Universitat Stuttgart
Software—Labor

Projekt 1.1:
Workflow—Management—Systeme

Breitwiesenstrafle 20-22
D-70565 Stuttgart

Fakultatsbericht Nr. 1996/19
Software-Labor Bericht Nr. SL-5/96
CR-Klassifikation H.2.0, H.2.4

Beschreibung des
prototypisch implementierten
Workflowsystems Surro!

5->IJO

Stefan Schreyjak
Stefan.Schreyjak@informatik.uni-stuttgart.de

Hubert Bildstein

20. Dezember 1996

IDiese Arbeit wird von der IBM Deutschland Entwicklung GmbH und dem Ministerium
fiir Wissenschaft und Forschung, Baden Wiirttemberg, unterstiitzt.

Zusammenfassung

In diesem Bericht wird das im Rahmen des Software-Labors, Projekt Workflow—
Management, erstellte Workflowsystem Surro vorgestellt. Zielsetzung des Projekts ist
es, Konzepte zur Verbesserung der Fehlertoleranz von Workflowsystemen zu evaluie-
ren. Dazu wurde auf Basis des FlowMark—Workflowmodells eine Workflow—Engine,
ein Aktivitdtenmanager, ein Workflow—Session—Manager und ein Workflow—Monitor
erstellt.

In der Workflow Spezifikation kénnen Spharen (Gruppen von Aktivitaten) defi-
niert werden, die zur Erhohung der Fehlertoleranz dienen. Es gibt zwei Arten von
Sphéaren. In den Transaktions—Sphéaren sind alle Operationen der Engine und al-
le Tatigkeiten in den Anwendungsprogrammen, die in den Aktivitdten verwendet
werden, in einer grofen Workflow—Transaktion geschiitzt. Wenn wahrend der Bear-
beitung der Sphéare ein Fehler auftritt, wird die Sphéare automatisch in ithren Initi-
alzustand zuriickgesetzt und alle Datendnderungen werden riickgéngig gemacht. In
den Kompensations—Spharen miissen alle Aktivitaten eine zusdtzliche Kompensati-
onsaktivitdat besitzen, die die Auswirkungen der normalen Aktivitdt kompensieren
kénnen. Wenn ein Fehler in dieser Sphére auftritt, dann werden alle notwendigen
Kompensationsaktivitaten automatisch durch das Workflowsystem aktiviert.

Nach einer Einfithrung in die Aufgabenstellung und Terminologie von Workflow—
Management werden die Workflow—Transaktionen und Kompensations—Sphéren als
Konzepte zur Fehlertoleranz ausfiihrlich vorgestellt. Thre Implementierung und die
dabei gesammelten Erfahrungen im Umgang mit der CORBA-Implementierung von
IBM (DSOM 3.0) und dem Transaktionsdienst (OTS) werden beschrieben. Das zu-
grundeliegende Datenmodell fiir die Beschreibung der Workflows wird erlautert. Der
Aufbau des Workflowsystems Surro wird aufgezeigt und einzelne Implementierungs-
aspekte werden beschrieben. Das System wurde mit einem ebenfalls beschriebenen
Beispielworkflow zur Bearbeitung einer Beschwerde bei einer Kreditkartenabrechnung
getestet.

Universitdt Stuttgart

Software—Labor

Inhaltsverzeichnis

1. Workflow—Management-Systeme 9
1.1. Begriffe o 9
1.1.1. Modell eines Geschéaftsprozesses 9
1.1.2. Modell einer Aktivitat 10
1.1.3. Die Systemkomponenten eines Workflowsystems 11
1.2. Motivation von Workflowsystemen 12
1.3. Die Kernidee des Workflow—Management 12
2. Fehlertoleranz in Workflowsystemen 15
2.0.1. Allgemeine Anforderungen 15
2.1. Workflow—Transaktionen 17
2.1.1. Begriffe . ..o 17
2.1.2. Das Konzept der Workflow—Transaktion 19
2.1.3. Anforderungen an ACID-Aktivitaten 21
2.1.4. FEinsatzgebiete von Workflow—Transaktionen 22
2.1.5. Einbindung von Legacy—Software 23
2.1.6. Realisierungsansédtze L. 23
2.2. Kompensations—Sphéren 00 24
2.2.1. Begriffe . ..o oo 24
2.2.2. Das Konzept der Kompensations—Spharen 25
2.2.3. Vergleich zwischen Transaktions— und Kompensations—Spharen 27
3. Motivation weiterer Workflow—Konzepte 29
3.1. Ereignisse Lo 29
3.1.1. Problemstellung und Losungsansédtze 29
3.1.2. Die unterschiedlichen Arten von Ereignissen 30
3.1.3. Externe FEreignisse o oo 30
3.1.4. Interne Ereignisse oL 31
3.2. Ersatzaktivitdteno o o 31
3.3. Programm-Pool o 31
3.3.1. Probleme bei der Einbindung von Anwendungen in ein
Workflow—Management—System 32
3.3.2. Ein Loésungskonzept oL 34

Universitdt Stuttgart

Software—Labor

Inhaltsverzeichnis

3.4. Ein transaktionales Dateisystem

3.4.1. Motivation
3.4.2. Das Konzept . .

3.4.3. Integration inein WEMSo

4. Der Aufbau des Workflowsystems Surro
4.1. Motivation des Prototypen L.

4.1.1. Vorgeschichte und

Entstehungo

4.2. Aufbau des Surro Prototypen

4.2.1. Aufgaben der Systemkomponenten

4.3. Kommunikation

4.3.1. Die Schnittstellen zwischen den Systemkomponenten

5. Das Datenmodell von Surro
5.1. Begriffe

5.2. Instanziierung von Workflowso

5.3. Das ER-Modell
5.4. Die Relationen

5.4.1. Die Template-Relationen.

5.4.2. Die Organisations—

Relationen

5.4.3. Die Verwaltungs—Relationen
5.4.4. Die Instanz—Relationen oL
5.5. Randbedingungen im Datenmodell

6. Die Funktionsweise von Surro

6.1. Die Workflow—Engine . .

6.1.1. Der strukturelle Aufbau der Workflow—Engine
6.1.2. Die Nachrichtenwarteschlange

6.1.3. Das Transaktionskontext—Verwaltungsobjekt
6.1.4. Das Workflow Objekt

6.1.5. Das Prozeflebenen

Objekt v v

6.1.6. Das Aktivitdten Objekt

6.1.7. Das Block Objekt

6.1.8. Das Subprozel Objekt
6.1.9. Das Transaktions—Spharen Objekt
6.1.10. Das Kompensations—Spharen Objekt
6.1.11. Das Organisationsmodul

6.1.12. Das Kommunikationsprotokoll
6.2. Interne Abarbeitung eines Workflows

6.2.1. Die Transaktionsgrenzen innerhalb und auflerhalb von Sphéren

6.3. Der Programm-Pool-Manager

6.4. Der Aktivitdten—Manager

38
38
39
39
40
45
46

49
49
50
50
52
52
57
59
61
63

Inhaltsverzeichnis

Universitdt Stuttgart

Software—Labor

7. Erfahrungen und Ergebnisse 79
7.1. Erfahrungen beziiglich der Entwicklungsumgebungen 79
7.1.1. Implementierung unter DSOM 79

7.1.2. Implementierung mit OTS 79

7.1.3. Das Zusammenspiel von DB2 und OTS 80

7.1.4. Implementierung mit Javao 81

7.1.5. Implementierung mit Tel/Tk 82

7.2. Workflow—Transaktionen 82
7.3. Kompensations—Sphéren L. 83
7.4. Kritik am FlowMark Workflow Modell 83

A. Die erstellte Software 85
A.1. Der Beispielproze} , Beschwerde iiber Kreditkartenabrechnung“ 85

A.2. Einschrankungen der aktuellen Implementierung (Stand Ende 1996) . 87

A.3. Die Softwaremodule

Universitdt Stuttgart

Software—Labor Inhaltsverzeichnis

1. Workflow—Management—Systeme

In diesem Abschnitt werden die wesentlichen Begriffe auf dem Gebiet des Workflow—
Managements eingefithrt [WfM96]. Anschlieflend wird motiviert, welche Vorteile der
Einsatz von Workflowsystemen bringt. Aufgrund eines Vergleichs mit der heutzuta-
ge existierenden betrieblichen Softwareausstattung wird die Kernidee des Workflow—
Managements herausgestellt.

1.1. Begriffe

Fin Workflow—Management—System (WFMS) ist ein Softwaresystem zur Koor-
dination und kooperativen Abwicklung von Geschaftsvorgdngen in verteilten hete-
rogenen Rechnerumgebungen. Die Aufgaben eines Workflow—Management—Systems
liegen in einer ersten Phase in der Modellierung der Aufbau— und Ablauforganisation
eines Unternehmens und in der zweiten Phase in der Steuerung, Uberwachung und
Protokollierung der modellierten Ablaufe.

Die Ablauforganisation wird formal in Geschéftsprozessen modelliert, in denen
die Reihenfolgebeziehungen der einzelnen Vorgangsschritte spezifiziert werden. Zu
jedem Schritt wird bestimmt, welche Arbeitsobjekte (Daten bzw. Dokumente) und
welche menschlichen und technischen Ressourcen zur Ausfithrung benétigt werden.
Ein Geschéftsprozel bzw. ein workflow kann als Graph modelliert werden mit Vor-
gangsschritten als Knoten und Kontrollflu— und Datenflulbeziehungen als Kanten.

Eine Vorgangsschritt, im Geschéftsprozel Aktivitédt genannt, ist ein Stiick zu-
sammenhangender Arbeit, die von einer Person ausgefithrt wird. Zur Bearbeitung
der Aufgabe in einer Aktivitdt kénnen vom Bearbeiter interaktive Anwendungspro-
gramme eingesetzt werden. Alternativ sind auch manuelle Aktivitdten ohne Com-
puterunterstiitzung moglich, oder automatische Aktivitaten, die ohne menschliche
Interaktion auskommen.

1.1.1. Modell eines Geschiftsprozesses

In Abbildung 1.1 ist das Modell eines Geschéftsprozesses dargestellt. Hierbei wird das
von FlowMark benutzte Modell vorgestellt [LR94]. Die Aktivitdten sind durch Kon-
trollflufkonnektoren miteinander verbunden. Die Aktivitat A, wird sequentiell nach
Beendigung von A; ausgefithrt. A; und B; werden parallel ausgefithrt. Nach A; wird

Universitdt Stuttgart

Software—Labor 1 Workflow—Management—Systeme

-

Legende:

= Datenflu®
— KontrollfluB

Q Aktivitat
Q Block

Datencontainer:
1 Input/Output
1 Source/Sink

e N I B

condition
—

condition

v
(|

Abbildung 1.1.: Das Modell eines Geschéftsprozesses

entsprechend den Bedingungen an den Kontrollkonnektoren der obere Zweig und/oder
der untere Zweig mit A4 ausgefithrt. Die Bedingungen sind frei wéhlbar. Es sind al-
so entweder beide (parallele Ausfiihrung), eine von beiden (alternative Ausfithrung)
oder keine (Ende der Ausfithrung) der Bedingungen erfiillt. Nach Ausfithrung eines
Zweiges wird As bearbeitet, wobei vor Ausfithrung von As alle dessen eingehenden
Konnektoren evaluiert sein miissen. Jede Aktivitdt besitzt Inputcontainer und Out-
putcontainer fiir Daten. Die Weitergabe von Daten wird durch die DatenfluBkonnek-
toren gesteuert. Die speziellen Datencontainer Source und Sink sind die Input— und
Outputcontainer eines Geschéftsprozesses.

1.1.2. Modell einer Aktivitat

Inputcontainer Outputcontainer

Variable | Wert Variable | Wert

N

Aufgaben-
beschreibung

Rolle/Akteur

Dokumente
Nachbedingung

benétigte Programme

Abbildung 1.2.: Die innere Struktur einer Aktivitat

In Abbildung 1.2 ist eine Aktivitdt mit ihrer inneren Struktur dargestellt. Der Date-
ninputcontainer besteht aus einer Menge von Variablen, die zu Beginn einer Aktivitét

10

Universitdt Stuttgart
1.1 Begriffe Software—Labor

iiber die Datenflulkonnektoren belegt werden, und von der Anwendung ausgelesen
werden koénnen. Die Variablen im Datenoutputcontainer werden durch das Anwen-
dungsprogramm gesetzt. Die eingehenden KontrollfluBkonnektoren werden iiber die
Startbedingung logisch miteinander verkniipft. Falls die Startbedingung wahr wird,
wird auf das Eintreten eines Ereignisses gewartet. Falls dieses eingetreten ist oder
falls kein Ereignis angegeben ist, wird die Vorbedingung gepriift. Falls auch diese
erfiillt ist, wird die Aktivitat einem Bearbeiter zugeteilt und diesem auf die Arbeits-
liste gelegt. Der oder diejenige fiithrt das zugehorige Programm aus, das dann den
Datencontainer als die Eingabedaten verarbeitet und die Ausgabedaten in den Out-
putcontainer schreibt. Anhand der Nachbedingung kann das System noch Kontrollen
durchfiihren, ob die gestellte Aufgabe wirklich erfolgreich erledigt worden ist. Falls
nicht, erhalt derselbe Bearbeiter die Aktivitat erneut.

1.1.3. Die Systemkomponenten eines Workflowsystems

e] —

¥ 1 W q " -_d. = }
i] ool o Flcllon e A y
il I\ Edliw basatzung § i--!’-'i-i’?"
L i
M|y -« Worgangs- . . 5 e L e
Irifaen "::-ns- * ' ¢ ‘ ' | Balegung
B Sysiam
-
n <
.I :]] .I........... .I. Dl:kl.ll'ﬂ-:ll'ﬂ:l'l
T—— e M agament
i . Swstem
Aktiwitatan ; == Datenbank ———it=
Marages E';":;LLJU Marmgesmanl | [2 l]

Sysbem R

& & =

Abbildung 1.3.: Die Systemkomponenten eines Workflowsystems

Die zentrale Komponente eines Workflowsystem ist die Workflow—Engine, die die Spe-
zifikation eines Geschéftsprozesses einliest, diesen instanziiert und die Aktivitdten
zu den richtigen Zeitpunkten auf die Bearbeiter verteilt, sowie fiir den Trans-
port der Daten und Dokumente zu den Bearbeitern sorgt. Die Anwendungsdaten
und Dokumente, sowie die Workflow—Verwaltungsdaten werden in Datenbank— und
Dokumenten—Management—Systemen gespeichert. Die Engine benutzt eine Orga-
nisationskomponente, die Kenntnis iiber die Aufbauorganisation des Unternehmens
hat, zur Auflosung einer Rolle (z. B. Sachbearbeiter) in einen konkreten Bearbeiter.
Zudem kann die Organisationskomponente noch eine Ressourcenverwaltung realisie-
ren. Die Spezifikation der Geschéftsprozesse und die Aufbauorganisation werden im

11

Universitdt Stuttgart
Software—Labor 1 Workflow—Management—Systeme

Workflow—Editor grafisch eingegeben. Das Vorgangsinformationssystem liefert ver-
schiedene Sichten auf den aktuellen Zustand des Workflowsystems und auf die Histo-
rie. Der Aktivitdtenmanager stellt die Benutzeroberfliche des Bearbeiters zum Sy-
stem dar. Durch ithn kann der Bearbeiter seine ihm zugeteilten Aktivitdten ausfithren
und neue Vorginge starten.

1.2. Motivation von Workflowsystemen

Durch die Identifikation und die anschlieende Spezifikation von Geschéaftsprozessen
werden nicht nur lokale, sondern auch globale Optimierungspotentiale im Unterneh-
men aufgedeckt, die durch die Neuordnung ganzer Wertschopfungsketten ausgenutzt
werden kénnen. Mit der Abkehr von abteilungsorientierten hin zu prozeflorientier-
ten Organisationsstrukturen wird die Automatisierung von Prozessen erleichtert. Die
unternehmensweite Steuerung und die verbesserten Informationsféhigkeiten des Sy-
stems erlauben es, den Zustand aller Vorgénge detailliert zu kontrollieren. Die Au-
tomatisierung der Prozesse birgt das Potential zu einem erheblich geringeren Anteil
von Transport- und Liegezeiten im Gesamtvorgang. Die informationstechnische Mo-
dellierung der Prozesse erlaubt eine wesentlich flexiblere, schnellere und einfachere
dynamische Anpassung an geanderte Randbedingungen. Die Integration der fiir ein
Unternehmen lebenswichtigen bestehenden Computeranwendungen (legacy systems)
ist moglich.

Der Einsatz von Workflowsystem kann so zu einer hohen Produktivitétssteigerung
fiithren.

1.3. Die Kernidee des Workflow—Management

Heutzutage 1&Bt sich die Situation der betrieblichen EDV in vielen Féllen so charak-
terisieren:

Die Mitarbeiter einer Firma werden funktionsorientiert durch Computerprogram-
me in ihrer Arbeit unterstiitzt. Typische Beispiele sind hier Programme fiir die
Unterstiitzung der Biiroarbeit, wie Tabellenkalkulation oder Textverarbeitung. Die
kooperative Bearbeitung eines Dokuments wird durch solche Programme im allgemei-
nen nicht angeboten. Die Vorgeschichte der Bearbeitung und die noch zu leistenden
zukiinftigen Arbeiten finden in funktionsorientierten Systemen keine Unterstiitzung.
Die Computerprogramme werden als , Insellésungen® eingesetzt: Es besteht kaum ein
Bezug zum gesamten Vorgang.

Neben diesen funktionsorientierten Programmen existieren noch stérker prozef3-
orientierte Anwendungen, die meist als grofle monolithische Anwendungen auf Host-
rechnern realisiert sind. Solche Anwendungen implementieren ,hartverdrahtet® einen
oder mehrere Geschiéftsvorginge. Andere Geschiftsprozesse kénnen damit nicht aus-
gefiihrt werden und Anderungen im Geschiftsprozef kénnen nur mit groem Aufwand

12

Universitdt Stuttgart
1.3 Die Kernidee des Workflow—Management Software—Labor

eingebracht werden.

Die Idee der Workflowsysteme ist nun, den Prozefibegriff explizit im Software-
system sichtbar zu machen und auf diese Weise ein konfigurierbares System fiir die
Abwicklung von Geschiftsprozessen zu schaffen. Der Geschéftsprozefl wird dazu in
Arbeitsschritte aufgegliedert, in denen funktionsorientiert gearbeitet wird. Die Ar-
beitsschritte werden durch Kontroll- und Datenflul-Beziehungen zu einem Prozef}
verkniipft. Das Workflowsystem erméglicht die Modellierung und flexible Anderung
dieser Beziehungen und stellt bei der Ausfithrung des Prozesses deren Einhaltung si-
cher. Zuséatzlich nutzt das System noch weitere Informationen, wie z. B. die Aufbau-
organisation, um eine bestmégliche Prozeflunterstiitzung und Kontrolle zu gewahrlei-
sten.

Die Kernidee der Datenbanksysteme ist das Herauslésen des Datenmanagements
aus den Anwendungen. Analog dazu l6sen Workflowsystem das Prozeimanagement
aus den Anwendungen.

Das hat den Vorteil, dal das Workflowsystem bei der Ausfiihrung beliebiger
Geschiftsprozesse verwendet werden kann, und daB Anderungen aufgrund des An-
satzes ,,Modellierung statt Programmierung® leichter zu realisieren sind.

13

Universitdt Stuttgart
Software—Labor 1 Workflow—Management—Systeme

14

2. Fehlertoleranz in
Workflowsystemen

Die Einfithrung eines Workflow—Management—Systems in ein Unternehmen mufl wohl-
iiberlegt und sorgfiltig geplant sein. Die wertschépfenden Prozesse innerhalb des Un-
ternehmens werden dadurch unter die Kontrolle des Workflow—Management—Systems
gestellt. Der Erfolg des Unternehmens hangt somit direkt von der Funktionsfahigkeit
des Systems ab. Wenn das System einmal nicht funktionsfdhig sein sollte, kommen
alle computerunterstiitzten Geschiftsprozesse zum Erliegen. Der mogliche Ausweg,
die Prozesse kurzfristig ohne Computerunterstiitzung durchzufithren, ist meist nicht
einfach gangbar, da es dadurch zu Inkonsistenzen zwischen den Daten im System
und der Realitét kommt. Nach dem Neustart des Systems kann es im allgemeinen
nicht sofort wieder eingesetzt werden, da zuerst der veraltete Datenzustand manuell
auf den neuesten Stand gebracht werden mufl. Durch eine schrittweise Einfithrung
und durch den Einsatz eines fehlertoleranten und stabilen Systems kann man dieser
Gefahr begegnen. In [SB96] wird die hier angesprochene Problematik ausfiihrlich
behandelt.

2.0.1. Aligemeine Anforderungen

Ein Workflow—Management—System muf als das ,,Riickgrat® eines Unternehmens an-
gesehen werden: Ein Bruch wére todlich.

Oberste Strategie beim Einsatz eines solchen Systems mufl daher die Fehlerver-
meidung sein. Da in der realen Welt dieses Ziel aber nicht vollstandig erreicht werden
kann, ben6tigt man dariiber hinaus Mechanismen, um auf Fehler reagieren zu kénnen.
Das ganze System muf} daher folgende allgemeine Anforderungen erfiillen.

e Korrektheit:
Ein System ist korrekt, wenn es die Aufgabe, fiir die es spezifiziert ist, erfiillt.
Voraussetzung dafiir ist unter anderem, daf} die Integritat der Daten, die durch
das System verwaltet werden, gewéhrleistet ist. Nur mit konsistenten Daten

kann ein System korrekt arbeiten. Inkonsistente Daten kénnen zu fehlerhaftem
Verhalten fiihren.

Auch beim Auftreten von Fehlern darf das System keine inkonsistenten

15

Universitdt Stuttgart

Software—Labor 2 Fehlertoleranz in Workflowsystemen

16

Zustidnde erzeugen. Diese Forderung hat grofle Auswirkungen auf die Fehlerbe-
handlungsmechanismen des Workflowsystems.

Diese Anforderung kann nicht alleine vom Workflowsystemen erfiillt werden, da
es keine vollstdndige Kontrolle {iber die bearbeiteten Daten hat. In den Akti-
vitdten kénnen Programme oder Menschen Daten auflerhalb der Kontrolle des
Workflowsystem inkonsistent verandern, ohne daff das System darauf Einfluf}
hat oder die Inkonsistenz iiberhaupt bemerkt.

Hohe Zuverlassigkeit:

Ein System ist hoch zuverldssig, wenn es liber lange Zeitraume hinweg ohne
Auftreten eines effektiven Fehlers funktioniert. Ein Fehler ist dann effektiv,
wenn er die spezifizierte Funktion des Systems beeintrachtigt [GR93].

Hohe Verfiigbarkeit:

Léngerfristige Ausfallzeiten des Gesamtsystems verringern die Verfiigharkeit.
Wiéhrend dieser Zeit kann keiner der Mitarbeiter eines Unternehmens oder ei-
ner Behorde weiterarbeiten, da bei dem umfassenden Einsatz eines Workflow—
Management—Systems nahezu alle Arbeiten iiber das System oder zumindest
mit dessen Hilfe abgewickelt werden. Der Stillstand des Systems kann daher zu
immensen Kosten fithren. Die Verfiigbarkeit kann durch hohe Zuverlassigkeit
oder durch den Einsatz redundanter Komponenten erhoht werden. Durch den
Einsatz von Mechanismen fiir einen schnellen, weitgehend automatischen Wie-
deranlauf des Systems (Recovery) kann auch die Verfiigharkeit erhoht werden.

Robustheit:

Ein robustes System verhélt sich tolerant gegeniiber unerwarteten Eingaben und
bleibt auch in Ausnahmesituationen weiterhin funktionsfahig. Die Figenschaft
Robustheit tragt damit zur Erhohung der Verfiigbarkeit bei.

Hohe Flexibilitat:

Ein flexibles System erlaubt auch nach dem Auftreten eines Fehlers oder einer
Ausnahmesituation, die nicht automatisch durch Fehlerbehandlungsmechanis-
men des Systems beseitigt werden kénnen, manuelle Eingriffe in die Kontrolle
des Systems, um den Fortgang der Prozesse zu erméglichen.

In einem Workflowsystem werden immer auch Fehler auftreten, die sich nicht
automatisch beheben lassen. Das sind zum einen Systemfehler, wie der Ausfall
eines Rechnerknotens, und zum anderen Fehler, die das System nicht erkennen
kann, da sie semantischer Natur sind. In einem solchen Fall ist der Benutzer
auf die Flexibilitat des Systems angewiesen: Der Eingriff eines Menschen ist
nétig. Er mufl die Kontrolle iibernehmen und das System in einen Zustand
iiberfithren, in dem es die Kontrolle wieder selbst {ibernehmen kann. Dazu
mufl das System Methoden anbieten, die der Benutzer ,manuell® anwenden
kann, um die Fehlersituation zu bereinigen und den Prozefl wieder in geordnete

Universitdt Stuttgart
2.1 Workflow—Transaktionen Software—Labor

Bahnen zu lenken. Kompetente Benutzer kénnen so unter Ausniitzung ihres
Fachwissens und dem FEinsatz von Software-Werkzeugen die Auswirkungen von
Fehlern beseitigen und so das System reparieren.

Aufgrund der Bedeutung des Problemgebiets der Fehlertoleranz bei Workflowsy-
stemen wurden die Konzepte Workflow—Transaktionen und Kompensations—Sphédren
entwickelt und im Workflowsystem Surro implementiert. In den folgenden Abschnit-
ten werden diese zwei Konzepte erlautert.

2.1. Workflow—Transaktionen

Probleme bei der Verwendung von ACID-Transaktionen in langandauerenden
Vorgingen sind der hohe Verlust bereits geleisteter Arbeit bei einem ,rollback® und
die Akkumulation von Sperren auf Daten, was zu schlechterer Kooperation fiithrt
[SB96]. Der Einsatz von Transaktionen eignet sich also nicht als alleiniges Konzept
zur Implementierung von fehlertoleranten Workflows. Wenn man diese Probleme
beriicksichtigt, zeigt sich aber, dafl dieses Konzept fiir einen begrenzten Finsatz in
Workflowsystemen durchaus geeignet sein kann. Das Einsatzgebiet ergibt sich aus
den folgenden Randbedingungen:

o Die Transaktionen miissen “klein” sein. Dies bezieht sich zum einen auf eine
kurze Zeitdauer, zum anderen auf die Datenmengen, die sie anfassen und so-
mit sperren. Ansonsten greifen die bereits oben beschriebenen Probleme bei
langandauernden Transaktionen.

o Alle Aktivitaten der Workflow—Transaktionen miissen als Resource-Manager
an der Transaktion teilnehmen kénnen und entsprechende Schnittstellen zur
Steuerung des Recovery anbieten. Die Schnittstellen miissen zu dem im Work-
flowsystem verwendeten Transaktions—Service passen. Es kénnen damit keine
beliebigen Aktivitdten an einer Workflow—Transaktion teilnehmen!

2.1.1. Begriffe

Eine Sphare ist eine Menge von Aktivitaten in einem Workflow. Wenn zwischen
Aktivitdten Abhédngigkeiten in der Art existieren, dafl nie eine der Aktivitdten er-
folgreich und eine andere erfolglos beendet werden darf, kénnen die Aktivitdten zu
einer Sphére zusammengefafit werden. FEine Sphére wird zur Modellierungszeit des
Workflows spezifiziert. In der Abbildung 2.1 ist eine Sphéare in einem Aktivitdtennetz
eingezeichnet.

Eine Sphére mufl dabei keine Zusammenhangskomponente im Aktivitdtennetz
bilden. Es miissen also nicht alle Aktivitdaten in einer Kontrollflufbeziehung stehen,
wie in Abbildung 2.2 gezeigt.

17

Universitdt Stuttgart

Software—Labor 2 Fehlertoleranz in Workflowsystemen

>O Legende:

O ACID-Aktivitat
O normale Aktivitat
—= Daten-/Kontrollfluld

Eingang

Sphére

Abbildung 2.1.: Eine Sphére in einem Aktivitdtennetz

Legende:

O ACID-Aktivitat
O normale Aktivitat
— Daten-/KontrollfluR

Abbildung 2.2.: Eine Menge von Aktivitdten in einer Sphére, die keine Zusammen-
hangskomponente im Aktivitdtennetz bilden

Als Eingang einer Sphéire wird der Kontroll- bzw. Datenflul bezeichnet, der von
einer Aktivitdt aulerhalb der Sphére zu einer Aktivitat innerhalb der Sphére fiihrt.
Entsprechend wird als Ausgang der Kontroll- bzw. Datenfluf} definiert, der von einer
Aktivitat innerhalb der Sphére zu einer Aktivitdat aulerhalb der Sphére fithrt. Fine
Sphére kann mehrere Ein— und Ausgédnge besitzen. In der Abbildung 2.1 hat die
Sphére einen Eingang und zwei Ausgénge.

Als ACID-Aktivitaten werden Aktivitdten bezeichnet, die die Eigenschaft ha-
ben, dafl sie entweder selbst Resource-Manager sind oder nur auf Daten iiber
Resource-Manager zugreifen. Es mufl gewdhrleistet sein, dafl die in den Aktivitédten
verwendeten Daten nur iiber Resource-Manager im Rahmen einer Transaktionen ge-
lesen oder verandert werden (siehe Abschnitt 2.1.3).

Definition: Workflow—Transaktion

Fine Workflow—Transaktion ist eine Menge von Aktivititen (eine Sphdre
im Workflowmodell), die im Kontext einer ACID-Transaktion ausgefihrt
werden.

Die Bearbeitung einer Aktivitdt kann durch das folgende grundlegende Zu-
standsiibergangsdiagramm modelliert werden (siehe Abbildung 2.3). Das Diagramm
ist zum besseren Versténdnis gegeniiber realen Implementierungen vereinfacht wor-
den. FEin Startzustand ist am linken Rand schwarz markiert. Ein Endzustand ist
rechten Rand markiert.

18

Universitdt Stuttgart
2.1 Workflow—Transaktionen Software—Labor

\

\
" rollback

. (auBer Kontroll erfolglos

erfolgreich

rollback .-

Abbildung 2.3.: Das (vereinfachte) Zustandsiibergangsdiagramm einer Aktivitat

Eine Aktivitdt beginnt mit dem Initialzustand STARTBAR. Der Start durch den
Bearbeiter iiberfiihrt die Aktivitdt in den Zustand IN BEARBEITUNG. Dort kénnen
Fehler auftreten, die auf der Aktivitdtenebene angesiedelt sind. Wenn ein solcher Feh-
ler erkannt wird, wird die Aktivitdt in den Zustand ERFOLGLOS gebracht. Auf diese
Art bekommt das Workflowsystem Kenntnis vom Auftreten eines Aktivitatenfehlers
und ein Fehlerkontext kann von der Aktivitét an das Workflowsystem tibergeben wer-
den. Kann eine Aktivitdt ohne Auftreten eines Fehlers beendet werden, kommt sie
in den Zustand ERFOLGREICH. Eine Aktivitdt wird in den zusédtzlichen Zustand AU-
SSER KONTROLLE gebracht, wenn die Aktivitdt weder eine erfolgreiche, noch eine
erfolglose Bearbeitung melden kann. In diesem Fall ist die Aktivitdt auler Kontrolle
geraten. Problematisch ist hierbei die Detektion des Ubergangs IN BEARBEITUNG
nach AUSSER KONTROLLE. In diesem Fall mufl das Workflowsystem ohne Hilfe der
Aktivitat erkennen, dafl ein Aktivitatenfehler aufgetreten ist. Voraussetzung fiir ein
fehlertolerantes Workflowsystem ist, dafl das System auch dann sinnvoll weiterarbei-
ten kann, wenn einmal dieser Zustand auftritt. Innerhalb von Transaktions—Sphéaren
gibt es noch weitere Zustandsiibergange, die implizit durch ein Rollback der Sphéaren—
Transaktionen ausgeldst werden.

2.1.2. Das Konzept der Workflow—Transaktion

Ein Workflowsystem, das Workflow—Transaktionen anbietet, tritt als Starter und
als normaler Teilnehmer der Transaktion auf. Beim Betreten einer Sphiare muf} die
Workflow—Transaktion durch das Workflowsystem bei einem Transaktions—Service in-
itilert werden. Dann registriert sich das Workflowsystem selbst als Teilnehmer. Dazu
muf} das Workflowsystem als Resource-Manager fiir die Workflow—Daten auftreten
kénnen.

Falls das Workflowsystem Datenfliisse verwaltet, iber die Aktivitdten mit Daten
versorgt werden, mufl das System dafiir sorgen, daf} die Daten die Sphére nicht vor-
zeitig verlassen. Dasselbe gilt fiir den Kontrollflul. Erst mit dem erfolgreichen Ende

19

Universitdt Stuttgart

Software—Labor 2 Fehlertoleranz in Workflowsystemen

der Transaktion diirfen Aktivitaten auflerhalb der Sphire angestoflen werden. Das
Workflowsystem muf} als Resource-Manager die Isolationseigenschaft der Transakti-
on bereitstellen, indem die Daten— und Kontrollfliisse der Sphéare nach auflen bis zum
erfolgreichen Ende verzogert werden.

Durch die Teilnahme an der Transaktion kann das Workflowsystem den Bearbei-
tern eine Funktion an ihrer Bedienoberfliche anbieten, mit der sie eine Workflow—
Transaktion interaktiv abbrechen kénnen.

Falls die Workflow—Transaktion zuriickgesetzt werden soll, mufl das Workflowsy-
stem den Zustand des Workflows wieder in den Anfangszustand der Sphére bringen.
Alle bisherigen Anderungen innerhalb der Sphére miissen durch das Workflowsystem
riickgédngig gemacht werden. Nach dem Abbruch und Riicksetzen der Sphére wird
die Workflow—Transaktion durch das Workflowsystem neu gestartet. Anstatt eines
Neustarts sind auch andere Aktionen denkbar. So kénnte man z.B. den Neustart
x—mal versuchen und nach dem x—ten Fehlschlag eine alternativen Workflow starten.

Eine Workflow—Transaktion mufl zusammen mit dem Workflow in der Mo-
dellierungskomponente des Workflowsystems spezifiziert werden. FEine Workflow—
Transaktionen wird durch eine Sphire modelliert. Alle Aktivitdten, die an Trans-
aktion teilnehmen sollen, miissen in eine Sphére aufgenommen werden. Die Model-
lierungskomponente mufl auch dafiir sorgen, dafl folgende strukturellen Bedingungen
fiir die Sphéare eingehalten werden:

o Alle Aktivitaten der Sphére sind Teilnehmer an der Workflow—Transaktion. Die
Modellierungskomponente mufl daher priifen, ob die an der Sphére teilnehmen-

den Aktivitdten die entsprechenden Randbedingungen erfiillen, wie sie in Ab-
schnitt 2.1.3 beschrieben werden.

e Fine Schachtelung von Sphéren ist erlaubt und dient zur Verkleinerung des Be-
reichs, der zuriickgesetzt werden soll. So kann ein feineres Recovery—Granulat
unterstiitzt werden. Da einmal spezifizierte Workflows in Form von Subprozes-
sen wiederverwendbar sein sollen und in diesen Prozessen auch Sphéaren definiert
sein konnen, benétigt man auch aus diesem Grund die Méglichkeit geschachtel-
ter Workflow—Transaktionen.

Innerhalb der Aktivitdten kénnen durch Anwendungsprogramme neue Trans-
aktionen begonnen und wieder beendet werden. Diese Transaktionen sind dann
als in die Workflow—Transaktion geschachtelte Transaktionen zu realisieren.

o Aus der Isolationseigenschaft der Sphére ergibt sich, dafl kein Pfad von einem
Ausgang auf einen Eingang derselben Sphéare existieren darf (Abb. 2.4a).

Angenommen, es gibe einen solchen Pfad. Aufgrund der Isolation wird der
KontrollfluBausgang erst nach Beendigung der Sphére aktiv. Die Sphére kann
aber noch nicht beendet sein, da der Kontrollfluleingang auf diesem Pfad noch
nicht aktiv sein kann, d. h. es gibt eine nicht beendete Aktivitat in der Sphére.

20

Universitdt Stuttgart
2.1 Workflow—Transaktionen Software—Labor

@ (b)

Abbildung 2.4.: Verlassen und Wiedereintritt des Kontrollflusses (a) und partiell
tiberlappende Sphéren (b) sind nicht erlaubt.

Die Sphére kann noch nicht beendet sein. Es gibt einen Widerspruch, daher
darf kein solcher Pfad existieren.

e Die partielle Uberlappung von Sphiren (Abb. 2.4b) ist nicht moglich. Ei-
ne Aktivitat darf immer nur an hochstens einer Sphére teilnehmen. Partiell
iiberlappende Spharen kénnen durch eine Vereinigungsoperation in eine einzige
Sphare tiberfithrt werden. Partiell iiberlappende Sphéren erweisen sich somit als
unnoétig. Der Effekt des feineren Transaktionsgranulats kann durch geschach-
telte Sphéiren ebenso erreicht werden.

2.1.3. Anforderungen an ACID—Aktivitaten

Damit Aktivitaten an einer Workflow—Transaktion teilnehmen kénnen, miissen sie
bestimmten Voraussetzungen gentigen. Wir unterscheiden deshalb zwischen normalen
Aktivitdten und sogenannten ACID-Aktivititen, die diese Voraussetzungen erfiillen.

o Die Aktivitaten diirfen nur iiber Resource-Manager auf Daten zugreifen. Wenn
sie Daten selbst verwalten, miissen die Aktivitaten selbst als Resource-Manager
auftreten. Eine Aktivitat, die als Resource-Manager agieren mochte, mufl alle
notwendigen Funktionen implementiert haben, um selbsténdig ein Recovery
ausfithren zu kénnen.

o Die Aktivitdten miissen eine geeignete Schnittstelle aufweisen, iiber die be-
stimmte Funktionen der Aktivitdten ausgelost werden koénnen (z. B. das Reco-
very). Ebenso miissen sie Schnittstellen fiir die Teilnahme an einem 2-Phasen—
Commit—Protokoll besitzen (Prepare, Commit, Rollback). Damit erreicht der
Transaktions—Service eine gemeinsame Ubereinkunft aller an einer Transaktion
beteiligten Resource-Manager iiber den Erfolg oder Miflerfolg der Transakti-
on. Die angebotene Schnittstelle mufl zu dem im Workflowsystem verwendeten
Transaktions—Service passen.

21

Universitdt Stuttgart

Software—Labor 2 Fehlertoleranz in Workflowsystemen

e Wenn in den Aktivitdten physische Operationen aufgefithrt werden, bedarf es
der Verwendung eines erweiterten Resource-Manager, der Physical-Resource—
Manager (PRM) genannt wird [Sch93]. “Real actions” haben im Gegensatz
zu Datenbankoperationen die Eigenschaft, daf} ihre Auswirkungen sofort sicht-
bar werden und dafl diese Auswirkungen oft nicht mehr riicksetzbar sind. Das
klassische Beispiel fiir eine solche Operation ist das Bohren eines Loches in ein
Werkstiick. Unter der Annahme, dafl nur eine einzige physische Operation in der
Workflow—Transaktion stattfindet, kann das Recovery eines PRM so aussehen:
Wenn der Abbruch der Transaktion vor der physischen Operation stattfindet,
dann mufl der PRM wie ein regulérer Resource-Manager reagieren. Es wird ein
Rollback durchgefithrt. Wenn der Abbruch nach der Ausfithrung der physischen
Operation stattfindet, wird wiederum ein normales Rollback durchgefiihrt. Die
physische Operation wird dabei nicht zuriickgesetzt. Beim wiederholten Starten
der Transaktion wird dann die bereits in der vorherigen Transaktion ausgefiihrte
physische Operation ausgelassen. Wenn der Abbruch wihrend der physischen
Operation stattfindet, dann mufl eine anwendungsspezifische Fehlerbehebungs-
mafBnahme durch den PRM getroffen werden.

Wenn man mehrere physische Operation innerhalb einer Workflow—Transaktion
benutzen will, wird die Komplexitét des Recovery deutlich hoher.

Fiir den Fall, dafl die Auswirkungen physischer Operation verzégert werden
kénnen, z.B. das Verschicken einer Email oder eines Briefes, ist es Auf-
gabe des Resource-Managers, dafiiv zu sorgen, dafl die Operation erst in
der Propagierungs—Phase des Zwei—-Phasen—Commit—Protokolls am Ende der
Workflow—Transaktion ausgefithrt wird. So wird die Email solange verzogert,
bis die gesamte Transaktion erfolgreich beendet wird. Die Operation darf dann
allerdings nicht mehr fehlschlagen.

2.1.4. Einsatzgebiete von Workflow—Transaktionen

Durch den alleinigen Einsatz von Workflow—Transaktionen kann man das Ziel eines
fehlertoleranten Ablaufs von Geschéftsprozessen nicht erreichen. Die Nachteile und
Einschrankungen, wie schon zu Beginn von Abschnitt 2.1 beschrieben, iiberwiegen
in diesem Fall meist die Vorteile bis hin zur Unbenutzbarkeit. Nur in einem eng
beschréankten Einsatzfeld erweist sich das Konzept der Workflow—Transaktionen als
hilfreich. In Abschnitt A.1 wird ein Beispielprozefl ndher beschrieben, in dem zwei
Workflow—Transaktionen zum FEinsatz kommen. Das Umfeld des Einsatzes liegt im
Datenbankbereich, wo im allgemeinen schon die entsprechenden Resource-Manager
mit den standardisierten Schnittstellen vorhanden sind, und in dem auch die An-
wendungen héufig Sicherheitsanforderungen haben, die nur durch den Einsatz von
Transaktionen abgedeckt werden kénnen.

Wichtig erweist sich dieses Konzept auch bei der Verwendung von sogenannten
business objects als Aktivitdten. Business—Objekte sind Repriasentanten fiir alle in

22

Universitdt Stuttgart
2.1 Workflow—Transaktionen Software—Labor

einem Geschiftsprozefl vorkommenden Objekte. Dies kénnen Programme, Personen
oder Daten in der traditionellen Sichtweise sein. Business—Objekte werden zur Zeit
in der BOMSIG special interest group der OMG (Object Management Group) stan-
dardisiert. Diese Objekte bieten Methodenaufrufe an, um Operationen auf Daten
durchzufithren. Die Methoden sind oftmals von kurzer Dauer und werden automa-
tisch ausgefithrt, d.h. es gibt kaum manuelle Interaktion. Diese Methodenaufrufe
kénnen in einer Workflow—Transaktion als Operationen eingebunden werden, falls die
Objekte als Resource-Manager implementiert sind.

2.1.5. Einbindung von Legacy—Software

Eine Moglichkeit, vorhandene Softwareprogramme (Legacy—Software) in Workflow—
Transaktionen einzubinden, stellt der Ansatz in [Tau96] dar. Der Hauptansatzpunkt
besteht darin, das Dateisystem selbst zu einem Resource-Manager zu machen. Damit
kénnen alle Programme, die nur das Dateisystem zur Speicherung von Daten verwen-
den, in Transaktionen eingebettet werden, indem alle Dateizugriffe unter Transakti-
onsschutz gestellt werden. Dieses Konzept funktioniert aber nicht bei Programmen,
die eine Datenbank zur Speicherung verwenden. Aber in diesen Fallen kann die Da-
tenbank in die Workflow—Transaktion eingebunden werden.

Anderungen auf Dateien bzw. Teilen von Dateien kénnen durch das modifizier-
te Dateisystem nach auflen hin isoliert und bei einem Rollback wieder ungesche-
hen gemacht werden. Unter der Voraussetzung, dal die Anwendung ihren Zustand
vollstandig in Dateien sichert, ist dies eine Moglichkeit, nichttransaktional implemen-
tierte Anwendungen in Workflow—Transaktionen zu verwenden.

Die Einbindung eines solchen Konzepts in ein Workflow—Management—System er-
fordert, dafl das Workflowsystem vor dem Start einer Alt-Anwendung dem Datei-
system als Resource-Manager mitteilt, unter welchem Transaktionskontext die Da-
teioperationen der Anwendung ablaufen miissen. Die Legacy—Software kann dazu
keine Hilfestellung geben, da sie keine Kenntnis iiber Transaktionen hat. Siehe dazu

Abschnitt 3.4.

2.1.6. Realisierungsansiatze

Als Realisierungsansétze fiir Workflow—Transaktionen bieten sich die Standards fiir
verteilte Transaktionen an: Es kommt die X/Open Spezifikation for Distributed Tran-
saction Processing (DTP) XA und der Object Transaction Service (OTS) [OTS94]
der Object Management Group (OMG) in Frage. Insbesondere im Verbund mit dem
Einsatz der Business—Objekte kann sich OTS als sinnvoll erweisen. Die Aktivitdten
miissen die in den Standards spezifizierten Funktionen als API anbieten.

Bei Einsatz von OTS miissen die Anwendungsprogramme in den Aktivitéten ein
Objektinterface besitzen. Das Workflowsystem muf} sich der Dienste eines CORBA-
kompatiblen Objekt Request Brokers (ORB) bedienen, um die Anwendungsprogram-
me in den Aktivitaten aufzurufen.

23

Universitdt Stuttgart

Software—Labor 2 Fehlertoleranz in Workflowsystemen

2.2. Kompensations—Spharen

Das Konzept der Workflow—Transaktionen stellt hohe Anforderungen an die Funk-
tionalitdt der Aktivitaten, die an einer Workflow—Transaktionen teilnehmen. In vie-
len Féllen wird aber ein Workflowsystem mit Aktivitdten eingesetzt, die nicht die-
sen Anforderungen entsprechen. Oftmals haben die Anwendungsprogramme, die in
den Aktivitdten aufgerufen werden, kein Wissen dariiber, dafl sie im Rahmen eines
Geschéftsprozesses eingesetzt werden. Sie kénnen daher auch nicht oder nur sehr
schwer auf die Bediirfnisse der Workflow—Transaktionen abgestimmt werden.

Aus diesem Grund ist ein weiteres Konzept bei der Bearbeitung von Workflows
noétig, das den Ablauf von Workflows fehlertoleranter macht, ohne diese hohen Anfor-
derungen zu besitzen. Der Ansatz der Kompensations—Sphdren [Ley95] stellt kaum
noch Anforderungen an die Aktivitdten. Im Gegenzug dazu mufl man aber auf
die Isolationseigenschaft und die garantierte Konsistenz der Anwenderdaten bei der
Ausfithrung eines Workflow verzichten. Die Eigenschaft der Atomizitdt und der Dau-
erhaftigkeit bleiben erhalten. Das Mittel zur Erreichen dieses Ziels sind Kompensa-
tionsaktivitdten.

2.2.1. Begrtiffe

Eine Kompensationsaktivitéit unterscheidet sich nur durch ihre Verwendung von
einer normalen Aktivitdt. Jede Kompensationsaktivitdt muf} einer normalen Akti-
vitat bzw. einer Sphéare zugeordnet sein und soll alle Auswirkungen der normalen
Aktivitdt bzw. der gesamten Sphére beseitigen. Das Workflowsystem bietet aufler
dem Aufruf der Kompensationsaktivitdt keine weitere Unterstiitzung, um dieses Ziel
zu erreichen. Wegen der fehlenden Isolationseigenschaft fiir die Anwendungsdaten der
Kompensations—Sphéren muf} die Kompensationsaktivitat auch beriicksichtigen, dafl
die Datenanderungen der normalen Aktivitat eventuell schon von anderen Aktivitdten
gelesen und zur Weiterverarbeitung benutzt worden sind. Die Kompensationsakti-
vitdt mufl auch in diesen Fillen geeignete Mafinahmen treffen.

Der Begriff Sphére ! bezeichnet auch hier eine nicht unbedingt zusammenhingen-
de Menge von Aktivitaten in einem Workflow.

Definition: Kompensations—Sphére (engl.: compensation sphere)

Fine Kompensations—Sphdre ist eine Menge von Aktivitdten, die entwe-
der alle im Zustand ’erfolgreich’ oder alle im Zustand "kompensiert’ sind,
wenn der Kontrollfluf$ die Sphdre verldsst.

Das Zustandsdiagramm fiir die Aktivitdten mufl daher wie in Abbildung 2.5 mo-
difiziert werden. Es wird zusitzlich ein Zustand KOMPENSIERT eingefithrt. Dieser
Zustand ist weitgehend &quivalent zum Zustand STARTBAR mit dem Unterschied,

Lsiehe Definition Seite 17

24

Universitdt Stuttgart

2.2 Kompensations—Sphéaren Software—Labor

dafl mindestens eine Bearbeitung und eine Kompensation der Aktivitat stattgefunden
hat. Der Endzustand ERFOLGREICH wird dann verlassen, wenn andere Aktivitdten
der Sphére kompensiert werden miissen. Fine Sphére ist dann kompensiert, wenn
alle Aktivitaten der Sphére kompensiert sind.

erfolgrelch
aulder KontroIIe erfolglos
oo

-

Abbildung 2.5.: Das (vereinfachte) Zustandsdiagramm fiir Aktivitaten bei Kompen-
sations—Sphéren

2.2.2. Das Konzept der Kompensations—Sphéaren

Zur Modellierungszeit werden Aktivitaten zu einer Sphére zusammengefafit. Aus der
Sicht der Aktivitdten aulerhalb der Sphare werden die Aktivitaten zu einer atomaren
Ausfithrungseinheit. Zum Ausfithrungszeitpunkt des Workflows sorgt das Workflow-
system dafiir, daf} die Sphéare von den Aktivitdten auBerhalb der Sphére isoliert wird,
indem der Kontroll- und Datenflul bis zum Ende der Sphéare verzogert wird. Akti-
vitaten aulerhalb der Sphére kénnen somit keine Zwischenergebnisse von Aktivitaten
innerhalb der Sphéare iiber das Workflowsystem bekommen. Da die Anwenderpro-
gramme aber weiterhin auf beliebigen Datenbesténden arbeiten kénnen, die nicht im
Kontrollbereich des Workflowsystem liegen, konnen Zwischenergebnisse durchaus von
anderen Programmen verarbeitet werden. Die Isolation kann daher nicht durch das
Workflowsystem garantiert werden.

Wenn ein Fehler auftritt, werden alle bereits beendeten Aktivitaten kompensiert
und alle Aktivitdten abgebrochen, die noch in Bearbeitung sind. Danach kann die
Sphére entweder neu gestartet werden oder es wird ein alternativer Weg im Workflow
eingeschlagen, wie im vorherigen Kapitel beschrieben.

Dieses Konzept fordert schwéchere Voraussetzungen an die teilnehmenden Akti-
vitdten als die Workflow—Transaktionen. Die Aktivitdten miissen kompensierbar sein,
d.h. zu jeder Aktivitit A in der Sphire muf eine Kompensationsaktivitit A~! exi-
stieren, die die Auswirkungen der Aktivitdt A riickgdngig macht. Wie diese Kompen-
sierbarkeit erreicht wird, liegt ganz in der Verantwortung des Erstellers der Aktivitét.
Das Konzept der Kompensations—Sphéren bietet dazu aufler dem Aufruf der Kom-
pensationsaktivitat keine weitere Unterstiittzung an. Ergdnzend kann die Anforderung

25

Universitdt Stuttgart

Software—Labor 2 Fehlertoleranz in Workflowsystemen

aufgestellt werden, dafl jede Aktivitat (bzw. das Anwenderprogramm innerhalb der
Aktivitat) an ihrer Schnittstelle eine Funktion anbieten muf}, mit der die Aktivitat
vorzeitig abgebrochen werden kann, ohne daff dadurch der Anwenderdatenbestand in
einem inkonsistenten Zustand hinterlassen wird. Mit dieser Anforderung kann eine
Optimierung angewendet werden, die mit Hilfe des vorzeitigen Abbruchs der Akti-
vitdat die Riicksetzzeit der Sphéare verkiirzt, indem unnétige Arbeit nach Auftreten
eines Fehlers in der Sphére verhindert wird. Die Aktivitit A mufl nach ihrem Ende
oder nach einem Abbruch erneut gestartet werden kénnen, ohne daff dadurch ein
Fehler auftritt.

Die Anforderungen an die Kompensationsaktivitdt sind dafiir aber um so ausge-
pragter. Neben der Existenz die Aktivitdt mufl auch gefordert werden, dafi die Ak-
tivitdt niemals fehlschlagt. Die Aufgabe der Kompensationsaktivitit, das Beseitigen
der Auswirkungen der Aktivitdt A, wird dabei in keiner Weise durch das Workflowsy-
stem unterstiitzt. Der Kompensationsaktivitdt mufl diese Aufgabe vollig selbstandig
und korrekt durchfiihren.

Eine Sphére wird dann zuriickgesetzt, wenn eine der Aktivitédten in einen Fehler-
zustand (siehe Abbbildung 2.5) tiberfithrt wird. Das Zurlicksetzen einer Sphére sollte
auch iiber den interaktiven Aufruf einer Funktion méglich sein, die dem Benutzer
des Workflowsystem an der Bedienoberfliche angeboten wird. Uber diese Funktion
kann manuell ein Zuriicksetzen ausgelost werden, das eventuell durch spezielle Rechte
abgesichert werden kann.

Nach der Auslésung des Riicksetzvorgangs ist eine Entscheidung moglich, ob die
Sphére bis zu ihrem Beginn oder zu einem weniger weit zuriickliegenden Punkt zwi-
schen den Aktivitaten zuriickgesetzt werden soll. Wenn diese Auswahl, wohin zurtick-
gesetzt werden soll, dem Benutzer interaktiv iiberlassen wird, dann hat man eine Art
“Undo”-Funktion im Workflow realisiert. Man kann die letzten Vorgangsschritte (Ak-
tivitaten) innerhalb der Grenzen der Sphére riickgdngig machen und dann an dem
gewiinschten Punkt weiterarbeiten.

Fiir die Ausfithrungsreihenfolge der Kompensationsaktivitaten gibt es verschie-
dene Moglichkeiten. Die Kompensationsaktivitdten konnen alle parallel ausgefiihrt
werden, da alle dazu notwendigen Daten schon wihrend der Ausfithrung der nor-
malen Aktivitdten gespeichert werden. Falls ein solches Verhalten nicht gewiinscht
ist, kénnen die Kompensationsaktivitidten in der umgekehrter Reihenfolge wie die
normalen Aktivitdten ausgefithrt werden. Diese umgekehrte Reihenfolge kann durch
Umdrehen der KontrollfluBbeziehung bestimmt werden oder durch Auswerten der
Startzeitpunkte aller normalen Aktivitdten. Eine dritte denkbare Methode besteht
in einer frei spezifizierbaren Reihenfolge, die wahrend der Modellierung des Prozesses
festgelegt werden muf.

Die Schachtelung von Sphéaren muf}, wie bei den Workflow—Transaktionen auch,
aufgrund der Wiederverwendung von Workflowteilen erlaubt sein. Daraus ergibt sich
die Notwendigkeit, auch ganze Sphéaren riickgdngig machen zu miissen. Zusatzlich zu
dem Kompensieren aller Finzelaktivitdaten einer Sphére kann man auch die Moglich-
keit schaffen, mit einer einzigen Kompensationsaktivitat eine ganze Sphéare auf einmal

26

Universitdt Stuttgart

2.2 Kompensations—Sphéaren Software—Labor

zu kompensieren. Dazu miissen dann zu Sphéaren auch Kompensationsaktivitdten
einfithrt werden.

Ein Uberlappen von Sphiren bedeutet, daB eine Aktivitit an mehr als an ei-
ner einzigen Kompensations—Sphére teilnimmt. Wenn man dies zuldfit, handelt man
sich das Problem der kaskadierenden Kompensation weiterer Sphéren ein. Da Uber-
lappung keinen weiteren Vorteil als eine feinere Abstufung der Sphéren bringt und
dieser Vorteil auch iiber die Schachtelung von Sphéren erlangt werden kann, kann das
Uberlappen ohne Verlust an Funktionalitit verboten werden.

2.2.3. Vergleich zwischen Transaktions— und
Kompensations—Spharen

Das Konzept der Kompensations—Sphéren unterscheidet sich in einigen wesentlichen
Punkten von dem Konzept der Workflow—Transaktionen. Kompensations—Sphéaren
stellen hauptsédchlich die Eigenschaft der Atomizitdt bereit. Dabei werden keine
besonderen Anforderungen an die Aktivitdten gestellt. Das Workflowsystem fithrt
keine undurchdringbare Isolation der Sphéren durch. Zwischenergebnisse aus den
Aktivitdten in der Sphére konnen von allen Aktivitdten auf Kosten der Konsi-
stenz genutzt werden. Es wird keine standardisierte Schnittstelle zur Einbindung
in einen transaktionalen Kontext gefordert. Die Aktivitaten miissen nicht an einem
Zwei—Phasen—Commit—Protokoll teilnehmen kénnen. Die Aktivitdten miissen kei-
ne Resource-Manager sein und ihre Anderungen auf den Daten riickgingig machen
kénnen. Sie miissen kein Recovery implementiert haben.

Ein Schwachpunkt der Kompensations—Sphéaren ist die Tatsache, daf fiir eine
Garantie der Riicksetzbarkeit einer Sphére gefordert werden muf}, dal Kompensati-
onsaktivitdten nicht fehlschlagen diirfen. Diese Forderung ist aber nur schwer ver-
wirklichbar. Die Dauerhaftigkeit der Ergebnisse kann zwischen der Bearbeitung von
Aktivitaten gesichert werden, da dann das Workflowsystem die Kontrolle hat. Wenn
das System aber wihrend der Bearbeitung einer Aktivitat abstiirzt, gehen alle Ande-
rungen verloren, die in den laufenden Aktivitdten gemacht wurden. Auf diese Weise
kann ein inkonsistenter Datenzustand entstehen, der eventuell zur Folge hat, daf die
anschlieende Wiederholung der Aktivitat fehlschlagen kann.

Kompensations—Sphéaren kénnen entweder iiber die vorhandenen Mittel der Work-
flow—Spezifikationssprache modelliert oder durch eine direkte Unterstiitzung in der
Workflow—Engine realisiert werden. Beim Modellierungsansatz werden die Kompen-
sationsaktivitdten wie normale Aktivitaten behandelt. Der Kontrollflufl zwischen den
Kompensationsaktivitaten mufl explizit festgelegt werden. Im zweiten Ansatz wird
der Zustand einer Sphare durch die Engine verwaltet. Die Engine st6f3t bei Bedarf
die Kompensationsaktivitidten an. Es ist keine weitere Spezifikationen des Kontroll-
flusses notig, es sei denn, man moéchte die Reihenfolge der Kompensationsaktivitdten
explizit festlegen.

Der Vorteil der Kompensations—Sphéaren liegt darin, dafl bei einer Realisierung

27

Universitdt Stuttgart

Software—Labor 2 Fehlertoleranz in Workflowsystemen

nur Anderungen im Workflowsystem nétig sind. Auf die Realisierung der Aktivititen
hat dieses Konzept keine Auswirkungen.

28

3. Motivation weiterer
Workflow—Konzepte

Eine Uberpriffung des Konzepts der Workflow—Transaktionen und der
Kompensations—Spharen waren die Hauptbeweggriinde fiir die FErstellung des
Surro Prototyps. Dadurch ergab sich die Gelegenheit, auch noch weitere Konzepte
zu verwirklichen und auf ihre Tauglichkeit zu testen. Die weitergehenden Konzepte,
die in Surro implementiert wurden, werden in diesem Kapitel beschrieben.

3.1. Ereignisse

3.1.1. Problemstellung und Lésungsansiatze

Ereignisse (Events) sind ein wichtiges Konzept in Workflowsystemen, das die Reaktion
auf Umwelteinfliisse, die Synchronisation zwischen Workflows und Aktivitaten, sowie
die Ausnahmebehandlung erlaubt.

Durch das Einfithren von Ereignissen kann ein Workflowsystem auf Einfliisse der
Umwelt, d. h. der Welt auflerhalb des Workflowsystems, reagieren. Ein typisches Bei-
spiel fiir einen solchen externen Einflufl auf ein Workflowsystem ist das Eintreffen
eines Briefes mit der Post. Dieser Ereignis mufl vom System erkannt werden. Eine
entsprechende Reaktion muf} darauf stattfinden kénnen. Die Aufgabe der Ereignisver-
arbeitungskomponente eines Workflowsystems besteht im Erkennen von Freignissen,
im Verteilen der Ereignisse und im Reagieren auf Ereignisse. Typische Reaktionen
auf das Auftreten eines Ereignisse sind der Start einer Aktivitdt oder eines ganzen
Geschiftsprozesses. Ereignisse dienen somit als Ausloser (Trigger) einer Aktion.

Ereignisse konnen auch zur Synchronisation zwischen unterschiedlichen Geschéfts-
prozessen eingesetzt werden. Es kann vorkommen, dafl ein Prozefl solange angehalten
werden muf}, bis sich ein anderer Prozefl in einem bestimmten Zustand befindet.
Zusétzlich zur reinen Synchronisation sollte an diesem Zeitpunkt auch Kommunika-
tion (Datenaustausch) zwischen den Geschiftsprozessen stattfinden kénnen.

Ereignisse kénnen auch fiir eine Art generische Fehler- und Ausnahmebehandlung
eingesetzt werden. So kann ein Fehler oder eine Ausnahme ein Signal (Ereignis)
auslosen. Wenn fiir dieses Ereignis kein Aktion innerhalb des Geschéftsprozesses
definiert ist, dann wird das Ereignis an den néchsthéheren Prozefl weitergeben. Dieser

29

Universitdt Stuttgart

Software—Labor 3 Motivation weiterer Workflow—Konzepte

Prozel versucht dann, auf das Ereignis zu reagieren. Der oberste Prozefl muf} fiir
jedes definierte Signal ein Defaultaktion besitzen. Dieses Konzept ist analog zu dem
Konzept der exceptions in den Programmiersprachen Ada oder C+4+.

3.1.2. Die unterschiedlichen Arten von Ereignissen

Ein Ereignis wird als ein atomares Auftreten [CM94] definiert. Vor dem Auftreten ist
es noch nicht da, nach dem Auftreten ist es eingetreten. Zustandsénderungen der Au-
Benwelt (aus der Sicht des Workflowsystem) werden als externe Ereignisse bezeichnet.
Externe Ereignisse werden mit einem eindeutigen Namen identifiziert. Das Eintre-
ten eines bestimmten Zeitpunktes wird Zeitereignis genannt. Zeitereignisse konnen
absolut oder relativ sein. Ereignisse kénnen entweder einfach oder zusammengesetzt
sein. Primitive Ereignisse sind nicht weiter zerlegbar. Zusammengesetzte Ereignisse
sind Verkniipfungen von einfachen oder zusammengesetzten Ereignissen. Typische
Verkniipfungen koénnen z. B. logische Operatoren sein.

Im Surro-Workflowsystem wird zwischen workflow—lokalen und workflow—globalen
Ereignissen unterscheiden. Lokale Ereignisse sind nur innerhalb eines Vorgangs giiltig.
Globale Ereignisse haben einen globalen Giiltigkeitsbereich, d. h. ein Ereignis kann in
mehreren Vorgangen referenziert werden. Lokale Ereignisse konnen zur vorgangsin-
ternen Synchronisation eingesetzt werden. Globale Ereignisse werden zur Synchroni-
sation zwischen Aktivitaten unterschiedlicher Vorgénge verwendet.

3.1.3. Externe Ereignisse

Wenn ein Ereignis auftritt, meldet der Initiator das Ereignis der Workflow—Engine,
die den Zeitpunkt des Auftretens des Ereignisses in die Datenbank schreibt und das
Auftreten des Ereignisses an alle Knoten weitergibt, die auf dieses Freignis war-
ten. Ein Initiator eines Ereignisses kann z. B. ein Bearbeiter sein, der das Auftreten
des Ereignisses bemerkt hat. Im Beispiel mit dem Brief wiirde derjenige als Initia-
tor auftreten, der den Brief bekommen hat. Im Aktivitaten—-Manager gibt es einen
Meniipunkt, mit dem er das Auftreten des Ereignisses melden kann. Fin Programm
kann auch die Rolle des Initiators iibernehmen und ein Ereignis melden.

Vor der Bearbeitung einer Aktivitat wird tiberpriift, ob ein in einem Attribut der
Aktivitat spezifiziertes Ereignis eingetreten ist. Falls das Ereignis noch nicht einge-
treten ist, wird die Bearbeitung der Aktivitit solange verzogert, bis das Auftreten des
Ereignisses gemeldet wird. Falls das Ereignis schon eingetreten ist, wird mit der Be-
arbeitung der Aktivitdt fortgefahren. Es kann dann die Vorbedingung der Aktivitat
gepriift werden. Falls keine Aktivitdt mehr Interesse an einem Ereignis hat, wird das
Ereignis aus der Datenbank geléscht.

30

Universitdt Stuttgart
3.2 Ersatzaktivitaten Software—Labor

3.1.4. Interne Ereignisse

Als interne FEreignisse werden Nachrichten bezeichnet, die zur Steuerung der
Workflow—Engine iiber die zentrale Warteschlange eingesetzt werden. Interne Fr-
eignisse sind haufig Ausléser von Zustandsiibergdngen bei Aktivitaten, Blécken und
Sphéren.

3.2. Ersatzaktivitaten

Ersatzaktivitaten [Sch95] und [SB96] sind ein Konzept, um flexibel auf Fehlersitua-
tionen oder zeitliche Engpésse reagieren zu koénnen. Ersatzaktivitdten bzw. Ersatz-
knoten sind einer normalen Aktivitdt bzw. Knoten zugeordnet. Die Ausfithrung von
Ersatzaktivitdten wird entweder durch einen Timeout oder durch das Fehlschlagen
einer Aktivitdt ausgelost. Mit Hilfe der Ersatzaktivititen kann eine differenzierte
Reaktion des Workflowsystems auf den Ausléser erfolgen. Uber den timeout kann
z. B. eine ausbleibende Bearbeitung einer Aktivitat angemahnt werden. Eine Ersatz-
aktivitdt wird entweder zusdtzlich zur normalen Aktivitat gestartet oder die normale
Aktivitdat wird beendet und durch die Ersatzaktivitit ersetzt. Der ersetzende Start
kann z. B. beim Fehlschlagen einer Aktivitdt angewendet werden, um eine alternative
Losung des Arbeitsschritts zu erméglichen. Es kann z. B. auch der Fall auftreten, dafl
aufgrund der ausgebliebenen Bearbeitung in der Zwischenzeit sich die Vorgehensweise
gedndert hat. So kann z.B. ein Dokument nicht mehr per Post verschickt werden,
sondern muf} gefaxt werden. Da der Ausléser fiir die Frsatzaktivitat mehrfach auftre-
ten kann, kann iiber das Attribut replaceMode eingestellt werden, ob der zusédtzliche
Start einer Ersatzaktivitat einmal oder mehrmal durchgefiithrt werden darf. Ersatzak-
tivitdten miissen dieselben Input- und Outputcontainer wie die normalen Aktivitdten
besitzen, da sie die Stelle der normalen Aktivitaten einnehmen, wenn sie gestartet
werden.

Ersatzaktivitdten sind momentan (Stand Ende 1996) noch nicht vollstandig im-
plementiert.

3.3. Programm-Pool

Eine ausfiihrlichere Beschreibung findet sich in [Ros96].
Workflow—Management—Systeme werden typischerweise in heterogenen Syste-
mumgebungen eingesetzt, d.h. die Benutzer arbeiten auf unterschiedlichen Rechne-
rarchitekturen und Betriebssystemen. Diese Heterogenitat darf die Funktionalitét
des Workflowsystems nicht beeintrachtigen. Daher miissen die Applikationen, die zur
Bearbeitung von Aktivitaten verwendet werden, fiir die unterschiedlichsten Rechner-
systemen zur Verfligung stehen. Oft ist es jedoch nicht moglich, ein und dieselbe
Applikation auf verschiedenen Plattformen zu erwerben bzw. zu erstellen. In einem

31

Universitdt Stuttgart

Software—Labor 3 Motivation weiterer Workflow—Konzepte

solchen Fall miissen Ersatzapplikationen gefunden werden, um die problemlose Ab-
wicklung der Geschéftsprozesse zu gewéhrleisten.

Der Bearbeiter eines Geschiftsprozesses steht beim Wechsel seines Arbeitsplatzes
vor dem Problem, die ihm zugeteilten Aktivitdten mit einer ungewohnten Applikati-
on zu bearbeiten, weil seine gewohnte Applikation auf dem aktuellen Rechnersystem
nicht zur Verfiigung steht. Auflerdem muf bei der ProzeBspezifikation die Existenz
der Anwendungen fiir alle moglichen Plattformen sichergestellt werden, was die Pro-
zefispezifikation komplexer werden 1af3t.

Eine Moglichkeit zur Losung dieser Probleme besteht darin, plattformunabhéngige
Anwendungsprogramme zu verwenden, die auf allen Arbeitsplatzrechnern eingesetzt
werden koénnen. Diese Anwendungsprogramme kénnen bei Bedarf von einer zentraler
Stelle aus auf die Arbeitsplatzrechner kopiert werden, was die individuelle Installation
auf jedem Rechner erspart.

3.3.1. Probleme bei der Einbindung von Anwendungen in ein
Workflow—Management—System

Dieser Abschnitt beschreibt Probleme, die bei der Ausfithrung von Anwendungs-
programmen in Workflowsystemen entstehen. Die Probleme werden aus der Sicht
der Prozefispezifikation, der Prozebearbeitung und der Anwendungsentwicklung be-
schrieben. Die Probleme rithren meist aus der Heterogenitat der verwendeten Rech-
nersysteme her. Heterogene Rechnerstrukturen sind meist historisch gewachsen. Fin
Unternehmen vermehrt mit der Zeit ihre Rechnerausstattung und schafft bestimmte
Rechnerarten fiir spezielle Aufgaben an, die nur mit diesem System zu lésen sind.
Dies hat zur Folge, daf} in einem Unternehmen Rechner mit unterschiedlicher Hard-
ware und verschiedener Software (Betriebssysteme und Anwendersoftware) existieren.
Wenn jetzt ein Workflowsystem zum Einsatz kommt, mufl das Unternehmen auf die
bestehende informationstechnische Infrastruktur zuriickgreifen, weil die Versorgung
mit neuen Rechner und der dazugehérigen Software zu kostspielig wére (Investitions-
schutz).

Durch die Heterogenitat der Rechnersysteme, die als gegeben angenommen werden
muf, entstehen sowohl fiir die Softwareentwickler (Anwendungsentwicklung, Work-
flowsystem—Entwicklung, GeschaftsprozeBspezifikation) als auch fiir die Anwender
(Bearbeiter des Geschéftsprozesses) Probleme.

ProzeBspezifikation

Aus der Sicht der Prozeflspezifikation besteht das Problem, daf fiir die Bearbeitung
der gleichen Aktivitdt verschiedene Anwendungen verwendet werden miissen, wenn
die Aufgaben von Benutzern auf verschiedenen Rechnersystemen bearbeitet werden
miissen. Normalerweise wird der Bearbeiter dynamisch ermittelt, was zur Folge hat,
daB fiir jede mégliche Plattform eine Anwendung angefithrt werden muf. Dies erhoht
den Aufwand und die Fehlerwahrscheinlichkeit in der Prozefispezifikation. Auflerdem

32

Universitdt Stuttgart

3.3 Programm—Pool Software—Labor

mufl das Workflow-System selbst je nach Plattform die addquaten Mechanismen zur
Einbindung einer Anwendung verwenden (Aufruf iiber Kommandozeile, Aufruf einer
Funktionsbibliothek usw.). Dies fiihrt dazu, daff die Komplexitat des Workflowsy-
stems selbst zunimmt.

Um einen funktionierenden Geschiftsprozefl zu spezifizieren, geniigt es nicht, den
Aktivitéten die entsprechenden Anwendungen zuzuordnen, es mufl auch dafiir gesorgt
werden, dafl die Anwendungen auf allen am Workflowsystem teilnehmenden Arbeits-
platzrechnern installiert sind. Durch die Installation und Wartung der Anwendungen
auf jedem Arbeitsplatzrechner entsteht ein nicht zu vernachlassigender Arbeitsauf-
wand. Je groBer die Zahl der verwendeten Rechnersysteme ist, um so grofer ist der
Aufwand fiir die Spezifikation eines ausfithrbaren Geschéftsprozesses, weil fiir jedes
verwendete Rechnersystem die entsprechenden Anwendungsprogramme eingebunden
und installiert werden miissen.

ProzeBbearbeitung

Fiir den Bearbeiter eines Geschiftsprozesses ergeben sich ebenfalls Probleme, die
durch die Heterogenitiat der Rechnerinfrastruktur hervorgerufen werden. Wenn ein
Bearbeiter seinen Arbeitsplatz wechselt, weil beispielsweise sein Rechner ausgefal-
len ist, steht er vor dem Problem, sich in einer véllig anderen Arbeitsumgebung
zurechtfinden zu miissen, weil der Ersatzrechner moéglicherweise mit einem anderen
Betriebsystem arbeitet, das andere Befehlsformate akzeptiert. Auflerdem hat der Er-
satzrechner moglicherweise eine andere Benutzeroberfliche, mit deren Bedienung der
Bearbeiter nicht vertraut ist. Ein wichtiger Aspekt sind in diesem Zusammenhang
die Kosten fiir die Schulung des Mitarbeiters, die notwendig werden kénnen, wenn
der Arbeitsplatz gewechselt wird.

Ein weitaus gréfleres Problem als die ungewohnte Bedienung eines fremden Be-
triebssystems stellt das Fehlen bestimmter Anwendungsprogramme auf dem Ersatz-
rechner dar. Der Bearbeiter steht dabei oft vor dem Problem, dafl er seine Aufgabe
mit einer nicht vertrauten Anwendung erledigen muf}, was die Fehlerwahrscheinlich-
keit erhéht. Im Extremfall kann der Fall eintreten, dafl die benétigte Anwendung auf
dem Ersatzrechner {iberhaupt nicht vorhanden ist und die Arbeit somit nicht erledigt
werden kann. Workflowsysteme werden nicht zuletzt deswegen eingesetzt, weil man
sich davon eine Beschleunigung der Vorgangsbearbeitung und eine Verringerung der
Fehler wahrend der Prozefibearbeitung verspricht. Diese Vorteile kénnen durch die
oben angefiithrten Probleme zerstort werden, weil ein Prozeflbearbeiter, der in einer
ungewohnten Arbeitsumgebung arbeiten muf}, fast zwangslaufig mehr Fehler macht.
Auflerdem wird dadurch auch die Bearbeitungsgeschwindigkeit negativ beeinflufit.
Um die optimale Leistung zu erbringen, ist der Mitarbeiter an seinen angestammten
Arbeitsplatz gebunden, was nicht immer gewéhrleistet werden kann.

Ein weiteres Problem sind diejenigen Anwendungsprogramme, die ein Prozef3-
bearbeiter fiir die Bearbeitung von Aktivitdten benutzt, die thm die Wahl des zu
benutzenden Werkzeugs freistellen. Hierfiir wird er wahrscheinlich seine eigenen spe-

33

Universitdt Stuttgart

Software—Labor 3 Motivation weiterer Workflow—Konzepte

ziellen Programme benutzen, die beim Wechsel des Arbeitsplatzes natiirlich nicht
mehr zugénglich sind. Durch diese Probleme, die durch die verwendeten Rechnersy-
steme entstehen, kann die Akzeptanz des Workflowsystems bei den Bearbeitern leiden
und sogar dazu fiithren, dafl der Einsatz eines WFMS als hinderlich angesehen wird.

Anwendungsentwicklung

Aus der Sicht des Anwendungsentwicklers besteht das Problem, dafl die Anwendungen
auf unterschiedliche Plattformen portiert werden miissen. Fiir Anwendungen, die aus
verschiedenen Griinden nicht portiert werden kénnen, miissen Ersatzanwendungen
gefunden bzw. implementiert werden, die aber eventuell nicht die volle Funktionalitét
der Originalanwendung bieten.

Einen anderen Aspekt der Anwendungsentwicklung stellt das Workflowsystem
selbst dar, und zwar muf} dieses die Mo6glichkeit bieten, je nach verwendeter Platt-
form des Prozeflbearbeiters, unterschiedliche Anwendungsprogramme zu benutzen.
Dies ist z.B. bei FlowMark der Fall. FlowMark bietet die Moglichkeit, je nach
Plattform des Runtime-Clients (Windows, OS/2 oder AIX), unterschiedliche An-
wendungen einzubinden. Auflerdem bietet FlowMark unterschiedliche Mechanismen
fiir die Einbindung von Anwendungsprogrammen. So kénnen z. B. OS/2-Programme,
0S/2-DLL-Funktionen und REXX-Commandfiles ausgefithrt werden. Fiir die An-
wendungsentwicklung ergibt sich ein nicht zu vernachléssigender Aufwand, um die
angesprochenen Probleme zu 16sen. Durch diesen Aufwand entstehen dem Unterneh-
men zusatzliche Kosten, die die Rentabilitdt eines Workflowsystems in Frage stellen
kénnen.

3.3.2. Ein Losungskonzept

Dieser Abschnitt stellt die Anforderungen an ein Konzept auf, das in der Lage ist,
die oben angefithrten Probleme bei der Ausfithrung von Anwendungsprogrammen in
einem Workflowsystem zu 16sen. Die wohl wichtigste Anforderung ist, dafl ein Prozef-
bearbeiter seine Aufgabe unabhédngig von dem Rechnersystem, an dem er arbeitet,
16sen kann. Dies impliziert, dafl die Anwendungsprogramme, die zur Bearbeitung
einer Aktivitat verwendet werden, unabhingig von der Plattform, auf der sie ver-
wendet werden, immer das gleiche Aussehen und die gleiche Funktionalitdt bieten
(Transparenz der Heterogenitat der verwendeten Rechnerinfrastruktur). Das ange-
strebte Konzept soll die Installation von Anwendungsprogrammen vereinfachen, dabei
soll eine Mehrfachinstallation einer Anwendung vermieden werden, so dafl eine An-
wendung einmal installiert auf allen Arbeitsplatzrechnern eingesetzt werden kann.
Das Konzept soll méglichst in Verbindung mit jedem beliebigen Workflowsystem ver-
wendet werden kénnen. Das heifit, dal moglichst keine speziellen Mechanismen eines
speziellen Workflowsystem verwendet werden sollen.

Als Losung dieser Probleme bietet sich an, in Aktivitaten Programme zu verwen-
den, die auf jeder Plattform ausgefithrt werden kénnen. Diese Programme miissen

34

Universitdt Stuttgart

3.4 Ein transaktionales Dateisystem Software—Labor

dazu in einer Programmiersprache implementiert werden, mit der es moglich ist, platt-
formunabhéangige Programme zu erstellen. Typische Vertreter solcher Sprachen sind
Interpretersprachen wie Java oder Tel/Tk. Diese Programme werden zentral in einem
Programm-Pool gespeichert. Wenn ein Aktivitaten—Manager ein solches Programm
ausfithren muf}; dann stellt er eine Anfrage an den Programm-Pool und das frag-
liche Programm wird lokal auf dem Arbeitsplatzrechner des Aktivititen—Managers
installiert.

Die Verwendung von plattformunabhéngigen Anwendungsprogrammen beseitigt
die Probleme der heterogenen Workflow—Systemumgebung. Die zentrale Verwaltung
dieser Programme in einem Programm-Pool vereinfacht den Installations— und War-
tungsaufwand fiir die Anwendungsprogramme des Workflowsystems.

3.4. Ein transaktionales Dateisystem

Im Rahmen von [T&u96] wird ein Konzept fiir ein Dateiverwaltungssystem als
Resource-Manager mit Recovery—Féhigkeit und Dokumentenverwaltungsfunktiona-
litdt entworfen. Das zugehorige System ist teilweise realisiert. Dieses Konzept bietet
interessante Ansatze fiir den Einsatz im Dokumentenmanagement und in Workflow—
Management—Systemen im allgemeinen und fiir die Workflow—Transaktionen im be-
sonderen.

3.4.1. Motivation

Das Konzept bezieht seine Motivation zum einen — analog zu den Workflow—Trans-
aktionen — aus der mangelnden Zuverlassigkeit und Fehlertoleranz bestehender
Workflow—Management—Systeme, zum anderen aus der Notwendigkeit, strukturier-
te Dokumente mit umfangreichen Zugriffsmechanismen und -kontrollen als Basis fiir
eine Dokumentenverwaltung anzubieten.

Die Verwaltung von Dokumenten in Multi-User—Entwicklungsumgebungen stellt
ein nicht zu unterschatzendes Problem dar. Beispiele fiir solche Umgebungen sind
Software- oder CAD-Entwicklungssysteme. Dabei miissen mehrere Personen, typi-
scherweise quasi gleichzeitig, an einer Vielzahl von Dokumenten arbeiten. Anderun-
gen miissen synchronisiert werden, damit die Konsistenz des Zustands eines Doku-
mentes gewadhrleistet werden kann. Die Synchronisation darf aber nicht zu streng
sein, damit Parallelarbeit nicht zu sehr eingeschrankt wird. In dieselbe Richtung
geht das Granulat der Dokumente, also welche minimale Grofle die Dokumente oder
Dokumentteile besitzen, auf die sich Synchronisationsmassnahmen beziehen kénnen.

Wenn man bestehende Speicherungssysteme zur Verwaltung von Dokumenten ver-
wenden will, gibt es zwei offensichtliche Anséatze:

e Die Verwendung klassischer Dateisysteme

e Die Verwendung einer (relationalen) Datenbank

35

Universitdt Stuttgart

Software—Labor 3 Motivation weiterer Workflow—Konzepte

Die Verwendung eines klassischen Dateisystems besitzt grofie Flexibilitat, da man
relativ viele Freiheiten bei der Verwendung von Speicherungsstrukturen besitzt. Dem-
gegeniiber stehen aber hohe Kosten fiir die Implementierung der notwendigen Mecha-
nismen (Synchronisation, Replikation, Speicherungsstrukturen und allgemeine Zu-
griffsfunktionen) und eine schwierige Portierung auf andere Umgebungen. Ein trans-
aktionaler Zugriffsschutz ist nur sehr aufwendig zu erreichen.

Bei Verwendung einer relationalen Datenbank sind durch die Abstraktion der Spei-
cherungsdetails und die Abfragesprachen einige der eben angesprochenen Probleme
beseitigt. Eine relationale Datenbank ist aber auf die Verwaltung und Bearbeitung
grofler Mengen von sehr kleinen, dhnlich strukturierten Dateneinheiten mittels kur-
zer Operationen ausgerichtet, und nicht auf die kooperative Bearbeitung gréferer
Dokumente iiber langere Zeit.

3.4.2. Das Konzept

Das objektstrukturierte Filesystem (ObjFS) aus [Tdu96] ist eine Dateisystemerweite-
rung mit Funktionalitét zur transaktionalen Dokumentenverwaltung. Ein Dokument
entspricht dabei in erster Stufe einer Datei, die eine Anwendung verwendet. Diese
Dokumente kénnen aber schon auf Ebene des Dateisystems weiter hierarchisch in ein-
zelne Objekte strukturiert werden. Es bietet unter anderem folgende Eigenschaften:

o Kompatibilitat zum bisherigen Dateisystem
Der Zugriff auf die Dokumente erfolgt iiber eine Schnittstelle, die die Standard—
Dateisystemschnittstelle als Untermenge beinhaltet. Somit kann bei einge-
schrankter Funktionalitdt auch mit Alt—Software auf die Dokumente zugegriffen
werden. Zusatzlich gibt es Zugriffsfunktionen, die die erweiterte Funktionalitét
(Kontrolle der Transaktionsgrenzen, Verwaltung von Teildokumenten, usw.)
anbieten.

o Transaktionaler Schutz mit der Vorbereitung zur Unterstiitzung abgeschwiachter
Transaktionsmodelle
Das Dateisystem ist als Resource-Manager mit OTS—Schnittstelle realisiert und
kann somit in Transaktionen eingebunden werden. Es fithrt einen Log und
besitzt eine Sperrverwaltung.

e Synchronisation auf feinem Granulat
Dokumente kénnen hierarchisch strukturiert werden. Die Objekte, die dabei
als kleinste Einheit entstehen, kénnen einzeln mit Sperrmechanismen geschiitzt
werden. Die Grofe der Objekte bestimmt die erstellende Anwendung selbst.
Sie hat somit Einflu} auf den méglichen Kooperationsgrad.

e Varianten- und Referenzenverwaltung
Zu jedem Objekt konnen Varianten erstellt und automatisch verwaltet werden.
Uber Referenzen kann iiber Dokumentteile navigiert werden.

36

Universitdt Stuttgart

3.4 Ein transaktionales Dateisystem Software—Labor

3.4.3. Integration in ein WFMS

Das ObjFS 14t sich als reines Dokumentenverwaltungssystem auffassen und in dieser
Funktion in ein Workflowsystem einbinden. Dies wird hier nicht weiter betrachtet.
Die zweite, schon beim Konzept der Workflow—Transaktionen angesprochene Moglich-
keit, besteht darin, den Integrationscharakter des Dateisystems fiir die Workflow—
Transaktionen auszunutzen.

Dadurch daf das transaktionale Dateisystem die Standard-
Dateisystemschnittstelle implementiert, kann Alt-Software das Dateisystem
zur Speicherung ihrer Dateien verwenden. Uber die ResourceManager Eigen-
schaft konnen die Operationen transaktional geschiitzt werden. Im Falle der
Workflow—Transaktionen ist ein Schutz durch klassische Transaktionen mit den
ACID-FEigenschaften verlangt. Die Anderungen auf den entsprechenden Dateien
werden nach auflen isoliert. Ein Rollback macht die Dateidnderungen komplett
riickgangig.

Wenn die Alt—Software ihren Zustand komplett auf dem Dateisystem ablegt, kann
somit aus Sicht eines Beobachters ein echt transaktionales Verhalten erreicht werden,
obwohl die Anwendung nicht darauf vorbereitet ist. Somit kann die Alt—Software auch
als ACID-Aktivitédt sinnvoll in einer Workflow—Transaktion eingesetzt werden. Man
muf} dabei aber beriicksichtigen, dafl noch zur Laufzeit der Anwendung ein Rollback
erfolgen kann, der ihr quasi ihre bisherige Arbeit ,unter den Fiiflen wegzieht“. Da dies
zwangslaufig zu massiven Inkonsistenzen fithren wiirde (Die Anwendung bekommt von
einem Rollback vorerst einmal nichts mit), muf} dafiir gesorgt werden, daB nach einem
Rollback keine weiteren Dateizugriffe dieser Anwendung mehr ausgefithrt werden.
Die Anwendung sollte so schnell wie méglich abgebrochen werden. Wenn die Alt—
Anwendung fehlerhaft abbricht, ist dies ein Grund, die Transaktion abzubrechen.
Dies mufl vom System erkannt werden kénnen.

Aus Sicht des Workflowsystems miissen spezielle Vorkehrungen getroffen werden,
um eine solche Integration einer nicht—transaktionalen Aktivitdt in eine Sphére zu
erreichen. Nur die Workflow—Engine kennt den Transaktionskontext, mit dem die
Sphare geschiitzt wird. Diesen Kontext muf} das transaktionale Dateisystem fiir die
Ausfithrung der Dateioperationen der Anwendung verwenden. Normalerweise gibt
der aufrufende Client (in diesem Fall die Alt-Anwendung) den Transaktionskontext
implizit oder explizit beim Aufruf mit. Dies ist in diesem Fall nicht moéglich, da die
Anwendung kein Wissen iiber Transaktionen besitzt. Deshalb muf} das transaktio-
nale Dateisystem eine Abbildungsfunktion besitzen, die den aufrufenden Betriebssy-
stemprozefl der Alt—Anwendung dem korrekten Transaktionskontext zuordnet. Um
wiederum diese Funktion realisieren zu kénnen, mufl das Workflowsystem dem trans-
aktionalen Dateisystem jeweils mitteilen, welcher Anwendungsprozefl welchen Trans-
aktionskontext benétigt.

Das ObjFS ist in Grundziigen auf OS/2 als ,installable Filesystem* implementiert.
Die Integration in das Workflowsystem Surro ist bisher nicht erfolgt.

37

4. Der Aufbau des Workflowsystems

4.1.

Surro

Motivation des Prototypen

In diesem Abschnitt soll kurz dargelegt werden, aus welchen Griinden und mit welchen
Zielen im Rahmen dieses Projekts ein Prototyp eines Workflow—Management—Systems

erstellt worden ist.

38

o Erstes Ziel des Prototypen ist der Nachweis der Realisierbarkeit der in Ab-

schnitt 2 beschriebenen Konzepte zur Fehlertoleranz. Dabei stehen an erster
Stelle die Workflow—Transaktionen und an zweiter Stelle die Kompensations—
Transaktionen. Es soll dabei der Aspekt des Realisierungsaufwandes betrachtet
und beurteilt werden. Es soll herausgefunden werden, ob sich eine Kombina-
tion des Transaktionsdienstes Object Transaction Service (OTS) [OTS94], der
CORBA-Implementierung DSOM und der Datenbank DB2 fiir die Realisierung
geeignet. Es soll iiberpriift werden, inwieweit sich Sperren auf den Workflow—
Verwaltungsdaten bei der Abarbeitung von Sphéaren auswirken. Kann es an den
Grenzen von Sphéaren zu Problemen kommen?

Ein weiteres Hauptziel ist das Sammeln von praktischer Erfahrung im
Umgang mit dem Transaktionssystem OTS als Bestandteil der CORBA-
Implementierung DSOM 3.0 von IBM. Dabei steht die Zusammenarbeit von
OTS als externer Transaktionsmanager mit der Datenbank DB2 im Vorder-
grund, da hier aufgrund des Beta—Stadiums der Version 3.0 von DSOM nicht
auf Erfahrungen und auch nicht auf vorhandene Dokumentation zuriickgegriffen
werden kann. Der allgemeine Umgang mit CORBA als Programmierplattform
ist ebenfalls ein wichtiger Punkt.

Der Prototyp soll zukiinftig als Experimentierplattform fiir weitere Konzepte
dienen, beispielsweise Ad-hoc-Modifikationen von Workflows, Ereignisverwal-
tung oder die Integration von Componentware-Systemen. Der Prototyp soll
auch als Vorbereitung auf kiinftige Objekttechnologien, die in Aktivitéten ein-
gesetzt werden, verstanden werden.

Universitdt Stuttgart
4.2 Aufbau des Surro Prototypen Software—Labor

4.1.1. Vorgeschichte und Entstehung

Zum Verstandnis einiger strukturell relevanter Entscheidungen beziiglich des Proto-
typen ist ein kurzer Abrifl der Entstehungsgeschichte sinnvoll.

Das im Prototyp Surro' verwendete Workflow—Modell orientiert sich stark am
Workflow-Modell des IBM-Produkts FlowMark. Dies soll die Ubertragharkeit der
Ergebnisse aus der Prototypentwicklung auf FlowMark erméglichen. Aus dem glei-
chen Grund wurde auch teilweise die Terminologie von FlowMark (z. B. PEC) {iber-
nommen.

Als Ausgangspunkt fiir die Surro Prototypentwicklung wurde ein an der Uni-
versitdt Stuttgart erstelltes Workflowsystem verwendet, das im Rahmen einer Di-
plomarbeit entstanden ist. Konzepte und Programmcode konnten so wiederverwertet
werden. Eine ausfiihrliche Beschreibung dieses Systems ist in [Sch95] zu finden. Die-
ses Ausgangssystem wurde so weit modifiziert, dafl es Grundkonzepte verwendet,
die zu FlowMark weitgehend identisch sind. Das Ausgangssystem, und somit auch
die momentane Version der Engine, ist in der Programmiersprache Tcl/Tk [Ous94]
implementiert, die sich gut zum Erstellen von Prototypen mitsamt der grafischen
Benutzungsoberfliche eignet. Aufgrund dieser Figenschaft sind auch andere, spater
dazugekommene Komponenten in dieser Sprache implementiert (z. B. der Monitor).
Der Aktivitaten—Manager und der Programm-Pool sind im Rahmen einer Studien-
arbeit in Java realisiert.

Aufgrund des Projektziels, den Transaktionsverwalter OTS aus der DSOM-
CORBA-Implementierung von IBM fiir den Finsatz bei der Realisierung von
Workflow—Transaktionen zu evaluieren, und aufgrund der Tatsache, das OTS mo-
mentan nur auf OS/2 in einer Betaversion verfiighar ist, muBite der gesamte Teil der
Engine, der die Dienste von DSOM und OTS nutzt, auf OS/2 implementiert wer-
den. Die Implementierungssprachen auf der OS/2-Plattform sind C und C++. Dies
fithrt zu dem im folgenden Abschnitt beschriebenen strukturellen Aufbau des Surro
Prototypen.

4.2. Aufbau des Surro Prototypen

In diesem Abschnitt werden die Entstehung, Eigenschaften und die Struktur des
Prototypen erlautert. In Abb. 4.1 ist ein Ubersichtsbild iiber die Struktur des ent-
wickelten Prototypen zu sehen.

Der Prototyp zeigt eine deutlich zweigeteilte Struktur. Die Aufteilung auf zwei
Betriebssysteme ist historisch bedingt und aus vorgegebenen Randbedingungen zu
erklaren. Der Prototyp existiert in zwei Varianten. Zum einen gibt es die Méglich-
keit, das System ohne Einbeziehung der OS/2-Seite zu betreiben. Dabei besteht die
Einschrankung, daf} fiir die Realisierung der Sphéren keine echten Transaktionen zur
Verfiigung stehen. Die in dieser rein UNIX-basierten Variante verwendete Datenbank

'Surro steht fiir Surrogat

39

Universitdt Stuttgart
Software—Labor 4 Der Aufbau des Workflowsystems Surro

Unix 0s/2

DS0OM
OTs

Orpanien
fions-

. | —— | TA-Adapter .—@
L]
% . TS LXinle 4
ﬁ' LT AT LT
g
oo PEC
hanitor

FErearmride
Lbjsk i

H S K i o

Inbe rproces s-K ormrmurs Al or

Abbildung 4.1.: Struktureller Aufbau des Surro Prototypen

mSQL [Hug96] ist nicht transaktionsfahig, ebensowenig wie die auf dieser Plattform
vorhandenen Aktivitdtenprogramme. Diese Variante ist zum Test der Grundfunktio-
nalitdt des Workflowsystems gut geeignet.

Involviert man die OS/2-basierten Komponenten, fillt die Verwendung der
mSQL-Datenbank weg. Dafiir wird die transaktionsfihige DB2 herangezogen. Uber
OTS als globalen Protokoll-Koordinator ist dann echtes Transaktions—Management
moglich. Ebenso sind transaktionale Aktivitdten vorhanden.

4.2.1. Aufgaben der Systemkomponenten

Die ndhere Funktionsweise und Implementierungsdetails des Gesamtsystems werden
im Kapitel 6 erlautert. In diesem Abschnitt folgt eine Beschreibung der Aufgaben
der einzelnen Systemkomponenten.

Workflow—-Engine

Die zentrale Komponente des Systems ist die Workflow—FEngine. Sie hat die Aufgabe,
den Ablauf der Prozesse zu steuern und zu iitberwachen. Sie ermittelt anhand der ihr
zur Verfiigung stehenden Informationen die néchsten zu unternehmenden Arbeits-
schritte (Aktivitdten). Dabei kontrolliert sie die Zustandsdnderungen der laufenden
Prozesse und Aktivitaten. An Informationen verwendet die Engine die statischen
Prozei— und Ressourcendefinitionen in der Workflow—Datenbank und die Meldun-

40

Universitdt Stuttgart
4.2 Aufbau des Surro Prototypen Software—Labor

gen der anderen Komponenten des Systems iiber eingetretene Ereignisse. Sie schickt
Informationen tiber zu bearbeitende Aktivitdten an die Aktivitaiten—Manager. Sie
reagiert auf Beendigungen von Aktivitdten durch die Bearbeiter und kontrolliert da-
bei die Zustandsanderungen. Sie informiert den Monitor iiber Zustandsénderungen.
Sie fiihrt Datenbankzugriffe im Auftrag fiir andere Systemkomponenten durch.

— engine 2 = sulFSManager.tcl [Eale]
Flow Mark Surrogate Workflows Engine fAktive Teilnehimer:
Stefan

Fiihre Befehl aus:

Beende Workflow Manager Gebe Tcl Code ein

exit stop resume insert Tcl code verhose

1 start WF send Worklist del Instances

Abbildung 4.2.: Oberfliche der Engine und des WFS-Managers

Workflow—Session—Manager

Der Workflow-Session-Manager (WFS-Manager) ist im Prototyp ein eigenstédndiger
ProzeB, hat aber eine sehr enge Bindung zur Engine. Aus diesem Grund ist er in
Abb. 4.1 nicht als eigenstdandiges Objekt dargestellt. Er ist fiir die Kommunikation
mit den Benutzerkomponenten (Aktivitaten—Manager, PEC) und fiir die Verwaltung
der Session—-Daten der Benutzer zustandig. Er verfiigt iiber die Informationen, wer
momentan im System angemeldet ist.

Die Benutzungsoberflichen von Engine und WFS-Manager (Abb. 4.2) haben

vorerst reine Debug—Funktionalitat.

Datenbank (mSQL / DB2)

Die Datenbank speichert zum einen statische Informationen, d. h. die Definitionen der
verfiigharen Prozesse (Aktivitdten, Kontrollflul, Datenflul, Datencontainer, usw.)
und das Organisationsmodell. Zum anderen beinhaltet sie dynamische Informationen
in Form des momentanen Zustands jedes derzeit ablaufenden Prozesses. Die FEngine
sichert jede Zustandsdnderung eines Prozesses sofort in der Datenbank.

Der Prototyp hat die Méglichkeit, alternativ die mS@QL-Datenbank auf UNIX-
Seite oder die DB2-Datenbank auf OS/2-Seite zu verwenden. Da nur die DB2-
Datenbank Transaktionen beherrscht, ist bei Verwendung der mSQL-Datenbank die
Transaktionseigenschaft der Spharen nicht gegeben.

41

Universitdt Stuttgart
Software—Labor 4 Der Aufbau des Workflowsystems Surro

TA-Adapter, transaktionale Queue, Kontextverwaltung

Der Transaktions—Adapter ist der eigentliche Client zur DB2-Datenbank. Nur er ruft,
stellvertretend fiir die Engine, das API der DB2 auf. Daneben ist seine Hauptaufgabe
die Verwaltung der Transaktionskontexte und einer transaktionalen Message-Queue
(jeweils in einem eigenen DSOM-Objekt). Die transaktionale Queuwe wird von der
Engine zur sicheren Zwischenspeicherung von internen Nachrichten verwendet. Der
Adapter ist der Prozef}, der die Transaktions—Management—Objekte, die OTS defi-
niert (Coordinator, Terminator, usw.), erzeugt und aufruft.

Der TA-Adapter gehért logisch zur Engine, muf} aber als getrennter Prozefl auf
der OS/2-Seite implementiert werden, da die Engine keine Moglichkeit hat, DSOM
3.0 und damit OTS zu verwenden. Der Adapter bietet der Engine eine Schnittstelle
zum Aufruf der Datenbankfunktionen auf die DB2 und des Transaktionsmanagements
an.

Aktivitaten—Manager

Der Aktivitdten—-Manager [Ros96] ist die Schnittstelle des Systems zum normalen
Benutzer. Der Aktivitdten—Manager besitzt eine graphische Benutzungsoberfliche
(siehe Abb. 4.3), die die Arbeitsliste zeigt. Der Benutzer erhélt iiber den Akti-
vitaten—Manager Informationen tiber die anstehenden Arbeiten (oberste Liste), die
momentan in Bearbeitung befindlichen (mittlere Liste) und die unterbrochenen Akti-
vitaten (untere Liste, leer). Er hat unter anderem folgende Interaktionsmaoglichkeiten:

o Starten, Unterbrechen, Wiederaufnehmen, Auslassen von Aktivitdaten
e Starten von neuen Prozessen
o Meldung von externen Freignissen

e Aufruf des Vorgangsinformationssystems (bzw. des Monitors)

PEC

Der Program FErecution Client (PEC) ist ein Programm, das fiir die Ausfithrung
und Uberwachung von Aktivititenprogrammen zustindig ist. Er bietet den Akti-
vitdten ein API an, das die Abfrage von Prozeflinformationen durch das Aktivitdaten-
programm erlaubt, z. B. den Inhalt von Datencontainern, und das Beschreiben der
Daten—Outputcontainer erméglicht.

Auf UNIX-Seite ist der PEC in den Aktivitdten—-Manager integriert. Dort hat
er auch zusatzlich die Aufgabe, mit dem Programm-Pool zu kommunizieren (sie-
he dort). Auf OS/2-Seite gibt es zur Zeit keinen Aktivitaten—Manager mit Benut-
zungsoberfliche. Der OS/2-PEC hat allein die Aufgabe, transaktionale Spharen—
Aktivitdten automatisch auszufithren. Die Durchfithrung einer transaktionalen Akti-
vitdt besteht aus dem Aufruf einer Methode eines transaktionalen Objekts im richti-
gen Transaktions—Kontext.

42

Universitdt Stuttgart
4.2 Aufbau des Surro Prototypen Software—Labor

.
= fiktivititenmanager: Stefan [Fa]s

Aktionen Aktivitdt Optionen

zU bearbeitende Aktivitdten

141 : Kunde informiaren: 1.9

—-i Reklamation: Kreditkartenabrechnung | xi Al

Stadtsparkasse Entenhausen
Aktivitdten in Arbeit

142 : Entgegennehmen : 1.1

Kundenname: Mayer, Fritd
Kundennummer: 1201
unterbrochene aktivitaten Diatum: Thy Nov 07 15:43:26 MET 1996
| bastitigen und beendan| Zuriick
Beschreibung

Bezchwerde eines kunden entgegennehmen j
| /]

--|I l’.

Abbildung 4.3.: Aktivitdaten—Manager und eine Aktivitat

Transaktionale Objekte

Transaktionale Objekte sind DSOM-Objekte, die ein OTS—konforme Schnittstelle
besitzen und somit in einen Transaktionskontext eingebunden werden kénnen. Me-
thodenaufrufe auf diese Objekte werden, vorausgesetzt der Aufruf erfolgt in einem
entsprechenden Kontext, transaktional geschiitzt. Ein derartiger Methodenaufruf ist
eine transaktionale Aktivitat und kann innerhalb von Workflow—Transaktionen aus-
gefiithrt werden.

Programm-Pool

Der Programm-Pool stellt an zentraler Stelle Programme zur Verfliigung, die zur
Ausfithrung von Aktivitaten benétigt werden. Auf Anfrage vom PEC installiert der
Programm-Pool-Manager Programme zur Ausfithrung einer Aktivitdt auf einer Ma-
schine, die noch keine lokale Kopie des Programms besitzt. Der Programm-—Pool
beriicksichtigt dabei verschiedene Plattformen und kann auch Programme anhand
von bestimmten Attributen auswéhlen (Beispielanfrage: Liefere mir ein Programm
zum Anzeigen einer MS Word-Datei fiir eine Windows 3.x-Plattform). Uber die-
se Verteilungsmethode kénnen auch plattformunhéngige Programme verteilt werden,
damit wird der Anschluf} eines neuen Rechners am Workflowsystem vereinfacht, da
die ganzen Installationsarbeiten nicht nétig sind.

Monitor

Der Monitor ist die bisher einzige Komponente des Vorgangsinformationssystems.
Er zeigt ProzeBdefinitionen (die Templates) und den momentanen Zustand laufender
Prozesse (Instanzen) graphisch an (siehe Abb. 4.4). Uber den Monitor kénnen auch

43

Universitdt Stuttgart

Software—Labor 4 Der Aufbau des Workflowsystems Surro
= top2 R
n Yy

Banl—Dg_ sintragen Q@ ézg@jhen
H _Begrag abbuchen
i o u
~ Ll exterieng 7 7 Kunde informieren
\)))))))) Il
Entgegennehmen
N L
,,,,,,, 4
U O § B Ueherw | pruefen
Belege anforderii. . | /i 27 .
S
..................... S
Belege pruefen -)
Ablehnen Abschiiesseh
= I I~ ¥
|| PID: 1 Instance: 141 Block: 1 Reload | Save Layout | Up | Hext Bl | Prev Bl | Close | Help | |

Abbildung 4.4.: Workflow—Monitor mit Darstellung des Beispielprozesses aus A.1

Detailinformationen iiber die Bestandteile und den Zustand des Prozesses abgefragt
werden. Der Monitor holt sich die benétigten strukturellen Informationen direkt aus
der Datenbank. Zusétzlich erhilt er von der Engine Nachrichten iiber Zustandsénde-
rungen der Aktivitdten und Konnektoren.

Organisationsmodul

Das Organisationsmodul ist fiir die Verwaltung der zugrundeliegenden Aufbauorga-
nisation und fiir die Auswahl geeigneter Bearbeiter (allgemeiner: Ressourcen) fiir die
Ausfithrung einer Aktivitat zusténdig. Die Aufbauorganisation spiegelt die Struktur
des Unternehmens bzw. der Organisation wieder, die das Workflowsystem einsetzt.
Relevant fiir ein Workflowsystem sind Informationen iiber die Ressourcen (Personen,
Standorte, Maschinen) und deren Eigenschaften und Fahigkeiten. Dazu kommen Be-
ziehungen zwischen den Ressourcen, wie Untergebenenverhiltnisse zwischen Personen
und Mengen von Personen mit &hnlichen Fahigkeiten (Rollen).

Das Organisationsmodul erhdlt von der Engine Anfragen nach Ressourcen mit
bestimmten Auswahlkriterien und liefert einen oder mehrere in Frage kommenden
Bearbeiter zuriick. Dabei kann das Modul noch Informationen von der Engine erfra-
gen, typischerweise beziiglich der Historie des Prozesses.

44

Universitdt Stuttgart

4.3 Kommunikation Software—Labor

Grafischer Workflow—Editor

Diese Systemkomponente wurde bisher ? nicht implementiert. Thre Aufgabe ist die
interaktive grafische Erstellung von Geschiftsproze—Spezifikationen, die Modellie-
rung der Aufbauorganisation und die Speicherung der entsprechenden Daten in der
Datenbank. Alle bisher implementierten Geschéftsprozefi~Modelle sind bisher direkt
in SQL angegeben.

4.3. Kommunikation

Die einzelnen Komponenten kommunizieren untereinander tiber festgelegte Schnitt-
stellen. Aufgrund der Entscheidung fiir die Weiterverwendung des bestehenden Pro-
totypen aus [Sch95] und der durch IBM vorgegebenen Verwendung von OTS ist es
leider nicht moéglich bzw. sinnvoll, eine einheitliche Kommunikationsart zu verwen-
den. Anzustreben wire, die gesamte Kommunikation iiber den CORBA Methoden-
aufruf (bzw. einen RPC-Mechanismus) abzuwickeln, was aber daran scheitert, daf
die fiir OTS bendtigte Version 3.0 von DSOM noch nicht auf UNIX verfiigbar ist.
Zum anderen existieren keine Tcl/Tk-Schnittstellen zu DSOM. Aus diesem Grund
wird auf die néchsttiefere Schicht zuriickgegriffen, die allen Systemkomponenten zur
Verfiigung steht: TCP/IP-Sockets. Zusétzlich wird die von Tel/Tk angebotene, auf
eine Maschine beschrankte Interprozefi—Kommunikation (IPC) verwendet, da dieser
Mechanismus &duflerst einfach zu verwenden ist. Dies fithrt zu folgender Kommunika-
tionsstruktur:

In Abb. 4.1 wird unterschieden zwischen (TCP/IP-)Socket- und Interprozefi—
Kommunikation. Zwischen UNIX und OS/2 wird iiber TCP/IP-Sockets kommu-
niziert, da zwangslaufig verschiedene Maschinen involviert sind. Dies betrifft die
Kommunikation zwischen Engine und TA-Adapter, zwischen WFS-Manager und
dem OS/2-PEC und zwischen dem Monitor und dem TA-Adapter. Zwischen WFS—
Manager und Aktivitaten—Manager werden ebenfalls Sockets verwendet, da die Ak-
tivitdten—Manager prinzipiell auf beliebigen Maschinen ablaufen kénnen. Analoges
gilt fiir den Programm-Pool.

Zwischen Prozessen auf der UNIX-Seite, die in Tcl/Tk implementiert sind, wird
der Tk-Befehl send verwendet, der &uflerst einfach zu verwenden ist. Mit send kann
man an einen anderen Tcl/Tk-Interpreter einen beliebigen Befehlsstring senden, den
dieser dann ausfiihrt®. Mit diesem Befehl kann eine Art Remote Procedure Call
(RPC) realisiert werden. Diese RPC-Kommunikation wird zwischen der Engine und
dem WEFS-Manager und zwischen der Engine und dem Monitor verwendet. Das hat
die Auswirkung, dafl diese Prozesse auf derselben Maschine unter demselben X—Server
ablaufen miissen.

2Stand 1996
3Die Sicherheitsprobleme, die daraus entstehen, und wie sie behandelt werden, wird hier nicht
néher dargestellt

45

Universitdt Stuttgart
Software—Labor 4 Der Aufbau des Workflowsystems Surro

Die Kommunikation zwischen der Engine und der mSQL—Datenbank erfolgt iiber
das API, das mSQL zur Verfiigung stellt. Auf der OS/2-Seite erfolgt die Kommunika-
tion entweder iiber vorgegebene API’s (zwischen dem TA-Adapter und der DB2 wird
das DB2 Call Level Interface CLI benutzt) oder iiber den objektorientierten RPC, den
DSOM als CORBA-Implementierung zur Verfiigung stellt. Alleiibrige Kommunikati-
on auf der OS/2-Seite verwendet diesen Mechanismus. Die CORBA-Kommunikation
ist prinzipiell ortstransparent. Die Komponenten (z. B. die transaktionalen Objekte)
kénnten auch auf verschiedenen Maschinen ablaufen, ohne dafl die Implementierung
gedndert werden miifite.

4.3.1. Die Schnittstellen zwischen den Systemkomponenten

Im folgenden werden kurz die wichtigsten Schnittstellen erldutert, die im Rahmen des
Prototypen definiert und/oder verwendet werden.

mSQL-Datenbank
Die mSQIL—Datenbank bietet ein C—API an, mit dessen Hilfe ein Tcl-Interface reali-
siert ist.

TA-Adapter

Der TA-Adapter bietet der Engine (und dem Monitor) eine Schnittstelle an, die
weitgehend identisch zu der Schnittstelle ist, die die mSQL-Datenbank gegeniiber
der Programmiersprache Tcl anbietet. Der Vorteil dieser Vorgehensweise ist, daf}
man ohne groflen Programmieraufwand zwischen der mSQL- und der DB2-Datenbank
wechseln kann.

Die Schnittstelle bietet Aufrufe zur Ausfithrung von SQL-Befehlen, zum Abfragen
von Ergebnismengen von SELECT-Statements, zum Abfragen von Informationen
iiber Relationen, zum Verwalten mehrerer logischer Verbindungen analog zur mSQL-
Schnittstelle. Dazu kommen spezielle Funktionen zur Transaktionsverwaltung, die in
der mSQL-Schnittstelle nicht vorhanden sind. Dies sind Aufrufe zum Begin, Commit
und Rollback einer Transaktion und zum Verdndern des Transaktionskontextes.

Dazu bietet der TA-Adapter Aufrufe zur transaktionalen Queue an, also unter
anderem zum Einfiigen eines Elements (Enqueue), Abholen (Dequeue) und Abfrage
der Anzahl der Elemente in der Queue.

DB2 <— TA-Adapter

Zum Zugriff auf die DB2 wird das Call Level Interface (CLI) verwendet. Zur Anbin-
dung des externen Transaktionsmanagers wird das X/Open XA-Interface [X/091]
herangezogen. DSOM OTS besitzt Vorkehrungen zur Verwendung dieser Schnittstel-
le.

WFS—-Manager < Aktivitaten—Manager und PEC
Zwischen diesen Komponenten wird ein API definiert, das sich stark an das WAPI-
Interface (Interface 2) der WM C—Interface—Spezifikation anlehnt. Hier werden Funk-

46

Universitdt Stuttgart

4.3 Kommunikation Software—Labor

tionen zum An- und Abmelden vom System, Ubergeben von Aktivititen, Beenden
von Aktivitdten, Abfragen von Datencontainern usw. definiert. Eine ausfiihrliche
Beschreibung findet sich in [Ros96].

Zwischen dem OS/2-PEC und dem WFS-Manager wird nur ein kleiner Ausschnitt
des API’s benétigt, da der PEC noch keine Benutzerinteraktion kennt.

Workflow—Engine <— Monitor

Diese Schnittstelle beschréankt sich auf den RPC-Aufruf einer einzigen Funktion des
Monitors durch die Engine, wobei dem Monitor die Zustandsdnderung eines Prozesses
mitgeteilt wird. Der Monitor aktualisiert darauthin seine Anzeige.

PEC <— Programm-Pool

Der Programm-—Pool stellt ein Interface zur Verfiigung, das unter anderem Funktio-
nen zur Auswahl von Programmen anhand bestimmter Kriterien, zum Abfragen von
Attributen und zum Anfordern von Programmen enthilt, die dann lokal installiert
werden.

Workflow—-Engine < Organisationsmodul

Das Organisationsmodul stellt zur Zeit eine RPC-Funktion zur Verfiigung, die an-
hand der mitgelieferten Ressourcenbeschreibung einen geeigneten Bearbeiter zurtick-
liefert. Dabei kann z. B. unter anderem noch angegeben werden, ob Vertretungs-
regelungen beriicksichtigt werden sollen oder nicht. FEin Zugriff auf die Benutzer—
Verwaltungsdaten des Workflow—Session—-Manager durch das Organisationsmodul ist
moglich.

47

Universitdt Stuttgart
Software—Labor 4 Der Aufbau des Workflowsystems Surro

48

5. Das Datenmodell von Surro

In diesem Kapitel wird das dem Workflow—Management—System Surro zugrunde-
liegende Datenmodell beschrieben. Der Aufbau des Datenmodells, die die Prozef}-
definitionen und das Organisationsmodell beinhalten, wird anhand eines Entity—
Relationship—Diagramms erldutert. Danach werden alle Relationen im einzelnen auf-
gefithrt und dokumentiert.

5.1. Begriffe

Die Relationen kénnen in vier Klassen eingeteilt werden. In der Klasse der
Template—Relationen sind alle Relationen zu finden, die fiir die Spezifikation der
Geschéftsprozesse benotigt werden. Ein grofles T am Ende des Namens einer Re-
lation kennzeichnet diese Klasse. Die Daten in den Template-Relationen miissen
durch den Workflow—Editor bei der Modellierung eines Geschiftsprozesses erzeugt
werden. Die Klasse der Instanz—Relationen besitzt dieselben Relationen wie die
Template-Klasse, wobei das T am Ende des Namens fehlt. Bei der Instanziierung
eines Workflows werden alle Daten des Prozesses aus den Template—Relationen in
die entsprechenden Instanz—Relationen kopiert. Zusédtzlich besitzen die Instanz—
Relationen weitere Schliisselattribute, die die Instanz eindeutig identifizieren und
die nur in Workflow—Instanzen benétigt werden. Die dritte Klasse von Relationen
(Organisations—Relationen) werden fiir die Beschreibung der Aufbauorganisation
des Unternehmens oder der Behorde benétigt. In der vierte Klassen sind Relationen
fiir die Verwaltung von internen Workflowdaten, z. B. Instanz—Zahler (Verwaltungs—
Relationen).

Der Begriff Knoten wird als Generalisierung fiir eine Aktivitat, einen Block oder
ein Prozel bzw. Subprozel benutzt. Bei der Modellierung eines Geschéftsprozesses
als Graph treten diese Objekte als Knoten auf, wihrend Daten— und Kontrollflu}-
konnektoren die Kanten représentieren.

Als Prozeflebene wird in diesem Zusammenhang eine Menge von Knoten be-
zeichnet, die auf einer Ebene im Geschéftsprozei—-Modell liegen. Auf der obersten
(der Toplevel-) Ebene 0 liegt ein einziger ProzeBknoten. Die Realisierung dieses
Prozesses findet sich auf der darunterliegenden Prozeflebene 1. Die Realisierung des
Blockes findet sich auf Prozelebene 2 (siehe Abbildung 5.1). Auf diese Weise wird eine

Hierarchie von Prozeflebenen gebildet, die in ihrer Gesamtheit einen Geschéftsprozefl

49

Universitdt Stuttgart

Software—Labor 5 Das Datenmodell von Surro

Legende:
ProzeRebene 0 (toplevel)

e et
NP

Toplevelproces$/

Aktivitat

Block

i OO0

KontrollfluB

O~0O—~0O
ProzeRebene 2

Abbildung 5.1.: Die Prozeflebenen bei der Geschéftsprozefi-Beschreibung

modellieren.

5.2. Instanziierung von Workflows

Die Instanziierung eines Workflows wird durch die interne Nachricht startWorkflow
ausgelost. Daraufhin wird der toplevel-Prozeflknoten instanziiert. Mit diesem Knoten
wird auch die oberste Prozeflebene instanziiert, die iiber das Attribut processID
identifizierbar ist. Die jeweils in Blocken oder Unterprozessen enthaltenen nachsten
Prozefiebenen werden erst dann instanziiert, wenn der Kontrollflufl den Knoten des
Block oder des Prozesses erreicht. Fine Prozelebene wird workflow—lokal iiber eine
blockInstancelD identifiziert, d. h. die blockInstancelD beginnt in jedem Workflow
mit 1.

Wenn am Ende eines Blocks iiber das Attribut exitcondition festgestellt wird,
daf} ein weiterer Durchlauf des Blocks nétig ist, dann wird die Prozelebene des Blocks
neu instanziiert. Ein Block wird auf diese Weise als ein Schleifenkonstrukt benutzt.

Nach der Instanziierung eines Workflows kann dieser durch ein geeignetes Modifi-
kationsmodul jederzeit in den Instanzrelationen gedndert werden. Dieses Modul muf}
dafiir sorgen, daB nur konsistente Anderungen zur Ad-hoc-Modifikationen des Work-
flows durchgefithrt werden. Dieses Modul ist aber bisher noch nicht implementiert

(Stand Ende 1996).

5.3. Das ER—Modell

In den Abbildungen 5.2 und 5.3 sind die Klassen der Template—Relationen und
der Organisations—Relationen als ER-Diagramme dargestellt. Die Instanzrelatio-
nen werden nicht dargestellt, da diese sich von den Templates nur durch zuséatzliche
Primérschliisselattribute unterscheiden. Auf die Darstellung der Nicht—Schliissel-

50

Universitdt Stuttgart

5.3 Das ER—Modell Software—Labor
SpherelD—| connectorlD|
Data- ‘ .
SphereT ConnectorT 1 MappingT
from to
is-member-of from to
Input T T
NodelD — : — variablel
NodeT ContainerT VariableT
Q [consists-of
Output
[~ programiD
NodeBlockT NodeProcessT| | NodeActivityT ‘ Programs
is-implemented-by
Legende:
|:| Entity <<~ "nimmt 1-n mal an Beziehung teil" E ®* Primarschlussel

"nimmt genau 1 mal an Beziehung teil"

<> Relationship
Q Spezialisierung

-
<<t "nimmt 0-n mal an Beziehung teil"
<+

"nimmt héchstens 1 mal an Beziehung teil"

Abbildung 5.2.: ER-Diagramm des Prozefimodells

Attribute wird aus Platzgriinden verzichtet. Diese Attribute sind in der Beschreibun-
gen der Relationen zu finden.

Bei einer direkten Umsetzung des ER-Diagramms (Abb. 5.2) in ein Relationen-
schema miifite eine Relation mit Namen VariableT entstehen. Um zu einer Verein-
fachung des Relationenschemas zu kommen wurden die Relationen VariableT und
ContainerT zu einer einzigen zusammengefafit, die ContainerT heifit.

Einige der Entities fallen im Relationenmodell weg, da sie aufler dem
Primérschliissel keine Attribute besitzen und keine relevante Information beinhal-
ten. Meist wird dann der Name des Entities fiir eine Relation verwendet, die aus
einer zugehorigen Relationship entsteht. Dazu gehoren:

e “is-member-of”(Abb. 5.2) wird zur Relation SphereT

e “is-in-relation” (Abb. 5.3) wird zur Relation Relationship

51

Universitdt Stuttgart

Software—Labor 5 Das Datenmodell von Surro

e “belongs-to” (Abb. 5.3) wird zur Relation Role
e “has-competence” (Abb. 5.3) wird zur Relation Competences

e “has-skill” (Abb. 5.3) wird zur Relation Skills

5.4. Die Relationen

Das Relationenschema enthélt die im folgenden detailliert aufgefithrten Relationen.
Es sind alle benutzten Relationen aufgefithrt, nicht nur die, die aus dem ER-
Diagramm abgeleitet sind.

5.4.1. Die Template—Relationen

Relation: NodeT

In dieser Relation werden alle grundlegenden Daten eines Knotens gespeichert.
nodelD Eindeutiger Identifikator fiir einen Knoten.
processlD Identifiziert die Prozeflebene, die diesen Knoten realisiert.

type = {activity, block, subprocess, toplevel}
Gibt den Typ des Knoten an.

X, ¥, W, h Koordinaten fiir die grafische Darstellung des Knotens innerhalb des Mo-
nitors und des Workflow—Editors

icon Pfad bzw. Dateiname eines Icons, das einen Knoten symbolisieren soll. Der
vollstdndige Pfadname wird mit Hilfe einer Environmentvariable auf folgende

Art bestimmt: $SURRO_SPECPATH /icon/(Wert von Attribut icon)

iconText Beschriftung des Icons in der grafischen Darstellung, wird auch als Akti-
vitatenname verwendet.

startCondition Logischer Ausdruck, welcher die Auswertung der Kontrollverbindun-
gen definiert. Innerhalb des Ausdrucks wird jedem Identifikator eines Kontroll-
konnektors (connectorID) ein %—Zeichen vorangestellt.

event Ereignisausdruck, welches vor dem Starten der Aktivitat eingetreten sein muf.
Als Ereignisse konnen externe Ereignisse, absolute und relative Zeitereignisse,
sowie zusammengesetzte Ereignisse spezifiziert werden. Es kann auch zwischen
prozeBlokalen und prozefiglobalen Ereignissen unterschieden werden.

preCondition Logischer Ausdruck, welcher ausgewertet wird, nachdem das Ereignis
(beschrieben in Attribut event) eingetreten ist.

52

Universitdt Stuttgart
5.4 Die Relationen Software—Labor

exitCondition Logischer Ausdruck, welcher bei einem Block als Wiederholbedingung
verwendet wird und bei einer Aktivitdt dazu benutzt wird, festzustellen, ob die
Aktivitat als beendet angesehen werden kann (eine Nachbedingung).

successCondition momentan nicht benutzt

description Ausfithrliche Beschreibung des Knotens und des Arbeitsschrittes, den
der Bearbeiter ausfiithren soll.

inputContainerID Identifiziert den Container, welcher die Eingabedaten fiir diesen
Knoten enthélt.

outputContainerID Identifiziert den Container, welcher die Ausgabedaten dieses
Knotens enthélt.

failedCompNodelD Der hier angegebene Knoten wird gestartet, wenn der aktuelle
Knoten erfolglos beendet wurde. Mit diesem Knoten soll der Arbeitsschritt des
Knotens kompensiert werden.

successCompNodelD Dieser Kompensationsknoten wird dazu benutzt, wenn der
erfolgreich ausgefithrte Knoten kompensiert werden muf.

Relation: NodeActivityT

Die Relation stellt eine Spezialisierung der Relation NodeT dar. In dieser Relation
werden die zusatzlichen Attribute eines Knotens gespeichert, wenn dieser eine Akti-
vitat ist.

nodelD Eindeutiger Identifikator fiir einen Knoten (vgl. Relation NodeT).

programlD Fremdschliissel zu der Relation Programs. Beschreibt, welches Pro-
gramm innerhalb dieser Aktivitat zu starten ist.

humanResource Ausdruck zur Beschreibung der Auswahl eines Bearbeiters fiir diese
Aktivitdt. Kann auch eine Rolle, etc. enthalten.

quantity Gibt an, wieviele Instanzen dieser Aktivitdt angelegt werden sollen. Mo-
mentan nicht benutzt.

priority Gibt die Prioritdt dieser Aktivitdt an. Je hoher der Wert, umso hoher ist die
Prioritéat.

skill Auflistung (Tcl-Liste) der Fahigkeiten, die ein Bearbeiter haben muf}; um diese
Aktivitat auszufithren.

competence Auflistung (Tcl-Liste) der Kompetenzen, die ein Bearbeiter haben mu8,
um diese Aktivitdt auszufithren.

33

Universitdt Stuttgart

Software—Labor 5 Das Datenmodell von Surro

responsibility Auflistung (Tcl-Liste) der Personen, die benachrichtigt werden sollen,
wenn diese Aktivitat nicht erfolgreich ausgefithrt werden konnte.

clearUp Diese Funktion im Anwendungsprogramm wird aufgerufen, wenn eine Akti-
vitat vorzeitig abgebrochen werden soll. Das Programm hat so die Gelegenheit,
einen sicheren Zustand zu reichen, bevor es abgebrochen wird. Momentan nicht
benutzt.

timeoutReady Zeitangabe, nach der ein Alarm aktiviert wird, wenn die Aktivitat im
Ready—Zustand ist und in dieser Zeit nicht durch den Benutzer aktiviert wurde

(Angabe in Sekunden).

timeoutRunning Zeitangabe, nach der ein Alarm aktiviert wird, wenn die Aktivitét
im Running—Zustand ist und in dieser Zeit nicht durch den Benutzer beendet
wurde (Angabe in Sekunden).

timeoutNodelD Ersatzaktivitdt, welche gestartet werden soll, wenn diese Aktivitét
einen Timeout erreicht hat.

timeoutMode Gibt an, wie das System reagieren soll, wenn diese Aktivitdt einen
Timeout erreicht hat. Mogliche Modi sind: replace (Der normale Knoten wird
abgebrochen und durch den Ersatzknoten ersetzt), onceAdditional (Der normale
Knoten lauft weiter und der Ersatzknoten wird einmal zusétzlich gestartet, d. h.
der Timeout wird nicht mehr gesetzt), manyAdditional (Nach den Timeout wird
ein zusétzlicher Ersatzknoten gestartet), noMore (d.h. keine weiteren Knoten
starten).

replaceNodelD Frsatzaktivitit, welche gestartet werden soll, wenn diese Aktivitét
nicht erfolgreich terminieren konnte.

replaceMode Gibt an, wie das System reagieren soll, wenn diese Aktivitdt ersetzt
werden soll. Mégliche Modi sind: replace, onceAdditional, manyAdditional,
noMore.

Relation: NodeBlockT

Die Relation stellt eine Spezialisierung der Relation NodeT dar. In dieser Relation
werden die zusdtzlichen Attribute gespeichert, wenn dieser ein Block ist.

nodelD Eindeutiger Identifikator fiir einen Knoten.

defProcesslD Dieser Block ist in dieser Prozeflebene definiert.

Relation: NodeProcessT
Sie stellt eine Spezialisierung der Relation NodeT dar. In dieser Relation werden die
zusitzlichen Attribute gespeichert, wenn dieser ein Prozef ist.

54

Universitdt Stuttgart
5.4 Die Relationen Software—Labor

nodelD Eindeutiger Identifikator fiir einen Knoten.
defProcessID Dieser Prozel ist in dieser Prozeflebene definiert.

processComplD Alle Kompensationsknoten werden auf dieser Prozeflebene gespei-
chert.

processReplacelD Alle Ersatzknoten werden auf dieser Prozeflebene gespeichert.
version Versionsnummer des Prozesses. Wird benotigt bei Ad-hoc—Modifikationen.

portfolio Verweis auf ein Verzeichnis mit Dokumenten, die zum Vorgang gehoren.

Relation: Programs
Diese Relation stellt einen Pool von Programmen zur Verfiigung, die in den einzelnen
Aktivitdten aufgerufen werden kénnen.

programlD Eindeutiger Identifikator eines Programms.

platform Plattform auf der das Programm ausgefiihrt werden kann (z.B. java, tcl,
unix, win, linux, sunOS, AIX, OS2, HPUX, obj).

command Kommandozeile, um das Programm aufzurufen.

programName Name des Programms. Wird vom Programmpool zur Identifikation
der Anwendung benutzt, die gegebenfalls installiert wird.

Relation: ContainerT
Die Relation enthélt alle Variablen der Input— und Outputcontainer.

variablelD Findeutiger Identifikator fiir eine Variable. Eine Variable ist einem Con-
tainer eindeutig zugeordnet.

containerlD Eindeutiger Identifikator eines Containers. Ein Container enthélt eine
Menge von Variablen.

processlD Dieser Prozefiebene ist der Container zugeordnet.

containerType Gibt an, um welchen Typ von Container es sich handelt (xput, source,
sink). xput steht fiir Input— oder Outputcontainer.

name Name der Containervariablen.
type Datentyp der Containervariablen.

value Wert der Containervariablen in einer Zeichenfolge.

35

Universitdt Stuttgart

Software—Labor 5 Das Datenmodell von Surro

Relation: ControlConnectorT
Die Relation enthalt alle Kontrollkonnektoren, die zwischen den Aktivitaten bestehen.

connectorlD Eindeutiger Identifikator eines Kontrollkonnektors.
processlD Der Konnektor ist dieser Prozeflebene zugeordnet.

condition Bedingung, die erfiillt sein muB, daf} diese Verbindung zu “true® evaluiert
wird.

fromNodelD Startknoten, von dem der Kontrollkonnektor ausgeht.

toNodelD Endeknoten, auf den der Kontrollkonnektor zeigt.

Relation: DataConnectorT
Die Relation enthélt alle Datenkonnektoren, die zwischen den Aktivitdten bestehen.

connectorlD Eindeutiger Identifikator eines Datenkonnektores.

processlD Der Konnektor ist dieser Prozeflebene zugeordnet.

fromContainerlD Aus diesem Container werden die Variablen herauskopiert.
toContainerlD In diesen Container werden die Variablen hineinkopiert.
Relation: MappingT

Die Relation beschreibt die Umsetzung der Variablen von einem Container in einen
anderen.

connectorlD Eindeutiger Identifikator eines Datenkonnektores.

fromVariablelD Datenquelle fiir die Umsetzung.

toVariablelD Datensenke fiir die Umsetzung,.

function Diese Funktion wird beim Umkopieren auf die Variable angewendet.

Relation: SphereT
Die Relation beschreibt eine Sphére

spherelD Eindeutiger Identifikator fiir eine Sphére.
processlD Dieser Prozeflebene ist die Sphére zugeordnet.

type Gibt den Type der Sphare an (TaS oder CS) (d.h. transaction sphere oder
compensation sphere).

56

Universitdt Stuttgart
5.4 Die Relationen Software—Labor

compensationNodelD Die gesamte Sphére kann mit diesem Kompensationsknoten
kompensiert werden.

restartMode Gibt an, was nach einem Riicksetzen der Sphére gemacht werden soll
(retry, undo). Momantan nicht benutzt.

Relation: SphereMemberT

Die Relation beschreibt, welcher Knoten an welcher Sphére teilnimmt.
spherelD Findeutiger Identifikator fiir eine Sphére.

nodelD Eindeutiger Identifikator fiir einen Knoten.

5.4.2. Die Organisations—Relationen

Mit den nachfolgenden Relationen kann die Aufbauorganisation eines Unternehmens
oder Behorde beschrieben werden. Das Organisationsmodul verwendet die folgenden
Relationen zur Bestimmung des Bearbeiters einer Aktivitat.

[relation
Relation
isrin—relaiion<>
rale — [bhame — competence
Role H%Q%H Person : i Competences
belongs-to 1 has-competence
has-skill
— skill

Skills

Abbildung 5.3.: Das ER-Diagramm zur Beschreibung der Aufbauorganisation

In Abb. 5.3 bezieht das Entity “Relation” seine Existenzberechtigung aus der
Tatsache, dafl zwischen denselben zwei Personen mehrere verschiedene Beziehungen

57

Universitdt Stuttgart

Software—Labor 5 Das Datenmodell von Surro

bestehen konnen. Ansonsten wire dieses Entity sinnvollerweise eine (wie der Name
schon sagt) Relationship.

In der Relation NodeActivity(T) wird in einem “humanResource”’—Ausdruck be-
stimmt, welche Person die Aktivitat ausfithren soll. Der Ausdruck folgt der hier in
EBNF angegebenen Syntax:

humanResource ::= (person | role | relationship (person | role))

Eine konkrete Person kann also direkt angegeben werden (z.B. humanResource
= 'Schreyjak’). Es kann eine Rolle spezifiziert werden (z. B. humanResource = "Mit-
arbeiter’). Es kann auch auf eine Beziehung zuriickgegriffen werden und so z. B. der
Chef der Mitarbeiter angegeben werden (humanResource = ’is chef of Mitarbeiter’).
Eine Rolle ist als eine Menge von Personen definiert. Eine Beziehung driickt ein be-
liebiges Verhéltnis zwischen Rollen oder Personen aus. Jede Person kann mehrere
Fahigkeiten oder Kompetenzen besitzen, die frei gewadhlt werden kénnen.

Relation: Person
Diese Relation beschreibt alle Attribute, die einer Person direkt zugeordnet werden
kénnen.

name eindeutiger Verwaltungsname einer am Workflowsystem teilnehmenden Person
icon Filename, in dem ein Bild der Person gespeichert ist.

organisation Name der Organisation, in der diese Person angestellt ist.

firstname Vorname der Person

lastname Nachname der Person

occupation Beruf der Person

substitute Mit diesem Ausdruck wird die Vertreterregelung angegeben: Wenn der
Ausdruck leer ist, gibt es keine Vertreterregel fiir diese Person. Steht der Name
eine anderen Person darin, werden die zu bearbeitenden Aktivitdten an diese
Person weitergeleitet. Wenn eine Rolle angegeben ist, wird die Rolle in eine
konkrete Person aufgelost. Steht im Ausdruck eine Beziehung zu einer Rolle
oder einer Person, so wird diese Beziehung verfolgt und dann entsprechend eine
Auslésung vorgenommen.

Relation: RoleMapping
In dieser Relation wird beschrieben, welche Personen an welchen Rollen teilnehmen.

role Bezeichnung der Rolle.

name Name der Person, die dieser Rolle wahrnimmt.

38

Universitdt Stuttgart
5.4 Die Relationen Software—Labor

Relation: Competences
In dieser Relation wird beschrieben, welche Kompetenzen die Personen besitzen.

person Name der Person, deren Kompetenzen beschrieben werden.

competence Die Kompetenz, die diese Person hat.

Relation: Skills

In dieser Relation wird beschrieben, welche Féhigkeiten die Personen besitzen.
person Name der Person, deren Fahigkeit beschrieben wird.

skill Die Fahigkeit, die diese Person hat.

Relation: Relationship

In dieser Relation wird beschrieben, welche Beziehungen der Personen bzw. Rollen
untereinander haben. Um keine explizite Unterscheidung zwischen Person und Rolle
machen zu miissen, wird von Ressourcen gesprochen.

resourcel Die erste Ressource innerhalb einer Beziehung.
relation Die Beziehung zwischen den beiden Ressourcen.

resource2 Die zweite Ressource innerhalb einer Beziehung.

Relation: Participation

In dieser Relation wird beschrieben, welche Personen an welcher Warteschlage teil-
nehmen. Bei einer Warteschlage muf} der Bearbeiter seine Aktivitdten selber abholen.
Eine Aktivitdt kann nur von einer Person bearbeitet werden. Momentan nicht be-
nutzt.

person Name einer Person, die an der Warteschlage teilnimmt.

queue Name der Warteschlagen, an der die Person teilnimmt.
5.4.3. Die Verwaltungs—Relationen

Relation: Events
In dieser Relation werden zu erwartende (time ist leer) und aufgetretene Events (time
wurde gefiillt) gespeichert.

eventlD Findeutiger Identifikator fiir einen Event.

eventName Textuelle [dentifikation eines Events.

59

Universitdt Stuttgart

Software—Labor 5 Das Datenmodell von Surro

type = {local, global} Der Typ eines Ereignisses gibt an, ob das Ereignis fiir alle
Workflows gibt (global) oder ob es nur innerhalb eines Workflows Giiltigkeit
besitzt.

time Beschreibung des Zeitpunktes, wann der Event aufgetreten ist. Wenn dieses
Attribut leer ist, ist das Ereignis noch nicht aufgetreten.

origin Gibt an, wer (z. B. eine Aktivitat oder eine Person) das Auftreten des Ereig-
nisses gemeldet hat.

OSProcess Dieses Attribut wird momentan fiir die Speicherung der Workflow—

Instanz—ID benutzt, in dessen Rahmen das Ereignis aufgetreten ist.

Relation: SequenceGlobal

In dieser Relation werden alle Zahler, die eindeutige Identifikatoren liefern, persistent
gespeichert.

processlD Speichert die eindeutigen Prozeflebenen—Nummern.

wflD Speichert die eindeutigen Workflow—Instanz—Nummern.

eventlD Speichert die eindeutigen Event-Nummern.

spherelD Speichert die eindeutigen Spharen—-Nummern.

containerlD Speichert die eindeutigen Container—Nummern.

variablelD Speichert die eindeutigen Variablen-Nummern.

connectorlD Speichert die eindeutigen Konnektor—-Nummern.

Relation: SequencelLocal

In dieser Relation werden alle Zahler gespeichert, die nur innerhalb eines Workflows
eindeutig sind.

wflnstancelD Gibt an, fiir welche Workflow—Instanz diese Zéhler giiltig sind.

blocklnstancelD Zaihler fiir die Blockinstanzen innerhalb eines Workflows.

spherelnstancelD Zéhler fiir die Sphéareninstanzen innerhalb eines Workflows.

60

Universitdt Stuttgart
5.4 Die Relationen Software—Labor

5.4.4. Die Instanz—Relationen

Die folgenden Relationen sind von den Template-Relationen abgeleitet. Es werden
daher nur die zusdtzlichen Attribute beschrieben, die in den Template—Relationen
nicht zu finden sind.

Relation: Node
Siehe auch die Attribute in der Template—Relation

wflnstancelD FEindeutiger Identifikator einer Workflow—Instanz

blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz

Relation: NodeActivity
Siehe auch die Attribute in der Template—Relation

wflnstancelD FEindeutiger Identifikator einer Workflow—Instanz
blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz

state ={initial, pending, ready, running, successful, failed, compensated,
terminated} Namen der Zustande einer Aktivitat

Relation: NodeBlock
Siehe auch die Attribute in der Template—Relation

wflnstancelD FEindeutiger Identifikator einer Workflow—Instanz
blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz
state ={initial, pending, active, finished, terminated}

Namen der Zustande eines Blocks

Relation: NodeProcess
Siehe auch die Attribute in der Template—Relation

wflnstancelD FEindeutiger Identifikator einer Workflow—Instanz
blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz
starter Person, die diese Prozefinstanz gestartet hat (nur bei Toplevel-Prozesse).

state ={initial, pending, running, finished, terminated}
Namen der Zustande eines Prozesses

61

Universitdt Stuttgart

Software—Labor 5 Das Datenmodell von Surro

Relation: Container
Siehe auch die Attribute in der Template-Relation

wflnstancelD Eindeutiger Identifikator einer Workflow—Instanz
blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz

Relation: ControlConnector
Siehe auch die Attribute in der Template-Relation

wflnstancelD Eindeutiger Identifikator einer Workflow—Instanz
blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz
state ={false, true, undefined, locked}

Namen der Zustande eines Kontrollkonnektors

Relation: DataConnector
Siehe auch die Attribute in der Template-Relation

wflnstancelD Eindeutiger Identifikator einer Workflow—Instanz
blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz

Relation: Mapping
Siehe auch die Attribute in der Template-Relation

wflnstancelD Eindeutiger Identifikator einer Workflow—Instanz
blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz

Relation: Sphere
Siehe auch die Attribute in der Template-Relation

wflnstancelD Eindeutiger Identifikator einer Workflow—Instanz
blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz
state ={initial, active, backout, finished, committed}

Namen der Zustédnde einer Sphére

Relation: SphereMember
Siehe auch die Attribute in der Template-Relation

wflnstancelD Eindeutiger Identifikator einer Workflow—Instanz

blockInstancelD Findeutiger Identifikator einer Prozeflebeneninstanz

62

Universitdt Stuttgart

5.5 Randbedingungen im Datenmodell Software—Labor

5.5.

Randbedingungen im Datenmodell

Jeder Outputcontainer sollte die Stringvariable complete_info und die Integer-
variable complete state besitzen. In complete_info kann ein Ausgabetext (z. B.
eine Fehlerbeschreibung) geschrieben werden kann und in complete state sollte
ein Riickgabewert geschrieben werden.

Der Inputcontainer von Ersatzaktivititen und Kompensationsaktivitdten ist
aus dem Inputcontainer und dem Outputcontainer der normalen Aktivitét
zusammengesetzt. Die Container von normalen Aktivitdten und Ersatzakti-
vitdten, bzw. Kompensationsaktivitdten miissen daher denselben Aufbau be-
sitzen, da hier kein Mapping der Containervariablen stattfindet, sondern ein
einfaches Kopieren der Containerinhalte. Derselbe Mechanismus wird bei den
Containern eines Blocks und den Source— und Sinkcontainern im Block benutzt.

Der Outputcontainer der Ersatz— und Kompensationsaktivitaten darf nur aus
den Riickgabewerten complete_info und complete state bestehen. FEs diirfen
keine Datenkonnektoren von diesen Variablen wegfiihren.

63

Universitdt Stuttgart

Software—Labor 5 Das Datenmodell von Surro

64

6. Die Funktionsweise von Surro

6.1. Die Workflow—Engine
6.1.1. Der strukturelle Aufbau der Workflow—Engine

Nach dem Start der Workflow—Engine werden alle notwendigen Initialisierungen vor-
genommen. Falls der Neustart nach einem Systemabsturz stattfindet, werden even-
tuell notwendig gewordene Mafinahmen fiir ein Recovery ausgefithrt. Danach wartet
die Engine auf Nachrichten, die in einer Nachrichtenwarteschlange gespeichert wer-
den. Die Nachrichten heiflen interne Ereignisse. Mit dem Entnehmen eines internen
Ereignisses wird in allgemeinen eine Transaktion gestartet. Alle Anderungen des
Workflowzustands, der in der Datenbank gespeichert ist, werden nun im Rahmen
dieser Transaktion ausgefithrt. Wéhrend der Verarbeitung eines internen Ereignisses
kann die Engine neue interne Ereignisse erzeugen, die ebenso in der Nachrichtenwar-
teschlange fiir die spitere Bearbeitung gespeichert werden. Nach dem Beenden der
Verarbeitung eines internen Ereignisses wird die Transaktion beendet. Der Workflow
hat damit einen neuen Zustand. Der Zustandsiibergang wurde durch eine Trans-
aktion geschiitzt. Das nachste Ereignis in der Warteschlange wird nun gelesen und
verarbeitet.

Interne
Objekte

Nachrichten-
Warteschlange Externe
Programme

Abbildung 6.1.: Eine Abarbeitungsschleife als prinzipielle Arbeitsweise der
Workflow-Engine

o Schleife zur
- initiiert Abarbeitung
Internes Ereignis > von internen

Ereignissen

Auftrage externer Programme an die Fngine werden durch das Einfiigen eines

65

Universitdt Stuttgart

Software—Labor 6 Die Funktionsweise von Surro

internen Ereignisses in die Warteschlange abgesetzt. Bei der Verarbeitung eines in-
ternen Ereignisses durch die Engine in Form einer Schleife kann Kommunikation zu
anderen Programmen notwendig werden. Die Kommunikation findet hier synchron
statt, d.h. die Engine erwartet eine sofortige Antwort.

TA-Verwaltung
Aktivitaten Trasnpsrggt(ia%ns-
Nachrichten-

Warteschlange
Blocke Kompensations-
sphéren

ProzelRRebenen

TA-Adapter
Organisations-
Modul

Workflow-Engine

Workflows

Abbildung 6.2.: Der Aufbau der Engine nach einzelnen Objekten strukturiert

In Abbildung 6.2 ist der innere Aufbau der Workflow—Engine nach Objekten struk-
turiert dargestellt. Ein Workflow besteht aus mehreren Prozeflebenen (siehe 49). Ei-
ne Prozeflebene beinhaltet wiederum die Objekte Aktivitdat, Block und Subprozef.
Daneben gibt es die Transaktions— und Kompensations—Spharen—Objekt. Die Ob-
jekte fiir die Transaktion—Verwaltung und die Nachrichtenwarteschlange sind in den
0S/2-Prozel TA-Adapter ausgelagert, gehoren aber prinzipiell zur Engine. Das Or-
ganisationsmodul kann auch als eigenstdndiges Programm implementiert werden, ist
hier aber als internes Engine-Objekt aufgefiihrt.

Die Objekte Aktivitaten, Blocke, Subprozef, Transaktions—Sphére und Kompen-
sations—Sphéren sind als Zustandsautomaten realisiert. Der Zusténde der Objek-
tinstanzen werden in der Datenbank gespeichert. Die einzelnen Objekte und ihre
Implementierungen werden in den folgenden Abschnitten detaillierter erlautert.

6.1.2. Die Nachrichtenwarteschlange

Die Engine besitzt eine Abarbeitungsschleife, in der sie auf das Auftreten von inter-
nen Ereignissen wartet und diese dann abarbeitet. Die Ereignisse werden in einer
FIFO-Nachrichtenwarteschlange gespeichert. Diese Warteschlange ist als Resource—
Manager in Form eines DSOM~-Objektes der Klasse TAQueue implementiert (trans-
aktionale Queue). Die Aufgabe der transaktionalen Queue ist es, Nachrichten bzw.
Ereignisse sicher zu speichern.

66

Universitdt Stuttgart
6.1 Die Workflow—Engine Software—Labor

Die Queue besitzt als Schnittstelle die Operationen enqueue zum Eintragen eines
Elementes an das Ende der Queue, dequeue zum Entfernen des nichsten Elementes,
peek zum nicht—zerstérenden Lesen des nédchsten Elements, count_entries zur Er-
mittlung zur Anzahl der vorhandenen Elemente und get_ta_handle zum Ermitteln
des Transaktionskontextes des néchsten Elements.

Nachrichten miissen innerhalb eines giiltigen Transaktionskontexts in die Queue
geschrieben und aus ihr ausgelesen werden. Fin Element, das in einer aktiven Trans-
aktion in die Queue gestellt worden ist, kann auch nur im Kontext genau dieser
Transaktion wieder ausgelesen werden. Damit die Engine beim Auslesen den rich-
tigen Kontext verwendet, ist sie in der Lage mittels get_ta_handle den Kontext zu
ermitteln. Ist das Element in einer Transaktion eingetragen worden, die mittlerweile
erfolgreich beendet worden ist (Das Element ist dann ,bestatigt®, engl. committed),
so kann das Element in einem (beliebigen) Kontext ausgelesen werden. Wird eine
Transaktion zuriickgesetzt, so werden alle Elemente der Queue, die in diesem Kon-
text gespeichert worden sind, wieder entfernt. Analog werden bestétigte Elemente,
die in einem anderen Kontext ausgelesen worden sind, bei dessen Rollback wieder in
die Queue zuriickgeschrieben.

Die Arbeitsweise der Warteschlange

In Abbildung 6.3 wird dieser Vorgang und der Gebrauch der transaktionalen Warte-
schlange durch die Workflow—Engine verdeutlicht.

Y TA-3

XC@X TA-3 @x TA-3 Y |c

begin dequeue SELECT... engueue commit
l l UPDATE...
TA-3 Element X Element Y

Abbildung 6.3.: Der Gebrauch der transaktionalen Warteschlange durch die Engine

Die Engine beginnt eine neue Transaktion und erhilt im Beispiel das Handle
TA-3, das eine Referenz auf den OTS-Transaktionskontext darstellt. Alle weiteren
Operationen auf Resource-Managern werden nun in diesem Kontext durchgefiihrt.
In der Queue befindet sich das Element X im bestatigten Zustand (angedeutet durch
die Markierung c fiir “committed”). Die Engine liest das Element aus, das dadurch
als innerhalb von TA-3 geloscht markiert wird (Markierung r steht fiir “removed”).
Das Element wird nicht entfernt, da es bei einem Rollback der Transaktion restauriert
werden muf.

67

Universitdt Stuttgart

Software—Labor 6 Die Funktionsweise von Surro

Das Element X wird nun von der Engine verarbeitet und 16st dabei diverse Opera-
tionen aus (UPDATE, SELECT), beispielsweise um den Zustand einer Aktivitat auf
der Workflow—Datenbank zu aktualisieren. Nach Beendigung dieser Operationen wird
typischerweise wiederum eine Nachricht (V') auf die Queue geschrieben, die weitere
Folgeoperationen auslésen soll. Danach wird die Transaktion beendet. Erst dadurch
wird das Element X endgiiltig von der Queue entfernt. Das Element Y erhélt den
Zustand “committed”. Es kann auch vorkommen, dafl keine weitere Nachricht Y in
die Queue eingetragen wird. In diesem Fall arbeitet die Engine erst dann weiter, wenn
durch ein externes Programm (z. B. durch den Aktivitdten—Manager) eine Nachricht
(ein externes Ereignis) in die Warteschlange eingereiht wird.

Durch das transaktionale Verhalten der persistenten Warteschlange wird erreicht,
dafl im Fehlerfall, also bei einem Transaktionsabbruch, jeweils die korrekten Nach-
richten beim Wiederanlauf in der Queue stehen und somit gleich eine Wiederholung
der abgebrochenen Vorgange durchgefithrt werden kann.

Liste der definierten internen Ereignissen

Als interne FEreignisse werden Nachrichten bezeichnet, die zur Steuerung der
Workflow—Engine in die Nachrichtenwarteschlange geschrieben werden. Interne Fr-
eignisse sind haufig Ausléser von Zustandsiibergdngen bei Aktivitaten, Blécken und
Sphéren. Folgende interne Ereignisse sind definiert:

start Workflow Ein Workflow soll gestartet werden.
actorStart Der Bearbeiter zeigt an, dafl er eine Aktivitat gestartet hat.
actorSuccessful Der Bearbeiter zeigt an, daf} er eine Aktivitat erfolgreich

beendet hat.

actorFailed Der Bearbeiter zeigt an, dafl er eine Aktivitat erfolglos be-
endet hat.
actorRefused Der Bearbeiter zeigt an, dafl er eine Aktivitdt nicht bear-

beiten will.

actorOmitted Der Bearbeiter zeigt an, dafl er eine optionale Aktivitét
nicht bearbeiten will und sie deshalb auslaf}t.

backout Eine Kompensations—Sphére soll wieder in den Anfangszu-
stand versetzt werden. Dazu miissen alle bearbeiteten Ak-
tivitaten kompensiert werden.

timeoutReady Das Zeitlimit einer Aktivitdt im Zustand ready ist tiber-
schritten worden.

68

Universitdt Stuttgart
6.1 Die Workflow—Engine Software—Labor

timeoutRunning Das Zeitlimit einer Aktivitdt im Zustand running ist iiber-
schritten worden.

startReplaceNode Ein Ersatzknoten soll gestartet werden.

startCompensationNode Ein Kompensationsknoten soll gestartet werden.

restartNode Ein Knoten soll erneut gestartet werden (nach einem back-
out).

eventOccured Das zum Knoten gehérige Ereignis ist aufgetreten.

suki_* Die Workflow-Engine bietet verschiedene Prozeduraufrufe

an, die mit diesen Nachrichten von externen Programmen
aufgerufen werden kénnen.

6.1.3. Das Transaktionskontext—Verwaltungsobjekt

Das Transaktionskontext—Verwaltungsobjekt ist in das OS/2 Programm “TA-
Adapter” ausgelagert. Der TA-Adapter fungiert als Client fiir alle transaktionale
Vorginge. Er tritt aus Sicht des OTS als Initiator fiir saémtliche transaktionalen Ope-
rationen auf. Logisch gesehen miifite die Engine diese Aufgabe iibernehmen, kann
dies aber wegen der Nichtverfiigharkeit von SOM 3.0 unter UNIX nicht iibernehmen.
Daher wird der zusétzliche Prozefs TA-Adapter als ,,0S5/2-Verlangerung* der Engine
und eine Schnittstelle zwischen den Programmen geschaffen. Diese bietet Funktio-
nen zum Starten (begin), Beenden (commit und rollback) von Transaktionen und
zum expliziten Setzen des Transaktionskontextes (set_context). Zur Zeit werden
geschachtelte Transaktionen noch nicht unterstiitzt. Jede Transaktion ist eine Top—
level-Transaktion. Uber das Interface erhilt die Engine zu jeder neuen Transaktion
ein eindeutiges Handle, das als Parameter fiir set_context benétigt wird. Nach
Beginn einer Transaktion bzw. einem expliziten Kontextwechsel werden alle transak-
tionalen Operationen implizit im Rahmen dieser Transaktion durchgefithrt. Es ist
nicht notwendig, bei jeder Operation den Kontext als Parameter mitzuliefern.

Der TA-Adapter mufl somit eine Abbildungsfunktion von Transaktions—Handle
zum realen Transaktionskontext bereitstellen. Dies wird mittels eines eigenen DSOM-
Objekts der Klasse “TAContext” realisiert, damit auch andere Prozesse (z.B. der
PEC) auf die Kontextinformation zugreifen kénnen.

6.1.4. Das Workflow Objekt

Das Workflow Objekt beinhaltet in der Hauptsache alle bereits instanziierten Proze-
Bebenen. Es werden immer nur die Prozeflebenen instanziiert, in die der Kontrollflufl
eingetreten ist. Eine Workflow—Instanz—ID identifiziert einen Workflow. Die Engine
kann mehrere Workflows parallel bearbeiten.

69

Universitdt Stuttgart

Software—Labor 6 Die Funktionsweise von Surro

6.1.5. Das ProzeBebenen Objekt

Eine Prozeflebene beinhaltet Aktivitdten, Blocke, Subprozesse und die Sphéaren, die
auf derselben Ebene liegen. Alle Objekte einer Prozelebene werden mit dieser zusam-
men instanziiert. Blécke und Subprozesse sind Stellvertreter fiir weitere, tieferliegende
Prozelebenen.

6.1.6. Das Aktivitaten Objekt

Eine Aktivitat besitzt verschiedene Zusténde. In Abbildung 6.4 ist das zugehorige
Zustandsdiagramm einer Aktivitdt dargestellt.

backout

actorSuccess;
Exitcond = f

—)
2 terminated
Startcond = f Precond = f
actorSuccess;
initial EventOccured & i . Exitcond = t essful
mniu penaing — running SUCCH ui
Startcond =t Precond =t actorStart

¥ backout backout backout | | actorFailed

restartSphere / backout; CompensationSuccessful failed

backout; CompensationSuccessful

Abbildung 6.4.: Das Zustandsdiagramm einer Aktivitat

Nach der Instanziierung befindet sich eine Aktivitat im Zustand INITIAL. Wenn
die Aktivitat eine Startaktivitat ist, oder wenn der Kontrollflufl die Aktivitat erreicht
und alle eingehenden KontrollfluBkonnektoren entweder zu wahr oder falsch evaluiert
wurden, dann wird die Startbedingung der Aktivitdt ausgewertet. Falls sie positiv
ausfallt, wechselt die Aktivitdt in den Zustand PENDING. Hierin wartet sie auf das
Auftreten eines spezifizierten Ereignisses. Falls kein Ereignis spezifiziert oder falls
das Ereignis eingetreten ist, wechselt die Aktivitat in den Zustand READY. Dabei
findet eine Zuteilung der Aktivitét zu einer konkreten Person statt. Falls eine Rolle
als Akteur angegeben ist, muf} eine Rollenauflésung durch das Organisationsmodul
stattfinden. Die Aktivitat erscheint auf der Arbeitsliste des ausgewdhlten Bearbeiters.
Der Bearbeiter hat die Wahl, diese Aktivitdt zu bearbeiten. Im Bearbeitungsfall
geht die Aktivitdt in den Zustand RUNNING iiber. Eine Aktivitat kann entweder
erfolgreich oder erfolglos bearbeitet werden. Wenn der Bearbeiter angegeben hat,
dafl die Aktivitat erfolgreich bearbeitet wurde, dann priift die Workflow—Engine, ob
sie dies mit Hilfe der Nachbedingung verifizieren kann. Falls die Nachbedingung

70

Universitdt Stuttgart
6.1 Die Workflow—Engine Software—Labor

nicht verifiziert werden kann, kommt die Aktivitdt erneut im Zustand READY auf die
Arbeitsliste desselben Bearbeiters.

In den Zustand TERMINATED kommt die Aktivitdt, wenn die Startbedingung zu
falsch evaluiert wird (Dies kann insbesondere bei der Dead—Path—Elimination stattfin-
den, s.u.). Wenn nach dem Eintreten des spezifizierten Ereignisses die Vorbedingung
nicht zutrifft, wird ebenfalls der Zustand TERMINATED erreicht.

Wenn sich die Aktivitdt in einer Kompensations—Sphére befindet, dann kann ein
wbackout® ausgelost werden, d.h. die Ausgangssituation zu Beginn der Sphére muf
wiedergestellt werden. Falls die Aktivitdt noch nicht bearbeitet wurde, kann sie
einfach wieder in den Ausgangszustand versetzt werden. Aber falls sie sich noch in
Arbeit befindet oder schon bearbeitet worden ist, dann muf sie kompensiert werden.
Falls die Kompensation erfolgreich war, tritt die Aktivitdt in den Zustand kompensiert
iiber. Von dort geht es erst dann in den Zustand INITIAL weiter, wenn alle Aktivitdten
der Sphére erfolgreich kompensiert wurden.

6.1.7. Das Block Objekt

backout

Exitcond = f

—)
2 terminated
Precond = f %j
i Exitcond =t
Procond =1 > active | syccessful

Startcond = f

L EventOccured
initial
Startcond =t

backout

restartSphere

backout; CompensationSuccessful

Abbildung 6.5.: Das Zustandsdiagramm eines Blocks

Das Zustandsdiagramm eines Blocks dhnelt dem der Aktivitat, mit dem Unterschied,
dafl Blocke nicht an Bearbeiter verteilt werden und daher der Zustand READY nicht
existiert. Auch kann ein Block nicht erfolglos beendet werden. Erfolgreich ist er
beendet, wenn alle Knoten innerhalb des Blocks in einem Endzustand sind. Die
Exitcondition wird als Wiederholbedingung fiir den gesamten Block verwendet, damit
wird eine Schleifenkonstruktion ermoglicht.

6.1.8. Das SubprozeB Objekt
Das Subprozel Objekt ist nicht implementiert worden (Stand Ende 1996).

71

Universitdt Stuttgart

Software—Labor 6 Die Funktionsweise von Surro

6.1.9. Das Transaktions—Spharen Objekt

. controlflow enter . all activities successful i
initial sphere active committed

rollback

Abbildung 6.6.: Das Zustandsdiagramm einer Transaktions—Sphére

Eine Sphére wird zusammen mit den Aktivitaten, Blocken usw. . einer Prozeebene
instanziiert und befindet sich dann im Zustand INITIAL. Sobald der Kontrollfluf} die
Sphare betritt, wechselt die Sphire den Zustand nach ACTIVE. Wenn alle Aktivitdaten
erfolgreich beendet worden sind, initiiert die Workflow—Engine mit einem commit das
2-Phasen—Commit—Protokoll, das bei positivem Ausgang dazu fithrt, daf} die Sphére
in den Zustand COMMITTED {ibergeht. Falls das 2PC—Protokoll zu einer negativen
Entscheidung kommt, wird ein rollback ausgefithrt und der Zustand wechselt implizit
durch die Ausfithrung des Rollbacks in den INITIAL—Zustand iiber. Falls eine Aktivitat
einen erfolglosen Abschlufl meldet, initiiert die Workflow—Engine ein rollback und
beendet so vorzeitig die Bearbeitung der Sphare.

6.1.10. Das Kompensations—Spharen Objekt

L controlflow enter. all activities successful L
initial sphere finished
backout
all activities are compensatedr backout

Abbildung 6.7.: Das Zustandsdiagramm einer Kompensations—Sphére

Das Zustandsdiagramm der Kompensations—Sphére unterscheidet sich von dem Zu-
standsdiagramm der Transaktions—Sphére durch den zusétzlichen Zustand BACKOUT.
Wenn eine Aktivitat einen erfolglosen Abschluffi meldet, wird ein backout ausgelost
und die Sphére wechselt in den entsprechenden Zustand. Dieses backout—Signal wird
an alle Knoten in der Sphére weitergereicht, die nicht im Anfangszustand sind. Wenn
dann alle Knoten entweder im Anfangszustand oder erfolgreich kompensiert sind,
kann die Sphére wieder in den INITIAL Zustand wechseln und erneut bearbeitet wer-
den.

72

Universitdt Stuttgart
6.1 Die Workflow—Engine Software—Labor

6.1.11. Das Organisationsmodul

Dieser Teil des Workflowsystem hat die Aufgabe, im Auftrag der Workflow—Engine
einen Bearbeiter fiir eine Aktivitét zu finden. In der Workflow—Spezifikation muf} zu
jeder Aktivitdt ein Ausdruck angegeben werden, iiber den das Organisationsmodul
einen Bearbeiter aus der spezifizierten Aufbauorganisation des Unternehmens oder
der Behorde heraussucht. Als Grundlage dient dazu das auf Seite 57 beschriebene
Datenmodell der Aufbauorganisation.

In der Organisationsdatenbank (bzw. in den Organisations—Relationen der
Workflow—Datenbank) miissen alle Teilnehmer am Workflowsystem, die Bearbeiter,
aufgefithrt sein. Zu jeder Person konnen eine Menge von Fahigkeiten und Kompe-
tenzen angegeben werden. Die Fahigkeiten und Kompetenzen sind nicht vordefiniert
und kénnen wéhrend der Modellierung der Aufbauorganisation frei gewahlt werden.
Fahigkeiten und Kompetenzen kénnen als Auswahlkriterium herangezogen werden.
So kann z.B. eine Person durch eine andere Person vertreten werden, wenn sie die-
selben Fahigkeiten besitzt, die zur Bearbeitung einer Aktivitdt nétig sind.

Eine Gruppe von Personen kann zu einer Rolle zusammengefafit werden. Als Teil-
nehmer einer Rolle sind die Personen beliebig austauschbar, d. h. eine Teilnehmer einer
Rolle kann durch einen anderen Teilnehmer an derselben Rolle ersetzt werden. Sie
besitzen damit implizit dieselben Fahigkeiten und Kompetenzen. Das Organisations-
modul hat die Aufgabe, diese Auswahl einer Person iiber die Rolle nach bestimmten
Algorithmen vorzunehmen. In der momentan implementierten Version wird der erste
im Workflowsystem eingeloggte Bearbeiter ausgewéhlt. Weitere Auswahlalgorithmen,
wie eine abwechselnde Auswahl oder die Auswahl des Bearbeiters mit der geringsten
Arbeitslast, sind relativ einfach implementierbar.

Zwischen Rollen und Personen kénnen frei bestimmbare Verhdltnisse spezifiziert
werden. Damit kann z. B. die hierarchische Struktur des Unternehmens abgebildet
werden. Durch die freie Wahl der Verhaltnisse kénnen auch mehrere Hierarchiearten
realisiert werden.

Das Organisationsmodul fithrt eine eigene Protokolldatei, mit der das Modul auf
ein frither getroffene Auswahl zurlickgreifen kann. Somit wird es moglich, eine Akti-
vitdt von demselben Bearbeiter wie eine andere Aktivitat erledigen zu lassen. Zudem
kommuniziert das Organisationsmodul mit dem Workflow—Session—-Manager, um auf
die Daten {iber die eingeloggten Bearbeiter zugreifen zu koénnen.

6.1.12. Das Kommunikationsprotokoll

Zur Kommunikation iiber Sockets wird ein Nachrichtenformat verwendet, das zur
Ubertragung strukturierter Daten geeignet ist. Ein einzelnes Nachrichtenatom hat
die Grundstruktur:

<type>:<length>:<content>

<type> ist der Typ der Nachricht, <length> gibt die dezimal ASCII-codierte Lange
des folgenden <content>—Feldes an. <content> beinhaltet die Nutzinformation, die

73

Universitdt Stuttgart

Software—Labor 6 Die Funktionsweise von Surro

aber wiederum aus gleich strukturierten Nachrichten aufgebaut sein kann. Aus dem
Typ ist erkenntlich, ob die Nutzinformation aus einem String oder weiter strukturier-
ten Nachrichtenatomen besteht. Beispiel:

struct1:19:s:5:hellos:6:World!

ist eine Nachricht vom Typ “structl”, die die zwei Strings (Typ ,s*) “hello” und
“World!” enthalt.

6.2. Interne Abarbeitung eines Workflows

Der Aktivitaten—Manager fligt das interne Ereignis “start Workflow” in die Nachrich-
tenwarteschlange ein, damit die Engine einen Workflow startet. Die Engine liest die
Nachricht und erzeugt eine neue Transaktion, in der dann der Workflow instanzi-
iert wird. Es wird dabei nur die oberste Prozeflebene mit allen Aktivitdten, Blocken
und Sphéren instanziiert. Anschlielend werden alle Startaktivitdten ermittelt und
die Startnachrichten in die Nachrichtenwarteschlange gestellt. Startaktivitdten sind
alle Aktivitaten ohne eingehenden KontrollfluBkonnektoren. Die Instanziierungs—
Transaktion wird beendet. Als nachstes werden die Startnachrichten der Aktivitdten
in der Queue bearbeitet.

Wenn ein Endzustand einer Aktivitéat erreicht ist, werden die Kontrollflukonnek-
toren und Datenflulkonnektoren ausgewertet. Bei der Auswertung des Datenflusses
werden die Variablen der Outputcontainer auf Variablen der Inputcontainer einer
nachfolgenden Aktivitat abgebildet. Anstatt einer 1:1-Kopie kann auch eine Transfor-
mation des Wertes iiber eine Berechnungsvorschrift erfolgen. Uber das Verfolgen der
ausgewerteten Kontrollkonnektoren werden die néchsten zu startenden Aktivitdten
bestimmt.

Erfiillt eine Aktivitat die Startbedingung nicht und geht in den Zustand TERMINA-
TED iiber, tritt die sogenannte Dead—Path—Elimination in Aktion. Dabei werden alle
Kontrollkonnektoren, die von dieser Aktivitdt ausgehen, zu falsch evaluiert. Wenn
dadurch weitere Aktivitdten in den Zustand TERMINATED {iberfiihrt werden, wird
dieser Vorgang rekursiv fortgesetzt.

Der Start eines Blockes oder eines Subprozesses bedeutet die Instanziierung der
untergeordneten Prozeflebene. Da der Block auch als Schleifenkonstrukt benutzt wird,
findet bei jedem Schleifendurchgang eine Neuinstanziierung der Prozefebene statt.

6.2.1. Die Transaktionsgrenzen innerhalb und auBBerhalb von
Sphéaren

In Abbildung 6.8 sind die vier Félle angedeutet, wie die Engine Transaktionsgrenzen
in Abhéngigkeit von den Eintrégen in der Warteschlange setzt.

74

Universitdt Stuttgart

6.3 Der Programm—Pool-Manager Software—Labor

a)

A \ //

a) peek begin <Operationen> commit
b) peek begin <Operationen> <nichts>
Cc) peek set_context <Operationen> <nichts>
d) peek set_context <Operationen> commit
o pesk

— > degueue/enqueue

Abbildung 6.8.: Vier Félle wie auf interne Ereignisse reagiert werden kann

Dies ist der Normalfall. Die Engine erfiahrt durch peek, dafl der Eintrag in der
Warteschlange bestatigt ist (Das heifit, daff die Transaktion, in deren Rahmen
der Eintrag in die Warteschlange erfolgt ist, mit ,commit* beendet worden ist).
Sie beginnt eine neue Transaktion fiir die Abarbeitung der Nachricht. In dieser
neuen Transaktion wird der Eintrag gelesen und die Fngine reagiert entspre-
chend auf das interne Ereignis. Dabei kénnen weitere interne Ereignisse durch
die Engine in die Warteschlange geschrieben werden. Am Ende der Bearbeitung
wird die Transaktion bestatigt.

Dieser Fall tritt dann auf, wenn das interne Ereignis den Start einer Sphére zur
Folge hat. Die Transaktion wird daher nach dem Start der Sphéare nicht beendet.
Die Abarbeitung eines internen Ereignisses geht normal bei peek weiter.

Der FEintrag in der Warteschlange gehért zu einer noch laufenden Transakti-
on. Der Eintrag des Ereignisses in die Warteschlange ist also im Rahmen einer
Sphérentransaktion erfolgt. Alle weiteren Operationen der Engine in Reakti-
on auf dieses Ereignis miissen daher in demselben Sphérentransaktionskontext
stattfinden. Die Engine bindet sich durch set_context an die Sphérentransak-
tion und fiithrt die Operationen in diesem Kontext aus. Wenn die Sphére am
Ende der Abarbeitung der Nachricht noch nicht beendet worden ist, wird die
Transaktion auch nicht bestétigt.

In diesem Fall gehort die Nachricht zu einer Sphére, die in diesem Bearbeitungs-
schritt beendet wird. Die Sphérentransaktion wird daher am Schlufl bestétigt.

6.3. Der Programm-Pool-Manager

Die Implementierung des Programm-Pool-Managers ist in [Ros96] ausfiihrlich be-

schrieben.

75

Universitdt Stuttgart

Software—Labor 6 Die Funktionsweise von Surro

Workflowsystem Programm-Pool-
Manager

verteilt
installiert App.

installiert App.

Aktivitét

Plattfprmab- startet Aktivitaten- startet
héngige - —
Applikationen

Java-
Applikationen

Manager

Java Laufzeitsystem

Plattform

Abbildung 6.9.: Prinzip der Verteilung von plattformunabhéngigen Programmen in-
nerhalb eines Workflowsystems

Zur Realisierung von plattformunabhdngigen Anwendungsprogrammen in Work-
flowsystemen werden Java—Applikationen verwendet. Dazu wird auf jedem Ar-
beitsplatzrechner ein Java—Laufzeitsystem (Java—Interpreter, virtuelle Maschine und
Java—API) installiert, das eine plattformunabhéangige Schnittstelle zu den Java—
Applikationen bietet. Das Laufzeitsystem selbst ist plattformabhidngig und muf} auf
jedes neue System portiert werden (wenn dies noch nicht geschehen ist). Mit diesem
Laufzeitsystem als Basis konnen Java—Applikationen ausgefithrt werden (Abbildung
6.9). Plattformabhéngige Anwendungsprogramme konnen ebenfalls ausgefiihrt wer-
den. Diese setzen dann direkt auf der Plattform auf. In der Abbildung 6.9 wird
der Ablauf bei der Bearbeitung einer Aktivitét skizziert. Das Workflowsystem weist
dem Aktivitdten-Manager eine Aktivitat zu. Wenn die fiir die Bearbeitung benétig-
te Applikation eine Java—Applikation ist, fordert der Aktivitdten-Manager den Pro-
grammcode der Java—Applikation aus dem Programm-Pool an. Der Programm-Pool—-
Manager iibertragt den Programmcode an den Aktivitdten-Manager und dieser fithrt
die Applikation aus. Das System besteht aus folgenden Systemkomponenten:

e Das Java-Laufzeitsystem besteht aus einer virtuellen Maschine (Java—VM), dem
Java—Interpreter und dem Java—API, das die plattformunabhéngige Schnittstel-
le zu den Funktionen des Betriebsystems realisiert. Seine Aufgabe ist es, Java—
Applikationen auszufithren und die Kommunikation mit der darunterliegenden
Plattform zu fithren.

e Plattformunabhingige Anwendungsprogramme sind Java—Applikationen, die
von der Java—VM ausgefithrt werden. Sie verwenden die Funktionen des Be-

76

Universitdt Stuttgart
6.4 Der Aktivitdten—Manager Software—Labor

triebssystems mit Hilfe einer plattformunabhéngigen Schnittstelle und kénnen
deshalb, ohne Rekompilation von jedem Java—Laufzeitsystem ausgefithrt wer-
den.

o Der Aktivitdten—Manager des Workflowsystems wird ebenfalls als Java—Appli-
kation implementiert, wodurch er auf jedem Arbeitsplatzrechner eingesetzt wer-
den kann, der tiber ein Java—Laufzeitsystem verfiigt. Auflerdem wird der Ak-
tivititen—Manager dazu verwendet, die Java—Applikationen, die fiir die Bear-
beitung von Aktivitdten notwendig sind, vom Programm—-Pool-Manager anzu-
fordern und auf einem Massenspeicher des Arbeitsplatzrechners zu installieren.
Der Aktivitdten-Manager kann auch plattformabhéangige Anwendungsprogram-
me starten.

e Der Programm—Pool-Manager verwaltet die Applikationen und deren Attribu-
te, wie z. B. Plattform und Version. Der Aktivitdten—-Manager kann den Pro-
grammecode einer Applikation anfordern, wenn diese fiir die Bearbeitung einer
Aktivitat benétigt wird.

o Plattformabhingige Anwendungsprogramme sind Anwendungen, die als
ausfithrbares Programm in der Maschinensprache des Arbeitsplatzrechners vor-
liegen. Diese Anwendungen verwenden Funktionen des darunterliegenden Be-
triebssystems bzw. der darunterliegenden Plattform direkt. Sie kénnen ohne
das Java—Laufzeitsystem ausgefithrt werden, miissen jedoch beim Wechsel des
Betriebssystems bzw. des Rechners portiert werden.

6.4. Der Aktivitaten—Manager

Der Aktivitaten—Manager ist die Benutzerschnittstelle des Bearbeiters zum Workflow-
system. Durch das Einloggen des Bearbeiters in das Surro Workflowsystem iiber den
Aktivitaten—-Manager nimmt die Person an der Bearbeitung von Workflows teil. Der
Aktivitdten—Manager fragt die Arbeitsliste des Bearbeiters nach Aktivitdten ab, die
bearbeitet werden sollen, und stellt sie dar. Das Workflowsystem kann jederzeit neue
Aktivitaten auf die Arbeitsliste des Bearbeiters legen. Der Aktivitdten—Manager ver-
waltet drei Listen auf seiner grafischen Oberfliche (siehe Abbildung 6.10). In einer
Liste werden alle Aktivitdten dargestellt, die zur Bearbeitung durch den Bearbei-
ter anstehen, also die eigentliche Arbeitsliste. Der Benutzer kann sich verschiedene
Sortierungen der Aktivitdteneintrédge und zusétzliche Informationen iiber die Akti-
vitdten anzeigen lassen. In einer weiteren Liste werden alle Aktivitaten angezeigt,
die momentan von dem Bearbeiter bearbeitet werden. Aktivitéten in der ersten Liste
kénnen durch den Benutzer entweder iiber Doppelklick auf den Eintrag oder iiber die
Meniileiste gestartet werden. Der Aktivititen—Manager startet dann das zur Akti-
vitdt gehorige Anwendungsprogramm. Mit diesem Programm soll der Bearbeiter die
Aufgabe erledigen, die der gestarteten Aktivitat zugrunde liegt. Nach Beendigung des

77

Universitdt Stuttgart

Software—Labor 6 Die Funktionsweise von Surro

Zu bearbeitende Aktivitaten

verteilt Aktivitat . .
<Aktivitateneintrag>

Aktivitat
wird

erfolgreich oder
erfolglos beendet

Aktivitat wird

gestartet
..... > Anwendungs-
programm

Aktivitaten in Bearbeitung 4 4

Aktivitat wird " Aktivitat wird

wiederauf- A unterbrochen
genommen

unterbrochende Aktivitaten

Abbildung 6.10.: Die drei Arbeitslisten des Aktivitaten—-Managers

Anwendungsprogramms muf} der Bearbeiter entscheiden, ob der Workflow—Engine ei-
ne erfolgreiche oder erfolglose Bearbeitung der Aktivitdt gemeldet werden soll. Falls
der Bearbeiter eine erfolgreiche Bearbeitung meldet, priift die Engine die Nachbedin-
gung der Aktivitat. Falls diese zu wahr evaluiert werden kann, dann ist die Aktivitét
vollstéandig bearbeitet und der Kontrollflufl des Workflows wird weiterverfolgt. Falls
sie zu falsch evaluiert wird, dann bekommt der Bearbeiter eine Meldung, daf} die
Nachbedingung der Aktivitdt nicht erfiillt sei. Der Bearbeiter hat dann Gelegenheit
zur Nachbesserung.

Die dritte Aktivitdtenliste nimmt Fintrage von Aktivitaten auf, die wahrend der
Bearbeitung durch den Bearbeiter unterbrochen worden sind. Bei entsprechender Un-
terstiitzung durch die Anwendung schickt der Aktivititen—-Manager der Anwendung
eine Nachricht, sie solle ihren Zustand sichern. Wenn die Bearbeitung im Aktivitdten—
Manager wieder aufgenommen wird, wird die Anwendung erneut mit den gespeicher-
ten Zustand gestartet. Diese Funktionalitdt kann bei langerfristigen Arbeitsunterbre-
chungen, wie z. B. der Feierabend, sinnvoll angewendet werden. Sie kénnte sogar fiir
die Wiedervorlage einer Aktivitdt benutzt werden. indem nach einem einstellbaren
Zeitraum die Bearbeitung der Aktivitdt wieder aufgenommen wird.

Neben den Funktionen zur Verwaltung der Aktivitatslisten, besitzt der Akti-
vitaten—Manager noch weitere Funktionalitdat. Er erlaubt dem Bearbeiter, das Vor-
gangsinformationssystem aufzurufen, damit er sich grafisch iiber den Stand der Bear-
beitung des gesamten Workflows informieren kann. Uber den Aktivititen Manager
kann der Bearbeiter auch Prozesse starten, und er hat die Méglichkeit, das Auftreten
externer Ereignisse! der Workflow—Engine zu melden.

Lsiche Abschnitt 3.1.3

78

7. Erfahrungen und Ergebnisse

In diesem Kapitel werden die Erfahrungen bei der Implementierung von Surro und
die Ergebnisse, die aus dem Implementierung erfolgen, vorgestellt.

7.1. Erfahrungen beziiglich der
Entwicklungsumgebungen

Auf der OS/2-Seite sind in erster Linie Erfahrungen mit der Programmierung bzw.
Anwendung der CORBA-Implementierung DSOM, der dazugehorigen Implementie-
rung des Object Transaction Service (OTS) und der Datenbank DB2 fiir OS/2 ge-
macht worden. Auf der UNIX-Seite wurden Tcl/Tk und Java zusammen mit der
Datenbank mSQL eingesetzt.

7.1.1. Implementierung unter DSOM

Die CORBA-Implementierung DSOM Distributed System Object Model liegt zur Zeit
in der Version 3.0 im Beta—Stadium vor. Die Grundfunktionalitét als Object Request
Broker, soweit im Prototyp verwendet, bereitet keine besonderen Probleme. Insge-
samt aber ist der Beta—Zustand uniibersehbar. Dies &uflert sich in Surro u. a. dadurch,
dafl Programmfehler noch haufig ein Reboot erzwingen oder Probleme auftreten und
wieder verschwinden, ohne dafl dafiir Ursachen auszumachen wéren.

Die Implementierung mit DSOM und C++ hat sich als insgesamt nicht problem-
los herausgestellt. Es fehlt hier noch deutlich eine Verbesserung der Entwicklungs-
umgebungen. Da CORBA eine komplexe Systemarchitektur darstellt, erweist sich
die Einarbeitung und Benutzung als aufwendig und schwierig. Das Paket ist ins-
gesamt duflerst umfangreich beziiglich Platten— und Hauptspeicherbedarf, was sich
auch deutlich auf die Performance auswirkt.

7.1.2. Implementierung mit OTS

Der Object Transaction Service als Teil von DSOM wird in Surro sehr intensiv verwen-
det. Die Verwendung hat sich leider als ein schwieriges Unterfangen herausgestellt.
Aufzufiithren sind dabei unter anderem folgende Punkte:

79

Universitdt Stuttgart
Software—Labor 7 Erfahrungen und Ergebnisse

e Die Dokumentation ist nicht ausreichend. Es wird im Groflen und Ganzen nur
ein einziges Beispiel und eine Beschreibung der Schnittstellen gegeben. Dies
fiihrt dazu, daf} eine grofle Anzahl an ungeklérten Fragen mittels ,trial and
error® evaluiert werden muf}, was auflerordentlich viel Zeit kostet.

o Insbesonders unzureichend dokumentiert ist die Einbindung von XA Resource—
Managern (in diesem Falle die DB2, s.u.) in OTS—gesteuerte Transaktionen.

o Die Performance des Systems ist in der Initialisierungs— und Deinitialisierungs-
phase (DSOM-Init, Erstellung und Zerstérung der Objekte zur Transaktions-
verwaltung) inakzeptabel langsam.

o OTS bzw. DSOM bietet wenig Unterstiitzung zur Implementierung von trans-
aktionalen Objekten als Resource-Manager an. Niitzlich wiren insbesondere
vorgefertigte Methoden zur Verwaltung von verschiedenen Transaktionskontex-
ten in einem Objekt und zur Persistenz. Ein Ansatz ist die enge Zusammen-
arbeit mit dem Persistence Service, was zwar laut Dokumentation vorhanden,
aber (noch) nicht vollstandig bzw. verwendbar implementiert ist.

7.1.3. Das Zusammenspiel von DB2 und OTS

Die verwendete DB2 2.1.1 unter OS/2 ist ein transaktionales Datenbanksystem mit
umfangreicher Funktionalitdt. Massive Einschréankungen in der Benutzbarkeit und
grundsétzliche Probleme treten im Rahmen von Surro aber im Zusammenspiel mit
OTS auf. Es ist nicht dokumentiert, iiber welche Schnittstellen der Zugriff auf die
DB2 bei Verwendung eines externen Transaktions—Managers wie OTS verwendet bzw.
nicht verwendet werden kann. Es ist nicht bzw. nicht ausreichend dokumentiert,
welche Besonderheiten dabei zu beachten sind. Dies muf alles zeitraubend evaluiert
werden.

Eine starke FEinschrankung stellt dabei das Fehlen einer Multithread—
Unterstiitzung dar. Es ist offensichtlich grundsatzlich nicht méglich, aus einem Prozef}
heraus von mehreren Threads unter Kontrolle von OTS auf die Datenbank zuzugrei-
fen. Dies fithrt dazu, dafl in Surro ein emnziger Thread alle Datenbankzugriffe unter
wechselndem Transaktionskontext durchfihren mufl. Der Versuch, von verschiede-
nen Prozessen anstatt von Threads aus auf die Datenbank zuzugreifen, fithrte leider
ebenfalls zu instabilem Verhalten, wofiir die Ursache aber nicht naher geklart werden
konnte.

Der Single-Thread—Zugriff in Verbindung mit dem Wechseln des Transaktionskon-
textes bei mehreren offenen Transaktionen resultiert in der Problematik, daf} jedes
Auflaufen auf eine Sperre auf der Datenbank den einen Thread blockiert, der als ein-
ziger die Sperre wieder aufheben kénnte. Damit dieses Problem nicht zur Wirkung
kommt, mufl ausgeschlossen werden kénnen, dafl es Zugriffe auf spharenbezogene
Daten von Auflerhalb einer Sphéarentransaktion gibt. Sphérenbezogen heifit dabei,
daf diese Daten potentiell von einer Spharentransaktion angefafit und somit gesperrt

80

Universitdt Stuttgart
7.1 Erfahrungen beziiglich der Entwicklungsumgebungen Software—Labor

werden kénnen. Es hat sich in Surro gezeigt, dafl das verwendete Datenmodell diese
Eigenschaft grundsétzlich bietet, aber man trotzdem héufig auf die Sperrproblematik
auflauft. Dies liegt daran, dal SQL—-Anfragen ohne Indexzugriff erst alle Tupel einer
Relation lesen miissen, um die qualifizierenden Tupel zu finden. Wenn nun — wie
im Datenmodell von Surro der Fall — sphéarenbezogene Daten verschiedener Sphéren
und auch nicht—sphérenbezogene Daten in derselben Relation liegen, a8t sich das
Sperrproblem nicht vermeiden.

Die Konsequenz daraus ist die Einfiihrung eines zusétzlichen Parameters fiir die
Zugriffsfunktionen auf die DB2 in der Engine-DB2-Schnittstelle. Der Parameter
bewirkt bei Lesezugriffen eine Herabsetzung des Sperrmodus und verhindert jegliches
Auflaufen auf eine Sperre. Die Anwendung muf selbst dafiir sorgen, dafl solcherlei
“dirty read” keine Inkonsistenzen bewirkt. In Surro wird dies eingehalten.

Fazit ist, da} die Kombination OTS-DB2 mit gewissen Einschriankungen die Funk-
tionalitat liefert, die bendtigt wird, dafl aber durch die Sperrproblematik des Single—
Thread—Zugriffs eigentlich unnétige Komplexitat und unnétige Risiken in das System
hineingetragen werden.

7.1.4. Implementierung mit Java

Bisher ist nur ein kleiner Teil des Workflowsystems (der Aktivitaten—-Manager) in
Java programmiert. Durch die zunehmende Bedeutung der Sprache in Internet— und
Intranetanwendungen und aufgrund der Eigenschaft der Plattformunabhéangigkeit er-
scheint es sinnvoll, weitere Teile des Systems in Java zu programmieren. Folgende
Kritikpunkte, gewonnen aus der Erfahrung mit Surro, stehen einer intensiveren Ver-
wendung im Wege:

o Es fehlen bisher noch ausgereifte Entwicklungsumgebungen. Momentan kom-
men aber laufend neue Entwicklungsumgebungen auf den Markt, so dafl damit
gerechnet werden kann, dafl in naher Zukunft dieser Kritikpunkt entfallt.

o Der Eigenschaft der Plattformunabhéngigkeit gehért zu den grofien Pluspunk-
ten der Sprache Java. Allerdings ergeben sich im Detail immer noch Unter-
schiede auf den verschiedenen Plattformen. Hier ist zu hoffen, dafl sich die
Implementierungen im Laufe der Zeit stirker angleichen. Fin Nachteil der
Plattformunabhéngigkeit ist darin zu sehen, dafl verschiedene Féhigkeiten der
unterschiedlichen Plattformen nicht genutzt werden kénnen.

e Das von Java angebotene Framework fiir die Erstellung von grafischen Ober-
flachen (Abstract Window Toolkit, AWT) bietet zuwenig Widget—Klassen mit
oftmals nur geringer Funktionalitdt an. An dieser Stelle mufite Riicksicht auf
die unterschiedlichen Fahigkeiten der GUIs auf den verschiedenen Plattformen
genommen werden. Daher sind nur Funktionen aus der Schnittmenge der ver-
schiedenen GUIs vorhanden. Die Programmierung mit dem AW'T erfolgt noch,

81

Universitdt Stuttgart
Software—Labor 7 Erfahrungen und Ergebnisse

verglichen mit Tk, auf einer relativ niedrigen Ebene. Der Einsatz von Interface
Buildern und neue Versionen von AW'T konnen dieses Problem reduzieren.

o Java bietet zum jetzigen Zeitpunkt noch relativ wenig Schnittstellen nach au-
Ben, wie z. B. zu einer Datenbank, oder zur Kommunikation zwischen verteilten
Objekten an. Durch den Einsatz der CORBA Architektur von der OMG und
der Standardisierung eines IDL.—to—Java Mappings ist eine Besserung dieses Zu-
standes zu erwarten.

e Die Performance des implementieren Java Programms ist nicht sehr hoch. Es
ist zu erwarten, dafl bei komplexeren Programmen dieser Nachteil verstarkt
auftritt. Hier bleibt abzuwarten, ob technische Verbesserungen, wie z. B. ein
Just—in—Time Compiler, die Laufzeiteigenschaften verbessern kann.

7.1.5. Implementierung mit Tcl/Tk

Die Programmiersprache Tel/Tk wurde als Implementierungssprache ausgewihlt,
weill sie sich fiir die schnelle und einfache Erstellung eines Prototypen eignet. Die
Interpretation von Tcl/Tk-Skripten und die Typfreiheit erleichtern Anderungen und
halten den Programmcode knapp. Der Entwicklungsprozel wird so verkiirzt. Tecl/Tk
bietet méachtige Befehle fiir die Erstellung von grafischen Oberflichen und fiir die
Interprozefkommunikation an. Der einfache Zugriff auf relationale Datenbanken hat
sehr zum erfolgreichen Finsatz dieser Sprache beigetragen.

Die interpretative Arbeitsweise fithrt dazu, dafl die Skalierbarkeit der Engine, die
in dieser Sprache implementiert ist, nicht mehr gegeben ist. Einige wenige Workflows
kénnen parallel von der Engine bearbeitet werden, es ist aber wahrscheinlich, daf} bei
einer groferen Belastung die Arbeitsgeschwindigkeit nicht mehr ausreicht. Tecl/Tk
ist eine prozedurale Programmiersprache. Es gibt zwar mehrere objektorientierte Er-
weiterungen, aber hier konnte sich noch keine Erweiterung durchsetzen. Aus diesen
Grund wurde gegen eine objektorientierte Entwicklung der Engine entschieden. Als
ein grofler Nachteil erweist sich eine fehlende Verbindung zwischen der CORBA Archi-
tektur und Tel/Tk. Es gibt kein standardisiertes Mapping der IDL-Datentypen und
Tcl-Datentypen (Strings und assoziative Arrays). Auch gibt es keine IDL-Compiler,
die eine Tecl Schnittstelle erzeugen wiirden. Aus diesem Mangel heraus mufl auf
die verfiigharen Sockets zuriickgegriffen werden, wenn mit Prozessen kommuniziert
werden muf, die nicht {iber die eingebaute Tcl-Interprozefkommunikation erreicht
werden koénnen.

7.2. Workflow—Transaktionen

Das vorgestellte Konzept der Workflow—Transaktionen ist mit vertretbarem Aufwand
zu realisieren. Dies hat die Implementierung des Surro Prototypen gezeigt. OTS kann
dabei die Rolle des Transaktionsmanagers iibernehmen. Alle auftretenden Problemen

82

Universitdt Stuttgart

7.3 Kompensations—Spharen Software—Labor

konnten gelost werden, wenngleich daraus einige Einschrankungen entstanden sind.
Eine der Einschrankungen ist, dal nur mit einem einzigen Thread und einem Prozef}
auf die DB2 Datenbank zugegriffen werden kann, wenn OTS als externer Transak-
tionsmanager benutzt wird. Als weitere Einschrankung mufl hingenommen werden,
daBl beim Zugriff auf die Workflow—Verwaltungsdaten die von Transaktionen garan-
tierte Isolation durchbrochen werden mufl. Aus der Anwendungslogik der FEngine
heraus kann aber garantiert werden, daf} keine inkonsistenten Daten unbestétigter
Transaktionen gelesen oder verdndert werden.

7.3. Kompensations—Spharen

Das ebenfalls vorgestellte Konzept der Kompensations—Sphéren ist mit geringem Auf-
wand zu realisieren. Weiterfithrende Versuche mit unterschiedlichen Reihenfolgen der
Ausfithrung der Kompensationsaktivitdten sind aus Zeitgriinden nicht durchgefiihrt
worden.

7.4. Kritik am FlowMark Workflow Modell

Das FlowMark Workflow Modell wurde iibernommen, um eine weitgehende Ubert-
ragbarkeit der Ergebnisse von Surro auf FlowMark zu gewdhrleisten. FEs hat sich
aber gezeigt, dafl dieses Modell an mehreren Stellen noch Schwichen hat. Daher
wurde in Surro versucht, diese Schwichen zu beseitigen, wenn sich dies ohne grofien
Anderungsaufwand erreichen lieB.

o Im Modell sind nur ,lokale® Variablen fiir Aktivitaten vorhanden, in den soge-
nannten Containern. Es kostet aber bei typischen Prozessen viel Modellierungs-
aufwand die immer wieder benétigten Variablen durch die einzelnen Container
ydurchzuschleusen“. Eine Art globaler Datencontainer, der ,,globale Variablen*
enthéalt, ware wiinschenswert. Die Synchronisation dieser Variablen mufl auto-
matisch erfolgen, d. h. es gibt zu einem Zeitpunkt genau einen giiltigen Wert.

Dieser Ansatz wurde nicht implementiert.

e Die Startbedingung fiir Aktivitaten ist nicht flexibel genug. Alle eingehen-
den KontrollfluBkonnektoren kénnen entweder alle nur mit AND oder OR ver-
kniipft werden. Im Surro Workflow Modell kann hier eine beliebige logische
Verkniipfung der eingehenden Kontrollflulkonnektoren als Startbedingung an-
gegeben werden.

e Das FlowMark zugrundeliegende Organisationsmodell ist sehr einfach aufge-
baut. Die Verteilungsstrategie einer Aktivitdt an einen Bearbeiter ist daher
wenig flexibel. In Surro wurde daher ein komplexer aufgebautes Organisations-
modell verwendet.

83

Universitdt Stuttgart
Software—Labor 7 Erfahrungen und Ergebnisse

o IlowMark bietet kein Konzept zur Reaktion auf externe Ereignisse an. In Surro
kann jede Aktivitdt auf das Auftreten eines externen Ereignisses oder eines
zusammengesetzten Ereignisses warten, bevor sie ausgefithrt wird.

o In Surro existiert im Gegensatz zu FlowMark ein Konzept, mit dem auch platt-
formunabhingige Programme am Arbeitsplatzrechner automatisch installiert
und ausgefithrt werden kénnen.

84

A. Die erstellte Software

A.1. Der BeispielprozeB ,,Beschwerde iiber
Kreditkartenabrechnung*

In Abb. A.1 ist ein Prozefl dargestellt, mit dessen Hilfe man den Einsatz von
Workflow—Transaktionen motivieren kann. Dargestellt ist ein Prozefl aus dem Ban-
kenbereich. Er modelliert den Vorgang, der durch eine Kundenreklamation bei fehler-
hafter Abrechnung einer Kreditkarte ablauft. Der Prozef} ist an einen realen Ablauf
angelehnt, besitzt natiirlich dadurch Unterschiede, daf} zur Zeit keine Workflowsyste-
me mit Workflow—Transaktionen oder vergleichbaren Konstrukten existieren, diese
aber hier verwendet werden. Aus Griinden der Ubersichtlichkeit sind Datenfluff, Be-
arbeiter und andere Details nicht abgebildet.

Der ProzeBl wird durch einen Anruf des betroffenen Kunden bei der fiir ihn
zustandigen lokalen Hausbank initiiert. Der Sachbearbeiter, der den Anruf entgegen-
nimmt, ermittelt die Art des Vorfalls und startet den entprechenden Prozef. In der
ersten Aktivitit Beschwerde entgegennehmen werden die Daten des Kunden aufge-
nommen. Anschlieend werden die Belege vom Kunden angefordert, die zur Klarung
des Vorfalles notwendig sind (Belege anfordern). Der néchste Schritt besteht darin,
den Vorfall anhand der entsprechenden Belege zu iiberpriifen. Der Prozefl kann somit
so lange nicht fortgefithrt werden, bis die Belege vorliegen. Dies wird dadurch sicher-
gestellt, daf} die Aktivitdt Belege prifen auf das Fintreten des externen FEreignisses
»2Kunde schickt Belege® wartet und vorher nicht aktiv wird. Das Ereignis muf} von
auflen in das System eingebracht werden.

Sind die Belege vorhanden, wird die Aktivitat gestartet. Kommt der Priifer zum
Ergebnis, daf die Reklamation unbegriindet ist, wird die Beschwerde sofort abgelehnt
(unterer Pfad des Graphen), der Kunde wird benachrichtigt (Beschwerde ablehnen),
der Vorfall wird archiviert und der Prozefl beendet. Wird die Reklamation akzeptiert,
muf} zum einen diese Tatsache zusammen mit allen relevanten Informationen im lo-
kalen Informationssystem gesichert werden (Eintrag in lokale DB), zum anderen muf
dem betroffenen Kreditkarteninstitut dieselbe Information verfiighar gemacht werden
(Fintrag in DB Karteninstitut). Letzteres stofit beim Kreditkarteninstitut wiederum
einen Prozef} an, der im Endeffekt dazu fithren soll, daf} der Fehlbetrag an die lokale
Bank iiberwiesen wird (In Abb. A.l nicht naher dargestellt). Dieses , Verfiigharma-
chen® der Informationen erfolgt sinnvollerweise dadurch, daf iiber einen entfernten

85

Universitdt Stuttgart
Software—Labor A Die erstellte Software

Sphilre & by

Abbildung A.1.: Beispielprozef ,,Kundenbeschwerde bei fehlerhafter Kreditkartenab-

rechnung*

Datenbankzugriff die Daten direkt in die Datenbank des Karteninstituts eingetragen
werden. Damit nun keine Inkonsistenzen zwischen dem lokalen und entfernten Daten-
bestand entstehen koénnen, ist es notwendig, die beiden Aktivitdten Fintrag in lokale
DB und Fintrag in DB Karteninstitut in einer verteilten Transaktion zusammenzu-
fassen. Dazu dient die erste Sphére.

Ist dies erfolgt, wird dem betroffenen Kunden der genehmigte Fehlbetrag von
einem speziellen Ausgleichskonto der lokalen Bank sofort iberwiesen, da die Bearbei-
tung durch das Karteninstitut normalerweise langer als fiir den Kunden akzeptabel
dauvert. Dazu mufl vom Ausgleichskonto der Betrag abgebucht und dem Kundenkon-
to gutgeschrieben werden. Diese beiden Aktivitédten sind wiederum in einer Sphére
zusammengefafit und somit durch eine Workflow—Transaktion geschiitzt. Dies erlaubt
auch die Parallelisierung der Aktivitdten Einzahlung und Abbuchung, da diese jetzt
als atomare Finheit gesehen werden kénnen.

Hier ist die Notwendigkeit eines transaktionalen Schutzes natiirlich offensichtlich,
da ohne Schutz durch Fehler beliebige Inkonsistenzen auftreten kénnen, wodurch
eventuell Geld vernichtet bzw. erzeugt wiirde, oder auch Buchungen doppelt erfolgen
kénnten.

Nach Beendigung der Sphére wird der Kunde iiber die Buchung des Fehlbetrages
auf sein Konto informiert (Kunde benachrichtigen). In Uberweisung prifen wird die
Uberweisung des Fehlbetrages vom Karteninstitut an die lokale Bank auf Korrektheit

86

Universitdt Stuttgart
A.2 Einschrinkungen der aktuellen Implementierung (Stand Ende 1996) Software—Labor

iiberpriift. Fiir den Fall, dal die Priifung einen Fehler ergibt, ist im Prozef} aus
Einfachheitsgriinden keine weitere Vorgehensweise definiert.

Die Aktivitat Uberweisung prifen kann aber erst dann startbar werden, wenn
die Uberweisung durch das Karteninstitut tatséichlich erfolgt ist. Somit wird, wie bei
Belege priifen, auf ein externes Ereignis (Uberweisung erfolgt) gewartet. Da dies unter
Umstanden sehr lange dauern kann, wird ein Schleifenkonstrukt (Block Nachfragen)
eingefithrt. In diesem Block befindet sich eine einzige Aktivitat (nicht in Abb. A.l
dargestellt), die jeweils nach einem bestimmten Zeitraum (hier: eine Woche) aktiviert
wird, falls die Uberweisung noch nicht erfolgt ist. In dieser Aktivitit kann dann beim
Karteninstitut nachgefragt werden, wie die Sachlage ist, etc.

In der letzten Aktivitdt wird dann der gesamte Vorgang abgeschlossen und archi-
viert.

A.2. Einschrankungen der aktuellen Implementierung
(Stand Ende 1996)

o Iis gibt keinen graphischen Editor zur Spezifikation von Workflows.

o Iis gibt keine Komponente mit der laufende Workflow—Instanzen in der Art von
Ad-hoc-Modifikationen verédndert werden kénnen.

o Der Knotentyp Unterprozef ist nicht implementiert.

e Der Knotentyp Block darf nicht in Sphéaren verwendet werden.

e Das Erzeugen von Timeouts und die Reaktion auf Timeouts sind nicht realisiert.
e Zusammengesetzte Ereignisse sind nicht im vollen Umfang implementiert.

o Aktivitdten konnen nicht mehreren Personen gleichzeitig auf ihrer Arbeitsliste
angeboten werden.

o Ersatzaktivitdten sind nicht vollstandig implementiert.

A.3. Die Softwaremodule

In den Tabellen A.1 bis A.3 werden die im Workflowsystem Surro implementierten
Softwaremodule aufgelistet. In Tabelle A.1 sind die Module aufgefiihrt, die in Tel/Tk
implementiert sind und unter UNIX ausgefiihrt werden, in Tabelle A.2 die in Java im-
plementierten und somit weitgehend plattformunabhéngigen Module, und schlieflich
in Tabelle A.3 die OS/2-Seite mit ihrem in C4+4 implementierten Code.

Die in der Tabelle A.4 aufgelistete Software wurde bei der Implementierung des
Workflowsystems Surro benutzt. In Tabelle A.5 sind die Bezugsquellen dazu auf-
gefiihrt.

87

Universitdt Stuttgart

Software—Labor

A Die erstellte Software

‘ Programmmodul ‘ GrofBe ‘ Autor ‘ Bemerkung ‘
suEngineGUI.tcl 24 KB | Schreyjak | Grafische Oberfliche der Engine
suEngineModul.tcl 117 KB | Schreyjak | Die eigentliche Engine
suWFSManager.tcl 55 KB | Schreyjak | Session Verwaltung und Schnitt-
stelle der Engine zum Akti-
vitdten—-Manager

suQueue.tcl 3 KB | Schreyjak | Queue Verwaltung fiir mSQL

suSOCKlib.tcl 5 KB | Schreyjak | Routinen fiir Socket Kommunika-
tion

suOrgModul.tcl 10 KB | Schreyjak | Routinen fiir Organisationsmodul

suAktManager.tcl 53 KB | Schreyjak | Aktivitdten Manager in der Tcl
Version

msqltclproxy.tel 3 KB | Schreyjak | Datenzugriff auf msql

msqltclproxysocket.tel 8 KB | Schreyjak | Datenzugrifft auf DB2 iiber
sockets

suTCLDBaddon.tcl 5 KB | Schreyjak | Erweiterte Funktionen fiir Daten-
zugriff

suADDitional.tcl 4 KB | Schreyjak | Mehrfach verwendete Hilfsfunk-
tionen

suMonitor.tcl 70 KB | Bildstein | Workflow Monitor

Tabelle A.1.: Surro-Module, implementiert in Tcl/Tk

‘ Programmmodul ‘ GrofBe ‘ Autor ‘ Bemerkung
AcitivityManager.java | 70 KB | Rosenauer | Aktivitdten Manager in Java Ver-
sion
ProgPool.java 29 KB | Rosenauer | Programm Pool Verwaltung in
Java Version
ComAdapter.java 34 KB | Rosenauer | Kommunikation zum Workflow
Session Manager

Tabelle A.2.: Surro-Module, implementiert in Java

88

A.3 Die Softwaremodule

Universitdt Stuttgart

Software—Labor

Programmmodul ‘ Grofle ‘ Autor ‘ Bemerkung

suTAadapter.cpp

suDb2tcl.cpp
suContext.cpp
suTqueue.cpp
suTqres.cpp
suPec.cpp

suAccount.cpp
suAccres.cpp

21 KB

60 KB

10 KB

23 KB

4 KB

75 KB

12 KB
5 KB

Bildstein

Bildstein

Bildstein

Bildstein

Bildstein

Bildstein

Bildstein
Bildstein

Kommunikationsschnittstelle zu Engi-
ne und Monitor, ruft Funktionen aus
db2tcl.cpp auf

Zugrift auf DB2, TA-Kontext-Manage-
ment und transaktionale Queue
DSOM-Objekt zur Verwaltung der
Transaktionskontexte

DSOM-Objekt zur Verwaltung einer
transaktionalen Message—Queue
Resource-Objekt zur transaktionalen
Message—Queue

0S/2 Program Execution Client zur
automatischen Ausfithrung von trans-
aktionalen Aktivitaten
Transaktionales Konto—Objekt
Resource-Objekt zum Konto—Objekt

Tabelle A.3.: Surro-Module, implementiert in C/C++ mit DSOM

Software Was ist es?
mSQL Datenbank
DB2/2 V2.1.1 | kommerzielle Datenbank (IBM)

SOMobjects 3.0
OTS

CSet+-+

TCL 7.5

TK 4.1
MSQLTCL

Java

CORBA ORB (IBM)

CORBA Object Service: Object Transaction Service
C/C++ Compiler unter OS/2 (IBM)
Programmiersprache

Programmiersprache

mSQL-Anbindung fiir Tcl/Tk

Programmiersprache

Tabelle A.4.: Verwendete Software

89

Universitdt Stuttgart

Software—Labor

A Die erstellte Software

Software Quelle

mSQL ftp://ftp.bond.edu.au/pub/Minerva/msql/msql-1.0.16.tar.gz

DB2 IBM-Produkt

SOMobjects | http://www.software.ibm.com/objects/somobjects/

oTs Bestandteil von SOMobjects 3.0

CSet++ IBM-Produkt

TCL 7.5 http://www.sunlabs.com/research/tcl/

TK 4.1 http://www.sunlabs.com /research /tcl/

MSQLTCL | ftp://ftp.bond.edu.au/pub/Minerva/msql/Contrib/msqltcl-1.50.tar.gz
Java http://java.sun.com/

90

Tabelle A.5.: Quellen der verwendeten Software

Literaturverzeichnis

[CM94]

[GRO3]

[Hug96]

[Ley95]

[LR94]

[0TS94]

[Ous94]

[Ros96]

[SBY6]

[Sch93]

[Sch95]

CHAKRAVARTHY, S. ; MISHRA, D.: Snoop: An expressive event specifica-

tion language for active databases. In: Data & Knowledge Engineering 14
(1994), November, Nr. 1, S. 1-26

GRAY, Jim ; REUTER, Andreas: Transaction Processing. Morgan Kauf-
mann, 1993

HucHEs, David J.: mSQL — A Lightweight Database Engine. Hughes
Technologies Pty. Ltd., 1996. — http://Hughes.com.au/

LEYMANN, F.: Supporting Business Transactions via Partial Backward Re-
covery in Workflow Management Systems. In: LAUSEN, G. (Hrsg.): Proc.
Datenbanksysteme in Biiro, Technik und Wissenschaft. Berlin : Springer,
Maerz 1995, S. 51-70

LEYMANN, Frank ; ROLLER, Dieter: Business Process Management With
FlowMark. In: Proc. 39th IEEE Computer Society Int. Conference (Comp-
Con). San Francisco, Cal., Februar 1994, S. 230-234

Object Management Group (OMQG): Object Transaction Service. August
1994. — Document No. 94.8.4

OUSTERHOUT, John K.: Tel and Tk Toolkit. Messachusetts : Addision
Wesley, 1994

ROSENAUER, Hansgeorg: Entwurf und Implementierung eines Ver-
teilungsmechanismus fir plattformunabhingige Anwendungsprogramme in
Workflow—Systemen, Universitat Stuttgart, Studienarbeit, 1996.

SCHREYJAK, Stefan ; BILDSTEIN, Hubert: Fehlerbehandlung in Workflow—

Management—Systemen Universitdt Stuttgart, Software—Labor, Fakultéits-
bericht Nr. 1996/17, Software-Labor Bericht SL.-3/96.

SCHMIDT, Ursula: Transaktionskonzepte in der Fertigung. In: Proc. Da-
tenbanksysteme in Biiro, Technik, Wissenschaft Braunschweig, Marz 1993.

SCHREYJAK, Stefan: Anforderungsanalyse von Workflowsystemen, Univer-
sitdt Stuttgart, Fakultdt Informatik, Diplomarbeit, 1995.

91

Universitdt Stuttgart

Software—Labor Literaturverzeichnis

[Tau96] TAUBER, Wolfgang: Transaktionale Datei- und Dokumentenverwaltung

in Workflow—Management—Systemen, Universitat Stuttgart, Diplomarbeit,
August 1996. — Diplomarbeit Nr. 1380

[WIM96] WFEMC: Workflow Management Coalition Specification — Terminology and
Glossary http://www.aiai.ed.ac.uk/ WIMC/DOCS /glossary /glossary.html
1996.

[X/091] X/Open Company Ltd.: X/Open: Distributed Transaction Processing: The
XA Specification. 1991

92

