Universitat Stuttgart
Fakultat Informatik

An Approach to Solve the
Problem of Malicious Hosts

Fritz Hohl

Email: Fritz.Hohl@informatik.uni-stuttgart.de

Institut fur Parallele und Verteilte
Hochstleistungsrechner (IPVR)
Fakultat Informatik
Universitat Stuttgart
Breitwiesenstr. 20 - 22
D-70565 Stuttgart

An Approach to Solve the Problem of
Malicious Hosts

Fritz Hohl

Bericht Nr. 1997/03
March 1997

An Approach to Solve the Problem of Malicious Hosts

An Approach to Solve the Problem of
Malicious Hosts in Mobile Agent Systems

Fritz Hohl (Fritz.Hohl@informatik.uni-stuttgart.de)

Institute of Parallel and Distributed High-Performance Systems (IPVR),
University of Stuttgart, Germany

Abstract

Mobile agents are often described as a promising technology moving towards the vision of a widely distributed
scalable electronic market. The deployment of electronic services, especially in the area of electronic commerce,
raises essential questions closely related to security issues. This paper tries to address these issues by providing a
taxonomy of security domains within mobile agent systems. The identified areas comprise protecting hosts against
malicious agents, protecting agents from other agents, protecting hosts from other hosts, and protecting agents
from malicious hosts. Whereas the first three security issues can be solved by applying traditional security mech-
anisms, new security technigues have to be developed to protect agents from malicious hosts. The paper analyzes
possible attacks of hosts and presents, based on this analysis, an approach to prevent malicious attacks. The ap-
proach, which is called Code Mess Up, consists of a combination of two mechanisms: The first mechanism dy-
namically generates a new and far less understandable version of the agent code. The second mechanism restricts
the lifetime of the agent’s code and data. It is shown that the application of these two mechanism can significantly
enhance the protection of agents against malicious hosts.

1 Introduction

Mobile agent systems are expected to become the bpise reverse security issue, the protection of an agent
platform for an electronic services framework, especidtom possible attacks by its hosts is new as there are
ly in the area of Electronic Commerce. In this applicéarely other areas where this aspect is important. Nev-
tion area, security is a crucial aspect since all parti@sheless the protection of mobile agents from malicious
involved require the confirmation that none of the oth@osts is — at least from the viewpoint of the owner of
parties will break the rules without being punished. Thise agent — as important as the protection of the host
requirement is not always fullfilled even in the tradifrom malicious agents. Apart from organisational solu-
tional, non-electronic commerce, but the anonymity @bns, no technical approaches to solve this problem ex-
a worldwide communication network and the ease gt so far. The solubility of this problem is even
the automatic exploitation of security gaps in electronéstimated to be very low.

applications make it necessary to meet this demapgis naner presents an approach to solve most of the as-
when it comes to commercial transactions done by COBcts of this problem, the problem of malicious hosts.
puters. This approach will cost both execution time and com-
Mobile agents are units that consist of code, data andnication bandwidth and will require some time-criti-
control information (e.g. thread states). Mobile agepél restrictions, but gives the agent the possibility to do
systems are platforms that allow mobile agents to reieme security sensitive work without the danger of an
grate between different nodes of the agent system. Frignmediate exploitation of sensitive data by the host.

a more technical view, mobile agents can be comparggh rest of the paper is organized as follows: After giv-
to programs that migrate to nodes autonomously, Whilgy an gverview over related work, in Section 3 several
nodes offer the runtime environment of these progra@igrity areas in mobile agent systems are identified and
that include the program interpreters. Like in Mobilgn,racterized according to their solubility by existing
Code systems like the Java applet system, one aspegtgfiniques. Section 4 focuses on one of these areas —
security is_ the prote_ction of the interpreter, th_e node Qjicious hosts —, and presents approaches, that have
host against possible attacks of the mobile agepeen taken into consideration so far to solve this prob-
Therefore, some of the security mechanisms develoggf, section 5 analyses the problem of malicious hosts
in this field can also be applied to mobile agent systems,y gection 6 proposes a new approach to solve this
e.g. sandbox security, i.e. the need of authorizing Sefblem. The two mechanisms, that are used by this ap-
rity-sensitive commands like the deletion of a file by Groach, code messup and limited lifetime of agent code
designated component. Other security mechanisms Iey qata are discussed in Section 7 and 8. The article

authentification of single agents, do not have a predgsses with a conclusion and some remarks about future
cessor in mobile code systems and have to be desigpg,

out of standard cryptographic techniques like encryp-
tion or digital signatures.

An Approach to Solve the Problem of Malicious Hosts

2 Related work When it comes to security, this field can be divided in

Since the area of mobile agents is rather new, there (yg‘%er(tatnt ie“c]funt%/ ,,atﬁ?s ’ e'?t' bi |]:jen:|fy(|jngt_the dIEetL

only few publications in the field of security in mobiléan a a,f:. ronts”. these attack fronts distinguish the
rties” involved (e.g. the agent and the host) and al-

agent systems. In [FGS96a], Farmer et. al. employ t o identify th ible attacks bet th "
application scenarios to analyze the new threats t i to 1den ify the possible attacks between Ihe parties.
this paper, we distinguish four main security areas

were added by the migration of agents, list securi&%. '
goals and classify them into impossible goals like “Wi ig. 1):
an interpreter run an agent correctly?”, easy goals lik
the authentication of authors and senders of agents, any
possible, but not easy goals like “Can a sender restri
his agents flexibility?”. In [FGS96b], the same author$
propose an architecture for mobile agents, that allow
agents to be authenticated and authorized using a “tru
theory”. In this theory, that is called state appraisal
hosts can give different agents different permits, de-
pending on the current state of the agents and on the tasl|
they have to do at this host. [IBM95] lists a short met
nagerie of threats like trojan horses, viruses and worms.
Vitek analyzes in [Vit96] the problems of agents whef
using object-oriented programming and proposes a gu
pelspace approach as a secure communication megns.
Gray describes in [Gra96] the authentication mech&i—
nisms developed for AgentTcl. Tardo and Valente
([TV96]) describe the security infrastructure realized in
Telescript. Chess et al. propose in [CGH95] a framiL the following, every security area will be character-
work for mobile agents and describe observations on &&d by mechanisms, that have to be offered in this area
curity issues of mobile agents. The authors state tha®#d by techniques, that may implement the mecha-
is impossible to verify, that an arbitrary program is n&#Sms.

a virus. Furthermore, they list attainable goals like ok Security between two agents

gin authentication or code integrity. Their conclusion is) .
that although security represents one of the cornerstdii¢ Problem addressed here is the security of agents

issues, not all goals can be achieved without the uségfinst other, malicious agents. Attacks of those may
trusted hardware. Ordille asks in [Ord96] “When agerifilude code and data manipulation by having physical
roam, who can you trust” and answers that a host GfF€SS 10 the code and data areas of the attacked agent,

only trust agents that have been never on untrusted h§&#Sking of agents (i.e. faking a wrong identity), cheat-
before. ing (e.g. using a service without paying for it) and deni-

. . al-of-service (e.g. by filling a message buffer).
A huge amount of papers exist about “traditional” secu-

rity, i.e. such that do not consider mobile agents. Sins this area does not address ”?W“SGCEJF“Y is”su_es com-
some security areas (like communication security, aR@"ed to requirements imposed in “traditional” distrib-
the authentication of immobile entities) do not need nd{ffd Systéms, mechanisms that prevent such attacks

techniques, a lot of papers describe mechanisms tRgady exist, e.g.:
can also be used in mobile agent systems. The reader ishe use of an agent language, that does not allow
refered to [Che97] for an analysis of TCP/IP threats, others to have physical access to “private” data,

Unauthorized third parties |

Fig. 1: Security areas of mobile agent systems

Security between two agents

Security between agents and hosts

Security between hosts

Security between hosts and unauthorized third
parties

[Sch96] for elementary security techniques or [Sta95]
for a more network-centric view. .

3 Security areas of mobile agent systems .

Mobile agent systems are platforms that allow mobile

such as Java or the use of isolated address spaces
authentication of agents, e.g. by using digital signa-
tures

employment of a service contract mechanism (e.g.
[SL95])

agents, to migrate between different nodes of the aggnt security between agents and hosts

system. On a node, a mobile agent can interact with oth

T.his area can be divided in two subareas, since the rela-

er agents locally (and globally in some systems) or ,ip) : .
g v (g y y) tﬂnshlps between agents and hosts is not symmetric:

ents are basically programs that are executed by the
psts, the hosts consists of agent code interpreters or at
east runtime environments.

can migrate to another node. Interaction consists |

communicating with other agents, requesting or provigg

ing services or creating new agents or terminating exi
ing ones. Nodes, or mobile agéostsare the “building

block” of the agent system; each host can be maintairgd .1 Security of hosts against malicious agents

by another institution.

The attacks of malicious agents are basically the same

An Approach to Solve the Problem of Malicious Hosts

as those against other agents (physical manipulatiarea is omitted in this paper. Interested readers will find
masking, cheating, denial-of-service). The differencedserview and detail information in a couple of books,
the greater impact of hosts, since they control the exeg. [Sta95], [Sch96] and [Che97].

cution of agents. This enables host to stop suspicious

agents at any time. 4 The problem of malicious hosts

The mechanisms against attacks of malicious hosts ae:we have seen, widely distributed, open mobile agent
Systems are intended to be used as a base for real-world
applications, especially in the area of electronic com-

« authentication by using digital signatures or otherMerce. As they transport sensitive information such as

cryptographic techniques like the one described fGECTet keys, electronic money and other private data,
the mobile agent system AgentTcl ((Gra96]) they require the security of agents also against potential-

« the usage of accounting and contract mechanism¥ malicious hosts.

» the usage of resource control mechanisms such &n the other hand, this problem has rarely occured in
limited resource “accounts” and runtime restric- applications so far since a program either was invoked
tions by the same authority that maintained the computer en-

The second mechanism embodies a problem compavgdnment or because the maintaining institution was

to “traditional” authentication: As a mobile agent sydrustworthy. Therefore, barely any solution exist in this

tem as a whole may be too large, it cannot be assusedurity area.

that there may not exist two or more agents using ®ife only other area with comparable problems is the se-
same identification. This security gap can be expl0|t_%grity of software against manipulation by users, in par-

either by the agent owner to create copies of an existig, 5 against unauthorized copying. Two approaches

agent or by attackers (e.g. hosts) that are able 0 “readye peen developed to solve this particular problem.
existing agents, such as hosts.

The first one tries to bind the execution of a program to

3.2.2 Security of agents against malicious hosts the existence of a special medium or piece of hardware
dongle). Therefore, the software tries to find out peri-

In this security area, the attacker is the host itself. Téaically or at the start of the program whether it can ver-
host can observe every step the agent takes, read eyer

bit of code. dat d stat q iulate th ¥ ¥he existence of the dongle. Since each user is
It ofcode, data and state, and even manipuiate the vided with only one dongle per program and because
the agent works, as it, among other things, interprets

t code. Attacks include * P threats lik & software does not start without it, the program can
agent code. Attacks include normal’ threats fikeé masyg, copied, but not used without the dongle. Unfortu-

ing and gheatin?,kbut alsol prtivac_y breaking (ﬂ:je h(?‘?étely, this approach is not applicable to our problem
may read secret keys or electronic money), code, gitr‘?ce it solely solves jthe particular problem of the un-

and state manipulation (e.g. taking away eIeCtmna\%thorized execution of a program. However, this ap-

money or implanting virus C(.J(_je’ and executing t oach does not provide any means against the potential
agent in a way other than specified by the language.

> . . o anipulation of the program by the user, and it is indeed
nial-of-service attacks are possible, too, but it is cle p brog y

. Cl€8bssible to break this kind of security by “cracking” the
that a host can easily deny the agent to work by sim IP’ogram i.e. by removing the part of the code that ver-
not to execute it. '

ifies the existence of the hardware. The second ap-
The existing security mechanisms are not easily apgtoach also requires the employment of special
cable here since the aspect of securing a prograardware. This time, it is not a special addendum, but a
against a malicious interpreter is a rather new aspegicured execution unit that protects the software from
The security of agents against malicious hosts will pg@ing manipulated. One of these devices, the Citadel co-
discussed in detail in Section 4. processor [Pal94], was designed to act as a fast encryp-
tion processor (for the DES algorithm, see [Sch96] for
details), but also includes a whole microprocessor and is
Like in the first section, possible attacks between hogfsle to run applications inside the chip. As it is protect-
include masking, cheating and denial-of-service. Howd against manipulation from the outside, even again
ever, since hosts are stationary entities, the comnsiysical one, it can act as a secure “island” inside a hos-

mechanisms for authentication, accounting and interage environment, and this also includes the maintainer
tion control can be applied here without modification.of the computer system.

» the usage of “secure” languages or isolated addr
spaces

3.3 Security between hosts

3.4 Security between hosts and unauthorized third Apart from using trusted hardware, few approaches ex-

parties ist so far to solve the problem of malicious hosts. To

We have to consider in this area the security of com ake the problem worse, tselubility of this problem
sides the use of trusted hardware is estimated in the

nication between two hosts over an insecure networ. rature as verv small or even zero. Farmer. Guttmann
Other aspects like masking are included in the ar 5@ y ’ !

above. The attacks and mechanisms here are w@ﬂsj Swarup ([FGS96a]) find it impossible to protect
known and do not pose new questions. Therefore, tﬁgents from read attacks by the host, and recommend

An Approach to Solve the Problem of Malicious Hosts

not to let an agent carry secret informations. Harrisolin example of an agent
Chess, and Kershenbaum ([HCK95]) find it impossiblgn agent shall buy some flowers for a human user.

to prevent agent “tampering” unless trusted (aRgherefore it inquires a trading component for a list of
tamper-resistant) hardware is available in hosts. Ordillg jresses of service agents that offeBilngFlowers

claims in [Ord96] that it is not possible to protect thgaryice. The agent migrates to every service provider of
agent's data while travelling, since hosts can alter gp list, asking for the price for the requested flower
agent's data and send the changed agent into the Bkyage. If this price is lower than a user-specified max-
work. Other papers about security in mobile agent Sy m price and lower than the lowest price so far, the
tems barely mention this problem and, t0 OWgent stores the new lowest price and the address of the
knowledge, none of these authors proposes a fullice provider. After having asked all the providers of
fledged technical solution. its list, the agent migrates to the provider with the low-
Although technical solutions, i.e. such that try to secuest price and buys the flowers using electronic cash that
agents by technical means, are not known yet, non-teithis carrying.

nical solutions for non-open systems exist. As we hayfis «nurchasing agent” carries sensible data that deter-
seen above, we can reduce the problem of maliCiques its behavior (e.g. the lowest price and the address

hosts to an inner-institutional problem, if we let hos{ e pest provider) and is a typical example for agents
being maintained only by trustworthy parties. This ap,+ carry confidential data.

proach seems to be taken by the only existing commer-
cial mobile agent system, AT&T's PersonaLinioOMe authors would argument, that such an agent
[Jer94], which uses General Magic Telescript technof@20uld not exist, since it is comparable to a tourist

gy [GM96], and which offered mainly an advanceiyhich obviously carries cash in the wallet and which

email service. Further services could have been offef@@Ms through a quarter that reacts on this behavior in

by other companies, but this aspect never seems to Hiy¢/NPleasant way. Therefore, an agent, as well as a
been realized. The problem of thisganisationalap- well-advised tourist should never carry sensitive infor-

proach is, that the resulting mobile agent system is fBgtion through unknown territory. As we will see, this

“open” any more. It is thus not possible for a foreigﬁonclusion does not need to be true, if we convert this

service provider to connect a new host as part of d#formation into a form that villains cannot use easily.
platform to the mobile agent system. Unfortunately, thR2CK to our example.

organisational approach also reduces the usefulness ®ha purchase agent contains a data and a code area. En-
mobile agent system as an infrastructural middlewarées in the data area may include:

component, since it depends directly on the dissemingiqress home = “PDA, sweet PDA”

tion of the system and on the interconnectivity to eXiﬁ\t/roney wallet = 20$

ing services and information sources. As it maximumprice = 20.00$

consequence, a single platform provider has to staffoq flowers = 10 red roses

with a system that already has a critical mass in ordeiNgyress shoplist [= empty list

get third parties using this system as a platform. The gg- shoplistindex -0

vantage of the organisational approach is, that genefgz bestprice = 20.00$

ly, no host is malicious, and the (hopefully) rare evenigy ess
that hosts are “turned up” by employees or foreign at-

tackers are handled and backed up by the maintainifg central procedurstartAgent , that is called by
organization. thé host every time the agent arrives, could look like

this:
One could imagine to obtain a mobile agent system

without the problem of potentially malicious hosts b%
an organisational approach that allows interested thfrd
parties to connect their infrastructure to the system @y
establishing an institution that examines these partldes
and that offers an “ombudsman” service to both servige)
and platform providers on the one side and clients on fhe ~ 90(shoplist[1]);

other side. The problem is, that it may be extremely df- _ Preak;

ficult to detect whether a given damage is caused by8dn } . o

agent (and thus the client) or by the host (and thus the If (Shoplistshoplistindex].
platform providers). Moreover it is unclear how to gek askprice(flowers)<bestprice){
compensation for it in a world-wide distributed syste bestprice = shoplist]

that covers a lot of countries, and therefore juristic from2 shopl_istindex].
tiers. 13 askprice(flowers);

bestshop = shoplist|

bestshop = empty

public void startAgent() {

if (shoplist == null) {
shoplist = getTrader().
getProvidersOf(“BuyFlowers”);

14
Before we come to an analysis of the features of thg
problem of malicious hosts, an example is presentgg }
that will be used in the rest of the paper.

shoplistindex];

An Approach to Solve the Problem of Malicious Hosts

17 if (shoplistindex >= variable would be security sensitive when it is repre-
18 (shoplist.length-1)){ sented in a way that the binary number of the “can”

19 // remote buy the money and therefore can be used as real world cash.
20 buy(bestshop,flowers,wallet); But there are also other classes of data, which can be
21 } used for an attack although they have not the nature of
22 if (shoplistindex >= classes like e-cash. In our example, the knowledge of
23 (shoplist.length-1)){ the maximum price or the best price so far can be used
24 go(bestshop); by a malicious host to offer flowers for a slightly lower
25 } amount than the competitors, although the regular price
26 else{ is much lower.

g; go(shoplist[++shoplistindex]); 3. Spying out control flow

29 }}} If the host knows the entire code of the agent and its da-

.. ta, it can determine the next execution step at any time.
By now, we have seen that the problem of maliciogg,en if we could protect the used data somehow, it

hosts is a relevant one, and that no satisfying solutiQig,ms rather difficult to protect the information about
exist so far. Therefore, we will now have a closer 10qKe actyal control flow. This is a problem, because to-
on the problem by analyzing its features. gether with the knowledge of the code, a malicious host
can deduce more information about the state of the
agent. In our example, we can recognize, whether an of-
For the analysis of the problem of malicious hosts, \ier is better or worse than the best offer so far by watch-
will examine the possible attacks a malicious host coufdy the control flow, even if we could not read any
execute on this agent. After that, we will discuss howariable.

these attacks could work and analyze which CirCU'E.'ManipuIation of code

stances lead to the possibility of the attacks.

5 Analysis of the problem of malicious hosts

If the host is able to read the code and if it has access to
the code memory, it can normally modify the program
Now the possible attacks of a malicious host are exaaf-an agent. It could exploit this either by altering the
ined: code permanently by implanting a virus, worm or trojan
1. Spying out code horse, or, temporgrily, by altering the behavior of the
agent on that particular host only. The advantage of the
The code of the agent has to be readable by the hOSt'I_ﬁ['er approach consists in the fact, that the next host of
though this requirement can be restricted to the nextiRa migrated agent cannot detect a manipulation of the
struction at a single point of time, this is no real hejp, o (since it is not modified). Applied to our example,
since some hosts see almost all the code because figyjicious host could modify the code of the agent with

execute much of the code (like e.g. the last host thajg effect that it prefers the offer of a certain flower pro-
visited in our example). If the code of the agent is nghyq, regardless of the price.

significant for every agent, but for a whole class of] _

agents, the whole code of the agent may be known evefYlanipulation of data

before execution time. If an agent is constructed outléthe host knows the physical location of the data in the
standard building blocks (which is no bad idea in termsemory and the semantics of the single data elements,
of code migration costs and ease of agent constructianzan modify data as well. In our example, the host
also the detail specification is available for buildingould shorten the shop list after setting the offer of the
blocks like libraries or classes. Furthermore, thekeal flower provider as the lowest, regardless of the
blocks can be explored by blackbox tests. Knowing tleerrectness of this information.

code leads to knowledge about the execution Strateg)épf\/lanipulation of control flow

the agent, knowledge about the exact physical structure
of code and data in the memory of the host and sorken if the host does not have access to the data of the

times (by using data statements like initial variable 8&9€Nt it can conduct the behavior of the agent by ma-

signments) to knowledge about parts of the agent dafdPulating the control flow. In our example, the host
could simply alter the flow at the second or third if state-

ment, resulting in working incorrectly and e.g. taking
The threat of a host reading the data of an agent is vidry price of the host as the lowest.
big as it leaves no trace that could be detected (although

this is not necessarily true for the consequences of this

knowledge, but they can occur a long time after the vi¥ifithout changing the code or the flow of control, a host

of the agent on the malicious host). This is a specidfy &/so alter the way it executes the code of an agent,

problem for data classes such as secret keys or electf§RUlting in the same effects as above.
ic cash, where the simple knowledge of the data resi@tdMasquerading

in loss of privacy or money. In our example, the MoNgY,rmaly, it is the deed of a host that sends an agent to

Possible attacks by the host

2. Spying out data

ncorrect execution of code

An Approach to Solve the Problem of Malicious Hosts

a receiver host to ensure the identity of that receiverad attacks (e.g. the home address), the data that need
(and that what it will do in most cases). This attack is be protected only for the execution interval at a host
listed here, because a third party may eventually intée-g. the maximum price), and the data that must be kept
cept or copy an agent transfer and start the agentsegret from the attacker (e.g. a secret key).

masking itsglf as the correct receiver host. This attggg 3 (Spying out control flow)

may result in one of the other attacks, e.g. in readln%]]
code and data of the agent. The different points here are the knowledge about
 the actual control flow after the end of the execution

)) ~« the relation of control flow and execution semantics
As the agent is executed by the host, i.e. passive, the ,)
host can simply not execute the agent. Again, the first point cannot be protected (as the host

executes the agent), but if it is possible to solve the sec-
ond one, the host would not know where to manipulate
Most of these attacks can be performed simultaneoustyprder to alter the control flow in a directed manner.
which normally leads to a greater attack potential, e gy 4 (Manipulation of code)

when knowing the maximum price and manipulatin

the control flow in order to let the agent buy the ﬂowellgsermanent code manipulation is impossible if you can
at the maximum price. cryptographically sign the code of the agent. If the code

does not change over execution time (i.e. over the whole
lifetime of the agent), this is no problem, as the owning
Now, the different attacks will be analyzed by givingarty can sign the agent at start time. If it is possible to
some observation about the nature of the threats togetbe standard libraries, it is very easy to sign them by the
er with some remarks about how potential countermedibrary programmer and store them at different locations
ures could work. of the agent system, resulting in a more efficient code
migration. If the code changes over the execution time,
o other cryptographic models can be used, but the per-
We can distinguish here between the knowledge of f5:mance and programming advantages make the use of
« what the code as a whole does exactly, i.e. the detstidndard libraries more attractive anyway.
specification and
« what each line of code does exactly

9. Denial of execution

10. Simultaneous attacks

Attack analysis

ad 1 (Spying out code)

As we have seen in the first remark, code can only be
manipulated in a directed manner, if the attacker knows
As it was mentioned before, the first point cannot lwehat each line of code does exactly and where this line
protected if we use standard building blocks such asi$i-stored. If we could protect this information from the
braries, and which is not very security sensitive. In cohest, even temporary code manipulation attacks would
trary to that, the second point is very sensitive, as itde impossible.

the knowledge ofvhere to starin order to get a modi-

. i ad 5 (Manipulation of data)
fied behavior.

Data elements can be divided in such elements that
might be modified by correct code during a visit on a
Here, we can distinguish also between host and elements that will not be modified. The latter
portion can be signed (or even crypted when the code
does not read it) and is therefore protected during that
visit. The first class of data could also be protected, if it

)]] were possible to hide the information about the coding
Again, the first point cannot be protected, but the S§grihe elements in the memory.

ond has to be protected in order to evade read attacks.))

Again, the third point allows the attacker to know whicfd 6 (Manipulation control flow)

bit to modify in order to modify the data element, an atike in the last two paragraphs, we could protect the
tack which is well-known in the area of computerontrol flow from being manipulated if we could hide
games, where players can “poke” specific values inttee information about the relation of control flow and
the memory (often supported by special hardware), execution semantics.

sulting in getting more game lifes or reaching highgly 7 (Incorrect execution of code)

game levels. The requirement of the second point, the) , .
protection of the contents of data elements against rés§0!ved if the manipulation of code and control flow
attacks can be lowered from a time-independent & e protected.

quirement to a protection for a guaranteed amountaxf 8 (Masquerading)

time if it is possible to attach an expiration date to eVeRYy party can authenticate another party if it can verify

element after which this element cannot be used §p¥ existence of a secret date of the other party undis-
longer. turbed, i.e that the authenticating party has to be auton-

Another observation is that data can be divided in thremous from the other party. Unfortunately, this is a
classes: The data that does not need to be protected fpooblem for agents when trying to authenticate their

ad 2 (Spying out data)

» the knowledge about which data elements exist
» the contents of these elements
» the coding of the elements in the memory

An Approach to Solve the Problem of Malicious Hosts

hosts as they were executed by the hosts. If we colifetime of code and data

give an agent its autonomy back then even a passig give an impression of this approach, an example

component like a mobile agent could check its host. dpq s a typical “lifecycle” of our example purchase

this context, autonomy means that the host cannot r%@ém which is protected by this mechanism:
at least some of the agent data (e.g. a public key), and

that it cannot modify the code and control flow of the
agent.

ad 9 (Denial of execution)

Of course, a host may deny to execute any agent, but i
we can construct an organizational framework that forg
es the host to proof the execution of an agent, his atta
could be avoided. One way to do this is to e.g. marking Fig. 2: Lifecycle of a purchase agent
unwilling hosts as “bad” with the consequence that the
do not receive agents any more. This approach seeDig agent starts from its home host (Home) and mi-
not to be of real concern, as this attack is rather obviajtates to host alpha. Once arrived, it contacts a trader
and does not lead to bigger problems like the loss of pigent T, which provides a list of addresses of agents that
vacy or money and cannot be distinguished from a fagffer the flowershop service. Two agents, that offer this
ure of the host. If this kind of approach is followed, theervice (s1 and s2) reside at the same host (alpha), so
proof of execution could be a data element that is g&ur purchase agent contacts them, asking for their price
erated periodically by the agent, and which can be prabr the flowers. Thereafter, the agent migrates to the last
ably protected by hiding the creation process in tagdress of its list, which points to an agent residing s3
code. on host beta. Again, the agent asks for the price. With
Summary the gathered information, the agent wants to migrate to
the service provider with the lowest price, which is s3
erefore, it does not need to migrate). The purchase
ent acquires its flowers with some electronic cash. Fi-
y, our agent migrates to its home host.

As seen above, most of the security problems can
solved if the host is not able to determine the relation
between single lines of code and their semantics and
relation between memory bits and the semantics of data
elements, respectively. A host can of course modif-;?—‘t us take a closer look on how the agent got protected.
code, data and control flow anyway, but not with a corfior the first migration, the agent’s home host constructs
puted effect. This results for a host in three choices@ifew form of the agent’s code which does exactly the
can either execute the agent undisturbed, execute $881€ as the one before, but which “looks different”, i.e.
agent by switching some bits, not knowing about the &ras another inner structure. At the same time, the home

fect on the execution or the host can take the agent wiRst takes the agent's data, mixes the original data ele-
out executing it. ments up and distributes this mixture to a list of new

data elements. The new form of the code reflects this

Unfortunately, a program together with its inital COdSata conversion by using the right “decryption” code in-
can be reengineered by a human. A good example &

e
o2 ad of just naming the original variables. Before the
the crackers of the eighties, people that were able to i ?Slnversion, expiration dates are attached to the data el-

and remove protection code implanted in software Su&;nents which are used for interaction with the “outside

as games. Although game programmers took strong world” (i.e. outside the agent) in a manner, that no one

fort to hide protection details, advanced crackers suc, falsify the dates by using digital signature mecha-

cessfully broke every protected program, and they hﬁl ms like DSS (compare, e.g. [Sta95]). This means that

n<_)t a detailed §pec!f|cat|or_1 of the code as we wil ha%?ectronic cash now also bears an expiration date, secret
with standard libraries. This was only possible becal

R ys are valid only for a certain amount of time and so

the crackers had sufficient time to analyze a program,ii Finally, the home host signs the code of the agent to-

we transfer this kn(_)wledge to mobile agents, we “88ther with another expiration date. Then the agent is
state that a human is able to reveal any of the relati

. . . 1%t to host alpha. We assume now hosts alpha and beta
listed above and to write a to_o_l that allows m?”'p“'at”%S be malicious, i.e. to attack the agent. As the host (or
code, data and control flow if it has enough time. the human which has access to it) has now first to ana-
lyze the agent, some seconds pass (the problem for the
malicious host is, that it has never seen the form of this
code before, although it knows the original code very
An attacker needs a certain amount of time to read {jgll). we further assume that the expiration date of both
data, understand the code and, thereafter, manipul€ code and the data elements expires as they are set
both in a meaningful way. The basic idea of the agnly to a few seconds. The host, after having analyzed
proach described now is simply not to give him enoughe agent, can arbitrarily read and manipulate data. But
time to do this. This can be achieved by a combinatigi tries to use the read data, or to relay the manipulated
of the following two ideascode mess upndlimited agent, the receiving host will reject the data or the agent

6 Code Mess Up: an approach to solve the prob-
lem

An Approach to Solve the Problem of Malicious Hosts

because their corresponding validity dates are expireflthe essential program structure or the knowledge of
Although the host is malicious, it invoked the agent nosemantic data units.
mally, and after some time,it migrates to host betgq the a

where the same game goes on. Since also host Reigy it can also authenticate the host (by bearing a
needs more time to analyze the agent than code and dgigic key of it and checking the existence of the private

are valid, beta cannot do anything with it. Even if ho§[5,y by the known mechanisms), so masquerading is not
alpha and beta collaborate, they cannot crack the a sible any more.

in time as it does not matter whether host alpha or both]

hosts exceed the expiration dates. The only possibilf§f Will now concentrate on the question, whether and
to attack the “turtle shell” of the agent is when it conflOW the above requirements could be met.

municate with others, e.g. the host or other agents,lfasve have mechanisms that allow to derive a new
long as the agent cannot use crypted communicatiomessed up code version from the original automatically,
The usage of cryptography in communication with othve should be able to determine the minimal crack time
er agents is useless when the communication partnesfifumans without tools by measuring the time needed
an “agent” of the malicious host or when the host can &bm test “crackers”. This duration will last at least
tack the other agent. some seconds and should grow at least linear with the

The underlying idea of using expiration intervals aHH‘eS of code that have to be read. The minimal time for

conversion mechanisms can be used in mobile agBft @Utomated approach can be determined with the
systems if same mechanisms that allow to compute the equivalent

i . i . . time for the decryption of cryptographic data, i.e. we
1. we can find the minimal time for “cracking” the ¢4 determine this time by constructing an correspond-
new code and data ing mechanism. So if we adapt the mechanism, we

2. we set the expiration date of data elements {0 thif, |4 have at least a few seconds as the expiration du-

duration o ration, which should be enough to let the agent do some
3. the agent can do an significant amount of work ifseful work.

gent is now autonomous again for a certain in-

this interval])

4. we can periodically create new code, which Requirements four to eight depend on the way, the
5. is created automatically, i.e. by a tool mechanisms for constructing new versions out of old
6. does the same as the old code one work.
7. is as hard to analyze both by tools and

humans, i.e. that creates a new relation 7 Mechanisms to “mess up” code

between elements as variables or lines of We need a way to transform a “normal”, i.e. good read-

code, and application semantics able and understandable piece of code (e.g. a part of the

8. the code variations build up a large space (i.e. osandard library) to a form which is as less readable and
with many variants) understandable as possible, i.e. we want to find a way to

9. the usage of data that bear expiration dates doasess ugode. There are barely mechanisms to mess up
not restrict the applications too much code in a structured way (although some might say that

If we can meet these requirements, we would obtain such a mechanism is called “ordinary programming”),
agent system where agents can be protected againsbut there is some research in the field of software engi-

« being spied out/directed manipulation of code neering, that tries to figure out how code has to look like
before the expiration date to be readable, and we simply can try to invert these

« being spied out/directed manipulation of sensitiveduidelines. Such guidelines can be found e.g. in [KP78]
data before the expiration date or [SPC89] and they often state things like:

« being spied out/directed manipulation of control ¢ Use variable names that mean something.
flow before the expiration date e Modularize. Use subroutines.

« directed incorrect execution of code e Choose a data representation that makes the pro-

There is no protection after the expiration date, there- 9ram simple.

fore all effects that can occur from the knowledge &@fode mess-up mechanisms can use these guidelines by
these elements and their potential manipulation havecteating code that violates these directives. One poten-
be handled by not accepting “expired” code and datatigl mechanism, which can be calleafriable recompo-
every host of the system (if a host accepts expired caition, takes the set of program variables, mixes the
or data, it has a problem, because no other host will aontents of the variables up and creates new variables
cept them, so the host itself has a vital interest in rejetttat contain some bits of data from some of the original
ing expired elements). Of course the host may modifgriables and adapts the corresponding variable access-
code, data and control flow at its will, but as it cannes in the program code. In Fig 3a, you can see the orig-
see what it is doing, it cannot forsee the effects, as wiakl variable access, Fig. 3b defines a scheme for
as it can read the lines of code and the data bitstring, ledomposing two new variables, v23 and v19 from the
this knowledge is not easily connected to the knowledgentents of three of the original variables. The new var-

An Approach to Solve the Problem of Malicious Hosts

iables access code, Fig. 3d, can therefore be createdla-usage of jumps that are bound to variable contents,
tomatically (given the recomposition scheme) by usirggg. switch-statements. The effect can even be strength-
conversion functions (see Fig. 3c) that create the origined by using complex variable expressions instead of
nal values out of the new variables. As there is no diresing simple variables.

relationship between variables and processing modelglgjje the Software Engineers give us statements about
ements (e.g. the maximum price from our example), i6,y to mess up code in order to restrict the timely com-
variable names do not mean anything anymore and f}ghension by humans, there is a related area which is
data representation is rather complicated. especially interesting for our purposes: the field of re-

Fig. 3a: original variable access engineering because there the aim is to transform bare
8 buy(bestshop,flowers,wallet) code to a documented form of software, as this is exact-
9 go(home) ly what we want to prevent, and as it can give us valua-
ble informations about what aspects are hard to analyze
Fig 3b: variable recomposition and the role of tools in doing the transformation. For in-
bestshop flowers wallet formation about which approaches exist in the field of
T 1 [T T 1 program understanding, the reader is refered to e.g.
[Rug96].

Another source of information about how mess up
mechanisms should look like is the work about automat-
ed code analysis in the field of programming languages
1 7 and compiler construction (see e.g. [ASU86]). An ex-
ample of an algorithm that can be used for code mess-

v23 v19 up purposes is thelimination of common expressions
Fig 3c: conversion functions where, at compiletime, expressions, that have been
public Address c7(Bitstring b) computed before, are used for_replacing_expression_s
public Good c4(Bitstring b) that compute 'Fhe same value. T_h|5 mechanism results in
public Money c3(Bitstring b) fgvyer code, higher speed and, |mportan'g for us, a more
public Address c34(Bitstring b) difficult program, as some semantic relationships of the

original program might be deleted by this optimization
technique. As the target of such techniques is the opti-
mization of code in terms of speed and space, software

Fig 3d: new variable access

7 buy(c7(v23[0]+v19[4]+v23[3]) engineering values like readability might be violated
,c4(v19[0]+v19[3]+v23[1]), (which does not matter as these are compiler mecha-
c3(v23[2]+Vv19[1]+v23[4])) nisms, the programmer will hardly ever see the opti-
8 go(c34(v21[4]+v19[2]+v21[2])) mized code).

Another example of the usage of mechanisms for opti-
Another family of mechanismstructure dissolving mizing code are the approaches to detect dead, i.e. un-
tries to eliminate program structure like blocks or pratsed code. This time, we do not want to use this
cedures and creates a piece of code that contains almeethanism for our purpose, but we want to prevent the
no inner structure anymore. Some of the mechanismugecessful usage of this technique as the extistence of
that belong to that family are: dead code also makes it harder to understand code.
« dissolving small variable scopes into global ones 'herefore, when we want to insert dead code into an
« replacement of procedure calls by procedure cod@9ent: we have to take precautions in form of finding
« replacement of blocks by using “goto’like state- ways to circumvent the detection mechan_|sms. For that
ments purpose, we have to analyze the detection algorithm.

o) o . One of these algorithms uses data flow analysis to de-
The possibilities of structure dissolving is restricted Q¥qt statements that produce results that are never used

the “outer” structure of the code, i.e. by procedures agflenards. If we simply fake the use of the results of the

functions that are visible to the outside world and WhiGhserted code. it cannot be detected by this method any
have therefore to exist in the program. more.

The last presented mechanism is cattedversion of ag we saw, there are several mechanisms that can be
compile-time control flow elements into run-time dalgse for messing up code, and itis far better to use some
dependend jumpEontrol flow elements likéf - and of them in parallel than just using a single mechanism
while statements allow the programmer to imagingnce it is easier for a human to concentrate on one issue
the potential control flow even at compile time as theggy, analyzing a complex code structure.

statements make control flow explicite. If we convert | _ _)
these elements into a form that is dependent of the cdf- V€ an impression of how code could look like,
tent of variables, the control flow cannot be determind§'€’S @ messed-up version of the purchasing agent ex-

as easily as before. This dependence can be achieve@B§!e:

An Approach to Solve the Problem of Malicious Hosts

int v1[] = new int[11];

Object v2[] = new Object[10];

float f1 = 22002.0f;

Agent2 v3 = this;

Agent2 v4 = null;

Agent2 v5[] = null;

v1[0] =3; vli[l]=1; vl[2] =5; vli[3]=7; vli[4] = 2;
v1[5] = 6; v1[6] = 4; v1[7]=8§; vl[8]=9; v1[9] = 10;
v1[10] = 1;

10 v2[0] = “BuyFlowers™; v2[1] = null; v2[2] = “xxv";

11 v2[3] = null; v2[4] = “10 red roses”;v2[8] = null; v2[9] = null;
12 public void startAgent() {

13 for (int i=0; i<1; i++) {

14 if ((((String)(s12(6,v5,null, 0.0f))).equals(v2[2]))) {

15 v5=((Agent2[])

O©CoO~NOUL WNBE

16 (s12(10,(Agent2)(s12(7,v2[8],v2[3],10.0f)),(String)v2[0],20.0f)));
17 s12(1,(Agent2)(s12(5,v2[3],v2[8],(float)v1[1])),null,20.0f);

18 }

19 if (((Boolean)(s12(9,new Float(((Agent2)

20 (s12(5,null,null,(float)v1[10]))).askprice((String)v2[4])),
21 new Float((f1 - ((int)f1/1000))),0.0f))).booleanValue()) {
22 f1 = (float)((int)f1 / 1000) +

23 ((Agent2)(s12(5,null,null,(float)v1[10]))).askprice((String)v2[4]);
24 v4 = (Agent2)(s12(5,null,v2[1],(float)v1[10]));

25 }

26 if (((Boolean)(s12(8,new Integer(v1[10]),

27 ((Integer)s12(4,v2[8],v2[3],13.0f)),0.0f))).booleanValue()) {
28 s12(2,v4,v2[4],(float)((int)f1/1000));

29 }

30 if (((Boolean)(s12(8,new Integer(v1[10]),

31 ((Integer)s12(4,v2[8],v2[3],0.0f)),35.3f))).booleanValue()) {
32 s12(1,v4,null,0.5f);

33 }

34 else

35 s12(1,v5[++v1[10]],v2[1],0.0f);

36 }

37 1

38 public Object s12(int i, Object o, Object p, float f) {

39 if (i == v1[1]) s24((Agent2)o);

40 if (i == v1[4]) s26((Agent2)o,(String)p,);

41 if (i == v1]0]) return(new Integer(v5.length));

42 if (i==v1[6])

43 return(new Integer(((Integer)s12(3,null,null,0.0f)).intValue() - 1));
44 if (i==v1[2))

45 return(v5[(int)f]);

46 if (i==v1[5)])

47 if (0 == null) return(“xxv™);

48 if (i==v1[3)])

49 return(s27());

50 if (i==v1][7])

51 return(new Boolean(((Integer)o).intValue() >=

52 ((Integer)p).intValue()));
53 if (i==v1][8])

54 return(new Boolean(((Float)o).floatValue() <

55 ((Float)p).floatValue()));
56 if (i==v1[9])

57 return(((Agent2)o).s28((String)p));

58 return(null); }

10

An Approach to Solve the Problem of Malicious Hosts

Although it does the same as before, it is far less undeatled “tokens”, and, in real world, they rarely bear ex-
standable. It could have been produced automaticaliyation dates. Typical tokens of the real world are
(for this paper, it was done manually) and does not rooins, identity cards or permits.

much slower than the original (in fact, a correspondingoken in a mobile agent system should consist of the
Java program is a factor 1.5 slower and twice as long).
The used code mess-up mechanisms (variable recompo-
sition, conversion of compile-time control flow ele-
ments into run-time data dependent jumps, and partial
replacement of procedure calls by code insertion) have
been described above.

Body
Issuer

Exp.date

We now have some mechanisms that allow us to mess- signature
up code, but there is a requirement that we did not have
taken into account yet: the question of whether the code
variants build up a space that is large enough. If this is
not the case, an attacker could compute some variantsriginal data (the body), e.g. the electronic money bit-
advance and then simply compare the computed catléng, the identification of the issuer and the expiration
variant and the code of the agent. We can state thatdalle. The whole element is signed by a signature mech-
mechanisms meet this requirement, that offer variastsism like DSS or PGP. These mechanisms use secret
that can be produced by using a numeral argumentkdfys which belong to the signee, therefore they have to
we take e.g. variable recomposition, the ways we cankeew which party pretends to have issued that docu-
arrange the variables are not limited by a number thatignt.

s_mall enough to allow to build up a "‘dictio.nary of Velsecurity sensitive informations are e.g.:

sions” in advance and we could design this mechanism
in a way where the rearrangement is described by B
“index” number. Fig. 5: Interaction between agents

Fig. 4: Token structure

ctronic Money

Concluding the question of how the code can be con-
verted into a less readable form, we can state that there
seems to exist promising mechanisms that can be de-
rived from research in the field of software engineering,
code optimization, and reverse engineering.

agent A

8 Limited lifetime of code and data

Apart from code mess-up, another big problem seems to
be the last requirement, the question of whether the now
time-dependent execution model restricts the kind of
applications that may use the mobile agent system.

Since we have to take into consideration the fact that an
attacker can “crack” an agent if it has enough time, we recte agent B
have to find a way to compensate this possibility. One wey
way 'to do this is t(.). mgke relevant parts of an agq-rf(tere the expiration date means, that noone will accept
invalid after a specified interval. Therefore, exp|rat|0{1

dates have to be appended to at least some elemen rs1e oney after this date. This results in the need of the

the agent. Since we have to do this in an unfakeagféﬁy which accepts valid money to brl_ng It t_o a pUb.“'
cally trusted party, e.g. a bank, before it expires, which

way, we can use digital §|gnatures (an ex'lstlng cryptgfin be problematic when failures, e.g. a network parti-
graphic technique), that sign the combination of data gl-

= . ion, occur.
ement and expiration date. Unfortunately, this means,
that only a trusted authority, normally the owner of tHeryptographic Keys
agent, can issue information that bears an expirati®h also keys expire after some time, they are more of
date, and there is no way for an agent during its life ¢ session key type (which are often valid only for a
get new expirable information elements but from suctfgrtain interval), and are known to a second party, i.e.
trusted party. Fortunately, only some data carried by € partner to which the protected communication will
agent have to bear expiration dates. The characterist@ie place. It is interesting to note that public keys are
of the elements of this class of data is, that they are sBpt tokens, it is enough to have the guarantee that the
contained documents, that can be exchanged for oth@pt may not modify them during the protection inter-
goods or services or that prove identity (as the identigl- If an agent wants to communicate with another
also can be used for getting goods, services or auth@gent over a protected communication channel, it has to

sation). Elements, that have these characteristics, ca@®kits public key (e.g. by bearing it). Then, a session
key can be generated dynamically and sent to the part-

11

An Approach to Solve the Problem of Malicious Hosts

ner crypted with a public key scheme like RSA. The eaxecuting the box with different input parameters and
cryption of the communication then can take plad®y watching the effects. The effects can be formal re-
using the session key, which in return has to bear a euits like output values or characteristic “activity pat-
piration date. terns”. In our example, the attacker could execute the
The agent as a whole agent until it tries to buy the flowers, starting every time

As it is the main target of attacks by a malicious ho¥ith the initial agent. The only value that is changed
especially the agent itself has to bear an expiration d&¥e" the trials is the price for the flowers. After the agent
No host or other party should accept arriving agents tfigly wants to buy, the attacker knows the price that is

are expired or the interaction with expired agents 49th the lowest so far and that is below the maximum
they may be “taken over” by a malicious host. price. Even if the agent would not buy the flowers im-

i mediately (as it tries to ask at least three different pro-
Information elements, that are not tokens, need not\RRers). the attacker can watch, whether the data of the

protected by expiration dates. It is enough to have higant has changed. If this is the case, it is very likely,

affirmation, that these elements are not known 10 tigy; this agent has memorized a better price. If it comes
host unexpectedly for the duration of the expiration i coyntermeasures, two goals have to be reached: first,
terval of the agent. _In our example, almost all elemenis, parallel execution of the same agent has to be sup-
except the electronic money are not tokens. pressed (e.g. by using a trusted third party that is in-
The difference of tokens to e.g. coins is the durationfofmed by the agent about its execution), second, the
the validity as coins are valid for a reasonable amowmry fast execution of an agent has to be suppressed
of time. This can consitute a problem, as it is possile.g. by using a similiar interaction with a trusted host).
by failures or by attacks of the host for the tokens to Heinally, activity patterns can be covered up by using
come invalid. Although not critical for identity tokensdummy code.

the value of a token is severely affected by this. Thergse |ist of possible attacks cannot be complete as they
fore, token interaction has to be handled as transactlpgﬁ only on the imagination of the attacker and the de-

that can not be committed before the tokens are madgs of the implementation of the mechanisms, so this
persistent in such a way, that an attacker cannot desﬁ@‘pﬂect is another subject of future research
them. '

Like tokens, agents can also become invalid due to féi@ Conclusions and Future Work

ures or attacks. Although this causes no.direct IOSS\Hfth the employment of Code Mess-Up techniques, we
yalue (gxcept thg problem.of tokens described above), if o devioped a non-cryptographic agent protection
is a typical denial-of-service problem, that have t0 R&hame that is build up like any cryptographic mecha-
handled somehow. Fortunately, a agent system hasigy \ve transformed readable input (i.e. code and data)
offer mechanisms that handle the loss of agents dugdQ, ynreadable form by a mechanism, that cannot be
failures, e.g. network failures. Therefore, it can be g erted easily with the current knowledge. If it can be

gued that the same mechanisms can be used for hafareq easily by a new algorithm in the future, it
dling agent expiration problems. The only modificatiof,, 14 solve some major problems of other fields like
that have to be made is to also consider a malicious ware engineering. In contrary to cryptographic

as a potential cause for the loss of agents, like the faildfg,ames. we did not assume our mechanism to protect

of a network connection. data a very large amount of time like months or years,
but only a comparable short time like minutes or hours,
and we therefore have to handle the effects of this as-
If there is an agent protection scheme like the one gect.

scribed in this paper, one can imagine attacks that rgly ihe protection is based on the unreadability of code,
on the characteristics of this scheme. One attas&lis e rotection is the harder the more unanalyzable the
otage or the frial to destroy parts of the agent withoyseq agent language is. Therefore, code mess up is used
being detected. As an agent contains data that migliks tggether with a machine-code like language like
change during execution, the attacker can simply mogiy 5 gytecode or low Telescript, which also offer a bet-

fy single bits of the data area without knowing about thg, herformance than their interpreted high-level equiv-
effects for the agent. Fortunately, this attack is Veyants.

close to the problem of data, that is sent over an insecure

network. Therefore, similar error detection or even cdr-°de mess up does cost something, both in terms of
rection mechanisms like CRC can be used as long astRged and of space, and the processing model is more
attacker cannot detect the concrete structure of ff¥MPlex due to expiration aspects. Therefore, this

mechanism (as it is easy to circumvent a CRC algoritfi'€me should be mainly used for agents that need to be

if one knows the exact mechanism and if it can see #@t€cted, e.9. because they carry money or other sensi-
borders of the protected data elements). tive data. The global usage of this mechanism even for
non-sensitive applications may be too expensive, but

Another attack is thelack box testlts aim is to deter- ocq,5e code mess up infrastructrure is needed only for
mine characteristics of the inside of the “black box” by

9 Further attacks

12

An Approach to Solve the Problem of Malicious Hosts

protected agents, agents of both protection levels datp://www.volksware.com/pbc/article/pers4-9.htm

exist and interact in parallel. [GM96] General Magic: The Telescript Reference

Since code mess up is also applicable to mobile cddanual, 1996
mechanisms like the Java applet model, it can also pitip://www.genmagic.com/Telescript/Documentation/
tect these mobile code units (e.g. applets) from attadk’M/

of their hosts, i.e. browsers and users. [Gra96] Gray, Robert: Agent Tcl: A flexible and secure

As we have seen, it is practically possible to protettobile-agent system, in: Proceedings of the Fourth An-
agents from malicious hosts by using code mess-upal Tcl/Tk Workshop (TCL 96), Monterey, California,
techniques. Future work has to prove this claim. July 1996

Further steps comprise the implementation of sorftdCK95] Harrison, Colin; Chess, David; Kershen-
code mess up mechanisms and the estimation of thium, Aaron: Mobile Agents: Are they a good idea?,
protection against human, tool-aided and automatic BResearch Report, IBM T.J. Watson Research Center,
tacks. Therefore, tools and other programs have to 1895

written that try to “decrypt” messed up code. [IBM95] IBM Corp.: Things that Go Bump in the Net,
Apart from the examination of the protection strength @095
the code mess up mechanisms, applications that use hitg://www.research.ibm.com/massive/bump.html

bile agent technology have to be examined in order[;g:,78] Kernighan, Brian W.: Plauger, P.J.: The Ele-
find the practical problems that expiration date procesSanis of Program;ning Style, McGraw-Hill. 1978
ing poses on them. In order to do that, the infrastructure ’ ’

components that allow the system to use expirati§ard96] Ordille, Joann J.: When agents roam, who can
dates have to be implemented, e.g. modified host s trust?, in: Proc. of the First Conference on Emerg-
ware that rejects expired agents, trusted node softwiié Technologies and Applications in Communications,
that is able to mess up normal agents or “refresh” th&rrtiand, May 1996

after the expiration interval. [Pal94] Palmer, E: An Introduction to Citadel - a secure

Finally, the costs of this protection scheme have to BP0 coprocessor for workstations, in: Proceedings of
compared to protection schemes that do not use cdife !FIP SEC'94 Conference, 1994
mess up. [Rug96] Rugaber, Spencer: Program understanding.

Once implemented, code mess up offers a mechani&§cyclopedia of Computer Science and Technology,
that allows Mobile Agents to migrate not only to trustei096. To Appear.

nodes, but , in between times, to any host without hd®ch96] Schneier, Bruce: Applied Cryptography, John
ing to fear successful attacks by malicious hosts. Wiley &Sons, 1996

[SL95] Sandholm, T.; Lesser, V.: Issues in Automated
Negotiation and Electronic Commerce: Extending the
[ASU86] Aho, Alfred V.; Sethi, Ravi; Ullman, Jeffrey Contract Net Framework, in: Proceedings of the First
D.: Compilers: Principles, Techniques and Tools, Adthternational Conference on Multiagent Systems (IC-
ison-Wesley, 1986 MAS-95), 1995

[CGH95] Chess, David; Grosof, Benjamin; Harrison[SPC89] The Software Productivity Consortium: Ada
Colin: Itinerant Agents for Mobile Computing, IBMQuality and Style, Van Nostrand Reinhold, 1989

Research Report RC 20010 (03/27/95), IBM Resean@},ox) stallings, William: Network and Internetwork
Division, 1995 Security, IEEE Press, 1995

[Che97] Cheswick, William R.: Internet Security andryge] Tardo, Joseph: Valente, Luis: Mobile Agent Se-
Firewalls : Repelling the Wily Hacker, Addison-Wesg, ity and Telescript, in: Proceedings of IEEE COMP-
ley, 1997 CON’96, 1996

[FGS96a] Farmer, Wiliam; Guttmann, Joshuajyige] vitek, Jan: Secure Object Spaces, in: Proceed-

Swarup, Vipin: Security for Mobile Agents: Issues anglgs of the 2nd International Workshop on Mobile Ob-
Requirements, in: Proceedings of the National Informj%-Ct Systems, dpunkt, 1996

tion Systems Security Conference (NISSC 96), 1996

[FGS96b] Farmer, William; Guttmann, Joshua;
Swarup, Vipin: Security for Mobile Agents: Authenti-
cation and State Appraisal, in: Proceedings of the Euro-
pean Symposium on Research in Computer Security
(ESORICS), 1996

[Jer94] Jerney, John: AT&T PersonaLink Delivers
Some Magic, in: Pen-Based Computing, November
1994

Literature

13

