Solving Trace Equations Using Lexicographical
Normal Forms*

Volker Diekert Yuri Matiyasevich
Universitat Stuttgart, Steklov Institute of Mathematics at
Institut fir Informatik St. Petersburg, Fontanka 27,
Breitwiesenstr. 20-22 St. Petersburg, 191011 Russia

70565 Stuttgart, Germany

Anca Muscholl

Universitat Stuttgart,
Institut fiir Informatik
Breitwiesenstr. 20-22

70565 Stuttgart, Germany

Abstract

Very recently, Matiyasevich showed that the question whether an
equation over a trace monoid has a solution or not is decidable. In his
proof this question is reduced to the solvability of word equations with
constraints, by induction on the size of the commutation relation. In
the present paper we give another proof of this result using lexico-
graphical normal forms. Our method is a direct reduction of a trace
equation system to a word equation system with regular constraints.
We use for this a new result on lexicographical normal forms.

*Report Nr. 1997/01, Fakultdt Informatik, Universitdt Stuttgart.

1 Introduction

Solving equations is a central topic in various fields of computer science,
especially concerning unification, as required by automated theorem proving
or logic programming. An important and deep result has been obtained in
1977 by Makanin [10], who showed that the question whether an equation
over words has a solution or not is decidable. I.e., there exists an algorithm
deciding for a given equation L = R, where L, R € (Q U X)* contain both
unknowns from 2 and constants from Y, whether an assignment o: —
¥* exists, satisfying o(L) = o(R). Slightly more general, the existential
theory of equations over free monoids is decidable, i.e., given an existentially
quantified, closed first-order formula S over atomic predicates of the form
L = R and L # R, it is decidable whether S is valid over a given free
monoid. Moreover, adding regular constraints, i.e., atomic predicates of the
form x € C, where C is a regular language, preserves decidability [13].

In this paper we prove the generalization of Makanin’s result to trace monoids.
Trace monoids have been originally studied in combinatorics [4] as quotients
of free monoids by partial commutations. A free, partially commutative
monoid (or trace monoid) is associated to an alphabet ¥ and a symmet-
ric, irreflexive commutation relation I C X x ¥ as the quotient monoid
M(3, 1) = ¥*/ab = ba | (a,b) € I}. Trace monoids became meaningful
for computer science in concurrency theory, where they were introduced by
Mazurkiewicz [12] in connection with the semantic of labelled Petri nets.
As a mathematical model traces are simple enough in order to be able to
generalize many interesting results from free monoids in areas as automata
theory or logic. However, traces are complex enough in order to require in
most cases ingenious proof techniques and new ideas. For a broad overview
of trace theory and related topics see “The Book of Traces” [6].

The results obtained so far in the area of equations on traces were restricted
to equations without constants, i.e. of the form L = R with L, R € Q*, and
parametrized solution sets. A reason for this consists in the additional in-
herent difficulty introduced by partial commutations. An overview of some
results obtained is presented in [5] (see also [7]). The decidability of the solv-
ability of equations with constants was stated as an important open question.
Very recently, Matiyasevich showed that the question whether an equation
over a trace monoid has a solution or not is decidable [11]. In his proof this
question is reduced to the solvability of word equations with constraints by
eliminating partial commutativity. The original proof is an induction on the

size of the commutation relation /. In the present paper we give another
proof of this result using a new result on lexicographical normal forms. Our
method is a direct reduction of a trace equation system to a word equation
system with regular constraints. The result on lexicographical normal forms
is stated in the Main Lemma of Section 3. Section 4 contains the reduction
from trace equations to word equations. Section 5 presents a detailed formula
for concatenating lexicographical normal forms, leading to an estimation of
the increase in the number of unknowns and equations. We conclude with
two remarks concerning the parallel complexity of computing lexicographical
normal forms.

2 Notations and Preliminaries

An independence alphabet is a pair (X,), where ¥ is a finite alphabet and
I C ¥ x ¥ is an irreflexive and symmetric relation, called independence
relation. The complement D = (X x ¥) \ I is called dependence relation; it
is a reflexive and symmetric relation.

With a given independence alphabet (X,I) we associate the trace monoid
M(X,I). This is the quotient monoid ¥*/ =;, where =; denotes the con-
gruence being the equivalence relation generated by the set {uabv = ubav |
(a,b) € I, u,v € ¥*}; an element ¢t € M(X, I) is called a trace, the length |¢|
of a trace t is given by the length of any representing word. By alph(t) we
denote the alphabet of a trace ¢, being the set of letters occurring in t.

By 1 we denote both the empty word and the empty trace. Words v, w € ¥*
are called independent (w.r.t. I), if alph(v) x alph(w) C I. In this case we
simply write (v,w) € I or v € I(w) where I(w) for w € ¥* is a shorthand
for {a € ¥ | (a,w) € T}.

The initial alphabet of w € ¥* is the set init(w) = {a € ¥ | ', w" €
¥* with w =7 w' and w' = aw”}.

A word language L C ¥* is called I-closed if whenever v € L and w =; v
then we have w € L.

3 Lexicographical Normal Forms

Throughout the paper we will suppose that (3,) denotes an independence
alphabet, where X has the cardinality n > 1. We suppose that X is totally

ordered by < and we identify ¥ with the set {1,...,n}. The order on X is
extended to the lexicographical order on 3*.

A word v € ¥* is in lexicographical normal form (w.r.t. I and <) if v < w
holds for all w such that v =; w. Let LNF denote the set of lexicograph-
ical normal forms, i.e., LNF C ¥* is the set of minimal representatives for
M(X, I). For v € £* we denote by Lnf(v) the unique word w € LNF such
that w =7 v. We view Lnf as a mapping Lnf: ¥* — LNF.

There is a simple characterization of lexicographical normal forms due to
Anisimov and Knuth:

Proposition 3.1 ([3]) Let X be totally ordered by <. Then a word v € ©*
is in lexicographical normal form (w.r.t. I, <) if and only for every factor
aub of v with a,b € ¥, u € ¥* and (au,b) € I we have a < b.

Remark 3.2 Note that the above characterization yields a star-free expres-
sion for the set of lexicographical normal forms LNF (equivalently, a first-
order formula defining the set LNF).

Definition 3.3 Let ¥ be totally ordered by <.

For) # A C X let the height h(A) be h(A) = max{a | a € A}. Let also
h(0) = 0. (Thus, h(A) € {0,...,n}.)

The height h(v) of a word v € ¥* is defined as h(v) = h(alph(v)).

Our reduction of trace equations to word equations is based on the ability
of concatenating lexicographical normal forms in a simple way. We give a
formula for the product of lexicographical normal forms in the Main Lemma
below and we will consider it in more details in Section 5. First, the following
remark is clear:

Remark 3.4 Let m > 1 and s,t,v,81,...,Sm,t1,...,t, € X* be words sat-
isfying the following conditions:

S=81"Sm,
L=ty ty,

v =81t Syl ,

t; € I(sj41-+-5m) foralll <j<m.

Then we have st =; v.

The converse of the previous remark will be stated for lexicographical normal
forms in the Main Lemma below. It is the crucial correctness argument for
our reduction from trace equations to word equations. The important point
is that the value of m can be bounded as a function in the size of the alphabet,
and that the height decreases in the first m — 1 factors.

Lemma 3.5 (Main Lemma) Let s,t,v € LNF be words in lexicographical
normal form such that st =; v.

Let h = h(s) denote the height of s and suppose h > 0.

Then there exist an integer m, 1 < m < W + 1, and words sq, ..., Sm,
t1,...,tm € LNF in lexicographical normal form such that the following con-

ditions hold:
S§=S81"""Sm,

L=ty ty,

v = 8111 Smlm ,

si £ 1, forall 1<i<m,

ti#1 forall 1<j<m,

t; € I(sjq41-+Sm) forall 1 <j<m,
h(t;) < h forall 1 <j<m.

Remark 3.6 Before giving the proof of the Main Lemma, let us note that
the trace equality st =; v above cannot be replaced by word equalities of
type s = S1--- S, t = t1---ty, v = S1t1---Spt,. For example, consider
M(3, 1) = {a,b,c}*/{ab = ba,bc = ¢b} and s = ¢, t = ab. Then the

lexicographical normal form of st is v = bca.

Proof of the Main Lemma. We have st =; v with s,¢t,v € LNF and h =
h(s) > 0. Consider the decomposition of v, v = s1t; - - - S;pty, where m > 1
is minimal such that s =; sy~ sy, t = t1---tm, and t; € I(sj11 - - Sp) for
all 7, 1 <j < m. Clearly, since m is minimal, we have s; # 1 and ¢; # 1 for
all 1 <7 <m,1<j <m. Moreover, the words s;,t; are in lexicographical
normal form.

Let us first show that s = s;---5,,. Assume aub is a factor of s;---s,,
with a,b € ¥, u € ¥* and b € I(au). If aub is a factor of some s;, then
a < b follows by Prop. 3.1 and we are done. Otherwise let i < j be such
that s; € Y*au’, s; € v"bX* and v = u's;4y -+ - sj_1u”. Since t; € I(s;) for
k < j we obtain b € I(au's;11t;41 -+ sj—1tj—1u”"), hence a < b due to v being
in lexicographical normal form. Thus s; ---s,, is in lexicographical normal
form, again by Prop. 3.1.

Suppose that 1 < j < m and let b denote the first letter of s;;,. Let a €
alph(t;), i.e. t; = uav' for some words u,u’. Then au'b is a factor of v € LNF
satisfying b € I(au'), thus we have a < b. Therefore h(t;) < h(b) < h for
every 1 <7 <m.

Finally, assume by contradiction that m > (n —1)(h — 1)/2 4+ 1. Let b;, q;
denote the first letter of s;, ¢; respectively, 1 <i <m, 1 < j < m. Consider
the chain of alphabets I(sg---$,) C I(s3---Sy) C -+ C I(Sy,). Note that
we have I(sy:--sp,) # 0 due to t; # 1, and also I(s,,) # ¥ due to s, #
1. Therefore by the pigeon-hole principle there exist some indices 7,5 with
j—1 > (h—1)/2 satistying I(S;41-+-Sm) = I(sj41-++sm). Consider the
factor t;s;11tit1 - - - t;5,41 of v. Note that (¢4, s;) € I holds for every k, [such
that i < k,l —1 < j, since ty € I(Sgr1---Sm) = I(Six1- - Sm). Therefore,
v € LNF implies a; < bj11 < @41 < -+ < aj < bj+1 and we obtain h(s) >
h(bj+1) > 2(j — i+ 1) > h, a contradiction. O

4 'Trace Equation Systems

Definition 4.1 Let X denote a finite alphabet and {2 a finite set of un-
knowns, X N Q = (.

1) A word equation over Y and € has the form L = R, with L,R €
(X UQ)*.

ii) An assignment for an equation over ¥ and €2 is a mapping 0: Q) — ¥*
being extended in a natural way to a homomorphism o: (XUQ)* — 3%,
by 0'|2 = ldg

A solution for the equation L = R is an assignment o satisfying the
equality o(L) = o(R) in X*.

Makanin [10] showed in 1977 that the question whether a word equation has
a solution or not is decidable. Moreover, the solvability of a system of word
equations can be reduced by well-known techniques to the solvability of a
single equation. The problem can also be generalized by introducing regular
constraints for the unknowns, i.e. regular sets C', C X* for © €). Here, a
solution o for an equation is required to satisfy o(z) € C, for all z. It has
been shown by Schulz [13] that the solvability of word equations with regular
constraints remains decidable. We are going to show that this more general
result generalizes to traces.

Definition 4.2 Let (X,7) denote an independence alphabet and € a finite
set of unknowns, ¥ N Q = (.

i) A trace equation over (X,I) and Q has the form L = R, with L, R €
(X UQ)*.
A solution for the equation L = R is an assignment o:€) — X* satis-
fying o(L) =; o(R).

ii) A system of trace equations is a formula built with the connectives and
(&), or (V), not (—) over atomic predicates of the form L = R (trace
equation) and x € C' (constraint), where C' C ¥* denotes an [-closed
regular language.

A solution for a system S over (¥,71),Q is an assignment o:{) — 3*
such that S evaluates to true when the atomic predicates L = R,
x € C are replaced by the truth value of o(L) =; o(R), o(z) € C,

respectively.

Remark 4.3 Later we will deal simultaneously with trace and word equa-
tions, so we distinguish notationally between L. = R for a word equation,
whereas L = R denotes a trace equation. The difference is that equality
under an assignment is interpreted in the free monoid ¥*, resp. in the trace
monoid M(X, I).

Remark 4.4 A system of word equations (with regular constraints) is just
a special case of Def. 4.2 where one takes I = (). By Makanin’s result (see the
remarks after Def. 4.1), Schulz’ generalization and the fact that negations can
be eliminated, we note that the question whether a system of word equations
has a solution or not is decidable.

Remark 4.5 Adding arbitrary regular constraints to a system of trace equa-
tions makes the question of solvability undecidable. This is due to the fact
that the solvability of the equation x = y with x € C, y € C’ is equivalent
to the non-emptiness of the intersection {w € ¥* | w =; v for some v €
Ctn{w € ¥* | w =; v for some v € C'}. For regular languages C,C" this
last question is known to be undecidable, see [1].

Remark 4.6 Similar to the word case, the solvability of a trace equations
system could be reduced to the solvability of a single trace equation (with
additional constraints).

The aim of this section is to reduce the solvability problem for trace equations
to word equations with regular constraints. We will give a direct proof using
lexicographical normal forms to show the following

Theorem 4.7 ([11]) Let S be a trace equation system over (X,1) and €.
Then a set ¥ O Q of unknowns and a system of word equations S" over
¥, Q" can be effectively constructed, such that S is solvable if and only if S’
15 solvable.

Corollary 4.8 The following problem is decidable:

Instance: An independence alphabet (3,1), a finite set of unknowns 0, and
a trace equation system S over (X,1), (.

Question: Does S have a solution?

4.1 Basic reductions

For a given trace equation system S we first eliminate constants by introduc-
ing new unknowns x, and constraints z, € {a}, for a € X. Then we replace
a by x, in each equation L = R of S. Clearly, for every solution o of S the
assignment o' = o U {z, — a | a € ¥} is a solution for S’. Conversely, every
solution ¢’ for S’ yields a solution o = o'| for S.

Hence, without loss of generality atomic predicates are of the form

L=R where L,R € Q".

Furthermore, we may assume that the given system is written in disjunctive
normal form. Then we replace every negation not(L = R) by the following
formula

JA,A'B,B'CY: (AnA' =0 & BUB' #0 &
L=zy & R=xz &
init(y) = A & init(z) = A" & alph(y) = B & alph(z) = B') (1)
where z,y, z denote new unknowns. Clearly, constraints of the form init(z) =
A or alph(xz) = A, A C %, can be expressed by I-closed regular languages.

Suppose that o is a solution for S and o(L) #; o(R). Let s denote the
longest word such that for some ¢, u € ¥*:

o(L) =r st and o(R) =1 su.

8

Due to the maximality of s we obtain init(¢) Ninit(u) = (). Moreover, tu # 1,
since st #Z; su. Hence, o' = o U{x — s,y — t,2z — u} is a solution for
the new subformula (1). Conversely, for every solution ¢’ of (1) one has
o'(xz)o'(y) #;1 o'(z)o’(z), hence o'(L) #; o'(R).

Since the set of I-closed regular languages forms an effective boolean algebra
(as the family of recognizable subsets of a monoid [9]) we may also suppose
that the formula contains no negated constraints, i.e. no formula of type
not(x € C).

Moreover, it suffices to consider trace equations of the form x;---x, =
Y-y with & > 1> 0, z;,y; € Q. (The equation z; -2, = 1 and the
occurrences of x; can be deleted from all equations, adding the constraints
alph(z;) = 0.)

4.2 From traces to words

The main idea for reducing trace equations to word equations will consist in
replacing a trace equation L = R by some word equations Ly = Ry, ..., Ly =
Ry with additional constraints and unknowns. Moreover, for every solution
o for L = R the mapping Lnf o 0:Q2 — ¥* — LNF can be extended to a
solution for the equations Ly = Ry,..., Ly = Ry. Vice versa, each solution
for the new equations will also be a solution for L = R when restricted to its
unknowns.

This reduction actually goes by a chain of additional trace equations. By
choosing an appropriate ordering we will show that the reduction process
terminates yielding a system of word equations (with constraints).

We will consider in the following formulas S(7, W, C') in disjunctive normal
form with atomic predicates from some finite sets T, W, C', containing no
negations. T" will denote a set of trace equations, W a set of word equations
and C' = {x € C, | x € Q} a set of constraints, where each C, is an I-closed
regular language. Moreover, every L = R in T has the form z;-- -2, =
Y-y withk > 10> 1, 2, y; € Q. A solution for S(7, W, C) is an assignment
0:Q — ¥* which makes the formula evaluate to true when (L = R) from
T, (L =R) from W and = € C, from C are replaced by the truth value of
o(L) =1 0(R), o(L) = 0(R), and o(z) € C,, respectively.

Definition 4.9 A formula S(7,W,C) as above is called normalized if for
every solution o for S the mapping Lnf o ¢ is a solution for S, too.

Remark 4.10 Note that a formula S(T, (), C) with I-closed constraints C' is
always normalized.

Remark 4.11 Suppose S = S(T, W, C) is normalized and let x = y belong
to T, where z,y € €. Consider the new formula S" = S'(T', W', C') obtained
from S by replacing every occurrence of x = y by x = y and letting 7" =
T\{z =y}, W = WU {x = y}. Then S is solvable if and only if S’
is solvable. Note that a solution for S’ is a solution for S, too. However,
the converse is true only because S is a normalized system. Without this
assumption about S it cannot be guaranteed that every solution for S also
solves S’. Moreover, S’ is a normalized system, too.

Example 4.12 Consider the trace equation system S = ({z = y},{z =
ab,y = ba}, D) given as the conjunction (z = y) & (r = ab) & (y = ba),
where (a,b) € I. Then S is not normalized, but of course it has a solution.
However, replacing © = y by the word equation x = y yields a system with
no solution.

Proof of Thm. 4.7. Recall that an equation system with /-closed constraints
S = S(T,0,{x € Cp}req) over (X,I),Q is a normalized system. As previ-
ously noted it suffices to consider a formula S with trace equations of the

form

We suppose without loss of generality that for all unknowns x € €2 some A, C
¥ exists such that h(A;) > 0, and = € C, implies alph(z) = A,, for all z.
Then h(z) will mean h(A;). (In fact, we could also assume that alph(z) C A,.
The obvious modifications needed below are left to the reader.) Moreover,
let S be a conjunction of trace equations as in (2), of word equations and of
I-closed regular constraints x € C,.

We define the weight of a trace equation zy -z = yy---y; as in (2) as
the triple of natural numbers (I, h(x; - - 2x_1), k) and we consider the lexico-
graphical ordering on N x N x N. We will show in the following that every
such trace equation can be replaced by a formula over word equations and
trace equations of lower weight, together with some additional constraints.
Concretely, we apply the following rules.

Rule 1: Suppose [> 1 and let z denote a new unknown. Then we replace
the equation z;-- -2 = y;---y; by
vy =2 & yi-o-y =2 & alph(z) =UM A, .

10

Rule 2: Suppose [=1 and k£ > 2, and let z denote a new unknown. Then
we replace the equation xq -- -z = y; by

riz=y & a9---mp =2z & alph(z) = UM, A, .

Rule 3: Suppose [= 1 and £ = 2 and, in order to simplify notation,
consider the equation xy = z (rather than uniformly z25 = ;). Moreover,
let h = h(z) denote the height of .

We replace zy = z by the disjunction of the word equation

Y =2 (3)
and of formulas of the type

rT=x 1, & Y=Y1Ym & Z=T1Y1 " TmYm &
alph(z) =A4; & --- & alph(z,)=A4, &
alph(y1) =B, & -+ & alph(yn) = Bn, (4)

where z;, y; are new unknowns and the disjunction is taken over all values of
m such that 1 <m < (n—1)(h—1)/2+1 and over all alphabets Ay,..., A,
By, ..., B,, C X such that

A; #0 forall 1 <i<m, and
1 <h(Bj) <h forall 1 <j<m, and
BjxA; CI foralll1 <j<i¢<m, and
Ay U---UA, = alph(z), and
B, U---UB,, = alph(y). (5)

The word equation zy = z in (3) corresponds to the case m =1 in (4) (this
is in particular the case when A = 1 in (5)). It is actually the main case
where the number of trace equations in S decreases.

Let S” denote the formula obtained from S by applying one of the three rules
described above. Note that none of the rules adds negations.

Lemma 4.13 Let S be a normalized equation system. Then the new system
S" is normalized, too. Moreover, S' is solvable if and only if S is solvable.

Proof. The claim is easily seen for the first two rules above, since there is a
natural bijection between the set of solutions of S and of S’, respectively.

11

Clearly, if S’ has been obtained from S by the third rule, then every solution
for S’ is a solution for S, too, see Rem. 3.4. Therefore, let us consider an
equation zy = z in S and a solution o:Q — ¥* for S. Then ¢’ = Lnfo o is
also solution for S, since S is normalized. We show that ¢’ can be extended
to a solution for S’. Let s = o'(x), t = 0'(y) and v = o'(z). Hence, st =/ v
with s,t,v € LNF. If h(s) = 1, then in the Main Lemma we have m = 1,
hence v = st. Therefore ¢’ is a solution of the new system S’.

Suppose that st =; v with s,t,v € LNF, h(s) = h > 1. Then some m,
1<m< (n—1)(h—1)/24+1, and words 1, ..., Sm, t1, ..., t,;, exist, satisfying
the conditions of the Main Lemma. With o'(z;) = s;, 0'(y;) = ¢; it is easily
verified that ¢’ is a solution for S'.

The relation between the solution set of S and the solution set of S’, together
with the fact that S is normalized, imply that S’ is normalized, too. This
shows the lemma. O

Finally, note that the new trace equation y; - - -y, = y in (4) has lower weight
than zy = 2z due to h(y1 - Ym-1) < h = h(x). Hence the reduction rules
establish a noetherian rewriting system on trace equation systems. Applying
the rules as long as possible we end with a system of word equations S’ =

0, W', C"). O

5 Computing Lexicographical Normal Forms

The aim of this section is to give a formula for computing the product of lex-
icographical normal forms. This yields an alternative proof of Thm. 4.7 and
the so far best known upper bound on the number of new unknowns needed
for the reduction. We conclude the section with two remarks concerning the
parallel complexity of computing lexicographical normal forms.

Definition 5.1 Let ~; be a relation on (X*)* defined as

(1, ey) ~r (2], 2h))

if m = m' and there exists some i, 1 < i < m such that

xj = w; foralll<j<m,j¢{ii+1}, and

(25, 41) = (25,4,2;) and (2, 241) € 1.

By =~ we denote the equivalence relation generated on (X*)* by ~7.

12

Let x € ¥*, by abuse of language we write (z1,...,2,,) ~; z if some words

/ !/ :
xy, ..., 2, exist such that

(mla"-axm) ~r (ﬁll,,xlm) and x:xllx

!
m -

Theorem 5.2 Let s,t,v € LNF be words in lexicographical normal form
such that st =5 v.

Then there exist positive integers m,p with m < @ +1, p < n"n! such
that

§=151"""5m,

b=ty t,,

(Sl,...,Sm,tl,...,tp) v,
for some words si,...,Sm,t1,...,t, € X*.

Proof. Let h = h(s) denote the height of s. Let m(h),p(h) denote the
minimal integers such that

for some words s;,t;. Note that m(h),p(h) < |v|. For h = 0 we have s =1,
thus m(0) = p(0) = 1, which satisfies the theorem.

For h > 1 we will show by induction on h that m(h) < (n —1)(h—1)/2+1
and p(h) < nh!, thereby proving the theorem.

Let h > 1. By the Main Lemma there exist an integer m < (n—1)(h—1)/2+1
and words s1,..., Sy, t1,...,t, in lexicographical normal form satisfying

S=S81"""Sm,
t=rt1---tm,
v = 81t1 " Splm,
si#FL t;#F1L forl<i<m,1<j<m,
t; € I(sj41---Sm) and h(tj) <hfor1 <j<m. (6)
If h =1, then m = 1 in (6), so we can take m(h) = p(h) = 1, since
t = t; € LNF, which satisfies the claim. Hence let h, m > 2.
Let t; = t; and ¢; = Luof(¢;_¢t;) for i = 2,...,m. Clearly, t,, = t, h(t;) < h
for 1 <i < m and
Zifltz' =7 Zi, for 1 <1 < m. (7)

13

Now we can apply the induction hypothesis to each of the (m—1) equivalences
(7) obtaining
~r (tll,,t;)), (8)

for some p < (m — 1)[m(h — 1) + p(h — 1)], some words #,...,t, and some
integers 1 =1y <l; <---<l,, =p+ 1 such that

ti=t,_ -t forevery 1 <i<m. 9)
The above claim can be verified by noting that
tar (..t sty ty) and Bt &g (v, vk)

implies that

~ ’ ’ / 1oy ’
tNI (t17"'7ti—17U17'"7Ul7tj+17"'7tq)7
for some [< j —i+Fk and v},...,v; € ¥*, such that v{---v] = vy ---v, and
each vy is a factor of some v;.
Hence, we obtain from (8), (9) for suitable words #,...,#:
. " n
to= At
~ ~ !/ !
Vv g (81,...,Sm,t1,...,tm) ~r (81,...,Sm,t1,...,tp)
~ " "
~r (81,...,Sm,t1,...,tp).

Hence by the induction hypothesis we get

p(h) < (m—=1)[m(h—1)+p(h—1)]
< (n=1)(h=1)/2[(n—1)(h—2)/2+1+n""h—-1)]
< nln!,
which concludes the proof. O

Remark 5.3 We can also use Thm. 5.2 in order to prove the main result,
Thm. 4.7. Recall that the main difficulty consists in replacing a trace equa-
tion of the form xy = z, where x,y, z € 2. By Thm. 5.2 we simply replace
such an equation xy = z by a disjunction over clauses of the form

x:xl-..xm & y:yl-..yp &
Z = Zn(1) "' Zr(m+p) & alph(z;) = A; & alph(yj) = By,

14

foralll <m < @ +1,1<p<n"nl, meS},,and A; B; C X. Here
xi,1y; denote new variables and z; = x; for 1 < ¢ < m, resp. z,4; = y; for
1 <5 <np. S,{nﬂ, denotes the set of permutations over {1,...,m + p} such
that for ¢ < j the inequality (i) > 7(j) implies (2;,2;) € I. This reduction
of a single trace equation to word equations roughly yields an increase in the
number of word equations by (N+2)!12"¥*1 where N = n"n!+(n—1)2/2+1.

Hereby we need N additional unknowns.

We conclude this section with two remarks concerning the parallel complexity
of computing lexicographical normal forms. We consider uniform circuit
complexity classes like AC” and TC". Let f:¥* — ¥* be a function such
that |f(w)| = p(|w|) for some polynomial p and every w € ¥*. Let k > 0.
Then f is ACF-computable if there is a family (Ch)n>0 of polynomial-size
circuits of depth O(log®(n)) with AND and OR gates of unbounded fan-
in/out and unary NOT gates, such that C),| computes f(w) for all w € ¥*.
A function f is TCF-computable if there is a family of circuits as above
which in addition to AND, OR and NOT gates contain MAJORITY gates
of unbounded fan-in/out. A MAJORITY gate yields 1 if and only if more
than half of its inputs are 1. In order to be able to deal with arbitrary
alphabets 3 one usually assumes that the circuits have special input/output
gates testing x = a for each input position x and letter a € ¥ (analogously
for the outputs). Uniformity means that given n > 0 (a fixed coding of) the
circuit C), can be easily computed (e.g. in logarithmic space). It is not very
hard to verify that AC* C TCF € AC*! k > 0. For more details about
circuit complexity see e.g. [14]. We state the results below without proofs,
which will appear elsewhere. With Thm. 5.2 we obtain

Corollary 5.4 Let (X,1) denote an independence alphabet.
Then we can compute Lnf(st) on input s,t € LNF in uniform ACP.

Proof. Since m,p in Thm. 5.2 are bounded by the size of the alphabet we
can build a subcircuit for each factorization s = sy ---s,, t = t;---t, and
each permutation in Séwp. Moreover, by Prop. 3.1 we can test whether a
given word is in lexicographical normal form in AC°, too. O

We could apply Cor. 5.4 in order to compute the function Lnf in AC'. How-
ever, we can do better: the mapping Lnf: ¥* — LNF is computable in uniform
TC. This result can be compared with the fact that the equivalence s =; ¢
can be verified in uniform TC?, too (see [2]).

15

Proposition 5.5 Let (X, 1) denote an independence alphabet.
Then we can compute Lnf(s) on input s € X* in uniform TCP.

Proof. For w € ¥ and 1 < 4,5 < |w] let lex(i,j) denote the predicate
which is satisfied by w if and only if the ith position of w precedes the jth
position in the lexicographical normal form of w, Lnf(w). Then lex(i, j) is
first-order definable, see [8, Prop. 3]. But first-order definable predicates are
AC’-computable (see e.g. [14] for more details about the relation between
circuit complexity and first-order logic). Finally, the ith position of a word
w occurs as the jth position of Lnf(w) if and only if j = #{k | lex(k, i)} + 1.
The last statement is easily seen to be checkable in TCY. O

References

[1] 1J. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the de-
cidability of some problems for regular trace languages. Mathematical
Systems Theory, 22:1-19, 1989.

2] C. Alvarez and J. Gabarr6. The parallel complexity of two problems on
concurrency. Information Processing Letters, 38:61-70, 1991.

(3] A. V. Anisimov and D. E. Knuth. Inhomogeneous sorting. International
Journal of Computer and Information Sciences, 8:255-260, 1979.

[4] P. Cartier and D. Foata. Problémes combinatoires de commutation et
réarrangements. Number 85 in Lecture Notes in Mathematics. Springer,
Berlin-Heidelberg-New York, 1969.

[5] C. Choffrut. Combinatorics in trace monoids I. In V. Diekert and
G. Rozenberg, editors, The Book of Traces, chapter 3, pages 71-82.
World Scientific, Singapore, 1995.

(6] V. Diekert and G. Rozenberg, editors. The Book of Traces. World
Scientific, Singapore, 1995.

[7] C. Duboc. On some equations in free partially commutative monoids.
Theoretical Computer Science, 46:159-174, 1986.

(8] W. Ebinger and A. Muscholl. Logical definability on infinite traces.
Theoretical Computer Science, 154:67-84, 1996.

16

9]

[10]

[11]

[12]

[13]

[14]

S. Eilenberg. Automata, Languages, and Machines, volume A. Academic
Press, New York and London, 1974.

G. S. Makanin. The problem of solvability of equations in a free semi-
group. Math. Sbornik, 103:147-236, 1977. English transl. in Math. USSR
Sbornik 32 (1977).

Yu. Matiyasevich. Reduction of trace equations to word equations,
1996. Talk given at the “Colloquium on Computability, Complexity,
and Logic”, 5./6. December 1996, Institut fiir Informatik, Universitit
Stuttgart, Germany.

A. Mazurkiewicz. Concurrent program schemes and their interpreta-
tions. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

K. U. Schulz. Makanin’s algorithm for word equations — Two improve-
ments and a generalization. In K. U. Schulz, editor, Word Equations
and Related Topics, number 572 in Lecture Notes in Computer Science,
pages 85—150, Berlin-Heidelberg-New York, 1991. Springer.

H. Straubing. Finite automata, formal logic, and circuit complezity.
Birkhauser, 1994.

17

