Abschlufibericht der
Projektgruppe
Evolutionire Algorithmen
Bericht Nr. 1997/02

Universitéit
Stuttgart

Abschluf3bericht der
Projektgruppe Evolutionare Algorithmen

Matthias GrofSmann
Alexander Leonhardi
Thomas Schmidt

Betreuung
Prof. Dr. Volker Claus
Dipl.-Inf. Wolfgang Reissenberger
Dipl.-Math. Nicole Weicker
Abteilung Formale Konzepte
Fakultit Informatik
Universitit Stuttgart

20. Februar 1997

Prof. Dr. Volker Claus
Abteilung Formale Konzepte
Institut fiir Informatik
Universitdt Stuttgart

Breitwiesenstr. 20-22
D-70565 Stuttgart

Telefon:
0711-7816-300 (Prof. Dr. V. Claus)
0711-7816-301 (Sekretariat)
0711-7816-330 (FAX)

E-Mail: claus@informatik.uni-stuttgart.de

Inhaltsverzeichnis

1 Einleitung

I Entwicklungsprozef}

2 Projektgruppe Evolutionire Algorithmen

2.1
2.2

2.3

Was ist eine Projektgruppe
Problemstellung L
2.2.1 Optimierungsprobleme
2.2.2 Evolutionére Algorithmen
2.2.3 Aufgabenstellung der Projektgruppe
Vorgehen
2.3.1 Seminarphaseo
2.3.2 Entwurfsphase
2.3.3 Prototyp
2.3.4 Spezifikations- und Entwurfsphase
2.3.5 Implementierungs- und Testphase.

3 Anforderungen an das System

3.1
3.2

3.3

Allgemeine Anforderungen
Struktur des Systemso
3.2.1 Elemente zur Kapselung der Daten
3.2.2 Elemente zur Steuerung von Berechnungen
Anforderungen an die Programmteile
3.3.1 Problemstruktur und Fitneffunktion

3.3.2 Kodierungsstruktur 0oL

10

12
12
14
14
14
15
16
16
16
17
18
18

3.3.3 Kodierung und Dekodierung
3.34 Operatoreno
3.3.5 Experimentsteuerung.

3.3.6 Individuen und Population

I GENOM

4 TUberblick iiber GENOM

4.1
4.2

Besonderheiten

Modulgruppen

5 Umsetzung der Konzepte

5.1

9.2

9.3

5.4

9.5

Individuen und Kodierung
5.1.1 Atomeo
5.1.2 Kodierungs- und Dekodierungsfunktion
5.1.3 Kodierungsfunktionen00
Populationsverwaltung oL
5.2.1 Populationen oL
5.2.2 Problemstruktur 0.
5.2.3 externe Individuen oL
5.2.4 Protokolldateien,
5.2.5 Arbeiten mit der Populationsverwaltung
5.2.6 Berechnung der Fitnef} eines externen Individuums.

Operatoren, Parameter und Bibliotheken
5.3.1 Operatorkonzept,
5.3.2 Parameterkonzept
5.3.3 Bibliothekenkonzept (LEA-Sicht)
Beschreibung der Sprache LEA
5.4.1 Grundlagen oo Lo
5.4.2 Sprachelemente oL
Interpreter
5.5.1 Interpreter-Programmteile
59.5.2 Preter Lo
5.5.3 Linker L

28

30
30
32

554 Parser e 67

5.5.5 Bibliothek — Library 77
55,6 Frame oo 7
55.7 Ausblick oo 78
5.5.8 Worterbucho oo 78

6 Erweiterungsmoglichkeiten 81
6.1 Kritischer Riickblick 81
6.2 Konkrete Erweiterungen 0oL 0oL 82
6.2.1 Erweiterungen direkt am System 82
6.2.2 Weiterentwicklung des Systems 83

7 Bedienung 85
7.1 Erste Schritte 85
7.1.1 Aufbau des Systems 85
7.1.2 Laden des Systems 86
7.1.3 Aufruf eines Experiments 86
7.14 Beendenvon SML 86

7.2 Einfiihrungin LEAo o oo oo 86
7.3 Zusammenstellen von Experimenten 87
7.4 Erstellen von Verfahren 88
7.5 Operatoren e 90
7.5.1 Operatoren auf Individuenlisten 91
7.5.2 Operatoren fiir Abbruchbedingungen 92

7.6 Anbinden von Funktionen in SML 92
7.6.1 Erstellen von Bibliotheken 92

7.7 Eigene Probleme 95
7.7.1 Grundlagen 95
7.72 Konventionen oL 96

7.8 Kodierungen L 97
7.8.1 Kodierungsschema 97
7.8.2 Elementare Kodierungsschemata 98

7.8.3 Parametrisierte elementare Kodierungsschemata 99

A Systemfunktionen 101

A1 LEA-Funktionen 101
A.1.1 Ausgabefunktionen, Output 101
A.1.2 Grundlegende Funktionen, Basefct 102
A.1.3 Mathematische Funktionen, Math 102
A.1.4 Funktionen fiir Listen von Individuen, IndList 103
A.1.5 Populationsverwaltung, PopHandler 104

A2 SML-Funktionen 105
A.2.1 Fehlerbehandlung, Error 105
A.2.2 Zufallszahlen, Random 105
A.2.3 Funktionen fiir Individuenlisten, IndList 106

A.3 Hilfsfunktionen fiir ev. Algorithmen 107

A.4 Elementare Kodierungsschemata 114

A5 Zellen e 115
A.5.1 einfache Zellen 116
A.5.2 Zellen mit Paaren von Atomen 116
A.5.3 Zellen mit Listen von Atomen 117

A6 Atome e 117

B Bibliotheken 121

B.1 Experimenteo 121

B.2 Verfahren 121
B.2.1 Evolutionsstrategien 122
B.2.2 Genetischer Algorithmus 123

B.3 Operatoren 124
B.3.1 Selektionsoperatoren 124
B.3.2 Abbruchbedingungen 125

B.4 Probleme 125
B.4.1 Mathematische Funktionen 126

B.5 Kodierungen 127

C Durchgefiihrte Experimente 129

C.1 GA mit Schwefelfunktion 129

D Syntax von LEA
D.1 EBNFvon LEA
D.1.1 Abweichungen
D.1.2 Probleme
D.2 Schlisselworter

D.3 Operatoren

Literaturverzeichnis

133
133
135
135
135
136

137

Kapitel 1

Einleitung

Als im Mai 1995 die Projektgruppe Genetische Algorithmen (PGA) — die erste
Projektgruppe der Informatik an der Universitit Stuttgart — endete, war das Er-
gebnis hinter den urspriinglichen Planungen zuriickgeblieben. Vorgesehen war,
eine Experimentierplattform fiir Evolutionére Algorithmen zu entwerfen und
zu implementieren. Die Implementierung des von der Projektgruppe ,EAGLE“
genannten Systems scheiterte jedoch, im Endbericht [AJK*95] wurde lediglich
der Entwurf sowie eine funktionale Spezifikation eines Teilsystems veroffentlicht.
Aufbauend auf dem Endbericht entstand nach Abschlufl der Projektgruppe eine
funktionale Spezifikation des Gesamtsystems, die gegeniiber dem urspriinglichen
Entwurf von EAGLE bereits einige Anderungen aufwies. Die Spezifikation kann
in [JW95] nachgelesen werden.

Im Oktober 1995 fand das erste Treffen der Projektgruppe Evolutionire Algo-
rithmen statt. Ziel unserer Projektgruppe war zunéchst, ausgehend vom Endbe-
richt der PGA und der funktionalen Spezifikation, tatsichlich auch ein lauffihi-
ges Programm zu implementieren. Wahrend unserer Arbeit sind aber so viele
eigene Ideen eingeflossen, dafl von der funktionalen Spezifikation von EAGLE
nur grundlegende Ideen iibernommen wurden. Im Gegensatz zur PGA, die zu
Beginn aus acht, spéter sieben Mitgliedern bestand, umfafite die Projektgruppe
EVA zunéchst nur fiinf Studenten, von denen einer bereits nach wenigen Wochen
absprang. Die vorgesehene Untergrenze von sechs Teilnehmern war damit zwar
deutlich unterschritten, die Projektgruppe wurde aber dennoch fortgesetzt, da
sowohl von den Mitgliedern als auch von unseren Betreuern bereits viel Arbeit
in die Projektgruppe investiert worden war. Trotz (wegen?) der geringen Teil-
nehmerzahl entstand im Laufe eines Jahres der Entwurf eines Systems, das z.T.
komplexer als EAGLE ist, ein Prototyp sowie ein lauffiahiges Programm.

Dieser Bericht stellt zum einen die Dokumentation dieses Programms dar und
beschreibt zum anderen das Vorgehen der Projektgruppe Evolutionédre Algo-
rithmen {iber verschiedene Zwischenergebnisse bis zum endgiiltigen Produkt.
Er gliedert sich im Wesentlichen in

e cine Beschreibung einer Projektgruppe allgemein sowie der Aufgabe der
Projektgruppe EVA,

e unser Vorgehen und unsere Anforderunge an GENOM,

Uberblick iber den Aufbau von GENOM,

Dokumentation von Kodierung, Populationsverwaltung, LEA und des In-
terpreters,

Erweiterungsmoglichkeiten und Bedienung und

Anhinge mit Beschreibungen der Bibliotheken.
Die Mitglieder der Projektgruppe EVA waren:

e Matthias Gromann: verantwortlich fiir Kodierung, Einleitung, Vorgehen

Darko Ivancan: verantwortlich fiir Populationsverwaltung

Alexander Leonhardi: verantwortlich fiir Interpreter, Anforderungen, Be-
dienung, Erweiterungen, Anhang

Thomas Schmidt: verantwortlich fiir Interpreter, Systembeschreibung

Unser Dank gilt Professor Claus, der diese Projektgruppe initiiert und trotz
widriger Anfangsumstinde ihre Fortsetzung ermoglicht hat, sowie besonders
unseren Betreuern Wolfgang Reissenberger und Nicole Weicker fiir ihr grofles
Engagement.

Wir haben unser Programm GENOM (GENOM is an Environment for Op-
timization Methods) genannt. Es soll helfen, Probleme bei der Analyse Evo-
lutiondrer Algorithmen zu 16sen: Da auf diesem Gebiet bisher nur sehr wenig
Sitze bewiesen sind, ist man auf experimentelle Untersuchungen und damit auf
entsprechende, moglichst flexibel einsetzbare Werkzeuge angewiesen.

Teil 1

Entwicklungsprozef3

10

Kapitel 2

Projektgruppe Evolutionire
Algorithmen

2.1 Was ist eine Projektgruppe

Das Studium der Informatik vermittelt dem Studenten zwar einen grofien Teil
des n6tigen Fachwissens, jedoch stellt das Berufsleben noch weitere Anforderun-
gen an den Informatiker. Teamfihigkeit und Erfahrung spielen gerade bei der
Mitarbeit an grofien Software-Projekten eine wichtige Rolle. Hier verfolgt die
Idee der Projektgruppe folgende Ausbildungsziele:

e Arbeiten im Team

e Analyse von Problemen, Strukturierung von Losungen und gemeinsamer
Entwurf geeigneter Systeme

e Selbststidndige Erarbeitung von Losungsvorschligen und deren Vorstellung
und Verteidigung in einer Gruppe

¢ Ubernahme von Verantwortung fiir die Losung von Teilaufgaben und die
Erstellung von Modulen

e Mitwirkung an einer umfassenden Dokumentation

e FErstellen eines Software-Produktes, das ein Einzelner innerhalb des vor-
gegebenen Zeitraumes unmoglich bewéltigen kann

e Projekt-Planung und Kosten/Nutzen-Analyse
o Einsatz von Werkzeugen

e Personlichkeitsbildung (Ubernahme von Verantwortung, Selbstvertrauen,
VerliaBlichkeit, Riicksichtnahme, Durchsetzungsfihigkeit usw.)

12

2.1. WAS IST EINE PROJEKTGRUPPE 13

An der Projektgruppe nehmen in der Regel acht bis zwdolf Studierende des
Hauptstudiums teil. Sie erarbeiten im Laufe eines Jahres ein Software-Produkt,
welches einem Zeitaufwand von mehreren Personenjahren entspricht. Hierbei
sollen sdmtliche Phasen eines Software-Lifecycles — von der Planung bis zur
Wartung — durchlaufen werden, was in anderen Lehrveranstaltungen nicht
iiblich ist. Bei Software- und Fachpraktika wird zumeist eine gegebene, genau
festgelegte Aufgabenstellung in ein Programm umgesetzt.

Eine Projektgruppe vereinigt die Lehrveranstaltungsformen ,, Hauptseminar* (2
SWS), ,,Fachpraktikum“ (4 SWS) und ,Studienarbeit“ (10 SWS) in sich. Dem-
zufolge ist eine Projektgruppe mit 16 SWS einzustufen.

Der Ablauf einer Projektgruppe folgt meist folgendem Schema: Seminar-,
Planungs-, Entwurfs-, Implementierungs-, Integrations-, Experimentier- und
Schlufiphase. Diese Phasen werden im folgenden genauer erldutert.

Seminarphase: Die Themenstellung wird griindlich analysiert. Dazu werden von
den Mitgliedern Originalpublikationen durchgearbeitet und die Ergebnisse vor-
getragen. Ergebnisse dieser Phase sind viel Wissen, je eine Vortragsausarbeitung
und eine zusammenfassende Darstellung der Literaturauswertung.

Planungsphase: Die Projektgruppe analysiert den Problembereich, stellt Ein-
satzmoglichkeiten und Anwendungen zusammen, erarbeitet einen Anforderungs-
katalog und diskutiert Losungsmoglichkeiten fiir diese Fragestellungen. Hierbei
werden die in der Literatur bekannten Losungsvorschlige und eigene Ideen ge-
geneinander abgewogen. Insbesondere wird friihzeitig diskutiert, welche Hard-
und Software fiir die jeweiligen Losungen erforderlich ist, welche sonstigen Ko-
sten entstehen, wie hoch der Zeitaufwand sein wird, usw. Wichtig ist eine frithe
Spezifizierung der Eigenschaften des Systems (Robustheit, Antwortverhalten,
Flexibilitéit, Schutzmechanismen, Erweiterbarkeit, Verteiltheit, . ..). Inhaltliches
Ergebnis ist eine moglichst eindeutige, ausschnittsweise sogar formale Spezifi-
kation. Fiir jede ins Auge gefafite Anwendung wird dariiber hinaus ein Szenario
bzgl. des Einsatzes, der Nutzung, der Tests und der Wartung skizziert. Orga-
nisatorische Ergebnisse sind ein grober Zeitplan und die erste Aufteilung von
Aufgabengebieten. Hier setzt auch eine Spezialisierung der Gruppenmitglieder
ein.

Entwurfsphase: Voraussetzung fiir die Entwurfsphase ist, dafl Begriffsbestim-
mungen, Anwendungen und Modelle weitgehend gekliirt sind. Nach Festlegung
des grundsiitzlichen Losungsverfahrens werden Teilprobleme und charakteristi-
sche Objekte herauskristallisiert, miteinander in Beziehung gesetzt, auf ihre
Realisierbarkeit gepriift und grundlegende Datenstrukturen und Kommunikati-
onswege festgelegt. Dabei werden die Schnittstellen der Einzelteile des Systems
untereinander genau definiert. Ergebnis ist ein Plan des zu erstellenden (oder
zu modifizierenden) Systems. Stehen die einzelnen Aufgaben fest, werden sie
auf die Mitglieder verteilt. Die Implementierungssprache(n) sowie die erforder-
liche Hardware und die zu verwendenden Werkzeuge werden festgelegt. Eine
Liste von Beispielen, die das System spéter positiv bewéltigen muf}, wird fiir die
Testphase erstellt.

In der Implementationsphase und Integrationsphase wird der Programmcode
erstellt, zusammengebunden (integriert) und getestet.

14 KAPITEL 2. PROJEKTGRUPPE EVOLUTIONARE ALGORITHMEN

Die Ezperimentierphase schliefit weitere Tests mit speziellen Anwendungen ein.

Zur Schlufphase zdhlt in erster Linie der Abschlufl der Dokumentation, die
stindig parallel zur Projektgruppenarbeit erstellt und auf den neuesten Stand
gebracht wird.

Das Konzept der Projektgruppe wird bereits seit Jahren an anderen Univer-
sitdten wie z.B. in Oldenburg und Dortmund erprobt und durchgefiihrt. Dort
sind Projektgruppen z.T. schon Pflichtveranstaltungen im Rahmen des Infor-
matikstudiums.

2.2 Problemstellung

2.2.1 Optimierungsprobleme

Viele Probleme, die sich in der Wissenschaft, Technik oder Wirtschaft stellen,
lassen sich als Optimierungsproblem beschreiben, als Aufgabenstellung also, bei
der zu einer gegebenen Umwelt (Suchraum) ein optimaler Punkt innerhalb dieses
Umwelt gesucht ist. Die Giite eines solchen Punktes in gegebenen Suchraum wird
in der Regel durch eine Qualitéts- oder Kostenfunktion berechnet.

Vielen dieser Optimierungsprobleme gemeinsam ist ihre Schwierigkeit, die in der
Informatik durch den Begriff der NP-Hirte ausgedriickt wird. (NP-Hérte heifit,
daB sich die Losung eines solchen Problems nur um einen polynomiellen Faktor
von der eines beliebigen Problems unterscheidet, das von einer nichtdetermi-
nistischen Turingmaschine in polynomieller Laufzeit gelost werden kann; vgl.
[CS88]) Dies bedeutet, dafl diese Probleme nicht effektiv 16sbar sind. Deshalb
werden bei einer solchen Problemstellung mittels Heuristiken oder Evolutionérer
Algorithmen Niherungslosungen gesucht.

Beispiele von schwierigen Optimierungsproblemen

1. Minimierung von mathematischen Testfunktionen [DJ75]

2. Minimierung der Kosten in einer Fabrik, die durch Leerlauf oder Um-
riistung von Maschinen entstehen (bekannt als Produktionsplanungspro-
blem) [BBSS88, Bru93, Joh73, WSF89, Zip82]

3. Findung einer kiirzesten Rundreise zu verschiedenen Orten (bekannt als
das Traveling Salesman Problem, kurz TSP) [Beu81, Bra90, GL85, GH91,
LLRKS85, WSF89]

4. Konstruktion eines moglichst leichten jedoch stabilen Tragwerkes fiir den
Bau von leichteren Flugzeugen [Ben92, H679, Kir90, Kir94, Mau94, M1e92]

2.2.2 Evolutionire Algorithmen

Die speziellen Verfahren der Evolutionéren Algorithmen [AJK™95] sind das The-
ma dieser Projektgruppe. Unter einem Evolutiondren Algorithmus wird dabei

2.2. PROBLEMSTELLUNG 15

ein zufallsgesteuertes Optimierungsverfahren verstanden, da§ an Methoden der
Natur angelehnt ist.

Beispiele Evolutionirer Algorithmen

e Simulated Annealing (SA) [GWH90)
e Threshold Accepting (TA) [DS90]
e Genetische Algorithmen (GA) [Hol75, Gol89, Dav91]

¢ Evolutionsstrategien (ES) [Rec73, Sch81]

Den Verfahren gemeinsam ist, daf} sie iterativ auf einer oder mehreren moglichen
Losungen (Individuen genannt) arbeiten und von dort aus durch verschiedene
Operatoren (Mutation bzw. Rekombination) bessere Losungen zu erreichen su-
chen. Eine Selektion leitet einen neuen Iterationsschritt ein.

2.2.3 Aufgabenstellung der Projektgruppe

Ausgehend aus der Problembeschreibung ergibt sich die folgende Aufgabe fiir
die Projektgruppe ,,Evolutionire Algorithmen® : Es soll, aufbauend auf die Er-
gebnisse der Projektgruppe ,,Genetische Algorithmen® [AJJT94, AJK*95] und
des Technischen Berichts [JW95] ein System zur Bearbeitung hartnickiger (NP-
harter) Probleme mit Hilfe von Evolutiondren Algorithmen wie z.B. Evolutions-
strategien und Genetischen Algorithmen erstellt werden.

Das System soll dabei folgende Konzepte enthalten:

e Unterscheidung zwischen Problem- und Kodierungsstruktur. Dadurch
wird eine einheitliche Darstellung des Problems erreicht und damit von der
Sichtweise der Algorithmen getrennt. Den Ubergang zwischen Problem-
und Kodierungsstruktur bilden die Kodierungs- bzw die Dekodierungs-
funktionen.

e Verwendung verschiedener Datentypen innerhalb einer Problem- bzw. Ko-
dierungsstruktur.

e Moglichst freie Kombinierbarkeit von Verfahren und Operatoren, um un-
ter Riickgriff auf vorhandene Operatoren neue Verfahren ausprobieren zu
kénnen.

e Austauschbarkeit von Individuen verschiedener Kodierungen zwischen
Verfahren, um hybride Verfahren méglich zu machen.

e Abgestufte Einstiegsmoglichkeiten fiir den Benutzer.

e Nebenliaufige Algorithmen sollen implementierbar sein.

16 KAPITEL 2. PROJEKTGRUPPE EVOLUTIONARE ALGORITHMEN

2.3 Vorgehen

Bereits zu Beginn der Projektgruppe war eine Einteilung der zwei Semester in
verschiedene Phasen vorgesehen. Im Einzelnen waren dies eine Seminar-, eine
Spezifikations-, eine Enwurfs- und eine Implementierungsphase. Auch wenn wir
spater zum Teil insbesondere zeitlich von der vorgegebenen Gliederung abgewi-
chen sind, ist grundsétzlich die Einteilung in einzelne Phasen immer erhalten
geblieben.

2.3.1 Seminarphase

Wihrend der Seminarphase arbeiteten sich die Mitglieder der Projektgruppe in
verschiedene Teilbereiche der Themengebiete genetische und evolutionire Al-
gorithmen und Grundlagen funktionaler Programmiersprachen? ein. Jedes Mit-
glied hielt im Rahmen dieser Phase einen Vortrag {iber das jeweils vertiefte
Gebiet. Folgende Themen wurden behandelt:

e Algebraische Spezifikation und Typ-Polymorphismus: Dieser Vortrag soll-
te fiir die Beteiligten der Projektgruppe eine erste Einfiihrung in die Kon-
zepte von SML darstellen, die fiir die meisten v6llig neu waren. Ein grofier
Unterschied von SML zu anderen funktionalen Sprachen (wie LISP) be-
steht in einer strengen Typpriifung, die zur Ubersetzungszeit durchgefiihrt
wird, jedoch polymorphe Deklarationen zulidfit. Die Grundlagen dieser
Typpriifung sollen in der Ausarbeitung vorgestellt werden.

e Sammlung von Problemen und Optimierungsverfahren: In diesem Ab-
schnitt wurde ein Uberblick iiber typische Optimierungsprobleme gegeben.
Einige bekannte Optimierungsverfahren wurden vorgestellt.

e Genetisches Programmieren: Dabei handelt es sich um eine Anwendung
Genetischer Algorithmen zur Erzeugung von Programmen. Sie 148t sich
mit EAGLE nicht realisieren, da die Individuen Baumstrukturen variabler
Grofle sind.

o Parallele Modelle Evolutiondrer Algorithmen: Hier wurden einige Verfah-
ren vorgestellt, die parallel mit mehreren Populationen arbeiten. Solche
Verfahren lassen sich in EAGLE nicht verwenden, so daf3 hier wie schon
beim letzten Vortrag der Wunsch nach einer entsprechenden Erweiterung
entstand.

Ausarbeitungen der ersten drei Vortriige wurden in [GILS96] veréffentlicht.

2.3.2 Entwurfsphase

Von EAGLE, dem System der ersten Projektgruppe, stand uns eine Spezifikati-
on zur Verfiigung. Hitten wir uns stéirker an EAGLE orientiert, wére eine kurze

17u diesem Zeitpunkt stand bereits fest, daB wir GENOM in der funktionalen Sprache
SML implementieren.

2.3. VORGEHEN 17

Entwurfsphase ausreichend gewesen. Mit dem Konzept von EAGLE lassen sich
aber einige der in den Seminarvortrégen vorgestellten Ideen und Probleme, wie
Verfahren mit mehreren Populationen oder genetisches Programmieren, nicht
realisieren. GENOM sollte gegeniiber EAGLE mit mehreren Populationen ar-
beiten kénnen und wesentlich mehr Freiheiten bei der Wahl der Datentypen fiir
Individuen zulassen, z.B. auch Listen variabler Lange oder Bidume.

Eine wichtige Rolle spielte in EAGLE der Interpreter fiir die eigens entwickel-
te Programmiersprache LEA (Language for Evolutionary Algorithms), in der
die Evolutionidren Algorithmen fiir das System geschrieben werden sollten. Der
Interpreter {ibernahm damit wihrend des Experiments die Steuerung des Ge-
samtsystems.

Um das System trotz der vorgesehenen Erweiterungen mit nur vier Personen
fertigstellen zu kénnen, war zunéchst geplant, den Interpreter nicht zu imple-
mentieren. Alle Verfahren und Operatoren hitten dann in SML geschrieben wer-
den miissen. Das System bestand damit aus zwei zentralen Komponenten, der
Populationsverwaltung, die Funktionen zum Zugriff auf Individuen und Popu-
lationen zur Verfiigung stellen sollte, und der Experimentsteuerung, die anstatt
des Interpreters die Funktion einer Schnittstelle zwischen dem Verfahren und
dem System {ibernehmen sollte.

Wir haben dieses Konzept gegen Ende der Entwurfsphase im Februar weitge-
hend geédndert, da uns die Moglichkeiten, die die Experimentsteuerung bot, als
zu wenig komfortabel erschienen. Die Experimentsteuerung wurde durch einen
Interpreter ersetzt, dem die Populationsverwaltung sowie die Kodierung unter-
geordnet sind.

2.3.3 Prototyp

Bereits in den ersten Wochen der Projektgruppe hatten wir entschieden, fiir die
Implementierung die funktionale Programmiersprache SML zu verwenden, zum
einen, weil fiir EAGLE eine funktionale Spezifikation vorhanden war, zum ande-
ren erschien uns SML wegen seiner polymorphen Datentypen fiir unser Projekt
besonders geeignet. Da bis zu diesem Zeitpunkt keiner von uns ein grofleres
Programm in SML geschrieben hatte, entschieden wir uns, einen Prototyp zu
erstellen. So konnten wir uns uns sowohl mit der Programmiersprache vertraut
machen, als auch Probleme, die sich bei der Implementierung des Endsystems
stellen wiirden, friihzeitig erkennen.

Wir beschrinkten uns beim Prototyp auf eine Umsetzung der einfacheren Kon-
zepte von EAGLE und verzichteten auf die Implementierung der neuen Féhigkei-
ten von GENOM sowie den Interpreter. Der Prototyp sollte nur mit einer Popu-
lation arbeiten. Die Individuen bestanden aus einer festen Anzahl von Atomen.
Als Atome waren reelle und ganze Zahlen vorgesehen, als Kodierungen Identitét
und Bindrkodierung. Der Prototyp wurde von einer Untergruppe in einer Woche
spezifiziert und in drei Wochen implementiert.

Da sich direkt an die Fertigstellung des Prototyps die Arbeit am Zwischenbericht
anschlofl, haben wir mit dem Prototyp sehr wenig Experimente durchgefiihrt.
Ein Threshold- und ein genetischer Algorithmus fanden das Optimum einer
einfachen Fitnefunktion (vierdimensionale Hypersphire).

18 KAPITEL 2. PROJEKTGRUPPE EVOLUTIONARE ALGORITHMEN

2.3.4 Spezifikations- und Entwurfsphase

Die Spezifikationsphase begann nach Abschlufl des Zwischenberichts im April.
Einige Teile des Systems, insbesondere der Interpreter und die Kodierung, wa-
ren in der Entwurfsphase nur sehr grob durchdacht worden, so daf sich auch
angesichts der noch verbleibenden Zeit bis zum Ende der Projektgruppe die Spe-
zifikation ziemlich hektisch gestaltete. Da einige Mitglieder der Projektgruppe
bereits genauere Vorstellungen vom Interpreter hatten, wurde beschlossen, die
Teile des Interpreters, die vom Restsystem unabhingig sind, bereits zu imple-
mentieren, wihrend der Rest der Gruppe die iibrigen Teile spezifizierte. Die
Sperzifikationsphase ging so weitgehend nahtlos in die Implementierung iiber,
auch wihrend der nichsten Phase mufiten immer wieder Systemteile (neu) spe-
zifiziert werden.

2.3.5 Implementierungs- und Testphase

Mit der Implementierung von GENOM begannen wir im Mai und schlossen sie
Ende September weitgehend ab. Zu Beginn der Implementierungsphase waren
Teile der Projektgruppe noch mit Spezifikationen befafit, gegen Ende fiihrten
wir bereits Tests der schon fertiggestellten Teile durch. Die Arbeiten an die-
sem Abschluf3bericht begannen ebenfalls vor Ende der Implementierungsphase.
Der Interpreter wurde im Juni fertiggestellt, die tibrigen zentralen Teile wie Ko-
dierung und Populationsverwaltung im Juli. Der Rest dieser Phase entfiel auf
Korrektur von Fehlern sowie Erstellung von Bibliotheken und Experimenten zu
Testzwecken. Zur Durchfiihrung systematischer Versuche fehlte nach Abschlufy
der Implementierungsphase die Zeit, da wir uns in erster Linie auf den Abschluf}-
bericht konzentrierten.

Kapitel 3

Anforderungen an das
System

Nach den Erfahrungen mit dem Prototyp wurden die Anforderungen festge-
legt, die dem zu entwickelnden System zugrunde liegen sollen. Dabei wurde
noch nicht entschieden, welche der geforderten Eigenschaften im Rahmen der
Projektgruppe realisiert werden. Allerdings sollen auch die Anforderungen, die
nicht direkt in das System einflieen, bei der Entwicklung mit beachtet werden
und durch spéitere Erweiterungen moglich gemacht werden.

3.1 Allgemeine Anforderungen

Beschrieben werden zuerst die allgemeinen Anforderungen an das System. Aus
diesen werden im weiteren die Anforderungen an die einzelnen Teile abgeleitet,
aus denen das System besteht.

Neben der Moglichkeit, neue Evolutionidre Algorithmen zu entwickeln, soll das
System moglichst viele der existierenden Verfahren aus dem Bereich der Evo-
lutionéiren Algorithmen und verwandten Optimierungsverfahren unterstiitzen.
Im einzelnen sind die folgenden Verfahren bei der Entwicklung des Systems zu
beachten:

e Hill-Climbing Verfahren,

e Threshold Algorithmus,

e Great Deluge Algorithmus,

e Simulated Annealing,

o Genetische Algorithmen,

e Evolutionsstrategien,

o Genetisches Programmieren

19

20 KAPITEL 3. ANFORDERUNGEN AN DAS SYSTEM

e und eventuell parallele Varianten dieser Verfahren.

Ein Teil des Systems stellen auch die Probleme dar, auf die die Verfahren an-
gewendet werden. Es wird eine Unterstiitzung fiir moglichst viele der Probleme
gefordert, die normalerweise mit Evolutiondren Algorithmen bearbeitet werden.
Dies sind vor allem

e die iibliche Testfunktionen (z.B. Hypersphire, De Jong’sche Testfunktio-
nen etc.), mit denen die Eigenschaften der entwickelten Algorithmen tiber-
priift werden kénnen,

e andere einfach berechenbare Funktionen,
e Programme fiir das genetische Programmieren,
o Travelling-Salesman-Probleme und

o Netzstrukturen oder Matrizen fiir die Optimierung neuronaler Netze.

Fiir die Anwendung der Verfahren auf die Probleme und die Verwendung des
Systems allgemein gibt es die folgenden Anforderungen:

e Die verschiedenen Moglichkeiten des Einstiegs in das System werden durch
ein Schichtenmodell beschrieben. Es existieren mehrere Schichten, die je-
weils auf die darunterliegenden aufbauen. Je tiefer eine der Schichten ge-
legen ist, desto grofler ist der Umfang, in dem dort Verdnderungen vor-
genommen werden kénnen. Im gleichen Mafle vertiefen sich aber auch die
Kenntnisse, die fiir das Versténdnis dieser Schichten nétig sind.

e In der obersten Schicht sollen Verfahren unkompliziert auf einfachere Pro-
bleme (einfach berechenbare Funktionen) angewendet werden konnen, vor
allem ohne tiefere Kenntnisse vom internen Aufbau unseres Programms
und, wenn mdoglich, ohne Kenntnisse von SML. Dazu soll eine iibersicht-
liche und einfache Méoglichkeit zur Durchfithrung eines Experiments ohne
umstindliche Vorbereitungen gegeben sein, wenn dieses nur existieren-
de Komponenten verwendet. Wiinschenswert ist hierbei eine graphische
Oberfliche.

e Die Parameter dieser Verfahren (z.B. die Temperatur bei SA) sind einfach
und, wenn moglich, auch wihrend des Programmlaufs zu setzen und zu
veréndern.

e Vom System produzierte Daten erlauben eine umfassende Analyse, die
vom System unterstiitzt wird.

3.2 Struktur des Systems

Aus den oben genannten Anforderungen und den Erfahrungen aus der Erstel-
lung des Prototyps wurde die, in der folgenden Abbildung gezeigte, Struktur

3.2. STRUKTUR DES SYSTEMS 21

Problembibliothek
Operatorenbibliothek

Verfahrensbibliothek
K odierungsbibliothek

Migrationsoperatorenbib.
Hauptverfahrensbib.
Experimentdefinitionsbib.
Experimentbibliothek

Popul ationsverwaltung

Experimentsteuerung

Pop Pop
__—"| log-Datei
/ Interpreter
Ind Ind Ind

Abb. 3.1: Entwurf des Systems GENOM

des Systems entwickelt. Bei dieser Abbildung wird zwischen Systemelementen
zur Kapselung von Daten und solchen zur Steuerung von Berechnungen un-
terschieden. Im folgenden werden die einzelnen Teile beschrieben, wie sie als
Entwurf geplant wurden. Diese Struktur und die darin enthaltenen Programm-
teile dienten als Grundlage fiir die weitere Ausarbeitung der Anforderungen. An
beiden wurden im weiteren Vorgehen noch wesentliche Anderungen vorgenom-

men.

3.2.1 Elemente zur Kapselung der Daten

3.2.1.1 Experimentdefinition

Eine Experimentdefinition beinhaltet die folgenden Informationen:

e cin Problem (Problemstruktur oder -raum, Fitnefifunktion)

e eine bestimmte Anzahl von Populationen, denen jeweils ein Verfahren und
eine Kodierung zugeordnet ist

e cin Hauptverfahren (Meta-Verfahrens, das die Migration von Individuen
zwischen verschiedenen Populationen steuert)

22 KAPITEL 3. ANFORDERUNGEN AN DAS SYSTEM

e fiir jede Population einen Random-Seed

3.2.1.2 Experiment
Ein Experiment beinhaltet zu einer Experimentdefinition die folgenden Daten:

e Laufinitialisierung (Belegung der Parameter, Setzen der Anfangspopula-
tionen)

e log-Dateien fiir jeder Verfahren und das Hauptverfahren

3.2.1.3 Problem

Ein Problem beinhaltet

e cine Problembeschreibung (nur fiir den Menschen)
e cine Problemstruktur

e cine Fitneflifunktion

3.2.1.4 Kodierung
Eine Kodierung beinhaltet

e Beschreibung der Kodierung (nur fiir den Menschen)

e statische Informationen zur Uberpriifung von der Kompatibilitiit bzgl. ver-
schiedener Verfahren

e Kodierungsstruktur (Grobstruktur, Belegung der Atome mit konkreten
Typen)

e Funktionen zur Kodierung und Dekodierung

e die fiir die konkrete Kodierungsstruktur benétigten Funktionen

3.2.1.5 Verfahren

Ein Verfahren besteht aus

e ciner groflen Iterationsschleife, in der verschiedene Operatoren verwendet
werden

e statischen Informationen zur Uberpriifung der Kompabilitiit bzgl. ver-
schiedener Kodierungen

e ciner Liste von Parametern mit Defaultbelegungen (bestehend aus den
eigenen Parametern und denen der verwendeten Operatoren)

3.2. STRUKTUR DES SYSTEMS 23

3.2.1.6 Operator

Ein Operator besteht aus

e cinem Algorithmusteil (eventuell kénnen hier andere Operatoren verwen-
det werden)

e ciner Parameterliste mit Defaultbelegungen (auch der eventuellen Subope-
ratoren.

3.2.1.7 Hauptverfahren
Spezielles Verfahren zur Steuerung mehrerer Verfahren auf mehreren Populatio-
nen. Verwendet eventuell spezielle Migrationsoperatoren.

Ruft die verschiedenen Verfahren mit einer Generationshaltebedingung auf.
Fiihrt nach Stop aller Verfahren Migration durch.

3.2.1.8 Migrationsoperatoren

Spezielle Operatoren zum Austausch von Individuen zwischen verschiedenen
Populationen. z.B. Einfiigen des besten Individuums einer Population in alle
anderen Populationen oder Ersetzen des schlechtesten Individuums einer Popu-
lation durch das beste einer anderen.

3.2.1.9 Population

Eine Population besteht aus

e Bezeichner fiir eine Kodierung
Bezeichner fiir ein Verfahren

Random-Seed

Liste von Individuen

3.2.1.10 Individuum

Ein Individuum ist eine konkrete Ausprigung des Vereinigungsdatentyps aller
moglichen Individuen.

3.2.2 Elemente zur Steuerung von Berechnungen
3.2.2.1 Experimentsteuerung

Die Experimentsteuerung ist die Stelle, an der das Laufzeitverhalten festgelegt
wird (Initialisierung, Aufruf von Verfahren (iiber Populationsverwaltung), Mi-
gration). Dazu wird entweder eine Experimentdefinition geladen oder es werden
die folgenden Dinge der Populationsverwaltung iibergeben:

24 KAPITEL 3. ANFORDERUNGEN AN DAS SYSTEM

e Bezeichner eines Problems

e Kombination Bezeichner von Kodierung und Bezeichner Verfahren und
Anzahl der Populationen, die mit dieser Kombination initialisiert werden
sollen

Die Experimentsteuerung besitzt Funktionen, die es ermdglichen, Parameterli-
sten zu lesen und zu dndern.

Ist Schnittstelle zum Benutzer (iiber Dateien, Kommandozeile, UT oder GUT).

3.2.2.2 Populationsverwaltung

Die Populationsverwaltung

e fiihrt bei der Initialisierung eine statische Uberpriifung der Kompabilitét
von Kodierungen und Verfahren durch

e veranlaft, dal die entsprechenden lauffihigen Teile in den Interpreter ge-
laden werden

e gibt die Parameterliste (inklusive Defaultbelegungen) der jeweiligen Ver-
fahren an die Experimentsteuerung

e ruft fiir jede Population den Interpreter auf (iibergibt dabei die Population
dem Interpreter)

e schreibt nach jedem Iterationsschritt des Interpreters die aktuelle Popula-
tion zuriick

e kennt die initialisierten Populationen, ihre jeweiligen Kodierungen und
Verfahren, weify wieviele Individuen in den jeweiligen Dateien sind

e meldet an die Experimentsteuerung, wenn die jeweiligen Haltebedingun-
gen erfiillt sind

e fiihrt die Migration aus (eventuell macht das der Interpreter)

3.2.2.3 Interpreter

Der Interpreter fiihrt die eigentlichen Berechnungen durch. Fiir jede Population
wird der Interpreter mit den jeweiligen Initialisierungen gestartet. Nach einem
Iterationsdurchlauf eines Verfahrens gibt der Interpreter die aktuelle Population
an die Popverwaltung zuriick. Wahrend der Berechnung schreibt der Interpreter
in eine ihm zugewiesene log-Datei die Daten, die in dem Verfahren als Ausgabe
vorgesehen sind.

Nach jedem Iterationsdurchlauf kann der Interpreter abfragen, ob das System
halten soll. Es sind Laufinitialisierungsverinderungen durch den Benutzer mog-
lich. Danach wird die Berechnung durch den Interpreter fortgesetzt.

3.3. ANFORDERUNGEN AN DIE PROGRAMMTEILE 25

3.3 Anforderungen an die Programmteile

Die Anforderungen an die Programmteile, die in der oben beschriebenen Struk-
tur des Systems enthalten sind, sollen im weiteren aus den Anforderungen fiir
das gesamte System und den geforderten Verfahren und Problemen abgeleitet
werden.

3.3.1 Problemstruktur und Fitnef3funktion

Ein Problem wird im System durch die Problemstruktur und eine Fitneffunk-
tion dargestellt. Um die oben genannten Probleme mit dem System bearbeiten
zu kénnen, wird fiir die Problemstruktur die Unterstiitzung folgender Elemente
gefordert:

e Vektoren aus reellen Zahlen (fiir mathematische Funktionen und die mei-
sten Testfunktionen), sowie Ganzzahlvektoren und Bitvektoren (fiir Ge-
netische Algorithmen),

e Permutationen fiir das Travelling Salesman Problem,

e Vektoren mit gemischten Typen (reelle, biniire und ganze Zahlen) z.B. fiir
die Topologieoptimierung ebener Fachwerke,

e genetischen Programmen (entweder als Baum oder in einer Klammerdar-
stellung),

e Matrizen, z.B. fiir Neuronale Netze.

Zusédtzlich ist eine Unterstiitzung fiir das Anbinden von externen Problemen
sinnvoll, da sich die Fitnef eines Individuums bei praktischen Problemen oft
nicht einfach berechnen 14ft. Fiir ihre Ermittlung werden in diesem Fall exter-
ne Programme mit komplexeren Berechnungsverfahren (wie z.B. einer Finite
Elemente Methode) oder Simulatoren benttigt.

Fiir die Fitneflifunktion ergeben sich folgende Forderungen:

e Einfache Umsetzung von beliebigen mathematischen Funktionen und

e die Unterstiitzung einer externen Berechnung.

3.3.2 Kodierungsstruktur

Einige der Verfahren benétigen eine bestimmte Darstellung der von ihnen zu
bearbeitenden Strukturen. Wenn verschiedene Verfahren auf ein Problem ange-
wendet werden sollen, ist es sinnvoll, das Problem in einer verfahrensunabhingi-
gen Darstellung anzugeben, die je nach Verfahren angepafit werden kann. Bei
der Kombination von Verfahren und Problemen ist es daher oft notwendig, das
Problem so zu kodieren, daf} es eine Struktur erhélt, die von einem bestimm-
ten Verfahren bearbeitet werden kann. Eine solche Struktur wird Kodierungs-
struktur genannt. So kann z.B. ein Problem mit reellwertigen Parametern in

26 KAPITEL 3. ANFORDERUNGEN AN DAS SYSTEM

einen Bitvektor kodiert werden, um darauf einen Genetischen Algorithmus an-
zuwenden. Es soll natiirlich auch mdoglich sein, ein Verfahren direkt auf eine
Problemstruktur anzuwenden. Fiir die oben geforderten Verfahren muf die Ko-
dierungsstruktur die folgenden Elemente unterstiitzen:

e Ganzzahlvektoren,

o Vektoren von reellen Zahlen fiir Great Deluge, Simulated Annealing, Evo-
lutionsstrategien und Threshold Algorithmen,

e Bitvektoren fiir Genetische Algorithmen,
e Strategieparameter, wie sie von Evolutionsstrategien verwendet werden,
e Vektoren mit gemischten Typen und

o Genetische Programme entweder als Syntaxbaum oder in Klammerdar-
stellung.

3.3.3 Kodierung und Dekodierung

Die Kodierung bzw. Dekodierung wandelt eine Problemstruktur in eine Kodie-
rungsstruktur um bzw. umgekehrt. Aus den aufgelisteten Forderungen an Pro-
blemstrukturen und den Verfahren ergeben sich fiir Kodierung und Dekodierung
die folgenden Eigenschaften:

e Es soll vom System aus moglich sein, ganze und reelle Zahlen als Bitstring
entweder einfach binédr oder mit einer Gray-Kodierung zu kodieren.

e Permutationen sollen als Realzahlvektoren kodiert werden konnen.

e Auflerdem miissen Elemente der Problemstruktur unkodiert in die Kodie-
rungsstruktur ibernommen werden kénnen.

3.3.4 Operatoren

Operatoren sind die Bausteine aus denen die Verfahren bestehen. Um mdoglichst
einfach neue Verfahren erstellen zu konnen, miissen diese flexibel erstellt und
eingesetzt werden konnen. Forderungen an die Operatoren sind:

e Die Erstellung von beliebigen eigenen Operatoren, die die kodierten Indi-
viduen verdndern konnen, soll méglich sein. Fiir Verfahren, die mehrere
Individuen verwenden (z.B. Genetische Algorithmen und Evolutionsstra-
tegien), mufl es moglich sein, Individuen zu erstellen und zu 16schen. Um
auch parallele Varianten der Algorithmen zu unterstiitzen, ist eine Mi-
gration von Individuen zwischen verschiedenen Populationen nétig (siehe
unten).

e Um einen flexiblen Einsatz der Operatoren zu ermdoglichen, sollen Para-
meter fiir diese Operatoren definiert werden kdnnen, mit denen wichtige
Eigenschaften der Operatoren gesteuert werden.

3.3. ANFORDERUNGEN AN DIE PROGRAMMTEILE 27

e Fiir die Kompontenten der oben genannten Verfahren (z.B. Mutation und
Selektion) sollen Operatoren in einer Bibliothek vorgegeben sein, die in
eigene Verfahren eingebaut werden konnen.

e Fiir auftretende Fehler soll angegeben werden kénnen, wie diese behandelt
werden sollen. Wenn keine Behandlung angegeben ist, wird vom System
die Ausgabe einer sinnvollen Fehlermeldung erwartet.

3.3.5 Experimentsteuerung

Der Ablauf eines Experiments wird in einer Experimentdefinition beschrieben.
Sie soll die unten angegebenen Moglichkeiten bieten:

e Die Moglichkeit, die Auswahl von Problem, Fitnefifunktion, Kodierung
und Verfahren zusammenzufassen.

e Die Parameter der Operatoren sollen voreingestellte Werte haben und vor
Beginn der entsprechenden Verfahren neu gesetzt werden kénnen.

e Eventuell die Moglichkeit, Haltepunkte in Operatoren setzen und Para-
meter wihrend des Ablaufs veréindern zu kénnen.

e Um Experimente auch selbstindig ablaufen lassen zu konnen, ist eine
vollstindige Steuerung iiber Dateien sinnvoll.

e In diesem Fall miissen auch alle Initialisierungen iiber Dateien moglich
sein.

3.3.6 Individuen und Population

Individuen sind die Ausprigung einer Kodierungsstruktur. Fiir die Verwendung
im System werden sie zu Populationen zusammengefafit, die an die Verfahren
iibergeben werden. Diese bearbeiten die Populationen, um fiir ein Problem ein
optimales Individuum zu finden. Fiir die Verwaltung der Individuen ergeben
sich aus den einzelnen Verfahren diese Anforderungen:

e Unterstiitzung von Populationen, die mehrere Individuen enthalten z.B.
fiir Genetische Algorithmen und Evolutionsstrategien,

e Unterstiitzung von verschiedenen Populationen mit gleicher Kodierung
z.B. fiir parallele Varianten dieser Verfahren.

e Ebenso die Unterstiitzung von mehreren Populationen mit verschiedenen
Kodierungen

e und die Moglichkeit der Migration von Individuen zwischen zwei Popula-
tionen gleicher oder verschiedener Kodierung.

e Um auf ein fritheres oder abgebrochenes Experiment wieder aufsetzen zu
konnen, sollen Populationen aus Dateien initialisiert werden kénnen.

Teil 11

GENOM

28

Kapitel 4

Uberblick iitber GENOM

GENOM bietet eine Plattform um Parameter-Optimierungsprobleme mit Evo-
lutionédren Verfahren zu bearbeiten, sowie die Verfahren zu untersuchen. Das
System erlaubt einen einfachen Zugang zu Evolutiondren Verfahren, indem es
dem Benutzer Werkzeuge, Funktionen und Bibliotheken zur Verfiigung stellt.
Diese Bibliotheken enthalten einige der am héufigsten verwendeten Algorith-
men und Probleme, die vom Benutzer einfach an die konkrete Aufgabenstellung
angepafit werden kénnen.

4.1 Besonderheiten

Es gibt bereits eine Anzahl von Systemen, die zur Durchfiihrung Evolutionérer
Verfahren dienen. Das vorliegende System unterscheidet sich jedoch in einigen
Punkten von den bisher bekannten (genauere Erlduterungen finden sich im Ab-
schnitt Modulgruppen):

e Darstellung der Individuen
Das System erlaubt sehr unterschiedliche Formen von Individuen. Durch
die Definition von Atomen und aus diesen aufgebauten Strukturen ist eine
nahezu unbegrenzte Vielfalt moglich. So kann z.B. eine Liste (Grobstruk-
tur) mit ganzen Zahlen (Atome) gefiillt werden, aber auch ein Baum aus
Zeichenketten bestehen. Individuen kénnen aus verschiedenen Atom- und
Strukturtypen bestehen, Strukturen kénnen von variabler Linge sein.

e Unterscheidung zwischen Phino- und Genotyp
Der Phénotyp ist die Struktur der Individuen aus Problemsicht, der Ge-
notyp die Struktur aus Sicht der Verfahren. Die Uberfiihrung von Phino-
in den Genotyp erfolgt durch Kodierung; der umgekehrte Weg durch De-
kodierung. So kann ein Problem mit verschiedenen Verfahren bearbeitet
werden.

e Kombination von Verfahren
In einem Experiment kénnen mehrere unterschiedliche Verfahren kombi-
niert werden. Individuen konnen von verschiedenen Verfahren bearbeitet

30

4.1. BESONDERHEITEN

Problem

Experiment

Logging
Interpreter
Operatoren SML-Fkt.

Populations-
verwaltung

Kodierung
Dekodierung

[7] Text/Datei

|:| Laufzeitsystem

Abb. 4.1: Aufbau des Gesamtsystems

31

32 KAPITEL 4. UBERBLICK UBER GENOM

werden. So kann z.B. zuerst ein Genetischer Algorithmus ein gutes Indivi-
duum finden, das anschliefend durch ein Hill-Climbing-Verfahren verbes-
sert wird.

e Mehrere Populationen
Ein Experiment kann mehrere Populationen bearbeiten. Es ist moglich,
dasselbe oder verschiedene Verfahren auf Populationen mit unterschied-
licher Kodierung anzuwenden. Individuen kénnen zwischen Populationen
ausgetauscht werden.

e Toolbox-Charakter
Das System ist so ausgelegt, dafl Operatoren, Verfahren und Kodierun-
gen einfach wiederverwendet werden konnen. Durch Bibliotheken ist es
moglich, dafl derselbe Operator je nach Kontext verschiedene Aufgaben
erfiillt und auf verschiedenen Typen von Individuen arbeitet.

Experimente, Verfahren und Operatoren werden in einer einfachen impe-
rativen Sprache formuliert und kénnen auf bereits vorbereitete Operatoren
und Verfahren zuriickgreifen. So ist es leicht moglich, eigene Ideen in Ex-
perimente umzusetzen.

e Zugangsmoglichkeiten auf verschiedenen Ebenen
Das System kann durch neue Experimente, Verfahren und Operatoren
in der imperativen Sprache erweitert werden. Es ist auch mdglich, neue
Probleme und Kodierungen als SML-Programme zu erstellen. Auflerdem
kann das Laufzeitsystem um neue Atomtypen und Grobstrukturen erwei-
tert werden.

4.2 Modulgruppen

Individuen Ein Individuum besteht aus einer Liste fester Linge von Zellen.
Jede Zelle enthilt eine Grobstruktur, die mit Atomen gefiillt ist. Grobstrukturen
sind z.B. ein einzelnes Atom, ein Paar von Atomen, aber auch eine Liste variabler
Linge oder ein Baum usw. Die Atome enthalten die Daten, also die Information,

die optimiert werden soll. Atome sind z.B. ganze Zahlen, reelle Zahlen oder Bits
(Abb. 4.2).

Simple Pair List Permuta- Simple Simple
(real) (redl, int) (red) tion (14) (real) (real)

Abb. 4.2: Beispiel-Individuum aus sechs Zellen

Jedes Individuum représentiert einen Punkt im Losungsraum der Problemfunk-
tion. Die Werte, die der Problemfunktion iibergeben werden, heiflen ,, Problem-
parameter®; die von der Problemfunktion gelieferte Zahl , Fitnelwert*.

Das System unterscheidet zwischen der Darstellung, die die Problemfunktion er-
wartet, und der in evolutioniren Verfahren verwendeten: Die Problemparameter
eines Individuums stehen i.a. nicht direkt in ihm. Sie sind vielmehr kodiert, d.h.

4.2. MODULGRUPPEN 33

ihre Darstellung wird auf das Verfahren angepafit. So kann z.B. ein Integerwert
in eine Folge von Bits kodiert werden. Das kodierte Individuum wird in Anleh-
nung an die Biologie ,Genotyp“ genannt, das unkodierte ,,Phinotyp“. Durch
dieses Konzept ist eine Migration zwischen Populationen verschiedener Kodie-
rungen moglich (s. Populationen).

Probleme Mit Evolutiondren Verfahren sollen fiir Parameter-Optimierungs-
probleme moglichst gute Losungen gefunden werden. Das Problem wird durch
eine Problemfunktion dargestellt, die fiir ein unkodiertes Individuum (einen
Phénotyp) eine Zahl (den Fitnefiwert) liefert. Die Art des Problems oder die
Art der Berechnung des Fitnewerts ist nicht eingeschrinkt, jedoch wird ver-
einfachend eine Minimierungsaufgabe angenommen'. Ferner wird eine Initialisie-
rungsfunktion gefordert, die Phénotypen liefert. Der Bildbereich dieser Funktion
definiert die zuldssigen Individuen.

Kodierungen Die Problemfunktion erwartet Parameter in einer zu ihr pas-
senden Form, dem Phénotyp. Diese Form kann aber fiir ein Verfahren unge-
eignet sein, da die darin verwendeten Operatoren bestimmte Anforderungen an
das Aussehen eines Individuums stellen. So kénnte das Problem beispielsweise
reelle Zahlen erwarten, das Verfahren jedoch nur auf Bit-Ketten arbeiten.

Um nun nicht eine neue Problemfunktion schreiben zu miissen, d.h. den Phéno-
typ an das Verfahren anzupassen, kann der Phinotyp kodiert werden: Er wird
in einen Genotyp transformiert, dessen Darstellung an das Verfahren angepaft
ist (Abb. 4.3).

Kodierungsfkt.
Phanotyp
Dekodierungsfkt.
Fitne3funktion

Abb. 4.3: Erzeugung eines Phénotyps, Kodierung, Dekodierung, Berechnung der
Fitnef3

Eine Kodierung legt fest, wie die Zellen des Phénotyps in Zellen des Genotyps
iiberfithrt werden, und umgekehrt.

Populationen Eine Population ist eine Menge gleich kodierter Individuen,
die als zusammengehorig betrachtet werden. Verfahren arbeiten auf einer Popu-
lation?, wobei jeweils Operatoren wie Selektion diese Population betrachten.

Das System kann fiir dasselbe Problem mehrere Populationen verwalten, deren
Individuen verschieden kodiert sein kénnen. Es ist méglich, ein Individuum von

1Jedes Maximierungsproblem kann durch Negation in ein Minimierungsproblem transfor-
miert werden.
2Die Population kann auch aus einem Individuum bestehen

34 KAPITEL 4. UBERBLICK UBER GENOM

einer Population in eine andere zu iiberfithren, zu ,migrieren“. Dabei wird es
automatisch an die Kodierung der Zielpopulation angepaft, d.h. ein Individuum
wird zuerst dekodiert und dann wieder kodiert.

LEA Im System ist die imperative Programmiersprache LEA implementiert.
Experimentoperatoren, Verfahren und Operatoren werden in LEA geschrieben.
LEA ist dazu gedacht, in einer einfachen Sprache Verfahren zu definieren. Damit
ist die Einschrinkung verbunden, da§ mit LEA auf Individuen nur als Ganzes zu-
gegriffen werden kann. Will ein Verfahren Zellen eines Individuums veréndern,
so muf} es SML-Funktionen verwenden. Das System stellt Bibliotheken mit sol-
chen Funktionen zur Verfiigung, die zu komplexen Operatoren zusammengesetzt
werden koénnen.

Experimentoperator Ein Experiment wird durch Angabe eines Experimen-
toperators (ein LEA-Programm, das oft auch als Experimentdefinition bezeichnet
wird) gestartet. Im Experimentoperator werden das Problem festgelegt, die Po-
pulationen samt Kodierungen angegeben und die Verfahren deklariert. Bsp.:

EXPERIMENT Threshold_TSP;
PROBLEM = "TSP";
POPULATIONS
Pop CODED "Identity" LOG "popil" = RANDOMPOP(1);
OPERATORS
Optimate = threshold(T : -4.0);

Im Anweisungsteil des Experimentoperators wird die Reihenfolge der Verfah-
rensaufrufe bestimmt; hier kénnen auch Migrationen von Individuen zwischen
Populationen vorgenommen werden.

Verfahren Verfahren sind LEA-Operatoren, die in der Regel ganze Popula-
tionen erhalten und liefern. Sie implementieren eine Strategie, nach der das
Optimum gesucht wird. Dies ist i.allg. ein iterativer Algorithmus, der verschie-
dene Operatoren und Funktionen aufruft. Bekannte Verfahren sind Genetische
Algorithmen, Evolutionsstrategien, Threshold Algorithmen und Simulated An-
nealing.

Operatoren In Evolutioniren Verfahren werden Individuen bzw. Populatio-
nen bearbeitet. Dies wird durch in LEA geschriebene Operatoren implementiert,
die z.B. einzelne Individuen mutieren oder zwei Individuen kreuzen. Operatoren
konnen beliebige Mengen von Individuen ineinander iiberfiihren.

Operatoren konnen nicht direkt auf einzelne Zellen eines Individuums zugrei-
fen. Sie erhalten nur ganze Individuen, konnen diese aber an beliebige Funk-
tionen iibergeben und von ihnen erhalten. Das System stellt Bibliotheken mit
SML-Funktionen bereit, die aus Operatoren aufgerufen werden und die auf
Teile von Individuen zugreifen und diese #ndern kénnen. Die SML-Funktion
"mutate real normal" der Bibliothek SimpleCelllLib kann z.B. einen be-
stimmten Zellentyp mutieren.

4.2. MODULGRUPPEN 35

Es ist moglich, Parameter zu deklarieren, die zwischen Aufrufen weiter exi-
stieren (Beispiel: PARAMETER REAL T = (-2.0, -4.0, 4.0, "Temperatur")).
Parameter steuern das Verhalten eines Operators, sie stellen z.B. Schrittweiten
oder Grenzen dar. Diese Parameter verfiigen {iber einen Standardwert, einen
Wertebereich und eine textuelle Beschreibung ihrer Funktion.

Es ist moglich, innerhalb von Experimenten Verfahren und Operatoren aufzuru-
fen. Verfahren und Operatoren kénnen Operatoren aufrufen. Somit entsteht ein
»,Operatorbaum®, an dessen Wurzel der Experimentoperator steht (Abb. 4.4).

Experiment "Example”

. Algorithm "Threshold"
Operator "mutate”

. Algorithm "Great Deluge"
Operator "mutate”

L Algorithm "Genetic"
| Operator "mutete”

———Operator "crossover”
— Operator "select”

Abb. 4.4: Operatorbaum

Ein Operator kann aulerdem Bibliotheken angeben, aus denen Funktionen ent-
nommen werden sollen. Beim Aufruf einer Funktion wird in diesen Bibliotheken
nach der Funktion gesucht und sie wird ausgefiihrt, wenn sie gefunden wurde.

Bibliotheken Funktionen werden in Bibliotheken zusammengefalt. Diese
Funktionen kénnen auf Zellen von Individuen zugreifen und werden in SML
geschrieben. So gibt es Funktionen, die Zellen mutieren oder zwei Individuen
kreuzen.

Durch neue Bibliotheken kann der Anwendungsbereich des Systems erweitert
werden, zum einen um neue Funktionen auf vorhandene Genotypen, als auch
um Funktionen auf neuen Genotypstrukturen.

Interpreter Der Interpreter ist das Riickgrat des Systems, das die einzelnen
Teile wie Populationsverwaltung, Problem und Kodierungen verbindet. Der Ab-
lauf eines Experiments wird durch den Experimentoperator festgelegt, der vom
Interpreter ausgefiihrt wird. In ihm werden nicht nur Problem und Populatio-
nen festgelegt, auch die Abfolge von Verfahren und Operationen auf Individuen
wird bestimmt.

Durch die Verwendung des Interpreters kann die Experimententwicklung in ver-
schiedene Stufen aufgeteilt werden: Es ist moglich, Vorhandenes zu verwen-
den, einfache Algorithmen in der Interpretersprache LEA zu schreiben, oder das

36 KAPITEL 4. UBERBLICK UBER GENOM

System selbst zu erweitern. Letzteres kann durch eine Erweiterung der SML-
Bibliotheken erfolgen oder durch Anderungen am Grundsystem.

Auswertungswerkzeuge Wiéhrend der Ausfiihrung eines Experiments kann
Information iiber Populationen und Individuen in eine Log-Datei geschrieben
werden. Diese Log-Datei kann an weitere Programme iibergeben werden, die
die Informationen aufbereiten (Abb. 4.5); z.B. sie in eine fiir Menschen leicht
verstidndliche Form bringen.

Experiment Logfile
— Interpreter———

M
M

Daten
— Auswertung —

|

Abb. 4.5: Experiment erzeugt Logfile, welches ausgewertet wird

Es stehen Werkzeuge zur Verfiigung, die die Entwicklung der Fitnef} einer Po-
pulation grafisch darstellen. So kann verglichen werden, wie sich die mittlere
Fitnel im Vergleich zur besten oder schlechtesten entwickelt, auflerdem kann
man Individuen selbst anzeigen lassen.

Kapitel 5
Umsetzung der Konzepte

In Kapitel 3 sind die Ergebnisse der Spezifikationsphase beschrieben. In die-
sem Abschnitt wird die Umsetzung dieser Anforderungen in einen Entwurf fiir
GENOM dokumentiert. Die Beschreibung ist, entsprechend der in den Anforde-
rungen festgelegten Aufteilung des Systems in die drei Teile Kodierung, Popula-
tionsverwaltung und Interpreter gegliedert. Die Sprache LEA sowie der Aufbau
von Experimenten, Verfahren und Operatoren werden jeweils in einem eigenen
Kapitel beschreiben.

5.1 Individuen und Kodierung

Die Eigenschaften von Individuen, die mit evolutioniren Algorithmen bearbei-
tet werden, konnen durch einen festen Satz von Parametern beschrieben werden.
Gleichartige Individuen, die zusammen eine Population bilden, haben folglich
mindestens eine Gemeinsamkeit: sie werden mit gleich vielen Parametern be-
schrieben. Aus diesem Grund sind Individuen Listen fester Linge von Parame-
tern, die im weiteren Zellen genannt werden.

Abb. 5.1: Beispiel eines Individuums

Jede Zelle besteht aus einer Grobstruktur, die mit Atomen gefiillt sind. Ato-
me sind die elementaren Bestandteile der Individuen und kénnen unter anderen

37

38 KAPITEL 5. UMSETZUNG DER KONZEPTE

reelle Zahlen, bool’sche Werte oder Permutationen sein. Diese Atome kénnen
mit Hilfe von Grobstrukturen angeordnet, beispielsweise in einer Liste, in einem
Baum, einer Matrix oder in einer anderen beliebigen Struktur, deren einzige
Einschrinkung ist, daf} in ihr der Begriff einer Position wohldefiniert ist. In
Abbildung 5.1 ist ein Beispiel fiir ein Individuum, dessen Zellen verschiedene
Grobstrukturen enthalten: in der ersten Zelle ein Paar von Atomen, in der zwei-
ten eine Matrix und in der letzten ein bindrer Baum.

Eine Reihe von Evolutioniiren Verfahren — die Genetischen Algorithmen — ar-
beiten nach einem Prinzip, das an die Vererbung bei Lebewesen angelehnt ist.
Zur Berechnung der Qualitit einer Losung wird wie bei anderen Verfahren der
Punkt im Losungsraum verwendet, alle Verdnderungen werden aber an kodier-
ten Losungen vorgenommen. Der Punkt im Losungsraum entspricht einem Lebe-
wesen, die kodierte Losung seiner DNS. Die unkodierten Lésungen werden daher
auch als Phénotypen, ihre kodierten Darstellungen als Genotypen bezeichnet.

Auf Individuen bestehen zwei Sichtweisen: der Phianotyp und der Genotyp;
der Phénotyp ist die Sicht auf das Individuum von der Problemseite, der Ge-
notyp von der Verfahrensseite. Beide Sichtweisen kénnen mit der Kodierungs-
(Phéinotyp nach Genotyp) bzw. der Dekodierungsfunktion (Genotyp nach Phi-
notyp) ineinander iiberfiihrt werden.

5.1.1 Atome

Das System stellt eine Reihe von Atomtypen zur Verfiigung; diese Typen kénnen
verschiedenartige Parameter besitzen, wie beispielsweise das zuléssige Intervall.
Dementsprechend werden die Atome in Klassen aufgeteilt. Realisiert wurden
bisher Atome ohne zusitzliche Parameter (reelle und ganze Zahlen, bool’sche
Werte) sowie Atome mit zugehorigem Intervall (reelle und ganze Zahlen). In
den Grobstrukturen diirfen beliebige Atome vorkommen. Daher muf} ein Verei-
nigungstyp iiber alle vorhandenen Atomtypen gebildet werden:

structure AtomTypes =

struct

datatype atom_type =

real_atom of real
int_atom of int
bool_atom of bool;
bound_real_atom of (real * (real * real))
bound_int_atom of (int * (int * int));
end

Zu allen Atomtypen sind Funktionen definiert, deren Art jeweils von der Klasse,
in die der Typ eingeordnet ist. Beispielsweise stellt jeder Atomtyp der Klasse
ohne zusétzliche Parameter (reelle und ganze Zahlen, bool’sche Werte) folgende
Funktionen zur Verfiigung (n&here Informationen in A.6:

signature ATOM =

sig
type base; (* Typ des Atoms *)

5.1. INDIVIDUEN UND KODIERUNG 39

val name: string; (* Bezeichner fuer diesen Atomtyp *)
val base2atom: base -> AtomTypes.atom_type;
(* nach Vereinigungstyp *)
val atom2base: AtomTypes.atom_type —> base;
(* von Vereinigungstyp *)
val base2string: base -> string; (* nach string *)
val string2base: string -> base; (* von string *)
val init_random: real -> base; (* Zufallswert *)
end;

Auf manche Funktionen der Atome kann einheitlich zugegriffen werden. Dies
ermoglicht die Struktur UnionOfAtoms mit folgender Signatur:

signature UNIONOFATOMS =

sig
type atom_type;
val atom2string: atom_type -> string;
val string2atom: string -> atom_type;
end;

Aufbauend auf den Vereinigungstyp iiber den Atomen kénnen nun Zellen defi-
niert werden, die Atome enthalten. Alle Zellen miissen folgende Signatur erfiil-
len:

signature CELL =

sig
type ’a rawstructure;
type index;

val name: string;
val init: ((index -> AtomTypes.atom_type) * index list)
-> AtomTypes.atom_type rawstructure;
val get_element: (AtomTypes.atom_type rawstructure * index)
-> AtomTypes.atom_type;
val set_element: (AtomTypes.atom_type rawstructure *
AtomTypes.atom_type * index)
-> AtomTypes.atom_type rawstructure;
val cell2rawstructure: CellTypes.cell_type
-> AtomTypes.atom_type rawstructure;
val rawstructure2cell: AtomTypes.atom_type rawstructure
-> CellTypes.cell_type;
val cell2string: AtomTypes.atom_type rawstructure
-> string;
val string2cell: string
-> AtomTypes.atom_type rawstructure;
end;

Erlauterung:

e ’a rawstructure ist die Grobstruktur, in der die Atome angeordnet sind.

40 KAPITEL 5. UMSETZUNG DER KONZEPTE

e index ist der Typ, mit dem die Position innerhalb der Grobstruktur fest-
gelegt wird.

e name ist der Bezeichner fiir die Struktur.
o get_element(r, i) liefert das Atom an der i-ten Stelle in r.
e set_element(r, a, i) setzt das i-te Atom in r auf a.

e cell2rawstructure und rawstructure2cell sind Konvertierungsfunktionen zwi-
schen dem Zelltyp und dem Vereinigungstyp tiber alle Zellen.

o cell2string und string2cell sind Konvertierungsfunktionen zwischen Zeichen-
ketten und Zellen.

Ebenso wie fiir Atome existiert auch fiir Zellen ein Vereinigungstyp. In diesem
Beispiel werden Zellen mit einem einzelnen Atom (simple_cell), Zellen mit einem
Paar von Atomen (pair_cell) und Zellen, die aus einer Liste von Atomen bestehen
(list_cell), zu einem Vereinigungstyp zusammengefaft:

structure CellTypes =
struct
datatype cell_type =
simple_cell of AtomTypes.atom_type
| pair_cell of (AtomTypes.atom_type * AtomTypes.atom_type)
| 1list_cell of (AtomTypes.atom_type list);
end

Auch fiir diesen Vereinigungstyp gibt es eine Struktur, um auf Teile der Funk-
tionen der Zellen einheitlich zugreifen zu kénnen. Dies wird mit der Struktur
UnionOfCells erreicht:

signature UNIONOFCELLS =

sig
type cell_type;
val cell2string: cell_type —> string;
val string2cell: string -> cell_type;
end;

Individuen bestehen aus einer Liste von Zellen und dem Fitnef3wert. Dieser ist
nur bekannt, wenn seit seiner letzten Berechnung die Zellen nicht veréndert wur-
den. Mit Hilfe der Struktur Individuum werden Funktionen bereitgestellt, um
einzelne Zellen zu lesen, zu dndern, sowie das Individuum in eine Zeichenkette
zu konvertieren. Diese Struktur erfiillt folgende Signatur:

signature INDIVIDUUM =
sig
type individuum_type;
val new_individual: individuum_type;
val get_fitness: individuum_type -> real option;
val set_fitness: individuum_type * real

5.1. INDIVIDUEN UND KODIERUNG 41

-> individuum_type;
val init: ((int -> UnionOfCells.cell_type) * int)
-> individuum_type;
val get_cell: (individuum_type * int)
-> Union0fCells.cell_type;
val set_cell: (individuum_type * UnionOfCells.cell_type
* int) -> individuum_type;
val indiv2string: individuum_type -> string;
val string2indiv: string -> individuum_type;
end;

Erlduterung:

e individuum_type ist der Datentyp des Individuums.
e new_individual ist ein leeres Individuum.

e get fitness ermittelt die letzte bekannte Fitnel oder stellt fest, dafl keine
giiltige Fitnef} vorliegt.

e set_fitness setzt die gespeicherte Fitness auf einen neuen Wert. Bis Zellen
verdndert werden, kann diese Fitness mit get_fitness ausgelesen werden.

e init(f, n) liefert ein Individuum mit n Zellen, wobei die Zellen 1,...,n mit
f(),..., f(n) belegt sind.

e get_cell(i, n) liefert die n-te Zelle aus dem Individuum i.
e set_cell(i, ¢, n) setzt die n-te Zelle in i auf cdn Wert c.

e indiv2string und string2indiv sind Konvertierungsfunktionen zwischen Zei-
chenketten und Individuen.

5.1.2 Kodierungs- und Dekodierungsfunktion

Eine Reihe von Evolutionéiren Verfahren — die Genetischen Algorithmen —
arbeiten nach einem Prinzip, das an die Vererbung bei Lebewesen angelehnt
ist. Zur Berechnung der Qualitét einer Losung wird wie bei anderen Verfahren
der Punkt im Losungsraum verwendet, alle Verdnderungen werden aber an ko-
dierten Losungen vorgenommen. Der Punkt im Lésungsraum entspricht einem
Lebewesen, die kodierte Losung seiner DNS. Die unkodierten Losungen wer-
den daher auch als Phinotypen, ihre kodierten Darstellungen als Genotypen
bezeichnet. Auch bei anderen Verfahren kann eine Kodierung sinnvoll einge-
setzt werden, z.B. lassen sich durch die Kodierung die von Evolutionsstrategieen
benotigten Strategieparameter vor der Berechnung der Qualitét der Losung aus-
blenden. Die Qualitétsfunktion (FitneBfunktion) — die diese Parameter nicht
beriicksichtigen soll — kann so unabhéngig vom Verfahren sein.

Die Kodierung in GENOM nimmt diese Umwandlung von Phéno- in Genotypen
und umgekehrt vor. Phiino- und Genotypen sind Tupel, deren Elemente aus ei-
nem oder mehreren Atomen bestehen, die in verschieden Strukturen angeordnet

42 KAPITEL 5. UMSETZUNG DER KONZEPTE

sein konnen. Bei diese Strukturen konnen selbst einfache Tupel sein, aber auch
Graphen oder Matrizen variabler Grofie, so daf sich auch Anwendungen wie Ge-
netisches Programmieren realisieren lassen. Wie die Tupel kodiert werden, wird
durch ein Kodierungsschema beschrieben. Bestandteile dieses Schemas sind die
elementaren Kodierungsschemata, die Strukturen iiber Atomen in andere Struk-
turen tberfithren. Da wir dem Benutzer auch die Moglichkeit bieten wollen,
weitere Strukturen ins System einzufiigen, existiert auch die Moglichkeit, das
System nachtriglich um weitere elementare Kodierungsschemata zu erweitern.

Diese Beschreibung gliedert sich in mehrere Abschnitte: nach einer Einfiihrung
in den Aufbau der Kodierung werden zunéichst Atom und Zellen sowie die dar-
auf definierten Funktionen beschrieben. Anschlieend werden die Kodierungs-
und Dekodierungsfunktion sowie Kodierungsschemata und elementare Kodie-
rungsschemata erldutert.

Der fixe Aufbau von Phino- und Genotyp ermdglicht es, die Kodierungs- und
Dekodierungsfunktion nach einem festen Schema zu konstruieren. Grundlage
bilden die elementaren Kodierungsschemata, die Listen von Grobstruktu-
ren aus Atomen in andere Listen von Grobstrukturen umwandeln.

\

Kodierung
e

7

—
—

X

-
Dekodierung

7

Abb. 5.2: elementares Kodierungsschema

Dieses Schema besteht im Wesentlichen aus einer Kodierungs- und einer De-
kodierungsfunktion; zusétzlich enthilt das Schema je eine Liste von Namen
von Grobstrukturen. Dabei mufl durch die Konstruktion der beiden Funktio-
nen gewihrleistet sein, dafl die Dekodierungsfunktion die Umkehrfunktion der
Kodierungsfunktion ist.

type elementary_coding_scheme
= {in_cell_names: string list,
out_cell_names: string list,
coding: CellTypes.cell_type list
-> CellTypes.cell_type list,
decoding: CellTypes.cell_type list
-> CellTypes.cell_type list}

Die Werte und Funktionen, mit denen dieses Schema gefiillt wird, sind in Struk-
turen mit folgender Signatur vereinbart:

signature ELEMENTARY_CODING_SCHEME =
sig
val in_cell_names: string list
val out_cell_names: string list
val coding: CellTypes.cell_type list

5.1. INDIVIDUEN UND KODIERUNG 43

-> CellTypes.cell_type list
val decoding: CellTypes.cell_type list
-> CellTypes.cell_type list
end;

Fiir einige Anwendungen, z.B. Kodierung reeller Zahlen aus einem vorgegebenen
Intervall, ist dieses feste Schema wenig geeignet: Fiir jedes Intervall muf} ein
neues Schema erstellt werden. Deshalb gibt es die M6glichkeit, parametrisierte
elementare Kodierungsschemata zu schreiben.

signature PARAM_ELEMENTARY_CODING_SCHEME =
sig
type parameter
val param_in_cell_names: parameter -> string list
val param_out_cell_names: parameter -> string list
val param_coding: parameter
-> (CellTypes.cell_type list
-> CellTypes.cell_type list)
val param_decoding: parameter
-> (CellTypes.cell_type list
-> CellTypes.cell_type list)
end;

Durch Einsezten des Parameters lassen sich dann Werte und Funktionen fiir ein
elementares Kodierungsschema erzeugen.

Um diese Signaturen in Records des Typs elementary_coding_scheme zu iiber-
fithren, existieren die zwei Funktoren GetElementaryCodingScheme und Get-
ParamElementaryCodingScheme, die Strukturen der Signaturen ELEMENTARY -
CODING_SCHEME bzw. PARAM_ELEMENTARY_CODING_SCHEME in Strukturen mit den
Signaturen

signature GET_ELEMENTARY_CODING_SCHEME =
sig
structure Coding: CODING
val elemcodscheme: Coding.elementary_coding_scheme
end;

fiir elementare und

signature GET_PARAM_ELEMENTARY_CODING_SCHEME =
sig
structure Coding: CODING
type parameter
val paramelemcodscheme:
parameter —-> Coding.elementary_coding_scheme
end;

fiir parametrisierte elementare Kodierungsschemata umwandeln. Eine SML-Da-
tei, die ein elementares Kodierungsschema definiert, besteht damit aus

44 KAPITEL 5. UMSETZUNG DER KONZEPTE

o einer Struktur zur Signatur ELEMENTARY_CODING_SCHEME bzw. PARAM_-
ELEMENTARY_CODING_SCHEME

e Einer Zeile, die den Funktor GetElementaryCodingScheme bzw. GetPa-
ramElementaryCodingScheme auf die vorher definierte Struktur anwen-
det.

Das elementare Kodierungsschema kann aus diesen Strukturen direkt iibernom-
men werden.

Aus diesen elementaren Kodierungsschemata wird das Kodierungsschema zu-
sammengesetzt.

Phéanotyp
Zelle Zelle Zelle Zelle
el. Kod.schema el. Kod.schema el. Kod.schema

Zelle Zelle Zelle Zelle Zelle Zelle

Genotyp

Abb. 5.3: Kodierungsschema

In diesem Schema wird jeder Zelle des Phinotyps eindeutig ein elementares Ko-
dierungsschema und dort wiederum eindeutig eine Position in der Eingangsliste
sowie jeder Zelle des Genotyps eindeutig ein elementares Kodierungsschema
und dort wiederum eindeutig eine Position in der Ausgangsliste zugeordnet.
Das Kodierungsschema besteht aus einem Namen und einer Liste von Tripeln
(K,l;,1,), in dem K ein elementares Kodierungsschema und /;,1, Listen von In-
dizes in der Liste des Phino- bzw. Genotyps sind. Die Eindeutigkeit wird durch
die Konsistenzbedingung gewihrleistet, daf} jeder Index des Phénotyps genau
einmal in einem der /; und jeder Index des Genotyps genau einmal in einem der
l, vorkommt. Zudem muf} sichergestellt sein, dafl die elementaren Kodierungs-
funktionen die iibergebenen Grobstrukturen verabeiten kénnen. Dazu kénnen
die Namen aus in_cell_names bzw. out_cell_names mit dem Namen der entspre-
chenden Zelle aus Cell.name verglichen werden. Der Benutzer muf} sicherstellen,

5.1. INDIVIDUEN UND KODIERUNG 45

daf} auch die Atome die von den elementaren Kodierungsfunktionen geforderten
Inhalte haben.

type coding_scheme = (string * (elementary_coding_scheme
* int list * int list) list)
Die Kodierungs- und Dekodierungsfunktionen sind in der Struktur Coding zu-

sammengefaft:

signature CODING =

sig
type elementary_coding_scheme
type coding_scheme
val codeind: PhenoType.individuum_type * coding_scheme
-> GenoType.individuum_type
val decodeind: GenoType.individuum_type * coding_scheme
-> PhenoType.individuum_type
val samecod: coding_scheme * coding_scheme -> bool
val valcod: coding_scheme * coding_scheme -> bool
end;
Erlauterung:

e codeind() kodiert einen Ph#notyp mit dem angegebenen Kodierungssche-
ma in einen Genotyp.

e decodeind() dekodiert umgekehrt einen Genotyp.

e samekod() priift durch Vergleich der Namen, ob die beiden Kodierungs-
schemata identisch sind.

e valcod() fiithrt Teile der o.g. Konsistenzpriifungen durch. Gepriift wird, ob
das Kodierungsschema jeder Zelle zwischen Zelle 1 und der Zelle mit der
h6chsten Nummer auf Phéno- bzw. Genotypseite genau ein elementares
Kodierungsschema zuordnet.

5.1.3 Kodierungsfunktionen

Die meisten der in Anhang A.4 beschriebenen elementaren Kodierungsschemata
verwenden gebriuchliche Kodierungen wie Standardbinér- oder Graykodierun-
gen natiirlicher Zahlen. Zwei spezielle Funktionen zur Kodierung von Permuta-
tionen und reeller Zahlen werden hier definiert. Beschreibungen der Funktionen
finden sich auch in [Cla96] bzw. [JW95, Seite 46] und [AJK 95, Seite 113].

5.1.3.1 Kodierung von Permutationen

Die Bijektion f zur Kodierung von Permutationen iiberfiihrt eine Permutati-
on der Linge n (dargestellt durch ein Tupel natiirlicher Zahlen) in ein Tupel
natiirlicher Zahlen:

f:A— B

46 KAPITEL 5. UMSETZUNG DER KONZEPTE

mit
A = {(z1,...,zn) eN" | Vi,j:1<z; <n,i#j=>x 2}
B = {(z1,...,2n) e N* |Vi:1<z; <n—-i+1}

Der Algorithmus zur Kodierung wird hier in Pseudocode beschrieben. Die Per-
mutation ist in der Variable p abgelegt, die kodierte Permutation wird in k
gespeichert.

z:=(1,...,n)
k=)
loop

(P1y--Dn) =p
(21,00 2m) 1= 2
(kl,...,km) =k
bestimme ¢ mit z; = p;
Pi= (P, D)

(22,-.-,2n), falls i =1
z2:=1Q (21,---,2n-1, fallsi=n
(21, vy 2i—1,Zit1,+ -+, 2n) sonst
k :(kla "7kmazi)
until p= ()

Die einzelnen Komponenten von k£ kénnen dann z.B. noch standardbinér kodiert
werden. Standardmutations- und -rekombinationsoperatoren kénnen dann aber
bei Anwendung auf Elemente aus B Tupel erzeugen, die selbst nicht in B liegen
und daher mit f~! nicht dekodiert werden kénnen. Mit der Funktion

g:72" — B
(1,...,2n) = ((zgmodn)+1,...,(z, mod1)+1)

konnen solche Tupel auf Elemente der Menge B abgebildet werden. Es gilt:
g(x) = z, falls x € B. Dekodiert wird dann mit

f g

5.1.3.2 Kodierung reeller Zahlen

Reelle Zahlen werden durch eine Funktion f,;; kodiert, die eine reelle Zahl
zwischen a und b auf ein Bittupel der Linge [abbildet:

fapi:{zeR|a<z<b} — {0,1}l
r = (bl,...,bl)

mit

l
b—a Z 1
x:a+m.i_lbi-2z .

5.2. POPULATIONSVERWALTUNG 47

5.2 Populationsverwaltung

Das System bietet die Moglichkeit, Verfahren zu definieren, die auf mehreren
Populationen arbeiten. Der Zugriff auf die Populationen wird durch die Popu-
lationsverwaltung bereitgestellt. Neben den einzelnen Populationen enthilt die
Populationsverwaltung auch die Informationen iiber das betrachtete Problem
(Problemraum, Fitnef}).

5.2.1 Populationen

Populationen bestehen aus einer Menge von Individuen (als Genotyp), der ver-
wendeten Kodierung, sowie dem Generationszihler. Die Individuenmenge wird
als Liste verwaltet, die Kodierung als das zugehorige Schema, und der Genera-
tionszihler als ganze Zahl (integer).

Jeder Population ist ein Index zugeordnet. Zusammen mit diesen Indizes werden
die Populationen in einer Liste verwaltet. Die genaue Definition dieser Daten-
typen ist:

type LogFile = string

type GenCounter_type = int

type KSrec_type = Coding.coding_scheme

type Ind_type = Individuum.individuum_type

type Pop_type = (LogFile * GenCounter_type * KSrec_type *
Ind_type list)

type PopId_type = int

LogFile ist der Typ des Protokolldateinamens, GenCounter_type der Typ des
Generationszihlers, KSrec_type der Typ des Kodierungsschemas, Ind_type der
Typ eines Individuums, Pop_type der Typ einer Population und Popld_type der
Typ des Populationsindex.

5.2.2 Problemstruktur

Ein Problem besteht aus einer Menge moéglicher Phinotypen und einer Fit-
nessfunktion Evaluate, die die Qualitdt der Phénotypen bewertet. Die Menge
der Phinotypen wird durch den Bildbereich der Funktion Init_Random definiert,
welche zufillig erzeugte Phinotypen liefert:

signature PROBLEM =
sig
val Evaluate: (PhenoType.individuum_type -> real) ref
val Init_Random: (unit -> PhenoType.individuum_type) ref
end

Sowohl die Funktion Init_Random als auch die Fitnessfunktion werden als Refe-
renztyp (ref) verwaltet. Um diese Referenzen zu setzen, existiert die Funktion
SetProblem:

48 KAPITEL 5. UMSETZUNG DER KONZEPTE

val Set_Problem: (unit -> PhenoType.individuum_type) *
(PhenoType.individuum_type -> real) -> bool

Set_Problem(init_indiv, fitness) belegt in der Struktur Problem die Funktionen
Evaluate und Init_Random mit Referenzen auf die Funktionen init_indiv und fit-
ness.

5.2.3 externe Individuen

Wird ein Individuum an den Interpreter iibergeben, so erhilt dieser ein ,ex-
ternes Individuum®. Dieses ist ein Paar, (i, Ind), und fiihrt neben dem Indivi-
duum in kodierter Form Ind noch den Index der Population i mit, aus welcher
es stammt. Beim Zuriickschreiben eines externen Individuums in eine Popula-
tion wird iiberpriift, ob der Index der Population mit dem beim Individuum
gespeicherten Index iibereinstimmt; falls sie nicht iibereinstimmen, wird das In-
dividuum umkodiert.

Der lesende und schreibende Zugriff auf einzelne Individuen erfolgt iiber ihre
Position in der Individuenliste und den Index ihrer Population mit den Funk-
tionen Getextlnd, SetextInd, AddextInd und InsextInd. Ferner gibt es noch die
Mboglichkeit, Listen von Individuen zu erhalten bzw. zu iibergeben (GetextPop,
SetextPop), sowie die Finte} eines Individuums zu berechnen:

type extInd_type = (PopIld_type * Ind_type ref)

type extIndL_type = extInd_type list

val AddextInd: PopId_type * extInd_type -> Popld_type

val SetextInd: PopId_type * int * extInd_type —> Popld_type
val InsextInd: PopId_type * int * extInd_type —-> Popld_type
val GetextInd: PopId_type * int -> extInd_type

val GetextPop: PopId_type -> extIndL_type

val SetextPop: Popld_type * extIndL_type -> PopIld_type

val Fitness: extInd_type -> real

Erlduterungen

e extInd_type ist der Typ eines externen Individuums. Es enthilt neben der
Nummer seiner Population eine Referenz auf das zugehorige Individuum.

o extIndL_type ist eine Liste externer Individuen.

e AddextInd (Popld, extlnd) fiigt das (externe) Individuum extInd an die Po-
pulation mit der Nummer Popld an.

e Setextlnd (Popld, i, extInd) ersetzt das ite Individuum in der Population
Nummer Popld durch extInd.

e InsextInd(Popld, i, extInd) fiigt das Individuum extlnd in die Population
Nummer Popld an i-ter Stelle ein.

e Getextlnd (Popld, i) Gibt aus Population Popld das i-te Individuum als
externes Individuum zuriick.

5.2. POPULATIONSVERWALTUNG 49

e GetextPop (Popld) liefert die Individuen der Population Nummer Popld als
Liste externer Individuen.

e SetextPop (Popld, extlndL) erstellt die Population Nummer Popld aus der
Liste externer Individuuen extIndL.

e Fitness (extInd) bewertet das externe Individuum extlnd, indem es dieses
dekodiert, und an die Funktion Problem.Evaluate iibergibt.

5.2.4 Protokolldateien

Die Protokolldateien wurden entwickelt, um Populationen zu einem gewiinsch-
ten Zeitpunkt protokollieren zu kénnen, um:

1. Einen spéteren Lauf darauf aufsetzen zu kénnen.

2. Den Fitnessverlauf betrachten zu konnen.

Protokolliert wird der Generationszihler der Population, sowie alle Individuen
als Phénotyp. Die Datei erhilt die Endung .log zum eigentlichen Dateinamen
und wird im Verzeichnis log abgelegt. Jede Population hat dabei eine eigene
Protokolldatei.

LogPop: PopId_type -> bool

Die Protokolldatei wird bei jedem Aufruf von LogPop um einen Eintrag erwei-
tert. Dieser beginnt mit ,{“ und endet mit , }*. Der erste Eintrag darin ist der
Generationszihler, der durch ,(“ und ,)“ geklammert ist. Dannach folgt die
Individuenzeile, die aus dem Fitnesswert, dem Trennungszeichen zum Individu-
um ,,—“ und dem Phénotyp des Individuums als Zeichenkette kodiert besteht.

Diese Zeile wird fiir alle Individuen der Population erzeugt und durch einen
Zeilenumbruch beendet.

5.2.5 Arbeiten mit der Populationsverwaltung
5.2.5.1 Initialisierung der Populationsverwaltung

Eine Initialisierung der Populationsverwaltung erfolgt durch folgende Schritte:

PopHandler.Init () -> bool

Diese Funktion 16scht alle verfiigbaren Populationen und gibt bei erfolgreicher
Initialiserung ein true zurtick.

Als néchster Schritt mufl das Problem gesetzt werden. Dieses besteht aus einer
Funktion Randomlnd, die ein zufillig belegtes Individuum im Phinotyp zuriick-
gibt, und der Fitnessfunktion FitnessFkt. Beide Funktionen werden als Refe-
renzen {ibergeben und dann innerhalb der Problemstruktur gespeichert. Liefert
diese Funktion ein true zuriick, so ist das Problem gesetzt.

Problem.Init (!'RandomInd, !FitnessFkt) -> bool

30 KAPITEL 5. UMSETZUNG DER KONZEPTE

5.2.5.2 Erzeugen von Populationen

Das Erzeugen einer Population erfolgt durch eine der unten beschriebenen Funk-
tionen, die alle, neben anderen Parametern, das Kodierungsschema und den
Namen der Protokolldatei als Eingabe erwarten und den Index der erzeugten
Population zuriickgeben.

val CreatePopEmpty: KSrec_type * LogFile -> PopId_type
val CreatePoplLoad: KSrec_type * LogFile * string -> Popld_type
val CreatePopRandom: KSrec_type * LogFile * int -> PopId_type

e CreatePopEmpty (KS, LogFile) Erzeugt eine leere Population mit Kodie-
rungsstruktur KS und Logdatei LogFile und liefert die Nummer der Popu-
lation zuritick.

e CreatePoplLoad(KS, LogFile, LoadFile) lddt die Population aus der Datei
LoadFile und initialisiert eine Population mit Kodierungsstruktur KS und
Logdatei LogFile. Als Ergebnis wird die Nummer der Population zuriick-
gegeben.

e CreatePopRandom(KS, LogFile, n) erzeugt eine Population mit n zufillig
erzeugten Individuen. Die Population hat die Kodierungsstruktur KS und
die Logdatei LogFile. Als Ergebnis wird die Nummer der Population zu-
riickgegeben.

5.2.5.3 Funktionen auf Populationen

Folgende Funktionen stehen zum Arbeiten auf einer Population zur Verfiigung:

val DelPop: Popld_type -> bool

val ErasePop: Popld_type -> Popld_type

val Size0OfPop: PopId_type —-> int

val AddInd: PopId_type * Ind_type -> Popld_type

val SetInd: Popld_type * int * Ind_type -> int

val InsInd: PopId_type * int * Ind_type -> PopId_type
val DelInd: PopId_type * int -> PopId_type

val GetInd: PopId_type * int -> Ind_type

e DelPop (Popld) entfernt die Population Popld. Wenn dies erfolgreich durch-
gefithrt wurde, wird true zuriickgeliefert, ansonsten false.
e ErasePop (Popld) Loscht alle Individuen Population Popld.

e SizeOfPop (Popld) Gibt die Anzahl der Individuen in der Population Popld
zurck.

¢ IncGenCounter (Popld) Erhsht den Generationszihler der Population Popld
um eins.

e LogPop (Popld) Schreibt die Population raus in die Logdatei.

5.2. POPULATIONSVERWALTUNG 51

e AddInd (Popld, Ind) Fiigt das Individuum Ind in die Population Popld ein.

e Setind (Popld, i, Ind) ersetzt das i-te Individuum der Population Popld
durch Ind.

e Insind (Popld, i, Ind) fiigt das Individuum Ind an der i-ten Stelle in die
Population Popld ein.

e Dellnd (Popld, i) entfernt das i-te Individuum aus der Population Popld.
e GetInd (Popld, i) Gibt das i-te Individuum der Population Popld zuriick.

e Evaluate (Ind) liefert die Fitnef§ des Individuums Ind.

5.2.6 Berechnung der Fitnef} eines externen Individuums.

Das System betrachtet Individuen auf zwei Arten: Zum einen bearbeiten Hilfs-
funktionen des Laufzeitsystems das Individuum wie es in der Struktur Indivi-
duum festgelegt wird. Andererseits wird im Interpreter ein Individuum verwandt,
dal von der Populationsverwaltung zusétzlich einen Verweis auf die Population
erhilt, zu der es gehort. Auflerdem wird hier nur eine Referenz auf das eigent-
liche Individuum {ibergeben.

Somit kann man zwischen ,externen“ und ,normalen“ Individuen unterschei-
den. Soll nun die Fitness eines externen Individuums ermittelt werden (s. Abb.
5.4), so muf} ein Funktionsaufruf an die Populationsverwaltung erfolgen (1).
Die Populationsverwaltung 16st das normale Individuum aus dem externen her-
aus und ermittelt seine Fitnef durch die Funktion get_fitness der Struktur
Individuum (2). Diese Funktion liefert zwei Arten von Resultaten (3): Entweder
wurde fiir das Individuum bereits der Fitnewert berechnet und das Individu-
um seitdem nicht mehr veridndert; dann wird dieser Wert geliefert (10). Es kann
aber auch sein, daf3 die Fitne des Individuums bisher nicht berechnet oder das
Individuum seit der letzten Berechnung veréndert wurde.

Individuum Kodierung

8] |8 2]

Interpreter
O Populations-
ext. Ind.
real o / verwaltung Problem

5
N

Abb. 5.4: Berechnung der Fitnef eines externen Individuums

52 KAPITEL 5. UMSETZUNG DER KONZEPTE

Im letzten Fall mufl nun die Populationsverwaltung das Individuum dekodieren
(4, 5) und die Fitnefl von Problem berechnen lassen (6, 7). Um nun den Fitnef-
wert im Individuum auf den neuen Stand zu bringen, mufl durch einen Aufruf
der Funktion set_fitness der Struktur Individuum der neue Wert gesetzt wer-
den (8, 9). Da im Interpreterteil des Systems nur die Referenz auf das normale
Individuum bekannt ist, kann in der Populationsverwaltung dieses verindert (ei-
gentlich: ersetzt) werden. Schlielich erhilt der Aufrufer den Fitnewert zuriick
(10).

Dieses Verfahren ist recht umsténdlich, was sich aus seiner Entstehungsgeschich-
te erklirt: Die Trennung in normales und externes Individuum wurde eingefiihrt,
um die Zugehorigkeit zu eines Population speichern zu kénnen. Es wurde dann
festgestellt, dal ohnehin Individuen umgewandelt werden mufiten (durch die
Funktionen norm2ext und ext2norm der Populationsverwaltung), so dafl die
Probleme beim Kopieren von Zeigern nicht entstehen. Daher war es moglich,
die Speicherung der letzten Fitness beim Individuum einzufiihren, durch die
Verfahren mitunter bedeutend beschleunigt werden, da die Anzahl der mitunter
aufwendigen Berechnungen der Fitnefl verkleinert wird.

5.3 Operatoren, Parameter und Bibliotheken

5.3.1 Operatorkonzept

Um ein Experiment mit GENOM ablaufen zu lassen, existiert ein Experiment-
operator, der die Verfahren aufruft. Die Verfahren verwenden Operatoren, die
wiederum Funktionen aufrufen, die in Bibliotheken zusammengefaf3t sind. Hier-
durch wird eine hohe Wiederverwendbarkeit und eine schnelle Anderbarkeit er-
reicht. Man kann sich dies als Operatorbaum (siehe Abbildung 4.4) anschaulich
vorstellen.

Experimentoperator Der Experimentoperator legt fest, welches Problem
optimiert werden soll, indem eine SML-Datei bezeichnet wird. In dieser wird
der Phinotyp und auch die FitneBfunktion festgelegt.

Auflerdem deklariert der Experimentoperator die Populationen, auf denen die
einzelnen Verfahren arbeiten sollen. Dies geschieht im Experimentoperator, also
yauf oberster Ebene“, um die Migration von Individuen zwischen den Popula-
tionen zu ermdéglichen. Daraus folgt, dafl zudem hier fiir jede Population eine
Kodierung festgelegt werden mufl. Dann ist eine Migration durch Dekodieren
eines Individuums und anschlielende Neukodierung méglich.

Der Experimentoperator hat aber noch eine weitere Aufgabe: Er definiert den
Startzustand des gesamten Experiments, indem man fiir die Populationen Da-
teien anzugibt, aus denen sie geladen werden sollen. Andererseits ist es natiirlich
moglich, zufillige Vorbelegungen fiir neue Abldufe einzustellen.

Schliefllich deklariert der Experimentoperator noch die Verfahren, die auf die
einzelnen Populationen angewendet werden sollen. Dabei ist natiirlich darauf
zu achten, daf} die verwendete Kodierung zum Verfahren kompatibel ist.

5.3. OPERATOREN, PARAMETER UND BIBLIOTHEKEN 53

Verfahren Verfahren sind spezielle Operatoren, deren Aufgabe die Umset-
zung eines Algorithmus ist. Hier soll nur der Ablauf gesteuert werden. Die ei-
gentliche Arbeit soll von einzelnen Operatoren verrichtet werden.

Typische Verfahren sind z.B. das ,,Simulated Annealing“, der ,, Threshold Algo-
rithmus®, die ,,Genetischen Algorithmen® und die ,,Evolutionsstrategien®, deren
Ablauf in der Literatur ausfiihrlich beschrieben und bewertet wird ([GWH90,
BS93, Due93)).

Operatoren Operatoren werden im System wie einzelne Werkzeuge behan-
delt, die sehr spezielle, mitunter komplexe Aufgaben wahrnehmen. Durch die
Verwendung von Parametern (s.u.) lassen sich Operatoren in ihrer Funktiona-
litdt beeinflussen.

In Operatoren wird ,die eigentliche Arbeit verrichtet*: Individuen verindern
und auswéihlen, Funktionen aufrufen, Berechnungen durchfiihren. Bei geschick-
ter Aufteilung der Aufgaben kann eine hohe Wiederverwendbarkeit und Flexi-
bilitéit erreicht werden, so daf} z.B. die Selektion des einen Verfahrens in einem
anderen Verfahren verwendbar ist.

5.3.2 Parameterkonzept

Verfahren und Operatoren konnen Parameter deklarieren. Diese Parameter sind
Variablen besonderer Art, da sie

e vor dem eigentlichen Aufruf des Operators gesetzt werden konnen,
e zwischen Operatoraufrufen ihren Wert behalten,

e iiber einen Wertebereich und

e cinen Standard- (Default-) Wert verfiigen und

e cine textuelle Beschreibung besitzen.

Wird ein Operator in einem anderen Operator (auch im Experimentoperator)
deklariert, so kdnnen dabei den Parametern Werte zugewiesen werden, die im
Wertebereich des Parameters liegen miissen. Wird ein Parameter nicht auf diese
Weise initialisiert, so wird ihm vor dem ersten Aufruf der Standardwert zuge-
wiesen.

Die Deklaration eines Unteroperators erfolgt im Kopfteil des aufrufenden Ope-
rators, wobei eine Operatorvariable definiert wird. Der Name dieser Operator-
variable wird im Programmrumpf beim Aufruf des Operators verwendet. Bei
diesem Aufruf miissen die aktuellen Parameter entsprechend den formalen Pa-
rametern im Operator iibergeben werden. Es ist also moglich, denselben Ope-
rator mehrfach mit verschiedenen Parameterbelegungen im selben Experiment,
ja sogar im selben Operator zu verwenden.

54 KAPITEL 5. UMSETZUNG DER KONZEPTE

5.3.3 Bibliothekenkonzept (LEA-Sicht)

In jedem Operator ist es moglich, durch das USES-Konstrukt Bibliotheken anzu-
geben, aus denen Funktionen aufgerufen werden sollen. Diese Funktionen sind
in SML verfaflt und haben somit den vollen Zugriff auf alle Konstrukte und Ei-
genschaften, die SML bietet. Insbesondere sind dies der Zugriff auf Zellen und
Atome der Individuen, der aus LEA heraus nicht moglich ist.!

Da alle verwendeten Operatoren deklariert werden miissen, handelt es sich bei
allen anderen Aufrufen um Aufrufe einer Funktion. Um diese zu finden, wird in
den angegebenen Bibliotheken nach dem Funktionsnamen gesucht, wobei in der
Reihenfolge vorgegangen wird, in der die Bibliotheken in der USES-Anweisung
angegeben sind. Befindet sich die Funktion in keiner der angegebenen Biblio-
theken, so wird in der Bibliothekenliste des aufrufenden Operators gefahndet
usw.

Somit ist es sogar moglich, Operatoren zu schreiben, die je nach Ort ihres Auf-
rufs verschiedene Kodierungen des Phinotyps akzeptieren: Eine Funktion wird
nicht im Operator selbst durch Angabe einer Bibliothek bestimmt, sondern im
aufrufenden Operator bzw. im Verfahren.

Daneben bieten die Bibliotheken auch Standard-Funktionen, die der Benutzer
vom Laufzeitsystem erwartet, wie z.B. mathematische Funktionen und Ausga-
befunktionen. Durch den oben beschriebenen Mechanismus ist es ausreichend,
diese Standardbibliotheken einmal im Experimentoperator zu deklarieren.

5.4 Beschreibung der Sprache LEA

Um eine einfachere Eingabe von Experimentdefinitionen, Verfahren und Ope-
ratoren zu ermoglichen, wurde die Sprache LEA (Language for Evolutionary
Algorithms) entwickelt. Mit ihr kénnen Verfahren und Operatoren in der weiter
verbreiteten prozeduralen Form programmiert werden. Zusétzlich ist in einheit-
licher Weise auch das Initialisieren und die Steuerung des Ablaufs eines Expe-
riments moglich. Um den Aufwand fiir die Entwicklung der Sprache nicht zu
grof3 werden zu lassen, wurde auf eine Moglichkeit verzichtet, Phino- und Ge-
nostrukturen in LEA direkt zu verdndern. Es kann daher nur bis zur Ebene
der Individuen in LEA gearbeitet werden. Fiir die Elemente, auf denen diese
aufbauen, miissen Funktionen in SML geschrieben werden, die iiber eine spezi-
elle Schnittstelle in LEA verwendet werden konnen. Andere Konzepte, wie die
Moglichkeit Parameter fiir Verfahren und Operatoren anzugeben, sind direkt in
LEA umgesetzt. Dieser Abschnitt soll einen Uberblick iiber die Sprache LEA
geben.

IDie Implementation dieser Funktionalitit hitte den Umfang dieser Projektgruppe ge-
sprengt, jedoch ist dies fiir eine Erweiterung geplant.

5.4. BESCHREIBUNG DER SPRACHE LEA 35

5.4.1 Grundlagen
5.4.1.1 Schliisselworter

Die Schliisselworter sind neben einfachen und zusammengesetzten Zeichen wie
+, :=etc. die Elemente, aus denen die Sprache LEA besteht. Schliisselworter
sind Zeichenketten, die mit einem Buchstaben beginnen und aus einer belie-
bigen Folge aus Buchstaben und Ziffern bestehen. Alle in LEA verwendeten
Schliisselworter werden im Anhang D aufgelistet.

5.4.1.2 Bezeichner

Auf die in LEA deklarierten Objekte (wie Operatoren, Parameter, lokale Varia-
blen etc.) wird tiber Bezeichner zugegriffen. Wie die Schliisselwérter beginnen
sie mit einem Buchstaben und bestehen aus einer beliebigen Folge von Buch-
staben und Ziffern. Die Buchstaben kénnen dabei grof oder klein geschrieben
werden. Bezeichner gelten auch dann als verschieden, wenn sie sich nur in der
Grof3- und Kleinschreibung unterscheiden. Die Schliisselworter diirfen nicht als
Bezeichner verwendet werden.

5.4.1.3 Konstanten

In LEA-Programmen kénnen die folgenden Arten von Konstanten verwendet
werden:

o Ganzzahlkonstanten sind Folgen von Ziffern, die als ganze Zahl interpre-
tiert werden. Diese Zahl darf allerdings nicht gréfler werden als die von
SML unterstiitzten 31bit Ganzzahlen. Ein Beispiel fiir eine Ganzahlkon-
stante ist 42.

e Gleitkommakonstanten unterscheiden sich von den Ganzzahlen durch ei-
nen enthaltenen Dezimalpunkt. Sie werden als reelle Zahlen interpretiert.
Eine LEA-Programm kann z.B. die Gleitkommakonstante 3.1416 enthal-
ten.

e Stringkonstanten sind in doppelte Anfiihrungszeichen eingeschlossene Zei-
chenketten (z.B. "Hello World"). Sie diirfen nicht iiber das Zeilenende
hinaus gehen.

5.4.1.4 Typen

LEA verwendet fiir die meisten Elemente eine statische Typpriifung. Fiir alle de-
klarierten Variablen, Parameter, Operatoren etc. miissen die Typen angegeben
werden. Diese Typen werden tiberpriift, wenn diese Objekte verwendet werden.
Konvertierungen miissen explizit vorgenommen werden.

In der ersten Version von LEA werden folgende Typen unterstiitzt:

96 KAPITEL 5. UMSETZUNG DER KONZEPTE

e BOOL bezeichnet einen bool’schen Typ. Variablen diesen Typs konnen die
Werte wahr und falsch annehmen und werden bei Bedingungen verwendet.

e INT bezeichnet einen ganzzahligen Typ. Der Wertebereich dieser Variablen
entspricht dem 31bit Ganzzahltyp von SML.

e REAL bezeichnet einen reellwertigen Typ.
e IND: Variablen diesen Typs kénnen ein Individuum aufnehmen.

e INDLIST: Mit diesem Typ koénnen Variablen deklariert werden, die Listen
von Individuen aufnehmen.

e POP: Variablen von diesem Typ bezeichnen Populationen, die von der Po-
pulationsverwaltung des Systems verwaltet werden.

5.4.1.5 Kommentare

LEA unterstiitzt Kommentare, die mit einem # beginnen und sich bis zum Ende
der Zeile erstrecken.

T := T * faktor; # erniedrige Temperatur

5.4.2 Sprachelemente
5.4.2.1 Experiment

Das oberste Sprachkonstrukt von LEA ist das Experiment. Ein bestimmtes
Experiment wird beim Start aufgerufen. Es initialisiert die Populationen und
wendet darauf die Verfahren an. Daneben kénnen auch Operatoren fiir wei-
tere Berechnungen verwendet werden. Ein Experiment besteht aus folgenden
Abschnitten:

e EXPERIMENT <Experimentname>: Eine Kopfzeile, die den Namen des Ex-
periments angibt.

e Finem Deklarationsteil, der angibt, was im folgenden Anweisungsteil ver-
wendet werden kann. Die Reihenfolge der Deklarationen ist dabei vorge-
geben, die optionalen Teile kénnen allerdings weggelassen werden.

— USES <Lib1>, <Lib2>, ..., <Libn> (optional): Eine Liste der ver-
wendeten Funktionsbibliotheken.

— PROBLEM <Problemname>: Die Angabe des Problems, das im Experi-
ment verwendet wird.

— POPULATIONS <Populationen> (optional): Eine Deklaration der im
Experiment verwendeten Populationen.

— DOPERATORS <Liste der Operatoren> (optional): Die von dem Ex-
periment aufgerufenen Verfahren und Operatoren.

— VAR <Variablen> (optional): Die lokalen Variablen.

e Finem Anweisungsteil, der in BEGIN und END eingeschlossen ist und aus
einer Liste von Anweisungen besteht (siehe unten).

5.4. BESCHREIBUNG DER SPRACHE LEA 57

5.4.2.2 Operatoren

Operatoren unterscheiden sich von der Experimentdefinition durch die Moglich-
keit, beim Aufruf Parameter zu empfangen und einen Wert zuriickzuliefern.
Zusitzlich kann jeder Operator eine Reihe von Parametern besitzen, die sein
Verhalten steuern und die bei der Verwendung in einem Verfahren (oder Expe-
riment) oder von auflen gesetzt werden kénnen. Im Deklarationsteil von Opera-
toren ist es nicht moglich, ein Problem oder eine Populationen anzugeben. Ein
Operator besteht aus den folgenden Teilen:

e OPERATOR <Opname> (<Typl> <Parl>, ..., <Typn> <Parn>): <Typ>:
Eine Kopfzeile, die den Namen des Operators, die Parameter, ihre Typen
und den Typ des Riickgabewerts angibt.

e FEinem Deklarationsteil, der angibt, was im folgenden Anweisungsteil ver-
wendet werden kann. Die Reihenfolge der Deklarationen ist dabei vorge-
geben, die optionalen Teile kénnen allerdings weggelassen werden.

USES <Lib1>, <Lib2>, ..., <Libn> (optional): Eine Liste der ver-
wendeten Funktionsbibliotheken.

— PARAMETER <Liste der Parameter> (optional): Die Parameter, mit
denen das Verhalten des Operators gesteuert werden kann.

— OPERATORS <Liste der Operatoren> (optional): Die von diesem
Operator aufgerufenen Verfahren und Operatoren.

— VAR <Variablen> (optional): Die lokalen Variablen.

e Finem Anweisungsteil, der in BEGIN und END eingeschlossen ist und aus
einer Liste von Anweisungen besteht (siehe unten).

5.4.2.3 Verfahren

Verfahren sind genauso aufgebaut wie die Operatoren. Die Kopfzeile beginnt
mit ALGORITHM. Verfahren sollten, anders als Operatoren, die nur in speziellen
Féllen auf Populationen arbeiten (z.B. Migrationsoperatoren), eine Population
als Parameter iibergeben bekommen.

5.4.2.4 Deklarationen

Parameter Parameter fiir die Verfahren und Operatoren kénnen vom Typ
Int, Real und Bool sein. Bei der Deklaration der Parameter wird ein Standard-
wert angegeben, der verwendet wird, wenn kein Wert angegeben ist. Weiter wird
ein Maximal- und ein Minimalwert fiir den Parameter definiert. Die Werte, die
der Parameter annehmen soll, miissen dazwischen liegen. Schliellich folgt noch
eine Zeichenkette, die den Parameter beschreibt.

<Typ> <Name> = (<Standardwert>,
<Minimalwert>,
<Maximalwert>,
"<Beschreibung>")

98 KAPITEL 5. UMSETZUNG DER KONZEPTE

Operatoren Bei der Deklaration eines Operators wird der Verweis festgelegt,
unter dem ein vorhandener Operator im Anweisungsteil angesprochen wird. Da-
bei werden fiir die Parameter eines Operators oder Verfahrens konkreten Werte
bestimmt. Wenn ein Parameter nicht angegeben ist, so erhilt er seinen Stan-
dardwert. Die Parameter, fiir die ein Wert angegeben ist, werden beim Start des
Operators auf diesen Wert gesetzt. Auf diese Weise kann der gleiche Operator
durch eine Verwendung verschiedener Verweise mit verschiedenen Parameterbe-
legungen verwendet werden.

<Verweis> = <Operatorname>(<Parl>: <Wertl>,
<Par2>: <Wert2>,

*

<Parn>: <Wertn>)

5.4.2.5 Anweisungen

Anweisungslisten, wie sie als Hauptteil der Operatoren verwendet werden, sind
Listen von Anweisungen, die durch Strichpunkte getrennt werden. Die Semantik
dieser Anweisungen entspricht im wesentlichen der von PASCAL und MODU-
LA2, an die auch die Syntax angelehnt ist. In LEA werden folgende Anweisungen
unterstiitzt:

e Zuweisung: Weist einer lokalen Variablen oder einem Operatorparameter
den Wert zu, der durch den angegebenen Ausdruck bestimmt wird.

<Variable> := <Ausdruck>

e Funktionsaufruf: Auf diese Weise kénnen SML-Funktionen, Operatoren
und Verfahren aufgerufen werden. Rekursive Aufrufe sind in LEA aller-
dings nicht zugelassen. Bei SML-Funktionen kann zur eindeutigen Be-
schreibung zusétzlich noch der Name der Bibliothek angegeben werden.
Wenn Parameter an die Funktion {ibergeben werden, werden diese auf
die iibliche Weise nach dem Funktionsnamen als Liste in Klammern an-
gehéngt.

[<Bibliotheksname>:]<Funktionsname> [(<Parameterliste>)]

o Verzweigung: Die Verzweigung fiihrt abhingig von einer Bedingung eine
von zwei Anweisungslisten aus. Der Ausdruck fiir die Bedingung muf} da-
bei einen bool’schen Wert ergeben. Wenn dieser wahr ist, wird die erste
Anweisungsliste ausgefiihrt, sonst die zweite.

IF <Ausdruck> THEN <Anweisungen>
ELSE <Anweisungen> FI

e While-Schleife: Bei der While-Schleife wird eine Anweisungsliste solange
ausgefiihrt, bis die Bedingung falsch ergibt.

WHILE <Ausdruck> DO <Anweisungen> 0D

5.5. INTERPRETER 29

o Repeat-Schleife: Der Anweisungsteil der Repeat-Schleife wird, im gegen-
satz zur While- Schleife, immer mindestens einmal ausgefiihrt. Die Schleife
wird dann solange wiederholt, bis die Bedingung wahr wird.

REPEAT <Anweisungen> UNTIL <Ausdruck>

o For-To-Schleife: Bei der For-To-Schleife wird vor Beginn der Ausfithrung
die Ganzzahlvariable auf den angegebenen Anfangswert gesetzt. Die Schlei-
fe wird dann durchlaufen, wenn die Variable den Endwert noch nicht {iber-
schritten hat. Am Ende der Schleife wird die Variable um eins erhéht und
wieder zum Anfang der Schleife gesprungen.

FOR <Variable> := <Ausdruck> TO <Ausdruck> DO
<Anweisungen> 0D

e Operator beenden: Die Return-Anweisung beendet einen Operator, ein
Verfahren oder das Experiment. Wenn der Operator (oder das Verfahren)
einen Riickgabewert zuriickliefert, wird dieser hier durch den Ausdruck,
der auf das Schliisselwort folgt, angegeben.

RETURN <Ausdruck>

5.4.2.6 Ausdriicke

Ausdriicke in LEA sind ebenfalls denen in anderen prozeduralen Sprachen nach-
empfunden. Sie konnen aus Konstanten, Variablen, Klammerungen, Funktions-
aufrufen (wie bei den Anweisungen beschrieben) und den unten aufgelisteten
Operatoren aufgebaut werden. Ein Ausdruck wird zu einem Wert von einem
der in LEA zuléissigen Typen ausgewertet. Ein Beispiel fiir einen Ausdruck ist:

((XR*XR + XI*XI) < 4.0)

5.5 Interpreter

Der Interpreter fiir die Sprache LEA ist der umfangreichste Teil von GENOM.
Er nimmt eine zentrale Position ein, da er die Verbindung zwischen Experimen-
ten, Verfahren und Operatoren auf der einen und der Populationsverwaltung
auf der anderen Seite darstellt. Der Interpreter zerfillt in mehrere Module, die
im folgenden jeweils in einem eigenen Kapitel beschrieben werden. Ein Uber-
blick tiber die Module findet sich in Kapitel 5.5.1, ein Glossar der verwendeten
Fachbegriffe im Kapitel 5.5.8.

5.5.1 Interpreter-Programmteile
Der Interpreter besteht aus folgenden Teilen:

o Preter: Fiihrt eine Anweisungsfolge unter einer Variablenumgebung aus,
liefert eine Variablenumgebung zuriick.

60 KAPITEL 5. UMSETZUNG DER KONZEPTE

o Linker: Sorgt fiir Initialisierung der Umgebungen und startet das Experi-
ment. Fiihrt Aktionen wie Operator- und Funktionsaufrufe durch.

e Parser: Liest eine Datei ein und liefert einen geparsten Operator zurtick,
der u.a. eine Anweisungsfolge aus Elementar-Befehlen und eine initiale
Variablenumgebung enthélt.

e Library: Sammlung/Organisation der einzelnen Operatoren. Sorgt fiir die
Ermittlung der benétigten Dateien.

e Frame: Sorgt fiir das Parsen der abgespeicherten Operatoren und das Ein-
binden der Bibliotheken durch SML. Startet das Experiment iiber den
Linker.

5.5.2 Preter

Das Modell der Maschine, auf der die Programme des Interpreters ablaufen, ist
eine Stackmaschine. Die Berechnung von Ausdriicken wird durch Ablegen der
Operatoren auf den Stack und Ausfiihren einer Operation, die ihre Operanden
auf dem Stack erwartet, realisiert.

Elementare Anweisungen Das Maschinenmodell, auf das der Preter auf-
baut, verwendet einen lokalen Stapel, der zur Berechnung komplexerer Aus-
driicke dient. Somit brauchen Anweisungen oft nur ein Objekt zu kennen, da
andere sich auf dem Stack befinden.

Um einen Stack aller moéglichen Typen zu bilden, wurden diese zum Datentyp
Varvalue vereint. In einem Programm kénnen Werte verwendet werden, die
entweder konstant sind, eine Variable bezeichnen oder einen Parameter (mit
seinem relativen Namen) darstellen. Dies wurde im Datentyp Value umgesetzt.

Eine Variable wird durch ihren Namen angesprochen, der als String implemen-
tiert ist. Sie kann alle konstanten Werte annehmen.

Der Anweisungsteil eines Programms besteht aus einer Folge von Kommandos,
die aus dem Befehlsvorrat entnommen werden. Der Befehlsvorrat wird durch
den Datentyp StackCmd reprisentiert.

Ein Befehl der Stackmaschine wird durch die Funktion exec realisiert. Diese
Funktion erhilt das auszufiihrende Kommando, die Nummer des folgenden Be-
fehls, die Variablenumgebung und den aktuellen Stack. Nach Ausfiihrung der
Anweisung werden der neue Programmzihler, die neue Variablenumgebung und
der neue Stack zuriick gegeben.

Soll z.B. eine Konstante auf den Stack gelegt werden (sc_push), so wird sie
einfach vorne an den Stack angehéngt. Soll dagegen das oberste Element des
Stacks in eine Variable geschrieben werden (sc_pop), so wird die Konstante
von Stack entfernt und die Variablenumgebung geéndert; d.h. die betreffende
Variable auf den gewiinschten Wert gesetzt.

Spriinge werden realisiert, indem einfach die berechnete Nummer der nichsten
Anweisung zuriickgeliefert wird (sc_jmp). Eine arithmetische Operation (sc_op

5.5. INTERPRETER

datatype Varvalue =

notdeklared

61

Inotdefinedint

Inotdefinedreal

Inotdefinedbit

Inotdefinedstring

Inotdefinedindi

Inotdefinedindilist

|notdefinedpop

[intval of int

|realval of real

[bitval of bool

|stringval of string

|indival of PopHandler.extInd_type
|indilistval of PopHandler.extIndL_type
|popval of PopHandler.PopId_type

lopval of string * (string * Varvalue) list
|parval of Varvalue * Varvalue * Varvalue * string

datatype Value =

Abb. 5.5: Konstante Werte

variabel of string | konst of Varvalue | parref of string list

Abb. 5.6: Variable Werte

type Variable = string * Varvalue

Abb. 5.7: Typ der Variablen

sc_push(value)

sc_pop (bez)

sc_popparam(parbez)

sc_drop
sc_dup

Legt eine Konstante oder Variable, die mit
dem Ausdruck value beschrieben wird, auf
den Stack.

Speichert das oberste Element auf dem
Stack in der Variable mit dem angegebe-
nen Bezeichner (bez) in der aktuellen Um-
gebung und nimmt den Wert vom Stack.
Setzt den Wert des Parameters mit der Be-
zeichnung parbez in der aktuellen Umge-
bung auf den Wert des obersten Stackele-
ments und nimmt diesen vom Stack.
Nimmt das oberste Element vom Stack.
Legt das oberste Stackelement noch einmal
oben auf den Stack.

Tabelle 5.1: Stackverwaltung

62 KAPITEL 5. UMSETZUNG DER KONZEPTE

sc_jmp(pos) Unbedingter Sprung an die Position pos im
Stackprogramm.
sc_jmpT(pos) Sprung an die Position pos im Stackpro-

gramm, wenn das oberste Element auf dem
Stack ein bool’scher Wert und wahr ist.
sc_jmpF (pos) Sprung an pos, wenn das oberste Element
den bool’schen Wert falsch hat.

Tabelle 5.2: Sprungbefehle

sc_call_fct(1lib, bez, z) | Ruft die SML-Funktion mit dem Namen
bez aus der Bibliothek 1ib auf, wobei z
Elemente als Parameter auf dem Stack
liegen. Die Reihenfolge entspricht der in
der Prozedurdeklaration, wobei der zu-
erst deklarierte Parameter auch zuerst auf
den Stack gelegt wird. Der letzte Parame-
ter liegt also oben auf dem Stack. SML-
Funktionen legen immer einen Wert als
Riickgabe auf den Stack, Operatoren nur,
wenn ein Riickgabewert in der Deklaration
angegeben ist.

sc_call_op(bez, z) Ruft den Operator oder das Verfahren mit
dem Namen bez auf, wobei z Elemente als
Parameter auf dem Stack liegen (wie bei
sc_call_fct).

Tabelle 5.3: Aufrufe von Funktionen

5.5.

INTERPRETER

63

sc_op(so_add)
sc_op(so_sub)
sc_op(so_neg)
sc_op(so_mul)
sc_op(so_div)
sc_op(so_eq)

sc_op(so_neq)
sc_op(so_1t)

sc_op(so_gt)

sc_op(so_1lte)
sc_op(so_gte)
sc_op(so_and)

sc_op(so_or)
sc_op(so_not)

Addiert die beiden obersten Stackelemen-
te und ersetzt sie durch das Ergebnis der
Addition.

Subtrahiert des zweite vom ersten Stack-
element und legt das Ergebnis auf den
Stack.

Negiert das oberste Stackelement.
Multipliziert die beiden obersten Stackele-
mente und legt das Ergebnis auf den Stack.
Dividiert das zweite vom ersten Stackele-
ment und legt das Ergebnis auf den Stack.
Vergleicht die beiden obersten Stackele-
mente auf Gleichheit und legt das Ergebnis
des Tests auf den Stack.

Dasselbe fiir Ungleichheit.

Uberpriift ob das erste Stackelement klei-
ner als das zweite ist und legt das bool’sche
Ergebnis des Tests auf den Stack.
Dasselbe mit grofer.

Dasselbe mit kleiner oder gleich.

Dasselbe mit grofler oder gleich.
Berechnet ein logisches Und fiir die bei-
den obersten Stackelemente (es miissen
bool’sche Werte sein) und legt das Ergeb-
nis auf den Stack.

Dasselbe mit einem logischen Oder.
Invertiert das oberste Stackelement (es
muf} sich um einen bool’schen Wert han-
deln).

Tabelle 5.4: Arithmetische Befehle

64 KAPITEL 5. UMSETZUNG DER KONZEPTE

fun exec (sc_push(konst(v)), pc, vars, stack) =
(pc, vars, v::stack)

| exec (sc_pop(s), pc, vars, v::stack) =
(pc, setvar(s,vars,v), stack)

| exec (sc_jmp(newpc), _, vars, stack) =
(new_pc, vars, stack)

| exec (sc_op(operation), pc, vars, stack) =
(pc, vars, stack op(operation, stack))

Abb. 5.8: Ausfiihrung von Stackbefehlen

fun stack_op (so_add, realval(a)::realval(b)::tl) =
realval(b+a)::tl

| stackop (someg, intval(a)::tl) = intval(~a)::tl

| stackop (so_eq, realval(a)::realval(b)::tl) =
bitval(b=a)::tl

|

Abb. 5.9: Ausfithrung arithmetischer Befehle

(opbez)) wird durch eine eigene Funktion (stack_op) umgesetzt, die neben dem
Operationsbezeichner (opbez) nur den Stack erhélt und den neuen Stack liefert.

Eine arithmetische Operation nimmt ihre(n) Operanden vom Stack, fiihrt die
geforderte Aktion aus und legt das Ergebnis in der geforderten Form wieder auf
den Stack (stack-op).

Die Ubergabe von aktuellen Parametern erfolgt durch das Ablegen der Werte
auf dem Stack, wobei die Anzahl der Parameter im ,,Call“-Befehl gespeichert
ist. Der Riickgabewert eines Operators ist zu oberst auf dem Stack zu finden.

Die Elementar-Anweisungen werden zu den Operatoren in einem Array gespei-
chert, wobei bei der Ausfiihrung iiber einen Index auf den aktuellen Befehl
zugegriffen wird. Spriinge sind somit moglich, aulerdem kann so leicht die Po-
sition einer Unterbrechung zuriickgegeben werden — wodurch Wiederaufsetzen
ermoglicht wird.

Die Preter-Funktion run nimmt vom Linker die aktuelle Variablenumgebung,
den Anweisungsteil des auszufithrenden Operators, den aktuellen Stack und die
Position der Anweisung, mit der die Ausfithrung beginnen soll.

val run:
(Types.Variable list * (* Environment at Start *)
Commands.StackProg * (* Statements *)
Stack * (* Stack at Start x)
Commands . InstrPos (* Start here *)

) -> Exit_state

Abb. 5.10: Funktion Preter.run

5.5. INTERPRETER 65

Die Ausfithrung eines Operators kann zu verschiedenen Endzustinden fiihren
(s. Exit_state):

e done: Der Operator wurde durch ein return normal beendet.

e call op: Es soll ein anderer Operator ausgefiihrt werden. Deshalb werden
zusétzliche Informationen zuriickgeliefert, die das Fortsetzen der Ausfiih-
rung nach Beendigung des nachgeladenen Operators erlauben.

e call fct: Es soll eine Benutzer-Funktion aufgerufen werden. Der Ablauf
ist mit einem Operator-Aufruf vergleichbar.

e break: Es wurde eine Unterbrechungsanweisung gefunden! Die Kontrolle
soll nun an die Systemumgebung {ibergeben werden, die ggf. eine Verénde-
rung des Experiments durch den Benutzer ermoglicht.

e trace: Eine Kontroll-Anweisung wurde aktiv, weil eine Bedingung einge-
treten ist. Das Verhalten ist das selbe wie bei break.

5.5.3 Linker

Der Linker bereitet den Start eines Experiments vor: In die initiale Variablen-
umgebung wird fiir die Parameter der Operatoren der Default-Wert eingetragen,
dies wird rekursiv fiir alle Variablenumgebungen von der Funktion init_openv
durchgefiihrt. Sie ermittelt jeweils die Unter-Operatoren eines Operators durch
eine Anfrage an die Library und ruft sich fiir diese noch einmal auf. Die theo-
retische Moglichkeit einer Endlosschleife (d.h. ein Operator steht mehrmals in
einem Pfad des Operatorbaums) wird durch Konvention ausgeschlossen.

Somit entsteht fiir das Experiment eine Variablenumgebung, die fiir jedes Ver-
fahren eine eigene Umgebung enthélt; in diesen fiir jeden Operator eine weitere
usw. In den initialen Variablenumgebungen werden aber nur die Daten fiir Unte-
roperatoren und Parameter abgelegt, da diese auch auflerhalb der Ausfiihrung-
zeit eines Operators oder Verfahrens existieren miissen. Es wire somit moglich,
z.B. im Experimentoperator durch Setzen eines Parameters eines , tief unten“ im
Operatorbaum liegenden Operators, diesen in seiner Funktion zu beeinflussen
oder auch nach einer Programmunterbrechung diese Parameter zu verédndern.
(Dies wurde im vorliegenden System nicht implementiert.)

Der Linker erzeugt auflerdem die im Experimentoperator festgelegten Popula-
tionen, wobei die angegebenen Kodierungen verwandt werden. Dann wird der
Anweisungsteil des Experimentoperators gestartet, dessen Beendigung das Ende
der evolutiondren Berechnung darstellt.

Steht bei der Ausfithrung eines Operators ein , Call“-Befehl zur Ausfiihrung
an, so wird die Ausfiihrung der Anweisungen im Preter unterbrochen und die
augenblickliche Umgebung und die Position der Anweisung zuriickgegeben.

Soll ein Operator ausgefiihrt werden, so sucht ihn der Linker in der Library und
erzeugt seine Variablenumgebung, die aus vier Teilen besteht:

66 KAPITEL 5. UMSETZUNG DER KONZEPTE

o Parameter: Diese Variablen konnen in hierarchisch hoher liegenden Ope-
ratoren verdndert werden, daher miissen sie in der Variablenumgebung
des Aufrufers existieren, was beim Start eines Experiments durchgefiihrt
wurde.

e lokale Variablen: Auf diese Variablen kann nur vom Operator selbst zuge-
griffen werden. Sie werden beim Parser mit einer Vorbelegung versehen,
die auch ,nicht-definiert“ sein kann.

e aktuelle Parameter: Diese Parameter werden beim Aufruf des Operators
iibergeben und liegen dann als belegte lokale Variablen vor. Die Ubergabe
erfolgt {iber den Stack, der Linker nimmt die Parameter ab und weist sie
den formalen Parametern zu.

e Bezeichner der auf diesem Pfad im Operatorbaum benutzten Bibliotheken.
(Somit kann derselbe Funktionsaufruf im selben Operator verschiedene
Funktionen anstofien. Es wird die zuletzt deklarierte Bibliothek verwandt!)

Wird dagegen eine Funktion aufgerufen, so werden die zu iibergebenden Para-
meter vom Stapel genommen und die Bibliothek bestimmt, deren Dispatcher-
Funktion den eigentlichen Funktionsaufruf und die Umwandlung der Parameter
durchfiihrt. Das Ergebnis des Aufrufs wird auf den Stapel gelegt.

Die Bestimmung der Bibliothek, deren Funktion ausgefiihrt wird, geschieht iiber
den Bibliotheken-Pfad. Der Bibliotheken-Pfad wird durch den Operatorbaum
definiert, d.h. die Struktur der Operatoraufrufe eines Experiments. In der Wur-
zel steht der Experimentoperator, direkt darunter die Verfahren, unter diesen
die Operatoren. In jedem Operator bzw. Verfahren kann man durch das USES-
Konstrukt von LEA Bibliotheken angeben. Diese Namen werden beim Abstieg in
den Baum vorne an den Bibliotheken-Pfad angehéingt, beim Funktions-Aufruf
wird in den angegebenen Bibliotheken nach dem Funktionsnamen gesucht. Da
diese Suche vorne beginnt, kann ein Operator festlegen, aus welcher Bibliothek
eine Funktion entnommen werden soll, er kann aber auch keine Angabe machen.
Dann wird die Funktion in den Bibliotheken gesucht, die oberhalb des Opera-
tors benannt wurden. Somit kann derselbe Funktionsaufruf im selben Operator
je nach Operatorbaum verschiedene Bedeutungen haben.

Beispiel Im Operatorbaum steht an oberster Stelle das Experiment Example.
Es ruft die Verfahren Threshold, Other_Threshold und Genetic auf. Man
beachte, dafl sowohl in Threshold als auch in Genetic der Operator mutate
Verwendung findet. Jedoch unterscheiden sich die Bibliotheken-Pfade fiir diesen
Operator, je nachdem wo er sich im Baum befindet. Somit kann ein Funk-
tionsaufruf in mutate einmal in der Bibliothek RealLib, ein anderes Mal in
BinaryLib ausgefiihrt werden.

Als Gegenbeispiel sei der Operator other mutate angegeben, der die Bibliothek
MutateLib angibt. Somit werden Aufrufe wohl von dieser ausgefiihrt, egal wo
der Operator im Baum steht.

Nach einem Aufruf wird die Bearbeitung des Operators an der dem Aufruf
folgenden Anweisung fortgesetzt.

5.5. INTERPRETER 67
Experiment "Example" Libraries: "Generd", "PopHandler"
Populéations: "Binaries’, "Reals’
Lib.Path: "Genera", "PopHandler"
Algorithm "Threshold" Algorithm "Other_Threshold" Algorithm "Genetic"
Libraries: "Reallib" Libraries: "Reallib" Libraries: "BinaryLib"
Lib.Peth: "Reallib", Lib.Path: "Reallib", "General", Lib.Path: "BinaryLib", "Genera",
"Generd", "PopHandler" "PopHandler" "PopHandler"
Operator "mutate” Operator "other_mutate" Operator "mutate”
Libraries: Libraries: "MutateLib" Libraries:
Lib.Path: "Reallib", Lib.Path: "MutateLib", "Reallib",| Lib.Path: "BinaryLib", "Genera",
"Genera", "PopHandler" "Genera", "PopHandler" "PopHandler"

Abb. 5.11: Operatorbaum

5.5.4 Parser

Der Parser wandelt die Textdateien, in denen die Experimente, Verfahren und
Operatoren in der Sprache LEA gespeichert sind, in die vom Preter und Linker
benotigten SML-Datenstrukturen um. Aus der Beschreibung eines Operators in
LEA werden fiir den Linker Listen mit den deklarierten Variablen erzeugt, die
dieser verwendet, um die initiale Variablenumgebung vor dem Ausfiihren des
Operators bereitzustellen. Der Anweisungsteil des Operators wird in eine Fol-
ge von Stackbefehlen umgewandelt, die dem Preter zur Ausfithrung {ibergeben

wird.

5.5.4.1 Aufbau

Der Parser verwendet intern die folgenden Module:

stackcommands.sml Die Definition der Befehle fiir die Stackmachine.

parsertypes.sml Definiert die Typen, die von der Schnittstelle zwischen
Parser und Preter/Library verwendet werden.

errors.sml Enthilt die Fehlermeldungen fiir den Scan- und den Parse-
vorgang.

scanner.sml Wandelt eine Textdatei in eine Folge von lexikalischen Sym-
bolen um. Enthilt die Definition der lexikalischen Symbole von LEA.

environ.sml Verwaltet die Listen der lokalen Deklarationen eines Opera-
tors.

parser.sml Der eigentliche Parser mit der syntaktischen und semanti-
schen Analyse der lexikalischen Symbole. Er erzeugt eine Beschreibung des
Deklarationsteil und eine Liste mit Stackbefehlen, die dem Anweisungsteil
des geparsten LEA-Programms entspricht.

68 KAPITEL 5. UMSETZUNG DER KONZEPTE

Nach auflen sind dabei nur die Module parser.sml, mit den eigentlichen Par-
serfunktionen und das Modul stackcommands.sml mit der Definition fiir die
Befehle der Stackmachine sichtbar.

5.5.4.2 Verwendung

Das Modul Parser exportiert zwei Funktionen parsfilel und parsfile2. Die-
se werden nacheinander fiir eine Textdatei mit einem Experiment, Operator
oder Verfahren in der Sprache LEA aufgerufen. Die erste Funktion parst nur
den Deklarationsteil dieses Konstrukts und tibergibt eine Beschreibung der dort
deklarierten Elemente. In diesem Durchlauf kénnen einige Priifungen noch nicht
durchgefiihrt werden (z.B. ob die verwendeten Unteroperatoren vorhanden sind).
Diese werden erst moglich, wenn der erste Durchlauf fiir alle in dem Experiment
(und den darin aufgerufenen Verfahren und Operatoren) verwendeten Opera-
toren durchlaufen wurde. Diese Priifungen werden dann im zweiten Durchlauf
durch die Funktion parsfile2 durchgefiihrt in dem neben dem Deklarationsteil
auch der Anweisungsteil geparst und Code dafiir erzeugt wird.

5.5.4.3 Schnittstellen

Entsprechend der dort erlaubten Deklarationen sind auch die zuriickgegebenen
Datenstrukturen fiir Experimente und Verfahren bzw. Operatoren unterschied-
lich.

Bei allen Operatoren, Verfahren und Experimenten werden die folgenden Ele-
mente zurckgegeben:

e Der Name des Operators,

e cine Liste mit den verwendeten Bibliotheken (deklariert mit USE),

e cine Liste der verwendeten Operatoren (deklariert mit OPERATORS),

e cine Liste mit den lokalen Variablen (deklariert mit VAR),

e und eine Liste der Stackbefehlen, die dem Anweisungsteil entsprechen.
Bei einem Experiment werden zusétzlich noch die Elemente zuriickgegeben, die
nur dort deklariert werden diirfen:

e Der Name des verwendeten Problems

e und eine Liste mit den in diesem Experiment deklarierten Populationen

(mit POPULATIONS).

In Verfahren und Operatoren sind die gleichen Deklarationen erlaubt. Hier gibt
es noch folgende Elemente:

e ODb es sich um einen Operator oder ein Verfahren handelt, entsprechend
der Kopfzeile (OPERATOR oder ALGORITHM),

5.5. INTERPRETER 69

e cine Liste der Parameter, die fiir diesen Operator gelten (deklariert mit
PARAMETER),

e eine Liste der formalen Parameter, die in der Kopfzeile deklariert werden

e und der Typ fiir den Riickgabewert, ebenfalls in der Kopfzeile deklariert.

Typen und Werte werden mit der Bibliothek (Library) und dem Rahmen fiir
den Interpreter (Frame) mit der Datenstruktur Varvalue ausgetauscht. Sie dient
dazu die verschiedenen Typen, die im Interpreter verwendet werden, auf einen
einzelnen Datentyp abzubilden. Auch alle Konstanten und Werte, die der Parser
verwendet sind mit diesem Datentyp definiert. Mit der Datenstruktur Variable
kann dazu noch der Name des Elements angegeben werden.

Die Listen von Variablen, formalen Parametern u.i., die an das Rahmenpro-
gramm fiir den Interpreter zuriickgegeben werden, werden als Listen von Ele-
menten dieses Datentyps tibergeben. Dies hat den Vorteil, dafl damit gleichzeitig
der Name und der Typ der Variable sowie eine eventuelle Vorbelegung, wie sie
bei lokalen Variablen moglich ist, iibergeben werden kann. Auch Operatoren
werden mit dieser Datenstruktur iibergeben, wobei das zweite Element des Ar-
gumenttupels die Beschreibung fiir die in der Deklaration vorbelegten Parameter
enthélt.

Fiir die Beschreibung der Typen wird im Parser die Datenstruktur Types ver-
wendet. Mit ihr kénnen alle von LEA erlaubten Typen beschrieben werden:

datatype Types =
tp_int

| tp_real

| tp_bool

| tp_string

| tp_ind

| tp_indlist

| tp_pop

| tp_unknown

| tp_notype

Der Typ tp-unknown wird im Parser (und in der Bibliothek) dazu verwendet,

einen beliebigen Typ zu beschreiben. Z.B. beschreibt er bei Priifung auf Typkor-

rektheit einen Ausdruck, dessen Typ noch nicht feststeht. Der Typ tp-notype

wird verwendet, wenn an der Stelle kein Typ giiltig ist. Z.B. bei einer Funktion,

die keinen Riickgabewert hat. Zur Umrechnung der Datenstruktur Varvalue

in die Datenstruktur Types gibt es die Funktion typeofvalue. Umgekehrt die

Funktion valuefromtype.

Fiir den Problemnamen und die Kodierungen wird ein String iibergeben, der
die Bezeichnung in der Bibliothek enthélt (dieser emtspricht dem Dateinamen
ohne der Endung).

Die Ubergabe von Parametern geschieht mit:

type ParameterDecl = Variable * Varvalue * Varvalue * string

70 KAPITEL 5. UMSETZUNG DER KONZEPTE

Das erste Element des Tupels bestimmt den Namen, den Typ und den Stan-
dardwert des Parameters. Das zweite und dritte Element den Minimal- und den
Maximalwert. Das letzte Element enthélt schliellich die Beschreibung, die in
der Textdatei fiir diesen Parameter angegeben ist.

Bei der Ubergabe der Populationsdeklarationen muf iibergeben werden, welche
Kodierung fiir die Population verwendet wird, in welche Log-Datei geschrieben
werden soll und wie die Population initialisiert wird:

datatype PopInit = loadfromfile of string |
randompop of int |
standardpop

(* declaration of populations *)
type PopDecl = string *

string *

string *

PopInit

Die Stackbefehle, die fiir den Anweisungsteil erstellt werden, werden im Ab-
schnitt Codegenerierung beschrieben.

5.5.4.4 Der Scanner

Der Scanner wandelt eine eingelesene Textdatei in eine Folge von Symbolen (den
Token) um. Diese Token stehen fiir die Grundelemente und Schliisselworter von
LEA und werden in der Datenstruktur Token definiert. Abgesehen von einigen
Funktionen zum Arbeiten mit den Token besteht der Scanner nur aus den Funk-
tionen initscanner und der Funktion gettoken. Die Funktion initscanner
hat dabei nur die Funktion, den Scanner in den Anfangszustand zu versetzen.

Die Funktion gettoken liest solange Zeichen aus einer Textdatei mit einem
LEA-Programm, bis ein Token erkannt wurde und gibt dieses mit seiner An-
fangsposition zuriick. Erkannt werden Ganzzahl-, Gleitkomma- und Stringkon-
stanten sowie alle Zeichen (wie z.B. + oder :=) und Schliisselworter (wie BEGIN),
die in LEA verwendet werden. Andere Zeichenketten, die mit einem Buchstaben
beginnen und aus einer Folge von Buchstaben und Zahlen, bestehen werden als
Bezeichner behandelt. Eine Uberpriifung, ob diese giiltig sind wird erst bei der
semantischen Analyse vorgenommen. Kommentare werden vom Scanner iiber-
lesen.

Schliisselworter erkennt der Scanner anhand einer Tabelle (kw_list). Diese
enthilt die Zeichenkette fiir ein Schliisselwort und das Token, das erzeugt wird,
wenn diese Zeichenkette gefunden wurde.

5.5.4.5 Der eigentliche Parser

Der Parser iiberpriift die Folge von Tokens auf ihre syntaktische Ubereinstim-
mung mit der Sprache LEA iiberpriift und erstellt einen Syntaxbaum (wenn
auch nur durch die Abfolge der Funktionsaufrufe). Da es sich trotz der oben

5.5. INTERPRETER 71

beschriebenen Aufteilung in zwei Durchliufe im wesentlichen um einen Ein-
Pass-Compiler handelt, wird durch den Parser auch die Typpriifung und die
Generierung des Codes durchgefiihrt.

Arbeitsweise Bei dem Parser handelt es sich um einen Recursive-Descent-
Parser, d.h. er bildet die Struktur der EBNF mit Funktionen fiir jedes Nicht-
terminalzeichen nach, die sich entsprechend dem Syntaxbaum des Programms
rekursiv aufrufen. Allerdings weicht die konkrete Realisierung in einigen Punk-
ten von der EBNF ab, wie sie im Anhang dargestellt ist.

Beim Auftreten eines Fehlers wird der Parsevorgang sofort abgebrochen und
die Nummer des Fehlers und seine Position (Zeile und Spalte in der Textdatei)
zuriickgegeben.

Der Parser durchliduft zuerst den Deklarationsteil des zu parsenden Operators
(im weiteren sind damit meist auch die Verfahren oder Experimente gemeint)
und erstellt aus den Deklarationen die lokale Umgebung fiir diesen Operator.
Fiir die Blocke des Deklarationsteils gibt es dazu jeweils eine Funktion (z.B.
parseparams), in der wiederum die Unterfunktionen fiir die darin enthaltenen
Elemente definiert sind. Die lokale Umgebung ist durch die folgende Datenstruk-
tur realisiert, die im Modul DefinedVars in der Datei environ.sml definiert
ist:

type definedvars =
(ParameterDecl list * (* parameters *)

Variable list * (* operators *)
Variable list * (* local variables *)
Variable list * (* formal parameters *)
Types * (* result *)

PopDecl list * (* populations *)
string list) (* used libs *)

Das Modul enthélt auch die Funktionen, mit denen auf diese Datenstruktur
zugegriffen wird. Die lokale Umgebung wird beim Parsen des Anweisungsteils
dazu verwendet, zu iiberpriifen, ob ein Bezeichner deklariert ist (mit der Funk-
tion isvardefined), was fiir eine Art von Element er bezeichnet (z.B. mit der
Funktion isinlocvars, die iiberpriift, ob es sich um einen Bezeichner fiir ei-
ne lokale Variable handelt) und was fiir einen Typ er hat (mit der Funktion
getidenttype).

Als Beispiel fiir den gesamten Parser wird hier kurz das Vorgehen beim Parsen
eines Ausdrucks im Anweisungsteil dargestellt. Zu den Ausdriicken gehort der
folgende Teil der EBNF:

expr = logexpr [(,AND“ | ,OR*) expr] .

logexpr = algexpr
[(5=],<> o< > | ,<="],>=") algexpr | .

algexpr = term [(,,+“ | ,-“) algexpr].

72 KAPITEL 5. UMSETZUNG DER KONZEPTE

term = factor [(,*“ |, /¢) term] .

factor = combident [,,(“ expr { ,,,“ expr } ,,)“] |
constant |
77(“ expr 77)“ |
»- factor |
»2NOT* factor .

Da SML keine wechselseitig rekursiven Aufrufe zuléfit und die Ausdriicke selber
wieder beliebige Ausdriicke enthalten konnen (z.B. in Klammern), gibt es in
der Realisierung in SML fiir alle Nichtterminale der Ausdriicke eine Funktion
parseexpr, der das betreffende Nichtterminalzeichen mitgegeben wird.

datatype parseexprmode =
expr | logexpr | algexpr | term | factor | combident

Die Funktion parseexpr wird aufgerufen, wenn in der Folge der Token als
néichstes ein Ausdruck erwartet wird. Thr wird die bisher errechnete Liste von
Stackbefehlen iibergeben, das erste Token und die Position des Anfangs des
zu parsenden Programmstiicks, der Typ, den der Ausdruck haben soll (oder
tp-_unknown, wenn dieser noch nicht bekannt ist) und das erwartete Nichttermi-
nalzeichen (siehe oben). Da einige Teile dieser Funktion recht umfangreich sind,
ist hier nur der Teil fiir algexpr vollstindig aufgefiihrt.

fun parseexpr(cmdlist, (tok, pos), exprtype, combident) =
| parseexpr(cmdlist, (tok, pos), exprtype, factor) =
| parseexpr(cmdlist, (tok, pos), exprtype, term) =

| parseexpr(cmdlist, (tok, pos), exprtype, algexpr) =
let
(* parse a term *)
val (newcmdlistl, (tokl, posl), rtntype) =
parseexpr (cmdlist, (tok, pos), exprtype, term)

(* main part of parseexpr(algexpr) *)
in
(* looking for a plus or minus symbol *)
if (tokl = tk_opsymbol(os_plus) orelse
tokl = tk_opsymbol(os_minus))
then
(* parse another algebraic expression with the *)
(* same type as above and put a op-command in *)
(* the cmdlist *)
setcmdinret (
parseexpr (newcmdlistl,
gettoken(instr),

5.5. INTERPRETER 73

rtntype,
algexpr),
cmdforoptoken (tokl))
else
(newcmdlistl, (tokl, posl), rtntype)
end
| parseexpr(cmdlist, (tok, pos), exprtype, logexpr) =

| parseexpr(cmdlist, (tok, pos), exprtype, expr) =

Fiir algexpr wird zuerst ein Teilausdruck geparst (term), der nur stéirker bin-
dende Operatoren oder geklammerte Ausdriicke enthélt (z.B. aber auch nur
eine Konstante). Dabei wird der Code fiir diesen Ausdruck erzeugt und sein
Typ ermittelt. Wenn das néichste Symbol ein Plus- oder ein Minuszeichen ist,
wird die Funktion ein weiteres Mal fiir das néichste Token im Programmtext auf-
gerufen. Dann wird auch iiberpriift, ob die beiden Typen identisch sind (noch
wird nicht {iberpriift, ob der angegebene Operator auf diesen Typ angewendet
werden kann) und schlieBlich ein Stackbefehl erzeugt, der die Werte der beiden
Teilausdriicke aufaddiert oder voneinander subtrahiert.

Von der Funktion parsexpr wird schlie8lich die neue Liste mit den Anweisungen,
das nichste Token und seine Position sowie der ermittelte Typ des Ausdrucks
zuriickgegeben.

Die Funktion parsestatements, die fiir die Nichtterminale der Anweisungslisten
zustindig ist, ist dhnlich aufgebaut.

Typpriifung Der Parser fiihrt fiir die Ausdriicke eine Typpriifung durch (zur
Zeit wird nur tiberpriift, ob die zwei Typen der Teilausdriicke gleich sind, auf
die ein Operator angewendet). Fiir jedes Nichtterminalzeichen des Ausdrucks
wird dazu sein Typ ermittelt und mit einem erwarteten verglichen.

Die Uberpriifung dieses Typs entspricht einer L-Attributierung. Jeder Funkti-
on wird mitgegeben, welcher Typ fiir das entsprechende Nichtterminalzeichen
erwartet wird (siehe obiges Beispiel). Dieser Typ wurde beim Parsen des vorher-
gehenden Teils des Ausdrucks berechnet. Es handelt sich also um ein ererbtes
Attribut. Wenn noch kein Typ ermittelt wurde, wird der Typ tp_unknown ge-
setzt. Der ermittelte Typ des Nichtterminalzeichens wird aus den Typen der
Teilausdriicke errechnet. Hier handelt es sich um ein zusammengesetztes Attri-
but. SchliefSlich werden die beiden Typen verglichen und, wenn sie nicht tiber-
einstimmen, eine Fehlermeldung erzeugt.

Die Typen fiir die verwendeten SML-Funktionen und Operatoren werden von
der Bibliothek mit der Funktion parameteroffkt erfragt, die einen Typ fiir den
Riickgabewert (oder tpnotype, wenn die Funktion keinen hat) und eine Liste
von Typen fiir die Parameter der Funktion zuriickliefert.

Codegenerierung Der Parser erzeugt fiir den Anweisungsteil der Operatoren
Code, der auf einer im Preter simulierten Stackmachine ausgefiihrt wird. Die

74 KAPITEL 5. UMSETZUNG DER KONZEPTE

verwendeten Befehle sind beim Preter beschrieben. Ein Stackprogramm ist eine
Folge aus diesen Befehlen. Einzelne Befehle konnen iiber ihre Position in diesem
Programm angesprungen werden.

Codegenerierung fiir Ausdriicke Fiir die Ausdriicke wird eine Folge von
Befehlen erzeugt, nach deren Ausfithrung der Wert dieses Ausdrucks auf dem
Stack liegt. Auch wenn wihrend der Berechnung Zwischenergebnisse auf den
Stack gespeichert werden, liegt am Ende nur der Wert des Ausdrucks auf dem
urspriinglichen Stack.

Dazu wird fiir jede vom Parser gefundene Regel der entsprechende Befehl er-
zeugt, entsprechend den rekursiven Aufrufen der Parser-Funktionen fiir diese
Regeln.

Fiir Konstanten, Variablen und Funktions- oder Operatoraufrufe wird ein Be-
fehl eingefiigt, der den entsprechenden Wert auf den Stack legt. Konstante Wer-
te werden direkt auf den Stack gelegt (sc_push), Variablen ausgelesen und ihr
Wert dann auf den Stack gelegt (ebenfalls mit sc_push). Bei einem Aufruf einer
Funktion (oder eines Operators oder Verfahrens) wird zuerst der Code fiir die
Ausdriicke erzeugt, deren Werte der Funktion als Parameter iibergeben werden
sollen. Da der Code in der Reihenfolge ihres Auftretens in der Parameterliste
erzeugt wird, befinden sich die Parameterwerte in der richtigen Reihenfolge fiir
die Befehle sc_call_fct or sc_call_op auf dem Stack (d.h. der letzte Parame-
ter oben auf dem Stack). Fiir den eigentlichen Prozeduraufruf wird ein Befehl
erzeugt, der die Parameter vom Stack nimmt, diese aufruft und das Ergebnis
wieder auf den Stack legt. Bei einem Operator sc_call op oder sc_call fct
fiir eine SML-Funktion.

Fiir zweistellige Operationen werden zuerst die beiden Teilausdriicke geparst
und dabei der Code generiert, der den Wert dieser Ausdriicke berechnet. Dann
wird ein Befehl erzeugt, der die gewiinschte Operation auf die beiden Werte,
die jetzt oben auf dem Stack liegen, ausfiihrt. Fiir ein + wird z.B. der Befehle
sc_op(so_add) erzeugt. Bei einstelligen Operationen funktioniert es genauso mit
einem Teilausdruck.

Beispiel Fiir den Ausdruck 4 + (5 + 2) * 3 wird das folgende Programmteil
generiert:

sc_push(intval(4))
sc_push(intval(5))
sc_push(intval(2))
sc_op(so_add)
sc_push(intval(3))
sc_op(so_mul)
sc_op(so_add)

Codegenerierung fiir Anweisungen Der Code fiir einen LEA-Operator
setzt sich zusammen aus dem Code, der fiir die einzelnen Anweisungen erzeugt
wird, aus denen er besteht.

5.5. INTERPRETER 75

Zuweisung: Fiir eine Zuweisung wird zuerst der Code fiir den Ausdruck erzeugt
(sieche oben), dessen Wert der Variable zugewiesen werden soll. Dieser Wert wird
dann mit dem Befehl sc_pop in die Variable geschrieben.

Funktionsaufruf: Ein Funktionsaufruf als Anweisung funktioniert im wesent-
lichen wie ein Funktionsaufruf innerhalb eines Ausdrucks (siehe oben). Es muf}
allerdings der Riickgabewert, wenn nétig, wieder vom Stack genommen wer-
den. Dazu wird der Befehl sc_drop hinzugefiigt. Bei Operatoren ist dies nur
notig, wenn diese einen Wert zurckgeben. Da beim Aufruf von SML-Funktionen
grundsétzlich ein Riickgabewert auf den Stack gelegt wird, muf3 danach immer
sc_drop stehen.

If-Anweisung: Fiir eine If-Anweisung werden folgende Befehle erzeugt. Bei der
Codeerzeugung wird unterschieden, ob die If-Anweisung einen Else-Zweig hat
oder nicht.

If-Anweisung ohne Else-Zweig:

<Code fuer Bedingung>
sc_jmpF 1
<Code fuer Anweisungsliste im Then-Zweig>

If-Anweisung mit Else-Zweig:

<Code fuer Bedingung>
sc_jmpF 1
<Code fuer Anweisungsliste im Then-Zweig>
sc_jmp 2
1: <Code fuer Anweisungsliste im Else-Zweig>

Die Marken 1 und 2 stehen dabei fiir konkrete Positionen in der Liste der Anwei-
sungen. Bei der Erzeugung der Sprunganweisungen sind diese Positionen noch
nicht bekannt. Nach der Erzeugung des Codes fiir die Anweisungslisten sind die-
se Positionen bekannt und miissen in den Sprungbefehlen, deren Position sich
der Parser gemerkt hat, nachgetragen werden (lookup).

While-Schleife: Der Code fiir die While-Schleife ist #hnlich wie der fiir die If-
Anweisung, nur gibt es hier noch einen Befehl am Ende der Schleife, der einen
Sprung zuriick an den Anfang der Liste ausfiihrt.

1: <Code fuer Bedingung>
sc_jmpF 2
<Code fuer Anweisungsliste im Rumpf>
sc_jmp 1

Repeat-Schleife: Entsprechend ist der Code fiir die Repeat-Schleife, nur daf3
hier die Bedingung hinter dem Schleifenrumpf steht und der erste Sprungbefehl
entfallt.

76 KAPITEL 5. UMSETZUNG DER KONZEPTE

1: <Code fuer Anweisungsliste im Rumpf>
<Code fuer Bedingung>
sc_jmpF 1

For-Schleife: Bei der For-Schleife muf3 die Bedingung selbst generiert werden.
Auch mufl im Schleifenrumpf die Zihlvariable hochgezihlt werden.

<Code fuer Anfangswert>
sc_pop Zaehlvariable

1: <Code fuer Endwert>
sc_push <Zaehlvariable>
sc_op(so_gte)
sc_jmpF 2
<Code fuer Anweisungsliste im Rumpf>
sc_push <Zaehlvariable>
sc_push 1
sc_op(so_add)
sc_pop <Zaehlvariable>
sc_jmp 1

Return- Anweisung: Bei der Return-Anweisung wird zuerst der Riickgabewert
auf den Stack gelegt, wenn einer angegeben ist. Dann wird noch der Befehl fiir
das Beenden des Operators erzeugt.

<Code fuer Rueckgabewert>
sc_return

5.5.4.6 Verbesserungen

Folgende Moglichkeiten zur Verbesserung des Parsers sollen hier noch kurz
erwidhnt werden.

Bei der Erzeugung von Fehlermeldungen miifiten zusitzlich die FOLLOW-Me-
ngen einiger Produktionen beachtet werden. Z.B. werden beim Auftreten eines
Fehlers in einem der Deklarationsbldcke alle folgenden als leer angenommen
und der Fehler erst erkannt, wenn das BEGIN des Hauptteils erwartet wird.
Solche Fehler kénnen wesentlich besser behandelt werden, wenn schon beim
ersten Deklarationsblock erkannt wird, daf§ das gefundene Token nicht in der
entsprechenden FOLLOW-Menge enthalten ist.

Der Parser ist eigentlich als Ein-Pass-Compiler geplant. Da das Aufbauen des
Operatorbaums zwei Durchlaufe des Parsers notig macht, wére es sinnvoll, beim
ersten Durchlauf einen Strukturbaum des Operators zu erzeugen, aus dem im
zweiten Durchlauf der Code erzeugt wird. Damit konnte der Parser in zwei we-
sentlich iibersichtlichere Funktionen aufgeteilt werden. Ein Strukturbaum wiirde
auflerdem bessere Moglichkeiten zur semantischen Analyse bieten.

5.5. INTERPRETER 7

5.5.5 Bibliothek — Library

In der Library werden Funktionen und die geparsten Operatoren bereitgehal-
ten. Operatoren werden in der Textform geladen (durch einen Aufruf an den
Parser) und liegen dann als SML-Code in einer Struktur vor. Die Library liefert
nach Ubergabe eines Bezeichners an die Funktion find_op den dazugehérenden
Operator an den Aufrufer, d.h. i.d.R. den Linker.

Operatoren werden iiber einen Namen (einen String) identifiziert. Heilen meh-
rere Operatoren gleich, so wird der zuletzt geparste verwendet.

Die Library verwaltet auch die Funktionen des Systems. Funktionen werden
direkt in SML geschrieben und kénnen selbst zwar andere Funktionen aufrufen,
nicht aber Operatoren. Im System gibt es ,interne Funktionen®“ und ,, Benutzer-
Funktionen“, wobei erstere vom System bereitgestellt werden und fundamentale
Operationen aus fithren (z.B. Ermittlung einer Zufallszahl). Benutzer-Funktio-
nen dagegen werden vom Benutzer in Bibliotheken zusammengefafit und sind
zur Durchfiihrung bestimmter evolutiondrer Berechnungen vorhanden.

Wihrend interne Funktionen beim Start des Systems bereits bereitstehen, miis-
sen Bibliotheken mit Benutzer-Funktionen erst nachgeladen werden, sofern sie
vom Experiment benotigt werden (s. Frame). Danach stehen diese Funktionen
mit Verwaltungsdaten zur Verfiigung, jeweils nach Bibliotheken gruppiert. Hier-
durch kénnen verschiedene Bibliotheken Funktionen gleichen Namens enthalten.

Bibliotheken lassen sich bei der Library registrieren, indem sie die Funktion
add_disp aufrufen, die die Dispatcher-Funktionen der Bibliothek eintrigt.

Um einen neuen Operator in die Library einzutragen, ruft der Parser die Funk-
tion add_opdata auf, die neben dem Namen auch die Daten erhilt. Der Namen,
ein String, dient im folgenden auch zur Referenzierung des Operators.

Ebenso lassen sich die von Frame nachgeladenen Kodierungen registrieren, in-
dem sie die Funktion add_coding aufrufen.

5.5.6 Frame

Der eigentliche Start eines Experiments erfolgt durch Aufruf der Funktion start
"Experimentname"; aus der Datei start.sml. Diese Funktion ist auf ober-
ster SML-Ebene definiert, so da} das Nachladen von Programmteilen mit use
moglich ist.

Das Modul Frame enthélt die Strukturen Prepare und TraceUses.In find fil-
es (aus Prepare) wird der Parser aufgerufen und festgestellt, welche Dateien
in einem Experiment verwendet werden. Dies wird durch einen Abstieg in den
Operator-Baum ermdglicht. Die Funktion start l4d dann mit use die noetigen
Dateien nach und anschliefend kann der gesamte Operator-Baum vom Parser
tibersetzt werden, da nun alle Operatoren und Funktionen bekannt sind.

Die Namen der geladenen Dateien werden dabei in der Struktur TraceUses
vermerkt, so daf} sie nicht bei jedem Neustart des Experiments geladen werden
miissen. Dies verkiirzt die Anlaufphase betriichtlich. Die Entscheidung, ob eine
bereits einmal geladene Datei erneut mit use eingebunden wird, wird anhand

78 KAPITEL 5. UMSETZUNG DER KONZEPTE

des Dateidatums gefillt. Durch Aufruf der Funktion TraceUses.useall ()
kann erreicht werden, daf} alle Dateien geladen werden.

Sind alle fiir das Experiment benétigten Daten vorhanden, so wird die Berech-
nung durch einen Aufruf der Linker-Funktion start_experiment angestofien.
Die Funktion start {ibernimmt dabei auch das Abfangen von Ausnahmesitua-
tionen wie z.B. Laufzeitfehlern.

5.5.7 Ausblick

Ausgehend vom augenblicklichen Stand des Systems ist es denkbar, das Parsen
von Operatoren neu zu organisieren:

e Parser: Verwaltungsinformation, die zum Uberpriifen der Typkorrektheit
bei Operator und Funktionsaufrufen dient, wird bei den Operatordaten
abgespeichert, z.B. Operator-/ Funktionsnamen und iibergebene Typen
fiir jeden Aufruf. Hierdurch wiirde es moglich, auf den zweiten Parse-
Vorgang zu verzichten und die Typkontrolle beim Aufbau des Operator-
baums vorzunehmen. Auflerdem kénnte der Parser vom Laufzeitsystem
getrennt werden.

e Linker: Der Linker ist in der Lage, operator-iibergreifende Typpriifun-
gen durchzufiihren, da er alle Operatoren kennt. Er kénnte Kompatibi-
litdtspriifungen zwischen Problem, Kodierungen und Verfahren anstoflen.

e Bibliothek (Library): Es wire moglich, Operatoren in der geparsten Form
zu speichern. Die SML-Strukturen, die der Parser liefert, miifiten in Da-
teien geschrieben werden.

5.5.8 Worterbuch

Erklarung/Definition einiger hier verwendeter Begriffe

(Variablen-) Umgebung: Jeder Operator kann auf Variablen zugreifen. Um
auf deren Werte auch auflerhalb der Lebenszeit des Operators Zugriff zu
haben, werden sie in einer Struktur gespeichert, die beim Start des Expe-
riments erzeugt wird. Die Verschachtelung der Operatoren wird durch die
Verschachtelung der Umgebungen ineinander wiedergegeben.

Elementar-Anweisung: Befehle der ,,Stackmachine®, aus denen der Ablauf-
teil aller Operatoren aufgebaut ist. Die Befehle sind bedeutend simpler als
die dem Benutzer zur Verfiigung stehenden Statements.

Statements: Konstrukte der Programmiersprache. Werden vom Parser in Ele-
mentar-Anweisungen der Stackmaschine umgesetzt.

Stackmachine: Maschinenmodell, das zur Ausfithrung der Operatoren benutzt
wurde. Hierbei hiilt ein Stapel die Operanden fiir Anweisungen bereit.

5.5. INTERPRETER 79

Parameter-Deklaration: Bei der Definition eines Operators muf3 angegeben
werden, welchen Wertebereich seine Parameter annehmen diirfen; dane-
ben kann eine Beschreibung in Form eines Texts angegeben werden. Der
Wert eines Parameters kann von hierarchisch hoher liegenden Operatoren
verdndert werden, daher werden sie in der Variablenumgebung gespeichert.

Formale Parameter: Diese Variablen werden bei der Definition eines Opera-
tors in der Kopfzeile angegeben, wobei ihr Typ festgelegt wird. Bei einem
Aufruf des Operators wird ihnen ein aktueller Wert zugewiesen, der von
den aktuellen Parametern bestimmt wird.

Aktuelle Parameter: Ausdriicke, die in Operator-/ Funktionsaufrufen an der
Stelle der formalen Parameter stehen. Die Werte dieser Ausdriicke werden
vor dem Aufruf berechnet und beim Aufruf selbst an die formalen Para-
meter des Operators zugewiesen.

Lokale Variablen: Diese Variablen werden bei der Definition eines Operators
angegeben, wobei ihnen ein Typ und ggf. ein Wert zugewiesen wird. Diese
Variablen sind nur im Operator sichtbar.

Operator: Operatoren sind Prozeduren, die in der Interpretersprache geschrie-
ben sind und zus#tzliche Verwaltungsdaten enthalten. Sie werden vom
Preter auf der Stackmaschine ausgefiihrt.

Operatorbezeichner: Unter diesem Namen wird ein Operator in einem ande-
ren aufgerufen. Ein Operator kann mehrere Bezeichner haben, mit denen
jeweils andere Belegungen der Parameter und Unteroperatorumgebungen
verbunden sind.

Operatorname: Unter diesem Namen wird ein Operator in der Library ange-
sprochen. Es kann nur jeweils einen Operator unter einem Namen geben.

Operatorbaum: Struktur der Operatoren in einem Experiment. An der Wur-
zel steht der Experimentoperator, direkt unter ihm die Verfahrensopera-
toren. Da Rekursion der Operatoren nicht erlaubt ist, ist die Baumform
garantiert,.

Funktion: Eine Funktion ist in SML geschrieben und kann zwar andere Funk-
tionen aufrufen, nicht aber Operatoren. Es gibt interne und Benutzer-
Funktionen.

interne Funktion: Diese Funktionen werden vom System zur Verfiigung ge-
stellt und {ibernehmen Basisaufgaben wie Ermittlung einer Zufallszahl.

Benutzer-Funktion: Diese Funktionen sind in Bibliotheken zusammengefaflt
und werden je nach Experiment benétigt oder nicht. Die Bibliotheken
werden von SML eingelesen und durch Aufrufe an die Library ins System
integriert. Es ist moglich (und oft beabsichtigt), da8 in verschiedenen Bi-
bliotheken Funktionen gleichen Namens existieren.

externe Funktion: Funktion, die nicht ausschliefllich im SML-System berech-
net wird. Z.B. kénnte eine C- oder Unix-Funktion so an das System ange-
bunden werden.

80 KAPITEL 5. UMSETZUNG DER KONZEPTE

Bibliothek: Sammlung von Benutzer-Funktionen. Kénnen neben Benutzer-
Funktionen zur Ausfiihrung einer evolutioniiren Berechnung auch Problem
und Kodierungen umfassen. Auch die Einbindung externer Funktionen ist
iiber Bibliotheken mdoglich.

Dispatcher-Funktion: Funktion, die von einer nachgeladenen Bibliothek an
die Library tibergeben wird. Sie iibersetzt die Parameter einer Funktion
von der Interpreterdarstellung in die SML-Form, ruft die Funktion auf und
wandelt das Ergebnis zuriick.

Ublicherweise werden diese Funktionen am Ende des Bibliothekenmoduls
in einem Aufruf der Funktion Library.add disp definiert, wobei das
»En“-Konstrukt von SML benutzt wird.

Library: Bezeichnung fiir den Programmiteil, der Operatoren und Funktionen
verwaltet (,,Bibliothek®).

Interpretersprache: Diese Sprache wird vom Parser erkannt. Verfahren, Ope-
ratoren und Experimente konnen in ihr formuliert werden, so daf} sie in
das System integriert werden kénnen.

evolutionire Berechnung: Der Ablauf eines Experiments berechnet fiir ein
Problem durch evolutionére Verfahren eine Losungsmenge.

Verfahren: Implementation eines Algorithmus zur Bearbeitung eines Para-
meteroptimierungsproblems. Verfahren arbeiten auf einer Population und
konnen Operatoren und Funktionen verwenden.

Experiment: Das Experiment legt fest, welches Problem optimiert werden soll
und welche Verfahren hierzu eingesetzt werden. Im Experimentoperator
werden die Populationen deklariert und Kodierungen angegeben, dane-
ben kann im Experimentoperator die Migration von Individuen zwischen
Populationen vorgenommen werden.

Kapitel 6

Erweiterungsmoglichkeiten

6.1 Kritischer Riickblick

Ein Problem bei der Entwicklung des Systems ist das Fehlen von systematischen
Tests fiir die einzelnen Module. Das System wurde zwar in seiner Gesamtheit
mit einer Reihe von Verfahren getestet, doch war die Entwicklung dieser Ver-
fahren eher konstruktiv. Es wurde nicht versucht, wie eigentlich bei einem Test
erforderlich, mégliche Probleme und Fehler des Systems aufzudecken. Um dies
durchzufiihren wire es notwendig gewesen, fiir jedes der Module einen Testplan
zu erstellen, anhand dessen es ausfiihrlich getestet werden kann. Dies sollte von
einer Person gemacht werden, die nicht bei der Entwicklung des Moduls beteiligt
war.

Der Aufbau der Kodierung ist geprégt durch den Wunsch nach einer moglichst
groflen Flexibilitdt. Die Erstellung von eigenen Kodierungen und Problemen
muf} auf Ebene von SML erfolgen und ist nur nach einer Einarbeitung in relativ
komplizierte Zusammenhénge moglich. Oft entsteht der Wunsch, eigene Proble-
me und damit auch eigene Kodierungen zu verwenden, jedoch schon vor dem,
eigene Verfahren zu entwickeln. Es wire daher sinnvoll, den Einstieg durch eine
weitere Schicht zu erleichtern, die nur eine eingeschrinkte Funktionalitéit bietet,
jedoch einfach zu verstehen ist.

Etwas ungliicklich ist die Trennung in Operatoren, die in LEA geschrieben sind
und Funktionen in SML. Das dadurch entstandene Problem der Anbindung von
SML-Funktionen und Strukturen an den Interpreter fiihrte zu einem Bibliothe-
kenkonzept, das zwar recht flexibel, aber auch umstindlich ist und genauere
Kenntnisse zu seiner Benutzung nétig macht.

Tiefergehende Kenntnisse sind auch erforderlich, wenn beim Arbeiten mit dem
System ein Fehler auftritt. Da ein globales Konzept fiir das Behandeln von
Fehlern fehlt, werden Fehlermeldungen, die auf unterster Ebene erzeugt werden,
einfach nach oben weitergegeben, was eine Lokalisierung des Fehlers schwierig
macht, vor allem, wenn nur mit den oberen Ebenen gearbeitet wird. Auch die
Fehlermeldungen des Parsers sind grofitenteils durch dessen internen Aufbau
bestimmt und in manchen Féllen schwierig zu verstehen. In anderen Teilen

81

82 KAPITEL 6. ERWEITERUNGSMOGLICHKEITEN

werden manche Fehler gar nicht vom System abgefangen, sondern werden erst
beim Aufruf einer SML-Funktion erkannt. So ist es z.B. bei den Kodierungen
nur moglich, bestimmte Klassen von Fehlern zu erkennen.

Die Auswertung der Daten, die bei einem Experiment anfallen, wird nur zu
einem kleinen Teil vom System unterstiitzt. Es ist nur moglich die gesamte
Population in eine Log-Dateien zu schreiben und spéiter auszuwerten. Weiterhin
ist nur eine Auswertung der Fitnefl der gespeicherten Individuen moglich, andere
Informationen werden ignoriert.

Ganz fehlt die in den Anforderungen gewiinschte Anbindung von externen Pro-
blemen, die fiir die Anwendung der im System entwickelten Verfahren auf pra-
xisnahe Probleme sehr hilfreich wire. Oft wird die Fitnef fiir solche Probleme
mit aufwendigen Algorithmen bestimmt, die schon als ausfithrbares Programm
existieren. Beispiele dafiir sind Simulatoren oder Finite Elemente Methoden.

6.2 Konkrete Erweiterungen

Im Rahmen der Projektgruppe sind viele Ideen entstanden, wie ein umfassen-
des System zur Unterstiitzung der Entwicklung von Evolutiniiren Algorithmen
aussehen konnte. Wegen der geringen Zahl der Mitglieder und der am Ende
doch etwas knappen Zeit konnten viele dieser Ideen nicht umgesetzt werden.
Bei einigen war schon ziemlich friih klar, da sie nicht mehr in den Rahmen
der Projektgruppe passen wiirden (z.B. eine graphische Benutzungsoberfliche).
Andere wurden angedacht und konnten nicht mehr durchgefiihrt werden oder
sind erst beim Testen des Systems entstanden. Die wichtigsten Ideen sollen hier
kurz beschrieben werden.

6.2.1 Erweiterungen direkt am System

Im folgenden werden die Erweiterungen beschrieben, die an dem System vorge-
nommen werden kénnen, ohne das sich wesentliche Konzepte dndern. Meistens
sind nur einzelne Module des Systems betroffen. Weitere Erweiterungen, die nur
geringere Auswirkungen auf den Rest des Systems haben, sind in der technischen
Dokumentation fiir das jeweilige Teil beschrieben.

e Die Erzeugung von Log-Dateien und die Moglichkeiten zu deren Auswer-
tung sind noch sehr eingeschrénkt. Zur Zeit werden nur ganze Populatio-
nen in die Log-Dateien geschrieben, ausgewertet wird eigentlich nur die
Fitnef der Individuen.

Sinnvoll wére die Moglichkeit, neben allgemeinen Bemerkungen auch die
folgenden Daten zur spiteren Auswertung in eine Log-Datei schreiben zu
koénnen:

— Einzelne Individuen,

— Zé&hlerwerte der Verfahren,

— eine Beschreibung des Experiments und

6.2. KONKRETE ERWEITERUNGEN 83

— die Auswirkung von Operatoren auf Individuen.

e Fiir die Sprache LEA war eigentlich die Moglichkeit geplant, Parameter
von untergeordneten Operatoren dndern zu konnen. Einige Teile des In-
terpreters sind bereits dafiir ausgelegt. Es fehlt lediglich die Fihigkeit des
Parsers, die dazugehorenden Konstrukte zu lesen und Funktionen der Bi-
bliothek, die dem Parser die Moglichkeit geben, die Namen und Typen
vorhandener Parameter zu ermitteln.

e Im Laufe der Berechnungen fiir ein Experiment sind viele Priifungen mog-
lich, z.B. auf Einhaltung des Wertebereichs bei Parametern. Damit da-
bei auftretende Fehlermeldungen einheitlich behandelt werden kénnen, ist
auch ein Konzept fiir die Behandlung von Laufzeitfehlern sowohl in der
Sprache LEA als auch in den SML-Operatoren notig.

e Die FitneBfunktion, wie sie im System verwendet wird, ist eingeschrinkt
auf die Berechnung eines Real-Wertes fiir einen Phénotyp. Moglich wére
hier eine flexiblere Unterstiitzung von Verfahren, die mehr Informationen
benstigen.

6.2.2 Weiterentwicklung des Systems

Fiir andere Erweiterungen ist die Erarbeitung von neuen Konzepten nétig, wie
sie zur Zeit (z.B. fiir die Auswertung) noch nicht existieren, oder es sind um-
fangreiche Anderungen an mehreren Teilen des Systems nétig.

e Eine grofie Erleichterung fiir den Einstieg in das System konnte eine
graphische Benutzungsoberfliche bieten. Dabei sind zwei Teile zu unter-
scheiden: Ein Teil, mit dem die Elemente der Bibliothek wie Probleme,
Kodierungen, Operatoren, etc., erstellt, angezeigt und bearbeitet werden
konnen. Dieser Teil dient dazu, ein Experiment zusammenzustellen. Mit
dem zweiten Teil wird die Ausfiihrung der Experimente gesteuert. Hier
werden Einstellungen vorgenommen (z.B. Parameterwerte fiir die Opera-
toren) und Ergebnisse der Experimente verwaltet und angezeigt.

e Um Probleme und Kodierungen einfach erstellen zu kénnen, sollten dafiir
einheitliche Darstellungen entwickelt werden. Wenn moéglich so, daf3 die
damit definierten Objekte immer giiltig sind. Diese wiirden sich auch zur
interaktiven Eingabe in einer Oberfliche eignen.

Fiir diese Darstellungen sollten sich auch Priifungen durchfiihren lassen,
mit denen schon vor Programmstart entschieden werden kann, welche Pro-
bleme, Kodierungen und vielleicht auch Operatoren zueinander passen und
welche nicht.

e Das Programmieren von Evolutiondren Algorithmen wird dadurch er-
schwert, daf} die Sprache LEA nur bis zur Ebene der Individuen verwendet
werden kann und darunter SML-Operatoren geschrieben werden miissen,
deren Anbindung an LEA etwas kompliziert ist. Um dies zu beseitigen,
miiffite LEA so erweitert werden, dafl auch die Geno- und Phinostruktu-
ren bearbeitet werden konnen. So kénnten auch die Fitneffunktionen in
LEA geschrieben werden.

84

KAPITEL 6. ERWEITERUNGSMOGLICHKEITEN

e Schon angedacht und auch teilweise schon unterstiitzt sind Haltepunkte

und Einzelschrittmodus fiir den Interpreter. Um diese einfach benutzen
zu konnen, ist die Verwendung einer (graphischen) Benutzungsoberfliche
sinnvoll. Der Parser erzeugt zu den Stackprogrammen Debug-Code, der
angibt, welche Position im Stackprogramm zu jeder Zeile des Programm-
texts gehort. In der graphischen Oberfliche kann dann an einer Zeile ein
Haltepunkt gesetzt werden (Break), an dem das System anhilt. Einzelne
Werte aus der Umgebung koénnen fiir den bis dahin erreichten Zustand
angezeigt und auch verdndert werden. Genauso ist ein Einzelschrittmodus
(Trace) moglich, bei dem nach jeder Zeile angehalten wird.

Innerhalb einer graphischen Benutzungsoberfliche sind auch die unter-
schiedlichsten Moglichkeiten fiir eine graphische Anzeige von Informatio-
nen zum Ablauf eines Verfahrens denkbar. Es sollte daher moglich sein,
fiir bestimmte Verfahren und Probleme spezielle Anzeigemodule einzu-
binden. So kann z.B. fiir bestimmte Probleme die Position von Individuen
im Losungsraum angezeigt werden. Fiir manche Verfahren kénnte es auch
sinnvoll sein, anzuzeigen, wie sich ein Individuum durch den Lésungsraum
bewegt.

Zur Anbindung externer Probleme sollte eine definierte Schnittstelle ent-
wickelt werden, mit der Daten mit einem ausfiihrbaren Programm ausge-
tauscht werden kénnen, das dann die Fitnef fiir ein Individuum oder eine
Gruppe von Individuen berechnet.

Kapitel 7

Bedienung

Um den Einstieg in das Arbeiten mit GENOM zu erleichtern, soll in diesem
Abschnitt eine Einfiihrung in die Bedienung des Systems gegeben werden. Diese
Einftihrung erfolgt im Weiteren in mehreren Schritten, die den verschiedenen
Schwierigkeitsgraden entsprechen, in denen mit dem System gearbeitet wer-
den kann. Je tiefer eine Schicht liegt, desto grofler ist der Umfang, in dem sie
verdandert werden kann, aber auch die Kenntnisse, die zu ihrem Verstindnis
notig sind. Die einzelnen Schichten sind:

1. Das Verwenden von vorgefertigten Problemen und Verfahren. Diese kon-
nen miteinander kombiniert und deren Parameter angepafit werden.

2. Eigenen Operatoren und Verfahren zu schreiben.

3. Neue Probleme einzubinden, neue Kodierungen und die dazugehérenden
Funktionen auf SML-Ebene zu erstellen.

Die im folgenden verwendete Einteilung in Experimente, Verfahren und Ope-
ratoren wird nur teilweise von LEA erzwungen. Das hier verwendete Konzept
ist dazu gedacht, moglichst wiederverwendbare Verfahren und Operatoren zu
ermoglichen und eine iibersichtlichere Aufteilung zu bewirken. Es ist ratsam, die-
se vorgesehene Aufteilung auch bei der Erstellung eigener Verfahren zu beriick-
sichtigen.

Das Vorgehen beim Arbeiten mit GENOM wird in den folgenden Abschnitten
anhand eines Genetischen Algorithmus erklirt. Die dazugehorenden Dateien
befinden sich im Bibliotheksverzeichnis des Systems.

7.1 Erste Schritte

7.1.1 Aufbau des Systems

Die einzelnen Komponenten, aus denen sich ein Experiment zusammensetzt,
sind im Unterverzeichnis 1ib des Systemverzeichnisses gespeichert. Die verschie-
denen Komponenten befinden sich in den folgenden Unterverzeichnissen:

85

86 KAPITEL 7. BEDIENUNG

Komponenten Verzeichnis Endung
Experimente /experiments .exp
Probleme /problems .sml
Kodierungen /coding .sml
Verfahren und Operatoren | /operators .eva
SML-Operatoren /ml-operators | .sml

Der Gesamtaufbau des Systems wird im entsprechenden Kapitel ausfiihrlich
beschrieben.

7.1.2 Laden des Systems

Um das System zu laden, muf} zuerst in das Verzeichnis sml des Systems ge-
wechselt werden (alle Pfade sind relativ zu diesem Verzeichnis). Dort wird der
SML-Interpreter in der Version 1.09 geladen. Wie er aufgerufen wird, hiangt
von dessen Installation ab. Meist geschieht dies durch Eingabe von sml oder
sm1-109. Wenn der SML-Interpreter geladen ist, kann das System gestartet
werden, indem nach dem Prompt use "system.sml" eingegeben wird. Dadurch
wird die Datei system.sml ausgefiihrt, die die Befehle enthiilt, mit denen das
System in die SML-Umgebung geladen wird.

7.1.3 Aufruf eines Experiments

Nachdem das System geladen ist, kann unter SML mit dem Befehl start ein
Experiments ausgefithrt werden. Die Dateien mit den Experimentdefinitionen
befinden sich alle im Unterverzeichnis 1ib/experiments des Systemverzeich-
nisses. Der Name eines Experiments ist der Name der Datei, ohne die Endung
.exp. Fiir das Experiment ,, TestGenAlg* sieht der Aufruf so aus:

start ("TestGenAlg");

7.1.4 Beenden von SML

Ein Experiment des Systems kann unter SML mit Ctrl-C abgebrochen werden,
falls dies n6tig sein sollte. Mit Ctr1-D wird SML verlassen.

7.2 Einfiihrung in LEA

Fiir die néchsten Schritte sind Kenntnisse in der Sprache LEA nétig. In dieser
Sprache werden die vom System verwendeten Experimentdefinitionen, Verfahren
und allgemeinere Operatoren geschrieben. LEA ist eine prozedurale Sprache und
stark an Sprachen wie PASCAL oder MODULA2 angelehnt. Wem eine dieser
Sprachen geldufig ist, sollte auch gut mit LEA zurechtkommen. Eine Einfiihrung
in LEA befindet sich in der technischen Dokumentation.

7.3. ZUSAMMENSTELLEN VON EXPERIMENTEN 87

7.3 Zusammenstellen von Experimenten

Wenn nur vorhandene Verfahren auf eine Testfunktionen angewendet werden
soll, reicht es, eine neue Experimentdefinition zu schreiben (oder eine vorhande-
ne abzuwandeln). Hier wird nur ein einfaches Experiment mit einer Population
und einem Verfahren gezeigt. Das Zusammensetzen eines Experiment geschieht
in mehreren Schritten.

1. Zuerst muf} eine Textdatei im Verzeichnis 1ib/experiments des Systems
angelegt werden, deren Namen dem des Experiments entspricht und zu-
sétzlich die Endung exp hat. Die Kopfzeile des Experiments muf} ebenfalls
diesen Namen enthalten. Wenn das Experiment den Namen TestGenAlg
haben soll, muf} also eine Datei TestGenAlg.exp erstellt werden, deren
Kopfzeile folgendermaflen aussieht:

EXPERIMENT TestGenAlg;

2. Auswahl eines vorhandenen Problems: Die vorhandenen Probleme sind
in den Dateien des Verzeichnisses 1ib/problems gespeichert. Sie haben
die Endung sml. Ein Problem wird in einer Experimentdefinition mit
dem Schliisselwort PROBLEM angegeben. Der Name des Problems entspricht
dann wieder dem Dateinamen ohne die Endung. Fiir das Problem ,,Hyper-
sphere“ (aus der Datei Hypersphere.sml) sieht die entsprechende Zeile so
aus:

PROBLEM = "Hypersphere";

3. Deklaration einer Population: Die meisten Verfahren arbeiten auf einer
Population; daher ist es ratsam eine zu verwendet, auch wenn sie nur ein
Individuum enthalten soll. Populationen werden in einem eigenen Block
deklariert, der mit dem Schliisselwort POPULATIONS beginnt. Fiir eine Po-
pulation miissen die folgenden Angaben gemacht werden:

e cine Kodierung, mit der die Individuen kodiert sind,

e cine Log-Datei, in die die Population geschrieben werden kann und

e wie die Population initialisiert werden soll.
Welche Kodierungen auf welche Probleme angewendet werden kénnen,
kann in der Tabelle bei der Beschreibung der Bibliothek im Anhang er-
sehen werden. Um eine Population mit 20 Individuen, die als Bitstrings

kodiert sind, und der Log-Datei GenAlg.log zu erstellen, muf die Dekla-
ration folgendermafien aussehen:

Pop CODED "GenAlgGrayCod" LOG "GenAlg" = RANDOMPOP (20);

4. Auswahl eines Verfahrens: Um ein Verfahren (oder einen Operator) in
dem Experiment zu verwenden, muf} ein Verweis darauf erstellt werden.
Dabei werden den Parametern dieses Verfahrens eigene Werte zugewiesen

88

KAPITEL 7. BEDIENUNG

(dhnlich wie das Erzeugen der Instanz eines Objekts bei einer objektori-
entierten Sprache). Wenn einem Parameter nicht speziell ein Wert zuge-
wiesen wird, erhilt er seinen Default-Wert. Im Programmteil des Experi-
ments kann das Verfahren tiber diesen Verweis aufgerufen werden. Verwei-
se auf Verfahren und Operatoren werden in LEA unter dem Schliisselwort
OPERATORS deklariert.

Alg = GenAlg(mue: 100);

. Wenn im Programmteil des Experiments bestimmte Funktionen benotigt

werden, miissen die Bibliotheken, die diese enthalten, mit USES angegeben
werden. Fiir manche Verfahren, die Genotypen mit verschiedenen Struk-
turen bearbeiten kénnen, miissen die Bibliotheken angegeben werden, die
die Funktionen enthalten mit denen die Struktur, die sich aus dem Pro-
blem ergibt, bearbeitet werden kann (z.B. Mutationsfunktionen). Bei dem
Genetischen Algorithmus ist dies nicht n6tig. Eine n&here Beschreibung
der dazugehodrenden Mechanismen findet sich in der technischen Doku-
mentation.

. Im Anweisungsteil des Experiments kann fiir das Beispiel einfach der oben

beschriebene Verweis aufgerufen werden. Alles weitere wird von dem Ver-
fahren erledigt.

Alg(Pop);

Der Anweisungsteil fiir das Experiment ist in diesem Beispiel sehr kurz.
Es konnen hier beliebige LEA-Programme stehen. Dazu stehen alle Kon-
strukte und Befehle von LEA zur Verfiigung, die auch in den Operatoren
vergewendet werden kénnen.

Aus den oben beschriebenen Teilen setzt sich die gesamte Experimentdefinition
zusammen.

EXPERIMENT TestGenAlg;

PROBLEM = "Hypersphere";
POPULATIONS

Pop CODED "GenAlgGrayCod" LOG "GenAlg" = RANDOMPOP (20);
OPERATORS

Alg = GenAlg(mue: 100);

BEGIN

Alg(Pop);

END

7.4 Erstellen von Verfahren

Der néchste Schritt ist die Erstellung von eigenen Verfahren. Verfahren und
Operatoren kénnen wie Funktionen (z.B. in PASCAL) Argumente erhalten und
einen Riickgabewert zuriickliefern. Ein Verfahren sollte eine oder mehrere Po-
pulationen als Argumente iibergeben bekommen. Wenn sinnvoll, kann es auch
weitere Argumente und einen Riickgabewert haben.

7.4. ERSTELLEN VON VERFAHREN 89

ALGORITHM GenAlg(POP Pop);

So wie die Experimentdefinition Verweise fiir Verfahren beniitzt, miissen in ei-
nem Verfahren Verweise fiir die dort verwendeten Operatoren erstellt werden.
Auch hier kénnen deren Parameter mit den gewiinschten Werten belegt werden.

Ein Ziel bei der Erstellung von Verfahren (und auch Operatoren) ist, diese
moglichst wiederverwendbar und unabhéngig von Problem und Kodierung zu
halten. Das Verhalten eines Verfahrens sollte daher durch eine Reihe von Para-
metern gesteuert werden. Fiir Parameter von Verfahren und Operatoren kénnen
in LEA ein Standard-, ein Minimal- und ein Maximalwert, sowie ein beschrei-
bender Text angegeben werden. Da der Standardwert immer dann genommen
wird, wenn nicht anderes angegeben ist, sollte dafiir ein Wert gew&hlt werden,
fiir den das Verfahren gute Ergebnisse liefert.

Ein Beispiel fiir einen geeigneten Parameter eines genetischen Algorithmus ist
die Zahl der erzeugten Nachkommen mue.

PARAMETER
INT mue = (20, 1, 1000000, "Number of Children");

Da die Log-Dateien fiir komplexere Individuen gréfere Ausmafle annehmen
konnen, ist es sinnvoll, wenn jedes Verfahren einen Parameter hat, der angibt,
ob in die Log-Datei geschrieben werden soll. Eine andere Moglichkeit ist ein
Parameter, der angibt, nach welcher Zahl von Generationen in die Log-Datei
geschrieben werden soll.

BOOL writelog = (FALSE, FALSE, TRUE, "Write a Log");

Der Hauptteil eines Verfahrens besteht meist aus einer Schleife, innerhalb der
die neue Generation berechnet wird. Um die Operatoren wie z.B. Crossover
und Selektion auch auf Teilmengen von Populationen anwenden zu konnen,
arbeiten diese meist nicht auf Populationen, sondern auf Listen von Individuen
(Typ: INDLIST). Daher sollte am Anfang der Schleife die ganze Population in
eine Individuenliste gelesen werden, die nach Bearbeitung durch die Operatoren
wieder zuriick in die Population geschrieben wird. Ein besonderer Fall sind die
Abbruchbedingungen. Diese geben fiir ein Verfahren an, ob die Berechnung weit
genug fortgeschritten ist. Da diese nicht im inneren Schleifenrumpf verwendet
werden, arbeiten diese direkt auf der Population.

WHILE (NOT <Abbruchbedingung>(<Pop1>)) DO
<IndList1> := get_Pop(<Popl>);
<IndList2> := <0Operatorl>(<IndList1>,...);

<IndListn> := <0Operatorn-1>(<IndListn-1>,...);
set_Pop(<Popl>, <IndListn>);
incGenCount (<Pop1>);
IF writelog THEN
logPop (<Pop1>)
FI;
0D

90 KAPITEL 7. BEDIENUNG

Nach Zuriickschreiben der Individuen in die Population am Ende der Schleife
wird der Generationszdhler hochgezihlt und die neue Generation in die Log-
Datei der Population geschrieben. Dies ist notwendig, damit eine Auswertung,
die vom System unterstiitzt wird, vorgenommen werden kann. Natiirlich muf in-
nerhalb der Hauptschleife keine Sequenz, wie oben gezeigt, eingehalten werden.
Es konnen hier auch beliebige LEA-Konstrukte wie Schleifen und Verzweigun-
gen verwendet werden. Fiir den Genetischen Algorithmus ergibt sich konkret;:

ALGORITHM GenAlg(POP Pop) ;

USES PopHandler, IndList;

PARAMETER
INT mue = (20, 1, 1000000, "Number of Children");
BOOL writelog = (FALSE, FALSE, TRUE, "Write a Log");

OPERATORS
StopCond = CntGenStopCond (Generations: 500);
Select = ElitistPropSelect(WorstIndFact: 0.2);
Recomb = Crossover(Points: 2, nue: 1.0);

Mutate = GAMutate(Prob: 0.005);
VAR
INDLIST IndList, Parents, Children, NewIndList;
INT lambda;
BEGIN

WHILE (NOT(StopCond(Pop))) DO
IndList := get_Pop(Pop);
lambda := length(IndList);
Children := Recomb(IndList ,mue);
Children := Mutate(Children);
NewIndList := Select(merge(IndList, Children), lambda);
set_Pop(Pop, NewIndList);
incGenCounter (Pop) ;
IF writelog THEN

logPop (Pop)

FI;

0D;

END;

In diesem Verfahren werden die Bibliotheken PopHandler und IndList verwen-
det. Die erste Bibliothek stellt die Schnittstelle zur Populationsverwaltung dar.
Sie enthilt z.B. die hier verwendete Funktion get_Pop. Aus der zweiten stammen
die Funktionen, die allgemeine Operationen auf Individuenlisten durchfiihren
(z.B. merge).

7.5 Operatoren

Operatoren sind wie die Verfahren aufgebaut. Nur sollten hier keine Populatio-
nen iibergeben, sondern nur mit Listen von Individuen oder einzelnen Individuen
gearbeitet werden. Eine Ausnahme davon sind Operatoren, die eine Abbruch-
bedingung berechnen.

7.5. OPERATOREN 91

Bei Operatoren, die in mehreren Verfahren verwenden werden, sollte hier be-
sonders auf die Verwendung von geeigneten Parametern geachtet werden.

Da in LEA Individuen nicht verdndert werden kénnen, stellen Operatoren die
unterste Ebene des Operatorbaums dar, die in LEA programmiert wird. Wenn es
sich um Operatoren handelt, die mit beliebigen Individuen auskommen, kénnen
diese auch komplett in LEA geschrieben werden. Operatoren dieser Art sind z.B.
manche Selektionsoperatoren oder Abbruchbedingungen. Andernfalls miissen
SML-Funktionen eingebunden werden, die mit den kodierten Individuen einer
Population arbeiten kénnen.

7.5.1 Operatoren auf Individuenlisten

Zu dieser Gruppe gehoren, neben den Selektionsoperatoren, die aus einer Indi-
viduenliste eine Anzahl von Individuen fiir einen weiteren Bearbeitungsschritt
auswéihlen, auch Operatoren, die eine Mutation oder Rekombination auf den
Individuen der Liste durchfiihren. Fiir den in diesem Beispiel verwendeten GA
sind das die Operatoren GAMutate und Crossover. Die Kopfzeile eines solchen
Operators entspricht dem folgenden Schema:

OPERATOR <Name> (INDLIST IndList, ...): INDLIST;

Der Operator GAMutate besitzt den Parameter Prob, der angibt, mit welcher
Wahrscheinlichkeit die einzelnen Bits eines Bitstrings umgedreht werden.

REAL Prob = (0.05, 0.0, 1.0, "Probability for mutation");

Um die Mutation der Individuen durchzufiihren, ruft GAMutate die SML-Funk-
tion mutate aus der Bibliothek ga_mutate auf. Die Aufgabe des Operators be-
steht darin, diese Funktion auf alle Individuen der Liste anzuwenden und den
Parameter fiir die Mutationswahrscheinlichkeit zu definieren. Oft ist es sinnvoll
auch fiir SML-Funktionen, die direkt aus einem Verfahren aufgerufen werden
sollen, einen Operator zu schreiben, der deren Parameter definiert und sinnvolle
Standardwerte vorgibt. Der vollstindige Operator GAMutate sieht so aus:

OPERATOR GAMutate (INDLIST IndList): INDLIST;
USES IndList, Math, ga_mutate;
PARAMETER
REAL Prob = (0.05, 0.0, 1.0, "Probability for mutate");
VAR
IND indiv;
INT i;
BEGIN
FOR i := 1 TO length(IndList) DO
indiv := getListInd(IndList, i);
indiv := mutate(indiv, Prob);
IndList := setListInd(IndList, i, indiv);
0D;
RETURN IndList;
END;

92 KAPITEL 7. BEDIENUNG

7.5.2 Operatoren fiir Abbruchbedingungen

Eine Abbruchbedingung zeigt an, ob eine Population eine bestimmte Bedingung
erreicht hat. Wenn diese wahr wird, wird die Berechnung von weiteren Gene-
rationen abgebrochen. Es gibt verschiedene Moglichkeiten diese Bedingung zu
realisieren. So kann z.B. nach einer bestimmten Anzahl von Generationen ab-
gebrochen werden oder wenn die Fitness der Individuen sich um weniger als
einen vorgegebenen Wert unterscheidet. Der Abbruchbedingung wird eine Po-
pulation iibergeben. Sie gibt einen bool’schen Wert zuriick, der angibt ob die
entsprechende Bedingung erfiillt ist oder nicht.

OPERATOR <Abbruchbedingung>(POP <Pop>): BOOL;

Als Beispiel wird hier eine Abbruchbedingung gezeigt, die wahr wird, wenn eine
bestimmt Anzahl von Generationen berechnet wurde:

OPERATOR CntGenStopCond (POP Pop): BOOL;
USES PopHandler;
PARAMETER
INT Generations
= (100, 0, 100000, "Stop after generation");
BEGIN
IF (getGenCounter (Pop) > Generations) THEN
RETURN TRUE
ELSE
RETURN FALSE
FI;
END;

7.6 Anbinden von Funktionen in SML

Viele Operatoren enthalten Funktionen, die direkt auf den Genostrukturen der
Individuen arbeiten miissen und nur in SML programmiert werden koénnen.
Auch bei langwierigeren Berechnungen sollten SML-Funktionen verwendet wer-
den, da diese um einiges schneller sind. Um diese Funktionen in LEA verwenden
zu kénnen, miissen sie in einer Bibliothek in das System eingebunden werden.
Auf die in einer Bibliothek enthaltenen Funktionen kann zugegriffen werden,
wenn diese Bibliothek mit USES in diesem oder einem iibergeordneten Operator
deklariert wird.

7.6.1 Erstellen von Bibliotheken

Um eine SML-Funktion von LEA aus aufrufen zu kénnen, muf sie in einer Bi-
bliothek gespeichert werden, die in dem System verfiighar wird, wenn sie ein
Experiment oder Verfahren bzw. Operatoren mit USES 6ffnet. Die zu einem be-
stimmten Verfahren gehorenden SML-Funktionen werden oft in einer Bibliothek
zusammengefafit.

7.6. ANBINDEN VON FUNKTIONEN IN SML 93

7.6.1.1 Grundlagen

Der Interpreter kann Funktionen aus Benutzer-Bibliotheken nur dann auffinden
und verwenden, wenn sich die Bibliothek beim Modul Library hat registrieren
lagsen. Dies kann sie durch einen Aufruf der Funktion Library.add.disp er-
reichen. Obwohl in einer Struktur beliebige Funktionen (z.B. Konstanten oder
Hilfsfunktionen) enthalten sein kénnen, werden nur die beim Modul Library
registrierten exportiert und in LEA verwendbar.

Der Funktion Library.add disp wird der Name der Bibliothek iibergeben, d.h.
ein String. Dieser Name muf} derselbe sein, der in einem Operator im USES-
Konstrukt deklariert wurde und er muf} ebenfalls der Namen der Datei ohne die
Endung .sml sein.

Das zweite Argument ist eine Liste aus Elementen vom Typ Dispatchers:

type Dispatchers = string * (Types list * Types) *
((Types.Varvalue list) -> Types.Varvalue)

Diese Tripel enthalten als erstes den Namen der Funktion. Unter diesem Namen
wird die Funktion vom Interpreter aufgerufen. Danach wird ein Tupel ange-
geben, dessen erstes Element die Typen der Eingabeparameter beschreibt, das
zweite Element beschreibt den Typ des Riickgabewerts. Soll die Funktion keine
aktuellen Parameter erhalten, so muf eine leere Liste iibergeben werden. Gibt
sie keinen Wert zurtick, so muf} als Resultatstyp der Typ tp-notype angegeben
werden und die Funktion selbst den Typ notdeklared liefern.

Eine Besonderheit ist die mogliche Polymorphie der Eingabewerte einer Funk-
tion. Wird statt eines konkreten Typs der Typ tp_unknown angegeben, so ak-
zeptiert der Parser jeden Typ. Es mufl aber sichergestellt werden, dafl die ver-
wendete Funktion auch auf jeden Typ richtig reagieren kann!

Das dritte Element des Tripels ist eine Funktion, die eine Liste aus den obersten
Elementen des Stacks bei Aufruf der Funktion erhilt. Die Typen der Elemente
wurden im zweiten Element als Eingabetypen deklariert. Die Funktion liefert
einen Wert vom Riickgabetyp zuriick.

Beispiel Die Berechnung der Fitness eines Individuums wird implementiert, in-
dem die Funktion Fitness beschrieben wird. Sie erhilt ein Individuum als Ein-
gabeparameter, daher der Typ tp_ind, und liefert einen reellen Wert (tp_real).
Wird die Funktion ausgefiihrt, so ,,schilt“ sie das Individuum aus der einelemen-
tigen Liste (indival()) und iibergibt es an die Funktion Fitness des Moduls
PopHandler. Den resultierenden reellen Wert ,, wickelt“ sie in realval() ein, so
daf der Interpreter ihn als Real erkennt. Wird der Funktion eine nicht passende
Liste tibergeben, so 16st sie eine Exception aus, in diesem Fall type_ mismatch.

("Fitness", ([tp-ind], tp.-real),
fn [indival(ind)] => realval(PopHandler.Fitness(ind))
| _ => raise typemismatch "Fitness"

7.6.1.2 Konventionen

Beispielhaft sei die Bibliothek ListBasics beschrieben, in der einige Funktionen
zur Behandlung von Listen definiert werden.

94

KAPITEL 7. BEDIENUNG

Header: Jede Bibliothek beginnt mit einigen Zeilen Information iiber die
Bibliothek:

(* Author : Thomas Schmidt

* Date : 13.07.96, 25.07.96, 21.08.96

* File : lib/ml-operators/ListBasics.sml
* Use for: Basic Functions on Lists

*)

Die Funktionen selbst werden in einer Struktur zusammengefaflt, so dafl
auf oberster SML-Ebene die neuen Funktionen keine Seiteneffekte durch
Uberlagerung anderer Funktionen produzieren konnen. Der Name der
Struktur kann prinzipiell beliebig gewihlt werden, sollte aber aus Griinden
der Ubersichtlichkeit identisch mit dem Namen der Bibliothek sein.

structure ListBasics = struct

Praktischerweise kann innerhalb der Struktur das Modul Types getffnet
werden, wodurch die Notwendigkeit entfiillt, jede Typangabe mit Types.
einzuleiten:

open Types

Es ist weiterhin zweckméfBig, den Namen der Bibliothek in einer Variablen
abzulegen und eine Exception als Funktion zu definieren:

val libname = "ListBasics"
fun type_mismatch s =
Error.runtime_error ("SML-Operator", s,
"Type-Mismatch")

Danach 148t sich die Bibliothek beim Modul Library registrieren. In die-
sem Fall konnen die eigentlichen Funktionen direkt angegeben werden; es
wire natiirlich auch méglich diese Funktionen zunéchst explizit zu formu-
lieren. Es ist sinnvoll, zu jeder Funktion eine Beschreibung der Sematik
anzugeben.

val _ = Library.add_disp
(1ibname,
(* Return an empty Individual-List *)
[("empty_list", ([], tp_indlist),
fn [] => indilistval(nil)
| _ => raise type_mismatch(libname~".empty_list")),

(* Append an Individual to a List of Individuals *)
("append", ([tp_ind, tp_indlist], tp_indlist),
fn [indival(ein), indilistval(liste)]
=> indilistval(ein::1liste)
| _ => raise type_mismatch(libname ~ ".append")),

(* Merge two Individual-Lists *)

7.7. EIGENE PROBLEME 95

("merge", ([tp_indlist, tp_indlist], tp_indlist),
fn [indilistval(vorn),indilistval(hinten)]
=> indilistval (vorn@hinten)
| _ => raise type_mismatch(libname ~ ".merge"))

D

e Schliellich mufl die SML-Struktur noch geschlossen werden:

end

7.7 Eigene Probleme

Wenn nicht nur die mit dem System mitgelieferten Probleme verwendet werden
sollen, kénnen auch eigenen Probleme erstellt werden. Dazu mufl im Verzeichnis
lib/problems eine Datei erstellt werden, die den gewiinschten Namen des Pro-
blems und die Endung sml hat. Der Aufbau dieser Dateien wird im folgenden
beschrieben.

7.7.1 Grundlagen

Ein Problem besteht im System aus einer Fitnessfunktion und einer Funktion,
die Phénotypen liefert.

Die Fitnefunktion erwartet einen Phinotyp und gibt eine reelle Zahl zurtick.
Es wird festgelegt, daf} alle Probleme Minimierungsprobleme sind — jedes Maxi-
mierungsproblem kann durch Negation in ein Minimierungsproblem konvertiert
werden.

Die Funktion zur Erzeugung eines Phénotyps muf3 die Funktion PhenoType-
.init benutzen, da Individuen im System als abstrakte Datentypen implemen-
tiert wurden. Diese Funktion erwartet zwei Parameter: zuerst eine Funktion, die
fiir natiirliche Zahlen jeweils eine Zelle liefert, dann die Anzahl der Zellen, aus
der der Phinotyp besteht.

Wird nun ein Phinotyp benotigt, so wird die Funktion PhenoType. init aufge-
rufen, die fiir jede der Zahlen zwischen 1 und der angegebenen Zellenzahl die
Zellen-Generierungsfunktion aufruft. Ergebnis ist ein Phénotyp.

Ein neues Problem muf} sich bei der Populationsverwaltung registrieren lassen.
Dies wird durch einen Aufruf der Funktion PopHandler.Set Problem erreicht.
Als Parameter miissen dabei die Phinotyp-Generierungsfunktion und die Fit-
nessfunktion iibergeben werden:

val _ = PopHandler.Set_Problem
(fn () => PhenoType.init (cell_n, number_of_cells),
fn x => (evaluate x))

96

KAPITEL 7. BEDIENUNG

7.7.2 Konventionen

Jedes Problemmodul sollte mit einigen Zeilen Informationen iiber die Da-
tei beginnen:

(* Author : Thomas Schmidt

* Date : 14.06.96, 21.08.96

* File : lib/problems/Hypersphere.sml

* Use for: A simple Problem (Hypersphere) incl. Phenotype

*)

Alle Funktionen werden in einer Struktur zusammengefaf3t. Sinnvollerwei-
se wird sie Problem genannt.

structure Problem = struct

Das Problem sollte einige Informationen deklarieren, durch die z.B. Ko-
dierungen sich an das Problem anpassen kénnen. Diese Information ist
sinnvoll, jedoch nicht immer praktisch angebbar.

val number_of_cells = 20
val type_of_cells = "BoundRealAtom"
val name = "Hypersphere"

Bei der Verwendung reeller Zahlen aus einem Intervall miissen dessen
Grenzen angegeben werden.

val min_real = 75.12
val max_real = 5.11

Die eigentliche Berechnung der Fitness kann beliebig kompliziert von stat-
ten gehen. Im Beispiel ,,Hypersphire“ besteht sie jedoch nur aus wenigen
Zeilen.

fun hypersphere (nil)

= 0.0
| hypersphere (r::tl) = r

* r + hypersphere(tl)

Um das Problem an die Populationsverwaltung iibergeben zu kénnen,
muf} neben der FitneBfunktion problem auch eine Generierungsfunktion
fiir Phinotypen angegeben werden (PhenoType.init). Deren erstes Ar-
gument ist eine Funktion, die eine Zellen liefert. Im Falle der mathemati-
schen Probleme auf reellen Zahlen existiert bereits eine solche Funktion in
der Struktur IndLib, die an die Initialisierungsfunktion {ibergeben werden
kann (simple_real_ind). Der zweite Parameter legt die Anzahl der Zellen
im Phénotyp fest.

Der zweite Teil des Problems ist eine Funktion, die ein Individuum bewer-
tet (letzte Zeile). Dazu mufl aber das Individuum in eine Form gebracht
werden, die zur Problemfunktion pafit. Hier reicht es, simple reals2list
auf das Individuum anzuwenden, denn die Problemfunktion kann die ent-
stehende Liste reeller Zahlen bearbeiten.

7.8. KODIERUNGEN 97

val _ = PopHandler.Set_Problem
(fn () => PhenoType.init
(IndLib.simple_real_ind (number_of_cells,
min_real, max_real),
number_of_cells),
fn x => (problem (IndLib.simple_reals2list x)))

7.8 Kodierungen

Manche Verfahren arbeiten nur mit einem Genotyp, der eine bestimmte Struktur
hat. Ein Genetischer Algorithmus benétigt z.B. einen Bitstring. Um ein vorge-
gebenes Problem an dieses Verfahren anzupassen, wird eine Kodierung beniitzt.
Im folgenden soll beschrieben werden, wie eigene Kodierungen erstellt werden
konnen. Die Beschreibung gliedert sich in zwei Abschnitte: Im ersten Abschnitt
wird die Erstellung eines Kodierungsschemas aus bereits vorhanden elementaren
Kodierungsschemata erldutert. Fiir Standardanwendungen sollte dieses Vorge-
hen der Normalfall sein. Die Erzeugung elementarer Kodierungsschemata wird
im zweiten Abschnitt beschrieben.

7.8.1 Kodierungsschema

Als Beispielanwendung dient ein TSP, als Optimierungsverfahren soll eine Evo-
lutionsstrategie eingesetzt werden. Die Permutation der Linge 14 wird in eine
gleichlange Liste von reellen Atomen kodiert, aulerdem soll der Genotyp 14
ebenfalls reellwertige Strategieparameter enthalten. Folgende elementare Ko-
dierungsschemata stehen zur Verfiigung: Perm2Reals kodiert eine Permutation
in eine Liste reeller Zahlen gleicher Linge, Stratlist14 erzeugt eine Liste aus
14 reellen Atomen.

Der Phinotyp besteht aus einer Permutationszelle, der Genotyp aus zwei Listen-
zellen.! Die elementaren Kodierungsschemata im Verzeichnis 1ib/coding (hier:
Perm2RealsCoding.sml und Stratlist14Coding.sml) miissen nachtriglich ge-
laden werden, dann stehen die Strukturen Perm2Reals und Stratlist14 zur
Verfiigung. Mit der Anweisung

val meinkodsname = ("Name fuer diese Kodierung",
[(Perm2Reals.elemcodscheme, [1], [1]),
(Stratlistl4.elemcodscheme, [],[2])];

kann das Kodierungsschema einer Variable zugeordnet werden. Dann konnen
mit

val eingenotyp = Coding.codeind(einphaenotyp,
meinkodsname) ;

IDie Kodierungsfunktionen priifen diesen Aufbau nicht. Der Benutzer ist allein dafiir ver-
antwortlich, die Individuen passend zu den von ihm gew&dhlten Kodierungsschemata zu initia-
lisieren

98 KAPITEL 7. BEDIENUNG

bzw.

val nocheinphaenotyp = Coding.decodeind(eingenotyp,
meinkodsname) ;

Individuen kodiert bzw. dekodiert werden. Um diese Kodierung in Experimenten
verwenden zu konnen, mufl beim System angemeldet werden (dies geschieht mit
der Funktion Library.add_coding()). ZweckmifBigerweise definiert man hierfiir
eine eigene Struktur:

(* elementare Kodierungsschemata laden *)
use "../lib/coding/Perm2RealsCoding.sml";
use "../lib/coding/Stratlist14Coding.sml";

(* Kodierungsschema definieren und anmelden *)
structure BeliebigerName =

struct
val _ = Library.add_coding
("Name fuer diese Kodierung",
("Name fuer diese Kodierung",
[(Perm2Reals.elemcodscheme, [1], [1]),
(Stratlistl4.elemcodscheme, [1,[2]1)1))
end;

7.8.2 Elementare Kodierungsschemata

Ein elementares Kodierungsschema besteht aus einer Struktur zu folgender Si-
gnatur:

signature ELEMENTARY_CODING_SCHEME =

sig

val in_cell_names: string list

val out_cell_names: string list

val coding: CellTypes.cell_type list

-> CellTypes.cell_type list
val decoding: CellTypes.cell_type list
-> CellTypes.cell_type list

end;

in_cell names und out_cell names sind fiir Konsistenzpriifungen vorgesehen
und werden momentan nicht verwendet. Da Strukturen nicht Elemente von Li-
sten oder Tupeln sein konnen, mufl der Inhalt der Struktur in ein Record ge-
schrieben werden. Dazu dient der Funktor GetElementaryCodingScheme mit
der Signatur

signature GET_ELEMENTARY_CODING_SCHEME =
sig
structure Coding: CODING
val elemcodscheme: Coding.elementary_coding_scheme
end;

7.8. KODIERUNGEN 99

Ein elementares Kodierungsschema sieht dann z.B. so aus:

structure Ident_cod : ELEMENTARY_CODING_SCHEME =
struct
val in_cell_names = ["any"]
val out_cell_names = ["any"]
fun coding x = x
fun decoding x = x
end;

structure Ident: GET_ELEMENTARY_CODING_SCHEME =
GetElementaryCodingScheme (Ident_cod)

Das elementare Kodierungsschema kann dann als Ident.elemcodscheme in ei-
nem Kodierungsschema verwendet werden.

7.8.3 Parametrisierte elementare Kodierungsschemata

Gelegentlich ist es wiinschenswert, elementare Kodierungsschemata zu parame-
trisieren, z.B. das Schema stratlist14 cod aus obigem Beispiel. Ein parame-
trisiertes elementares Kodierungsschema hat die Signatur:

signature PARAM_ELEMENTARY_CODING_SCHEME =

sig

type parameter

val in_cell_names: string list

val out_cell_names: string list

val param_coding: parameter

-> (CellTypes.cell_type list
-> CellTypes.cell_type list)
val param_decoding: parameter
-> (CellTypes.cell_type list
-> CellTypes.cell_type list)

end;

Der Funktor heifit GetParamElementaryCodingScheme und hat die Signatur:

signature GET_PARAM_ELEMENTARY_CODING_SCHEME =
sig
structure Coding: CODING
type parameter
val paramelemcodscheme:
parameter —-> Coding.elementary_coding_scheme
end;

Fiir das Beispiel:

structure Stratlist_cod : PARAM_ELEMENTARY_CODING_SCHEME =
struct

100

end;

type parameter = int

val in_cell_names = []

val out_cell_names = ["list"]
fun param_coding p = fn _ => ...
fun param_decoding p = fn _ => []

KAPITEL 7. BEDIENUNG

structure Stratlist: GET_PARAM_ELEMENTARY_CODING_SCHEME =
GetParamElementaryCodingScheme (Stratlist_cod)

Das Kodierungsschema wird dann mit

structure BeliebigerName

(1,

struct
val _ = Library.add_coding
("Name fuer diese Kodierung",
("Name fuer diese Kodierung",
[(Perm2Reals.elemcodscheme, [1],
(Stratlist.paramelemcodscheme 14, [1,[2]1)]1))
end;

erzeugt.

Anhang A

Systemfunktionen

GENOM stellt eine Reihe von Komponenten zur Verfiigung, die von den Biblio-
theken und eigenen Erweiterungen verwendet werden konnen. Dazu gehoren
Funktionen, die von LEA aus aufgerufen werden, Hilfsfunktionen, die zum Auf-
bau von evolutionéiren Algorithmen dienen und vordefinierte Zellen und Atome,
aus denen die Individuen bestehen. Im Gegensatz zu den Bibliotheken sind sie
ein fester Bestandteil des Systems.

A.1 LEA-Funktionen

Die folgenden Funktionen stellen eine Erweiterung von LEA um oft verwendete
Funktionen dar. Dazu gehoéren neben allgemeinen und mathematischen Funk-
tionen auch solche, mit denen Variablen vom Typ INDLIST bearbeitet werden
koénnen und die Anbindung an die Populationsverwaltung. Zur besseren Uber-
sicht sind zusammengehorende Funktionen in Bibliotheken gruppiert. Die fol-
genden Funktionen werden mit dem System mitgeliefert und kénnen in LEA
aufgerufen werden, wenn die entsprechende Bibliothek mit USES geladen wurde.

A.1.1 Ausgabefunktionen, Output

Die Bibliothek Output enthélt Funktionen, mit denen LEA-Variablen zur Stan-
dardausgabe geschrieben werden koénnen.

e write: UNKNOWN ->
Gibt den Inhalt einer Variable aus. Der Typ der Variable wird dabei erst
zur Laufzeit iiberpriift. Unterstiitzt werden die folgenden Typen: INT,
REAL, BOOL, STRING und IND.

e writeln: UNKNOWN ->
Wie write mit anschliefendem Zeilenumbruch.

101

102 ANHANG A. SYSTEMFUNKTIONEN

A.1.2 Grundlegende Funktionen, Basefct

Basefct enthélt die Funktionen zum Umwandeln zwischen den LEA-Typen.
Ferner enthilt sie Funktionen zur Berechnung des Betrags und des Maximums
und Minimums.

e inttoreal: INT -> REAL
Wandelt eine ganze in eine reelle Zahl um.

e floor: REAL -> INT
Rundet eine reelle Zahl auf die néchstniedrigere ganze Zahl.

e absi: INT -> INT
Berechnet den Betrag einer ganzen Zahl.

e absr: REAL -> REAL
Berechnet den Betrag einer reellen Zahl.

e inttostr: INT -> STRING
Wandelt eine ganze Zahl in eine Zeichenkette um.

e realtostr: REAL -> STRING
Wandelt eine reelle Zahl in eine Zeichenkette um.

e maxi: INT * INT -> INT
Gibt das Maximum zweier ganzer Zahlen zuriick.

e mini: INT * INT -> INT
Gibt das Minimum zweier ganzer Zahlen zuriick.

e maxr: REAL * REAL -> REAL
Gibt das Maximum zweier reeller Zahlen zuriick.

e minr: REAL * REAL -> REAL
Gibt das Minimum zweier reeller Zahlen zuriick.

A.1.3 Mathematische Funktionen, Math

Math enthlt einige mathematischen Funktionen, die hauptséchlich aus der SML-
Struktur Math stammen. Dazu kommen noch die Funktionen zum Erzeugen von
Zufallszahlen.

e sqrt: REAL -> REAL
Berechnet die Quadratwurzel einer reellen Zahl.

e sin: REAL -> REAL
Berechnet die Sinusfunktion.

e cos: REAL -> REAL
Berechnet die Cosinusfunktion.

e tan: REAL -> REAL
Berechnet die Tangensfunktion.

A.l

A.1.4 Funktionen fiir Listen von Individuen, IndList

LEA-FUNKTIONEN

arctan: REAL -> REAL
Berechnet den inversen Tangens.

exp: REAL -> REAL
Berechnet eine Exponentialfunktion.

In: REAL -> REAL
Berechnet den natiirlichen Logarithmus.

random: -> REAL
Gibt eine reelle Zufallszahl zwischen 0 und 1 zuriick.

randombound: REAL * REAL -> REAL

Gibt eine reelle Zufallszahl aus dem angegebenen Bereich zuriick.

randomchoose: INT -> INT

103

Wihlt eine ganze Zahl aus dem Bereich von 1 bis zur angegebenen Ober-
grenze aus. Diese Funktion kann dazu verwendet werden, zufillig einen

Index aus einer Liste auszuwéhlen.

randombool: -> BOOL
Erzeugt zuféllig einen bool’schen Wert.

randomstdnorm: -> REAL
Gibt eine normalverteilte Zufallszahl aus N (0, 1) zuriick.

randomnorm: REAL * REAL -> REAL

Gibt eine normalverteilte Zufallszahl mit einem bestimmten Mittelwert

und Varianz aus N (i, 0?) zuriick.

pi: -> REAL
Kreiskonstante .

e: —-> REAL
Natiirliche Zahl e.

Mit den Funktionen aus der Bibliothek IndList kénnen Listen von Individuen,
die unter LEA den Typ INDLIST haben, bearbeitet werden. Zuséatzlich zu den
bekannten Funktionen fiir Listen gibt es hier auch Funktionen, die die maxi-
male, die minimale oder die durchschnittliche Fitnefl der Individuen einer Liste
bestimmen. Bei allen Indizes, die im folgenden verwendet werden, bezeichnet 1
das erste Element. Ein falscher Index fiihrt zu einer Exception.

e emptyList: -> INDLIST

Gibt eine leere Individuenliste zuriick.

e isempty: INDLIST -> BOOL

Uberpriift, ob es sich um eine leere Liste handelt.

e length: INDLIST -> INT

Ermittelt die Lénge einer Liste.

104 ANHANG A. SYSTEMFUNKTIONEN

e head: INDLIST -> IND
Gibt das erste Individuum einer Liste zuriick. Bei einer leeren Liste wird
eine Exception erzeugt.

e tail: INDLIST -> INDLIST
Gibt den Rest der Liste, ohne das erste Element, zuriick.

e getListInd: INDLIST * INT -> IND
Gibt das Individuum an der angegebenen Position zuriick.

e setListInd: INDLIST * INT * IND -> INDLIST
Ersetzt das Individuum an einer bestimmten Position durch das angege-
bene Individuum.

e removelListInd: INDLIST * INT -> INDLIST
Entfernt das Individuum an der angegebenen Position.

e insertlListInd: INDLIST * INT * IND -> INDLIST
Fiigt ein Individuum an einer bestimmten Position ein. Der Index gibt die
Position an, an der sich das Individuum nach dem Einfiigen befindet.

e append: IND * INDLIST -> INDLIST
Héngt ein Individuum vorne an die Liste an.

e merge: INDLIST * INDLIST -> INDLIST
Fiigt zwei Individuenlisten zu einer zusammen.

e getBestFit: INDLIST -> REAL
Ermittelt die beste Fitnef} in einer Individuenliste. Das System ist dafiir
ausgelegt, das Minimum der Fitneflfunktion zu suchen. Hier wird also die
minimale Fitness zuriickgegeben.

e getWorstFit: INDLIST -> REAL
Ermittelt die schlechteste Fitnef.

e getAvgFit: INDLIST -> REAL
Ermittelt die durchschnittliche Fitnefl der Individuen.

A.1.5 Populationsverwaltung, PopHandler

Die Bibliothek PopHandler stellt die Schnittstelle von LEA zur Populationsver-
waltung dar.

o fitness: IND -> REAL
Berechnet die Fitnef eines Individuums.

e get_ind: POP x INT -> IND
Gibt das Individuum mit dem angegebenen Index aus der Population
zuriick.

e set_ind: POP * INT * IND ->
Ersetzt das Individuum mit dem entsprechenden Index durch das angege-
bene Individuum.

A.2. SML-FUNKTIONEN 105

e get_Pop: POP -> INDLIST
Gibt die Individuen in einer Population als Liste von Individuen zuriick.

e set_Pop: POP * INDLIST ->
Ersetzt alle Individuen in einer Population durch die aus der Individuen-
liste.

e getGenCounter: POP -> INT
Ermittelt die Generation der Population.

e incGenCounter: POP ->
Erhoht den Generationszihler einer Population.

e logPop: POP —>
Schreibt die gesamte Population in die dazugehorende Log-Datei.

A.2 SML-Funktionen

Auch fiir die Teile des Systems, die in SML geschrieben werden, gibt es eine
Reihe von Funktionen. Einige der Funktionen, die unter LEA verwendet werden
konnen, sind in SML-Strukturen gespeichert, die beim Start des Systems geladen
werden. Zusétzlich existiert eine Exception zur einheitlichen Fehlerbehandlung.

A.2.1 Fehlerbehandlung, Error

Die Struktur Error enthéilt die Exception runtime_error. Diese wird im System
dazu verwendet, um Fehler, die zur Laufzeit auftreten, zu signalisieren. Auf
oberster Ebene sollte bei Auftreten eines Fehlers nur diese Exception ausgeldst
werden.

e runtime error: exception of string * string * string
Wird verwendet, um anzuzeigen, dafl im System ein Fehler erkannt wur-
de. Die Strings beschreiben, in welchem Modul und welcher Funktion der
Fehler erkannt wurde, sowie eine Beschreibung des Fehlers.

A.2.2 Zufallszahlen, Random

In der Struktur Random sind die Funktionen fiir Zufallszahlen enthalten. Diese
entsprechen den Funktionen aus der Bibliothek Math.

e random: unit -> real
Liefert eine reelle Zufallszahl, die gleichverteilt aus dem Intervall von 0 bis
1 entnommen wird.

e randombound: real * real -> real
Liefert eine Zufallszahl aus einem Intervall, dessen obere und untere Gren-
ze angegeben sind.

106

ANHANG A. SYSTEMFUNKTIONEN

randomchoose: int -> int
Wihlt eine ganze Zahl aus dem Bereich von 1 bis zur angegebenen Ober-
grenze aus.

randombool: unit -> bool
Erzeugt zufillig einen bool’schen Wert.

randseed: real -> unit
Setzt den Startwert fiir den Zufallszahlengenerator. Der Startwert muf
eine reelle Zahl zwischen 0 und 1 sein.

randomstdnorm: unit -> real
Erzeugt eine normalverteilte Zufallszahl mit Erwartungswert 0 und Vari-
anz 1.

randomnorm: real * real -> real
Erzeugt eine normalverteilte Zufallszahl, wobei der Erwartungswert und
die Varianz angegeben werden kann.

A.2.3 Funktionen fiir Individuenlisten, IndList

Einige Funktionen der Bibliothek IndList sind in der gleichnamigen Struk-
tur enthalten. Andere Funktionen dieser Bibliothek lassen sich durch SML-
Bibliotheksfunktionen realisieren.

getBestFit: PopHandler.extInd type list -> real
Gibt die beste Fitnef} eines Individuums der Liste zuriick.

getWorstFit: PopHandler.extInd type list -> real
Gibt die schlechteste Fitnef eines Individuums der Liste zuriick.

getAveFit: PopHandler.extInd type list -> real
Berechnet die durchschnittliche Fitnef3 in der Individuenliste.

getListInd: (PopHandler.extInd type list * int)
-> PopHandler.extInd type
Liefert das Individuum an der angegebenen Position.

setListInd: (PopHandler.extInd type list * int *
PopHandler.extInd type) -> PopHandler.extInd type list
Ersetzt das Individuum an der angegebenen Position.

removelistInd: (PopHandler.extInd type list * int)
-> PopHandler.extInd type list
Entfernt ein Individuum aus der Liste.

insertListInd: (PopHandler.extInd type list * int *
PopHandler.extInd type) -> PopHandler.extInd type list
Fiigt ein Individuum in die Liste ein.

A.3. HILFSFUNKTIONEN FUR EV. ALGORITHMEN 107

A.3 Hilfsfunktionen fiir ev. Algorithmen

A.3.0.1 Ziel

Die Hilfsfunktionen erlauben, einfach Funktionen auf externen Individuen (die
in LEA verwendet werden) zu implementieren. Sie bieten oft gebrauchte Kon-
strukte an, die fiir eine konkrete Aufgabe nur noch an- bzw. ineinandergefiigt
werden miissen. Die Funktion kann durch Einbinden in eine Bibliothek fiir Ope-
ratoren und Verfahren zugreifbar gemacht werden.

A.3.0.2 Konzept

Fiir jede Ebene des Individuums (Geno-/Phénotyp, Zellen, Atome) existieren
Bibliotheken mit Funktionen, die hiufig gebrauchte Konstrukte zur Verfiigung
stellen. Die Funktionen liegen im Verzeichnis sm1/evollib.

e IndLib.sml: Diese Bibliothek unterstiitzt das Erzeugen von zufilligen
Phénotypen, die Wandlung von Phénotypen in einfache SML-Strukturen
und umgekehrt. Aulerdem gibt es Funktionen, die Informationen iiber
Individuen liefern und Funktionen auf externen Individuen (die LEA ver-
wendet).

e <Zelltyp>CellLib.sml: Funktionen, die Zellen verdndern.

e <Atomtyp>AtomLib.sml: Funktionen, die Atome verindern.

A.3.0.3 Beispiel

Es soll eine einfache Zelle eines externen Individuums, die ein reelles Atom
enthilt, normalverteilt mutiert werden.

Aus der Bibliothek RealAtomLib kann die Funktion mutate normal entnommen
werden, die ein einzelnes Atom mutiert.

Die Bibliothek SimpleCellLib enthilt die Funktion apply, die eine Funktion
auf eine Zelle anwendet.

Um das externe Individuum bearbeiten zu kénnen, braucht man die Funktion
extcellapply aus der Bibliothek IndLib.

Somit 148t sich die gesamte Funktion folgendermaflen definieren:

fun Mutate_extern_simple_real
(Ext_Ind, Cell_Nr, sigma, expect) =
IndLib.extcellapply
(SimpleCellLib.apply
(RealAtomLib.mutate_normal expect sigma))
(Ext_Ind, Cell_Nr)

108 ANHANG A. SYSTEMFUNKTIONEN

A.3.0.4 Bibliotheken
Individuen

e IndLib: allgemeine Funktionen auf Individuen.

— simple_ind: (unit -> AtomTypes.atom type)
-> int -> CellTypes.cell type
Hiermit kann eine Funktion erzeugt werden, die Zellen liefert, wenn
sie mit einer Zahl zwischen 1 und dem Maximalwert (1. int-Para-
meter) aufgerufen wird. Alle Zellen werden mit derselben Funktion
erzeugt.

— simple real_ind: int * real * real
-> int -> CellTypes.cell type
Vereinfachung von simple_ind: Die reellen Werte geben den Werte-
bereich an, den die simple-real Zellen des Individuums haben sollen.
— simple_int_ind: int * int * int
-> int -> CellTypes.cell type
simple bool_ind: int -> int -> CellTypes.cell_type
simple unbound_int_ind: int -> int -> CellTypes.cell_type
simple unbound.real_ind: int -> int -> CellTypes.cell_type
Analog zu simple real_ind.

— simple_reals2list: Individuum.individuum type
-> real list
Konvertiert ein Individuum aus simple-real Zellen in eine Liste von
Reals.
— by_functions: (unit -> ’a) list -> int -> ’a
Erzeugt eine Phanostruktur, wobei eine Funktionsliste iibergeben
und fiir die entsprechende Position jeweils die Funktion aufgerufen
wird.

— fromreal list: real list -> int -> CellTypes.cell type
Erzeuge ein Listen-Zellen-Individuum aus einer Liste reeller Zahlen.

— from_int_list: int list -> int -> CellTypes.cell_type
from_bound real_list: real * real -> real list
-> int -> CellTypes.cell type
from_bound_int_list: int * int -> int list -> int
-> CellTypes.cell_type
from bool_list: bool list —-> int -> CellTypes.cell_type
Analog zu from real_list.

— set_cells: (Union0fCells.cell type * int) list ->
Individuum.individuum type -> Individuum.individuum type
Setze einige Zellen in einem Individuum.

— set: Union0fCells.cell type list
-> Individuum. individuum type ->
Individuum.individuum_type
Ersetze alle Zellen eines Individuums durch den Inhalt einer Liste.

— number_of_cells: Individuum.individuum type -> int
Liefert die Anzahl der Zellen in einem Individuum.

A.3. HILFSFUNKTIONEN FUR EV. ALGORITHMEN 109

— extract_data: int list -> (UnionOfCells.cell type
-> ’a) -> Individuum.individuum type -> ’a list
Wende eine Funktion auf einige Zellen eines Individuums an.
— conv_all _cells: (UnionOfCells.cell type -> ’a)
-> Individuum.individuum type -> ’a list
Wende eine Funktion auf alle Zellen eines Individuums an.

— ind2cells: Individuum.individuum type
-> Union0fCells.cell type list
Konvertiere ein Individuum in eine Liste von Zellen.

— simple_reals2list: Individuum.individuum type
-> real list
Konvertiere ein Individuum aus Simple-Zellen, die Real-Atome ent-
halten, in eine Liste von Reals.

— simple_ints2list: Individuum.individuum type -> int list
Konvertiere ein Individuum aus Simple-Zellen, die Int-Atome enthal-
ten, in eine Liste von Ints.

— pair_apply: (UnionOfCells.cell_type *
Union0fCells.cell type —> Union0fCells.cell type)
-> PopHandler.extInd type * PopHandler.extInd type
-> PopHandler.extInd type
Wende eine Funktion auf alle Zellen-Paare zweier externer Individu-
uen an und liefere die resultierenden Zellen im ersten Individuum
zuriick.

— pair_apply cell: (Union0fCells.cell type *
Union0fCells.cell type->’a) -> PopHandler.extInd type
* PopHandler.extInd type * int -> ’a
Wende eine Funktion auf je eine Zelle zweier externer Individuen an,
wobei die Zellen sich an derselben Stelle befinden.

— extapply: (PopHandler.Ind type -> PopHandler.Ind type)
-> PopHandler.extInd type -> PopHandler.extInd type
Wende eine Funktion auf alle Zellen eines externen Individuums an
und liefere das Ergebnis als externes Individuum zuriick.

— extcellapply: (UnionOfCells.cell_type ->
CellTypes.cell type) -> PopHandler.extInd type * int
-> PopHandler.extInd type
Wende eine Funktion auf eine Zelle eines externen Individuums an
und trage das Ergebnis in das Individuum ein.

— extcellapplyall: (UnionOfCells.cell_ type —>
Union0fCells.cell type) -> PopHandler.extInd type
-> PopHandler.extInd type
Wende eine Funktion auf alle Zellen eines externen Individuums an
und gebe es verdndert zuriick.
— extgetcell: PopHandler.extInd type * int
-> Union0fCells.cell _type
Lese eine Zelle in einem externen Individuum aus.
— extsetcell: PopHandler.extInd type *
Union0fCells.cell type * int -> PopHandler.extInd type
Setze eine Zelle in einem externen Individuum.

110 ANHANG A. SYSTEMFUNKTIONEN

— extconv: (PopHandler.Ind type -> ’a)
-> PopHandler.extInd type -> ’a
Wende eine beliebige Funktion auf die Zellen eines externen Indivi-
duums an.

Zellen

e CellLib: Funktionen, die auf allen zur Zeit implementierten Zellen defi-
niert sind. Diese Bibliothek mufl nach Erweiterung des Systems um neue
Zellentypen erweitert werden.

— first: CellTypes.cell type —> AtomTypes.atom type
Ermittelt das erste Atom in einer Zelle.

— last: CellTypes.cell type —> AtomTypes.atom type
Ermittelt das letzte Atom in einer Zelle.

e SimpleCellLib: Funktionen auf Simple-Zellen.

— apply: (AtomTypes.atom type -> AtomTypes.atom_type)
-> CellTypes.cell type -> CellTypes.cell type
Wende eine Funktion auf das Atom in der Zelle an.

e PairCellLib: Funktionen auf Paar-Zellen. Diese Zellen werden u.a. als
Parameter mit zugehorigem Strategie-Parameter verwandst.

— apply: (AtomTypes.atom type -> AtomTypes.atom_type)
(AtomTypes.atom type -> AtomTypes.atom type)
-> CellTypes.cell type -> CellTypes.cell type
Wende je eine Funktion auf die beiden Atome an.

— mutate_real normal: CellTypes.cell_type *
int * real * real -> CellTypes.cell_type
Mutiere ein Real-Atom der Zelle normalverteilt, wobei der erste reelle
Parameter der Erwartungwert, der zweite die Standardabweichung
angibt. Zudem kann die Nummer des Atoms in der Zelle angegeben
werden.

— get_real_strat: CellTypes.cell_type -> real
Ermittelt den zweiten Wert der Zelle, der oft als Strategiewert inter-
pretiert wird. Diese Funktion arbeitet nur auf Real-Atomen.

— mutate_strat_real: real -> real -> int ->
Individuum.individuum type -> Individuum.individuum_type
Mutiere den Strategiewert in einer Paar-Zelle, sofern sie ein Real-
Atom enthilt.

— mutate_prob’: CellTypes.cell_type -> CellTypes.cell_type
Mutiere den Problemwert mit Hilfe des Strategiewerts, wenn beide
Atome reell sind.

— cross_pair: CellTypes.cell_type * CellTypes.cell_ type
* real —> CellTypes.cell type
Mutiere zwei Paar-Zellen intermediér.

A.3. HILFSFUNKTIONEN FUR EV. ALGORITHMEN 111

e ListCellLib: Funktionen auf Listen-Zellen.

— apply: (AtomTypes.atom_ type -> AtomTypes.atom_type)
-> CellTypes.cell type -> CellTypes.cell_type
Wende eine Funktion auf alle Zellen an.

— applyL: (AtomTypes.atom type list ->
AtomTypes.atom type list) -> CellTypes.cell type
-> CellTypes.cell_type
Wende eine Funktion auf die gesamte Liste an.

— applyn: (AtomTypes.atom type -> AtomTypes.atom type)
-> ListCell.index -> CellTypes.cell _type
-> CellTypes.cell_type
Wende eine Funktion auf das n-te Element der Liste an.

— apply-list: (AtomTypes.atom type ->AtomTypes.atom_type)
list -> CellTypes.cell type -> CellTypes.cell type
Wende eine Liste von Funktionen auf die Liste an. Dabei wird bei
Erreichen des Endes der Funktionenliste wieder die erste Funktion
verwendet,.

— pair_apply: (AtomTypes.atom type * AtomTypes.atom_type
-> AtomTypes.atom type) -> CellTypes.cell_type *
CellTypes.cell type -> CellTypes.cell_type
Wende eine Funktion paarweise auf die Elemente zweier Listen an
und liefere eine Liste zurtick.

— list2cell: (’a -> AtomTypes.atom_ type list) -> ’a
-> CellTypes.cell_type
Wandle eine Liste in eine Zelle.

— reallist2cell: real list -> CellTypes.cell_type
Konvertiere eine Liste von Reals in eine Listenzelle.

— boundreallist2cell: real * real -> real list
-> CellTypes.cell_type
Konvertiere eine Liste von Reals in eine Listenzelle von begrenzten
Reals.
— intlist2cell: int list -> CellTypes.cell_type
analog zu reallist2cell.
— boundintlist2cell: int * int -> int list
-> CellTypes.cell_type
analog zu boundreallist2cell.
— boollist2cell: bool list -> CellTypes.cell_type
analog zu boollist2cell.
— cell2list: (AtomTypes.atom type list -> ’a)
-> CellTypes.cell_type -> ’a
Wende eine Funktion auf den Inhalt einer Listenzelle an.
— cell2reallist: CellTypes.cell_type -> real list
Konvertiere eine Listenzelle aus Real-Atomen in eine Liste von Reals.
— cell2intlist: CellTypes.cell_type -> int list
cell2boollist: CellTypes.cell type -> bool list
analog zu cell2reallist.

112 ANHANG A. SYSTEMFUNKTIONEN

— mutate_reverse: ’a list -> ’a list
Mutiert eine beliebige Liste durch Umkehren eines zufillig bestimm-
ten Teils.

— mutate_rotate: ’a list -> ’a list
Mutiert eine beliebige Liste durch Rotation um eine zufillige Anzahl
von Stellen.

— mutate_exchange: ’a list -> ’a list
Tauscht zwei zufillig bestimmte Elemente einer beliebigen Liste aus.

Atome

e AtomLib: Funktionen, die verschiedene Atome bearbeiten kénnen.

— identity: ’a -> ’a
Funktion, die ein Atom nicht verédndert.
(Verwendbar z.B. in PairCellLib.apply.)

— a2real: real -> AtomTypes.atom_type -> real
Wandle ein Atom in einen reellen Wert, wobei bei Ubergabe eines
Atoms, das keinen Real-Wert darstellt, ein Default-Wert zuriickgege-
ben wird.

— a2int: int -> AtomTypes.atom_type -> int
Analog zu a2real fiir Integer.

e RealAtomLib: Funktionen auf reellen Atomen, wobei nicht zwischen be-
grenzten und unbegrenzten unterschieden wird.

— set: AtomTypes.atom type * real -> AtomTypes.atom_type
Setze den Wert eines Real-Atoms, wobei ggf. die Grenzen beachtet
werden.

— gen_bound: real * real * real -> AtomTypes.atom_type
Erzeuge ein begrenztes reelles Atom, wobei die Grenzen iiberpriift
werden.

— mutatenormal: real -> real -> AtomTypes.atom type
-> AtomTypes.atom_type
Mutiere ein Atom normalverteilt.

— mutatenormal0: real -> AtomTypes.atom_type
-> AtomTypes.atom_type
Mutiere ein Atom normalverteilt, mit Erwartungswert 0.

— setmormal: real -> real -> AtomTypes.atom_type
-> AtomTypes.atom_type
Setze ein Atom auf einen normalverteilt ermittelten Wert.

— setmnormal0: real -> AtomTypes.atom_type
-> AtomTypes.atom_type
Setze ein Atom auf einen normalverteilt ermittelten Wert, wobei der
Erwartungswert O ist.

A.3. HILFSFUNKTIONEN FUR EV. ALGORITHMEN 113

— mutate_uniform_interval: real -> real ->
AtomTypes.atom type -> AtomTypes.atom_type
Mutiere ein Atom, wobei ein gleichverteilter Zufallswert aus einem
Intervall auf den alten Wert addiert wird.

— mutate_uniform: real -> AtomTypes.atom type
-> AtomTypes.atom_type
Mutiere ein Atom, wobei ein gleichverteilter Zufallswert aus einem
Intervall um 0 aufaddiert wird.

— mutate_uniform onesided: real -> AtomTypes.atom type
-> AtomTypes.atom_type
Mutiere ein Atom; der aufaddierte Wert stammt aus einem Intervall
zwischen 0 und einem Parameter.

— set_uniform_interval: real -> real ->
AtomTypes.atom type -> AtomTypes.atom type
set_uniform: real -> AtomTypes.atom type
-> AtomTypes.atom_type
Setzt den Wert eines Atoms, analog zu mutate_
— dyadic: (real * real -> real) -> AtomTypes.atom_type *
AtomTypes.atom type -> AtomTypes.atom type
Wende eine Funktion, die zwei reelle Zahlen erwartet, auf zwei reelle
Atome an und liefere das Ergebnis als Atom zuriick. Nur wenn beide
Atome unbegrenzt sind, wird ein unbegrenztes Atom geliefert.

e IntAtomLib: Funktionen auf Integer-Atomen, die ebenfalls keine Unter-
scheidung zwischen begrenzten und unbegrenzten machen.

— Funktionen analog zu RealAtomLib.

e BoolAtomLib:
Funktionen auf Bit-Atomen.

— mutate: real -> AtomTypes.atom_type
-> AtomTypes.atom_type
Mutiere ein Bit mit einer gewissen Wahrscheinlichkeit.

A.3.0.5 LEA-Bibliotheken

Einige Funktionen fiir Permutationen sind auch direkt in LEA verfiigbar.

A.3.0.6 Permutationen

MutatePerm enthiilt Funktionen, um Permutationen zu mutieren.!

e setvalue: IND -> IND
Wihlt zufiillig zwei Atome der Permutation aus und verschiebt alle Atome

dazwischen um eine Position nach links oder rechts. Eine genaue Beschrei-
bung findet sich in [JW95].

I Tats#ichlich enthiilt die Bibliothek nur eine Schnittstelle zu SML-Funktionen aus der Bi-
bliothek PermCellLib, die beim Systemstart geladen wird.

114 ANHANG A. SYSTEMFUNKTIONEN

e xchange: IND -> IND
Tauscht zwei zufillig ausgewihlte Atome gegeneinander aus. Auch diese
Funktion ist in [JW95] beschrieben.

e 1in2: IND -> IND
Wahlt zufillig zwei Atome der Permutation aus und kehrt die Reihenfolge
der dazwischenliegenden Atome um.

A.4 Elementare Kodierungsschemata

Die elementaren Kodierungsschemata sind Grundbausteine der Kodierungen,
konnen selbst aber von LEA aus nicht angesprochen werden.

e Ident

— Eingabe: alle Zelltypen
— Ausgabe: alle Zelltypen
Identische Kodierung.
e Perm2Ints
— Eingabe: eine Zelle, die eine Permutation aus natiirlichen Zahlen zwi-
schen 1 und der Linge der Permutation enthélt
— Ausgabe: eine Zelle, die eine Liste aus ganzen Zahlen enthélt
Die Permutation wird umgekehrt eindeutig in eine Liste gleicher Lénge
ganzer Zahlen kodiert. Umgekehrt 148t sich jede Liste ganzer Zahlen in eine

Permutation gleicher Lange iiberfiihren. Die erzeugte Permutation enthélt
nur Zahlen aus dem Bereich zwischen 1 und der Liange der Permutation.

e Perm2Bits
— Eingabe: eine Zelle, die eine Permutation aus natiirlichen Zahlen zwi-
schen 1 und der Linge der Permutation enthélt

— Ausgabe: eine Zelle, die eine Liste aus boolschen Werten enthilt

— Parameter: natiirliche Zahl
Diese Kodierung baut auf der vorherigen auf, jede Zahl der Ausgabeliste
wird binédr kodiert und die entstehenden Bitlisten konkateniert. Der Para-
meter bestimmt, wieviele Bits zur Kodierung jeder einzelnen Zahl verwen-

det werden. Er muf} ausreichend grof} sein, um die Lange der Permutation
binér darstellen zu konnen (es wird standardbinir kodiert).

e Perm2Gray

— Eingabe: eine Zelle, die eine Permutation aus natiirlichen Zahlen zwi-
schen 1 und der Lange der Permutation enthilt
— Ausgabe: eine Zelle, die eine Liste aus boolschen Werten enthilt

— Parameter: natiirliche Zahl

A.5. ZELLEN 115

Entspricht Perm2Bits, verwendet aber keine Binir-, sondern eine Gray-
kodierung.

e Int2Bits

— Eingabe: SimpleCell, die ein Integer-Atom enthilt. Der Wert des
Atoms muf} > 0 sein.

— Ausgabe: Listenzelle aus Bool-Atomen

Der Integer-Wert wird standardbinéir kodiert. Die Anzahl der Bits in der
Liste ist abh#ngig von der Grofle der Zahl.

e Int2Gray

— Eingabe: SimpleCell, die ein Integer-Atom enthilt. Der Wert des
Atoms mufl > 0 sein.

— Ausgabe: Listenzelle aus Bool-Atomen
Der Integer-Wert wird gray-kodiert, sonst wie oben.
e Reallist2FixedBits

— Eingabe: BoundReal Atome in einer ListCell
— Ausgabe: boolsche Atome in einer ListCell

— Parameter: Paar bestehend aus dem Parameter interval des Bound-
Real Atoms und einer natiirlichen Zahl

Die reellen Zahlen werden einzeln standardbinir kodiert und die entste-
henden Bitlisten konkateniert. Die erste Komponente des Parameters gibt
den Wertebereich der reellen Atome an, die zweite, wieviele Bits zur Dar-
stellung einer einzelnen kodierten Zahl verwendet werden.

A.5 Zellen

Individuen (d.h. sowohl der Geno- als auch der Phinotyp) sind Listen fester
Linge von Zellen. Zellen enthalten ihrerseits Atome, die in einer vom Zelltyp
abhéngigen Struktur angeordnet sind. Derzeit sind vier verschiedene Zelltypen
implementiert: einfache Zellen, Zellen mit einem Paar von Atomen, Zellen mit
Listen von Atomen und Zellen, die eine Permutation enthalten. Alle Zellen ha-
ben folgende Signatur (Erlduterungen dazu siehe Abschnitt 5.1.1 Seite 38):

signature CELL =
sig

type ’a rawstructure;

type index;

val name: string;

val init: ((index -> AtomTypes.atom_type) * index list)
-> AtomTypes.atom_type rawstructure;

val get_element: (AtomTypes.atom_type rawstructure * index)

-> AtomTypes.atom_type;

116 ANHANG A. SYSTEMFUNKTIONEN

val set_element: (AtomTypes.atom_type rawstructure *
AtomTypes.atom_type * index)
-> AtomTypes.atom_type rawstructure;
val cell2rawstructure: CellTypes.cell_type
-> AtomTypes.atom_type rawstructure;
val rawstructure2cell: AtomTypes.atom_type rawstructure
-> CellTypes.cell_type;
val cell2string: AtomTypes.atom_type rawstructure
-> string;
val string2cell: string
-> AtomTypes.atom_type rawstructure;
end;

A.5.1 einfache Zellen

structure SimpleCell: CELL =

struct
type ’a rawstructure = ’a;
type index = int;
val name = "SimpleCell";
end;

e init (f, il) nimmt den ersten Wert x aus der Liste und liefert f(x)
zuriick.

e Sowohl get_element als auch set_element ignorieren das Argument vom
Typ index, da bei einzelnen Elementen eine Indizierung keinen Sinn
macht.

e cell2string liefert das in eine Zeichenkette umgewandelte atom zuriick;
string2cell kehrt diese Operation um.

e rawstructure2cell x = CellTypes.simple cell(x)

e cell2rawstructure CellTypes.simple cell(x) = x; bei anderen Ar-
gumenten wird eine Fehlermeldung erzeugt.

A.5.2 Zellen mit Paaren von Atomen

structure PairCell: CELL =

struct
type ’a rawstructure = ’a * ’a;
type index = int;
val name = "PairCell";
end;

e init (f, [x, y, ...]1) liefert das Paar (f(x), f(y)) zuriick.

A.6.

ATOME 117

In Paaren hat das linke Element den Index 1, das rechte den Index 2. Dies
gilt sowohl fiir get_element als auch set_element.

cell2string (x, y) = (X, ¥), wobei X und y die Darstellung der Ato-
me x und y als Zeichenkette sind; string2cell kehrt diese Operation
um.

rawstructure2cell(x, y) = CellTypes.pair_cell(x, y)

cell2rawstructure (CellTypes.pair.cell(x, y)) = (x, y); bei an-
deren Argumenten wird eine Fehlermeldung erzeugt.

A.5.3 Zellen mit Listen von Atomen

structure ListCell: CELL =

st

end;

ruct

type ’a rawstructure = ’a list;
type index = int;

val name = "ListCell";

init (£, [i1, .., inl) = [£(il1), .., f£(in)]

get_element (1, i) liefert das i-te Element aus der Liste i; dabei hat das
erste Element der Liste den Index 1.

set_element (1, x, i) ersetzt in der Liste 1 das Element an der i-ten
Position durch x.

cell2string kodiert die Atome der Liste als Zeichenketten und trennt
diese durch ein Komma; string2cell kehrt diese Operation um.

rawstructure2cell x = CellTypes.list_cell x

cell2rawstructure (CellTypes.list.cell x) = x; bei anderen Argu-
menten wird eine Fehlermeldung erzeugt.

A.6 Atome

GENOM stellt zwei verschiedene Klassen von Atomen zur Verfiigung: Atome ohne
Parameter und Atome, die zusitzlich noch ein Intervall enthalten. Jede Klasse

von

Atomen hat eine eigene Signatur. Atome ohne Parameter haben folgende

Signatur:

signature ATOM =

sig
type base; (*x Typ des Atoms *)
val name: string; (* Bezeichner fuer diesen Atomtyp *)
val base2atom: base -> AtomTypes.atom_type;

118 ANHANG A. SYSTEMFUNKTIONEN

(* nach Vereinigungstyp *)
val atom2base: AtomTypes.atom_type -> base;
(* von Vereinigungstyp *)
val base2string: base -> string; (* nach string *)
val string2base: string -> base; (* von string *)
val init_random: real -> base; (* Zufallswert *)
end;

Von dieser Signatur gibt es drei Strukturen (reelle Zahlen, ganze Zahlen und
bool’sche Werte als Atome). Zu beachten ist, daf} die reelle Zahl, die init_ran-
dom als Argument erfordert, nicht verwendet wird:

1. structure RealAtom: ATOM =

struct

type base = real;

val name = "RealAtom";
end

e base2string und string2base verwenden die SML-Funktionen
makestring bzw. Real.fromString zur Umwandlung.

e init_random ruft zweimal die Hilfsfunktion Random.random auf. Da
mit dieser Zufallsfunktion nur Zahlen zwischen 0 und 1 erhalten wer-
den konnen und nicht aus ganz R, wird von der ersten Zufallszahl
0.5 abgezogen und das Ergebnis durch die zweite Zufallszahl geteilt.
Das Argument vom Typ real wird nicht verwendet.

e base2atom x = AtomTypes.real atom(x)
e atom2base y liefert x zuriick, falls y = AtomTypes.real atom(x);
andernfalls wird eine Fehlermeldung erzeugt.

2. structure IntegerAtom: ATOM =

struct

type base = int;

val name = "IntegerAtom";
end

e base2string und string2base verwenden die SML-Funktionen
makestring bzw. Int.fromString zur Umwandlung.

e init_random ermittelt dhnlich wie in der Struktur RealAtom eine
zuféllige reelle Zahl und liefert davon die nichstgrofiere ganze Zahl
zuriick. Das Argument vom Typ real wird nicht verwendet.

e base2atom x = AtomTypes.int_atom(x)
e atom2base y liefert x zuriick, fallsy = AtomTypes.int_atom(x);an-

dernfalls wird eine Fehlermeldung erzeugt.

3. structure BooleanAtom: ATOM =
struct

A.6. ATOME 119

type base = bool;
val name = "BooleanAtom";

end

e base2string und string2base verwenden die SML-Funktionen
makestring bzw. Bool.fromString zur Umwandlung.

e init_random ruft die Hilfsfunktion Random.random auf und liefert
true zuriick, falls der Wert grofer als 0.5 ist. Andernfalls wird false
zuriickgeliefert.

e base2atom x = AtomTypes.bool atom(x)

e atom2base y liefert x zuriick, falls y = AtomTypes.bool atom(x);
andernfalls wird eine Fehlermeldung erzeugt.

Atome, deren Wert durch ein Intervall beschrinkt ist, haben folgende Signatur:

signature INTERVALATOM =

sig
type base;
type interval;
val name: string;
val base2atom: base -> AtomTypes.atom_type;
val atom2base: AtomTypes.atom_type —> base;
val base2string: base -> string;
val string2base: string —-> base;
val init_random: interval -> real -> base;
end;

Der Unterschied zu Atomen ohne Parameter besteht darin, dafl zuséitzlich ein
Datentyp Intervall definiert wird und die Funktion init_random als ersten Pa-
rameter ein Intervall erfordert. Dahinter steckt die Idee, dal init_random nur
einen Wert innerhalb des Intervalls liefert. Ob dies tatsédchlich der Fall ist, hdngt
natiirlich von der jeweiligen Struktur ab. Im Augenblick sind die folgenden zwei
Strukturen implementiert:

1. structure BoundRealAtom: INTERVALATOM =
struct
type interval = real * real;
type base = real * interval;
val name = "BoundRealAtom";

end

e atom2base und base2atom arbeiten dhnlich wie bei RealAtom.

e base2string(x, (min, max)) liefert ,X in (min, max)“, dekodiert
wird diese Zeichenkette mit string2base. X, min und max erhiilt man
aus x, min und max mit der SML-Funktion makestring.

120 ANHANG A. SYSTEMFUNKTIONEN

e init random (min, max) seed liefert eine zufillige reelle Zahl zwi-
schen min und max.

2. structure BoundIntegerAtom: INTERVALATOM =
struct

type interval = int * int;
type base = int * interval;
val name = "BoundIntegerAtom";

end

e atom2base und base2atom arbeiten dhnlich wie bei IntegerAtom.

e base2string(x, (min, max)) liefert ,X in (min, max)“, dekodiert
wird diese Zeichenkette mit string2base. X, min und max erhilt man
aus x, min und max mit der SML-Funktion makestring.

e init random (min, max) seed liefert eine zufillige ganze Zahl zwi-
schen min und max.

Anhang B

Bibliotheken

In GENOM werden verschiedene Arten von Bibliotheken unterstiitzt, durch die
das System erweitert werden kann. Sie werden durch vorgegebene Mechanismen
an das System angebunden und sind kein eigentlicher Teil davon. Im weiteren
werden die Bibliotheken beschrieben, die mit dem System mitgeliefert werden.
Sie konnen entweder als Teil von eigenen Erweiterungen verwendet werden oder
als Vorlage fiir selbstgeschriebene Komponenten dienen.

B.1 Experimente

Die Experimentdefinitionen beinhalten alle Einstellungen, die zur Anwendung
eines Verfahrens (oder mehrerer) auf ein Problem nétig sind. Sie konnen daher
direkt aufgerufen werden und stellen die einfachste Moglichkeit dar, einen ersten
Eindruck vom System zu gewinnen.

e TestEvolStrat
Benutzt das Rastingin—Problem und wendet eine Evolutionsstrategie dar-
auf an. Die einzelnen Generationen werden in die Datei EvolStrat ge-
schrieben.

o TestGenAlg
Fiihrt einen Genetischen Algorithmus auf dem Hyperspihren-Problem
durch. Dabei wird die Log-Datei GenAlg. log erzeugt.

B.2 Verfahren

Hier werden drei bekannte evolutionire Verfahren bereitgestellt. Sie kénnen in
eigenen Experimenten und fiir selbstgeschriebene Probleme verwendet werden.
Da sie eine bestimmte Form der Genostruktur voraussetzen, mufl man allerdings
meist eine passende Kodierung beniitzen.

121

122 ANHANG B. BIBLIOTHEKEN

B.2.1 Evolutionsstrategien

Evolutionsstrategien wurden durch zwei Operatoren ins System integriert;:

e EvolStrat: Pop —> ()
Eine Population mit Individuen, die aus reellen Paar-Zellen bestehen, wird
durch eine Evolutionsstrategie optimiert. Parameter sind:

— mue: INT; Anzahl der Nachkommen pro Generation.

— plus: BOOL; Soll die ,Plus-Strategie“ angewandt werden? Ist die-
ser Wert auf FALSE, dann wird die nichste Generation nur aus den
Nachkommen ausgewiihlt (, Komma-Strategie®).

e EvolStratl: Pop -> ()
Dieser Operator ist formal identisch mit EvolStrat, jedoch kann die Re-
kombination der Strategie- und der Problem-Parameter getrennt einge-
stellt werden.

Diese Algorithmen verwenden zwei besondere Operatoren fiir folgende Aufga-
ben:

e Rekombination: Aus der Elterngeneration werden Nachkommen erzeugt,
indem man fiir jede Position reelle Werte ermittelt.

e Mutation: Die reellen Werte eines Individuums werden veradndert.

Fiir die Rekombination stehen zwei Operatoren zur Verfiigung:

e Recombination: INDLIST * INT -> INDLIST
Erzeuge eine Anzahl neuer Individuen aus der Elternpopulation durch
Rekombination. Diese kann durch Parameter gesteuert werden:

— chi: REAL; Parameter fiir intermedisire Rekombination

— do_recomb: BOOL; Soll iiberhaupt rekombiniert oder einfach ein In-
dividuum zufillig gewiihlt werden?

— discreteF: BOOL; Soll der neue Wert direkt von einem Elternindi-
viduum {ibernommen werden? Ist dieser Wert auf FALSE, dann wird
die intermedisire Rekombination verwendet.

globalF: BOOL; Sollen die Eltern-Individuen fiir jeden Wert neu aus
der Population ausgewihlt werden?

e LEA Recomb: INDLIST * IND * IND -> IND
Dieser Operator erzeugt durch Rekombination ein neues Individuum. Da-
bei werden im lokalen Fall die beiden {ibergebenen Individuen verwendet,
sonst wird aus der Population ausgewihlt. Es gibt dieselben Parameter
wie oben, zusétzlich jedoch:

— atomnr: INT; Position der zu rekombinierenden Atome in den Zel-
len.

B.2. VERFAHREN 123

Die Mutation kann durch folgenden Operator erreicht werden:

e ESMutate: INDLIST -> INDLIST
Alle Individuen der Liste werden mutiert, indem zuerst der Strategie-Wert
mit der Meta-Schrittweite mutiert wird, danach der Problem-Wert unter
Verwendung des Strategie-Werts. Parameter ist:

— meta: REAL; Meta-Schrittweite zur Mutation des Strategie-Werts.

Folgende Bibliotheken dienen zur Ausfithrung einzelner Operationen auf den
Individuen:

e es_mutate_pair

— mutate_strat: IND * REAL -> IND
Mutiere alle Strategie-Parameter (d.h. den 2. Wert der Paar-Zelle)
in einem Individuum, wobei der Parameter die Standardabweichung
darstellt.

— mutate_prob: IND -> IND
Mutiere die Problem-Parameter eines Individuums (d.h. den ersten),
wobei der Strategie-Wert steuert.

e es_recomb_pair

— no_recomb: INDLIST -> IND
Wihle ein Individuum zufillig aus.

— discrete: IND * IND -> IND
Rekombiniere zwei Individuen durch direkte Entnahme der Werte
aus dem einen oder dem anderen Individuum.

— intermed: IND * IND * REAL -> IND
Diskrete Rekombination der beiden Individuen, wobei der Parameter
den Ort des erzeugten neuen Werts, im Intervall der alten, festlegt.

— global discrete: INDLIST -> IND
Erzeuge ein neues Individuum, indem fiir jeden Wert ein Individuum
der Liste ausgew#hlt wird und dessen Wert an der fraglichen Stelle
iibernommen wird.

— global_intermed: INDLIST * REAL -> IND
Erzeuge ein neues Individuum, indem jeweils zwei Individuen der Li-
ste ausgewéhlt werden, deren Werte zur Berechnung des neuen Werts
verwendet werden. (Parameter analog zu intermed.)

B.2.2 Genetischer Algorithmus

Das Verfahren GenAlg realisiert einen Genetischen Algorithmus. Als Genostruk-
tur wird eine Zelle mit einer Liste von Bits erwartet. Das Verfahren hat die
beiden Parameter:

124 ANHANG B. BIBLIOTHEKEN

e mue: INT
Mit diesem Parameter wird die Zahl der Nachkommen, die durch den
Crossover erzeugt werden, angegeben.

e writelog: BOOL
Gibt an, ob jede Generation in die Log-Datei geschrieben werden soll.
Sonst wird {iberhaupt nicht in die Log-Datei geschrieben.

Der Algorithmus verwendet die Unteroperatoren GAMutate fiir die Mutation und
Crossover fiir die Rekombination. Mit Hilfe des Operators ElitistPropSelect
werden die Individuen ausgewéhlt, die in die néchste Generation {ibernommen
werden.

e GAMutate: INDLIST -> INDLIST
Mutiert die Bits der Individuen mit einer gewissen Wahrscheinlichkeit. Die
Wabhrscheinlichkeit der Mutation wird durch den Parameter Prob gesteu-
ert.

— Prob: REAL
Die Wahrscheinlichkeit der Mutation eines Bits.

e Crossover: INDLIST * INT -> INDLIST
Erzeugt durch einen Crossover aus einer Individuenliste die angegebene
Zahl von Nachkommen.

— Points: INT
Die Anzahl der Stellen, an denen die Bitstrings gekreuzt werden.

— nue: REAL
Die Wahrscheinlichkeit, dafl fiir zwei ausgewihlte Individuen ein
Crossover ausgefiihrt wird. Andernfalls wird zufillig einer der bei-
den Eltern iibernommen.

B.3 Operatoren

Fiir oft verwendete Vorgehensweisen der Evolutiondren Algorithmen gibt es eine
Reihe von vorgefertigten Operatoren. Sie werden auch zum Teil in den oben
beschriebenen Verfahren verwendet.

B.3.1 Selektionsoperatoren

Selektionsoperatoren dienen dazu, aus einer Individuenliste anhand der Fitnef
eine Anzahl von Individuen auszuwéhlen.

e BestSelect: INDLIST * INT -> INDLIST
Wahlt die gewiinschte Anzahl von Individuen mit den besten Fitnefiwerten
aus der Liste aus.

B.4. PROBLEME 125

e PropSelect: INDLIST * INT -> INDLIST
Wihlt die Individuen proportional zu ihrer Fitnefl aus. Die Individuen
mit den besten Fitnelwerten werden dabei mit héherer Wahrscheinlich-
keit ausgewéhlt, als die mit niedrigerer Fitnef}. Der Operator hat den
Parameter

— WorstIndFact: REAL
Dieser gibt an, wie stark die Fitne3 des schlechtesten Individuums
gegeniiber der des besten Individuums gewichtet werden soll.

e ElitistPropSelect: INDLIST * INT -> INDLIST
Entspricht PropSelect, nur dafl das Individuum mit der besten Fitnef}
auf jeden Fall ausgewihlt wird.

B.3.2 Abbruchbedingungen

Operatoren fiir Abbruchbedingungen liefern einen bool’schen Wert, der wahr
wird, wenn die Population eine bestimmte Bedingung erfiillt.

e CntGenStopCond: POP -> BOOL
Abbrechen, nachdem eine bestimmte Anzahl von Generationen berechnet
wurden. Der Operator hat den folgenden Parameter:

— Generations: INT
Die Zahl der gewiinschten Generationen.

e IndDiffStopCond: POP -> BOOL
Dieser Operator wird wahr, wenn die maximale Differenz der Fitnefwerte
unter einen bestimmten Wert sinkt.

— Difference: REAL
Die Differenz der Fitnef3.

e ResultStopCond: POP -> BOOL
Bricht ab, wenn eine gewiinschte Fitnef erreicht wird. Die Parameter des
Operators sind:

— BestFitness: REAL
Die beste bekannte Fitnef} fiir das Problem.

— Factor: REAL
Gibt an, wie genau diese Fitnef} erreicht werden soll.

B.4 Probleme

Einige mathematische Testfunktionen befinden sich im Verzeichnis 1ib/pro-
blems des Systems. Sie kdnnen verwendet werden, um das Verhalten eigener
Verfahren zu bestimmen.

126 ANHANG B. BIBLIOTHEKEN

B.4.1 Mathematische Funktionen

Hierbei handelt es sich um die Umsetzung einiger bekannter Testfunktionen.
Die Probleme arbeiten alle mit einer Phinostruktur, die aus Zellen von reellen
Zahlen besteht.

e Schwefell, Schwefelfunktion.
Z Zx] ; Min(F(%)) = F(0)
i=1 B

e SumDiffPow, Summe verschiedener Potenzen.
n .
= |zl Min(F(&)) = F(0)
i=1

e Hyperellipse, Achsenparallele Hyperellipsoide.
F(@) =Y (i-x;)°; Min(F(&)) = F(0)

i=1

e Hypersphere, Hypersphére.
n
) =3 2% Min(F(@) = F(©)
i=1

e Griewank Griewank’s Funktion.

n 2

F(#) = 24000 - Hcos <\/;> +1; Min(F(2)) = F(0)

e Rastingin, Rastingin Funktion.

F(Z)=3.0-n+ iw? —3.0-cos(2 -7 x;); Min(F(Z)) = F(0)

i=1
e Schwefel2, Weitere Schwefelfunktion.
F(%) = 418.9829-n — > x; - sin(y/]z:]);
i=1
Min(F(Z)) = F(420.9687,420.9687, . . .)

e DeJong3, De Jong’s 3. Testfunktion.

F(%) = real Z integer(x;)

i=1

B.5. KODIERUNGEN 127

B.5 Kodierungen

In GENOM wird bei den Individuen zwischen einer Darstellung als Genotyp
und einer als Phénotyp unterschieden. Die Umwandlung von einem in den an-
deren Typ wird durch eine Kodierung bewerkstelligt. Fiir jede Population muf}
angegeben werden, welche Kodierung verwendet werden soll. Konkret setzen
sich diese aus den elementaren Kodierungsschemata zusammen. Mit GENOM
werden einige vorgefertigte Kodierungen mitgeliefert.

e EvolStratPair
Die Kodierung EvolStratPair wandelt ein mathematisches Problem in ei-
ne Form um, die von der Evolutionsstrategie des System verwendet wird.
Dazu wird aus jeder Real-Zelle eine Zelle mit einem Paar von Realato-
men. Das erste davon beinhaltet den Wert der Zelle und das zweite den
dazugehorenden Strategieparameter.

— Phianostruktur: Besteht aus Real-Zellen.
— Genostruktur: Fiir jede Real-Zelle der Phinostruktur eine Paar-Zelle.
e GenAlgGrayCod

Diese Kodierung wird verwendet um mathematische Probleme, die aus
Real-Zellen bestehen, fiir die Verwendung mit einem Genetischen Algo-
rithmus in einen Bitstring umzuwandeln.

— Phénostruktur: Besteht aus Real-Zellen.

— Genostruktur: Eine Zelle, die eine Liste mit den erzeugten Bits ent-

hélt.

e Identity
Diese einfachste Kodierung {ibernimmt alle Zellen des Problems in die
Genostruktur. Sie wird verwendet, wenn ein Algorithmus direkt auf der
Struktur des Problems arbeiten kann.

— Phénostruktur: beliebig.
— Genostruktur: entspricht der Phinostruktur.
e Perm2Bits
Um einen Genetischen Algorithmus fiir ein Problem zu verwenden, das
eine Permutation enthilt, wird daraus eine Liste mit Bit-Atomen erzeugt.
Die Kodierung verwendet den Wert Problem.cities, um zu ermitteln,
wieviele Bits zur Darstellung der kodierten Permutation benttigt werden.
— Phianostruktur: Eine Zelle mit einer Permutation.
— Genostruktur: Eine Zelle mit einer Liste aus Bit-Atomen.
e Perm2Gray
Wie Perm2Bits, nur daf§ hier die Bits eine Gray-Kodierung der Elemente
der Permutation darstellen.
— Phénostruktur: Eine Zelle mit einer Permutation.

— Genostruktur: Eine Zelle mit einer Liste aus Bit-Atomen.

128 ANHANG B. BIBLIOTHEKEN

e Perm2Ints
Wandelt eine Problem, das aus einer Permutation besteht in eine Geno-
struktur mit einer Liste aus Ints um.
— Phéanostruktur: Eine Zelle mit einer Permutation.
— Genostruktur: Eine Zelle mit einer Liste aus Integer-Atomen.
e ReallList2FixedBits
Wie GenAlgGrayCod, nur hat hier das Problem eine leicht andere Struktur.
Zusétzlich wird keine Gray-Kodierung, sondern eine dezimale Kodierung
der reellen Zahlen verwendet.
— Phénostruktur: Eine Zelle mit einer Liste aus Real-Atomen.

— Genostruktur: Eine Zelle mit einer Liste, die Bit-Atome enthélt.

Welche Kodierung zu welchem Problem pafit, kann auch der Tabelle B.1 ent-
nommen werden.

| Problem | Kodierungen |
CFunction Identity
DeJong3 EvolStratPair, GenAlgGrayCod, Identity

Griewank EvolStratPair, GenAlgGrayCod, Identity
Hyperellipse | EvolStratPair, GenAlgGrayCod, Identity
Hypersphere | EvolStratPair, GenAlgGrayCod, Identity
nqueens Identity

Rastingin EvolStratPair, GenAlgGrayCod, Identity
Schwefell EvolStratPair, GenAlgGrayCod, Identity
Schwefel2 EvolStratPair, GenAlgGrayCod, Identity
SumDiffPow | EvolStratPair, GenAlgGrayCod, Identity
TSP Perm2Bits,Perm2Gray,Perm2Ints,Identity

Tabelle B.1: Kompatiblitdt von Problemen und Kodierungen

Anhang C

Durchgefiihrte Experimente

C.1 GA mit Schwefelfunktion

Fiir dieses Experiment wurde der vom System bereitgestellte Genetische Algo-
rithmus auf eine der Schwefelfunktionen angewendet. Diese Funktion hat die
Formel:

F(#) = 419,829 n — Y x; - sin(y/|zi])

i=1

Das gesuchte Minimum hat die Fitne 0 und ergibt sich fiir einen Vektor, des-
sen Komponenten alle den Wert 420,9687 haben. Fiir das Experiment wurde
die Dimension 10 verwendet. Da die Funktion, wegen der Periodizitét der Sinus-
funktion, viele lokale Minima hat, ist das Finden einer optimalen L&sung hier
ziemlich schwierig.

Untersucht wurde das Verhalten des Systems bei Verdnderung der folgenden
Parameter:

e Die Anzahl der Generationen, die das Verfahren berechnet.

e Die Anzahl der Individuen in der Population.

e Wieviele Nachkommen mue fiir diese Individuen erzeugt werden sollen.

e Die Wahrscheinlichkeit, mit der ein einzelnes Bit der Genostruktur mutiert
wird.

e An wievielen Stellen der Genostruktur ein Crossover durchgefiihrt wird.

e Die Anzahl der Bits, mit denen ein reeller Wert kodiert wird.
Der Einflu} der folgenden Parameter wurden nicht untersucht:

129

130 ANHANG C. DURCHGEFUHRTE EXPERIMENTE

e Die Wahrscheinlichkeit nue, mit der ein beim Crossover erzeugter Nach-
komme tibernommen wird. Fiir sie wurde der Wert 0 verwendet.

o Bei der Selektion der Faktor, mit dem das schlechteste Individuum ge-
geniiber dem besten gewichtet wird. Bei den durchgefiihrten Experimen-
ten war der Wert 0, 2.

Da das Verhalten des Genetischen Algorithmus bei dieser Funktion stark von
der Ausgangspopulation abhéngt, sind allgemeine Aussagen iiber den Einflufy
der einzelnen Parameter schwierig. Dieses Experiment zeigte sich allerdings ge-
geniiber kleinen Verdnderungen der Parameter recht unempfindlich.

Fiir die untersuchte Funktion haben sich die folgenden Ausgangswerte fiir die
Parameter als giinstig erwiesen:

e Generationen: 500

e Anzahl der Individuen: 30

e Anzahl der Nachkommen: 100

Mutationswahrscheinlichkeit: 0,005

e Crossover an 2 oder 3 Punkten

Kodierung mit 10 Bits pro reeller Zahl

Auch mit diesen Werten wird das Optimum oft nicht gefunden. So kann das
Verfahren in lokalen Minima h&ngen bleiben. Einige Ergebnisse kénnen der fol-
genden Tabelle entnommen werden.

Gen. | Indiv. | mue | MutWahr. | Punkte | Bits | Fitnef} |

500 | 30 100 | 0,005 2 10 82,382
500 | 30 100 | 0,005 2 10 3,1948
500 | 30 100 | 0,005 2 10 118,45
500 | 30 100 | 0,005 2 10 0,0063647
500 | 30 100 | 0,005 2 10 473,85
500 | 30 100 | 0,005 2 10 0,0063647

Tabelle C.1: Ausgangswerte

Ein wichtiger Faktor ist die verwendete Anzahl von Bits fiir die Kodierung. Ist
die Anzahl zu grof}, braucht das Verfahren zu lang und bleibt oft in lokalen
Minima stecken. Ist die Zahl zu gering, kann das globale Minimum meist nicht
gefunden werden. Im Gegensatz zu anderen Funktionen, wie z.B. der Rastingin-
Funktion, lieferte die Schwefelfunktion auch bei einer gréferen Anzahl von Bits
(bis zu 25) gute Ergebnisse. Da aber dadurch die Zeit, die fiir das Berechnen
einer Generation nétig ist, deutlich ansteigt, wurde meist mit einer Bitzahl von
10 gearbeitet. Fiir eine deutlich kleinere Zahl von Bits werden nur noch lokale
Optima gefunden.

C.1. GA MIT SCHWEFELFUNKTION

| Gen. | Indiv. | mue | MutWahr. | Punkte | Bits | Fitnef
500 30 100 | 0,005 2 5 268,83
500 30 100 | 0,005 2 5 268,83
500 30 100 | 0,005 2 5 268,83
500 30 100 | 0,005 2 15 362,55
500 30 100 | 0,005 2 15 126,16
500 30 100 | 0,005 2 15 356,01
500 30 100 | 0,005 3 15 0,0030056
500 30 100 | 0,005 3 15 118,48
500 30 100 | 0,005 3 15 0,044655
500 30 100 | 0,005 3 20 236,88
500 30 100 | 0,005 3 20 1,3338
500 30 100 | 0,005 3 20 237,25
500 30 100 | 0,005 2 25 0,0096720
500 30 100 | 0,005 2 25 120,69

Tabelle C.2: Kodierung

131

Fiir die Mutationswahrscheinlichkeit waren kleinere Werte giinstig. Bei viel zu
groflen Werten (0,5 oder 0,1) wurden schlechte Ergebnisse erzielt. Auch bei
einer Mutationswahrscheinlichkeit von 0,05 wurde nicht das globale Minimum
gefunden. Meist wurde daher der Wert 0,005 verwendet.

| Gen. | Indiv. | mue | MutWahr. | Punkte | Bits | Fitnef |
500 30 100 | 0,5 2 10 1672,9
500 30 100 | 0,5 2 10 1675,8
500 30 100 | 0,1 2 10 687,40
500 30 100 | 0,1 2 10 628,86
500 30 100 | 0,05 1 10 272,47
500 30 100 | 0,05 1 10 280,40
500 30 100 | 0,05 1 10 163,36

Tabelle C.3: Mutationswahrscheinlichkeit

Wiéhrend z.B. bei der Rastingin-Funktion mit einem Crossover an mehreren
Punkten meist bessere Ergebnisse erzielt wurden, konnte bei der Schwefelfunk-
tion auch bei Crossover an einem oder zwei Punkten das optimale Minimum
gefunden werden.

Wichtiger als die Anzahl der Individuen ist eine geniigend grofie Zahl von er-
zeugten Nachkommen. Allerdings kann eine kleinere Zahl von Individuen dazu
fithren, dafl sich die Individuen zu #hnlich werden und ein lokales Minimum

132 ANHANG C. DURCHGEFUHRTE EXPERIMENTE

Gen. | Indiv. | mue | MutWahr. | Punkte | Bits | Fitnef} |

500 | 30 100 | 0,005 1 10 120,06
500 | 30 100 | 0,005 1 10 0,0063647
500 | 30 100 | 0,005 3 10 355,33
500 | 30 100 | 0,005 3 10 63,024
500 | 30 100 | 0,005 3 10 0,0063647

Tabelle C.4: Crossover

nicht mehr verlassen konnen.

| Gen. | Indiv. | mue | MutWahr. | Punkte | Bits | Ergebnis |

500 | 5 25 0,005 2 10 868,70
500 | 5 25 0,005 2 10 651,96
500 | 5 25 0,005 2 10 236,89
500 | 10 10 0,005 2 10 593,90
500 | 10 10 0,005 2 10 837,37
500 | 10 10 0,005 2 10 1579,3
500 | 10 10 0,005 2 10 789,73
500 | 10 100 | 0,005 2 10 118,45
500 | 10 100 | 0,005 2 10 118,45
500 | 10 100 | 0,005 2 10 118,45
500 | 10 100 | 0,005 2 10 118,45
500 | 20 100 | 0,005 2 10 236,89
500 | 20 100 | 0,005 2 10 476,02
500 | 20 100 | 0,005 2 10 355,34
500 | 30 30 0,005 2 10 149,35
500 | 30 30 0,005 2 10 667,21

Tabelle C.5: Individuen und Nachkommen

Anhang D

Syntax von LEA

Dieser Anhang enthilt die EBNF, die die Syntax von LEA beschreibt. Weiterhin
werden alle Schliisselworte von LEA und die Operatoren, die in Ausdriicken

verwendet werden kénnen, aufgelistet.

D.1 EBNF von LEA

Hier ist die EBNF (Erweiterte Bachus-Naur-Form) dargestellt, die dem Par-
ser fiir LEA zugrundeliegt. Sie enthélt die Grammatikregeln, aus denen LEA

aufgebaut ist.
leaprog =

experiment =

oporalg =

experiment | oporalg .

"EXPERIMENT" ident ";"
loadlib
problemdecl
populationdecl
operatordecl
vardecl
"BEGIN"

statement {";" statement}
"END" ";" .

("ALGORITHM" | "OPERATOR") ident
["("callparamdekl ")"]
[u . type] " ; "
loadlib
paramdecl
operatordecl
vardecl
"BEGIN"
statement {";" statement}
"END" ";" .

133

134

type =

callparamdecl =
loadlib

operatordecl =

populationdecl =

problemdecl =
opdecl =

paramdef =

popdecl =

operatordekl =

paramdekl =

pardekl =

localvardekl =

vardekl =

combident =
statementlist =

statement =

ANHANG D. SYNTAX VON LEA

"INT" | "REAL" | "BOOL" | "IND" |
"INDLIST" | "POP"

type ident ["," type ident]
["USES" ident {"," ident} [";"]1]
["OPERATORS" opdecl {";" opdecl}]

["POPULATIONS" popdecl {";" popdecl}]

"PROBLEM" "=" constant ";"
[ident "=" ident ["(" paramdef ")"]]
ident ":" constant

{"," ident ":" constant} .

[ident "CODED" constant "LOG" constant
[= ("RANDOMPOP" "(" constant ")" |
"LOADFROM" " (" constant ")")]1]

ident "=" ident
["(" ident ":" constant
{"," ident ":" constant} ")"]

["PARAMETER" pardekl {";" pardekl}]

[type ident "=" "(" constant ","
constant "," constant "," constant ")"]

["VAR" vardekl {";" vardekl}]

[type ident [":=" constant]
{"," ident [" := " constant]}]

ident (":" ident | {"." ident})
statement {";" statement}

combident [":=" expr]
"IF" expr "THEN" statementlist
["ELSE" statementlist] "FI" |
"WHILE" expr "DO" statementlist "OD" |
"REPEAT" statementlist "UNTIL" expr |
"FOR" ident ":=" expr "TO" expr "DO"
statementlist "0OD" |
"RETURN" expr .

D.2. SCHLUSSELWORTER 135

expr = logexpr [("AND" | "OR") exprl]
logexpr = algexpr
[(r=" | ey | ot | s
ne=t | ||>=||) algexpr]

algexpr = term [("+" | "-") algexpr].
term = factor [("*" | "/") term]
factor = combident ["(" expr {"," expr} ")"] |

constant |

" (ll expr |l) " |

"-" factor |

"NOT" factor .

D.1.1 Abweichungen

Der Parser weicht in einigen Punkten von der Sprache ab, die durch diese EBNF
definiert ist. So werden einige Konstrukte, die diese EBNF zulassen wiirde,
schon wihrend des Parsens durch semantische Priifungen ausgeschlossen. Der
Parser 148t z.B. keine Zuweisung an einen Funktionsaufruf zu, was nach dieser
Definition eigentlich moglich wére.

Das Verwenden von Parametern in combident (ident { ,,.“ ident }) ist zur Zeit
noch nicht realisiert.

D.1.2 Probleme

Wegen einer eleganteren Realisierung in SML sind die EBNF-Ausdriicke fiir
expr und algexpr rechtsassoziativ und nicht linksassoziativ. Da dies aber nur die
Reihenfolge beeinflufit, in der Terme aufaddiert bzw. voneinander subtrahiert
und and- bzw. oder-verkniipft werden, diirften bei der jetzigen Semantik der
Sprache keine merklichen Auswirkungen auftreten (eigentlich nur, wenn Fehler
auftreten).

D.2 Schliisselworter

Folgende Schliisselworter werden in LEA verwendet und sind daher als Bezeich-
ner nicht zugelassen:

ALGORITHM, AND, BEGIN, BOOL, BREAK, CODED, DO, ELSE, END,
EXPERIMENT, FALSE, FI, FOR, IF, IND, INDLIST, INT, LOADFROM,
LOG, NOT, 0D, OPERATOR, OPERATORS, OR, RANDOMPOP,
PARAMETERS, POP, POPULATIONS, PROBLEM, REAL, REPEAT,

RETURN, STRING, THEN, TO, TRUE, UNTIL, USES, VAR, WHILE

136

ANHANG D. SYNTAX VON LEA

D.3 Operatoren

Die folgende Tabelle zeigt die in LEA verwendeten Operatoren nach der Stérke
geordnet, mit der sie die Operanden binden. Der oberste Operator bindet dabei
am stérksten, der unterste am schwéchsten. Operatoren mit gleicher Stirke sind

hier in Gruppen zusammengefaft.

Operator Wirkung Definiert fiir
- als Vorzeichen | Invertiert das Argument real, int
NOT Negiert das Argument bool

* Multiplikation real, int
/ Division real, int
+ Addition real, int
- Subtraktion real, int
= Test auf gleich bool

<> Test auf ungleich bool

< Test auf kleiner bool

> Test auf grofler bool

<= Test auf kleiner oder gleich | bool

>= Test auf grofler oder gleich | bool
AND Logisches Und bool

OR Logisches Oder bool

Literaturverzeichnis

[AJJ+94]

[AJK+95]

[BBSS88]

[Ben92]

[Beu81]

[Bra90]

[Bru93]

[BS93]

[Cla96)

[CS88]

Frank Amos, Karsten Jung, Kurt Jaeger, Bernd Kawetzki, Wil-
fried Kuhn, Oliver Pertler, Ralf Reifling, and Markus Schaal. Zwi-
schenbericht der Projektgruppe Genetische Algorithmen. Technical
report, Universitidt Stuttgart, Fakultit Informatik, Institut fiir In-
formatik, Abteilung Formale Konzepte, 1994.

Frank Amos, Karsten Jung, Bernd Kawetzki, Wilfried Kuhn, Oliver
Pertler, Ralf Reifling, and Markus Schaal. Endbericht der Projekt-
gruppe Genetische Algorithmen. Technical Report FK95/1, Univer-
sitdt Stuttgart, Fakultit Informatik, Institut fiir Informatik, Abtei-
lung Formale Konzepte, 1995.

H. Blohm, T. Beer, U. Seidenberg, and H. Silber. Produktionswirt-
schaft. Neue Wirtschaftsbriefe, Herne/Berlin, 1988.

Martin Philip Bendsge. Optimisation topologique et les méthodes
d’homogénéisation. In Lecture notes, Advanced COMETT Course,
Liege, Belgien, 1992.

P. Beutel. Das asymmetrische travelling salesman problem. Hain,
1981.

H. Braun. On solving travelling salesman problems by genetic al-
gorithms. Institut fiir Logik, Komplezitit und Deduktionssysteme,
Universitit Karlsruhe?, 1990.

Ralf Bruns. Direct chromosome representation and adanced genetic
operators for production scheduling. In S. Forrest, editor, Procee-
dings of the Fifth International Conference on Genetic Algorithms,
San Matteo, 1993. Morgan Kaufmann Publishers.

Thomas Béck and Hans-Paul Schwefel. An overview of evolutionary
algorithms for parameter optimization. In Evolutionary Computa-
tion, pages 1-23. The Massachusetts Institute of Technology, 1993.

V. Claus. Naturanaloge Verfahren. Vorlesung an der Fakultét In-
formatik, 1995/96.

V. Claus and A. Schwill. Duden Informatik. Engesser,H., BI, Mann-
heim, 1988.

137

138

[Dav91]

[DJ75]

[DSY0]

[Due93]

[GHO1]

[GILS96]

[GL85)]

[Gol&9]

[GWHI0]

[H579]

[Hol75]

[Joh73]
[TW95]

[Kir90]

Literaturverzeichnis

L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinold,
New York, 1991.

K. De Jong. An Analysis of the Behaviour of a Class of Genetic
Adaptive Systems. Doctoral thesis, University of Michigan, Ann
Arbor, 1975.

Gunter Dueck and Tobias Scheuer. Threshold acceptance: A gene-
ral purpose optimization algorithm appearing superior to simulated
annealing. Journal of Computational Physics, (90):161-175, 1990.

Gunter Dueck. New optimization heuristics for the Great Deluge
Algorithm and the Record—to—Record Travel. In Journal of Com-
putational Physics, volume 104, pages 86-92, 1993.

M. Grotschel and O. Holland. Solution of large-scale symmetric
travelling salesman problems. Mathematical Programming, 51:141—
202, 1991.

Matthias Grofimann, Darko Ivancan, Alexander Leonhardi, and
Thomas Schmidt. Zwischenbericht der Projektgruppe Evolutionére
Algorithmen. Technical report, Universitit Stuttgart, Fakultéit
Informatik, Institut fiir Informatik, Abteilung Formale Konzepte,
1996.

D. Goldberg and R. Lingle. Alleles, loci and the travelling sales-
man. In J. Greffenstette, editor, Proceedings of the First Internatio-
nal Conference on Genetic Algorithms and their Applications, San
Matteo, 1985. Morgan Kaufmann Publishers.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison Wesley, Reading, 1989.

Claas de Groot, Diethelm Wiirtz, and Karl Heinz Hoffmann. Op-
timizing complex problems by nature’s algorithms: Simulated An-
nealing and Evolution Strategy - a comparative study. In Parallel
Problem Solving from Nature, 1st Workshop, PPSN I, pages 445—
454. Springer—Verlag, 1990.

Herbert Hornlein. Ein Algorithmus zur Strukturoptimierung von
Fachwerkkonstruktionen. Master’s thesis, Ludwig-Maximilians-
Universitdt, Miinchen, Mérz 1979.

J. H. Holland. Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, 1975.

K. J. Johnson. Operations Research. VDI-Verlag, Diisseldorf, 1973.

Karsten Jung and Nicole Weicker. Funktionale Spezifikation des
Software-Tools EAGLE. Technical Report FK 2/95, Universitiit
Stuttgart, Fakultit Informatik, Institut fiir Informatik, Abteilung
Formale Konzepte, 1995.

Uri Kirsch. On singular topologies in optimum structural design.
Structural Optimization, 2:133-142, 1990.

Literaturverzeichnis 139

[Kir94]

[LLRKS85]

[Mau94]

[Mle92]

[Rec73]

[Sch81]

[WSF89]

[Z&p82]

Uri Kirsch. Singular and local optima in structural optimization.
ATAA-94-4267-CP, pages 150-160, 1994.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D. Shmoys.
The Travelling Salesman Problem. Lawler,E.L., 1985.

Kurt Maute. Topologieoptimierung kontinuierlicher Tragwerks-
strukturen. In Kurt Maute, editor, Topologie Workshop — Ein An-
satz zur Entwicklung alternativer Strukturen, pages 107—127, Stutt-
gart, 1994. Sonderforschungsbereich 230 — Natiirliche Konstruk-
tionen.

H. P. Mlejnek. Some aspects of the genesis of structures. Structural
Optimization, 5:64—69, 1992.

I. Rechenberg. Fuwolutionsstrategie: Optimierung technischer Sy-
steme mnach Prinzipien der biologischen FEwvolution. Frommann-
Holzbog, Stuttgart, 1973.

Hans-Paul Schwefel. Numerical optimization of computer models.
John Wiley & Sons, 1981.

D. Whitley, T. Starkweather, and D’Ann. Fuquay. Scheduling pro-
blems and travelling salesmen: The genetic edge recombination ope-
rator. ICGA’89, pages 133-140, 1989.

G. Zapfel. Produktionswirtschaft. Operatives Produktionsmanage-
ment. de Gruyter, Berlin, 1982.

