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We de�ne the M�obius function for a language S being closed under

factors as the formal inverse of the characteristic series over the set

S. We derive identities in commuting and non-commutating variables

characterizing this function as a quotient of polynomials which can

be expressed as certain determinants. These determinants in turn are

obtained by some matrix related to the minimal automaton recogniz-

ing S. Our contribution extends some recent work of Cho�rut and

Goldwurm.

1 Introduction

M�obius functions play an important role in combinatorics. For monoids they were

introduced by Cartier and Foata [3] leading to a generalization of MacMahon's

Master Theorem. The spirit of this theorem is an expression of certain series as

the formal inverse of some determinant. The work of Cartier and Foata led also

to a systematic study of free partially commutative monoids. These monoids are

of particular interest in computer science due to the possibility to model basic

phenomena on concurrent processes [10, 7].

Recently Cho�rut and Goldwurm have shown [4] that (an unambiguous lifting of)

the M�obius function of a free partially commutative monoid can be expressed as

the determinant of the minimal automaton recognizing the set of its lexicographic

normal forms if and only if the independence relation has a transitive orientation.

Taking a slightly di�erent viewpoint this result is in fact a statement about

languages de�ned by forbidden factors of length exactly two. The aim of this

paper is a generalization to other classes of languages de�ned by forbidden factors.

We de�ne the M�obius function �S for languages S = X� nX�FX� being closed

under factors as the formal inverse of the characteristic series over S. The dream

would be a general formula of the type

�S = Det(1�M)

1
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where M is a matrix related to the minimal automaton recognizing S. Such an

identity fails in general, but we obtain a closely related identity. Informally, our

main results can be stated as follows: (The precise meaning of the notations

involved will be given below.)

Theorem Let F � X�
be a �nite set of forbidden factors, 1 62 F , and let

l = maxfjuj j u 2 Fg, l � 2, the maximal length. Let S = X� nX�FX�
and M

be some n�n-matrix associated to the minimal �nite automaton recognizing the

language S. Then we �nd explicitly a polynomial D(S; l � 1) of degree at most

n � (l � 1) �maxf1; l � 2g such that we have the following identity in commuting

variables:

S �Det(1�M) �c D(S; l � 1):

Moreover, we derive a graph theoretical criterion implying the following identity

of formal power series:

S �Det(1�M) = D(S; l � 1):

Thus, the product

Det(1�M) �D(S; l � 1)�1

is an explicit description of the M�obius function of S, if the criterion is satis�ed.

It turns out that, if all forbidden factors are of the form ba for some letters a; b

with a < b, then the polynomial D(S; l�1) equals 1 and the criterion is satis�ed.

Since it is well-known that the set of lexicographic normal forms of a free partially

commutative monoid has a description by forbidden factors of length two if and

only if the independence relation is equipped with a transitive orientation, we

obtain the setting of Cho�rut and Goldwurm as a special case.

The outline of the paper is as follows. In Sect. 2 we recall some well-known facts

on formal power series, M�obius functions, and overlapping chains. Since our

calculations involve determinants over a non-commutative ring (being perhaps

not standard) we develop the necessary background in Sect. 3. The new results

start with Sect. 4. In the �nal section we illustrate our method again by an

example for some partial commutation over four letters.

2 Formal power series, M�obius functions, and overlapping chains

Let X be a �nite alphabet. The ring of formal power series ZhhXii is the set of

mappings f : X� �! Z where addition and multiplication are de�ned by:

(f + g)(w) = f(w) + g(w);

(f � g)(w) =
X
uv=w

f(w) � g(w):
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It is easy to see that a power series f 2 ZhhX�ii has a formal inverse f�1 if and

only if f(1) 2 f�1;+1g. A polynomial is a formal power series f with a �nite

support, i. e., the set fw 2 X� j f(w) 6= 0g is �nite. The degree of a non-zero

polynomial f is the maximal length of a word in the support, maxfjwj j f(w) 6=

0g.

By 1 we denote the empty word 1 2 X� and the unit element of ZhhXii (or any

other ring). For ZhhXii the unit element is the characteristic series over f1g.

The symbol 1 (written in boldface) is reserved to denote the (n� n-)unit-matrix

over some ring.

A subset S � X� is frequently identi�ed with its characteristic series, S = �S,

where:

�S(w) = 1 if w 2 S and �S(w) = 0 otherwise:

By abuse of language, we say that two power series g; h 2 ZhhXii are equal in

commuting variables, written as g �c h, if g � h is an element in the two-sided

ideal generated by the series f � a � a � f where a 2 X and f 2 ZhhXii. In

particular, we have

f � p �c p � f for all f; p 2 ZhhXii where p is a polynomial:

De�nition 1 Let S be a non-empty language S � X� being closed under factors,

i.e., uvw 2 S implies v 2 S. The M�obius function �S is de�ned to be the formal

inverse of the characteristic series over S. Hence:

�S = (
X
w2S

w)�1 = S�1:

Remark 1 Let M be a quotient monoid of X� where the M�obius function �M
is de�ned in the sense of Cartier and Foata, see [3], and let S � X� be a cross-

section of M being closed under factors. (Such a set S � X� always exists, e. g.

take S to be the set of lexicographical normal forms.) Then �S 2 ZhhXii is a

lifting (or a representation ) of the M�obius function �M.

Any non-empty language S � X� being closed under factors can be de�ned by

some set of forbidden factors F � X� such that S = X� nX�FX�. Since S 6= ;,

we have 1 62 F and we may assume that F is basis of the ideal X�FX�, i. e.,

X�FX� = X�F 0X� implies F � F 0.

De�nition 2 Let 1 2 S = X� n X�FX� and F be a basis of X�FX�. An

overlapping chain is a sequence (w1; : : : ; wn) such that n � 0, w1 2 S \ X,

wi 2 S, and wi�1wi 2 X�F nX�FX+ for 1 < i � n.

The concept of overlapping chains appears in [1], see also [8, 9]. Independently it

has been developed [6], too, where the following result is stated. A closely related

result on Hilbert series can also be found in in [2, Thm. 5.1], where overlapping

chains are called worms.
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Proposition 2 ([6], Thm 4.4.2 ) Let C be the set of overlapping chains. Then

we have

�s =
X

(w1;:::;wn)2C

(�1)nw1 � � �wn:

Corollary 3 If the M�obius function �S is a polynomial, then S is de�ned by

some �nite set F of forbidden factors. If F is �nite, then �S is a polynomial if

and only if there is a maximal integer n where some (w1; : : : ; wn) 2 C exists.

Proof of Cor. 3: By [6, Lem. 4.4.1] two overlapping chains (w1; : : : ; wn) 2 C and

(w0
1; : : : ; w

0
n) 2 C are equal if and only if w1 � � �wn = w0

1 � � �w
0
n denote the same

words. Hence, by Prop. 2 the power series �S is a polynomial if and only if C is

a �nite set. The result follows since F nX is a subset of the support �S and X

is �nite.

Example 1

i) Let F = fabbg, then we have

�S = 1�X + abb:

ii) Let F = fabag, then we have

C = f(1); (x); (a; ba); (a; ba; ba); : : : ; (a; ba; ba; : : : ; ba); : : : j x 2 Xg:

Hence

�S = 1�X �
X
n�1

(�1)na(ba)n

= 1�X n fag � a(1 + ba)�1

= (1�X + (1�X n fag)ba)(1 + ba)�1:

Example 2 Let I � X �X be a symmetric (independence) relation and let �I

be the congruence generated by ab �I ba for (a; b) 2 I. Let < be a total order

of X and I+ = (I\ >). For w 2 X� let lex([w]) denote the lexicographically

�rst element in the congruence class of w and let Lex be the set of lexicographical

normal forms: Lex = flex([w]) j w 2 X�g.

i) Let I+ be transitive. Then Lex = X� nX�FX� where F is the �nite set of

forbidden factors F = fba j (b; a) 2 I+g. In this case:

�Lex =
X

(a1;:::;an)2C

(�1)na1 � � �an:

Clearly, (a1; : : : ; an) 2 C if and only if a1 > � � � > an and (ai; aj) 2 I for all

i 6= j, 1 � i; j � n (since I+ is transitive).

In the terminology of [5] the function �Lex is therefore an unambiguous

lifting of the M�obius function of X�= �I.
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ii) If I+ is not transitive, then there are letters a; b; c 2 X such that (c; b) 2 I+,

(b; a) 2 I+, but (c; a) 62 I+. Hence canb 62 Lex, since lex([canb]) = bcan.

Every proper factor of the word canb belongs to Lex. Therefore we have

fcanb j n � 0g � F and F must be in�nite. As a consequence, �Lex is no

polynomial by Cor. 3.

3 Determinants over non-commutative rings

Let R be a ring with 1 being not necessarily commutative. There is no unique

de�nition for the determinant of an n � n matrix over a non-commutative ring.

For our calculations the following de�nition is convenient:

De�nition 3 Let A = (aij) be an n � n matrix with coe�cients in R, aij 2 R

for 1 � i; j � n. De�ne the determinant of A by:

Det(A) =
X
�

(�1)�a�(1);1 � � �a�(n);n;

where the sum is taken over all permutations of f1; : : : ; ng and (�1)� denotes the

sign of the permutation �.

The trace of the matrix A is de�ned as usual by the sum over the diagonal ele-

ments:

Trace(A) =
nX
i=1

ai;i:

Remark 4 Taking the determinant of the transposed matrix we �nd the de�ni-

tion of a determinant as e.g. in [3, page 54].

Calculations with determinants over a non-commutative ring need some care. For

example consider a matrix where two columns are equal. We have:

Det

 
a a

b b

!
= ab� ba

which is not zero, unless ab = ba.

Moreover, determinants are not multiplicative, in general:

Det

  
a 0

0 b

! 
c 0

0 d

!!
= acbd;

Det

 
a 0

0 b

!
Det

 
c 0

0 d

!
= abcd:

Nevertheless there are some general rules being used in the following.
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Rule 1 The determinant is zero, if a row or a column is zero or if two rows are

equal.

Proof: Clearly, if a row or a column is zero, then the determinant is zero. Let

A be a matrix where the i-th and j-th row are equal, i 6= j. Let � be the

transposition with �(i) = j. Then � 7�! � �� de�nes an involution without �xed

points and we have

(�1)�a�(1);1 � � �a�(n);n = �(�1)���a���(1);1 � � �a���(n);n

for all permutations �. The result follows.

Rule 2 The determinant does not change its value if we add or subtract some

row from another one.

Proof: The classical proof applies due to Rule 1.

For the rest of this section we �x the following notations:

A denotes any n� n matrix over R, n � 2.

B and C denote matrices where all rows are equal: B = (bij) and bij = bj for some

vector (b1; : : : ; bn) 2 Rn, C = (cij) and cij = cj for some vector (c1; : : : ; cn) 2 Rn.

T denotes a matrix which is strictly upper triangular, T = (tij) and i � j implies

tij = 0.

D denotes a diagonal matrix where the diagonal elements are central in R. This

means D = (dij), dij = 0 for i 6= j, dii = di for some vector (d1; : : : ; dn) 2 Rn

such that dir = rdi for all r 2 R, i 2 f1; : : : ; ng.

Finally, 1 denotes the n � n-unit-matrix, i. e., 1 is a diagonal matrix as above

where di = 1 for 1 � i � n.

For a matrix A and J � f1; : : : ; ng let AJ be the matrix obtained from A where

all rows and columns from the index set J are canceled. We adopt the convention

that Det(AJ) = 1 for J = f1; : : : ; ng.

Rule 3 We have

Det(D + A) =
X

J�f1;:::;ng

0
@Y
j2J

dj

1
ADet

�
AJ
�
:

Proof: The classical proof applies since all di are central, 1 � i � n.

Combining Rules 1 and 3 together with the observation that Det(BJ) = 0 for

jJ j � n� 2, we obtain:

Rule 4 We have

Det(1+B) = 1 + Trace(B) = 1 +
nX

j=1

bj:
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Rule 5 We have

Det(B � T ) = b1t1;2 � � � tn�1;n:

Proof: This follows by induction on n since by Rule 1 we have:

Det(B � T ) = Det

0
BBBB@

b1 � � � bn�1 � t1;n�1 bn � t1;n
...

. . .
...

...

b1 � � � bn�1 bn � tn�1;n

b1 � � � bn�1 bn

1
CCCCA

= Det

0
BBBB@

b1 � � � bn�1 � t1;n�1 bn � t1;n
...

. . .
...

...

b1 � � � bn�1 bn � tn�1;n

0 � � � 0 tn�1;n

1
CCCCA

= Det

0
BB@

b1 � � � bn�1 � t1;n�1

...
. . .

...

b1 � � � bn�1

1
CCA � tn�1;n:

By Rules 3 and 5 we obtain:

Rule 6 We have

Det(D +B � T ) =
X

i
1
<:::<ik

J=f1;:::;ngnfi
1
;:::;ikg

0
@Y
j2J

dj

1
A bi1ti1i2 � � � tik�1ik :

Rule 7 We have

Det(1+B � T ) =
X

i1<:::<ik

bi1ti1i2 � � � tik�1ik :

Recall that determinants are not multiplicative, in general. Thus, for the follow-

ing rule we need a proof.

Rule 8 We have

Det((1+B)(1+ C � T )) = Det(1+B) Det(1+ C � T ):

Proof: Clearly:

(1+B)(1+ C � T ) = 1+ (B +BC � BT + C)� T

and B +BC � BT + C is a matrix where all rows are equal. More precisely

(B +BC �BT + C)ij = bj +
X
l

blcj �
X
l<j

bltlj + cj =: ej:

7



By Rule 7 we obtain

Det((1+B)(1+ C � T )) = 1 +
X

i
1
<:::<ik
k�1

ei1ti1i2 � � � tik�1ik :

On the other hand we have:

Det(1+B) = 1 +
X
l

bl;

Det(1+ C � T ) = 1 +
X

i
1
<:::<ik
k�1

ci1ti1i2 � � � tik�1ik :

The assertion follows by some easy calculation showing that:

1 +
X

i
1
<:::<ik
k�1

ei1ti1i2 � � � tik�1ik = (1 +
X
l

bl)(1 +
X

i
1
<:::<ik
k�1

ci1ti1i2 � � � tik�1ik):

Remark 5 Let R = ZhhXii and A1; A2 be matrices with coe�cients in ZhhXii

where, in addition, the coe�cients of A2 (or of A1) are polynomials. Then we

always have an identity in commuting variables:

Det(A1 �A2) �c Det(A1) �Det(A2):

4 Finite sets of forbidden factors

Let S � X� denote a non-empty set being closed under factors, S = X� nX�FX�

and F is a basis of the ideal X�FX�. From now on we shall assume that F

is �nite. In particular S is a regular language being local. By l we denote the

maximal length of a forbidden factor:

l = maxfjf j j f 2 Fg:

In order to avoid trivial special cases we shall assume l � 2 throughout. For

0 � p � q let X [p;q] denote the set

X [p;q] = fw 2 X�
j p � jwj � qg:

For u 2 X� we denote S(u) = fw 2 X� j uw 2 Sg. Then the minimal �nite

deterministic automaton is given by the state space Q0 = fS(u) j u 2 X�; S(u) 6=

;g. All states are �nal, the initial state is S(1), and for u; v 2 X�, a 2 X there

exists a transition

S(u)
a
�! S(v)

if and only if S(ua) = S(v) 6= ;.

8
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Figure 1: The automaton recognizing fa; bg� n fa; bg�abbfa; bg�

For a word u 2 S \X l�1 de�ne

[u] = fv 2 X l�1
j S(u) = S(v)g:

Let Q = f[u] j u 2 S \ X l�1g then we have Q 6= ; and we may view Q � Q0

by the natural mapping [u] 7�! S(u). Note that for [u] 2 Q and a transition

S(u)
a
�! S(v) we may take v 2 S \ X l�1 such that ua 2 Xv. In particular,

[v] 2 Q and we may write [u]
a
�! [v]. In the following we are concerned with the

sub-automaton only which is given by the set Q.

Remark 6 Let n = jQj and n0 = jQ0j. Then we have n � n0, and the equality

n = n0 is equivalent to the existence of some letter a 2 X such that F \ aX� = ;.

Indeed, if F \aX� = ;, then S(1) = S(al�1). Hence Q = Q0 in this case. For the

converse let u 2 S \X l�1, u = u0a for some a 2 X. Let aw 2 F . Then w 2 S,

hence w 2 S(1), but w 62 S(u). Hence [u] 6= [1].

Example 3

i) Let S = Lex as in Ex. 2, i) ( I+ being transitive). Then n = n0 since the

�rst letter w. r. t. < is never a pre�x of a forbidden factor.

ii) For F = X l, we have n = 1 and n0 = l.

iii) For F = fabbg we have n = n0 = 3, and the automaton is given by Fig. 1.

iv) For F = fabag we have again n = n0 = 3, and the automaton is given by

almost the same picture, see Fig. 2.

In the following we use a matrix representation for the sub-automaton generated

by the set Q. Consider the following Q�Q-matrix M where the coe�cients are

subsets ofX viewed as element of ZhhXii. The coe�cientM([u]; [v]), [u]; [v] 2 Q,

is written as M [u; v], and de�ned as follows:

M [u; v] = fa 2 X j [ua] = [v]g:

9



[bb]��
��

[ba]��
��

[ab]��
�� �

b

�
a

�

a

�
b

*

b

Figure 2: The automaton recognizing fa; bg� n fa; bg�abafa; bg�

The symbol A is reserved to denote the following Q � Q-matrix where all rows

are equal:

A[u; v] := [v]:

Example 4 In both cases: F = fabbg (Fig. 1) and F = fabag (Fig. 2), we have:

[ab] 6= [aa] = [ba] 6= [bb] 6= [ab]:

Therefore Q = f[ab]; [ba]; [bb]g and for the representation as 3� 3-matrix we may

choose the ordering such that [ab] < [ba] < [bb]. Hence:

A =

0
B@

ab aa+ ba bb

ab aa+ ba bb

ab aa+ ba bb

1
CA :

For F = fabbg we obtain:

M =

0
B@

0 a 0

b a 0

0 a b

1
CA :

For F = fabag we have:

M =

0
B@

0 0 b

b a 0

0 a b

1
CA :

The next lemma is an immediate consequence of the de�nitions above:

Lemma 7 Let the matrices M and A be de�ned as above:

M [u; v] = fa 2 X j [ua] = [v]g; A[u; v] = [v]:

Let k � 0 and [u]; [v] 2 Q, then we have:

(AMk)[u; v] = fw 2 X(k+l�1)
j w 2 (S \X�[v])g

(A
X
k�0

Mk)[u; v] = fw 2 X�
j jwj � l � 1; w 2 (S \X�[v])g:

10



Proposition 8 We have

Det(1+ A
X
k�0

Mk) = S � (S \X [1;l�2]):

Proof: By Lem. 7 all rows of the matrix A
P

k�0M
k are equal, hence by Sect. 3,

Rule 4 we obtain:

Det(1+ A
X
k�0

Mk) = 1 + Trace(A
X
k�0

Mk)

= 1 +
X
[v]2Q

fw 2 X�
j jwj � l � 1; w 2 (S \X�[v])g:

Moreover, for jwj � l � 1 with w = w0v0 where jv0j = l � 1 we have that w 2

(S \ X�[v]) implies [v] = [v0]. Hence the sum above is a partition of the set of

words fw 2 S j jwj � l � 1g. The proposition follows.

Lemma 9 Let p � 1. We have the following matrix identity:

(1+ A
X
k�0

Mk)(1�Mp) = (1+ A(
p�1X
k=0

Mk)�Mp):

Remark 10 Since the coe�cients of the matrix (1 � Mp) are polynomials we

obtain by Rem. 5 an identity in commuting variables:

Det(1 + A
X
k�0

Mk) �Det(1�Mp) �c Det(1+ A(
p�1X
k=0

Mk)�Mp):

De�nition 4 Let p � 1. The p-th denominator polynomial of S is de�ned by

D(S; p) = Det(1+ A(
p�1X
k=0

Mk)�Mp) + (S \X [1;l�2]) �Det(1�Mp):

Theorem 11 Let p � 1. We have the following identity in commuting variables:

i)

S �Det(1�Mp) �c D(S; p):

ii) Moreover, if

Det((1+ A
X
k�0

Mk)(1�Mp)) = Det(1+ A
X
k�0

Mk) �Det(1�Mp);

then we have the following identity of formal power series:

S �Det(1�Mp) = D(S; p):

11



Proof: This is a direct consequence of Prop. 8 and Lem. 9.

The polynomial D(S; p) looks complicated. However, we are mainly interested in

the case p = l � 1. Let us rewrite

R = A�M l�1;

B = A �

l�2X
k=1

Mk:

Then we have for [u]; [v] 2 Q rather simple expressions

R[u; v] = fw 2 [v] j uw 62 Sg;

B[u; v] = fyw 2 S j 1 � jyj � l � 2; w 2 [v]g:

Recall also that we have A[u; v] = [v]. Using these notations we have the inter-

pretation:

D(S; l � 1) = Det(1 +R +B) + (S \X [1;l�2]) Det(1� A+R):

It makes sense to express the polynomial D(S; l� 1) in this form since A and B

are matrices where all rows are equal. Note that the degree of this polynomial

is at most n � (l � 1) � maxf1; l � 2g: Moreover, for l = 2 the matrix B is zero

yielding a drastic simpli�cation:

D(S; 1) = Det(1+R):

The degree is then at most n.

Example 5 i) Let F = X l, then M is the zero matrix. Hence

Det(1 + A) = 1 + Trace(A) = 1 +
X

juj=l�1

u

and therefore

D(S; p) = (
X

juj=l�1

u) + (S \X [1;l�2]) = X [0;l�1]:

The identity above reduces to the trivial statement

S = X [0;l�1]:

ii) For F = fabbg we have:

D(S; 2) = 1 + a + b� abb:

12



iii) For F = fabag we have:

D(S; 2) = (a+ b)(1 + ab)(1� aa� bb� babb)

+(1 + ab)[(1 + ba)(1 + (a+ b)bb) + (aa + ba + bb)a]

�c (1 + ab)(1 + a+ b + ab + abb):

Corollary 12 Let l = 2 and F = F1 [ F2 where F1 � X and ; 6= F2 � XX.

Assume that there is a total order < on X nF1 such that ba 2 F2; a; b 2 X implies

a < b. Then we have D(S; 1) = 1 and hence the M�obius function �S = S�1 is a

polynomial of degree n � jX n F1j given by following determinant:

�S = Det(1�M):

Proof: The matrix M is a Q � Q matrix where Q = f[a] j a 2 X n F1g,

[a] = fb 2 X n F1 j 8c 2 X : ac 2 F2 () bc 2 F2g, and n = jQj. Write

Q = f[a1]; : : : ; [an]g for some a1; : : : ; an 2 X n F1 such that an < � � � < a1 and

ai � b for all b 2 [ai], 1 � i � n. We view M as an n � n matrix with

M [i; j] = M [ai; aj] for 1 � i; j � n. We claim that the matrix R is now strictly

upper triangular. Indeed, let R[i; j] 6= ;. Then there are bibj 2 F2 with bi 2 [ai],

bj 2 [aj]. Hence aibj 2 F2 which implies aj � bj < ai. Therefore i < j. Since

R is strictly upper triangular we have D(S; 1) = D(1 + R) = 1. Moreover,

Det((1+A+AM)(1�A+R)) = Det(1+A+AM) �Det(1�A+R) by Sect. 3,

Rule 8. Hence ii) of the theorem above yields

S �Det(1�M) = 1:

By de�nition of the M�obius function this shows the claim of the corollary

�S = Det(1�M):

In particular, Thm. 11 yields:

Corollary 13 ([4], Thm. 1) Let < be a linear order of some �nite alphabet

X, let I � X � X be a symmetric (independence) relation, and let �I be the

congruence generated by ab �I ba for (a; b) 2 I. Moreover, let Lex � X� be

the set of lexicographically �rst elements in each congruence class and let M

be the matrix (where coe�cients are subsets of X) associated to the minimal

deterministic �nite automaton recognizing Lex. Then the determinant

Det(1�M)

is the formal inverse over the characteristic series over the regular set Lex if and

only if the relation I+ = (I\ <) is transitive.

Proof: If I+ is transitive, then Lex is de�ned by the �nite set F = fba j (a; b) 2

I+g, hence one direction by Cor. 12. For the other direction we observe that if

I+ is not transitive, then Lex�1 is no polynomial, see Ex. 2 ii).

13



5 Combinatorial interpretation

In this section we give a graph theoretical criterion when the matrix R becomes

upper triangular. This yields a combinatorial interpretation in some cases.

Recall that M l�1[u; v] is a subset of [v] for all u; v 2 S \ X l�1 and that [v] �

S \X l�1 . More precisely we have:

M l�1[u; v] = fw 2 [v] j uw 2 Sg:

Let us de�ne two directed graphs associated with S. The vertex set of the graphbG(S) is de�ned by bQ = S \X l�1. Its edge set is given by:

f(u; v) 2 bQ� bQ j uv 62 Sg:

The graph G(S) is de�ned as the quotient graph of bG(S) with vertex set Q.

Hence its edge set is:

f([u]; [v]) 2 Q�Q j 9w 2 [v] : uw 62 Sg:

A directed graph is acyclic if and only if there are no in�nite paths. It is said to

be acyclic up to self-loops, if every in�nite path eventually becomes stationary in

a loop around a single vertex.

Lemma 14

i) The graph G(S) is acyclic if and only if bG(S) is acyclic.
ii) If bG(S) is acyclic up to self-loops, then G(S) shares the same property.

Proof: Since G(S) is a quotient graph of bG(S), it is clear that if G(S) is acyclic,
then bG(S) is acyclic. Hence, in order to show i) and ii) we may assume that

G(S) has an in�nite path:

[v1] �! [v2] �! � � � �! [vi] �! [vi+1] �! � � � :

By de�nition there are words u0i; ui 2 [vi] for all 1 � i such that u0i�1ui 62 S for

all 1 < i. However, since S(u0i) = S(ui) we see that ui�1ui 62 S for 1 < i, too. We

obtain an in�nite path of bG(S):
u1 �! u2 �! � � � �! ui �! ui+1 �! � � � :

Therefore i): graph G(S) is acyclic if and only if bG(S) is acyclic.
Moreover, if bG(S) is acyclic up to self-loops, then for some i and all j with i � j

we have ui = uj. This implies [vi] = [vj] for all i � j, and G(S) is acyclic up to

self-loops, too. This proves ii).

14
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Figure 3: The graph bG(S) for F = fabbg.
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Figure 4: The graph bG(S) for F = fabag.

Example 6 Let F � XX and let X be linearly ordered such that ba 2 F implies

a < b. Then bQ = X and bG(S) and hence G(S) are acyclic.

Remark 15 Let F � X l be overlap free (i. e. uv; vw 2 F implies v = 1), then

G(S) is acyclic.

Proof: Assume by contradiction that bG(S) has a cycle then by Lem. 14 there

exists a path (u1; u2; : : : ; um) in
bG(S) for arbitrary large m. Since F is overlap

free, the word u1u2 � � �um contains a subword of length (m � 1)l. However the

length of u1u2 � � �um is m(l � 1) yielding a contradiction for m > l.

Example 7

i) Let F = fabbg, then G(S) is acyclic. The graph bG(S) is given in Fig. 3.

ii) Let F = fabag, then both, bG(S) and G(S), are acyclic up to self-loops.

They are depicted in Figs. 4 and 5

iii) Let F = X l. Then bG(S) is the complete graph with jXjl�1 vertices whereas

G(S) is a one point graph being trivially acyclic up to self-loops. In partic-

ular, the converse of Lem. 14, ii) is false, in general.
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Figure 5: The graph G(S) for F = fabag.

5.1 The acyclic case: The main result

In Corollary 19 below we shall give a combinatorial interpretation for the identity

of Thm. 11, ii) in the case that the graph G(S) is acyclic. Recall that we have

M l�1 = A�R;

where A[u; v] = [v] and R[u; v] = fw 2 [v] j uw 62 Sg. If G(S) is acyclic, then we

choose an ordering of Q such that the matrix R is strictly upper triangular.

Proposition 16 Let G(S) be acyclic. Then we have:

Det(1�M l�1)

=
nX

k=0

(�1)kfu1 � � �uk j u1; : : : ; uk 2 S \X l�1; ui�1ui 62 S for 1 < i � kg:

Proof: Write 1�M l�1 = 1� A+ A�M l�1 = 1� A+R and apply Rule 7.

Remark 17 The determinant is therefore the alternating sum over the (�nitely

many) paths of the graph bG(S).
Example 8 Let F � X3 and let F be overlap free. Then we have

Det(1�M2) = 1�X2 +XF + FX � F 2:

Theorem 18 Let G(S) be acyclic, then D(S; l � 1) is a polynomial of degree at

most n(l � 1)(l � 2) and we have the following explicit formula

D(S; l � 1) = 1 +
nX

k�0

(�1)kfu0 � � �uk j u0; : : : ; uk 2 S; 1 � ju0j � l � 2;

juij = l � 1; ui�1ui 62 S for 1 � i � kg:
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Proof: By de�nition we have

D(S; l � 1) = Det(1+B +R) + (S \X [1;l�2]) Det(1�M l�1):

Since R is strictly upper triangular we obtain by Sect. 3, Rule 7

Det(1+B +R)

= 1 +
X

i
1
<���<ik
k�1

(�1)k�1bi1ti1;i2 � � � tik�1;ik

= 1 +
X
k�1

(�1)k�1
f(u0u1)u2 � � �uk j 1 � ju0j � l � 2; u0u1 2 S;

ui 2 S \X l�1 for 1 � i � k; ui�1ui 62 S for 1 < i � kg:

On the other hand, Prop. 16 yields:

(S \X [1;l�2]) Det(1�M l�1)

=
X
k�0

(�1)kfu0u1 � � �uk j 1 � ju0j � l � 2;

u0 2 S; ui 2 S \X l�1; ui�1ui 62 S for 1 < i � kg:

Note that both sums are �nite, it is enough to sum up to k = n. Combining

these sums we obtain:

D(S; l � 1) = (S \X [0;l�2]) +
X
k�1

(�1)kfu0u1 � � �uk j 1 � ju0j � l � 2;

u0; u1; : : : ; uk 2 S; juij = l � 1; ui�1ui 62 S for 1 � i � kg

= 1 +
X
k�0

(�1)kfu0 � � �uk j u0; : : : ; uk 2 S; 1 � ju0j � l � 2;

juij = l � 1; ui�1ui 62 S for 1 � i � kg:

Example 9 Let F � X3 and let F be overlap free. Then we have:

D(S; 2) = 1 +X � F:

Corollary 19 Let G(S) be acyclic. Then we have the following identity of formal

power series:

S � (
X
k�0

(�1)kfu1 � � �uk j u1; ui 2 S \X l�1; ui�1ui 62 S for 1 < i � kg)

= 1 +
X
k�0

(�1)kfu0 � � �uk j u0; : : : ; uk 2 S; 1 � ju0j � l � 2;

juij = l � 1; ui�1ui 62 S for 1 � i � kg:
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Example 10 Let F � X3 and let F be overlap free. Then the identity above

becomes

S � (1�X2 +XF + FX � F 2) = 1 +X � F:

Hence

�S = 1�X + F:

In particular, for F = fabbg we reobtain

�S = 1� a� b+ abb:

5.2 The case where the graph is acyclic up to self-loops

In this subsection we brie
y consider the case where G(S) is acyclic up to self-

loops. We derive identities in commuting variables, but the formulae have a

rather complicated structure. First choose an ordering of Q such that the matrix

R is upper triangular. De�ne

T [u; v] = fw 2 [v] j uw 62 S and [u] 6= [v]g:

Let D be the diagonal matrix with

D[v; v] = fw 2 [v] j ww 62 Sg:

Then R = D + T , and T is strictly upper triangular. For index sets J =

fj1; : : : ; jmg, K = fi1; : : : ; ikg � f1; : : : ; ng with j1 < � � � < jm and i1 < � � � < ik
we denote the following �nite subsets of X� :

�J = fw1 � � �wm j wrwr 62 S;wr 2 [vjr ]; 1 � r � mg

UK = fu1 � � �uk j ur 2 [vir ]; 1 � r � k; ur�1ur 62 S; 1 < r � kg:

Analogously to the formulae above we obtain the following identity in commuting

variables by Thm. 11 and Rule 6:

Corollary 20 Let G(S) be acyclic up to self-loops. Then we have:

S �
X

J\K=;

(�1)jKj�J
� UK

�c

X
J\K=;

K=fi
1
;:::;ikg

i
1
<���<ik

(�1)k�J
� fu0u1 � � �uk j 0 � ju0j � l � 2;

u0 2 S; ur 2 [vir ]; ur�1ur 62 S; 1 � r � kg:
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Figure 6: The automaton recognizing Lex = X� nX�fca; cb; dbgX� with X = fa; b; c; dg.

6 Partial commutation revisited

In this �nal section we consider a simple example as an illustration how our

method behaves in the case of partial commutation.

Let X = fa; b; c; dg, a < b < c < d, and I be given by the following graph:

a | c | b | d:

Then I+ = (I\ >) = f(c; a); (c; b); (d; b)g is a transitive relation and the set Lex

of lexicographical normal forms is given by the set F = fca; cb; dbg of forbidden

factors, Lex = X� nX�FX�.

The minimal automaton recognizing Lex has three states and is depicted in Fig. 6.

State 1 is initial, all states are �nal. The associated matrixM = (Mi;j) is de�ned

such that Mi;j denotes the sets of letters joining states i and j. Hence, we have:

M =

0
B@

d c a

d c 0

d c a+ b

1
CA :

Denote by A the following matrix where all rows are equal:

A =

0
B@

d c a + b

d c a + b

d c a + b

1
CA :

Then A �
P

k�0M
k is a matrix over formal power series where all rows are equal.

Let (L1; L2; L3) be any row of the matrix A �
P

k�0M
k. Then it holds:

L1 = fud 2 Lex j u 2 X�
g

L2 = fuc 2 Lex j u 2 X�
g

L3 = fux 2 Lex j u 2 X�; x 2 fa; bgg:
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Hence Lex = 1+L1+L2+L3 = 1+Trace(A �
P

k�0M
k): Some direct calculation

(or Rule 4) shows:

Det(A �
X
k�0

Mk) = Det

0
B@

1 + L1 L2 L3

L1 1 + L2 L3

L1 L2 1 + L3

1
CA = 1 + L1 + L2 + L3 = Lex :

On the other hand:

(1+ A �
X
k�0

Mk)(1�M) = (1+ A�M):

Now, A�M is a strictly upper triangular matrix:

A�M =

0
B@

0 0 a

0 0 a+ b

0 0 0

1
CA :

Hence Det(1 + A �M) = 1. (This fact does not depend on the choice of the

order of X. This determinant is 1 whether or not I+ is transitive!).

By Rule 8 we obtain the identity on formal power series

Lex �Det(1�M) = 1:

Hence Det(1�M) is the formal inverse of Lex. Explicitly we have:

Det(1�M) = Det

0
B@

1� d �c �a

�d 1� c 0

�d �c 1� a� b

1
CA

= 1� a� b� c� d+ ca + cb+ db:

This polynomial is indeed the unambiguous lifting of the M�obius function Lex�1.
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