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We define the M6bius function for a language S being closed under
factors as the formal inverse of the characteristic series over the set
S. We derive identities in commuting and non-commutating variables
characterizing this function as a quotient of polynomials which can
be expressed as certain determinants. These determinants in turn are
obtained by some matrix related to the minimal automaton recogniz-
ing S. Our contribution extends some recent work of Choffrut and
Goldwurm.

1 Introduction

Moébius functions play an important role in combinatorics. For monoids they were
introduced by Cartier and Foata [3] leading to a generalization of MacMahon’s
Master Theorem. The spirit of this theorem is an expression of certain series as
the formal inverse of some determinant. The work of Cartier and Foata led also
to a systematic study of free partially commutative monoids. These monoids are
of particular interest in computer science due to the possibility to model basic
phenomena on concurrent processes [10, 7.

Recently Choffrut and Goldwurm have shown [4] that (an unambiguous lifting of)
the Mobius function of a free partially commutative monoid can be expressed as
the determinant of the minimal automaton recognizing the set of its lexicographic
normal forms if and only if the independence relation has a transitive orientation.
Taking a slightly different viewpoint this result is in fact a statement about
languages defined by forbidden factors of length exactly two. The aim of this
paper is a generalization to other classes of languages defined by forbidden factors.
We define the Mobius function pg for languages S = X*\ X*FX* being closed
under factors as the formal inverse of the characteristic series over S. The dream
would be a general formula of the type

Hns = Det(l — M)

! Acknowledgment: This work was done during a research visit by the first author to the
Faculty of Science of Toho University, Japan. The hospitality and support of the university of
Toho are gratefully acknowledged.



where M is a matrix related to the minimal automaton recognizing S. Such an
identity fails in general, but we obtain a closely related identity. Informally, our
main results can be stated as follows: (The precise meaning of the notations
involved will be given below.)

Theorem Let FF C X* be a finite set of forbidden factors, 1 ¢ F', and let
| =max{|u| | u € F}, | > 2, the maximal length. Let S = X* \ X*FX* and M
be some n X n-matrix associated to the minimal finite automaton recognizing the
language S. Then we find explicitly a polynomial D(S,l — 1) of degree at most
n- (Il —1)-max{l,l — 2} such that we have the following identity in commuting
variables:

S-Det(1 — M) =.D(S,l—1).

Moreover, we derive a graph theoretical criterion implying the following identity
of formal power series:

S Det(1 — M) = D(S,1 - 1).

Thus, the product
Det(1 — M) - D(S,1 —1)~"

is an explicit description of the Mdbius function of S, if the criterion is satisfied.
It turns out that, if all forbidden factors are of the form ba for some letters a, b
with a < b, then the polynomial D(S,[—1) equals 1 and the criterion is satisfied.
Since it is well-known that the set of lexicographic normal forms of a free partially
commutative monoid has a description by forbidden factors of length two if and
only if the independence relation is equipped with a transitive orientation, we
obtain the setting of Choffrut and Goldwurm as a special case.

The outline of the paper is as follows. In Sect. 2 we recall some well-known facts
on formal power series, Mobius functions, and overlapping chains. Since our
calculations involve determinants over a non-commutative ring (being perhaps
not standard) we develop the necessary background in Sect. 3. The new results
start with Sect. 4. In the final section we illustrate our method again by an
example for some partial commutation over four letters.

2 Formal power series, Mobius functions, and overlapping chains

Let X be a finite alphabet. The ring of formal power series Z{{X)) is the set of
mappings f : X* — Z where addition and multiplication are defined by:

(f +9)(w) = f(w) + g(w),
(f-g)w) =" flw)-g(w).

Uv=w
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It is easy to see that a power series f € Z({X*)) has a formal inverse f~! if and
only if f(1) € {—1,+1}. A polynomial is a formal power series f with a finite
support, i.e., the set {w € X* | f(w) # 0} is finite. The degree of a non-zero
polynomial f is the maximal length of a word in the support, max{|w| | f(w) #
0}.
By 1 we denote the empty word 1 € X* and the unit element of Z{(X)) (or any
other ring). For Z((X)) the unit element is the characteristic series over {1}.
The symbol 1 (written in boldface) is reserved to denote the (n x n-)unit-matrix
over some ring.
A subset S C X* is frequently identified with its characteristic series, S = (g,
where:

(s(w) =11if w € S and (s(w) = 0 otherwise.

By abuse of language, we say that two power series g, h € Z{((X)) are equal in
commuting variables, written as g =, h, if ¢ — h is an element in the two-sided
ideal generated by the series f-a — a - f where ¢ € X and f € Z((X)). In
particular, we have

f-p=cp- fflorall f,pe Z{((X)) where p is a polynomial.

Definition 1 Let S be a non-empty language S C X* being closed under factors,
i.e., uvw € S implies v € S. The Mdébius function ps is defined to be the formal
inverse of the characteristic series over S. Hence:

ps= (Y w)'=5"
weS
Remark 1 Let M be a quotient monoid of X* where the Mobius function pam
is defined in the sense of Cartier and Foata, see [3], and let S C X* be a cross-
section of M being closed under factors. (Such a set S C X* always exists, e. g.
take S to be the set of lexicographical normal forms.) Then ps € Z{(X)) is a
lifting (or a representation ) of the Mdbius function .

Any non-empty language S C X* being closed under factors can be defined by
some set of forbidden factors F C X* such that S = X*\ X*FX*. Since S # (),
we have 1 € F' and we may assume that F' is basis of the ideal X*F X* i.e.,
X*FX* = X*F'X* implies F' C F".

Definition 2 Let 1 € S = X*\ X*FX* and F be a basis of X*FX*. An
overlapping chain is a sequence (wy,...,w,) such that n > 0, w; € SN X,
w; € S, and w; qw; € X*F\ X*FX* for1<i<n.

The concept of overlapping chains appears in [1], see also [8, 9]. Independently it
has been developed [6], too, where the following result is stated. A closely related
result on Hilbert series can also be found in in [2, Thm. 5.1], where overlapping
chains are called worms.



Proposition 2 ([6], Thm 4.4.2 ) Let C be the set of overlapping chains. Then

we have
/j,s _ Z (_1)nw1...wn_
(U}l,...,wn)ec

Corollary 3 If the Mobius function us is a polynomial, then S is defined by
some finite set F' of forbidden factors. If F 1is finite, then ps s a polynomial if
and only if there is a mazimal integer n where some (wy, ..., w,) € C exists.

Proof of Cor. 3: By [6, Lem. 4.4.1] two overlapping chains (wy,...,w,) € C and
(w),...,w)) € C are equal if and only if w, ---w, = w]---w], denote the same
words. Hence, by Prop. 2 the power series pg is a polynomial if and only if C is
a finite set. The result follows since F'\ X is a subset of the support pg and X
is finite.

Example 1
i) Let F = {abb}, then we have

s =1 — X + abb.

ii) Let F = {aba}, then we have
C ={(), (v), (a,ba), (a,ba,ba), ..., (a,ba,ba,... ba),...|xe X}.

Hence
ps = 1—=X-=> (=1)"a(ba)"
— 11— X\ {a} - a(l +ba)™
= (1-X+(1-X\{a})ba)(1+ba) "

Example 2 Let I C X x X be a symmetric (independence) relation and let =
be the congruence generated by ab =; ba for (a,b) € I. Let < be a total order
of X and I = (IN >). For w € X* let lex([w]) denote the lexicographically
first element in the congruence class of w and let Lex be the set of lexicographical
normal forms: Lex = {lex([w]) | w € X*}.

i) Let I'™ be transitive. Then Lex = X* \ X*FX* where F is the finite set of
forbidden factors F = {ba | (b,a) € I"}. In this case:

frec = Y, (=1)"ai---ap.
(al,...,an)EC

Clearly, (a1,...,a,) € C if and only if ay > --- > a, and (a;,a;) € I for all
i # 7, 1<i,5<n (since It is transitive).

In the terminology of [5] the function piex is therefore an unambiguous
lifting of the Mébius function of X*/ =;.

4



i) If I'™ is not transitive, then there are letters a,b,c € X such that (¢,b) € I,
(b,a) € I, but (c,a) & I'". Hence ca™b ¢ Lex, since lex([ca™b]) = bea.
FEvery proper factor of the word ca™b belongs to Lex. Therefore we have
{ca"b | n > 0} C F and F must be infinite. As a consequence, [ijex 1S NO
polynomial by Cor. 3.

3 Determinants over non-commutative rings

Let R be a ring with 1 being not necessarily commutative. There is no unique
definition for the determinant of an n X n matrix over a non-commutative ring.
For our calculations the following definition is convenient:

Definition 3 Let A = (a;;) be an n X n matriz with coefficients in R, a;; € R
for 1 <i,j <n. Define the determinant of A by:

Det(A) = Z(_l)aaa(l),l * Qo (n),n

g

where the sum is taken over all permutations of {1,...,n} and (—=1)7 denotes the
sign of the permutation o.

The trace of the matriz A is defined as usual by the sum over the diagonal ele-
ments:

Trace(A) = > a;;.
i=1

Remark 4 Taking the determinant of the transposed matriz we find the defini-
tion of a determinant as e.g. in [3, page 54].

Calculations with determinants over a non-commutative ring need some care. For
example consider a matrix where two columns are equal. We have:

a a
Det(b b)-ab—ba

which is not zero, unless ab = ba.
Moreover, determinants are not multiplicative, in general:

a 0 ¢c 0
o (2 0) (5 0)) =
a 0 ¢ 0
Det(0 b)Det<0 d)-abcd.

Nevertheless there are some general rules being used in the following.

5



Rule 1 The determinant is zero, if a row or a column is zero or if two rows are
equal.

Proof: Clearly, if a row or a column is zero, then the determinant is zero. Let
A be a matrix where the i-th and j-th row are equal, ¢ # j. Let 7 be the
transposition with 7(i) = j. Then 0 —— 700 defines an involution without fixed
points and we have

(_l)gaa(l),l *Qg(n)n = _(_I)Togaroa(l),l * Qrog(n),n

for all permutations . The result follows.

Rule 2 The determinant does not change its value if we add or subtract some
row from another one.

Proof: The classical proof applies due to Rule 1.

For the rest of this section we fix the following notations:
A denotes any n X n matrix over R, n > 2.
B and C' denote matrices where all rows are equal: B = (b;;) and b;; = b; for some

vector (by,...,b,) € R", C = (¢;j) and ¢;; = ¢; for some vector (cq,...,c,) € R™.
T denotes a matrix which is strictly upper triangular, 7' = (¢;;) and ¢ > j implies
tij - 0

D denotes a diagonal matrix where the diagonal elements are central in R. This
means D = (d;;), d;; = 0 for i # j, d;; = d; for some vector (di,...,d,) € R"
such that d;r =rd; for all r € R, i € {1,...,n}.

Finally, 1 denotes the n X n-unit-matrix, i.e., 1 is a diagonal matrix as above
where d; =1 for 1 <i <n.

For a matrix A and J C {1,...,n} let A’ be the matrix obtained from A where
all rows and columns from the index set .J are canceled. We adopt the convention
that Det(A”7) =1 for J = {1,...,n}.

Rule 3 We have

Det(D+A4)= Y (de>Det(AJ).

JC{1,....n} \J&J
Proof: The classical proof applies since all d; are central, 1 < ¢ < n.
Combining Rules 1 and 3 together with the observation that Det(B”) = 0 for
|J| < n —2, we obtain:

Rule 4 We have
Det(1+ B) =1+ Trace(B) =1+ »_b;.

=1



Rule 5 We have
Det(B — T) = bltLQ T tnfl’n.

Proof: 'This follows by induction on n since by Rule 1 we have:

bi o by —tip—1 by —ti,
Det(B—T) = Det| = : :
bl o bnfl bn - tnfl,n
bl T bnfl bn
by o+ bpor —tipm1 b —tip
= Det : ) : :
bl e bn—l bn - tn—l,n
0 --- 0 totn
by b1 — tipn_1
= Det| + -, : "1
bl bn—l

By Rules 3 and 5 we obtain:

Rule 6 We have

Det(D + B — T) = Z (H d]) biytiviy -+ big_viy-

11 <...<ip jeJ
J={1,....;nI\{i1,...,ip }

Rule 7 We have
Det(l + B — T) = Z biytisiy - iy

11 <. <l

Recall that determinants are not multiplicative, in general. Thus, for the follow-
ing rule we need a proof.

Rule 8 We have
Det((14+ B)(1+C —T)) = Det(1+ B)Det(1+C —T).

Proof: Clearly:
(1+B)(1+C-T)=1+(B+BC-BT+C)-T
and B 4+ BC — BT + (' is a matrix where all rows are equal. More precisely

(B+BC —BT—FC’)Z] = bj +Zble — Zbltlj —|—Cj =l €.
l

1<j

7



By Rule 7 we obtain

Det((1+B)(1+C—T)) =1+ > eitii tii.
i1 <...<ip,
E>1

On the other hand we have:

Det(1+ B) =1+ b,
l

Det(l+C’—T) =1+ Z Cirbivip * " * ig_yiy, -
i1 <. <ig
k>1

The assertion follows by some easy calculation showing that:

I+ Z 6i1ti1i2 te 'tik—1ik = (1 + Z bl)(l + Z Cilti1i2 te 'tik_1ik)'
l

i< <ip i< .. <ip,
E>1 E>1

Remark 5 Let R = Z((X)) and Ay, Ay be matrices with coefficients in Z{(X))
where, in addition, the coefficients of Ay (or of Ai) are polynomials. Then we
always have an identity in commuting variables:

Det(A; - Ay) =, Det(A;) - Det(As).

4 Finite sets of forbidden factors

Let S C X* denote a non-empty set being closed under factors, S = X*\ X*FX*
and F' is a basis of the ideal X*FX*. From now on we shall assume that F'
is finite. In particular S is a regular language being local. By [ we denote the
maximal length of a forbidden factor:

| = max{|f] | f € F}.

In order to avoid trivial special cases we shall assume [ > 2 throughout. For
0 < p<qlet X4 denote the set

X = {we X*|p<|w <q}.

For u € X* we denote S(u) = {w € X* | uw € S}. Then the minimal finite
deterministic automaton is given by the state space Q' = {S(u) | u € X*, S(u) #
(}. All states are final, the initial state is S(1), and for u,v € X*, a € X there
exists a transition

S(u) - S(v)
if and only if S(ua) = S(v) # 0.



Figure 1: The automaton recognizing {a,b}* \ {a,b}*abb{a,b}*

For a word u € SN X' ! define
[u] = {ve X" | S(u) = S(v)}.

Let Q = {[u] | v € SN X!=!} then we have Q # () and we may view Q C Q'
by the natural mapping [u] — S(u). Note that for [u] € @ and a transition
S(u) % S(v) we may take v € SN X'~! such that ua € Xv. In particular,
[v] € Q and we may write [u] — [v]. In the following we are concerned with the
sub-automaton only which is given by the set Q.

Remark 6 Let n = |Q| and n' = |Q'|. Then we have n < n', and the equality
n =mn' is equivalent to the existence of some letter a € X such that F NaX* = ().
Indeed, if FNaX* =0, then S(1) = S(a''). Hence Q = Q' in this case. For the
converse let w € SN X", uw=u'a for somea € X. Let aw € F. Then w € S,
hence w € S(1), but w ¢ S(u). Hence [u] # [1].

Example 3

i) Let S = Lex as in Ex. 2, i) ( I being transitive). Then n = n' since the
first letter w. r.t. < is never a prefix of a forbidden factor.

i) For F = X!, we have n =1 and n' = 1.
ii) For F = {abb} we have n =n' = 3, and the automaton is given by Fig. 1.

iv) For F = {aba} we have again n = n' = 3, and the automaton is given by
almost the same picture, see Fig. 2.

In the following we use a matrix representation for the sub-automaton generated
by the set (). Consider the following ) X (Q-matrix M where the coefficients are

subsets of X viewed as element of Z((X)). The coefficient M ([u], [v]), [u],[v] € @,
is written as M|[u;v], and defined as follows:

Mlu;v] = {a € X | [ua] = [v]}.
9



Figure 2: The automaton recognizing {a,b}* \ {a, b}*aba{a,b}*

The symbol A is reserved to denote the following ) x (Q-matrix where all rows

are equal:
Alu;v] := [v].

Example 4 In both cases: F = {abb} (Fig. 1) and F = {aba} (Fig. 2), we have:

[ab] # [aa] = [ba] # [bb] # [ab].

Therefore @ = {[ab], [ba], [bb]} and for the representation as 3 X 3-matriz we may
choose the ordering such that [ab] < [ba] < [bb]. Hence:

ab aa+ ba bb
A= ab aa+ba bb |.

ab aa+ba bb

a 0
M( 0).
a b
0 b
M(ba()).
0 a b

The next lemma is an immediate consequence of the definitions above:

For F = {abb} we obtain:

o o O
S

For F = {aba} we have:

e}

Lemma 7 Let the matrices M and A be defined as above:
MTu;v] = {a € X | [ua] = [v]}, Alu; v] = [v].
Let k > 0 and [u],[v] € Q, then we have:

(AM®)[u;0] = {we XEHD 1w e (SN X )}
(AY MH)u;0] = {we X ||w|>1-1,we (SNX*v])}.

k>0

10



Proposition 8 We have

Det(1+AY MF) =5 —(Sn X2,

k>0

Proof: By Lem. 7 all rows of the matrix A3 ;> MP* are equal, hence by Sect. 3,
Rule 4 we obtain:

Det(1+A> M*) = 1+ Trace(AY M")

k>0 k>0

= 1+ Z {we X* | |w|>1—1,we (SN X*[v])}.
[v]eQ

Moreover, for |w| > | — 1 with w = w'v" where |[v/| = [ — 1 we have that w €
(S N X*[v]) implies [v] = [v']. Hence the sum above is a partition of the set of
words {w € S| |w| > [ —1}. The proposition follows.

Lemma 9 Let p > 1. We have the following matriz identity:

1+AY MM(1-MP)=(1+ A(pij1 MF) — MP).

k>0 =0

Remark 10 Since the coefficients of the matriz (1 — MP) are polynomials we
obtain by Rem. 5 an identity in commuting variables:

p—1
Det(1+ A" M*)-Det(1 — M?) =, Det(1 + A(Y_ M*) — MP).
k>0 k=0
Definition 4 Let p > 1. The p-th denominator polynomial of S is defined by
p—1
D(S,p) = Det(1 + A(Y_ M*) — MP) + (S n X2 . Det(1 — MP).
k=0
Theorem 11 Let p > 1. We have the following identity in commuting variables:
)
S -Det(1 — MP) =. D(S,p).
ii) Moreover, if

Det((1+ 4 Y M¥)(1 = M) = Det(1+ A" M*) - Det(1 - M),

k>0 k>0
then we have the following identity of formal power series:
S - Det(1 — MP) = D(S, p).
11



Proof: This is a direct consequence of Prop. 8 and Lem. 9.

The polynomial D(S, p) looks complicated. However, we are mainly interested in
the case p =1 — 1. Let us rewrite

R = A—- M"Y,
-2
B = A-Y M

k=1

Then we have for [u], [v] € @ rather simple expressions

Rlus;v] = {w € [v] | uw ¢ S},
Blu;v] = {ywe S|1<|y| <l —-2,w € [v]}.

Recall also that we have A[u;v] = [v]. Using these notations we have the inter-
pretation:

D(S,1—1) = Det(1+ R+ B) + (SN XM= Det(1 — A+ R).

[t makes sense to express the polynomial D(S,[ — 1) in this form since A and B
are matrices where all rows are equal. Note that the degree of this polynomial
is at most n - (I — 1) - max{1,l — 2}. Moreover, for [ = 2 the matrix B is zero
yielding a drastic simplification:

D(S,1) = Det(1 + R).
The degree is then at most n.
Example 5 i) Let F = X', then M is the zero matriz. Hence

Det(1+ A) =1+ Trace(A) =1+ > wu

lu|=l—1
and therefore

D(S,p) = ( 3 w)+ (Sn XLy = xloi-1,

lu|=l—1
The identity above reduces to the trivial statement

S = X[O,lfl].
ii) For F = {abb} we have:

D(S,2) =1+ a+b— abb.

12



iii) For F = {aba} we have:
D(S,2) = (a+0b)(1+ab)(1—aa— bb— babb)
+(1 4 ab)[(1 4+ ba)(1 + (a + b)bb) + (aa + ba + bb)a]
=, (14+ab)(1+a+b+ ab+ abb).

Corollary 12 Let | = 2 and F = Fy UF, where F; C X and ) # F, C XX.
Assume that there is a total order < on X \ Fy such that ba € Fy,a,b € X implies
a < b. Then we have D(S,1) = 1 and hence the Mébius function us = S~ is a
polynomial of degree n < |X \ Fy| given by following determinant:

ps = Det(1 — M).

Proof: ~ The matrix M is a @ x @ matrix where @ = {[a] | a € X \ Fi},
[a] = {be€ X\F | Ve € X :ac € F, <= bc € Fp}, and n = |Q|. Write
Q = {[ai1],...,[a,]} for some ay,...,a, € X \ F; such that a, < --- < a; and
a; < bforall b € [g;], 1 < i < n. We view M as an n X n matrix with
MT[i; j] = Mla;;a5] for 1 < 4,7 < n. We claim that the matrix R is now strictly
upper triangular. Indeed, let R[i; j] # 0. Then there are b;b; € F, with b; € [a;],
b; € [a;]. Hence a;b; € F, which implies a; < b; < a;. Therefore i < j. Since
R is strictly upper triangular we have D(S,1) = D(1 + R) = 1. Moreover,
Det((1+ A+ AM)(1— A+ R)) =Det(1+ A+ AM) - Det(1 — A+ R) by Sect. 3,
Rule 8. Hence ii) of the theorem above yields

S -Det(l— M) =1.
By definition of the Mobius function this shows the claim of the corollary
Hns = Det(l — M)

In particular, Thm. 11 yields:

Corollary 13 ([4], Thm. 1) Let < be a linear order of some finite alphabet
X, let I C X x X be a symmetric (independence) relation, and let =; be the
congruence generated by ab =; ba for (a,b) € I. Moreover, let Lex C X* be
the set of lexicographically first elements in each congruence class and let M
be the matriz (where coefficients are subsets of X ) associated to the minimal
deterministic finite automaton recognizing Lex. Then the determinant

Det(1 — M)

s the formal inverse over the characteristic series over the reqular set Lex if and
only if the relation It = (IN <) is transitive.

Proof: Tf I'* is transitive, then Lex is defined by the finite set F' = {ba | (a,b) €
I'"}, hence one direction by Cor. 12. For the other direction we observe that if
I is not transitive, then Lex ' is no polynomial, see Ex. 2 ii).

13



5 Combinatorial interpretation

In this section we give a graph theoretical criterion when the matrix R becomes
upper triangular. This yields a combinatorial interpretation in some cases.
Recall that M! 'u;v] is a subset of [v] for all u,v € SN X' and that [v] C
SN X!~ . More precisely we have:

M= uyv] = {w € [v] | uw € S}.

Let us define two directed graphs associated with S. The vertex set of the graph
G(9) is defined by Q@ = SN X! 1. Its edge set is given by:

{(u,0) €Qx Q |uv ¢ S}.

The graph G(S) is defined as the quotient graph of é(S) with vertex set Q.
Hence its edge set is:

{([u], [v]) € @ x Q[ Fw € [v] : uw & S}.

A directed graph is acyclic if and only if there are no infinite paths. It is said to
be acyclic up to self-loops, if every infinite path eventually becomes stationary in
a loop around a single vertex.

Lemma 14

i) The graph G(S) is acyclic if and only if @(S) is acyclic.

i) If G(S) is acyclic up to self-loops, then G(S) shares the same property.
Proof: Since G(S) is a quotient graph of G(S), it is clear that if G(S) is acyclic,

then G(S) is acyclic. Hence, in order to show i) and i) we may assume that
G(S) has an infinite path:

(1] — [va] — -+ — [05] — [vip1] — -+~ .

By definition there are words u}, u; € [v;] for all 1 < 7 such that u}_,u; ¢ S for
all 1 < i. However, since S(u;) = S(u;) we see that u;_ju; ¢ S for 1 < i, too. We
obtain an infinite path of G(S5):

Uy —> Uy —> = —> Uy — Uiy —> = .
Therefore i): graph G(S) is acyclic if and only if G(S) is acyclic.
Moreover, if G(S) is acyclic up to self-loops, then for some i and all j with i < j

we have u; = u;. This implies [v;] = [v;] for all i < j, and G(S) is acyclic up to
self-loops, too. This proves ii).
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Figure 3: The graph G(S) for F = {abb}.

Figure 4: The graph @(S) for F' = {aba}.

Example 6 Let F'C XX and let X be linearly ordered such that ba € F implies
a<b. Then Q = X and G(S) and hence G(S) are acyclic.

Remark 15 Let ' C X' be overlap free (i.e. uv,vw € F implies v = 1), then
G(S) is acyclic.

Proof: ~Assume by contradiction that @(S) has a cycle then by Lem. 14 there
exists a path (uq,us, ..., up) in @(S) for arbitrary large m. Since F' is overlap
free, the word wjus - - - u,, contains a subword of length (m — 1)I. However the
length of wjus - - - u,, is m(l — 1) yielding a contradiction for m > [.

Example 7
i) Let F = {abb}, then G(S) is acyclic. The graph G(S) is given in Fig. 3.

i) Let F = {aba}, then both, G(S) and G(S), are acyclic up to self-loops.
They are depicted in Figs. 4 and 5

iii) Let F = X'. Then G(S) is the complete graph with | X|=" vertices whereas
G(S) is a one point graph being trivially acyclic up to self-loops. In partic-
ular, the converse of Lem. 14, ii) is false, in general.

15



Figure 5: The graph G(S) for F = {aba}.

5.1 The acyclic case: The main result

In Corollary 19 below we shall give a combinatorial interpretation for the identity
of Thm. 11, ii) in the case that the graph G(S) is acyclic. Recall that we have

Mt =A—R,

where Au;v] = [v] and Ru;v] = {w € [v] | uw ¢ S}. If G(S) is acyclic, then we
choose an ordering of () such that the matrix R is strictly upper triangular.

Proposition 16 Let G(S) be acyclic. Then we have:
Det(1 — M)

=3 (=) {ur-up | ur, .o u, € SN XS uqu; € S for 1< < kY.
k=0

Proof: Write1l - M"'=1—-A4+ A - M"'=1— A+ R and apply Rule 7.

Remark 17 The determinant is therefore the alternating sum over the (finitely
many) paths of the graph G(S).

Example 8 Let F C X3 and let F be overlap free. Then we have
Det(1— M?)=1-X’>+ XF+ FX — F*.

Theorem 18 Let G(S) be acyclic, then D(S,1 — 1) is a polynomial of degree at
most n(l — 1)(I — 2) and we have the following explicit formula

n

D(Sal_l) = 1+Z(_1)k{U0'--Uk|U0,...,Uk65,1§|U0|§l—2,

k>0

|uz| =1[— l,ui_lui ¢ S for 1 S 1 S k}
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Proof: By definition we have
D(S,1—1) =Det(1+ B+ R) + (SN XM Det(1 — M'1).
Since R is strictly upper triangular we obtain by Sect. 3, Rule 7

Det(1+ B + R)
= 1+ Z (_l)k_lbiltil,lé t 'tik—l,ik

iy < <ip
k>1

= ]_—|—Z k 1{ uoul) uk|1§|U0|§l—2,u0u1€S,
k>1

u; € SN XL for 1 <i<k,u; qu; ¢ S for 1 <i<k}.

On the other hand, Prop. 16 yields:

(S N XM=2) Det(1 — M)
= > (—D)Muour - ug | 1< Jug| <1 -2,

k>0
up € S,u; € SN XY wqu; & Sfor 1 <i < k}.

Note that both sums are finite, it is enough to sum up to & = n. Combining
these sums we obtain:

D(S,1—1) = (SNXOA) 4 3 (1) {uguy -+ -up | 1 < Jug| <12,
k>1
UO,’LLl,.. ukES,|uZ|:l—l,uz_1u1¢5for1§z§k}
= 1+Z {UO U,k|U0,...,UkES,1§|U/0|§l—2,
k>0

|ul| =1[— l,ui_lui ¢ S for 1 S 1 S k}

Example 9 Let F C X? and let F be overlap free. Then we have:
D(S,2) =1+ X - L.

Corollary 19 Let G(S) be acyclic. Then we have the following identity of formal
power series:

S - (Z (=D)*{uy - up | ug,u; € SNX"H uy qu; & S for 1 < i < kY)
k>0

_1+Z {UO U,k|U0,...,UkES,1§|U0|§l—2,
k>0

|’LLZ| =1[— l,ui_lui QS for 1 S 7 S k}
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Example 10 Let F C X? and let F be overlap free. Then the identity above
becomes
S-1-X*+XF+FX-F)=1+X-F.

Hence
/LSZI—X+F.

In particular, for F = {abb} we reobtain

s =1—a — b+ abb.

5.2 The case where the graph is acyclic up to self-loops

In this subsection we briefly consider the case where G(S) is acyclic up to self-
loops. We derive identities in commuting variables, but the formulae have a
rather complicated structure. First choose an ordering of () such that the matrix
R is upper triangular. Define

Tlu;v] ={w € [v] | uw ¢ S and [u] # [v]}.
Let D be the diagonal matrix with
Div;v] ={w € [v] | ww ¢ S}.
Then R = D + T, and T is strictly upper triangular. For index sets J =
Uts oo ydmb K= {in, ...y € {1,...,n} with j; < -+ < jp and 4y < -+- < iy

we denote the following finite subsets of X* :

- {wl...wm|wrwr€5,wr6[vjr],1§7“§m}
UK = Juy--up | uy € 0,,1 <7 < kyupqu, € S,1 <1 <k}

Analogously to the formulae above we obtain the following identity in commuting
variables by Thm. 11 and Rule 6:

Corollary 20 Let G(S) be acyclic up to self-loops. Then we have:

S Y (-nEAT.UE

JNK=0
=c Yoo (DA {uguy g |0 < Jug| <12,
JNK=0
K={i1,....ip}
7j1<...<ilc

up € S,u, € v, ], urqu, € S, 1 <r < k}.
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Figure 6: The automaton recognizing Lex = X*\ X*{ca, cb,db} X* with X = {a,b,c,d}.

6 Partial commutation revisited

In this final section we consider a simple example as an illustration how our
method behaves in the case of partial commutation.
Let X = {a,b,c,d},a <b < c<d,and I be given by the following graph:

a—c—b—d.

Then IT = (INn >) = {(c,a), (c,b), (d,b)} is a transitive relation and the set Lex
of lexicographical normal forms is given by the set F' = {ca, cb, db} of forbidden
factors, Lex = X* \ X*FX*.

The minimal automaton recognizing Lex has three states and is depicted in Fig. 6.
State 1 is initial, all states are final. The associated matrix M = (M, ;) is defined
such that M;; denotes the sets of letters joining states 7 and j. Hence, we have:

d ¢ a
M=1]d c 0
d ¢ a+b

Denote by A the following matrix where all rows are equal:

d ¢ a+b
A=\ d ¢ a+b
d ¢ a+b

Then A-3 50 M ¥ is a matrix over formal power series where all rows are equal.
Let (Ly, Ly, L3) be any row of the matrix A - Y ;5 M*. Then it holds:

Ly = {ud € Lex|ue X"}
Ly = {uce€Llex|ue X"}
Ly = {ur€lex|ue X" ze€{ab}}

19



Hence Lex =1+ Ly + Ly + Ly = 1 4 Trace(A - k>0 Mk) Some direct calculation
(or Rule 4) shows:

1+L; Ly Ls
Det(A-> M*)=Det| Ly 1+L, L =1+ L+ Ly + L3 = Lex.
k>0 L, L, 1+ L3

On the other hand:

1+A4-Y M1 -M)=(1+A-M).

k>0

Now, A — M is a strictly upper triangular matrix:

0
A-M=10
0

o O O
Q

o+ =
S

Hence Det(1 + A — M) = 1. (This fact does not depend on the choice of the
order of X. This determinant is 1 whether or not I* is transitive!).
By Rule 8 we obtain the identity on formal power series

Lex - Det(1 — M) = 1.
Hence Det(1 — M) is the formal inverse of Lex. Explicitly we have:

1—-d —c —a
Det(1—M) = Det| —-d 1-—c¢ 0
—d —c¢ l—a-—0»
= l—a—b—c—d+ca+ cb+ db.

This polynomial is indeed the unambiguous lifting of the Mobius function Lex™".
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