
Abschlu�bericht der

Projektgruppe

Evolution�are Algorithmen

Bericht Nr. 1997/02

P
Universit�at
Stuttgart

Abschlu�bericht der

Projektgruppe Evolution�are Algorithmen

Matthias Gro�mann

Alexander Leonhardi

Thomas Schmidt

Betreuung

Prof. Dr. Volker Claus

Dipl.-Inf. Wolfgang Reissenberger

Dipl.-Math. Nicole Weicker

Abteilung Formale Konzepte

Fakult�at Informatik

Universit�at Stuttgart

20. Februar 1997

Prof. Dr. Volker Claus

Abteilung Formale Konzepte

Institut f�ur Informatik

Universit�at Stuttgart

Breitwiesenstr. 20-22

D-70565 Stuttgart

Telefon:

0711-7816-300 (Prof. Dr. V. Claus)
0711-7816-301 (Sekretariat)
0711-7816-330 (FAX)

E-Mail: claus@informatik.uni-stuttgart.de

Inhaltsverzeichnis

1 Einleitung 8

I Entwicklungsproze� 10

2 Projektgruppe Evolution�are Algorithmen 12

2.1 Was ist eine Projektgruppe . 12

2.2 Problemstellung . 14

2.2.1 Optimierungsprobleme . 14

2.2.2 Evolution�are Algorithmen 14

2.2.3 Aufgabenstellung der Projektgruppe 15

2.3 Vorgehen . 16

2.3.1 Seminarphase . 16

2.3.2 Entwurfsphase . 16

2.3.3 Prototyp . 17

2.3.4 Spezi�kations- und Entwurfsphase 18

2.3.5 Implementierungs- und Testphase 18

3 Anforderungen an das System 19

3.1 Allgemeine Anforderungen . 19

3.2 Struktur des Systems . 20

3.2.1 Elemente zur Kapselung der Daten 21

3.2.2 Elemente zur Steuerung von Berechnungen 23

3.3 Anforderungen an die Programmteile 25

3.3.1 Problemstruktur und Fitne�funktion 25

3.3.2 Kodierungsstruktur . 25

3

3.3.3 Kodierung und Dekodierung 26

3.3.4 Operatoren . 26

3.3.5 Experimentsteuerung . 27

3.3.6 Individuen und Population 27

II GENOM 28

4 �Uberblick �uber GENOM 30

4.1 Besonderheiten . 30

4.2 Modulgruppen . 32

5 Umsetzung der Konzepte 37

5.1 Individuen und Kodierung . 37

5.1.1 Atome . 38

5.1.2 Kodierungs- und Dekodierungsfunktion 41

5.1.3 Kodierungsfunktionen . 45

5.2 Populationsverwaltung . 47

5.2.1 Populationen . 47

5.2.2 Problemstruktur . 47

5.2.3 externe Individuen . 48

5.2.4 Protokolldateien . 49

5.2.5 Arbeiten mit der Populationsverwaltung 49

5.2.6 Berechnung der Fitne� eines externen Individuums. . . . 51

5.3 Operatoren, Parameter und Bibliotheken 52

5.3.1 Operatorkonzept . 52

5.3.2 Parameterkonzept . 53

5.3.3 Bibliothekenkonzept (LEA-Sicht) 54

5.4 Beschreibung der Sprache LEA 54

5.4.1 Grundlagen . 55

5.4.2 Sprachelemente . 56

5.5 Interpreter . 59

5.5.1 Interpreter-Programmteile 59

5.5.2 Preter . 60

5.5.3 Linker . 65

5.5.4 Parser . 67

5.5.5 Bibliothek { Library . 77

5.5.6 Frame . 77

5.5.7 Ausblick . 78

5.5.8 W�orterbuch . 78

6 Erweiterungsm�oglichkeiten 81

6.1 Kritischer R�uckblick . 81

6.2 Konkrete Erweiterungen . 82

6.2.1 Erweiterungen direkt am System 82

6.2.2 Weiterentwicklung des Systems 83

7 Bedienung 85

7.1 Erste Schritte . 85

7.1.1 Aufbau des Systems . 85

7.1.2 Laden des Systems . 86

7.1.3 Aufruf eines Experiments 86

7.1.4 Beenden von SML . 86

7.2 Einf�uhrung in LEA . 86

7.3 Zusammenstellen von Experimenten 87

7.4 Erstellen von Verfahren . 88

7.5 Operatoren . 90

7.5.1 Operatoren auf Individuenlisten 91

7.5.2 Operatoren f�ur Abbruchbedingungen 92

7.6 Anbinden von Funktionen in SML 92

7.6.1 Erstellen von Bibliotheken 92

7.7 Eigene Probleme . 95

7.7.1 Grundlagen . 95

7.7.2 Konventionen . 96

7.8 Kodierungen . 97

7.8.1 Kodierungsschema . 97

7.8.2 Elementare Kodierungsschemata 98

7.8.3 Parametrisierte elementare Kodierungsschemata 99

A Systemfunktionen 101

A.1 LEA-Funktionen . 101

A.1.1 Ausgabefunktionen, Output 101

A.1.2 Grundlegende Funktionen, Basefct 102

A.1.3 Mathematische Funktionen, Math 102

A.1.4 Funktionen f�ur Listen von Individuen, IndList 103

A.1.5 Populationsverwaltung, PopHandler 104

A.2 SML-Funktionen . 105

A.2.1 Fehlerbehandlung, Error 105

A.2.2 Zufallszahlen, Random . 105

A.2.3 Funktionen f�ur Individuenlisten, IndList 106

A.3 Hilfsfunktionen f�ur ev. Algorithmen 107

A.4 Elementare Kodierungsschemata 114

A.5 Zellen . 115

A.5.1 einfache Zellen . 116

A.5.2 Zellen mit Paaren von Atomen 116

A.5.3 Zellen mit Listen von Atomen 117

A.6 Atome . 117

B Bibliotheken 121

B.1 Experimente . 121

B.2 Verfahren . 121

B.2.1 Evolutionsstrategien . 122

B.2.2 Genetischer Algorithmus 123

B.3 Operatoren . 124

B.3.1 Selektionsoperatoren . 124

B.3.2 Abbruchbedingungen . 125

B.4 Probleme . 125

B.4.1 Mathematische Funktionen 126

B.5 Kodierungen . 127

C Durchgef�uhrte Experimente 129

C.1 GA mit Schwefelfunktion . 129

7

D Syntax von LEA 133

D.1 EBNF von LEA . 133

D.1.1 Abweichungen . 135

D.1.2 Probleme . 135

D.2 Schl�usselw�orter . 135

D.3 Operatoren . 136

Literaturverzeichnis 137

Kapitel 1

Einleitung

Als im Mai 1995 die Projektgruppe Genetische Algorithmen (PGA) { die erste
Projektgruppe der Informatik an der Universit�at Stuttgart { endete, war das Er-
gebnis hinter den urspr�unglichen Planungen zur�uckgeblieben. Vorgesehen war,
eine Experimentierplattform f�ur Evolution�are Algorithmen zu entwerfen und
zu implementieren. Die Implementierung des von der Projektgruppe

"
EAGLE\

genannten Systems scheiterte jedoch, im Endbericht [AJK+95] wurde lediglich
der Entwurf sowie eine funktionale Spezi�kation eines Teilsystems ver�o�entlicht.
Aufbauend auf dem Endbericht entstand nach Abschlu� der Projektgruppe eine
funktionale Spezi�kation des Gesamtsystems, die gegen�uber dem urspr�unglichen
Entwurf von EAGLE bereits einige �Anderungen aufwies. Die Spezi�kation kann
in [JW95] nachgelesen werden.

Im Oktober 1995 fand das erste Tre�en der Projektgruppe Evolution�are Algo-
rithmen statt. Ziel unserer Projektgruppe war zun�achst, ausgehend vom Endbe-
richt der PGA und der funktionalen Spezi�kation, tats�achlich auch ein lau��ahi-
ges Programm zu implementieren. W�ahrend unserer Arbeit sind aber so viele
eigene Ideen einge
ossen, da� von der funktionalen Spezi�kation von EAGLE
nur grundlegende Ideen �ubernommen wurden. Im Gegensatz zur PGA, die zu
Beginn aus acht, sp�ater sieben Mitgliedern bestand, umfa�te die Projektgruppe
EVA zun�achst nur f�unf Studenten, von denen einer bereits nach wenigenWochen
absprang. Die vorgesehene Untergrenze von sechs Teilnehmern war damit zwar
deutlich unterschritten, die Projektgruppe wurde aber dennoch fortgesetzt, da
sowohl von den Mitgliedern als auch von unseren Betreuern bereits viel Arbeit
in die Projektgruppe investiert worden war. Trotz (wegen?) der geringen Teil-
nehmerzahl entstand im Laufe eines Jahres der Entwurf eines Systems, das z.T.
komplexer als EAGLE ist, ein Prototyp sowie ein lau��ahiges Programm.

Dieser Bericht stellt zum einen die Dokumentation dieses Programms dar und
beschreibt zum anderen das Vorgehen der Projektgruppe Evolution�are Algo-
rithmen �uber verschiedene Zwischenergebnisse bis zum endg�ultigen Produkt.
Er gliedert sich im Wesentlichen in

� eine Beschreibung einer Projektgruppe allgemein sowie der Aufgabe der
Projektgruppe EVA,

8

9

� unser Vorgehen und unsere Anforderunge an GENOM,

� �Uberblick �uber den Aufbau von GENOM,

� Dokumentation von Kodierung, Populationsverwaltung, LEA und des In-
terpreters,

� Erweiterungsm�oglichkeiten und Bedienung und

� Anh�ange mit Beschreibungen der Bibliotheken.

Die Mitglieder der Projektgruppe EVA waren:

� Matthias Gro�mann: verantwortlich f�ur Kodierung, Einleitung, Vorgehen

� Darko Ivan�can: verantwortlich f�ur Populationsverwaltung

� Alexander Leonhardi: verantwortlich f�ur Interpreter, Anforderungen, Be-
dienung, Erweiterungen, Anhang

� Thomas Schmidt: verantwortlich f�ur Interpreter, Systembeschreibung

Unser Dank gilt Professor Claus, der diese Projektgruppe initiiert und trotz
widriger Anfangsumst�ande ihre Fortsetzung erm�oglicht hat, sowie besonders
unseren Betreuern Wolfgang Reissenberger und Nicole Weicker f�ur ihr gro�es
Engagement.

Wir haben unser Programm GENOM (GENOM is an Environment for Op-
timization Methods) genannt. Es soll helfen, Probleme bei der Analyse Evo-
lution�arer Algorithmen zu l�osen: Da auf diesem Gebiet bisher nur sehr wenig
S�atze bewiesen sind, ist man auf experimentelle Untersuchungen und damit auf
entsprechende, m�oglichst
exibel einsetzbare Werkzeuge angewiesen.

Teil I

Entwicklungsproze�

10

Kapitel 2

Projektgruppe Evolution�are

Algorithmen

2.1 Was ist eine Projektgruppe

Das Studium der Informatik vermittelt dem Studenten zwar einen gro�en Teil
des n�otigen Fachwissens, jedoch stellt das Berufsleben noch weitere Anforderun-
gen an den Informatiker. Teamf�ahigkeit und Erfahrung spielen gerade bei der
Mitarbeit an gro�en Software-Projekten eine wichtige Rolle. Hier verfolgt die
Idee der Projektgruppe folgende Ausbildungsziele:

� Arbeiten im Team

� Analyse von Problemen, Strukturierung von L�osungen und gemeinsamer
Entwurf geeigneter Systeme

� Selbstst�andige Erarbeitung von L�osungsvorschl�agen und deren Vorstellung
und Verteidigung in einer Gruppe

� �Ubernahme von Verantwortung f�ur die L�osung von Teilaufgaben und die
Erstellung von Modulen

� Mitwirkung an einer umfassenden Dokumentation

� Erstellen eines Software-Produktes, das ein Einzelner innerhalb des vor-
gegebenen Zeitraumes unm�oglich bew�altigen kann

� Projekt-Planung und Kosten/Nutzen-Analyse

� Einsatz von Werkzeugen

� Pers�onlichkeitsbildung (�Ubernahme von Verantwortung, Selbstvertrauen,
Verl�a�lichkeit, R�ucksichtnahme, Durchsetzungsf�ahigkeit usw.)

12

2.1. WAS IST EINE PROJEKTGRUPPE 13

An der Projektgruppe nehmen in der Regel acht bis zw�olf Studierende des
Hauptstudiums teil. Sie erarbeiten im Laufe eines Jahres ein Software-Produkt,
welches einem Zeitaufwand von mehreren Personenjahren entspricht. Hierbei
sollen s�amtliche Phasen eines Software-Lifecycles | von der Planung bis zur
Wartung | durchlaufen werden, was in anderen Lehrveranstaltungen nicht

�ublich ist. Bei Software- und Fachpraktika wird zumeist eine gegebene, genau
festgelegte Aufgabenstellung in ein Programm umgesetzt.

Eine Projektgruppe vereinigt die Lehrveranstaltungsformen
"
Hauptseminar\ (2

SWS),
"
Fachpraktikum\ (4 SWS) und

"
Studienarbeit\ (10 SWS) in sich. Dem-

zufolge ist eine Projektgruppe mit 16 SWS einzustufen.

Der Ablauf einer Projektgruppe folgt meist folgendem Schema: Seminar-,
Planungs-, Entwurfs-, Implementierungs-, Integrations-, Experimentier- und
Schlu�phase. Diese Phasen werden im folgenden genauer erl�autert.

Seminarphase: Die Themenstellung wird gr�undlich analysiert. Dazu werden von
den Mitgliedern Originalpublikationen durchgearbeitet und die Ergebnisse vor-
getragen. Ergebnisse dieser Phase sind viel Wissen, je eine Vortragsausarbeitung
und eine zusammenfassende Darstellung der Literaturauswertung.

Planungsphase: Die Projektgruppe analysiert den Problembereich, stellt Ein-
satzm�oglichkeiten und Anwendungen zusammen, erarbeitet einen Anforderungs-
katalog und diskutiert L�osungsm�oglichkeiten f�ur diese Fragestellungen. Hierbei
werden die in der Literatur bekannten L�osungsvorschl�age und eigene Ideen ge-
geneinander abgewogen. Insbesondere wird fr�uhzeitig diskutiert, welche Hard-
und Software f�ur die jeweiligen L�osungen erforderlich ist, welche sonstigen Ko-
sten entstehen, wie hoch der Zeitaufwand sein wird, usw. Wichtig ist eine fr�uhe
Spezi�zierung der Eigenschaften des Systems (Robustheit, Antwortverhalten,
Flexibilit�at, Schutzmechanismen, Erweiterbarkeit, Verteiltheit, . . .). Inhaltliches
Ergebnis ist eine m�oglichst eindeutige, ausschnittsweise sogar formale Spezi�-
kation. F�ur jede ins Auge gefa�te Anwendung wird dar�uber hinaus ein Szenario
bzgl. des Einsatzes, der Nutzung, der Tests und der Wartung skizziert. Orga-
nisatorische Ergebnisse sind ein grober Zeitplan und die erste Aufteilung von
Aufgabengebieten. Hier setzt auch eine Spezialisierung der Gruppenmitglieder
ein.

Entwurfsphase: Voraussetzung f�ur die Entwurfsphase ist, da� Begri�sbestim-
mungen, Anwendungen und Modelle weitgehend gekl�art sind. Nach Festlegung
des grunds�atzlichen L�osungsverfahrens werden Teilprobleme und charakteristi-
sche Objekte herauskristallisiert, miteinander in Beziehung gesetzt, auf ihre
Realisierbarkeit gepr�uft und grundlegende Datenstrukturen und Kommunikati-
onswege festgelegt. Dabei werden die Schnittstellen der Einzelteile des Systems
untereinander genau de�niert. Ergebnis ist ein Plan des zu erstellenden (oder
zu modi�zierenden) Systems. Stehen die einzelnen Aufgaben fest, werden sie
auf die Mitglieder verteilt. Die Implementierungssprache(n) sowie die erforder-
liche Hardware und die zu verwendenden Werkzeuge werden festgelegt. Eine
Liste von Beispielen, die das System sp�ater positiv bew�altigen mu�, wird f�ur die
Testphase erstellt.

In der Implementationsphase und Integrationsphase wird der Programmcode
erstellt, zusammengebunden (integriert) und getestet.

14 KAPITEL 2. PROJEKTGRUPPE EVOLUTION�ARE ALGORITHMEN

Die Experimentierphase schlie�t weitere Tests mit speziellen Anwendungen ein.

Zur Schlu�phase z�ahlt in erster Linie der Abschlu� der Dokumentation, die
st�andig parallel zur Projektgruppenarbeit erstellt und auf den neuesten Stand
gebracht wird.

Das Konzept der Projektgruppe wird bereits seit Jahren an anderen Univer-
sit�aten wie z.B. in Oldenburg und Dortmund erprobt und durchgef�uhrt. Dort
sind Projektgruppen z.T. schon P
ichtveranstaltungen im Rahmen des Infor-
matikstudiums.

2.2 Problemstellung

2.2.1 Optimierungsprobleme

Viele Probleme, die sich in der Wissenschaft, Technik oder Wirtschaft stellen,
lassen sich als Optimierungsproblem beschreiben, als Aufgabenstellung also, bei
der zu einer gegebenen Umwelt (Suchraum) ein optimaler Punkt innerhalb dieses
Umwelt gesucht ist. Die G�ute eines solchen Punktes in gegebenen Suchraum wird
in der Regel durch eine Qualit�ats- oder Kostenfunktion berechnet.

Vielen dieser Optimierungsprobleme gemeinsam ist ihre Schwierigkeit, die in der
Informatik durch den Begri� der NP-H�arte ausgedr�uckt wird. (NP-H�arte hei�t,
da� sich die L�osung eines solchen Problems nur um einen polynomiellen Faktor
von der eines beliebigen Problems unterscheidet, das von einer nichtdetermi-
nistischen Turingmaschine in polynomieller Laufzeit gel�ost werden kann; vgl.
[CS88]) Dies bedeutet, da� diese Probleme nicht e�ektiv l�osbar sind. Deshalb
werden bei einer solchen Problemstellung mittels Heuristiken oder Evolution�arer
Algorithmen N�aherungsl�osungen gesucht.

Beispiele von schwierigen Optimierungsproblemen

1. Minimierung von mathematischen Testfunktionen [DJ75]

2. Minimierung der Kosten in einer Fabrik, die durch Leerlauf oder Um-
r�ustung von Maschinen entstehen (bekannt als Produktionsplanungspro-
blem) [BBSS88, Bru93, Joh73, WSF89, Z�ap82]

3. Findung einer k�urzesten Rundreise zu verschiedenen Orten (bekannt als
das Traveling Salesman Problem, kurz TSP) [Beu81, Bra90, GL85, GH91,
LLRKS85, WSF89]

4. Konstruktion eines m�oglichst leichten jedoch stabilen Tragwerkes f�ur den
Bau von leichteren Flugzeugen [Ben92, H�o79, Kir90, Kir94, Mau94, Mle92]

2.2.2 Evolution�are Algorithmen

Die speziellen Verfahren der Evolution�aren Algorithmen [AJK+95] sind das The-
ma dieser Projektgruppe. Unter einem Evolution�aren Algorithmus wird dabei

2.2. PROBLEMSTELLUNG 15

ein zufallsgesteuertes Optimierungsverfahren verstanden, da� an Methoden der
Natur angelehnt ist.

Beispiele Evolution�arer Algorithmen

� Simulated Annealing (SA) [GWH90]

� Threshold Accepting (TA) [DS90]

� Genetische Algorithmen (GA) [Hol75, Gol89, Dav91]

� Evolutionsstrategien (ES) [Rec73, Sch81]

Den Verfahren gemeinsam ist, da� sie iterativ auf einer oder mehreren m�oglichen
L�osungen (Individuen genannt) arbeiten und von dort aus durch verschiedene
Operatoren (Mutation bzw. Rekombination) bessere L�osungen zu erreichen su-
chen. Eine Selektion leitet einen neuen Iterationsschritt ein.

2.2.3 Aufgabenstellung der Projektgruppe

Ausgehend aus der Problembeschreibung ergibt sich die folgende Aufgabe f�ur
die Projektgruppe

"
Evolution�are Algorithmen\ : Es soll, aufbauend auf die Er-

gebnisse der Projektgruppe
"
Genetische Algorithmen\ [AJJ+94, AJK+95] und

des Technischen Berichts [JW95] ein System zur Bearbeitung hartn�ackiger (NP-
harter) Probleme mit Hilfe von Evolution�aren Algorithmen wie z.B. Evolutions-
strategien und Genetischen Algorithmen erstellt werden.

Das System soll dabei folgende Konzepte enthalten:

� Unterscheidung zwischen Problem- und Kodierungsstruktur. Dadurch
wird eine einheitliche Darstellung des Problems erreicht und damit von der
Sichtweise der Algorithmen getrennt. Den �Ubergang zwischen Problem-
und Kodierungsstruktur bilden die Kodierungs- bzw die Dekodierungs-
funktionen.

� Verwendung verschiedener Datentypen innerhalb einer Problem- bzw. Ko-
dierungsstruktur.

� M�oglichst freie Kombinierbarkeit von Verfahren und Operatoren, um un-
ter R�uckgri� auf vorhandene Operatoren neue Verfahren ausprobieren zu
k�onnen.

� Austauschbarkeit von Individuen verschiedener Kodierungen zwischen
Verfahren, um hybride Verfahren m�oglich zu machen.

� Abgestufte Einstiegsm�oglichkeiten f�ur den Benutzer.

� Nebenl�au�ge Algorithmen sollen implementierbar sein.

16 KAPITEL 2. PROJEKTGRUPPE EVOLUTION�ARE ALGORITHMEN

2.3 Vorgehen

Bereits zu Beginn der Projektgruppe war eine Einteilung der zwei Semester in
verschiedene Phasen vorgesehen. Im Einzelnen waren dies eine Seminar-, eine
Spezi�kations-, eine Enwurfs- und eine Implementierungsphase. Auch wenn wir
sp�ater zum Teil insbesondere zeitlich von der vorgegebenen Gliederung abgewi-
chen sind, ist grunds�atzlich die Einteilung in einzelne Phasen immer erhalten
geblieben.

2.3.1 Seminarphase

W�ahrend der Seminarphase arbeiteten sich die Mitglieder der Projektgruppe in
verschiedene Teilbereiche der Themengebiete genetische und evolution�are Al-
gorithmen und Grundlagen funktionaler Programmiersprachen1 ein. Jedes Mit-
glied hielt im Rahmen dieser Phase einen Vortrag �uber das jeweils vertiefte
Gebiet. Folgende Themen wurden behandelt:

� Algebraische Spezi�kation und Typ-Polymorphismus: Dieser Vortrag soll-
te f�ur die Beteiligten der Projektgruppe eine erste Einf�uhrung in die Kon-
zepte von SML darstellen, die f�ur die meisten v�ollig neu waren. Ein gro�er
Unterschied von SML zu anderen funktionalen Sprachen (wie LISP) be-
steht in einer strengen Typpr�ufung, die zur �Ubersetzungszeit durchgef�uhrt
wird, jedoch polymorphe Deklarationen zul�a�t. Die Grundlagen dieser
Typpr�ufung sollen in der Ausarbeitung vorgestellt werden.

� Sammlung von Problemen und Optimierungsverfahren: In diesem Ab-
schnitt wurde ein �Uberblick �uber typische Optimierungsprobleme gegeben.
Einige bekannte Optimierungsverfahren wurden vorgestellt.

� Genetisches Programmieren: Dabei handelt es sich um eine Anwendung
Genetischer Algorithmen zur Erzeugung von Programmen. Sie l�a�t sich
mit EAGLE nicht realisieren, da die Individuen Baumstrukturen variabler
Gr�o�e sind.

� Parallele Modelle Evolution�arer Algorithmen: Hier wurden einige Verfah-
ren vorgestellt, die parallel mit mehreren Populationen arbeiten. Solche
Verfahren lassen sich in EAGLE nicht verwenden, so da� hier wie schon
beim letzten Vortrag der Wunsch nach einer entsprechenden Erweiterung
entstand.

Ausarbeitungen der ersten drei Vortr�age wurden in [GILS96] ver�o�entlicht.

2.3.2 Entwurfsphase

Von EAGLE, dem System der ersten Projektgruppe, stand uns eine Spezi�kati-
on zur Verf�ugung. H�atten wir uns st�arker an EAGLE orientiert, w�are eine kurze

1Zu diesem Zeitpunkt stand bereits fest, da� wir GENOM in der funktionalen Sprache

SML implementieren.

2.3. VORGEHEN 17

Entwurfsphase ausreichend gewesen. Mit dem Konzept von EAGLE lassen sich
aber einige der in den Seminarvortr�agen vorgestellten Ideen und Probleme, wie
Verfahren mit mehreren Populationen oder genetisches Programmieren, nicht
realisieren. GENOM sollte gegen�uber EAGLE mit mehreren Populationen ar-
beiten k�onnen und wesentlich mehr Freiheiten bei der Wahl der Datentypen f�ur
Individuen zulassen, z.B. auch Listen variabler L�ange oder B�aume.

Eine wichtige Rolle spielte in EAGLE der Interpreter f�ur die eigens entwickel-
te Programmiersprache LEA (Language for Evolutionary Algorithms), in der
die Evolution�aren Algorithmen f�ur das System geschrieben werden sollten. Der
Interpreter �ubernahm damit w�ahrend des Experiments die Steuerung des Ge-
samtsystems.

Um das System trotz der vorgesehenen Erweiterungen mit nur vier Personen
fertigstellen zu k�onnen, war zun�achst geplant, den Interpreter nicht zu imple-
mentieren. Alle Verfahren und Operatoren h�atten dann in SML geschrieben wer-
den m�ussen. Das System bestand damit aus zwei zentralen Komponenten, der
Populationsverwaltung, die Funktionen zum Zugri� auf Individuen und Popu-
lationen zur Verf�ugung stellen sollte, und der Experimentsteuerung, die anstatt
des Interpreters die Funktion einer Schnittstelle zwischen dem Verfahren und
dem System �ubernehmen sollte.

Wir haben dieses Konzept gegen Ende der Entwurfsphase im Februar weitge-
hend ge�andert, da uns die M�oglichkeiten, die die Experimentsteuerung bot, als
zu wenig komfortabel erschienen. Die Experimentsteuerung wurde durch einen
Interpreter ersetzt, dem die Populationsverwaltung sowie die Kodierung unter-
geordnet sind.

2.3.3 Prototyp

Bereits in den ersten Wochen der Projektgruppe hatten wir entschieden, f�ur die
Implementierung die funktionale Programmiersprache SML zu verwenden, zum
einen, weil f�ur EAGLE eine funktionale Spezi�kation vorhanden war, zum ande-
ren erschien uns SML wegen seiner polymorphen Datentypen f�ur unser Projekt
besonders geeignet. Da bis zu diesem Zeitpunkt keiner von uns ein gr�o�eres
Programm in SML geschrieben hatte, entschieden wir uns, einen Prototyp zu
erstellen. So konnten wir uns uns sowohl mit der Programmiersprache vertraut
machen, als auch Probleme, die sich bei der Implementierung des Endsystems
stellen w�urden, fr�uhzeitig erkennen.

Wir beschr�ankten uns beim Prototyp auf eine Umsetzung der einfacheren Kon-
zepte von EAGLE und verzichteten auf die Implementierung der neuen F�ahigkei-
ten von GENOM sowie den Interpreter. Der Prototyp sollte nur mit einer Popu-
lation arbeiten. Die Individuen bestanden aus einer festen Anzahl von Atomen.
Als Atome waren reelle und ganze Zahlen vorgesehen, als Kodierungen Identit�at
und Bin�arkodierung. Der Prototyp wurde von einer Untergruppe in einer Woche
spezi�ziert und in drei Wochen implementiert.

Da sich direkt an die Fertigstellung des Prototyps die Arbeit am Zwischenbericht
anschlo�, haben wir mit dem Prototyp sehr wenig Experimente durchgef�uhrt.
Ein Threshold- und ein genetischer Algorithmus fanden das Optimum einer
einfachen Fitne�funktion (vierdimensionale Hypersph�are).

18 KAPITEL 2. PROJEKTGRUPPE EVOLUTION�ARE ALGORITHMEN

2.3.4 Spezi�kations- und Entwurfsphase

Die Spezi�kationsphase begann nach Abschlu� des Zwischenberichts im April.
Einige Teile des Systems, insbesondere der Interpreter und die Kodierung, wa-
ren in der Entwurfsphase nur sehr grob durchdacht worden, so da� sich auch
angesichts der noch verbleibenden Zeit bis zum Ende der Projektgruppe die Spe-
zi�kation ziemlich hektisch gestaltete. Da einige Mitglieder der Projektgruppe
bereits genauere Vorstellungen vom Interpreter hatten, wurde beschlossen, die
Teile des Interpreters, die vom Restsystem unabh�angig sind, bereits zu imple-
mentieren, w�ahrend der Rest der Gruppe die �ubrigen Teile spezi�zierte. Die
Spezi�kationsphase ging so weitgehend nahtlos in die Implementierung �uber,
auch w�ahrend der n�achsten Phase mu�ten immer wieder Systemteile (neu) spe-
zi�ziert werden.

2.3.5 Implementierungs- und Testphase

Mit der Implementierung von GENOM begannen wir im Mai und schlossen sie
Ende September weitgehend ab. Zu Beginn der Implementierungsphase waren
Teile der Projektgruppe noch mit Spezi�kationen befa�t, gegen Ende f�uhrten
wir bereits Tests der schon fertiggestellten Teile durch. Die Arbeiten an die-
sem Abschlu�bericht begannen ebenfalls vor Ende der Implementierungsphase.
Der Interpreter wurde im Juni fertiggestellt, die �ubrigen zentralen Teile wie Ko-
dierung und Populationsverwaltung im Juli. Der Rest dieser Phase ent�el auf
Korrektur von Fehlern sowie Erstellung von Bibliotheken und Experimenten zu
Testzwecken. Zur Durchf�uhrung systematischer Versuche fehlte nach Abschlu�
der Implementierungsphase die Zeit, da wir uns in erster Linie auf den Abschlu�-
bericht konzentrierten.

Kapitel 3

Anforderungen an das

System

Nach den Erfahrungen mit dem Prototyp wurden die Anforderungen festge-
legt, die dem zu entwickelnden System zugrunde liegen sollen. Dabei wurde
noch nicht entschieden, welche der geforderten Eigenschaften im Rahmen der
Projektgruppe realisiert werden. Allerdings sollen auch die Anforderungen, die
nicht direkt in das System ein
ie�en, bei der Entwicklung mit beachtet werden
und durch sp�atere Erweiterungen m�oglich gemacht werden.

3.1 Allgemeine Anforderungen

Beschrieben werden zuerst die allgemeinen Anforderungen an das System. Aus
diesen werden im weiteren die Anforderungen an die einzelnen Teile abgeleitet,
aus denen das System besteht.

Neben der M�oglichkeit, neue Evolution�are Algorithmen zu entwickeln, soll das
System m�oglichst viele der existierenden Verfahren aus dem Bereich der Evo-
lution�aren Algorithmen und verwandten Optimierungsverfahren unterst�utzen.
Im einzelnen sind die folgenden Verfahren bei der Entwicklung des Systems zu
beachten:

� Hill-Climbing Verfahren,

� Threshold Algorithmus,

� Great Deluge Algorithmus,

� Simulated Annealing,

� Genetische Algorithmen,

� Evolutionsstrategien,

� Genetisches Programmieren

19

20 KAPITEL 3. ANFORDERUNGEN AN DAS SYSTEM

� und eventuell parallele Varianten dieser Verfahren.

Ein Teil des Systems stellen auch die Probleme dar, auf die die Verfahren an-
gewendet werden. Es wird eine Unterst�utzung f�ur m�oglichst viele der Probleme
gefordert, die normalerweise mit Evolution�aren Algorithmen bearbeitet werden.
Dies sind vor allem

� die �ubliche Testfunktionen (z.B. Hypersph�are, De Jong'sche Testfunktio-
nen etc.), mit denen die Eigenschaften der entwickelten Algorithmen �uber-
pr�uft werden k�onnen,

� andere einfach berechenbare Funktionen,

� Programme f�ur das genetische Programmieren,

� Travelling-Salesman-Probleme und

� Netzstrukturen oder Matrizen f�ur die Optimierung neuronaler Netze.

F�ur die Anwendung der Verfahren auf die Probleme und die Verwendung des
Systems allgemein gibt es die folgenden Anforderungen:

� Die verschiedenen M�oglichkeiten des Einstiegs in das System werden durch
ein Schichtenmodell beschrieben. Es existieren mehrere Schichten, die je-
weils auf die darunterliegenden aufbauen. Je tiefer eine der Schichten ge-
legen ist, desto gr�o�er ist der Umfang, in dem dort Ver�anderungen vor-
genommen werden k�onnen. Im gleichen Ma�e vertiefen sich aber auch die
Kenntnisse, die f�ur das Verst�andnis dieser Schichten n�otig sind.

� In der obersten Schicht sollen Verfahren unkompliziert auf einfachere Pro-
bleme (einfach berechenbare Funktionen) angewendet werden k�onnen, vor
allem ohne tiefere Kenntnisse vom internen Aufbau unseres Programms
und, wenn m�oglich, ohne Kenntnisse von SML. Dazu soll eine �ubersicht-
liche und einfache M�oglichkeit zur Durchf�uhrung eines Experiments ohne
umst�andliche Vorbereitungen gegeben sein, wenn dieses nur existieren-
de Komponenten verwendet. W�unschenswert ist hierbei eine graphische
Ober
�ache.

� Die Parameter dieser Verfahren (z.B. die Temperatur bei SA) sind einfach
und, wenn m�oglich, auch w�ahrend des Programmlaufs zu setzen und zu
ver�andern.

� Vom System produzierte Daten erlauben eine umfassende Analyse, die
vom System unterst�utzt wird.

3.2 Struktur des Systems

Aus den oben genannten Anforderungen und den Erfahrungen aus der Erstel-
lung des Prototyps wurde die, in der folgenden Abbildung gezeigte, Struktur

3.2. STRUKTUR DES SYSTEMS 21

Populationsverwaltung

Pop

Pr
ob

le
m

bi
bl

io
th

ek

O
pe

ra
to

re
nb

ib
lio

th
ek

V
er

fa
hr

en
sb

ib
lio

th
ek

K
od

ie
ru

ng
sb

ib
lio

th
ek

M
ig

ra
tio

ns
op

er
at

or
en

bi
b.

H
au

pt
ve

rf
ah

re
ns

bi
b.

E
xp

er
im

en
td

ef
in

iti
on

sb
ib

.

E
xp

er
im

en
tb

ib
lio

th
ek

Experimentsteuerung

Interpreter

log-Datei
Pop

Ind Ind Ind

. . .

. . .

log-Datei

Abb. 3.1: Entwurf des Systems GENOM

des Systems entwickelt. Bei dieser Abbildung wird zwischen Systemelementen
zur Kapselung von Daten und solchen zur Steuerung von Berechnungen un-
terschieden. Im folgenden werden die einzelnen Teile beschrieben, wie sie als
Entwurf geplant wurden. Diese Struktur und die darin enthaltenen Programm-
teile dienten als Grundlage f�ur die weitere Ausarbeitung der Anforderungen. An
beiden wurden im weiteren Vorgehen noch wesentliche �Anderungen vorgenom-
men.

3.2.1 Elemente zur Kapselung der Daten

3.2.1.1 Experimentde�nition

Eine Experimentde�nition beinhaltet die folgenden Informationen:

� ein Problem (Problemstruktur oder -raum, Fitne�funktion)

� eine bestimmte Anzahl von Populationen, denen jeweils ein Verfahren und
eine Kodierung zugeordnet ist

� ein Hauptverfahren (Meta-Verfahrens, das die Migration von Individuen
zwischen verschiedenen Populationen steuert)

22 KAPITEL 3. ANFORDERUNGEN AN DAS SYSTEM

� f�ur jede Population einen Random-Seed

3.2.1.2 Experiment

Ein Experiment beinhaltet zu einer Experimentde�nition die folgenden Daten:

� Lau�nitialisierung (Belegung der Parameter, Setzen der Anfangspopula-
tionen)

� log-Dateien f�ur jeder Verfahren und das Hauptverfahren

3.2.1.3 Problem

Ein Problem beinhaltet

� eine Problembeschreibung (nur f�ur den Menschen)

� eine Problemstruktur

� eine Fitne�funktion

3.2.1.4 Kodierung

Eine Kodierung beinhaltet

� Beschreibung der Kodierung (nur f�ur den Menschen)

� statische Informationen zur �Uberpr�ufung von der Kompatibilit�at bzgl. ver-
schiedener Verfahren

� Kodierungsstruktur (Grobstruktur, Belegung der Atome mit konkreten
Typen)

� Funktionen zur Kodierung und Dekodierung

� die f�ur die konkrete Kodierungsstruktur ben�otigten Funktionen

3.2.1.5 Verfahren

Ein Verfahren besteht aus

� einer gro�en Iterationsschleife, in der verschiedene Operatoren verwendet
werden

� statischen Informationen zur �Uberpr�ufung der Kompabilit�at bzgl. ver-
schiedener Kodierungen

� einer Liste von Parametern mit Defaultbelegungen (bestehend aus den
eigenen Parametern und denen der verwendeten Operatoren)

3.2. STRUKTUR DES SYSTEMS 23

3.2.1.6 Operator

Ein Operator besteht aus

� einem Algorithmusteil (eventuell k�onnen hier andere Operatoren verwen-
det werden)

� einer Parameterliste mit Defaultbelegungen (auch der eventuellen Subope-
ratoren.

3.2.1.7 Hauptverfahren

Spezielles Verfahren zur Steuerung mehrerer Verfahren auf mehreren Populatio-
nen. Verwendet eventuell spezielle Migrationsoperatoren.

Ruft die verschiedenen Verfahren mit einer Generationshaltebedingung auf.
F�uhrt nach Stop aller Verfahren Migration durch.

3.2.1.8 Migrationsoperatoren

Spezielle Operatoren zum Austausch von Individuen zwischen verschiedenen
Populationen. z.B. Einf�ugen des besten Individuums einer Population in alle
anderen Populationen oder Ersetzen des schlechtesten Individuums einer Popu-
lation durch das beste einer anderen.

3.2.1.9 Population

Eine Population besteht aus

� Bezeichner f�ur eine Kodierung

� Bezeichner f�ur ein Verfahren

� Random-Seed

� Liste von Individuen

3.2.1.10 Individuum

Ein Individuum ist eine konkrete Auspr�agung des Vereinigungsdatentyps aller
m�oglichen Individuen.

3.2.2 Elemente zur Steuerung von Berechnungen

3.2.2.1 Experimentsteuerung

Die Experimentsteuerung ist die Stelle, an der das Laufzeitverhalten festgelegt
wird (Initialisierung, Aufruf von Verfahren (�uber Populationsverwaltung), Mi-
gration). Dazu wird entweder eine Experimentde�nition geladen oder es werden
die folgenden Dinge der Populationsverwaltung �ubergeben:

24 KAPITEL 3. ANFORDERUNGEN AN DAS SYSTEM

� Bezeichner eines Problems

� Kombination Bezeichner von Kodierung und Bezeichner Verfahren und
Anzahl der Populationen, die mit dieser Kombination initialisiert werden
sollen

Die Experimentsteuerung besitzt Funktionen, die es erm�oglichen, Parameterli-
sten zu lesen und zu �andern.

Ist Schnittstelle zum Benutzer (�uber Dateien, Kommandozeile, UI oder GUI).

3.2.2.2 Populationsverwaltung

Die Populationsverwaltung

� f�uhrt bei der Initialisierung eine statische �Uberpr�ufung der Kompabilit�at
von Kodierungen und Verfahren durch

� veranla�t, da� die entsprechenden lau��ahigen Teile in den Interpreter ge-
laden werden

� gibt die Parameterliste (inklusive Defaultbelegungen) der jeweiligen Ver-
fahren an die Experimentsteuerung

� ruft f�ur jede Population den Interpreter auf (�ubergibt dabei die Population
dem Interpreter)

� schreibt nach jedem Iterationsschritt des Interpreters die aktuelle Popula-
tion zur�uck

� kennt die initialisierten Populationen, ihre jeweiligen Kodierungen und
Verfahren, wei� wieviele Individuen in den jeweiligen Dateien sind

� meldet an die Experimentsteuerung, wenn die jeweiligen Haltebedingun-
gen erf�ullt sind

� f�uhrt die Migration aus (eventuell macht das der Interpreter)

3.2.2.3 Interpreter

Der Interpreter f�uhrt die eigentlichen Berechnungen durch. F�ur jede Population
wird der Interpreter mit den jeweiligen Initialisierungen gestartet. Nach einem
Iterationsdurchlauf eines Verfahrens gibt der Interpreter die aktuelle Population
an die Popverwaltung zur�uck. W�ahrend der Berechnung schreibt der Interpreter
in eine ihm zugewiesene log-Datei die Daten, die in dem Verfahren als Ausgabe
vorgesehen sind.

Nach jedem Iterationsdurchlauf kann der Interpreter abfragen, ob das System
halten soll. Es sind Lau�nitialisierungsver�anderungen durch den Benutzer m�og-
lich. Danach wird die Berechnung durch den Interpreter fortgesetzt.

3.3. ANFORDERUNGEN AN DIE PROGRAMMTEILE 25

3.3 Anforderungen an die Programmteile

Die Anforderungen an die Programmteile, die in der oben beschriebenen Struk-
tur des Systems enthalten sind, sollen im weiteren aus den Anforderungen f�ur
das gesamte System und den geforderten Verfahren und Problemen abgeleitet
werden.

3.3.1 Problemstruktur und Fitne�funktion

Ein Problem wird im System durch die Problemstruktur und eine Fitne�funk-
tion dargestellt. Um die oben genannten Probleme mit dem System bearbeiten
zu k�onnen, wird f�ur die Problemstruktur die Unterst�utzung folgender Elemente
gefordert:

� Vektoren aus reellen Zahlen (f�ur mathematische Funktionen und die mei-
sten Testfunktionen), sowie Ganzzahlvektoren und Bitvektoren (f�ur Ge-
netische Algorithmen),

� Permutationen f�ur das Travelling Salesman Problem,

� Vektoren mit gemischten Typen (reelle, bin�are und ganze Zahlen) z.B. f�ur
die Topologieoptimierung ebener Fachwerke,

� genetischen Programmen (entweder als Baum oder in einer Klammerdar-
stellung),

� Matrizen, z.B. f�ur Neuronale Netze.

Zus�atzlich ist eine Unterst�utzung f�ur das Anbinden von externen Problemen
sinnvoll, da sich die Fitne� eines Individuums bei praktischen Problemen oft
nicht einfach berechnen l�a�t. F�ur ihre Ermittlung werden in diesem Fall exter-
ne Programme mit komplexeren Berechnungsverfahren (wie z.B. einer Finite
Elemente Methode) oder Simulatoren ben�otigt.

F�ur die Fitne�funktion ergeben sich folgende Forderungen:

� Einfache Umsetzung von beliebigen mathematischen Funktionen und

� die Unterst�utzung einer externen Berechnung.

3.3.2 Kodierungsstruktur

Einige der Verfahren ben�otigen eine bestimmte Darstellung der von ihnen zu
bearbeitenden Strukturen. Wenn verschiedene Verfahren auf ein Problem ange-
wendet werden sollen, ist es sinnvoll, das Problem in einer verfahrensunabh�angi-
gen Darstellung anzugeben, die je nach Verfahren angepa�t werden kann. Bei
der Kombination von Verfahren und Problemen ist es daher oft notwendig, das
Problem so zu kodieren, da� es eine Struktur erh�alt, die von einem bestimm-
ten Verfahren bearbeitet werden kann. Eine solche Struktur wird Kodierungs-
struktur genannt. So kann z.B. ein Problem mit reellwertigen Parametern in

26 KAPITEL 3. ANFORDERUNGEN AN DAS SYSTEM

einen Bitvektor kodiert werden, um darauf einen Genetischen Algorithmus an-
zuwenden. Es soll nat�urlich auch m�oglich sein, ein Verfahren direkt auf eine
Problemstruktur anzuwenden. F�ur die oben geforderten Verfahren mu� die Ko-
dierungsstruktur die folgenden Elemente unterst�utzen:

� Ganzzahlvektoren,

� Vektoren von reellen Zahlen f�ur Great Deluge, Simulated Annealing, Evo-
lutionsstrategien und Threshold Algorithmen,

� Bitvektoren f�ur Genetische Algorithmen,

� Strategieparameter, wie sie von Evolutionsstrategien verwendet werden,

� Vektoren mit gemischten Typen und

� Genetische Programme entweder als Syntaxbaum oder in Klammerdar-
stellung.

3.3.3 Kodierung und Dekodierung

Die Kodierung bzw. Dekodierung wandelt eine Problemstruktur in eine Kodie-
rungsstruktur um bzw. umgekehrt. Aus den aufgelisteten Forderungen an Pro-
blemstrukturen und den Verfahren ergeben sich f�ur Kodierung und Dekodierung
die folgenden Eigenschaften:

� Es soll vom System aus m�oglich sein, ganze und reelle Zahlen als Bitstring
entweder einfach bin�ar oder mit einer Gray-Kodierung zu kodieren.

� Permutationen sollen als Realzahlvektoren kodiert werden k�onnen.

� Au�erdem m�ussen Elemente der Problemstruktur unkodiert in die Kodie-
rungsstruktur �ubernommen werden k�onnen.

3.3.4 Operatoren

Operatoren sind die Bausteine aus denen die Verfahren bestehen. Um m�oglichst
einfach neue Verfahren erstellen zu k�onnen, m�ussen diese
exibel erstellt und
eingesetzt werden k�onnen. Forderungen an die Operatoren sind:

� Die Erstellung von beliebigen eigenen Operatoren, die die kodierten Indi-
viduen ver�andern k�onnen, soll m�oglich sein. F�ur Verfahren, die mehrere
Individuen verwenden (z.B. Genetische Algorithmen und Evolutionsstra-
tegien), mu� es m�oglich sein, Individuen zu erstellen und zu l�oschen. Um
auch parallele Varianten der Algorithmen zu unterst�utzen, ist eine Mi-
gration von Individuen zwischen verschiedenen Populationen n�otig (siehe
unten).

� Um einen
exiblen Einsatz der Operatoren zu erm�oglichen, sollen Para-
meter f�ur diese Operatoren de�niert werden k�onnen, mit denen wichtige
Eigenschaften der Operatoren gesteuert werden.

3.3. ANFORDERUNGEN AN DIE PROGRAMMTEILE 27

� F�ur die Kompontenten der oben genannten Verfahren (z.B. Mutation und
Selektion) sollen Operatoren in einer Bibliothek vorgegeben sein, die in
eigene Verfahren eingebaut werden k�onnen.

� F�ur auftretende Fehler soll angegeben werden k�onnen, wie diese behandelt
werden sollen. Wenn keine Behandlung angegeben ist, wird vom System
die Ausgabe einer sinnvollen Fehlermeldung erwartet.

3.3.5 Experimentsteuerung

Der Ablauf eines Experiments wird in einer Experimentde�nition beschrieben.
Sie soll die unten angegebenen M�oglichkeiten bieten:

� Die M�oglichkeit, die Auswahl von Problem, Fitne�funktion, Kodierung
und Verfahren zusammenzufassen.

� Die Parameter der Operatoren sollen voreingestellte Werte haben und vor
Beginn der entsprechenden Verfahren neu gesetzt werden k�onnen.

� Eventuell die M�oglichkeit, Haltepunkte in Operatoren setzen und Para-
meter w�ahrend des Ablaufs ver�andern zu k�onnen.

� Um Experimente auch selbst�andig ablaufen lassen zu k�onnen, ist eine
vollst�andige Steuerung �uber Dateien sinnvoll.

� In diesem Fall m�ussen auch alle Initialisierungen �uber Dateien m�oglich
sein.

3.3.6 Individuen und Population

Individuen sind die Auspr�agung einer Kodierungsstruktur. F�ur die Verwendung
im System werden sie zu Populationen zusammengefa�t, die an die Verfahren

�ubergeben werden. Diese bearbeiten die Populationen, um f�ur ein Problem ein
optimales Individuum zu �nden. F�ur die Verwaltung der Individuen ergeben
sich aus den einzelnen Verfahren diese Anforderungen:

� Unterst�utzung von Populationen, die mehrere Individuen enthalten z.B.
f�ur Genetische Algorithmen und Evolutionsstrategien,

� Unterst�utzung von verschiedenen Populationen mit gleicher Kodierung
z.B. f�ur parallele Varianten dieser Verfahren.

� Ebenso die Unterst�utzung von mehreren Populationen mit verschiedenen
Kodierungen

� und die M�oglichkeit der Migration von Individuen zwischen zwei Popula-
tionen gleicher oder verschiedener Kodierung.

� Um auf ein fr�uheres oder abgebrochenes Experiment wieder aufsetzen zu
k�onnen, sollen Populationen aus Dateien initialisiert werden k�onnen.

Teil II

GENOM

28

Kapitel 4

�Uberblick �uber GENOM

GENOM bietet eine Plattform um Parameter-Optimierungsprobleme mit Evo-
lution�aren Verfahren zu bearbeiten, sowie die Verfahren zu untersuchen. Das
System erlaubt einen einfachen Zugang zu Evolution�aren Verfahren, indem es
dem Benutzer Werkzeuge, Funktionen und Bibliotheken zur Verf�ugung stellt.
Diese Bibliotheken enthalten einige der am h�au�gsten verwendeten Algorith-
men und Probleme, die vom Benutzer einfach an die konkrete Aufgabenstellung
angepa�t werden k�onnen.

4.1 Besonderheiten

Es gibt bereits eine Anzahl von Systemen, die zur Durchf�uhrung Evolution�arer
Verfahren dienen. Das vorliegende System unterscheidet sich jedoch in einigen
Punkten von den bisher bekannten (genauere Erl�auterungen �nden sich im Ab-
schnitt Modulgruppen):

� Darstellung der Individuen
Das System erlaubt sehr unterschiedliche Formen von Individuen. Durch
die De�nition von Atomen und aus diesen aufgebauten Strukturen ist eine
nahezu unbegrenzte Vielfalt m�oglich. So kann z.B. eine Liste (Grobstruk-
tur) mit ganzen Zahlen (Atome) gef�ullt werden, aber auch ein Baum aus
Zeichenketten bestehen. Individuen k�onnen aus verschiedenen Atom- und
Strukturtypen bestehen, Strukturen k�onnen von variabler L�ange sein.

� Unterscheidung zwischen Ph�ano- und Genotyp
Der Ph�anotyp ist die Struktur der Individuen aus Problemsicht, der Ge-
notyp die Struktur aus Sicht der Verfahren. Die �Uberf�uhrung von Ph�ano-
in den Genotyp erfolgt durch Kodierung; der umgekehrte Weg durch De-
kodierung. So kann ein Problem mit verschiedenen Verfahren bearbeitet
werden.

� Kombination von Verfahren
In einem Experiment k�onnen mehrere unterschiedliche Verfahren kombi-
niert werden. Individuen k�onnen von verschiedenen Verfahren bearbeitet

30

4.1. BESONDERHEITEN 31

Experiment Problem

Logging

Verfahren

Operatoren

Laufzeitsystem

Text/Datei

Interpreter
Populations-

verwaltung

Kodierung

Dekodierung

SML-Fkt.

Abb. 4.1: Aufbau des Gesamtsystems

32 KAPITEL 4. �UBERBLICK �UBER GENOM

werden. So kann z.B. zuerst ein Genetischer Algorithmus ein gutes Indivi-
duum �nden, das anschlie�end durch ein Hill-Climbing-Verfahren verbes-
sert wird.

� Mehrere Populationen
Ein Experiment kann mehrere Populationen bearbeiten. Es ist m�oglich,
dasselbe oder verschiedene Verfahren auf Populationen mit unterschied-
licher Kodierung anzuwenden. Individuen k�onnen zwischen Populationen
ausgetauscht werden.

� Toolbox-Charakter
Das System ist so ausgelegt, da� Operatoren, Verfahren und Kodierun-
gen einfach wiederverwendet werden k�onnen. Durch Bibliotheken ist es
m�oglich, da� derselbe Operator je nach Kontext verschiedene Aufgaben
erf�ullt und auf verschiedenen Typen von Individuen arbeitet.

Experimente, Verfahren und Operatoren werden in einer einfachen impe-
rativen Sprache formuliert und k�onnen auf bereits vorbereitete Operatoren
und Verfahren zur�uckgreifen. So ist es leicht m�oglich, eigene Ideen in Ex-
perimente umzusetzen.

� Zugangsm�oglichkeiten auf verschiedenen Ebenen
Das System kann durch neue Experimente, Verfahren und Operatoren
in der imperativen Sprache erweitert werden. Es ist auch m�oglich, neue
Probleme und Kodierungen als SML-Programme zu erstellen. Au�erdem
kann das Laufzeitsystem um neue Atomtypen und Grobstrukturen erwei-
tert werden.

4.2 Modulgruppen

Individuen Ein Individuum besteht aus einer Liste fester L�ange von Zellen.
Jede Zelle enth�alt eine Grobstruktur, die mit Atomen gef�ullt ist. Grobstrukturen
sind z.B. ein einzelnes Atom, ein Paar von Atomen, aber auch eine Liste variabler
L�ange oder ein Baum usw. Die Atome enthalten die Daten, also die Information,
die optimiert werden soll. Atome sind z.B. ganze Zahlen, reelle Zahlen oder Bits
(Abb. 4.2).

Simple

 (real)

Pair

 (real, int)

List
 (real)

 Permuta-

 tion (14)

Simple

 (real)

Simple

 (real)

Abb. 4.2: Beispiel-Individuum aus sechs Zellen

Jedes Individuum repr�asentiert einen Punkt im L�osungsraum der Problemfunk-
tion. Die Werte, die der Problemfunktion �ubergeben werden, hei�en

"
Problem-

parameter\; die von der Problemfunktion gelieferte Zahl
"
Fitne�wert\.

Das System unterscheidet zwischen der Darstellung, die die Problemfunktion er-
wartet, und der in evolution�aren Verfahren verwendeten: Die Problemparameter
eines Individuums stehen i.a. nicht direkt in ihm. Sie sind vielmehr kodiert, d.h.

4.2. MODULGRUPPEN 33

ihre Darstellung wird auf das Verfahren angepa�t. So kann z.B. ein Integerwert
in eine Folge von Bits kodiert werden. Das kodierte Individuum wird in Anleh-
nung an die Biologie

"
Genotyp\ genannt, das unkodierte

"
Ph�anotyp\. Durch

dieses Konzept ist eine Migration zwischen Populationen verschiedener Kodie-
rungen m�oglich (s. Populationen).

Probleme Mit Evolution�aren Verfahren sollen f�ur Parameter-Optimierungs-
probleme m�oglichst gute L�osungen gefunden werden. Das Problem wird durch
eine Problemfunktion dargestellt, die f�ur ein unkodiertes Individuum (einen
Ph�anotyp) eine Zahl (den Fitne�wert) liefert. Die Art des Problems oder die
Art der Berechnung des Fitne�werts ist nicht eingeschr�ankt, jedoch wird ver-
einfachend eineMinimierungsaufgabe angenommen1. Ferner wird eine Initialisie-
rungsfunktion gefordert, die Ph�anotypen liefert. Der Bildbereich dieser Funktion
de�niert die zul�assigen Individuen.

Kodierungen Die Problemfunktion erwartet Parameter in einer zu ihr pas-
senden Form, dem Ph�anotyp. Diese Form kann aber f�ur ein Verfahren unge-
eignet sein, da die darin verwendeten Operatoren bestimmte Anforderungen an
das Aussehen eines Individuums stellen. So k�onnte das Problem beispielsweise
reelle Zahlen erwarten, das Verfahren jedoch nur auf Bit-Ketten arbeiten.

Um nun nicht eine neue Problemfunktion schreiben zu m�ussen, d.h. den Ph�ano-
typ an das Verfahren anzupassen, kann der Ph�anotyp kodiert werden: Er wird
in einen Genotyp transformiert, dessen Darstellung an das Verfahren angepa�t
ist (Abb. 4.3).

Fitneß-
wert

Phänotyp Genotyp
Dekodierungsfkt.

Kodierungsfkt.

Fitneßfunktion

Abb. 4.3: Erzeugung eines Ph�anotyps, Kodierung, Dekodierung, Berechnung der
Fitne�

Eine Kodierung legt fest, wie die Zellen des Ph�anotyps in Zellen des Genotyps

�uberf�uhrt werden, und umgekehrt.

Populationen Eine Population ist eine Menge gleich kodierter Individuen,
die als zusammengeh�orig betrachtet werden. Verfahren arbeiten auf einer Popu-
lation2, wobei jeweils Operatoren wie Selektion diese Population betrachten.

Das System kann f�ur dasselbe Problem mehrere Populationen verwalten, deren
Individuen verschieden kodiert sein k�onnen. Es ist m�oglich, ein Individuum von

1Jedes Maximierungsproblem kann durch Negation in ein Minimierungsproblem transfor-

miert werden.
2Die Population kann auch aus einem Individuum bestehen

34 KAPITEL 4. �UBERBLICK �UBER GENOM

einer Population in eine andere zu �uberf�uhren, zu
"
migrieren\. Dabei wird es

automatisch an die Kodierung der Zielpopulation angepa�t, d.h. ein Individuum
wird zuerst dekodiert und dann wieder kodiert.

LEA Im System ist die imperative Programmiersprache LEA implementiert.
Experimentoperatoren, Verfahren und Operatoren werden in LEA geschrieben.
LEA ist dazu gedacht, in einer einfachen Sprache Verfahren zu de�nieren. Damit
ist die Einschr�ankung verbunden, da� mit LEA auf Individuen nur als Ganzes zu-
gegri�en werden kann. Will ein Verfahren Zellen eines Individuums ver�andern,
so mu� es SML-Funktionen verwenden. Das System stellt Bibliotheken mit sol-
chen Funktionen zur Verf�ugung, die zu komplexen Operatoren zusammengesetzt
werden k�onnen.

Experimentoperator Ein Experiment wird durch Angabe eines Experimen-
toperators (ein LEA-Programm, das oft auch als Experimentde�nition bezeichnet
wird) gestartet. Im Experimentoperator werden das Problem festgelegt, die Po-
pulationen samt Kodierungen angegeben und die Verfahren deklariert. Bsp.:

EXPERIMENT Threshold_TSP;

PROBLEM = "TSP";

POPULATIONS

Pop CODED "Identity" LOG "pop1" = RANDOMPOP(1);

OPERATORS

Optimate = threshold(T : -4.0);

Im Anweisungsteil des Experimentoperators wird die Reihenfolge der Verfah-
rensaufrufe bestimmt; hier k�onnen auch Migrationen von Individuen zwischen
Populationen vorgenommen werden.

Verfahren Verfahren sind LEA-Operatoren, die in der Regel ganze Popula-
tionen erhalten und liefern. Sie implementieren eine Strategie, nach der das
Optimum gesucht wird. Dies ist i.allg. ein iterativer Algorithmus, der verschie-
dene Operatoren und Funktionen aufruft. Bekannte Verfahren sind Genetische
Algorithmen, Evolutionsstrategien, Threshold Algorithmen und Simulated An-
nealing.

Operatoren In Evolution�aren Verfahren werden Individuen bzw. Populatio-
nen bearbeitet. Dies wird durch in LEA geschriebene Operatoren implementiert,
die z.B. einzelne Individuen mutieren oder zwei Individuen kreuzen. Operatoren
k�onnen beliebige Mengen von Individuen ineinander �uberf�uhren.

Operatoren k�onnen nicht direkt auf einzelne Zellen eines Individuums zugrei-
fen. Sie erhalten nur ganze Individuen, k�onnen diese aber an beliebige Funk-
tionen �ubergeben und von ihnen erhalten. Das System stellt Bibliotheken mit
SML-Funktionen bereit, die aus Operatoren aufgerufen werden und die auf
Teile von Individuen zugreifen und diese �andern k�onnen. Die SML-Funktion
"mutate real normal" der Bibliothek SimpleCellLib kann z.B. einen be-
stimmten Zellentyp mutieren.

4.2. MODULGRUPPEN 35

Es ist m�oglich, Parameter zu deklarieren, die zwischen Aufrufen weiter exi-
stieren (Beispiel: PARAMETER REAL T = (-2.0, -4.0, 4.0, "Temperatur")).
Parameter steuern das Verhalten eines Operators, sie stellen z.B. Schrittweiten
oder Grenzen dar. Diese Parameter verf�ugen �uber einen Standardwert, einen
Wertebereich und eine textuelle Beschreibung ihrer Funktion.

Es ist m�oglich, innerhalb von Experimenten Verfahren und Operatoren aufzuru-
fen. Verfahren und Operatoren k�onnen Operatoren aufrufen. Somit entsteht ein

"
Operatorbaum\, an dessen Wurzel der Experimentoperator steht (Abb. 4.4).

Experiment "Example"

Algorithm "Threshold"
Operator "mutate"

Algorithm "Great Deluge"
Operator "mutate"

Algorithm "Genetic"
Operator "mutate"

Operator "select"

Operator "crossover"

Abb. 4.4: Operatorbaum

Ein Operator kann au�erdem Bibliotheken angeben, aus denen Funktionen ent-
nommen werden sollen. Beim Aufruf einer Funktion wird in diesen Bibliotheken
nach der Funktion gesucht und sie wird ausgef�uhrt, wenn sie gefunden wurde.

Bibliotheken Funktionen werden in Bibliotheken zusammengefa�t. Diese
Funktionen k�onnen auf Zellen von Individuen zugreifen und werden in SML
geschrieben. So gibt es Funktionen, die Zellen mutieren oder zwei Individuen
kreuzen.

Durch neue Bibliotheken kann der Anwendungsbereich des Systems erweitert
werden, zum einen um neue Funktionen auf vorhandene Genotypen, als auch
um Funktionen auf neuen Genotypstrukturen.

Interpreter Der Interpreter ist das R�uckgrat des Systems, das die einzelnen
Teile wie Populationsverwaltung, Problem und Kodierungen verbindet. Der Ab-
lauf eines Experiments wird durch den Experimentoperator festgelegt, der vom
Interpreter ausgef�uhrt wird. In ihm werden nicht nur Problem und Populatio-
nen festgelegt, auch die Abfolge von Verfahren und Operationen auf Individuen
wird bestimmt.

Durch die Verwendung des Interpreters kann die Experimententwicklung in ver-
schiedene Stufen aufgeteilt werden: Es ist m�oglich, Vorhandenes zu verwen-
den, einfache Algorithmen in der Interpretersprache LEA zu schreiben, oder das

36 KAPITEL 4. �UBERBLICK �UBER GENOM

System selbst zu erweitern. Letzteres kann durch eine Erweiterung der SML-
Bibliotheken erfolgen oder durch �Anderungen am Grundsystem.

Auswertungswerkzeuge W�ahrend der Ausf�uhrung eines Experiments kann
Information �uber Populationen und Individuen in eine Log-Datei geschrieben
werden. Diese Log-Datei kann an weitere Programme �ubergeben werden, die
die Informationen aufbereiten (Abb. 4.5); z.B. sie in eine f�ur Menschen leicht
verst�andliche Form bringen.

Interpreter

LEA

Auswertung

Log

Experiment Logfile

?

Daten

Abb. 4.5: Experiment erzeugt Log�le, welches ausgewertet wird

Es stehen Werkzeuge zur Verf�ugung, die die Entwicklung der Fitne� einer Po-
pulation gra�sch darstellen. So kann verglichen werden, wie sich die mittlere
Fitne� im Vergleich zur besten oder schlechtesten entwickelt, au�erdem kann
man Individuen selbst anzeigen lassen.

Kapitel 5

Umsetzung der Konzepte

In Kapitel 3 sind die Ergebnisse der Spezi�kationsphase beschrieben. In die-
sem Abschnitt wird die Umsetzung dieser Anforderungen in einen Entwurf f�ur
GENOM dokumentiert. Die Beschreibung ist, entsprechend der in den Anforde-
rungen festgelegten Aufteilung des Systems in die drei Teile Kodierung, Popula-
tionsverwaltung und Interpreter gegliedert. Die Sprache LEA sowie der Aufbau
von Experimenten, Verfahren und Operatoren werden jeweils in einem eigenen
Kapitel beschreiben.

5.1 Individuen und Kodierung

Die Eigenschaften von Individuen, die mit evolution�aren Algorithmen bearbei-
tet werden, k�onnen durch einen festen Satz von Parametern beschrieben werden.
Gleichartige Individuen, die zusammen eine Population bilden, haben folglich
mindestens eine Gemeinsamkeit: sie werden mit gleich vielen Parametern be-
schrieben. Aus diesem Grund sind Individuen Listen fester L�ange von Parame-
tern, die im weiteren Zellen genannt werden.

Abb. 5.1: Beispiel eines Individuums

Jede Zelle besteht aus einer Grobstruktur, die mit Atomen gef�ullt sind. Ato-
me sind die elementaren Bestandteile der Individuen und k�onnen unter anderen

37

38 KAPITEL 5. UMSETZUNG DER KONZEPTE

reelle Zahlen, bool'sche Werte oder Permutationen sein. Diese Atome k�onnen
mit Hilfe von Grobstrukturen angeordnet, beispielsweise in einer Liste, in einem
Baum, einer Matrix oder in einer anderen beliebigen Struktur, deren einzige
Einschr�ankung ist, da� in ihr der Begri� einer Position wohlde�niert ist. In
Abbildung 5.1 ist ein Beispiel f�ur ein Individuum, dessen Zellen verschiedene
Grobstrukturen enthalten: in der ersten Zelle ein Paar von Atomen, in der zwei-
ten eine Matrix und in der letzten ein bin�arer Baum.

Eine Reihe von Evolution�aren Verfahren { die Genetischen Algorithmen { ar-
beiten nach einem Prinzip, das an die Vererbung bei Lebewesen angelehnt ist.
Zur Berechnung der Qualit�at einer L�osung wird wie bei anderen Verfahren der
Punkt im L�osungsraum verwendet, alle Ver�anderungen werden aber an kodier-
ten L�osungen vorgenommen. Der Punkt im L�osungsraum entspricht einem Lebe-
wesen, die kodierte L�osung seiner DNS. Die unkodierten L�osungen werden daher
auch als Ph�anotypen, ihre kodierten Darstellungen als Genotypen bezeichnet.

Auf Individuen bestehen zwei Sichtweisen: der Ph�anotyp und der Genotyp;
der Ph�anotyp ist die Sicht auf das Individuum von der Problemseite, der Ge-
notyp von der Verfahrensseite. Beide Sichtweisen k�onnen mit der Kodierungs-
(Ph�anotyp nach Genotyp) bzw. der Dekodierungsfunktion (Genotyp nach Ph�a-
notyp) ineinander �uberf�uhrt werden.

5.1.1 Atome

Das System stellt eine Reihe von Atomtypen zur Verf�ugung; diese Typen k�onnen
verschiedenartige Parameter besitzen, wie beispielsweise das zul�assige Intervall.
Dementsprechend werden die Atome in Klassen aufgeteilt. Realisiert wurden
bisher Atome ohne zus�atzliche Parameter (reelle und ganze Zahlen, bool'sche
Werte) sowie Atome mit zugeh�origem Intervall (reelle und ganze Zahlen). In
den Grobstrukturen d�urfen beliebige Atome vorkommen. Daher mu� ein Verei-
nigungstyp �uber alle vorhandenen Atomtypen gebildet werden:

structure AtomTypes =

struct

datatype atom_type =

real_atom of real

| int_atom of int

| bool_atom of bool;

| bound_real_atom of (real * (real * real))

| bound_int_atom of (int * (int * int));

end

Zu allen Atomtypen sind Funktionen de�niert, deren Art jeweils von der Klasse,
in die der Typ eingeordnet ist. Beispielsweise stellt jeder Atomtyp der Klasse
ohne zus�atzliche Parameter (reelle und ganze Zahlen, bool'sche Werte) folgende
Funktionen zur Verf�ugung (n�ahere Informationen in A.6:

signature ATOM =

sig

type base; (* Typ des Atoms *)

5.1. INDIVIDUEN UND KODIERUNG 39

val name: string; (* Bezeichner fuer diesen Atomtyp *)

val base2atom: base -> AtomTypes.atom_type;

(* nach Vereinigungstyp *)

val atom2base: AtomTypes.atom_type -> base;

(* von Vereinigungstyp *)

val base2string: base -> string; (* nach string *)

val string2base: string -> base; (* von string *)

val init_random: real -> base; (* Zufallswert *)

end;

Auf manche Funktionen der Atome kann einheitlich zugegri�en werden. Dies
erm�oglicht die Struktur UnionOfAtoms mit folgender Signatur:

signature UNIONOFATOMS =

sig

type atom_type;

val atom2string: atom_type -> string;

val string2atom: string -> atom_type;

end;

Aufbauend auf den Vereinigungstyp �uber den Atomen k�onnen nun Zellen de�-
niert werden, die Atome enthalten. Alle Zellen m�ussen folgende Signatur erf�ul-
len:

signature CELL =

sig

type 'a rawstructure;

type index;

val name: string;

val init: ((index -> AtomTypes.atom_type) * index list)

-> AtomTypes.atom_type rawstructure;

val get_element: (AtomTypes.atom_type rawstructure * index)

-> AtomTypes.atom_type;

val set_element: (AtomTypes.atom_type rawstructure *

AtomTypes.atom_type * index)

-> AtomTypes.atom_type rawstructure;

val cell2rawstructure: CellTypes.cell_type

-> AtomTypes.atom_type rawstructure;

val rawstructure2cell: AtomTypes.atom_type rawstructure

-> CellTypes.cell_type;

val cell2string: AtomTypes.atom_type rawstructure

-> string;

val string2cell: string

-> AtomTypes.atom_type rawstructure;

end;

Erl�auterung:

� 'a rawstructure ist die Grobstruktur, in der die Atome angeordnet sind.

40 KAPITEL 5. UMSETZUNG DER KONZEPTE

� index ist der Typ, mit dem die Position innerhalb der Grobstruktur fest-
gelegt wird.

� name ist der Bezeichner f�ur die Struktur.

� get element(r, i) liefert das Atom an der i-ten Stelle in r.

� set element(r, a, i) setzt das i-te Atom in r auf a.

� cell2rawstructure und rawstructure2cell sind Konvertierungsfunktionen zwi-
schen dem Zelltyp und dem Vereinigungstyp �uber alle Zellen.

� cell2string und string2cell sind Konvertierungsfunktionen zwischen Zeichen-
ketten und Zellen.

Ebenso wie f�ur Atome existiert auch f�ur Zellen ein Vereinigungstyp. In diesem
Beispiel werden Zellen mit einem einzelnen Atom (simple cell), Zellen mit einem
Paar von Atomen (pair cell) und Zellen, die aus einer Liste von Atomen bestehen
(list cell), zu einem Vereinigungstyp zusammengefa�t:

structure CellTypes =

struct

datatype cell_type =

simple_cell of AtomTypes.atom_type

| pair_cell of (AtomTypes.atom_type * AtomTypes.atom_type)

| list_cell of (AtomTypes.atom_type list);

end

Auch f�ur diesen Vereinigungstyp gibt es eine Struktur, um auf Teile der Funk-
tionen der Zellen einheitlich zugreifen zu k�onnen. Dies wird mit der Struktur
UnionOfCells erreicht:

signature UNIONOFCELLS =

sig

type cell_type;

val cell2string: cell_type -> string;

val string2cell: string -> cell_type;

end;

Individuen bestehen aus einer Liste von Zellen und dem Fitne�wert. Dieser ist
nur bekannt, wenn seit seiner letzten Berechnung die Zellen nicht ver�andert wur-
den. Mit Hilfe der Struktur Individuum werden Funktionen bereitgestellt, um
einzelne Zellen zu lesen, zu �andern, sowie das Individuum in eine Zeichenkette
zu konvertieren. Diese Struktur erf�ullt folgende Signatur:

signature INDIVIDUUM =

sig

type individuum_type;

val new_individual: individuum_type;

val get_fitness: individuum_type -> real option;

val set_fitness: individuum_type * real

5.1. INDIVIDUEN UND KODIERUNG 41

-> individuum_type;

val init: ((int -> UnionOfCells.cell_type) * int)

-> individuum_type;

val get_cell: (individuum_type * int)

-> UnionOfCells.cell_type;

val set_cell: (individuum_type * UnionOfCells.cell_type

* int) -> individuum_type;

val indiv2string: individuum_type -> string;

val string2indiv: string -> individuum_type;

end;

Erl�auterung:

� individuum type ist der Datentyp des Individuums.

� new individual ist ein leeres Individuum.

� get �tness ermittelt die letzte bekannte Fitne� oder stellt fest, da� keine
g�ultige Fitne� vorliegt.

� set �tness setzt die gespeicherte Fitness auf einen neuen Wert. Bis Zellen
ver�andert werden, kann diese Fitness mit get �tness ausgelesen werden.

� init(f, n) liefert ein Individuum mit n Zellen, wobei die Zellen 1; : : : ; n mit
f(1); : : : ; f(n) belegt sind.

� get cell(i, n) liefert die n-te Zelle aus dem Individuum i.

� set cell(i, c, n) setzt die n-te Zelle in i auf cdn Wert c.

� indiv2string und string2indiv sind Konvertierungsfunktionen zwischen Zei-
chenketten und Individuen.

5.1.2 Kodierungs- und Dekodierungsfunktion

Eine Reihe von Evolution�aren Verfahren | die Genetischen Algorithmen |
arbeiten nach einem Prinzip, das an die Vererbung bei Lebewesen angelehnt
ist. Zur Berechnung der Qualit�at einer L�osung wird wie bei anderen Verfahren
der Punkt im L�osungsraum verwendet, alle Ver�anderungen werden aber an ko-
dierten L�osungen vorgenommen. Der Punkt im L�osungsraum entspricht einem
Lebewesen, die kodierte L�osung seiner DNS. Die unkodierten L�osungen wer-
den daher auch als Ph�anotypen, ihre kodierten Darstellungen als Genotypen
bezeichnet. Auch bei anderen Verfahren kann eine Kodierung sinnvoll einge-
setzt werden, z.B. lassen sich durch die Kodierung die von Evolutionsstrategieen
ben�otigten Strategieparameter vor der Berechnung der Qualit�at der L�osung aus-
blenden. Die Qualit�atsfunktion (Fitne�funktion) | die diese Parameter nicht
ber�ucksichtigen soll | kann so unabh�angig vom Verfahren sein.

Die Kodierung in GENOM nimmt diese Umwandlung von Ph�ano- in Genotypen
und umgekehrt vor. Ph�ano- und Genotypen sind Tupel, deren Elemente aus ei-
nem oder mehreren Atomen bestehen, die in verschieden Strukturen angeordnet

42 KAPITEL 5. UMSETZUNG DER KONZEPTE

sein k�onnen. Bei diese Strukturen k�onnen selbst einfache Tupel sein, aber auch
Graphen oder Matrizen variabler Gr�o�e, so da� sich auch Anwendungen wie Ge-
netisches Programmieren realisieren lassen. Wie die Tupel kodiert werden, wird
durch ein Kodierungsschema beschrieben. Bestandteile dieses Schemas sind die
elementaren Kodierungsschemata, die Strukturen �uber Atomen in andere Struk-
turen �uberf�uhren. Da wir dem Benutzer auch die M�oglichkeit bieten wollen,
weitere Strukturen ins System einzuf�ugen, existiert auch die M�oglichkeit, das
System nachtr�aglich um weitere elementare Kodierungsschemata zu erweitern.

Diese Beschreibung gliedert sich in mehrere Abschnitte: nach einer Einf�uhrung
in den Aufbau der Kodierung werden zun�achst Atom und Zellen sowie die dar-
auf de�nierten Funktionen beschrieben. Anschlie�end werden die Kodierungs-
und Dekodierungsfunktion sowie Kodierungsschemata und elementare Kodie-
rungsschemata erl�autert.

Der �xe Aufbau von Ph�ano- und Genotyp erm�oglicht es, die Kodierungs- und
Dekodierungsfunktion nach einem festen Schema zu konstruieren. Grundlage
bilden die elementaren Kodierungsschemata, die Listen von Grobstruktu-
ren aus Atomen in andere Listen von Grobstrukturen umwandeln.

Kodierung

Dekodierung
i j

Abb. 5.2: elementares Kodierungsschema

Dieses Schema besteht im Wesentlichen aus einer Kodierungs- und einer De-
kodierungsfunktion; zus�atzlich enth�alt das Schema je eine Liste von Namen
von Grobstrukturen. Dabei mu� durch die Konstruktion der beiden Funktio-
nen gew�ahrleistet sein, da� die Dekodierungsfunktion die Umkehrfunktion der
Kodierungsfunktion ist.

type elementary_coding_scheme

= {in_cell_names: string list,

out_cell_names: string list,

coding: CellTypes.cell_type list

-> CellTypes.cell_type list,

decoding: CellTypes.cell_type list

-> CellTypes.cell_type list}

Die Werte und Funktionen, mit denen dieses Schema gef�ullt wird, sind in Struk-
turen mit folgender Signatur vereinbart:

signature ELEMENTARY_CODING_SCHEME =

sig

val in_cell_names: string list

val out_cell_names: string list

val coding: CellTypes.cell_type list

5.1. INDIVIDUEN UND KODIERUNG 43

-> CellTypes.cell_type list

val decoding: CellTypes.cell_type list

-> CellTypes.cell_type list

end;

F�ur einige Anwendungen, z.B. Kodierung reeller Zahlen aus einem vorgegebenen
Intervall, ist dieses feste Schema wenig geeignet: F�ur jedes Intervall mu� ein
neues Schema erstellt werden. Deshalb gibt es die M�oglichkeit, parametrisierte
elementare Kodierungsschemata zu schreiben.

signature PARAM_ELEMENTARY_CODING_SCHEME =

sig

type parameter

val param_in_cell_names: parameter -> string list

val param_out_cell_names: parameter -> string list

val param_coding: parameter

-> (CellTypes.cell_type list

-> CellTypes.cell_type list)

val param_decoding: parameter

-> (CellTypes.cell_type list

-> CellTypes.cell_type list)

end;

Durch Einsezten des Parameters lassen sich dann Werte und Funktionen f�ur ein
elementares Kodierungsschema erzeugen.

Um diese Signaturen in Records des Typs elementary coding scheme zu �uber-
f�uhren, existieren die zwei Funktoren GetElementaryCodingScheme und Get-

ParamElementaryCodingScheme, die Strukturen der Signaturen ELEMENTARY -

CODING SCHEME bzw. PARAM ELEMENTARY CODING SCHEME in Strukturen mit den
Signaturen

signature GET_ELEMENTARY_CODING_SCHEME =

sig

structure Coding: CODING

val elemcodscheme: Coding.elementary_coding_scheme

end;

f�ur elementare und

signature GET_PARAM_ELEMENTARY_CODING_SCHEME =

sig

structure Coding: CODING

type parameter

val paramelemcodscheme:

parameter -> Coding.elementary_coding_scheme

end;

f�ur parametrisierte elementare Kodierungsschemata umwandeln. Eine SML-Da-
tei, die ein elementares Kodierungsschema de�niert, besteht damit aus

44 KAPITEL 5. UMSETZUNG DER KONZEPTE

� einer Struktur zur Signatur ELEMENTARY CODING SCHEME bzw. PARAM -

ELEMENTARY CODING SCHEME

� Einer Zeile, die den Funktor GetElementaryCodingScheme bzw. GetPa-
ramElementaryCodingScheme auf die vorher de�nierte Struktur anwen-
det.

Das elementare Kodierungsschema kann aus diesen Strukturen direkt �ubernom-
men werden.

Aus diesen elementaren Kodierungsschemata wird dasKodierungsschema zu-
sammengesetzt.

Zelle Zelle Zelle Zelle Zelle

Zelle Zelle Zelle Zelle

Zelle

el. Kod.schema el. Kod.schema el. Kod.schema

Genotyp

Ph�anotyp

Abb. 5.3: Kodierungsschema

In diesem Schema wird jeder Zelle des Ph�anotyps eindeutig ein elementares Ko-
dierungsschema und dort wiederum eindeutig eine Position in der Eingangsliste
sowie jeder Zelle des Genotyps eindeutig ein elementares Kodierungsschema
und dort wiederum eindeutig eine Position in der Ausgangsliste zugeordnet.
Das Kodierungsschema besteht aus einem Namen und einer Liste von Tripeln
(K; li; lo), in dem K ein elementares Kodierungsschema und li; lo Listen von In-
dizes in der Liste des Ph�ano- bzw. Genotyps sind. Die Eindeutigkeit wird durch
die Konsistenzbedingung gew�ahrleistet, da� jeder Index des Ph�anotyps genau
einmal in einem der li und jeder Index des Genotyps genau einmal in einem der
lo vorkommt. Zudem mu� sichergestellt sein, da� die elementaren Kodierungs-
funktionen die �ubergebenen Grobstrukturen verabeiten k�onnen. Dazu k�onnen
die Namen aus in cell names bzw. out cell names mit dem Namen der entspre-
chenden Zelle aus Cell.name verglichen werden. Der Benutzer mu� sicherstellen,

5.1. INDIVIDUEN UND KODIERUNG 45

da� auch die Atome die von den elementaren Kodierungsfunktionen geforderten
Inhalte haben.

type coding_scheme = (string * (elementary_coding_scheme

* int list * int list) list)

Die Kodierungs- und Dekodierungsfunktionen sind in der Struktur Coding zu-
sammengefa�t:

signature CODING =

sig

type elementary_coding_scheme

type coding_scheme

val codeind: PhenoType.individuum_type * coding_scheme

-> GenoType.individuum_type

val decodeind: GenoType.individuum_type * coding_scheme

-> PhenoType.individuum_type

val samecod: coding_scheme * coding_scheme -> bool

val valcod: coding_scheme * coding_scheme -> bool

end;

Erl�auterung:

� codeind() kodiert einen Ph�anotyp mit dem angegebenen Kodierungssche-
ma in einen Genotyp.

� decodeind() dekodiert umgekehrt einen Genotyp.

� samekod() pr�uft durch Vergleich der Namen, ob die beiden Kodierungs-
schemata identisch sind.

� valcod() f�uhrt Teile der o.g. Konsistenzpr�ufungen durch. Gepr�uft wird, ob
das Kodierungsschema jeder Zelle zwischen Zelle 1 und der Zelle mit der
h�ochsten Nummer auf Ph�ano- bzw. Genotypseite genau ein elementares
Kodierungsschema zuordnet.

5.1.3 Kodierungsfunktionen

Die meisten der in Anhang A.4 beschriebenen elementaren Kodierungsschemata
verwenden gebr�auchliche Kodierungen wie Standardbin�ar- oder Graykodierun-
gen nat�urlicher Zahlen. Zwei spezielle Funktionen zur Kodierung von Permuta-
tionen und reeller Zahlen werden hier de�niert. Beschreibungen der Funktionen
�nden sich auch in [Cla96] bzw. [JW95, Seite 46] und [AJK+95, Seite 113].

5.1.3.1 Kodierung von Permutationen

Die Bijektion f zur Kodierung von Permutationen �uberf�uhrt eine Permutati-
on der L�ange n (dargestellt durch ein Tupel nat�urlicher Zahlen) in ein Tupel
nat�urlicher Zahlen:

f : A! B

46 KAPITEL 5. UMSETZUNG DER KONZEPTE

mit

A = f(x1; : : : ; xn) 2 N
n j 8i; j : 1 � xi � n; i 6= j) xi 6= xjg

B = f(x1; : : : ; xn) 2 N
n j 8i : 1 � xi � n� i+ 1g

Der Algorithmus zur Kodierung wird hier in Pseudocode beschrieben. Die Per-
mutation ist in der Variable p abgelegt, die kodierte Permutation wird in k

gespeichert.

z := (1; : : : ; n)
k := ()
loop

(p1; : : : ; pn) := p

(z1; : : : ; zn) := z

(k1; : : : ; km) := k

bestimme i mit zi = p1
p := (p2; : : : ; pn)

z :=

8<
:

(z2; : : : ; zn), falls i = 1
(z1; : : : ; zn�1, falls i = n

(z1; : : : ; zi�1; zi+1; : : : ; zn) sonst
k := (k1; : : : ; km; zi)

until p = ()

Die einzelnen Komponenten von k k�onnen dann z.B. noch standardbin�ar kodiert
werden. Standardmutations- und -rekombinationsoperatoren k�onnen dann aber
bei Anwendung auf Elemente aus B Tupel erzeugen, die selbst nicht in B liegen
und daher mit f�1 nicht dekodiert werden k�onnen. Mit der Funktion

g : Zn ! B

(x1; : : : ; xn) 7! ((x1 mod n) + 1; : : : ; (xn mod 1) + 1)

k�onnen solche Tupel auf Elemente der Menge B abgebildet werden. Es gilt:
g(x) = x, falls x 2 B. Dekodiert wird dann mit

f�1 � g:

5.1.3.2 Kodierung reeller Zahlen

Reelle Zahlen werden durch eine Funktion fa;b;l kodiert, die eine reelle Zahl
zwischen a und b auf ein Bittupel der L�ange l abbildet:

fa;b;l : fx 2 R j a � x � bg ! f0; 1gl

x 7! (b1; : : : ; bl)

mit

x = a+
b� a

2l � 1
�

lX
i=1

bi � 2
i�1:

5.2. POPULATIONSVERWALTUNG 47

5.2 Populationsverwaltung

Das System bietet die M�oglichkeit, Verfahren zu de�nieren, die auf mehreren
Populationen arbeiten. Der Zugri� auf die Populationen wird durch die Popu-
lationsverwaltung bereitgestellt. Neben den einzelnen Populationen enth�alt die
Populationsverwaltung auch die Informationen �uber das betrachtete Problem
(Problemraum, Fitne�).

5.2.1 Populationen

Populationen bestehen aus einer Menge von Individuen (als Genotyp), der ver-
wendeten Kodierung, sowie dem Generationsz�ahler. Die Individuenmenge wird
als Liste verwaltet, die Kodierung als das zugeh�orige Schema, und der Genera-
tionsz�ahler als ganze Zahl (integer).

Jeder Population ist ein Index zugeordnet. Zusammen mit diesen Indizes werden
die Populationen in einer Liste verwaltet. Die genaue De�nition dieser Daten-
typen ist:

type LogFile = string

type GenCounter_type = int

type KSrec_type = Coding.coding_scheme

type Ind_type = Individuum.individuum_type

type Pop_type = (LogFile * GenCounter_type * KSrec_type *

Ind_type list)

type PopId_type = int

LogFile ist der Typ des Protokolldateinamens, GenCounter type der Typ des
Generationsz�ahlers, KSrec type der Typ des Kodierungsschemas, Ind type der
Typ eines Individuums, Pop type der Typ einer Population und PopId type der
Typ des Populationsindex.

5.2.2 Problemstruktur

Ein Problem besteht aus einer Menge m�oglicher Ph�anotypen und einer Fit-
nessfunktion Evaluate, die die Qualit�at der Ph�anotypen bewertet. Die Menge
der Ph�anotypen wird durch den Bildbereich der Funktion Init Random de�niert,
welche zuf�allig erzeugte Ph�anotypen liefert:

signature PROBLEM =

sig

val Evaluate: (PhenoType.individuum_type -> real) ref

val Init_Random: (unit -> PhenoType.individuum_type) ref

end

Sowohl die Funktion Init Random als auch die Fitnessfunktion werden als Refe-
renztyp (ref) verwaltet. Um diese Referenzen zu setzen, existiert die Funktion
SetProblem:

48 KAPITEL 5. UMSETZUNG DER KONZEPTE

val Set_Problem: (unit -> PhenoType.individuum_type) *

(PhenoType.individuum_type -> real) -> bool

Set Problem(init indiv, �tness) belegt in der Struktur Problem die Funktionen
Evaluate und Init Random mit Referenzen auf die Funktionen init indiv und �t-
ness.

5.2.3 externe Individuen

Wird ein Individuum an den Interpreter �ubergeben, so erh�alt dieser ein
"
ex-

ternes Individuum\. Dieses ist ein Paar, (i, Ind), und f�uhrt neben dem Indivi-
duum in kodierter Form Ind noch den Index der Population i mit, aus welcher
es stammt. Beim Zur�uckschreiben eines externen Individuums in eine Popula-
tion wird �uberpr�uft, ob der Index der Population mit dem beim Individuum
gespeicherten Index �ubereinstimmt; falls sie nicht �ubereinstimmen, wird das In-
dividuum umkodiert.

Der lesende und schreibende Zugri� auf einzelne Individuen erfolgt �uber ihre
Position in der Individuenliste und den Index ihrer Population mit den Funk-
tionen GetextInd, SetextInd, AddextInd und InsextInd. Ferner gibt es noch die
M�oglichkeit, Listen von Individuen zu erhalten bzw. zu �ubergeben (GetextPop,
SetextPop), sowie die Finte� eines Individuums zu berechnen:

type extInd_type = (PopId_type * Ind_type ref)

type extIndL_type = extInd_type list

val AddextInd: PopId_type * extInd_type -> PopId_type

val SetextInd: PopId_type * int * extInd_type -> PopId_type

val InsextInd: PopId_type * int * extInd_type -> PopId_type

val GetextInd: PopId_type * int -> extInd_type

val GetextPop: PopId_type -> extIndL_type

val SetextPop: PopId_type * extIndL_type -> PopId_type

val Fitness: extInd_type -> real

Erl�auterungen

� extInd type ist der Typ eines externen Individuums. Es enth�alt neben der
Nummer seiner Population eine Referenz auf das zugeh�orige Individuum.

� extIndL type ist eine Liste externer Individuen.

� AddextInd (PopId, extInd) f�ugt das (externe) Individuum extInd an die Po-
pulation mit der Nummer PopId an.

� SetextInd (PopId, i, extInd) ersetzt das ite Individuum in der Population
Nummer PopId durch extInd.

� InsextInd(PopId, i, extInd) f�ugt das Individuum extInd in die Population
Nummer PopId an i-ter Stelle ein.

� GetextInd (PopId, i) Gibt aus Population PopId das i-te Individuum als
externes Individuum zur�uck.

5.2. POPULATIONSVERWALTUNG 49

� GetextPop (PopId) liefert die Individuen der Population Nummer PopId als
Liste externer Individuen.

� SetextPop (PopId, extIndL) erstellt die Population Nummer PopId aus der
Liste externer Individuuen extIndL.

� Fitness (extInd) bewertet das externe Individuum extInd, indem es dieses
dekodiert, und an die Funktion Problem.Evaluate �ubergibt.

5.2.4 Protokolldateien

Die Protokolldateien wurden entwickelt, um Populationen zu einem gew�unsch-
ten Zeitpunkt protokollieren zu k�onnen, um:

1. Einen sp�ateren Lauf darauf aufsetzen zu k�onnen.

2. Den Fitnessverlauf betrachten zu k�onnen.

Protokolliert wird der Generationsz�ahler der Population, sowie alle Individuen
als Ph�anotyp. Die Datei erh�alt die Endung .log zum eigentlichen Dateinamen
und wird im Verzeichnis log abgelegt. Jede Population hat dabei eine eigene
Protokolldatei.

LogPop: PopId_type -> bool

Die Protokolldatei wird bei jedem Aufruf von LogPop um einen Eintrag erwei-
tert. Dieser beginnt mit

"
f\ und endet mit

"
g\. Der erste Eintrag darin ist der

Generationsz�ahler, der durch
"
(\ und

"
)\ geklammert ist. Dannach folgt die

Individuenzeile, die aus dem Fitnesswert, dem Trennungszeichen zum Individu-
um

"
{\ und dem Ph�anotyp des Individuums als Zeichenkette kodiert besteht.

Diese Zeile wird f�ur alle Individuen der Population erzeugt und durch einen
Zeilenumbruch beendet.

5.2.5 Arbeiten mit der Populationsverwaltung

5.2.5.1 Initialisierung der Populationsverwaltung

Eine Initialisierung der Populationsverwaltung erfolgt durch folgende Schritte:

PopHandler.Init () -> bool

Diese Funktion l�oscht alle verf�ugbaren Populationen und gibt bei erfolgreicher
Initialiserung ein true zur�uck.

Als n�achster Schritt mu� das Problem gesetzt werden. Dieses besteht aus einer
Funktion RandomInd, die ein zuf�allig belegtes Individuum im Ph�anotyp zur�uck-
gibt, und der Fitnessfunktion FitnessFkt. Beide Funktionen werden als Refe-
renzen �ubergeben und dann innerhalb der Problemstruktur gespeichert. Liefert
diese Funktion ein true zur�uck, so ist das Problem gesetzt.

Problem.Init (!RandomInd, !FitnessFkt) -> bool

50 KAPITEL 5. UMSETZUNG DER KONZEPTE

5.2.5.2 Erzeugen von Populationen

Das Erzeugen einer Population erfolgt durch eine der unten beschriebenen Funk-
tionen, die alle, neben anderen Parametern, das Kodierungsschema und den
Namen der Protokolldatei als Eingabe erwarten und den Index der erzeugten
Population zur�uckgeben.

val CreatePopEmpty: KSrec_type * LogFile -> PopId_type

val CreatePopLoad: KSrec_type * LogFile * string -> PopId_type

val CreatePopRandom: KSrec_type * LogFile * int -> PopId_type

� CreatePopEmpty (KS, LogFile) Erzeugt eine leere Population mit Kodie-
rungsstruktur KS und Logdatei LogFile und liefert die Nummer der Popu-
lation zur�uck.

� CreatePopLoad(KS, LogFile, LoadFile) l�adt die Population aus der Datei
LoadFile und initialisiert eine Population mit Kodierungsstruktur KS und
Logdatei LogFile. Als Ergebnis wird die Nummer der Population zur�uck-
gegeben.

� CreatePopRandom(KS, LogFile, n) erzeugt eine Population mit n zuf�allig
erzeugten Individuen. Die Population hat die Kodierungsstruktur KS und
die Logdatei LogFile. Als Ergebnis wird die Nummer der Population zu-
r�uckgegeben.

5.2.5.3 Funktionen auf Populationen

Folgende Funktionen stehen zum Arbeiten auf einer Population zur Verf�ugung:

val DelPop: PopId_type -> bool

val ErasePop: PopId_type -> PopId_type

val SizeOfPop: PopId_type -> int

val AddInd: PopId_type * Ind_type -> PopId_type

val SetInd: PopId_type * int * Ind_type -> int

val InsInd: PopId_type * int * Ind_type -> PopId_type

val DelInd: PopId_type * int -> PopId_type

val GetInd: PopId_type * int -> Ind_type

� DelPop (PopId) entfernt die Population PopId. Wenn dies erfolgreich durch-
gef�uhrt wurde, wird true zur�uckgeliefert, ansonsten false.

� ErasePop (PopId) L�oscht alle Individuen Population PopId.

� SizeOfPop (PopId) Gibt die Anzahl der Individuen in der Population PopId
zurck.

� IncGenCounter (PopId) Erh�oht den Generationsz�ahler der Population PopId
um eins.

� LogPop (PopId) Schreibt die Population raus in die Logdatei.

5.2. POPULATIONSVERWALTUNG 51

� AddInd (PopId, Ind) F�ugt das Individuum Ind in die Population PopId ein.

� SetInd (PopId, i, Ind) ersetzt das i-te Individuum der Population PopId
durch Ind.

� InsInd (PopId, i, Ind) f�ugt das Individuum Ind an der i-ten Stelle in die
Population PopId ein.

� DelInd (PopId, i) entfernt das i-te Individuum aus der Population PopId.

� GetInd (PopId, i) Gibt das i-te Individuum der Population PopId zur�uck.

� Evaluate (Ind) liefert die Fitne� des Individuums Ind.

5.2.6 Berechnung der Fitne� eines externen Individuums.

Das System betrachtet Individuen auf zwei Arten: Zum einen bearbeiten Hilfs-
funktionen des Laufzeitsystems das Individuum wie es in der Struktur Indivi-
duum festgelegt wird. Andererseits wird im Interpreter ein Individuum verwandt,
da� von der Populationsverwaltung zus�atzlich einen Verweis auf die Population
erh�alt, zu der es geh�ort. Au�erdem wird hier nur eine Referenz auf das eigent-
liche Individuum �ubergeben.

Somit kann man zwischen
"
externen\ und

"
normalen\ Individuen unterschei-

den. Soll nun die Fitness eines externen Individuums ermittelt werden (s. Abb.
5.4), so mu� ein Funktionsaufruf an die Populationsverwaltung erfolgen (1).
Die Populationsverwaltung l�ost das normale Individuum aus dem externen her-
aus und ermittelt seine Fitne� durch die Funktion get fitness der Struktur
Individuum (2). Diese Funktion liefert zwei Arten von Resultaten (3): Entweder
wurde f�ur das Individuum bereits der Fitne�wert berechnet und das Individu-
um seitdem nicht mehr ver�andert; dann wird dieser Wert geliefert (10). Es kann
aber auch sein, da� die Fitne� des Individuums bisher nicht berechnet oder das
Individuum seit der letzten Berechnung ver�andert wurde.

Populations-
verwaltung

Individuum Kodierung

Problem

1

10

3

4

5

6

7

8 9 2
Interpreter

ext. Ind.
real

Abb. 5.4: Berechnung der Fitne� eines externen Individuums

52 KAPITEL 5. UMSETZUNG DER KONZEPTE

Im letzten Fall mu� nun die Populationsverwaltung das Individuum dekodieren
(4, 5) und die Fitne� von Problem berechnen lassen (6, 7). Um nun den Fitne�-
wert im Individuum auf den neuen Stand zu bringen, mu� durch einen Aufruf
der Funktion set fitness der Struktur Individuum der neue Wert gesetzt wer-
den (8, 9). Da im Interpreterteil des Systems nur die Referenz auf das normale
Individuum bekannt ist, kann in der Populationsverwaltung dieses ver�andert (ei-
gentlich: ersetzt) werden. Schlie�lich erh�alt der Aufrufer den Fitne�wert zur�uck
(10).

Dieses Verfahren ist recht umst�andlich, was sich aus seiner Entstehungsgeschich-
te erkl�art: Die Trennung in normales und externes Individuum wurde eingef�uhrt,
um die Zugeh�origkeit zu eines Population speichern zu k�onnen. Es wurde dann
festgestellt, da� ohnehin Individuen umgewandelt werden mu�ten (durch die
Funktionen norm2ext und ext2norm der Populationsverwaltung), so da� die
Probleme beim Kopieren von Zeigern nicht entstehen. Daher war es m�oglich,
die Speicherung der letzten Fitness beim Individuum einzuf�uhren, durch die
Verfahren mitunter bedeutend beschleunigt werden, da die Anzahl der mitunter
aufwendigen Berechnungen der Fitne� verkleinert wird.

5.3 Operatoren, Parameter und Bibliotheken

5.3.1 Operatorkonzept

Um ein Experiment mit GENOM ablaufen zu lassen, existiert ein Experiment-
operator, der die Verfahren aufruft. Die Verfahren verwenden Operatoren, die
wiederum Funktionen aufrufen, die in Bibliotheken zusammengefa�t sind. Hier-
durch wird eine hohe Wiederverwendbarkeit und eine schnelle �Anderbarkeit er-
reicht. Man kann sich dies als Operatorbaum (siehe Abbildung 4.4) anschaulich
vorstellen.

Experimentoperator Der Experimentoperator legt fest, welches Problem
optimiert werden soll, indem eine SML-Datei bezeichnet wird. In dieser wird
der Ph�anotyp und auch die Fitne�funktion festgelegt.

Au�erdem deklariert der Experimentoperator die Populationen, auf denen die
einzelnen Verfahren arbeiten sollen. Dies geschieht im Experimentoperator, also

"
auf oberster Ebene\, um die Migration von Individuen zwischen den Popula-
tionen zu erm�oglichen. Daraus folgt, da� zudem hier f�ur jede Population eine
Kodierung festgelegt werden mu�. Dann ist eine Migration durch Dekodieren
eines Individuums und anschlie�ende Neukodierung m�oglich.

Der Experimentoperator hat aber noch eine weitere Aufgabe: Er de�niert den
Startzustand des gesamten Experiments, indem man f�ur die Populationen Da-
teien anzugibt, aus denen sie geladen werden sollen. Andererseits ist es nat�urlich
m�oglich, zuf�allige Vorbelegungen f�ur neue Abl�aufe einzustellen.

Schlie�lich deklariert der Experimentoperator noch die Verfahren, die auf die
einzelnen Populationen angewendet werden sollen. Dabei ist nat�urlich darauf
zu achten, da� die verwendete Kodierung zum Verfahren kompatibel ist.

5.3. OPERATOREN, PARAMETER UND BIBLIOTHEKEN 53

Verfahren Verfahren sind spezielle Operatoren, deren Aufgabe die Umset-
zung eines Algorithmus ist. Hier soll nur der Ablauf gesteuert werden. Die ei-
gentliche Arbeit soll von einzelnen Operatoren verrichtet werden.

Typische Verfahren sind z.B. das
"
Simulated Annealing\, der

"
Threshold Algo-

rithmus\, die
"
Genetischen Algorithmen\ und die

"
Evolutionsstrategien\, deren

Ablauf in der Literatur ausf�uhrlich beschrieben und bewertet wird ([GWH90,
BS93, Due93]).

Operatoren Operatoren werden im System wie einzelne Werkzeuge behan-
delt, die sehr spezielle, mitunter komplexe Aufgaben wahrnehmen. Durch die
Verwendung von Parametern (s.u.) lassen sich Operatoren in ihrer Funktiona-
lit�at beein
ussen.

In Operatoren wird
"
die eigentliche Arbeit verrichtet\: Individuen ver�andern

und ausw�ahlen, Funktionen aufrufen, Berechnungen durchf�uhren. Bei geschick-
ter Aufteilung der Aufgaben kann eine hohe Wiederverwendbarkeit und Flexi-
bilit�at erreicht werden, so da� z.B. die Selektion des einen Verfahrens in einem
anderen Verfahren verwendbar ist.

5.3.2 Parameterkonzept

Verfahren und Operatoren k�onnen Parameter deklarieren. Diese Parameter sind
Variablen besonderer Art, da sie

� vor dem eigentlichen Aufruf des Operators gesetzt werden k�onnen,

� zwischen Operatoraufrufen ihren Wert behalten,

� �uber einen Wertebereich und

� einen Standard- (Default-) Wert verf�ugen und

� eine textuelle Beschreibung besitzen.

Wird ein Operator in einem anderen Operator (auch im Experimentoperator)
deklariert, so k�onnen dabei den Parametern Werte zugewiesen werden, die im
Wertebereich des Parameters liegen m�ussen. Wird ein Parameter nicht auf diese
Weise initialisiert, so wird ihm vor dem ersten Aufruf der Standardwert zuge-
wiesen.

Die Deklaration eines Unteroperators erfolgt im Kopfteil des aufrufenden Ope-
rators, wobei eine Operatorvariable de�niert wird. Der Name dieser Operator-
variable wird im Programmrumpf beim Aufruf des Operators verwendet. Bei
diesem Aufruf m�ussen die aktuellen Parameter entsprechend den formalen Pa-
rametern im Operator �ubergeben werden. Es ist also m�oglich, denselben Ope-
rator mehrfach mit verschiedenen Parameterbelegungen im selben Experiment,
ja sogar im selben Operator zu verwenden.

54 KAPITEL 5. UMSETZUNG DER KONZEPTE

5.3.3 Bibliothekenkonzept (LEA-Sicht)

In jedem Operator ist es m�oglich, durch das USES-Konstrukt Bibliotheken anzu-
geben, aus denen Funktionen aufgerufen werden sollen. Diese Funktionen sind
in SML verfa�t und haben somit den vollen Zugri� auf alle Konstrukte und Ei-
genschaften, die SML bietet. Insbesondere sind dies der Zugri� auf Zellen und
Atome der Individuen, der aus LEA heraus nicht m�oglich ist.1

Da alle verwendeten Operatoren deklariert werden m�ussen, handelt es sich bei
allen anderen Aufrufen um Aufrufe einer Funktion. Um diese zu �nden, wird in
den angegebenen Bibliotheken nach dem Funktionsnamen gesucht, wobei in der
Reihenfolge vorgegangen wird, in der die Bibliotheken in der USES-Anweisung
angegeben sind. Be�ndet sich die Funktion in keiner der angegebenen Biblio-
theken, so wird in der Bibliothekenliste des aufrufenden Operators gefahndet
usw.

Somit ist es sogar m�oglich, Operatoren zu schreiben, die je nach Ort ihres Auf-
rufs verschiedene Kodierungen des Ph�anotyps akzeptieren: Eine Funktion wird
nicht im Operator selbst durch Angabe einer Bibliothek bestimmt, sondern im
aufrufenden Operator bzw. im Verfahren.

Daneben bieten die Bibliotheken auch Standard-Funktionen, die der Benutzer
vom Laufzeitsystem erwartet, wie z.B. mathematische Funktionen und Ausga-
befunktionen. Durch den oben beschriebenen Mechanismus ist es ausreichend,
diese Standardbibliotheken einmal im Experimentoperator zu deklarieren.

5.4 Beschreibung der Sprache LEA

Um eine einfachere Eingabe von Experimentde�nitionen, Verfahren und Ope-
ratoren zu erm�oglichen, wurde die Sprache LEA (Language for Evolutionary
Algorithms) entwickelt. Mit ihr k�onnen Verfahren und Operatoren in der weiter
verbreiteten prozeduralen Form programmiert werden. Zus�atzlich ist in einheit-
licher Weise auch das Initialisieren und die Steuerung des Ablaufs eines Expe-
riments m�oglich. Um den Aufwand f�ur die Entwicklung der Sprache nicht zu
gro� werden zu lassen, wurde auf eine M�oglichkeit verzichtet, Ph�ano- und Ge-
nostrukturen in LEA direkt zu ver�andern. Es kann daher nur bis zur Ebene
der Individuen in LEA gearbeitet werden. F�ur die Elemente, auf denen diese
aufbauen, m�ussen Funktionen in SML geschrieben werden, die �uber eine spezi-
elle Schnittstelle in LEA verwendet werden k�onnen. Andere Konzepte, wie die
M�oglichkeit Parameter f�ur Verfahren und Operatoren anzugeben, sind direkt in
LEA umgesetzt. Dieser Abschnitt soll einen �Uberblick �uber die Sprache LEA
geben.

1Die Implementation dieser Funktionalit�at h�atte den Umfang dieser Projektgruppe ge-

sprengt, jedoch ist dies f�ur eine Erweiterung geplant.

5.4. BESCHREIBUNG DER SPRACHE LEA 55

5.4.1 Grundlagen

5.4.1.1 Schl�usselw�orter

Die Schl�usselw�orter sind neben einfachen und zusammengesetzten Zeichen wie
+, := etc. die Elemente, aus denen die Sprache LEA besteht. Schl�usselw�orter
sind Zeichenketten, die mit einem Buchstaben beginnen und aus einer belie-
bigen Folge aus Buchstaben und Zi�ern bestehen. Alle in LEA verwendeten
Schl�usselw�orter werden im Anhang D aufgelistet.

5.4.1.2 Bezeichner

Auf die in LEA deklarierten Objekte (wie Operatoren, Parameter, lokale Varia-
blen etc.) wird �uber Bezeichner zugegri�en. Wie die Schl�usselw�orter beginnen
sie mit einem Buchstaben und bestehen aus einer beliebigen Folge von Buch-
staben und Zi�ern. Die Buchstaben k�onnen dabei gro� oder klein geschrieben
werden. Bezeichner gelten auch dann als verschieden, wenn sie sich nur in der
Gro�- und Kleinschreibung unterscheiden. Die Schl�usselw�orter d�urfen nicht als
Bezeichner verwendet werden.

5.4.1.3 Konstanten

In LEA-Programmen k�onnen die folgenden Arten von Konstanten verwendet
werden:

� Ganzzahlkonstanten sind Folgen von Zi�ern, die als ganze Zahl interpre-
tiert werden. Diese Zahl darf allerdings nicht gr�o�er werden als die von
SML unterst�utzten 31bit Ganzzahlen. Ein Beispiel f�ur eine Ganzahlkon-
stante ist 42.

� Gleitkommakonstanten unterscheiden sich von den Ganzzahlen durch ei-
nen enthaltenen Dezimalpunkt. Sie werden als reelle Zahlen interpretiert.
Eine LEA-Programm kann z.B. die Gleitkommakonstante 3.1416 enthal-
ten.

� Stringkonstanten sind in doppelte Anf�uhrungszeichen eingeschlossene Zei-
chenketten (z.B. "Hello World"). Sie d�urfen nicht �uber das Zeilenende
hinaus gehen.

5.4.1.4 Typen

LEA verwendet f�ur die meisten Elemente eine statische Typpr�ufung. F�ur alle de-
klarierten Variablen, Parameter, Operatoren etc. m�ussen die Typen angegeben
werden. Diese Typen werden �uberpr�uft, wenn diese Objekte verwendet werden.
Konvertierungen m�ussen explizit vorgenommen werden.

In der ersten Version von LEA werden folgende Typen unterst�utzt:

56 KAPITEL 5. UMSETZUNG DER KONZEPTE

� BOOL bezeichnet einen bool'schen Typ. Variablen diesen Typs k�onnen die
Werte wahr und falsch annehmen und werden bei Bedingungen verwendet.

� INT bezeichnet einen ganzzahligen Typ. Der Wertebereich dieser Variablen
entspricht dem 31bit Ganzzahltyp von SML.

� REAL bezeichnet einen reellwertigen Typ.

� IND: Variablen diesen Typs k�onnen ein Individuum aufnehmen.

� INDLIST: Mit diesem Typ k�onnen Variablen deklariert werden, die Listen
von Individuen aufnehmen.

� POP: Variablen von diesem Typ bezeichnen Populationen, die von der Po-
pulationsverwaltung des Systems verwaltet werden.

5.4.1.5 Kommentare

LEA unterst�utzt Kommentare, die mit einem # beginnen und sich bis zum Ende
der Zeile erstrecken.

T := T * faktor; # erniedrige Temperatur

5.4.2 Sprachelemente

5.4.2.1 Experiment

Das oberste Sprachkonstrukt von LEA ist das Experiment. Ein bestimmtes
Experiment wird beim Start aufgerufen. Es initialisiert die Populationen und
wendet darauf die Verfahren an. Daneben k�onnen auch Operatoren f�ur wei-
tere Berechnungen verwendet werden. Ein Experiment besteht aus folgenden
Abschnitten:

� EXPERIMENT <Experimentname>: Eine Kopfzeile, die den Namen des Ex-
periments angibt.

� Einem Deklarationsteil, der angibt, was im folgenden Anweisungsteil ver-
wendet werden kann. Die Reihenfolge der Deklarationen ist dabei vorge-
geben, die optionalen Teile k�onnen allerdings weggelassen werden.

{ USES <Lib1>, <Lib2>, ..., <Libn> (optional): Eine Liste der ver-
wendeten Funktionsbibliotheken.

{ PROBLEM <Problemname>: Die Angabe des Problems, das im Experi-
ment verwendet wird.

{ POPULATIONS <Populationen> (optional): Eine Deklaration der im
Experiment verwendeten Populationen.

{ OPERATORS <Liste der Operatoren> (optional): Die von dem Ex-
periment aufgerufenen Verfahren und Operatoren.

{ VAR <Variablen> (optional): Die lokalen Variablen.

� Einem Anweisungsteil, der in BEGIN und END eingeschlossen ist und aus
einer Liste von Anweisungen besteht (siehe unten).

5.4. BESCHREIBUNG DER SPRACHE LEA 57

5.4.2.2 Operatoren

Operatoren unterscheiden sich von der Experimentde�nition durch die M�oglich-
keit, beim Aufruf Parameter zu empfangen und einen Wert zur�uckzuliefern.
Zus�atzlich kann jeder Operator eine Reihe von Parametern besitzen, die sein
Verhalten steuern und die bei der Verwendung in einem Verfahren (oder Expe-
riment) oder von au�en gesetzt werden k�onnen. Im Deklarationsteil von Opera-
toren ist es nicht m�oglich, ein Problem oder eine Populationen anzugeben. Ein
Operator besteht aus den folgenden Teilen:

� OPERATOR <Opname> (<Typ1> <Par1>, ..., <Typn> <Parn>): <Typ>:
Eine Kopfzeile, die den Namen des Operators, die Parameter, ihre Typen
und den Typ des R�uckgabewerts angibt.

� Einem Deklarationsteil, der angibt, was im folgenden Anweisungsteil ver-
wendet werden kann. Die Reihenfolge der Deklarationen ist dabei vorge-
geben, die optionalen Teile k�onnen allerdings weggelassen werden.

{ USES <Lib1>, <Lib2>, ..., <Libn> (optional): Eine Liste der ver-
wendeten Funktionsbibliotheken.

{ PARAMETER <Liste der Parameter> (optional): Die Parameter, mit
denen das Verhalten des Operators gesteuert werden kann.

{ OPERATORS <Liste der Operatoren> (optional): Die von diesem
Operator aufgerufenen Verfahren und Operatoren.

{ VAR <Variablen> (optional): Die lokalen Variablen.

� Einem Anweisungsteil, der in BEGIN und END eingeschlossen ist und aus
einer Liste von Anweisungen besteht (siehe unten).

5.4.2.3 Verfahren

Verfahren sind genauso aufgebaut wie die Operatoren. Die Kopfzeile beginnt
mit ALGORITHM. Verfahren sollten, anders als Operatoren, die nur in speziellen
F�allen auf Populationen arbeiten (z.B. Migrationsoperatoren), eine Population
als Parameter �ubergeben bekommen.

5.4.2.4 Deklarationen

Parameter Parameter f�ur die Verfahren und Operatoren k�onnen vom Typ
Int, Real und Bool sein. Bei der Deklaration der Parameter wird ein Standard-
wert angegeben, der verwendet wird, wenn kein Wert angegeben ist. Weiter wird
ein Maximal- und ein Minimalwert f�ur den Parameter de�niert. Die Werte, die
der Parameter annehmen soll, m�ussen dazwischen liegen. Schlie�lich folgt noch
eine Zeichenkette, die den Parameter beschreibt.

<Typ> <Name> = (<Standardwert>,

<Minimalwert>,

<Maximalwert>,

"<Beschreibung>")

58 KAPITEL 5. UMSETZUNG DER KONZEPTE

Operatoren Bei der Deklaration eines Operators wird der Verweis festgelegt,
unter dem ein vorhandener Operator im Anweisungsteil angesprochen wird. Da-
bei werden f�ur die Parameter eines Operators oder Verfahrens konkreten Werte
bestimmt. Wenn ein Parameter nicht angegeben ist, so erh�alt er seinen Stan-
dardwert. Die Parameter, f�ur die ein Wert angegeben ist, werden beim Start des
Operators auf diesen Wert gesetzt. Auf diese Weise kann der gleiche Operator
durch eine Verwendung verschiedener Verweise mit verschiedenen Parameterbe-
legungen verwendet werden.

<Verweis> = <Operatorname>(<Par1>: <Wert1>,

<Par2>: <Wert2>,

...,

<Parn>: <Wertn>)

5.4.2.5 Anweisungen

Anweisungslisten, wie sie als Hauptteil der Operatoren verwendet werden, sind
Listen von Anweisungen, die durch Strichpunkte getrennt werden. Die Semantik
dieser Anweisungen entspricht im wesentlichen der von PASCAL und MODU-
LA2, an die auch die Syntax angelehnt ist. In LEA werden folgende Anweisungen
unterst�utzt:

� Zuweisung: Weist einer lokalen Variablen oder einem Operatorparameter
den Wert zu, der durch den angegebenen Ausdruck bestimmt wird.

<Variable> := <Ausdruck>

� Funktionsaufruf: Auf diese Weise k�onnen SML-Funktionen, Operatoren
und Verfahren aufgerufen werden. Rekursive Aufrufe sind in LEA aller-
dings nicht zugelassen. Bei SML-Funktionen kann zur eindeutigen Be-
schreibung zus�atzlich noch der Name der Bibliothek angegeben werden.
Wenn Parameter an die Funktion �ubergeben werden, werden diese auf
die �ubliche Weise nach dem Funktionsnamen als Liste in Klammern an-
geh�angt.

[<Bibliotheksname>:]<Funktionsname>[(<Parameterliste>)]

� Verzweigung: Die Verzweigung f�uhrt abh�angig von einer Bedingung eine
von zwei Anweisungslisten aus. Der Ausdruck f�ur die Bedingung mu� da-
bei einen bool'schen Wert ergeben. Wenn dieser wahr ist, wird die erste
Anweisungsliste ausgef�uhrt, sonst die zweite.

IF <Ausdruck> THEN <Anweisungen>

ELSE <Anweisungen> FI

� While-Schleife: Bei der While-Schleife wird eine Anweisungsliste solange
ausgef�uhrt, bis die Bedingung falsch ergibt.

WHILE <Ausdruck> DO <Anweisungen> OD

5.5. INTERPRETER 59

� Repeat-Schleife: Der Anweisungsteil der Repeat-Schleife wird, im gegen-
satz zur While- Schleife, immer mindestens einmal ausgef�uhrt. Die Schleife
wird dann solange wiederholt, bis die Bedingung wahr wird.

REPEAT <Anweisungen> UNTIL <Ausdruck>

� For-To-Schleife: Bei der For-To-Schleife wird vor Beginn der Ausf�uhrung
die Ganzzahlvariable auf den angegebenen Anfangswert gesetzt. Die Schlei-
fe wird dann durchlaufen, wenn die Variable den Endwert noch nicht �uber-
schritten hat. Am Ende der Schleife wird die Variable um eins erh�oht und
wieder zum Anfang der Schleife gesprungen.

FOR <Variable> := <Ausdruck> TO <Ausdruck> DO

<Anweisungen> OD

� Operator beenden: Die Return-Anweisung beendet einen Operator, ein
Verfahren oder das Experiment. Wenn der Operator (oder das Verfahren)
einen R�uckgabewert zur�uckliefert, wird dieser hier durch den Ausdruck,
der auf das Schl�usselwort folgt, angegeben.

RETURN <Ausdruck>

5.4.2.6 Ausdr�ucke

Ausdr�ucke in LEA sind ebenfalls denen in anderen prozeduralen Sprachen nach-
empfunden. Sie k�onnen aus Konstanten, Variablen, Klammerungen, Funktions-
aufrufen (wie bei den Anweisungen beschrieben) und den unten aufgelisteten
Operatoren aufgebaut werden. Ein Ausdruck wird zu einem Wert von einem
der in LEA zul�assigen Typen ausgewertet. Ein Beispiel f�ur einen Ausdruck ist:

((XR*XR + XI*XI) < 4.0)

5.5 Interpreter

Der Interpreter f�ur die Sprache LEA ist der umfangreichste Teil von GENOM.
Er nimmt eine zentrale Position ein, da er die Verbindung zwischen Experimen-
ten, Verfahren und Operatoren auf der einen und der Populationsverwaltung
auf der anderen Seite darstellt. Der Interpreter zerf�allt in mehrere Module, die
im folgenden jeweils in einem eigenen Kapitel beschrieben werden. Ein �Uber-
blick �uber die Module �ndet sich in Kapitel 5.5.1, ein Glossar der verwendeten
Fachbegri�e im Kapitel 5.5.8.

5.5.1 Interpreter-Programmteile

Der Interpreter besteht aus folgenden Teilen:

� Preter: F�uhrt eine Anweisungsfolge unter einer Variablenumgebung aus,
liefert eine Variablenumgebung zur�uck.

60 KAPITEL 5. UMSETZUNG DER KONZEPTE

� Linker: Sorgt f�ur Initialisierung der Umgebungen und startet das Experi-
ment. F�uhrt Aktionen wie Operator- und Funktionsaufrufe durch.

� Parser: Liest eine Datei ein und liefert einen geparsten Operator zur�uck,
der u.a. eine Anweisungsfolge aus Elementar-Befehlen und eine initiale
Variablenumgebung enth�alt.

� Library: Sammlung/Organisation der einzelnen Operatoren. Sorgt f�ur die
Ermittlung der ben�otigten Dateien.

� Frame: Sorgt f�ur das Parsen der abgespeicherten Operatoren und das Ein-
binden der Bibliotheken durch SML. Startet das Experiment �uber den
Linker.

5.5.2 Preter

Das Modell der Maschine, auf der die Programme des Interpreters ablaufen, ist
eine Stackmaschine. Die Berechnung von Ausdr�ucken wird durch Ablegen der
Operatoren auf den Stack und Ausf�uhren einer Operation, die ihre Operanden
auf dem Stack erwartet, realisiert.

Elementare Anweisungen Das Maschinenmodell, auf das der Preter auf-
baut, verwendet einen lokalen Stapel, der zur Berechnung komplexerer Aus-
dr�ucke dient. Somit brauchen Anweisungen oft nur ein Objekt zu kennen, da
andere sich auf dem Stack be�nden.

Um einen Stack aller m�oglichen Typen zu bilden, wurden diese zum Datentyp
Varvalue vereint. In einem Programm k�onnen Werte verwendet werden, die
entweder konstant sind, eine Variable bezeichnen oder einen Parameter (mit
seinem relativen Namen) darstellen. Dies wurde im Datentyp Value umgesetzt.

Eine Variable wird durch ihren Namen angesprochen, der als String implemen-
tiert ist. Sie kann alle konstanten Werte annehmen.

Der Anweisungsteil eines Programms besteht aus einer Folge von Kommandos,
die aus dem Befehlsvorrat entnommen werden. Der Befehlsvorrat wird durch
den Datentyp StackCmd repr�asentiert.

Ein Befehl der Stackmaschine wird durch die Funktion exec realisiert. Diese
Funktion erh�alt das auszuf�uhrende Kommando, die Nummer des folgenden Be-
fehls, die Variablenumgebung und den aktuellen Stack. Nach Ausf�uhrung der
Anweisung werden der neue Programmz�ahler, die neue Variablenumgebung und
der neue Stack zur�uck gegeben.

Soll z.B. eine Konstante auf den Stack gelegt werden (sc push), so wird sie
einfach vorne an den Stack angeh�angt. Soll dagegen das oberste Element des
Stacks in eine Variable geschrieben werden (sc pop), so wird die Konstante
von Stack entfernt und die Variablenumgebung ge�andert; d.h. die betre�ende
Variable auf den gew�unschten Wert gesetzt.

Spr�unge werden realisiert, indem einfach die berechnete Nummer der n�achsten
Anweisung zur�uckgeliefert wird (sc jmp). Eine arithmetische Operation (sc op

5.5. INTERPRETER 61

datatype Varvalue =

notdeklared

|notdefinedint

|notdefinedreal

|notdefinedbit

|notdefinedstring

|notdefinedindi

|notdefinedindilist

|notdefinedpop

|intval of int

|realval of real

|bitval of bool

|stringval of string

|indival of PopHandler.extInd_type

|indilistval of PopHandler.extIndL_type

|popval of PopHandler.PopId_type

|opval of string * (string * Varvalue) list

|parval of Varvalue * Varvalue * Varvalue * string

Abb. 5.5: Konstante Werte

datatype Value =

variabel of string | konst of Varvalue | parref of string list

Abb. 5.6: Variable Werte

type Variable = string * Varvalue

Abb. 5.7: Typ der Variablen

sc_push(value) Legt eine Konstante oder Variable, die mit
dem Ausdruck value beschrieben wird, auf
den Stack.

sc_pop(bez) Speichert das oberste Element auf dem
Stack in der Variable mit dem angegebe-
nen Bezeichner (bez) in der aktuellen Um-
gebung und nimmt den Wert vom Stack.

sc_popparam(parbez) Setzt den Wert des Parameters mit der Be-
zeichnung parbez in der aktuellen Umge-
bung auf den Wert des obersten Stackele-
ments und nimmt diesen vom Stack.

sc_drop Nimmt das oberste Element vom Stack.
sc_dup Legt das oberste Stackelement noch einmal

oben auf den Stack.

Tabelle 5.1: Stackverwaltung

62 KAPITEL 5. UMSETZUNG DER KONZEPTE

sc_jmp(pos) Unbedingter Sprung an die Position pos im
Stackprogramm.

sc_jmpT(pos) Sprung an die Position pos im Stackpro-
gramm, wenn das oberste Element auf dem
Stack ein bool'scher Wert und wahr ist.

sc_jmpF(pos) Sprung an pos, wenn das oberste Element
den bool'schen Wert falsch hat.

Tabelle 5.2: Sprungbefehle

sc_call_fct(lib, bez, z) Ruft die SML-Funktion mit dem Namen
bez aus der Bibliothek lib auf, wobei z
Elemente als Parameter auf dem Stack
liegen. Die Reihenfolge entspricht der in
der Prozedurdeklaration, wobei der zu-
erst deklarierte Parameter auch zuerst auf
den Stack gelegt wird. Der letzte Parame-
ter liegt also oben auf dem Stack. SML-
Funktionen legen immer einen Wert als
R�uckgabe auf den Stack, Operatoren nur,
wenn ein R�uckgabewert in der Deklaration
angegeben ist.

sc_call_op(bez, z) Ruft den Operator oder das Verfahren mit
dem Namen bez auf, wobei z Elemente als
Parameter auf dem Stack liegen (wie bei
sc call fct).

Tabelle 5.3: Aufrufe von Funktionen

5.5. INTERPRETER 63

sc_op(so_add) Addiert die beiden obersten Stackelemen-
te und ersetzt sie durch das Ergebnis der
Addition.

sc_op(so_sub) Subtrahiert des zweite vom ersten Stack-
element und legt das Ergebnis auf den
Stack.

sc_op(so_neg) Negiert das oberste Stackelement.
sc_op(so_mul) Multipliziert die beiden obersten Stackele-

mente und legt das Ergebnis auf den Stack.
sc_op(so_div) Dividiert das zweite vom ersten Stackele-

ment und legt das Ergebnis auf den Stack.
sc_op(so_eq) Vergleicht die beiden obersten Stackele-

mente auf Gleichheit und legt das Ergebnis
des Tests auf den Stack.

sc_op(so_neq) Dasselbe f�ur Ungleichheit.

sc_op(so_lt) �Uberpr�uft ob das erste Stackelement klei-
ner als das zweite ist und legt das bool'sche
Ergebnis des Tests auf den Stack.

sc_op(so_gt) Dasselbe mit gr�o�er.
sc_op(so_lte) Dasselbe mit kleiner oder gleich.
sc_op(so_gte) Dasselbe mit gr�o�er oder gleich.
sc_op(so_and) Berechnet ein logisches Und f�ur die bei-

den obersten Stackelemente (es m�ussen
bool'sche Werte sein) und legt das Ergeb-
nis auf den Stack.

sc_op(so_or) Dasselbe mit einem logischen Oder.
sc_op(so_not) Invertiert das oberste Stackelement (es

mu� sich um einen bool'schen Wert han-
deln).

Tabelle 5.4: Arithmetische Befehle

64 KAPITEL 5. UMSETZUNG DER KONZEPTE

fun exec (sc push(konst(v)), pc, vars, stack) =

(pc, vars, v::stack)

| exec (sc pop(s), pc, vars, v::stack) =

(pc, setvar(s,vars,v), stack)

| exec (sc jmp(new pc), , vars, stack) =

(new pc, vars, stack)

| exec (sc op(operation), pc, vars, stack) =

(pc, vars, stack op(operation, stack))

| ...

Abb. 5.8: Ausf�uhrung von Stackbefehlen

fun stack op (so add, realval(a)::realval(b)::tl) =

realval(b+a)::tl

| stack op (so neg, intval(a)::tl) = intval(�a)::tl
| stack op (so eq, realval(a)::realval(b)::tl) =

bitval(b=a)::tl

| ...

Abb. 5.9: Ausf�uhrung arithmetischer Befehle

(opbez)) wird durch eine eigene Funktion (stack op) umgesetzt, die neben dem
Operationsbezeichner (opbez) nur den Stack erh�alt und den neuen Stack liefert.

Eine arithmetische Operation nimmt ihre(n) Operanden vom Stack, f�uhrt die
geforderte Aktion aus und legt das Ergebnis in der geforderten Form wieder auf
den Stack (stack op).

Die �Ubergabe von aktuellen Parametern erfolgt durch das Ablegen der Werte
auf dem Stack, wobei die Anzahl der Parameter im

"
Call\-Befehl gespeichert

ist. Der R�uckgabewert eines Operators ist zu oberst auf dem Stack zu �nden.

Die Elementar-Anweisungen werden zu den Operatoren in einem Array gespei-
chert, wobei bei der Ausf�uhrung �uber einen Index auf den aktuellen Befehl
zugegri�en wird. Spr�unge sind somit m�oglich, au�erdem kann so leicht die Po-
sition einer Unterbrechung zur�uckgegeben werden | wodurch Wiederaufsetzen
erm�oglicht wird.

Die Preter-Funktion run nimmt vom Linker die aktuelle Variablenumgebung,
den Anweisungsteil des auszuf�uhrenden Operators, den aktuellen Stack und die
Position der Anweisung, mit der die Ausf�uhrung beginnen soll.

val run:

(Types.Variable list * (* Environment at Start *)

Commands.StackProg * (* Statements *)

Stack * (* Stack at Start *)

Commands.InstrPos (* Start here *)

) -> Exit state

Abb. 5.10: Funktion Preter.run

5.5. INTERPRETER 65

Die Ausf�uhrung eines Operators kann zu verschiedenen Endzust�anden f�uhren
(s. Exit state):

� done: Der Operator wurde durch ein return normal beendet.

� call op: Es soll ein anderer Operator ausgef�uhrt werden. Deshalb werden
zus�atzliche Informationen zur�uckgeliefert, die das Fortsetzen der Ausf�uh-
rung nach Beendigung des nachgeladenen Operators erlauben.

� call fct: Es soll eine Benutzer-Funktion aufgerufen werden. Der Ablauf
ist mit einem Operator-Aufruf vergleichbar.

� break: Es wurde eine Unterbrechungsanweisung gefunden! Die Kontrolle
soll nun an die Systemumgebung �ubergeben werden, die ggf. eine Ver�ande-
rung des Experiments durch den Benutzer erm�oglicht.

� trace: Eine Kontroll-Anweisung wurde aktiv, weil eine Bedingung einge-
treten ist. Das Verhalten ist das selbe wie bei break.

5.5.3 Linker

Der Linker bereitet den Start eines Experiments vor: In die initiale Variablen-
umgebung wird f�ur die Parameter der Operatoren der Default-Wert eingetragen,
dies wird rekursiv f�ur alle Variablenumgebungen von der Funktion init openv

durchgef�uhrt. Sie ermittelt jeweils die Unter-Operatoren eines Operators durch
eine Anfrage an die Library und ruft sich f�ur diese noch einmal auf. Die theo-
retische M�oglichkeit einer Endlosschleife (d.h. ein Operator steht mehrmals in
einem Pfad des Operatorbaums) wird durch Konvention ausgeschlossen.

Somit entsteht f�ur das Experiment eine Variablenumgebung, die f�ur jedes Ver-
fahren eine eigene Umgebung enth�alt; in diesen f�ur jeden Operator eine weitere
usw. In den initialen Variablenumgebungen werden aber nur die Daten f�ur Unte-
roperatoren und Parameter abgelegt, da diese auch au�erhalb der Ausf�uhrung-
zeit eines Operators oder Verfahrens existieren m�ussen. Es w�are somit m�oglich,
z.B. im Experimentoperator durch Setzen eines Parameters eines

"
tief unten\ im

Operatorbaum liegenden Operators, diesen in seiner Funktion zu beein
ussen
oder auch nach einer Programmunterbrechung diese Parameter zu ver�andern.
(Dies wurde im vorliegenden System nicht implementiert.)

Der Linker erzeugt au�erdem die im Experimentoperator festgelegten Popula-
tionen, wobei die angegebenen Kodierungen verwandt werden. Dann wird der
Anweisungsteil des Experimentoperators gestartet, dessen Beendigung das Ende
der evolution�aren Berechnung darstellt.

Steht bei der Ausf�uhrung eines Operators ein
"
Call\-Befehl zur Ausf�uhrung

an, so wird die Ausf�uhrung der Anweisungen im Preter unterbrochen und die
augenblickliche Umgebung und die Position der Anweisung zur�uckgegeben.

Soll ein Operator ausgef�uhrt werden, so sucht ihn der Linker in der Library und
erzeugt seine Variablenumgebung, die aus vier Teilen besteht:

66 KAPITEL 5. UMSETZUNG DER KONZEPTE

� Parameter: Diese Variablen k�onnen in hierarchisch h�oher liegenden Ope-
ratoren ver�andert werden, daher m�ussen sie in der Variablenumgebung
des Aufrufers existieren, was beim Start eines Experiments durchgef�uhrt
wurde.

� lokale Variablen: Auf diese Variablen kann nur vom Operator selbst zuge-
gri�en werden. Sie werden beim Parser mit einer Vorbelegung versehen,
die auch

"
nicht-de�niert\ sein kann.

� aktuelle Parameter: Diese Parameter werden beim Aufruf des Operators

�ubergeben und liegen dann als belegte lokale Variablen vor. Die �Ubergabe
erfolgt �uber den Stack, der Linker nimmt die Parameter ab und weist sie
den formalen Parametern zu.

� Bezeichner der auf diesem Pfad im Operatorbaum benutzten Bibliotheken.
(Somit kann derselbe Funktionsaufruf im selben Operator verschiedene
Funktionen ansto�en. Es wird die zuletzt deklarierte Bibliothek verwandt!)

Wird dagegen eine Funktion aufgerufen, so werden die zu �ubergebenden Para-
meter vom Stapel genommen und die Bibliothek bestimmt, deren Dispatcher-
Funktion den eigentlichen Funktionsaufruf und die Umwandlung der Parameter
durchf�uhrt. Das Ergebnis des Aufrufs wird auf den Stapel gelegt.

Die Bestimmung der Bibliothek, deren Funktion ausgef�uhrt wird, geschieht �uber
den Bibliotheken-Pfad. Der Bibliotheken-Pfad wird durch den Operatorbaum
de�niert, d.h. die Struktur der Operatoraufrufe eines Experiments. In der Wur-
zel steht der Experimentoperator, direkt darunter die Verfahren, unter diesen
die Operatoren. In jedem Operator bzw. Verfahren kann man durch das USES-
Konstrukt von LEA Bibliotheken angeben. Diese Namen werden beim Abstieg in
den Baum vorne an den Bibliotheken-Pfad angeh�angt, beim Funktions-Aufruf
wird in den angegebenen Bibliotheken nach dem Funktionsnamen gesucht. Da
diese Suche vorne beginnt, kann ein Operator festlegen, aus welcher Bibliothek
eine Funktion entnommen werden soll, er kann aber auch keine Angabe machen.
Dann wird die Funktion in den Bibliotheken gesucht, die oberhalb des Opera-
tors benannt wurden. Somit kann derselbe Funktionsaufruf im selben Operator
je nach Operatorbaum verschiedene Bedeutungen haben.

Beispiel Im Operatorbaum steht an oberster Stelle das Experiment Example.
Es ruft die Verfahren Threshold, Other Threshold und Genetic auf. Man
beachte, da� sowohl in Threshold als auch in Genetic der Operator mutate

Verwendung �ndet. Jedoch unterscheiden sich die Bibliotheken-Pfade f�ur diesen
Operator, je nachdem wo er sich im Baum be�ndet. Somit kann ein Funk-
tionsaufruf in mutate einmal in der Bibliothek RealLib, ein anderes Mal in
BinaryLib ausgef�uhrt werden.

Als Gegenbeispiel sei der Operator other mutate angegeben, der die Bibliothek
MutateLib angibt. Somit werden Aufrufe wohl von dieser ausgef�uhrt, egal wo
der Operator im Baum steht.

Nach einem Aufruf wird die Bearbeitung des Operators an der dem Aufruf
folgenden Anweisung fortgesetzt.

5.5. INTERPRETER 67

Libraries: "Reallib"

Algorithm "Threshold"

Lib.Path: "Reallib",
"General", "PopHandler"

Algorithm "Other_Threshold"

Libraries: "Reallib"

"PopHandler"
Lib.Path: "Reallib", "General",

Algorithm "Genetic"

Libraries: "BinaryLib"
Lib.Path: "BinaryLib", "General",
"PopHandler"

Libraries: "General", "PopHandler"
Populations: "Binaries", "Reals"
Lib.Path: "General", "PopHandler"

Experiment "Example"

Operator "mutate" Operator "other_mutate" Operator "mutate"

Libraries:
Lib.Path: "BinaryLib", "General",
"PopHandler"

Libraries: "MutateLib"
Lib.Path: "MutateLib", "Reallib",
"General", "PopHandler"

Libraries:
Lib.Path: "Reallib",
"General", "PopHandler"

Abb. 5.11: Operatorbaum

5.5.4 Parser

Der Parser wandelt die Textdateien, in denen die Experimente, Verfahren und
Operatoren in der Sprache LEA gespeichert sind, in die vom Preter und Linker
ben�otigten SML-Datenstrukturen um. Aus der Beschreibung eines Operators in
LEA werden f�ur den Linker Listen mit den deklarierten Variablen erzeugt, die
dieser verwendet, um die initiale Variablenumgebung vor dem Ausf�uhren des
Operators bereitzustellen. Der Anweisungsteil des Operators wird in eine Fol-
ge von Stackbefehlen umgewandelt, die dem Preter zur Ausf�uhrung �ubergeben
wird.

5.5.4.1 Aufbau

Der Parser verwendet intern die folgenden Module:

� stackcommands.sml Die De�nition der Befehle f�ur die Stackmachine.

� parsertypes.sml De�niert die Typen, die von der Schnittstelle zwischen
Parser und Preter/Library verwendet werden.

� errors.sml Enth�alt die Fehlermeldungen f�ur den Scan- und den Parse-
vorgang.

� scanner.smlWandelt eine Textdatei in eine Folge von lexikalischen Sym-
bolen um. Enth�alt die De�nition der lexikalischen Symbole von LEA.

� environ.sml Verwaltet die Listen der lokalen Deklarationen eines Opera-
tors.

� parser.sml Der eigentliche Parser mit der syntaktischen und semanti-
schen Analyse der lexikalischen Symbole. Er erzeugt eine Beschreibung des
Deklarationsteil und eine Liste mit Stackbefehlen, die dem Anweisungsteil
des geparsten LEA-Programms entspricht.

68 KAPITEL 5. UMSETZUNG DER KONZEPTE

Nach au�en sind dabei nur die Module parser.sml, mit den eigentlichen Par-
serfunktionen und das Modul stackcommands.sml mit der De�nition f�ur die
Befehle der Stackmachine sichtbar.

5.5.4.2 Verwendung

Das Modul Parser exportiert zwei Funktionen parsfile1 und parsfile2. Die-
se werden nacheinander f�ur eine Textdatei mit einem Experiment, Operator
oder Verfahren in der Sprache LEA aufgerufen. Die erste Funktion parst nur
den Deklarationsteil dieses Konstrukts und �ubergibt eine Beschreibung der dort
deklarierten Elemente. In diesem Durchlauf k�onnen einige Pr�ufungen noch nicht
durchgef�uhrt werden (z.B. ob die verwendeten Unteroperatoren vorhanden sind).
Diese werden erst m�oglich, wenn der erste Durchlauf f�ur alle in dem Experiment
(und den darin aufgerufenen Verfahren und Operatoren) verwendeten Opera-
toren durchlaufen wurde. Diese Pr�ufungen werden dann im zweiten Durchlauf
durch die Funktion parsfile2 durchgef�uhrt in dem neben dem Deklarationsteil
auch der Anweisungsteil geparst und Code daf�ur erzeugt wird.

5.5.4.3 Schnittstellen

Entsprechend der dort erlaubten Deklarationen sind auch die zur�uckgegebenen
Datenstrukturen f�ur Experimente und Verfahren bzw. Operatoren unterschied-
lich.

Bei allen Operatoren, Verfahren und Experimenten werden die folgenden Ele-
mente zurckgegeben:

� Der Name des Operators,

� eine Liste mit den verwendeten Bibliotheken (deklariert mit USE),

� eine Liste der verwendeten Operatoren (deklariert mit OPERATORS),

� eine Liste mit den lokalen Variablen (deklariert mit VAR),

� und eine Liste der Stackbefehlen, die dem Anweisungsteil entsprechen.

Bei einem Experiment werden zus�atzlich noch die Elemente zur�uckgegeben, die
nur dort deklariert werden d�urfen:

� Der Name des verwendeten Problems

� und eine Liste mit den in diesem Experiment deklarierten Populationen
(mit POPULATIONS).

In Verfahren und Operatoren sind die gleichen Deklarationen erlaubt. Hier gibt
es noch folgende Elemente:

� Ob es sich um einen Operator oder ein Verfahren handelt, entsprechend
der Kopfzeile (OPERATOR oder ALGORITHM),

5.5. INTERPRETER 69

� eine Liste der Parameter, die f�ur diesen Operator gelten (deklariert mit
PARAMETER),

� eine Liste der formalen Parameter, die in der Kopfzeile deklariert werden

� und der Typ f�ur den R�uckgabewert, ebenfalls in der Kopfzeile deklariert.

Typen und Werte werden mit der Bibliothek (Library) und dem Rahmen f�ur
den Interpreter (Frame) mit der Datenstruktur Varvalue ausgetauscht. Sie dient
dazu die verschiedenen Typen, die im Interpreter verwendet werden, auf einen
einzelnen Datentyp abzubilden. Auch alle Konstanten und Werte, die der Parser
verwendet sind mit diesem Datentyp de�niert. Mit der Datenstruktur Variable
kann dazu noch der Name des Elements angegeben werden.

Die Listen von Variablen, formalen Parametern u.�a., die an das Rahmenpro-
gramm f�ur den Interpreter zur�uckgegeben werden, werden als Listen von Ele-
menten dieses Datentyps �ubergeben. Dies hat den Vorteil, da� damit gleichzeitig
der Name und der Typ der Variable sowie eine eventuelle Vorbelegung, wie sie
bei lokalen Variablen m�oglich ist, �ubergeben werden kann. Auch Operatoren
werden mit dieser Datenstruktur �ubergeben, wobei das zweite Element des Ar-
gumenttupels die Beschreibung f�ur die in der Deklaration vorbelegten Parameter
enth�alt.

F�ur die Beschreibung der Typen wird im Parser die Datenstruktur Types ver-
wendet. Mit ihr k�onnen alle von LEA erlaubten Typen beschrieben werden:

datatype Types =

tp_int

| tp_real

| tp_bool

| tp_string

| tp_ind

| tp_indlist

| tp_pop

| tp_unknown

| tp_notype

Der Typ tp unknown wird im Parser (und in der Bibliothek) dazu verwendet,
einen beliebigen Typ zu beschreiben. Z.B. beschreibt er bei Pr�ufung auf Typkor-
rektheit einen Ausdruck, dessen Typ noch nicht feststeht. Der Typ tp notype

wird verwendet, wenn an der Stelle kein Typ g�ultig ist. Z.B. bei einer Funktion,
die keinen R�uckgabewert hat. Zur Umrechnung der Datenstruktur Varvalue

in die Datenstruktur Types gibt es die Funktion typeofvalue. Umgekehrt die
Funktion valuefromtype.

F�ur den Problemnamen und die Kodierungen wird ein String �ubergeben, der
die Bezeichnung in der Bibliothek enth�alt (dieser emtspricht dem Dateinamen
ohne der Endung).

Die �Ubergabe von Parametern geschieht mit:

type ParameterDecl = Variable * Varvalue * Varvalue * string

70 KAPITEL 5. UMSETZUNG DER KONZEPTE

Das erste Element des Tupels bestimmt den Namen, den Typ und den Stan-
dardwert des Parameters. Das zweite und dritte Element den Minimal- und den
Maximalwert. Das letzte Element enth�alt schlie�lich die Beschreibung, die in
der Textdatei f�ur diesen Parameter angegeben ist.

Bei der �Ubergabe der Populationsdeklarationen mu� �ubergeben werden, welche
Kodierung f�ur die Population verwendet wird, in welche Log-Datei geschrieben
werden soll und wie die Population initialisiert wird:

datatype PopInit = loadfromfile of string |

randompop of int |

standardpop

(* declaration of populations *)

type PopDecl = string *

string *

string *

PopInit

Die Stackbefehle, die f�ur den Anweisungsteil erstellt werden, werden im Ab-
schnitt Codegenerierung beschrieben.

5.5.4.4 Der Scanner

Der Scanner wandelt eine eingelesene Textdatei in eine Folge von Symbolen (den
Token) um. Diese Token stehen f�ur die Grundelemente und Schl�usselw�orter von
LEA und werden in der Datenstruktur Token de�niert. Abgesehen von einigen
Funktionen zum Arbeiten mit den Token besteht der Scanner nur aus den Funk-
tionen initscanner und der Funktion gettoken. Die Funktion initscanner

hat dabei nur die Funktion, den Scanner in den Anfangszustand zu versetzen.

Die Funktion gettoken liest solange Zeichen aus einer Textdatei mit einem
LEA-Programm, bis ein Token erkannt wurde und gibt dieses mit seiner An-
fangsposition zur�uck. Erkannt werden Ganzzahl-, Gleitkomma- und Stringkon-
stanten sowie alle Zeichen (wie z.B. + oder :=) und Schl�usselw�orter (wie BEGIN),
die in LEA verwendet werden. Andere Zeichenketten, die mit einem Buchstaben
beginnen und aus einer Folge von Buchstaben und Zahlen, bestehen werden als
Bezeichner behandelt. Eine �Uberpr�ufung, ob diese g�ultig sind wird erst bei der
semantischen Analyse vorgenommen. Kommentare werden vom Scanner �uber-
lesen.

Schl�usselw�orter erkennt der Scanner anhand einer Tabelle (kw list). Diese
enth�alt die Zeichenkette f�ur ein Schl�usselwort und das Token, das erzeugt wird,
wenn diese Zeichenkette gefunden wurde.

5.5.4.5 Der eigentliche Parser

Der Parser �uberpr�uft die Folge von Tokens auf ihre syntaktische �Ubereinstim-
mung mit der Sprache LEA �uberpr�uft und erstellt einen Syntaxbaum (wenn
auch nur durch die Abfolge der Funktionsaufrufe). Da es sich trotz der oben

5.5. INTERPRETER 71

beschriebenen Aufteilung in zwei Durchl�aufe im wesentlichen um einen Ein-
Pass-Compiler handelt, wird durch den Parser auch die Typpr�ufung und die
Generierung des Codes durchgef�uhrt.

Arbeitsweise Bei dem Parser handelt es sich um einen Recursive-Descent-
Parser, d.h. er bildet die Struktur der EBNF mit Funktionen f�ur jedes Nicht-
terminalzeichen nach, die sich entsprechend dem Syntaxbaum des Programms
rekursiv aufrufen. Allerdings weicht die konkrete Realisierung in einigen Punk-
ten von der EBNF ab, wie sie im Anhang dargestellt ist.

Beim Auftreten eines Fehlers wird der Parsevorgang sofort abgebrochen und
die Nummer des Fehlers und seine Position (Zeile und Spalte in der Textdatei)
zur�uckgegeben.

Der Parser durchl�auft zuerst den Deklarationsteil des zu parsenden Operators
(im weiteren sind damit meist auch die Verfahren oder Experimente gemeint)
und erstellt aus den Deklarationen die lokale Umgebung f�ur diesen Operator.
F�ur die Bl�ocke des Deklarationsteils gibt es dazu jeweils eine Funktion (z.B.
parseparams), in der wiederum die Unterfunktionen f�ur die darin enthaltenen
Elemente de�niert sind. Die lokale Umgebung ist durch die folgende Datenstruk-
tur realisiert, die im Modul DefinedVars in der Datei environ.sml de�niert
ist:

type definedvars =

(ParameterDecl list * (* parameters *)

Variable list * (* operators *)

Variable list * (* local variables *)

Variable list * (* formal parameters *)

Types * (* result *)

PopDecl list * (* populations *)

string list) (* used libs *)

Das Modul enth�alt auch die Funktionen, mit denen auf diese Datenstruktur
zugegri�en wird. Die lokale Umgebung wird beim Parsen des Anweisungsteils
dazu verwendet, zu �uberpr�ufen, ob ein Bezeichner deklariert ist (mit der Funk-
tion isvardefined), was f�ur eine Art von Element er bezeichnet (z.B. mit der
Funktion isinlocvars, die �uberpr�uft, ob es sich um einen Bezeichner f�ur ei-
ne lokale Variable handelt) und was f�ur einen Typ er hat (mit der Funktion
getidenttype).

Als Beispiel f�ur den gesamten Parser wird hier kurz das Vorgehen beim Parsen
eines Ausdrucks im Anweisungsteil dargestellt. Zu den Ausdr�ucken geh�ort der
folgende Teil der EBNF:

expr = logexpr [(
"
AND\ j

"
OR\) expr] .

logexpr = algexpr
[(

"
=\ j

"
<>\ j

"
<\ j

"
>\ j

"
<=\ j

"
>=\) algexpr] .

algexpr = term [(
"
+\ j

"
-\) algexpr].

72 KAPITEL 5. UMSETZUNG DER KONZEPTE

term = factor [(
"
*\ j

"
/\) term] .

factor = combident [
"
(\ expr f

"
,\ expr g

"
)\] j

constant j

"
(\ expr

"
)\ j

"
-\ factor j

"
NOT\ factor .

Da SML keine wechselseitig rekursiven Aufrufe zul�a�t und die Ausdr�ucke selber
wieder beliebige Ausdr�ucke enthalten k�onnen (z.B. in Klammern), gibt es in
der Realisierung in SML f�ur alle Nichtterminale der Ausdr�ucke eine Funktion
parseexpr, der das betre�ende Nichtterminalzeichen mitgegeben wird.

datatype parseexprmode =

expr | logexpr | algexpr | term | factor | combident

Die Funktion parseexpr wird aufgerufen, wenn in der Folge der Token als
n�achstes ein Ausdruck erwartet wird. Ihr wird die bisher errechnete Liste von
Stackbefehlen �ubergeben, das erste Token und die Position des Anfangs des
zu parsenden Programmst�ucks, der Typ, den der Ausdruck haben soll (oder
tp unknown, wenn dieser noch nicht bekannt ist) und das erwartete Nichttermi-
nalzeichen (siehe oben). Da einige Teile dieser Funktion recht umfangreich sind,
ist hier nur der Teil f�ur algexpr vollst�andig aufgef�uhrt.

fun parseexpr(cmdlist, (tok, pos), exprtype, combident) =

...

| parseexpr(cmdlist, (tok, pos), exprtype, factor) =

...

| parseexpr(cmdlist, (tok, pos), exprtype, term) =

...

| parseexpr(cmdlist, (tok, pos), exprtype, algexpr) =

let

(* parse a term *)

val (newcmdlist1, (tok1, pos1), rtntype) =

parseexpr(cmdlist, (tok, pos), exprtype, term)

(* main part of parseexpr(algexpr) *)

in

(* looking for a plus or minus symbol *)

if (tok1 = tk_opsymbol(os_plus) orelse

tok1 = tk_opsymbol(os_minus))

then

(* parse another algebraic expression with the *)

(* same type as above and put a op-command in *)

(* the cmdlist *)

setcmdinret(

parseexpr(newcmdlist1,

gettoken(instr),

5.5. INTERPRETER 73

rtntype,

algexpr),

cmdforoptoken(tok1))

else

(newcmdlist1, (tok1, pos1), rtntype)

end

| parseexpr(cmdlist, (tok, pos), exprtype, logexpr) =

...

| parseexpr(cmdlist, (tok, pos), exprtype, expr) =

...

F�ur algexpr wird zuerst ein Teilausdruck geparst (term), der nur st�arker bin-
dende Operatoren oder geklammerte Ausdr�ucke enth�alt (z.B. aber auch nur
eine Konstante). Dabei wird der Code f�ur diesen Ausdruck erzeugt und sein
Typ ermittelt. Wenn das n�achste Symbol ein Plus- oder ein Minuszeichen ist,
wird die Funktion ein weiteres Mal f�ur das n�achste Token im Programmtext auf-
gerufen. Dann wird auch �uberpr�uft, ob die beiden Typen identisch sind (noch
wird nicht �uberpr�uft, ob der angegebene Operator auf diesen Typ angewendet
werden kann) und schlie�lich ein Stackbefehl erzeugt, der die Werte der beiden
Teilausdr�ucke aufaddiert oder voneinander subtrahiert.

Von der Funktion parsexprwird schlie�lich die neue Liste mit den Anweisungen,
das n�achste Token und seine Position sowie der ermittelte Typ des Ausdrucks
zur�uckgegeben.

Die Funktion parsestatements, die f�ur die Nichtterminale der Anweisungslisten
zust�andig ist, ist �ahnlich aufgebaut.

Typpr�ufung Der Parser f�uhrt f�ur die Ausdr�ucke eine Typpr�ufung durch (zur
Zeit wird nur �uberpr�uft, ob die zwei Typen der Teilausdr�ucke gleich sind, auf
die ein Operator angewendet). F�ur jedes Nichtterminalzeichen des Ausdrucks
wird dazu sein Typ ermittelt und mit einem erwarteten verglichen.

Die �Uberpr�ufung dieses Typs entspricht einer L-Attributierung. Jeder Funkti-
on wird mitgegeben, welcher Typ f�ur das entsprechende Nichtterminalzeichen
erwartet wird (siehe obiges Beispiel). Dieser Typ wurde beim Parsen des vorher-
gehenden Teils des Ausdrucks berechnet. Es handelt sich also um ein ererbtes
Attribut. Wenn noch kein Typ ermittelt wurde, wird der Typ tp unknown ge-
setzt. Der ermittelte Typ des Nichtterminalzeichens wird aus den Typen der
Teilausdr�ucke errechnet. Hier handelt es sich um ein zusammengesetztes Attri-
but. Schlie�lich werden die beiden Typen verglichen und, wenn sie nicht �uber-
einstimmen, eine Fehlermeldung erzeugt.

Die Typen f�ur die verwendeten SML-Funktionen und Operatoren werden von
der Bibliothek mit der Funktion parameteroffkt erfragt, die einen Typ f�ur den
R�uckgabewert (oder tp notype, wenn die Funktion keinen hat) und eine Liste
von Typen f�ur die Parameter der Funktion zur�uckliefert.

Codegenerierung Der Parser erzeugt f�ur den Anweisungsteil der Operatoren
Code, der auf einer im Preter simulierten Stackmachine ausgef�uhrt wird. Die

74 KAPITEL 5. UMSETZUNG DER KONZEPTE

verwendeten Befehle sind beim Preter beschrieben. Ein Stackprogramm ist eine
Folge aus diesen Befehlen. Einzelne Befehle k�onnen �uber ihre Position in diesem
Programm angesprungen werden.

Codegenerierung f�ur Ausdr�ucke F�ur die Ausdr�ucke wird eine Folge von
Befehlen erzeugt, nach deren Ausf�uhrung der Wert dieses Ausdrucks auf dem
Stack liegt. Auch wenn w�ahrend der Berechnung Zwischenergebnisse auf den
Stack gespeichert werden, liegt am Ende nur der Wert des Ausdrucks auf dem
urspr�unglichen Stack.

Dazu wird f�ur jede vom Parser gefundene Regel der entsprechende Befehl er-
zeugt, entsprechend den rekursiven Aufrufen der Parser-Funktionen f�ur diese
Regeln.

F�ur Konstanten, Variablen und Funktions- oder Operatoraufrufe wird ein Be-
fehl eingef�ugt, der den entsprechenden Wert auf den Stack legt. Konstante Wer-
te werden direkt auf den Stack gelegt (sc push), Variablen ausgelesen und ihr
Wert dann auf den Stack gelegt (ebenfalls mit sc push). Bei einem Aufruf einer
Funktion (oder eines Operators oder Verfahrens) wird zuerst der Code f�ur die
Ausdr�ucke erzeugt, deren Werte der Funktion als Parameter �ubergeben werden
sollen. Da der Code in der Reihenfolge ihres Auftretens in der Parameterliste
erzeugt wird, be�nden sich die Parameterwerte in der richtigen Reihenfolge f�ur
die Befehle sc call fct or sc call op auf dem Stack (d.h. der letzte Parame-
ter oben auf dem Stack). F�ur den eigentlichen Prozeduraufruf wird ein Befehl
erzeugt, der die Parameter vom Stack nimmt, diese aufruft und das Ergebnis
wieder auf den Stack legt. Bei einem Operator sc call op oder sc call fct

f�ur eine SML-Funktion.

F�ur zweistellige Operationen werden zuerst die beiden Teilausdr�ucke geparst
und dabei der Code generiert, der den Wert dieser Ausdr�ucke berechnet. Dann
wird ein Befehl erzeugt, der die gew�unschte Operation auf die beiden Werte,
die jetzt oben auf dem Stack liegen, ausf�uhrt. F�ur ein + wird z.B. der Befehle
sc op(so add) erzeugt. Bei einstelligen Operationen funktioniert es genauso mit
einem Teilausdruck.

Beispiel F�ur den Ausdruck 4 + (5 + 2) � 3 wird das folgende Programmteil
generiert:

sc_push(intval(4))

sc_push(intval(5))

sc_push(intval(2))

sc_op(so_add)

sc_push(intval(3))

sc_op(so_mul)

sc_op(so_add)

Codegenerierung f�ur Anweisungen Der Code f�ur einen LEA-Operator
setzt sich zusammen aus dem Code, der f�ur die einzelnen Anweisungen erzeugt
wird, aus denen er besteht.

5.5. INTERPRETER 75

Zuweisung: F�ur eine Zuweisung wird zuerst der Code f�ur den Ausdruck erzeugt
(siehe oben), dessen Wert der Variable zugewiesen werden soll. Dieser Wert wird
dann mit dem Befehl sc pop in die Variable geschrieben.

Funktionsaufruf: Ein Funktionsaufruf als Anweisung funktioniert im wesent-
lichen wie ein Funktionsaufruf innerhalb eines Ausdrucks (siehe oben). Es mu�
allerdings der R�uckgabewert, wenn n�otig, wieder vom Stack genommen wer-
den. Dazu wird der Befehl sc drop hinzugef�ugt. Bei Operatoren ist dies nur
n�otig, wenn diese einen Wert zurckgeben. Da beim Aufruf von SML-Funktionen
grunds�atzlich ein R�uckgabewert auf den Stack gelegt wird, mu� danach immer
sc drop stehen.

If-Anweisung: F�ur eine If-Anweisung werden folgende Befehle erzeugt. Bei der
Codeerzeugung wird unterschieden, ob die If-Anweisung einen Else-Zweig hat
oder nicht.

If-Anweisung ohne Else-Zweig:

<Code fuer Bedingung>

sc_jmpF 1

<Code fuer Anweisungsliste im Then-Zweig>

1: ...

If-Anweisung mit Else-Zweig:

<Code fuer Bedingung>

sc_jmpF 1

<Code fuer Anweisungsliste im Then-Zweig>

sc_jmp 2

1: <Code fuer Anweisungsliste im Else-Zweig>

2: ...

Die Marken 1 und 2 stehen dabei f�ur konkrete Positionen in der Liste der Anwei-
sungen. Bei der Erzeugung der Sprunganweisungen sind diese Positionen noch
nicht bekannt. Nach der Erzeugung des Codes f�ur die Anweisungslisten sind die-
se Positionen bekannt und m�ussen in den Sprungbefehlen, deren Position sich
der Parser gemerkt hat, nachgetragen werden (lookup).

While-Schleife: Der Code f�ur die While-Schleife ist �ahnlich wie der f�ur die If-
Anweisung, nur gibt es hier noch einen Befehl am Ende der Schleife, der einen
Sprung zur�uck an den Anfang der Liste ausf�uhrt.

1: <Code fuer Bedingung>

sc_jmpF 2

<Code fuer Anweisungsliste im Rumpf>

sc_jmp 1

2: ...

Repeat-Schleife: Entsprechend ist der Code f�ur die Repeat-Schleife, nur da�
hier die Bedingung hinter dem Schleifenrumpf steht und der erste Sprungbefehl
entf�allt.

76 KAPITEL 5. UMSETZUNG DER KONZEPTE

1: <Code fuer Anweisungsliste im Rumpf>

<Code fuer Bedingung>

sc_jmpF 1

...

For-Schleife: Bei der For-Schleife mu� die Bedingung selbst generiert werden.
Auch mu� im Schleifenrumpf die Z�ahlvariable hochgez�ahlt werden.

<Code fuer Anfangswert>

sc_pop Zaehlvariable

1: <Code fuer Endwert>

sc_push <Zaehlvariable>

sc_op(so_gte)

sc_jmpF 2

<Code fuer Anweisungsliste im Rumpf>

sc_push <Zaehlvariable>

sc_push 1

sc_op(so_add)

sc_pop <Zaehlvariable>

sc_jmp 1

2: ...

Return-Anweisung: Bei der Return-Anweisung wird zuerst der R�uckgabewert
auf den Stack gelegt, wenn einer angegeben ist. Dann wird noch der Befehl f�ur
das Beenden des Operators erzeugt.

<Code fuer Rueckgabewert>

sc_return

5.5.4.6 Verbesserungen

Folgende M�oglichkeiten zur Verbesserung des Parsers sollen hier noch kurz
erw�ahnt werden.

Bei der Erzeugung von Fehlermeldungen m�u�ten zus�atzlich die FOLLOW-Me-
ngen einiger Produktionen beachtet werden. Z.B. werden beim Auftreten eines
Fehlers in einem der Deklarationsbl�ocke alle folgenden als leer angenommen
und der Fehler erst erkannt, wenn das BEGIN des Hauptteils erwartet wird.
Solche Fehler k�onnen wesentlich besser behandelt werden, wenn schon beim
ersten Deklarationsblock erkannt wird, da� das gefundene Token nicht in der
entsprechenden FOLLOW-Menge enthalten ist.

Der Parser ist eigentlich als Ein-Pass-Compiler geplant. Da das Aufbauen des
Operatorbaums zwei Durchl�aufe des Parsers n�otig macht, w�are es sinnvoll, beim
ersten Durchlauf einen Strukturbaum des Operators zu erzeugen, aus dem im
zweiten Durchlauf der Code erzeugt wird. Damit k�onnte der Parser in zwei we-
sentlich �ubersichtlichere Funktionen aufgeteilt werden. Ein Strukturbaum w�urde
au�erdem bessere M�oglichkeiten zur semantischen Analyse bieten.

5.5. INTERPRETER 77

5.5.5 Bibliothek { Library

In der Library werden Funktionen und die geparsten Operatoren bereitgehal-
ten. Operatoren werden in der Textform geladen (durch einen Aufruf an den
Parser) und liegen dann als SML-Code in einer Struktur vor. Die Library liefert
nach �Ubergabe eines Bezeichners an die Funktion find op den dazugeh�orenden
Operator an den Aufrufer, d.h. i.d.R. den Linker.

Operatoren werden �uber einen Namen (einen String) identi�ziert. Hei�en meh-
rere Operatoren gleich, so wird der zuletzt geparste verwendet.

Die Library verwaltet auch die Funktionen des Systems. Funktionen werden
direkt in SML geschrieben und k�onnen selbst zwar andere Funktionen aufrufen,
nicht aber Operatoren. Im System gibt es

"
interne Funktionen\ und

"
Benutzer-

Funktionen\, wobei erstere vom System bereitgestellt werden und fundamentale
Operationen aus f�uhren (z.B. Ermittlung einer Zufallszahl). Benutzer-Funktio-
nen dagegen werden vom Benutzer in Bibliotheken zusammengefa�t und sind
zur Durchf�uhrung bestimmter evolution�arer Berechnungen vorhanden.

W�ahrend interne Funktionen beim Start des Systems bereits bereitstehen, m�us-
sen Bibliotheken mit Benutzer-Funktionen erst nachgeladen werden, sofern sie
vom Experiment ben�otigt werden (s. Frame). Danach stehen diese Funktionen
mit Verwaltungsdaten zur Verf�ugung, jeweils nach Bibliotheken gruppiert. Hier-
durch k�onnen verschiedene Bibliotheken Funktionen gleichen Namens enthalten.

Bibliotheken lassen sich bei der Library registrieren, indem sie die Funktion
add disp aufrufen, die die Dispatcher-Funktionen der Bibliothek eintr�agt.

Um einen neuen Operator in die Library einzutragen, ruft der Parser die Funk-
tion add opdata auf, die neben dem Namen auch die Daten erh�alt. Der Namen,
ein String, dient im folgenden auch zur Referenzierung des Operators.

Ebenso lassen sich die von Frame nachgeladenen Kodierungen registrieren, in-
dem sie die Funktion add coding aufrufen.

5.5.6 Frame

Der eigentliche Start eines Experiments erfolgt durch Aufruf der Funktion start

"Experimentname"; aus der Datei start.sml. Diese Funktion ist auf ober-
ster SML-Ebene de�niert, so da� das Nachladen von Programmteilen mit use
m�oglich ist.

Das Modul Frame enth�alt die Strukturen Prepare und TraceUses. In find fil-

es (aus Prepare) wird der Parser aufgerufen und festgestellt, welche Dateien
in einem Experiment verwendet werden. Dies wird durch einen Abstieg in den
Operator-Baum erm�oglicht. Die Funktion start l�ad dann mit use die noetigen
Dateien nach und anschlie�end kann der gesamte Operator-Baum vom Parser

�ubersetzt werden, da nun alle Operatoren und Funktionen bekannt sind.

Die Namen der geladenen Dateien werden dabei in der Struktur TraceUses

vermerkt, so da� sie nicht bei jedem Neustart des Experiments geladen werden
m�ussen. Dies verk�urzt die Anlaufphase betr�achtlich. Die Entscheidung, ob eine
bereits einmal geladene Datei erneut mit use eingebunden wird, wird anhand

78 KAPITEL 5. UMSETZUNG DER KONZEPTE

des Dateidatums gef�allt. Durch Aufruf der Funktion TraceUses.use all ()

kann erreicht werden, da� alle Dateien geladen werden.

Sind alle f�ur das Experiment ben�otigten Daten vorhanden, so wird die Berech-
nung durch einen Aufruf der Linker-Funktion start experiment angesto�en.
Die Funktion start �ubernimmt dabei auch das Abfangen von Ausnahmesitua-
tionen wie z.B. Laufzeitfehlern.

5.5.7 Ausblick

Ausgehend vom augenblicklichen Stand des Systems ist es denkbar, das Parsen
von Operatoren neu zu organisieren:

� Parser: Verwaltungsinformation, die zum �Uberpr�ufen der Typkorrektheit
bei Operator und Funktionsaufrufen dient, wird bei den Operatordaten
abgespeichert, z.B. Operator-/ Funktionsnamen und �ubergebene Typen
f�ur jeden Aufruf. Hierdurch w�urde es m�oglich, auf den zweiten Parse-
Vorgang zu verzichten und die Typkontrolle beim Aufbau des Operator-
baums vorzunehmen. Au�erdem k�onnte der Parser vom Laufzeitsystem
getrennt werden.

� Linker: Der Linker ist in der Lage, operator-�ubergreifende Typpr�ufun-
gen durchzuf�uhren, da er alle Operatoren kennt. Er k�onnte Kompatibi-
lit�atspr�ufungen zwischen Problem, Kodierungen und Verfahren ansto�en.

� Bibliothek (Library): Es w�are m�oglich, Operatoren in der geparsten Form
zu speichern. Die SML-Strukturen, die der Parser liefert, m�u�ten in Da-
teien geschrieben werden.

5.5.8 W�orterbuch

Erkl�arung/De�nition einiger hier verwendeter Begri�e

(Variablen-) Umgebung: Jeder Operator kann auf Variablen zugreifen. Um
auf deren Werte auch au�erhalb der Lebenszeit des Operators Zugri� zu
haben, werden sie in einer Struktur gespeichert, die beim Start des Expe-
riments erzeugt wird. Die Verschachtelung der Operatoren wird durch die
Verschachtelung der Umgebungen ineinander wiedergegeben.

Elementar-Anweisung: Befehle der
"
Stackmachine\, aus denen der Ablauf-

teil aller Operatoren aufgebaut ist. Die Befehle sind bedeutend simpler als
die dem Benutzer zur Verf�ugung stehenden Statements.

Statements: Konstrukte der Programmiersprache. Werden vom Parser in Ele-
mentar-Anweisungen der Stackmaschine umgesetzt.

Stackmachine: Maschinenmodell, das zur Ausf�uhrung der Operatoren benutzt
wurde. Hierbei h�alt ein Stapel die Operanden f�ur Anweisungen bereit.

5.5. INTERPRETER 79

Parameter-Deklaration: Bei der De�nition eines Operators mu� angegeben
werden, welchen Wertebereich seine Parameter annehmen d�urfen; dane-
ben kann eine Beschreibung in Form eines Texts angegeben werden. Der
Wert eines Parameters kann von hierarchisch h�oher liegenden Operatoren
ver�andert werden, daher werden sie in der Variablenumgebung gespeichert.

Formale Parameter: Diese Variablen werden bei der De�nition eines Opera-
tors in der Kopfzeile angegeben, wobei ihr Typ festgelegt wird. Bei einem
Aufruf des Operators wird ihnen ein aktueller Wert zugewiesen, der von
den aktuellen Parametern bestimmt wird.

Aktuelle Parameter: Ausdr�ucke, die in Operator-/ Funktionsaufrufen an der
Stelle der formalen Parameter stehen. Die Werte dieser Ausdr�ucke werden
vor dem Aufruf berechnet und beim Aufruf selbst an die formalen Para-
meter des Operators zugewiesen.

Lokale Variablen: Diese Variablen werden bei der De�nition eines Operators
angegeben, wobei ihnen ein Typ und ggf. ein Wert zugewiesen wird. Diese
Variablen sind nur im Operator sichtbar.

Operator: Operatoren sind Prozeduren, die in der Interpretersprache geschrie-
ben sind und zus�atzliche Verwaltungsdaten enthalten. Sie werden vom
Preter auf der Stackmaschine ausgef�uhrt.

Operatorbezeichner: Unter diesem Namen wird ein Operator in einem ande-
ren aufgerufen. Ein Operator kann mehrere Bezeichner haben, mit denen
jeweils andere Belegungen der Parameter und Unteroperatorumgebungen
verbunden sind.

Operatorname: Unter diesem Namen wird ein Operator in der Library ange-
sprochen. Es kann nur jeweils einen Operator unter einem Namen geben.

Operatorbaum: Struktur der Operatoren in einem Experiment. An der Wur-
zel steht der Experimentoperator, direkt unter ihm die Verfahrensopera-
toren. Da Rekursion der Operatoren nicht erlaubt ist, ist die Baumform
garantiert.

Funktion: Eine Funktion ist in SML geschrieben und kann zwar andere Funk-
tionen aufrufen, nicht aber Operatoren. Es gibt interne und Benutzer-
Funktionen.

interne Funktion: Diese Funktionen werden vom System zur Verf�ugung ge-
stellt und �ubernehmen Basisaufgaben wie Ermittlung einer Zufallszahl.

Benutzer-Funktion: Diese Funktionen sind in Bibliotheken zusammengefa�t
und werden je nach Experiment ben�otigt oder nicht. Die Bibliotheken
werden von SML eingelesen und durch Aufrufe an die Library ins System
integriert. Es ist m�oglich (und oft beabsichtigt), da� in verschiedenen Bi-
bliotheken Funktionen gleichen Namens existieren.

externe Funktion: Funktion, die nicht ausschlie�lich im SML-System berech-
net wird. Z.B. k�onnte eine C- oder Unix-Funktion so an das System ange-
bunden werden.

80 KAPITEL 5. UMSETZUNG DER KONZEPTE

Bibliothek: Sammlung von Benutzer-Funktionen. K�onnen neben Benutzer-
Funktionen zur Ausf�uhrung einer evolution�aren Berechnung auch Problem
und Kodierungen umfassen. Auch die Einbindung externer Funktionen ist

�uber Bibliotheken m�oglich.

Dispatcher-Funktion: Funktion, die von einer nachgeladenen Bibliothek an
die Library �ubergeben wird. Sie �ubersetzt die Parameter einer Funktion
von der Interpreterdarstellung in die SML-Form, ruft die Funktion auf und
wandelt das Ergebnis zur�uck.

�Ublicherweise werden diese Funktionen am Ende des Bibliothekenmoduls
in einem Aufruf der Funktion Library.add disp de�niert, wobei das

"
fn\-Konstrukt von SML benutzt wird.

Library: Bezeichnung f�ur den Programmteil, der Operatoren und Funktionen
verwaltet (

"
Bibliothek\).

Interpretersprache: Diese Sprache wird vom Parser erkannt. Verfahren, Ope-
ratoren und Experimente k�onnen in ihr formuliert werden, so da� sie in
das System integriert werden k�onnen.

evolution�are Berechnung: Der Ablauf eines Experiments berechnet f�ur ein
Problem durch evolution�are Verfahren eine L�osungsmenge.

Verfahren: Implementation eines Algorithmus zur Bearbeitung eines Para-
meteroptimierungsproblems. Verfahren arbeiten auf einer Population und
k�onnen Operatoren und Funktionen verwenden.

Experiment: Das Experiment legt fest, welches Problem optimiert werden soll
und welche Verfahren hierzu eingesetzt werden. Im Experimentoperator
werden die Populationen deklariert und Kodierungen angegeben, dane-
ben kann im Experimentoperator die Migration von Individuen zwischen
Populationen vorgenommen werden.

Kapitel 6

Erweiterungsm�oglichkeiten

6.1 Kritischer R�uckblick

Ein Problem bei der Entwicklung des Systems ist das Fehlen von systematischen
Tests f�ur die einzelnen Module. Das System wurde zwar in seiner Gesamtheit
mit einer Reihe von Verfahren getestet, doch war die Entwicklung dieser Ver-
fahren eher konstruktiv. Es wurde nicht versucht, wie eigentlich bei einem Test
erforderlich, m�ogliche Probleme und Fehler des Systems aufzudecken. Um dies
durchzuf�uhren w�are es notwendig gewesen, f�ur jedes der Module einen Testplan
zu erstellen, anhand dessen es ausf�uhrlich getestet werden kann. Dies sollte von
einer Person gemacht werden, die nicht bei der Entwicklung des Moduls beteiligt
war.

Der Aufbau der Kodierung ist gepr�agt durch den Wunsch nach einer m�oglichst
gro�en Flexibilit�at. Die Erstellung von eigenen Kodierungen und Problemen
mu� auf Ebene von SML erfolgen und ist nur nach einer Einarbeitung in relativ
komplizierte Zusammenh�ange m�oglich. Oft entsteht der Wunsch, eigene Proble-
me und damit auch eigene Kodierungen zu verwenden, jedoch schon vor dem,
eigene Verfahren zu entwickeln. Es w�are daher sinnvoll, den Einstieg durch eine
weitere Schicht zu erleichtern, die nur eine eingeschr�ankte Funktionalit�at bietet,
jedoch einfach zu verstehen ist.

Etwas ungl�ucklich ist die Trennung in Operatoren, die in LEA geschrieben sind
und Funktionen in SML. Das dadurch entstandene Problem der Anbindung von
SML-Funktionen und Strukturen an den Interpreter f�uhrte zu einem Bibliothe-
kenkonzept, das zwar recht
exibel, aber auch umst�andlich ist und genauere
Kenntnisse zu seiner Benutzung n�otig macht.

Tiefergehende Kenntnisse sind auch erforderlich, wenn beim Arbeiten mit dem
System ein Fehler auftritt. Da ein globales Konzept f�ur das Behandeln von
Fehlern fehlt, werden Fehlermeldungen, die auf unterster Ebene erzeugt werden,
einfach nach oben weitergegeben, was eine Lokalisierung des Fehlers schwierig
macht, vor allem, wenn nur mit den oberen Ebenen gearbeitet wird. Auch die
Fehlermeldungen des Parsers sind gr�o�tenteils durch dessen internen Aufbau
bestimmt und in manchen F�allen schwierig zu verstehen. In anderen Teilen

81

82 KAPITEL 6. ERWEITERUNGSM�OGLICHKEITEN

werden manche Fehler gar nicht vom System abgefangen, sondern werden erst
beim Aufruf einer SML-Funktion erkannt. So ist es z.B. bei den Kodierungen
nur m�oglich, bestimmte Klassen von Fehlern zu erkennen.

Die Auswertung der Daten, die bei einem Experiment anfallen, wird nur zu
einem kleinen Teil vom System unterst�utzt. Es ist nur m�oglich die gesamte
Population in eine Log-Dateien zu schreiben und sp�ater auszuwerten. Weiterhin
ist nur eine Auswertung der Fitne� der gespeicherten Individuen m�oglich, andere
Informationen werden ignoriert.

Ganz fehlt die in den Anforderungen gew�unschte Anbindung von externen Pro-
blemen, die f�ur die Anwendung der im System entwickelten Verfahren auf pra-
xisnahe Probleme sehr hilfreich w�are. Oft wird die Fitne� f�ur solche Probleme
mit aufwendigen Algorithmen bestimmt, die schon als ausf�uhrbares Programm
existieren. Beispiele daf�ur sind Simulatoren oder Finite Elemente Methoden.

6.2 Konkrete Erweiterungen

Im Rahmen der Projektgruppe sind viele Ideen entstanden, wie ein umfassen-
des System zur Unterst�utzung der Entwicklung von Evolutin�aren Algorithmen
aussehen k�onnte. Wegen der geringen Zahl der Mitglieder und der am Ende
doch etwas knappen Zeit konnten viele dieser Ideen nicht umgesetzt werden.
Bei einigen war schon ziemlich fr�uh klar, da� sie nicht mehr in den Rahmen
der Projektgruppe passen w�urden (z.B. eine graphische Benutzungsober
�ache).
Andere wurden angedacht und konnten nicht mehr durchgef�uhrt werden oder
sind erst beim Testen des Systems entstanden. Die wichtigsten Ideen sollen hier
kurz beschrieben werden.

6.2.1 Erweiterungen direkt am System

Im folgenden werden die Erweiterungen beschrieben, die an dem System vorge-
nommen werden k�onnen, ohne das sich wesentliche Konzepte �andern. Meistens
sind nur einzelne Module des Systems betro�en. Weitere Erweiterungen, die nur
geringere Auswirkungen auf den Rest des Systems haben, sind in der technischen
Dokumentation f�ur das jeweilige Teil beschrieben.

� Die Erzeugung von Log-Dateien und die M�oglichkeiten zu deren Auswer-
tung sind noch sehr eingeschr�ankt. Zur Zeit werden nur ganze Populatio-
nen in die Log-Dateien geschrieben, ausgewertet wird eigentlich nur die
Fitne� der Individuen.

Sinnvoll w�are die M�oglichkeit, neben allgemeinen Bemerkungen auch die
folgenden Daten zur sp�ateren Auswertung in eine Log-Datei schreiben zu
k�onnen:

{ Einzelne Individuen,

{ Z�ahlerwerte der Verfahren,

{ eine Beschreibung des Experiments und

6.2. KONKRETE ERWEITERUNGEN 83

{ die Auswirkung von Operatoren auf Individuen.

� F�ur die Sprache LEA war eigentlich die M�oglichkeit geplant, Parameter
von untergeordneten Operatoren �andern zu k�onnen. Einige Teile des In-
terpreters sind bereits daf�ur ausgelegt. Es fehlt lediglich die F�ahigkeit des
Parsers, die dazugeh�orenden Konstrukte zu lesen und Funktionen der Bi-
bliothek, die dem Parser die M�oglichkeit geben, die Namen und Typen
vorhandener Parameter zu ermitteln.

� Im Laufe der Berechnungen f�ur ein Experiment sind viele Pr�ufungen m�og-
lich, z.B. auf Einhaltung des Wertebereichs bei Parametern. Damit da-
bei auftretende Fehlermeldungen einheitlich behandelt werden k�onnen, ist
auch ein Konzept f�ur die Behandlung von Laufzeitfehlern sowohl in der
Sprache LEA als auch in den SML-Operatoren n�otig.

� Die Fitne�funktion, wie sie im System verwendet wird, ist eingeschr�ankt
auf die Berechnung eines Real-Wertes f�ur einen Ph�anotyp. M�oglich w�are
hier eine
exiblere Unterst�utzung von Verfahren, die mehr Informationen
ben�otigen.

6.2.2 Weiterentwicklung des Systems

F�ur andere Erweiterungen ist die Erarbeitung von neuen Konzepten n�otig, wie
sie zur Zeit (z.B. f�ur die Auswertung) noch nicht existieren, oder es sind um-
fangreiche �Anderungen an mehreren Teilen des Systems n�otig.

� Eine gro�e Erleichterung f�ur den Einstieg in das System k�onnte eine
graphische Benutzungsober
�ache bieten. Dabei sind zwei Teile zu unter-
scheiden: Ein Teil, mit dem die Elemente der Bibliothek wie Probleme,
Kodierungen, Operatoren, etc., erstellt, angezeigt und bearbeitet werden
k�onnen. Dieser Teil dient dazu, ein Experiment zusammenzustellen. Mit
dem zweiten Teil wird die Ausf�uhrung der Experimente gesteuert. Hier
werden Einstellungen vorgenommen (z.B. Parameterwerte f�ur die Opera-
toren) und Ergebnisse der Experimente verwaltet und angezeigt.

� Um Probleme und Kodierungen einfach erstellen zu k�onnen, sollten daf�ur
einheitliche Darstellungen entwickelt werden. Wenn m�oglich so, da� die
damit de�nierten Objekte immer g�ultig sind. Diese w�urden sich auch zur
interaktiven Eingabe in einer Ober
�ache eignen.

F�ur diese Darstellungen sollten sich auch Pr�ufungen durchf�uhren lassen,
mit denen schon vor Programmstart entschieden werden kann, welche Pro-
bleme, Kodierungen und vielleicht auch Operatoren zueinander passen und
welche nicht.

� Das Programmieren von Evolution�aren Algorithmen wird dadurch er-
schwert, da� die Sprache LEA nur bis zur Ebene der Individuen verwendet
werden kann und darunter SML-Operatoren geschrieben werden m�ussen,
deren Anbindung an LEA etwas kompliziert ist. Um dies zu beseitigen,
m�u�te LEA so erweitert werden, da� auch die Geno- und Ph�anostruktu-
ren bearbeitet werden k�onnen. So k�onnten auch die Fitne�funktionen in
LEA geschrieben werden.

84 KAPITEL 6. ERWEITERUNGSM�OGLICHKEITEN

� Schon angedacht und auch teilweise schon unterst�utzt sind Haltepunkte
und Einzelschrittmodus f�ur den Interpreter. Um diese einfach benutzen
zu k�onnen, ist die Verwendung einer (graphischen) Benutzungsober
�ache
sinnvoll. Der Parser erzeugt zu den Stackprogrammen Debug-Code, der
angibt, welche Position im Stackprogramm zu jeder Zeile des Programm-
texts geh�ort. In der graphischen Ober
�ache kann dann an einer Zeile ein
Haltepunkt gesetzt werden (Break), an dem das System anh�alt. Einzelne
Werte aus der Umgebung k�onnen f�ur den bis dahin erreichten Zustand
angezeigt und auch ver�andert werden. Genauso ist ein Einzelschrittmodus
(Trace) m�oglich, bei dem nach jeder Zeile angehalten wird.

� Innerhalb einer graphischen Benutzungsober
�ache sind auch die unter-
schiedlichsten M�oglichkeiten f�ur eine graphische Anzeige von Informatio-
nen zum Ablauf eines Verfahrens denkbar. Es sollte daher m�oglich sein,
f�ur bestimmte Verfahren und Probleme spezielle Anzeigemodule einzu-
binden. So kann z.B. f�ur bestimmte Probleme die Position von Individuen
im L�osungsraum angezeigt werden. F�ur manche Verfahren k�onnte es auch
sinnvoll sein, anzuzeigen, wie sich ein Individuum durch den L�osungsraum
bewegt.

� Zur Anbindung externer Probleme sollte eine de�nierte Schnittstelle ent-
wickelt werden, mit der Daten mit einem ausf�uhrbaren Programm ausge-
tauscht werden k�onnen, das dann die Fitne� f�ur ein Individuum oder eine
Gruppe von Individuen berechnet.

Kapitel 7

Bedienung

Um den Einstieg in das Arbeiten mit GENOM zu erleichtern, soll in diesem
Abschnitt eine Einf�uhrung in die Bedienung des Systems gegeben werden. Diese
Einf�uhrung erfolgt im Weiteren in mehreren Schritten, die den verschiedenen
Schwierigkeitsgraden entsprechen, in denen mit dem System gearbeitet wer-
den kann. Je tiefer eine Schicht liegt, desto gr�o�er ist der Umfang, in dem sie
ver�andert werden kann, aber auch die Kenntnisse, die zu ihrem Verst�andnis
n�otig sind. Die einzelnen Schichten sind:

1. Das Verwenden von vorgefertigten Problemen und Verfahren. Diese k�on-
nen miteinander kombiniert und deren Parameter angepa�t werden.

2. Eigenen Operatoren und Verfahren zu schreiben.

3. Neue Probleme einzubinden, neue Kodierungen und die dazugeh�orenden
Funktionen auf SML-Ebene zu erstellen.

Die im folgenden verwendete Einteilung in Experimente, Verfahren und Ope-
ratoren wird nur teilweise von LEA erzwungen. Das hier verwendete Konzept
ist dazu gedacht, m�oglichst wiederverwendbare Verfahren und Operatoren zu
erm�oglichen und eine �ubersichtlichere Aufteilung zu bewirken. Es ist ratsam, die-
se vorgesehene Aufteilung auch bei der Erstellung eigener Verfahren zu ber�uck-
sichtigen.

Das Vorgehen beim Arbeiten mit GENOM wird in den folgenden Abschnitten
anhand eines Genetischen Algorithmus erkl�art. Die dazugeh�orenden Dateien
be�nden sich im Bibliotheksverzeichnis des Systems.

7.1 Erste Schritte

7.1.1 Aufbau des Systems

Die einzelnen Komponenten, aus denen sich ein Experiment zusammensetzt,
sind im Unterverzeichnis lib des Systemverzeichnisses gespeichert. Die verschie-
denen Komponenten be�nden sich in den folgenden Unterverzeichnissen:

85

86 KAPITEL 7. BEDIENUNG

Komponenten Verzeichnis Endung

Experimente /experiments .exp

Probleme /problems .sml

Kodierungen /coding .sml

Verfahren und Operatoren /operators .eva

SML-Operatoren /ml-operators .sml

Der Gesamtaufbau des Systems wird im entsprechenden Kapitel ausf�uhrlich
beschrieben.

7.1.2 Laden des Systems

Um das System zu laden, mu� zuerst in das Verzeichnis sml des Systems ge-
wechselt werden (alle Pfade sind relativ zu diesem Verzeichnis). Dort wird der
SML-Interpreter in der Version 1.09 geladen. Wie er aufgerufen wird, h�angt
von dessen Installation ab. Meist geschieht dies durch Eingabe von sml oder
sml-109. Wenn der SML-Interpreter geladen ist, kann das System gestartet
werden, indem nach dem Prompt use "system.sml" eingegeben wird. Dadurch
wird die Datei system.sml ausgef�uhrt, die die Befehle enth�alt, mit denen das
System in die SML-Umgebung geladen wird.

7.1.3 Aufruf eines Experiments

Nachdem das System geladen ist, kann unter SML mit dem Befehl start ein
Experiments ausgef�uhrt werden. Die Dateien mit den Experimentde�nitionen
be�nden sich alle im Unterverzeichnis lib/experiments des Systemverzeich-
nisses. Der Name eines Experiments ist der Name der Datei, ohne die Endung
.exp. F�ur das Experiment

"
TestGenAlg\ sieht der Aufruf so aus:

start("TestGenAlg");

7.1.4 Beenden von SML

Ein Experiment des Systems kann unter SML mit Ctrl-C abgebrochen werden,
falls dies n�otig sein sollte. Mit Ctrl-D wird SML verlassen.

7.2 Einf�uhrung in LEA

F�ur die n�achsten Schritte sind Kenntnisse in der Sprache LEA n�otig. In dieser
Sprache werden die vom System verwendeten Experimentde�nitionen, Verfahren
und allgemeinere Operatoren geschrieben. LEA ist eine prozedurale Sprache und
stark an Sprachen wie PASCAL oder MODULA2 angelehnt. Wem eine dieser
Sprachen gel�au�g ist, sollte auch gut mit LEA zurechtkommen. Eine Einf�uhrung
in LEA be�ndet sich in der technischen Dokumentation.

7.3. ZUSAMMENSTELLEN VON EXPERIMENTEN 87

7.3 Zusammenstellen von Experimenten

Wenn nur vorhandene Verfahren auf eine Testfunktionen angewendet werden
soll, reicht es, eine neue Experimentde�nition zu schreiben (oder eine vorhande-
ne abzuwandeln). Hier wird nur ein einfaches Experiment mit einer Population
und einem Verfahren gezeigt. Das Zusammensetzen eines Experiment geschieht
in mehreren Schritten.

1. Zuerst mu� eine Textdatei im Verzeichnis lib/experiments des Systems
angelegt werden, deren Namen dem des Experiments entspricht und zu-
s�atzlich die Endung exp hat. Die Kopfzeile des Experiments mu� ebenfalls
diesen Namen enthalten. Wenn das Experiment den Namen TestGenAlg

haben soll, mu� also eine Datei TestGenAlg.exp erstellt werden, deren
Kopfzeile folgenderma�en aussieht:

EXPERIMENT TestGenAlg;

2. Auswahl eines vorhandenen Problems: Die vorhandenen Probleme sind
in den Dateien des Verzeichnisses lib/problems gespeichert. Sie haben
die Endung sml. Ein Problem wird in einer Experimentde�nition mit
dem Schl�usselwort PROBLEM angegeben. Der Name des Problems entspricht
dann wieder dem Dateinamen ohne die Endung. F�ur das Problem

"
Hyper-

sphere\ (aus der Datei Hypersphere.sml) sieht die entsprechende Zeile so
aus:

PROBLEM = "Hypersphere";

3. Deklaration einer Population: Die meisten Verfahren arbeiten auf einer
Population; daher ist es ratsam eine zu verwendet, auch wenn sie nur ein
Individuum enthalten soll. Populationen werden in einem eigenen Block
deklariert, der mit dem Schl�usselwort POPULATIONS beginnt. F�ur eine Po-
pulation m�ussen die folgenden Angaben gemacht werden:

� eine Kodierung, mit der die Individuen kodiert sind,

� eine Log-Datei, in die die Population geschrieben werden kann und

� wie die Population initialisiert werden soll.

Welche Kodierungen auf welche Probleme angewendet werden k�onnen,
kann in der Tabelle bei der Beschreibung der Bibliothek im Anhang er-
sehen werden. Um eine Population mit 20 Individuen, die als Bitstrings
kodiert sind, und der Log-Datei GenAlg.log zu erstellen, mu� die Dekla-
ration folgenderma�en aussehen:

Pop CODED "GenAlgGrayCod" LOG "GenAlg" = RANDOMPOP (20);

4. Auswahl eines Verfahrens: Um ein Verfahren (oder einen Operator) in
dem Experiment zu verwenden, mu� ein Verweis darauf erstellt werden.
Dabei werden den Parametern dieses Verfahrens eigene Werte zugewiesen

88 KAPITEL 7. BEDIENUNG

(�ahnlich wie das Erzeugen der Instanz eines Objekts bei einer objektori-
entierten Sprache). Wenn einem Parameter nicht speziell ein Wert zuge-
wiesen wird, erh�alt er seinen Default-Wert. Im Programmteil des Experi-
ments kann das Verfahren �uber diesen Verweis aufgerufen werden. Verwei-
se auf Verfahren und Operatoren werden in LEA unter dem Schl�usselwort
OPERATORS deklariert.

Alg = GenAlg(mue: 100);

5. Wenn im Programmteil des Experiments bestimmte Funktionen ben�otigt
werden, m�ussen die Bibliotheken, die diese enthalten, mit USES angegeben
werden. F�ur manche Verfahren, die Genotypen mit verschiedenen Struk-
turen bearbeiten k�onnen, m�ussen die Bibliotheken angegeben werden, die
die Funktionen enthalten mit denen die Struktur, die sich aus dem Pro-
blem ergibt, bearbeitet werden kann (z.B. Mutationsfunktionen). Bei dem
Genetischen Algorithmus ist dies nicht n�otig. Eine n�ahere Beschreibung
der dazugeh�orenden Mechanismen �ndet sich in der technischen Doku-
mentation.

6. Im Anweisungsteil des Experiments kann f�ur das Beispiel einfach der oben
beschriebene Verweis aufgerufen werden. Alles weitere wird von dem Ver-
fahren erledigt.

Alg(Pop);

Der Anweisungsteil f�ur das Experiment ist in diesem Beispiel sehr kurz.
Es k�onnen hier beliebige LEA-Programme stehen. Dazu stehen alle Kon-
strukte und Befehle von LEA zur Verf�ugung, die auch in den Operatoren
vergewendet werden k�onnen.

Aus den oben beschriebenen Teilen setzt sich die gesamte Experimentde�nition
zusammen.

EXPERIMENT TestGenAlg;

PROBLEM = "Hypersphere";

POPULATIONS

Pop CODED "GenAlgGrayCod" LOG "GenAlg" = RANDOMPOP (20);

OPERATORS

Alg = GenAlg(mue: 100);

BEGIN

Alg(Pop);

END

7.4 Erstellen von Verfahren

Der n�achste Schritt ist die Erstellung von eigenen Verfahren. Verfahren und
Operatoren k�onnen wie Funktionen (z.B. in PASCAL) Argumente erhalten und
einen R�uckgabewert zur�uckliefern. Ein Verfahren sollte eine oder mehrere Po-
pulationen als Argumente �ubergeben bekommen. Wenn sinnvoll, kann es auch
weitere Argumente und einen R�uckgabewert haben.

7.4. ERSTELLEN VON VERFAHREN 89

ALGORITHM GenAlg(POP Pop);

So wie die Experimentde�nition Verweise f�ur Verfahren ben�utzt, m�ussen in ei-
nem Verfahren Verweise f�ur die dort verwendeten Operatoren erstellt werden.
Auch hier k�onnen deren Parameter mit den gew�unschten Werten belegt werden.

Ein Ziel bei der Erstellung von Verfahren (und auch Operatoren) ist, diese
m�oglichst wiederverwendbar und unabh�angig von Problem und Kodierung zu
halten. Das Verhalten eines Verfahrens sollte daher durch eine Reihe von Para-
metern gesteuert werden. F�ur Parameter von Verfahren und Operatoren k�onnen
in LEA ein Standard-, ein Minimal- und ein Maximalwert, sowie ein beschrei-
bender Text angegeben werden. Da der Standardwert immer dann genommen
wird, wenn nicht anderes angegeben ist, sollte daf�ur ein Wert gew�ahlt werden,
f�ur den das Verfahren gute Ergebnisse liefert.

Ein Beispiel f�ur einen geeigneten Parameter eines genetischen Algorithmus ist
die Zahl der erzeugten Nachkommen mue.

PARAMETER

INT mue = (20, 1, 1000000, "Number of Children");

Da die Log-Dateien f�ur komplexere Individuen gr�o�ere Ausma�e annehmen
k�onnen, ist es sinnvoll, wenn jedes Verfahren einen Parameter hat, der angibt,
ob in die Log-Datei geschrieben werden soll. Eine andere M�oglichkeit ist ein
Parameter, der angibt, nach welcher Zahl von Generationen in die Log-Datei
geschrieben werden soll.

BOOL writelog = (FALSE, FALSE, TRUE, "Write a Log");

Der Hauptteil eines Verfahrens besteht meist aus einer Schleife, innerhalb der
die neue Generation berechnet wird. Um die Operatoren wie z.B. Crossover
und Selektion auch auf Teilmengen von Populationen anwenden zu k�onnen,
arbeiten diese meist nicht auf Populationen, sondern auf Listen von Individuen
(Typ: INDLIST). Daher sollte am Anfang der Schleife die ganze Population in
eine Individuenliste gelesen werden, die nach Bearbeitung durch die Operatoren
wieder zur�uck in die Population geschrieben wird. Ein besonderer Fall sind die
Abbruchbedingungen. Diese geben f�ur ein Verfahren an, ob die Berechnung weit
genug fortgeschritten ist. Da diese nicht im inneren Schleifenrumpf verwendet
werden, arbeiten diese direkt auf der Population.

WHILE (NOT <Abbruchbedingung>(<Pop1>)) DO

<IndList1> := get_Pop(<Pop1>);

<IndList2> := <Operator1>(<IndList1>,...);

...

<IndListn> := <Operatorn-1>(<IndListn-1>,...);

set_Pop(<Pop1>, <IndListn>);

incGenCount(<Pop1>);

IF writelog THEN

logPop(<Pop1>)

FI;

OD

90 KAPITEL 7. BEDIENUNG

Nach Zur�uckschreiben der Individuen in die Population am Ende der Schleife
wird der Generationsz�ahler hochgez�ahlt und die neue Generation in die Log-
Datei der Population geschrieben. Dies ist notwendig, damit eine Auswertung,
die vom System unterst�utzt wird, vorgenommen werden kann. Nat�urlich mu� in-
nerhalb der Hauptschleife keine Sequenz, wie oben gezeigt, eingehalten werden.
Es k�onnen hier auch beliebige LEA-Konstrukte wie Schleifen und Verzweigun-
gen verwendet werden. F�ur den Genetischen Algorithmus ergibt sich konkret:

ALGORITHM GenAlg(POP Pop);

USES PopHandler, IndList;

PARAMETER

INT mue = (20, 1, 1000000, "Number of Children");

BOOL writelog = (FALSE, FALSE, TRUE, "Write a Log");

OPERATORS

StopCond = CntGenStopCond(Generations: 500);

Select = ElitistPropSelect(WorstIndFact: 0.2);

Recomb = Crossover(Points: 2, nue: 1.0);

Mutate = GAMutate(Prob: 0.005);

VAR

INDLIST IndList, Parents, Children, NewIndList;

INT lambda;

BEGIN

WHILE (NOT(StopCond(Pop))) DO

IndList := get_Pop(Pop);

lambda := length(IndList);

Children := Recomb(IndList ,mue);

Children := Mutate(Children);

NewIndList := Select(merge(IndList, Children), lambda);

set_Pop(Pop, NewIndList);

incGenCounter(Pop);

IF writelog THEN

logPop(Pop)

FI;

OD;

END;

In diesem Verfahren werden die Bibliotheken PopHandler und IndList verwen-
det. Die erste Bibliothek stellt die Schnittstelle zur Populationsverwaltung dar.
Sie enth�alt z.B. die hier verwendete Funktion get Pop. Aus der zweiten stammen
die Funktionen, die allgemeine Operationen auf Individuenlisten durchf�uhren
(z.B. merge).

7.5 Operatoren

Operatoren sind wie die Verfahren aufgebaut. Nur sollten hier keine Populatio-
nen �ubergeben, sondern nur mit Listen von Individuen oder einzelnen Individuen
gearbeitet werden. Eine Ausnahme davon sind Operatoren, die eine Abbruch-
bedingung berechnen.

7.5. OPERATOREN 91

Bei Operatoren, die in mehreren Verfahren verwenden werden, sollte hier be-
sonders auf die Verwendung von geeigneten Parametern geachtet werden.

Da in LEA Individuen nicht ver�andert werden k�onnen, stellen Operatoren die
unterste Ebene des Operatorbaums dar, die in LEA programmiert wird. Wenn es
sich um Operatoren handelt, die mit beliebigen Individuen auskommen, k�onnen
diese auch komplett in LEA geschrieben werden. Operatoren dieser Art sind z.B.
manche Selektionsoperatoren oder Abbruchbedingungen. Andernfalls m�ussen
SML-Funktionen eingebunden werden, die mit den kodierten Individuen einer
Population arbeiten k�onnen.

7.5.1 Operatoren auf Individuenlisten

Zu dieser Gruppe geh�oren, neben den Selektionsoperatoren, die aus einer Indi-
viduenliste eine Anzahl von Individuen f�ur einen weiteren Bearbeitungsschritt
ausw�ahlen, auch Operatoren, die eine Mutation oder Rekombination auf den
Individuen der Liste durchf�uhren. F�ur den in diesem Beispiel verwendeten GA
sind das die Operatoren GAMutate und Crossover. Die Kopfzeile eines solchen
Operators entspricht dem folgenden Schema:

OPERATOR <Name>(INDLIST IndList, ...): INDLIST;

Der Operator GAMutate besitzt den Parameter Prob, der angibt, mit welcher
Wahrscheinlichkeit die einzelnen Bits eines Bitstrings umgedreht werden.

REAL Prob = (0.05, 0.0, 1.0, "Probability for mutation");

Um die Mutation der Individuen durchzuf�uhren, ruft GAMutate die SML-Funk-
tion mutate aus der Bibliothek ga mutate auf. Die Aufgabe des Operators be-
steht darin, diese Funktion auf alle Individuen der Liste anzuwenden und den
Parameter f�ur die Mutationswahrscheinlichkeit zu de�nieren. Oft ist es sinnvoll
auch f�ur SML-Funktionen, die direkt aus einem Verfahren aufgerufen werden
sollen, einen Operator zu schreiben, der deren Parameter de�niert und sinnvolle
Standardwerte vorgibt. Der vollst�andige Operator GAMutate sieht so aus:

OPERATOR GAMutate(INDLIST IndList): INDLIST;

USES IndList, Math, ga_mutate;

PARAMETER

REAL Prob = (0.05, 0.0, 1.0, "Probability for mutate");

VAR

IND indiv;

INT i;

BEGIN

FOR i := 1 TO length(IndList) DO

indiv := getListInd(IndList, i);

indiv := mutate(indiv, Prob);

IndList := setListInd(IndList, i, indiv);

OD;

RETURN IndList;

END;

92 KAPITEL 7. BEDIENUNG

7.5.2 Operatoren f�ur Abbruchbedingungen

Eine Abbruchbedingung zeigt an, ob eine Population eine bestimmte Bedingung
erreicht hat. Wenn diese wahr wird, wird die Berechnung von weiteren Gene-
rationen abgebrochen. Es gibt verschiedene M�oglichkeiten diese Bedingung zu
realisieren. So kann z.B. nach einer bestimmten Anzahl von Generationen ab-
gebrochen werden oder wenn die Fitness der Individuen sich um weniger als
einen vorgegebenen Wert unterscheidet. Der Abbruchbedingung wird eine Po-
pulation �ubergeben. Sie gibt einen bool'schen Wert zur�uck, der angibt ob die
entsprechende Bedingung erf�ullt ist oder nicht.

OPERATOR <Abbruchbedingung>(POP <Pop>): BOOL;

Als Beispiel wird hier eine Abbruchbedingung gezeigt, die wahr wird, wenn eine
bestimmt Anzahl von Generationen berechnet wurde:

OPERATOR CntGenStopCond(POP Pop): BOOL;

USES PopHandler;

PARAMETER

INT Generations

= (100, 0, 100000, "Stop after generation");

BEGIN

IF (getGenCounter(Pop) > Generations) THEN

RETURN TRUE

ELSE

RETURN FALSE

FI;

END;

7.6 Anbinden von Funktionen in SML

Viele Operatoren enthalten Funktionen, die direkt auf den Genostrukturen der
Individuen arbeiten m�ussen und nur in SML programmiert werden k�onnen.
Auch bei langwierigeren Berechnungen sollten SML-Funktionen verwendet wer-
den, da diese um einiges schneller sind. Um diese Funktionen in LEA verwenden
zu k�onnen, m�ussen sie in einer Bibliothek in das System eingebunden werden.
Auf die in einer Bibliothek enthaltenen Funktionen kann zugegri�en werden,
wenn diese Bibliothek mit USES in diesem oder einem �ubergeordneten Operator
deklariert wird.

7.6.1 Erstellen von Bibliotheken

Um eine SML-Funktion von LEA aus aufrufen zu k�onnen, mu� sie in einer Bi-
bliothek gespeichert werden, die in dem System verf�ugbar wird, wenn sie ein
Experiment oder Verfahren bzw. Operatoren mit USES �o�net. Die zu einem be-
stimmten Verfahren geh�orenden SML-Funktionen werden oft in einer Bibliothek
zusammengefa�t.

7.6. ANBINDEN VON FUNKTIONEN IN SML 93

7.6.1.1 Grundlagen

Der Interpreter kann Funktionen aus Benutzer-Bibliotheken nur dann au�nden
und verwenden, wenn sich die Bibliothek beim Modul Library hat registrieren
lassen. Dies kann sie durch einen Aufruf der Funktion Library.add disp er-
reichen. Obwohl in einer Struktur beliebige Funktionen (z.B. Konstanten oder
Hilfsfunktionen) enthalten sein k�onnen, werden nur die beim Modul Library
registrierten exportiert und in LEA verwendbar.

Der Funktion Library.add disp wird der Name der Bibliothek �ubergeben, d.h.
ein String. Dieser Name mu� derselbe sein, der in einem Operator im USES-
Konstrukt deklariert wurde und er mu� ebenfalls der Namen der Datei ohne die
Endung .sml sein.

Das zweite Argument ist eine Liste aus Elementen vom Typ Dispatchers:

type Dispatchers = string * (Types list * Types) *

((Types.Varvalue list) -> Types.Varvalue)

Diese Tripel enthalten als erstes den Namen der Funktion. Unter diesem Namen
wird die Funktion vom Interpreter aufgerufen. Danach wird ein Tupel ange-
geben, dessen erstes Element die Typen der Eingabeparameter beschreibt, das
zweite Element beschreibt den Typ des R�uckgabewerts. Soll die Funktion keine
aktuellen Parameter erhalten, so mu� eine leere Liste �ubergeben werden. Gibt
sie keinen Wert zur�uck, so mu� als Resultatstyp der Typ tp notype angegeben
werden und die Funktion selbst den Typ notdeklared liefern.

Eine Besonderheit ist die m�ogliche Polymorphie der Eingabewerte einer Funk-
tion. Wird statt eines konkreten Typs der Typ tp unknown angegeben, so ak-
zeptiert der Parser jeden Typ. Es mu� aber sichergestellt werden, da� die ver-
wendete Funktion auch auf jeden Typ richtig reagieren kann!

Das dritte Element des Tripels ist eine Funktion, die eine Liste aus den obersten
Elementen des Stacks bei Aufruf der Funktion erh�alt. Die Typen der Elemente
wurden im zweiten Element als Eingabetypen deklariert. Die Funktion liefert
einen Wert vom R�uckgabetyp zur�uck.

Beispiel Die Berechnung der Fitness eines Individuums wird implementiert, in-
dem die Funktion Fitness beschrieben wird. Sie erh�alt ein Individuum als Ein-
gabeparameter, daher der Typ tp ind, und liefert einen reellen Wert (tp real).
Wird die Funktion ausgef�uhrt, so

"
sch�alt\ sie das Individuum aus der einelemen-

tigen Liste (indival()) und �ubergibt es an die Funktion Fitness des Moduls
PopHandler. Den resultierenden reellen Wert

"
wickelt\ sie in realval() ein, so

da� der Interpreter ihn als Real erkennt. Wird der Funktion eine nicht passende
Liste �ubergeben, so l�ost sie eine Exception aus, in diesem Fall type mismatch.

("Fitness", ([tp ind], tp real),

fn [indival(ind)] => realval(PopHandler.Fitness(ind))

| => raise type mismatch "Fitness"

7.6.1.2 Konventionen

Beispielhaft sei die Bibliothek ListBasics beschrieben, in der einige Funktionen
zur Behandlung von Listen de�niert werden.

94 KAPITEL 7. BEDIENUNG

� Header: Jede Bibliothek beginnt mit einigen Zeilen Information �uber die
Bibliothek:

(* Author : Thomas Schmidt

* Date : 13.07.96, 25.07.96, 21.08.96

* File : lib/ml-operators/ListBasics.sml

* Use for: Basic Functions on Lists

*)

� Die Funktionen selbst werden in einer Struktur zusammengefa�t, so da�
auf oberster SML-Ebene die neuen Funktionen keine Seitene�ekte durch
�Uberlagerung anderer Funktionen produzieren k�onnen. Der Name der
Struktur kann prinzipiell beliebig gew�ahlt werden, sollte aber aus Gr�unden
der �Ubersichtlichkeit identisch mit dem Namen der Bibliothek sein.

structure ListBasics = struct

� Praktischerweise kann innerhalb der Struktur das Modul Types ge�o�net
werden, wodurch die Notwendigkeit entf�allt, jede Typangabe mit Types.
einzuleiten:

open Types

� Es ist weiterhin zweckm�a�ig, den Namen der Bibliothek in einer Variablen
abzulegen und eine Exception als Funktion zu de�nieren:

val libname = "ListBasics"

fun type_mismatch s =

Error.runtime_error ("SML-Operator", s,

"Type-Mismatch")

� Danach l�a�t sich die Bibliothek beim Modul Library registrieren. In die-
sem Fall k�onnen die eigentlichen Funktionen direkt angegeben werden; es
w�are nat�urlich auch m�oglich diese Funktionen zun�achst explizit zu formu-
lieren. Es ist sinnvoll, zu jeder Funktion eine Beschreibung der Sematik
anzugeben.

val _ = Library.add_disp

(libname,

(* Return an empty Individual-List *)

[("empty_list", ([], tp_indlist),

fn [] => indilistval(nil)

| _ => raise type_mismatch(libname^".empty_list")),

(* Append an Individual to a List of Individuals *)

("append", ([tp_ind, tp_indlist], tp_indlist),

fn [indival(ein), indilistval(liste)]

=> indilistval(ein::liste)

| _ => raise type_mismatch(libname ^ ".append")),

(* Merge two Individual-Lists *)

7.7. EIGENE PROBLEME 95

("merge", ([tp_indlist, tp_indlist], tp_indlist),

fn [indilistval(vorn),indilistval(hinten)]

=> indilistval(vorn@hinten)

| _ => raise type_mismatch(libname ^ ".merge"))

])

� Schlie�lich mu� die SML-Struktur noch geschlossen werden:

end

7.7 Eigene Probleme

Wenn nicht nur die mit dem System mitgelieferten Probleme verwendet werden
sollen, k�onnen auch eigenen Probleme erstellt werden. Dazu mu� im Verzeichnis
lib/problems eine Datei erstellt werden, die den gew�unschten Namen des Pro-
blems und die Endung sml hat. Der Aufbau dieser Dateien wird im folgenden
beschrieben.

7.7.1 Grundlagen

Ein Problem besteht im System aus einer Fitnessfunktion und einer Funktion,
die Ph�anotypen liefert.

Die Fitne�funktion erwartet einen Ph�anotyp und gibt eine reelle Zahl zur�uck.
Es wird festgelegt, da� alle Probleme Minimierungsprobleme sind { jedes Maxi-
mierungsproblem kann durch Negation in ein Minimierungsproblem konvertiert
werden.

Die Funktion zur Erzeugung eines Ph�anotyps mu� die Funktion PhenoType-

.init benutzen, da Individuen im System als abstrakte Datentypen implemen-
tiert wurden. Diese Funktion erwartet zwei Parameter: zuerst eine Funktion, die
f�ur nat�urliche Zahlen jeweils eine Zelle liefert, dann die Anzahl der Zellen, aus
der der Ph�anotyp besteht.

Wird nun ein Ph�anotyp ben�otigt, so wird die Funktion PhenoType.init aufge-
rufen, die f�ur jede der Zahlen zwischen 1 und der angegebenen Zellenzahl die
Zellen-Generierungsfunktion aufruft. Ergebnis ist ein Ph�anotyp.

Ein neues Problem mu� sich bei der Populationsverwaltung registrieren lassen.
Dies wird durch einen Aufruf der Funktion PopHandler.Set Problem erreicht.
Als Parameter m�ussen dabei die Ph�anotyp-Generierungsfunktion und die Fit-
nessfunktion �ubergeben werden:

val _ = PopHandler.Set_Problem

(fn () => PhenoType.init (cell_n, number_of_cells),

fn x => (evaluate x))

96 KAPITEL 7. BEDIENUNG

7.7.2 Konventionen

� Jedes Problemmodul sollte mit einigen Zeilen Informationen �uber die Da-
tei beginnen:

(* Author : Thomas Schmidt

* Date : 14.06.96, 21.08.96

* File : lib/problems/Hypersphere.sml

* Use for: A simple Problem (Hypersphere) incl. Phenotype

*)

� Alle Funktionen werden in einer Struktur zusammengefa�t. Sinnvollerwei-
se wird sie Problem genannt.

structure Problem = struct

� Das Problem sollte einige Informationen deklarieren, durch die z.B. Ko-
dierungen sich an das Problem anpassen k�onnen. Diese Information ist
sinnvoll, jedoch nicht immer praktisch angebbar.

val number_of_cells = 20

val type_of_cells = "BoundRealAtom"

val name = "Hypersphere"

� Bei der Verwendung reeller Zahlen aus einem Intervall m�ussen dessen
Grenzen angegeben werden.

val min_real = ~5.12

val max_real = 5.11

� Die eigentliche Berechnung der Fitness kann beliebig kompliziert von stat-
ten gehen. Im Beispiel

"
Hypersph�are\ besteht sie jedoch nur aus wenigen

Zeilen.

fun hypersphere (nil) = 0.0

| hypersphere (r::tl) = r * r + hypersphere(tl)

� Um das Problem an die Populationsverwaltung �ubergeben zu k�onnen,
mu� neben der Fitne�funktion problem auch eine Generierungsfunktion
f�ur Ph�anotypen angegeben werden (PhenoType.init). Deren erstes Ar-
gument ist eine Funktion, die eine Zellen liefert. Im Falle der mathemati-
schen Probleme auf reellen Zahlen existiert bereits eine solche Funktion in
der Struktur IndLib, die an die Initialisierungsfunktion �ubergeben werden
kann (simple real ind). Der zweite Parameter legt die Anzahl der Zellen
im Ph�anotyp fest.

Der zweite Teil des Problems ist eine Funktion, die ein Individuum bewer-
tet (letzte Zeile). Dazu mu� aber das Individuum in eine Form gebracht
werden, die zur Problemfunktion pa�t. Hier reicht es, simple reals2list

auf das Individuum anzuwenden, denn die Problemfunktion kann die ent-
stehende Liste reeller Zahlen bearbeiten.

7.8. KODIERUNGEN 97

val _ = PopHandler.Set_Problem

(fn () => PhenoType.init

(IndLib.simple_real_ind (number_of_cells,

min_real, max_real),

number_of_cells),

fn x => (problem (IndLib.simple_reals2list x)))

7.8 Kodierungen

Manche Verfahren arbeiten nur mit einem Genotyp, der eine bestimmte Struktur
hat. Ein Genetischer Algorithmus ben�otigt z.B. einen Bitstring. Um ein vorge-
gebenes Problem an dieses Verfahren anzupassen, wird eine Kodierung ben�utzt.
Im folgenden soll beschrieben werden, wie eigene Kodierungen erstellt werden
k�onnen. Die Beschreibung gliedert sich in zwei Abschnitte: Im ersten Abschnitt
wird die Erstellung eines Kodierungsschemas aus bereits vorhanden elementaren
Kodierungsschemata erl�autert. F�ur Standardanwendungen sollte dieses Vorge-
hen der Normalfall sein. Die Erzeugung elementarer Kodierungsschemata wird
im zweiten Abschnitt beschrieben.

7.8.1 Kodierungsschema

Als Beispielanwendung dient ein TSP, als Optimierungsverfahren soll eine Evo-
lutionsstrategie eingesetzt werden. Die Permutation der L�ange 14 wird in eine
gleichlange Liste von reellen Atomen kodiert, au�erdem soll der Genotyp 14
ebenfalls reellwertige Strategieparameter enthalten. Folgende elementare Ko-
dierungsschemata stehen zur Verf�ugung: Perm2Reals kodiert eine Permutation
in eine Liste reeller Zahlen gleicher L�ange, Stratlist14 erzeugt eine Liste aus
14 reellen Atomen.

Der Ph�anotyp besteht aus einer Permutationszelle, der Genotyp aus zwei Listen-
zellen.1 Die elementaren Kodierungsschemata im Verzeichnis lib/coding (hier:
Perm2RealsCoding.smlund Stratlist14Coding.sml)m�ussen nachtr�aglich ge-
laden werden, dann stehen die Strukturen Perm2Reals und Stratlist14 zur
Verf�ugung. Mit der Anweisung

val meinkodsname = ("Name fuer diese Kodierung",

[(Perm2Reals.elemcodscheme, [1], [1]),

(Stratlist14.elemcodscheme, [],[2])];

kann das Kodierungsschema einer Variable zugeordnet werden. Dann k�onnen
mit

val eingenotyp = Coding.codeind(einphaenotyp,

meinkodsname);

1Die Kodierungsfunktionen pr�ufen diesen Aufbau nicht. Der Benutzer ist allein daf�ur ver-

antwortlich, die Individuen passend zu den von ihm gew�ahlten Kodierungsschemata zu initia-

lisieren

98 KAPITEL 7. BEDIENUNG

bzw.

val nocheinphaenotyp = Coding.decodeind(eingenotyp,

meinkodsname);

Individuen kodiert bzw. dekodiert werden. Um diese Kodierung in Experimenten
verwenden zu k�onnen, mu� beim System angemeldet werden (dies geschieht mit
der Funktion Library.add coding()). Zweckm�a�igerweise de�niert man hierf�ur
eine eigene Struktur:

(* elementare Kodierungsschemata laden *)

use "../lib/coding/Perm2RealsCoding.sml";

use "../lib/coding/Stratlist14Coding.sml";

(* Kodierungsschema definieren und anmelden *)

structure BeliebigerName =

struct

val _ = Library.add_coding

("Name fuer diese Kodierung",

("Name fuer diese Kodierung",

[(Perm2Reals.elemcodscheme, [1], [1]),

(Stratlist14.elemcodscheme, [],[2])]))

end;

7.8.2 Elementare Kodierungsschemata

Ein elementares Kodierungsschema besteht aus einer Struktur zu folgender Si-
gnatur:

signature ELEMENTARY_CODING_SCHEME =

sig

val in_cell_names: string list

val out_cell_names: string list

val coding: CellTypes.cell_type list

-> CellTypes.cell_type list

val decoding: CellTypes.cell_type list

-> CellTypes.cell_type list

end;

in cell names und out cell names sind f�ur Konsistenzpr�ufungen vorgesehen
und werden momentan nicht verwendet. Da Strukturen nicht Elemente von Li-
sten oder Tupeln sein k�onnen, mu� der Inhalt der Struktur in ein Record ge-
schrieben werden. Dazu dient der Funktor GetElementaryCodingScheme mit
der Signatur

signature GET_ELEMENTARY_CODING_SCHEME =

sig

structure Coding: CODING

val elemcodscheme: Coding.elementary_coding_scheme

end;

7.8. KODIERUNGEN 99

Ein elementares Kodierungsschema sieht dann z.B. so aus:

structure Ident_cod : ELEMENTARY_CODING_SCHEME =

struct

val in_cell_names = ["any"]

val out_cell_names = ["any"]

fun coding x = x

fun decoding x = x

end;

structure Ident: GET_ELEMENTARY_CODING_SCHEME =

GetElementaryCodingScheme(Ident_cod)

Das elementare Kodierungsschema kann dann als Ident.elemcodscheme in ei-
nem Kodierungsschema verwendet werden.

7.8.3 Parametrisierte elementare Kodierungsschemata

Gelegentlich ist es w�unschenswert, elementare Kodierungsschemata zu parame-
trisieren, z.B. das Schema stratlist14 cod aus obigem Beispiel. Ein parame-
trisiertes elementares Kodierungsschema hat die Signatur:

signature PARAM_ELEMENTARY_CODING_SCHEME =

sig

type parameter

val in_cell_names: string list

val out_cell_names: string list

val param_coding: parameter

-> (CellTypes.cell_type list

-> CellTypes.cell_type list)

val param_decoding: parameter

-> (CellTypes.cell_type list

-> CellTypes.cell_type list)

end;

Der Funktor hei�t GetParamElementaryCodingScheme und hat die Signatur:

signature GET_PARAM_ELEMENTARY_CODING_SCHEME =

sig

structure Coding: CODING

type parameter

val paramelemcodscheme:

parameter -> Coding.elementary_coding_scheme

end;

F�ur das Beispiel:

structure Stratlist_cod : PARAM_ELEMENTARY_CODING_SCHEME =

struct

100 KAPITEL 7. BEDIENUNG

type parameter = int

val in_cell_names = []

val out_cell_names = ["list"]

fun param_coding p = fn _ => ...

fun param_decoding p = fn _ => []

end;

structure Stratlist: GET_PARAM_ELEMENTARY_CODING_SCHEME =

GetParamElementaryCodingScheme(Stratlist_cod)

Das Kodierungsschema wird dann mit

structure BeliebigerName =

struct

val _ = Library.add_coding

("Name fuer diese Kodierung",

("Name fuer diese Kodierung",

[(Perm2Reals.elemcodscheme, [1], [1]),

(Stratlist.paramelemcodscheme 14, [],[2])]))

end;

erzeugt.

Anhang A

Systemfunktionen

GENOM stellt eine Reihe von Komponenten zur Verf�ugung, die von den Biblio-
theken und eigenen Erweiterungen verwendet werden k�onnen. Dazu geh�oren
Funktionen, die von LEA aus aufgerufen werden, Hilfsfunktionen, die zum Auf-
bau von evolution�aren Algorithmen dienen und vorde�nierte Zellen und Atome,
aus denen die Individuen bestehen. Im Gegensatz zu den Bibliotheken sind sie
ein fester Bestandteil des Systems.

A.1 LEA-Funktionen

Die folgenden Funktionen stellen eine Erweiterung von LEA um oft verwendete
Funktionen dar. Dazu geh�oren neben allgemeinen und mathematischen Funk-
tionen auch solche, mit denen Variablen vom Typ INDLIST bearbeitet werden
k�onnen und die Anbindung an die Populationsverwaltung. Zur besseren �Uber-
sicht sind zusammengeh�orende Funktionen in Bibliotheken gruppiert. Die fol-
genden Funktionen werden mit dem System mitgeliefert und k�onnen in LEA
aufgerufen werden, wenn die entsprechende Bibliothek mit USES geladen wurde.

A.1.1 Ausgabefunktionen, Output

Die Bibliothek Output enth�alt Funktionen, mit denen LEA-Variablen zur Stan-
dardausgabe geschrieben werden k�onnen.

� write: UNKNOWN ->

Gibt den Inhalt einer Variable aus. Der Typ der Variable wird dabei erst
zur Laufzeit �uberpr�uft. Unterst�utzt werden die folgenden Typen: INT,
REAL, BOOL, STRING und IND.

� writeln: UNKNOWN ->

Wie write mit anschlie�endem Zeilenumbruch.

101

102 ANHANG A. SYSTEMFUNKTIONEN

A.1.2 Grundlegende Funktionen, Basefct

Basefct enth�alt die Funktionen zum Umwandeln zwischen den LEA-Typen.
Ferner enth�alt sie Funktionen zur Berechnung des Betrags und des Maximums
und Minimums.

� inttoreal: INT -> REAL

Wandelt eine ganze in eine reelle Zahl um.

� floor: REAL -> INT

Rundet eine reelle Zahl auf die n�achstniedrigere ganze Zahl.

� absi: INT -> INT

Berechnet den Betrag einer ganzen Zahl.

� absr: REAL -> REAL

Berechnet den Betrag einer reellen Zahl.

� inttostr: INT -> STRING

Wandelt eine ganze Zahl in eine Zeichenkette um.

� realtostr: REAL -> STRING

Wandelt eine reelle Zahl in eine Zeichenkette um.

� maxi: INT * INT -> INT

Gibt das Maximum zweier ganzer Zahlen zur�uck.

� mini: INT * INT -> INT

Gibt das Minimum zweier ganzer Zahlen zur�uck.

� maxr: REAL * REAL -> REAL

Gibt das Maximum zweier reeller Zahlen zur�uck.

� minr: REAL * REAL -> REAL

Gibt das Minimum zweier reeller Zahlen zur�uck.

A.1.3 Mathematische Funktionen, Math

Math enth�alt einige mathematischen Funktionen, die haupts�achlich aus der SML-
Struktur Math stammen. Dazu kommen noch die Funktionen zum Erzeugen von
Zufallszahlen.

� sqrt: REAL -> REAL

Berechnet die Quadratwurzel einer reellen Zahl.

� sin: REAL -> REAL

Berechnet die Sinusfunktion.

� cos: REAL -> REAL

Berechnet die Cosinusfunktion.

� tan: REAL -> REAL

Berechnet die Tangensfunktion.

A.1. LEA-FUNKTIONEN 103

� arctan: REAL -> REAL

Berechnet den inversen Tangens.

� exp: REAL -> REAL

Berechnet eine Exponentialfunktion.

� ln: REAL -> REAL

Berechnet den nat�urlichen Logarithmus.

� random: -> REAL

Gibt eine reelle Zufallszahl zwischen 0 und 1 zur�uck.

� randombound: REAL * REAL -> REAL

Gibt eine reelle Zufallszahl aus dem angegebenen Bereich zur�uck.

� randomchoose: INT -> INT

W�ahlt eine ganze Zahl aus dem Bereich von 1 bis zur angegebenen Ober-
grenze aus. Diese Funktion kann dazu verwendet werden, zuf�allig einen
Index aus einer Liste auszuw�ahlen.

� randombool: -> BOOL

Erzeugt zuf�allig einen bool'schen Wert.

� randomstdnorm: -> REAL

Gibt eine normalverteilte Zufallszahl aus N(0; 1) zur�uck.

� randomnorm: REAL * REAL -> REAL

Gibt eine normalverteilte Zufallszahl mit einem bestimmten Mittelwert
und Varianz aus N(�; �2) zur�uck.

� pi: -> REAL

Kreiskonstante �.

� e: -> REAL

Nat�urliche Zahl e.

A.1.4 Funktionen f�ur Listen von Individuen, IndList

Mit den Funktionen aus der Bibliothek IndList k�onnen Listen von Individuen,
die unter LEA den Typ INDLIST haben, bearbeitet werden. Zus�atzlich zu den
bekannten Funktionen f�ur Listen gibt es hier auch Funktionen, die die maxi-
male, die minimale oder die durchschnittliche Fitne� der Individuen einer Liste
bestimmen. Bei allen Indizes, die im folgenden verwendet werden, bezeichnet 1
das erste Element. Ein falscher Index f�uhrt zu einer Exception.

� emptyList: -> INDLIST

Gibt eine leere Individuenliste zur�uck.

� isempty: INDLIST -> BOOL
�Uberpr�uft, ob es sich um eine leere Liste handelt.

� length: INDLIST -> INT

Ermittelt die L�ange einer Liste.

104 ANHANG A. SYSTEMFUNKTIONEN

� head: INDLIST -> IND

Gibt das erste Individuum einer Liste zur�uck. Bei einer leeren Liste wird
eine Exception erzeugt.

� tail: INDLIST -> INDLIST

Gibt den Rest der Liste, ohne das erste Element, zur�uck.

� getListInd: INDLIST * INT -> IND

Gibt das Individuum an der angegebenen Position zur�uck.

� setListInd: INDLIST * INT * IND -> INDLIST

Ersetzt das Individuum an einer bestimmten Position durch das angege-
bene Individuum.

� removeListInd: INDLIST * INT -> INDLIST

Entfernt das Individuum an der angegebenen Position.

� insertListInd: INDLIST * INT * IND -> INDLIST

F�ugt ein Individuum an einer bestimmten Position ein. Der Index gibt die
Position an, an der sich das Individuum nach dem Einf�ugen be�ndet.

� append: IND * INDLIST -> INDLIST

H�angt ein Individuum vorne an die Liste an.

� merge: INDLIST * INDLIST -> INDLIST

F�ugt zwei Individuenlisten zu einer zusammen.

� getBestFit: INDLIST -> REAL

Ermittelt die beste Fitne� in einer Individuenliste. Das System ist daf�ur
ausgelegt, das Minimum der Fitne�funktion zu suchen. Hier wird also die
minimale Fitness zur�uckgegeben.

� getWorstFit: INDLIST -> REAL

Ermittelt die schlechteste Fitne�.

� getAvgFit: INDLIST -> REAL

Ermittelt die durchschnittliche Fitne� der Individuen.

A.1.5 Populationsverwaltung, PopHandler

Die Bibliothek PopHandler stellt die Schnittstelle von LEA zur Populationsver-
waltung dar.

� fitness: IND -> REAL

Berechnet die Fitne� eines Individuums.

� get ind: POP * INT -> IND

Gibt das Individuum mit dem angegebenen Index aus der Population
zur�uck.

� set ind: POP * INT * IND ->

Ersetzt das Individuum mit dem entsprechenden Index durch das angege-
bene Individuum.

A.2. SML-FUNKTIONEN 105

� get Pop: POP -> INDLIST

Gibt die Individuen in einer Population als Liste von Individuen zur�uck.

� set Pop: POP * INDLIST ->

Ersetzt alle Individuen in einer Population durch die aus der Individuen-
liste.

� getGenCounter: POP -> INT

Ermittelt die Generation der Population.

� incGenCounter: POP ->

Erh�oht den Generationsz�ahler einer Population.

� logPop: POP ->

Schreibt die gesamte Population in die dazugeh�orende Log-Datei.

A.2 SML-Funktionen

Auch f�ur die Teile des Systems, die in SML geschrieben werden, gibt es eine
Reihe von Funktionen. Einige der Funktionen, die unter LEA verwendet werden
k�onnen, sind in SML-Strukturen gespeichert, die beim Start des Systems geladen
werden. Zus�atzlich existiert eine Exception zur einheitlichen Fehlerbehandlung.

A.2.1 Fehlerbehandlung, Error

Die Struktur Error enth�alt die Exception runtime error. Diese wird im System
dazu verwendet, um Fehler, die zur Laufzeit auftreten, zu signalisieren. Auf
oberster Ebene sollte bei Auftreten eines Fehlers nur diese Exception ausgel�ost
werden.

� runtime error: exception of string * string * string

Wird verwendet, um anzuzeigen, da� im System ein Fehler erkannt wur-
de. Die Strings beschreiben, in welchem Modul und welcher Funktion der
Fehler erkannt wurde, sowie eine Beschreibung des Fehlers.

A.2.2 Zufallszahlen, Random

In der Struktur Random sind die Funktionen f�ur Zufallszahlen enthalten. Diese
entsprechen den Funktionen aus der Bibliothek Math.

� random: unit -> real

Liefert eine reelle Zufallszahl, die gleichverteilt aus dem Intervall von 0 bis
1 entnommen wird.

� randombound: real * real -> real

Liefert eine Zufallszahl aus einem Intervall, dessen obere und untere Gren-
ze angegeben sind.

106 ANHANG A. SYSTEMFUNKTIONEN

� randomchoose: int -> int

W�ahlt eine ganze Zahl aus dem Bereich von 1 bis zur angegebenen Ober-
grenze aus.

� randombool: unit -> bool

Erzeugt zuf�allig einen bool'schen Wert.

� randseed: real -> unit

Setzt den Startwert f�ur den Zufallszahlengenerator. Der Startwert mu�
eine reelle Zahl zwischen 0 und 1 sein.

� randomstdnorm: unit -> real

Erzeugt eine normalverteilte Zufallszahl mit Erwartungswert 0 und Vari-
anz 1.

� randomnorm: real * real -> real

Erzeugt eine normalverteilte Zufallszahl, wobei der Erwartungswert und
die Varianz angegeben werden kann.

A.2.3 Funktionen f�ur Individuenlisten, IndList

Einige Funktionen der Bibliothek IndList sind in der gleichnamigen Struk-
tur enthalten. Andere Funktionen dieser Bibliothek lassen sich durch SML-
Bibliotheksfunktionen realisieren.

� getBestFit: PopHandler.extInd type list -> real

Gibt die beste Fitne� eines Individuums der Liste zur�uck.

� getWorstFit: PopHandler.extInd type list -> real

Gibt die schlechteste Fitne� eines Individuums der Liste zur�uck.

� getAveFit: PopHandler.extInd type list -> real

Berechnet die durchschnittliche Fitne� in der Individuenliste.

� getListInd: (PopHandler.extInd type list * int)

-> PopHandler.extInd type

Liefert das Individuum an der angegebenen Position.

� setListInd: (PopHandler.extInd type list * int *

PopHandler.extInd type) -> PopHandler.extInd type list

Ersetzt das Individuum an der angegebenen Position.

� removeListInd: (PopHandler.extInd type list * int)

-> PopHandler.extInd type list

Entfernt ein Individuum aus der Liste.

� insertListInd: (PopHandler.extInd type list * int *

PopHandler.extInd type) -> PopHandler.extInd type list

F�ugt ein Individuum in die Liste ein.

A.3. HILFSFUNKTIONEN F�UR EV. ALGORITHMEN 107

A.3 Hilfsfunktionen f�ur ev. Algorithmen

A.3.0.1 Ziel

Die Hilfsfunktionen erlauben, einfach Funktionen auf externen Individuen (die
in LEA verwendet werden) zu implementieren. Sie bieten oft gebrauchte Kon-
strukte an, die f�ur eine konkrete Aufgabe nur noch an- bzw. ineinandergef�ugt
werden m�ussen. Die Funktion kann durch Einbinden in eine Bibliothek f�ur Ope-
ratoren und Verfahren zugreifbar gemacht werden.

A.3.0.2 Konzept

F�ur jede Ebene des Individuums (Geno-/Ph�anotyp, Zellen, Atome) existieren
Bibliotheken mit Funktionen, die h�au�g gebrauchte Konstrukte zur Verf�ugung
stellen. Die Funktionen liegen im Verzeichnis sml/evollib.

� IndLib.sml: Diese Bibliothek unterst�utzt das Erzeugen von zuf�alligen
Ph�anotypen, die Wandlung von Ph�anotypen in einfache SML-Strukturen
und umgekehrt. Au�erdem gibt es Funktionen, die Informationen �uber
Individuen liefern und Funktionen auf externen Individuen (die LEA ver-
wendet).

� <Zelltyp>CellLib.sml: Funktionen, die Zellen ver�andern.

� <Atomtyp>AtomLib.sml: Funktionen, die Atome ver�andern.

A.3.0.3 Beispiel

Es soll eine einfache Zelle eines externen Individuums, die ein reelles Atom
enth�alt, normalverteilt mutiert werden.

Aus der Bibliothek RealAtomLib kann die Funktion mutate normal entnommen
werden, die ein einzelnes Atom mutiert.

Die Bibliothek SimpleCellLib enth�alt die Funktion apply, die eine Funktion
auf eine Zelle anwendet.

Um das externe Individuum bearbeiten zu k�onnen, braucht man die Funktion
extcellapply aus der Bibliothek IndLib.

Somit l�a�t sich die gesamte Funktion folgenderma�en de�nieren:

fun Mutate_extern_simple_real

(Ext_Ind, Cell_Nr, sigma, expect) =

IndLib.extcellapply

(SimpleCellLib.apply

(RealAtomLib.mutate_normal expect sigma))

(Ext_Ind, Cell_Nr)

108 ANHANG A. SYSTEMFUNKTIONEN

A.3.0.4 Bibliotheken

Individuen

� IndLib: allgemeine Funktionen auf Individuen.

{ simple ind: (unit -> AtomTypes.atom type)

-> int -> CellTypes.cell type

Hiermit kann eine Funktion erzeugt werden, die Zellen liefert, wenn
sie mit einer Zahl zwischen 1 und dem Maximalwert (1. int-Para-
meter) aufgerufen wird. Alle Zellen werden mit derselben Funktion
erzeugt.

{ simple real ind: int * real * real

-> int -> CellTypes.cell type

Vereinfachung von simple ind: Die reellen Werte geben den Werte-
bereich an, den die simple-real Zellen des Individuums haben sollen.

{ simple int ind: int * int * int

-> int -> CellTypes.cell type

simple bool ind: int -> int -> CellTypes.cell type

simple unbound int ind: int -> int -> CellTypes.cell type

simple unbound real ind: int -> int -> CellTypes.cell type

Analog zu simple real ind.

{ simple reals2list: Individuum.individuum type

-> real list

Konvertiert ein Individuum aus simple-real Zellen in eine Liste von
Reals.

{ by functions: (unit -> 'a) list -> int -> 'a

Erzeugt eine Ph�anostruktur, wobei eine Funktionsliste �ubergeben
und f�ur die entsprechende Position jeweils die Funktion aufgerufen
wird.

{ from real list: real list -> int -> CellTypes.cell type

Erzeuge ein Listen-Zellen-Individuum aus einer Liste reeller Zahlen.

{ from int list: int list -> int -> CellTypes.cell type

from bound real list: real * real -> real list

-> int -> CellTypes.cell type

from bound int list: int * int -> int list -> int

-> CellTypes.cell type

from bool list: bool list -> int -> CellTypes.cell type

Analog zu from real list.

{ set cells: (UnionOfCells.cell type * int) list ->

Individuum.individuum type -> Individuum.individuum type

Setze einige Zellen in einem Individuum.

{ set: UnionOfCells.cell type list

-> Individuum.individuum type ->

Individuum.individuum type

Ersetze alle Zellen eines Individuums durch den Inhalt einer Liste.

{ number of cells: Individuum.individuum type -> int

Liefert die Anzahl der Zellen in einem Individuum.

A.3. HILFSFUNKTIONEN F�UR EV. ALGORITHMEN 109

{ extract data: int list -> (UnionOfCells.cell type

-> 'a) -> Individuum.individuum type -> 'a list

Wende eine Funktion auf einige Zellen eines Individuums an.

{ conv all cells: (UnionOfCells.cell type -> 'a)

-> Individuum.individuum type -> 'a list

Wende eine Funktion auf alle Zellen eines Individuums an.

{ ind2cells: Individuum.individuum type

-> UnionOfCells.cell type list

Konvertiere ein Individuum in eine Liste von Zellen.

{ simple reals2list: Individuum.individuum type

-> real list

Konvertiere ein Individuum aus Simple-Zellen, die Real-Atome ent-
halten, in eine Liste von Reals.

{ simple ints2list: Individuum.individuum type -> int list

Konvertiere ein Individuum aus Simple-Zellen, die Int-Atome enthal-
ten, in eine Liste von Ints.

{ pair apply: (UnionOfCells.cell type *

UnionOfCells.cell type -> UnionOfCells.cell type)

-> PopHandler.extInd type * PopHandler.extInd type

-> PopHandler.extInd type

Wende eine Funktion auf alle Zellen-Paare zweier externer Individu-
uen an und liefere die resultierenden Zellen im ersten Individuum
zur�uck.

{ pair apply cell: (UnionOfCells.cell type *

UnionOfCells.cell type->'a) -> PopHandler.extInd type

* PopHandler.extInd type * int -> 'a

Wende eine Funktion auf je eine Zelle zweier externer Individuen an,
wobei die Zellen sich an derselben Stelle be�nden.

{ extapply: (PopHandler.Ind type -> PopHandler.Ind type)

-> PopHandler.extInd type -> PopHandler.extInd type

Wende eine Funktion auf alle Zellen eines externen Individuums an
und liefere das Ergebnis als externes Individuum zur�uck.

{ extcellapply: (UnionOfCells.cell type ->

CellTypes.cell type) -> PopHandler.extInd type * int

-> PopHandler.extInd type

Wende eine Funktion auf eine Zelle eines externen Individuums an
und trage das Ergebnis in das Individuum ein.

{ extcellapplyall: (UnionOfCells.cell type ->

UnionOfCells.cell type) -> PopHandler.extInd type

-> PopHandler.extInd type

Wende eine Funktion auf alle Zellen eines externen Individuums an
und gebe es ver�andert zur�uck.

{ extgetcell: PopHandler.extInd type * int

-> UnionOfCells.cell type

Lese eine Zelle in einem externen Individuum aus.

{ extsetcell: PopHandler.extInd type *

UnionOfCells.cell type * int -> PopHandler.extInd type

Setze eine Zelle in einem externen Individuum.

110 ANHANG A. SYSTEMFUNKTIONEN

{ extconv: (PopHandler.Ind type -> 'a)

-> PopHandler.extInd type -> 'a

Wende eine beliebige Funktion auf die Zellen eines externen Indivi-
duums an.

Zellen

� CellLib: Funktionen, die auf allen zur Zeit implementierten Zellen de�-
niert sind. Diese Bibliothek mu� nach Erweiterung des Systems um neue
Zellentypen erweitert werden.

{ first: CellTypes.cell type -> AtomTypes.atom type

Ermittelt das erste Atom in einer Zelle.

{ last: CellTypes.cell type -> AtomTypes.atom type

Ermittelt das letzte Atom in einer Zelle.

� SimpleCellLib: Funktionen auf Simple-Zellen.

{ apply: (AtomTypes.atom type -> AtomTypes.atom type)

-> CellTypes.cell type -> CellTypes.cell type

Wende eine Funktion auf das Atom in der Zelle an.

� PairCellLib: Funktionen auf Paar-Zellen. Diese Zellen werden u.a. als
Parameter mit zugeh�origem Strategie-Parameter verwandt.

{ apply: (AtomTypes.atom type -> AtomTypes.atom type)

(AtomTypes.atom type -> AtomTypes.atom type)

-> CellTypes.cell type -> CellTypes.cell type

Wende je eine Funktion auf die beiden Atome an.

{ mutate real normal: CellTypes.cell type *

int * real * real -> CellTypes.cell type

Mutiere ein Real-Atom der Zelle normalverteilt, wobei der erste reelle
Parameter der Erwartungwert, der zweite die Standardabweichung
angibt. Zudem kann die Nummer des Atoms in der Zelle angegeben
werden.

{ get real strat: CellTypes.cell type -> real

Ermittelt den zweiten Wert der Zelle, der oft als Strategiewert inter-
pretiert wird. Diese Funktion arbeitet nur auf Real-Atomen.

{ mutate strat real: real -> real -> int ->

Individuum.individuum type -> Individuum.individuum type

Mutiere den Strategiewert in einer Paar-Zelle, sofern sie ein Real-
Atom enth�alt.

{ mutate prob': CellTypes.cell type -> CellTypes.cell type

Mutiere den Problemwert mit Hilfe des Strategiewerts, wenn beide
Atome reell sind.

{ cross pair: CellTypes.cell type * CellTypes.cell type

* real -> CellTypes.cell type

Mutiere zwei Paar-Zellen intermedi�ar.

A.3. HILFSFUNKTIONEN F�UR EV. ALGORITHMEN 111

� ListCellLib: Funktionen auf Listen-Zellen.

{ apply: (AtomTypes.atom type -> AtomTypes.atom type)

-> CellTypes.cell type -> CellTypes.cell type

Wende eine Funktion auf alle Zellen an.

{ applyL: (AtomTypes.atom type list ->

AtomTypes.atom type list) -> CellTypes.cell type

-> CellTypes.cell type

Wende eine Funktion auf die gesamte Liste an.

{ apply n: (AtomTypes.atom type -> AtomTypes.atom type)

-> ListCell.index -> CellTypes.cell type

-> CellTypes.cell type

Wende eine Funktion auf das n-te Element der Liste an.

{ apply list: (AtomTypes.atom type ->AtomTypes.atom type)

list -> CellTypes.cell type -> CellTypes.cell type

Wende eine Liste von Funktionen auf die Liste an. Dabei wird bei
Erreichen des Endes der Funktionenliste wieder die erste Funktion
verwendet.

{ pair apply: (AtomTypes.atom type * AtomTypes.atom type

-> AtomTypes.atom type) -> CellTypes.cell type *

CellTypes.cell type -> CellTypes.cell type

Wende eine Funktion paarweise auf die Elemente zweier Listen an
und liefere eine Liste zur�uck.

{ list2cell: ('a -> AtomTypes.atom type list) -> 'a

-> CellTypes.cell type

Wandle eine Liste in eine Zelle.

{ reallist2cell: real list -> CellTypes.cell type

Konvertiere eine Liste von Reals in eine Listenzelle.

{ boundreallist2cell: real * real -> real list

-> CellTypes.cell type

Konvertiere eine Liste von Reals in eine Listenzelle von begrenzten
Reals.

{ intlist2cell: int list -> CellTypes.cell type

analog zu reallist2cell.

{ boundintlist2cell: int * int -> int list

-> CellTypes.cell type

analog zu boundreallist2cell.

{ boollist2cell: bool list -> CellTypes.cell type

analog zu boollist2cell.

{ cell2list: (AtomTypes.atom type list -> 'a)

-> CellTypes.cell type -> 'a

Wende eine Funktion auf den Inhalt einer Listenzelle an.

{ cell2reallist: CellTypes.cell type -> real list

Konvertiere eine Listenzelle aus Real-Atomen in eine Liste von Reals.

{ cell2intlist: CellTypes.cell type -> int list

cell2boollist: CellTypes.cell type -> bool list

analog zu cell2reallist.

112 ANHANG A. SYSTEMFUNKTIONEN

{ mutate reverse: 'a list -> 'a list

Mutiert eine beliebige Liste durch Umkehren eines zuf�allig bestimm-
ten Teils.

{ mutate rotate: 'a list -> 'a list

Mutiert eine beliebige Liste durch Rotation um eine zuf�allige Anzahl
von Stellen.

{ mutate exchange: 'a list -> 'a list

Tauscht zwei zuf�allig bestimmte Elemente einer beliebigen Liste aus.

Atome

� AtomLib: Funktionen, die verschiedene Atome bearbeiten k�onnen.

{ identity: 'a -> 'a

Funktion, die ein Atom nicht ver�andert.
(Verwendbar z.B. in PairCellLib.apply.)

{ a2real: real -> AtomTypes.atom type -> real

Wandle ein Atom in einen reellen Wert, wobei bei �Ubergabe eines
Atoms, das keinen Real-Wert darstellt, ein Default-Wert zur�uckgege-
ben wird.

{ a2int: int -> AtomTypes.atom type -> int

Analog zu a2real f�ur Integer.

� RealAtomLib: Funktionen auf reellen Atomen, wobei nicht zwischen be-
grenzten und unbegrenzten unterschieden wird.

{ set: AtomTypes.atom type * real -> AtomTypes.atom type

Setze den Wert eines Real-Atoms, wobei ggf. die Grenzen beachtet
werden.

{ gen bound: real * real * real -> AtomTypes.atom type

Erzeuge ein begrenztes reelles Atom, wobei die Grenzen �uberpr�uft
werden.

{ mutate normal: real -> real -> AtomTypes.atom type

-> AtomTypes.atom type

Mutiere ein Atom normalverteilt.

{ mutate normal0: real -> AtomTypes.atom type

-> AtomTypes.atom type

Mutiere ein Atom normalverteilt, mit Erwartungswert 0.

{ set normal: real -> real -> AtomTypes.atom type

-> AtomTypes.atom type

Setze ein Atom auf einen normalverteilt ermittelten Wert.

{ set normal0: real -> AtomTypes.atom type

-> AtomTypes.atom type

Setze ein Atom auf einen normalverteilt ermittelten Wert, wobei der
Erwartungswert 0 ist.

A.3. HILFSFUNKTIONEN F�UR EV. ALGORITHMEN 113

{ mutate uniform interval: real -> real ->

AtomTypes.atom type -> AtomTypes.atom type

Mutiere ein Atom, wobei ein gleichverteilter Zufallswert aus einem
Intervall auf den alten Wert addiert wird.

{ mutate uniform: real -> AtomTypes.atom type

-> AtomTypes.atom type

Mutiere ein Atom, wobei ein gleichverteilter Zufallswert aus einem
Intervall um 0 aufaddiert wird.

{ mutate uniform onesided: real -> AtomTypes.atom type

-> AtomTypes.atom type

Mutiere ein Atom; der aufaddierte Wert stammt aus einem Intervall
zwischen 0 und einem Parameter.

{ set uniform interval: real -> real ->

AtomTypes.atom type -> AtomTypes.atom type

set uniform: real -> AtomTypes.atom type

-> AtomTypes.atom type

Setzt den Wert eines Atoms, analog zu mutate

{ dyadic: (real * real -> real) -> AtomTypes.atom type *

AtomTypes.atom type -> AtomTypes.atom type

Wende eine Funktion, die zwei reelle Zahlen erwartet, auf zwei reelle
Atome an und liefere das Ergebnis als Atom zur�uck. Nur wenn beide
Atome unbegrenzt sind, wird ein unbegrenztes Atom geliefert.

� IntAtomLib: Funktionen auf Integer-Atomen, die ebenfalls keine Unter-
scheidung zwischen begrenzten und unbegrenzten machen.

{ Funktionen analog zu RealAtomLib.

� BoolAtomLib:

Funktionen auf Bit-Atomen.

{ mutate: real -> AtomTypes.atom type

-> AtomTypes.atom type

Mutiere ein Bit mit einer gewissen Wahrscheinlichkeit.

A.3.0.5 LEA-Bibliotheken

Einige Funktionen f�ur Permutationen sind auch direkt in LEA verf�ugbar.

A.3.0.6 Permutationen

MutatePerm enth�alt Funktionen, um Permutationen zu mutieren.1

� setvalue: IND -> IND

W�ahlt zuf�allig zwei Atome der Permutation aus und verschiebt alle Atome
dazwischen um eine Position nach links oder rechts. Eine genaue Beschrei-
bung �ndet sich in [JW95].

1Tats�achlich enth�alt die Bibliothek nur eine Schnittstelle zu SML-Funktionen aus der Bi-

bliothek PermCellLib, die beim Systemstart geladen wird.

114 ANHANG A. SYSTEMFUNKTIONEN

� xchange: IND -> IND

Tauscht zwei zuf�allig ausgew�ahlte Atome gegeneinander aus. Auch diese
Funktion ist in [JW95] beschrieben.

� lin2: IND -> IND

W�ahlt zuf�allig zwei Atome der Permutation aus und kehrt die Reihenfolge
der dazwischenliegenden Atome um.

A.4 Elementare Kodierungsschemata

Die elementaren Kodierungsschemata sind Grundbausteine der Kodierungen,
k�onnen selbst aber von LEA aus nicht angesprochen werden.

� Ident

{ Eingabe: alle Zelltypen

{ Ausgabe: alle Zelltypen

Identische Kodierung.

� Perm2Ints

{ Eingabe: eine Zelle, die eine Permutation aus nat�urlichen Zahlen zwi-
schen 1 und der L�ange der Permutation enth�alt

{ Ausgabe: eine Zelle, die eine Liste aus ganzen Zahlen enth�alt

Die Permutation wird umgekehrt eindeutig in eine Liste gleicher L�ange
ganzer Zahlen kodiert. Umgekehrt l�a�t sich jede Liste ganzer Zahlen in eine
Permutation gleicher L�ange �uberf�uhren. Die erzeugte Permutation enth�alt
nur Zahlen aus dem Bereich zwischen 1 und der L�ange der Permutation.

� Perm2Bits

{ Eingabe: eine Zelle, die eine Permutation aus nat�urlichen Zahlen zwi-
schen 1 und der L�ange der Permutation enth�alt

{ Ausgabe: eine Zelle, die eine Liste aus boolschen Werten enth�alt

{ Parameter: nat�urliche Zahl

Diese Kodierung baut auf der vorherigen auf, jede Zahl der Ausgabeliste
wird bin�ar kodiert und die entstehenden Bitlisten konkateniert. Der Para-
meter bestimmt, wieviele Bits zur Kodierung jeder einzelnen Zahl verwen-
det werden. Er mu� ausreichend gro� sein, um die L�ange der Permutation
bin�ar darstellen zu k�onnen (es wird standardbin�ar kodiert).

� Perm2Gray

{ Eingabe: eine Zelle, die eine Permutation aus nat�urlichen Zahlen zwi-
schen 1 und der L�ange der Permutation enth�alt

{ Ausgabe: eine Zelle, die eine Liste aus boolschen Werten enth�alt

{ Parameter: nat�urliche Zahl

A.5. ZELLEN 115

Entspricht Perm2Bits, verwendet aber keine Bin�ar-, sondern eine Gray-
kodierung.

� Int2Bits

{ Eingabe: SimpleCell, die ein Integer-Atom enth�alt. Der Wert des
Atoms mu� � 0 sein.

{ Ausgabe: Listenzelle aus Bool-Atomen

Der Integer-Wert wird standardbin�ar kodiert. Die Anzahl der Bits in der
Liste ist abh�angig von der Gr�o�e der Zahl.

� Int2Gray

{ Eingabe: SimpleCell, die ein Integer-Atom enth�alt. Der Wert des
Atoms mu� � 0 sein.

{ Ausgabe: Listenzelle aus Bool-Atomen

Der Integer-Wert wird gray-kodiert, sonst wie oben.

� RealList2FixedBits

{ Eingabe: BoundReal Atome in einer ListCell

{ Ausgabe: boolsche Atome in einer ListCell

{ Parameter: Paar bestehend aus dem Parameter interval des Bound-
Real Atoms und einer nat�urlichen Zahl

Die reellen Zahlen werden einzeln standardbin�ar kodiert und die entste-
henden Bitlisten konkateniert. Die erste Komponente des Parameters gibt
den Wertebereich der reellen Atome an, die zweite, wieviele Bits zur Dar-
stellung einer einzelnen kodierten Zahl verwendet werden.

A.5 Zellen

Individuen (d.h. sowohl der Geno- als auch der Ph�anotyp) sind Listen fester
L�ange von Zellen. Zellen enthalten ihrerseits Atome, die in einer vom Zelltyp
abh�angigen Struktur angeordnet sind. Derzeit sind vier verschiedene Zelltypen
implementiert: einfache Zellen, Zellen mit einem Paar von Atomen, Zellen mit
Listen von Atomen und Zellen, die eine Permutation enthalten. Alle Zellen ha-
ben folgende Signatur (Erl�auterungen dazu siehe Abschnitt 5.1.1 Seite 38):

signature CELL =

sig

type 'a rawstructure;

type index;

val name: string;

val init: ((index -> AtomTypes.atom_type) * index list)

-> AtomTypes.atom_type rawstructure;

val get_element: (AtomTypes.atom_type rawstructure * index)

-> AtomTypes.atom_type;

116 ANHANG A. SYSTEMFUNKTIONEN

val set_element: (AtomTypes.atom_type rawstructure *

AtomTypes.atom_type * index)

-> AtomTypes.atom_type rawstructure;

val cell2rawstructure: CellTypes.cell_type

-> AtomTypes.atom_type rawstructure;

val rawstructure2cell: AtomTypes.atom_type rawstructure

-> CellTypes.cell_type;

val cell2string: AtomTypes.atom_type rawstructure

-> string;

val string2cell: string

-> AtomTypes.atom_type rawstructure;

end;

A.5.1 einfache Zellen

structure SimpleCell: CELL =

struct

type 'a rawstructure = 'a;

type index = int;

val name = "SimpleCell";

...

end;

� init (f, il) nimmt den ersten Wert x aus der Liste und liefert f(x)

zur�uck.

� Sowohl get element als auch set element ignorieren das Argument vom
Typ index, da bei einzelnen Elementen eine Indizierung keinen Sinn
macht.

� cell2string liefert das in eine Zeichenkette umgewandelte atom zur�uck;
string2cell kehrt diese Operation um.

� rawstructure2cell x = CellTypes.simple cell(x)

� cell2rawstructure CellTypes.simple cell(x) = x; bei anderen Ar-
gumenten wird eine Fehlermeldung erzeugt.

A.5.2 Zellen mit Paaren von Atomen

structure PairCell: CELL =

struct

type 'a rawstructure = 'a * 'a;

type index = int;

val name = "PairCell";

...

end;

� init (f, [x, y, ...]) liefert das Paar (f(x), f(y)) zur�uck.

A.6. ATOME 117

� In Paaren hat das linke Element den Index 1, das rechte den Index 2. Dies
gilt sowohl f�ur get element als auch set element.

� cell2string (x, y) = (x, y), wobei x und y die Darstellung der Ato-
me x und y als Zeichenkette sind; string2cell kehrt diese Operation
um.

� rawstructure2cell(x, y) = CellTypes.pair cell(x, y)

� cell2rawstructure (CellTypes.pair cell(x, y)) = (x, y); bei an-
deren Argumenten wird eine Fehlermeldung erzeugt.

A.5.3 Zellen mit Listen von Atomen

structure ListCell: CELL =

struct

type 'a rawstructure = 'a list;

type index = int;

val name = "ListCell";

...

end;

� init (f, [i1, .., in]) = [f(i1), .., f(in)]

� get element(l, i) liefert das i-te Element aus der Liste i; dabei hat das
erste Element der Liste den Index 1.

� set element(l, x, i) ersetzt in der Liste l das Element an der i-ten
Position durch x.

� cell2string kodiert die Atome der Liste als Zeichenketten und trennt
diese durch ein Komma; string2cell kehrt diese Operation um.

� rawstructure2cell x = CellTypes.list cell x

� cell2rawstructure (CellTypes.list cell x) = x; bei anderen Argu-
menten wird eine Fehlermeldung erzeugt.

A.6 Atome

GENOM stellt zwei verschiedene Klassen von Atomen zur Verf�ugung: Atome ohne
Parameter und Atome, die zus�atzlich noch ein Intervall enthalten. Jede Klasse
von Atomen hat eine eigene Signatur. Atome ohne Parameter haben folgende
Signatur:

signature ATOM =

sig

type base; (* Typ des Atoms *)

val name: string; (* Bezeichner fuer diesen Atomtyp *)

val base2atom: base -> AtomTypes.atom_type;

118 ANHANG A. SYSTEMFUNKTIONEN

(* nach Vereinigungstyp *)

val atom2base: AtomTypes.atom_type -> base;

(* von Vereinigungstyp *)

val base2string: base -> string; (* nach string *)

val string2base: string -> base; (* von string *)

val init_random: real -> base; (* Zufallswert *)

end;

Von dieser Signatur gibt es drei Strukturen (reelle Zahlen, ganze Zahlen und
bool'sche Werte als Atome). Zu beachten ist, da� die reelle Zahl, die init ran-

dom als Argument erfordert, nicht verwendet wird:

1. structure RealAtom: ATOM =

struct

type base = real;

val name = "RealAtom";

...

end

� base2string und string2base verwenden die SML-Funktionen
makestring bzw. Real.fromString zur Umwandlung.

� init random ruft zweimal die Hilfsfunktion Random.random auf. Da
mit dieser Zufallsfunktion nur Zahlen zwischen 0 und 1 erhalten wer-
den k�onnen und nicht aus ganz R, wird von der ersten Zufallszahl
0:5 abgezogen und das Ergebnis durch die zweite Zufallszahl geteilt.
Das Argument vom Typ real wird nicht verwendet.

� base2atom x = AtomTypes.real atom(x)

� atom2base y liefert x zur�uck, falls y = AtomTypes.real atom(x);
andernfalls wird eine Fehlermeldung erzeugt.

2. structure IntegerAtom: ATOM =

struct

type base = int;

val name = "IntegerAtom";

...

end

� base2string und string2base verwenden die SML-Funktionen
makestring bzw. Int.fromString zur Umwandlung.

� init random ermittelt �ahnlich wie in der Struktur RealAtom eine
zuf�allige reelle Zahl und liefert davon die n�achstgr�o�ere ganze Zahl
zur�uck. Das Argument vom Typ real wird nicht verwendet.

� base2atom x = AtomTypes.int atom(x)

� atom2base y liefert x zur�uck, falls y = AtomTypes.int atom(x); an-
dernfalls wird eine Fehlermeldung erzeugt.

3. structure BooleanAtom: ATOM =

struct

A.6. ATOME 119

type base = bool;

val name = "BooleanAtom";

...

end

� base2string und string2base verwenden die SML-Funktionen
makestring bzw. Bool.fromString zur Umwandlung.

� init random ruft die Hilfsfunktion Random.random auf und liefert
true zur�uck, falls der Wert gr�o�er als 0:5 ist. Andernfalls wird false

zur�uckgeliefert.

� base2atom x = AtomTypes.bool atom(x)

� atom2base y liefert x zur�uck, falls y = AtomTypes.bool atom(x);
andernfalls wird eine Fehlermeldung erzeugt.

Atome, deren Wert durch ein Intervall beschr�ankt ist, haben folgende Signatur:

signature INTERVALATOM =

sig

type base;

type interval;

val name: string;

val base2atom: base -> AtomTypes.atom_type;

val atom2base: AtomTypes.atom_type -> base;

val base2string: base -> string;

val string2base: string -> base;

val init_random: interval -> real -> base;

end;

Der Unterschied zu Atomen ohne Parameter besteht darin, da� zus�atzlich ein
Datentyp Intervall de�niert wird und die Funktion init random als ersten Pa-
rameter ein Intervall erfordert. Dahinter steckt die Idee, da� init random nur
einen Wert innerhalb des Intervalls liefert. Ob dies tats�achlich der Fall ist, h�angt
nat�urlich von der jeweiligen Struktur ab. Im Augenblick sind die folgenden zwei
Strukturen implementiert:

1. structure BoundRealAtom: INTERVALATOM =

struct

type interval = real * real;

type base = real * interval;

val name = "BoundRealAtom";

...

end

� atom2base und base2atom arbeiten �ahnlich wie bei RealAtom.

� base2string(x,(min, max)) liefert
"
x in (min, max)\, dekodiert

wird diese Zeichenkette mit string2base. x; min und max erh�alt man
aus x, min und max mit der SML-Funktion makestring.

120 ANHANG A. SYSTEMFUNKTIONEN

� init random (min, max) seed liefert eine zuf�allige reelle Zahl zwi-
schen min und max.

2. structure BoundIntegerAtom: INTERVALATOM =

struct

type interval = int * int;

type base = int * interval;

val name = "BoundIntegerAtom";

...

end

� atom2base und base2atom arbeiten �ahnlich wie bei IntegerAtom.

� base2string(x,(min, max)) liefert
"
x in (min, max)\, dekodiert

wird diese Zeichenkette mit string2base. x; min und max erh�alt man
aus x, min und max mit der SML-Funktion makestring.

� init random (min, max) seed liefert eine zuf�allige ganze Zahl zwi-
schen min und max.

Anhang B

Bibliotheken

In GENOM werden verschiedene Arten von Bibliotheken unterst�utzt, durch die
das System erweitert werden kann. Sie werden durch vorgegebene Mechanismen
an das System angebunden und sind kein eigentlicher Teil davon. Im weiteren
werden die Bibliotheken beschrieben, die mit dem System mitgeliefert werden.
Sie k�onnen entweder als Teil von eigenen Erweiterungen verwendet werden oder
als Vorlage f�ur selbstgeschriebene Komponenten dienen.

B.1 Experimente

Die Experimentde�nitionen beinhalten alle Einstellungen, die zur Anwendung
eines Verfahrens (oder mehrerer) auf ein Problem n�otig sind. Sie k�onnen daher
direkt aufgerufen werden und stellen die einfachste M�oglichkeit dar, einen ersten
Eindruck vom System zu gewinnen.

� TestEvolStrat

Benutzt das Rastingin{Problem und wendet eine Evolutionsstrategie dar-
auf an. Die einzelnen Generationen werden in die Datei EvolStrat ge-
schrieben.

� TestGenAlg

F�uhrt einen Genetischen Algorithmus auf dem Hypersp�ahren-Problem
durch. Dabei wird die Log-Datei GenAlg.log erzeugt.

B.2 Verfahren

Hier werden drei bekannte evolution�are Verfahren bereitgestellt. Sie k�onnen in
eigenen Experimenten und f�ur selbstgeschriebene Probleme verwendet werden.
Da sie eine bestimmte Form der Genostruktur voraussetzen, mu� man allerdings
meist eine passende Kodierung ben�utzen.

121

122 ANHANG B. BIBLIOTHEKEN

B.2.1 Evolutionsstrategien

Evolutionsstrategien wurden durch zwei Operatoren ins System integriert:

� EvolStrat: Pop -> ()

Eine Population mit Individuen, die aus reellen Paar-Zellen bestehen, wird
durch eine Evolutionsstrategie optimiert. Parameter sind:

{ mue: INT; Anzahl der Nachkommen pro Generation.

{ plus: BOOL; Soll die
"
Plus-Strategie\ angewandt werden? Ist die-

ser Wert auf FALSE, dann wird die n�achste Generation nur aus den
Nachkommen ausgew�ahlt (

"
Komma-Strategie\).

� EvolStrat1: Pop -> ()

Dieser Operator ist formal identisch mit EvolStrat, jedoch kann die Re-
kombination der Strategie- und der Problem-Parameter getrennt einge-
stellt werden.

Diese Algorithmen verwenden zwei besondere Operatoren f�ur folgende Aufga-
ben:

� Rekombination: Aus der Elterngeneration werden Nachkommen erzeugt,
indem man f�ur jede Position reelle Werte ermittelt.

� Mutation: Die reellen Werte eines Individuums werden ver�andert.

F�ur die Rekombination stehen zwei Operatoren zur Verf�ugung:

� Recombination: INDLIST * INT -> INDLIST

Erzeuge eine Anzahl neuer Individuen aus der Elternpopulation durch
Rekombination. Diese kann durch Parameter gesteuert werden:

{ chi: REAL; Parameter f�ur intermedi�are Rekombination

{ do recomb: BOOL; Soll �uberhaupt rekombiniert oder einfach ein In-
dividuum zuf�allig gew�ahlt werden?

{ discreteF: BOOL; Soll der neue Wert direkt von einem Elternindi-
viduum �ubernommen werden? Ist dieser Wert auf FALSE, dann wird
die intermedi�are Rekombination verwendet.

{ globalF: BOOL; Sollen die Eltern-Individuen f�ur jeden Wert neu aus
der Population ausgew�ahlt werden?

� LEA Recomb: INDLIST * IND * IND -> IND

Dieser Operator erzeugt durch Rekombination ein neues Individuum. Da-
bei werden im lokalen Fall die beiden �ubergebenen Individuen verwendet,
sonst wird aus der Population ausgew�ahlt. Es gibt dieselben Parameter
wie oben, zus�atzlich jedoch:

{ atomnr: INT; Position der zu rekombinierenden Atome in den Zel-
len.

B.2. VERFAHREN 123

Die Mutation kann durch folgenden Operator erreicht werden:

� ESMutate: INDLIST -> INDLIST

Alle Individuen der Liste werden mutiert, indem zuerst der Strategie-Wert
mit der Meta-Schrittweite mutiert wird, danach der Problem-Wert unter
Verwendung des Strategie-Werts. Parameter ist:

{ meta: REAL; Meta-Schrittweite zur Mutation des Strategie-Werts.

Folgende Bibliotheken dienen zur Ausf�uhrung einzelner Operationen auf den
Individuen:

� es mutate pair

{ mutate strat: IND * REAL -> IND

Mutiere alle Strategie-Parameter (d.h. den 2. Wert der Paar-Zelle)
in einem Individuum, wobei der Parameter die Standardabweichung
darstellt.

{ mutate prob: IND -> IND

Mutiere die Problem-Parameter eines Individuums (d.h. den ersten),
wobei der Strategie-Wert steuert.

� es recomb pair

{ no recomb: INDLIST -> IND

W�ahle ein Individuum zuf�allig aus.

{ discrete: IND * IND -> IND

Rekombiniere zwei Individuen durch direkte Entnahme der Werte
aus dem einen oder dem anderen Individuum.

{ intermed: IND * IND * REAL -> IND

Diskrete Rekombination der beiden Individuen, wobei der Parameter
den Ort des erzeugten neuen Werts, im Intervall der alten, festlegt.

{ global discrete: INDLIST -> IND

Erzeuge ein neues Individuum, indem f�ur jeden Wert ein Individuum
der Liste ausgew�ahlt wird und dessen Wert an der fraglichen Stelle

�ubernommen wird.

{ global intermed: INDLIST * REAL -> IND

Erzeuge ein neues Individuum, indem jeweils zwei Individuen der Li-
ste ausgew�ahlt werden, deren Werte zur Berechnung des neuen Werts
verwendet werden. (Parameter analog zu intermed.)

B.2.2 Genetischer Algorithmus

Das Verfahren GenAlg realisiert einen Genetischen Algorithmus. Als Genostruk-
tur wird eine Zelle mit einer Liste von Bits erwartet. Das Verfahren hat die
beiden Parameter:

124 ANHANG B. BIBLIOTHEKEN

� mue: INT

Mit diesem Parameter wird die Zahl der Nachkommen, die durch den
Crossover erzeugt werden, angegeben.

� writelog: BOOL

Gibt an, ob jede Generation in die Log-Datei geschrieben werden soll.
Sonst wird �uberhaupt nicht in die Log-Datei geschrieben.

Der Algorithmus verwendet die Unteroperatoren GAMutate f�ur die Mutation und
Crossover f�ur die Rekombination. Mit Hilfe des Operators ElitistPropSelect
werden die Individuen ausgew�ahlt, die in die n�achste Generation �ubernommen
werden.

� GAMutate: INDLIST -> INDLIST

Mutiert die Bits der Individuen mit einer gewissen Wahrscheinlichkeit. Die
Wahrscheinlichkeit der Mutation wird durch den Parameter Prob gesteu-
ert.

{ Prob: REAL

Die Wahrscheinlichkeit der Mutation eines Bits.

� Crossover: INDLIST * INT -> INDLIST

Erzeugt durch einen Crossover aus einer Individuenliste die angegebene
Zahl von Nachkommen.

{ Points: INT

Die Anzahl der Stellen, an denen die Bitstrings gekreuzt werden.

{ nue: REAL

Die Wahrscheinlichkeit, da� f�ur zwei ausgew�ahlte Individuen ein
Crossover ausgef�uhrt wird. Andernfalls wird zuf�allig einer der bei-
den Eltern �ubernommen.

B.3 Operatoren

F�ur oft verwendete Vorgehensweisen der Evolution�aren Algorithmen gibt es eine
Reihe von vorgefertigten Operatoren. Sie werden auch zum Teil in den oben
beschriebenen Verfahren verwendet.

B.3.1 Selektionsoperatoren

Selektionsoperatoren dienen dazu, aus einer Individuenliste anhand der Fitne�
eine Anzahl von Individuen auszuw�ahlen.

� BestSelect: INDLIST * INT -> INDLIST

W�ahlt die gew�unschte Anzahl von Individuen mit den besten Fitne�werten
aus der Liste aus.

B.4. PROBLEME 125

� PropSelect: INDLIST * INT -> INDLIST

W�ahlt die Individuen proportional zu ihrer Fitne� aus. Die Individuen
mit den besten Fitne�werten werden dabei mit h�oherer Wahrscheinlich-
keit ausgew�ahlt, als die mit niedrigerer Fitne�. Der Operator hat den
Parameter

{ WorstIndFact: REAL

Dieser gibt an, wie stark die Fitne� des schlechtesten Individuums
gegen�uber der des besten Individuums gewichtet werden soll.

� ElitistPropSelect: INDLIST * INT -> INDLIST

Entspricht PropSelect, nur da� das Individuum mit der besten Fitne�
auf jeden Fall ausgew�ahlt wird.

B.3.2 Abbruchbedingungen

Operatoren f�ur Abbruchbedingungen liefern einen bool'schen Wert, der wahr
wird, wenn die Population eine bestimmte Bedingung erf�ullt.

� CntGenStopCond: POP -> BOOL

Abbrechen, nachdem eine bestimmte Anzahl von Generationen berechnet
wurden. Der Operator hat den folgenden Parameter:

{ Generations: INT

Die Zahl der gew�unschten Generationen.

� IndDiffStopCond: POP -> BOOL

Dieser Operator wird wahr, wenn die maximale Di�erenz der Fitne�werte
unter einen bestimmten Wert sinkt.

{ Difference: REAL

Die Di�erenz der Fitne�.

� ResultStopCond: POP -> BOOL

Bricht ab, wenn eine gew�unschte Fitne� erreicht wird. Die Parameter des
Operators sind:

{ BestFitness: REAL

Die beste bekannte Fitne� f�ur das Problem.

{ Factor: REAL

Gibt an, wie genau diese Fitne� erreicht werden soll.

B.4 Probleme

Einige mathematische Testfunktionen be�nden sich im Verzeichnis lib/pro-

blems des Systems. Sie k�onnen verwendet werden, um das Verhalten eigener
Verfahren zu bestimmen.

126 ANHANG B. BIBLIOTHEKEN

B.4.1 Mathematische Funktionen

Hierbei handelt es sich um die Umsetzung einiger bekannter Testfunktionen.
Die Probleme arbeiten alle mit einer Ph�anostruktur, die aus Zellen von reellen
Zahlen besteht.

� Schwefel1, Schwefelfunktion.

F (~x) =

nX
i=1

0
@ iX

j=1

xj

1
A ; Min(F (~x)) = F (~0)

� SumDiffPow, Summe verschiedener Potenzen.

F (~x) =

nX
i=1

jxij
i+1

; Min(F (~x)) = F (~0)

� Hyperellipse, Achsenparallele Hyperellipsoide.

F (~x) =

nX
i=1

(i � xi)
2

; Min(F (~x)) = F (~0)

� Hypersphere, Hypersph�are.

F (~x) =

nX
i=1

x2
i
; Min(F (~x)) = F (~0)

� Griewank Griewank's Funktion.

F (~x) =

nX
i=1

x2
i

4000
�

nY
i=1

cos

�
xip
i

�
+ 1; Min(F (~x)) = F (~0)

� Rastingin, Rastingin Funktion.

F (~x) = 3:0 � n+
nX

i=1

x2
i
� 3:0 � cos(2 � � � xi); Min(F (~x)) = F (~0)

� Schwefel2, Weitere Schwefelfunktion.

F (~x) = 418:9829 � n�
nX

i=1

xi � sin(
p
jxij);

Min(F (~x)) = F (420:9687; 420:9687; : : :)

� DeJong3, De Jong's 3. Testfunktion.

F (~x) = real

nX
i=1

integer(xi)

B.5. KODIERUNGEN 127

B.5 Kodierungen

In GENOM wird bei den Individuen zwischen einer Darstellung als Genotyp
und einer als Ph�anotyp unterschieden. Die Umwandlung von einem in den an-
deren Typ wird durch eine Kodierung bewerkstelligt. F�ur jede Population mu�
angegeben werden, welche Kodierung verwendet werden soll. Konkret setzen
sich diese aus den elementaren Kodierungsschemata zusammen. Mit GENOM
werden einige vorgefertigte Kodierungen mitgeliefert.

� EvolStratPair

Die Kodierung EvolStratPairwandelt ein mathematisches Problem in ei-
ne Form um, die von der Evolutionsstrategie des System verwendet wird.
Dazu wird aus jeder Real-Zelle eine Zelle mit einem Paar von Realato-
men. Das erste davon beinhaltet den Wert der Zelle und das zweite den
dazugeh�orenden Strategieparameter.

{ Ph�anostruktur: Besteht aus Real-Zellen.

{ Genostruktur: F�ur jede Real-Zelle der Ph�anostruktur eine Paar-Zelle.

� GenAlgGrayCod

Diese Kodierung wird verwendet um mathematische Probleme, die aus
Real-Zellen bestehen, f�ur die Verwendung mit einem Genetischen Algo-
rithmus in einen Bitstring umzuwandeln.

{ Ph�anostruktur: Besteht aus Real-Zellen.

{ Genostruktur: Eine Zelle, die eine Liste mit den erzeugten Bits ent-
h�alt.

� Identity

Diese einfachste Kodierung �ubernimmt alle Zellen des Problems in die
Genostruktur. Sie wird verwendet, wenn ein Algorithmus direkt auf der
Struktur des Problems arbeiten kann.

{ Ph�anostruktur: beliebig.

{ Genostruktur: entspricht der Ph�anostruktur.

� Perm2Bits

Um einen Genetischen Algorithmus f�ur ein Problem zu verwenden, das
eine Permutation enth�alt, wird daraus eine Liste mit Bit-Atomen erzeugt.
Die Kodierung verwendet den Wert Problem.cities, um zu ermitteln,
wieviele Bits zur Darstellung der kodierten Permutation ben�otigt werden.

{ Ph�anostruktur: Eine Zelle mit einer Permutation.

{ Genostruktur: Eine Zelle mit einer Liste aus Bit-Atomen.

� Perm2Gray

Wie Perm2Bits, nur da� hier die Bits eine Gray-Kodierung der Elemente
der Permutation darstellen.

{ Ph�anostruktur: Eine Zelle mit einer Permutation.

{ Genostruktur: Eine Zelle mit einer Liste aus Bit-Atomen.

128 ANHANG B. BIBLIOTHEKEN

� Perm2Ints

Wandelt eine Problem, das aus einer Permutation besteht in eine Geno-
struktur mit einer Liste aus Ints um.

{ Ph�anostruktur: Eine Zelle mit einer Permutation.

{ Genostruktur: Eine Zelle mit einer Liste aus Integer-Atomen.

� RealList2FixedBits

Wie GenAlgGrayCod, nur hat hier das Problem eine leicht andere Struktur.
Zus�atzlich wird keine Gray-Kodierung, sondern eine dezimale Kodierung
der reellen Zahlen verwendet.

{ Ph�anostruktur: Eine Zelle mit einer Liste aus Real-Atomen.

{ Genostruktur: Eine Zelle mit einer Liste, die Bit-Atome enth�alt.

Welche Kodierung zu welchem Problem pa�t, kann auch der Tabelle B.1 ent-
nommen werden.

Problem Kodierungen

CFunction Identity
DeJong3 EvolStratPair, GenAlgGrayCod, Identity
Griewank EvolStratPair, GenAlgGrayCod, Identity
Hyperellipse EvolStratPair, GenAlgGrayCod, Identity
Hypersphere EvolStratPair, GenAlgGrayCod, Identity
nqueens Identity
Rastingin EvolStratPair, GenAlgGrayCod, Identity
Schwefel1 EvolStratPair, GenAlgGrayCod, Identity
Schwefel2 EvolStratPair, GenAlgGrayCod, Identity
SumDi�Pow EvolStratPair, GenAlgGrayCod, Identity
TSP Perm2Bits,Perm2Gray,Perm2Ints,Identity

Tabelle B.1: Kompatiblit�at von Problemen und Kodierungen

Anhang C

Durchgef�uhrte Experimente

C.1 GA mit Schwefelfunktion

F�ur dieses Experiment wurde der vom System bereitgestellte Genetische Algo-
rithmus auf eine der Schwefelfunktionen angewendet. Diese Funktion hat die
Formel:

F (~x) = 419; 829 � n�
nX

i=1

xi � sin(
p
jxij)

Das gesuchte Minimum hat die Fitne� 0 und ergibt sich f�ur einen Vektor, des-
sen Komponenten alle den Wert 420; 9687 haben. F�ur das Experiment wurde
die Dimension 10 verwendet. Da die Funktion, wegen der Periodizit�at der Sinus-
funktion, viele lokale Minima hat, ist das Finden einer optimalen L�osung hier
ziemlich schwierig.

Untersucht wurde das Verhalten des Systems bei Ver�anderung der folgenden
Parameter:

� Die Anzahl der Generationen, die das Verfahren berechnet.

� Die Anzahl der Individuen in der Population.

� Wieviele Nachkommen mue f�ur diese Individuen erzeugt werden sollen.

� Die Wahrscheinlichkeit, mit der ein einzelnes Bit der Genostruktur mutiert
wird.

� An wievielen Stellen der Genostruktur ein Crossover durchgef�uhrt wird.

� Die Anzahl der Bits, mit denen ein reeller Wert kodiert wird.

Der Ein
u� der folgenden Parameter wurden nicht untersucht:

129

130 ANHANG C. DURCHGEF�UHRTE EXPERIMENTE

� Die Wahrscheinlichkeit nue, mit der ein beim Crossover erzeugter Nach-
komme �ubernommen wird. F�ur sie wurde der Wert 0 verwendet.

� Bei der Selektion der Faktor, mit dem das schlechteste Individuum ge-
gen�uber dem besten gewichtet wird. Bei den durchgef�uhrten Experimen-
ten war der Wert 0; 2.

Da das Verhalten des Genetischen Algorithmus bei dieser Funktion stark von
der Ausgangspopulation abh�angt, sind allgemeine Aussagen �uber den Ein
u�
der einzelnen Parameter schwierig. Dieses Experiment zeigte sich allerdings ge-
gen�uber kleinen Ver�anderungen der Parameter recht unemp�ndlich.

F�ur die untersuchte Funktion haben sich die folgenden Ausgangswerte f�ur die
Parameter als g�unstig erwiesen:

� Generationen: 500

� Anzahl der Individuen: 30

� Anzahl der Nachkommen: 100

� Mutationswahrscheinlichkeit: 0,005

� Crossover an 2 oder 3 Punkten

� Kodierung mit 10 Bits pro reeller Zahl

Auch mit diesen Werten wird das Optimum oft nicht gefunden. So kann das
Verfahren in lokalen Minima h�angen bleiben. Einige Ergebnisse k�onnen der fol-
genden Tabelle entnommen werden.

Gen. Indiv. mue MutWahr. Punkte Bits Fitne�

500 30 100 0,005 2 10 82,382
500 30 100 0,005 2 10 3,1948
500 30 100 0,005 2 10 118,45
500 30 100 0,005 2 10 0,0063647
500 30 100 0,005 2 10 473,85
500 30 100 0,005 2 10 0,0063647

Tabelle C.1: Ausgangswerte

Ein wichtiger Faktor ist die verwendete Anzahl von Bits f�ur die Kodierung. Ist
die Anzahl zu gro�, braucht das Verfahren zu lang und bleibt oft in lokalen
Minima stecken. Ist die Zahl zu gering, kann das globale Minimum meist nicht
gefunden werden. Im Gegensatz zu anderen Funktionen, wie z.B. der Rastingin-
Funktion, lieferte die Schwefelfunktion auch bei einer gr�o�eren Anzahl von Bits
(bis zu 25) gute Ergebnisse. Da aber dadurch die Zeit, die f�ur das Berechnen
einer Generation n�otig ist, deutlich ansteigt, wurde meist mit einer Bitzahl von
10 gearbeitet. F�ur eine deutlich kleinere Zahl von Bits werden nur noch lokale
Optima gefunden.

C.1. GA MIT SCHWEFELFUNKTION 131

Gen. Indiv. mue MutWahr. Punkte Bits Fitne�

500 30 100 0,005 2 5 268,83
500 30 100 0,005 2 5 268,83
500 30 100 0,005 2 5 268,83

500 30 100 0,005 2 15 362,55
500 30 100 0,005 2 15 126,16
500 30 100 0,005 2 15 356,01

500 30 100 0,005 3 15 0,0030056
500 30 100 0,005 3 15 118,48
500 30 100 0,005 3 15 0,044655

500 30 100 0,005 3 20 236,88
500 30 100 0,005 3 20 1,3338
500 30 100 0,005 3 20 237,25

500 30 100 0,005 2 25 0,0096720
500 30 100 0,005 2 25 120,69

Tabelle C.2: Kodierung

F�ur die Mutationswahrscheinlichkeit waren kleinere Werte g�unstig. Bei viel zu
gro�en Werten (0; 5 oder 0; 1) wurden schlechte Ergebnisse erzielt. Auch bei
einer Mutationswahrscheinlichkeit von 0; 05 wurde nicht das globale Minimum
gefunden. Meist wurde daher der Wert 0; 005 verwendet.

Gen. Indiv. mue MutWahr. Punkte Bits Fitne�

500 30 100 0,5 2 10 1672,9
500 30 100 0,5 2 10 1675,8

500 30 100 0,1 2 10 687,40
500 30 100 0,1 2 10 628,86

500 30 100 0,05 1 10 272,47
500 30 100 0,05 1 10 280,40
500 30 100 0,05 1 10 163,36

Tabelle C.3: Mutationswahrscheinlichkeit

W�ahrend z.B. bei der Rastingin-Funktion mit einem Crossover an mehreren
Punkten meist bessere Ergebnisse erzielt wurden, konnte bei der Schwefelfunk-
tion auch bei Crossover an einem oder zwei Punkten das optimale Minimum
gefunden werden.

Wichtiger als die Anzahl der Individuen ist eine gen�ugend gro�e Zahl von er-
zeugten Nachkommen. Allerdings kann eine kleinere Zahl von Individuen dazu
f�uhren, da� sich die Individuen zu �ahnlich werden und ein lokales Minimum

132 ANHANG C. DURCHGEF�UHRTE EXPERIMENTE

Gen. Indiv. mue MutWahr. Punkte Bits Fitne�

500 30 100 0,005 1 10 120,06
500 30 100 0,005 1 10 0,0063647

500 30 100 0,005 3 10 355,33
500 30 100 0,005 3 10 63,024
500 30 100 0,005 3 10 0,0063647

Tabelle C.4: Crossover

nicht mehr verlassen k�onnen.

Gen. Indiv. mue MutWahr. Punkte Bits Ergebnis

500 5 25 0,005 2 10 868,70
500 5 25 0,005 2 10 651,96
500 5 25 0,005 2 10 236,89

500 10 10 0,005 2 10 593,90
500 10 10 0,005 2 10 837,37
500 10 10 0,005 2 10 1579,3
500 10 10 0,005 2 10 789,73

500 10 100 0,005 2 10 118,45
500 10 100 0,005 2 10 118,45
500 10 100 0,005 2 10 118,45
500 10 100 0,005 2 10 118,45

500 20 100 0,005 2 10 236,89
500 20 100 0,005 2 10 476,02
500 20 100 0,005 2 10 355,34

500 30 30 0,005 2 10 149,35
500 30 30 0,005 2 10 667,21

Tabelle C.5: Individuen und Nachkommen

Anhang D

Syntax von LEA

Dieser Anhang enth�alt die EBNF, die die Syntax von LEA beschreibt. Weiterhin
werden alle Schl�usselworte von LEA und die Operatoren, die in Ausdr�ucken
verwendet werden k�onnen, aufgelistet.

D.1 EBNF von LEA

Hier ist die EBNF (Erweiterte Bachus-Naur-Form) dargestellt, die dem Par-
ser f�ur LEA zugrundeliegt. Sie enth�alt die Grammatikregeln, aus denen LEA
aufgebaut ist.

leaprog = experiment | oporalg .

experiment = "EXPERIMENT" ident ";"

loadlib

problemdecl

populationdecl

operatordecl

vardecl

"BEGIN"

statement {";" statement}

"END" ";" .

oporalg = ("ALGORITHM" | "OPERATOR") ident

["("callparamdekl ")"]

[":" type] ";"

loadlib

paramdecl

operatordecl

vardecl

"BEGIN"

statement {";" statement}

"END" ";" .

133

134 ANHANG D. SYNTAX VON LEA

type = "INT" | "REAL" | "BOOL" | "IND" |

"INDLIST" | "POP" .

callparamdecl = type ident ["," type ident] .

loadlib ["USES" ident {"," ident} [";"]] .

operatordecl = ["OPERATORS" opdecl {";" opdecl}] .

populationdecl = ["POPULATIONS" popdecl {";" popdecl}] .

problemdecl = "PROBLEM" "=" constant ";" .

opdecl = [ident "=" ident ["(" paramdef ")"]] .

paramdef = ident ":" constant

{"," ident ":" constant} .

popdecl = [ident "CODED" constant "LOG" constant

[= ("RANDOMPOP" "(" constant ")" |

"LOADFROM" "(" constant ")")]] .

operatordekl = ident "=" ident

["(" ident ":" constant

{"," ident ":" constant} ")"] .

paramdekl = ["PARAMETER" pardekl {";" pardekl}] .

pardekl = [type ident "=" "(" constant ","

constant "," constant "," constant ")"] .

localvardekl = ["VAR" vardekl {";" vardekl}] .

vardekl = [type ident [":=" constant]

{"," ident [" := " constant]}] .

combident = ident (":" ident | {"." ident}) .

statementlist = statement {";" statement}

statement = combident [":=" expr]

"IF" expr "THEN" statementlist

["ELSE" statementlist] "FI" |

"WHILE" expr "DO" statementlist "OD" |

"REPEAT" statementlist "UNTIL" expr |

"FOR" ident ":=" expr "TO" expr "DO"

statementlist "OD" |

"RETURN" expr .

D.2. SCHL�USSELW�ORTER 135

expr = logexpr [("AND" | "OR") expr] .

logexpr = algexpr

[("=" | "<>" | "<" | ">" |

"<=" | ">=") algexpr] .

algexpr = term [("+" | "-") algexpr].

term = factor [("*" | "/") term] .

factor = combident ["(" expr {"," expr} ")"] |

constant |

"(" expr ")" |

"-" factor |

"NOT" factor .

D.1.1 Abweichungen

Der Parser weicht in einigen Punkten von der Sprache ab, die durch diese EBNF
de�niert ist. So werden einige Konstrukte, die diese EBNF zulassen w�urde,
schon w�ahrend des Parsens durch semantische Pr�ufungen ausgeschlossen. Der
Parser l�a�t z.B. keine Zuweisung an einen Funktionsaufruf zu, was nach dieser
De�nition eigentlich m�oglich w�are.

Das Verwenden von Parametern in combident (ident f
"
.\ ident g) ist zur Zeit

noch nicht realisiert.

D.1.2 Probleme

Wegen einer eleganteren Realisierung in SML sind die EBNF-Ausdr�ucke f�ur
expr und algexpr rechtsassoziativ und nicht linksassoziativ. Da dies aber nur die
Reihenfolge beein
u�t, in der Terme aufaddiert bzw. voneinander subtrahiert
und and- bzw. oder-verkn�upft werden, d�urften bei der jetzigen Semantik der
Sprache keine merklichen Auswirkungen auftreten (eigentlich nur, wenn Fehler
auftreten).

D.2 Schl�usselw�orter

Folgende Schl�usselw�orter werden in LEA verwendet und sind daher als Bezeich-
ner nicht zugelassen:

ALGORITHM, AND, BEGIN, BOOL, BREAK, CODED, DO, ELSE, END,

EXPERIMENT, FALSE, FI, FOR, IF, IND, INDLIST, INT, LOADFROM,

LOG, NOT, OD, OPERATOR, OPERATORS, OR, RANDOMPOP,

PARAMETERS, POP, POPULATIONS, PROBLEM, REAL, REPEAT,

RETURN, STRING, THEN, TO, TRUE, UNTIL, USES, VAR, WHILE

136 ANHANG D. SYNTAX VON LEA

D.3 Operatoren

Die folgende Tabelle zeigt die in LEA verwendeten Operatoren nach der St�arke
geordnet, mit der sie die Operanden binden. Der oberste Operator bindet dabei
am st�arksten, der unterste am schw�achsten. Operatoren mit gleicher St�arke sind
hier in Gruppen zusammengefa�t.

Operator Wirkung De�niert f�ur

- als Vorzeichen Invertiert das Argument real, int
NOT Negiert das Argument bool

* Multiplikation real, int
/ Division real, int

+ Addition real, int
- Subtraktion real, int

= Test auf gleich bool
<> Test auf ungleich bool
< Test auf kleiner bool
> Test auf gr�o�er bool
<= Test auf kleiner oder gleich bool
>= Test auf gr�o�er oder gleich bool

AND Logisches Und bool
OR Logisches Oder bool

Literaturverzeichnis

[AJJ+94] Frank Amos, Karsten Jung, Kurt Jaeger, Bernd Kawetzki, Wil-
fried Kuhn, Oliver Pertler, Ralf Rei�ing, and Markus Schaal. Zwi-
schenbericht der Projektgruppe Genetische Algorithmen. Technical
report, Universit�at Stuttgart, Fakult�at Informatik, Institut f�ur In-
formatik, Abteilung Formale Konzepte, 1994.

[AJK+95] Frank Amos, Karsten Jung, Bernd Kawetzki, Wilfried Kuhn, Oliver
Pertler, Ralf Rei�ing, and Markus Schaal. Endbericht der Projekt-
gruppe Genetische Algorithmen. Technical Report FK95/1, Univer-
sit�at Stuttgart, Fakult�at Informatik, Institut f�ur Informatik, Abtei-
lung Formale Konzepte, 1995.

[BBSS88] H. Blohm, T. Beer, U. Seidenberg, and H. Silber. Produktionswirt-
schaft. Neue Wirtschaftsbriefe, Herne/Berlin, 1988.

[Ben92] Martin Philip Bends�e. Optimisation topologique et les m�ethodes
d'homog�en�eisation. In Lecture notes, Advanced COMETT Course,
Liege, Belgien, 1992.

[Beu81] P. Beutel. Das asymmetrische travelling salesman problem. Hain,
1981.

[Bra90] H. Braun. On solving travelling salesman problems by genetic al-
gorithms. Institut f�ur Logik, Komplexit�at und Deduktionssysteme,

Universit�at Karlsruhe?, 1990.

[Bru93] Ralf Bruns. Direct chromosome representation and adanced genetic
operators for production scheduling. In S. Forrest, editor, Procee-
dings of the Fifth International Conference on Genetic Algorithms,
San Matteo, 1993. Morgan Kaufmann Publishers.

[BS93] Thomas B�ack and Hans-Paul Schwefel. An overview of evolutionary
algorithms for parameter optimization. In Evolutionary Computa-

tion, pages 1{23. The Massachusetts Institute of Technology, 1993.

[Cla96] V. Claus. Naturanaloge Verfahren. Vorlesung an der Fakult�at In-
formatik, 1995/96.

[CS88] V. Claus and A. Schwill. Duden Informatik. Engesser,H., BI, Mann-
heim, 1988.

137

138 Literaturverzeichnis

[Dav91] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinold,
New York, 1991.

[DJ75] K. De Jong. An Analysis of the Behaviour of a Class of Genetic

Adaptive Systems. Doctoral thesis, University of Michigan, Ann
Arbor, 1975.

[DS90] Gunter Dueck and Tobias Scheuer. Threshold acceptance: A gene-
ral purpose optimization algorithm appearing superior to simulated
annealing. Journal of Computational Physics, (90):161{175, 1990.

[Due93] Gunter Dueck. New optimization heuristics for the Great Deluge
Algorithm and the Record{to{Record Travel. In Journal of Com-

putational Physics, volume 104, pages 86{92, 1993.

[GH91] M. Gr�otschel and O. Holland. Solution of large-scale symmetric
travelling salesman problems. Mathematical Programming, 51:141{
202, 1991.

[GILS96] Matthias Gro�mann, Darko Ivan�can, Alexander Leonhardi, and
Thomas Schmidt. Zwischenbericht der Projektgruppe Evolution�are
Algorithmen. Technical report, Universit�at Stuttgart, Fakult�at
Informatik, Institut f�ur Informatik, Abteilung Formale Konzepte,
1996.

[GL85] D. Goldberg and R. Lingle. Alleles, loci and the travelling sales-
man. In J. Gre�enstette, editor, Proceedings of the First Internatio-
nal Conference on Genetic Algorithms and their Applications, San
Matteo, 1985. Morgan Kaufmann Publishers.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and

Machine Learning. Addison Wesley, Reading, 1989.

[GWH90] Claas de Groot, Diethelm W�urtz, and Karl Heinz Ho�mann. Op-
timizing complex problems by nature's algorithms: Simulated An-
nealing and Evolution Strategy - a comparative study. In Parallel

Problem Solving from Nature, 1st Workshop, PPSN I, pages 445{
454. Springer{Verlag, 1990.

[H�o79] Herbert H�ornlein. Ein Algorithmus zur Strukturoptimierung von
Fachwerkkonstruktionen. Master's thesis, Ludwig-Maximilians-
Universit�at, M�unchen, M�arz 1979.

[Hol75] J. H. Holland. Adaptation in Natural and Arti�cial Systems. The
University of Michigan Press, Ann Arbor, 1975.

[Joh73] K. J. Johnson. Operations Research. VDI-Verlag, D�usseldorf, 1973.

[JW95] Karsten Jung and Nicole Weicker. Funktionale Spezi�kation des
Software{Tools EAGLE. Technical Report FK 2/95, Universit�at
Stuttgart, Fakult�at Informatik, Institut f�ur Informatik, Abteilung
Formale Konzepte, 1995.

[Kir90] Uri Kirsch. On singular topologies in optimum structural design.
Structural Optimization, 2:133{142, 1990.

Literaturverzeichnis 139

[Kir94] Uri Kirsch. Singular and local optima in structural optimization.
AIAA-94-4267-CP, pages 150{160, 1994.

[LLRKS85] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D. Shmoys.
The Travelling Salesman Problem. Lawler,E.L., 1985.

[Mau94] Kurt Maute. Topologieoptimierung kontinuierlicher Tragwerks-
strukturen. In Kurt Maute, editor, Topologie Workshop | Ein An-

satz zur Entwicklung alternativer Strukturen, pages 107{127, Stutt-
gart, 1994. Sonderforschungsbereich 230 | Nat�urliche Konstruk-
tionen.

[Mle92] H. P. Mlejnek. Some aspects of the genesis of structures. Structural
Optimization, 5:64{69, 1992.

[Rec73] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Sy-

steme nach Prinzipien der biologischen Evolution. Frommann-
Holzbog, Stuttgart, 1973.

[Sch81] Hans-Paul Schwefel. Numerical optimization of computer models.
John Wiley & Sons, 1981.

[WSF89] D. Whitley, T. Starkweather, and D'Ann. Fuquay. Scheduling pro-
blems and travelling salesmen: The genetic edge recombination ope-
rator. ICGA'89, pages 133{140, 1989.

[Z�ap82] G. Z�apfel. Produktionswirtschaft. Operatives Produktionsmanage-

ment. de Gruyter, Berlin, 1982.

