
An Approach to Solve the Problem of
Malicious Hosts

Fritz Hohl

Bericht Nr. 1997/03
March 1997

An Approach to Solve the
Problem of Malicious Hosts

Fritz Hohl

Email:Fritz.Hohl@informatik.uni-stuttgart.de

Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)

Fakultät Informatik
Universität Stuttgart

Breitwiesenstr. 20 - 22
D-70565 Stuttgart

Universität Stuttgart
Fakultät Informatik

An Approach to Solve the Problem of Malicious Hosts

1

1 Introduction

Mobile agent systems are expected to become the base
platform for an electronic services framework, especial-
ly in the area of Electronic Commerce. In this applica-
tion area, security is a crucial aspect since all parties
involved require the confirmation that none of the other
parties will break the rules without being punished. This
requirement is not always fullfilled even in the tradi-
tional, non-electronic commerce, but the anonymity of
a worldwide communication network and the ease of
the automatic exploitation of security gaps in electronic
applications make it necessary to meet this demand
when it comes to commercial transactions done by com-
puters.

Mobile agents are units that consist of code, data and
control information (e.g. thread states). Mobile agent
systems are platforms that allow mobile agents to mi-
grate between different nodes of the agent system. From
a more technical view, mobile agents can be compared
to programs that migrate to nodes autonomously, while
nodes offer the runtime environment of these programs
that include the program interpreters. Like in Mobile
Code systems like the Java applet system, one aspect of
security is the protection of the interpreter, the node or
host, against possible attacks of the mobile agent.
Therefore, some of the security mechanisms developed
in this field can also be applied to mobile agent systems,
e.g. sandbox security, i.e. the need of authorizing secu-
rity-sensitive commands like the deletion of a file by a
designated component. Other security mechanisms like
authentification of single agents, do not have a prede-
cessor in mobile code systems and have to be designed
out of standard cryptographic techniques like encryp-
tion or digital signatures.

The reverse security issue, the protection of an agent
from possible attacks by its hosts is new as there are
barely other areas where this aspect is important. Nev-
ertheless the protection of mobile agents from malicious
hosts is — at least from the viewpoint of the owner of
the agent — as important as the protection of the host
from malicious agents. Apart from organisational solu-
tions, no technical approaches to solve this problem ex-
ist so far. The solubility of this problem is even
estimated to be very low.

This paper presents an approach to solve most of the as-
pects of this problem, the problem of malicious hosts.
This approach will cost both execution time and com-
munication bandwidth and will require some time-criti-
cal restrictions, but gives the agent the possibility to do
some security sensitive work without the danger of an
immediate exploitation of sensitive data by the host.

The rest of the paper is organized as follows: After giv-
ing an overview over related work, in Section 3 several
security areas in mobile agent systems are identified and
characterized according to their solubility by existing
techniques. Section 4 focuses on one of these areas —
malicious hosts —, and presents approaches, that have
been taken into consideration so far to solve this prob-
lem. Section 5 analyses the problem of malicious hosts
and Section 6 proposes a new approach to solve this
problem. The two mechanisms, that are used by this ap-
proach, code messup and limited lifetime of agent code
and data are discussed in Section 7 and 8. The article
closes with a conclusion and some remarks about future
work.

An Approach to Solve the Problem of
Malicious Hosts in Mobile Agent Systems

Fritz Hohl (Fritz.Hohl@informatik.uni-stuttgart.de)

Institute of Parallel and Distributed High-Performance Systems (IPVR),
University of Stuttgart, Germany

Abstract
Mobile agents are often described as a promising technology moving towards the vision of a widely distributed
scalable electronic market. The deployment of electronic services, especially in the area of electronic commerce,
raises essential questions closely related to security issues. This paper tries to address these issues by providing a
taxonomy of security domains within mobile agent systems. The identified areas comprise protecting hosts against
malicious agents, protecting agents from other agents, protecting hosts from other hosts, and protecting agents
from malicious hosts. Whereas the first three security issues can be solved by applying traditional security mech-
anisms, new security techniques have to be developed to protect agents from malicious hosts. The paper analyzes
possible attacks of hosts and presents, based on this analysis, an approach to prevent malicious attacks. The ap-
proach, which is called Code Mess Up, consists of a combination of two mechanisms: The first mechanism dy-
namically generates a new and far less understandable version of the agent code. The second mechanism restricts
the lifetime of the agent’s code and data. It is shown that the application of these two mechanism can significantly
enhance the protection of agents against malicious hosts.

An Approach to Solve the Problem of Malicious Hosts

2

2 Related work

Since the area of mobile agents is rather new, there are
only few publications in the field of security in mobile
agent systems. In [FGS96a], Farmer et. al. employ two
application scenarios to analyze the new threats that
were added by the migration of agents, list security
goals and classify them into impossible goals like “Will
an interpreter run an agent correctly?”, easy goals like
the authentication of authors and senders of agents, and
possible, but not easy goals like “Can a sender restrict
his agents flexibility?”. In [FGS96b], the same authors
propose an architecture for mobile agents, that allows
agents to be authenticated and authorized using a “trust
theory”. In this theory, that is called state appraisal,
hosts can give different agents different permits, de-
pending on the current state of the agents and on the task
they have to do at this host. [IBM95] lists a short me-
nagerie of threats like trojan horses, viruses and worms.
Vitek analyzes in [Vit96] the problems of agents when
using object-oriented programming and proposes a tu-
pelspace approach as a secure communication means.
Gray describes in [Gra96] the authentication mecha-
nisms developed for AgentTcl. Tardo and Valente
([TV96]) describe the security infrastructure realized in
Telescript. Chess et al. propose in [CGH95] a frame-
work for mobile agents and describe observations on se-
curity issues of mobile agents. The authors state that it
is impossible to verify, that an arbitrary program is not
a virus. Furthermore, they list attainable goals like ori-
gin authentication or code integrity. Their conclusion is,
that although security represents one of the cornerstone
issues, not all goals can be achieved without the use of
trusted hardware. Ordille asks in [Ord96] “When agents
roam, who can you trust” and answers that a host can
only trust agents that have been never on untrusted hosts
before.

A huge amount of papers exist about “traditional” secu-
rity, i.e. such that do not consider mobile agents. Since
some security areas (like communication security, and
the authentication of immobile entities) do not need new
techniques, a lot of papers describe mechanisms that
can also be used in mobile agent systems. The reader is
refered to [Che97] for an analysis of TCP/IP threats,
[Sch96] for elementary security techniques or [Sta95]
for a more network-centric view.

3 Security areas of mobile agent systems

Mobile agent systems are platforms that allow mobile
agents, to migrate between different nodes of the agent
system. On a node, a mobile agent can interact with oth-
er agents locally (and globally in some systems) or it
can migrate to another node. Interaction consists in
communicating with other agents, requesting or provid-
ing services or creating new agents or terminating exist-
ing ones. Nodes, or mobile agenthosts are the “building
block” of the agent system; each host can be maintained
by another institution.

When it comes to security, this field can be divided in
different security “areas”, e.g. by identifying the differ-
ent attack “fronts”. These attack fronts distinguish the
“parties” involved (e.g. the agent and the host) and al-
low to identify the possible attacks between the parties.
In this paper, we distinguish four main security areas
(Fig. 1):

1. Security between two agents
2. Security between agents and hosts
3. Security between hosts
4. Security between hosts and unauthorized third

parties

In the following, every security area will be character-
ized by mechanisms, that have to be offered in this area
and by techniques, that may implement the mecha-
nisms.

3.1 Security between two agents

The problem addressed here is the security of agents
against other, malicious agents. Attacks of those may
include code and data manipulation by having physical
access to the code and data areas of the attacked agent,
masking of agents (i.e. faking a wrong identity), cheat-
ing (e.g. using a service without paying for it) and deni-
al-of-service (e.g. by filling a message buffer).

As this area does not address new security issues com-
pared to requirements imposed in “traditional” distrib-
uted systems, mechanisms that prevent such attacks
already exist, e.g.:

• the use of an agent language, that does not allow
others to have physical access to “private” data,
such as Java or the use of isolated address spaces

• authentication of agents, e.g. by using digital signa-
tures

• employment of a service contract mechanism (e.g.
[SL95])

3.2 Security between agents and hosts

This area can be divided in two subareas, since the rela-
tionships between agents and hosts is not symmetric:
Agents are basically programs that are executed by the
hosts, the hosts consists of agent code interpreters or at
least runtime environments.

3.2.1 Security of hosts against malicious agents

The attacks of malicious agents are basically the same

Host

Ag Ag

Host

Ag Ag

Unauthorized third parties

4

3
22

1 1

2a 2b

Fig. 1: Security areas of mobile agent systems

4

An Approach to Solve the Problem of Malicious Hosts

3

as those against other agents (physical manipulation,
masking, cheating, denial-of-service). The difference is
the greater impact of hosts, since they control the exe-
cution of agents. This enables host to stop suspicious
agents at any time.

The mechanisms against attacks of malicious hosts are:

• the usage of “secure” languages or isolated address
spaces

• authentication by using digital signatures or other
cryptographic techniques like the one described for
the mobile agent system AgentTcl ([Gra96])

• the usage of accounting and contract mechanisms
• the usage of resource control mechanisms such as

limited resource “accounts” and runtime restric-
tions

The second mechanism embodies a problem compared
to “traditional” authentication: As a mobile agent sys-
tem as a whole may be too large, it cannot be assured
that there may not exist two or more agents using the
same identification. This security gap can be exploited
either by the agent owner to create copies of an existing
agent or by attackers (e.g. hosts) that are able to “read”
existing agents, such as hosts.

3.2.2 Security of agents against malicious hosts

In this security area, the attacker is the host itself. The
host can observe every step the agent takes, read every
bit of code, data and state, and even manipulate the way
the agent works, as it, among other things, interprets the
agent code. Attacks include “normal” threats like mask-
ing and cheating, but also privacy breaking (the host
may read secret keys or electronic money), code, data
and state manipulation (e.g. taking away electronic
money or implanting virus code, and executing the
agent in a way other than specified by the language. De-
nial-of-service attacks are possible, too, but it is clear
that a host can easily deny the agent to work by simply
not to execute it.

The existing security mechanisms are not easily appli-
cable here since the aspect of securing a program
against a malicious interpreter is a rather new aspect.
The security of agents against malicious hosts will be
discussed in detail in Section 4.

3.3 Security between hosts

Like in the first section, possible attacks between hosts
include masking, cheating and denial-of-service. How-
ever, since hosts are stationary entities, the common
mechanisms for authentication, accounting and interac-
tion control can be applied here without modification.

3.4 Security between hosts and unauthorized third
parties

We have to consider in this area the security of commu-
nication between two hosts over an insecure network.
Other aspects like masking are included in the areas
above. The attacks and mechanisms here are well-
known and do not pose new questions. Therefore, this

area is omitted in this paper. Interested readers will find
overview and detail information in a couple of books,
e.g. [Sta95], [Sch96] and [Che97].

4 The problem of malicious hosts

As we have seen, widely distributed, open mobile agent
systems are intended to be used as a base for real-world
applications, especially in the area of electronic com-
merce. As they transport sensitive information such as
secret keys, electronic money and other private data,
they require the security of agents also against potential-
ly malicious hosts.

On the other hand, this problem has rarely occured in
applications so far since a program either was invoked
by the same authority that maintained the computer en-
vironment or because the maintaining institution was
trustworthy. Therefore, barely any solution exist in this
security area.

The only other area with comparable problems is the se-
curity of software against manipulation by users, in par-
ticular against unauthorized copying. Two approaches
have been developed to solve this particular problem.
The first one tries to bind the execution of a program to
the existence of a special medium or piece of hardware
(dongle). Therefore, the software tries to find out peri-
odically or at the start of the program whether it can ver-
ify the existence of the dongle. Since each user is
provided with only one dongle per program and because
the software does not start without it, the program can
be copied, but not used without the dongle. Unfortu-
nately, this approach is not applicable to our problem
since it solely solves jthe particular problem of the un-
authorized execution of a program. However, this ap-
proach does not provide any means against the potential
manipulation of the program by the user, and it is indeed
possible to break this kind of security by “cracking” the
program, i.e. by removing the part of the code that ver-
ifies the existence of the hardware. The second ap-
proach also requires the employment of special
hardware. This time, it is not a special addendum, but a
secured execution unit that protects the software from
being manipulated. One of these devices, the Citadel co-
processor [Pal94], was designed to act as a fast encryp-
tion processor (for the DES algorithm, see [Sch96] for
details), but also includes a whole microprocessor and is
able to run applications inside the chip. As it is protect-
ed against manipulation from the outside, even again
physical one, it can act as a secure “island” inside a hos-
tile environment, and this also includes the maintainer
of the computer system.

Apart from using trusted hardware, few approaches ex-
ist so far to solve the problem of malicious hosts. To
make the problem worse, thesolubility of this problem
besides the use of trusted hardware is estimated in the
literature as very small or even zero. Farmer, Guttmann
and Swarup ([FGS96a]) find it impossible to protect
agents from read attacks by the host, and recommend

An Approach to Solve the Problem of Malicious Hosts

4

not to let an agent carry secret informations. Harrison,
Chess, and Kershenbaum ([HCK95]) find it impossible
to prevent agent “tampering” unless trusted (and
tamper-resistant) hardware is available in hosts. Ordille
claims in [Ord96] that it is not possible to protect the
agent’s data while travelling, since hosts can alter an
agent’s data and send the changed agent into the net-
work. Other papers about security in mobile agent sys-
tems barely mention this problem and, to our
knowledge, none of these authors proposes a full-
fledged technical solution.

Although technical solutions, i.e. such that try to secure
agents by technical means, are not known yet, non-tech-
nical solutions for non-open systems exist. As we have
seen above, we can reduce the problem of malicious
hosts to an inner-institutional problem, if we let hosts
being maintained only by trustworthy parties. This ap-
proach seems to be taken by the only existing commer-
cial mobile agent system, AT&T’s PersonaLink
[Jer94], which uses General Magic Telescript technolo-
gy [GM96], and which offered mainly an advanced
email service. Further services could have been offered
by other companies, but this aspect never seems to have
been realized. The problem of thisorganisational ap-
proach is, that the resulting mobile agent system is not
“open” any more. It is thus not possible for a foreign
service provider to connect a new host as part of the
platform to the mobile agent system. Unfortunately, this
organisational approach also reduces the usefulness of a
mobile agent system as an infrastructural middleware
component, since it depends directly on the dissemina-
tion of the system and on the interconnectivity to exist-
ing services and information sources. As a
consequence, a single platform provider has to start
with a system that already has a critical mass in order to
get third parties using this system as a platform. The ad-
vantage of the organisational approach is, that general-
ly, no host is malicious, and the (hopefully) rare events,
that hosts are “turned up” by employees or foreign at-
tackers are handled and backed up by the maintaining
organization.

One could imagine to obtain a mobile agent system
without the problem of potentially malicious hosts by
an organisational approach that allows interested third
parties to connect their infrastructure to the system by
establishing an institution that examines these parties
and that offers an “ombudsman” service to both service
and platform providers on the one side and clients on the
other side. The problem is, that it may be extremely dif-
ficult to detect whether a given damage is caused by an
agent (and thus the client) or by the host (and thus the
platform providers). Moreover it is unclear how to get
compensation for it in a world-wide distributed system
that covers a lot of countries, and therefore juristic fron-
tiers.

Before we come to an analysis of the features of the
problem of malicious hosts, an example is presented
that will be used in the rest of the paper.

An example of an agent

An agent shall buy some flowers for a human user.
Therefore it inquires a trading component for a list of
addresses of service agents that offer theBuyFlowers
service. The agent migrates to every service provider of
the list, asking for the price for the requested flower
package. If this price is lower than a user-specified max-
imum price and lower than the lowest price so far, the
agent stores the new lowest price and the address of the
service provider. After having asked all the providers of
its list, the agent migrates to the provider with the low-
est price and buys the flowers using electronic cash that
it is carrying.

This “purchasing agent” carries sensible data that deter-
mines its behavior (e.g. the lowest price and the address
of the best provider) and is a typical example for agents
that carry confidential data.

Some authors would argument, that such an agent
should not exist, since it is comparable to a tourist
which obviously carries cash in the wallet and which
roams through a quarter that reacts on this behavior in
an unpleasant way. Therefore, an agent, as well as a
well-advised tourist should never carry sensitive infor-
mation through unknown territory. As we will see, this
conclusion does not need to be true, if we convert this
information into a form that villains cannot use easily.
Back to our example.

The purchase agent contains a data and a code area. En-
tries in the data area may include:

Address home = “PDA, sweet PDA”
Money wallet = 20$
float maximumprice = 20.00$
good flowers = 10 red roses
Address shoplist [] = empty list
int shoplistindex = 0
float bestprice = 20.00$
Address bestshop = empty

The central procedurestartAgent , that is called by
the host every time the agent arrives, could look like
this:

1 public void startAgent() {
2
3 if (shoplist == null) {
4 shoplist = getTrader().
5 getProvidersOf(“BuyFlowers”);
6 go(shoplist[1]);
7 break;
8 }
9 if (shoplist[shoplistindex].
10 askprice(flowers) < bestprice) {
11 bestprice = shoplist[
12 shoplistindex].
13 askprice(flowers);
14 bestshop = shoplist[
15 shoplistindex];
16 }

An Approach to Solve the Problem of Malicious Hosts

5

17 if (shoplistindex >=
18 (shoplist.length - 1)) {
19 // remote buy
20 buy(bestshop,flowers,wallet);
21 }
22 if (shoplistindex >=
23 (shoplist.length - 1)) {
24 go(bestshop);
25 }
26 else {
27 go(shoplist[++shoplistindex]);
28 }
29 }}

By now, we have seen that the problem of malicious
hosts is a relevant one, and that no satisfying solutions
exist so far. Therefore, we will now have a closer look
on the problem by analyzing its features.

5 Analysis of the problem of malicious hosts

For the analysis of the problem of malicious hosts, we
will examine the possible attacks a malicious host could
execute on this agent. After that, we will discuss how
these attacks could work and analyze which circum-
stances lead to the possibility of the attacks.

Possible attacks by the host

Now the possible attacks of a malicious host are exam-
ined:

1. Spying out code

The code of the agent has to be readable by the host. Al-
though this requirement can be restricted to the next in-
struction at a single point of time, this is no real help
since some hosts see almost all the code because they
execute much of the code (like e.g. the last host that is
visited in our example). If the code of the agent is not
significant for every agent, but for a whole class of
agents, the whole code of the agent may be known even
before execution time. If an agent is constructed out of
standard building blocks (which is no bad idea in terms
of code migration costs and ease of agent construction),
also the detail specification is available for building
blocks like libraries or classes. Furthermore, these
blocks can be explored by blackbox tests. Knowing the
code leads to knowledge about the execution strategy of
the agent, knowledge about the exact physical structure
of code and data in the memory of the host and some-
times (by using data statements like initial variable as-
signments) to knowledge about parts of the agent data.

2. Spying out data

The threat of a host reading the data of an agent is very
big as it leaves no trace that could be detected (although
this is not necessarily true for the consequences of this
knowledge, but they can occur a long time after the visit
of the agent on the malicious host). This is a special
problem for data classes such as secret keys or electron-
ic cash, where the simple knowledge of the data results
in loss of privacy or money. In our example, the money

variable would be security sensitive when it is repre-
sented in a way that the binary number of the “coin”is
the money and therefore can be used as real world cash.
But there are also other classes of data, which can be
used for an attack although they have not the nature of
classes like e-cash. In our example, the knowledge of
the maximum price or the best price so far can be used
by a malicious host to offer flowers for a slightly lower
amount than the competitors, although the regular price
is much lower.

3. Spying out control flow

If the host knows the entire code of the agent and its da-
ta, it can determine the next execution step at any time.
Even if we could protect the used data somehow, it
seems rather difficult to protect the information about
the actual control flow. This is a problem, because to-
gether with the knowledge of the code, a malicious host
can deduce more information about the state of the
agent. In our example, we can recognize, whether an of-
fer is better or worse than the best offer so far by watch-
ing the control flow, even if we could not read any
variable.

4. Manipulation of code

If the host is able to read the code and if it has access to
the code memory, it can normally modify the program
of an agent. It could exploit this either by altering the
code permanently by implanting a virus, worm or trojan
horse, or, temporarily, by altering the behavior of the
agent on that particular host only. The advantage of the
latter approach consists in the fact, that the next host of
the migrated agent cannot detect a manipulation of the
code (since it is not modified). Applied to our example,
a malicious host could modify the code of the agent with
the effect that it prefers the offer of a certain flower pro-
vider, regardless of the price.

5. Manipulation of data

If the host knows the physical location of the data in the
memory and the semantics of the single data elements,
it can modify data as well. In our example, the host
could shorten the shop list after setting the offer of the
local flower provider as the lowest, regardless of the
correctness of this information.

6. Manipulation of control flow

Even if the host does not have access to the data of the
agent, it can conduct the behavior of the agent by ma-
nipulating the control flow. In our example, the host
could simply alter the flow at the second or third if state-
ment, resulting in working incorrectly and e.g. taking
the price of the host as the lowest.

7. Incorrect execution of code

Without changing the code or the flow of control, a host
may also alter the way it executes the code of an agent,
resulting in the same effects as above.

8. Masquerading

Normally, it is the deed of a host that sends an agent to

An Approach to Solve the Problem of Malicious Hosts

6

a receiver host to ensure the identity of that receiver
(and that what it will do in most cases). This attack is
listed here, because a third party may eventually inter-
cept or copy an agent transfer and start the agent by
masking itself as the correct receiver host. This attack
may result in one of the other attacks, e.g. in reading
code and data of the agent.

9. Denial of execution

As the agent is executed by the host, i.e. passive, the
host can simply not execute the agent.

10. Simultaneous attacks

Most of these attacks can be performed simultaneously,
which normally leads to a greater attack potential, e.g.
when knowing the maximum price and manipulating
the control flow in order to let the agent buy the flowers
at the maximum price.

Attack analysis

Now, the different attacks will be analyzed by giving
some observation about the nature of the threats togeth-
er with some remarks about how potential countermeas-
ures could work.

ad 1 (Spying out code)

We can distinguish here between the knowledge of

• what the code as a whole does exactly, i.e. the detail
specification and

• what each line of code does exactly

As it was mentioned before, the first point cannot be
protected if we use standard building blocks such as li-
braries, and which is not very security sensitive. In con-
trary to that, the second point is very sensitive, as it is
the knowledge ofwhere to start in order to get a modi-
fied behavior.

ad 2 (Spying out data)

Here, we can distinguish also between

• the knowledge about which data elements exist
• the contents of these elements
• the coding of the elements in the memory

Again, the first point cannot be protected, but the sec-
ond has to be protected in order to evade read attacks.
Again, the third point allows the attacker to know which
bit to modify in order to modify the data element, an at-
tack which is well-known in the area of computer
games, where players can “poke” specific values into
the memory (often supported by special hardware), re-
sulting in getting more game lifes or reaching higher
game levels. The requirement of the second point, the
protection of the contents of data elements against read
attacks can be lowered from a time-independent re-
quirement to a protection for a guaranteed amount of
time if it is possible to attach an expiration date to every
element after which this element cannot be used any
longer.

Another observation is that data can be divided in three
classes: The data that does not need to be protected from

read attacks (e.g. the home address), the data that need
to be protected only for the execution interval at a host
(e.g. the maximum price), and the data that must be kept
secret from the attacker (e.g. a secret key).

ad 3 (Spying out control flow)

The different points here are the knowledge about

• the actual control flow after the end of the execution
• the relation of control flow and execution semantics

Again, the first point cannot be protected (as the host
executes the agent), but if it is possible to solve the sec-
ond one, the host would not know where to manipulate
in order to alter the control flow in a directed manner.

ad 4 (Manipulation of code)

Permanent code manipulation is impossible if you can
cryptographically sign the code of the agent. If the code
does not change over execution time (i.e. over the whole
lifetime of the agent), this is no problem, as the owning
party can sign the agent at start time. If it is possible to
use standard libraries, it is very easy to sign them by the
library programmer and store them at different locations
of the agent system, resulting in a more efficient code
migration. If the code changes over the execution time,
other cryptographic models can be used, but the per-
formance and programming advantages make the use of
standard libraries more attractive anyway.

As we have seen in the first remark, code can only be
manipulated in a directed manner, if the attacker knows
what each line of code does exactly and where this line
is stored. If we could protect this information from the
host, even temporary code manipulation attacks would
be impossible.

ad 5 (Manipulation of data)

Data elements can be divided in such elements that
might be modified by correct code during a visit on a
host and elements that will not be modified. The latter
portion can be signed (or even crypted when the code
does not read it) and is therefore protected during that
visit. The first class of data could also be protected, if it
were possible to hide the information about the coding
of the elements in the memory.

ad 6 (Manipulation control flow)

Like in the last two paragraphs, we could protect the
control flow from being manipulated if we could hide
the information about the relation of control flow and
execution semantics.

ad 7 (Incorrect execution of code)

Is solved if the manipulation of code and control flow
can be protected.

ad 8 (Masquerading)

Any party can authenticate another party if it can verify
the existence of a secret date of the other party undis-
turbed, i.e that the authenticating party has to be auton-
omous from the other party. Unfortunately, this is a
problem for agents when trying to authenticate their

An Approach to Solve the Problem of Malicious Hosts

7

hosts as they were executed by the hosts. If we could
give an agent its autonomy back then even a passive
component like a mobile agent could check its host. In
this context, autonomy means that the host cannot read
at least some of the agent data (e.g. a public key), and
that it cannot modify the code and control flow of the
agent.

ad 9 (Denial of execution)

Of course, a host may deny to execute any agent, but if
we can construct an organizational framework that forc-
es the host to proof the execution of an agent, his attack
could be avoided. One way to do this is to e.g. marking
unwilling hosts as “bad” with the consequence that they
do not receive agents any more. This approach seems
not to be of real concern, as this attack is rather obvious
and does not lead to bigger problems like the loss of pri-
vacy or money and cannot be distinguished from a fail-
ure of the host. If this kind of approach is followed, the
proof of execution could be a data element that is gen-
erated periodically by the agent, and which can be prob-
ably protected by hiding the creation process in the
code.

Summary

As seen above, most of the security problems can be
solved if the host is not able to determine the relation
between single lines of code and their semantics and the
relation between memory bits and the semantics of data
elements, respectively. A host can of course modify
code, data and control flow anyway, but not with a com-
puted effect. This results for a host in three choices: it
can either execute the agent undisturbed, execute the
agent by switching some bits, not knowing about the ef-
fect on the execution or the host can take the agent with-
out executing it.

Unfortunately, a program together with its inital code
can be reengineered by a human. A good example are
the crackers of the eighties, people that were able to find
and remove protection code implanted in software such
as games. Although game programmers took strong ef-
fort to hide protection details, advanced crackers suc-
cessfully broke every protected program, and they had
not a detailed specification of the code as we will have
with standard libraries. This was only possible because
the crackers had sufficient time to analyze a program. If
we transfer this knowledge to mobile agents, we can
state that a human is able to reveal any of the relations
listed above and to write a tool that allows manipulating
code, data and control flow if it has enough time.

6 Code Mess Up: an approach to solve the prob-
lem

An attacker needs a certain amount of time to read the
data, understand the code and, thereafter, manipulate
both in a meaningful way. The basic idea of the ap-
proach described now is simply not to give him enough
time to do this. This can be achieved by a combination
of the following two ideas:code mess up and limited

lifetime of code and data.

To give an impression of this approach, an example
shows a typical “lifecycle” of our example purchase
agent which is protected by this mechanism:

Our agent starts from its home host (Home) and mi-
grates to host alpha. Once arrived, it contacts a trader
agent T, which provides a list of addresses of agents that
offer the flowershop service. Two agents, that offer this
service (s1 and s2) reside at the same host (alpha), so
our purchase agent contacts them, asking for their price
for the flowers. Thereafter, the agent migrates to the last
address of its list, which points to an agent residing s3
on host beta. Again, the agent asks for the price. With
the gathered information, the agent wants to migrate to
the service provider with the lowest price, which is s3
(therefore, it does not need to migrate). The purchase
agent acquires its flowers with some electronic cash. Fi-
nally, our agent migrates to its home host.

Let us take a closer look on how the agent got protected.
For the first migration, the agent’s home host constructs
a new form of the agent’s code which does exactly the
same as the one before, but which “looks different”, i.e.
has another inner structure. At the same time, the home
host takes the agent’s data, mixes the original data ele-
ments up and distributes this mixture to a list of new
data elements. The new form of the code reflects this
data conversion by using the right “decryption” code in-
stead of just naming the original variables. Before the
conversion, expiration dates are attached to the data el-
ements which are used for interaction with the “outside
world” (i.e. outside the agent) in a manner, that no one
can falsify the dates by using digital signature mecha-
nisms like DSS (compare, e.g. [Sta95]). This means that
electronic cash now also bears an expiration date, secret
keys are valid only for a certain amount of time and so
on. Finally, the home host signs the code of the agent to-
gether with another expiration date. Then the agent is
sent to host alpha. We assume now hosts alpha and beta
to be malicious, i.e. to attack the agent. As the host (or
the human which has access to it) has now first to ana-
lyze the agent, some seconds pass (the problem for the
malicious host is, that it has never seen the form of this
code before, although it knows the original code very
well). We further assume that the expiration date of both
the code and the data elements expires as they are set
only to a few seconds. The host, after having analyzed
the agent, can arbitrarily read and manipulate data. But
if it tries to use the read data, or to relay the manipulated
agent, the receiving host will reject the data or the agent

Home alpha beta

T
s1

s2

s3

Fig. 2: Lifecycle of a purchase agent

An Approach to Solve the Problem of Malicious Hosts

8

because their corresponding validity dates are expired.
Although the host is malicious, it invoked the agent nor-
mally, and after some time,it migrates to host beta,
where the same game goes on. Since also host beta
needs more time to analyze the agent than code and data
are valid, beta cannot do anything with it. Even if host
alpha and beta collaborate, they cannot crack the agent
in time as it does not matter whether host alpha or both
hosts exceed the expiration dates. The only possibility
to attack the “turtle shell” of the agent is when it com-
municate with others, e.g. the host or other agents, as
long as the agent cannot use crypted communication.
The usage of cryptography in communication with oth-
er agents is useless when the communication partner is
an “agent” of the malicious host or when the host can at-
tack the other agent.

The underlying idea of using expiration intervals and
conversion mechanisms can be used in mobile agent
systems if:

1. we can find the minimal time for “cracking” the
new code and data

2. we set the expiration date of data elements to this
duration

3. the agent can do an significant amount of work in
this interval

4. we can periodically create new code, which
5. is created automatically, i.e. by a tool
6. does the same as the old code
7. is as hard to analyze both by tools and

humans, i.e. that creates a new relation
between elements as variables or lines of
code, and application semantics

8. the code variations build up a large space (i.e. one
with many variants)

9. the usage of data that bear expiration dates does
not restrict the applications too much

If we can meet these requirements, we would obtain an
agent system where agents can be protected against

• being spied out/directed manipulation of code
before the expiration date

• being spied out/directed manipulation of sensitive
data before the expiration date

• being spied out/directed manipulation of control
flow before the expiration date

• directed incorrect execution of code

There is no protection after the expiration date, there-
fore all effects that can occur from the knowledge of
these elements and their potential manipulation have to
be handled by not accepting “expired” code and data by
every host of the system (if a host accepts expired code
or data, it has a problem, because no other host will ac-
cept them, so the host itself has a vital interest in reject-
ing expired elements). Of course the host may modify
code, data and control flow at its will, but as it cannot
see what it is doing, it cannot forsee the effects, as well
as it can read the lines of code and the data bitstring, but
this knowledge is not easily connected to the knowledge

of the essential program structure or the knowledge of
semantic data units.

As the agent is now autonomous again for a certain in-
terval, it can also authenticate the host (by bearing a
public key of it and checking the existence of the private
key by the known mechanisms), so masquerading is not
possible any more.

We will now concentrate on the question, whether and
how the above requirements could be met.

If we have mechanisms that allow to derive a new
messed up code version from the original automatically,
we should be able to determine the minimal crack time
of humans without tools by measuring the time needed
from test “crackers”. This duration will last at least
some seconds and should grow at least linear with the
lines of code that have to be read. The minimal time for
an automated approach can be determined with the
same mechanisms that allow to compute the equivalent
time for the decryption of cryptographic data, i.e. we
can determine this time by constructing an correspond-
ing mechanism. So if we adapt the mechanism, we
should have at least a few seconds as the expiration du-
ration, which should be enough to let the agent do some
useful work.

Requirements four to eight depend on the way, the
mechanisms for constructing new versions out of old
one work.

7 Mechanisms to “mess up” code

We need a way to transform a “normal”, i.e. good read-
able and understandable piece of code (e.g. a part of the
standard library) to a form which is as less readable and
understandable as possible, i.e. we want to find a way to
mess up code. There are barely mechanisms to mess up
code in a structured way (although some might say that
such a mechanism is called “ordinary programming”),
but there is some research in the field of software engi-
neering, that tries to figure out how code has to look like
to be readable, and we simply can try to invert these
guidelines. Such guidelines can be found e.g. in [KP78]
or [SPC89] and they often state things like:

• Use variable names that mean something.
• Modularize. Use subroutines.
• Choose a data representation that makes the pro-

gram simple.

Code mess-up mechanisms can use these guidelines by
creating code that violates these directives. One poten-
tial mechanism, which can be calledvariable recompo-
sition, takes the set of program variables, mixes the
contents of the variables up and creates new variables
that contain some bits of data from some of the original
variables and adapts the corresponding variable access-
es in the program code. In Fig 3a, you can see the orig-
inal variable access, Fig. 3b defines a scheme for
recomposing two new variables, v23 and v19 from the
contents of three of the original variables. The new var-

An Approach to Solve the Problem of Malicious Hosts

9

iables access code, Fig. 3d, can therefore be created au-
tomatically (given the recomposition scheme) by using
conversion functions (see Fig. 3c) that create the origi-
nal values out of the new variables. As there is no direct
relationship between variables and processing model el-
ements (e.g. the maximum price from our example), the
variable names do not mean anything anymore and the
data representation is rather complicated.

Another family of mechanisms,structure dissolving,
tries to eliminate program structure like blocks or pro-
cedures and creates a piece of code that contains almost
no inner structure anymore. Some of the mechanisms
that belong to that family are:

• dissolving small variable scopes into global ones
• replacement of procedure calls by procedure code
• replacement of blocks by using “goto”-like state-

ments

The possibilities of structure dissolving is restricted by
the “outer” structure of the code, i.e. by procedures and
functions that are visible to the outside world and which
have therefore to exist in the program.

The last presented mechanism is calledconversion of
compile-time control flow elements into run-time data
dependend jumps.Control flow elements likeif and
while statements allow the programmer to imagine
the potential control flow even at compile time as these
statements make control flow explicite. If we convert
these elements into a form that is dependent of the con-
tent of variables, the control flow cannot be determined
as easily as before. This dependence can be achieved by

Fig. 3a: original variable access

8 buy(bestshop,flowers,wallet)
9 go(home)

Fig 3d: new variable access

7 buy(c7(v23[0]+v19[4]+v23[3])
,c4(v19[0]+v19[3]+v23[1]),

c3(v23[2]+v19[1]+v23[4]))

8 go(c34(v21[4]+v19[2]+v21[2]))

bestshop flowers wallet

v23 v19

Fig 3b: variable recomposition

Fig 3c: conversion functions

public Address c7(Bitstring b)
public Good c4(Bitstring b)
public Money c3(Bitstring b)
public Address c34(Bitstring b)

the usage of jumps that are bound to variable contents,
e.g. switch-statements. The effect can even be strength-
ened by using complex variable expressions instead of
using simple variables.

While the Software Engineers give us statements about
how to mess up code in order to restrict the timely com-
prehension by humans, there is a related area which is
especially interesting for our purposes: the field of re-
engineering because there the aim is to transform bare
code to a documented form of software, as this is exact-
ly what we want to prevent, and as it can give us valua-
ble informations about what aspects are hard to analyze
and the role of tools in doing the transformation. For in-
formation about which approaches exist in the field of
program understanding, the reader is refered to e.g.
[Rug96].

Another source of information about how mess up
mechanisms should look like is the work about automat-
ed code analysis in the field of programming languages
and compiler construction (see e.g. [ASU86]). An ex-
ample of an algorithm that can be used for code mess-
up purposes is theelimination of common expressions
where, at compiletime, expressions, that have been
computed before, are used for replacing expressions
that compute the same value. This mechanism results in
fewer code, higher speed and, important for us, a more
difficult program, as some semantic relationships of the
original program might be deleted by this optimization
technique. As the target of such techniques is the opti-
mization of code in terms of speed and space, software
engineering values like readability might be violated
(which does not matter as these are compiler mecha-
nisms, the programmer will hardly ever see the opti-
mized code).

Another example of the usage of mechanisms for opti-
mizing code are the approaches to detect dead, i.e. un-
used code. This time, we do not want to use this
mechanism for our purpose, but we want to prevent the
successful usage of this technique as the extistence of
dead code also makes it harder to understand code.
Therefore, when we want to insert dead code into an
agent, we have to take precautions in form of finding
ways to circumvent the detection mechanisms. For that
purpose, we have to analyze the detection algorithm.
One of these algorithms uses data flow analysis to de-
tect statements that produce results that are never used
afterwards. If we simply fake the use of the results of the
inserted code, it cannot be detected by this method any
more.

As we saw, there are several mechanisms that can be
used for messing up code, and it is far better to use some
of them in parallel than just using a single mechanism
since it is easier for a human to concentrate on one issue
than analyzing a complex code structure.

To give an impression of how code could look like,
here’s a messed-up version of the purchasing agent ex-
ample:

An Approach to Solve the Problem of Malicious Hosts

10

1 int v1[] = new int[11];
2 Object v2[] = new Object[10];
3 float f1 = 22002.0f;
4 Agent2 v3 = this;
5 Agent2 v4 = null;
6 Agent2 v5[] = null;
7 v1[0] = 3; v1[1] = 1; v1[2] = 5; v1[3] = 7; v1[4] = 2;
8 v1[5] = 6; v1[6] = 4; v1[7] = 8; v1[8] = 9; v1[9] = 10;
9 v1[10] = 1;
10 v2[0] = “BuyFlowers”; v2[1] = null; v2[2] = “xxv”;
11 v2[3] = null; v2[4] = “10 red roses”;v2[8] = null; v2[9] = null;
12 public void startAgent() {
13 for (int i=0; i<1; i++) {
14 if ((((String)(s12(6,v5,null, 0.0f))).equals(v2[2]))) {
15 v5 = ((Agent2[])
16 (s12(10,(Agent2)(s12(7,v2[8],v2[3],10.0f)),(String)v2[0],20.0f)));
17 s12(1,(Agent2)(s12(5,v2[3],v2[8],(float)v1[1])),null,20.0f);
18 }
19 if (((Boolean)(s12(9,new Float(((Agent2)
20 (s12(5,null,null,(float)v1[10]))).askprice((String)v2[4])),
21 new Float((f1 - ((int)f1 / 1000))),0.0f))).booleanValue()) {
22 f1 = (float)((int)f1 / 1000) +
23 ((Agent2)(s12(5,null,null,(float)v1[10]))).askprice((String)v2[4]);
24 v4 = (Agent2)(s12(5,null,v2[1],(float)v1[10]));
25 }
26 if (((Boolean)(s12(8,new Integer(v1[10]),
27 ((Integer)s12(4,v2[8],v2[3],13.0f)),0.0f))).booleanValue()) {
28 s12(2,v4,v2[4],(float)((int)f1/1000));
29 }
30 if (((Boolean)(s12(8,new Integer(v1[10]),
31 ((Integer)s12(4,v2[8],v2[3],0.0f)),35.3f))).booleanValue()) {
32 s12(1,v4,null,0.5f);
33 }
34 else {
35 s12(1,v5[++v1[10]],v2[1],0.0f);
36 }
37 }}
38 public Object s12(int i, Object o, Object p, float f) {
39 if (i == v1[1]) s24((Agent2)o);
40 if (i == v1[4]) s26((Agent2)o,(String)p,f);
41 if (i == v1[0]) return(new Integer(v5.length));
42 if (i == v1[6])
43 return(new Integer(((Integer)s12(3,null,null,0.0f)).intValue() - 1));
44 if (i == v1[2])
45 return(v5[(int)f]);
46 if (i == v1[5])
47 if (o == null) return(“xxv”);
48 if (i == v1[3])
49 return(s27());
50 if (i == v1[7])
51 return(new Boolean(((Integer)o).intValue() >=
52 ((Integer)p).intValue()));
53 if (i == v1[8])
54 return(new Boolean(((Float)o).floatValue() <
55 ((Float)p).floatValue()));
56 if (i == v1[9])
57 return(((Agent2)o).s28((String)p));
58 return(null); }

An Approach to Solve the Problem of Malicious Hosts

11

Although it does the same as before, it is far less under-
standable. It could have been produced automatically
(for this paper, it was done manually) and does not run
much slower than the original (in fact, a corresponding
Java program is a factor 1.5 slower and twice as long).
The used code mess-up mechanisms (variable recompo-
sition, conversion of compile-time control flow ele-
ments into run-time data dependent jumps, and partial
replacement of procedure calls by code insertion) have
been described above.

We now have some mechanisms that allow us to mess-
up code, but there is a requirement that we did not have
taken into account yet: the question of whether the code
variants build up a space that is large enough. If this is
not the case, an attacker could compute some variants in
advance and then simply compare the computed code
variant and the code of the agent. We can state that all
mechanisms meet this requirement, that offer variants
that can be produced by using a numeral argument. If
we take e.g. variable recomposition, the ways we can re-
arrange the variables are not limited by a number that is
small enough to allow to build up a “dictionary of ver-
sions” in advance and we could design this mechanism
in a way where the rearrangement is described by an
“index” number.

Concluding the question of how the code can be con-
verted into a less readable form, we can state that there
seems to exist promising mechanisms that can be de-
rived from research in the field of software engineering,
code optimization, and reverse engineering.

8 Limited lifetime of code and data

Apart from code mess-up, another big problem seems to
be the last requirement, the question of whether the now
time-dependent execution model restricts the kind of
applications that may use the mobile agent system.

Since we have to take into consideration the fact that an
attacker can “crack” an agent if it has enough time, we
have to find a way to compensate this possibility. One
way to do this is to make relevant parts of an agent
invalid after a specified interval. Therefore, expiration
dates have to be appended to at least some elements of
the agent. Since we have to do this in an unfakeable
way, we can use digital signatures (an existing crypto-
graphic technique), that sign the combination of data el-
ement and expiration date. Unfortunately, this means,
that only a trusted authority, normally the owner of the
agent, can issue information that bears an expiration
date, and there is no way for an agent during its life to
get new expirable information elements but from such a
trusted party. Fortunately, only some data carried by the
agent have to bear expiration dates. The characteristics
of the elements of this class of data is, that they are self-
contained documents, that can be exchanged for other
goods or services or that prove identity (as the identity
also can be used for getting goods, services or authori-
sation). Elements, that have these characteristics, can be

called “tokens”, and, in real world, they rarely bear ex-
piration dates. Typical tokens of the real world are
coins, identity cards or permits.

A token in a mobile agent system should consist of the

original data (the body), e.g. the electronic money bit-
string, the identification of the issuer and the expiration
date. The whole element is signed by a signature mech-
anism like DSS or PGP. These mechanisms use secret
keys which belong to the signee, therefore they have to
know which party pretends to have issued that docu-
ment.

Security sensitive informations are e.g.:

Electronic Money

Here the expiration date means, that noone will accept
the money after this date. This results in the need of the
party which accepts valid money to bring it to a publi-
cally trusted party, e.g. a bank, before it expires, which
can be problematic when failures, e.g. a network parti-
tion, occur.

Cryptographic Keys
As also keys expire after some time, they are more of
the session key type (which are often valid only for a
certain interval), and are known to a second party, i.e.
the partner to which the protected communication will
take place. It is interesting to note that public keys are
not tokens, it is enough to have the guarantee that the
host may not modify them during the protection inter-
val. If an agent wants to communicate with another
agent over a protected communication channel, it has to
get its public key (e.g. by bearing it). Then, a session
key can be generated dynamically and sent to the part-

signature

Body

Issuer

Exp.date

Fig. 4: Token structure

agent A

agent B

50

accept | reject

communication channel

protected by session

key

Fig. 5: Interaction between agents

An Approach to Solve the Problem of Malicious Hosts

12

ner crypted with a public key scheme like RSA. The en-
cryption of the communication then can take place
using the session key, which in return has to bear a ex-
piration date.

The agent as a whole
As it is the main target of attacks by a malicious host,
especially the agent itself has to bear an expiration date.
No host or other party should accept arriving agents that
are expired or the interaction with expired agents as
they may be “taken over” by a malicious host.

Information elements, that are not tokens, need not be
protected by expiration dates. It is enough to have the
affirmation, that these elements are not known to the
host unexpectedly for the duration of the expiration in-
terval of the agent. In our example, almost all elements
except the electronic money are not tokens.

The difference of tokens to e.g. coins is the duration of
the validity as coins are valid for a reasonable amount
of time. This can consitute a problem, as it is possible
by failures or by attacks of the host for the tokens to be-
come invalid. Although not critical for identity tokens,
the value of a token is severely affected by this. There-
fore, token interaction has to be handled as transactions
that can not be committed before the tokens are made
persistent in such a way, that an attacker cannot destroy
them.

Like tokens, agents can also become invalid due to fail-
ures or attacks. Although this causes no direct loss of
value (except the problem of tokens described above), it
is a typical denial-of-service problem, that have to be
handled somehow. Fortunately, a agent system has to
offer mechanisms that handle the loss of agents due to
failures, e.g. network failures. Therefore, it can be ar-
gued that the same mechanisms can be used for han-
dling agent expiration problems. The only modification
that have to be made is to also consider a malicious host
as a potential cause for the loss of agents, like the failure
of a network connection.

9 Further attacks

If there is an agent protection scheme like the one de-
scribed in this paper, one can imagine attacks that rely
on the characteristics of this scheme. One attack issab-
otage, or the trial to destroy parts of the agent without
being detected. As an agent contains data that might
change during execution, the attacker can simply modi-
fy single bits of the data area without knowing about the
effects for the agent. Fortunately, this attack is very
close to the problem of data, that is sent over an insecure
network. Therefore, similar error detection or even cor-
rection mechanisms like CRC can be used as long as the
attacker cannot detect the concrete structure of the
mechanism (as it is easy to circumvent a CRC algorithm
if one knows the exact mechanism and if it can see the
borders of the protected data elements).

Another attack is theblack box test. Its aim is to deter-
mine characteristics of the inside of the “black box” by

executing the box with different input parameters and
by watching the effects. The effects can be formal re-
sults like output values or characteristic “activity pat-
terns”. In our example, the attacker could execute the
agent until it tries to buy the flowers, starting every time
with the initial agent. The only value that is changed
over the trials is the price for the flowers. After the agent
finally wants to buy, the attacker knows the price that is
both the lowest so far and that is below the maximum
price. Even if the agent would not buy the flowers im-
mediately (as it tries to ask at least three different pro-
viders), the attacker can watch, whether the data of the
agent has changed. If this is the case, it is very likely,
that this agent has memorized a better price. If it comes
to countermeasures, two goals have to be reached: first,
the parallel execution of the same agent has to be sup-
pressed (e.g. by using a trusted third party that is in-
formed by the agent about its execution), second, the
very fast execution of an agent has to be suppressed
(e.g. by using a similiar interaction with a trusted host).
Finally, activity patterns can be covered up by using
dummy code.

The list of possible attacks cannot be complete as they
rely only on the imagination of the attacker and the de-
tails of the implementation of the mechanisms, so this
aspect is another subject of future research.

10 Conclusions and Future Work

With the employment of Code Mess-Up techniques, we
have devloped a non-cryptographic agent protection
scheme that is build up like any cryptographic mecha-
nism: we transformed readable input (i.e. code and data)
to an unreadable form by a mechanism, that cannot be
inverted easily with the current knowledge. If it can be
inverted easily by a new algorithm in the future, it
would solve some major problems of other fields like
software engineering. In contrary to cryptographic
schemes, we did not assume our mechanism to protect
data a very large amount of time like months or years,
but only a comparable short time like minutes or hours,
and we therefore have to handle the effects of this as-
pect.

As the protection is based on the unreadability of code,
the protection is the harder the more unanalyzable the
used agent language is. Therefore, code mess up is used
best together with a machine-code like language like
Java Bytecode or low Telescript, which also offer a bet-
ter performance than their interpreted high-level equiv-
alents.

Code mess up does cost something, both in terms of
speed and of space, and the processing model is more
complex due to expiration aspects. Therefore, this
scheme should be mainly used for agents that need to be
protected, e.g. because they carry money or other sensi-
tive data. The global usage of this mechanism even for
non-sensitive applications may be too expensive, but
because code mess up infrastructrure is needed only for

An Approach to Solve the Problem of Malicious Hosts

13

protected agents, agents of both protection levels can
exist and interact in parallel.

Since code mess up is also applicable to mobile code
mechanisms like the Java applet model, it can also pro-
tect these mobile code units (e.g. applets) from attacks
of their hosts, i.e. browsers and users.

As we have seen, it is practically possible to protect
agents from malicious hosts by using code mess-up
techniques. Future work has to prove this claim.

Further steps comprise the implementation of some
code mess up mechanisms and the estimation of their
protection against human, tool-aided and automatic at-
tacks. Therefore, tools and other programs have to be
written that try to “decrypt” messed up code.

Apart from the examination of the protection strength of
the code mess up mechanisms, applications that use mo-
bile agent technology have to be examined in order to
find the practical problems that expiration date process-
ing poses on them. In order to do that, the infrastructure
components that allow the system to use expiration
dates have to be implemented, e.g. modified host soft-
ware that rejects expired agents, trusted node software
that is able to mess up normal agents or “refresh” them
after the expiration interval.

Finally, the costs of this protection scheme have to be
compared to protection schemes that do not use code
mess up.

Once implemented, code mess up offers a mechanism,
that allows Mobile Agents to migrate not only to trusted
nodes, but , in between times, to any host without hav-
ing to fear successful attacks by malicious hosts.

Literature

[ASU86] Aho, Alfred V.; Sethi, Ravi; Ullman, Jeffrey
D.: Compilers: Principles, Techniques and Tools, Add-
ison-Wesley, 1986

[CGH95] Chess, David; Grosof, Benjamin; Harrison,
Colin: Itinerant Agents for Mobile Computing, IBM
Research Report RC 20010 (03/27/95), IBM Research
Division, 1995

[Che97] Cheswick, William R.: Internet Security and
Firewalls : Repelling the Wily Hacker, Addison-Wes-
ley, 1997

[FGS96a] Farmer, William; Guttmann, Joshua;
Swarup, Vipin: Security for Mobile Agents: Issues and
Requirements, in: Proceedings of the National Informa-
tion Systems Security Conference (NISSC 96), 1996

[FGS96b] Farmer, William; Guttmann, Joshua;
Swarup, Vipin: Security for Mobile Agents: Authenti-
cation and State Appraisal, in: Proceedings of the Euro-
pean Symposium on Research in Computer Security
(ESORICS), 1996

[Jer94] Jerney, John: AT&T PersonaLink Delivers
Some Magic, in: Pen-Based Computing, November
1994

http://www.volksware.com/pbc/article/pers4-9.htm

[GM96] General Magic: The Telescript Reference
Manual, 1996
http://www.genmagic.com/Telescript/Documentation/
TRM/

[Gra96] Gray, Robert: Agent Tcl: A flexible and secure
mobile-agent system, in: Proceedings of the Fourth An-
nual Tcl/Tk Workshop (TCL 96), Monterey, California,
July 1996

[HCK95] Harrison, Colin; Chess, David; Kershen-
baum, Aaron: Mobile Agents: Are they a good idea?,
Research Report, IBM T.J. Watson Research Center,
1995

[IBM95] IBM Corp.: Things that Go Bump in the Net,
1995
http://www.research.ibm.com/massive/bump.html

[KP78] Kernighan, Brian W.; Plauger, P.J.: The Ele-
ments of Programming Style, McGraw-Hill, 1978

[Ord96] Ordille, Joann J.: When agents roam, who can
you trust?, in: Proc. of the First Conference on Emerg-
ing Technologies and Applications in Communications,
Portland, May 1996

[Pal94] Palmer, E: An Introduction to Citadel - a secure
crypto coprocessor for workstations, in: Proceedings of
the IFIP SEC’94 Conference, 1994

[Rug96] Rugaber, Spencer: Program understanding.
Encyclopedia of Computer Science and Technology,
1996. To Appear.

[Sch96] Schneier, Bruce: Applied Cryptography, John
Wiley &Sons, 1996

[SL95] Sandholm, T.; Lesser, V.: Issues in Automated
Negotiation and Electronic Commerce: Extending the
Contract Net Framework, in: Proceedings of the First
International Conference on Multiagent Systems (IC-
MAS-95), 1995

[SPC89] The Software Productivity Consortium: Ada
Quality and Style, Van Nostrand Reinhold, 1989

[Sta95] Stallings, William: Network and Internetwork
Security, IEEE Press, 1995

[TV96] Tardo, Joseph; Valente, Luis: Mobile Agent Se-
curity and Telescript, in: Proceedings of IEEE COMP-
CON’96, 1996

[Vit96] Vitek, Jan: Secure Object Spaces, in: Proceed-
ings of the 2nd International Workshop on Mobile Ob-
ject Systems, dpunkt, 1996

