
Zwischenbericht der

Projektgruppe

Fahrgemeinschaften

Bericht Nr. 1997/10

P
Universit�at
Stuttgart

Zwischenbericht der

Projektgruppe Fahrgemeinschaften

Herbert Heid

Daniela Nicklas

Alexander Porrmann

Thomas Sch�a�er

Volker Scholz

Betreuung

Prof. Dr. Volker Claus

Dipl.-Inf. Wolfgang Reissenberger

Dipl.-Inform. Friedhelm Buchholz

Dipl.-Math. Nicole Weicker

Abteilung Formale Konzepte

Fakult�at Informatik

Universit�at Stuttgart

7. August 1997

Prof. Dr. Volker Claus

Abteilung Formale Konzepte

Institut f�ur Informatik

Universit�at Stuttgart

Breitwiesenstr. 20-22

D-70565 Stuttgart

Telefon:

0711-7816-300 (Prof. Dr. V. Claus)
0711-7816-301 (Sekretariat)
0711-7816-330 (FAX)

E-Mail: claus@informatik.uni-stuttgart.de

Inhaltsverzeichnis

1 Einleitung 8

1.1 Die Projektgruppe im Informatikstudium 8

1.2 Aufgabenstellung beim Projekt Fahrgemeinschaften 10

2 Vorgehensweise 11

2.1 Arbeitsweise . 11

2.2 Zeitplan . 12

2.2.1 Seminarphase und Vortr�age 12

2.2.2 Anforderungsanalyse . 13

2.2.3 Spezi�kation . 13

2.2.4 Entwurf . 13

2.2.5 Zwischenbericht . 14

2.2.6 Weitere Phasen . 14

2.3 Sprachentscheidung . 14

3 Seminarvortr�age 15

3.1 Nachbarschaft im R
d . 15

3.1.1 Einf�uhrung . 15

3.1.2 Algorithmus f�ur �-Paare 16

3.1.3 Datenstrukturen zur Verwaltung einer Punktmenge 22

3.2 Matching Verfahren . 36

3.2.1 Einleitung . 36

3.2.2 Vom 2'er FGM-Problem zum Maximalen Matching 36

3.2.3 MM-Algorithmus . 37

3.2.4 �Au�ere Schleife . 39

4

3.2.5 Innere Schleife . 40

3.3 K�urzeste Wege . 52

3.3.1 �Ubersicht . 52

3.3.2 Einleitung . 52

3.3.3 Planare Graphen . 52

3.3.4 Single Source Shortest Path-Algorithmus 53

3.3.5 Vorbereitungen zum Algorithmus von Frederickson 55

3.3.6 Der Algorithmus von Frederickson 61

3.4 Softwareengineering . 64

3.4.1 Einleitung . 64

3.4.2 Das Wasserfallmodell . 66

3.4.3 Besonderheiten bei objektorientierter Entwicklung 71

3.4.4 Techniken der Dokumentation 73

3.4.5 Vereinbarungen . 75

3.5 Constraint Programmierung . 76

3.5.1 Einleitung . 76

3.5.2 Constraint Programmierung 77

3.5.3 Au
�osungsalgorithmus . 81

3.5.4 Ausblick . 88

4 Anforderungsanalyse 90

4.1 Neuer Fahrgemeinschafts-Teilnehmer 90

4.2 System-Aufbau . 91

4.3 �Anderung eines Fahrgemeinschafts-Teilnehmers 91

4.4 �Anderung einer Fahrgemeinschaft 92

4.5 Eine neue Partition . 92

4.6 Die optimale L�osung . 93

4.7 Inkrementelle Verbesserung von Partitionen 93

4.8 Festlegung der Bewertungsfunktion 93

4.9 K�urzeste Wegestrecke . 94

4.10 Neuer Algorithmus . 94

4.11 Hilfesystem . 95

4.12 Funktionale Anforderungen . 95

4.12.1 Personen . 95

4.12.2 Fahrgemeinschaften . 96

4.12.3 Partitionen . 97

4.13 Weitere Anforderungen . 97

4.13.1 Anforderungen unter dem Aspekt Graphen 97

5 Spezi�kation 100

5.1 Einf�uhrung . 100

5.2 Allgemeine Beschreibung . 100

5.2.1 Umgebung des Produkts 100

5.2.2 Informelle Beschreibung der Funktionalit�at 101

5.2.3 Charakteristika der Benutzer und Benutzerinnen 101

5.3 Funktionale Anforderungen . 101

5.3.1 Start des Fahrgemeinschaftensystems 102

5.3.2 Men�ustruktur . 102

5.3.3 Datenmodell . 104

5.3.4 Beenden des Fahrgemeinschaftensystems 105

5.3.5 Dateien . 105

5.3.6 Personen . 109

5.3.7 Fahrgemeinschaften . 116

5.3.8 Vermittlung . 121

5.3.9 Bewertungsfunktionen . 126

5.3.10 Wegsuche . 129

5.3.11 Voreinstellungen . 130

5.4 Anforderungen an externe Schnittstellen 131

5.4.1 Benutzungsschnittstelle 131

5.4.2 Hardwareschnittstellen . 133

5.4.3 Softwareschnittstellen . 134

5.5 Leistungsanforderungen . 134

5.5.1 Dateien . 134

5.5.2 Daten im Hauptspeicher 134

5.5.3 Antwortzeiten . 134

5.5.4 Entwurfseinschr�ankungen 135

7

5.5.5 Attribute . 135

5.6 Zuk�unftige Erweiterungen . 135

5.7 Systemmeldungen . 136

5.7.1 Meldungen . 136

5.7.2 Fragen . 136

5.7.3 Fehler . 138

6 Grobentwurf 139

6.1 Men�uverwalter und Doktor . 140

6.2 Algorithmenverwalter und Bewertungsverwalter 140

6.3 Personenverwalter und Einteilungsverwalter 140

6.4 F�ursorger, Datei-Auswahl und Lader/Speicherer 140

A Glossar 141

B Konvertierung von Verkehrsdaten 144

B.1 Einleitung . 144

B.2 GDF-Format . 144

B.3 Graphenformat . 146

B.4 Umwandlung . 147

B.5 Visualisierung der Daten . 147

B.6 Recordformate . 147

Literatur 151

Kapitel 1

Einleitung

1.1 Die Projektgruppe im Informatikstudium

Das Studium der Informatik vermittelt dem Studierenden zwar einen gro�en
Teil des n�otigen Fachwissens, jedoch stellt das Berufsleben noch weitere Anfor-
derungen an Informatikerinnen und Informatiker. Teamf�ahigkeit und Erfahrung
spielen gerade bei der Mitarbeit an gro�en Software{Projekten eine wichtige
Rolle. Hier verfolgt die Idee der Projektgruppe folgende Ausbildungsziele:

� Arbeiten im Team

� Analyse von Problemen, Strukturierung von L�osungen und gemeinsamer
Entwurf geeigneter Systeme

� Selbst�andige Erarbeitung von L�osungsvorschl�agen und deren Vorstellung
und Verteidigung in einer Gruppe

� �Ubernahme von Verantwortung f�ur die L�osung von Teilaufgaben und die
Erstellung von Modulen

� Mitwirkung an einer umfassenden Dokumentation

� Erstellen eines Software{Produktes, das ein Einzelner innerhalb des vor-
gegebenen Zeitraumes unm�oglich bew�altigen kann

� Projekt{Planung und Kosten/Nutzen{Analyse

� Einsatz von Werkzeugen

� Pers�onlichkeitsbildung (�Ubernahme von Verantwortung, Selbstvertrauen,
Verl�a�lichkeit, R�ucksichtnahme, Durchsetzungsf�ahigkeit usw.)

An der Projektgruppe nehmen in der Regel acht bis zw�olf Studierende des
Hauptstudiums teil. Sie erarbeiten im Laufe eines Jahres ein Software{Pro-
dukt, welches einem Zeitaufwand von mehreren Personenjahren entspricht. Hier-
bei sollen s�amtliche Phasen eines Software{Lifecycles | von der Planung bis

8

1.1. DIE PROJEKTGRUPPE IM INFORMATIKSTUDIUM 9

zur Wartung | durchlaufen werden, was in anderen Lehrveranstaltungen nicht

�ublich ist. Bei Software{ und Fachpraktika wird zumeist eine gegebene, genau
festgelegte Aufgabenstellung in ein Programm umgesetzt.

Eine Projektgruppe vereinigt die Lehrveranstaltungsformen
"
Hauptseminar\ (2

SWS),
"
Fachpraktikum\ (4 SWS) und

"
Studienarbeit\ (10 SWS) in sich. Dem-

zufolge ist eine Projektgruppe mit 16 SWS einzustufen.

Der Ablauf einer Projektgruppe folgt meist folgendem Schema: Seminar{, Pla-
nungs{, Entwurfs{, Implementierungs{, Integrations{, Experimentier{
und Schlu�phase. Diese Phasen werden im folgenden genauer erl�autert.

Seminarphase: Die Themenstellung wird gr�undlich analysiert. Dazu werden von
den Mitgliedern Originalpublikationen durchgearbeitet und die Ergebnisse vor-
getragen. Ergebnisse dieser Phase sind viel Wissen, je eine Vortragsausarbeitung
und eine zusammenfassende Darstellung der Literaturauswertung.

Planungsphase: Die Projektgruppe analysiert den Problembereich, stellt Ein-
satzm�oglichkeiten und Anwendungen zusammen, erarbeitet einen Anforderungs-
katalog und diskutiert L�osungsm�oglichkeiten f�ur diese Fragestellungen. Hierbei
werden die in der Literatur bekannten L�osungsvorschl�age und eigene Ideen ge-
geneinander abgewogen. Insbesondere wird fr�uhzeitig diskutiert, welche Hard{
und Software f�ur die jeweiligen L�osungen erforderlich ist, welche sonstigen Ko-
sten entstehen, wie hoch der Zeitaufwand sein wird, usw. Wichtig ist eine fr�uhe
Spezi�zierung der Eigenschaften des Systems (Robustheit, Antwortverhalten,
Flexibilit�at, Schutzmechanismen, Erweiterbarkeit, Verteiltheit, : : :).
Inhaltliches Ergebnis ist eine m�oglichst eindeutige, ausschnittsweise sogar for-
male Spezi�kation. F�ur jede ins Auge gefa�te Anwendung wird dar�uber hinaus
ein Szenario bzgl. des Einsatzes, der Nutzung, der Tests und der Wartung skiz-
ziert.
Organisatorische Ergebnisse sind ein grober Zeitplan und die erste Aufteilung
von Aufgabengebieten. Hier setzt auch eine Spezialisierung der Gruppenmitglie-
der ein.

Entwurfsphase: Voraussetzung f�ur die Entwurfsphase ist, da� Begri�sbestim-
mungen, Anwendungen und Modelle weitgehend gekl�art sind. Nach Festlegung
des grunds�atzlichen L�osungsverfahrens werden Teilprobleme und charakteristi-
sche Objekte herauskristallisiert, miteinander in Beziehung gesetzt, auf ihre
Realisierbarkeit gepr�uft und grundlegende Datenstrukturen und Kommunikati-
onswege festgelegt. Dabei werden die Schnittstellen der Einzelteile des Systems
untereinander genau de�niert. Ergebnis ist ein Plan des zu erstellenden (oder
zu modi�zierenden) Systems. Stehen die einzelnen Aufgaben fest, werden sie
auf die Mitglieder verteilt. Die Implementierungssprache(n) sowie die erforder-
liche Hardware und die zu verwendenden Werkzeuge werden festgelegt. Eine
Liste von Beispielen, die das System sp�ater positiv bew�altigen mu�, wird f�ur die
Testphase erstellt.

In der Implementationsphase und Integrationsphase wird der Programmcode
erstellt, zusammengebunden (integriert) und getestet.

Die Experimentierphase schlie�t weitere Tests mit speziellen Anwendungen ein.

Zur Schlu�phase z�ahlt in erster Linie der Abschlu� der Dokumentation, die
st�andig parallel zur Projektgruppenarbeit erstellt und auf den neuesten Stand

10 KAPITEL 1. EINLEITUNG

gebracht wird.

Das Konzept der Projektgruppe wird bereits seit Jahren an anderen Univer-
sit�aten wie z.B. in Oldenburg und Dortmund erprobt und durchgef�uhrt. Dort
sind Projektgruppen z.T. schon P
ichtveranstaltungen im Rahmen des Infor-
matikstudiums. An der Universit�at Stuttgart gibt es seit 1994 Projektgruppen
im Fach Informatik; im neu eingerichteten Studiengang Software-Technik ist die
Teilnahme verbindlich vorgeschrieben.

1.2 Aufgabenstellung beim Projekt Fahrgemein-

schaften

Im Rahmen der Projektgruppe soll das Programm Mobidick (Mobil durch in-
telligentes computerunterst�utztes Kombinieren) entstehen, das ausgehend von
Personen- und Verkehrsdaten Aufteilungen in Fahrgemeinschaften berechnet.
Es handelt sich hierbei um einen Prototyp f�ur ein System, das beispielsweise
in einer Mitfahr- oder Mobilit�atszentrale eingesetzt werden kann, um f�ur gro�e
Personenmengen Fahrgemeinschaften zu bestimmen und zu verwalten.

Die Personendaten enthalten Informationen �uber Start-, Zielorte, Arbeitszeiten
und Eigenschaften der Personen (z.B. Geschlecht, Raucher/Nichtraucher usw.).
Au�erdem k�onnen die Personen angeben, wie ihre Wunschfahrgemeinschaft aus-
sehen sollte, d.h. welche Kriterien ihnen besonders wichtig sind (Umweg, Ar-
beitszeit, Eigenschaften der Mitfahrer und pers�onliche Zu- bzw. Abneigung ge-
gen�uber bestimmten Personen).

Die Verkehrsdaten (Stadtplan) liefern die Grundlage f�ur die Berechnung der
besten Routen mit den k�urzesten Umwegen. Davon ausgehend soll nun eine
optimale oder heuristische L�osung gefunden werden. Die G�ute von Fahrgemein-
schaften und Einteilungen des Personenstamms kann anhand einer Bewertungs-
funktion beurteilt werden. In diese Bewertungsfunktion gehen die o.g. Kriterien
Umweg, Arbeitszeiten, Personeneigenschaften und Zu-/Abneigungen ein.

Die Personen-, Verkehrs- und Fahrgemeinschaftsdaten m�ussen verwaltet werden
und leicht �anderbar sein.

Besonderer Wert wird im Projekt auf die Austauschbarkeit der Algorithmen
gelegt. Der Prototyp erm�oglicht die Untersuchung verschiedener Algorithmen
zur Wegsuche und zur Einteilung in Fahrgemeinschaften.

Kapitel 2

Vorgehensweise

Dieses Kapitel gibt einen �Uberblick der Aktivit�aten der Projektgruppe
"
Fahr-

gemeinschaften\ von Anfang an bis zur Erstellung des Zwischenberichts. Dabei
wird der Zeitplan sowie die einzelnen Phasen kurz vorgestellt und erl�autert.

2.1 Arbeitsweise

Die Projektgruppe besteht aus den f�unf studentischen Teilnehmern, dem Pro-
jektleiter Wolfgang Reissenberger und dem Kunden Friedhelm Buchholz, der
insbesondere die Auswahl und Entwicklung der Algorithmen �ubernimmt. F�ur
die Seminarvortr�age und -ausarbeitungen ist Nicole Weicker zust�andig.

Die zentrale Veranstaltung der Gruppe ist die Projektgruppensitzung. Bei jeder
Sitzung gibt es einen Protokollf�uhrer und einen Sitzungsleiter, der in der Regel
der Protokollant der letzten Sitzung war. Diese �Amter rotieren unter den Teil-
nehmern. Die Kommunikation erfolgt in erster Linie �uber die Sitzungen, aber
auch elektronisch und �uber den Projektgruppenordner, in dem die Sitzungspro-
tokolle und andere relevante Dokumente abgelegt werden. In der Seminarpha-
se traf sich die Projektgruppe etwa drei Mal die Woche. Davon waren an ein
bis zwei Terminen Vortr�age, am dritten wurde meist Organisatorisches gere-
gelt. Sp�ater gab es in der Regel zwei Termine. Die Projektgruppensitzung dient
haupts�achlich der Koordination. Zu verschiedenen Arbeiten werden Untergrup-
pen gebildet, deren Ergebnisse dann anhand eines schriftlichen Berichts in der
Sitzung diskutiert werden.

F�ur die Meilensteine (Anforderungsanalyse, Spezi�kation) wurden technische
Reviews durchgef�uhrt. Dabei �ubernahm der Projektleiter die Rolle des Sitzungs-
leiters und die Teilnehmer die der Gutachter. Nach den internen Reviews wurden
diese Dokumente noch mit dem Kunden besprochen und sind in ihrer jetzigen
Form von diesem angenommen.

Die Arbeitsteilung in der Projektgruppe erfolgt dynamisch. F�ur jeden Meilen-
stein ist jemand anderes verantwortlich, der dann die Aufteilung in Arbeits-
pakete vornimmt und f�ur die Integration und Gesamtgestaltung zust�andig ist.

11

12 KAPITEL 2. VORGEHENSWEISE

F�ur einzelne Gebiete wurden
"
Experten\ bestimmt, die sich dort besonders ein-

arbeiten, wie z.B. f�ur LaTeX, f�ur Versionskontrolle oder f�ur Dokumentation.
Zu Themen, die der ganzen Projektgruppe neu sind, werden zum Teil externe
Vortr�age (z.B. von Mitarbeitern aus dem Haus) angeworben.

2.2 Zeitplan

Zu Beginn der Projektgruppe wurde folgender Zeitplan vereinbart, der sich an
den Erfahrungen der vorangegangenen Projektgruppen orientiert.

14.10.96 { 29.11.96 Seminarphase (7 Wo.)
3.12.96 { 3.1.97 Anforderungsanalyse (4 Wo.)
6.1.97 { 14.2.97 Spezi�kation (6 Wo.)
17.2.97 { 18.4.97 Entwurf (9 Wo.)
21.4.97 { 2.5.97 Zwischenbericht (2 Wo.)
5.5.97 { 4.7.97 Implementierung (9 Wo.)
7.7.97 { 29.8.97 Test/Review (8 Wo.)
1.9.97 { 26.9.97 Enddokumentation/Pr�asentation (4 Wo.)

Dabei ist zu beachten, da� sich die einzelnen Phasen nicht pr�azise voneinander
trennen lassen und gewisse �Uberlappungen auftreten d�urfen. Zu allen Phasen
entsteht Dokumentation, die Bestandteil des jeweiligen Meilensteins ist. Die
Dokumente der bisher erreichten Meilensteine sind Bestandteil des Zwischenbe-
richts.

2.2.1 Seminarphase und Vortr�age

Die Projektgruppe begann mit der Seminarphase. In dieser wurden von den
Teilnehmern Vortr�age zu folgenden Themen gehalten:

�
"
Nachbarschaftssuche im R

d und Geometrische Datenstrukturen\ von Vol-
ker Scholz

�
"
Matching-Verfahren\ von Herbert Heid

�
"
K�urzeste Wege in planaren Graphen\ von Alexander Porrmann

�
"
Softwareengineering und objektorientierte Entwicklung\ von Daniela Nick-
las

�
"
Contraint Programmierung\ von Thomas Sch�a�er

Die Ausarbeitungen dieser Vortr�age �nden sich in Kapitel 3. Desweiteren fanden
zu verschiedenen anderen Themen Vortr�age statt, um das Wissen der Projekt-
gruppe z.B. f�ur die Wahl der Programmiersprache zu erweitern.

Diese Vortr�age waren im einzelnen:

�
"
Fahrgemeinschaften\ von Prof. Claus

2.2. ZEITPLAN 13

�
"
Die Programmiersprache ML\ von Wolfgang Reissenberger

�
"
Komplexit�at von Partionierungen\ von Friedhelm Buchholz

�
"
K�urzeste Wegsuche\ von Friedhelm Buchholz

�
"
Clustering\ von Friedhelm Buchholz

�
"
Anforderungen an das Fahrgemeinschaftensystem\ von Friedhelm Buch-
holz

�
"
C++ und die Methode von Booch\ von Bernd Kawetzki

�
"
Die Programmiersprache Ada\ von Andreas Bergen

�
"
Die Programmierspache Java\ von Fritz Hohl

2.2.2 Anforderungsanalyse

Die Anforderungsanalyse dient dazu, das Umfeld der Anwendung zu analysie-
ren, bestehende Anforderungen zu erfassen und noch fehlende zu evaluieren. In
der Projektgruppe begann diese Phase damit, da� Friedhelm Buchholz in seiner
Rolle als Kunde einen Vortrag �uber die Anforderungen hielt. In einer zweiten
Runde befragte ihn die Projektgruppe dazu. Dann entwickelte sie Szenarien oder
Use Cases, aus denen sich dann weitere Anforderungen ergaben. Dabei wurden
wichtige Entscheidungen getro�en: Das System wird ein Prototyp werden, der
ohne graphische Benutzungsober
�ache auskommt, daf�ur aber wiederverwend-
bare Module enth�alt und um weitere Algorithmen erweitert werden kann. Das
Ergebnis dieser Phase ist das Dokument

"
Anforderungsanalyse\, das sich in

Kapitel 4 �ndet.

2.2.3 Spezi�kation

In der Spezi�kationsphase wird aus dem Anforderungskatalog das �au�ere Sy-
stemverhalten de�niert. Es wird beschrieben, was das System tut, nicht wie es
das tut. Da die Spezi�kation die Grundlage f�ur den Entwurf ist - hier sollen keine
wichtigen Entscheidungen �uber das Verhalten mehr getro�en werden - dauerte
diese Phase auch sechs Wochen. F�ur die Spezi�kation wurden die Use Cases
aus der Anforderungsanalyse verwendet und ausgebaut. Eines der Hauptproble-
me war die Datenhaltung und die Konsistenzsicherung zwischen den einzelnen
Datenst�ammen (Personen, Fahrgemeinschaften, Verkehrsdaten). Das Dokument

"
Spezi�kation\ steht im Kapitel 5 und ist das Ergebnis des gleichnamigen Mei-
lensteins.

2.2.4 Entwurf

Im Entwurf wird entwickelt, wie das System sich intern verh�alt. Er geht von
einem Grobentwurf, in dem die Subsysteme und ihre Schnittstellen identi�ziert
und de�niert werden in einen Feinentwurf �uber, bei dem am Ende die genau-
en Datenstrukturen und Algorithmen beschrieben werden. Zum Zeitpunkt des

14 KAPITEL 2. VORGEHENSWEISE

Zwischenberichts be�ndet sich die Projektgruppe noch in der Entwurfsphase.
Kapitel 6 enth�alt deswegen den Grobentwurf.

2.2.5 Zwischenbericht

Der Zwischenbericht erscheint etwa nach der H�alfte der Zeit der Projektgruppe.
Er enth�alt die zentralen Dokumente, die bis zu diesem Zeitpunkt erschienen
sind. Zusammen mit dem Endbericht stellt er die Studienarbeit der Teilnehmer
dar.

2.2.6 Weitere Phasen

Nach der Entwurfsphase folgt die Implementation, in der nun die vorher spezi-
�zierten Klassen mit Leben gef�ullt werden. Die verwendete Sprache ist C++,
wie im folgenden Abschnitt erl�autert.

2.3 Sprachentscheidung

F�ur die Implementierung des Fahrgemeinschaftensystems wurden vier Program-
miersprachen diskutiert: SML, ADA, JAVA und C++. SML ist eine funktionale
Sprache mit strengem Typsystem, Java und C++ sind Vertreter der objektori-
entierten Sprachen und ADA wird als eine Sprache bezeichnet, die verschiedene
Paradigmen unterst�utzt.

Die Grundlagen f�ur die Sprachentscheidung waren spezielle Fachvortr�age, die
Kundenanforderungen und die pers�onlichen Erfahrungen der Projektgruppen-
teilnehmer. Aufgrund des gesammelten Wissen wurde wie folgt eine Program-
miersprache ausgew�ahlt:

Die Sprache SML scheiterte an der Kundenanforderung, eine prozedurale Pro-
grammiersprache zu verwenden. Es sind Probleme bei der Anbindung von Algo-
rithmen, die prozedural geschrieben sind, zu erwarten, da SML eine funktionale
Sprache ist. Die geforderte zuk�unftige Erweiterung, eine direkte Anbindung ei-
ner graphischen Benutzungsober
�ache, gab den Anla� daf�ur, ADA zu streichen.
Ein weiterer Grund war die Darstellung der Objekte, die nur durch Records re-
pr�asentiert werden k�onnen. Da Java eine recht neue Programmiersprache ist und
nicht gewi� war, wann die neue Entwicklungsumgebungsversion kommt, w�ahl-
te man f�ur die Implementierung nicht Java, sondern die Programmiersprache
C++. C++ besitzt all die Eigenschaften, die an die Programmiersprache ge-
stellt wurden: prozedural, objektorientierte Programmierung, Anbindung einer
graphischen Benutzungsober
�ache und E�zienz in bezug auf schnelle Algorith-
men und gro�e Datenmengen. F�ur die Implementierung werden die Standard
Template Library und die Leda Library verwendet, die einige Standardfunktio-
nen bieten. Zur Beschreibung und zur Darstellung der Klassen wird ein OO-
Browser verwendet, der in einer Emacs-Umgebung f�ur C++ arbeitet.

Kapitel 3

Seminarvortr�age

In diesem Kapitel be�nden sich die Ausarbeitungen der Vortr�age, die im Rah-
men der Seminarphase von den Teilnehmern gehalten wurden.

3.1 Nachbarschaftssuche im R
d und Geometri-

sche Datenstrukturen

3.1.1 Einf�uhrung

Bei der Bildung von Fahrgemeinschaften soll der f�ur den Fahrer entstehende
Umweg eine gewisse Zumutbarkeitsgrenze nicht �uberschreiten. Da das Problem
der Zuordnung von Personen zu Fahrgemeinschaften NP-hart ist (siehe [3]),
m�ussen heuristische Verfahren angewendet werden. Zieht man z.B. nur Personen
mit �ahnlichen Start-, Zielorten und Fahrtzeiten f�ur eine Fahrgemeinschaft in
Betracht und notiert die Daten jeder Person als 6-Tupel (xstart; ystart; xziel; yziel;
tabfahrt; tankunft), so entspricht dies einer Nachbarschaftssuche auf Punkten im
R
6 . Im folgenden sollen hierf�ur geometrische Algorithmen und Datenstrukturen

vorgestellt werden, die man bei einer Implementierung verwenden k�onnte.

Im ersten Teil wird ein Algorithmus zur Bestimmung aller Punktepaare mit
Maximalabstand � vorgestellt. Daran schlie�t sich eine Laufzeitabsch�atzung an.

Im zweiten Teil werden drei geometrische Datenstrukturen zur Verwaltung einer
Punktmenge betrachtet. F�ur die einzelnen Operationen auf den Datenstruktu-
ren werden Laufzeitabsch�atzungen angegeben. F�ur Nachbarschaftsprobleme ist
dabei insbesondere die Bereichssuche wichtig. Im abschlie�enden Vergleich der
Datenstrukturen wird der Unterschied zwischen statischen und dynamischen
Datenstrukturen hervorgehoben.

Um mit diesen Hilfsmitteln benachbarte Punkte zu bestimmen, k�onnte man in
zwei Schritten vorgehen: Zun�achst f�uhrt man eine Bereichssuche auf der gew�ahl-
ten Datenstruktur in der Umgebung eines festen Punktes durch und bestimmt
dann im fraglichen Bereich alle benachbarten Punkte mit Hilfe des Algorithmus
f�ur �-Paare.

15

16 KAPITEL 3. SEMINARVORTR�AGE

3.1.2 Algorithmus f�ur �-Paare

3.1.2.1 De�nitionen

Eine untere Schranke f�ur die Laufzeit eines Algorithmus f�ur benachbarte Punk-
te ist sicherlich der Wiedergabeaufwand, d.h. wieviele Punktepaare tats�achlich
gefunden und ausgegeben werden m�ussen. Diese Anzahl h�angt von der Dich-
te (bzw. Sp�arlichkeit) der betrachteten Punktmenge ab, deshalb de�nieren wir
zun�achst ein Ma� f�ur die maximale Dichte einer Punktmenge (vgl. [17]):

De�nition 1 (Sp�arlichkeit) Eine Punktmenge S � R
d hat die Sp�arlichkeit

c 2 N f�ur � > 0, falls alle d-dimensionalen W�urfel der Kantenl�ange 2� h�ochstens
c Punkte enthalten.

Zur Veranschaulichung betrachte man Abb. 3.1. Verschiebt man ein Quadrat
der Seitenl�ange 2 �uber die Punktmenge S, so liegen maximal vier Punkte im
Quadrat, also betr�agt die Sp�arlichkeit c = 4 f�ur � = 1.

0

1

x

y

1

2�

Abb. 3.1: Sp�arlichkeit c = 4 f�ur � = 1

Bei einer hohen Sp�arlichkeit c f�ur ein vorgegebenes � mu� man also bei N Punk-
ten mit einer Laufzeit von O(N2) rechnen (alle Punktepaare werden zur�uckge-
geben), nur bei d�unnen Punktmengen ist eine Verbesserung zu erwarten. Als
Abstandsma� verwenden wir nicht den euklidischen Abstand, sondern betrach-
ten jede Koordinate einzeln, wie in der folgenden De�nition.

De�nition 2 (�-Paar) Zwei Punkte x = (x1; : : : ; xd)
T , y = (y1; : : : ; yd)

T 2 Rd
sind ein �-Paar

:() jxi � yij � � 8i 2 f1; 2; : : : ; dg

Mit diesen beiden Begri�en l�a�t sich nun unser Problem formulieren:

Gegeben sei eine Punktmenge S � R
d mit Sp�arlichkeit c f�ur � und

ein Maximalabstand �. Gesucht sind alle �-Paare in S.

3.1. NACHBARSCHAFT IM R
D 17

3.1.2.2 Algorithmus NN (nearest neighbour)

Um dieses Problem mit einem divide-and-conquer-Ansatz zu l�osen, teilt man die
Punktmenge S durch eine Hyperebene l senkrecht zu einer Koordinatenachse
xk in zwei Mengen S1 und S2 (siehe Abb. 3.2). Die zur Koordinatenachse k
senkrecht stehende Ebene l sei dabei durch die Gleichung xk = lk gegeben.
L�ost man nun das Problem f�ur diese Mengen rekursiv, so erh�alt man aber nur
�-Paare, die ganz in S1 oder S2 liegen. F�ur Paare, bei denen ein Punkt in S1,
der andere in S2 liegt, gen�ugt es, den Bereich in der �-Scheibe S� um l zu
untersuchen, wobei

S� :=
�
x 2 Rd

��jxk � lkj � �	:
Wenn ein Punkt gerade auf l liegt, kann der Partner h�ochstens � von l entfernt
sein.

��
x = lk

S1 S2

Abb. 3.2: im R
2 ist l eine Gerade

Im ung�unstigen Fall liegen allerdings alle Punkte der Ausgangsmenge S auch
in S� (dichte Punktmenge), das urspr�ungliche Problem wurde also nicht ver-
kleinert. Deswegen projiziert man die Punkte in S� auf l und gewinnt somit
eine Verkleinerung in der Dimension. Wenn man bei einer Dimension angelangt
ist, k�onnen die �-Paare durch direkten Vergleich der Nachbarn auf der Geraden
bestimmt werden. Die Rekursion kann ebenfalls abgebrochen werden, wenn die
Punktezahl unter eine bestimmte Schranke f�allt, dann lohnt der Teilungsauf-
wand nicht mehr und man vergleicht alle Punktepaare direkt.

Algorithmus:

1. Eingabe: Punktmenge S � Rd , Maximalabstand �.

2. Ausgabe: alle �-Paare in S.

3. Vorsortierung: Sortiere S bez�uglich aller k Koordinaten in die Felder F1; : : : ; Fk.

18 KAPITEL 3. SEMINARVORTR�AGE

procedure deltapaare(S:Punktmenge, d:Dim.zahl)
begin

if jSj � K then

vergleiche alle Punktepaare direkt

else if d = 1 then
for i := 1 to jSj � 1 do
j:=i+1;
while F 0[j]l � F 0[i]l � � and j � jSj do
vergleiche Projektionslisten von F 0[j] und F 0[i];
if �-Paar gefunden then Paar ausgeben;
j:=j+1;

endwhile;
endfor;

else

w�ahle Hyperebene l;
spalte S in S1, S2 und S� auf ;
deltapaare(S1, d);
deltapaare(S2, d);
projiziere Punkte in S� auf l;
deltapaare(S� , d� 1);

end

Nach der Durchf�uhrung der Vorsortierung wird deltapaare mit der zu untersu-
chenden Punktmenge S und der Anzahl der Raumdimensionen d aufgerufen.
Die ersten beiden F�alle der if -Anweisung behandeln den Rekursionsabbruch,
wir betrachten zun�achst den else-Teil. Man w�ahlt eine Hyperebene l und teilt
S in S1, S2 und S�. Dabei werden die Felder F1; : : : ; Fk in die neuen Felder F 1

i ,
F 2
i und F �

i (f�ur i = 1 : : : k) aufgespalten, wobei die Sortierung erhalten bleibt.
Dann erfolgt Rekursion auf S1 und S2 in d Dimensionen. Bei der Projektion
der Punkte in S� auf l wird die verlorengegangene Koordinate jedes Punktes in
seiner Projektionsliste gespeichert. Danach erfolgt wiederum Rekursion auf der
projizierten Menge in d� 1 Dimensionen.

Im Fall jSj � K vergleicht man alle Punktepaare direkt. Bei nur einer Dimension
(d = 1) liege die Punktmenge nach der Koordinate xl sortiert im Feld F 0 vor.
Man betrachtet dann f�ur jeden Punkt nur Nachbarn in der �-Umgebung (while-
Schleife, F 0[j]l �F 0[i]l ist der Abstand in der Koordinate xl) und stellt anhand
der Projektionslisten fest, ob ein �-Paar vorliegt.

Als Beispiel betrachte man Abb. 3.3. Im ersten Bild sind die in der Ausgangs-
menge S vorhandenen �-Paare durch gestrichelte Linien verbunden. Im ersten
Teilungsschritt liegen zwei Punkte in S� und werden auf l projiziert. W�ahrend in
S� und S2 die �-Paare direkt bestimmt werden k�onnen (Rekursionsabbruch we-
gen d = 1 bzw. jSj � 3), wird S1 nochmals in S

0
1, S

0
� und S

0
2 geteilt. Man �ndet

schlie�lich alle drei �-Paare, die in S0� und S
0
2 gefundenen Paare sind identisch.

3.1. NACHBARSCHAFT IM R
D 19

S1 S� S2

S01

�-Paar

S0� S02

�-Paar �-Paar

�-Paar kein �-Paar

� = 2, K = 3

1 LE

Abb. 3.3: Beispiel

20 KAPITEL 3. SEMINARVORTR�AGE

3.1.2.3 Wahl der Hyperebene

Der folgende Satz zeigt, wie man bei der Bestimmung der Hyperebene vorge-
hen kann, um eine

"
gerechte\ Teilung von S zu erreichen. Wie auch bei ande-

ren divide-and-conquer-Verfahren (Bsp. quicksort) w�are die Laufzeit bei einem
gro�en Ungleichgewicht zwischen jS1j und jS2j wiederum in O(N2).

Satz 1 (Existenz einer g�unstigen Hyperebene) F�ur eine Punktmenge S � Rd ,
jSj = N mit Sp�arlichkeit c f�ur � gibt es eine Hyperebene l und eine dazu senk-

rechte Koordinatenachse mit folgenden Eigenschaften:

1. Die Mengen S1 und S2 zu beiden Seiten von l enthalten jeweils mindestens
N
4d

Punkte.

2. In der �-Scheibe S� um l liegen h�ochstens d � c �N1�1=d Punkte.

Beweis: f�ur d = 2

l

2�
x1 x2x01 x02 x

y

y2

y1

R

O.B.d.A. sei N = 8N 0. Bestimme ein Intervall [x1; x2], so da� rechts und links
des vertikalen Streifens T := f(x; y) 2 R2jx1 � x � x2g jeweils N

8
Punkte

liegen. Bestimme [y1; y2] analog. Die beiden Intervalle spannen das Rechteck
R := [x1; x2] � [y1; y2] auf. Falls beide Intervalle die L�ange null haben, gibt
es kein l mit den gew�unschten Eigenschaften. Alle Punkte sind dann identisch
und es gilt N � c aufgrund der Sp�arlichkeitseigenschaft. Falls nur ein Intervall
verschwindet, w�ahlen wir l so, da� das andere Intervall halbiert wird. In S� liegen
dann maximal c Punkte, weil in einem Quadrat der Seitenl�ange 2� h�ochstens c
Punkte enthalten sind (De�nition der Sp�arlichkeit). Im folgenden nehmen wir
also an, da� x2 � x1 > 0 und y2 � y1 > 0. Bestimme nun auf der x-Achse das
gr�o�te Intervall [x01; x

0
2] in [x1; x2], das die Projektionen von h�ochstens 2c �N1=2

3.1. NACHBARSCHAFT IM R
D 21

Punkten enth�alt. Ebenso [y01; y
0
2]. Sei
 das Maximum der beiden Intervall�angen,

o.B.d.A.
 = x02 � x01.
Die Schnittlinie l mit der Gleichung x = 1

2
� (x01 + x02) hat die gew�unschten

Eigenschaften. Dazu zeigen wir
 � 2�. Dann gilt 1., weil rechts und links von
[x1; x2]

N
8
Punkte liegen. Au�erdem gilt 2., weil in [x01; x

0
2] maximal 2c �N1=2

Punkte liegen.

Annahme:
 < 2�
Dann enth�alt jeder vertikale Streifen der Breite 2� im Intervall [x1; x2] mehr als
2c �N1=2 Punkte (wegen der Maximalit�at von
).

bx2 � x1
2�

c � 2cN1=2 � 3

4
N () bx2 � x1

2�
c � 3N1=2

8c

analog : by2 � y1
2�

c � 3N1=2

8c

R enth�alt h�ochstens dx2�x12�
e � dy2�y1

2�
e Quadrate der Seitenl�ange 2�, die nach

Voraussetzung h�ochstens c Punkte enthalten (De�nition der Sp�arlichkeit). F�ur
die Punktezahl in R ergibt sich:

dx2 � x1
2�

e � dy2 � y1
2�

e � c � (bx2 � x1
2�

c+ 1) � (by2 � y1
2�

c+ 1) � c

� (
3N1=2

8c
+ 1)2 � c

� (
p
2 � 3N

1=2

8c
)2 � c

Die letzte Ungleichung gilt wegenN � c. Der letzte Term wird wegenN � c f�ur
c = 1 maximal, also enth�alt R h�ochstens 2 � (38)2N � 0:28N Punkte. Au�erhalb
von R liegen h�ochstens 2 � 1

4
� N = 1

2
N Punkte (jAj = 1

4
N , jBj = 1

4
N und

jAj [jBj � jAj + jBj), also kann R nicht weniger als 0:5N Punkte enthalten.
Widerspruch!

3.1.2.4 Aufwandsabsch�atzung f�ur NN

T (N; d) bezeichne die Laufzeit des Algorithmus f�urN Punkte im R
d . Die Sp�arlich-

keit der Punktemenge sei wiederum c. Wir beschr�anken uns auf den Fall d = 2.
F�ur die einzelnen Phasen von NN ergeben sich dann folgende Absch�atzungen:

1. Vorsortierung:
Sortiere S nach jeder Dimension (Felder F1, F2).
Aufwand : O(2N � logN) = O(N � logN).

2. Teilungsschritt:

� Bestimmung von [x1; x2] und [y1; y2] in O(1).

� Bestimmung von [x01; x
0
2] und [y01; y

0
2] in O(2N), indem die Intervalle

[x1; x2] und [y1; y2] einmal durchlaufen werden.

22 KAPITEL 3. SEMINARVORTR�AGE

� S in S1, S2 und S� teilen, indem die sortierten Felder F1, F2 in F 1
i ,

F 2
i und F �

i geteilt werden. (1 � i � 2)
Wenn man z.B. bez�uglich der x-Dimension teilt, wird F1 in drei Tei-
le gespalten, F2 mu� ebenfalls einmal durchlaufen werden, um die
Punkte einzeln in die F�

2 einzuf�ugen. Die Sortierung wird dabei bei-
behalten.
Aufwand : O(2N)

Gesamtaufwand : O(N).

3. Rekursionsabbruch:

(a) T (K; d) 2 O(1). F�ur das direkte Vergleichen von K Punkten ben�otigt
man 1

2
�K � (K � 1) Operationen.

(b) T (N; 1) = 2c �N :
Man geht die auf einer Geraden liegenden, sortierten Punkte nach-
einander durch. Dies sind maximal N Punkte, im Umkreis � jedes
Punktes liegen maximal c Punkte, bei denen man zwei Koordinaten
pr�ufen mu�.

4. Rekursion:

� f�ur S1, S2: T (� �N; 2) und T ((1� �) �N; 2)
� f�ur S�: T (2c �

p
N; 1) = 4c2 �

p
N

wobei 1
8
� � � 7

8
(vgl. Satz 1).

Damit ergibt sich folgende Rekursionsgleichung:

T (N; 2) =

S1z }| {
T (� �N; 2)+

S2z }| {
T ((1� �) �N; 2)+

Teilenz }| {
O(N)+

S�z }| {
T (2c �

p
N; 1)| {z }

=4c2�
p
N| {z }

O(N)

mit der bekannten L�osung (vgl. z.B. mergesort):

T (N; 2) 2 O(N � logN)

Die Vorsortierung ist ebenfalls von dieser Ordnung, also ergibt sich eine Ge-

samtlaufzeit von O(N � logN).

3.1.3 Datenstrukturen zur Verwaltung einer Punktmenge

3.1.3.1 Einf�uhrung

Im folgenden werden drei geometrische Datenstrukturen vorgestellt, die man zur
Verwaltung der Personendaten verwenden k�onnte. Dabei sind folgende Opera-
tionen m�oglich (p 2 Rd sei ein beliebiger Punkt, S � Rd die gespeicherte Punkt-
menge):

3.1. NACHBARSCHAFT IM R
D 23

� Einf�ugen eines Punktes

� L�oschen eines Punktes

� Punktsuche:
Hier soll die Frage p 2 S? beantwortet werden.

� Bereichssuche:
Gesucht sind die Punkte aus S, die im Hyperquader [l0; h0]� : : :� [ld�1; hd�1]
liegen.

Zur L�osung des Nachbarschaftsproblems interessiert uns insbesondere die Be-
reichssuche.

3.1.3.2 k-D-B�aume

Einf�uhrung

Analog zu bin�aren Suchb�aumen f�ur den eindimensionalen Fall m�ochte man ei-
ne hierarchische Strukturierung der Daten erreichen, um eine schnelle Suche
zu erm�oglichen. Zum Aufbau eines k-D-Baums teilt man die vorliegende Punk-
temenge durch eine Hyperebene (Gerade), die mindestens einen dieser Punk-
te enth�alt. Dieser wird zu Wurzel mit den Unterb�aumen T<, T> und T=, die
die Punktemengen rechts, links und innerhalb der Ebene enthalten. Auf diesen
Punktemengen setzt man rekursiv fort.
Als Beispiel betrachte man Abb. 3.4. W�ahlt man die erste Trennungsgerade

b

c

e

f

g

h

a

d

i

b

d e

a h

i

f g c

< >

< > < >

< >

=

= =

=

Abb. 3.4: 2-D-Baum

senkrecht durch den Punkt b, somit wird b zur Wurzel. Die Punktmenge zur lin-
ken Seite trennt man waagrecht durch d, dieser Punkt wird also der <-Sohn von
b usw. Dabei unterscheidet man von Baumlevel zu Baumlevel abwechselnd nach
x- und y-Koordinaten. Damit ergibt sich eine eineindeutige Beziehung zwischen
Baumknoten und Punkten. Zu jedem Knoten v geh�ort au�erdem eine Region
R(v) � R

k . Darunter versteht man man das Raumgebiet, das vom Teilbaum
mit der Wurzel v abgedeckt wird. R(c) entspricht also z.B. dem Quadranten

24 KAPITEL 3. SEMINARVORTR�AGE

rechts oben. Man erh�alt also eine Partitionierung des Raums in Abh�angigkeit
von der gespeicherten Punktmenge.

Bei allgemeiner Dimension k geht man die Koordinaten von Baumlevel zu
Baumlevel zyklisch durch (vgl. [15]):

De�nition 3 (k-D-Baum) Sei S � Rk , jSj = n und x = (x0; x1; : : : ; xk�1) 2
R
k . Ein bei Koordinate i beginnender k-D-Baum wird folgenderma�en de�niert:

1. f�ur k = n = 1 besteht er aus einem einzigen Blatt x 2 S.
2. f�ur k > 1 oder n > 1 besteht er aus

� einer Wurzel w 2 S, wi 2 R bezeichnet die trennende Hyperebene senk-

recht zur Koordinate i. (Ebenengleichung xi = wi)

� den Unterb�aumen T<, T=, T>

{ T< ist ein bei Koordinate (i + 1) mod k beginnender k-D-Baum f�ur

S< = fx 2 Sjxi < wig.
{ T> ist ein bei Koordinate (i + 1) mod k beginnender k-D-Baum f�ur

S> = fx 2 Sjxi > wig.
{ T= ist ein bei Koordinate i mod (k�1) beginnender (k � 1)-D-Baum
f�ur

S= = f(x0; : : : ; xi�1; xi+1; : : :; xk�1) 2 Rk�1

j9x 2 S : x = (x0; : : :; xi�1; wi; xi+1; : : :; xk�1)g nfwg

Wie bei den bin�aren Suchb�aumen f�uhrt man balancierte B�aume ein, um die
Suchzeiten gering zu halten (vgl. [15]):

De�nition 4 (idealer k-D-Baum) Ein k-D-Baum ist ideal, wenn f�ur jeden

Knoten v gilt: Die Unterb�aume T< und T> enthalten jeweils h�ochstens die H�alfte

aller Knoten im Teilbaum mit Wurzel v.

Aufbau eines idealen k-D-Baums

F�ur eine gegebene Punktmenge S l�a�t sich ein idealer k-D-Baum durch eine
einfache Median-Strategie konstruieren, um so die gew�unschte Balancierung zu
erreichen. Man bestimmt den Median bez�uglich der Koordinate, die zum ent-
sprechenden Baumlevel geh�ort und teilt in S<, S> und S=.

Algorithmus:

1. Eingabe: Punktmenge S � Rk , jSj = n.

2. Ausgabe: idealer k-D-Baum f�ur S.

3. Vorsortierung (einmal):
Sortiere S nach jeder Koordinate. (Felder F 0; : : : ; F k�1)
Aufwand: O(k � n � logn)

4. Teilungsschritt:
Sei i die Koordinate, die zum aktuellen Baumlevel geh�ort. Bestimme den
Median von F i (in O(1)) und teile S in S<, S= und S>, also F

j in F j
<,

F j
= und F j

> (f�ur j = 0 : : : k � 1) auf.
Aufwand: O(k � n), weil die Sortierung beibehalten wird.

3.1. NACHBARSCHAFT IM R
D 25

5. Rekursion:
Teilb�aume f�ur S<, S= und S> aufbauen.

Pro Baumlevel werden h�ochstens k � n Operationen ausgef�uhrt, wegen der Ba-
lancierung gibt es logn Level. Inklusive Vorsortierung ergibt sich also ein Ge-

samtaufwand von O(k � n � logn).
Operationen

1. Einf�ugen

Ein nachtr�agliches Einf�ugen von Punkten mit der naiven Methode f�uhrt zu un-
ausgeglichenen B�aumen mit schlechten Suchzeiten. Eine Rebalancierung wie z.B.
bei AVL-B�aumen ist schwierig, da man nicht auf Rotationen zur�uckgreifen kann
(zyklischer Koordinatenwechsel). Der in 3.1.3.2 vorgestellte Algorithmus setzt
eine statische Punktmenge voraus, in diesem Fall sind ideale B�aume m�oglich,
die Baumtiefe betr�agt dann O(log n).

2. L�oschen

Wird ein innerer Knoten gel�oscht, mu� der abgetrennte Teilbaum neu aufgebaut
werden. Im worst case wird die Wurzel gel�oscht und der gesamte Baum mu� neu
aufgebaut werden, Aufwand O(k � n � logn).
3. Punktsuche

Wie bei bin�aren Suchb�aumen sucht man je nach Suchkoordinate in T<, T=
oder T> rekursiv weiter, bis man auf ein Blatt tri�t oder den vorgegebenen
Punkt �ndet. Bei idealen k-D-B�aumen l�a�t sich die Suchzeit folgenderma�en
absch�atzen: Wegen der Balancierung liegen h�ochstens logn <- oder >-Zeiger
auf dem Suchpfad (vgl. De�nition 4). Da es k Koordinaten gibt, sind maximal
k =-Zeiger m�oglich. Der Suchaufwand betr�agt also O(k + logn).

4. Bereichssuche

Dazu geben wir die entsprechende Prozedur in Pseudocode an:

Bezeichnungen:

� Suchbereich R = [x1; x2]� [y1; y2] (im R
2)

� P (v): Punkt, der zum Knoten v geh�ort.

� S(v): Punktmenge im Baum mit Wurzel v.

� v: >, v: <, v: =: S�ohne von v.

� R(v): Region von v.

procedure region(v:Knoten, R:Rechteck)
begin

if P (v) 2 R then P (v) ausgeben;
if jS(v)j > 1 then
begin

if R(v: >) \R 6= ; then region(v: >;R);
if R(v: <) \R 6= ; then region(v: <;R);

26 KAPITEL 3. SEMINARVORTR�AGE

if R(v: =) \ R 6= ; then region(v: =; R);
end

end.

Beim Prozeduraufruf steht in v die Wurzel des zu durchsuchenden k-D-Baums,
in R der gew�unschte Suchbereich. Liegt der dem Knoten v zugeordnete Punkt
im Suchbereich, wird dieser ausgegeben. Falls v kein Blatt ist, werden die Un-
terb�aume rekursiv durchsucht, deren Regionen sich mit dem Suchbereich �uber-
lappen. Eine Laufzeitabsch�atzung hierzu �ndet man in [15] und [4]:

Satz 2 Sei T ein idealer k-D-Baum f�ur S � R
k , jSj = n. Dann ist eine Be-

reichsanfrage in der Zeit

O(k � 4k � n1�1=k + k � jAj)
m�oglich, wobei A die Menge der Antworten ist.

Beweis: f�ur k = 2: O(32 � pn+ 2 � jAj)
Sei R(v) die zum Knoten v zugeh�orige Region, d.h. alle Punkte im Teilbaum
mit der Wurzel v liegen in dieser Region. Es gibt 7 Regionentypen (Abb. 3.5).
Die Wurzel von T habe den Baumlevel 0, dann treten auf Level 1 die Typen 1
und 5 (Halbebene und Gerade) auf. Ab Level 2 gibt es Quadranten (Typ 2) und
Halbgeraden (Typ 6). Ab Level 3 hat man drei Begrenzungslinien zu Verf�ugung,
deswegen ist Typ 3 m�oglich (Streifen). Ab Level 4 tauchen Rechtecke (Typ 4)
und Strecken (Typ 7) auf. Zur Aufwandsabssch�atzung z�ahlen wir die Anzahl der

�
�
�
�

��
��
��
��

��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

1,2: Halbebenen 3,4: Rechtecke 6: Halbgerade 7: Strecke5: Gerade

Level 1

2

3

4

Abb. 3.5: Regionentypen

Knoten im Teilbaum T 0, der bei der Bearbeitung der Bereichsanfrage f�ur das
Rechteck R = [x1; x2] � [y1; y2] besucht wird. Ein Knoten v wird genau dann
besucht, wenn sich Region und Suchbereich �uberlappen, also:

v 2 T 0 () R(v) \ R 6= ;
T 0 zerlegen wir in drei disjunkte Knotenmengen X , Y und Z:

X = fv 2 T 0jR(v) � Rg
Y = fv 2 T 0jR(v) \ R 6= ;; R(v)�R 6= ; und R�R(v) 6= ;g
Z = fv 2 T 0jR � R(v)g

3.1. NACHBARSCHAFT IM R
D 27

jX j kann leicht durch jAj nach oben abgesch�atzt werden, weilX � A (die Region
liegt ganz im Suchbereich, also auch der Knoten selber).Beim Test P (v) 2 R

fallen dann 2�jAj Operationen an, da beide Koordinaten gepr�uft werden m�ussen.

Anzahl der Tests P (v) 2 R: 2 � jAj (3.1)

F�ur Z gilt jZj � logn, weil alle Knoten vi 2 Z auf einem Pfad liegen
(R(v1) � R(v2) � : : :) und logn die Baumtiefe ist.

jZj � log n (3.2)

Gilt v 2 Y , so mu� R(v) mindestens einmal den Rand von R schneiden, weil ein
Teil von R(v) innerhalb von R liegt, ein Teil au�erhalb. Der Rand von R besteht
aus vier Randst�ucken (Rechteckseiten). Sei L das Randst�uck, das am h�au�gsten
von solchen Knoten geschnitten wird und tmax die Anzahl der Knoten v 2 Y ,
deren Region L schneidet. F�ur Y erhalten wir dann

jY j � 4 � tmax (3.3)

Um tmax zu bestimmen, nehmen wir im folgenden o.B.d.A. an, da� L der rechte
Rand von R ist. Die Menge der Knoten, die L schneiden, zerlegen wir in V und
W , dabei wird nach der Gestalt der Knotenregionen unterschieden:

V = fv 2 Y jR(v) ist eindimensional g (Typ 5-7)

W = fv 2 Y jR(v) ist zweidimensionalg (Typ 1-4)

tmax = jV j+ jW j

Auf dem Pfad zu einem Knoten w 2 W kommt also kein =-Zeiger vor, bei
einem Knoten z 2 V genau einer (eine Koordinate ist schon fest).

Wl �W sei die Menge der Knoten aus W auf dem Level l des Baums,
W =

Slogn
l=0 Wl. Jeder Knoten v 2Wl hat zwei Level tiefer h�ochstens zwei Enkel

ausW , also jWl+2j � 2 � jWlj. Dazu betrachte man Abb. 3.6. Nach der Wahl der

L

R
1.

2.

R(v), v 2Wl

R(u1)

R(u2)

u1 2Wl+2

u2 2Wl+2

Abb. 3.6: zwei Enkel

ersten Splitlinie kommt der Bereich, der ganz in R liegt (oder derjenige, der ganz
au�erhalb von R liegt), f�ur W nicht mehr in Frage. Nach dem zweiten Splitten
entstehen also h�ochstens zwei Enkel in Wl+2, wie in der Abbildung dargestellt.

28 KAPITEL 3. SEMINARVORTR�AGE

Mit der Anfangsbedingung jW0j � jW1j � 2 ergibt sich

jW2mj � 2jW2m�2j � : : : � 2mjW0j � 2 � 2m (3.4)

jW2m+1j � 2jW2m�1j � : : : � 2mjW1j � 2 � 2m (3.5)

Nun z�ahlen wir die Knoten in V , sie sind S�ohne von Knoten aus W , weil eine
eindimensionale Region immer in einer zweidimensionalen liegt und der Vater
ebenfalls L schneiden mu�.

Bezeichne S(u) f�ur u 2 S die im Teilbaum mit Wurzel u gespeicherte Punkt-
menge. Sei z 2 V der =-Sohn von w 2 Wl, dann gilt R(z) � R(w) und somit
jS(z)j � jS(w)j � n

2l
(ein Teilbaum mit Wurzel w auf Level l hat h�ochstens n

2l

Knoten wegen der Balancierungseigenschaft) (siehe Abb. 3.7).

w

log jS(z)j

2 Pfade

log n
2l

z
=

Abb. 3.7: w 2Wl und z 2 V

Weiterhin hat z h�ochstens 2�log jS(z)j Nachfolger, die ebenfalls in V liegen. R(z)
ist n�amlich eine horizontale oder vertikale Linie (siehe Abb. 3.8). Im ersten Fall

>

R

L

z

L

R

>

<z
R(z)

<

R(z)

Abb. 3.8: R(z) horizontal bzw. vertikal

liegen alle Nachfolger von z, die L schneiden, auf einem Pfad im Baum T , weil
man entweder den <- oder den >-Zeiger verfolgen mu�. F�ur die Region des
Nachfolgers von z (gestrichelt) gilt wiederum dasselbe. Im zweiten Fall sind
zwei Pfade m�oglich, man verfolgt beide Zeiger und hat dann bei den beiden
Nachfolgern wiederum den ersten Fall vorliegen. Die Anzahl der Nachfolger ist
also h�ochstens

2 � log jS(z)j � 2 � log n
2l

(3.6)

3.1. NACHBARSCHAFT IM R
D 29

Um jV j + jW j nach oben abzusch�atzen, z�ahlen wir f�ur jeden Baumlevel l die
Knoten w 2 Wl und deren Nachfolger in V , wobei hierbei nat�urlich Knoten aus
V doppelt gez�ahlt werden (siehe Abb. 3.9).

Level l
w1 w2

log n
2l

Abb. 3.9: pro w 2 Wl sind zwei Pfade m�oglich

tmax = jV j+ jW j �
lognX
l=0

jWlj � 2 log
n

2l
(mit 3.6)

�
lognX
l=0

2 � 2l=2 � 2 � log n
2l

(mit 3.5)

= 4 �
lognX
l=0

2l=2 � (logn� l)

= 4
p
n �

lognX
l=0

2
l�logn

2 � (logn� l)

= 4
p
n �

lognX
l=0

(
1p
2
)l � l 2 O(4

p
n)

F�ur Y ergibt sich also jY j 2 O(16 �pn) (wegen 3.3) und jY j+ jZj 2 O(16 �pn+
logn) = O(16 � pn) (mit 3.2). F�ur jeden besuchten Knoten fallen beim Test
P (v) 2 R zwei Operationen an, also erh�alt man mit (3.1) den Gesamtaufwand:

O(32 �
p
n+ 2 � jAj)

3.1.3.3 Quad-Trees

Einf�uhrung

Die wohl bekannteste geometrische Datenstruktur ist der Quad-Tree (siehe [1]).
Wir betrachten wiederum nur den zweidimensionalen Fall, die Verallgemeine-
rung f�ur h�ohere Dimensionen (Okt-Trees usw.) macht keine besonderen Schwie-
rigkeiten. W�ahrend bei den k-D-B�aumen eine Unterteilung in Halbebenen er-
folgte, unterscheidet man nun vier Quadranten, es ergeben sich also B�aume mit
dem Verzweigungsgrad vier (im R

k Verzweigungsgrad 2k). Die Zuordnung der

30 KAPITEL 3. SEMINARVORTR�AGE

NONW

SW SO

III

IVIII

����

��

����

��

��

��
��
��
��

�
�
�
�

�� ��
��
��
��

��
��
��
��

��

�
�
�
�

�
�
�
�

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

�����������
�����������
�����������

�����������
�����������
�����������

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

���
���
���

���
���
���

��
��
��

��
��
��

������������
������������
������������

������������
������������
������������

F

G

B

E

D

C

A

A

B C

D

G

E

F

Abb. 3.10: Punktmenge und zugeh�origer Quad-Tree

Punkte auf den Trennungslinien kann man willk�urlich w�ahlen, z.B. seien im
folgenden Quadrant I und Quadrant III abgeschlossen.

Als Beispiel betrachte man Abb. 3.10. W�ahlt man den Punkt A als Wurzel, so
liegt B im ersten Quadranten von A, wird also der erste Sohn von A. C liegt
im vierten Quadranten und wird der vierte Sohn. D liegt im ersten Quadranten
von A, da aber dort schon der Sohn B existiert, bestimmt man den Quadranten
von D bzgl. von B usw.

Operationen

1. Einf�ugen, Punktsuche

Verzichtet man auf eine Balancierung der B�aume, kann man die �ubliche Einf�uge-
prozedur verwenden:

procedure insert(v:Knoten, p:Punkt)
begin

direction:=compare(v,p); (* Quadrant von p bzgl. v*)
if v.direction 6=nil
then insert (̂v.direction, p)
else v̂.direction:=p;

end.

Beim Prozeduraufruf enth�alt v die Wurzel des zu durchsuchenden Quad-Trees
und p ist der gesuchte Punkt. Zun�achst bestimmt man den Quadranten, in dem

3.1. NACHBARSCHAFT IM R
D 31

p in Bezug auf v liegt. Wenn kein entsprechender Sohn von v existiert, kann
p eingef�ugt werden, ansonsten Rekursion auf dem Unterbaum. Die Punktsuche
erfolgt durch den �ublichen rekursiven Abstieg.

Empirische Untersuchungen f�ur den average case in [1] ergaben eine Baumtiefe
von O(log4 n), so da� Einf�ugen und Punktsuche ebenfalls in O(log4 n) m�oglich
sind. Der worst case liegt z.B. dann vor, wenn die Punkte auf einer Geraden
liegen, in diesem Fall entartet der Quad-Tree zu einer linearen Liste. Damit
steigt der Aufwand f�ur das Einf�ugen und die Punktsuche auf O(n).

Um dies zu vermeiden, kann man wiederum ideale Quad-Trees einf�uhren. W�ahlt
man als Wurzel den Median bez�uglich einer Koordinate, dann enth�alt jeder der
vier Teilb�aume h�ochstens die H�alfte der Knoten. Damit ist die Baumtiefe wieder
in O(log4 n). Wie bei den idealen k-D-B�aumen setzt dies aber eine statische
Punktmenge voraus, ein nachtr�agliches Einf�ugen zerst�ort die Balancierung.

2. L�oschen

Wird ein innerer Knoten aus dem Baum entfernt, so mu� der abgetrennte Teil-
baum wieder angef�ugt werden. Dabei bleibt einem nichts anderes �ubrig, als die
Knoten dieses Teilbaums wieder einzeln einzuf�ugen, falls die Wurzel gel�oscht
wurde, betr�agt der Aufwand O(n � log4 n).
3. Bereichssuche

Der Algorithmus entspricht dem f�ur die Bereichssuche in k-D-B�aumen mit dem
Unterschied, da� nun eine vierfache Rekursion aufgrund des Verzweigungsgrads
vier auftritt. Eine worst-case-Analyse f�ur balancierte B�aume in [12] ergab einen
Aufwand von O(

p
n) (O(n1�1=k) f�ur den k-dimensionalen Fall). Damit ist die

Bereichssuche in Quad-Trees ebenso e�zient wie in 2-D-B�aumen.

3.1.3.4 Grid-File

Einf�uhrung

Bei den oben vorgestellten Baumstrukturen erh�alt man eine Unterteilung des
Raums in Abh�angigkeit von der gespeicherten Punktmenge. Im Grid-File wird
ein anderer Ansatz verfolgt; man gibt die Unterteilung des Suchraums explizit
vor (siehe [20]). Legt man ein Gitter �uber die Punktmenge S und speichert die
Punkte einer Gitterzelle in einer Punktliste, mu� man bei einer Bereichsanfrage
nur die �uberdeckten Gitterzellen durchsuchen. Um die Punktzahl pro Gitter-
zelle konstant zu halten, pa�t man die Feinheit des Gitters der Punktdichte
lokal an. Beim Grid-File gilt f�ur die Verfeinerung das Matrixprinzip, d.h. die
Gitterlinien durchziehen den ganzen Suchraum. In Abb. 3.11 sieht man links
eine Veranschaulichung des Gitters, rechts ein Beispiel f�ur ein Grid�le: In der
rechten Abbildung �ndet man die Einteilung in neun Gitterzellen wieder. Da
bei geringer Besetzung einer Gitterzelle eine eigene Punktliste (im folgenden
Datenblock) nicht lohnt, fa�t man benachbarte Gitterzellen zu Blockregionen
zusammen (abgerundete Boxen). Eine Blockregion hat immer die Form eines
Rechtecks und umfa�t die Gitterzellen, die zum selben Datenblock geh�oren.

Zur Speicherung der Intervallteilungen legt man f�ur jede Dimension ein eindi-
mensionales Feld an, ein sogenannter Scale (im Bsp.: 0, 25, 50, 100 f�ur x und

32 KAPITEL 3. SEMINARVORTR�AGE

50 100 x

y

0

A B

C

DE

F

A

C

F

B

100

50

Abb. 3.11: Grid�le

y). Die Elemente der Directory-Matrix (=Gitterzellen) enthalten einen Zeiger
auf den zugeh�origen Datenblock. In den Datenbl�ocken werden die eigentlichen
Punktkoordinaten gespeichert. Da diese auf Festplatte gespeichert werden, er-
gibt sich aus der Plattenblockgr�o�e eine Blockkapazit�at von b Punkten (im Bsp.
b = 2).

Als das Grid�le Mitte der 80er Jahre entwickelt wurde, wurden lediglich die
Scales im (damals kleinen) Hauptspeicher gehalten, w�ahrend Directory-Matrix

und Datenbl�ocke auf Festplatte gespeichert wurden. Bei den heutigen Haupt-
speichergr�o�en ist diese strikte Trennung nicht mehr n�otig.

Operationen

Zur Aufwandsabsch�atzung gehen wir von dieser getrennten Datenhaltung aus
und z�ahlen die Anzahl der Zugri�e auf Directory-Matrix und Datenbl�ocke.

1. Punktsuche

Bei der Punktsuche gilt das Zwei-Zugri�s-Prinzip, d.h. man kommt mit zwei
Plattenzugri�en aus:

1. Eingabe: Punkt (x; y)

2. Mittels x- und y-Scale Spalte und Zeile der Directory-Matrix bestimmen.
(Hauptspeicher)

3. Directory-Element holen. (1. Plattenzugri�)

4. Mittels Zeiger den Datenblock holen. (2. Plattenzugri�)

5. Datenblock nach (x; y) durchsuchen.

2. Einf�ugen

Zun�achst wird der entsprechende Datenblock wie bei der Punktsuche von der
Platte geholt. Be�nden sich darin weniger als b Punkte (Blockkapazit�at), so

3.1. NACHBARSCHAFT IM R
D 33

kann der neue Punkt einfach eingef�ugt werden. Im anderen Fall m�ussen der
Datenblock und die zugeh�orige Blockregion geteilt werden. In Abb. 3.12 soll ein
neuer Punkt in den Datenblock D eingef�ugt werden, letzterer wird in die neuen
Bl�ocke D und E geteilt:

A

D

A

C

B

C

B

D

E C

Abb. 3.12: Einf�ugen

Da hierbei auch unbeteiligte Blockregionen geteilt werden (im Bsp.: Region
C), w�achst das Directory st�arker als eigentlich n�otig. Der worst case tritt bei
einer starken H�aufung der Punkte auf einem Fleck auf, dadurch werden viele
Teilungslinien n�otig, die den ganzen Suchraum durchziehen.

Bei derWahl der Splitdimension kann man unterschiedliche Strategien verfolgen,
als Beispiele seien genannt:

� teile die l�angste Seite der Blockregion.

� teile gem�a� schon vorhandenen Gitterzellen (im Bsp.: Region C).

� teile die Dimension mit der kleinsten Anzahl von bisher erfolgten Teilun-
gen.

3. L�oschen

Zun�achst wird wieder der Datenblock aufgesucht und der zu l�oschende Punkt
entfernt. Um keinen Speicherplatz zu verschwenden, sollte die Blockauslastung
nicht zu klein werden. Deswegen wird noch �uberpr�uft, ob eine Blockverschmel-
zung durchgef�uhrt werden kann. Daf�ur m�ussen zwei Bedingungen erf�ullt sein:

1. Blockauslastung < untere Schranke (z.B. 30%)

2. Blockauslastung im resultierenden Block < obere Schranke (z.B. 70%)

Die zweite Bedingung verhindert dabei, da� auf eine Verschmelzung sofort wie-
der eine Teilung folgt.

Bei der Auswahl der Nachbarregion, mit der die Verschmelzung durchgef�uhrt
wird, mu� nat�urlich beachtet werden, da� die resultierende Blockregion wieder
rechteckig sein mu�. F�ur die Auswahl gibt es unterschiedliche Strategien. Bei der
Bruderstrategie macht eine Verschmelzung gerade eine Teilung r�uckg�angig, d.h.
nur

"
Br�uder\, die aus einer Teilung hervorgegangen sind, k�onnen wieder ver-

schmolzen werden (Bsp.: s.o., R�uckrichtung). Die weniger restriktive Nachbar-
strategie l�a�t alle Nachbarregionen zu, sofern sie die Rechteckbedingung erf�ullen:

34 KAPITEL 3. SEMINARVORTR�AGE

BA A B

D

E C

C C

CE

A

Abb. 3.13: L�oschen

Nach dem L�oschen des markierten Punktes in Datenblock D werden die Bl�ocke
A und D verschmolzen (Abb. 3.13).

4. Bereichssuche

Der Suchbereich sei wieder durch das Rechteck R = [x1; x2]� [y1; y2] gegeben.
Zun�achst sucht man nach dem Punkt (x1; y1) (Ecke links unten) im Grid-File
und �uberpr�uft die Punkte im zugeh�origen Datenblock. Danach mu� im Directory
nach oben und nach rechts weitergesucht werden, was einer Bereichsanfrage auf
der Directory-Matrix entspricht. Wir erl�autern das Vorgehen an einem Beispiel.
In Abb. 3.14 ist ein Grid-File mit entsprechendem Suchbereich dargestellt. F�ur

A B

C

A

DD

Abb. 3.14: einstu�ges Grid-File

die Bereichssuche sind in diesem Beispiel 7 Plattenzugri�e n�otig, und zwar f�ur
4 Directoryelemente und 3 Datenbl�ocke (A, C und D).

Dieses einstu�ge Grid-File l�a�t sich zu einem zweistu�gen erweitern. Hierbei
werden Gitterzellen zu Blockdirectories zusammengefa�t und dar�uber ein Wur-
zeldirectory im Hauptspeicher geh�angt, das Zeiger auf die Blockdirectories enth�alt
(Abb. 3.15). Mit dieser Ma�nahme braucht man nur noch 5 Plattenzugri�e, 2
f�ur die beiden Blockdirectories und 3 f�ur die Datenbl�ocke.

3.1.3.5 Vergleich

k-D-B�aume und Quad-Trees sind statische Datenstrukturen, ein nachtr�agliches
Einf�ugen und L�oschen von Punkten f�uhrt zu unausgeglichenen B�aumen und
kommt somit nicht in Betracht. Bei beiden ist eine e�ziente Bereichsanfrage
mit dem Aufwand O(

p
n+ jAj) m�oglich (f�ur den zweidimensionalen Fall). Eine

3.1. NACHBARSCHAFT IM R
D 35

A BA A

BB C D

Wurzeldirectory

(Hauptspeicher) (Platte)

Blockdirectories

Abb. 3.15: zweistu�ges Grid-File

Implementierung von Pointerstrukturen ist nur im Hauptspeicher sinnvoll, man
w�urde sonst zuviele Plattenzugri�e ben�otigen.

Demgegen�uber ist das Grid-File eine dynamische Datenstruktur, Einf�ugen und
L�oschen ist mit geringem Overhead (split und merge) m�oglich. Die Bereichsan-
frage ist ebenfalls sehr e�zient und die daf�ur ben�otigte Zeit h�angt nur von der
Gr�o�e des Suchbereichs, nicht der gesamten Punktezahl ab. Durch mehrstu�-
ge Grid-Files kann die E�zienz noch verbessert werden. Das Grid-File wurde
urspr�unglich f�ur Sekund�arspeicher konzipiert, k�onnte aber durchaus auch im
Hauptspeicher gehalten werden.

Abb. 3.16: Grid-Quad-Baum

Quad-Tree und Grid�le lassen sich zum Grid-Quad-Baum kombinieren. Dabei
handelt es sich um ein Grid�le, bei dem die Aufteilung des Raums nicht nach
dem Matrixprinzip, sondern wie bei den Quad-Trees erfolgt (s. Abb. 3.16). Man
baut als einen Quad-Tree auf, bei dem nur die Bl�atter Datenbl�ocke der Kapa-
zit�at b enthalten. Wie beim Grid�le werden die abzuspeichernden Punkte in die
Datenbl�ocke eingetragen. Beim Teilen von Datenbl�ocken werden vier Unterqua-
dranten erzeugt, beim Verschmelzen geht man nach der Bruderstrategie vor.
Durch diese neue Aufteilung des Raums vermeidet man den hohen Speicherauf-
wand, der beim Matrixprinzip entsteht.

36 KAPITEL 3. SEMINARVORTR�AGE

3.2 Matching Verfahren

3.2.1 Einleitung

Diese Ausarbeitung zeigt wie das 2'er FGM-Problem e�zient gel�ost werden
kann. Dazu wird zun�achst der �Ubergang von diesem Problem zu dem in der
Graphentheorie bekannten Problem des Maximalen Matchings erl�autert. Dann
wird ein Algorithmus vorgestellt, der ein Maximales Matching mit einem Auf-
wand von h�ochstens O(jV j2;5) Operationen �ndet. Dieser Algorithmus besteht
aus zwei Teilen. Der erste Teil, die �au�ere Schleife, wurde von Hopcroft und
Karp [8] entwickelt und der zweite Teil, die innere Schleife, von Micali und
Vazirani [16].

3.2.2 Vom 2'er FGM-Problem zum Maximalen Matching

3.2.2.1 2'er FGM-Problem

Der Ausgangspunkt ist eine Menge von Personen, von denen Eigenschaften wie
z.B. Wohnort, Arbeitszeit, Arbeitsort und Raucher/Nichtraucher, bekannt sind.
Das Problem besteht darin, aus dieser Personenmenge eine maximale Anzahl
von 2'er-Fahrgemeinschaften zu bilden. Dabei sollen der f�ur den Fahrer ent-
stehende Umweg und die Eigenschaften der einzelnen Personen ber�ucksichtigt
werden. Zur e�zienten L�osung diese Problems werden Erkenntnisse aus der
Graphentheorie benutzt.

3.2.2.2 Personengraph

Aus der in Abschnitt 3.2.2.1 vorgestellten Personenmenge und den Eigenschaf-
ten der einzelnen Personen wird ein Personengraph G = (V;E) gebildet. Die
Knoten v 2 V repr�asentieren dabei die Personen und eine Kante e 2 E bedeu-
tet, da� die verbundenen Personen zusammen in einer Fahrgemeinschaft fahren
k�onnten. Zur Erstellung des Personengraphen wird f�ur jedes Personenpaar ge-
pr�uft, ob eine Fahrgemeinschaft m�oglich ist, und wenn ja, dann wird eine Kante
in den Graph eingef�ugt. Ab jetzt wird das Problem nur noch aus Sicht der
Graphentheorie gesehen. Es gibt nur noch einen Graphen mit Knoten und Kan-
ten, dessen Entstehung f�ur die L�osung des Problems zun�achst nicht mehr von
Bedeutung ist.

3.2.2.3 Matching

De�nition

Sei G = (V;E) ein Graph mit der Knotenmenge V und der Kantenmenge E.
Dann hei�t die Menge M � E Matching, wenn kein Knoten v 2 V mit mehr
als einer Kante aus M verbunden ist; (Abbildung 3.17).

Eine Kante e 2 E hei�t `matched', wenn e 2M ist.
Eine Kante e 2 E hei�t `unmatched', wenn e 2 (E �M) ist.

3.2. MATCHING VERFAHREN 37

1 2 3

654

1

unmatched Kante

matched Kante

M={(1,2),(4,5)}

Abb. 3.17: Beispiel f�ur ein Matching

1 2 3

654

1

M={(1,2),(4,5),(3,6)}

Abb. 3.18: Beispiel f�ur ein Maximales Matching

Bei allen Abbildungen werden `matched' Kanten als Wellenlinie und `unmat-
ched' Kanten als gerade Linien dargestellt.

3.2.2.4 Maximales Matching

De�nition

Ein Matching M auf einem Graphen G hei�t Maximales Matching, wenn
kein Matching M 0 existiert, das mehr Kanten als M enth�alt; (Abbildung 3.18).

Ein Maximales Matching ist nicht eindeutig, es kann zu einem Graphen mehre-
re Maximale Matchings geben, nur die Gr�o�e dieser maximalen Matchings ist
eindeutig.

3.2.3 MM-Algorithmus

Zur Berechnung eines Maximalen Matchings auf einem ungerichteten Graphen
kann der von Hopcroft und Karp [8] und Micali und Vazirani [16] entwickelte

38 KAPITEL 3. SEMINARVORTR�AGE

Algorithmus verwendet werden. In diesem und den folgenden Abschnitten wird
die Funktionsweise vorgestellt und die Laufzeit des MM-Algorithmus betrachtet.
Um den Algorithmus verstehen zu k�onnen, m�ussen zun�achst einige neue Begri�e
eingef�uhrt werden.

De�nitionen

Sei G = (V;E) ein Graph und M ein Matching.

� Ein Knoten v 2 V hei�t freier Knoten, falls v mit keiner Kante aus M
verbunden ist.

� Ein Pfad (v1; v2; v3; : : : ; vk) mit (vi; vi+1) 2 E, 1 � i � k und k 2 N,
hei�t alternierender Pfad, falls dessen Kanten (vi; vi+1) abwechselnd
`matched' und `unmatched' sind.

� Ein Pfad (v1; v2; v3; : : : ; vk) mit (vi; vi+1) 2 E, 1 � i � k und k 2 N, hei�t
augmentierender Pfad, falls er alternierend ist und die Knoten v1 und
vk freie Knoten sind.

Um ein gefundenes nicht maximales Matching zu vergr�o�ern, wird w�ahrend der
Berechnung immer wieder das Matching mit einem augmentierenden Pfad durch
`disjunktives oder' verkn�upft. Diese Verkn�upfung wird an dieser Stelle kurz
erl�autert, bevor der Algorithmus n�aher beschrieben wird.

In Abbildung 3.19 ist am Beispiel zu sehen, wie Matchings (Mi) mit augmen-
tierenden Pfaden (Pj) durch `disjunktives oder' (�) verkn�upft werden.

Das Ergebnis der Verkn�upfung Mi�1 � Pi ist Mi. Mi ist wieder ein Matching
und enth�alt genau eine Kante mehr als Mi�1. Wie auch im Beispiel zu sehen,
besteht Mi aus allen Kanten, die entweder zu Mi�1 oder zu Pi aber nicht zu
Mi�1 und zu Pi geh�oren.

Der MM-Algorithmus berechnet zu einem ungerichteten Graphen G = (V;E)
ein Maximales Matching. Dazu wird, beginnend beim leeren Matching M = ;,
die maximale Menge k�urzester augmentierender Pfade bez�uglichM gesucht. Die
Pfade dieser Menge werden dann nacheinander durch `disjunktives oder' mit M
verkn�upft, wodurch das Matching M erweitert wird. Diese Suche der k�urzesten
augmentierenden Pfade und die anschlie�ende Erweiterung von M wird solan-
ge wiederholt, bis keine augmentierenden Pfade mehr gefunden werden. Dann
wird der Algorithmus abgebrochen, da das Maximale Matching gefunden wur-
de. In der �au�eren Schleife des Algorithmus wird die Verkn�upfung mit `dis-
junktivem oder' durchgef�uhrt und in der inneren Schleife wird die maximale
Menge k�urzester augmentierender Pfade bez�uglich M gesucht. Der Aufwand
zur Berechnung des Maximalen Matchings liegt f�ur den hier vorgestellten MM-
Algorithmus in O(

p
jV jjEj).

Eingabe Ein ungerichteter Graph G = (V;E).

Schritt 0 M ;

3.2. MATCHING VERFAHREN 39

M

1

654

11

4

1 P 2 3

P =M1 1

M ={(1,4),(2,3)}M ={(1,4)}0

M 0

1

654

11

654

1 1P 3

P =M1

M ={(1,4),(2,3)}M ={(1,4)}0

M 0

1

654

11

654

1P 3

5 6

2

2

1 2 2P =M

M ={(1,4),(2,5),(3,6)}

2 3

2 3

1

2M ={(1,4),(2,3)}1

P ={(5,2),(2,3),(3,6)}

P ={(2,3)}1

2

Abb. 3.19: Beispiel f�ur Verkn�upfungen mit `disjunktivem oder'

Schritt 1 Sei l(M) die L�ange eines k�urzesten augmentierenden Pfades
bez�uglich M . Finde eine maximale Menge von Pfaden fP1; P2; : : : ; Ptg
mit folgenden Eigenschaften:

a) f�ur alle i ist Pi ein augementierender Pfad bez�uglich M und jPij =
l(M);

b) alle Pi sind knotendisjunkt

stoppe, wenn kein solcher Pfad mehr existiert.

Schritt 2 M M � P1 � P2 � � � � � Pt; gehe zu Schritt 1

Ausgabe Ein maximales Matching M mit M � E.

3.2.4 �Au�ere Schleife

In der �au�eren Schleife des MM-Algorithmus wird nach der Initialisierung in
Schritt 0 die innere Schleife in Schritt 1 ausgef�uhrt. Nach der Abarbeitung des
Schritt 1 wird dann in Schritt 2 das Matching M um die, bei Ausf�uhrung der
inneren Schleife gefundenen augmentierenden Pfade fP1; P2; : : : ; Ptg erg�anzt.
Dann wird wieder Schritt 1 aufgerufen. Werden bei einem Aufruf der inneren
Schleife keine augmentierenden Pfade mehr gefunden, so ist M das Maximale
Matching und der Algorithmus wird abgebrochen.

Es kann gezeigt werden, da� der Schritt 1 des MM-Algorithmus zur Berechnung
eines Maximalen MatchingsM mit jM j = s h�ochstens 2b

p
sc+2 mal ausgef�uhrt

werden mu�. Deshalb liegt der Aufwand f�ur die �au�ere Schleife in O(
p
jV j). Die

Beweisf�uhrung ist in [8] und [3] enthalten.

40 KAPITEL 3. SEMINARVORTR�AGE

1 2 3 4

65 7 8 9

13121110

Abb. 3.20: Graph G und Matching M5

3.2.5 Innere Schleife

In der Inneren Schleife des MM-Algorithmus wird eine maximale Menge k�urzester
augmentierender Pfade bez�uglich eines Matchings M gesucht. Die Vorgehens-
weise wird zun�achst an einem einfachen Beispiel gezeigt und dann im Detail
erl�autert.

3.2.5.1 Einfaches Beispiel zur Inneren Schleife

Die Berechnung eines Maximalen Matchings auf dem Graphen G = (V;E) ist
bei dem Matching M5 angelangt (Abbildung 3.20). Die `matched' Kanten sind
in Abbildung 3.20 wieder als Wellenlinie und die `unmatched' Kanten als gerade
Linien gezeichnet.

In der nun folgenden Abarbeitung der inneren Schleife wird eine maximale Men-
ge k�urzester augmentierender Pfade gefunden. Dazu wird der Graph mit Brei-
tensuche ausgehend von allen freien Knoten durchlaufen.

Im Beispiel sind die Knoten 5, 8 und 10 die Startpunkte der Suche nach den aug-
mentierenden Pfaden. Da ein augmentierender Pfad an den Enden `unmatched'
Kanten besitzt, werden im ersten Schritt der Suche nur solche Kanten ber�uck-
sichtigt. Der nach dem ersten Schritt der Suche entstandene Breitensuchbaum
ist in Abbildung 3.21 dargestellt. Beim Knoten 5 wurde die Kante (5; 1), beim
Knoten 8 die Kante (8; 9) und beim Knoten 10 die Kante (10; 6) gefunden.

Im n�achsten Schritt wird nur nach `matched' Kanten gesucht, da augmentie-
rende Pfade abwechselnd aus `matched' und `unmatched' Kanten bestehen. Das
Ergebnis des zweiten Schritts ist die Erweiterung des Suchbaums um die Kan-
ten (1; 2), (9; 4) und (6; 3). Im dritten Schritt werden dann wieder `unmatched'
Kanten gesucht, wobei die Kanten (2; 7), (2; 11) und (4; 3) gefunden werden.
Der nach den beiden Schritten erstellte Breitensuchbaum ist in Abbildung 3.22
zu sehen.

3.2. MATCHING VERFAHREN 41

5

1 6

10

9

8

WurzelnBaumstufen

0

1

Abb. 3.21: Breitensuchbaum nach dem ersten Schritt der Suche

5

1 6

10

9

8

WurzelnBaumstufen

0

22

1

3 7 11

4 3

Abb. 3.22: Breitensuchbaum nach dem dritten Schritt der Suche

42 KAPITEL 3. SEMINARVORTR�AGE

1 2 3 4

65 7 8 9

13121110

Abb. 3.23: Graph G und Matching M6

Beim dritten Schritt haben sich die �Aste mit den Wurzelknoten 8 und 10 ge-
tro�en, womit ein k�urzester augmentierender Pfad P gefunden wurde. Da sich
im dritten Schritt nur zwei �Aste getro�en haben, besteht die maximale Menge
k�urzester Augmentierender Pfade aus genau einem Pfad. W�urde im n�achsten
Schritt ein augmentierender Pfad gefunden, so w�are dieser l�anger als der Pfad P
von 8 nach 9 und deshalb kein k�urzester Pfad. Da die maximale Menge k�urzester
Augmentierender Pfade im dritten Schritt gefunden wurde, wird die Ausf�uhrung
der inneren Schleife beendet.

Nach dem Ende der inneren Schleife w�urde nun die �au�ere Schleife weiter fort-
gesetzt, wobei sich durch die Verkn�upfung M5 � P das in Abbildung 3.23 dar-
gestellte Matching M6 ergibt.

Der in dem Beispiel angedeutete Algorithmus zum Berechnen einer maximalen
Menge k�urzester augmentierender Pfade bez�uglich eines Matchings M , wurde
von Micali und Vazirani [16] entwickelt. F�ur diese Berechnung ben�otigt der
Algorithmus h�ochstens O(jEj) Operationen. Die wesentlichen Bestandteile des
Algorithmus sind die vier Routinen SEARCH, BLOSS-AUG, FINDPATH und
TOPOLOGICAL ERASE, die im Weiteren genau beschrieben werden.

3.2.5.2 SEARCH

Die Routine SEARCH durchl�auft den Graphen, in dem augmentierende Pfa-
de gesucht werden, mit Breitensuche und baut dabei einen Breitensuchbaum
auf. F�ur jeden Knoten und einige Kanten des Suchbaums werden Eigenschaf-
ten bestimmt und abgespeichert. Zur Beschreibung dieser Eigenschaften ist die
Einf�uhrung einiger Begri�e n�otig.

De�nitionen

evenlevel(v) Ist die L�ange des k�urzesten alternierenden Pfades vom Knoten v
zu einem freien Knoten, wobei die Anzahl der Kanten des Pfades gerade

3.2. MATCHING VERFAHREN 43

ist. Wenn kein solcher Pfad existiert, dann ist evenlevel unendlich.

oddlevel(v) Ist die L�ange des k�urzesten alternierenden Pfades vomKnoten v zu
einem freien Knoten, wobei die Anzahl der Kanten des Pfades ungerade
ist. Wenn kein solcher Pfad existiert, dann ist oddlevel unendlich.

level(v) Ist das Minimum aus evenlevel(v) und oddlevel(v).

outer Ein Knoten v hei�t outer, wenn level(v) gerade ist.

inner Ein Knoten v hei�t inner, wenn level(v) ungerade ist.

other level(v) Wenn v outer ist, dann ist other level(v) =oddlevel(v), wenn v
inner ist, dann ist other level(v) =evenlevel(v).

bridge Eine Kante(u; v) hei�t bridge, wenn etweder evenlevel(u) < 1 und
evenlevel(v) <1, oder oddlevel(u) <1 und oddlevel(v) <1 ist.

tenacity(u; v) Ist das Minimum aus ((evenlevel(u)+evenlevel(v)),
(oddlevel(u)+oddlevel(v))) + 1.

Das Ziel der Suche ist erreicht, wenn eine maximale Menge k�urzester augmentie-
render Pfade bez�uglich eines Matchings M gefunden wurde. Die Operationen-
folge zur Berechnung einer maximalen Menge wird als eine Phase bezeichnet.
In einer solchen Phase wird jeder Knoten des Graphen von SEARCH h�ochstens
einmal durchlaufen.

W�ahrend der Breitensuche wird der Breitensuchbaum aufgebaut und zu jedem
besuchten Knoten werden Eigenschaften abgespeichert. Die Suche beginnt bei
allen freien Knoten, d.h. zuerst wird von jedem freien Knoten mindestens ein
Nachbarknoten besucht und erst dann wird die Suche, bei den in den Baum
aufgenommenen Nachbarknoten, fortgesetzt.

Die Baumstufen des Breitensuchbaums werden als level bezeichnet, wobei die
Z�ahlung bei der Wurzel mit 0 beginnt. Das bedeutet, da� sich alle freien Knoten
im level 0 be�nden und deren Nachbarknoten bilden dann das level 1. Das level
i gibt an wieviele Kanten ein Knoten v von dem n�achsten freien Knoten entfernt
ist. Dieser freie Knoten ist der Wurzelknoten, der Vorg�anger von v ist.

Die Entfernung, zwischen v und dem freien Knoten, kann gerade und ungerade
L�ange haben und da dies f�ur die Erkennung von augmentierenden Pfaden wich-
tig ist, bekommt jeder Knoten zwei Parameter. Die Paremeter sind oddlevel

und evenlevel und werden mit unendlich initialisiert. Bei der Suche wird f�ur
einen Knoten, der in einem ungeraden level liegt, oddlevel auf den Wert der
Entfernung zum n�achsten freien Knoten gesetz und bei Knoten in geraden le-
veln entsprechend evenlevel. Der im Beispiel in Abschnitt 3.2.5.1 entstandene
Breitensuchbaum ist in Abbildung 3.24 mit den Angaben zu level, evenlevel und
oddlevel dargestellt.

Die Suche im level i wird in Abh�angigkeit von i in folgender Weise fortgesetzt:

� i ist gerade

{ Bei der Suche wird von allen Knoten v mit evenlevel(v) = i ausge-
gangen.

44 KAPITEL 3. SEMINARVORTR�AGE

5

1 6

10

9

80

22

1

3 7 11

4 3

oddlevel

outer Knoten

inner Knoten

outer Knoten

inner Knoten

0,0,0,

,1 ,1 ,1

2, 2,3 2,3

,3,3

bridge

level evenlevel

Abb. 3.24: Breitensuchbaum mit Eigenschaften der Knoten

{ Es werden alle Nachbarknoten u besucht, die mit v durch `unmatched'
und bloss-unbenutzte (siehe 3.2.5.3) Kanten verbunden sind.

{ Wenn oddlevel(u) =1, dann wird oddlevel(u) auf i+ 1 gesetzt.

� i ist ungerade

{ Bei der Suche wird von allen Knoten v mit oddlevel(v) = i ausgegan-
gen.

{ Es wird ein Nachbarknoten u gesucht, der mit v duch eine `matched'
Kante verbunden ist.

{ Evenlevel(u) wird auf i+ 1 gesetzt.

Beim Aufbau des Breitensuchbaums wird f�ur jede neu hinzugekommene Kante
gepr�uft, ob sie eine bridge ist. Immer wenn eine Kante in den Breitensuch-
baum aufgenommen wird, die die bridge-Eigenschaft erf�ullt, werden durch diese
Kante zwei �Aste des Baumes miteinander verbunden. Deshalb ist es m�oglich,
da� diese bridge Teil eines augmentierenden Pfades ist. Da nicht jede bridge zu
einem augmentierenden Pfad geh�ort, wird w�ahrend der Suche im level i eine
Liste bridges(i) angelget, in die alle gefundenen Kanten mit bridge-Eigenschaft
eingetragen werden.

Nachdem die Suche an allen Knoten dieses Levels beendet ist, wird f�ur jede
gefundene bridge die Routine BLOSS-AUG (3.2.5.3) aufgerufen. BLOSS-AUG

�uberpr�uft dann f�ur jede einzelne Kante e 2 bridges(i) , ob sie Teil eines aug-
mentierenden Pfades ist und leitet gegebenenfalls eine Sonderbehandlung dieses
Pfades ein.

3.2. MATCHING VERFAHREN 45

Wenn bei der Abarbeitung der Menge bridges(i) durch BLOSS-AUG kein aug-
mentierender Pfad gefunden wurde, so wird die Suche von SEARCH ausgehend
vom level i fortgesetzt.

Wird jedoch mindestens ein augmentierender Pfad gefunden, dann bildet dieser
zusammen mit allen weiteren in diesem level gefundenen Pfaden die maxima-
le Menge k�urzester augmentierender Pfade bez�uglich des Ausgangsmatchings
und die Phase wird durch Abbruch der inneren Schleife beendet. Jeder augmen-
tierende Pfad, der bei Fortsetzung der Breitensuche durch SEARCH in einem
h�oheren level j > level i gefunden w�urde, ist kein k�urzester Pfad mehr und
geh�ort deshalb nicht zu der gesuchten Menge. Das liegt daran, da� ein im level
i gefundener Pfad die L�ange 2i+ 1 hat und wegen j > i sind Pfade der L�ange
2j + 1 keine k�urzesten augmentierenden Pfade.

Es gibt zwei F�alle, in denen eine Phase beendet wird. Im ersten Fall, der oben
beschrieben ist, wird die Ausf�uhrung abgebrochen, wenn in dem aktuellen level
augmentierende Pfade gefunden wurden. Der zweite Fall tritt ein, wenn die
Suche einen level erreicht hat, in dem keine Kanten mehr erreichbar sind, die in
den Suchbaum aufgenommen werden k�onnen. Der Suchbaum kann ausgehend
von inner Knoten nur mit `matched' Kanten und ausgehend von outer Knoten
nur mit `unmatched' Kanten erweitert werden.

Wird in einer Phase kein augmentierender Pfad mehr gefunden, so war das
Matching schon zu Beginn der Phase maximal und der Algorithmus wird abge-
brochen. Zum Abbruch des Algorithmus wird die innere und die �au�ere Schleife
beendet.

3.2.5.3 BLOSS-AUG

Die Routine BLOSS-AUG wird von der Routine SEARCH am Ende jedes Le-
vels f�ur jede gefundene bridge aufgerufen. Um die in BLOSS-AUG enthaltene
Erkennung der augmentierenden Pfade durchf�uhren zu k�onnen, werden von al-
len Knoten au�er oddlevel und evenlevel noch andere Eigenschaften ben�otigt.
Deshalb wird f�ur jeden Knoten die Menge predecessors(u) verwaltet.

De�nitionen

predecessors(u) Ist die Menge aller direkten Vorg�anger v des Knotens u.

ancestors(v) Ist die Menge aller Vorg�anger des Knotens v.

Beim Aufruf von BLOSS-AUG wird eine bridge (u; v) als Parameter �ubergeben.
BLOSS-AUG pr�uft dann, ob diese bridge Teil eines augmentierenden Pfades ist
und ruft f�ur einen gefundenen Pfad FINDPATH (siehe Abschnitt 3.2.5.4) auf.
Ist (u; v) nicht Teil eines augmentierenden Pfades, so wird ein neues blossom
konstruiert.

Was ist ein blossom?

W�ahrend des Aufbaus eines Breitensuchbaums von SEARCH kann es vorkom-
men, da� sich im level i ein Ast in mehrere Zweige aufteilt. Wenn sich dann in

46 KAPITEL 3. SEMINARVORTR�AGE

0,

2,

1

2

3

54

,2,

,0,

,3,3,6 ,3,3,6

4, ,4,576 4, ,4,5

oddlevel

other level
level

blossom B

left peak(B) right peak(B)

base(B)

Wurzel evenlevel

,1,1,

Abb. 3.25: Ausschnitt aus einem Breitensuchbaum

einem h�oheren level zwei der Zweige wieder tre�en wird die Kante, die die Zwei-
ge verbindet, als bridge erkannt. Der Aufruf von BLOSS-AUG zu dieser bridge
liefert aber keinen augmentierenden Pfad, da beide Zweige den gleichen freien
Knoten als Ursprung haben. Damit die Laufzeit des MM-Algorithmus linear in
der Anzahl der Kanten bleibt, wird aus den Knoten zwischen der Gabelung und
der bridge ein blossom gebildet. Ein blossom ist eine Menge von Knoten, von
denen einer als left peak(B) und einer als right peak(B) gekennzeichnet ist. Der
Knoten an der Gabelung wird als base(B) bezeichnet und ist dem blossom B

zugeordnet.

In Abbildung 3.25 ist ein Ausschnitt aus einem Breitensuchbaum dargestellt.
Die Knoten 4,5,6 und 7, die sich innerhalb des eingezeichneten Kreises be�n-
den bilden das neu entstandene blossom B. Der Knoten 3 wird als base(B)
bezeichnet und die Knoten 6 und 7 sind die peaks des blossoms B.

Konstruktionsbedingungen eines blossoms

1. 9z : z 2 ancestors(u) ^ z 2 ancestors(v)

2. u und v haben keinen anderen Vorg�anger mit dem gleichen Level wie z

3.2. MATCHING VERFAHREN 47

1

3 4

76

8 9 10

5

base(B)

blossom B

2

1

98 10 5

2

Abb. 3.26: Schrumpfung eines blossoms

Die Knoten u und v sind die Knoten der bridge (u; v), f�ur die die Konstrukti-
onsbedingungen zu pr�ufen ist.

Die Konstruktionsbedingungen sind erf�ullt, wenn die beiden Knoten einer bridge
im level i in einem level j < level i genau einen gemeinsamen Vorg�angerknoten
haben.

Wurde festgestellt, da� f�ur eine bridge (u; v) die Konstruktionsbedingungen gel-
ten, so wird ein neues blossom B erstellt. Das blossom B besteht aus allen
Knoten w, deren other level 1 ist und mit dem Pfad, von w �uber die bridge
(u; v) zu einem freien Knoten, auf einen endlichen Wert gesetzt werden kann
(siehe Abbildung 3.25).

Blossoms werden gebildet, um die Laufzeit des MM-Algorithmus zu verbessern.
Die Laufzeitverbesserung wird erreicht, da die blossoms nach ihrer Bildung f�ur
die weitere Suche in der aktuellen Phase als zusammengeschrumpft betrachtet
werden. Das bedeutet, da� die Suche, wenn sie an einem Knoten des blossoms B
angekommen ist, direkt an dem Knoten base(B) fortgesetzt wird. Dadurch wird
verhindert, da� die Kanten innerhalb eines blossoms bei der Suche nach aug-
mentierenden Pfaden mehrmals durchlaufen werden, so da� die Laufzeit nicht
mehr linear in der Anzahl der Kanten w�are. Der Schrumpfungse�ekt ist in Ab-
bildung 3.26 zu sehen.

Algorithmus zur Erkennung eines blossoms

In diesem und dem n�achsten Abschnitt wird von Tiefensuche gesprochen, des-
halb wird diese zun�achst kurz eingef�uhrt. Bei der Tiefensuche geht, im Gegensatz

48 KAPITEL 3. SEMINARVORTR�AGE

zu der in SEARCH benutzten Breitensuche, der Suchlauf zuerst in die Tiefe und
erst dann in die Breite des Graphen. Ist die Suche an einem Knoten x ange-
kommen, so wird zun�achst zu einem der noch nicht besuchten Nachbarknoten
gegangen und an diesem die Suche rekursiv fortgesetzt. Erst wenn die Suche
an einem Knoten z angekommen ist, dessen Nachbarknoten alle schon besucht
wurden, wird mit Backtracking zur�uck gegangen bis zu einem Knoten, dessen
Nachbarknoten noch nicht alle besucht wurden.

Der Nachbarknoten von x, an dem die Suche fortgesetzt wird, kann zuf�allig
gew�ahlt werden. Es mu� nur gew�ahrleistet sein, da� keiner der Nachbarknoten
mehrmals ausgew�ahlt wird und da� das Backtracking erst zum Vaterknoten von
x zur�uck geht, wenn alle Nachbarknoten von x besucht wurden.

Um entscheiden zu k�onnen, ob eine bridge (u; v) Teil eines augmentierenden
Pfades oder eines blossoms ist, wird eine doppelte Tiefensuche durchgef�uhrt.
Bei der doppelten Tiefensuche werden parallel zwei Tiefensuchb�aume mit den
Knoten u und v als Wurzeln aufgebaut. Der Baum mit Wurzel u hei�t Tl und
der Baum mit Wurzel v hei�t Tr. Ist die Suche bei den Knoten wl und wr
angekommen, dann wird sie bei wl fortgesetzt, wenn level(wl) � level(wr) und
sonst bei wr.

Bei der Suche werden nur die predecessors eines Knoten ber�ucksichtigt und
jeder besuchte Knoten wird als bloss-benutzt markiert, damit er nicht mehrmals
aufgesucht wird. Zus�atzlich erh�alt noch jeder in Tl aufgenommene Knoten eine
left-Markierung und jeder in Tr aufgenommene eine right-Markierung.

Wenn in Tl und Tr verschiedene freie Knoten gefunden wurden, dann geh�ort die
bridge (u; v) zu einem augmentierenden Pfad und die Routine FINDPATH wird
mit den gefundenen freien Knoten als Parameter aufgerufen. Tre�en sich die
beiden Suchb�aume jedoch bei einem Knoten w, so mu� eine Sonderbehandlung
eingeleitet werden, da w wegen der Suche nach einem augmentierenden Pfad
nur zu einem der Suchb�aume geh�oren darf.

In der Sonderbehandlung wird entschieden, ob der Knoten w zu Tl oder zu Tr
geh�oren soll. Zun�achst erh�alt w eine left-Markierung und Tr versucht mit Back-
tracking einen Knoten z 6= w mit gleichem level wie w zu �nden. Bei erfolgreicher
Suche mit Backtracking wird die doppelte Tiefensuche an den Knoten z in Tr
und w in Tl fortgesetzt.

War es Tr nicht m�oglich einen Knoten z zu �nden, so wird w right-markiert
und Tl startet mit Backtracking die Suche nach einem Knoten z mit z 6= w.
Wurde von Tl ein Knoten z gefunden, dann wird die doppelte Tiefensuche an den
Knoten w in Tr und z in Tl fortgesetzt. Wenn in keinem der beiden Teilb�aume ein
Knoten mit gleichem level wie level(w) aufzu�nden ist, wird ein neues blossom
B gebildet, da f�ur die bridge (u; v) die Konstruktionsbedingungen gelten. Zur
base(B) wird dabei der Knoten w und die Knoten u und v der bridge sind dann
left peak und right peak des blossoms B.

Das von Tl und Tr durchgef�uhrte Backtracking, kann einen negativen Ein
u�
auf die Laufzeit haben. Deshalb werden noch die zwei Variablen DCV (deepest
common vertex) und barrier eingef�uhrt, um das Backtracking zu beschr�anken.

Die Variable DCV zeigt immer auf den tiefsten von beiden Teilb�aumen gefunde-
nen Knoten. Solange noch kein Knoten sowohl von Tl als auch von Tr gefunden

3.2. MATCHING VERFAHREN 49

base(B)=base*(B)

base(B’)

u v

u B’

Abb. 3.27: geschachtelte blossoms

wurde ist DCV unde�niert. Mit der Variablen barrier wird das Backtracking in
Tr begrenzt.

Angenommen Tl und Tr tre�en sich an dem Knoten w und das Backtracking
von Tr bleibt erfolglos, aber Tl �ndet einen Knoten mit gleichem level wie w.
Bei einem erneuten Tre�en der beiden Suchb�aume in einem h�oheren level sollte
Tr beim Backtracking nicht weiter als bis zum Knoten w zur�uckgehen. Deshalb
wird bei jedem erfolglosen Backtracking von Tr barrier auf DCV gesetzt und
dann nicht mehr weiter als zu barrier zur�uckgegangen.

Wie oben beschrieben wird ein blossom auf die base(B) zusammengeschrumpft,
damit die Kanten des blossoms bei der Suche nicht mehrmals durchlaufen wer-
den. Bei der bisherigen Betrachtung wurde immer nur ein einzelnes blossom
betrachtet und deshalb stellt sich die Frage, wie geschachtelte blossoms behan-
delt werden.

Wenn blossoms wie in Abbildung 3.27 geschachtelt vorkommen, dann wird die
Suche an der base mit dem geringsten level fortgesetzt. Dieser Knoten hei�t
dann base*(B).

3.2.5.4 FINDPATH

Findpath wird mit zwei Knoten als Parameter aufgerufen und berechnet den
Weg zwischen diesen Knoten. Als weiteren Parameter kann noch ein Blossom
B �ubergeben werden, wenn ein Weg innerhalb des Blossoms B gesucht wird.
Die beiden �ubergebenen Knoten hei�en high und low und dabei mu� gelten,
level(high) � level(low). Das Ergebnis der Routine FINDPATH ist die genaue

50 KAPITEL 3. SEMINARVORTR�AGE

Pfadbeschreibung des alternierenden Pfades zwischen den als Parameter �uber-
gebenen Knoten.

Findpath durchsucht den durch SEARCH und BLOSS-AUG erstellten Breiten-
suchbaum mit Tiefensuche, ausgehend von high. Diese Tiefensuche hat folgende
Eigenschaften:

� Wurden als Parameter zwei Knoten und kein Blossom �ubergeben, so wird
ein alternierender Pfad zwischen den zwei Knoten gesucht.

� Wurden als Parameter zwei Knoten und ein Blossom B �ubergeben, dann
wird innerhalb des Blossoms ein alternierender Pfad zwischen den angege-
benen Knoten gesucht. Alle Knoten u, die zusammen mit einem Blos-
som B als Parameter �ubergeben wurden, sind entweder base(B) oder
u 2 B. Wechselt der Ausgangspunkt der Suche von v zu einem Knoten
u 2 predecessors(v), so wird v zum Vaterknoten von u. Ein Aufruf von
FINDPATH mit einem Blossom als Parameter erfolgt immer von OPEN
(siehe Abschnitt 3.2.5.4).

� Bei der Suche werden alle Blossoms au�er dem als Parameter �ubergebenen
als geschrumpft angesehen. Wenn die Suche an einem Knoten w ankommt
mit w 2 B0, so wird sie direkt bei base(B0) = b fortgesetzt und w wird
zum Vaterknoten von b.

� In dem Blossom B wird die Suche nur mit Knoten fortgesetzt, deren
`left/right-Markierung' gleich der von high und deren level kleiner als le-
vel(low) ist.

Wenn die Suche beim Knoten low angekommen ist, dann konstruiert FIND-
PATH den allgemeinen Pfad von high zu low, durch Zur�uckgehen entlang der
Vaterknotenkette von low zu high. Der entstandene Pfad ist ein allgemeiner
Pfad, da er Knoten enthalten kann, die zu einem Blossom geh�oren. Die Suche
wurde bei diesen Knoten direkt an der base des blossoms fortgesetzt und des-
halb werden diese blossoms ge�o�net, um zu entschieden, auf welchem Pfad sie
durchlaufen werden. Erst wenn von allen blossoms der richtige Pfad bekannt
ist, kann gew�ahrleistet werden, da� der Pfad von low zu high ein alternierender
Pfad ist. Das �O�nen der blossoms wird mit der Routine OPEN durchgef�uhrt.

OPEN

OPEN �o�net ein als Parameter �ubergebenes blossom und sucht mit Hilfe eines
Aufrufs von FINDPATH den Pfad durch das blossom. Als Parameter wird au-
�er dem blossom B0 noch der im allgemeinen Pfad enthaltene Knoten w 2 B0

�ubergeben. Wenn w ein outer Knoten ist, dann wird FINDPATH mit den Pa-
rametern w, base(B0) und B0 aufgerufen. Ist w ein inner Knoten, dann wird
FINDPATH zweimal aufgerufen, einmal mit den Parametern left peak(B0), w,
B0 und das zweite mal mit right peak(B0), base(B0) und B0. Aus dem Ergebnis
der Aufrufe von FINDPATH wird dann der richtige Pfad zusammengesetzt und
als Ergebnis von OPEN zur�uckgegeben.

3.2. MATCHING VERFAHREN 51

3.2.5.5 TOPOLOGICAL ERASE

Wenn von FINDPATH ein k�urzester augmentierender Pfad gefunden wurde,
dann wird das Matching um diesen Pfad erweitert. Alle Knoten und Kanten des
Pfades werden dann von TOPOLOGICAL ERASE markiert, damit sie bei der
weiteren Suche in dieser Phase nicht mehr gefunden werden k�onnen. Dadurch
wird erreicht, da� alle Pfade, die in einer Phase gefunden werden, disjunkt sind.

3.2.5.6 Laufzeitbetrachtung zur inneren Schleife

Zum Aufbau des Breitensuchbaums wird jede Kante h�ochstens einmal durch-
laufen. Dazu ben�otigt die Routine SEARCH h�ochstens jEj Operationen. Die
Erkennung von blossoms durch die Routine BLOSS-AUG und deren Verwal-
tung kann durch die doppelte Tiefensuche und den Einsatz von barrier und
DCV auf h�ochstens jV j + jEj weitere Operationen beschr�ankt werden. Die
Routine FINDPATH durchl�auft jede Kante h�ochstens zwei mal und ben�otigt
deshalb maximal 2jEj weitere Operationen. Unter Ber�ucksichtigung des Ver-
waltungsaufwands der durch TOPOLOGICAL ERASE gel�oschten Kanten von
h�ochstens jV j Operationen, ergibt sich ein Gesamtaufwand pro Phase von ma-
ximal (6jEj+ 2jV j) 2 O(jEj).
Durch Multiplikation mit dem in Abschnitt 3.2.4 erw�ahnten Aufwand der �au�e-
ren Schleife kann der Gesamtaufwand des MM-Algorithmus bestimmt werden.
Dieser liegt in O(

p
jV jjEj) und kann wegen jEj � jV j2 mit O(jV j2;5) abgesch�atzt

werden.

52 KAPITEL 3. SEMINARVORTR�AGE

3.3 K�urzeste Wege in Planaren Graphen

3.3.1 �Ubersicht

In diesem Abschnitt wird ein Verfahren betrachtet, mit dem man die k�urzesten
Wege in einem planaren Graphen ausgehend von einer Quelle berechnen kann.

Nach einer Einf�uhrung in die Problemstellung wird der bekannte Algorithmus
von Dijkstra vorgestellt. Der Algorithmus von Frederickson verringert die Lauf-
zeit gegen�uber dem Algorithmus von Dijkstra von O(n logn) auf O(n

p
logn), in-

dem er ein divide and conquer-Verfahren verwendet. Dazu werden einige Grund-
lagen erl�autert; ein Separator Theorem, eine Technik, Graphen in Regionen zu
unterteilen und eine Topologiebaumtechnik. Anschlie�end werden der verbes-
serte Algorithmus und seine Laufzeit betrachtet.

3.3.2 Einleitung

In Graphen interessiert man sich oft f�ur k�urzeste Wege zwischen zwei oder mehr
Knoten. Dabei gibt es grunds�atzlich zwei Problemstellungen: das single source
shortest path- (SSSP) und das all pairs-Problem. Bei dem SSSP-Problem sucht
man ausgehend von einem Quellknoten s alle k�urzesten Wege zu den von s er-
reichbaren Knoten. Bei dem all pairs-Problem sucht man die k�urzesten Wege
zwischen allen miteinander verbundenen Knoten in einem Graphen. Die Gra-
phen k�onnen jeweils gerichtet oder ungerichtet sein.

�Ublicherweise wird zur L�osung des SSSP-Problems das Verfahren von Dijkstra
verwendet, das auf planaren Graphen bei Verwendung eines heap einen Aufwand
von O(n logn) hat.

Der Algorithmus von Frederickson [6] hat f�ur das gleiche Problem bei planaren
Graphen nur einen Aufwand von O(n

p
logn). Dies wird durch ein divide and

conquer-Verfahren erreicht, bei dem der Graph in Regionen unterteilt wird.
Innerhalb der Regionen wird das Verfahren von Dijkstra f�ur die Ermittlung
der k�urzesten Wege benutzt. Mit Hilfe einer Topologiebaumtechnik werden die
k�urzesten Wege innerhalb der Regionen auf den ganzen Graphen �ubertragen.

Im folgenden beschr�anke ich mich auf ungerichtete planare Graphen. Ich benutze
n f�ur die Anzahl der Knoten (jV j) und m f�ur die Anzahl der Kanten (jEj), wenn
nicht explizit etwas anderes vereinbart wird.

3.3.3 Planare Graphen

Ein planarer Graph ist ein Graph G = (V;E), f�ur den eine Abbildung in den
zweidimensionalen Raum existiert, so da� sich keine Kanten schneiden. Ein be-
kannter nichtplanarer Graph ist ein K5, der vollst�andig verbundene Graph mit
f�unf Knoten (siehe Abbildung 3.28).

Planare Graphen besitzen Eigenschaften, die man nutzen kann, um e�zientere
Algorithmen auf ihnen zu formulieren als auf allgemeinen Graphen.

3.3. K�URZESTE WEGE 53

����
����
����

����
����
����

���
���
���
���

����
����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

Abb. 3.28: Beispiel eines nichtplanaren Graphen: der K5

1. Die Anzahl der Kanten steigt linear mit der Anzahl der Knoten
m � 3n� 6

2. Man kann einen planaren Graphen G in einen planaren Graphen G0

�uberf�uhren, so da� jeder Knoten maximal den Grad drei hat und
jV 0j = n0 mit n0 � 6n� 12

Konstruktionsverfahren \transform" f�ur einen ungerichteten planaren Graphen mit
den Eigenschaften aus Punkt 2
INPUT: G = (V;E) der urspr�ungliche Graph
OUTPUT: G0 = (V 0; E0) ein Graph bei dem gilt: 8v 2 V 0 : deg(v) � 3

transform(G) �
V 0 V ; E0 E;

foreach v 2 V do

if deg(v) > 3 then

V 0 := (V 0 � fvg) [fv1; ::; vng; n = deg(v);

foreach wi 2 V; (v; wi) 2 E do

E0 := (E0 � f(v; wi)g) [f(vi; wi); (vi; vi+1)g;
od;

�;

od

return G0 = (V 0; E0)

3.3.4 Single Source Shortest Path-Algorithmus

Die Algorithmen f�ur das Finden der k�urzesten Entfernungen von einer Quelle
s zu allen anderen Knoten in einem Graphen G nennt man single source shor-
test path-Algorithmen. Zumeist wird der Algorithmus von Dijkstra verwendet,

54 KAPITEL 3. SEMINARVORTR�AGE

der auf planaren Graphen einen Aufwand von O(n logn) hat. Dabei tragen die
Kanten ein Gewicht, das einer Entfernung entspricht. Es kann sich dabei um
eine echte Entfernung, den Zeitaufwand oder kompliziertere Werte handeln, die
verschiedene Widerst�ande zu Kosten verrechnen. Die k�urzeste Entfernung zwi-
schen den Knoten u und v ist also die L�ange des Pfades von u nach v , dessen
Kantengewichte sich zu der geringsten Entfernung summieren.

3.3.4.1 Dijkstra

Der Algorithmus von Dijkstra verwaltet drei Mengen von Knoten: bekannte
Knoten, Randknoten und unbekannte Knoten. Die bekannten Knoten B sind die
Knoten, zu denen die k�urzeste Entfernung bereits bekannt ist. Die Randknoten
sind die Knoten in der Umgebung der bekannten Knoten R = U(B)�B, wobei
die Umgebung U(v) = fw 2 V j(v; w) 2 Eg ist. Die unbekannten Knoten sind
die restlichen Knoten. Schritt f�ur Schritt wird ausgehend von der Quelle s die
Menge der bekannten Knoten um einen Randknoten v erweitert, f�ur den gilt: die
Entfernung von s zu v ist minimal. Die Entfernung zwischen zwei Knoten wird
durch ein Gewicht an der Kante zwischen diesen Knoten angegeben !(v; w).
Alle Knoten w 2 U(v)�B werden zu Randknoten. Der Algorithmus terminiert,
wenn die Menge der Randknoten leer ist.

3.3. K�URZESTE WEGE 55

Algorithmus von \Dijkstra": Die Mengen der bekannten Knoten B und der Randkno-
ten R werden Schritt f�ur Schritt erweitert, bis die k�urzesten Entfernungen zu allen
Knoten bekannt sind, die von s aus erreichbar sind. Dazu wird die k�urzeste Entfernung
�(v) nach jedem Durchgang auf den neuesten Stand gebracht.
INPUT: G = (V;E; !) kantengewichteter, ungerichteter und zusam-

menh�angender Graph, wobei V =Menge der
Knoten, E =Menge der Kanten und ! : E !
R ordnet jeder Kante (v; w) die Entfernung
zwischen v und w zu.

s die Quelle
OUTPUT: 8v 2 V : �(v) �(v) =minimale Entfernung von s nach v

Dijkstra(G; s) �
B s; R U(s); �(s) 0

8v 2 V; v 6= s : �(v) 1;

8v 2 R : �(v) !(s; v);

while R 6= ; do
suche v 2 R mit �(v) = minf�(w)jw 2 Rg;
B := B [fvg;
R := R [U(v)�B;
8w 2 R : �(w) := minf�(w); �(v) + !(v; w)g

od

return 8v 2 V : �(v)

Hieraus ergibt sich ein Aufwand von O(n2), den man durch Verwenden eines
Fibonnacci-heap auf O(m + n logn) reduzieren kann. Bei planaren Graphen
ergibt sich durch die Linearit�at der Kanten bei Benutzung eines heap O(n logn).

3.3.4.2 Frederickson

Der Algorithmus von Frederickson verbessert die Laufzeit des Algorithmus von
Dijkstra, indem er ein divide and conquer-Verfahren anwendet. Der Graph wird
in mehrere �uberlappende Regionen aufgespaltet. Man erreicht Knoten innerhalb
einer Region nur �uber solche �Uberlappungsknoten (�au�ere Knoten). Kennt man
k�urzeste Wege von einer Quelle s zu diesen �au�eren Knoten, kann man leicht
die k�urzesten Wege zu den noch verbleibenden Knoten heraus�nden.

3.3.5 Vorbereitungen zum Algorithmus von Frederickson

Der Algorithmus l�a�t sich grob in zwei Phasen unterteilen. Das preprocessing
und die search phase. Im preprocessing wird der Graph G = (V;E; !) in Regio-
nen unterteilt und das all pairs-Problem f�ur die �au�eren Knoten dieser Regionen
berechnet. In der search phase berechnet man nun die k�urzesten Wege von der
Quelle s zu den �au�eren Knoten (main phase) und anschlie�end die restlichen
k�urzesten Wege ausgehend von der Quelle und den �au�eren Knoten (mop-up).

56 KAPITEL 3. SEMINARVORTR�AGE

F�ur das Aufspalten des Graphen ben�otigt man ein Separator Theorem und
geeignete Regionen. F�ur das Ermitteln k�urzester Wege verwendet Frederickson
den Algorithmus von Dijkstra. Die Zusammenf�uhrung der Teilergebnisse erfolgt
mit Hilfe topologiebasierter B�aume (Topologieb�aume). Im weiteren werden die
Techniken vorgestellt, die die Grundlage f�ur den Algorithmus von Frederickson
bilden.

3.3.5.1 Das Separator Theorem

Ein f(n)-Separator Theorem, n 2 N, f�ur eine Graphenklasse S ist ein Theorem
der folgenden Form:
9 Konstanten � < 1; � > 0, f�ur die die Knotenmenge eines Graphen G = (V;E)
aus S in drei disjunkte Mengen A;B;C partitioniert werden kann, so da� gilt:

� :9(a; b) 2 E mit a 2 A und b 2 B

� jAj � �n; jBj � �n; jCj � �f(n)

Man erh�alt dadurch also zwei durch C voneinander getrennte Teilgraphen. Dies
ist in vielen F�allen sehr hilfreich, weil man dadurch Bereiche einengen kann,
auf denen Algorithmen laufen, oder f�ur die man etwas beweisen m�ochte. Der
Algorithmus von Frederickson benutzt das folgende Separator Theorem, um
einen Graphen in Regionen zu unterteilen.

Im
p
n-Separator Theorem von Lipton und Tarjan[13] \separate" ergeben sich � =

2
3
; � = 2

p
2. Der Algorithmus hat lineare Laufzeit. Er wird in dem Artikel von Lipton

und Tarjan[13] genauer beschrieben.
INPUT: G=(V,E) Graph mit Knoten- und Kantenmenge

OUTPUT: A,B,C die drei Mengen, wobei jAj � 2
3
n, jBj � 2

3
n

und jCj � 2
p
2
p
n

A C B

Abb. 3.29: Ergebnis des Separator Theorems

3.3.5.2 Ein Divide And Conquer-Verfahren f�ur SSSP

Um den Aufwand, den der Algorithmus von Dijkstra braucht, zu verringern,
nimmt man ein divide and conquer-Verfahren. Der Graph wird in eine Menge

3.3. K�URZESTE WEGE 57

von Regionen fR1; :::; Rlg aufgespalten. Dies geschieht durch ein relativ einfa-
ches Verfahren.

Regionen

Man kann einen Graphen G = (V;E) in mehrere Regionen fR1; :::; Rlg auf-
spalten, die Knoten enthalten. Die Regionen k�onnen sich �uberlappen, so da�
Knoten in mehreren Regionen enthalten sind. �Au�ere Knoten sind Knoten v,
f�ur die gilt:

9i; j 2 f1; :::; lg; i 6= j : v 2 Ri ^ v 2 Rj :

Innere Knoten sind Knoten w, f�ur die gilt:

8i; j 2 f1; :::; lg : (w 2 Ri ^ w 2 Rj)) i = j:

Im Beispiel in der Abbildung 3.30 ist fv1; v2; v3; v4g die Menge der �au�eren

Knoten.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

��

��

������
������
������
������

������
������
������
������
����������
����������
����������

����������
����������
����������

����
����
����
����
����
����

����
����
����
����
����
����

����������
����������
����������
����������

��������������
��������������
��������������

��������������
��������������
��������������

��
��
��
��
��

��
��
��
��
��������

������
������
������

������
������
������
������

�����������
�����������
�����������

�����������
�����������
�����������

����
����
����
����
����

����
����
����
����
����

������
������
������
������

������
������
������
������

��
��
��
��
��

��
��
��
��
���������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

������������������

����������
����������
����������
����������

���������
���������
���������

���������
���������
���������

������
������
������

������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

v_1 v2

v3

v4

Abb. 3.30: Aufteilung eines Graphen in Regionen

Eine r-Division

Eine r-Division ist die Aufspaltung eines Graphen G = (V;E) in l Regionen
fR1; :::; Rlg, so da� gilt:

� Sl
i=1 Ri = V

� 8i 2 f1; :::; lg : jRij � r

Eine geeignete r-Division

Eine geeignete r-Division ist eine Aufspaltung des Graphen G in l Regionen
fR1; :::; Rlg, so da� gilt:

58 KAPITEL 3. SEMINARVORTR�AGE

� fR1; :::; Rlg ist eine r-Division von G

� es gibt O(np
r
) �au�ere Knoten

� l � �(n
r
)

Eine solche geeignete r-Division kann in O(n logn) gefunden werden[6].

Ein Verfahren zur Ermittlung einer geeigneten r-Division

Das Verfahren f�ur eine geeignete r-Division \rDivision" transformiert den Graphen
G = (V;E) in einen Graphen G0 = (V 0; E0) (siehe Kapitel 3.3.3). Dazu wird rekursiv
das Separator Theorem auf Knotenmengen angewandt, die zu gro� sind. Am Ende
werden noch einige Mengen zusammengefa�t.
INPUT: G = (V;E) der Ausgangsgraph

r die Gr�o�e f�ur die r-Division
OUTPUT: M eine Menge von Knotenmengen, wobei jede

Knotenmenge einer Region entspricht

rDivision(G; r) �
G0 transform(G);

M fV 0g;
while 9R 2M; mit jRj � r do
(A;B;C) := separate(R);

C 0 := fv 2 Cj:9w 2 (A [B) : (v; w) 2 E0g;
C 00 := C � C 0;

Suche Zusammenhangskomponenten A1; A2; :::; Aq in

(A [B [C 0);

Ist ein Knoten v in C 00 nur mit Knoten aus Ai verbunden :

C 00 := C 00 � fvg; Ai := Ai [fvg;
M := (M �R) [fA1; :::; Aqg;

od;

V ereinige alle Paare von Mengen Ri; Rj 2M; f �ur die gilt :

9v 2 (Ri \ Rj) ^ jRij �
r

2
^ jRj j �

r

2
V ereinige alle Paare von Mengen Ri; Rj 2M; f �ur die gilt :

jRij �
r

2
; jRj j �

r

2
^ (beide enthalten eine oder mehrere

Kanten in die Menge Rk _ beide enthalten eine oder

mehrere Kanten in die Mengen Rk; Rl; wobei k; l 6= i; j)

8v 2 C 00; f �ur die gilt : 9w 2 R; (v; w) 2 E : R := R [fvg
return M

3.3. K�URZESTE WEGE 59

�Aquivalenzklassen �au�erer Knoten

Wenn �au�ere Knoten in den gleichen Schnittmengen von Regionen liegen, kann
man sie zu �Aquivalenzklassen zusammenfassen. Nummeriert man die Regionen
des Graphen, lassen sich die Knoten in den �Aquivalenzklassen lexikographisch
anordnen. Das wird f�ur das Verfahren verwendet, das mittels eines Topologie-
baumes k�urzeste Wege propagiert.

3.3.5.3 Topologieb�aume

Um die Strukturierung eines GraphenG = (V;E; !) in Regionen f�ur die k�urzeste
Wegesuche ausnutzen zu k�onnen, verwendet der Algorithmus von Frederick-
son einen Topologiebaum. Dies ist ein ausgeglichener Bin�arbaum, der die �au�e-
ren Knoten der Regionen in lexikographischer Ordnung der Regionennummern
enth�alt. Im Beispiel aus Abbildung 3.31, kann man die �au�eren Knoten folgen-
derma�en anordnen : fv5g; fv1; v2; v3; v4g; fv8; v9g; fv6; v7g.

R1
R2

R3

v1

v2
v3
v4

v5 v6
v7

v8
v9

R4

Abb. 3.31: Regionen mit �au�eren Knoten

v5 v1

v2 v3 v4 v8 v9 v6 v7

Abb. 3.32: Topologiebaum

Hieraus ergibt sich dann der in Abbildung 3.32 dargestellte ausgeglichene Bi-
n�arbaum. Die inneren Knoten des Baumes werden mit der minimalen k�urzesten
Entfernung zwischen den darunter liegenden Bl�attern und der Quelle smarkiert.

60 KAPITEL 3. SEMINARVORTR�AGE

An einem Beispiel wird jetzt gezeigt, wie man innerhalb einer Region mit der
Topologiebaumtechnik das all pairs-Problem l�osen kann. Gegeben sei ein unge-
richteter Graph G = (fa; b; c; dg; f(a; b); (a; c); (a; d); (b; c); (c; d)g; !) mit Kan-
tengewichten wie in Abbildung 3.33.

3

1

5
2

2

a

d

c

bR1

R2

Abb. 3.33: Beispielgraph mit Kantengewichten

F�uhrt man nun innerhalb der Regionen R1 und R2 f�ur jeden �au�eren Knoten
den SSSP-Algorithmus von Dijkstra durch, kann man den k�urzesten Weg von
a nach c in beiden Regionen bestimmen. Es kommt der Baum aus Abbildung
3.34 heraus.

c dab
(a 3)
(c 5)

(b 3)
(c 2)
(d 2)

(a 2)
(b 5)

(a 2)
(c 1)

(d 1)

Abb. 3.34: Ergebnis nach SSSP mit Dijkstra

Nun sucht man f�ur die restlichen Wege eine Verbindung von dem Ausgangs-
knoten zum Zielknoten �uber mindestens einen �au�eren Knoten. In diesem Fall
geht man von b aus zun�achst nach a mit der Entfernung 3. Dort �ndet man
eine Verbindung zu d mit der Entfernung 2. Der Weg zu c ist genauso lang,
scheidet daher direkt aus. Jeder andere Pfad scheidet auch aus, da von a aus
nur Wege mit der Entfernung 2, wie bei dem bereits gefundenen Pfad, oder
mehr fortf�uhren. Es ergibt sich also ein Baum wie in Abbildung 3.35, der alle
k�urzesten Wege zwischen den Knoten der Regionen R1 und R2 enth�alt.

3.3. K�URZESTE WEGE 61

c dab
(a 3)
(c 5)

(b 3)
(c 2)
(d 2)

(a 2)
(b 5)

(a 2)
(c 1)

(d 1)(d 5) (b 5)

Abb. 3.35: Endergebnis nach Topologiebaumtechnik

3.3.6 Der Algorithmus von Frederickson

Dieser Algorithmus \Frederickson" benutzt das Topologiebaumverfahren \toptree"auf
Regionen und den SSSP-Algorithmus von Dijkstra. Er kann grob in zwei Phasen
unterteilt werden. Im preprocessing werden die k�urzesten Wege zwischen �au�eren

Knoten ermittelt. In der search phase sucht man die k�urzesten Wege von der Quelle
s zu allen anderen Knoten.
INPUT: G = (V;E; !) der Graph mit gewichteten Kanten

s die Quelle
OUTPUT: 8v 2 V : �(v) die k�urzeste Entfernung von s nach v

8v 2 V : p(s; v) der k�urzeste Weg von s nach v

3.3.6.1 Das preprocessing

Der Graph wird durch eine r1-Division in l Regionen fR1; :::; Rlg unterteilt (Ebe-
ne 1). Diese Regionen werden mit einer r2-Division in ki; i 2 f1; ::; lg Regionen
aufgegliedert (Ebene 2)

fR11; :::; R1k1 ; :::; Rl1; :::; Rlklg:

F�ur jeden �au�eren Knoten der Ebenen 1 und 2 wird der Algorithmus von
Dijkstra innerhalb der Regionen fR11; :::; Rlklg durchgef�uhrt. Mit der Topo-
logiebaumtechnik ermittelt man die k�urzesten Wege im Graphen zwischen allen

�au�eren Knoten der Ebene 1.

3.3.6.2 Die search phase

Diese Phase l�a�t sich in den main thrust und das mop-up unterteilen. Im
main thrust benutzt man die Topologiebaumtechnik, um die k�urzesten Wege
zwischen der Quelle s und den �au�eren Knoten der Ebene 1 zu �nden. Im
mop-up �ndet man nun die noch fehlenden Wege mithilfe eines modi�zierten
Dijkstra-Algorithmus. Hierbei f�uhrt man in den Regionen fR1; :::; Rlg den SSSP-
Algorithmus f�ur jeden �au�eren Knoten der Ebene 1 durch, nachdem man diesen
kurzzeitig mit einer Entfernungsmarke belegt hat, die der k�urzesten Entfernung
von ihm zur Quelle s entspricht.

62 KAPITEL 3. SEMINARVORTR�AGE

3.3.6.3 Der Algorithmus

transform(graph) liefert einen Graphen f�ur die r-Division (Kapitel 3.3.3)
rDivision(region,r) hat als Ergebnis eine Menge von Regionen
toptree(set-of-nodes,set-of-edges) erzeugt einen Topologiebaum f�ur set-of-nodes
outer(set-of-regions) selektiert die �au�eren Knoten der Regionen
dijkstra(node,region) f�uhrt einen Dijkstra-Algorithmus f�ur node innerhalb von
region aus und tr�agt die Ergebnisse in den Topologiebaum ein
mark(set-of-nodes) markiert die Knoten mit ihrer Entfernung zur Quelle s
sort(set-of-nodes,set-of-regions) erzeugt eine lexikographische Ordnung
es gilt: outer(LevelOneRegions) � outer(LevelTwoRegions)

Frederickson �
preprocessing :

G0 transform(G); n := jV 0j
LevelOneRegions rDivision(V 0; logn)

LevelTwoRegions ;; i := 1

foreach R 2 LevelOneRegions do
LevelTwoRegions := LevelTwoRegions[rDivision(R; log logn2)

od

toptree(sort(outer(LevelOneRegions); LevelOneRegions); E0)

foreach R 2 LevelTwoRegions do
foreach v 2 (outer(LevelTwoRegions) \R do

dijkstra(R; v)

od

od

main thrust :

toptree(sort(outer(LevelOneRegions) [s; LevelOneRegions); E0)

mop� up :

mark(outer(LevelOneRegions))

foreach R 2 LevelOneRegions do
foreach v 2 outer(LevelOneRegions)\ R do

dijkstra(R; v)

od

od

return 8v 2 V : �(v) und p(s; v)

3.3. K�URZESTE WEGE 63

3.3.6.4 Der Aufwand

� Topologiebaumtechnik nach r-Division: O(n+ np
r
logn)

� Dijkstra-SSSP mit heap: O(n logn)

� r1 = logn

� r2 = log log n2

Der Aufwand des Algorithmus ergibt sich folgenderma�en:

� Die erste rDivision wird durch einen Algorithmus von Frederickson mit
Aufwand O(n log r1 +

np
r1
logn) ersetzt[6].

= O(n log logn+ n
p
logn)

� Die folgenden rDivision-Aufrufe ben�otigen O(r1 log r1) ��(nr1)
= O(n log logn)

� Dijkstra auf den LevelTwoRegions ben�otigt O(r2 log r2 � np
r2
)

= O(n log logn log log logn)

� Die Topologiebaumtechnik ben�otigt O(r1 + (r1p
r2
) log r1) �O(np

r1
)

= O(r1) �O(np
r1
)

= O(n
p
logn)

� Der main thrust ben�otigt O(n+ (np
r1
) logn)

= O(n
p
logn)

� Das mop-up ben�otigt O(r1 log r1) ��(nr1)
= O(n log logn)

Der Gesamtaufwand des Algorithmus ergibt sich aus seiner gr�o�ten Komponen-
te. Das ist in diesem Fall O(n

p
log n).

64 KAPITEL 3. SEMINARVORTR�AGE

3.4 Softwareengineering und Objektorientierte

Entwicklung

3.4.1 Einleitung

Bei der Entwicklung gro�er Softwaresysteme gewinnen ingenieurtechnische
Ans�atze mehr und mehr an Bedeutung. Grund daf�ur ist die wachsende Notwen-
digkeit von Qualit�atssicherung und Planbarkeit sowie die zunehmende Kom-
plexit�at der Computersysteme. Durch Softwareengineering versucht man hier
L�osungsans�atze zu �nden.

Dabei werden an ein Projekt folgende Anforderungen gestellt:

� Personen-, Zeit- und Finanzbedarf sollen planbar und minimal sein

� Das Endprodukt soll eine gesicherte Qualit�at haben

� Die Weiterentwicklung soll einfach m�oglich sein (Wartbarkeit)

F�ur den Entwicklungsproze� von Software existieren verschiedene Modelle. Ei-
nes davon, das Wasserfallmodell, wird in Kapitel 3.4.2 n�aher erl�autert. Beson-
ders wichtig f�ur Planbarkeit und Qualit�atssicherung sind dabei die fr�uhen Pha-
sen wie Analyse und Spezi�kation. Bei herk�ommlichen Projekten sind diese mit
dem Entwurf und der Implemtierung fest verbunden, so da� nicht unterschieden
werden kann, welche Entscheidungen auf welcher Ebene getro�en wurden. Die
Trennung der Phasen f�uhrt zu einer Dokumentation des Projektfortschritts.

3.4.1.1 Der Entwicklungsproze�

Software

Anwendungsfeld

System

Reale Welt

SE

Abb. 3.36: Schichtenmodell

3.4. SOFTWAREENGINEERING 65

Ein Softwaresystem kann nicht f�ur sich alleine entwickelt werden. Es ist ein-
gebettet in verschiedene Schichten, die es wie Zwiebelschalen umgeben (Abb.
3.36).

Da ist zun�achst das System, auf und in dem die Software l�auft, also der Rechner,
die Peripherieger�ate, das Netzwerk usw. Das System wird im Anwendungsfeld
eingesetzt, in dem sich Personen, Arbeitsabl�aufe, Daten und Informationen be-
�nden [11]. Das Anwendungsfeld schlie�lich ist eingebettet in die

"
reale Welt\,

die die Software mit ihren Gegebenheiten beein
u�t (z.B. Stromausfall).

Aus diesem Schichtenmodell ergeben sich nun die verschiedenen Phasen des Ent-
wicklungsmodells. Dabei arbeitet sich der Proze� von au�en an den Kern des Sy-
stems, die Software, heran, um diese dann wieder in die umgebenden Schichten
zu integrieren. Die Analysephase �ndet im Anwendungsfeld statt und erforscht
die Beziehungen zwischen dem System und der es betre�enden Welt. W�ahrend
der Spezi�kation wird das genaue Systemverhalten de�niert. Im Entwurf kon-
kretisiert man nun, auf welche Weise dieses Verhalten im Programm realisiert
wird. Die Implementierung schlie�lich f�uhrt zum ausf�uhrbaren Programm, wel-
ches dann in Integration und Test wieder in die �au�eren Schichten eingebettet
wird. Dieser Verlauf wird durch den Pfeil in Abbildung 3.36 verdeutlicht.

3.4.1.2 Die Badewannenkurve

Entwurf

Spezifikation

Implementierung

Analyse

System-Integration

Modul-Integration

Test

Einsatz

Abb. 3.37: Die Badewannenkurve

In Abbildung 3.37 ist zu erkennen, wie die fr�uhen Phasen im Entwicklungspro-
ze� mit den sp�aten zusammenh�angen, da sie in der selben Schicht statt�nden.
Jeweils zusammengeh�orige Phasen haben die Eigenschaft, da� Fehler, die in der
einen auftreten, wenn nicht sofort, dann erst in der anderen entdeckt werden.
Fehler der Implementierung werden im Test erkannt. Fehler beim Entwurf tau-
chen in dem Moment auf, wo man versucht, die einzelnen Module zu integrieren.
Zur Beseitigung mu� nun die Implementierungs- und Testphase erneut durch-
laufen werden. Fehler bei der Spezi�kation werden in der Regel erst bei der
Systemintegration deutlich, wenn das System nicht mit dem Anwendungsfeld
zusammenpa�t. Und grunds�atzliche Fehler bei der Analyse merkt man meist
erst im Einsatz. Hier m�u�en dann oft s�amtliche Phasen erneut durchlaufen wer-
den.

Aufgrund seiner Form nennt man dieses Modell die
"
Badewannenkurve\. Es

verdeutlicht, da� Fehler immer teurer werden, je sp�ater sie erkannt werden.
Als zweite Konsequenz erkennt man die Wichtigkeit der fr�uhen Phasen: ihre

66 KAPITEL 3. SEMINARVORTR�AGE

Ergebnisse sind nicht unmittelbar testbar wie z.B. Quelltext, ihre Fehler sind
aber besonders kritisch f�ur das Projekt. Methoden aus dem Softwareengineering
wie z.B. technische Reviews (siehe Kapitel 3.4.4.4) k�onnen hier helfen, diese
Fehler fr�uhzeitig zu entdecken [14].

3.4.2 Das Wasserfallmodell

Die verschiedenen Phasen, die beim Entwicklungsproze� ablaufen, wurden schon
1970 von Royce [18] in einem Modell beschrieben, das sich aus anderen Inge-
nieurswissenschaften herleitet. Aufgrund der kaskaden�ahnlichen Folge der ver-
schiedenen Phasen wird es als das

"
Wasserfallmodell\ bezeichnet (siehe Abbil-

dung 3.38).

Anforderungsanalyse

(Systemdesign)
Spezifikation

Entwurf

(Softwaredesign)

Implementation

Modultest

Systemtest

Integration

Einsatz

Wartung

Hauptfluß im Prozeß Rücksprung bei Fehlern

Abb. 3.38: Das Wasserfallmodell nach Royce

In dieser Darstellung sieht man auch das Hauptproblem beim Wasserfallmodell.
Es ist ein Aktivit�atenmodell. Bei Fehlern, die in einer Phase erkannt werden,
kann in fr�uhere Phasen zur�uckgesprungen werden. Das macht es jedoch schwie-
rig, feste Termine einzuhalten, die f�ur die Planung eines Projekts unbedingt
notwendig sind. Durch die Einf�uhrung von

"
Meilensteinen\ kann dieses Pro-

blem abgeschw�acht werden. Meilensteine sind Abschlu�dokumente und auch
-termine, die eine Phase beenden. Auf die Bedeutung von Meilensteinen wird
sp�ater in 3.4.4.2 eingegangen.

Im Rahmen des Projekts Fahrgemeinschaften kommt - wie in einer Projektgrup-
pe an der Fakult�at Informatik �ublich - die letzte Phase, Einsatz und Wartung,
nicht zum Zuge. Um das Modell den Gegebenheiten anzupassen, kann man
die letzte Phase durch

"
Endbericht und Abschlu�pr�asentation\ ersetzen. Damit

3.4. SOFTWAREENGINEERING 67

lassen sich die Phasen gut auf den Zeitplan der Projektgruppe abbilden (Abb.
3.39). Dieser Zeitplan enth�alt nun feste Meilensteine und Termine, bis zu denen
alle R�uckspr�unge in fr�uhere Phasen beendet sein m�ussen.

Anforderungsanalyse

(Systemdesign)
Spezifikation

Entwurf

(Softwaredesign)

Implementation

Modultest

Systemtest

Integration

Hauptfluß im Prozeß Rücksprung bei Fehlern

Präsentation

Abschlußbericht

Zeitplan der

Projektgruppe

Abschlußbericht

Anforderungs-

Implementation

Spezifikation

analyse

Seminarphase

Test/Review

14.10.96
29.11.96

3.1.97

14.2.97

Entwurf

Zwischenbericht 21.4.97

2.5.97

17.2.97

4.7.97

29.8.97

26.9.97

Abb. 3.39: Das Wasserfallmodell f�ur eine Projektgruppe

Im folgenden werden nun die einzelnen Phasen des Wasserfallmodells erl�autert.

68 KAPITEL 3. SEMINARVORTR�AGE

3.4.2.1 Anforderungsanalyse

Die Anforderungsanalyse dient der genauen Kl�arung des Problems. Sie �n-
det komplett im Anwendungsfeld in Interaktion mit dem Kunden statt. Sie
durchl�auft folgende Phasen:

1. Machbarkeit und Notwendigkeit
Bevor mit einem kostspieligen Projekt begonnen wird, sollte zun�achst fest-
gestellt werden, ob es �uberhaupt notwendig ist. Vielleicht gibt es �ahnliche
Produkte wie das zu entwickelnde schon auf dem Markt. Oder der Rech-
nereinsatz an sich ist f�ur die L�osung des Problems nicht angebracht. Wenn
sich die Notwendigkeit des Produkts ergibt, wird gepr�uft, ob es durchf�uhr-
bar ist und ob die notwendigen Resourcen zur Verf�ugung stehen. In dieser
Phase k�onnen viele Projekte schon abgebrochen werden, bevor sie nach
teuren Entwicklungsversuchen scheitern.

2. Analyse des Anwendungsfelds
Bei der Analyse des Anwendungsfelds kommt es darauf an, die Welt des
Kunden zu verstehen. Wichtig ist, da� zun�acht der Ist-Zustand genau
festgehalten wird. In der Regel soll dieser durch ein neues System nur
verbessert, aber nicht v�ollig ver�andert werden. Deswegen liegt hier ein
gro�er Teil der Arbeit. Es entstehen Modelle, die den bisherigen und den
gew�unschten Zustand beschreiben.

3. Erstellen des Anforderungskatalogs
Nun werden die W�unsche des Kunden erfa�t und im Anforderungskata-
log aufgef�uhrt. Dabei mu� er unterst�utzt werden, damit er sich das neue
System vorstellen kann. Dies kann durch Prototypen oder Szenarien ge-
schehen. Man mu� versuchen, vermeintliche von echten Anforderungen
zu trennen. Nicht immer ist dies m�oglich. Im Zweifelsfall entscheidet der
Kunde �uber die Relevanz einer Anforderung.

In der Regel gibt es auch nicht nur einen Kunden, sondern eine Reihe von
Menschen, die unterschiedliche Erwartungen an das System stellen. Deswe-
gen mu� zu jeder neuen Anforderung genau dokumentiert werden, woher
sie stammt und wie relevant sie in bezug auf das System ist. Das Zielsy-
stem mu� von vielen verschiedenen Blickwinkeln aus beleuchtet werden,
wie z.B. Daten
u�, Bedienung, Schnittstellen, Sicherheit oder Wartung.
Dies f�ur zu detaillierteren Systemmodellen.

4. Klassi�zieren der Anforderungen
Der Anforderungskatalog wird nun geordnet. Die Anfordrungen werden
nach verschiedenen Gesichtspunkten klassi�ziert, wie z.B. funktionale An-
forderungen, Anforderungen an die Schnittstellen, an die Benutzungsober-

�ache oder an die Sicherheit.

5. Kon
ikte l�osen
Bei sich widersprechenden Anforderungen m�ussen L�osungen oder Synthe-
sen gefunden werden. Dazu ist m�oglicherweise R�ucksprache mit dem Kun-
den erforderlich.

3.4. SOFTWAREENGINEERING 69

6. Priorit�aten setzen
Nun werden die Anforderungen mit Priorit�aten versehen, um einen Spiel-
raum f�ur den Fortgang des Projekts zu bekommen. Wichtige Funktiona-
lit�at wird zuerst entwickelt, weniger wichtige ist optional.

7. Evaluierung der Anforderungen auf

� Konsistenz - sind noch Kon
ikte vorhanden?

� Allgemeing�ultigkeit - wollen das auch alle so?

� Vollst�andigkeit - wurden wichtige Entscheidungen vergessen?

� Realisierbarkeit - sind die Anforderungen �uberhaupt machbar?

Wurden in einem dieser Punkte De�zite festgestellt, so wird eine der vor-
herigen Phasen zur�uckgesprungen, um diese auszugleichen.

8. Abnahme durch den Kunden
Das Ergebnis dieser Phase ist der Meilenstein Anforderungsanalyse. Er
enth�alt die klassi�zierten und evaluierten Anforderungen des Kunden und
sollte nun von ihm abgenommen werden.

3.4.2.2 Spezi�kation

Die Spezi�kation ist eine geordnete Menge von Anforderungen. Das �au�ere Sy-
stemverhalten - und nur das �au�ere! - wird detailliert beschrieben. Sie liegt damit
auf der Schnittstelle zwischen dem System und dem Anwendungsfeld [11].

Es gibt es prinzipiell zwei M�oglichkeiten zu spezi�zieren: die formale und die
informale Spezi�kation.

1. Formale Spezi�kation Das Problem der nat�urlichen Sprache ist, da� sie
oft mehrdeutig und unvollst�andig ist. Bei der formalen Spezi�kation wird
daher eine eindeutig de�nierte Notation verwendet. Dies hat den Vorteil,
da� man die Korrektheit formal beweisen kann. Es gibt auch Werkzeuge,
um aus einer formalen Spezi�kation Programmcode zu erzeugen. Forma-
le Spezi�kationen erfordern eine spezielle Notation, die zun�achst erlernt
werden mu�. Dies kann man h�ochstens einem Entwickler, nicht aber dem
Kunden zumuten. Da die Spezi�kation aber die Grundlage f�ur den Entwurf
ist, sollte sie jeder lesen k�onnen. Jede formale Spezi�kation mu� deswegen
durch eine informale erg�anzt werden.

Bei sicherheitsrelevanten Systemen ist die formale Spezi�kation jedoch von
immanenter Bedeutung. Bei einem Programm, das einen Airbus steuert,
darf es einfach keinen Programm- und/oder Flugzeugabsturz durch eine
fehlerhafte Spezi�kation geben. Hier ist die Beweisbarkeit der Korrektheit
eine lebenswichtige Eigenschaft.

Ideal ist deshalb eine Kombination aus formaler und informaler Spezi�-
kation, wobei alles informal und die sicherheitsrelevanten Teile zus�atzlich
noch formal spezi�eziert werden.

70 KAPITEL 3. SEMINARVORTR�AGE

2. Informale Spezi�kation

Eine informale oder nat�urlichsprachliche Spezi�kation ist also unumg�ang-
lich. Auch hier kann ein gewisser Formalismus verwendet werden. Folgt
man Standards, so kann man sicher gehen, da� man keine wichtigen Teile
vergi�t. Ein solcher Standard �ndet sich bei IEEE [10].

Die Spezi�kation setzt sich also zusammen aus einer informalen und evtl. for-
malen Beschreibung des �au�eren Systemverhaltens. Bei sp�ateren �Anderungen
mu� es aktualisiert werden. Sie stellt eine Art Vertrag dar. Das und nur das,
was in der Spezi�kation beschreiben wird, mu� auch entwickelt werden. Das
Systemverhalten wird so beschrieben, da� es nachher mit dem fertigen Produkt
verglichen werden kann: Wurden die Anforderungen erf�ullt? Sie ist die Schnitt-
stelle zwischen dem Anwendungsfeld und der Implementation. Als Grundlage
f�ur den Entwurf befreit sie auch den Entwickler von wichtigen Entscheidungen
�uber das Systemverhalten.

3.4.2.3 Entwurf

Beim Entwurf wird nun, ausgehend von der Spezi�kation, das System in im-
mer kleinere Komponenten zerlegt, bis hin zu den grundlegenden Datenstruk-
turen und Algorithmen. Ein guter Entwurf f�ordert die Arbeitsteilung: da die
Schnittstellen zwischen den Subsystemen festgelegt werden, k�onnen die Einzel-
teile unabh�angig voneinander entwickelt und getestet werden. Der Entwurf l�auft
in folgenden Phasen ab:

1. Architektur
Das System wird in einem Grobentwurf analysiert. Es werden Subsysteme
identi�ziert und Zusammenh�ange und Schnittstellen erkannt.

2. Spezi�kation der Subsysteme
Die einzelnen Subsysteme und ihr Daten
u� werden spezi�ziert.

3. Schnittstellen
Die Schnittstellen der Subsysteme werden spezi�ziert. Dabei ist auf Kap-
selung und schmale Schnittstellen zu achten.

4. Modulentwurf
Die Subsysteme werden in einzelne Module gegliedert, denen Aufgaben
zugeordnet werden. Die Schnittstellen zwischen den Modulen werden de-
�niert.

5. Datenstrukturen
Die den Modulen zugrundeliegenden Datenstrukturen werden identi�ziert.

6. Algorithmen
Die Algorithmen, die auf den Datenstrukturen laufen, werden spezi�ziert.

3.4. SOFTWAREENGINEERING 71

3.4.2.4 Implementierung

Da beim Entwurf schon der Aufbau des Systems beschrieben wurde, k�onnen die
Einzelteile nun unabh�angig voneinander entwickelt und getestet werden. Wich-
tig ist, da� es Richtlinien f�ur die Programmierung gibt, in denen die Wahl von
Bezeichnern, die Versionskontrolle, die Gr�o�e von Modulen, etc festgelegt wer-
den. Wie das konkret aussieht, ist nebens�achlich; nur einheitlich sollte es sein.
Ein guter Programmierstil zeichnet sich dadurch aus, da� er nicht als solcher er-
kennbar ist, das bedeutet, da� von dem Programmcode nicht auf den Entwickler
geschlossen werden kann.

3.4.2.5 Integration und Test

Nach der Implementierung des Systems werden die einzelnen Module und Sub-
systeme nach und nach zusammengesetzt oder integriert und dann systematisch
getestet. Ein systematischer Test besteht aus einem Testdatensatz und einem
Sollresultat, das aus der Spezi�kation abgeleitet wird. Nach Durchf�uhrung des
Tests wird das Ergebnis mit dem Sollresultat verglichen. Stimmen sie nicht

�uberein, so ist der Test positiv verlaufen, es wurde ein Fehler gefunden. Erst
nach der ersten Testreihe sollten diese Fehler korrigiert werden. Denn eine so-
fortige Korrektur k�onnte entweder neue Fehler erbringen oder sp�atere Fehler
verdecken. Wenn keine Fehler mehr gefunden werden, kann das System in den
Einsatz gehen. Im Fall einer Projektgruppe wird dann der Endbericht und die
Abschlu�pr�asentation vorbereitet.

3.4.3 Besonderheiten bei objektorientierter Entwicklung

Das folgende Kapitel gibt eine grobe Einf�uhrung in die objektorientierte Ent-
wicklung nach Booch [2].

3.4.3.1 Das Objektmodell

Der objektorientierten Entwicklung liegt eine bestimmte Sicht auf die Dinge
zugrunde, das Objektmodell. Dieses kann von Sprache zu Sprache variieren. Es
k�onnen jedoch folgende Eigenschaften identi�ziert werden, die man z.B. bei den
Sprachen Smalltalk oder C++ auch wieder�ndet.

Anders als bei herk�ommlicher Programmierung die die kleinste Einheit nicht der
Algorithmus, sondern das Objekt. Ein Objekt ist eine Einheit, die aus Daten und
Algorithmen auf diesen Daten besteht. Es besitzt eine gewisse Integrit�at und
ist f�ur seine Daten selbst verantwortlich. Objekte sind Instanzen von Klassen,
die das Objektverhalten beschreiben. Eine Klasse kann man als die Idee eines
Objekts beschreiben, w�ahrend das Objekt als Instanz einer Klasse eine konkrete
Materialisierung dieser Idee darstellt. Die Hauptelemente des Objektmodells
sind folgende:

1. Abstraktion.
Es werden jeweils nur die f�ur das Problem konkret interessanten Eigen-
schaften eines Objekts betrachtet, relativ zur Perspektive des Betrachters.

72 KAPITEL 3. SEMINARVORTR�AGE

2. Kapselung.
Die Details der Implementierung werden vor der Au�enwelt verborgen.
Das Objekt liefert nach au�en nur Methoden zur Manipulation seiner Da-
ten, verbirgt jedoch deren konkrete Realisierung.

3. Modularit�at.
Verschiedene Objekte k�onnen zu Modulen zusammengefa�t werden, die
f�ur sich wiederum das Prinzip der Abstraktion und der Kapselung inneha-
ben. Dadurch kann das System auf immer h�oherer Ebene abstrahiert und
beschrieben werden.

4. Hierarchie.
Die Klassen stehen in einer hierarchischen Beziehung zueinander. Niedere
Klassen werden von h�oheren Klassen abgeleitet und erben von diesen alle
Eigenschaften. Diese k�onnen sie erg�anzen oder �uberschreiben.

5. Typisierung.
Daten haben Typen. Daten unterschiedlichen Typs k�onnen nicht ohne wei-
teres miteinander kombiniert werden, sondern bed�urfen besonderer Kon-
vertierung. Auch Klassen werden als Typ behandelt und bieten oft selbst
unterschiedliche Zugri�e. Eine Klasse Integer k�onnte zum Beispiel eine
Methode anbieten, die den Wert des Objekts als Real-Zahl zur�uck gibt.
Dies folgt wiederum dem Prinzip der Kapselung: Die konkrete Implemen-
tierung der Integerzahl bleibt dadurch verborgen.

6. Nebenl�au�gkeit.
Das Objektmodell beinhaltet eine Parallelit�at bei der Ausf�uhrung. Ver-
schiedene Objekte k�onnen gleichzeitig unabh�angig voneinander agieren
oder sich auch gegenseitig beein
u�en.

7. Persistenz.
Objekte haben eine Lebensdauer. Diese kann von wenigen Taktzyklen wie
z.B. einer Schleifenvariablen, die nur kurz instanziiert und dann wieder
freigegeben wird, bis �uber die Laufzeit der Anwendung hinaus reichen wie
bei Datenbankobjekten.

3.4.3.2 Die Phasen bei der objektorientierten Entwicklung

Analyse Bei der Analyse betrachtet man die Anforderungen aus der Sicht der
Klassen und Objekte. Man sammelt sie und klassi�ziert sie zu Einheiten, die
sp�ater Objekte werden k�onnten.

Spezi�kation Die objektorientierte Spezi�kation unterscheidet sich nicht von
der

"
normalen\, da die Spezi�kation nur das �au�ere Systemverhalten, nicht aber

die Implementierung beschreibt. Ein Fenster wird einfach geschlossen, egal, ob
es die Methode eines Objektes Fenster oder einfach eine entsprechende Prozedur
war.

3.4. SOFTWAREENGINEERING 73

Entwurf Beim objektorientierten Entwurf wird das Problem nicht in Algo-
rithmen, sondern in Objekte, Klassen und ihre Beziehungen zueinander zerlegt.
Sehr hilfreich ist eine Notation, die die Zusammenh�ange �ubersichtlich beschreibt.
Eine m�achtige Methode �ndet sich bei Booch [2]. Dabei k�onnen die Klassen und
ihre Beziehungen voneinander graphisch dargestellt und einfach um zus�atzliche
Erkenntnisse erweitert werden.

Programmierung Grunds�atzlich kann in jeder Sprache objektorientiert pro-
grammiert werden. Manche legen es jedoch n�aher als andere. Die Konzepte des
Objektmodells sollten ein Bestandteil der Programmierung sein. Ohne Verer-
bung unterscheidet es sich z.B. nicht vom Programmieren mit abstrakten Da-
tentypen. Bekannte OO-Sprachen sind Smalltalk oder C++. Inzwischen bieten
aber viele andere Sprachen objektorientierte Zus�atze.

3.4.4 Techniken der Dokumentation

Der Stellenwert der Dokumentation in einem Projekt ist meist untergeordnet.
Sie kostet eine Menge Zeit und h�alt den Entwicklungsproze� auf. Aber ohne
Dokumentation gibt es keine Sicherheiten, keine Vereinbarungen, auf die man
sich verlassen kann. Da man aus fr�uheren Fehlern nicht lernen kann, gibt es
auch keinen Fortschritt im Proze�. Dokumentation geh�ort genauso zur Software
wie der Programmcode. Gerade in den fr�uhen Phasen wie Anforderungsanalyse
oder Spezi�kation kommt man ohne eine Dokumentation nicht aus, da es sonst
keine Dokumente �uber den Stand und den Fortgang des Projekts gibt.

3.4.4.1 Proze�dokumentation

F�ur jede Phase mu� der Projektstand und die Ergebnisse der Phase dokumen-
tiert werden. Dazu geh�oren Protokolle der Sitzungen, Untergruppenberichte und
Vereinbarungen. In der Regel wird nur dann regelm�a�ig und zuverl�assig doku-
mentiert, wenn es kein zu hoher Aufwand ist. Deswegen braucht man f�ur alle
diese Dokumente Formulare, die das Verfassen erleichtern und ihnen auch ein
einheitliches Aussehen geben. Die mindeste Information, die ein Dokument ent-
halten mu�, ist das Datum und den Verfasser, damit man es in den zeitlichen
Ablauf des Projekts einordnen kann.

3.4.4.2 Meilensteine

Meilensteine sind sowohl Termine als auch Abschlu�dokumente der verschie-
denen Phasen. Sie sind jeweils der Ausgangspunkt f�ur die folgende Phase und
beein
u�en diese nachhaltig. �Anderungen an Meilensteinen, sobald sie abgenom-
men wurden, m�ussen deshalb wohl�uberlegt und selten sein. Die Meilensteine
eines Projekts hei�en Anforderungsanalyse, Spezi�kation, Entwurf, Zwischen-
bericht, Endbericht und Programmcode.

74 KAPITEL 3. SEMINARVORTR�AGE

3.4.4.3 Dokumentation von Programmcode

Viele verstehen unter Dokumentation nur die Kommentare im Programmcode.
Dies ist jedoch nur ein kleiner Teil davon. Nichtsdestotrotz sind Kommentare
au�erordentlich wichtig, nicht nur, wenn mehrere Menschen am selben Code
arbeiten. Man versuche nur, sich vier Wochen nach dem Verfassen noch an die
Absichten hinter einem St�uck Programm zu erinnern.

Gute Kommentare wiederholen nicht das O�ensichtliche, sondern erl�autern die
Absichten.

� schlechtes Beispiel:

x:=1; // x bekommt den Wert Eins

Was im Kommentar steht, kann jeder aus der Programmzeile entnehmen.
Solche Kommentare bl�ahen den Code nur unn�otig auf. Au�erdem ist der
Variablenname alles andere als sprechend.

� gutes Beispiel:

zaehler:=1; // Der Zaehler wird initialisiert

Hier o�enbart der Kommentar, welche Absicht der Autor mit dieser Zeile
verfolgt.

3.4.4.4 Reviews

Technische Reviews dienen zur �Uberpr�ufung von Dokumenten und Programm-
code. Gerade bei den fr�uhen Phasen sind sie unumg�anglich, da mit einem Text-
dokument kein systematischer Test gemacht werden kann.

Werden technische Reviews eingef�uhrt, so �ndet man am Anfang viele kleine,
z.B. Rechtschreib- oder Formfehler. Mit der Zeit werden die Autoren jedoch
besser und es ist eine Qualit�atsverbesserung festzustellen: Es werden die struk-
turellen, die wirklich

"
teuren\ Fehler gefunden.

Personen und Rollen

� Autor. Nimmt am Review teil, mu� sich jedoch nicht rechtfertigen. Es
wird das Produkt, nicht sein Autor gereviewed.

� Sitzungsleitung. L�adt zum Review ein und verschickt das anstehende Do-
kument.

� Protokollant. Schreibt alles mit, was an Fehlern gefunden wird und l�asst
es dem Autor zukommen.

� Manager oder Auftraggeber. Nimmt am Review nicht teil. Das technische
Review ist eine interne Angelegenheit der Entwickler zur Verbesserung des
Produkts.

� Gutachter. Die Gutachter sind meist andere Entwickler, die den Pr�u
ing
auf Fehler untersuchen.

3.4. SOFTWAREENGINEERING 75

Vorbereitung Um ein technisches Review durchzuf�uhren, ben�otigt man eine
Version des zu pr�ufenden Dokuments, die w�ahrend der Reviewphase nicht mehr
ver�andert wird. Ein Review auf einem veraltenden Pr�u
ing ist nutzlos.

Dieses Dokument verschickt nun die Sitzungsleitung an die Teilnehmer des Re-
views zusammen mit der Einladung und einer Aufgabenverteilung. Dies mu�
rechtzeitig vor dem Termin erfolgen, damit die Gutachter nun anhand den ih-
nen zugeteilten Aspekten den Pr�u
ing untersuchen k�onnen. Dabei registrieren
sie auch Fehler, die nicht in ihrem Bereich liegen. Durch die Konzentration auf
bestimmte Aspekte werden jedoch mehr Fehler gefunden.

Ablauf Ein technisches Review beginnt damit, da� der Sitzungsleiter fest-
stellt, ob die Gutachter erschienen sind und ihre Arbeit erledigt haben. Ist dies
nicht der Fall, kann das Review abgebrochen werden.

Beim eigentlichen Review wird das Dokument absatzweise durchgegangen. Jeder
Gutachter sagt dabei, welche Fehler er unter seinem Aspekt gefunden hat. Der
Protokollant notiert dies. Nach dem Review stellt die Runde noch ein Ergebnis
aus. M�ogliche Ergebnisse sind

� Keine Beanstandungen. Das Dokument wird so, wie es ist, angenommen.

� Kleine �Anderungen, kein weiteres Review. Nach der Einarbeitung der
erw�ahnten �Anderungen durch den Autor wird das Dokument ohne wei-
teres Review angenommen.

� Gro�e �Anderungen, weiteres Review. Der Autor arbeitet die �Anderungen
ein. Danach wird ein weiteres Review angesetzt.

� Gravierende Beanstandungen. Das Dokument wird nicht angenommen. Es
wird empfohlen, es von Grund auf neu zu schreiben.

3.4.5 Vereinbarungen

Um in einem Projekt Techniken des Softwareengineerings anzuwenden, ist es
umbedingt notwendig, da� die Teilnehmer Vereinbarungen tre�en. Es ist nicht
wichtig, was konkret vereinbart wird, sondern da� etwas vereinbart wird. Diese
Vereinbarungen enthalten dann Absprachen, Formulare, Standards, Entschei-
dungen und Style Guides. Sie sind die Referenz f�ur die einzelnen Teilnehmer
und m�ussen stets aktualisiert werden, wenn sich etwas ge�andert hat oder eine
neue Absprache dazugekommen ist.

76 KAPITEL 3. SEMINARVORTR�AGE

3.5 Constraint Programmierung

3.5.1 Einleitung

Immer h�au�ger werden zum L�osen von Problemstellungen elektronische Ger�ate
eingesetzt. Angefangen bei einfachen K�uchenger�aten �uber Telefonanlagen
bis hin zu hochentwickelten Industrierobotern, die entsprechend ihrem Ein-
satzgebiet ausgesucht und eingesetzt werden. Aber dennoch gilt f�ur jedes
Ger�at, die L�osung zur vorhandenen Problemstellung so einfach wie m�oglich zu
programmieren. Dabei stellt sich die Frage, auf welche Art und Weise kann

�uberhaupt programmiert werden ?

Eine Art ist die herk�ommliche Programmiermethode. Das bedeutet, man gibt
eine genaue Handlungsanweisung an, wie das Problem zu l�osen ist.

Beispiel:

begin

f�uhre A aus;
f�uhre B aus;
f�uhre C aus;
if D = true then

f�uhre E aus;
else F

end

Allerdings kann hier in einigen F�allen nicht das gesamte Problemfeld abgedeckt
werden. Vor allem dann nicht, wenn sich zur Laufzeit die Verh�altnisse �andern.
Diese waren zu Anfang in dieser Weise nicht bekannt oder sind einfach vergessen
worden. Probleme ergeben sich auch, falls mehrere L�osungen zul�assig sind. Zum
Beispiel besitzt ein Industrieroboter unterschiedlich angeordnete Gelenke, die
zum L�osen der Problemstellung entsprechend angesteuert werden m�ussen. Dabei
kommt es nicht auf die Position des einzelnen Gelenks an, sondern auf die Ge-
samtposition des Roboters. Folglich sind mehrere L�osungen m�oglich und richtig.

Wie man sieht sind dieser Programmiermethode Grenzen gesetzt. Damit
die oben genannten Probleme dennoch gel�ost werden k�onnen, wurde die
Constraint Programmierung entwickelte.
Die Constraint Programmierung besitzt folgende Eigenschaft: Man gibt nicht
mehr an, wie ein Problem gel�ost werden soll, sondern beschreibt das Problem
mit Bedingungen, die erf�ullt sein m�ussen bzw. sollen.
Constraint Programmierung bedeutet weiterhin, da� der Programmierer nicht
mehr selbst die �Ubertragung von der Beschreibung der Bedingungen zur
tats�achlichen L�osung zu machen braucht. Dies �ubernimmt ein System, das
Algorithmen zur Au
�osung von Constraint einsetzt.

Weitere Einzelheiten der Constraint Programmierung werden nun in den

3.5. CONSTRAINT PROGRAMMIERUNG 77

folgenden Abschnitten vorgestellt und erkl�art, wobei auf den Au
�osungsalgo-
rithmus genauer eingegangen wird.

3.5.2 Constraint Programmierung

Bereits in der Einleitung wurde die Grundidee der Constraint Programmierung
vorgestellt: Man gibt nicht mehr an, wie eine Aufgabe gel�ost werden soll, son-
dern welche Bedingung nach der Bearbeitung der Aufgabe gelten sollen. Durch
diese Eigenschaft entstand eine neue Programmmiertechnik, f�ur die ein entspre-
chender Programmierablauf eingehalten werden sollte. Solch ein Ablauf wird
nun im folgenden allgemein vorgestellt.

3.5.2.1 Allgemeiner Programmierablauf

Bevor man anf�angt zu programmieren, mu� die Problemstellung analysiert
und detailliert aufgeschrieben werden. Danach de�niert man alle denkbaren
Constraints, die das Problem komplett beschreiben. Wird nur eine Teilmenge
der Constraints ben�otigt, mu� eine Auswahl getro�en werden, die wirklich zum
L�osen der Problemstellung beitragen. Nachdem die Constraints ausgew�ahlt
wurden, wird ein Au
�osungsalgorithmus gestartet, der als Ergebnis eine
L�osung oder ein entsprechendes Verhalten berechnet. Danach wird eine L�osung
ausgegeben bzw. ein Verhalten ausgef�uhrt.

Schematischer Ablauf:

1. Problemanalyse

2. De�nition der Constraints

3. Auswahl einer Teilmenge von Constraints

4. Au
�osungsalgorithmus

5. L�osung bzw. entsprechendes Verhalten

3.5.2.2 Constraints

W�ahrend der grobe Ablauf der Constraint Programmierung nur erw�ahnt, da�
entsprechende Constraints de�niert werden m�ussen, soll hier kurz eine De�niti-
on der Constraints zum Verst�andnis gegeben werden.
Constraints sind Bedingungen, die als Relationen �uber Variablen de�niert wer-
den. Ein Constraint C mit Variablen p1; : : : ; pn legt eine beliebige Relation R
zwischen den einzelnen pi, i = 1; : : : ; n fest. Wenn f�ur alle Variablen eine ent-
sprechende Wertzuweisung gefunden wurde, ist ein Constraint erf�ullt.
Beispielsweise wird der numerische Constraint Summe als Summe(a; b; c) darge-
stellt. Zur Verarbeitung dieses Constraints ist jedoch eine speziellere Darstellung

78 KAPITEL 3. SEMINARVORTR�AGE

der Relation notwendig:

Summe(a; b; c) , (c = a+ b)

(b = c� a)
(a = c� b)

Diese Darstellung hat den Vorteil, da� f�ur jede Variable der Relation ein eigener
Ausdruck vorliegt und so die weitere Verarbeitung ohne zus�atzlichesWissen �uber
andere Relationen m�oglich ist.

3.5.2.3 Anwendungen

Im folgenden werden zwei Anwendungsgebiete vorgestellt, die sich f�ur die Cons-
traint Programmierung besonders gut eignen. Dabei werden die Constraints
konkretisiert und zum anderen wird gezeigt, wie bzw. wo sie in Programmen
eingesetzt werden k�onnen.
Die folgenden Beispiele stammen aus den zwei Anwendungsgebieten:

1. Regel- und Steuerungstechnik

2. Berechnungstechnik

1. Regel- und Steuerungstechnik

Zu diesem gro�en Gebiet der Regel- und Steuerungstechnik geh�ort unter ande-
rem der Bereich der Roboterprogrammierung. Roboterprogrammierung basiert
zum gr�o�ten Teil auf einer Bewegungsbeschreibung, die mit Hilfe von Bewe-
gungsbahnen in einem Kon�gurationsraum oder einem Zustandsraum beschrie-
ben wird. Meist werden bei Industrieroboter diese Bewegungsbahnen von Hand
spezi�ziert. Das ist einfach, intuitiv und ausreichend f�ur einige Anwendungen.

Gehmaschine

F�ur das Programmieren einer Gehmaschine, die sich dynamisch in drei Dimen-
sionen fortbewegen kann, bereitet dieses herk�ommliche Vorfahren gro�e Schwie-
rigkeiten. Hierf�ur m�u�te nach immer wiederkehrende Bewegungsabl�aufe der ein-
zelnen Gelenke gesucht werden. Anschlie�end werden diese Abl�aufe geplant und
in einer entsprechender Reihenfolge aufgerufen. Das ist sehr kompliziert und
komplex.

Diese Aufgabe kann mit der Constraint Programmierung eleganter gel�ost wer-
den. Dazu m�ussen allerdings entsprechende Constraints f�ur das gew�unschte Ver-
halten de�niert werden, die etwa so aussehen k�onnen:

Constraint1= Fu� sollte w�ahrend der Schwingphase des Beines keinen Kontakt
zum Boden haben.

3.5. CONSTRAINT PROGRAMMIERUNG 79

Constraint2= Die Fu�plazierung mu� so gew�ahlt werden, da� ein ausgegliche-
nes Gleichgewicht vorliegt.

Damit die Gehmaschine richtig laufen kann, m�ussen zur Laufzeit die Constraints
st�andig auf Erf�ullung kontrolliert werden. Stellt sich heraus, da� die beiden Be-
dingungen nicht ausreichend sind, kann durch Hinzuf�ugen eines neuen Cons-
traints das existierende Programm erweitert werden.

Constraint3= Das Becken mu� �uber einer bestimmten H�ohe sein.

Mobile Roboter

End -
Zone

d

Abb. 3.40: Versuchsanordnung

Mit einem weiteren Beispiel der Roboterprogrammierung, den mobilen Robo-
tern, k�onnen folgende n�utzliche Eigenschaften der Constraints charakterisiert
werden. Dazu werden funkgesteuerte mobile Roboter in einer Versuchsanord-
nung betrachtet, bei denen die Richtung und die Geschwindigkeit �uber eine
entsprechende Vorrichtung eingestellt werden k�onnen (Abbildung 3.40).
Die Constraints, die die Fahrt eines solchen mobilen Roboters vollst�andig be-
schreiben, lassen sich untergliedern in:

1. Constraints, die zu Beginn des Programms initialisiert werden.

1. Fahr-Constraint

2. Geschwindigkeits-Constraint

3. Richtungs-Constraint

4. Endzone-Contraint
Der mobile Roboter wird so gesteuert, da� er in Richtung Endzone
f�ahrt.

2. Constraints, die zur Laufzeit generiert werden.

80 KAPITEL 3. SEMINARVORTR�AGE

1. Wand und Hindernis-Constraint
Der mobile Roboter be�ndet sich in einem abgeschlossenen Raum.
Kommt es nun zu einer Ber�uhrung zwischen dem Roboter und einer
Kante, so wird ein Constraint generiert. Dieser Constraint veranla�t
eine virtuelle Kante w, die mit Abstand dw entlang der realen Kan-
te in Richtung des freien Raumes eingef�ugt wird. Dadurch gelangt
der Roboter in Zukunft nicht mehr an die reale Kante. Dem Roboter
wurde angelernt, wo eine Kante ist.
Diese Lerneigenschaft mit Hilfe von Constraints macht sich die
K�unstliche Intelligenz zu nutze, da nur wenige Programmiersprachen
diese Eigenschaft des Lernens komfortabel unterst�utzen.

Fazit

In den Beispielen wurde gezeigt, da� Generierung von Constraints zur Laufzeit
und Erg�anzungen, wie im Beispiel Gehmaschine durch das Constraint 3, einfach
realisiert und ohne Probleme in das System integriert werden k�onnen. Mit ande-
ren Programmiermethoden w�are dies bedingt m�oglich, jedoch wenn �uberhaupt,
nur sehr umst�andlich.
Durch die Kombination dieser vielf�altigen Eigenschaften der Constraints ist es
durchaus m�oglich, komplizierte Problemstellungen in der Regel-und Steuerungs-
technik sehr einfach und vorallem sehr schnell zu programmieren.

2. Berechnungstechnik

Ein weiteres Aufgabengebiet der Constraint Programmierung ist das L�osen von
Berechnungsaufgaben. Auch hier w�unscht man sich eine einfache Beschreibung
der Aufgabe und eine schnelle L�osung.

Viele Berechnungsconstraints k�onnen wie elektrische Schaltkreise (Abbil-
dung 3.41) dargestellt werden. Bildhaft kann man sich einen Constraint als
Blackbox vorstellen. Im Gegensatz zu einem elektrischen Schaltkreis gibt es
jedoch keine vorde�nierte Berechnungsrichtung. Dadurch kann ein beliebig
ausgew�ahlter Anschlu� eines Constraints aus den �ubrigen Anschl�ussen berech-
net werden. Beispielsweise besitzt der Addierer add-1 aus Abbildung 3.41 drei
Anschl�usse: A,B und C. Wenn nun zwei der drei Anschl�usse Werte besitzen,
wobei Anschlu� B durch die Konstante immer einen Wert besitzt, wird der
Wert f�ur den dritten Anschlu� so berechnet, da� die Summe der Werte der
Anschl�usse A und B gleich dem Wert von Anschlu� C ist, d.h. wenn der Wert
von Anschlu� C gegeben und A gesucht ist, wird subtrahiert: A = C �B.

Die Anschl�usse von Constraintinstanzen k�onnen miteinander verbunden werden,
so da� Constraintnetze entstehen (Abbildung 3.41). Alle miteinander verbun-
denen Anschl�usse besitzen den gleichen Wert. Ist das nicht der Fall, so be�ndet
sich das Netz in einem Kon
iktzustand und es mu� eine Au
�osung des Kon
ik-
tes erfolgen.
Wie solch eine allgemeine Au
�osung im einzelnen funktioniert wird im n�achsten
Abschnitt erkl�art.

3.5. CONSTRAINT PROGRAMMIERUNG 81

9532

*+ *C
B

A A

B
C

A

B

CELSIUSFAHRENHEIT

mult-2 mult-1add-1

Abb. 3.41: Temperaturkonverter

3.5.3 Au
�osungsalgorithmus

In den vergangenen Abschnitten wurden die Eigenschaften der Constraints
vorgestellt, was Constraints sind und wie bzw. wo sie eingesetzt werden k�onnen.
Dabei wurde auf die Beschreibung der Problemstellung mit Constraints
eingegangen und nicht wie das System eine bzw. mehrere L�osungen berechnet.
Das WIE wird nun in diesem Abschnitt n�aher beschrieben.

Aus Abschnitt 3.5.2.1 ist bekannt, da� nach der Auswahl der Constraints
ein Au
�osungsalgorithmus gestartet wird, der die L�osung oder ein Verhalten
berechnet. Der hier vorgestellte Au
�osungsalgorithmus bezieht sich nur auf die
zweite vorgestellte Anwendung: Berechnungstechnik.
Der nun betrachtete Au
�osungsalgorithmus (vgl. [19]) stellt ein inkrementelles
Verfahren dar, das durch schrittweises Einsetzen der Constraints gel�ost wird.

3.5.3.1 Vorbemerkungen

Im n�achsten Abschnitt werden zur Beschreibung des Au
�osungsalgorithmus Be-
gri�e verwendet, die im folgenden de�niert werden.

� Constraint Hierarchie

Eine Constraint Hierarchie H ist ein 5-Tupel (V ars; Cons;D; level; d),
wobei gilt:

1. V ars = fv1; v2; : : : ; vng ist eine Menge aus Variablen

2. Cons = fc1; c2; : : : ; cmg ist eine Menge aus Constraints

3. D ist ein endlicher De�nitionsbereich aller Variablen

4. level ist eine Funktion, die die Priorit�at der einzelnen Constraints
ausgibt
level : Cons! N0 ; ci 7! n,
wobei level(ci) = n auch als ci@n geschrieben wird

82 KAPITEL 3. SEMINARVORTR�AGE

5. d ist eine Funktion, die jeder Variable einen De�nitionsbereich zu-
ordnet
d : V ars! D; vi 7! Di � D

� Constraint Speicher

Ein Constraint Speicher S ist eine Menge S � Cons, die bez�uglich der
Priorit�at unterteilt werden kann.

S = S[i] _ S[<i] _ S[>i] wobei i eine Priorit�at ist

� Kon�guration einer Hierarchie

Eine Kon�guration �, der Hierarchie H , besteht aus drei verschiedenen
Constraint Speichern hAS �RS �USi, wobei AS der Active Speicher, RS
der Relaxed Speicher und US der Unexplored Speicher ist.
Der Speicher AS beinhaltet Constraints, die aufgrund des eingeschr�ankten
De�nitionsbereichs erf�ullt sind. Der Speicher RS enth�alt aus dem Speicher
AS stammende Constraints, die zur Zeit der Aktivierung einen Kon
ikt
hervorgerufen haben. Der Speicher US ist ein Zwischenspeicher. Er enth�alt
nur die Constraints, die zum Ausf�uhren der Regeln notwendig sind. Anson-
sten f�ullt der Speicher US seinen Inhalt mit immer nur einem Constraint
aus der Menge Cons auf.

� Kon
ikt

Man spricht von einem Kon
ikt, wenn der De�nitionsbereich einer Varia-
blen die leere Menge ist. Dazu werden nur die Variablen der Constraints
im Speicher AS betrachtet.

� Besser Pr�adikat

Gegeben seien zwei Kon�guration � und �0. � ist besser als �0 (Schreib-
weise � � �0), gdw

1. � = �0 oder

2. (9k > 0;8i < k);]RS[i] =]RS0[i] und]RS[k] <]RS0[k]

3.5.3.2 Beschreibung des Algorithmus

Im folgenden wird nun der Algorithmus mit seinen Regeln und Abbruchkriterien
vorgestellt und n�aher erl�autert.

3.5. CONSTRAINT PROGRAMMIERUNG 83

� Final Kon�guration

Eine Kon�guration � ist eine Final Kon�guration (SchreibweiseFC(�))
genau dann, wenn

1. 8c 2 AS: c ist erf�ullt
2. 8c 2 Cons : c 2 AS oder c 2 RS

� Promising Kon�guration

Eine Kon�guration � ist eine Promising Kon�guration
(SchreibweisePC(�)) genau dann, wenn

1. 8c 2 AS: c erf�ullt ist
2. :FC(�0) � PC(�) (Es gibt keine bessere Final Kon�guration)

� Dead End

Ein Dead End bedeutet, da� weder die Forward Regel noch die Backward
Regel angewendet werden kann. F�ur die Forward Regel bedeutet dies, es
liegt bereits eine Final Kon�guration vor, die besser ist als die aktuelle
Kon�guration. W�ahrend mit Hilfe der Backward Regel keine schlechtere
Kon�guration succ(�conf) bestimmt werden kann, da im Aktiv Speicher
nur noch Constraints mit der Priorit�at 0 enthalten sind, die nicht deakti-
viert werden k�onnen.

Algorithmus

begin

Durchlauf = 1;
repeat

if (Speicher US = leer) then
f�uge ein Constraint aus der Cons Menge in den
Speicher US;

if (aktuelle Kon�guration = Promising Kon�guration) then
f�uhre die Forward Regel aus;
schr�anke die De�nitionsbereiche der Variablen entsprechend
der ci 2 AS ein;

if (mindestens ein De�nitionsbereich einer Variablen = ;) then
f�uhre die Backward Regel aus;

Durchlauf = Durchlauf + 1;
until (Kon�guration = Final) oder (Kon�guration = Dead End)

end

� Forward Regel

Die Forward Regel entfernt aus dem Speicher US ein Constraint und f�ugt
es in den Aktiv Speicher ein (Aktivierung eines Constraints), sofern die

84 KAPITEL 3. SEMINARVORTR�AGE

aktuelle Kon�guration eine Promising Kon�guration ist. Sei also � die
aktuelle Kon�guration und c das aktivierte Constraint.

Forward Regel

PC(�) 9c 2 US
� �! hAS [fcg �RS � US n fcgi

� Backward Regel

Im Falle eines Kon
iktes sucht die Regel nach einer alternativen Promising
Kon�guration. Dazu werden Constraints mit Priorit�at gr�o�er 0 aus dem
Speicher AS in den Speicher RS verschoben (Deaktivierung eines Cons-
traints) und in einem fr�uheren Duchlauf dorthin verschobene Constraints,
k�onnen wieder in den Speicher AS reaktiviert werden. Auch hier wird
der De�nitionsbereich entsprechend den nun vorhandenen Constraints im
Speicher AS angepa�t. Im folgenden sei �, die aktuelle Kon�guration,
gegeben, aus der die Kon
iktkon�guration �conf abgeleitet wird. Daraus
ergibt sich dann eine schlechtere Kon�guration succ(�conf).

Vorgehensweise der Backward Regel

1. Zun�achst legt die Backward Regel einen Kon
iktspeicher CS � AS

an, in dem das aktivierte Constraint (das zuletzt in AS eingef�ugte)
zusammen mit den Constraints des Aktiv Speichers, die den De�ni-
tionsbereich mindestens einer Variablen des aktivierten Constraints
beein
ussen, enthalten sind.

2. Aus diesem Kon
iktspeicher wird eine Kon
iktkon�guration �conf

erstellt, die aus den drei Speichern ActiveKonflikt, RelaxedKonflikt

und UnexploredKonflikt besteht. Diese drei Speicher werden entspre-
chend der aktuellen Kon�guration � mit Constraints aus der Menge
Consconf belegt, d.h. Constraints, die in Kon�guration � im Spei-
cher AS waren, bleiben auch in der Kon
ikt Kon�guration �conf im
Speicher AS. Die Menge Consconf besteht aus der Vereinigung aller
fr�uheren Kon
iktspeichern inklusiv der aktuellen.

3. Die Kon�guration �conf dient zur Festlegung einer schlechteren Kon-
�guration succ(�conf), aus der die Constraints zur De- und Reakti-
vierung bestimmt werden. Dabei k�onnen mehrere M�oglichkeiten ent-
stehen. Laut dem Besser Pr�adikat gen�ugt es nun, ein oder mehrere
Constraint aus dem Speicher AS in den Speicher RS zu verschieben
bzw. umgekehrt. Den Inhalt des Speichers AS bezeichnet man im
folgenden als Activate und den Speicher RS als Relax.

4. Wird ein Constraint deaktiviert, werden alle Nachfolge-Constraints
gesucht. Nachfolge-Constraints sind Constraints, die zeitlich sp�ater
in den Speicher AS eingef�ugt worden sind, als das deaktivierte Cons-
traint. Weiterhin gilt, da� nur nach solchen Nachfolge-Constraints
gesucht wird, die dieselben Variablen benutzen, wie das deaktivierte

3.5. CONSTRAINT PROGRAMMIERUNG 85

Constraint. Dies hat zur Folge, da� der De�nitionsbereich der Varia-
blen f�ur die Nachfolge-Constraints im Speicher AS abge�andert wer-
den mu�. Dazu werden die gefundenen Nachfolge-Constraints in der
Menge Reset abgelegt, wobei gilt Reset � AS.

Nachdem diese einzelnen Mengen bestimmt sind, kann die Nachfolge-
kon�guration �0 entsprechend den Berechnungsformeln berechnet werden.

Backward Regel

AS ` x ? 9�conf � � 9Reset � AS
� �! �0

wobei f�ur �0 = hAS0 �RS0 � US0i gilt:

1. hActivate �Relaxi succ(�conf ;�) n �conf

2. AS0 AS n (Relax[Reset)

3. RS0 (RS nActivate) [Relax

4. US0 (US n Relax)[Reset[Activate

und AS ` x ?:, 9ci 2 AS : so da� ci nicht erf�ullt ist

3.5.3.3 Beispiel

Die abgebildete Au
�osungstabelle (Tabelle 3.1) zeigt, wie der Algorithmus zur
Bestimmung einer m�oglichen L�osung vorgeht. Dabei werden die verwendeten
Regeln und die daraus entstehenden Kon�gurationen mit entsprechendem De�-
nitionsbereich angegeben. Zum Bestimmen einer alternativen Kon�guration bei
Auftritt eines Kon
iktes, werden aus der Tabelle 3.2 die notwendigen Mengen
verwendet.
F�ur das Beispiel sei folgende Hierarchie H gegeben:

H =
�
fx; yg; fc1; c2; c3; c4; c5; c6g;Z; level; d

�

mit den De�nitionsbereichen

d(x) = [1 : : : 10] d(y) = [1 : : : 10]

und den Priorit�aten der Constraints

level(ci) =

8<
:

0 f �ur i = 5; 6
1 f �ur i = 1; 2
2 f �ur i = 3; 4

86 KAPITEL 3. SEMINARVORTR�AGE

Die verwendeten Constraints besitzen folgende De�nition:

c1 = x+ y = 15

c2 = 3 � x� y < 15

c3 = x > y + 1

c4 = x < 7

c5 = x < 8

c6 = y < 5

Die dargestellten Beispieldurchl�aufe dienen zur Erkl�arung der Aufl�osungstabel-
le. Dazu werden zwei Teilberechnungen aus der gesamten Au
�osungstabelle (Ta-
belle 3.1) genauer beschrieben.

1. Beispieldurchlauf
Der Au
�osungsalgorithmus startet mit dem Constraint c1 im Speicher US
(Durchlauf 0). Aufgrund der vorliegenden Promising Kon�guration, wird
die Forward Regel ausgef�uhrt. Dabei gelangt c1 in den Speicher AS und
der De�nitionsbereich der beiden Variablen wird so eingeschr�ankt, da�
das Constraint erf�ullt ist (Durchlauf 1). Aus der Menge Cons wird ein
n�achstes Constraint c2 in den Speicher US eingef�ugt. Da auch hier eine
Promising Kon�guration vorliegt, wird die Forward Regel angewendet und
das Constraint wandert in den Speicher AS (Durchlauf 2). Dabei entsteht
ein Kon
ikt, da es keinen geeigneten De�nitionsbereich f�ur die vorhande-
nen Variablen gibt, so da� die Constraints c1 und c2 erf�ullt sind. Deshalb
mu� die Backward Regel angewendet werden. Hierzu werden entsprechen-
de Speicher und Kon�gurationen laut der Vorgehensweise der Backward
Regel ermittelt. Aufgrund der Regel 2: AS0 AS n (Relax [Reset) und
der Regel 3: RS0 (RS n Activate) [Relax , wird das Constraint c2
aus dem Speicher AS in den Speicher RS verschoben und der vorherige
De�nitionsbereich wieder hergestellt (Durchgang 3).
Die weiteren Durchl�aufe werden analog behandelt.

2. Beispieldurchlauf
Eine Besonderheit des Au
�osungsalgorithmus entsteht ab Durchlauf 6. Zur
Situation: c1,c3 2 AS, c2,c4 2 RS und c5 2 US.
Durch die Forward Regel gelangt das Constraint c5 in den Speicher AS
und es entsteht ein Kon
ikt. Die Backward Regel mu� angesetzt werden
(Durchlauf 7). Da das Constraint c5 die Priorit�at level(c5) = 0 besitzt,
kann c5 nicht in den Speicher RS verschoben werden. Deshalb mu� ein
anderes Constraint aus dem Speicher AS gefunden werden, das in Spei-
cher RS verschoben werden kann. In diesem Beispiel ist es das Constraint
c3. Da das Constraint c5 zwar verantwortlich f�ur den Kon
ikt war, aber
nicht in den Speicher RS verschoben werden kann, wird c5 nochmals in
den Speicher US hinzugef�ugt, entsprechend der Regel 4 der Backwardre-
gel (Durchlauf 8). Dadurch ergibt sich folgende Situation: c1 2 AS , c2,
c3, c4 2 RS und c5 2 US. Die De�nitionsbereiche werden entsprechend
dem �ubrig gebliebenen Constraint im Speicher AS eingeschr�ankt.

3.5. CONSTRAINT PROGRAMMIERUNG 87

Eine �ahnlich Situation erfolgt ab Durchlauf 9 - 11. Allerdings werden nicht
nur die Constraints mit der Priorit�at level(ci) = 0 in den Speicher US
verschoben, sondern auch die Constraints h�oherer Ordnung. Grund: Die
Bestimmung einer schlechteren Kon�guration ist nur vom Speicher RS
abh�angig. Dadurch k�onnen auch Constraints level(ci) > 0 wieder reakti-
viert werden, falls das Besser Predikat erf�ullt ist.

Durchlauf Kon�guration d(x) d(y) Regel Kon�kt
� = hAS �RS �USi

0 fg � fg � fc1g 1 : : : 10 1 : : : 10 fw
1 fc1g � fg � fg 5 : : : 10 5 : : : 10

fc1g � fg � fc2g 5 : : : 10 5 : : : 10 fw
2 fc1; c2g � fg � fg ; ; bw

p

3 fc1g � fc2g � fg 5 : : : 10 5 : : : 10
fc1g � fc2g � fc3g 5 : : : 10 5 : : : 10 fw

4 fc1; c3g � fc2g � fg 9,10 5,6
fc1; c3g � fc2g � fc4g 9,10 5,6 fw

5 fc1; c3; c4g � fc2g � fg ; ; bw
p

6 fc1; c3g � fc2; c4g � fg 9,10 5,6
fc1; c3g � fc2; c4g � fc5g 9,10 5,6 fw

7 fc1; c3; c5g � fc2; c4g � fg ; ; bw
p

8 fc1g � fc2; c3; c4g � fc5g 5 : : : 10 5 : : : 10 fw
9 fc1; c5g � fc2; c3; c4g � fg 5 : : : 7 5 : : : 10

fc1; c5g � fc2; c3; c4g � fc6g 5 : : : 7 5 : : : 10 fw
10 fc1; c5; c6g � fc2; c3; c4g � fg ; ; bw

p

11 fg � fc1; c2g � fc3; c4; c5; c6g 1 : : : 10 1 : : : 10 fw
12 fc5g � fc1; c2g � fc3; c4; c6g 1 : : : 7 1 : : : 10 fw
13 fc5; c6g � fc1; c2g � fc3; c4g 1 : : : 7 1 : : : 8 fw
14 fc5; c6; c3; g � fc1; c2g � fc4g 3 : : : 7 1 : : : 8 fw
15 fc5; c6; c3; c4g � fc1; c2g � fg 3 : : : 6 1 : : : 8 fw

Tabelle 3.1: Au
�osungstabelle

Zur L�osung der gestellten Aufgabe, k�onnen die Constraints c5; c6; c3 und c4 ohne
gegenseitige Beein
ussung verwendet werden. Das Ergebnis, das mit Hilfe des
Au
�osungsalgorithmus gel�ost wurde, besitzt folgende Kon�guration:

� = hfc5; c6; c3; c4g � fc1; c2g � fgi

Alle Constraints im Speicher AS sind erf�ullt, da es eine g�ultige Wertzuweisung
der Variablen gibt. Die Variablen x und y besitzen dabei folgende eingeschr�ankte
De�nitionsbereiche:

d(x) = [3 : : : 6] d(y) = [1 : : : 8]:

Die Constraints c1; c2 be�nden sich im SpeicherRS, da es f�ur diese keine g�ultigen
De�nitionsbereiche der Variablen im Speicher AS gibt.

88 KAPITEL 3. SEMINARVORTR�AGE

Durchlauf Kon
ikt- Kon
ikt- schlechtere Reset Menge
speicher kon�guration Kon�guration
CSj � ASj �conf � � succ(�conf) Reset � AS

2 fc1; c2g �CS2 = fg � fc2g � fg fg
fc1; c2g � fg � fg

5 fc1; c3; c4g �CS2\CS5 = fg � fc2; c4g � fg fg
fc1; c3; c4g � fc2g � fg

7 fc1; c3g �CS2\CS5\CS7 = fg � fc2; c3; c4g � fg fc5g
fc1; c3g � fc2; c4g � fg

10 fc1g �CS2\CS5\CS7\CS10 = f; c3; c4g � fc1; c2g � fg fc5; c6g
fc1g � fc2; c3; c4g � fg

Tabelle 3.2: Mengen zur Bestimmung einer alternativ Kon�guration

3.5.4 Ausblick

3.5.4.1 Vor- und Nachteile

Die Constraint Programmierung zeichnet sich gegen�uber anderen Programmier-
sprachen vor allem durch die folgenden Vorteile aus:

� Die Aufgabenbeschreibung kann intuitiv angegeben werden.

� Die L�osungsbeschreibung ist transparent.

� Das System kann durch einfaches Hinzuf�ugen von Constraints erweitert
werden.

� Constraints k�onnen zur Laufzeit generiert werden.

� Die Priorit�at eines Constraints kann durch Angabe von Werten festgelegt
werden.

� Die L�osungsberechnung �ubernimmt ein Au
�osungsalgorithmus.

Die Constraint Programmierung hat nat�urlich auch Nachteile:

� Die Constraint Programmierung ist nicht f�ur schnelle Entscheidungen ge-
eignet.

� Der Au
�osungsalgorithmus kann sehr kompliziert und aufwendig zu pro-
grammieren sein.

Da das Bestimmen eines geeigneten Au
�osungsalgorithmus eine Schwierigkeit
der Constraint Programmierung ist, wird die Constraint Programmierung nur
in bestimmten F�allen eingesetzt. Zum einen wenn der Au
�osungsalgorithmus
einfach bestimmbar ist und zum anderen wenn es sich lohnt einen komplexen
Au
�osungsalgorithmus zu programmieren, weil viele �ahnliche Anwendungen da-
mit laufen sollen. Aber dennoch wird in Zukunft eine Weiterentwicklung dieser
Programmiermethode zu erwarten sein.

3.5. CONSTRAINT PROGRAMMIERUNG 89

3.5.4.2 Fahrgemeinschaftssystem

Sicherlich hat jede Programmiermethode ihre Vor- und Nachteile. Der entschei-
dende Vorteil der Constraint Programmierung ist jedoch die Einfachheit, mit der
eine Aufgabe gel�ost werden kann. Man gibt nicht an, wie eine Aufgabe gel�ost
werden soll, sondern welche Bedingungen nach der Bearbeitung der Aufgabe
gelten sollen. Dadurch lassen sich in vielen Anwendungsgebieten, komplizierte
und komplexe Aufgaben l�osen.
Ein m�ogliches komplexes Anwendungsgebiet ist das Berechnen von Fahrgemein-
schaften. Eine Fahrgemeinschaft ist eine Gruppe von Personen, die mit einem
Fahrzeug einen gemeinsamen Weg zur�ucklegen will. Zum Bilden einer Fahrge-
meinschaft m�ussen verschiedene Bedingungen ber�ucksichtigt werden:

1. Der Umweg einer FGM ist der nach der Wegstrecke berechnete zus�atzli-
che Weg.

2. Die Personenzahl einer FGM gibt an, wieviele Personen in der Fahrge-
meinschaft mitfahren.

3. Die Eigenschaften einer Person geben Auskunft �uber Geschlecht, Rau-
cher oder Nichtraucher, Musikgeschmack usw.

Diese Bedingungen k�onnen mit Constraints einfach beschrieben werden.

Constraintfgm1= Umweg � einer Schranke k

Constraintfgm2= Personenanzahl im Auto � einer Schranke m

Constraintfgm3= Eigenschaften(Personi) = Eigenschaft(Personj)

Der Au
�osungsalgorithmus berechnet dann aufgrund der oben de�nierten Cons-
traints eine m�ogliche Fahrgemeinschafteneinteilung.

Kapitel 4

Anforderungsanalyse

Die Anforderungsanalyse spiegelt die Eigenschaften einer aus der Sicht des Kun-
den optimalen Software zur L�osung seines Problems wider. W�ahrend der Anfor-
derungsanalyse wird versucht, alle Anforderungen und W�unsche, die der Kunde
an die Software hat, zu erfassen. Das Dokument enth�alt nur Anforderungen, die
f�ur den Kunden wichtig sind. Deshalb ist die Menge dieser Anforderungen weder
vollst�andig, noch sind Aussagen �uber deren Realisierbarkeit getro�en worden.
Es wird sich erst in der Spezi�kation zeigen, welche der gew�unschten Anforde-
rungen in das Endprodukt eingehen.

Szenarien dienen dazu, die Anforderungen an das System darzustellen und zu
vervollst�andigen. Sie beschreiben Situationen, in denen der zuk�unftige Benutzer
mit dem System umgeht. In den folgenden Abschnitten wird jeweils ein solches
Szenario erl�autert.

4.1 Neuer Fahrgemeinschafts-Teilnehmer

Eine Person kommt in eine FGM-Zentrale und m�ochte als neues Mitglied in
einer Fahrgemeinschaft aufgenommen werden. Dazu m�ussen zun�achst Persona-
lien, pers�onliche Eigenschaften (z.B. Auto, F�uhrerschein, Raucher, usw.), aber
auch Abneigungseigenschaften (Musikgeschmack, m�annlich/weiblich,
Raucher/Nichtraucher, usw.) �uber eine Eingabemaske erfa�t werden. Zus�atzli-
che Angaben, wie z.B. Person A sollte bzw. sollte nicht in der Fahrgemeinschaft
sein, k�onnen ebenfalls erfa�t werden.

Nachdem alle notwendigen Angaben eingegeben sind, kann eine entsprechende
FGM gesucht werden. Hierzu kann folgenderma�en vorgegangen werden:

1. Manuell

Hier kann eine Person von Hand in eine bestehende oder neue Fahrgemein-
schaft eingef�ugt werden. Dazu wird eine Liste aller Fahrgemeinschaften
ausgegeben, die auch durch einen Filter eingeschr�ankt werden kann. Da-
nach kann die Person einer FGM zugeordnet werden, indem sie �uber den

90

4.2. SYSTEM-AUFBAU 91

Index angew�ahlt wird. Anschlie�end kann mit Hilfe einer Bewertungsfunk-
tion �uberpr�uft werden, wie gut oder wie schlecht diese FGM ist. Vor�uber-
gehend kann erstmal ein Platz f�ur diese Person reserviert werden, damit
sich die betro�enen Teilnehmer dieser FGM informieren und dazu �au�ern
k�onnen. Nach �Uberpr�ufung mu� der Benutzer entscheiden, ob diese FGM
in die Partition mitaufgenommen wird oder nicht.

2. �Uber ein 'Suchsystem'.

Wird der Men�upunkt 'Suchsystem' aufgerufen, bekommt man f�ur die neue
Person eine Liste von Fahrgemeinschaften angezeigt, die f�ur diese Person
in Frage kommen. Dabei werden die Fahrgemeinschaften herausgesucht,
die gut zu der Person passen, abh�angig von der Bewertungsfunktion (z.B.

�ahnliche Start- und Zielorte). Danach kann die Person einer FGM zu-
geordnet werden, indem sie �uber den Index angew�ahlt wird. Auch hier
entscheidet der Benutzer, ob die gew�ahlte FGM in die Partition mitauf-
genommen wird oder nicht.

4.2 System-Aufbau

Normalerweise werden Fahrgemeinschaften in einer FGM-Zentrale von Hand
(mit F�ahnchen und Landkarten) ausget�uftelt. Nat�urlich will man auch hier eine
Software-L�osung, die diese Arbeit abnimmt. Die Basis eines solchen Systems
bilden die Personen- und Verkehrsdaten.

Personendaten k�onnen zum einen �uber ein spezi�ziertes Datenformat (inkl. Ei-
genschaften) eingelesen bzw. �uber Tastatur und eine Eingabemaske eingegeben
werden.

Verkehrsdaten k�onnen auf zwei Arten eingelesen werden:

1. GDF-Daten k�onnen eingelesen werden.

2. Mit Hilfe eines Graph-Editors (Graphlet, Leda, ...) k�onnen Verkehrsdaten
manuell erstellt werden.

Das System besitzt eine weitere M�oglichkeit, Daten einzugeben und zwar Parti-
tionen von Personen, d.h. es k�onnen Fahrgemeinschaften mit allen Eigenschaften
(Personen, wer ist Fahrer, Route usw.) eingegeben werden.

Der Benutzer kann die Daten mit Hilfe einer Visualisierung auf dem Bildschirm
bzw. einem Ausdruck �uberpr�ufen. Dabei werden die Personendaten in einer Ta-
belle und die Verkehrsdaten mit Hilfe eines Editors, der automatisch aufgerufen
wird, angezeigt.

4.3 �Anderung eines Fahrgemeinschafts-

Teilnehmers

Nat�urlich kommt es auch bei FGM-Teilnehmern vor, da� sie sich pers�onlich
bzw. �ortlich ver�andern, d.h. im Klartext f�ur das System: Die Eigenschaften

92 KAPITEL 4. ANFORDERUNGSANALYSE

eines FGM-Teilnehmers m�ussen ge�andert werden.

Nach Durchf�uhrung der �Anderungen meldet das System, wie sich die Qualit�at
der betro�enen Fahrgemeinschaft bez�uglich der Bewertungsfunktion ge�andert
hat.

4.4 �Anderung einer Fahrgemeinschaft

Die Adresse eines FGM-Teilnehmers hat sich ge�andert. Um Kon
ikte auszu-
schlie�en, wird die FGM aufgel�ost. Da alle Teilnehmer der bisherigen FGM
auch in Zukunft noch an einer FGM teilnehmen wollen, m�ussen neue FGMs ge-
funden werden. Dazu wird festgestellt, welche Teilnehmer �uberhaupt diese FGM
gebildet haben. Nun wird f�ur jeden Teilnehmer eine Liste von Fahrgemeinschaf-
ten angezeigt, die bez�uglich der Bewertungsfunktion gut zu ihm passen w�urden.
Dabei kann jeder Teilnehmer einer neuen FGM zugeordnet werden, indem er
�uber den Index angew�ahlt wird. Vor�ubergehend kann erstmal ein Platz f�ur die-
sen Teilnehmer reserviert werden, damit sich die betro�enen Teilnehmer dieser
neuen FGM informieren und dazu �au�ern k�onnen. Die Liste der betro�enen
Teilnehmer wird ausgegeben.

Damit der Benutzer aber zun�achst ein Gef�uhl bekommt, wie gut diese Fahrge-
meinschaft letztendlich ist, kann er eine Bewertungsfunktion darauf anwenden.
Diese berechnet einen Wert und gibt ihn auf dem Bildschirm aus. Danach mu�
der Benutzer entscheiden, ob diese Fahrgemeinschaft in die Partition mitaufge-
nommen werden soll oder nicht.

Weiterhin kann der Benutzer Partitionen mit und ohne �Anderung miteinan-
der vergleichen. Dazu m�ussen die einzelnen Partitionen getrennt voneinander
mit Hilfe einer Bewertungsfunktion bewertet werden. Das Ergebnis wird wie
gewohnt ausgegeben. Hier mu� der Benutzer entscheiden, welche Partition die
aktuelle werden soll.

4.5 Eine neue Partition

Szenario

Da sich einiges ge�andert hat, z.B. viele neue Daten in das System integriert
wurden, m�ochte der Benutzer eine v�ollig neue Partition erstellen.

Vorgehen

Zuerst sichert er die aktuelle Partition mit Hilfe eines Menupunkts \aktuelle Par-
tition sichern\ auf einen Datentr�ager. Diese Partition kann sp�ater mit \Partition
laden\ wiederhergestellt werden, ganz allgemein k�onnen mehrere Partitionen auf
dem Datentr�ager verwaltet werden. Dann w�ahlt er einen Menupunkt

"
Partition

l�oschen\. Nach einer Sicherheitsabfrage werden alle aktuellen Fahrgemeinschaf-
ten zerschlagen, ausgenommen diejenigen, die auf jeden Fall erhalten bleiben

4.6. DIE OPTIMALE L�OSUNG 93

sollen (wurden vom Benutzer vorher markiert). Das System be�ndet sich in ei-
nem Zustand, als w�aren die Personendaten gerade erst eingelesen worden. Nun
w�ahlt der Benutzer einen Menupunkt

"
Partition erstellen\. Das System sucht

nun mit heuristischen Algorithmen nach einer in bezug auf die eingestellte Be-
wertungsfunktion m�oglichst guten L�osung des Problems.

4.6 Die optimale L�osung

Szenario:

Das Fahrgemeinschaftensystem (FGM-System) hat einen kleinen Datenstamm
an Verkehrs- und Kundendaten eingelesen. Der Benutzer m�ochte nun eine opti-
male Partition auf diesem Datenstamm berechnen.

Vorgehen:

Das FGM-System bietet dem Benutzer den Men�upunkt
"
optimale L�osung be-

rechnen\. Er w�ahlt diese aus und zus�atzlich noch den Men�upunkt
"
verbose mode

on\. Das System beginnt mit der Berechnung der optimalen Partition (bezogen
auf die aktuelle Bewertungsfunktion) und gibt w�ahrenddessen Ausgaben auf
den Bildschirm und in ein Log�le aus, die Aufschlu� �uber den Fortgang der
Berechnung geben. Da das Problem sicherlich NP-hart ist, und der Benutzer
eine Mittagspause machen m�ochte, w�ahlt er den Men�upunkt

"
Berechnung un-

terbrechen\ aus. FGM unterbricht die Berechnung und merkt sich den aktuellen
Stand.

Nach der Mittagspause m�ochte der Benutzer die Berechnung fortsetzen. Er w�ahlt
den Men�upunkt

"
mit letzter Berechnung fortfahren\, FGM rechnet weiter und

gibt nach einer gewissen Zeit die optimale Partition auf dem Bildschirm aus.

4.7 Inkrementelle Verbesserung von Partitionen

Es soll auch die Verbesserung von schon vorhandenen Partitionen m�oglich sein.
Die Startpartition wird aus einer Datei eingelesen und durch Umsetzen von
Personen inkrementell verbessert. Dadurch ergibt sich eine Partitionenfolge, die
bei Erreichen einer bestimmten Qualit�at abgebrochen wird.

4.8 Festlegung der Bewertungsfunktion

Szenario:

Der Benutzer m�ochte die Bewertungsfunktion angeben.

94 KAPITEL 4. ANFORDERUNGSANALYSE

Vorgehen:

FGM bietet ihm die M�oglichkeit, in einer dokumentierten Notation Gewichte
f�ur die unten aufgef�uhrten Bereiche zu verteilen. Die Gewichte sind Parameter
einer fest vorgegebenen Bewertungsfunktion.

� Wegstrecke/Umwege: �ahnliche Start-/Zielorte der Personen.

� Arbeitszeiten: �ahnliche Arbeitszeiten der Personen.

� Eigenschaftsabneigungen: gew�unschte Eigenschaften der Mitfahrer, die
Menge der Eigenschaftsabneigungen ist erweiterbar.

� Explizite Zuneigungen: jemand will unbedingt mit einer bestimmten Per-
son zusammenfahren.

� Explizite Abneigungen: analog

4.9 K�urzeste Wegestrecke

Szenario:

Der Benutzer hat seinen Arbeitstag beendet und m�ochte noch auf eine Party.
Er m�ochte nun das FGM-System zur Berechnung des k�urzesten Wegs einsetzen.

Vorgehen:

Er w�ahlt den Men�upunkt
"
K�urzeste Wegesuche\ aus. Dann gibt er als Startort

seinen Arbeitsplatz und als Zielort die Party als postalische Adresse an. Das
FGM-System berechnet ihm den k�urzesten Weg, zeigt seine L�ange und eine
Wegbeschreibung als Liste auf dem Bildschirm an. Auf Wunsch zeigt es den Weg
mit Hilfe eines externen Graphen-Viewer an und gibt ihn in ein Postscript�le
aus.

4.10 Neuer Algorithmus

Szenario:

Friedhelm hat einen neuen Algorithmus erfunden, um einen k�urzesten Weg zu
�nden. Diesen m�ochte er nun im FGM-System verwenden.

Vorgehen:

Er implementiert den Algorithmus in der imperativen, objektorientierten Spra-
che, in der auch der entsprechende Algorithmus des FGM-Systems geschrieben

4.11. HILFESYSTEM 95

ist. Dann ersetzt er das entsprechende Modul mit seinem Algorithmus. Er mu�
nur an wenigen, dokumentierten Stellen etwas �andern. Danach startet er das
FGM-System, das nun bei der Bestimmung k�urzester Wege den neuen Algorith-
mus ben�utzt. Im Lieferumfang be�nden sich Tools, mit denen er die Laufzeit
verschiedener Module berechnen kann. Damit kann er nun die E�zienz seines
neuen Algorithmus �uberpr�ufen.

4.11 Hilfesystem

Szenario:

Ein Benutzer, der bisher noch nie mit dem FGM-System gearbeitet hat, setzt
sich an ein Terminal, auf dem es l�auft.

Vorgehen:

Zu jedem Zeitpunkt der Benutzung des Fahrgeminschaftensystems gibt es
unter den Men�upunkten einen, der \Hilfe" hei�t. Nach der Auswahl dieses
Men�upunkts wird ihm ein Text angezeigt, aus dem er entnehmen kann, wo er
sich im System be�ndet, was er hier machen kann, wo er von hier aus hinkommt
und von wo aus er hier hin gekommen sein kann.

4.12 Funktionale Anforderungen

4.12.1 Personen

1. Entstehung

� Eingabe durch den Benutzer.

� Automatische Generierung einer bestimmten Anzahl von Perso-
nen mit zuf�alligen Eigenschaften. Dabei k�onnen verschiedene Wahr-
scheinlichkeitsverteilungen f�ur die Eigenschaften angegeben werden
(Gleichverteilung oder Normalverteilung mit Parametern).

� Eingabe �uber eine Schnittstelle.

2. Attribute

� Name, Adresse

� Geburtsdatum

� Start- und Zielort

� Arbeitszeiten

{ Beginn und Ende der Arbeitszeit als Zeitpunkte oder -intervalle
(Gleitzeit)

{ F�ur die einzelnen Wochentage sind unterschiedliche Arbeitszei-
ten m�oglich.

96 KAPITEL 4. ANFORDERUNGSANALYSE

� zu welcher Fahrgemeinschaft geh�ort eine Person

� geh�ort die Person fest oder vorl�au�g zu einer Fahrgemeinschaft

� Eigenschaften von Personen (als Teilmenge der Personenattribute)

{ m�annlich/weiblich

{ Raucher/Nichtraucher

{ Musikgeschmack

{ kann und will fahren

{ Komfortklasse des eigenen Autos

� Pr�aferenzen von Personen

{ m�annlich/weiblich

{ Raucher/Nichtraucher

{ Musikgeschmack

{ geforderte Komfortklasse des Autos

� Menge der Eigenschaften und Pr�aferenzen ist erweiterbar.

� Eigenschaften und Pr�aferenzen einer Person sind �anderbar.

� F�ur die Pr�aferenzen kann jede Person Priorit�aten angeben (z.B. Mu-
sik egal, aber auf keinen Fall Raucher als Mitfahrer).

� Beziehungen zwischen Personen

{ explizite Abneigung (jede Person kann eine Menge von Personen
angeben, mit denen sie nicht zusammenfahren m�ochte)

{ explizite Zuneigung (Personen, mit denen man zusammenfahren
m�ochte)

4.12.2 Fahrgemeinschaften

1. Entstehung

� Eingabe durch den Benutzer, wobei zwei F�alle zu unterscheiden sind:
Eingabe von kompletten Fahrgemeinschaften oder Hinzunahme von
Personen in bestehende Fahrgemeinschaften.

� Eingabe �uber eine Datei

� Automatische Generierung aus einer Personenmenge P unter Ber�uck-
sichtigung bereits bestehender Fahrgemeinschaften (Partition M

�uber einer Teilmenge von P) und einer Bewertungsfunktion f .

2. L�oschen

� manuelles L�oschen

� Au
�osen aller Fahrgemeinschaften

4.13. WEITERE ANFORDERUNGEN 97

Anforderungen

� Anzahl der vom Fahrer angebotenen freien Pl�atze

� Fahrer in einer Fahrgemeinschaft

� Komfortklasse des Autos, mit dem die Fahrgemeinschaft f�ahrt

� welche Personen geh�oren zu einer Fahrgemeinschaft (mit Status)

� Startort und Zielort einer Fahrgemeinschaft

� Route

� Zeitplan f�ur das Aufnehmen und Absetzen von Personen

� Entstehungszeitpunkt der Fahrgemeinschaft

� Datum der letzten �Anderung der Fahrgemeinschaft

� Markierung, ob diese Fahrgemeinschaft erhalten werden soll

4.12.3 Partitionen

Eine Partition ist eine Einteilung einer Personenmenge in Fahrgemeinschaften.
Im FGM-System k�onnen mehrere Partitionen verwaltet werden, wobei immer
eine Partition als die aktuelle Partition gilt.

Entstehung einer Partition Aus einer Personenmenge P und einer Bewer-
tungsfunktion f wird eine Partition M berechnet, die optimal bez�uglich f ist
oder eine bestimmte Qualit�atsschranke �uberschreitet. Dabei k�onnen verschiede-
ne Algorithmen angewendet bzw. neue Algorithmen eingesetzt werden.

4.12.3.1 �Anderung einer Partition

Eine neue Personenmenge P 0 wird anhand von einer PartitionM �uber der Per-
sonenmenge P (P 0 \P = ;) und einer Bewertungsfunktion auf die Fahrgemein-
schaften vonM aufgeteilt. Dabei kann man zwischen zwei Verfahren unterschei-
den. Beim inkrementellen Verfahren werden die Personen aus P 0 einzeln in die
bestehenden Fahrgemeinschaften eingef�ugt. Beim optimalen Verfahren wird eine
Partition von P 0 berechnet und diese zur Partition M hinzugef�ugt.

4.13 Weitere Anforderungen

4.13.1 Anforderungen unter dem Aspekt Graphen

4.13.1.1 Eingabe von Verkehrsgraphen

Verkehrsgraphen k�onnen �uber einen noch auszuw�ahlenden Grapheneditor (LE-
DA, GraphEd, Graphlet ...) eingegeben werden. Das Dateiformat f�ur Graphen

98 KAPITEL 4. ANFORDERUNGSANALYSE

wird dementsprechend festgelegt. Au�erdem k�onnen GDF-Daten in dieses Gra-
phenformat konvertiert werden. Die Detaillierung und Attributierung des Ver-
kehrsgraphen h�angt dabei von den zur Verf�ugung gestellten Daten ab. Als Kan-
tenbeschriftungen sind Stra�enl�angen, Stra�ennamen und Stra�enklassen (Au-
tobahn, Bundesstra�e...) vorgesehen. Zur Bestimmung der Fahrtzeit tr�agt jede
Kante au�erdem einen Widerstand (Ma� f�ur den Durchsatz), die Fahrtzeit er-
gibt sich dann aus Widerstand*L�ange. Die Knoten tragen (x; y)-Koordinaten
und Kreuzungsnamen.

4.13.1.2 Hierarchische Verkehrsgraphen

Aus dem
achen Verkehrsgraphen soll zur Beschleunigung der Wegsuche ein
hierarchischer Verkehrsgraph aufgebaut werden. Daf�ur kommen zwei Modelle in
Frage. Beim Levelgraph erh�alt man eine Hierarchie durch Ausblenden bestimm-
ter Stra�enklassen bzw. Kanten (z.B. Autobahn, Bundesstra�e, Siedlungsstra�e
...) auf den verschiedenen Ebenen. Bei einer Knotenhierarchie werden benach-
barte Knoten in einem �ubergeordneten Level zu einem neuen Knoten zusam-
mengefa�t. Die Knoten stellen je nach Level z.B. Kreuzungen, Stadtteile oder
Ortschaften dar. Beim Aufbau des hierarchischen Graphen kann die Laufzeit
gemessen werden.

4.13.1.3 Wegsuche auf Verkehrsgraphen

Es wird ein Algorithmus zur Bestimmung des k�urzesten Weges zwischen zwei
Orten A und B implementiert. Die Eingabe von Start- und Zielknoten erfolgt
�uber Knotenkennungen oder Koordinaten. Au�erdem kann der k�urzeste Weg
zwischen zwei Kanten bestimmt werden (Eingabe der Stra�ennamen). Die Weg-
suche erfolgt auf dem hierarchischen oder
achen Verkehrsgraphen. Der berech-
nete Weg wird mit Hilfe des Grapheneditors visualisiert. Au�erdem ist eine Lauf-
zeitmessung m�oglich. Der Benutzer wird im verbose-Mode durch Bildschirmmel-
dungen �uber den aktuellen Stand der Berechnung informiert.

Der Algorithmus zur k�urzesten Wegesuche soll als Teilmodul implementiert wer-
den, so da� er auch unabh�angig vom FGM-System eingesetzt werden kann. Au-
�erdem soll dieses Modul leicht durch ein anderes ersetzbar sein.

4.13.1.4 Personengraph

Nach der Bestimmung der k�urzesten Wege zwischen den Start- und Zielorten der
Personen wird ein Personengraph aufgebaut. Die Personen werden als Knoten
dargestellt, die Kantengewichte werden mit der Bewertungsfunktion bestimmt
und stellen die absto�ende Kraft zwischen zwei Personen dar. Dieser Graph ist
die Grundlage f�ur Matchingverfahren.

4.13.1.5 Ausgabe �uber den Grapheneditor

Die graphische Darstellung des Verkehrsgraphen erfolgt �uber den Graphenedi-
tor. Dieser dient nur zur Ausgabe, eine Interaktion des Benutzers zur Eingabe

4.13. WEITERE ANFORDERUNGEN 99

von Start- und Zielorten ist nicht vorgesehen. Au�erdem werden k�urzeste We-
ge, Start- und Zielorte und die Einteilungen in Fahrgemeinschaften visualisiert.
Dies h�angt aber stark von den F�ahigkeiten des verwendeten Editors ab.

4.13.1.6 Erweiterung

Sp�ater sollen Sammelpunkte f�ur Fahrgemeinschaften m�oglich sein. Dazu mu� der
Verkehrsgraph eventuell um Parkpl�atze, Halteverbote und �ahnliches erweitert
werden. Au�erdem sollte die Eingabe von Sammelpunkten m�oglich sein.

Kapitel 5

Spezi�kation

5.1 Einf�uhrung

Dieser Abschnitt enth�alt die Spezi�kation des Softwaresystems Mobidick (Mobil
durch intelligentes Kombinieren) und wurde nach den IEEE-Richtlinien aus [9]
erstellt. Es baut auf der Anforderungsanalyse auf und dient der Beschreibung
des �au�eren Systemverhaltens. Es ist damit die Grundlage f�ur alle weiteren im
Ablauf der Projektgruppe entstehenden Dokumente.

Die Spezi�kation gliedert sich wie folgt: Kapitel 5.2 gibt einen allgemeinen �Uber-
blick �uber das System Mobidick. Kapitel 5.3 beschreibt die funktionalen Anfor-
derungen, Kapitel 5.4 die Anforderungen an externe Schnittstellen. In Kapi-
tel 5.5 werden die Leistungsanforderungen beschrieben und in Kapitel 5.6 die
zuk�unftigen Erweiterungen. Im letzten Kapitel (5.7) sind alle Systemmeldungen
aufgelistet.

5.2 Allgemeine Beschreibung

5.2.1 Umgebung des Produkts

Das Softwaresystem Mobidick soll unter dem Betriebssystem Solaris 2.5 laufen.
Die Ausgabe des Programms erfolgt auf dem Bildschirm oder in eine Datei,
die Eingabe �uber die Tastatur oder eine Maus. Weitere Peripherie wird nicht
ben�otigt.

Zum System geh�ort ein Tool namens GDF2GRA, um Verkehrsdaten aus dem
GDF-Format in das Mobidick-Verkehrsdatenformat zu konvertieren. Das GDF-
Format ist in der Dokumentation zu GDF2GRA beschrieben. Personendaten
k�onnen �uber ein spezielles Format aus Dateien eingelesen werden. Dieses Format
ist in der Dokumentation zu Mobidick beschrieben.

Eine direkte Schnittstelle zum Drucker ist nicht vorgesehen. Die Programm-
ausgaben auf dem Bilschirm erfolgen rein textuell. Eine Schnittstelle zu einem
sp�ater zu entwickelndem Fenstersystem ist vorgesehen.

100

5.3. FUNKTIONALE ANFORDERUNGEN 101

5.2.2 Informelle Beschreibung der Funktionalit�at

In diesem Abschnitt wird informell beschrieben, welche Funktionen von Mobi-
dick bereitgestellt werden. Eine genaue Beschreibung kann Kapitel 5.3 entnom-
men werden. Die Interaktion zwischen Benutzer und Programm erfolgt �uber
Men�us.

Zu Programmbeginn erscheint das Hauptmen�u mit den Funktionen Dateien,
Personen, Vermittlung, Wegsuche, Bewertungsfunktion, Hilfe und Ende. Diese
Untermen�us enthalten die folgenden Funktionalit�aten:

� Im Untermen�u Dateien �ndet sich die notwendigen Funktionen zum La-
den und Speichern der Stammdaten. Eine gewisse Konstistenzpr�ufung �n-
det statt.

� Daten einzelner Personen innerhalb der Stammdaten k�onnen im Unter-
men�u Personenverwaltung eingef�ugt, ver�andert oder gel�oscht werden.
Es besteht die M�oglichkeit, zu Testzwecken einen zuf�alligen Personenda-
tensatz zu generieren.

� Unter Vermittlung kann man Einteilungen in Fahrgemeinschaften be-
rechnen. Es stehen verschiedene heuristische und optimale Algorithmen
zur Verf�ugung. Eine Berechnung kann abgebrochen und zu einem sp�ate-
ren Zeitpunkt fortgesetzt werden.

� DieWegsuche bietet die M�oglichkeit, k�urzeste Wege zwischen zwei Punk-
ten in dem Verkehrsgraphen zu berechnen. Auch hier k�onnen verschiedene
Algorithmen verwendet und die Rechenzeit gemessen werden.

� Die Bewertungsfunktion ist die Grundlage f�ur die Einteilung von Perso-
nen in Fahrgemeinschaften. In diesem Men�u kann sie ver�andert, aus einer
Datei gelesen oder gespeichert werden.

� Die Hilfefunktion zeigt f�ur jedes Men�u einen jeweils passenden Hilfetext
an.

5.2.3 Charakteristika der Benutzer und Benutzerinnen

In der jetzigen Version kann davon ausgegangen werden, da� die Benutzer und
Benutzerinnen von Mobidick �uber durchschnittliche Erfahrungen im Umgang
mit Rechnern verf�ugen. F�ur die Erweiterung von Mobidick um Algorithmen
werden Erfahrungen mit der Entwicklung in C++ vorrausgesetzt.

5.3 Funktionale Anforderungen

Die funktionalen Anforderungen werden in Form von Use Cases oder Szenarien
formuliert. �Ahnliche oder verwandte Anforderungen werden zu einem Use Case
zusammengefa�t. In einem Use Case wird das Zusammenspiel zwischen einem
Akteur, in diesem Fall dem Benutzer, und dem System f�ur einen konkreten
Anwendungsfall beschrieben.

102 KAPITEL 5. SPEZIFIKATION

5.3.1 Start des Fahrgemeinschaftensystems

Das Programm wird von einem Kommandozeileninterpreter aus durch Eintip-
pen des Namens Mobidick gestartet. Weitere Optionen sich nicht notwendig
und werden vom Programm ignoriert. Nach dem Start wird dem Benutzer das
Hauptmen�u am Bildschirm angezeigt und die in den Voreinstellungen (s. Ab-
schnitt 5.3.11) angegebenen Dateien werden ge�o�net. Der Benutzer ist selbst
daf�ur verantwortlich, da� nicht mehrere gleichzeitig gestartete Programme auf
die gleiche Personendatei zugreifen.

5.3.2 Men�ustruktur

Die Men�ustruktur des Systems ist folgenderma�en aufgebaut:

1. Dateien

1. Personendateien

i. Neu

ii. Laden

iii. Speichern

iv. Speichern unter

v. Schlie�en

vi. Importieren

vii. Zur�uck

viii. Hauptmen�u

ix. Hilfe

2. Verkehrsgraph laden

3. Fahrgemeinschaftseinteilung

i. Umbenennen

ii. Duplizieren

iii. L�oschen

iv. Zur�uck

v. Hauptmen�u

vi. Hilfe

4. Bewertungsfunktionen

i. Laden

ii. Speichern

iii. Speichern unter

iv. Zur�uck

v. Hauptmen�u

vi. Hilfe

5. Zur�uck

6. Hauptmen�u

5.3. FUNKTIONALE ANFORDERUNGEN 103

7. Hilfe

2. Personen

1. Neue Person

2. Person �andern

3. Person l�oschen

4. Personen generieren

5. Personen anzeigen

6. Personeneigenschaften �andern

7. Zur�uck

8. Hauptmen�u

9. Hilfe

3. Fahrgemeinschaften

1. Neuer Teilnehmer

i. Manuell eintragen

ii. Suchsystem

iii. Zur�uck

iv. Hauptmen�u

v. Hilfe

2. Teilnehmer fest eintragen

3. Teilnehmer l�oschen

4. Fahrgemeinschaft eingeben

5. Fahrgemeinschaft �andern

6. Fahrgemeinschaft au
�osen

7. Fahrgemeinschaft bewerten

8. Fahrgemeinschaft anzeigen

9. Fahrgemeinschaft markieren/unmarkieren

10. Zur�uck

11. Hauptmen�u

12. Hilfe

4. Vermittlung

1. Einteilung ausw�ahlen

2. Systemmeldungen (ein/aus)

3. Einteilung berechnen

4. Fortfahren mit letzter Berechnung

5. Laufzeitmessung (ein/aus)

6. Einteilung bewerten

7. Einteilung anzeigen

104 KAPITEL 5. SPEZIFIKATION

8. Einteilung au
�osen

9. Zur�uck

10. Hauptmen�u

11. Hilfe

5. Bewertungsfunktionen

1. Neu

2. �Andern

3. Ausw�ahlen

4. Anzeigen

5. Zur�uck

6. Hauptmen�u

7. Hilfe

6. Wegsuche

1. Einzelwegsuche

2. Auswahl des Algorithmus

3. Laufzeit

4. Systemmeldungen (ein/aus)

5. Zur�uck

6. Hauptmen�u

7. Hilfe

7. Voreinstellungen

8. Hilfe

9. Ende

5.3.3 Datenmodell

Mit dem Mobidick-System k�onnen sogenannte Personendateien verwaltet wer-
den. Diese bestehen aus einer Menge P von Personendaten, EinteilungenMi und
den Einteilungen zugeordneten Bewertungsfunktionen fi (siehe Abbildung 5.1).
Die Personendaten einer Person bestehen aus einer eindeutigen Identi�kations-
nummer, Angaben zur Arbeitszeit und den Eigenschaften der Person. Eine Ein-
teilung besteht aus einer Menge von Fahrgemeinschaften und einer Bewertungs-
funktion, mit der diese eingeteilt wurden. Fahrgemeinschaften sind Teilmengen
der Personenmenge und alle Fahrgemeinschaften einer Einteilung sind paarweise
disjunkt. Die Vereinigung aller Fahrgemeinschaften einer Einteilung ergibt eine
Teilmenge der Personenmenge.

Es kann immer nur eine Personendatei ge�o�net sein, d.h. vor dem �O�nen einer
anderen Personendatei mu� die bereits ge�o�nete geschlossen werden. Alle zu ei-
ner Personendatei geh�orenden Daten werden gemeinsam in einer weiteren Datei

5.3. FUNKTIONALE ANFORDERUNGEN 105

....

D

....M 1

1f

M

f

M

f

M

f

2

2 3

3 k

k

P

fx fy fz

Einteilungen

Personenmenge

Personendateien

Bewertungsfunktionen

Bewertungsfunktionsdateien
(einzeln abgespeichert)

....

....1 2

2 3

3M’ M’ M’

f’ f’ f’1f’

P’
D’

k’

k’M’

Abb. 5.1: Datenmodell

abgespeichert. Um dem Benutzer die M�oglichkeit zu geben, eine Bewertungs-
funktion aus einer Personendatei D in einer anderen Personendatei D0 anzu-
wenden, kann er Bewertungsfunktionen einzeln in Dateien abspeichern. Solche
unabh�angig gespeicherten Bewertungsfunktionen k�onnen dann parallel zu einer
Personendatei ge�o�net werden (siehe Abbildung 5.1).

Eine in der Personendatei enthaltene und vom Benutzer bestimmte Einteilung
wird als aktuelle Einteilung bezeichnen.

5.3.4 Beenden des Fahrgemeinschaftensystems

Zum Beenden des Programms mu� der Befehl Ende aus dem Hauptmen�u aus-
gew�ahlt werden. Ist noch eine Personendatei ge�o�net, dann wird der Benut-
zer gefragt

"
Personendatei <Name> vor dem Beenden speichern? [J/n]\.

F�ur die Behandlung noch ge�o�neter Bewertungsfunktionen siehe Use Case
5.3.5.5.

5.3.5 Dateien

5.3.5.1 Neue Personendatei anlegen

Durch Auswahl des Men�upunkt Datei-Personendateien-Neu wird eine leere
Personendatei angelegt. Nach Auswahl des Men�upunkts wird dem Benutzer eine
Liste mit den im aktuellen Verzeichnis enthaltenen Personendateien angezeigt.
Dann wird er aufgefordert den neuen Dateinamen anzugeben durch die Mel-
dung

"
Neuer Name:\. Gibt der Benutzer einen schon existierenden Namen ein,

so wird die Meldung
"
Name existiert schon, trotzdem abspeichern und

106 KAPITEL 5. SPEZIFIKATION

vorhandene Datei �uberschreiben? [j/N]\ angezeigt. Bei Eingabe von
"
j\

wird die unter diesem Namen existierende Datei �uberschrieben, bei
"
n\ wird

die Eingabeau�orderung wiederholt.

An den Dateinamen wird vom System die Erweiterung .per angeh�angt, mit der
die Datei als Personendatei gekennzeichnet wird.

Das System kann nur eine Personendatei im Hauptspeicher bereithalten. Wenn
w�ahrend der Auswahl von Neu schon eine Datei ge�o�net ist, wird der Benut-
zer gefragt

"
Personendatei <Name> vor dem Erstellen der neuen Datei

speichern? [J/n]\. F�ur die Behandlung noch ge�o�neter Bewertungsfunktio-
nen siehe Use Case 5.3.5.5.

5.3.5.2 Personendatei laden

Nach Auswahl des Men�upunkts Datei-Personendateien-Ladenwird eine Liste
mit den im aktuellen Verzeichnis enthaltenen Personendateien angezeigt. Aus
dieser Liste kann die gew�unschte Datei ausgew�ahlt werden.

Wenn w�ahrend der Auswahl von Laden schon eine Datei ge�o�net ist, wird
der Benutzer gefragt

"
Personendatei <Name> vor dem Laden der anderen

Datei speichern? [J/n]\. F�ur die Behandlung noch ge�o�neter Bewertungs-
funktionen siehe Use Case 5.3.5.5.

Enth�alt die zu ladende Personendatei eine oder mehrere Einteilungen, dann wer-
den nach dem Ladevorgang die erste Einteilung und deren Bewertungsfunktion
als aktuell eingestellt.

5.3.5.3 Personendatei speichern

Durch Auswahl des Men�upunkt Datei-Personendateien-Speichern wird die
aktuelle Personendatendatei unter dem ihr zugewiesenen Dateinamen abgespei-
chert.

5.3.5.4 Personendatei unter anderem Namen speichern

Nach Auswahl des Men�upunkts Datei-Personendateien-Speichern unter

wird dem Benutzer eine Liste mit den im aktuellen Verzeichnis enthaltenen
Personendateien angezeigt. Dann wird er aufgefordert den neuen Dateinamen
anzugeben. Gibt der Benutzer einen schon existierenden Namen ein, so wird die
Meldung

"
Name existiert schon, trotzdem abspeichern und vorhandene

Datei �uberschreiben? [j/N]\ angezeigt. Bei Eingabe von
"
j\ wird die unter

diesem Namen existierende Datei �uberschrieben, bei
"
n\ wird die Eingabeauf-

forderung wiederholt.

5.3.5.5 Personendatei schlie�en

Durch Auswahl des Men�upunkts Datei-Personendateien-Schlie�enwird die
aktuelle Personendatei geschlossen. Dazu wird der Benutzer gefragt

"
Datei vor

5.3. FUNKTIONALE ANFORDERUNGEN 107

dem Schlie�en speichern? [J/n]\. Wenn er sie unter einem anderen Namen
abspeichern will, hat er die M�oglichkeit, den Vorgang abzubrechen und dies
durch Auswahl des Use Case 5.3.5.4 zu tun. Bei Abbruch des Vorgangs bleibt
die aktuelle Datei unver�andert im Speicher.

Sind noch Bewertungsfunktionen ge�o�net, die seit der letzten �Anderung
nicht gespeichert wurden, so wird der Benutzer zu jeder Bewertungsfunkti-
on gefragt

"
Bewertungsfunktion <Name> vor dem Schlie�en speichern?

[J/n]\. Antwortet der Benutzer mit
"
j\, so wird die Bewertungsfunktion ge-

speichert, sonst gehen ihre Werte verloren.

5.3.5.6 Personendatei importieren

Durch das Importieren wird die aktuelle Personendatei um den Inhalt der
auf dem Datentr�ager abgespeicherten Datei erweitert. Sei D die aktuelle Per-
sonendatei mit der Personenmenge P und den Fahrgemeinschaftseinteilungen
M1; : : : ;Mk mit den zugeh�origen Bewertungsfunktionen f1; : : : ; fk. D

0 sei die zu
importierende Personendatei mit der Personenmenge P 0 und D00 die erweiterte
Personendatei mit der Personenmenge P 0; dann hat die Importierung folgende
Auswirkungen:

� Die Personenmenge P 00 ist die disjunkte Vereinigung der Personenmengen
P und P 0, wobei die Personen-IDs in P 0 automatisch angepasst werden,
damit keine ID doppelt vorkommt. Personen die in P und in P 0 enthalten
sind werden in P 00 nur einmal aufgef�uhrt. Personen k�onnen durch den
Namen und das Geburtsdatum eindeutig identi�ziert werden.

� Die Menge der Fahrgemeinschaftseinteilungen in D00 enth�alt alle Eintei-
lungen ausD undD0. Dabei werden die Personen-IDs der Einteilungen aus
D0 wie oben automatisch angepasst. Alle Personen aus P (P 0) sind in den
Einteilungen ausD0 (D) noch nicht vermittelt. Das bedeutet, da� alle Ein-
teilungen ausD00 nur einen Teil der Personenmenge enthalten k�onnen. Will
der Benutzer eine Fahrgemeinschaftseinteilung, die alle Personen ber�uck-
sichtigt, so mu� er entweder eine neue Einteilung berechnen oder eine der
bestehenden Einteilungen erweitern (siehe 5.3.8.3).

Nach Auswahl des Men�upunkts Datei-Personendateien-Importieren wird
der Benutzer durch die Systemmeldung

"
Name:\ aufgefordert, den Namen der

zu importierenden Datei anzugeben.

Es k�onnen nur Dateien, die dem Personendateiformat entsprechen, importiert
werden. Dieses Format wird im Enfwurf festgelegt.

5.3.5.7 Verkehrsdaten laden

Nach Auswahl des Men�upunkts Datei-Verkehrsdaten Laden wird eine Liste
mit den im aktuellen Verzeichnis enthaltenen Verkehrsgraphen angezeigt. Aus
dieser Liste kann die gew�unschte Datei ausgew�ahlt werden. Das System kann
nur einen Verkehrsgraphen im Hauptspeicher bereithalten. Falls zum Zeitpunkt

108 KAPITEL 5. SPEZIFIKATION

des Lade-Befehls schon ein Graph ge�o�net ist, so wird dieser vor Ausf�uhrung
des Lade-Befehls geschlossen. Es k�onnen nur Verkehrsgraphen geladen werden,
die dem vom System unterst�utzten Graphenformat entsprechen.

5.3.5.8 Einteilung umbenennen

Nach Auswahl des Men�upunkts Datei-Einteilungen-Umbenennen wird dem
Benutzer eine Liste aller in der Personendatei enthaltenen Einteilungen an-
gezeigt. Dann wird er aufgefordert, den neuen Einteilungsnamen anzuge-
ben. Gibt der Benutzer einen schon existierenden Namen ein, so wird die
Meldung

"
Name existiert schon, trotzdem abspeichern und vorhandene

Datei �uberschreiben? [j/N]\ angezeigt. Bei Eingabe von
"
j\ wird die unter

diesem Namen existierende Datei �uberschrieben, bei
"
n\ wird die Eingabeauf-

forderung wiederholt.

5.3.5.9 Einteilung duplizieren

Durch Auswahl des Men�upunkts Datei-Einteilungen-Duplizieren kann eine
bestehende Einteilung dupliziert werden. Nach Auswahl des Men�upunkts wird
dem Benutzer eine Liste aller in der Personendatei enthaltenen Einteilungen
angezeigt und er wird aufgefordert, den Einteilungsnamen des Duplikats an-
zugeben. Gibt der Benutzer einen schon existierenden Namen ein, so wird die
Meldung

"
Name existiert schon, trotzdem abspeichern und vorhandene

Datei �uberschreiben? [j/N]\ angezeigt. Bei Eingabe von
"
j\ wird die unter

diesem Namen existierende Datei �uberschrieben, bei
"
n\ wird die Eingabeau�or-

derung wiederholt. Beim duplizieren einer Einteilung werden alle Fahrgemein-
schaften und die Bewertungsfunktion kopiert.

5.3.5.10 Einteilung l�oschen

Nach Auswahl des Men�upunkts Datei-Einteilungen-L�oschen wird dem Be-
nutzer eine Liste aller in der Personendatei enthaltenen Einteilungen angezeigt.
Daraus kann er die zu l�oschende Einteilung ausw�ahlen. Nach der Auswahl wird
er gefragt

"
Einteilung wirklich l�oschen? [j/N]\. Antwortet er mit

"
j\, so

wird die ausgew�ahlte Einteilung aus der Personendatei gel�oscht.

5.3.5.11 Bewertungsfunktion laden

Mit diesem Men�upunkt kann eine Bewertungsfunktion, die zuvor in einer Da-
tei abgespeichert wurde, in die Liste der Bewertungsfunktionen aufgenommen
werden. Der Benutzer erh�alt so die M�oglichkeit, Bewertungsfunktionen der Per-
sonendatei X abzuspeichern und dann auf eine Fahrgemeinschaftseinteilung der
Personendatei Y anzuwenden.

Nach Auswahl des Men�upunkts Datei-Bewertungsfunktionen-Laden wird ei-
ne Liste mit den im aktuellen Verzeichnis enthaltenen Bewertungsfunktionsda-
teien angezeigt. Aus dieser Liste kann die gew�unschte Datei ausgew�ahlt werden.

5.3. FUNKTIONALE ANFORDERUNGEN 109

5.3.5.12 Bewertungsfunktion speichern

Durch Auswahl des Men�upunkts Datei-Bewertungsfunktionen-Speichern

wird die aktuelle Bewertungsfunktion unter dem ihr zugewiesenen Dateinamen
abgespeichert.

5.3.5.13 Bewertungsfunktion unter anderem Namen speichern

Nach Auswahl des Men�upunkts Datei-Bewertungsfunktionen-Speichern

unter wird dem Benutzer eine Liste mit den im aktuellen Verzeichnis enthalte-
nen Bewertungsfunktionsdateien angezeigt. Dann wird er aufgefordert, den neu-
en Dateinamen anzugeben. Gibt der Benutzer einen schon existierenden Namen
ein, so wird die Meldung

"
Name existiert schon, trotzdem abspeichern

und vorhandene Datei �uberschreiben? [j/N]\ angezeigt. Bei Eingabe von

"
j\ wird die unter diesem Namen existierende Datei �uberschrieben, bei

"
n\ wird

die Eingabeau�orderung wiederholt.

5.3.6 Personen

5.3.6.1 Use Case: Neue Person eintragen

Durch Aufruf der Men�upunkte Personen-Neue Personwird der Benutzer durch
mehrere Bildschirmmasken gef�uhrt. In der ersten Maske werden die Personenei-
genschaften eingegeben. Auch bei den folgenden Bildschirmmasken bedeutet
(*), da� eine Wertangabe unbedingt notwendig ist. Wird bei solchen Feldern
kein Wert angegeben, kann die Person zwar in den Personenbestand aufgenom-
men werden, wird aber mit dem Vermerk Daten unvollst�andig versehen. Felder,
bei denen nichts eingegeben wurde, tragen den Wert keine Angabe.

1. Name: (*)

2. Vorname: (*)

3. Geschlecht: (*)

4. Geburtsdatum:

5. Stra�e: (*)

6. Hausnummer: (*)

7. PLZ: (*)

8. Wohnort: (*)

9. Telefon:

10. email:

11. Raucher?:

12. Fahrer?:

110 KAPITEL 5. SPEZIFIKATION

13. Komfortklasse des Autos:

14. Baujahr:

15. Anzahl Pl�atze:

16. Musikgeschmack:

Bei der Eingabe werden die Felder nacheinander abgefragt. Die Felder 13, 14
und 15 k�onnen freigelassen werden, sofern bei 12. Fahrer?

"
n\ eingegeben

wurde, d.h. die neue Person kommt nicht als Fahrer in Frage. In diesem Fall
sind die Angaben zum eigenen Auto unn�otig. Bei 13. Komfortklasse wird zwi-
schen Kleinwagen, Mittelklasse und gehobener Klasse unterschieden. Bei
15. Anzahl Pl�atze erh�alt man durch Dr�ucken der Return-Taste den Default-
wert vier. Bei 16. Musikgeschmackk�onnen mehrere Musikrichtungen ausgew�ahlt
werden (Klassik, Pop, Rock, Schlager), au�erdem gibt es noch die Alter-
nativen Ruhe und Egal.

In der zweiten Maske werden die Daten f�ur die gew�unschte Fahrt eingegeben,
f�ur die eine Fahrgemeinschaft gesucht wird.

1. Startort (Adresse): (*)

2. Startort (Kanten-ID):

3. Zielort (Adresse): (*)

4. Zielort (Kanten-ID):

5. Ankunftszeit (von): (*)

6. Ankunftszeit (bis): (*)

7. R�uckfahrtzeit (von): (*)

8. R�uckfahrtzeit (bis): (*)

9. Arbeitsdauer:

Start- und Zielort k�onnen �uber Eingabe einer Adresse (Stra�e, Hausnummer,
Ort) eingegeben werden. Dazu erscheinen nacheinander die Abfragen Stra�e?,
Hausnummer? und Ort?. Dr�uckt man bei Ort die Return-Taste, so erh�alt man
den Defaultwert Stuttgart. Nach der Eingabe wird die Adresse daraufhin

�uberpr�uft, ob sie im aktuellen Verkehrsgraphen vorhanden ist. Falls sie nicht
vorhanden ist, erscheint die Fehlermeldung

"
Fehler 3: Adresse nicht im

Verkehrsgraphen vorhanden\. Alternativ dazu ist die Eingabe einer Kanten-
ID des Verkehrsgraphen m�oglich. Falls die ID nicht existiert, erscheint die Feh-
lermeldung

"
Fehler 4: Kante nicht im Verkehrsgraphen vorhanden\.

Wurde ein Adresse oder eine Kante angegeben, die nicht im Verkehrsgraphen
vorhanden ist, so kann die betro�ene Person trotzdem gespeichert werden. Sie
erh�alt dann den Status Daten unvollst�andig.

Bei der Ankunftszeit kann ein Intervall eingegeben werden, das auch die L�ange
null haben darf. Bei falscher Eingabe erscheint die Fehlermeldung

"
Fehler 5:

5.3. FUNKTIONALE ANFORDERUNGEN 111

Obere Grenze kleiner untere Grenze\. F�ur die R�uckfahrtzeit kann ebenfalls
ein Intervall eingegeben werden oder alternativ die gew�unschte Arbeitsdauer.
Die R�uckfahrtzeit errechnet sich dann aus Ankunftszeit plus Arbeitsdauer.

In der dritten Maske werden die W�unsche in bezug auf die Mitfahrer eingegeben.
Jeder Wunsch tr�agt einen Gewichtsfaktor von 0 bis 10. 0 steht f�ur v�ollig unwich-
tig, 10 f�ur sehr wichtig. Durch Belegung mit dem Gewicht 0 werden s�amtliche
W�unsche abgeschaltet. Alle Gewichte haben den Defaultwert 0, zu W�unschen
mit dem Gewicht 0 mu� nichts eingegeben werden.

1. abgelehnte Musikrichtungen:

2. Gewicht:

3. Geschlecht:

4. Gewicht:

5. Raucher:

6. Gewicht:

7. gew�unschte Komfortklasse:

8. Gewicht:

9. pers�onliche Abneigung: Person hinzuf�ugen

10. pers�onliche Abneigung: Person l�oschen

11. pers�onliche Zuneigung: Person hinzuf�ugen

12. pers�onliche Zuneigung: Person l�oschen

13. Person in Datenbestand �ubernehmen

14. Zur�uck

15. Hauptmen�u

16. Hilfe

Bei 1. abgelehnte Musikrichtungen k�onnen eine oder mehrere Musikrichtun-
gen aus der Menge Klassik, Pop, Rock, Schlager angegeben werden. Bei
3. Geschlecht kann man angeben, ob man nur mit M�annern oder nur mit Frau-
en fahren will. Bei 5. Raucher wird festgelegt, ob man nur mit Rauchern oder
nur mit Nichtrauchern fahren will. Bei 7. gew�unschte Komfortklasse sind
die drei oben erw�ahnten Komfortklassen als Eingabe m�oglich, die angegebene
Komfortklasse ist als Mindestanforderung zu verstehen.

Durch Aufruf von 9. pers�onliche Abneigung: Person hinzuf�ugen wird di-
rekt zur Filterfunktion von Use Case 5.3.6.5 �ubergegangen. Dort wird �uber den
Index der ausgegebenen Personenliste eine Person ausgew�ahlt, die dann in die
Liste der abgelehnten Personen eingef�ugt wird. Danach be�ndet man sich wieder
in der urspr�unglichen Bildschirmmaske, in der diese Liste auch angezeigt wird
(Personen-IDs). Bei dem Versuch, eine Person wiederholt einzuf�ugen, erscheint

112 KAPITEL 5. SPEZIFIKATION

die Fehlermeldung
"
Fehler 6: Person bereits vorhanden\. Der Men�upunkt

11. pers�onliche Zuneigung: Person hinzuf�ugen verh�alt sich analog.

Bei Aufruf von 10. pers�onliche Abneigung: Person l�oschen kann eine
Personen-ID aus der angezeigten Liste eingegeben werden, die betre�ende
Person wird dann aus der Liste entfernt. Ist die ID nicht in der Liste vor-
handen, so erscheint die Fehlermeldung

"
Fehler 7: Person nicht in Liste

vorhanden\. Der Men�upunkt 12. pers�onliche Zuneigung: Person l�oschen

verh�alt sich analog.

Nach Aufruf von 13. Person in Datenbestand �ubernehmen erscheint die Frage

"
Person wirklich �ubernehmen? [J/n]\. Bei Eingabe von

"
n\ geschieht �uber-

haupt nichts, man be�ndet sich immer noch im vorherigen Men�u.

Der Benutzer kann mit Pfeil rechts und Pfeil links jederzeit zwischen den drei
Bildschirmmasken wechseln.

5.3.6.2 Use Case: Person �andern

Durch Aufruf der Men�upunkte Personen-Person �andern wird direkt zur Fil-
terfunktion aus Use Case 5.3.6.5 �ubergegangen. Dort kann der Benutzer eine
Person �uber die Personen-ID, Name und Vorname oder ein anderes Kriterium
suchen lassen. Aus den gefundenen Personen w�ahlt er �uber den Index eine aus.
Danach erscheinen dieselben Bildschirmmasken wie in Use Case 5.3.6.1 und
die �Anderungen k�onnen vorgenommen werden. Die �Anderungen werden erst
wirksam, wenn der Men�upunkt Person in Datenbestand �ubernehmen aus-
gew�ahlt wird. Falls sich Startort, Zielort, Zeiten oder das Feld Fahrer? ge�andert
haben, erscheint die Meldung

"
�Anderungen f�ur Fahrgemeinschaftsbildung

relevant\ und anschlie�end die Frage
"
�Anderungen vornehmen und Person

aus den betroffenen Fahrgemeinschaften l�oschen? [J/n]\. Falls durch
die �Anderung die Au
�osung einer Fahrgemeinschaft notwendig wird (Person
kann nicht mehr fahren), erscheint die Frage

"
�Anderungen vornehmen und

Fahrgemeinschaft aufl�osen? [J/n]\. Nach Eingabe von
"
j\ wird eine Liste

der Personen ausgegeben, die von dieser Au
�osung betro�en sind.

5.3.6.3 Use Case: Person l�oschen

Durch Aufruf der Men�upunkte Personen-Person l�oschen wird direkt zur Fil-
terfunktion aus Use Case 5.3.6.5 �ubergegangen. Die Auswahl einer Person ge-
schieht wie in Use Case 5.3.6.2. Falls die Person Fahrer einer Fahrgemein-
schaft war, erscheint die Meldung

"
Person ist Fahrer, l�oschen f�uhrt zur

Aufl�osung einer Fahrgemeinschaft\. Danach erscheint die Frage
"
Person

wirklich l�oschen? [J/n]\. Bei Eingabe von
"
j\ wird die Person aus dem

Datenbestand gel�oscht, eine Liste der von der Au
�osung betro�enen Personen
angezeigt und zum Men�u Personenverwaltung zur�uckgekehrt, bei

"
n\ be�ndet

man sich sofort wieder im Men�u Personenverwaltung.

5.3. FUNKTIONALE ANFORDERUNGEN 113

5.3.6.4 Use Case: Personen generieren

Durch Aufruf der Men�upunkte Personen-Personen generieren kann man f�ur
Testzwecke eine Personenmenge zuf�allig zu erzeugen. Da die alte Personenmenge
vor der Generierung gel�oscht wird, erscheint zun�achst die Frage

"
Haben Sie

die alte Personenmenge gesichert? [j/N]\. Bei Eingabe von
"
n\ be�ndet

man sich sofort wieder im Men�u Personenverwaltung und der Benutzer hat
die Gelegenheit, die Personendatei wie in Use Case 5.3.5.5 zu schlie�en. Nach
Eingabe von

"
j\ kann der Benutzer folgende Parameter einstellen:

1. Personenzahl: (*)

2. Anteil Fahrer: (*)

3. Startorte (Gleichverteilung): (*)

4. Startorte (Rechteck):

5. Startort (fest):

6. Zielorte (Gleichverteilung): (*)

7. Zielorte (Abstand zum Startort):

8. Zielort (fest):

9. Ankunftszeit: (von) (*)

10. Ankunftszeit: (bis) (*)

11. Ankunftszeit: (Intervall�angen) (*)

12. R�uckfahrtzeit: (von) (*)

13. R�uckfahrtzeit: (bis) (*)

14. R�uckfahrtzeit: (Intervall�angen) (*)

15. Personenmenge generieren

16. Zur�uck

17. Hauptmen�u

18. Hilfe

Bei den Startorten kann zwischen einer Gleichverteilung auf dem ganzen Ver-
kehrsgraphen oder in einem rechteckigen Bereich (Angabe links, rechts, oben,
unten in Gau�-Kr�uger-Koordinaten) gew�ahlt werden. Im letzteren Fall werden
die vier ben�otigten Werte nacheinander vom Benutzer abgefragt. Au�erdem ist
die Eingabe eines festen Startorts m�oglich.

Bei den Zielorten gibt es ebenso die Gleichverteilung und alternativ kann der
Abstand zum Startort normalverteilt generiert werden. Dazu werden Mittelwert
und Standardabweichung nacheinander vom Benutzer abgefragt.

114 KAPITEL 5. SPEZIFIKATION

Die Ankunftszeiten unterliegen einer Gleichverteilung auf dem durch von und
bis gegebenen Intervall. Bei falscher Eingabe erscheint die Fehlermeldung

"
Fehler 5: Obere Grenze kleiner untere Grenze\. In diesem Intervall lie-
gen die einzelnen Ankunftsintervalle der Personen, deren L�ange wird in 11.
Ankunftszeit: (Intervall�angen) angegeben.

F�ur die R�uckfahrtzeiten gilt das entsprechende.

Nach Aufruf von 15. Personenmenge generierenwird f�ur jede Person ein Start-
, ein Zielort, ein Ankunftsintervall und ein R�uckfahrtsintervall generiert, wobei
die Intervall�angen f�ur alle Personen gleich sind. Alle hier nicht aufgef�uhrten
Personeneigenschaften sind nicht vom Benutzer beein
u�bar und werden auto-
matisch generiert. Nach der Berechnung erscheint die Frage

"
Personenmenge

�ubernehmen? [J/n]\. Bei Eingabe von
"
j\ wird die generierte Personenmenge

als aktuelle Personenmenge �ubernommen, bei
"
n\ be�ndet man sich wieder in

obigem Men�u und kann die Parameter ver�andern.

5.3.6.5 Use Case: Personen anzeigen

Durch Aufruf der Men�upunkte Personen-Personen anzeigen ist die Personen-
suche �uber eine Filterfunktion m�oglich. Dabei k�onnen folgende Suchkriterien
angegeben werden:

1. Name:

2. Vorname:

3. Personen-ID:

4. Startort: (Stra�enname)

5. Startort: (Radius)

6. Zielort: (Stra�enname)

7. Zielort: (Radius)

8. Ankunftszeit: (von)

9. Ankunftszeit: (bis)

10. R�uckfahrtzeit: (von)

11. R�uckfahrtzeit: (bis)

12. Status: (vermittelbar/als reserviert eingetragen/fest

eingetragen/Daten unvollst�andig)

13. FGM-ID:

14. Fahrer?:

15. Zur�uck

16. Hauptmen�u

5.3. FUNKTIONALE ANFORDERUNGEN 115

17. Hilfe

Beim Startort kann ein Stra�enname und ein Radius angegeben werden,
in diesem Bereich soll dann der Startort der Person liegen. Analog beim
Zielort. F�ur Ankunfts- und R�uckfahrtzeit k�onnen Intervalle angegeben wer-
den, bei falscher Eingabe erscheint die Fehlermeldung

"
Fehler 5: Obere

Grenze kleiner untere Grenze.\ In diesem Intervall m�ussen die tats�achli-
che Ankunfts- und R�uckfahrtszeit der Fahrgemeinschaft liegen, nicht das von
der Person angegebene Wunschintervall.

Beim Status wird zwischen folgenden Personengruppen unterschieden: Eine Per-
son ist vermittelbar, falls sie bisher in keine Fahrgemeinschaft eingetragen wurde.
Sie hat den Status als reserviert eingetragen, falls bereits ein Platz in einer Fahr-
gemeinschaft f�ur sie reserviert wurde. Nimmt sie diesen Platz an, geht der Status
�uber in fest eingetragen. Reichen die zu einer Person eingegebenen Daten f�ur
eine Vermittlung noch nicht aus, hat sie den Status Daten unvollst�andig (siehe
Use Case 5.3.6.1). Das Feld Fahrer? entspricht dem gleichnamigen Feld in Use
Case 5.3.6.1.

Bei den Suchkriterien k�onnen auch einzelne Eingabefelder freigelassen werden.
Das System sucht dann nach allen Personen, die alle (UND-Verkn�upfung) Krite-
rien erf�ullen und gibt sie als Liste mit Index auf dem Bildschirm aus. Es werden
tabellarisch angezeigt:

1. Personen-ID:

2. Name:

3. Vorname:

4. Startort:

5. Zielort:

6. Ankunftszeitpunkt:

7. R�uckfahrtszeitpunkt:

8. Status: vermittelbar/als reserviert eingetragen/fest

eingetragen/Daten unvollst�andig

9. Fahrgemeinschafts-ID:

Danach erscheint die Frage
"
Tabelle in PostScript-Datei ausgeben?

[j/N]\. Durch Anwahl �uber die Indexnummer einer Person kann der Benut-
zer zwischen folgenden weitergehenden Informationen zu einer Person w�ahlen:

1. weitere Personeneigenschaften (s. Use Case 5.3.6.1)

2. W�unsche der Person (s. Use Case 5.3.6.1)

3. als Fahrer eingeteilt?

4. Datum der Eintragung der Person in das System

116 KAPITEL 5. SPEZIFIKATION

Wird die Filterfunktion zur Auswahl einer bestimmten Person benutzt (z.B.
in Use Case 5.3.6.2), f�uhrt die Angabe einer Indexnummer nicht zur Anzeige
weitergehender Informationen. Der Vorgang ist dann mit der Auswahl abge-
schlossen.

5.3.6.6 Use Case: Personeneigenschaften erweitern

Durch Aufruf der Men�upunkte Personen-Personeneigenschaften erweitern

ist es m�oglich, eine weitere Personeneigenschaft hinzuzuf�ugen. Durch Hinzu-
nahme einer weiteren Personeneigenschaft tritt diese auch bei den W�unschen
bez�uglich der Mitfahrer auf. F�ur eine bereits vorhandene Personenmenge wird
der Wert der neuen Eigenschaft zun�achst o�engelassen, dies entspricht demWert
keine Angabe.

Es erscheint folgendes Men�u:

1. Name der neuen Eigenschaft:

2. Wertebereich:

3. eindeutiger Wert

4. Mehrfachauswahl

5. Eigenschaft hinzuf�ugen

6. Zur�uck

7. Hauptmen�u

8. Hilfe

Bei 1. kann der Name der neuen Eigenschaft eingegeben werden. Dieser wird
daraufhin �uberpr�uft, ob er nicht bereits schon f�ur eine andere Eigenschaft ver-
wendet wurde. Bei 2. k�onnen die einzelnen Werte in Form von Strings, getrennt
durch Kommata eingegeben werden. Bei Mehrfacheingabe eines Wertes mu�
die Eingabe wiederholt werden. In 3. und 4. wird festgelegt, ob einer Person ein
eindeutiger oder mehrere Werte aus dem Wertebereich zugeordnet werden. Die-
se Einstellung gilt dann auch f�ur die W�unsche bez�uglich der Mitfahrer. Durch
Auswahl von 5. wird die neue Personeneigenschaft hinzugef�ugt.

5.3.7 Fahrgemeinschaften

5.3.7.1 Fahrgemeinschaften-Filter

Das Anzeigen von Fahrgemeinschaften kann durch Filter eingeschr�ankt werden.
Dabei werden nach Index die Filterkriterien aufgef�uhrt:

1. Anzahl der freien Pl�atze (min.)

2. Anzahl der Teilnehmer (max.)

5.3. FUNKTIONALE ANFORDERUNGEN 117

3. Fahrgemeinschaften-ID

4. Komfortklasse des Autos (min.)

5. Startort (Punkt und Radius in km)

6. Zielort (Punkt und Radius in km)

7. Startzeit (Intervall)

8. Zielzeit (Intervall)

9. Markierung

10. Akzeptieren und Weiter

Die �Anderungen nimmt man durch Anw�ahlen des Index und Eingeben des neuen
Wertes vor, wobei gewisse Werte ignoriert werden. Dies sind negative Werte,
nicht existierende Komfortklassen, nicht existierende Punkte und Zeitintervalle.
Zus�atzlich gibt es den Punkt Akzeptieren und Weiter, der die Eingabe der
Kriterien beendet.

5.3.7.2 Teilnehmer anzeigen

Die Teilnehmer einer bereits gew�ahlten Fahrgemeinschaft werden gek�urzt dar-
gestellt. Dabei werden sie beginnend mit eins aufsteigend numeriert und die
Attribute Vorname, Nachname, kann und will fahren, die Markierung (vermit-
telbar, reserviert eingetragen, fest eingetragen), sowie die ID der Person werden
angezeigt.

5.3.7.3 Neuer Teilnehmer

Um einen neuen Teilnehmer in eine Fahrgemeinschaft der aktuel-
len Fahrgemeinschaftseinteilung aufzunehmen, m�ussen vorher bereits
die Daten des Teilnehmers wie in Use Case 5.3.6.1 eingegeben wor-
den sein. Man kann anschlie�end den neuen Teilnehmer manuell oder
per Suchsystem eintragen lassen. Dazu w�ahlt man den Men�ueintrag
Fahrgemeinschaften-Neuer Teilnehmer-Manuell eintragen oder den
Men�ueintrag Fahrgemeinschaften-Neuer Teilnehmer-Suchsystem.

manuell eintragen

Man m�ochte eine Person in eine bestehende Fahrgemeinschaft per Hand auf-
nehmen. Die betre�ende Person wird wie in Use Case 5.3.6.5 beschrieben se-
lektiert. Um nun die Fahrgemeinschaft zu �nden, werden Fahrgemeinschaf-
ten angezeigt (siehe Use Case 5.3.7.10). Nun w�ahlt man �uber den Index eine
der Fahrgemeinschaften aus und beantwortet die Frage des Systems

"
Person

in Fahrgemeinschaft aufnehmen? [J/n]\ mit
"
j\. Auf die neue Fahrgemein-

schaft wird dann automatisch die Bewertungsfunktion angewendet und das Er-
gebnis pr�asentiert.

118 KAPITEL 5. SPEZIFIKATION

Nun beantwortet der Benutzer noch die Frage
"
Fahrgemeinschaft

�ubernehmen? [J/n]\ mit
"
j\ und die neu entstandene Fahrgemeinschaft

wird vom System �ubernommen. Der neue Teilnehmer wird als reserviert

eingetragen markiert. Beantwortet man eine der beiden Fragen mit
"
n\, so

wird wieder die Liste der Fahrgemeinschaften angezeigt.

Suchsystem

Man m�ochte eine Person in eine bestehende Fahrgemeinschaft eintragen und da-
bei die Hilfe des Systems in Anspruch nehmen. Dazu wird einem nach der Aus-
wahl der Person wie in Use Case 5.3.6.5 beschrieben eine Liste von Fahrgemein-
schaften angezeigt, die nach der aktuellen Bewertungsfunktion gut zu der Person
passen w�urden (siehe Use Case 5.3.7.10). Nun w�ahlt man �uber den Index eine
der Fahrgemeinschaften aus und beantwortet die Frage des Systems

"
Person

in Fahrgemeinschaft aufnehmen? [J/n]\ mit
"
j\. Auf die neue Fahrgemein-

schaft wird dann automatisch die Bewertungsfunktion angewendet und das Er-
gebnis pr�asentiert.

Nun beantwortet der Benutzer noch die Frage
"
Fahrgemeinschaft

�ubernehmen? [J/n]\ mit
"
j\ und die neu entstandene Fahrgemeinschaft

wird vom System �ubernommen. Der neue Teilnehmer wird als reserviert
markiert. Beantwortet man eine der beiden Fragen mit

"
n\, so wird wieder die

Liste der Fahrgemeinschaften angezeigt.

5.3.7.4 Teilnehmer fest eintragen

Ein bereits in eine Fahrgemeinschaft eingetragener Teilnehmer, der noch reser-

viert eingetragen ist, wird nun fest eingetragen. Man w�ahlt den Men�upunkt
Fahrgemeinschaften-Teilnehmer fest eintragen. Es wird eine Liste von
Fahrgemeinschaften angezeigt (siehe Use Case 5.3.7.10) die reserviert eingetra-
gene Personen enthalten. Daraus w�ahlt man dann die betre�ende Fahrgemein-
schaft �uber den Index aus.

Die Teilnehmer der Fahrgemeinschaft werden nach Use Case 5.3.7.2 ange-
zeigt und man w�ahlt die fest einzutragende Person �uber ihren Index an.
Falls die Person bis jetzt reserviert eingetragen war, wird gefragt

"
Teilnehmer

fest eintragen? [J/n]\. Sonst wird die Wahl �ubergangen und die Meldung

"
Teilnehmer schon fest eingetragen!\ ausgegeben. Wird die Frage mit

"
j\

beantwortet, wird der neue Teilnehmer als fest eingetragen markiert. Beantwor-
tet man die Frage mit

"
n\, werden wieder die Teilnehmer der Fahrgemeinschaf-

ten angezeigt.

5.3.7.5 Teilnehmer l�oschen

Eine Person, die in eine Fahrgemeinschaft eingetragen ist, soll aus ihr gel�oscht
werden. Bei dieser Person wird dann nur die Markierung fest eingetragen oder
reserviert eingetragen in vermittelbar abge�andert und sie wird aus der Fahr-
gemeinschaft ausgetragen. Dazu w�ahlt man Fahrgemeinschaften-Teilnehmer

5.3. FUNKTIONALE ANFORDERUNGEN 119

l�oschen. Es wird eine Liste von Fahrgemeinschaften angezeigt (siehe Use Case
5.3.7.10). Daraus w�ahlt man dann die betre�ende Fahrgemeinschaft �uber den
Index aus.

Die Teilnehmer der Fahrgemeinschaft werden nach Use Case 5.3.7.2 angezeigt
und man w�ahlt die zu l�oschende Person �uber ihren Index an. Wird die Frage
des Systems

"
Person aus Fahrgemeinschaft l�oschen? [J/n]\ mit

"
j\ be-

antwortet, wird die Person aus dieser Fahrgemeinschaft gel�oscht.

Ist die zu l�oschende Person der Fahrer, so erscheint die Systemmeldung

"
Vorsicht. Durch Loeschen des Fahrers wird die Fahrgemeinschaft

aufgel�ost.\. Daraufhin wird gefragt
"
Fahrer l�oschen? [j/N]\. Wird diese

Frage mit
"
j\ beantwortet, wird die Fahrgemeinschaft aufgel�ost (siehe auch

Use Case 5.3.7.8) und eine Liste mit den betro�enen Personen wird angezeigt.
Ansonsten be�ndet man sich wieder bei der Liste der Personen.

5.3.7.6 Fahrgemeinschaft eingeben

Fahrgemeinschaften k�onnen auch manuell zusammengestellt werden. Die Perso-
nen, die hier eingetragen werden sollen, m�ussen bereits im System erfa�t sein.
Der Punkt Fahrgemeinschaften-Fahrgemeinschaft eingeben wird gew�ahlt.
Nun wird zuerst der Fahrer nach Use Case 5.3.6.5 selektiert, wobei nur potenti-
elle Fahrer angezeigt werden, die in keiner Fahrgemeinschaft eingetragen sind.
Die Person wird �uber den Index angew�ahlt und die Frage

"
Person als Fahrer

�ubernehmen? [J/n]\ gestellt. Wird die Frage mit
"
j\ beantwortet, f�ahrt man

fort, bei
"
n\ zeigt man wieder die Liste der potentiellen Fahrer.

Solange freie Pl�atze vorhanden sind, wird gefragt
"
Weiteren Teilnehmer

eintragen [J/n]?\. Wird die Frage mit
"
j\ beantwortet, wird wie bei der

Auswahl des Fahrers eine Liste von Personen angezeigt, die noch keiner Fahrge-
meinschaft zugeordnet sind. Man w�ahlt wieder �uber den Index eine Person aus,
die in die Fahrgemeinschaft �ubernommen wird. Wird die Frage mit

"
n\ beant-

wortet, oder sind die freien Pl�atze ersch�opft, wird die Bewertungsfunktion auf
die Fahrgemeinschaft angewendet und das Ergebnis pr�asentiert. Wird die Frage

"
Fahrgemeinschaft �ubernehmen? [J/n]\ mit

"
j\ beantwortet, wird sie in das

System �ubernommen, sonst startet man wieder am Anfang dieses Use Case.

5.3.7.7 Fahrgemeinschaft �andern

Die Eigenschaften einer Fahrgemeinschaft sollen ge�andert werden. Dazu
wird nach Auswahl des Men�upunktes Fahrgemeinschaften-Fahrgemeinschaft
�andern eine Liste der Fahrgemeinschaften angezeigt (siehe Use Case 5.3.7.10).
Daraus w�ahlt man dann die betre�ende Fahrgemeinschaft �uber den Index aus.
Die �anderbaren Eigenschaften der Fahrgemeinschaft werden mit Index ange-
zeigt:

1. Anzahl der freien Pl�atze

2. Fahrer

3. Akzeptieren und Verlassen

120 KAPITEL 5. SPEZIFIKATION

Die zu �andernde Komponente wird �uber den Index angew�ahlt. Die Anzahl der
freien Pl�atze kann nicht gr�o�er werden als Autopl�atze minus Teilnehmer. Wird
der Fahrer gew�ahlt, werden alle Personen in der Fahrgemeinschaft angezeigt,
die potentielle Fahrer sind (siehe Use Case 5.3.7.2). Aus ihnen kann man �uber
den Index einen neuen Fahrer ausw�ahlen. Ergibt sich durch die Wahl ein neuer
Fahrer, wird die Frage

"
Neuer Fahrer: Fahrtroute neu berechnen? [j/N]\

ausgegeben und eine neue Wegberechnung durchgef�uhrt, falls mit
"
j\ geant-

wortet wird. Bei
"
n\ wird der alte Fahrer beibehalten. Mit Akzeptieren und

Verlassen werden die �Anderungen �ubernommen.

5.3.7.8 Fahrgemeinschaft au
�osen

Eine Fahrgemeinschaft aus der aktuellen Einteilung wird aufgel�ost. Die Teil-
nehmer dieser Fahrgemeinschaft werden dabei nur in ihrer Markierung fest

eingetragen oder reserviert eingetragen ge�andert, die auf vermittelbar gesetzt
wird. Man w�ahlt den Men�upunkt Fahrgemeinschaften-Fahrgemeinschaft

aufl�osen. Eine Fahrgemeinschaft wird nach dem Anzeigen (Use Case 5.3.7.10)
�uber ihren Index ausgew�ahlt. Der Benutzer wird gefragt

"
Fahrgemeinschaft

aufl�osen? [J/n]\. Wird die Frage mit
"
j\ beantwortet und war die Fahr-

gemeinschaft markiert, wird nachgefragt
"
Fahrgemeinschaft ist markiert.

Wirklich aufl�osen? [j/N]\.Wird die Frage auch mit
"
j\ beantwortet, werden

die Teilnehmer aus der Fahrgemeinschaft entfernt und die Fahrgemeinschaft aus
dem System gel�oscht. Sonst werden wieder die Fahrgemeinschaften angezeigt.

5.3.7.9 Fahrgemeinschaft bewerten

Die Qualit�at einer Fahgemeinschaft kann mit der aktuellen Be-
wertungsfunktion bewertet werden, indem man den Men�upunkt
Fahrgemeinschaften-Fahrgemeinschaft bewerten aufruft. Eine Liste
der Fahrgemeinschaften wird angezeigt (Use Case 5.3.7.10). Die zu bewertende
Fahrgemeinschaft wird �uber ihren Index angew�ahlt. Die Bewertungsfunktion
wird auf diese Fahrgemeinschaft angewendet und das Ergebnis pr�asentiert. Man
kann solange aus der Liste ausw�ahlen, die wieder angezeigt wird, bis man die
Frage

"
Weitere Fahrgemeinschaft bewerten? [J/n]\ mit

"
n\ beantwortet.

5.3.7.10 Fahrgemeinschaft anzeigen

Eine Liste der Fahrgemeinschaften mit Einschr�ankung durch eine Fil-
terfunktion soll angezeigt werden. Dazu w�ahlt man den Men�upunkt
Fahrgemeinschaften-Fahrgemeinschaften anzeigen und es wird der Filter
wie in Use Case 5.3.7.1 aufgerufen. Anschlie�end wird eine Liste aller Fahrge-
meinschaften zusammengestellt, die den Bedingungen des Filters gen�ugen. Sie
werden dabei aufsteigend sortiert und mit ID der Fahrgemeinschaft, einer Liste
der Nachnamen der Teilnehmer und ihrer Markierung dargestellt, wobei der Fah-
rer besonders gekennzeichnet ist. W�ahlt man eine der Fahrgemeinschaften �uber
ihren Index an, wird sie im Detail dargestellt. Die Liste der Fahrgemeinschaften
und die detaillierte Anzeige k�onnen nach Use Case 5.4.1.4 durch Dr�ucken der
Taste

"
d\ in eine PostScript-Datei ausgegeben werden.

5.3. FUNKTIONALE ANFORDERUNGEN 121

Fahrgemeinschaft im Detail anzeigen

Eine Fahrgemeinschaft wird detailliert angezeigt. Dabei werden folgende Attri-
bute aufgef�uhrt:

� Anzahl der freien Pl�atze

� Teilnehmer der Fahrgemeinschaft (Vorname, Nachname, Status, Fahrer)

� Komfortklasse des Autos

� Startort

� Zielort

� Entstehungszeitpunkt

� Datum der letzten �Anderung

� Markierung (markiert/unmarkiert)

Desweiteren kann man folgende zwei Punkte anw�ahlen und sich anzeigen lassen:

1. Fahrtroute (graphisch/Stra�ennamen)

2. Zeitplan

5.3.7.11 Fahrgemeinschaft markieren/unmarkieren

Man m�ochte Fahrgemeinschaften vor dem Au
�osen sch�utzen oder daf�ur sorgen,
da� eine markierte Fahrgemeinschaft doch wieder aufgel�ost werden darf. Nach
der Auswahl des Men�upunktes Fahrgemeinschaften-Fahrgemeinschaften

markieren/unmarkieren wird der Benutzer gefragt
"
Markieren oder

Unmarkieren? [M/u]\. Nach der Wahl der Operation wird dem Benutzer
eine Liste aller Fahrgemeinschaften angezeigt (siehe Use Case 5.3.7.10). Die
Liste wird durch die Wahl der Option eingeschr�ankt. Hat der Benutzer

"
m\

gew�ahlt, sieht er nur unmarkierte Fahrgemeinschaften, sonst nur markierte. Die
zu ver�andernde Fahrgemeinschaft wird �uber ihren Index angew�ahlt. Je nach
Wahl der Option wird die Frage

"
Fahrgemeinschaft markieren? [J/n]\

oder
"
Fahrgemeinschaft unmarkieren? [J/n]\ gestellt. Wird

"
j\ gew�ahlt

und hatte die Fahrgemeinschaft vorher eine andere Einstellung, wird die neue
eingesetzt. Danach sieht man wieder die Liste der Fahrgemeinschaften.

5.3.8 Vermittlung

5.3.8.1 Einteilung ausw�ahlen

Durch Auswahl des Men�upunkts Vermittlung-Einteilung ausw�ahlen kann
man die aktuelle Einteilung wechseln. Es werden die Namen der zur aktuellen
Personendatei geh�orenden Einteilungen in einer numerierten Liste angezeigt.

122 KAPITEL 5. SPEZIFIKATION

Die aktuelle Einteilung ist dabei voreingestellt als solche markiert. Wird eine
der Einteilungen ausgew�ahlt, so wird diese zur aktuellen Einteilung. Wird der
Vorgang abgebrochen oder die bisher aktuelle Einteilung gew�ahlt, so bleibt sie
auch die aktuelle. Beim wechseln der aktuellen Einteilung die Bewertungsfunk-
tion der neuen aktuellen Einteilung zur aktuellen Bewertungsfunktion.

5.3.8.2 Systemmeldungen: ein/aus

Der Benutzer m�ochte �uber den aktuellen Stand der Berechnung durch
Bildschirmmeldungen, informiert werden. Dazu mu� der Men�upunkt
Vermittlung-Systemmeldungen: ein/aus aufgerufen werden. Dieser verh�alt
sich wie ein Wechselschalter (an oder aus). Bei jedem Aufruf �andert sich der
Status und die aktuelle Einstellung wird am Bildschirm angezeigt. Danach
gelangt man automatisch in das Untermen�u Vermittlung zur�uck. Der Status
hat keine Auswirkungen auf den Men�upunkt Wegsuche-Systemmeldungen:

ein/aus (siehe Use Cases 5.3.10.5).

Wenn die Systemmeldungen eingeschaltet sind, werden bei der Berechnung einer
Einteilung Informationen �uber den Stand und den Verlauf der Berechnung auf
den Bildschirm und in eine Datei namens Mobidick.log ausgegeben.

5.3.8.3 Einteilung berechnen

Der Benutzer mu� zur Berechnung einer Fahrgemeinschaftseinteilung einen von
mehreren unterschiedlichen Algorithmen ausw�ahlen. Die Menge von Algorith-
men ist in drei Algorithmenklassen eingeteilt. Es gibt heuristische, optimale und
inkrementelle Algorithmen zur Berechnung einer Fahgemeinschaftseinteilung.

Bei den heuristischen und den optimalen Algorithmen kann der Benutzer An-
gaben zur G�ute des Ergebnisses machen. Die m�oglichen Angaben beziehen
sich auf die Anzahl der zu berechnenden Fahrgemeinschaften und auf die
bestm�ogliche Bewertung, die eine Einteilung unter der aktuellen Bewertungs-
funktion erreichen kann. Zur Eingabe der G�ute werden dem Benutzer die
Abfragen

"
G�ute bez�uglich der Fahrgemeinschaftenanzahl? [<min]FGM>

- <max]FGM>]\ und
"
G�ute bez�uglich der Bewertung? [<min Bewertung>

- <max Bewertung>]\ angezeigt. Der Benutzer kann dann je einen Wert in-
nerhalb der angegebenen Grenzen eingeben. Gibt er keinen Wert sondern nur
Enter ein, so werden die Werte <min]FGM> und <max Bewertung> als eingege-
ben angesehen. Die Kombination dieser Werte ergibt die beste m�ogliche G�ute.

Der Wert <min]FGM> gibt an wieviele Fahrgemeinschaften eine Einteilung min-
destens enthalten mu� und wird aus der Gr�o�e der Personenmenge und der ma-
ximalen Fahrgemeinschaftsgr�o�e berechnet. Die maximale Fahrgemeinschafts-
gr�o�e ist vier. Die maximale Anzahl der Fahrgemeinschaften (<min]FGM>) in
einer Einteilung entspricht der Gr�o�e der Personenmenge. Die beste m�ogliche
Bewertung (<max Bewertung>) und die schlechteste m�ogliche Berwertung (<min
Bewertung>) werden passend zur aktuellen Bewertungsfunktion berechnet.

Heuristische Algorithmen sind N�aherungsverfahren zur Einteilungsberech-
nung. Mit ihrer Hilfe soll es m�oglich sein, in kurzer Zeit eine gute, aber nicht un-
bedingt optimale L�osung zu �nden. Bei der Berechnung einer Einteilung kann ein

5.3. FUNKTIONALE ANFORDERUNGEN 123

heuristischer Algorithmus auf die Personendaten, die aktuelle Bewertungsfunk-
tion, eine vom Benutzer anzugebende G�ute des Ergebnisses und die k�urzesten
Wege zwischen den Personen untereinander und zu ihren Arbeitspl�atzen zugrei-
fen.

Sobald eine Einteilung gefunden wurde, die der G�ute des Benutzers entspricht,
wird der Algorithmus beendet und die Einteilung als Ergebnis zur�uckgegeben.
Ist w�ahrend der Berechnung abzusehen, da� die Heuristik auf den gegebenen
Personendaten keine Einteilung mit der vom Benutzer geforderten G�ute �n-
det, so kann der Vorgang mit einer entsprechenden Fehlermeldung abgebrochen
werden. Am Ende einer erfolgreichen Berechnung wird die gefundene Einteilung
mit der aktuellen Bewertungsfunktion bewertet und das Ergebnis dem Benutzer
angezeigt.

Optimale Algorithmen sind Verfahren zur Einteilungsberechnung, die die
beste Einteilung bez�uglich der aktuellen Bewertungsfunktion �nden. Optimiert
wird nach der Anzahl der Fahrgemeinschaften, wobei die in der Bewertungsfunk-
tion (siehe 5.3.9.1) enthaltenen Randbedingungen eingehalten werden m�ussen.
Bei der Einteilungsberechnung k�onnen die optimalen Algorithmen auf die glei-
chen Daten wie die heuristischen Algorithmen zugreifen.

Der Benutzer hat auch bei den optimalen Algorithmen die M�oglichkeit, eine
G�ute f�ur das Ergebnis anzugeben. Sobald eine Einteilung der entsprechenden
G�ute gefunden wurde wird der Algorithmus abgebrochen. Die dabei berechnete
Einteilung ist aber nicht die optimale Einteilung sondern nur eine Einteilung
mit einer G�ute gr�o�er oder gleich der vom Benutzer geforderten G�ute. Zur Be-
rechnung der optimalen Einteilung mu� die beste m�ogliche G�ute vom Benutzer
gefordert werden.

Inkrementelle Algorithmen sind Verfahren, die eine bestehende Fahrgemein-
schaftseinteilung erweitern. Bei der Berechnung bleiben zun�achst alle Fahrge-
meinschaften bestehen und es wird versucht, die noch nicht vermittelten Perso-
nen in die Fahrgemeinschaften mit freien Pl�atzen einzuf�ugen. Wenn dies nicht
m�oglich ist, k�onnen auch neue Fahrgemeinschaften gebildet werden. Die Inkre-
mentellen Verfahren bieten sich an, wenn die Personenmenge nur um wenige
Personen erweitert wurde.

Wie unten beschrieben, kann der Benutzer nach Auswahl der Algorithmenklasse
einen Algorithmus aussuchen. In dem Mobidick-System werden zu jeder Algo-
rithmenklasse mindestens je ein Algorthmus implementiert. Die Dokumentation
enth�alt Hinweise, wie ein neuer Algorithmus in den Quellcode des Systems ein-
gef�ugt werden kann.

Der Men�upunkt Vermittlung-Einteilung berechnen f�uhrt in ein Untermen�u,
wo die Wahl zwischen verschiedenen Arten der Berechnung besteht:

1. heuristisch

2. optimal

3. inkrementell

Bei jeder Auswahl erscheint ein weiteres Men�u der Form

124 KAPITEL 5. SPEZIFIKATION

1. Die [art] Einteilung berechnen

2. Algorithmus wechseln

3. Zur�uck

4. Hauptmen�u

5. Hilfe

Dabei steht [art] f�ur die vorher gew�ahlte Art der Berechnung, also heuristisch,
optimal oder inkrementell.

Mit dem ersten Men�upunkt startet man die entsprechende Berechnung. Nach
Auswahl des zweiten Men�upunkts wird eine Liste mit Algorithmen angezeigt,
die vom Typ [art] sind. Aus dieser Liste kann der Benutzer einen Algorithmus
ausw�ahlen, wodurch dieser zum aktuellen Algorithmus seiner Art wird. Zu jeder
Art gibt es einen aktuellen Algorithmus, der ausgef�uhrt wird, wenn der Benut-
zer mit dem Men�upunkt eins eine Berechnung seiner Art startet. Die �ubrigen
Men�upunkte entsprechen den Erwartungen (siehe 5.4.1).

Nach dem Start eines Algorithmus wird entschieden, ob eine neue Einteilung
berechnet werden soll, oder ob eine schon bestehende Einteilung erweitert wird.
Ist die gew�ahlte Art inkrementell, so wird die aktuelle Einteilung erweitert. Han-
delt es sich um eine optimale oder heuristische Berechnung, so wird eine neue
Einteilung ge�o�net. Dazu wird der Benutzer gefragt

"
Aktuelle Einteilung

speichern? [J/n]\. Lautet die Antwort
"
j\, so wird sie gespeichert, anson-

sten wird sie verworfen. Nun wird eine neue Einteilung ge�o�net mit der Frage

"
Name der neuen Einteilung:\. Existiert der eingegebene Name schon, so er-
scheint die Fehlermeldung

"
Fehler 2: Dieser Name existiert schon!\ und

die Eingabeau�orderung wird wiederholt.

Alle Algorithmen �ubernehmen die markierten Fahrgemeinschaften der beim
Aufruf des Algorithmus aktuellen Einteilung. Diese Fahrgemeinschaften d�urfen
bei der Berechnung nicht aufgel�ost, sondern nur erweitert werden, falls noch
Pl�atze frei sind. Der Benutzer kann durch manuelle �Anderung der freien Pl�atze
die Erweiterbarkeit einer Fahrgemeinschaft einschr�anken (siehe 5.3.7.7). Durch
das markieren einer Fahrgemeinschaft kann der Benutzer erreichen, da� Fahr-
gemeinschaften aus der aktuellen Einteilung in der von einem Algorithmus neu
berechneten Einteilung wieder enthalten sind.

Zur Einteilungsberechnung werden die k�urzesten Wege zwischen allen Start-
und Zielorten ben�otigt. Deshalb wird vor dem Start des Einteilungsalgorithmus

�uberpr�uf ob diese bereits berechnet wurden. Falls dies nicht der Fall ist, werden
die k�urzesten Wege mit dem im Untermen�u Auswahl des Algorithmus in der
Wegsuche (siehe 5.3.10.3) eingestellten Algorithmus berechnet.

Dr�uckt man die Taste Esc bei einer laufenden Berechnung, so erscheint die Mel-
dung

"
Die Berechnung kann nicht wieder aufgenommen werden.\ und die

Frage
"
Wirklich abbrechen? [j/N]?\. Wird die Frage mit

"
j\ beantwortet,

so wird die Berechnung abgebrochen (und keine Daten zur Fortsetzung werden
gespeichert). Beantwortet man die Frage mit

"
n\, so wird sie fortgesetzt.

Nun wird die Berechnung gestartet, die durch Dr�ucken der Taste
"
u\ (wie unter-

brechen) unterbrochen werden kann. In diesem Fall werden alle zur Fortsetzung

5.3. FUNKTIONALE ANFORDERUNGEN 125

der Berechnung notwendigen Daten bei den zugeh�origen Personendaten abge-
speichert. Existieren schon Daten dieser Art, so werden sie �uberschrieben. Es
kann somit immer nur die zuletzt abgebrochene Berechnung fortgesetzt werden
(siehe Use Case 5.3.8.4). Ist die Laufzeitmessung eingeschaltet, so wird nach
Abschlu� der Berechnung die Laufzeit angezeigt.

5.3.8.4 Fortfahren mit letzter Berechnung

Durch Auswahl des Men�upunkts Vermittlung-Fortfahren mit letzter

Berechnung kann man eine unterbrochene Berechnung fortsetzen. Wurde zu-
vor keine Berechnung unterbrochen, d.h. be�ndet sich keine Information �uber
eine Berechnung in den Personendaten, so meldet das System

"
Es wurde noch

keine Berechnung durchgef�uhrt\ und kehrt ins Men�u zur�uck. Ansonsten l�adt
es die notwendigen Daten f�ur die Fortsetzung der Berechnung und f�ahrt mit der
letzten Berechnung fort. Diese kann wieder mit der Taste

"
u\ unterbrochen

werden (siehe 5.3.8.3).

5.3.8.5 Laufzeitmessung (ein/aus)

Der Men�upunkt Vermittlung-Laufzeitmessung (ein/aus) funktioniert wie
ein Wechselschalter. Bei Programmstart ist der Status per Default aus. Da zum
Zeitpunkt der Spezi�kation noch nicht bekannt ist, wie dieser Punkt realisiert
werden kann, gibt es hier mehrere M�oglichkeiten. Die erste M�oglichkeit hat bei
der Entwicklung h�ochste Priorit�at:

Volle Integration

Ist die Laufzeitmessung eingeschaltet, so wird bei weiteren Einteilungsberech-
nungen die Laufzeit nach Abschlu� der Berechnung angezeigt. Dieser Punkt hat
keine Auswirkungen auf das Verhalten der Laufzeitmessung im Men�u

"
Wegsu-

che\ (siehe Use Case 5.3.10.4).

Externe Laufzeitmessung

Das System zeigt dem Benutzer einen Informationstext an, in dem detailliert
beschrieben wird, mit welchem Werkzeug er eine Laufzeitmessung auf den Al-
gorithmen durchf�uhren kann.

5.3.8.6 Einteilung bewerten

Bei Auswahl des Men�upunkts Vermittlung-Einteilung bewerten wird die
Bewertungsfunktion auf die aktuelle Einteilung angewendet und das Ergebnis
dem Benutzer pr�asentiert.

126 KAPITEL 5. SPEZIFIKATION

5.3.8.7 Einteilung anzeigen

Nach Auswahl des Men�upunkts Vermittlung-Einteilung anzeigen erh�alt der
Benutzer eine Liste der Personen mit ihrem Namen, die nach Fahrgemeinschaf-
ten sortiert sind. Pa�t diese Liste nicht auf den Bildschirm, wird er nach jeder
Seite gefragt, ob er noch mehr sehen will oder nicht (siehe 5.4.1.7).

5.3.8.8 Einteilung au
�osen

W�ahlt der Benutzer den Men�upunkt Vermittlung-Einteilung

aufl�osen, so wird er gefragt
"
M�ochten Sie alle bis auf markierte

Fahrgemeinschaften aufl�osen? [j/N]\. Antwortet er mit
"
j\, so wird noch

gefragt:
"
Aktuelle Einteilung speichern? [J/n]\ Beantwortert er auch

diese Abfrage mit
"
j\, so werden alle bis auf markierte Fahrgemeinschaften

gel�oscht. Die aktuelle Einteilung besteht nun nur noch aus den markierten
Fahrgemeinschaften. Alle anderen Personen sind nun wieder zu vermitteln.

5.3.9 Bewertungsfunktionen

5.3.9.1 Aufbau der Bewertungsfunktion

Eingangsgr�o�en

Zun�achst eine Au
istung s�amtlicher Gr�o�en, die bei der Bewertung der G�ute
einer Fahrgemeinschaft eingehen:

1. Umweg des Fahrers (bei mehreren potentiellen Fahrern der kleinste), und
zwar relativ zu seinem alten Weg (vor Bildung der Fahrgemeinschaft)
(s.u.).

2. Arbeitszeiten: jede Person gibt ein Ankunfts- und ein Abfahrtsintervall
an; in diesen Intervallen mu� die tats�achliche Ankunfts- bzw. Abfahrtszeit
am Arbeitsplatz liegen. Bei der Abfahrt kann auch die Arbeitsdauer an-
gegeben werden; der fr�uheste Abfahrtszeitpunkt errechnet sich dann aus
Ankunftszeit plus Arbeitsdauer. In diesem Fall wird nur ein einseitig be-
schr�anktes Intervall betrachtet.

3. W�unsche der Personen (jeweils mit Gewicht):

� abgelehnte Musikrichtungen

� Geschlecht

� Raucher

� Komfortklasse des Autos

� weitere

Bei der Berechnung der Bewertungsfunktion wird f�ur jede Person der Fahr-
gemeinschaft gepr�uft, ob ihre W�unsche mit den anderen Personen in Kon-

ikt stehen. Dabei wird nur beachtet, ob ein Kon
ikt vorliegt oder nicht.

5.3. FUNKTIONALE ANFORDERUNGEN 127

Wieviele Personen nicht wunschgem�a� sind, wird dabei nicht betrachtet.
Jeder Wunsch tr�agt ein Gewicht zwischen 0 und 10 (unwichtig bzw. sehr
wichtig). W�unsche mit dem Gewicht 10 werden als absolut verbindlich
betrachtet, d.h. es wird keine Fahrgemeinschaft gebildet, in der dieser ver-
letzt w�urde.

4. Zu- und Abneigungen gegen�uber bestimmten Personen:

� Liste der erw�unschten Personen

� Liste der abgelehnten Personen

Bewertungsfunktion f�ur Fahrgemeinschaften

Sei P = fp1; : : : ; png die betrachtete Personenmenge, M = ff1; : : : ; fmg ei-
ne Einteilung in Fahrgemeinschaften fi = fpi1 ; : : : ; pijg mit 1 � j � 4.
W = fw1; : : : ; wkg sei die Menge der W�unsche,
1(p); : : : ;
k(p) 2 f0; 1; : : : ; 10g
die zugeh�origen Gewichte f�ur jede Person p. Die Bewertungsfunktion

 :M ! R
+ � [0; 1]� ([0; 1] [f1g)� [0; 1]2

bewertet eine Fahrgemeinschaft fi mit einem Quintupel von Prozentzahlen:

 (fi) = (U(fi); Z(fi); E(fi); Ne(fi); Na(fi))

F�ur jede Fahrgemeinschaft wird eine Mindestg�ute gefordert, d.h.
 (fi) � (Umax; Zmax; Emax; Ne;max; Na;max) 8fi 2M mit
Umax 2 R+ , Zmax; Emax; Ne;max; Na;max 2 [0; 1]. Die vier Teilfunktionen nun
im einzelnen:

1. U(fi) = minp2fi minalle Wege w mit Fahrer p U(p; w), wobei U(p; w) = d(w) �
d(sp; zp) den Umweg von Fahrer p beim Fahrgemeinschaftsweg w bezeich-
net. d(w) ist die L�ange des Weges w und d(sp; zp) ist die Wegl�ange zwi-
schen Start- und Zielort von p.

Alternativ zum Umweg des Fahrers k�onnte man auch die Di�erenz zwi-
schen den aufsummierten Einzelwegen der Teilnehmer vor Bildung der
Fahrgemeinschaft und dem Fahrgemeinschaftsweg betrachten, falls der

�okologische Aspekt wichtiger ist. Obige Umwegde�nition soll daf�ur sor-
gen, da� der Umweg f�ur den Fahrer sich in akzeptablen Grenzen h�alt.

2. Z(fi) = #verfehlteIntervalle
2�jfij 2 [0; 1]. Hier wird einfach gez�ahlt, wie oft

ein Ankunfts- oder Abfahrtsintervall nicht beachtet wurde (maximal 2 �
jfij mal).

3. E :M ! [0; 1] [1 mit

E(fi) =

8<
:

(
P

p2fi
Pk

j=1

j(p)

(p)
�K(p; j; fi)) � 1

k�jfij ; falls
j(p) �K(p; j; fi) 6= 10

; 8p 2 fi, 8j 2 f1; : : : ; kg
1; sonst

128 KAPITEL 5. SPEZIFIKATION

wobei
(p) =
Pk

j=1
j(p) gilt . Mit K(p; j; fi) wird �uberpr�uft, ob der
Wunsch wj von Person p mit der Fahrgemeinschaft fi in Kon
ikt steht
(K : P � f1; : : : ; kg �M ! [0; 1]):

K(p; j; fi) =

�
1; falls Wunsch wj von p in Kon
ikt mit fi
0; sonst

F�ur E(fi) ergibt sich derWert1 , falls ein Wunsch mit Gewicht 10 verletzt
wird. Diese Fahrgemeinschaft kommt dann auf jeden Fall nicht zustande.

4. Ne(fi) = 1� 1
(jfij�1)�jfij �

P
p2fi # erw�unschte Personen aus Sicht von p, Ne :

M ! [0; 1].
F�ur jede Person p der Fahrgemeinschaft wird die Anzahl der Personen in
fi summiert, die von p erw�unscht sind.

5. Na(fi) =
1

(jfij�1)�jfij �
P

p2fi # abgelehnte Personen aus Sicht von p,

Na :M ! [0; 1]. F�ur jede Person p der Fahrgemeinschaft wird die Anzahl
der Personen in fi summiert, die von p abgelehnt werden.

Bewertungsfunktion f�ur Einteilungen

Die Bewertung einer Einteilung M ergibt sich einfach durch Aufsummieren der
Bewertungen der einzelnen Fahrgemeinschaften:

 (M) = (U(M); A(M); E(M); Ne(M); Na(M))

mit

1. U(M) = 1
jMj �

P
fi2M U(fi) 2 R+

2. A(M) = 1
jMj �

P
fi2M I(fi) 2 [0; 1]

3. E(M) = 1
jMj �

P
fi2M E(fi) 2 [0; 1] [f1g

4. Ne(M) = 1
jMj �

P
fi2M Ne(fi) 2 [0; 1]

5. Na(M) = 1
jMj �

P
fi2M Na(fi) 2 [0; 1]

Auch hier wir wieder eine Mindestg�ute (M) � (UM
max; Z

M
max; E

M
max; N

M
e;max; N

M
a;max)

und eine minimale Anzahl von Fahrgemeinschaften, d.h. jM j minimal gefordert.

5.3.9.2 Neue Bewertungsfunktion anlegen

Durch Auswahl des Men�upunkt Bewertungsfunktionen-neu wird eine neue
Bewertungsfunktion angelegt. Nach Auswahl des Men�upunkts wird dem Benut-
zer eine Liste mit allen ge�o�neten Bewertungsfunktionen angezeigt. Dann wird
er aufgefordert den neuen Dateinamen anzugeben durch die Meldung

"
Neuer

Name:\. Gibt der Benutzer einen schon existierenden Namen ein, so wird die
Fehlermeldung

"
Fehler 2: Dieser Name existiert schon!\ angezeigt und

die Eingabeau�orderung wiederholt.

5.3. FUNKTIONALE ANFORDERUNGEN 129

An den Dateinamen wird vom System die Erweiterung .fkt angeh�angt, mit
der die Datei als Bewertungsfunktion gekennzeichnet wird. Nach Eingabe des
Namens kann der Benutzer wie in 5.3.9.3 die Parameter der neuen Bewertungs-
funktion anpassen.

5.3.9.3 Bewertungsfunktion �andern

Nach Auswahl des Men�upunkts Bewertungsfunktionen-�andernk�onnen die Pa-
rameter der aktuellen Bewertungsfunktion ver�andert werden. Die Parameter
werden mit Index pr�asentiert. W�ahlt man einen aus, wird der aktuelle Wert und
der m�ogliche Bereich angezeigt. Nicht korrekteWerte werden nicht angenommen
und es wird die Fehlermeldung

"
Fehler 1: Eingabe enth�alt unzul�assige

Zeichen oder ung�ultigen Bereich!\ angezeigt. Gibt man einen korrekten
Wert ein, wird dieser �ubernommen. Zum Verlassen dieses Punktes w�ahlt man
den Men�ueintrag Akzeptieren und Verlassen.

5.3.9.4 Bewertungsfunktion ausw�ahlen

Nach Auswahl des Men�upunkts Bewertungsfunktionen-ausw�ahlen wird eine
Liste aller ge�o�neten Bewertungsfunktionen angezeigt. Aus dieser Liste kann
der Benutzer eine Bewertungsfunktion ausw�ahlen, die dann zur aktuellen wird.

5.3.9.5 Bewertungsfunktion anzeigen

Nach Auswahl des Men�upunkts Bewertungsfunktionen-anzeigen werden die
Parameter der aktuellen Bewertungsfunktion am Bildschirm angezeigt.

5.3.10 Wegsuche

5.3.10.1 Einzelwegsuche

Mit dem Men�upunkt Wegsuche-Einzelwegsuche kann der Benutzer eine Weg-
suche von Stra�e A nach Stra�e B durchf�uhren, ohne dabei eine Fahrgemein-
schaft betrachten zu m�ussen. Nach Auswahl des Men�upunkts wird �uberp�uft, ob
�uberhaupt ein Verkehrsgraph geladen wurde. Wenn dies nicht der Fall ist, er-
scheint die Fehlermeldung

"
Fehler 8: Kein Verkehrsgraph geladen.\ und

der Vorgang wird abgebrochen. Wenn ja, wird eine Bildschirmmaske angezeigt,
in der die Start- und Zielstra�e eingegeben werden mu�. Dabei wird jeweils

�uberpr�uft, ob der Stra�enname mehrmals im System vorkommt. Ist dies der
Fall, wird eine Liste aller Stra�ennamen mit entsprechender ID anzeigt und der
Benutzer mu� zum Namen noch zus�atzlich die ID angeben. Wird nun die Frage

"
Wegsuche starten? [J/n]\ mit

"
j\ beantwortet, startet die Suche. Ist die Su-

che erfolgreich, erscheint der Text
"
Wegsuche erfolgreich. Route gefunden\

und die gefundene Route kann mit Hilfe einer Stra�enliste oder einem Verkehrs-
graphen angezeigt werden. M�ochte man einen Ausdruck von dieser Route haben,
so kann durch Dr�ucken der Taste

"
d\ eine PostScript-Datei erstellt werden.

130 KAPITEL 5. SPEZIFIKATION

Wenn sich im System �uberhaupt kein oder kein g�ultiger Verkehrsgraph be�ndet,
der zu den Stra�en pa�t, wird der gesamte Vorgang abgebrochen.

5.3.10.2 n-Wegesuche

Mit dem Men�upunkt Wegsuche-n-Wegesuche kann der Benutzer die Zeit an-
zeigen lassen, die der aktuelle Wegsuchealgorithmus zur Berechnung von allen
k�urzesten Wegen zwischen n zuf�allig gew�ahlten Paaren aus Start- und Zielor-
ten ben�otigt. Nach Auswahl des Men�upunkts wird �uberp�uft, ob �uberhaupt ein
Verkehrsgraph geladen wurde.

Wenn dies nicht der Fall ist, erscheint die Fehlermeldung
"
Fehler 8: Kein

Verkehrsgraph geladen.\ und der Vorgang wird abgebrochen. Sonst wird der
Benutzer aufgefordert die Zahl n einzugeben. Nach der Eingabe werden n We-
ge zwischen zuf�allig gew�ahlten Start- und Zielorten berechnet und die daf�ur
ben�otigte Laufzeit wird ausgegeben.

5.3.10.3 Auswahl des Algorithmus

Mit dem Men�upunkt Wegsuche-Auswahl des Algorithmus kann der Benutzer
einen Wegsuchealgorithmus aus einer Liste �uber einen Index ausw�ahlen. Der
ausgew�ahlte Algorithmus wird bei der Wegsuche in 5.3.10.1 und in 5.3.8.3 ver-
wendet.

5.3.10.4 Laufzeit

Der Men�upunkt Wegsuche-Laufzeit funktioniert wie ein Wechselschalter. Bei
Programmstart ist der Status per Default aus. Ist die Laufzeitmessung einge-
schaltet, so wird bei der n�achsten Wegsuche die Laufzeit nach Abschlu� der
Berechnung angezeigt. Dieser Punkt hat keine Auswirkungen auf das Verhalten
der Laufzeitmessung im Men�u Vermittlung (siehe Use Case 5.3.8.5).

5.3.10.5 Systemmeldungen: ein/aus

Der Benutzer m�ochte �uber den aktuellen Stand der Berechnung, durch
Bildschirmmeldungen, informiert werden. Dazu mu� der Men�upunkt
Wegsuche-Systemmeldungen: ein/aus einfach nur aufgerufen werden.
Dieser verh�alt sich wie ein Wechselschalter. Bei jedem Aufruf �andert sich der
Status und die aktuelle Einstellung wird am Bildschirm angezeigt. Danach
gelangt man automatisch in das Untermen�u zur�uck. Der Status hat keine
Auswirkungen auf die 'Systemmeldung: ein/aus' im Men�u Vermittlung (siehe
Use Case 5.3.8.2).

5.3.11 Voreinstellungen

Nach Anwahl des Men�upunkts Voreinstellungen hat der Benutzer die
M�oglichkeit, Pfade und Namen der beim Systemstart zu �o�nenden Dateien und

5.4. ANFORDERUNGEN AN EXTERNE SCHNITTSTELLEN 131

Default-Pfade anzugeben. Die m�oglichen Eingaben sind:

� Default-Pfad f�ur Personendateien

� Name der zu �o�nenden Personendatei

� Default-Pfad f�ur Verkehrsgraphen

� Name des zu �o�nenden Verkehrsgraphen

� Default-Pfad f�ur Bewertungsfunktionen

Wenn keine Datei ge�o�net werden soll, so wird kein Name sondern die Zei-
chenkette leer eingegeben. Die Zeichenkette leer als Pfad entspricht dem
Pfad n. Beim Beenden der Eingabe wird der Benutzer gefragt:

"
�Anderungen

speichern? [J/n]\.

Beim Beenden des Mobidick-Systems werden die in den Voreinstellungen ange-
gebenen Daten in der Datei voreinstellungen.mbd abgespeichert.

5.4 Anforderungen an externe Schnittstellen

5.4.1 Benutzungsschnittstelle

5.4.1.1 Men�upunkt Zur�uck

Wird dieser Men�upunkt gew�ahlt, wird das aktuelle Men�u verlassen und man
be�ndet sich eine Ebene h�oher.

5.4.1.2 Men�upunkt Hauptmen�u

Wird dieser Men�upunkt gew�ahlt, wird das aktuelle Men�u verlassen und man
be�ndet sich im Hauptmen�u.

5.4.1.3 Men�upunkt Hilfe

Wird dieser Men�upunkt aufgerufen, wird dem Benutzer ein Hilfetext pr�asentiert.
Er enth�alt Informationen dar�uber, wo man sich in der Men�ustruktur be�ndet,
wie man hierher kam, wohin man von hier aus gehen kann, was man in diesem
Men�u alles anw�ahlen kann und was dies bewirkt.

5.4.1.4 PostScript-Ausgabe

Einige angezeigte Daten kann man zum sp�ateren Drucken in eine PostScript-
Datei ausgeben lassen. Dazu dr�uckt man, wenn die entsprechenden Daten ange-
zeigt werden die Taste \d". Nun bekommt man eine Liste aller Dateien mit der

132 KAPITEL 5. SPEZIFIKATION

Endung \.ps" in dem aktuellen Verzeichnis angezeigt und erh�alt eine Eingabe-
au�orderung f�ur den Namen der Datei. W�ahlt man einen bereits existierenden
Namen aus, wird man gefragt

"
Datei existiert bereits. �Uberschreiben?

[j/N]\. Antwortet man mit \j", wird die Datei �uberschrieben und man sieht
wieder die Daten. Antwortet man mit \n", wird die Eingabeau�orderung wie-
derholt.

5.4.1.5 Markierter Eintrag

Eingestellte Auswahlmen�ueintr�age werden mit einem � vor der Nummer mar-
kiert. Wird bei einer solchen Auswahl anstelle einer Nummer die Return-Taste
gedr�uckt, wird der mit � markierte Eintrag ausgew�ahlt.

5.4.1.6 Escape

Durch Dr�ucken der Escape-Taste wird die aktuelle Bearbeitung einer Bild-
schirmmaske abgebrochen und der Ausgangszustand wird wieder hergestellt.
Danach gelangt man in das Men�u zur�uck, aus dem die Aktion gestartet wurde.

5.4.1.7 Darstellung von Listen

Aufgrund der L�ange kann die vollst�andige Darstellung einer Liste im aktuellen
Fenster zu Problemen f�uhren. Daher wird zun�achst eine Fensterseite angezeigt.
Beanwortet man nun die Frage

"
Weiter? [J/n/=]\ mit

"
j\, wird die n�achste

Fensterseite angezeigt. W�ahlt man die Alternative
"
n\, wird die Darstellung

abgebrochen und bei
"
=\ werden die restlichen Seiten ohne Unterbrechung aus-

gegeben.

5.4.1.8 Abfragen

Der Benutzer kann im System die Abfrage auf zwei Arten beantworten. Zum
einen durch Dr�ucken der zugelassenen Zeichen, dabei wird nicht auf die Gro�-
und Kleinschreibung geachtet und zum anderen durch Dr�ucken der Return-
Taste. Die Return-Taste l�ost dabei die Aktion aus, die dem Gro�buchstaben
entspricht.

5.4.1.9 Dialoge

Es gibt insgesamt drei verschiedene Arten von Dialogen, die auf unterschiedliche
Weise bedient werden.

Men�u: Nachdem das System gestartet wird, erscheint eine allgemeine Bild-
schirmanzeige, die eine Reihe von Auswahleintr�agen besitzt. Diese Ein-
tr�age k�onnen in der Kommandozeile, die sich unten am Bildschirmrand
be�ndet, �uber den entsprechenden Index angew�ahlt werden.

5.4. ANFORDERUNGEN AN EXTERNE SCHNITTSTELLEN 133

Abfrage von Einzeldaten: Ruft man eine Bildschirmanzeige mit Werten
zum ersten Mal auf, steht hinter jedem Eintrag ein Default-Wert. Will man
diesen Default-Wert �andern, mu� der entsprechende Index in der Kom-
mandozeile angew�ahlt werden. Danach kann der Wert eingegeben werden.
Entspricht dieser dem De�nitionsbereich, so wird der Wert �ubernommen
und in die Bildschirmanzeige eingef�ugt. Ansonsten mu� der Wert neu ein-
gegeben werden.

Abfrage von kompletten Datens�atzen: Ruft man eine Bildschirmanzeige
auf, in der komplette Datens�atze eingegeben werden m�ussen, so erfolgt
eine automatische Abfrage der einzelnen Felder. Am Ende wird der kom-
plette Datensatz pr�asentiert und durch Beantworten der Frage:

"
Alles

Korrekt? [J/n]\ mit
"
j\, wird der Datensatz ins System aufgenommen.

Wenn nein, werden die Abfragen nochmals durchgegangen. Unterschied
zu voher ist, da� der Wert vom vorherigen Durchlauf in der Bildschir-
manzeige steht und nur noch dort ge�andert werden mu�, wo ein Fehler
ist.

5.4.2 Hardwareschnittstellen

5.4.2.1 Drucken

Folgende Daten k�onnen in einer PostScript-Datei abgelegt werden:

� Ergebnis der Suche mit Personen�lter

� Ergebnis der Suche mit Fahrgemeinschaften�lter

� Ergebnis der Wegsuche (textuell)

� Einteilung als Personenliste

5.4.2.2 Sekund�arspeicher

Das System Mobidick verwendet folgende Dateien:

� Personendaten mit zugeh�origen Einteilungen: Endung .per

� Verkehrsgraphen: Endung .gra

� Parametereinstellung f�ur Bewertungsfunktion: Endung .fkt

� Log�le f�ur Systemmeldungen bei Weg- und Einteilungsberechnung: En-
dung .log

� Die Datei voreinstellungen.mbd, in der die Voreinstellungsparameter
enthalten sind.

Die entsprechenden Dateiformate werden im Entwurf festgelegt. Bei allen Lade-
und Speicheroperationen m�ussen Name und Pfad frei w�ahlbar sein.

134 KAPITEL 5. SPEZIFIKATION

5.4.3 Softwareschnittstellen

Das System Mobidick kommuniziert mit einem externen Graphenviewer, dies
ist in 5.5.4 beschrieben.

5.5 Leistungsanforderungen

Das System Mobidick ist f�ur den Einbenutzerbetrieb ausgelegt und l�auft auf
einem Terminal.

5.5.1 Dateien

Das System soll mit beliebig vielen Einteilungs-, Verkehrsgraphen- und Bewer-
tungsfunktionsdateien umgehen k�onnen. Bei den Verkehrsgraphen sollte das
Stadtgebiet von Stuttgart verarbeitet werden k�onnen.

5.5.2 Daten im Hauptspeicher

Es wird immer nur ein Verkehrgraph im Hauptspeicher gehalten. Personen-,
Einteilungs- und Bewertungsfunktionsdaten k�onnen solange angelegt werden,
bis der Speicher voll ist.

5.5.3 Antwortzeiten

Die folgenden Funktionen sollen interaktiv und dementsprechend schnell sein:

� Personen�lter

� Filter f�ur Fahrgemeinschaften

� Bewertung einer Fahrgemeinschaft

� Bewertung einer Einteilung

� Suchen einer Fahrgemeinschaft beim manuellen Einf�ugen

� Wegsuche auf dem hierarchischen Graphen

F�ur die optimale, heuristische und inkrementelle Berechnung von Einteilungen
mu� mit l�angeren Berechnungszeiten (Stunden, Tage) gerechnet werden.

5.6. ZUK�UNFTIGE ERWEITERUNGEN 135

5.5.4 Entwurfseinschr�ankungen

Das System Mobidick mu� auf dem Rechner tagetes des Rechnerpools der Abtei-
lung Formale Konzepte unter Solaris 5.4 laufen. Als Programmiersprache wird
C++ verwendet, und zwar die aktuelle Version des gnu-Compilers.

Da bereits ein Graphenviewer zur Anzeige von Verkehrsgraphen in C++ imple-
mentiert wurde, mu� dieser in die Entwurfs�uberlegungen einbezogen werden. Da
dieser als eigenst�andiges Programm bestehen bleiben soll, mu� eine Kommunika-
tionsschnittstelle zwischen beiden Programmen festgelegt werden. Zur Anzeige
von k�urzesten Wegen m�ussen die entsprechenden Daten an den Graphenviewer

�ubergeben werden.

Zun�achst wird nur eine auf Text basierende Benutzungsober
�ache implemen-
tiert, eine graphische Ober
�ache erscheint f�ur einen Prototypen zu aufwendig.

An Verkehrsdaten liegt uns bisher der Stadtplan von Stuttgart im GDF-Format
vor (GDF-Version 2.1). F�ur die Umwandlung der GDF-Daten in eine Verkehrs-
graphendatei wurde ein Perlskript implementiert. Daf�ur wurde ein vorl�au�ges
Verkehrsgraphenformat festgelegt. F�ur das Konvertierungsprogramm wird noch
eine Dokumentation erstellt, in der Quell-, Zielformat und die Umwandlung
beschrieben werden.

5.5.5 Attribute

Da es sich um einen Prototyp handelt, wird nichts zur Verf�ugbarkeit und zur Si-
cherheit ausgesagt. Die Wartbarkeit wird durch noch festzulegende Codierungs-
und Entwurfsrichtlinien erreicht. Die Portabilit�at wird durch folgende Ma�nah-
men erleichtert:

� ausschlie�liche Verwendung von �uberall verf�ugbaren C++-Bibliotheken

� separate Module f�ur die Programmteile, die auf Bildschirm und Dateien
zugreifen.

5.6 Zuk�unftige Erweiterungen

Wochentage: Jeder Teilnehmer kann f�ur jeden Wochentag eine andere Ar-
beitszeit angeben. Beispiel: Mo 9.00-17.00 Uhr, Di 8.00-16.00 Uhr, Mi
10.00-13.00 Uhr.

Hin- oder R�uckfahrt: Der Teilnehmer kann angeben, ob er mit der Fahrge-
meinschaft beide Wege oder nur einen Weg fahren will.

Statistische Angaben: Der Benutzer kann statistische Daten �uber das FGM-
System erfahren. Beispielweise die Auslastung der Fahrzeuge, die durch-
schnittliche Personenzahl einer FGM und weitere mehr.

Zwischenpunkte bei der Wegsuche: Der Teilnehmer kann zus�atzliche Stra-
�ennamen angeben, die bei der Wegsuche ber�ucksichtigt werden und auf
jeden Fall in der Route enthalten sind.

136 KAPITEL 5. SPEZIFIKATION

Verkn�upfungen: Der Benutzer m�ochte eine Liste aller reservierten Personen.
Danach w�ahlt er eine Person aus. Dabei besteht die M�oglichkeit die ent-
sprechende FGM der Person, mit allen anderen Teilnehmern, anzeigen zu
lassen.

Sammelpunkte: Man m�ochte Orte angeben, an denen sich Teilnehmende einer
FGM tre�en, um von dort loszufahren, oder sich nach dem Ankommen zu
zerstreuen.

Graphische Benutzungsober
�ache: Das System besitzt eine graphische Be-
nutzungsober
�ache (Fenster, Pulldown-Men�us usw.) und kann mit Hilfe
einer Maus gesteuert werden.

5.7 Systemmeldungen

5.7.1 Meldungen

�
"
�Anderungen f�ur Fahrgemeinschaftsbildung relevant\ (5.3.6.1)

�
"
Person ist Fahrer, l�oschen f�uhrt zur Aufl�osung einer

Fahrgemeinschaft\ (5.3.6.1)

�
"
Teilnehmer schon fest eingetragen!\ (5.3.7.4)

�
"
Vorsicht. Durch Loeschen des Fahrers wird die

Fahrgemeinschaft aufgel�ost\ (5.3.7.5)

�
"
Die Berechnung kann nicht wieder aufgenommen werden\ (5.3.8.3)

�
"
Es wurde noch keine Berechnung durchgef�uhrt\ (5.3.8.4)

�
"
Wegsuche erfolgreich. Route gefunden\ (5.3.10.1)

5.7.2 Fragen

�
"
Personendatei <Name> vor dem Beenden speichern? [J/n]\
(5.3.4)

�
"
Neuer Name:\ (5.3.5.1)

�
"
Personendatei <Name> vor dem Erstellen der neuen Datei

speichern? [J/n]\ (5.3.5.1)

�
"
Name existiert schon, trotzdem abspeichern und vorhandene

Datei �uberschreiben? [j/N]\ (5.3.5.1, 5.3.5.4, 5.3.5.8, 5.3.5.9, 5.3.5.13)

�
"
Personendatei <Name> vor dem Laden der anderen Datei

speichern? [J/n]\ (5.3.5.2)

�
"
Datei vor dem Schlie�en speichern? [J/n]\ (5.3.5.5)

5.7. SYSTEMMELDUNGEN 137

�
"
Bewertungsfunktion <Name> vor dem Schlie�en speichern?

[J/n]\ (5.3.5.5)

�
"
Name:\ (5.3.5.6)

�
"
Einteilung wirklich l�oschen? [j/N]\ (5.3.5.10)

�
"
Person wirklich �ubernehmen? [J/n]\ (5.3.6.1)

�
"
�Anderungen vornehmen und Person aus den betroffenen

Fahrgemeinschaften l�oschen? [J/n]\ (5.3.6.1)

�
"
�Anderungen vornehmen und Fahrgemeinschaft aufl�osen? [J/n]\
(5.3.6.1)

�
"
Person wirklich l�oschen? [J/n]\ (5.3.6.1)

�
"
Haben Sie die alte Personenmenge gesichert? [j/N]\ (5.3.6.1)

�
"
Personenmenge �ubernehmen? [J/n]\ (5.3.6.1)

�
"
Tabelle in PostScript-Datei ausgeben? [j/N]\ (5.3.6.1)

�
"
Person in Fahrgemeinschaft aufnehmen? [J/n]\ (5.3.7.3, 5.3.7.3)

�
"
Fahrgemeinschaft �ubernehmen? [J/n]\ (5.3.7.3, 5.3.7.3, 5.3.7.6)

�
"
Teilnehmer fest eintragen? [J/n]\ (5.3.7.4)

�
"
Person aus Fahrgemeinschaft l�oschen? [J/n]\ (5.3.7.5)

�
"
Fahrer l�oschen? [j/N]\ (5.3.7.5)

�
"
Person als Fahrer �ubernehmen? [J/n]\ (5.3.7.6)

�
"
Weiteren Teilnehmer eintragen? [J/n]\ (5.3.7.6)

�
"
Neuer Fahrer: Fahrtroute neu berechnen? [j/N]\ (5.3.7.7)

�
"
Fahrgemeinschaft aufl�osen? [J/n]\ (5.3.7.8)

�
"
Fahrgemeinschaft ist markiert. Wirklich aufl�osen? [j/N]\
(5.3.7.8)

�
"
Weitere Fahrgemeinschaft bewerten? [J/n]\ (5.3.7.9)

�
"
Markieren oder Unmarkieren? [M/u]\ (5.3.7.11)

�
"
Fahrgemeinschaft markieren? [J/n]\ (5.3.7.11)

�
"
Fahrgemeinschaft unmarkieren? [J/n]\ (5.3.7.11)

�
"
G�ute bez�uglich der Fahrgemeinschaftenanzahl? [<min]FGM> -

<max]FGM>]\ (5.3.8.3)

�
"
G�ute bez�uglich der Bewertung? [<min Bewertung> - <max

Bewertung>]\ (5.3.8.3)

�
"
Aktuelle Einteilung speichern? [J/n]\ (5.3.8.3)

138 KAPITEL 5. SPEZIFIKATION

�
"
Name der neuen Einteilung:\ (5.3.8.3)

�
"
Wirklich abbrechen? [j/N]?\ (5.3.8.3)

�
"
M�ochten Sie alle bis auf markierte Fahrgemeinschaften

aufl�osen? [j/N]\ (5.3.8.8)

�
"
Wegsuche starten? [J/n]\ (5.3.10.1)

�
"
�Anderungen speichern? [J/n]\ (5.3.11)

�
"
Datei existiert bereits. �Uberschreiben? [j/N]\ (5.4.1.4)

�
"
Weiter? [J/n/=]\ (5.4.1.7)

�
"
Alles Korrekt? [J/n]\ (5.4.1.9)

5.7.3 Fehler

�
"
Fehler 1: Eingabe enth�alt unzul�assige Zeichen oder

ung�ultigen Bereich!\ (5.3.9.3)

�
"
Fehler 3: Adresse nicht im Verkehrsgraphen vorhanden\
(5.3.6.1)

�
"
Fehler 4: Kante nicht im Verkehrsgraphen vorhanden\ (5.3.6.1)

�
"
Fehler 5: Obere Grenze kleiner untere Grenze\ (5.3.6.1)

�
"
Fehler 6: Person bereits vorhanden\ (5.3.6.1)

�
"
Fehler 7: Person nicht in Liste vorhanden\ (5.3.6.1)

�
"
Fehler 8: Kein Verkehrsgraph geladen\ (5.3.10.1)

Kapitel 6

Grobentwurf

In diesem Kapitel wird der Stand des Entwurfes zum Zeitpunkt des Zwischen-
berichts dargestellt. Ausgehend von einem Grobentwurf wurden Teilgebiete mit
Verantwortlichkeiten festgelegt. Den groben Aufbau des Systems ersieht man
aus Abb. 6.1.

Bewertungsverwalter

Fuersorger

Personenverwalter Einteilungsverwalter

Graph Algorithmenverwalter

Datei_Auswahl Menueverwalter

Doktor Lader/Speichereralle "grossen" Objekte

Abb. 6.1: Der Grobaufbau des Systems

Die Teilgebiete und die Verantwortlichen sind:

� Men�uverwalter und Doktor : Daniela Nicklas

� Algorithmenverwalter und Bewertungsverwalter : Herbert Heid und Volker
Scholz

� Personenverwalter und Einteilungsverwalter : Thomas Sch�a�er

� F�ursorger, Datei-Auswahl und Lader/Speicherer : Alexander Porrmann

139

140 KAPITEL 6. GROBENTWURF

6.1 Men�uverwalter und Doktor

Die Kontroll
u� w�ahrend des Programmlaufes liegt haupts�achlich beim
Men�uverwalter. Dies erm�oglicht ein leichtes Austauschen der textuellen durch
eine graphische Ober
�ache. Der Doktor enth�alt Warnungen und Fehlermeldun-
gen im Klartext, diese werden von den Men�us auf dem Bildschirm ausgegeben.
Bei einem Fehler wird ein entsprechender Fehlercode als R�uckgabewert geliefert,
den das Men�u dann behandelt, indem es den Text aus dem Doktor ausliest,
ausgibt und sich dem Fehler entsprechend verh�alt. Im Doktor k�onnen auch die
Systemmeldungen abgelegt werden.

6.2 Algorithmenverwalter und Bewertungsver-

walter

Hier liegt der Knackpunkt des Entwurfes. Die Algorithmen zur Wegsuche und
zur Berechnung von Einteilungen m�ussen verwaltet werden und ein Zugri� auf
die entsprechenden Daten gew�ahrleistet sein. Hauptpunkt ist hier, sich eine pas-
sende Form f�ur die Algorithmen und den Ablauf der Berechnungen zu �uberlegen.
Das Ausprogrammieren der einzelnen Algorithmen wird dann sp�ater von Un-
tergruppen �ubernommen. Der Bewertungsverwalter �ubernimmt die Verwaltung
der Bewertungsfunktionen zur Bewertung von Fahrgemeinschaften und Eintei-
lungen.

6.3 Personenverwalter und Einteilungsverwal-

ter

Diese beiden Verwalter wachen �uber die Daten des Systems. Abgespeichert wer-
den haupts�achlich Personen- und Einteilungsdaten. Dies ist wohl der am wenig-
sten komplexe, aber arbeitsaufwendigste Teil.

6.4 F�ursorger, Datei-Auswahl und La-

der/Speicherer

Der F�ursorger ist die Schnittstelle zwischen dem Men�uverwalter und dem Rest
des Systems. Er verteilt die Nachrichten und speichert einige Systemeinstellun-
gen. Das gew�ahrleistet die M�oglichkeit, sp�ater ein Framework f�ur die graphi-
sche Ober
�ache zu verwenden, ohne die Systemstruktur zu �andern. Die Datei-
Auswahl ist ein Hilfswerkzeug f�ur den Filedialog. Der Lader/Speicherer bedient
sich der Voreinstellungen und stellt einen konsistenten Anfangszustand beim
Programmstart her.

Anhang A

Glossar

Arbeitszeiten Anfangs- und Endzeit der Arbeit bzw. Intervalle bei Gleitzeit.

Attribute einer Person sind Eigenschaften, Pr�aferenzen, Verwaltungsdaten,
die mit einer Person verbunden sind.

automatisches Hilfesystem kontextsensitive Hilfe, die in jeder Situation zur
Verf�ugung steht. In unserem Fall durch den Men�upunkt Hilfe.

Benutzer meint Benutzer oder Benutzerin des FGM-Systems.

Bewertungsfunktion h bewertet eine Einteilung, bzw. eine Fahrgemein-
schaft. Sie verwendet den Umweg, Pr�aferenzen und Neigungen.

Datenstatus einer Person ist vollst�andig oder unvollst�andig.

Eigenschaften der Person gewichtete, erweiterbare Eigenschaften, minde-
stens: Geschlecht, Raucher oder Nichtraucher, Musikgeschmack.

Eingabeschnittstelle die Schnittstelle zur interaktiven Eingabe von Daten
und Dateischnittstelle.

Einteilung siehe Fahrgemeinschaftseinteilung.

entkoppelt vom System als Modul in anderen Programmen einsetzbar

Erweiterbarkeit des Systems hei�t klare Festlegung der Algorithmen-
schnittstellen zum einfachen Austausch.

explizite Zu- und Abneigung Funktionen, die einer Person eine Menge von
Personen zuordnen Z(P1) = fP4; P7; P3g; A(P1) = fP2; P3g, wobei Z(P)\
A(P) = ;. Zuneigung hat man zu den Personen, mit denen man auf jeden
Fall in einer Fahrgemeinschaft mitfahren m�ochte. Abneigung analog.

Fahrer einer Fahrgemeinschaft ist die Person, die das Auto f�ahrt, mit dem die
Teilnehmer der Fahrgemeinschaft reisen.

Fahrgemeinschaft ist eine Gruppe von Personen, die mit einem Fahrzeug
einen gemeinsamen Weg zur�ucklegt.

141

142 ANHANG A. GLOSSAR

Fahrgemeinschaftseinteilung ist die Aufteilung des Personenstammes
gem�a� einer Bewertungsfunktion in Fahrgemeinschaften, wobei nicht alle
Personen eingeteilt werden m�ussen.

FGM Abk�urzung f�ur Fahrgemeinschaft.

FGM-System das System, das zum Finden und Verwalten von Fahrgemein-
schaften von der Projektgruppe erstellt wird.

Generierung von Personen Zuf�allige, wahrscheinlichkeitsverteilte Generie-
rung von Personendaten, bei der einzelne Verteilungen angegeben werden
k�onnen.

Grapheneditor dient der Visualisierung des Verkehrsgraphen, stellt Aus-
schnitte dar.

GDF Geographic Data File, digitales Format zur Darstellung von Verkehrsda-
ten (Ausgangsinformation unseres Systems).

heuristische Partitionierung Die Personen werden entsprechend der Bewer-
tungsfunktion in Fahrgemeinschaften aufgeteilt. Dies geschieht mit Hilfe
von Heuristiken.

hierarchische Graphen Level- oder Regionengraphen zur e�zienten k�urzeste
Wege-Berechnung.

Intervall bez�uglich der Gleitzeit ein Zeitraum, in dem die Arbeitszeit beginnt
oder endet, z.B. [800-930].

Kommentare Ausgabe von Programmlau�nformationen, falls Systemmeldun-
gen eingeschaltet sind.

k�urzeste Entfernung nach Wegstrecke k�urzeste Entfernung zwischen zwei
Knoten bzw. Kanten.

k�urzeste Weg-Suche Algorithmen zum Finden k�urzester Wege zwischen aus-
gew�ahlten Knoten bzw. Kanten.

Laufzeitmessung Messung der e�ektiven Laufzeiten bestimmter Komponen-
ten des Systems.

Levelgraph Graph aus mehreren Ebenen, bei dem z.B. verschiedene Stra�en-
typen auf verschiedenen Leveln liegen (Level 0: Feldwege, Level 1: Ge-
meindestra�en, Level 2: Bundesstra�en, Level 3: Autobahnen).

Markierung von Fahrgemeinschaften kann gesetzt oder nicht gesetzt sein.
Ist eine Fahrgemeinschaft markiert, mu� man sie zum Au
�osen freigeben.
Ist eine Fahrgemeinschaft nicht markiert, kann sie problemlos aufgel�ost
werden.

Pr�aferenzen Zu- und Abneigungen hinsichtlich bestimmter Eigenschaften, die
in die Bewertungsfunktion eingehen.

Programmausgabe bezieht sich auf die Anfragen, die das System beantwor-
ten kann, die Ausgabe von Personendaten und das Anzeigen des Verkehrs-
graphen.

143

Regionengraph Graph auf mehreren Ebenen, wobei Knoten Regionen ent-
sprechen und Teilmengen von Knoten der n�achst niedrigeren Ebene re-
pr�asentieren.

reserviert hei�t ein Platz, wenn eine Person einer Fahrgemeinschaft zugeord-
net ist, jedoch noch nicht gekl�art ist, ob sie dort auch wirklich mitf�ahrt.

Start- und Zielort der FGM der Start- und Zielknoten des Fahrers bzw. die
Start- und Zielkoordinaten des Fahrers. Der Fahrer wohnt meistens an
einer Stra�e (Kante). Zum einfacheren Umgang kann man die Koordinaten
jedoch auf Knoten reduzieren. Die Knoten sind dann die den Koordinaten
am n�achsten liegenden Stra�engraphknoten.

Start- und Zielort der Person der Start- und Zielknoten einer Person bzw.
die Start- und Zielkoordinaten einer Person.

Status einer Person kann fest eingetragen, reserviert eingetragen oder ver-
mittelbar sein.

Systemmeldungen Modus, in dem das System laufen kann und dann Kom-
mentare zum aktuellen Stand an den Benutzer ausgibt.

Teilnehmer ist eine Person, deren Daten im System FGM erfa�t sind.

Teilnehmer einer Fahrgemeinschaft ist eine Person, die einer Fahrgemein-
schaft zugeordnet ist. Ihr Status ist dabei reserviert eingetragen oder fest
eingetragen.

Umweg einer FGM ist der nach Wegstrecke berechnete zus�atzliche Weg. Er
berechnet sich aus der L�ange des k�urzesten Weges des Fahrers einer Fahr-
gemeinschaft und dem Fahrtweg, den der Fahrer mit der Fahrgemeinschaft
zur�uckzulegen hat.

Unterbrechung des Programmlaufes Bei der Berechnung der Einteilung
kann der Benutzer das System stoppen. Anschlie�end kann an der ab-
gebrochenen Stelle fortgefahren werden.

Verkehrsgraph ist der einer Stra�enkarte entsprechende Graph mit Kanten-
gewichten.

Wegstrecke ist die von einem Knoten zu einem anderen Knoten im Verkehrs-
graphen zur�uckzulegende Wegstrecke in km oder m.

Anhang B

Konvertierung von

Verkehrsdaten

B.1 Einleitung

Zur Berechnung k�urzester Wege bei der Zusammenstellung von Fahrgemein-
schaften ben�otigt man reale Stra�enverkehrsdaten.Mittlerweile liegen diese auch
in elektronischer Form vor und werden z.B. in Autocopiloten (Navigationshilfen)
verwendet. Vom Institut f�ur Photogrammetrie wurde uns ein GDF-Datensatz
f�ur das Stadtgebiet von Stuttgart zur Verf�ugung gestellt (Stand 1993). GDF
steht f�ur Geographic Data File und ist ein europ�aischer Standard f�ur Stra�en-
verkehrsdaten, der von Autoherstellern erarbeitet wurde. Zur weiteren Verwen-
dung im Projekt wurden die relevanten Teile aus den Daten extrahiert und in
ein eigenes Graphenformat gebracht.

Zun�achst erfolgt eine Beschreibung des Quellformats (GDF) und des Zielfor-
mats (Graphenformat). Danach wird kurz die Implementierung des Konverters
erl�autert und auf die Visualisierung der Daten eingegangen. Im letzten Abschnitt
erfolgt eine Au
istung der wichtigsten Recordformate in GDF.

B.2 GDF-Format

Die zur Verf�ugung gestellten Daten lagen in GDF-Version 2.1 vor, f�ur die schon
eine umfangreiche Dokumentation existiert (siehe [5]). Nach ein paar allgemei-
nen Bemerkungen werden hier nur die f�ur die Konvertierung relevanten Teile
beschrieben.

GDF liegt als ASCII-File vor und besteht aus verzeigerten Records, die wich-
tigsten Unterklassen sind Roadelement Records (Stra�ensegmente), Junction
Records (Kreuzungen), Edge (Kanten), Node (Knoten) und XY-coordinate
Records (Koordinateninformation). Abb. B.1 zeigt die Verzeigerung dieser
Hauptrecordtypen. Roadelements und Junctions sind den geometrischen Ele-

144

B.2. GDF-FORMAT 145

menten (Edges und Nodes) �ubergeordnet, die sich wiederum beide auf XY-
Koordinaten beziehen. Stra�ensegmente k�onnen mit Attributen (s.u.) und Na-

Roadelement-ID

To-Junction-ID
Edge-ID

Attribute-ID
Name-ID

From-Junction-ID

Roadelement-Record

XY-ID
To-Node-ID

From-Node-ID

Edge-ID

Edge-Record

XY-ID

Yn: ...
Xn: ...

X1: ...
Y1: ...

XY-coordinate-Rec

Junction-ID

Junction-Record

Node-ID

XY-ID

Node-ID

Node-Record

Abb. B.1: Die wichtigsten Recordtypen und ihre Verzeigerung

men versehen werden; dazu dienen Segmented Attribute Records und Name Re-
cords. Zur Erfassung von Abbiegeverboten gibt es schlie�lich Prohibited Turn
Records, eine Unterklasse der Relationship Records.

In Abschnitt B.6 sind die Formate dieser Recordtypen aufgelistet, jedes Re-
cordfeld ist durch einen Index mit einer L�angenangabe versehen, dabei steht *
f�ur ein Feld beliebiger L�ange. fg� zeigt an, da� ein Feld auch wiederholt auf-
treten kann, in solchen F�allen wird vorher die Anzahl der Wiederholungen in
einem NUM-Feld angegeben. Zi�ernfolgen deuten darauf hin, da� der Inhalt
des betre�enden Feldes fest ist. Die wichtigsten Recordfelder werden f�ur jeden

146 ANHANG B. KONVERTIERUNG VON VERKEHRSDATEN

Recordtyp kurz erl�autert.

Im GDF-Format sind nur Zeilen mit einer maximalen L�ange von 80 Zeichen
(plus eines oder zwei f�ur den Zeilenumbruch) zugelassen, lange Records werden
also umgebrochen und mit einer Umbruchmarkierung versehen.

Folgende Attribute der Stra�ensegmente wurden aus den Daten extrahiert:

� Stra�enname

� Einbahnstra�en

� Functional Road Class: hier werden die Stra�en nach Wichtigkeit klassi�-
ziert, laut Dokumentation gibt es folgende Stra�enklassen:

{ Klasse 0: Autobahn

{ Klasse 1: Bundesstra�e

{ Klasse 2: Hauptstra�e

{ Klasse 3: Nebenstra�e

{ Klassen 4+5: befestigter Fahrweg

{ Klassen 6-8: undokumentiert, u.a. auch Fu�g�angerzonen

� Stra�ennummer (z.B. B10, E52 falls vorhanden)

Abbiegeverbote liegen als dreistellige Relation zwischen Einfahrtsstra�e, Kreu-
zung und Ausfahrtsstra�e vor.

B.3 Graphenformat

Als vorl�au�ges Graphenformat wurde drei Dateiformate f�ur die Knoten, Kanten
und Abbiegeverbote des Graphen festgelegt. Die Knoten werden mit ID, x- und
y-Koordinate abgespeichert:

node id x-coord y-coord

Die Kanten werden ebenfalls als einfache Kantenliste mit den entsprechenden
Attributen abgelegt:

edge id source id target id length road class direction road no. name

Source id und target id beschreiben die inzidenten Knoten und die Richtung
der Kante edge id, mittels direction werden die m�oglichen Durchfahrtsrichtun-
gen durch diese Kante angegeben (1=beide, 2=positive, 3=negative Richtung,
bezogen auf die Kantenrichtung). Length gibt die L�ange der Kante in Metern
an, die restlichen Felder stehen f�ur Stra�enklasse, Stra�ennummer und Stra�en-
namen.

Die Abbiegeverbote werden als dreistellige Relation zwischen Kreuzung,
Einfahrts- und Ausfahrtsstra�e abgespeichert:

junction id from edge id to edge id

B.4. UMWANDLUNG 147

B.4 Umwandlung

Zur Umwandlung wurden Perl-Skripte implementiert, mit denen die Verzeige-
rung in assoziativen Arrays im Hauptspeicher aufgebaut wurde. Zur Darstel-
lung des Graphen in der Ebene war noch eine kartographische Projektion n�otig,
deswegen wurde die in GDF vorliegenden geographischen Koordinaten (L�ange,
Breite) in Gau�-Kr�uger-Koordinaten umgerechnet (konforme Abbildung, siehe
[7]). Somit tr�agt jeder Knoten des Graphen eine x- und y-Koordinate in der
Einheit Meter.

B.5 Visualisierung der Daten

Zur Darstellung des Verkehrsgraphen im Graphenformat wurde von Dirk Farin
das Programm GraphView implementiert. Dieses erlaubt die Darstellung belie-
biger Ausschnitte des Verkehrsgraphen, die Stra�enklassen haben unterschiedli-
che Farben und k�onnen selektiv ein- und ausgeschaltet werden. Die Suche nach
Stra�ennamen ist ebenfalls m�oglich.

B.6 Recordformate

� Roadelement (Line Feature Record):

382 LIFE ID10 DESC ID5 41104 NUM EDGE5 fEDGE ID10

POS NEG2g
� NUM ATT5 SATT ID10 NUM NAME2 NAME ID10

FROM ID10 TO ID10

{ LIFE ID: ID des Roadelements

{ NUM EDGE: Anzahl der Edges, die zu diesem Roadelement
geh�oren

{ EDGE ID, POS NEG: Zeiger auf Edges, relative Orientierung der
Edge zu Roadelement

{ NUM ATT : Anzahl der zugeh�origen Attribute Records

{ SATT ID: Zeiger auf Attribute Record

{ NUM NAME, NAME ID: Anzahl Namen, Zeiger auf Name Re-
cord

{ FROM ID, TO ID: Zeiger auf angrenzende Junctions (from, to)

� Edge Record:

282 EDGE ID10 XY ID10 FKNOT ID10 TKNOT ID10

LFACE ID10 RFACE ID10

{ EDGE ID: ID dieser Edge

{ XY ID: Zeiger auf XY-coordinate Record, der die Zwischenpunkte
dieser Edge enth�alt

148 ANHANG B. KONVERTIERUNG VON VERKEHRSDATEN

{ FKNOT ID, TKNOT ID: Zeiger auf angrenzende Nodes (from,
to)

� New Node Record:

252 KNOT ID10 XY ID10 FACE ID10 STATUS2

{ KNOT ID: ID dieses Nodes

{ XY ID: Zeiger auf XY-coordinate Record, der Nodekoordinaten
enth�alt

� XY-coordinate Record:

222 XY ID10 G TY PE1 Q PLAN2 DESC ID5 NUM COORD5

fX COORD10 Y COORD10g
�

{ XY ID: ID dieses XY-coordinate Records

{ NUM COORD: Anzahl Koordinaten in diesem Record

{ X COORD, Y COORD: geographische L�ange, Breite

� Junction (Point Feature Record):

372 POINT ID10 DESC ID5 41204 NUM KNOT5 fKNOT ID10g
�

NUM ATT5 fSATT ID10g
� NUM NAME2 fNAME ID10g

�

{ POINT ID: ID dieser Junction

{ NUM KNOT : Anzahl der Nodes, die zu dieser Junction geh�oren

{ KNOT ID: Zeiger auf zugeh�origen Node

{ NUM ATT , SATT ID: Anzahl Attribute Records, Zeiger auf At-
tribute Record

{ NUM NAME, NAME ID: Anzahl Namen, Zeiger auf Name Re-
cord

� Segmented Attribute Record:

432 SATT ID10 FROM5 TO5 NUM ATT5 ATT TY PE2

DESC ID5 ATT V AL10

{ SATT ID: ID diese Attribute Records

{ NUM ATT : Anzahl der Attribute, die in diesem Record abgelegt
sind

{ ATT TY PE, ATT V AL: Attributtyp (Attribute Type Code), At-
tributwert (Attribute Value Code)

{ Attribute Type Codes mit zugeh�origen Attribute Value Codes:

{ DF = Direction of Tra�c Flow, 1 = both, 2 = positive, 3 = negative,
4 = none

{ RN = Route Number (z.B. B10, E52)

{ FC = Functional Road Class, Klassen 0-8 (s.o.)

� Name Record:

412 NAME ID10 DESC ID5 LAN CODE3 TEXT�

B.6. RECORDFORMATE 149

{ NAME ID: ID dieses Name Records

{ LAN CODE: Sprache, GER = Deutsch

{ TEXT : Freitextfeld beliebiger L�ange

� Prohibited Turn (Relationship Record):

492 REL ID10 21014 DESC ID5 31 21 FEAT ID10 11 FEAT ID10

21 FEAT ID10 NUM ATT5 SATT ID10 NUM NAME2 NAME ID�

10

{ REL ID: ID dieses Relationship Records

{ 3x FEAT ID: Zeiger auf Roadelement from, Junction, Roadelement
to (Abbiegeverbot wird durch Einfahrtsstra�e, Kreuzung und Aus-
fahrtsstra�e beschrieben)

Literaturverzeichnis

[1] J. L. Bentley and R. A. Finkel. Quad trees - A Data Structure for Retrieval

on Composite Keys, chapter 1-9. AA, Acta Informatica 4, 1974.

[2] Grady Booch. Objektorientierte Analyse und Design. Addison Wesley,
1994.

[3] Friedhelm Buchholz. Komplexit�at des Fahrgemeinschaften-Problems. Stu-
dienarbeit 1327. Universit�at Stuttgart Institut f�ur Informatik, 1994.

[4] Friedhelm Buchholz. Entwurf eines Systems zur Vermittlung von Fahrge-
meinschaften, Diplomarbeit 1226. Universit�at Stuttgart Institut f�ur Infor-
matik, 1995.

[5] H. Claussen et al. GDF 2.1 Draft Standard. unpublished, 1992.

[6] Greg N. Frederickson. Fast Algorithms for Shortest Paths in Planar Graphs.
SIAM Journal on computing, IEEE, Vol. 16(No. 6), December 1987.

[7] Walter Gro�mann. Geod�atische Rechnungen und Abbildungen in der Lan-

desvermessung. Konrad-Wittwer-Verlag, 3rd edition, 1976.

[8] John E. Hopcroft and Richard M. Karp. An n2;5 algorithm for maximum
matching in bipartite graphs. SIAM Journal on computing, IEEE, pages
225{231, 1973.

[9] IEEE Computer Society (Hrsg.). IEEE guide for software requirements
speci�cation. IEEE Std 830-1984, 1984.

[10] IEEE. Software Engineering Standards Collections, 1994.

[11] Michael Jackson. Software Requirements & Speci�cations. Addison-Wesley,
1995.

[12] D. T. Lee and C. K. Wong. Worst-Case Analysis for Region and Partial

Region Searches in Multidimensional Binary Search Trees and Balanced

Quad Trees, pages 23{29. AA, Acta Informatica 9, 1977.

[13] Richard J. Lipton and Robert Endre Tarjan. A Separator Theorem for
Planar Graphs. SIAM J. APPL. MATH., Vol. 36(No. 2), April 1979.

[14] Jochen Ludewig. Grundlagen des Software Engineerings. Fachschaft Infor-
matik, 1997. Skript zur Vorlesung im Sommersemester '97.

150

LITERATURVERZEICHNIS 151

[15] K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Sear-

ching and Computational Geometry, pages 24{55. Springer-Verlag, 1984.

[16] Silvio Micali and Vijay V. Vazirani. An O(
p
jV jjEj) algorithm for �nding

maximum matching in general graphs. IEEE Symposium on Foundations

of Computer Science (FOCS), pages 17{27, 1980.

[17] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduc-

tion, pages 67{77 and 189{199. Springer-Verlag, 1985.

[18] W. W. Royce. Managing the development of large software systems: con-

cepts and techniques. Proc. IEEE WESTCON, Los Angeles, 1970.

[19] Vijay A. Saraswat. Principles and practice of constraint programming - the
newport papers. MIT Press, Cambrigde, 1995.

[20] T. Ottmann und P. Widmayer. Algorithmen und Datenstrukturen, pages
232{242. Reihe Informatik Band 70. BI-Wissenschaftsverlag, 1993.

