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Abstract

We develop a technique that uses pebbles in a very economical way for simulating a multi-
counter automaton on a sequence of input strings and maintain a count of those strings
accepted by the counter automaton. Based on this result we show the failure of a previously
proposed method for constructing witness sets separating classes of languages accepted by
pebble automata with an increasing number of pebbles. We also give a recognition algorithm
for another family of languages suspected to separate the lower levels of the hierarchy.



1 Introduction

The investigation of restricted Turing machines that are allowed to mark a fixed number of
positions of their input goes back at least to the work of Kreider and Ritchie [11]. Subsequently
various modifications of this concept (here called pebble automaton) have been considered, e.g.
[5, 8,9, 10, 13, 14, 15]. It is well-known that deterministic (nondeterministic) pebble automata
characterize the complexity classes DSPACE(log n) (NSPACE(logn)), see [18, Section 3.2] for
a construction. Alternation gives the class P (deterministic polynomial time) [10].

A main concern of complexity theory is the question whether an increase of the available
resources increases the computational power as well. Rephrased in terms of pebble automata
we ask whether there are languages separating the classes of languages accepted by automata
equipped with k& and k£ + 1 pebbles. A traditional method to establish such a hierarchy
employed in most of the cited references consists of two steps:

e Use a diagonal argument in order to separate some levels of the hierarchy.

e Refine the separation obtained in the first step with the help of transformational meth-
ods.

While the first step is comparatively easy for deterministic automata, the second step tends to
be rather technical due to the limited power of the computational models under consideration.
It is another drawback of transformational methods that only automata having identical
characteristics can be separated with respect to increasing resources.

A completely different way to obtain separation results, here called census approach, has
been suggested by Hsia and Yeh [8]. They propose to take a language L of high complexity
from level k of the hierarchy and form sequences of words separated by a new symbol, such
that the number of words from L equals the number of words from its complement L. Then
the language consisting of all such sequences should separate levels k£ and &k + 1.

Such a construction would be of considerable interest since it would lead to natural ex-
amples of witness languages paralleling the situation for one-way automata [19] (see also [12,
Theorem 6.11]), where the hierarchy results rely on the combinatorial difficulty of languages.

We will establish in this article that the construction from [8] does not work even for the
first non-trivial level of the hierarchy, kK = 2. In addition we describe generalizations of their
idea that still do not give the desired separation. We also discuss the gap in the argument
given for Theorem 1 of [8], the basis for a hierarchy of languages recognizable by pebble
automata, an error of intrinsic importance that has survived the reviews [3, 6, 7].

In an earlier work [15] the author stated without proof the weaker result that the argument
of [8] failed for k > 3, provided that bounded counting automata and pebble automata of
corresponding levels £ — 1 could be separated, a yet unproven hypothesis for £k > 3. The
present work improves this result to a level where the inequivalence of the latter models is
known, thus showing that the construction of [8] indeed fails.

In a similar vein we look at possible candidates for separating the power of two versus
three pebbles that have been proposed by Chang e.a. [2]. Note however that they do not
claim to have a proof. We show that these candidate languages can be accepted with the help
of two pebbles.

Our results can be taken as evidence for the difficulty of finding concrete languages ac-
cepted by pebble automata, but not with as few as two pebbles or pointers on the input string.
In this sense the result of [4] might be optimal, that a language related to string matching



cannot be accepted by an automaton with two heads one of which can see the end-markers
but cannot distinguish input symbols.

2 Preliminary Remarks

In this section we will summarize some definitions and known facts relevant for our investi-
gation.

A pebble automaton with k pebbles is a deterministic single-head two-way finite automaton
with end-markers that has k pebbles (markers) available which it may place on its tape
squares. The pebbles can later be recognized, picked up, and redistributed. A bounded
counting automaton with k& counters operates similarly but has & counters instead of pebbles.
These counters can be increased, decreased, and tested for being zero. Throughout the
computation of the automaton the counters have to be bounded by the input length. Note
that the automaton cannot actively check whether the bound has been reached. Formal
definitions of these devices can be found in [16]. A third computational model we will use
is the deterministic finite multi-head automaton with & sensing heads, i.e., heads that can
“feel” the presence of other heads on the same square. It should be clear that these devices
can be simulated by k£ pebble automata. All automata start their computation on the first
input symbol (if the input string is not empty) and accept by going to final states.

We note that the distinction made in [8] between halting and non-halting pebble automata
is now obsolete due to Sipser’s technique for halting deterministic space bounded computations
[17].

The following result is due to Blum and Hewitt [1] and, independently, A.R.Meyer:

Proposition 1 Fvery language accepted by a one-pebble automaton is regular.

It is easy to design automata equipped with a single counter that accept languages like
E = {a"b" |n >0} or P={a®" |n >0}

Proposition 2 There are non-reqular sets accepted by bounded counting automata with one
counter.

We remark that a halting two-way one counter automaton (being deterministic) always re-
spects a linear bound on the counter and therefore can be transformed into a bounded counting
automaton by suitably compressing the counter contents.

From [16] we know:

Proposition 3 Every bounded counting automaton with k counters can be simulated by a
pebble automaton with k + 1 pebbles.

Slightly improving the simulation in [16] we have [15]:

Proposition 4 Every pebble automaton with k pebbles can be simulated by a bounded counting
automaton with k counters.

We summarize the situation, where “level £” denotes the classes of languages accepted by
automata with k pebbles or counters respectively.

e At level 0 the classes coincide with the regular sets.
e At level 1 bounded counting automata are stronger than pebble automata.

e At level £ > 2 bounded counting automata are at least as powerful as pebble automata.



3 The Candidate Languages

We recall that in [8] languages L' are constructed which are accepted by automata with &+ 1
pebbles, but are claimed to be acceptable by no such machine with at most k£ pebbles. Let
L C ¥* be a language that can be accepted by an automaton with k& pebbles, but by no
automaton with k£ — 1 pebbles. We have indicated above that such languages exist for k = 2.
Then a language L’ is formed from L by adding a new symbol # to the alphabet of L and
letting L' consist of all wi#wa# - - - #w,y, such that the number of words w; € ¥* in L is
equal to the number of words not in L. The idea of the proof is that an automaton accepting
L' has to use k pebbles to decide each w; and needs an additional pebble to store a count in
order to check the equality. There are however other ways to do the counting.

Theorem 1 If L is a language accepted by o bounded counting automaton with k—1 counters
for some k > 2, then the L' constructed from L can be accepted by a pebble automaton with k
pebbles.

Note that, by the results mentioned in the preceding section, such an L, which in addition

cannot be accepted by a pebble automaton with k£ — 1 pebbles, would satisfy the conditions

of the construction outlined above, since it can be accepted by an automaton with & pebbles.
Before giving the proof of Theorem 1 we will look at its consequences.

Corollary 1 The languages E' and P’ (where E and P are the non-reqular languages defined
above) can be accepted by pebble automata with two pebbles.

Proof of the Corollary: Languages F and P can be accepted by bounded counting au-
tomata with one counter. Thus they satisfy the conditions required by Theorem 1 for k = 2.
O

It is this corollary that contradicts the main result of [8], their Theorem 1 (note however
that Corollary 1 of [8], the infinite hierarchy, is valid, see e.g. [5, 9, 14, 15]).

Proof of Theorem 1: We will first give an informal outline of the construction and then
present a more detailed algorithm.

We describe an automaton M with k sensing heads accepting L' (remember that such an
automaton can be simulated with the help of k pebbles).

Every word w; over the alphabet of L appearing in the input together with the separator
symbol immediately to the right (# for 1 < i < m, an end-marker for i = m) will be called
block i. The length of w; is denoted by b;. A head resting on block ¢ determines a number d;,
the distance to the separator symbol within the same block. If w; € {a}* for i < m we get
the following situation (the head position is underlined):

b;
aaa---aaaaa---aaa #
[

d;

For a given input wi#ws# - - - #w,, we renumber the w; (without actually rearranging
them) according to their length (larger numbers are assigned to longer words). If there are
words of the same length we count them left to right. From now on words will be referred to
by these new numbers.

First M uses two heads to determine the rightmost block of maximum length (procedure
maxblock). This is the block of wy,. Then it leaves head 1 on a distinguished block (initially



block m) while the other heads are moved onto wy,, wy,—1,...,w; in turn, testing them for
membership in L.

We explain how M, if it has head 1 pointing to some word w; with j > 7, can move
another head from w; to w; 1. In order to achieve this M stores the length of w; as the
distance d; with the help of head 1. Then it moves head 2 left onto the word of the next block
and checks whether its length equals d; by moving the heads in parallel. In case of equality
it has found w;_;. Otherwise it moves head 1 back to its position before the comparison,
moves the second head onto the next word to the left and repeats this process. If no word of
the same length as w; can be found, the second head is moved to the right end of the input,
head 1 is moved one symbol to the right (thus decrementing d;), the count that is encoded
by the block that head 1 resides in is updated (see below), and the comparison is continued.
Eventually either w; is found to be the first word or w; 1 is located.

If word w;_; has been found membership in L is decided by a function member based on
the automaton accepting L. This function has to satisfy the following requirements:

e It moves all heads except head 1 to the block occupied by head 2. Since the heads are
sensing they can find this block.

e [t initializes the positions of heads 2 through k£ and initializes the count stored as the
distance of head 1.

e It uses the separator symbol as an (additional) end-marker. This is no difficulty, because
the direction of the last move of a head determines which type of end-marker may be
encountered.

e It never leaves the input area.

e After deciding w;_; it restores the distance stored previously by head 1. This is easily
achieved (procedure call letdibl(1,2)) since it equals b;_1.

Note that member can use k£ — 1 “real” heads on w; 1 and head 1 as a counter, which is
represented by the position of head 1 in its current block. Thus our simulation is more
general than required for the assertion of the theorem if k& > 3. Due to the construction
head 1 never has to leave its block, since this block is at least as long as w;_1.

Depending on the outcome of the test M increments the count kept by the position of
head 1 or leaves it unchanged. The count is encoded by the block that head 1 scans.

It remains to be outlined how the block that head 1 scans encodes the count of words
belonging to L. Just before the call to member this count will (with one exception) be one
more than the number of words to the right of the block scanned by head 1 that are at least
as long as indicated by the distance of head 1 to its separator.

The exception is the initial situation indicated by a boolean variable first, which records
the first occurrence of a word belonging to L.

We now give a detailed algorithm for the recognition of L’. Since no access to the symbols
of words w; is required at this level of the description M’s interface to the input consists of
the following boolean functions:

endl(i: head) Reports whether head i rests on the left end-marker.

endr(i: head) Reports whether head i rests on the right end-marker.



onsep(i: head) Reports whether head i rests on an end-marker or on a separator #.
sense(i,j: head) Reports whether heads i and j rest on the same tape square.

Procedures left(i: head) and right(i: head) move a head one square to the left or
right, home (i: head) moves a head onto the left end-marker.

The procedures alignl(i: head) and alignr(i: head) move a head onto the leftmost
and rightmost symbol of a block, blockl(i: head) and blockr(i: head) move it onto the
left and right neighboring block (right aligned).

Head i is moved to the position of head j with the help of the following procedure:

procedure visit(i,j: head);

begin
while not sense(i,j) and not endr(i) do right(i);
while not sense(i,j) do left(i)

end;

The next procedure compares the lengths of the blocks occupied by heads i and j for the
relation greater or equal. It destroys the positions of these heads within their blocks.

function geblbl(i,j: head): boolean;
begin
alignl(i);
alignl(j);
while not (onsep(i) or omsep(j)) do (* compare lengths *)
begin
right(i);
right(j)
end;
geblbl := onsep(j)
end;

With the help of the next procedure the length of a block is duplicated as the distance of
a head to the right block-separator of another block. Old distances are lost.

procedure letdibl(i,j: head);
begin
alignr(i);
alignl(j);
while not onsep(j) do
begin
left(i);
right(j)
end
end;

This is one of the crucial procedures. It compares the distance stored by head i and the
length of the block occupied by head j for equality. The distance is preserved, while the
position of head j within its block is destroyed:



function eqdibl(i,j: head): boolean;
begin
alignl(j);
while not(onsep(i) or onsep(j)) do (* compare lengths *)
begin
right(i);
right (j)
end;
eqdibl := onsep(i) and onsep(j); (* both on end-markers *)
repeat (* + blocklen. - dist. *)
left(i);
left(j)
until onsep(j);
right(i);
right(j)
end;

The next procedure locates the rightmost block of maximum length.

procedure maxblock;
begin
home (2) ;
home (1) ;
while not endr(1) do (* for every block *)
begin
blockr(1l);
if geblbl(1,2) then visit(2,1)
end
end;

The following procedures increment resp. decrement the number stored implicitly by the
block that head 1 occupies.

procedure incr;

begin
if not first then first := true (* special case *)
else
begin
repeat (* locate long block *)
blockl(1)
until geblbl(1,2);
letdibl (1,2) (* restore distance *)
end
end;
procedure decr;
begin
repeat (* never decr. from 0 *)

blockr (1)



until geblbl(1,2); (* locate long block *)
letdibl(1,2) (* restore distance *)
end;

This procedure updates the count kept by the block that head 1 rests upon.

procedure restcnt;
begin
visit(2,1);
alignr(2);
while not endr(2) do (* for every block *)
begin
blockr(2);
if eqdibl(1,2) then decr; (* critical length *)
alignr(2)
end
end;

The following predicate incorporates all the operations implemented above and tests mem-
bership in L', making use of the predicate member for L (the word to be tested is pointed to
by head 2).

function check: boolean;
begin
first := false;
maxblock;
visit(1,2);
alignl(1);
left(1);
repeat (* for all distances *)
right(1);
restcnt;
home (2) ;
repeat
blockr(2);
if eqdibl(1,2) then (* blocks of cur. len. *)
if member then incr;
alignr(2)
until endr(2)
until onsep(1l);
home (2) ;
if first then blockl(1);
alignr(1);
alignr(2);
while not (endr(1) or endr(2)) do (* check count = m/2 %)
begin
blockr(2);
if not endr(2) then



begin
blockr(2);
blockr(1)
end
end;
check := endr(1) and endr(2) (*x equality *)
end;

4 Generalizations

One way to interpret the result of the Section 3 is that a predicate concerning the number of
words from L that occur in the list is evaluated. Based on a language L C ¥* and a function
f from non-negative integers to the rationals we can define

Ly ={w#we# - #wy | f(m) =1 <j<m|wjeL},VI<i<m:w; € X}

and investigate, for which f and & it is true, that a k pebble automaton can accept L; if L
can be accepted by a bounded counting automaton with k£ — 1 counters.

We know that for & > 2 and f(m) = m/2 this statement holds (Theorem 1), since L' = Ly
(for odd m the condition cannot be satisfied). This can easily been extended to other ratios
than 1/2.

By generalizing the technique developed in Section 3 we can, e.g., show, that for £ > 2
the non-semilinear correspondence f(m) = max({2P | 2? < m,p > 0} U {0}) and for £ > 3
the function s(m) = |\/m| are possible. The idea is to simulate an automaton that receives
the count as one of its head positions and compares it with the value of the function. We will
briefly sketch this construction for s(m). It is clear that the computation of an automaton on
input #™ can be simulated by ignoring all input symbols except # and virtually inserting a
# before the right end-marker. Let the count encoded as the distance of head 1 to the right
end-marker be ¢, the other heads are on the end-marker encoding 0. The relation

c

d(@i-1)=¢

=1

admits the computation of ¢? as the position of head 2 by letting head 3 oscillate between
the right end-marker and the first head’s current position at distance 7, adding 2: — 1 to the
position of head 2. After one pass of head 3 the distance ¢ is decremented by one. If it
reaches 0 the process terminates. In this way the automaton can verify ¢ < m by rejecting
if the number encoded by head 2 exceeds m. In order to verify that (c 4+ 1)2 > m the count
c is recomputed, incremented, and (c + 1)? partially computed as described above, this time
accepting if and only if the computed value exceeds m.

5 Other Candidate Languages

In this section we will discuss a different family of languages that has been proposed as a
source for candidates separating two and three pebble automata. It is based on the language
of marked palindromes (z? is the reversal of string z).

L= {z#2" |z € {0,1}*}.



Let L¥ = LL--- L, where L is taken k times. While L and L? can clearly be accepted by two
pebble automata, Chang e. a. [2] point out that the recognition of L* seems to require three
pebbles for k£ > 3 (they do not claim to have a proof for this statement).

We will show how to accept LF with the help of two pebbles for arbitrary k, in fact we can
do it with a deterministic two-way one counter automaton. It is clear that such an automaton
can be simulated by a two pebble automaton that uses one of its pebbles to encode the count.
The count of a halting one counter automaton is linearly bounded by the input length and
thus can be transformed into a bounded counting automaton.

Lemma 1 Fiz an input segment u#v, u,v € {0,1}* and |u| = |v|. Let the counter of an
automaton A initially contain |u| and its head be placed on #. Then the counter automaton

can determine whether u = v,

Proof. While the counter is not zero A moves its heads left and decrements the counter.
Then it reads the scanned symbol a. It remembers a, moves the head right restoring the
count by incrementing for every symbol until it reaches the central #. Then it performs a
similar excursion to the right reading a symbol b, and returns to # again restoring the count.
If a # b the loop terminates and the automaton has established u # v*, otherwise the count
is decremented until the counter is zero in this step and u = v*. O

We will now consider the entire input and write it as

TIH#T1T2H T - - TR FHTy

The ultimate goal for membership in L* is to establish that there is factorization of this
form with z; = 2 for 1 <4 < k. A necessary condition is that |z;| = |#;| for 1 <i < k. Note
that these lengths are uniquely determined if such a factorization exists. The next lemma
shows that the lengths can be computed as the contents of the counter.

Lemma 2 A one counter automaton A is able to compute |x;| for inputs admitting the fac-
torization above with |z;| = |z;| for 1 < j <k on its counter for 1 <i <k.

Proof. We will describe a procedure len(i) for computing |z;| on the counter assuming that
a factorization of the described form exists. If the input does not respect these conditions the
procedure may fail. This property will later be useful for checking the validity of the input
string. We omit the head number 1 in the following pseudo-code, increment and decrement
modify the counter, zero is the test. Note that ¢ is bounded by k, therefore the loop can be
implemented in the finite control of A.

procedure len(i);
begin
while not zero do decrement;
while not endl do left;
for j :=1 to i do
begin
right;
while not (onsep or zero) do
begin
decrement;



right
end;
if not zero then abort;
while not onsep do
begin
increment;
right;
end
end
end;

Now we can combine our procedures.
Theorem 2 For every k > 1 there is a one counter automaton accepting L¥.

Proof. First the counter automaton A accepting L* checks that there are exactly k symbols
#. Now A executes the procedure call len(k) according to Lemma 2. Note that, even if
len(k) does not fail, the input may not possess a valid factorization due to the length of Z.
Therefore A compares its counter and |Z|. If these numbers are equal it recomputes each
len(i) in turn and checks that x; = 2 for 1 <4 < k which is possible by Lemma 1. O

Corollary 2 For every k > 1 there is a two pebble automaton accepting L*.

6 Concluding Remarks

We have been able to give recognition procedures for languages that have been proposed for
separating finite automata with an increasing number of pebbles resp. two-way heads.

From the method we used in Section 3 we can deduce quite precisely the gap in the
argument given in the proof of Theorem 1 of [8]. It is the assumption that the words in a
given list can be processed according to the order of their appearance (p. 76).

It remains open whether there are separating languages for the models of computation
considered here that are not based on diagonal arguments.
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