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Abstract

Very recently, Matiyasevich showed that the question whether an

equation over a trace monoid has a solution or not is decidable. In his

proof this question is reduced to the solvability of word equations with

constraints, by induction on the size of the commutation relation. In

the present paper we give another proof of this result using lexico-

graphical normal forms. Our method is a direct reduction of a trace

equation system to a word equation system with regular constraints.

We use for this a new result on lexicographical normal forms.
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1 Introduction

Solving equations is a central topic in various �elds of computer science,

especially concerning uni�cation, as required by automated theorem proving

or logic programming. An important and deep result has been obtained in

1977 by Makanin [10], who showed that the question whether an equation

over words has a solution or not is decidable. I.e., there exists an algorithm

deciding for a given equation L = R, where L;R 2 (
 [ �)
�
contain both

unknowns from 
 and constants from �, whether an assignment �: 
 !

�
�
exists, satisfying �(L) = �(R). Slightly more general, the existential

theory of equations over free monoids is decidable, i.e., given an existentially

quanti�ed, closed �rst-order formula S over atomic predicates of the form

L = R and L 6= R, it is decidable whether S is valid over a given free

monoid. Moreover, adding regular constraints, i.e., atomic predicates of the

form x 2 C, where C is a regular language, preserves decidability [13].

In this paper we prove the generalization of Makanin's result to trace monoids.

Trace monoids have been originally studied in combinatorics [4] as quotients

of free monoids by partial commutations. A free, partially commutative

monoid (or trace monoid) is associated to an alphabet � and a symmet-

ric, irre
exive commutation relation I � � � � as the quotient monoid

M (�; I) = �
�=fab = ba j (a; b) 2 Ig. Trace monoids became meaningful

for computer science in concurrency theory, where they were introduced by

Mazurkiewicz [12] in connection with the semantic of labelled Petri nets.

As a mathematical model traces are simple enough in order to be able to

generalize many interesting results from free monoids in areas as automata

theory or logic. However, traces are complex enough in order to require in

most cases ingenious proof techniques and new ideas. For a broad overview

of trace theory and related topics see \The Book of Traces" [6].

The results obtained so far in the area of equations on traces were restricted

to equations without constants, i.e. of the form L = R with L;R 2 

�
, and

parametrized solution sets. A reason for this consists in the additional in-

herent di�culty introduced by partial commutations. An overview of some

results obtained is presented in [5] (see also [7]). The decidability of the solv-

ability of equations with constants was stated as an important open question.

Very recently, Matiyasevich showed that the question whether an equation

over a trace monoid has a solution or not is decidable [11]. In his proof this

question is reduced to the solvability of word equations with constraints by

eliminating partial commutativity. The original proof is an induction on the

2



size of the commutation relation I. In the present paper we give another

proof of this result using a new result on lexicographical normal forms. Our

method is a direct reduction of a trace equation system to a word equation

system with regular constraints. The result on lexicographical normal forms

is stated in the Main Lemma of Section 3. Section 4 contains the reduction

from trace equations to word equations. Section 5 presents a detailed formula

for concatenating lexicographical normal forms, leading to an estimation of

the increase in the number of unknowns and equations. We conclude with

two remarks concerning the parallel complexity of computing lexicographical

normal forms.

2 Notations and Preliminaries

An independence alphabet is a pair (�; I), where � is a �nite alphabet and

I � � � � is an irre
exive and symmetric relation, called independence

relation. The complement D = (� � �) n I is called dependence relation; it

is a re
exive and symmetric relation.

With a given independence alphabet (�; I) we associate the trace monoid

M (�; I). This is the quotient monoid �
�= �I , where �I denotes the con-

gruence being the equivalence relation generated by the set fuabv = ubav j

(a; b) 2 I; u; v 2 �
�g; an element t 2 M (�; I) is called a trace, the length jtj

of a trace t is given by the length of any representing word. By alph(t) we

denote the alphabet of a trace t, being the set of letters occurring in t.

By 1 we denote both the empty word and the empty trace. Words v; w 2 �
�

are called independent (w.r.t. I), if alph(v) � alph(w) � I. In this case we

simply write (v; w) 2 I or v 2 I(w) where I(w) for w 2 �
�
is a shorthand

for fa 2 � j (a; w) 2 Ig.

The initial alphabet of w 2 �
�
is the set init(w) = fa 2 � j 9w0; w00 2

�
�
with w �I w

0
and w0

= aw00g.
A word language L � �

�
is called I-closed if whenever v 2 L and w �I v

then we have w 2 L.

3 Lexicographical Normal Forms

Throughout the paper we will suppose that (�; I) denotes an independence

alphabet, where � has the cardinality n � 1. We suppose that � is totally
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ordered by < and we identify � with the set f1; : : : ; ng. The order on � is

extended to the lexicographical order on �
�
.

A word v 2 �
�
is in lexicographical normal form (w.r.t. I and �) if v � w

holds for all w such that v �I w. Let LNF denote the set of lexicograph-

ical normal forms, i.e., LNF � �
�
is the set of minimal representatives for

M (�; I). For v 2 �
�
we denote by Lnf(v) the unique word w 2 LNF such

that w �I v. We view Lnf as a mapping Lnf: �
� ! LNF.

There is a simple characterization of lexicographical normal forms due to

Anisimov and Knuth:

Proposition 3.1 ([3]) Let � be totally ordered by <. Then a word v 2 �
�

is in lexicographical normal form (w.r.t. I, �) if and only for every factor

aub of v with a; b 2 �, u 2 �
� and (au; b) 2 I we have a < b.

Remark 3.2 Note that the above characterization yields a star-free expres-

sion for the set of lexicographical normal forms LNF (equivalently, a �rst-

order formula de�ning the set LNF).

De�nition 3.3 Let � be totally ordered by <.

For ; 6= A � � let the height h(A) be h(A) = maxfa j a 2 Ag. Let also

h(;) = 0. (Thus, h(A) 2 f0; : : : ; ng.)

The height h(v) of a word v 2 �
�
is de�ned as h(v) = h(alph(v)).

Our reduction of trace equations to word equations is based on the ability

of concatenating lexicographical normal forms in a simple way. We give a

formula for the product of lexicographical normal forms in the Main Lemma

below and we will consider it in more details in Section 5. First, the following

remark is clear:

Remark 3.4 Let m � 1 and s; t; v; s1; : : : ; sm; t1; : : : ; tm 2 �
�
be words sat-

isfying the following conditions:

s = s1 � � � sm ;

t �I t1 � � � tm ;

v = s1t1 � � � smtm ;

tj 2 I(sj+1 � � � sm) for all 1 � j < m :

Then we have st �I v.
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The converse of the previous remark will be stated for lexicographical normal

forms in the Main Lemma below. It is the crucial correctness argument for

our reduction from trace equations to word equations. The important point

is that the value ofm can be bounded as a function in the size of the alphabet,

and that the height decreases in the �rst m� 1 factors.

Lemma 3.5 (Main Lemma) Let s; t; v 2 LNF be words in lexicographical

normal form such that st �I v.

Let h = h(s) denote the height of s and suppose h > 0.

Then there exist an integer m, 1 � m �
(n�1)(h�1)

2
+1, and words s1; : : : ; sm,

t1; : : : ; tm 2 LNF in lexicographical normal form such that the following con-

ditions hold:
s = s1 � � � sm ;

t �I t1 � � � tm ;

v = s1t1 � � � smtm ;

si 6= 1; for all 1 < i � m ;

tj 6= 1 for all 1 � j < m ;

tj 2 I(sj+1 � � � sm) for all 1 � j < m ;

h(tj) < h for all 1 � j < m :

Remark 3.6 Before giving the proof of the Main Lemma, let us note that

the trace equality st �I v above cannot be replaced by word equalities of

type s = s1 � � � sm, t = t1 � � � tm, v = s1t1 � � � smtm. For example, consider

M (�; I) = fa; b; cg�=fab = ba; bc = cbg and s = c, t = ab. Then the

lexicographical normal form of st is v = bca.

Proof of the Main Lemma. We have st �I v with s; t; v 2 LNF and h =

h(s) > 0. Consider the decomposition of v, v = s1t1 � � � smtm, where m � 1

is minimal such that s �I s1 � � � sm, t �I t1 � � � tm, and tj 2 I(sj+1 � � � sm) for

all j, 1 � j < m. Clearly, since m is minimal, we have si 6= 1 and tj 6= 1 for

all 1 < i � m, 1 � j < m. Moreover, the words si; tj are in lexicographical

normal form.

Let us �rst show that s = s1 � � � sm. Assume aub is a factor of s1 � � � sm
with a; b 2 �, u 2 �

�
and b 2 I(au). If aub is a factor of some si, then

a < b follows by Prop. 3.1 and we are done. Otherwise let i < j be such

that si 2 �
�au0, sj 2 u00b��

and u = u0si+1 � � � sj�1u
00
. Since tk 2 I(sj) for

k < j we obtain b 2 I(au0si+1ti+1 � � � sj�1tj�1u
00
), hence a < b due to v being

in lexicographical normal form. Thus s1 � � � sm is in lexicographical normal

form, again by Prop. 3.1.
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Suppose that 1 � j < m and let b denote the �rst letter of sj+1. Let a 2

alph(tj), i.e. tj = uau0 for some words u; u0. Then au0b is a factor of v 2 LNF

satisfying b 2 I(au0), thus we have a < b. Therefore h(tj) < h(b) � h for

every 1 � j < m.

Finally, assume by contradiction that m > (n � 1)(h � 1)=2 + 1. Let bi; aj
denote the �rst letter of si, tj respectively, 1 < i � m, 1 � j < m. Consider

the chain of alphabets I(s2 � � � sm) � I(s3 � � � sm) � � � � � I(sm). Note that

we have I(s2 � � � sm) 6= ; due to t1 6= 1, and also I(sm) 6= � due to sm 6=

1. Therefore by the pigeon-hole principle there exist some indices i; j with

j � i � (h � 1)=2 satisfying I(si+1 � � � sm) = I(sj+1 � � � sm). Consider the

factor tisi+1ti+1 � � � tjsj+1 of v. Note that (tk; sl) 2 I holds for every k, l such

that i � k; l � 1 � j, since tk 2 I(sk+1 � � � sm) = I(si+1 � � � sm). Therefore,

v 2 LNF implies ai < bi+1 < ai+1 < � � � < aj < bj+1 and we obtain h(s) �

h(bj+1) � 2(j � i + 1) > h, a contradiction. 2

4 Trace Equation Systems

De�nition 4.1 Let � denote a �nite alphabet and 
 a �nite set of un-

knowns, � \ 
 = ;.

i) A word equation over � and 
 has the form L = R, with L;R 2
(� [ 
)

�
.

ii) An assignment for an equation over � and 
 is a mapping �: 
! �
�

being extended in a natural way to a homomorphism �: (�[
)� ! �
�
,

by �j� = id�.

A solution for the equation L = R is an assignment � satisfying the

equality �(L) = �(R) in �
�
.

Makanin [10] showed in 1977 that the question whether a word equation has

a solution or not is decidable. Moreover, the solvability of a system of word

equations can be reduced by well-known techniques to the solvability of a

single equation. The problem can also be generalized by introducing regular

constraints for the unknowns, i.e. regular sets Cx � �
�
for x 2 
. Here, a

solution � for an equation is required to satisfy �(x) 2 Cx for all x. It has

been shown by Schulz [13] that the solvability of word equations with regular

constraints remains decidable. We are going to show that this more general

result generalizes to traces.
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De�nition 4.2 Let (�; I) denote an independence alphabet and 
 a �nite

set of unknowns, � \ 
 = ;.

i) A trace equation over (�; I) and 
 has the form L � R, with L;R 2

(� [ 
)
�
.

A solution for the equation L � R is an assignment �: 
 ! �
�
satis-

fying �(L) �I �(R).

ii) A system of trace equations is a formula built with the connectives and

(&), or (_), not (:) over atomic predicates of the form L � R (trace

equation) and x 2 C (constraint), where C � �
�
denotes an I-closed

regular language.

A solution for a system S over (�; I);
 is an assignment �: 
 ! �
�

such that S evaluates to true when the atomic predicates L � R,

x 2 C are replaced by the truth value of �(L) �I �(R), �(x) 2 C,

respectively.

Remark 4.3 Later we will deal simultaneously with trace and word equa-

tions, so we distinguish notationally between L = R for a word equation,

whereas L � R denotes a trace equation. The di�erence is that equality

under an assignment is interpreted in the free monoid �
�
, resp. in the trace

monoid M (�; I).

Remark 4.4 A system of word equations (with regular constraints) is just

a special case of Def. 4.2 where one takes I = ;. By Makanin's result (see the

remarks after Def. 4.1), Schulz' generalization and the fact that negations can

be eliminated, we note that the question whether a system of word equations

has a solution or not is decidable.

Remark 4.5 Adding arbitrary regular constraints to a system of trace equa-

tions makes the question of solvability undecidable. This is due to the fact

that the solvability of the equation x � y with x 2 C, y 2 C 0
is equivalent

to the non-emptiness of the intersection fw 2 �
� j w �I v for some v 2

Cg \ fw 2 �
� j w �I v for some v 2 C 0g. For regular languages C;C 0

this

last question is known to be undecidable, see [1].

Remark 4.6 Similar to the word case, the solvability of a trace equations

system could be reduced to the solvability of a single trace equation (with

additional constraints).
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The aim of this section is to reduce the solvability problem for trace equations

to word equations with regular constraints. We will give a direct proof using

lexicographical normal forms to show the following

Theorem 4.7 ([11]) Let S be a trace equation system over (�; I) and 
.

Then a set 
0 � 
 of unknowns and a system of word equations S 0 over

�;
0 can be e�ectively constructed, such that S is solvable if and only if S 0

is solvable.

Corollary 4.8 The following problem is decidable:

Instance: An independence alphabet (�; I), a �nite set of unknowns 
, and

a trace equation system S over (�; I);
.

Question: Does S have a solution?

4.1 Basic reductions

For a given trace equation system S we �rst eliminate constants by introduc-

ing new unknowns xa and constraints xa 2 fag, for a 2 �. Then we replace

a by xa in each equation L � R of S. Clearly, for every solution � of S the

assignment �0 = � [ fxa 7! a j a 2 �g is a solution for S 0
. Conversely, every

solution �0 for S 0
yields a solution � = �0j
 for S.

Hence, without loss of generality atomic predicates are of the form

L � R where L;R 2 

� :

Furthermore, we may assume that the given system is written in disjunctive

normal form. Then we replace every negation not(L � R) by the following

formula

9A;A0; B; B0 � � : (A \ A0
= ; & B [ B0 6= ; &

L � xy & R � xz &

init(y) = A & init(z) = A0
& alph(y) = B & alph(z) = B0

) (1)

where x; y; z denote new unknowns. Clearly, constraints of the form init(x) =

A or alph(x) = A, A � �, can be expressed by I-closed regular languages.

Suppose that � is a solution for S and �(L) 6�I �(R). Let s denote the

longest word such that for some t; u 2 �
�
:

�(L) �I st and �(R) �I su :

8



Due to the maximality of s we obtain init(t)\ init(u) = ;. Moreover, tu 6= 1,

since st 6�I su. Hence, �0 = � [ fx 7! s; y 7! t; z 7! ug is a solution for

the new subformula (1). Conversely, for every solution �0 of (1) one has

�0(x)�0(y) 6�I �
0
(x)�0(z), hence �0(L) 6�I �

0
(R).

Since the set of I-closed regular languages forms an e�ective boolean algebra

(as the family of recognizable subsets of a monoid [9]) we may also suppose

that the formula contains no negated constraints, i.e. no formula of type

not(x 2 C).

Moreover, it su�ces to consider trace equations of the form x1 � � �xk �

y1 � � � yl with k � l > 0, xi; yj 2 
. (The equation x1 � � �xk � 1 and the

occurrences of xi can be deleted from all equations, adding the constraints

alph(xi) = ;.)

4.2 From traces to words

The main idea for reducing trace equations to word equations will consist in

replacing a trace equation L � R by some word equations L1 = R1; : : : ; Lk =

Rk with additional constraints and unknowns. Moreover, for every solution

� for L � R the mapping Lnf � �: 
 ! �
� ! LNF can be extended to a

solution for the equations L1 = R1; : : : ; Lk = Rk. Vice versa, each solution

for the new equations will also be a solution for L � R when restricted to its

unknowns.

This reduction actually goes by a chain of additional trace equations. By

choosing an appropriate ordering we will show that the reduction process

terminates yielding a system of word equations (with constraints).

We will consider in the following formulas S(T;W;C) in disjunctive normal

form with atomic predicates from some �nite sets T;W;C, containing no

negations. T will denote a set of trace equations, W a set of word equations

and C = fx 2 Cx j x 2 
g a set of constraints, where each Cx is an I-closed

regular language. Moreover, every L � R in T has the form x1 � � �xk �
y1 � � � yl with k � l � 1, xi; yj 2 
. A solution for S(T;W;C) is an assignment

�: 
 ! �
�
which makes the formula evaluate to true when (L � R) from

T , (L = R) from W and x 2 Cx from C are replaced by the truth value of

�(L) �I �(R), �(L) = �(R), and �(x) 2 Cx, respectively.

De�nition 4.9 A formula S(T;W;C) as above is called normalized if for

every solution � for S the mapping Lnf � � is a solution for S, too.
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Remark 4.10 Note that a formula S(T; ;; C) with I-closed constraints C is

always normalized.

Remark 4.11 Suppose S = S(T;W;C) is normalized and let x � y belong

to T , where x; y 2 
. Consider the new formula S 0
= S 0

(T 0;W 0; C) obtained

from S by replacing every occurrence of x � y by x = y and letting T 0
=

T n fx � yg, W 0
= W [ fx = yg. Then S is solvable if and only if S 0

is solvable. Note that a solution for S 0
is a solution for S, too. However,

the converse is true only because S is a normalized system. Without this

assumption about S it cannot be guaranteed that every solution for S also

solves S 0
. Moreover, S 0

is a normalized system, too.

Example 4.12 Consider the trace equation system S = (fx � yg; fx =

ab; y = bag; ;) given as the conjunction (x � y) & (x = ab) & (y = ba),

where (a; b) 2 I. Then S is not normalized, but of course it has a solution.

However, replacing x � y by the word equation x = y yields a system with

no solution.

Proof of Thm. 4.7. Recall that an equation system with I-closed constraints

S = S(T; ;; fx 2 Cxgx2
) over (�; I);
 is a normalized system. As previ-

ously noted it su�ces to consider a formula S with trace equations of the

form

x1 � � �xk � y1 � � �yl; k � l � 1; (k; l) 6= (1; 1) : (2)

We suppose without loss of generality that for all unknowns x 2 
 some Ax �
� exists such that h(Ax) > 0, and x 2 Cx implies alph(x) = Ax, for all x.

Then h(x) will mean h(Ax). (In fact, we could also assume that alph(x) � Ax.

The obvious modi�cations needed below are left to the reader.) Moreover,

let S be a conjunction of trace equations as in (2), of word equations and of

I-closed regular constraints x 2 Cx.

We de�ne the weight of a trace equation x1 � � �xk � y1 � � � yl as in (2) as

the triple of natural numbers (l; h(x1 � � �xk�1); k) and we consider the lexico-

graphical ordering on N � N � N . We will show in the following that every

such trace equation can be replaced by a formula over word equations and

trace equations of lower weight, together with some additional constraints.

Concretely, we apply the following rules.

Rule 1: Suppose l > 1 and let z denote a new unknown. Then we replace

the equation x1 � � �xk � y1 � � � yl by

x1 � � �xk � z & y1 � � � yl � z & alph(z) = [k

i=1Axi
:

10



Rule 2: Suppose l = 1 and k > 2, and let z denote a new unknown. Then

we replace the equation x1 � � �xk � y1 by

x1z � y1 & x2 � � �xk � z & alph(z) = [k

i=2Axi
:

Rule 3: Suppose l = 1 and k = 2 and, in order to simplify notation,

consider the equation xy � z (rather than uniformly x1x2 = y1). Moreover,

let h = h(x) denote the height of x.

We replace xy � z by the disjunction of the word equation

xy = z (3)

and of formulas of the type

x = x1 � � �xm & y � y1 � � �ym & z = x1y1 � � �xmym &

alph(x1) = A1 & � � � & alph(xm) = Am &

alph(y1) = B1 & � � � & alph(ym) = Bm ; (4)

where xi; yj are new unknowns and the disjunction is taken over all values of

m such that 1 < m � (n�1)(h�1)=2+1 and over all alphabets A1; : : : ; Am,

B1; : : : ; Bm � � such that

Ai 6= ; for all 1 < i � m; and

1 � h(Bj) < h for all 1 � j < m; and

Bj � Ai � I for all 1 � j < i � m; and

A1 [ � � � [ Am = alph(x); and

B1 [ � � � [ Bm = alph(y) : (5)

The word equation xy = z in (3) corresponds to the case m = 1 in (4) (this

is in particular the case when h = 1 in (5)). It is actually the main case

where the number of trace equations in S decreases.

Let S 0
denote the formula obtained from S by applying one of the three rules

described above. Note that none of the rules adds negations.

Lemma 4.13 Let S be a normalized equation system. Then the new system

S 0 is normalized, too. Moreover, S 0 is solvable if and only if S is solvable.

Proof. The claim is easily seen for the �rst two rules above, since there is a

natural bijection between the set of solutions of S and of S 0
, respectively.
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Clearly, if S 0
has been obtained from S by the third rule, then every solution

for S 0
is a solution for S, too, see Rem. 3.4. Therefore, let us consider an

equation xy � z in S and a solution �: 
 ! �
�
for S. Then �0 = Lnf � � is

also solution for S, since S is normalized. We show that �0 can be extended

to a solution for S 0
. Let s = �0(x), t = �0(y) and v = �0(z). Hence, st �I v

with s; t; v 2 LNF. If h(s) = 1, then in the Main Lemma we have m = 1,

hence v = st. Therefore �0 is a solution of the new system S 0
.

Suppose that st �I v with s; t; v 2 LNF, h(s) = h > 1. Then some m,

1 � m � (n�1)(h�1)=2+1, and words s1; : : : ; sm, t1; : : : ; tm exist, satisfying

the conditions of the Main Lemma. With �0(xi) = si, �
0
(yj) = tj it is easily

veri�ed that �0 is a solution for S 0
.

The relation between the solution set of S and the solution set of S 0
, together

with the fact that S is normalized, imply that S 0
is normalized, too. This

shows the lemma. 2

Finally, note that the new trace equation y1 � � � ym � y in (4) has lower weight

than xy � z due to h(y1 � � � ym�1) < h = h(x). Hence the reduction rules

establish a noetherian rewriting system on trace equation systems. Applying

the rules as long as possible we end with a system of word equations S 0
=

(;;W 0; C 0
). 2

5 Computing Lexicographical Normal Forms

The aim of this section is to give a formula for computing the product of lex-

icographical normal forms. This yields an alternative proof of Thm. 4.7 and

the so far best known upper bound on the number of new unknowns needed

for the reduction. We conclude the section with two remarks concerning the

parallel complexity of computing lexicographical normal forms.

De�nition 5.1 Let �I be a relation on (�
�
)
�
de�ned as

(x1; : : : ; xm) �I (x
0
1; : : : ; x

0
m0)

if m = m0
and there exists some i, 1 � i < m such that

xj = x0
j

for all 1 � j � m; j =2 fi; i+ 1g; and

(xi; xi+1) = (x0
i+1; x

0
i
) and (xi; xi+1) 2 I :

By �I we denote the equivalence relation generated on (�
�
)
�
by �I .
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Let x 2 �
�
, by abuse of language we write (x1; : : : ; xm) �I x if some words

x01; : : : ; x
0
m
exist such that

(x1; : : : ; xm) �I (x
0
1; : : : ; x

0
m
) and x = x01 � � �x

0
m
:

Theorem 5.2 Let s; t; v 2 LNF be words in lexicographical normal form

such that st �I v.

Then there exist positive integers m; p with m � (n�1)2

2
+ 1, p � nnn! such

that
s = s1 � � � sm ;

t = t1 � � � tp ;

(s1; : : : ; sm; t1; : : : ; tp) �I v ;

for some words s1; : : : ; sm; t1; : : : ; tp 2 �
�.

Proof. Let h = h(s) denote the height of s. Let m(h); p(h) denote the

minimal integers such that

s = s1 � � � sm(h) ;

t = t1 � � � tp(h) ;
(s1; : : : ; sm(h); t1; : : : ; tp(h)) �I v ;

for some words si; tj. Note that m(h); p(h) � jvj. For h = 0 we have s = 1,

thus m(0) = p(0) = 1, which satis�es the theorem.

For h � 1 we will show by induction on h that m(h) � (n� 1)(h� 1)=2 + 1

and p(h) � nhh!, thereby proving the theorem.

Let h � 1. By the Main Lemma there exist an integerm � (n�1)(h�1)=2+1

and words s1; : : : ; sm, t1; : : : ; tm in lexicographical normal form satisfying

s = s1 � � � sm ;

t �I t1 � � � tm ;

v = s1t1 � � � smtm ;

si 6= 1; tj 6= 1 for 1 < i � m; 1 � j < m ;

tj 2 I(sj+1 � � � sm) and h(tj) < h for 1 � j < m : (6)

If h = 1, then m = 1 in (6), so we can take m(h) = p(h) = 1, since

t = t1 2 LNF, which satis�es the claim. Hence let h;m � 2.

Let �t1 = t1 and �ti = Lnf(�ti�1ti) for i = 2; : : : ; m. Clearly, �tm = t, h(�ti) < h

for 1 � i < m and

�ti�1ti �I
�ti; for 1 < i � m: (7)

13



Now we can apply the induction hypothesis to each of the (m�1) equivalences

(7) obtaining

t �I (t
0
1; : : : ; t

0
p
) ; (8)

for some p � (m� 1)[m(h � 1) + p(h � 1)], some words t01; : : : ; t
0
p
and some

integers 1 = l0 < l1 < � � � < lm = p + 1 such that

ti = t0
li�1

� � � t0
li�1

for every 1 � i � m : (9)

The above claim can be veri�ed by noting that

t �I (t
0
1; : : : ; t

0
i
; : : : ; t0

j
; : : : ; t0

q
) and t0

i
� � � t0

j
�I (v1; : : : ; vk)

implies that

t �I (t
0
1; : : : ; t

0
i�1; v

0
1; : : : ; v

0
l
; t0

j+1; : : : ; t
0
q
) ;

for some l � j � i + k and v01; : : : ; v
0
l
2 �

�
, such that v01 � � � v

0
l
= v1 � � � vk and

each v0
q
is a factor of some vr.

Hence, we obtain from (8), (9) for suitable words t001; : : : ; t
00
p
:

t = t001 � � � t
00
p
;

v �I (s1; : : : ; sm; t1; : : : ; tm) �I (s1; : : : ; sm; t
0
1; : : : ; t

0
p
)

�I (s1; : : : ; sm; t
00
1; : : : ; t

00
p
) :

Hence by the induction hypothesis we get

p(h) � (m� 1)[m(h� 1) + p(h� 1)]

� (n� 1)(h� 1)=2 [(n� 1)(h� 2)=2 + 1 + nh�1(h� 1)!]

� nhh! ;

which concludes the proof. 2

Remark 5.3 We can also use Thm. 5.2 in order to prove the main result,

Thm. 4.7. Recall that the main di�culty consists in replacing a trace equa-

tion of the form xy � z, where x; y; z 2 
. By Thm. 5.2 we simply replace

such an equation xy � z by a disjunction over clauses of the form

x = x1 � � �xm & y = y1 � � � yp &

z = z�(1) � � � z�(m+p) & alph(xi) = Ai & alph(yj) = Bj ;
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for all 1 � m � (n�1)2

2
+ 1, 1 � p � nnn!, � 2 SI

m+p and Ai; Bj � �. Here

xi; yj denote new variables and zi = xi for 1 � i � m, resp. zm+j = yj for

1 � j � p. SI

m+p denotes the set of permutations over f1; : : : ; m + pg such

that for i < j the inequality �(i) > �(j) implies (zi; zj) 2 I. This reduction

of a single trace equation to word equations roughly yields an increase in the

number of word equations by (N+2)!2
n(N+1)

, where N = nnn!+(n�1)2=2+1.

Hereby we need N additional unknowns.

We conclude this section with two remarks concerning the parallel complexity

of computing lexicographical normal forms. We consider uniform circuit

complexity classes like AC
0
and TC

0
. Let f : �� ! �

�
be a function such

that jf(w)j = p(jwj) for some polynomial p and every w 2 �
�
. Let k � 0.

Then f is AC
k
-computable if there is a family (Cn)n�0 of polynomial-size

circuits of depth O(logk(n)) with AND and OR gates of unbounded fan-

in/out and unary NOT gates, such that Cjwj computes f(w) for all w 2 �
�
.

A function f is TC
k
-computable if there is a family of circuits as above

which in addition to AND, OR and NOT gates contain MAJORITY gates

of unbounded fan-in/out. A MAJORITY gate yields 1 if and only if more

than half of its inputs are 1. In order to be able to deal with arbitrary

alphabets � one usually assumes that the circuits have special input/output

gates testing x = a for each input position x and letter a 2 � (analogously

for the outputs). Uniformity means that given n � 0 (a �xed coding of) the

circuit Cn can be easily computed (e.g. in logarithmic space). It is not very

hard to verify that AC
k � TC

k � AC
k+1

, k � 0. For more details about

circuit complexity see e.g. [14]. We state the results below without proofs,

which will appear elsewhere. With Thm. 5.2 we obtain

Corollary 5.4 Let (�; I) denote an independence alphabet.

Then we can compute Lnf(st) on input s; t 2 LNF in uniform AC
0.

Proof. Since m; p in Thm. 5.2 are bounded by the size of the alphabet we

can build a subcircuit for each factorization s = s1 � � � sm, t = t1 � � � tp and

each permutation in SI

m+p. Moreover, by Prop. 3.1 we can test whether a

given word is in lexicographical normal form in AC
0
, too. 2

We could apply Cor. 5.4 in order to compute the function Lnf in AC
1
. How-

ever, we can do better: the mapping Lnf: �
� ! LNF is computable in uniform

TC
0
. This result can be compared with the fact that the equivalence s �I t

can be veri�ed in uniform TC
0
, too (see [2]).
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Proposition 5.5 Let (�; I) denote an independence alphabet.

Then we can compute Lnf(s) on input s 2 �
� in uniform TC

0.

Proof. For w 2 �
+
and 1 � i; j � jwj let lex(i; j) denote the predicate

which is satis�ed by w if and only if the ith position of w precedes the jth

position in the lexicographical normal form of w, Lnf(w). Then lex(i; j) is

�rst-order de�nable, see [8, Prop. 3]. But �rst-order de�nable predicates are

AC
0
-computable (see e.g. [14] for more details about the relation between

circuit complexity and �rst-order logic). Finally, the ith position of a word

w occurs as the jth position of Lnf(w) if and only if j = #fk j lex(k; i)g+1.

The last statement is easily seen to be checkable in TC
0
. 2
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