
�
����

����

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��

�

�

��

�

�

��

�

�

��

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Universit�at Stuttgart

Fakult�at Informatik

�
Institut f�ur Informatik

Breitwiesenstra�e 20-22

D-70565 Stuttgart

A Census Technique for

Simple Computing

Devices

Holger Petersen

Report Nr. 1997/07

June 27, 1997

Abstract

We develop a technique that uses pebbles in a very economical way for simulating a multi-

counter automaton on a sequence of input strings and maintain a count of those strings

accepted by the counter automaton. Based on this result we show the failure of a previously

proposed method for constructing witness sets separating classes of languages accepted by

pebble automata with an increasing number of pebbles. We also give a recognition algorithm

for another family of languages suspected to separate the lower levels of the hierarchy.

1 Introduction

The investigation of restricted Turing machines that are allowed to mark a �xed number of

positions of their input goes back at least to the work of Kreider and Ritchie [11]. Subsequently

various modi�cations of this concept (here called pebble automaton) have been considered, e.g.

[5, 8, 9, 10, 13, 14, 15]. It is well-known that deterministic (nondeterministic) pebble automata

characterize the complexity classes DSPACE(log n) (NSPACE(log n)), see [18, Section 3.2] for

a construction. Alternation gives the class P (deterministic polynomial time) [10].

A main concern of complexity theory is the question whether an increase of the available

resources increases the computational power as well. Rephrased in terms of pebble automata

we ask whether there are languages separating the classes of languages accepted by automata

equipped with k and k + 1 pebbles. A traditional method to establish such a hierarchy

employed in most of the cited references consists of two steps:

� Use a diagonal argument in order to separate some levels of the hierarchy.

� Re�ne the separation obtained in the �rst step with the help of transformational meth-

ods.

While the �rst step is comparatively easy for deterministic automata, the second step tends to

be rather technical due to the limited power of the computational models under consideration.

It is another drawback of transformational methods that only automata having identical

characteristics can be separated with respect to increasing resources.

A completely di�erent way to obtain separation results, here called census approach, has

been suggested by Hsia and Yeh [8]. They propose to take a language L of high complexity

from level k of the hierarchy and form sequences of words separated by a new symbol, such

that the number of words from L equals the number of words from its complement L. Then

the language consisting of all such sequences should separate levels k and k + 1.

Such a construction would be of considerable interest since it would lead to natural ex-

amples of witness languages paralleling the situation for one-way automata [19] (see also [12,

Theorem 6.11]), where the hierarchy results rely on the combinatorial di�culty of languages.

We will establish in this article that the construction from [8] does not work even for the

�rst non-trivial level of the hierarchy, k = 2. In addition we describe generalizations of their

idea that still do not give the desired separation. We also discuss the gap in the argument

given for Theorem 1 of [8], the basis for a hierarchy of languages recognizable by pebble

automata, an error of intrinsic importance that has survived the reviews [3, 6, 7].

In an earlier work [15] the author stated without proof the weaker result that the argument

of [8] failed for k � 3, provided that bounded counting automata and pebble automata of

corresponding levels k � 1 could be separated, a yet unproven hypothesis for k � 3. The

present work improves this result to a level where the inequivalence of the latter models is

known, thus showing that the construction of [8] indeed fails.

In a similar vein we look at possible candidates for separating the power of two versus

three pebbles that have been proposed by Chang e.a. [2]. Note however that they do not

claim to have a proof. We show that these candidate languages can be accepted with the help

of two pebbles.

Our results can be taken as evidence for the di�culty of �nding concrete languages ac-

cepted by pebble automata, but not with as few as two pebbles or pointers on the input string.

In this sense the result of [4] might be optimal, that a language related to string matching

1

cannot be accepted by an automaton with two heads one of which can see the end-markers

but cannot distinguish input symbols.

2 Preliminary Remarks

In this section we will summarize some de�nitions and known facts relevant for our investi-

gation.

A pebble automaton with k pebbles is a deterministic single-head two-way �nite automaton

with end-markers that has k pebbles (markers) available which it may place on its tape

squares. The pebbles can later be recognized, picked up, and redistributed. A bounded

counting automaton with k counters operates similarly but has k counters instead of pebbles.

These counters can be increased, decreased, and tested for being zero. Throughout the

computation of the automaton the counters have to be bounded by the input length. Note

that the automaton cannot actively check whether the bound has been reached. Formal

de�nitions of these devices can be found in [16]. A third computational model we will use

is the deterministic �nite multi-head automaton with k sensing heads, i.e., heads that can

\feel" the presence of other heads on the same square. It should be clear that these devices

can be simulated by k pebble automata. All automata start their computation on the �rst

input symbol (if the input string is not empty) and accept by going to �nal states.

We note that the distinction made in [8] between halting and non-halting pebble automata

is now obsolete due to Sipser's technique for halting deterministic space bounded computations

[17].

The following result is due to Blum and Hewitt [1] and, independently, A.R.Meyer:

Proposition 1 Every language accepted by a one-pebble automaton is regular.

It is easy to design automata equipped with a single counter that accept languages like

E = fanbn j n � 0g or P = fa2n j n � 0g.
Proposition 2 There are non-regular sets accepted by bounded counting automata with one

counter.

We remark that a halting two-way one counter automaton (being deterministic) always re-

spects a linear bound on the counter and therefore can be transformed into a bounded counting

automaton by suitably compressing the counter contents.

From [16] we know:

Proposition 3 Every bounded counting automaton with k counters can be simulated by a

pebble automaton with k + 1 pebbles.

Slightly improving the simulation in [16] we have [15]:

Proposition 4 Every pebble automaton with k pebbles can be simulated by a bounded counting

automaton with k counters.

We summarize the situation, where \level k" denotes the classes of languages accepted by

automata with k pebbles or counters respectively.

� At level 0 the classes coincide with the regular sets.

� At level 1 bounded counting automata are stronger than pebble automata.

� At level k � 2 bounded counting automata are at least as powerful as pebble automata.

2

3 The Candidate Languages

We recall that in [8] languages L0 are constructed which are accepted by automata with k+1

pebbles, but are claimed to be acceptable by no such machine with at most k pebbles. Let

L � �� be a language that can be accepted by an automaton with k pebbles, but by no

automaton with k� 1 pebbles. We have indicated above that such languages exist for k = 2.

Then a language L0 is formed from L by adding a new symbol # to the alphabet of L and

letting L0 consist of all w
1
#w

2
� � �#wm such that the number of words wi 2 �� in L is

equal to the number of words not in L. The idea of the proof is that an automaton accepting

L0 has to use k pebbles to decide each wi and needs an additional pebble to store a count in

order to check the equality. There are however other ways to do the counting.

Theorem 1 If L is a language accepted by a bounded counting automaton with k�1 counters

for some k � 2, then the L0 constructed from L can be accepted by a pebble automaton with k

pebbles.

Note that, by the results mentioned in the preceding section, such an L, which in addition

cannot be accepted by a pebble automaton with k � 1 pebbles, would satisfy the conditions

of the construction outlined above, since it can be accepted by an automaton with k pebbles.

Before giving the proof of Theorem 1 we will look at its consequences.

Corollary 1 The languages E0 and P 0 (where E and P are the non-regular languages de�ned

above) can be accepted by pebble automata with two pebbles.

Proof of the Corollary: Languages E and P can be accepted by bounded counting au-

tomata with one counter. Thus they satisfy the conditions required by Theorem 1 for k = 2.

2

It is this corollary that contradicts the main result of [8], their Theorem 1 (note however

that Corollary 1 of [8], the in�nite hierarchy, is valid, see e.g. [5, 9, 14, 15]).

Proof of Theorem 1: We will �rst give an informal outline of the construction and then

present a more detailed algorithm.

We describe an automaton M with k sensing heads accepting L0 (remember that such an

automaton can be simulated with the help of k pebbles).

Every word wi over the alphabet of L appearing in the input together with the separator

symbol immediately to the right (# for 1 � i < m, an end-marker for i = m) will be called

block i. The length of wi is denoted by bi. A head resting on block i determines a number di,

the distance to the separator symbol within the same block. If wi 2 fag� for i < m we get

the following situation (the head position is underlined):

biz }| {
aaa � � � aa aaa � � � aaa| {z }

di

#

For a given input w
1
#w

2
� � �#wm we renumber the wi (without actually rearranging

them) according to their length (larger numbers are assigned to longer words). If there are

words of the same length we count them left to right. From now on words will be referred to

by these new numbers.

First M uses two heads to determine the rightmost block of maximum length (procedure

maxblock). This is the block of wm. Then it leaves head 1 on a distinguished block (initially

3

block m) while the other heads are moved onto wm; wm�1
; : : : ; w

1
in turn, testing them for

membership in L.

We explain how M , if it has head 1 pointing to some word wj with j � i, can move

another head from wi to wi�1. In order to achieve this M stores the length of wi as the

distance dj with the help of head 1. Then it moves head 2 left onto the word of the next block

and checks whether its length equals dj by moving the heads in parallel. In case of equality

it has found wi�1. Otherwise it moves head 1 back to its position before the comparison,

moves the second head onto the next word to the left and repeats this process. If no word of

the same length as wi can be found, the second head is moved to the right end of the input,

head 1 is moved one symbol to the right (thus decrementing dj), the count that is encoded

by the block that head 1 resides in is updated (see below), and the comparison is continued.

Eventually either wi is found to be the �rst word or wi�1 is located.

If word wi�1 has been found membership in L is decided by a function member based on

the automaton accepting L. This function has to satisfy the following requirements:

� It moves all heads except head 1 to the block occupied by head 2. Since the heads are

sensing they can �nd this block.

� It initializes the positions of heads 2 through k and initializes the count stored as the

distance of head 1.

� It uses the separator symbol as an (additional) end-marker. This is no di�culty, because

the direction of the last move of a head determines which type of end-marker may be

encountered.

� It never leaves the input area.

� After deciding wi�1 it restores the distance stored previously by head 1. This is easily

achieved (procedure call letdibl(1,2)) since it equals bi�1.

Note that member can use k � 1 \real" heads on wi�1 and head 1 as a counter, which is

represented by the position of head 1 in its current block. Thus our simulation is more

general than required for the assertion of the theorem if k � 3. Due to the construction

head 1 never has to leave its block, since this block is at least as long as wi�1.

Depending on the outcome of the test M increments the count kept by the position of

head 1 or leaves it unchanged. The count is encoded by the block that head 1 scans.

It remains to be outlined how the block that head 1 scans encodes the count of words

belonging to L. Just before the call to member this count will (with one exception) be one

more than the number of words to the right of the block scanned by head 1 that are at least

as long as indicated by the distance of head 1 to its separator.

The exception is the initial situation indicated by a boolean variable first, which records

the �rst occurrence of a word belonging to L.

We now give a detailed algorithm for the recognition of L0. Since no access to the symbols

of words wi is required at this level of the description M 's interface to the input consists of

the following boolean functions:

endl(i: head) Reports whether head i rests on the left end-marker.

endr(i: head) Reports whether head i rests on the right end-marker.

4

onsep(i: head) Reports whether head i rests on an end-marker or on a separator #.

sense(i,j: head) Reports whether heads i and j rest on the same tape square.

Procedures left(i: head) and right(i: head) move a head one square to the left or

right, home(i: head) moves a head onto the left end-marker.

The procedures alignl(i: head) and alignr(i: head) move a head onto the leftmost

and rightmost symbol of a block, blockl(i: head) and blockr(i: head) move it onto the

left and right neighboring block (right aligned).

Head i is moved to the position of head j with the help of the following procedure:

procedure visit(i,j: head);

begin

while not sense(i,j) and not endr(i) do right(i);

while not sense(i,j) do left(i)

end;

The next procedure compares the lengths of the blocks occupied by heads i and j for the

relation greater or equal. It destroys the positions of these heads within their blocks.

function geblbl(i,j: head): boolean;

begin

alignl(i);

alignl(j);

while not (onsep(i) or onsep(j)) do (* compare lengths *)

begin

right(i);

right(j)

end;

geblbl := onsep(j)

end;

With the help of the next procedure the length of a block is duplicated as the distance of

a head to the right block-separator of another block. Old distances are lost.

procedure letdibl(i,j: head);

begin

alignr(i);

alignl(j);

while not onsep(j) do

begin

left(i);

right(j)

end

end;

This is one of the crucial procedures. It compares the distance stored by head i and the

length of the block occupied by head j for equality. The distance is preserved, while the

position of head j within its block is destroyed:

5

function eqdibl(i,j: head): boolean;

begin

alignl(j);

while not(onsep(i) or onsep(j)) do (* compare lengths *)

begin

right(i);

right(j)

end;

eqdibl := onsep(i) and onsep(j); (* both on end-markers *)

repeat (* + blocklen. - dist. *)

left(i);

left(j)

until onsep(j);

right(i);

right(j)

end;

The next procedure locates the rightmost block of maximum length.

procedure maxblock;

begin

home(2);

home(1);

while not endr(1) do (* for every block *)

begin

blockr(1);

if geblbl(1,2) then visit(2,1)

end

end;

The following procedures increment resp. decrement the number stored implicitly by the

block that head 1 occupies.

procedure incr;

begin

if not first then first := true (* special case *)

else

begin

repeat (* locate long block *)

blockl(1)

until geblbl(1,2);

letdibl(1,2) (* restore distance *)

end

end;

procedure decr;

begin

repeat (* never decr. from 0 *)

blockr(1)

6

until geblbl(1,2); (* locate long block *)

letdibl(1,2) (* restore distance *)

end;

This procedure updates the count kept by the block that head 1 rests upon.

procedure restcnt;

begin

visit(2,1);

alignr(2);

while not endr(2) do (* for every block *)

begin

blockr(2);

if eqdibl(1,2) then decr; (* critical length *)

alignr(2)

end

end;

The following predicate incorporates all the operations implemented above and tests mem-

bership in L0, making use of the predicate member for L (the word to be tested is pointed to

by head 2).

function check: boolean;

begin

first := false;

maxblock;

visit(1,2);

alignl(1);

left(1);

repeat (* for all distances *)

right(1);

restcnt;

home(2);

repeat

blockr(2);

if eqdibl(1,2) then (* blocks of cur. len. *)

if member then incr;

alignr(2)

until endr(2)

until onsep(1);

home(2);

if first then blockl(1);

alignr(1);

alignr(2);

while not (endr(1) or endr(2)) do (* check count = m/2 *)

begin

blockr(2);

if not endr(2) then

7

begin

blockr(2);

blockr(1)

end

end;

check := endr(1) and endr(2) (* equality *)

end;

4 Generalizations

One way to interpret the result of the Section 3 is that a predicate concerning the number of

words from L that occur in the list is evaluated. Based on a language L � �� and a function

f from non-negative integers to the rationals we can de�ne

Lf = fw
1
#w

2
� � �#wm j f(m) = jf1 � j � m j wj 2 Lgj;81 � i � m : wi 2 ��g

and investigate, for which f and k it is true, that a k pebble automaton can accept Lf if L

can be accepted by a bounded counting automaton with k � 1 counters.

We know that for k � 2 and f(m) = m=2 this statement holds (Theorem 1), since L0 = Lf

(for odd m the condition cannot be satis�ed). This can easily been extended to other ratios

than 1=2.

By generalizing the technique developed in Section 3 we can, e.g., show, that for k � 2

the non-semilinear correspondence f(m) = max(f2p j 2p � m; p � 0g [f0g) and for k � 3

the function s(m) = bpmc are possible. The idea is to simulate an automaton that receives

the count as one of its head positions and compares it with the value of the function. We will

brie
y sketch this construction for s(m). It is clear that the computation of an automaton on

input #m can be simulated by ignoring all input symbols except # and virtually inserting a

before the right end-marker. Let the count encoded as the distance of head 1 to the right

end-marker be c, the other heads are on the end-marker encoding 0. The relation

cX

i=1

(2i � 1) = c2

admits the computation of c2 as the position of head 2 by letting head 3 oscillate between

the right end-marker and the �rst head's current position at distance i, adding 2i� 1 to the

position of head 2. After one pass of head 3 the distance i is decremented by one. If it

reaches 0 the process terminates. In this way the automaton can verify c2 � m by rejecting

if the number encoded by head 2 exceeds m. In order to verify that (c + 1)2 > m the count

c is recomputed, incremented, and (c+ 1)2 partially computed as described above, this time

accepting if and only if the computed value exceeds m.

5 Other Candidate Languages

In this section we will discuss a di�erent family of languages that has been proposed as a

source for candidates separating two and three pebble automata. It is based on the language

of marked palindromes (xR is the reversal of string x).

L = fx#xR j x 2 f0; 1g�g:

8

Let Lk = LL � � �L, where L is taken k times. While L and L2 can clearly be accepted by two

pebble automata, Chang e. a. [2] point out that the recognition of Lk seems to require three

pebbles for k � 3 (they do not claim to have a proof for this statement).

We will show how to accept Lk with the help of two pebbles for arbitrary k, in fact we can

do it with a deterministic two-way one counter automaton. It is clear that such an automaton

can be simulated by a two pebble automaton that uses one of its pebbles to encode the count.

The count of a halting one counter automaton is linearly bounded by the input length and

thus can be transformed into a bounded counting automaton.

Lemma 1 Fix an input segment u#v, u; v 2 f0; 1g� and juj = jvj. Let the counter of an

automaton A initially contain juj and its head be placed on #. Then the counter automaton

can determine whether u = vR.

Proof. While the counter is not zero A moves its heads left and decrements the counter.

Then it reads the scanned symbol a. It remembers a, moves the head right restoring the

count by incrementing for every symbol until it reaches the central #. Then it performs a

similar excursion to the right reading a symbol b, and returns to # again restoring the count.

If a 6= b the loop terminates and the automaton has established u 6= vR, otherwise the count

is decremented until the counter is zero in this step and u = vR. 2

We will now consider the entire input and write it as

x
1
#x̂

1
x
2
#x̂

2
� � � xk#x̂k:

The ultimate goal for membership in Lk is to establish that there is factorization of this

form with xi = x̂Ri for 1 � i � k. A necessary condition is that jxij = jx̂ij for 1 � i � k. Note

that these lengths are uniquely determined if such a factorization exists. The next lemma

shows that the lengths can be computed as the contents of the counter.

Lemma 2 A one counter automaton A is able to compute jxij for inputs admitting the fac-

torization above with jxj j = jx̂jj for 1 � j � k on its counter for 1 � i � k.

Proof. We will describe a procedure len(i) for computing jxij on the counter assuming that

a factorization of the described form exists. If the input does not respect these conditions the

procedure may fail. This property will later be useful for checking the validity of the input

string. We omit the head number 1 in the following pseudo-code, increment and decrement

modify the counter, zero is the test. Note that i is bounded by k, therefore the loop can be

implemented in the �nite control of A.

procedure len(i);

begin

while not zero do decrement;

while not endl do left;

for j := 1 to i do

begin

right;

while not (onsep or zero) do

begin

decrement;

9

right

end;

if not zero then abort;

while not onsep do

begin

increment;

right;

end

end

end;

2

Now we can combine our procedures.

Theorem 2 For every k � 1 there is a one counter automaton accepting Lk.

Proof. First the counter automaton A accepting Lk checks that there are exactly k symbols

#. Now A executes the procedure call len(k) according to Lemma 2. Note that, even if

len(k) does not fail, the input may not possess a valid factorization due to the length of x̂k.

Therefore A compares its counter and jx̂kj. If these numbers are equal it recomputes each

len(i) in turn and checks that xi = x̂Ri for 1 � i � k which is possible by Lemma 1. 2

Corollary 2 For every k � 1 there is a two pebble automaton accepting Lk.

6 Concluding Remarks

We have been able to give recognition procedures for languages that have been proposed for

separating �nite automata with an increasing number of pebbles resp. two-way heads.

From the method we used in Section 3 we can deduce quite precisely the gap in the

argument given in the proof of Theorem 1 of [8]. It is the assumption that the words in a

given list can be processed according to the order of their appearance (p. 76).

It remains open whether there are separating languages for the models of computation

considered here that are not based on diagonal arguments.

References

[1] M. Blum and C. Hewitt. Automata on a 2-dimensional tape. In Proceedings of the 8th

Annual Symposium on Switching and Automata Theory, Austin, 1967, pages 155{160,

1967.

[2] J. H. Chang, O. H. Ibarra, M. A. Palis, and B. Ravikumar. On pebble automata.

Theoretical Computer Science, 44:111{121, 1986.

[3] V. Claus. Review 29,454. Computing Reviews, 17(1):34, 1976.

[4] P. �Duri�s and Z. Galil. Fooling a two way automaton or one pushdown store is better

than one counter for two way machines. Theoretical Computer Science, 21:39{53, 1982.

10

[5] J. Hartmanis. On non-determinancy in simple computing devices. Acta Informatica,

1:336{344, 1972.

[6] J. Hartmanis. Review 7203. Mathematical Reviews, 52:1016, 1976.

[7] J. Ho�rej�s. Review 94029. Zentralblatt f�ur Mathematik und ihre Grenzgebiete, 341:546,

1977.

[8] P. Hsia and R. T. Yeh. Marker automata. Information Sciences, 8:71{88, 1975.

[9] O. H. Ibarra. On two-way multihead automata. Journal of Computer and System Sci-

ences, 7:28{36, 1973.

[10] K. N. King. Alternating multihead �nite automata. Theoretical Computer Science,

61:149{174, 1988.

[11] D. L. Kreider and R. W. Ritchie. A basis theorem for a class of two-way automata.

Zeitschrift f�ur mathematische Logik und Grundlagen der Mathematik, 12:243{255, 1966.

[12] M. Li and P. M. B. Vitanyi. An Introduction to Kolmogorov Complexity and its Appli-

cations. Springer, Berlin-Heidelberg-New York, 1993.

[13] B. Monien. Transformational methods and their application to complexity problems.

Acta Informatica, 6:95{108, 1976. Corrigenda: ibid. 8:383{384, 1977.

[14] B. Monien. Two-way multihead automata over a one-letter alphabet. R.A.I.R.O. |

Informatique Th�eorique et Applications, 14:67{82, 1980.

[15] H. Petersen. Automata with sensing heads. In Proceedings of the Third Israel Sympo-

sium on the Theory of Computing and Systems, Tel Aviv, 1995, pages 150{157. IEEE

Computer Society Press, 1995.

[16] R. W. Ritchie and F. N. Springsteel. Language recognition by marking automata. In-

formation and Control, 20:313{330, 1972.

[17] M. Sipser. Halting space-bounded computations. Theoretical Computer Science, 10:335{

338, 1980.

[18] A. Szepietowski. Turing Machines with Sublogarithmic Space. Number 843 in Lecture

Notes in Computer Science. Springer, Berlin-Heidelberg-New York, 1994.

[19] A. C. Yao and R. L. Rivest. k + 1 heads are better than k. Journal of the Association

for Computing Machinery, 25:337{340, 1978.

11

