteschlage teilnimmt.

queue Name der Warteschlagen, an der die Person teilnimmt.

5.4.3. Die Verwaltungs{Relationen

Relation: Events
In dieser Relation werden zu erwartende (time ist leer) und aufgetretene Events (time
wurde gef�ullt) gespeichert.

eventID Eindeutiger Identi�kator f�ur einen Event.

eventName Textuelle Identi�kation eines Events.

59

Universit�at Stuttgart

Software{Labor 5 Das Datenmodell von Surro

type = {local, global} Der Typ eines Ereignisses gibt an, ob das Ereignis f�ur alle
Work
ows gibt (global) oder ob es nur innerhalb eines Work
ows G�ultigkeit
besitzt.

time Beschreibung des Zeitpunktes, wann der Event aufgetreten ist. Wenn dieses
Attribut leer ist, ist das Ereignis noch nicht aufgetreten.

origin Gibt an, wer (z. B. eine Aktivit�at oder eine Person) das Auftreten des Ereig-
nisses gemeldet hat.

OSProcess Dieses Attribut wird momentan f�ur die Speicherung der Work
ow{
Instanz{ID benutzt, in dessen Rahmen das Ereignis aufgetreten ist.

Relation: SequenceGlobal
In dieser Relation werden alle Z�ahler, die eindeutige Identi�katoren liefern, persistent
gespeichert.

processID Speichert die eindeutigen Proze�ebenen{Nummern.

wfID Speichert die eindeutigen Work
ow{Instanz{Nummern.

eventID Speichert die eindeutigen Event{Nummern.

sphereID Speichert die eindeutigen Sph�aren{Nummern.

containerID Speichert die eindeutigen Container{Nummern.

variableID Speichert die eindeutigen Variablen{Nummern.

connectorID Speichert die eindeutigen Konnektor{Nummern.

Relation: SequenceLocal
In dieser Relation werden alle Z�ahler gespeichert, die nur innerhalb eines Work
ows
eindeutig sind.

wfInstanceID Gibt an, f�ur welche Work
ow{Instanz diese Z�ahler g�ultig sind.

blockInstanceID Z�ahler f�ur die Blockinstanzen innerhalb eines Work
ows.

sphereInstanceID Z�ahler f�ur die Sph�areninstanzen innerhalb eines Work
ows.

60

5.4 Die Relationen

Universit�at Stuttgart

Software{Labor

5.4.4. Die Instanz{Relationen

Die folgenden Relationen sind von den Template{Relationen abgeleitet. Es werden
daher nur die zus�atzlichen Attribute beschrieben, die in den Template{Relationen
nicht zu �nden sind.

Relation: Node
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

Relation: NodeActivity
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

state ={initial, pending, ready, running, successful, failed, compensated,

terminated} Namen der Zust�ande einer Aktivit�at

Relation: NodeBlock
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

state ={initial, pending, active, finished, terminated}

Namen der Zust�ande eines Blocks

Relation: NodeProcess
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

starter Person, die diese Proze�instanz gestartet hat (nur bei Toplevel{Prozesse).

state ={initial, pending, running, finished, terminated}

Namen der Zust�ande eines Prozesses

61

Universit�at Stuttgart

Software{Labor 5 Das Datenmodell von Surro

Relation: Container
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

Relation: ControlConnector
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

state ={false, true, undefined, locked}

Namen der Zust�ande eines Kontrollkonnektors

Relation: DataConnector
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

Relation: Mapping
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

Relation: Sphere
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

state ={initial, active, backout, finished, committed}

Namen der Zust�ande einer Sph�are

Relation: SphereMember
Siehe auch die Attribute in der Template{Relation

wfInstanceID Eindeutiger Identi�kator einer Work
ow{Instanz

blockInstanceID Eindeutiger Identi�kator einer Proze�ebeneninstanz

62

5.5 Randbedingungen im Datenmodell

Universit�at Stuttgart

Software{Labor

5.5. Randbedingungen im Datenmodell

� Jeder Outputcontainer sollte die Stringvariable complete info und die Integer-
variable complete state besitzen. In complete info kann ein Ausgabetext (z. B.
eine Fehlerbeschreibung) geschrieben werden kann und in complete state sollte
ein R�uckgabewert geschrieben werden.

� Der Inputcontainer von Ersatzaktivit�aten und Kompensationsaktivit�aten ist
aus dem Inputcontainer und dem Outputcontainer der normalen Aktivit�at
zusammengesetzt. Die Container von normalen Aktivit�aten und Ersatzakti-
vit�aten, bzw. Kompensationsaktivit�aten m�ussen daher denselben Aufbau be-
sitzen, da hier kein Mapping der Containervariablen statt�ndet, sondern ein
einfaches Kopieren der Containerinhalte. Derselbe Mechanismus wird bei den
Containern eines Blocks und den Source{ und Sinkcontainern im Block benutzt.

Der Outputcontainer der Ersatz{ und Kompensationsaktivit�aten darf nur aus
den R�uckgabewerten complete info und complete state bestehen. Es d�urfen
keine Datenkonnektoren von diesen Variablen wegf�uhren.

63

Universit�at Stuttgart

Software{Labor 5 Das Datenmodell von Surro

64

6. Die Funktionsweise von Surro

6.1. Die Work
ow{Engine

6.1.1. Der strukturelle Aufbau der Work
ow{Engine

Nach dem Start der Work
ow{Engine werden alle notwendigen Initialisierungen vor-
genommen. Falls der Neustart nach einem Systemabsturz statt�ndet, werden even-
tuell notwendig gewordene Ma�nahmen f�ur ein Recovery ausgef�uhrt. Danach wartet
die Engine auf Nachrichten, die in einer Nachrichtenwarteschlange gespeichert wer-
den. Die Nachrichten hei�en interne Ereignisse. Mit dem Entnehmen eines internen
Ereignisses wird in allgemeinen eine Transaktion gestartet. Alle �Anderungen des
Work
owzustands, der in der Datenbank gespeichert ist, werden nun im Rahmen
dieser Transaktion ausgef�uhrt. W�ahrend der Verarbeitung eines internen Ereignisses
kann die Engine neue interne Ereignisse erzeugen, die ebenso in der Nachrichtenwar-
teschlange f�ur die sp�atere Bearbeitung gespeichert werden. Nach dem Beenden der
Verarbeitung eines internen Ereignisses wird die Transaktion beendet. Der Work
ow
hat damit einen neuen Zustand. Der Zustands�ubergang wurde durch eine Trans-
aktion gesch�utzt. Das n�achste Ereignis in der Warteschlange wird nun gelesen und
verarbeitet.

Programme
Externe

Schleife zur
Abarbeitung
von internen
Ereignissen

Programme
Externe

Interne
Objekte

Datenbank

Internes Ereignis

Nachrichten-
Warteschlange

initiiert

Abbildung 6.1.: Eine Abarbeitungsschleife als prinzipielle Arbeitsweise der
Work
ow{Engine

Auftr�age externer Programme an die Engine werden durch das Einf�ugen eines

65

Universit�at Stuttgart

Software{Labor 6 Die Funktionsweise von Surro

internen Ereignisses in die Warteschlange abgesetzt. Bei der Verarbeitung eines in-
ternen Ereignisses durch die Engine in Form einer Schleife kann Kommunikation zu
anderen Programmen notwendig werden. Die Kommunikation �ndet hier synchron
statt, d. h. die Engine erwartet eine sofortige Antwort.

TA-Verwaltung

Nachrichten-
Warteschlange

Modul
Organisations-

Subprozesse

Aktivitäten

Blöcke

sphären
Transaktions-

sphären
Kompensations-

Prozeßebenen

Workflows

Workflow-Engine

TA-Adapter

Abbildung 6.2.: Der Aufbau der Engine nach einzelnen Objekten strukturiert

In Abbildung 6.2 ist der innere Aufbau der Work
ow{Engine nach Objekten struk-
turiert dargestellt. Ein Work
ow besteht aus mehreren Proze�ebenen (siehe 49). Ei-
ne Proze�ebene beinhaltet wiederum die Objekte Aktivit�at, Block und Subproze�.
Daneben gibt es die Transaktions{ und Kompensations{Sph�aren{Objekt. Die Ob-
jekte f�ur die Transaktion{Verwaltung und die Nachrichtenwarteschlange sind in den
OS/2{Proze� TA{Adapter ausgelagert, geh�oren aber prinzipiell zur Engine. Das Or-
ganisationsmodul kann auch als eigenst�andiges Programm implementiert werden, ist
hier aber als internes Engine{Objekt aufgef�uhrt.

Die Objekte Aktivit�aten, Bl�ocke, Subproze�, Transaktions{Sph�are und Kompen-
sations{Sph�aren sind als Zustandsautomaten realisiert. Der Zust�ande der Objek-
tinstanzen werden in der Datenbank gespeichert. Die einzelnen Objekte und ihre
Implementierungen werden in den folgenden Abschnitten detaillierter erl�autert.

6.1.2. Die Nachrichtenwarteschlange

Die Engine besitzt eine Abarbeitungsschleife, in der sie auf das Auftreten von inter-
nen Ereignissen wartet und diese dann abarbeitet. Die Ereignisse werden in einer
FIFO{Nachrichtenwarteschlange gespeichert. Diese Warteschlange ist als Resource{
Manager in Form eines DSOM{Objektes der Klasse TAQueue implementiert (trans-
aktionale Queue). Die Aufgabe der transaktionalen Queue ist es, Nachrichten bzw.
Ereignisse sicher zu speichern.

66

6.1 Die Work
ow{Engine

Universit�at Stuttgart

Software{Labor

Die Queue besitzt als Schnittstelle die Operationen enqueue zum Eintragen eines
Elementes an das Ende der Queue, dequeue zum Entfernen des n�achsten Elementes,
peek zum nicht{zerst�orenden Lesen des n�achsten Elements, count entries zur Er-
mittlung zur Anzahl der vorhandenen Elemente und get ta handle zum Ermitteln
des Transaktionskontextes des n�achsten Elements.

Nachrichten m�ussen innerhalb eines g�ultigen Transaktionskontexts in die Queue
geschrieben und aus ihr ausgelesen werden. Ein Element, das in einer aktiven Trans-
aktion in die Queue gestellt worden ist, kann auch nur im Kontext genau dieser
Transaktion wieder ausgelesen werden. Damit die Engine beim Auslesen den rich-
tigen Kontext verwendet, ist sie in der Lage mittels get ta handle den Kontext zu
ermitteln. Ist das Element in einer Transaktion eingetragen worden, die mittlerweile
erfolgreich beendet worden ist (Das Element ist dann

"
best�atigt\, engl. committed),

so kann das Element in einem (beliebigen) Kontext ausgelesen werden. Wird eine
Transaktion zur�uckgesetzt, so werden alle Elemente der Queue, die in diesem Kon-
text gespeichert worden sind, wieder entfernt. Analog werden best�atigte Elemente,
die in einem anderen Kontext ausgelesen worden sind, bei dessen Rollback wieder in
die Queue zur�uckgeschrieben.

Die Arbeitsweise der Warteschlange

In Abbildung 6.3 wird dieser Vorgang und der Gebrauch der transaktionalen Warte-
schlange durch die Work
ow{Engine verdeutlicht.

X

begin

TA-3

dequeue

Element X

SELECT...
UPDATE...

enqueue commit

r TA-3 YX X

Y

C r TA-3

TA-3

C

Element Y

Abbildung 6.3.: Der Gebrauch der transaktionalen Warteschlange durch die Engine

Die Engine beginnt eine neue Transaktion und erh�alt im Beispiel das Handle
TA-3, das eine Referenz auf den OTS{Transaktionskontext darstellt. Alle weiteren
Operationen auf Resource{Managern werden nun in diesem Kontext durchgef�uhrt.
In der Queue be�ndet sich das ElementX im best�atigten Zustand (angedeutet durch
die Markierung c f�ur \committed"). Die Engine liest das Element aus, das dadurch
als innerhalb von TA-3 gel�oscht markiert wird (Markierung r steht f�ur \removed").
Das Element wird nicht entfernt, da es bei einemRollback der Transaktion restauriert
werden mu�.

67

Universit�at Stuttgart

Software{Labor 6 Die Funktionsweise von Surro

Das ElementX wird nun von der Engine verarbeitet und l�ost dabei diverse Opera-
tionen aus (UPDATE, SELECT), beispielsweise um den Zustand einer Aktivit�at auf
der Work
ow{Datenbank zu aktualisieren. Nach Beendigung dieser Operationen wird
typischerweise wiederum eine Nachricht (Y) auf die Queue geschrieben, die weitere
Folgeoperationen ausl�osen soll. Danach wird die Transaktion beendet. Erst dadurch
wird das Element X endg�ultig von der Queue entfernt. Das Element Y erh�alt den
Zustand \committed". Es kann auch vorkommen, da� keine weitere Nachricht Y in
die Queue eingetragen wird. In diesem Fall arbeitet die Engine erst dann weiter, wenn
durch ein externes Programm (z.B. durch den Aktivit�aten{Manager) eine Nachricht
(ein externes Ereignis) in die Warteschlange eingereiht wird.

Durch das transaktionale Verhalten der persistenten Warteschlange wird erreicht,
da� im Fehlerfall, also bei einem Transaktionsabbruch, jeweils die korrekten Nach-
richten beim Wiederanlauf in der Queue stehen und somit gleich eine Wiederholung
der abgebrochenen Vorg�ange durchgef�uhrt werden kann.

Liste der de�nierten internen Ereignissen

Als interne Ereignisse werden Nachrichten bezeichnet, die zur Steuerung der
Work
ow{Engine in die Nachrichtenwarteschlange geschrieben werden. Interne Er-
eignisse sind h�au�g Ausl�oser von Zustands�uberg�angen bei Aktivit�aten, Bl�ocken und
Sph�aren. Folgende interne Ereignisse sind de�niert:

startWork
ow Ein Work
ow soll gestartet werden.

actorStart Der Bearbeiter zeigt an, da� er eine Aktivit�at gestartet hat.

actorSuccessful Der Bearbeiter zeigt an, da� er eine Aktivit�at erfolgreich
beendet hat.

actorFailed Der Bearbeiter zeigt an, da� er eine Aktivit�at erfolglos be-
endet hat.

actorRefused Der Bearbeiter zeigt an, da� er eine Aktivit�at nicht bear-
beiten will.

actorOmitted Der Bearbeiter zeigt an, da� er eine optionale Aktivit�at
nicht bearbeiten will und sie deshalb ausl�a�t.

backout Eine Kompensations{Sph�are soll wieder in den Anfangszu-
stand versetzt werden. Dazu m�ussen alle bearbeiteten Ak-
tivit�aten kompensiert werden.

timeoutReady Das Zeitlimit einer Aktivit�at im Zustand ready ist �uber-
schritten worden.

68

6.1 Die Work
ow{Engine

Universit�at Stuttgart

Software{Labor

timeoutRunning Das Zeitlimit einer Aktivit�at im Zustand running ist �uber-
schritten worden.

startReplaceNode Ein Ersatzknoten soll gestartet werden.

startCompensationNode Ein Kompensationsknoten soll gestartet werden.

restartNode Ein Knoten soll erneut gestartet werden (nach einem back-
out).

eventOccured Das zum Knoten geh�orige Ereignis ist aufgetreten.

suE * Die Work
ow{Engine bietet verschiedene Prozeduraufrufe
an, die mit diesen Nachrichten von externen Programmen
aufgerufen werden k�onnen.

6.1.3. Das Transaktionskontext{Verwaltungsobjekt

Das Transaktionskontext{Verwaltungsobjekt ist in das OS/2 Programm \TA{
Adapter" ausgelagert. Der TA{Adapter fungiert als Client f�ur alle transaktionale
Vorg�ange. Er tritt aus Sicht des OTS als Initiator f�ur s�amtliche transaktionalen Ope-
rationen auf. Logisch gesehen m�u�te die Engine diese Aufgabe �ubernehmen, kann
dies aber wegen der Nichtverf�ugbarkeit von SOM 3.0 unter UNIX nicht �ubernehmen.
Daher wird der zus�atzliche Proze� TA{Adapter als

"
OS/2{Verl�angerung\ der Engine

und eine Schnittstelle zwischen den Programmen gescha�en. Diese bietet Funktio-
nen zum Starten (begin), Beenden (commit und rollback) von Transaktionen und
zum expliziten Setzen des Transaktionskontextes (set context). Zur Zeit werden
geschachtelte Transaktionen noch nicht unterst�utzt. Jede Transaktion ist eine Top{
level{Transaktion. �Uber das Interface erh�alt die Engine zu jeder neuen Transaktion
ein eindeutiges Handle, das als Parameter f�ur set context ben�otigt wird. Nach
Beginn einer Transaktion bzw. einem expliziten Kontextwechsel werden alle transak-
tionalen Operationen implizit im Rahmen dieser Transaktion durchgef�uhrt. Es ist
nicht notwendig, bei jeder Operation den Kontext als Parameter mitzuliefern.

Der TA{Adapter mu� somit eine Abbildungsfunktion von Transaktions{Handle
zum realen Transaktionskontext bereitstellen. Dies wird mittels eines eigenen DSOM{
Objekts der Klasse \TAContext" realisiert, damit auch andere Prozesse (z. B. der
PEC) auf die Kontextinformation zugreifen k�onnen.

6.1.4. Das Work
ow Objekt

Das Work
ow Objekt beinhaltet in der Hauptsache alle bereits instanziierten Proze-
�ebenen. Es werden immer nur die Proze�ebenen instanziiert, in die der Kontroll
u�
eingetreten ist. Eine Work
ow{Instanz{ID identi�ziert einen Work
ow. Die Engine
kann mehrere Work
ows parallel bearbeiten.

69

Universit�at Stuttgart

Software{Labor 6 Die Funktionsweise von Surro

6.1.5. Das Proze�ebenen Objekt

Eine Proze�ebene beinhaltet Aktivit�aten, Bl�ocke, Subprozesse und die Sph�aren, die
auf derselben Ebene liegen. Alle Objekte einer Proze�ebene werden mit dieser zusam-
men instanziiert. Bl�ocke und Subprozesse sind Stellvertreter f�ur weitere, tieferliegende
Proze�ebenen.

6.1.6. Das Aktivit�aten Objekt

Eine Aktivit�at besitzt verschiedene Zust�ande. In Abbildung 6.4 ist das zugeh�orige
Zustandsdiagramm einer Aktivit�at dargestellt.

initial pending ready

terminated

running

compensated

successful

failed

backout; CompensationSuccessful

Startcond = f Precond = f

Precond = t

EventOccured &

Startcond = t

backout

Exitcond = f

actorStart

backout; CompensationSuccessfulrestartSphere

actorSuccess;

actorSuccess;
Exitcond = t

backout | actorFailedbackout backout

Abbildung 6.4.: Das Zustandsdiagramm einer Aktivit�at

Nach der Instanziierung be�ndet sich eine Aktivit�at im Zustand initial. Wenn
die Aktivit�at eine Startaktivit�at ist, oder wenn der Kontroll
u� die Aktivit�at erreicht
und alle eingehenden Kontroll
u�konnektoren entweder zu wahr oder falsch evaluiert
wurden, dann wird die Startbedingung der Aktivit�at ausgewertet. Falls sie positiv
ausf�allt, wechselt die Aktivit�at in den Zustand pending. Hierin wartet sie auf das
Auftreten eines spezi�zierten Ereignisses. Falls kein Ereignis spezi�ziert oder falls
das Ereignis eingetreten ist, wechselt die Aktivit�at in den Zustand ready. Dabei
�ndet eine Zuteilung der Aktivit�at zu einer konkreten Person statt. Falls eine Rolle
als Akteur angegeben ist, mu� eine Rollenau
�osung durch das Organisationsmodul
statt�nden. Die Aktivit�at erscheint auf der Arbeitsliste des ausgew�ahlten Bearbeiters.
Der Bearbeiter hat die Wahl, diese Aktivit�at zu bearbeiten. Im Bearbeitungsfall
geht die Aktivit�at in den Zustand running �uber. Eine Aktivit�at kann entweder
erfolgreich oder erfolglos bearbeitet werden. Wenn der Bearbeiter angegeben hat,
da� die Aktivit�at erfolgreich bearbeitet wurde, dann pr�uft die Work
ow{Engine, ob
sie dies mit Hilfe der Nachbedingung veri�zieren kann. Falls die Nachbedingung

70

6.1 Die Work
ow{Engine

Universit�at Stuttgart

Software{Labor

nicht veri�ziert werden kann, kommt die Aktivit�at erneut im Zustand ready auf die
Arbeitsliste desselben Bearbeiters.

In den Zustand terminated kommt die Aktivit�at, wenn die Startbedingung zu
falsch evaluiert wird (Dies kann insbesondere bei der Dead{Path{Elimination statt�n-
den, s.u.). Wenn nach dem Eintreten des spezi�zierten Ereignisses die Vorbedingung
nicht zutri�t, wird ebenfalls der Zustand terminated erreicht.

Wenn sich die Aktivit�at in einer Kompensations{Sph�are be�ndet, dann kann ein

"
backout\ ausgel�ost werden, d. h. die Ausgangssituation zu Beginn der Sph�are mu�
wiedergestellt werden. Falls die Aktivit�at noch nicht bearbeitet wurde, kann sie
einfach wieder in den Ausgangszustand versetzt werden. Aber falls sie sich noch in
Arbeit be�ndet oder schon bearbeitet worden ist, dann mu� sie kompensiert werden.
Falls die Kompensation erfolgreich war, tritt die Aktivit�at in den Zustand kompensiert
�uber. Von dort geht es erst dann in den Zustand initial weiter, wenn alle Aktivit�aten
der Sph�are erfolgreich kompensiert wurden.

6.1.7. Das Block Objekt

initial pending

terminated

compensated

successful

backout; CompensationSuccessful

backout

Startcond = f Precond = f

Precond = t

EventOccured &

Startcond = t

backout

restartSphere

active

Exitcond = f

Exitcond = t

Abbildung 6.5.: Das Zustandsdiagramm eines Blocks

Das Zustandsdiagramm eines Blocks �ahnelt dem der Aktivit�at, mit dem Unterschied,
da� Bl�ocke nicht an Bearbeiter verteilt werden und daher der Zustand ready nicht
existiert. Auch kann ein Block nicht erfolglos beendet werden. Erfolgreich ist er
beendet, wenn alle Knoten innerhalb des Blocks in einem Endzustand sind. Die
Exitcondition wird als Wiederholbedingung f�ur den gesamten Block verwendet, damit
wird eine Schleifenkonstruktion erm�oglicht.

6.1.8. Das Subproze� Objekt

Das Subproze� Objekt ist nicht implementiert worden (Stand Ende 1996).

71

Universit�at Stuttgart

Software{Labor 6 Die Funktionsweise von Surro

6.1.9. Das Transaktions{Sph�aren Objekt

active
all activities successful

initial

rollback

sphere

controlflow enters
committed

Abbildung 6.6.: Das Zustandsdiagramm einer Transaktions{Sph�are

Eine Sph�are wird zusammen mit den Aktivit�aten, Bl�ocken usw. . einer Proze�ebene
instanziiert und be�ndet sich dann im Zustand initial. Sobald der Kontroll
u� die
Sph�are betritt, wechselt die Sph�are den Zustand nach active. Wenn alle Aktivit�aten
erfolgreich beendet worden sind, initiiert die Work
ow{Engine mit einem commit das
2{Phasen{Commit{Protokoll, das bei positivem Ausgang dazu f�uhrt, da� die Sph�are
in den Zustand committed �ubergeht. Falls das 2PC{Protokoll zu einer negativen
Entscheidung kommt, wird ein rollback ausgef�uhrt und der Zustand wechselt implizit
durch die Ausf�uhrung des Rollbacks in den initial{Zustand �uber. Falls eine Aktivit�at
einen erfolglosen Abschlu� meldet, initiiert die Work
ow{Engine ein rollback und
beendet so vorzeitig die Bearbeitung der Sph�are.

6.1.10. Das Kompensations{Sph�aren Objekt

backout

active
all activities successful

backout

all activities are compensated

initial sphere

controlflow enters
finished

Abbildung 6.7.: Das Zustandsdiagramm einer Kompensations{Sph�are

Das Zustandsdiagramm der Kompensations{Sph�are unterscheidet sich von dem Zu-
standsdiagramm der Transaktions{Sph�are durch den zus�atzlichen Zustand backout.
Wenn eine Aktivit�at einen erfolglosen Abschlu� meldet, wird ein backout ausgel�ost
und die Sph�are wechselt in den entsprechenden Zustand. Dieses backout{Signal wird
an alle Knoten in der Sph�are weitergereicht, die nicht im Anfangszustand sind. Wenn
dann alle Knoten entweder im Anfangszustand oder erfolgreich kompensiert sind,
kann die Sph�are wieder in den initial Zustand wechseln und erneut bearbeitet wer-
den.

72

6.1 Die Work
ow{Engine

Universit�at Stuttgart

Software{Labor

6.1.11. Das Organisationsmodul

Dieser Teil des Work
owsystem hat die Aufgabe, im Auftrag der Work
ow{Engine
einen Bearbeiter f�ur eine Aktivit�at zu �nden. In der Work
ow{Spezi�kation mu� zu
jeder Aktivit�at ein Ausdruck angegeben werden, �uber den das Organisationsmodul
einen Bearbeiter aus der spezi�zierten Aufbauorganisation des Unternehmens oder
der Beh�orde heraussucht. Als Grundlage dient dazu das auf Seite 57 beschriebene
Datenmodell der Aufbauorganisation.

In der Organisationsdatenbank (bzw. in den Organisations{Relationen der
Work
ow{Datenbank) m�ussen alle Teilnehmer am Work
owsystem, die Bearbeiter,
aufgef�uhrt sein. Zu jeder Person k�onnen eine Menge von F�ahigkeiten und Kompe-
tenzen angegeben werden. Die F�ahigkeiten und Kompetenzen sind nicht vorde�niert
und k�onnen w�ahrend der Modellierung der Aufbauorganisation frei gew�ahlt werden.
F�ahigkeiten und Kompetenzen k�onnen als Auswahlkriterium herangezogen werden.
So kann z.B. eine Person durch eine andere Person vertreten werden, wenn sie die-
selben F�ahigkeiten besitzt, die zur Bearbeitung einer Aktivit�at n�otig sind.

Eine Gruppe von Personen kann zu einer Rolle zusammengefa�t werden. Als Teil-
nehmer einer Rolle sind die Personen beliebig austauschbar, d. h. eine Teilnehmer einer
Rolle kann durch einen anderen Teilnehmer an derselben Rolle ersetzt werden. Sie
besitzen damit implizit dieselben F�ahigkeiten und Kompetenzen. Das Organisations-
modul hat die Aufgabe, diese Auswahl einer Person �uber die Rolle nach bestimmten
Algorithmen vorzunehmen. In der momentan implementierten Version wird der erste
imWork
owsystem eingeloggte Bearbeiter ausgew�ahlt. Weitere Auswahlalgorithmen,
wie eine abwechselnde Auswahl oder die Auswahl des Bearbeiters mit der geringsten
Arbeitslast, sind relativ einfach implementierbar.

Zwischen Rollen und Personen k�onnen frei bestimmbare Verh�altnisse spezi�ziert
werden. Damit kann z.B. die hierarchische Struktur des Unternehmens abgebildet
werden. Durch die freie Wahl der Verh�altnisse k�onnen auch mehrere Hierarchiearten
realisiert werden.

Das Organisationsmodul f�uhrt eine eigene Protokolldatei, mit der das Modul auf
ein fr�uher getro�ene Auswahl zur�uckgreifen kann. Somit wird es m�oglich, eine Akti-
vit�at von demselben Bearbeiter wie eine andere Aktivit�at erledigen zu lassen. Zudem
kommuniziert das Organisationsmodul mit dem Work
ow{Session{Manager, um auf
die Daten �uber die eingeloggten Bearbeiter zugreifen zu k�onnen.

6.1.12. Das Kommunikationsprotokoll

Zur Kommunikation �uber Sockets wird ein Nachrichtenformat verwendet, das zur
�Ubertragung strukturierter Daten geeignet ist. Ein einzelnes Nachrichtenatom hat
die Grundstruktur:

<type>:<length>:<content>

<type> ist der Typ der Nachricht, <length> gibt die dezimal ASCII{codierte L�ange
des folgenden <content>{Feldes an. <content> beinhaltet die Nutzinformation, die

73

Universit�at Stuttgart

Software{Labor 6 Die Funktionsweise von Surro

aber wiederum aus gleich strukturierten Nachrichten aufgebaut sein kann. Aus dem
Typ ist erkenntlich, ob die Nutzinformation aus einem String oder weiter strukturier-
ten Nachrichtenatomen besteht. Beispiel:

struct1:19:s:5:hellos:6:World!

| |_______||________|

|____________________________|

ist eine Nachricht vom Typ \struct1", die die zwei Strings (Typ
"
s\) \hello" und

\World!" enth�alt.

6.2. Interne Abarbeitung eines Work
ows

Der Aktivit�aten{Manager f�ugt das interne Ereignis \startWork
ow" in die Nachrich-
tenwarteschlange ein, damit die Engine einen Work
ow startet. Die Engine liest die
Nachricht und erzeugt eine neue Transaktion, in der dann der Work
ow instanzi-
iert wird. Es wird dabei nur die oberste Proze�ebene mit allen Aktivit�aten, Bl�ocken
und Sph�aren instanziiert. Anschlie�end werden alle Startaktivit�aten ermittelt und
die Startnachrichten in die Nachrichtenwarteschlange gestellt. Startaktivit�aten sind
alle Aktivit�aten ohne eingehenden Kontroll
u�konnektoren. Die Instanziierungs{
Transaktion wird beendet. Als n�achstes werden die Startnachrichten der Aktivit�aten
in der Queue bearbeitet.

Wenn ein Endzustand einer Aktivit�at erreicht ist, werden die Kontroll
u�konnek-
toren und Daten
u�konnektoren ausgewertet. Bei der Auswertung des Daten
usses
werden die Variablen der Outputcontainer auf Variablen der Inputcontainer einer
nachfolgenden Aktivit�at abgebildet. Anstatt einer 1:1{Kopie kann auch eine Transfor-
mation des Wertes �uber eine Berechnungsvorschrift erfolgen. �Uber das Verfolgen der
ausgewerteten Kontrollkonnektoren werden die n�achsten zu startenden Aktivit�aten
bestimmt.

Erf�ullt eine Aktivit�at die Startbedingung nicht und geht in den Zustand termina-
ted �uber, tritt die sogenannte Dead{Path{Elimination in Aktion. Dabei werden alle
Kontrollkonnektoren, die von dieser Aktivit�at ausgehen, zu falsch evaluiert. Wenn
dadurch weitere Aktivit�aten in den Zustand terminated �uberf�uhrt werden, wird
dieser Vorgang rekursiv fortgesetzt.

Der Start eines Blockes oder eines Subprozesses bedeutet die Instanziierung der
untergeordneten Proze�ebene. Da der Block auch als Schleifenkonstrukt benutzt wird,
�ndet bei jedem Schleifendurchgang eine Neuinstanziierung der Proze�ebene statt.

6.2.1. Die Transaktionsgrenzen innerhalb und au�erhalb von

Sph�aren

In Abbildung 6.8 sind die vier F�alle angedeutet, wie die Engine Transaktionsgrenzen
in Abh�angigkeit von den Eintr�agen in der Warteschlange setzt.

74

6.3 Der Programm{Pool{Manager

Universit�at Stuttgart

Software{Labor

peek

dequeue/enqueue

begin commit
begin <nichts>
set_context

<Operationen>
<Operationen>

<nichts>
set_context

<Operationen>
<Operationen> commit

peek

peek
peek
peek

a)
b)
c)
d)

Zeit

Abbildung 6.8.: Vier F�alle wie auf interne Ereignisse reagiert werden kann

a) Dies ist der Normalfall. Die Engine erf�ahrt durch peek, da� der Eintrag in der
Warteschlange best�atigt ist (Das hei�t, da� die Transaktion, in deren Rahmen
der Eintrag in die Warteschlange erfolgt ist, mit

"
commit\ beendet worden ist).

Sie beginnt eine neue Transaktion f�ur die Abarbeitung der Nachricht. In dieser
neuen Transaktion wird der Eintrag gelesen und die Engine reagiert entspre-
chend auf das interne Ereignis. Dabei k�onnen weitere interne Ereignisse durch
die Engine in die Warteschlange geschrieben werden. Am Ende der Bearbeitung
wird die Transaktion best�atigt.

b) Dieser Fall tritt dann auf, wenn das interne Ereignis den Start einer Sph�are zur
Folge hat. Die Transaktion wird daher nach demStart der Sph�are nicht beendet.
Die Abarbeitung eines internen Ereignisses geht normal bei peek weiter.

c) Der Eintrag in der Warteschlange geh�ort zu einer noch laufenden Transakti-
on. Der Eintrag des Ereignisses in die Warteschlange ist also im Rahmen einer
Sph�arentransaktion erfolgt. Alle weiteren Operationen der Engine in Reakti-
on auf dieses Ereignis m�ussen daher in demselben Sph�arentransaktionskontext
statt�nden. Die Engine bindet sich durch set context an die Sph�arentransak-
tion und f�uhrt die Operationen in diesem Kontext aus. Wenn die Sph�are am
Ende der Abarbeitung der Nachricht noch nicht beendet worden ist, wird die
Transaktion auch nicht best�atigt.

d) In diesem Fall geh�ort die Nachricht zu einer Sph�are, die in diesem Bearbeitungs-
schritt beendet wird. Die Sph�arentransaktion wird daher am Schlu� best�atigt.

6.3. Der Programm{Pool{Manager

Die Implementierung des Programm{Pool{Managers ist in [Ros96] ausf�uhrlich be-
schrieben.

75

Universit�at Stuttgart

Software{Labor 6 Die Funktionsweise von Surro

Programm-Pool-
Manager

Aktivitäten-
Manager

Plattformab-
hängige
Applikationen

Plattform

Applikationen
Java-startet startet

Java Laufzeitsystem

installiert App.

Workflowsystem

fragt
nach

App.

installiert App.

verteilt
Aktivität

Abbildung 6.9.: Prinzip der Verteilung von plattformunabh�angigen Programmen in-
nerhalb eines Work
owsystems

Zur Realisierung von plattformunabh�angigen Anwendungsprogrammen in Work-

owsystemen werden Java{Applikationen verwendet. Dazu wird auf jedem Ar-
beitsplatzrechner ein Java{Laufzeitsystem (Java{Interpreter, virtuelle Maschine und
Java{API) installiert, das eine plattformunabh�angige Schnittstelle zu den Java{
Applikationen bietet. Das Laufzeitsystem selbst ist plattformabh�angig und mu� auf
jedes neue System portiert werden (wenn dies noch nicht geschehen ist). Mit diesem
Laufzeitsystem als Basis k�onnen Java{Applikationen ausgef�uhrt werden (Abbildung
6.9). Plattformabh�angige Anwendungsprogramme k�onnen ebenfalls ausgef�uhrt wer-
den. Diese setzen dann direkt auf der Plattform auf. In der Abbildung 6.9 wird
der Ablauf bei der Bearbeitung einer Aktivit�at skizziert. Das Work
owsystem weist
dem Aktivit�aten-Manager eine Aktivit�at zu. Wenn die f�ur die Bearbeitung ben�otig-
te Applikation eine Java{Applikation ist, fordert der Aktivit�aten-Manager den Pro-
grammcode der Java{Applikation aus dem Programm{Pool an. Der Programm{Pool{
Manager �ubertr�agt den Programmcode an den Aktivit�aten-Manager und dieser f�uhrt
die Applikation aus. Das System besteht aus folgenden Systemkomponenten:

� Das Java-Laufzeitsystem besteht aus einer virtuellenMaschine (Java{VM), dem
Java{Interpreter und dem Java{API, das die plattformunabh�angige Schnittstel-
le zu den Funktionen des Betriebsystems realisiert. Seine Aufgabe ist es, Java{
Applikationen auszuf�uhren und die Kommunikation mit der darunterliegenden
Plattform zu f�uhren.

� Plattformunabh�angige Anwendungsprogramme sind Java{Applikationen, die
von der Java{VM ausgef�uhrt werden. Sie verwenden die Funktionen des Be-

76

6.4 Der Aktivit�aten{Manager

Universit�at Stuttgart

Software{Labor

triebssystems mit Hilfe einer plattformunabh�angigen Schnittstelle und k�onnen
deshalb, ohne Rekompilation von jedem Java{Laufzeitsystem ausgef�uhrt wer-
den.

� Der Aktivit�aten{Manager des Work
owsystems wird ebenfalls als Java{Appli-
kation implementiert, wodurch er auf jedem Arbeitsplatzrechner eingesetzt wer-
den kann, der �uber ein Java{Laufzeitsystem verf�ugt. Au�erdem wird der Ak-
tivit�aten{Manager dazu verwendet, die Java{Applikationen, die f�ur die Bear-
beitung von Aktivit�aten notwendig sind, vom Programm{Pool{Manager anzu-
fordern und auf einem Massenspeicher des Arbeitsplatzrechners zu installieren.
Der Aktivit�aten-Manager kann auch plattformabh�angige Anwendungsprogram-
me starten.

� Der Programm{Pool{Manager verwaltet die Applikationen und deren Attribu-
te, wie z. B. Plattform und Version. Der Aktivit�aten{Manager kann den Pro-
grammcode einer Applikation anfordern, wenn diese f�ur die Bearbeitung einer
Aktivit�at ben�otigt wird.

� Plattformabh�angige Anwendungsprogramme sind Anwendungen, die als
ausf�uhrbares Programm in der Maschinensprache des Arbeitsplatzrechners vor-
liegen. Diese Anwendungen verwenden Funktionen des darunterliegenden Be-
triebssystems bzw. der darunterliegenden Plattform direkt. Sie k�onnen ohne
das Java{Laufzeitsystem ausgef�uhrt werden, m�ussen jedoch beim Wechsel des
Betriebssystems bzw. des Rechners portiert werden.

6.4. Der Aktivit�aten{Manager

Der Aktivit�aten{Manager ist die Benutzerschnittstelle des Bearbeiters zumWork
ow-
system. Durch das Einloggen des Bearbeiters in das Surro Work
owsystem �uber den
Aktivit�aten{Manager nimmt die Person an der Bearbeitung von Work
ows teil. Der
Aktivit�aten{Manager fragt die Arbeitsliste des Bearbeiters nach Aktivit�aten ab, die
bearbeitet werden sollen, und stellt sie dar. Das Work
owsystem kann jederzeit neue
Aktivit�aten auf die Arbeitsliste des Bearbeiters legen. Der Aktivit�aten{Manager ver-
waltet drei Listen auf seiner gra�schen Ober
�ache (siehe Abbildung 6.10). In einer
Liste werden alle Aktivit�aten dargestellt, die zur Bearbeitung durch den Bearbei-
ter anstehen, also die eigentliche Arbeitsliste. Der Benutzer kann sich verschiedene
Sortierungen der Aktivit�ateneintr�age und zus�atzliche Informationen �uber die Akti-
vit�aten anzeigen lassen. In einer weiteren Liste werden alle Aktivit�aten angezeigt,
die momentan von dem Bearbeiter bearbeitet werden. Aktivit�aten in der ersten Liste
k�onnen durch den Benutzer entweder �uber Doppelklick auf den Eintrag oder �uber die
Men�uleiste gestartet werden. Der Aktivit�aten{Manager startet dann das zur Akti-
vit�at geh�orige Anwendungsprogramm. Mit diesem Programm soll der Bearbeiter die
Aufgabe erledigen, die der gestarteten Aktivit�at zugrunde liegt. Nach Beendigung des

77

Universit�at Stuttgart

Software{Labor 6 Die Funktionsweise von Surro

Zu bearbeitende Aktivitäten

<Aktivitäteneintrag>

Aktivitäten in Bearbeitung

unterbrochende Aktivitäten

Anwendungs-

WF-Engine

programm

verteilt Aktivität

Aktivität wird
unterbrochen

Aktivität wird
wiederauf-
genommen

Aktivität
wird
erfolgreich oder
erfolglos beendet

gestartet
Aktivität wird

Abbildung 6.10.: Die drei Arbeitslisten des Aktivit�aten{Managers

Anwendungsprogramms mu� der Bearbeiter entscheiden, ob der Work
ow{Engine ei-
ne erfolgreiche oder erfolglose Bearbeitung der Aktivit�at gemeldet werden soll. Falls
der Bearbeiter eine erfolgreiche Bearbeitung meldet, pr�uft die Engine die Nachbedin-
gung der Aktivit�at. Falls diese zu wahr evaluiert werden kann, dann ist die Aktivit�at
vollst�andig bearbeitet und der Kontroll
u� des Work
ows wird weiterverfolgt. Falls
sie zu falsch evaluiert wird, dann bekommt der Bearbeiter eine Meldung, da� die
Nachbedingung der Aktivit�at nicht erf�ullt sei. Der Bearbeiter hat dann Gelegenheit
zur Nachbesserung.

Die dritte Aktivit�atenliste nimmt Eintr�age von Aktivit�aten auf, die w�ahrend der
Bearbeitung durch den Bearbeiter unterbrochen worden sind. Bei entsprechender Un-
terst�utzung durch die Anwendung schickt der Aktivit�aten{Manager der Anwendung
eine Nachricht, sie solle ihren Zustand sichern. Wenn die Bearbeitung imAktivit�aten{
Manager wieder aufgenommen wird, wird die Anwendung erneut mit den gespeicher-
ten Zustand gestartet. Diese Funktionalit�at kann bei l�angerfristigen Arbeitsunterbre-
chungen, wie z. B. der Feierabend, sinnvoll angewendet werden. Sie k�onnte sogar f�ur
die Wiedervorlage einer Aktivit�at benutzt werden. indem nach einem einstellbaren
Zeitraum die Bearbeitung der Aktivit�at wieder aufgenommen wird.

Neben den Funktionen zur Verwaltung der Aktivit�atslisten, besitzt der Akti-
vit�aten{Manager noch weitere Funktionalit�at. Er erlaubt dem Bearbeiter, das Vor-
gangsinformationssystem aufzurufen, damit er sich gra�sch �uber den Stand der Bear-
beitung des gesamten Work
ows informieren kann. �Uber den Aktivit�aten{Manager
kann der Bearbeiter auch Prozesse starten, und er hat die M�oglichkeit, das Auftreten
externer Ereignisse1 der Work
ow{Engine zu melden.

1siehe Abschnitt 3.1.3

78

7. Erfahrungen und Ergebnisse

In diesem Kapitel werden die Erfahrungen bei der Implementierung von Surro und
die Ergebnisse, die aus dem Implementierung erfolgen, vorgestellt.

7.1. Erfahrungen bez�uglich der

Entwicklungsumgebungen

Auf der OS/2{Seite sind in erster Linie Erfahrungen mit der Programmierung bzw.
Anwendung der CORBA{Implementierung DSOM, der dazugeh�origen Implementie-
rung des Object Transaction Service (OTS) und der Datenbank DB2 f�ur OS/2 ge-
macht worden. Auf der UNIX{Seite wurden Tcl/Tk und Java zusammen mit der
Datenbank mSQL eingesetzt.

7.1.1. Implementierung unter DSOM

Die CORBA{Implementierung DSOM Distributed System Object Model liegt zur Zeit
in der Version 3.0 im Beta{Stadium vor. Die Grundfunktionalit�at als Object Request
Broker, soweit im Prototyp verwendet, bereitet keine besonderen Probleme. Insge-
samt aber ist der Beta{Zustand un�ubersehbar. Dies �au�ert sich in Surro u. a. dadurch,
da� Programmfehler noch h�au�g ein Reboot erzwingen oder Probleme auftreten und
wieder verschwinden, ohne da� daf�ur Ursachen auszumachen w�aren.

Die Implementierung mit DSOM und C++ hat sich als insgesamt nicht problem-
los herausgestellt. Es fehlt hier noch deutlich eine Verbesserung der Entwicklungs-
umgebungen. Da CORBA eine komplexe Systemarchitektur darstellt, erweist sich
die Einarbeitung und Benutzung als aufwendig und schwierig. Das Paket ist ins-
gesamt �au�erst umfangreich bez�uglich Platten{ und Hauptspeicherbedarf, was sich
auch deutlich auf die Performance auswirkt.

7.1.2. Implementierung mit OTS

Der Object Transaction Service als Teil von DSOMwird in Surro sehr intensiv verwen-
det. Die Verwendung hat sich leider als ein schwieriges Unterfangen herausgestellt.
Aufzuf�uhren sind dabei unter anderem folgende Punkte:

79

Universit�at Stuttgart

Software{Labor 7 Erfahrungen und Ergebnisse

� Die Dokumentation ist nicht ausreichend. Es wird im Gro�en und Ganzen nur
ein einziges Beispiel und eine Beschreibung der Schnittstellen gegeben. Dies
f�uhrt dazu, da� eine gro�e Anzahl an ungekl�arten Fragen mittels

"
trial and

error\ evaluiert werden mu�, was au�erordentlich viel Zeit kostet.

� Insbesonders unzureichend dokumentiert ist die Einbindung von XA Resource{
Managern (in diesem Falle die DB2, s.u.) in OTS{gesteuerte Transaktionen.

� Die Performance des Systems ist in der Initialisierungs{ und Deinitialisierungs-
phase (DSOM{Init, Erstellung und Zerst�orung der Objekte zur Transaktions-
verwaltung) inakzeptabel langsam.

� OTS bzw. DSOM bietet wenig Unterst�utzung zur Implementierung von trans-
aktionalen Objekten als Resource{Manager an. N�utzlich w�aren insbesondere
vorgefertigte Methoden zur Verwaltung von verschiedenen Transaktionskontex-
ten in einem Objekt und zur Persistenz. Ein Ansatz ist die enge Zusammen-
arbeit mit dem Persistence Service, was zwar laut Dokumentation vorhanden,
aber (noch) nicht vollst�andig bzw. verwendbar implementiert ist.

7.1.3. Das Zusammenspiel von DB2 und OTS

Die verwendete DB2 2.1.1 unter OS/2 ist ein transaktionales Datenbanksystem mit
umfangreicher Funktionalit�at. Massive Einschr�ankungen in der Benutzbarkeit und
grunds�atzliche Probleme treten im Rahmen von Surro aber im Zusammenspiel mit
OTS auf. Es ist nicht dokumentiert, �uber welche Schnittstellen der Zugri� auf die
DB2 bei Verwendung eines externen Transaktions{Managers wie OTS verwendet bzw.
nicht verwendet werden kann. Es ist nicht bzw. nicht ausreichend dokumentiert,
welche Besonderheiten dabei zu beachten sind. Dies mu� alles zeitraubend evaluiert
werden.

Eine starke Einschr�ankung stellt dabei das Fehlen einer Multithread{
Unterst�utzung dar. Es ist o�ensichtlich grunds�atzlich nicht m�oglich, aus einemProze�
heraus von mehreren Threads unter Kontrolle von OTS auf die Datenbank zuzugrei-
fen. Dies f�uhrt dazu, da� in Surro ein einziger Thread alle Datenbankzugri�e unter

wechselndem Transaktionskontext durchf�uhren mu�. Der Versuch, von verschiede-
nen Prozessen anstatt von Threads aus auf die Datenbank zuzugreifen, f�uhrte leider
ebenfalls zu instabilem Verhalten, wof�ur die Ursache aber nicht n�aher gekl�art werden
konnte.

Der Single{Thread{Zugri� in Verbindung mit demWechseln des Transaktionskon-
textes bei mehreren o�enen Transaktionen resultiert in der Problematik, da� jedes
Au
aufen auf eine Sperre auf der Datenbank den einen Thread blockiert, der als ein-
ziger die Sperre wieder aufheben k�onnte. Damit dieses Problem nicht zur Wirkung
kommt, mu� ausgeschlossen werden k�onnen, da� es Zugri�e auf sph�arenbezogene
Daten von Au�erhalb einer Sph�arentransaktion gibt. Sph�arenbezogen hei�t dabei,
da� diese Daten potentiell von einer Sph�arentransaktion angefa�t und somit gesperrt

80

7.1 Erfahrungen bez�uglich der Entwicklungsumgebungen

Universit�at Stuttgart

Software{Labor

werden k�onnen. Es hat sich in Surro gezeigt, da� das verwendete Datenmodell diese
Eigenschaft grunds�atzlich bietet, aber man trotzdem h�au�g auf die Sperrproblematik
au
�auft. Dies liegt daran, da� SQL{Anfragen ohne Indexzugri� erst alle Tupel einer
Relation lesen m�ussen, um die quali�zierenden Tupel zu �nden. Wenn nun | wie
im Datenmodell von Surro der Fall | sph�arenbezogene Daten verschiedener Sph�aren
und auch nicht{sph�arenbezogene Daten in derselben Relation liegen, l�a�t sich das
Sperrproblem nicht vermeiden.

Die Konsequenz daraus ist die Einf�uhrung eines zus�atzlichen Parameters f�ur die
Zugri�sfunktionen auf die DB2 in der Engine{DB2{Schnittstelle. Der Parameter
bewirkt bei Lesezugri�en eine Herabsetzung des Sperrmodus und verhindert jegliches
Au
aufen auf eine Sperre. Die Anwendung mu� selbst daf�ur sorgen, da� solcherlei
\dirty read" keine Inkonsistenzen bewirkt. In Surro wird dies eingehalten.

Fazit ist, da� die Kombination OTS{DB2 mit gewissen Einschr�ankungen die Funk-
tionalit�at liefert, die ben�otigt wird, da� aber durch die Sperrproblematik des Single{
Thread{Zugri�s eigentlich unn�otige Komplexit�at und unn�otige Risiken in das System
hineingetragen werden.

7.1.4. Implementierung mit Java

Bisher ist nur ein kleiner Teil des Work
owsystems (der Aktivit�aten{Manager) in
Java programmiert. Durch die zunehmende Bedeutung der Sprache in Internet{ und
Intranetanwendungen und aufgrund der Eigenschaft der Plattformunabh�angigkeit er-
scheint es sinnvoll, weitere Teile des Systems in Java zu programmieren. Folgende
Kritikpunkte, gewonnen aus der Erfahrung mit Surro, stehen einer intensiveren Ver-
wendung im Wege:

� Es fehlen bisher noch ausgereifte Entwicklungsumgebungen. Momentan kom-
men aber laufend neue Entwicklungsumgebungen auf den Markt, so da� damit
gerechnet werden kann, da� in naher Zukunft dieser Kritikpunkt entf�allt.

� Der Eigenschaft der Plattformunabh�angigkeit geh�ort zu den gro�en Pluspunk-
ten der Sprache Java. Allerdings ergeben sich im Detail immer noch Unter-
schiede auf den verschiedenen Plattformen. Hier ist zu ho�en, da� sich die
Implementierungen im Laufe der Zeit st�arker angleichen. Ein Nachteil der
Plattformunabh�angigkeit ist darin zu sehen, da� verschiedene F�ahigkeiten der
unterschiedlichen Plattformen nicht genutzt werden k�onnen.

� Das von Java angebotene Framework f�ur die Erstellung von gra�schen Ober-

�achen (Abstract Window Toolkit, AWT) bietet zuwenig Widget{Klassen mit
oftmals nur geringer Funktionalit�at an. An dieser Stelle mu�te R�ucksicht auf
die unterschiedlichen F�ahigkeiten der GUIs auf den verschiedenen Plattformen
genommen werden. Daher sind nur Funktionen aus der Schnittmenge der ver-
schiedenen GUIs vorhanden. Die Programmierung mit dem AWT erfolgt noch,

81

Universit�at Stuttgart

Software{Labor 7 Erfahrungen und Ergebnisse

verglichen mit Tk, auf einer relativ niedrigen Ebene. Der Einsatz von Interface
Buildern und neue Versionen von AWT k�onnen dieses Problem reduzieren.

� Java bietet zum jetzigen Zeitpunkt noch relativ wenig Schnittstellen nach au-
�en, wie z. B. zu einer Datenbank, oder zur Kommunikation zwischen verteilten
Objekten an. Durch den Einsatz der CORBA Architektur von der OMG und
der Standardisierung eines IDL{to{Java Mappings ist eine Besserung dieses Zu-
standes zu erwarten.

� Die Performance des implementieren Java Programms ist nicht sehr hoch. Es
ist zu erwarten, da� bei komplexeren Programmen dieser Nachteil verst�arkt
auftritt. Hier bleibt abzuwarten, ob technische Verbesserungen, wie z. B. ein
Just{in{Time Compiler, die Laufzeiteigenschaften verbessern kann.

7.1.5. Implementierung mit Tcl/Tk

Die Programmiersprache Tcl/Tk wurde als Implementierungssprache ausgew�ahlt,
weil sie sich f�ur die schnelle und einfache Erstellung eines Prototypen eignet. Die
Interpretation von Tcl/Tk{Skripten und die Typfreiheit erleichtern �Anderungen und
halten den Programmcode knapp. Der Entwicklungsproze� wird so verk�urzt. Tcl/Tk
bietet m�achtige Befehle f�ur die Erstellung von gra�schen Ober
�achen und f�ur die
Interproze�kommunikation an. Der einfache Zugri� auf relationale Datenbanken hat
sehr zum erfolgreichen Einsatz dieser Sprache beigetragen.

Die interpretative Arbeitsweise f�uhrt dazu, da� die Skalierbarkeit der Engine, die
in dieser Sprache implementiert ist, nicht mehr gegeben ist. Einige wenige Work
ows
k�onnen parallel von der Engine bearbeitet werden, es ist aber wahrscheinlich, da� bei
einer gr�o�eren Belastung die Arbeitsgeschwindigkeit nicht mehr ausreicht. Tcl/Tk
ist eine prozedurale Programmiersprache. Es gibt zwar mehrere objektorientierte Er-
weiterungen, aber hier konnte sich noch keine Erweiterung durchsetzen. Aus diesen
Grund wurde gegen eine objektorientierte Entwicklung der Engine entschieden. Als
ein gro�er Nachteil erweist sich eine fehlende Verbindung zwischen der CORBA Archi-
tektur und Tcl/Tk. Es gibt kein standardisiertes Mapping der IDL{Datentypen und
Tcl{Datentypen (Strings und assoziative Arrays). Auch gibt es keine IDL{Compiler,
die eine Tcl Schnittstelle erzeugen w�urden. Aus diesem Mangel heraus mu� auf
die verf�ugbaren Sockets zur�uckgegri�en werden, wenn mit Prozessen kommuniziert
werden mu�, die nicht �uber die eingebaute Tcl{Interproze�kommunikation erreicht
werden k�onnen.

7.2. Work
ow{Transaktionen

Das vorgestellte Konzept der Work
ow{Transaktionen ist mit vertretbarem Aufwand
zu realisieren. Dies hat die Implementierung des Surro Prototypen gezeigt. OTS kann
dabei die Rolle des Transaktionsmanagers �ubernehmen. Alle auftretenden Problemen

82

7.3 Kompensations{Sph�aren

Universit�at Stuttgart

Software{Labor

konnten gel�ost werden, wenngleich daraus einige Einschr�ankungen entstanden sind.
Eine der Einschr�ankungen ist, da� nur mit einem einzigen Thread und einem Proze�
auf die DB2 Datenbank zugegri�en werden kann, wenn OTS als externer Transak-
tionsmanager benutzt wird. Als weitere Einschr�ankung mu� hingenommen werden,
da� beim Zugri� auf die Work
ow{Verwaltungsdaten die von Transaktionen garan-
tierte Isolation durchbrochen werden mu�. Aus der Anwendungslogik der Engine
heraus kann aber garantiert werden, da� keine inkonsistenten Daten unbest�atigter
Transaktionen gelesen oder ver�andert werden.

7.3. Kompensations{Sph�aren

Das ebenfalls vorgestellte Konzept der Kompensations{Sph�aren ist mit geringem Auf-
wand zu realisieren. Weiterf�uhrende Versuche mit unterschiedlichen Reihenfolgen der
Ausf�uhrung der Kompensationsaktivit�aten sind aus Zeitgr�unden nicht durchgef�uhrt
worden.

7.4. Kritik am FlowMark Work
ow Modell

Das FlowMark Work
ow Modell wurde �ubernommen, um eine weitgehende �Ubert-
ragbarkeit der Ergebnisse von Surro auf FlowMark zu gew�ahrleisten. Es hat sich
aber gezeigt, da� dieses Modell an mehreren Stellen noch Schw�achen hat. Daher
wurde in Surro versucht, diese Schw�achen zu beseitigen, wenn sich dies ohne gro�en
�Anderungsaufwand erreichen lie�.

� Im Modell sind nur
"
lokale\ Variablen f�ur Aktivit�aten vorhanden, in den soge-

nannten Containern. Es kostet aber bei typischen Prozessen viel Modellierungs-
aufwand die immer wieder ben�otigten Variablen durch die einzelnen Container

"
durchzuschleusen\. Eine Art globaler Datencontainer, der

"
globale Variablen\

enth�alt, w�are w�unschenswert. Die Synchronisation dieser Variablen mu� auto-
matisch erfolgen, d. h. es gibt zu einem Zeitpunkt genau einen g�ultigen Wert.

Dieser Ansatz wurde nicht implementiert.

� Die Startbedingung f�ur Aktivit�aten ist nicht
exibel genug. Alle eingehen-
den Kontroll
u�konnektoren k�onnen entweder alle nur mit AND oder OR ver-
kn�upft werden. Im Surro Work
ow Modell kann hier eine beliebige logische
Verkn�upfung der eingehenden Kontroll
u�konnektoren als Startbedingung an-
gegeben werden.

� Das FlowMark zugrundeliegende Organisationsmodell ist sehr einfach aufge-
baut. Die Verteilungsstrategie einer Aktivit�at an einen Bearbeiter ist daher
wenig
exibel. In Surro wurde daher ein komplexer aufgebautes Organisations-
modell verwendet.

83

Universit�at Stuttgart

Software{Labor 7 Erfahrungen und Ergebnisse

� FlowMark bietet kein Konzept zur Reaktion auf externe Ereignisse an. In Surro
kann jede Aktivit�at auf das Auftreten eines externen Ereignisses oder eines
zusammengesetzten Ereignisses warten, bevor sie ausgef�uhrt wird.

� In Surro existiert im Gegensatz zu FlowMark ein Konzept, mit dem auch platt-
formunabh�angige Programme am Arbeitsplatzrechner automatisch installiert
und ausgef�uhrt werden k�onnen.

84

A. Die erstellte Software

A.1. Der Beispielproze�
"
Beschwerde �uber

Kreditkartenabrechnung\

In Abb. A.1 ist ein Proze� dargestellt, mit dessen Hilfe man den Einsatz von
Work
ow{Transaktionen motivieren kann. Dargestellt ist ein Proze� aus dem Ban-
kenbereich. Er modelliert den Vorgang, der durch eine Kundenreklamation bei fehler-
hafter Abrechnung einer Kreditkarte abl�auft. Der Proze� ist an einen realen Ablauf
angelehnt, besitzt nat�urlich dadurch Unterschiede, da� zur Zeit keine Work
owsyste-
me mit Work
ow{Transaktionen oder vergleichbaren Konstrukten existieren, diese
aber hier verwendet werden. Aus Gr�unden der �Ubersichtlichkeit sind Daten
u�, Be-
arbeiter und andere Details nicht abgebildet.

Der Proze� wird durch einen Anruf des betro�enen Kunden bei der f�ur ihn
zust�andigen lokalen Hausbank initiiert. Der Sachbearbeiter, der den Anruf entgegen-
nimmt, ermittelt die Art des Vorfalls und startet den entprechenden Proze�. In der
ersten Aktivit�at Beschwerde entgegennehmen werden die Daten des Kunden aufge-
nommen. Anschlie�end werden die Belege vom Kunden angefordert, die zur Kl�arung
des Vorfalles notwendig sind (Belege anfordern). Der n�achste Schritt besteht darin,
den Vorfall anhand der entsprechenden Belege zu �uberpr�ufen. Der Proze� kann somit
so lange nicht fortgef�uhrt werden, bis die Belege vorliegen. Dies wird dadurch sicher-
gestellt, da� die Aktivit�at Belege pr�ufen auf das Eintreten des externen Ereignisses

"
Kunde schickt Belege\ wartet und vorher nicht aktiv wird. Das Ereignis mu� von
au�en in das System eingebracht werden.

Sind die Belege vorhanden, wird die Aktivit�at gestartet. Kommt der Pr�ufer zum
Ergebnis, da� die Reklamation unbegr�undet ist, wird die Beschwerde sofort abgelehnt
(unterer Pfad des Graphen), der Kunde wird benachrichtigt (Beschwerde ablehnen),
der Vorfall wird archiviert und der Proze� beendet. Wird die Reklamation akzeptiert,
mu� zum einen diese Tatsache zusammen mit allen relevanten Informationen im lo-
kalen Informationssystem gesichert werden(Eintrag in lokale DB), zum anderen mu�
dem betro�enen Kreditkarteninstitut dieselbe Information verf�ugbar gemacht werden
(Eintrag in DB Karteninstitut). Letzteres st�o�t beim Kreditkarteninstitut wiederum
einen Proze� an, der im Ende�ekt dazu f�uhren soll, da� der Fehlbetrag an die lokale
Bank �uberwiesen wird (In Abb. A.1 nicht n�aher dargestellt). Dieses

"
Verf�ugbarma-

chen\ der Informationen erfolgt sinnvollerweise dadurch, da� �uber einen entfernten

85

Universit�at Stuttgart

Software{Labor A Die erstellte Software

Abbildung A.1.: Beispielproze�
"
Kundenbeschwerde bei fehlerhafter Kreditkartenab-

rechnung\

Datenbankzugri� die Daten direkt in die Datenbank des Karteninstituts eingetragen
werden. Damit nun keine Inkonsistenzen zwischen dem lokalen und entfernten Daten-
bestand entstehen k�onnen, ist es notwendig, die beiden Aktivit�aten Eintrag in lokale

DB und Eintrag in DB Karteninstitut in einer verteilten Transaktion zusammenzu-
fassen. Dazu dient die erste Sph�are.

Ist dies erfolgt, wird dem betro�enen Kunden der genehmigte Fehlbetrag von
einem speziellen Ausgleichskonto der lokalen Bank sofort �uberwiesen, da die Bearbei-
tung durch das Karteninstitut normalerweise l�anger als f�ur den Kunden akzeptabel
dauert. Dazu mu� vom Ausgleichskonto der Betrag abgebucht und dem Kundenkon-
to gutgeschrieben werden. Diese beiden Aktivit�aten sind wiederum in einer Sph�are
zusammengefa�t und somit durch eine Work
ow{Transaktion gesch�utzt. Dies erlaubt
auch die Parallelisierung der Aktivit�aten Einzahlung und Abbuchung, da diese jetzt
als atomare Einheit gesehen werden k�onnen.

Hier ist die Notwendigkeit eines transaktionalen Schutzes nat�urlich o�ensichtlich,
da ohne Schutz durch Fehler beliebige Inkonsistenzen auftreten k�onnen, wodurch
eventuell Geld vernichtet bzw. erzeugt w�urde, oder auch Buchungen doppelt erfolgen
k�onnten.

Nach Beendigung der Sph�are wird der Kunde �uber die Buchung des Fehlbetrages
auf sein Konto informiert (Kunde benachrichtigen). In �Uberweisung pr�ufen wird die
�Uberweisung des Fehlbetrages vom Karteninstitut an die lokale Bank auf Korrektheit

86

A.2 Einschr�ankungen der aktuellen Implementierung (Stand Ende 1996)

Universit�at Stuttgart

Software{Labor

�uberpr�uft. F�ur den Fall, da� die Pr�ufung einen Fehler ergibt, ist im Proze� aus
Einfachheitsgr�unden keine weitere Vorgehensweise de�niert.

Die Aktivit�at �Uberweisung pr�ufen kann aber erst dann startbar werden, wenn
die �Uberweisung durch das Karteninstitut tats�achlich erfolgt ist. Somit wird, wie bei
Belege pr�ufen, auf ein externes Ereignis (�Uberweisung erfolgt) gewartet. Da dies unter
Umst�anden sehr lange dauern kann, wird ein Schleifenkonstrukt (Block Nachfragen)
eingef�uhrt. In diesem Block be�ndet sich eine einzige Aktivit�at (nicht in Abb. A.1
dargestellt), die jeweils nach einem bestimmten Zeitraum (hier: eine Woche) aktiviert
wird, falls die �Uberweisung noch nicht erfolgt ist. In dieser Aktivit�at kann dann beim
Karteninstitut nachgefragt werden, wie die Sachlage ist, etc.

In der letzten Aktivit�at wird dann der gesamte Vorgang abgeschlossen und archi-
viert.

A.2. Einschr�ankungen der aktuellen Implementierung

(Stand Ende 1996)

� Es gibt keinen graphischen Editor zur Spezi�kation von Work
ows.

� Es gibt keine Komponente mit der laufende Work
ow{Instanzen in der Art von
Ad{hoc{Modi�kationen ver�andert werden k�onnen.

� Der Knotentyp Unterproze� ist nicht implementiert.

� Der Knotentyp Block darf nicht in Sph�aren verwendet werden.

� Das Erzeugen von Timeouts und die Reaktion auf Timeouts sind nicht realisiert.

� Zusammengesetzte Ereignisse sind nicht im vollen Umfang implementiert.

� Aktivit�aten k�onnen nicht mehreren Personen gleichzeitig auf ihrer Arbeitsliste
angeboten werden.

� Ersatzaktivit�aten sind nicht vollst�andig implementiert.

A.3. Die Softwaremodule

In den Tabellen A.1 bis A.3 werden die im Work
owsystem Surro implementierten
Softwaremodule aufgelistet. In Tabelle A.1 sind die Module aufgef�uhrt, die in Tcl/Tk
implementiert sind und unter UNIX ausgef�uhrt werden, in Tabelle A.2 die in Java im-
plementierten und somit weitgehend plattformunabh�angigen Module, und schlie�lich
in Tabelle A.3 die OS/2{Seite mit ihrem in C++ implementierten Code.

Die in der Tabelle A.4 aufgelistete Software wurde bei der Implementierung des
Work
owsystems Surro benutzt. In Tabelle A.5 sind die Bezugsquellen dazu auf-
gef�uhrt.

87

Universit�at Stuttgart

Software{Labor A Die erstellte Software

Programmmodul Gr�o�e Autor Bemerkung

suEngineGUI.tcl 24 KB Schreyjak Gra�sche Ober
�ache der Engine
suEngineModul.tcl 117 KB Schreyjak Die eigentliche Engine
suWFSManager.tcl 55 KB Schreyjak Session Verwaltung und Schnitt-

stelle der Engine zum Akti-
vit�aten{Manager

suQueue.tcl 3 KB Schreyjak Queue Verwaltung f�ur mSQL
suSOCKlib.tcl 5 KB Schreyjak Routinen f�ur Socket Kommunika-

tion
suOrgModul.tcl 10 KB Schreyjak Routinen f�ur Organisationsmodul
suAktManager.tcl 53 KB Schreyjak Aktivit�aten Manager in der Tcl

Version
msqltclproxy.tcl 3 KB Schreyjak Datenzugri� auf msql
msqltclproxysocket.tcl 8 KB Schreyjak Datenzugri� auf DB2 �uber

sockets
suTCLDBaddon.tcl 5 KB Schreyjak Erweiterte Funktionen f�ur Daten-

zugri�
suADDitional.tcl 4 KB Schreyjak Mehrfach verwendete Hilfsfunk-

tionen
suMonitor.tcl 70 KB Bildstein Work
ow Monitor

Tabelle A.1.: Surro{Module, implementiert in Tcl/Tk

Programmmodul Gr�o�e Autor Bemerkung

AcitivityManager.java 70 KB Rosenauer Aktivit�aten Manager in Java Ver-
sion

ProgPool.java 29 KB Rosenauer Programm Pool Verwaltung in
Java Version

ComAdapter.java 34 KB Rosenauer Kommunikation zum Work
ow
Session Manager

Tabelle A.2.: Surro{Module, implementiert in Java

88

A.3 Die Softwaremodule

Universit�at Stuttgart

Software{Labor

Programmmodul Gr�o�e Autor Bemerkung

suTAadapter.cpp 21 KB Bildstein Kommunikationsschnittstelle zu Engi-
ne und Monitor, ruft Funktionen aus
db2tcl.cpp auf

suDb2tcl.cpp 60 KB Bildstein Zugri� auf DB2, TA{Kontext{Manage-
ment und transaktionale Queue

suContext.cpp 10 KB Bildstein DSOM{Objekt zur Verwaltung der
Transaktionskontexte

suTqueue.cpp 23 KB Bildstein DSOM{Objekt zur Verwaltung einer
transaktionalen Message{Queue

suTqres.cpp 4 KB Bildstein Resource{Objekt zur transaktionalen
Message{Queue

suPec.cpp 75 KB Bildstein OS/2 Program Execution Client zur
automatischen Ausf�uhrung von trans-
aktionalen Aktivit�aten

suAccount.cpp 12 KB Bildstein Transaktionales Konto{Objekt
suAccres.cpp 5 KB Bildstein Resource{Objekt zum Konto{Objekt

Tabelle A.3.: Surro{Module, implementiert in C/C++ mit DSOM

Software Was ist es?
mSQL Datenbank
DB2/2 V2.1.1 kommerzielle Datenbank (IBM)
SOMobjects 3.0 CORBA ORB (IBM)
OTS CORBA Object Service: Object Transaction Service
CSet++ C/C++ Compiler unter OS/2 (IBM)
TCL 7.5 Programmiersprache
TK 4.1 Programmiersprache
MSQLTCL mSQL{Anbindung f�ur Tcl/Tk
Java Programmiersprache

Tabelle A.4.: Verwendete Software

89

Universit�at Stuttgart

Software{Labor A Die erstellte Software

Software Quelle
mSQL ftp://ftp.bond.edu.au/pub/Minerva/msql/msql-1.0.16.tar.gz
DB2 IBM-Produkt
SOMobjects http://www.software.ibm.com/objects/somobjects/
OTS Bestandteil von SOMobjects 3.0
CSet++ IBM-Produkt
TCL 7.5 http://www.sunlabs.com/research/tcl/
TK 4.1 http://www.sunlabs.com/research/tcl/
MSQLTCL ftp://ftp.bond.edu.au/pub/Minerva/msql/Contrib/msqltcl-1.50.tar.gz
Java http://java.sun.com/

Tabelle A.5.: Quellen der verwendeten Software

90

Literaturverzeichnis

[CM94] Chakravarthy, S. ; Mishra, D.: Snoop: An expressive event speci�ca-
tion language for active databases. In: Data & Knowledge Engineering 14
(1994), November, Nr. 1, S. 1{26

[GR93] Gray, Jim ; Reuter, Andreas: Transaction Processing. Morgan Kauf-
mann, 1993

[Hug96] Hughes, David J.: mSQL | A Lightweight Database Engine. Hughes
Technologies Pty. Ltd., 1996. { http://Hughes.com.au/

[Ley95] Leymann, F.: Supporting Business Transactions via Partial Backward Re-
covery in Work
ow Management Systems. In: Lausen, G. (Hrsg.): Proc.
Datenbanksysteme in B�uro, Technik und Wissenschaft . Berlin : Springer,
Maerz 1995, S. 51{70

[LR94] Leymann, Frank ; Roller, Dieter: Business Process Management With
FlowMark. In: Proc. 39th IEEE Computer Society Int. Conference (Comp-

Con). San Francisco, Cal., Februar 1994, S. 230{234

[OTS94] Object Management Group (OMG): Object Transaction Service. August
1994. { Document No. 94.8.4

[Ous94] Ousterhout, John K.: Tcl and Tk Toolkit . Messachusetts : Addision
Wesley, 1994

[Ros96] Rosenauer, Hansgeorg: Entwurf und Implementierung eines Ver-

teilungsmechanismus f�ur plattformunabh�angige Anwendungsprogramme in

Work
ow{Systemen, Universit�at Stuttgart, Studienarbeit, 1996.

[SB96] Schreyjak, Stefan ; Bildstein, Hubert: Fehlerbehandlung in Work
ow{

Management{Systemen Universit�at Stuttgart, Software{Labor, Fakult�ats-
bericht Nr. 1996/17, Software{Labor Bericht SL{3/96.

[Sch93] Schmidt, Ursula: Transaktionskonzepte in der Fertigung. In: Proc. Da-

tenbanksysteme in B�uro, Technik, Wissenschaft Braunschweig, M�arz 1993.

[Sch95] Schreyjak, Stefan: Anforderungsanalyse von Work
owsystemen, Univer-
sit�at Stuttgart, Fakult�at Informatik, Diplomarbeit, 1995.

91

Universit�at Stuttgart

Software{Labor Literaturverzeichnis

[T�au96] T�auber, Wolfgang: Transaktionale Datei- und Dokumentenverwaltung

in Work
ow{Management{Systemen, Universit�at Stuttgart, Diplomarbeit,
August 1996. { Diplomarbeit Nr. 1380

[WfM96] WfMC:Work
ow Management Coalition Speci�cation | Terminology and

Glossary http://www.aiai.ed.ac.uk/WfMC/DOCS/glossary/glossary.html
1996.

[X/O91] X/Open Company Ltd.: X/Open: Distributed Transaction Processing: The
XA Speci�cation. 1991

92

