Zwischenbericht der
Projektgruppe
Fahrgemeinschaften
Bericht Nr. 1997/10

Universitéit
Stuttgart

Zwischenbericht der
Projektgruppe Fahrgemeinschaften

Herbert Heid
Daniela Nicklas
Alexander Porrmann
Thomas Schaffer
Volker Scholz

Betreuung

Prof. Dr. Volker Claus
Dipl.-Inf. Wolfgang Reissenberger
Dipl.-Inform. Friedhelm Buchholz

Dipl.-Math. Nicole Weicker
Abteilung Formale Konzepte
Fakultéit Informatik
Universitéat Stuttgart

7. August 1997

Prof. Dr. Volker Claus
Abteilung Formale Konzepte
Institut fiir Informatik
Universitdt Stuttgart

Breitwiesenstr. 20-22
D-70565 Stuttgart

Telefon:
0711-7816-300 (Prof. Dr. V. Claus)
0711-7816-301 (Sekretariat)
0711-7816-330 (FAX)

E-Mail: claus@informatik.uni-stuttgart.de

Inhaltsverzeichnis

1 Einleitung

1.1 Die Projektgruppe im Informatikstudium

1.2 Aufgabenstellung beim Projekt Fahrgemeinschaften

2 Vorgehensweise

2.1 Arbeitswelse e

2.2 Zeitplan e e e

221
222
223
2.24
2.2.5
2.2.6

Seminarphase und Vortrdge
Anforderungsanalyse
Spezifikation Lo
Entwurf
Zwischenberichto

Weitere Phasen

2.3 Sprachentscheidung L oL

3 Seminarvortrige

3.1 Nachbarschaft im R?

3.1.1
3.1.2
3.1.3

Einfithrung L oo o
Algorithmus fiir 0-Paare

Datenstrukturen zur Verwaltung einer Punktmenge

3.2 Matching Verfahren

3.2.1
3.2.2
3.2.3
3.24

Einleitung
Vom 2’er FGM-Problem zum Maximalen Matching
MM-Algorithmus
AuBere Schleife

10

11
11
12
12
13
13
13
14
14
14

3.2.5 Innere Schleife
3.3 Kiirzeste Wegeo
331 Ubersicht
3.3.2 Einleitungo
3.3.3 Planare Graphen L.
3.3.4 Single Source Shortest Path-Algorithmus
3.3.5 Vorbereitungen zum Algorithmus von Frederickson
3.3.6 Der Algorithmus von Frederickson
3.4 Softwareengineering
3.4.1 Einleitungo
3.4.2 Das Wasserfallmodell
3.4.3 Besonderheiten bei objektorientierter Entwicklung
3.4.4 Techniken der Dokumentation.
3.4.5 Vereinbarungen L
3.5 Constraint Programmierung
3.5.1 Einleitung oo
3.5.2 Constraint Programmierung
3.5.3 Auflgsungsalgorithmus
3.54 Ausblick...........

Anforderungsanalyse

4.1 Neuer Fahrgemeinschafts-Teilnehmer
4.2 System-Aufbau o
4.3 Anderung eines Fahrgemeinschafts-Teilnehmers
4.4 Anderung einer Fahrgemeinschaft
4.5 Eine neue Partitiono o000
4.6 Die optimale Losung oo oo
4.7 Inkrementelle Verbesserung von Partitionen
4.8 Festlegung der Bewertungsfunktion
4.9 Kiirzeste Wegestrecke oL oo
4.10 Neuer Algorithmus
4.11 Hilfesystem
4.12 Funktionale Anforderungen

4.12.1 Personen e e e e 95

4.12.2 Fahrgemeinschaften 96
4.12.3 Partitionen L o oo 97
4.13 Weitere Anforderungen 97
4.13.1 Anforderungen unter dem Aspekt Graphen 97
Spezifikation 100
5.1 Einfthrung oo 100
5.2 Allgemeine Beschreibung L. 100
5.2.1 Umgebung des Produkts 100
5.2.2 Informelle Beschreibung der Funktionalitdt 101
5.2.3 Charakteristika der Benutzer und Benutzerinnen 101
5.3 Funktionale Anforderungen 101
5.3.1 Start des Fahrgemeinschaftensystems. 102
5.3.2 Menitistruktur oL oo oo 102
5.3.3 Datenmodell o oL 104
5.3.4 Beenden des Fahrgemeinschaftensystems 105
5.3.5 Datelen e 105
5.3.6 Personeno oL 109
5.3.7 Fahrgemeinschaften 116
5.3.8 Vermittlung oL oo Lo 121
5.3.9 Bewertungsfunktionen L. 126
5.3.10 Wegsuche o 129
5.3.11 Voreinstellungen 130
5.4 Anforderungen an externe Schnittstellen 131
5.4.1 Benutzungsschnittstelle 131
5.4.2 Hardwareschnittstellen 133
5.4.3 Softwareschnittstellen 134
5.5 Leistungsanforderungen L. 134
5.5.1 Dateien e 134
5.5.2 Daten im Hauptspeicher, 134
5.5.3 Antwortzeiten 134

5.5.4 Entwurfseinschrankungen 135

5.5.5 Attribute

5.6 Zukiinftige Erweiterungen L

5.7 Systemmeldungeno
5.7.1 Meldungeno

5.7.2 Fragen
5.7.3 Fehler

6 Grobentwurf

6.1 Meniiverwalter und Doktor

6.2 Algorithmenverwalter und Bewertungsverwalter

6.3 Personenverwalter und Einteilungsverwalter

6.4 Fiirsorger, Datei-Auswahl und Lader/Speicherer

A Glossar

B Konvertierung von Verkehrsdaten

B.1 Einleitung . .
B.2 GDF-Format

B.3 Graphenformat oo

B.4 Umwandlung

B.5 Visualisierung der Daten L.

B.6 Recordformate

Literatur

135
135
136
136
136
138

139
140
140
140
140

141

144
144
144
146
147
147
147

151

Kapitel 1

Einleitung

1.1 Die Projektgruppe im Informatikstudium

Das Studium der Informatik vermittelt dem Studierenden zwar einen grofien
Teil des notigen Fachwissens, jedoch stellt das Berufsleben noch weitere Anfor-
derungen an Informatikerinnen und Informatiker. Teamfihigkeit und Erfahrung
spielen gerade bei der Mitarbeit an groflen Software—Projekten eine wichtige
Rolle. Hier verfolgt die Idee der Projektgruppe folgende Ausbildungsziele:

e Arbeiten im Team

e Analyse von Problemen, Strukturierung von Lisungen und gemeinsamer
Entwurf geeigneter Systeme

e Selbstindige Erarbeitung von Lésungsvorschligen und deren Vorstellung
und Verteidigung in einer Gruppe

¢ Ubernahme von Verantwortung fiir die Losung von Teilaufgaben und die
Erstellung von Modulen

e Mitwirkung an einer umfassenden Dokumentation

e Erstellen eines Software—Produktes, das ein Einzelner innerhalb des vor-
gegebenen Zeitraumes unmoglich bewéltigen kann

e Projekt—Planung und Kosten/Nutzen—Analyse
¢ Einsatz von Werkzeugen

e Personlichkeitsbildung (Ubernahme von Verantwortung, Selbstvertrauen,
VerléBlichkeit, Riicksichtnahme, Durchsetzungsfihigkeit usw.)

An der Projektgruppe nehmen in der Regel acht bis zwolf Studierende des
Hauptstudiums teil. Sie erarbeiten im Laufe eines Jahres ein Software—Pro-
dukt, welches einem Zeitaufwand von mehreren Personenjahren entspricht. Hier-
bei sollen sédmtliche Phasen eines Software-Lifecycles — von der Planung bis

1.1. DIE PROJEKTGRUPPE IM INFORMATIKSTUDIUM 9

zur Wartung — durchlaufen werden, was in anderen Lehrveranstaltungen nicht
iiblich ist. Bei Software— und Fachpraktika wird zumeist eine gegebene, genau
festgelegte Aufgabenstellung in ein Programm umgesetzt.

Eine Projektgruppe vereinigt die Lehrveranstaltungsformen ,, Hauptseminar* (2
SWS), ,,Fachpraktikum“ (4 SWS) und ,,Studienarbeit (10 SWS) in sich. Dem-
zufolge ist eine Projektgruppe mit 16 SWS einzustufen.

Der Ablauf einer Projektgruppe folgt meist folgendem Schema: Seminar—, Pla-
nungs—, Entwurfs—, Implementierungs—, Integrations—, FExperimentier—
und Schluiphase. Diese Phasen werden im folgenden genauer erliutert.

Seminarphase: Die Themenstellung wird griindlich analysiert. Dazu werden von
den Mitgliedern Originalpublikationen durchgearbeitet und die Ergebnisse vor-
getragen. Ergebnisse dieser Phase sind viel Wissen, je eine Vortragsausarbeitung
und eine zusammenfassende Darstellung der Literaturauswertung.

Planungsphase: Die Projektgruppe analysiert den Problembereich, stellt Ein-
satzmdoglichkeiten und Anwendungen zusammen, erarbeitet einen Anforderungs-
katalog und diskutiert Losungsmoglichkeiten fiir diese Fragestellungen. Hierbei
werden die in der Literatur bekannten Losungsvorschlige und eigene Ideen ge-
geneinander abgewogen. Insbesondere wird frithzeitig diskutiert, welche Hard-
und Software fiir die jeweiligen Losungen erforderlich ist, welche sonstigen Ko-
sten entstehen, wie hoch der Zeitaufwand sein wird, usw. Wichtig ist eine friithe
Spezifizierung der Eigenschaften des Systems (Robustheit, Antwortverhalten,
Flexibilitéit, Schutzmechanismen, Erweiterbarkeit, Verteiltheit, ...).
Inhaltliches Ergebnis ist eine moglichst eindeutige, ausschnittsweise sogar for-
male Spezifikation. Fiir jede ins Auge gefafite Anwendung wird dariiber hinaus
ein Szenario bzgl. des Einsatzes, der Nutzung, der Tests und der Wartung skiz-
ziert.

Organisatorische Ergebnisse sind ein grober Zeitplan und die erste Aufteilung
von Aufgabengebieten. Hier setzt auch eine Spezialisierung der Gruppenmitglie-
der ein.

Entwurfsphase: Voraussetzung fiir die Entwurfsphase ist, dafl Begriffsbestim-
mungen, Anwendungen und Modelle weitgehend gekliirt sind. Nach Festlegung
des grundsiitzlichen Losungsverfahrens werden Teilprobleme und charakteristi-
sche Objekte herauskristallisiert, miteinander in Beziehung gesetzt, auf ihre
Realisierbarkeit gepriift und grundlegende Datenstrukturen und Kommunikati-
onswege festgelegt. Dabei werden die Schnittstellen der Einzelteile des Systems
untereinander genau definiert. Ergebnis ist ein Plan des zu erstellenden (oder
zu modifizierenden) Systems. Stehen die einzelnen Aufgaben fest, werden sie
auf die Mitglieder verteilt. Die Implementierungssprache(n) sowie die erforder-
liche Hardware und die zu verwendenden Werkzeuge werden festgelegt. Eine
Liste von Beispielen, die das System spéter positiv bewéltigen muf}, wird fiir die
Testphase erstellt.

In der Implementationsphase und Integrationsphase wird der Programmcode
erstellt, zusammengebunden (integriert) und getestet.

Die Ezperimentierphase schliefit weitere Tests mit speziellen Anwendungen ein.

Zur Schlufiphase zdhlt in erster Linie der Abschlufl der Dokumentation, die
stindig parallel zur Projektgruppenarbeit erstellt und auf den neuesten Stand

10 KAPITEL 1. EINLEITUNG

gebracht wird.

Das Konzept der Projektgruppe wird bereits seit Jahren an anderen Univer-
sitdten wie z.B. in Oldenburg und Dortmund erprobt und durchgefiihrt. Dort
sind Projektgruppen z.T. schon Pflichtveranstaltungen im Rahmen des Infor-
matikstudiums. An der Universitdt Stuttgart gibt es seit 1994 Projektgruppen
im Fach Informatik; im neu eingerichteten Studiengang Software-Technik ist die
Teilnahme verbindlich vorgeschrieben.

1.2 Aufgabenstellung beim Projekt Fahrgemein-
schaften

Im Rahmen der Projektgruppe soll das Programm Mobidick (Mobil durch in-
telligentes computerunterstiitztes Kombinieren) entstehen, das ausgehend von
Personen- und Verkehrsdaten Aufteilungen in Fahrgemeinschaften berechnet.
Es handelt sich hierbei um einen Prototyp fiir ein System, das beispielsweise
in einer Mitfahr- oder Mobilitétszentrale eingesetzt werden kann, um fiir grofie
Personenmengen Fahrgemeinschaften zu bestimmen und zu verwalten.

Die Personendaten enthalten Informationen iiber Start-, Zielorte, Arbeitszeiten
und Eigenschaften der Personen (z.B. Geschlecht, Raucher/Nichtraucher usw.).
Auflerdem kénnen die Personen angeben, wie ihre Wunschfahrgemeinschaft aus-
sehen sollte, d.h. welche Kriterien ihnen besonders wichtig sind (Umweg, Ar-
beitszeit, Figenschaften der Mitfahrer und persénliche Zu- bzw. Abneigung ge-
geniiber bestimmten Personen).

Die Verkehrsdaten (Stadtplan) liefern die Grundlage fiir die Berechnung der
besten Routen mit den kiirzesten Umwegen. Davon ausgehend soll nun eine
optimale oder heuristische Losung gefunden werden. Die Giite von Fahrgemein-
schaften und Einteilungen des Personenstamms kann anhand einer Bewertungs-
funktion beurteilt werden. In diese Bewertungsfunktion gehen die o.g. Kriterien
Umweg, Arbeitszeiten, Personeneigenschaften und Zu-/Abneigungen ein.

Die Personen-, Verkehrs- und Fahrgemeinschaftsdaten miissen verwaltet werden
und leicht dnderbar sein.

Besonderer Wert wird im Projekt auf die Austauschbarkeit der Algorithmen
gelegt. Der Prototyp ermdoglicht die Untersuchung verschiedener Algorithmen
zur Wegsuche und zur Einteilung in Fahrgemeinschaften.

Kapitel 2

Vorgehensweise

Dieses Kapitel gibt einen Uberblick der Aktivitiiten der Projektgruppe ,Fahr-
gemeinschaften von Anfang an bis zur Erstellung des Zwischenberichts. Dabei
wird der Zeitplan sowie die einzelnen Phasen kurz vorgestellt und erldutert.

2.1 Arbeitsweise

Die Projektgruppe besteht aus den fiinf studentischen Teilnehmern, dem Pro-
jektleiter Wolfgang Reissenberger und dem Kunden Friedhelm Buchholz, der
insbesondere die Auswahl und Entwicklung der Algorithmen iibernimmt. Fiir
die Seminarvortrige und -ausarbeitungen ist Nicole Weicker zustindig.

Die zentrale Veranstaltung der Gruppe ist die Projektgruppensitzung. Bei jeder
Sitzung gibt es einen Protokollfithrer und einen Sitzungsleiter, der in der Regel
der Protokollant der letzten Sitzung war. Diese Amter rotieren unter den Teil-
nehmern. Die Kommunikation erfolgt in erster Linie iiber die Sitzungen, aber
auch elektronisch und {iber den Projektgruppenordner, in dem die Sitzungspro-
tokolle und andere relevante Dokumente abgelegt werden. In der Seminarpha-
se traf sich die Projektgruppe etwa drei Mal die Woche. Davon waren an ein
bis zwei Terminen Vortrige, am dritten wurde meist Organisatorisches gere-
gelt. Spiter gab es in der Regel zwei Termine. Die Projektgruppensitzung dient
hauptsichlich der Koordination. Zu verschiedenen Arbeiten werden Untergrup-
pen gebildet, deren Ergebnisse dann anhand eines schriftlichen Berichts in der
Sitzung diskutiert werden.

Fiir die Meilensteine (Anforderungsanalyse, Spezifikation) wurden technische
Reviews durchgefiihrt. Dabei iibernahm der Projektleiter die Rolle des Sitzungs-
leiters und die Teilnehmer die der Gutachter. Nach den internen Reviews wurden
diese Dokumente noch mit dem Kunden besprochen und sind in ihrer jetzigen
Form von diesem angenommen.

Die Arbeitsteilung in der Projektgruppe erfolgt dynamisch. Fiir jeden Meilen-
stein ist jemand anderes verantwortlich, der dann die Aufteilung in Arbeits-
pakete vornimmt und fiir die Integration und Gesamtgestaltung zustindig ist.

11

12 KAPITEL 2. VORGEHENSWEISE

Fiir einzelne Gebiete wurden ,, Experten® bestimmt, die sich dort besonders ein-
arbeiten, wie z.B. fiir LaTeX, fiir Versionskontrolle oder fiir Dokumentation.
Zu Themen, die der ganzen Projektgruppe neu sind, werden zum Teil externe
Vortriige (z.B. von Mitarbeitern aus dem Haus) angeworben.

2.2 Zeitplan

Zu Beginn der Projektgruppe wurde folgender Zeitplan vereinbart, der sich an
den Erfahrungen der vorangegangenen Projektgruppen orientiert.

14.10.96 — 29.11.96 Seminarphase (
3.1296 — 3.1.97 Anforderungsanalyse (4 Wo.)
6.1.97 - 14.2.97 Spezifikation (6 Wo.)
17.2.97 — 18.4.97 Entwurf (9 Wo.)
21.4.97 - 2.5.97 Zwischenbericht (2 Wo.)
()
()

7 Wo.)

5.5.97 - 4.7.97 Implementierung 9 Wo.
7.7.97 - 29.897 Test/Review 8 Wo.
1.9.97 - 26.9.97 Enddokumentation/Priisentation (4 Wo.)

Dabei ist zu beachten, dafl sich die einzelnen Phasen nicht prézise voneinander
trennen lassen und gewisse Uberlappungen auftreten diirfen. Zu allen Phasen
entsteht Dokumentation, die Bestandteil des jeweiligen Meilensteins ist. Die
Dokumente der bisher erreichten Meilensteine sind Bestandteil des Zwischenbe-
richts.

2.2.1 Seminarphase und Vortrige

Die Projektgruppe begann mit der Seminarphase. In dieser wurden von den
Teilnehmern Vortrige zu folgenden Themen gehalten:

e ,Nachbarschaftssuche im R? und Geometrische Datenstrukturen“ von Vol-
ker Scholz

e Matching-Verfahren“ von Herbert Heid
o Kiirzeste Wege in planaren Graphen“ von Alexander Porrmann

e _Softwareengineering und objektorientierte Entwicklung“ von Daniela Nick-
las

o ,Contraint Programmierung® von Thomas Schéffer

Die Ausarbeitungen dieser Vortrége finden sich in Kapitel 3. Desweiteren fanden
zu verschiedenen anderen Themen Vortrége statt, um das Wissen der Projekt-
gruppe z.B. fiir die Wahl der Programmiersprache zu erweitern.

Diese Vortrige waren im einzelnen:

e Fahrgemeinschaften“ von Prof. Claus

2.2. ZEITPLAN 13

o ,Die Programmiersprache ML“ von Wolfgang Reissenberger
o . Komplexitdt von Partionierungen® von Friedhelm Buchholz
o _Kiirzeste Wegsuche“ von Friedhelm Buchholz

e Clustering“ von Friedhelm Buchholz

e Anforderungen an das Fahrgemeinschaftensystem* von Friedhelm Buch-
holz

e ,C++ und die Methode von Booch“ von Bernd Kawetzki
e Die Programmiersprache Ada“ von Andreas Bergen

e Die Programmierspache Java“ von Fritz Hohl

2.2.2 Anforderungsanalyse

Die Anforderungsanalyse dient dazu, das Umfeld der Anwendung zu analysie-
ren, bestehende Anforderungen zu erfassen und noch fehlende zu evaluieren. In
der Projektgruppe begann diese Phase damit, dafl Friedhelm Buchholz in seiner
Rolle als Kunde einen Vortrag iiber die Anforderungen hielt. In einer zweiten
Runde befragte ihn die Projektgruppe dazu. Dann entwickelte sie Szenarien oder
Use Cases, aus denen sich dann weitere Anforderungen ergaben. Dabei wurden
wichtige Entscheidungen getroffen: Das System wird ein Prototyp werden, der
ohne graphische Benutzungsoberfliche auskommt, dafiir aber wiederverwend-
bare Module enthiilt und um weitere Algorithmen erweitert werden kann. Das
Ergebnis dieser Phase ist das Dokument , Anforderungsanalyse“, das sich in
Kapitel 4 findet.

2.2.3 Spezifikation

In der Spezifikationsphase wird aus dem Anforderungskatalog das duflere Sy-
stemverhalten definiert. Es wird beschrieben, was das System tut, nicht wie es
das tut. Da die Spezifikation die Grundlage fiir den Entwurf ist - hier sollen keine
wichtigen Entscheidungen iiber das Verhalten mehr getroffen werden - dauerte
diese Phase auch sechs Wochen. Fiir die Spezifikation wurden die Use Cases
aus der Anforderungsanalyse verwendet und ausgebaut. Eines der Hauptproble-
me war die Datenhaltung und die Konsistenzsicherung zwischen den einzelnen
Datenstdmmen (Personen, Fahrgemeinschaften, Verkehrsdaten). Das Dokument
,Opezifikation® steht im Kapitel 5 und ist das Ergebnis des gleichnamigen Mei-
lensteins.

2.2.4 Entwurf

Im Entwurf wird entwickelt, wie das System sich intern verhilt. Er geht von
einem Grobentwurf, in dem die Subsysteme und ihre Schnittstellen identifiziert
und definiert werden in einen Feinentwurf iiber, bei dem am Ende die genau-
en Datenstrukturen und Algorithmen beschrieben werden. Zum Zeitpunkt des

14 KAPITEL 2. VORGEHENSWEISE

Zwischenberichts befindet sich die Projektgruppe noch in der Entwurfsphase.
Kapitel 6 enthélt deswegen den Grobentwurf.

2.2.5 Zwischenbericht

Der Zwischenbericht erscheint etwa nach der Hélfte der Zeit der Projektgruppe.
Er enthilt die zentralen Dokumente, die bis zu diesem Zeitpunkt erschienen
sind. Zusammen mit dem Endbericht stellt er die Studienarbeit der Teilnehmer
dar.

2.2.6 Weitere Phasen

Nach der Entwurfsphase folgt die Implementation, in der nun die vorher spezi-
fizierten Klassen mit Leben gefiillt werden. Die verwendete Sprache ist C++,
wie im folgenden Abschnitt erldutert.

2.3 Sprachentscheidung

Fiir die Implementierung des Fahrgemeinschaftensystems wurden vier Program-
miersprachen diskutiert: SMIL, ADA, JAVA und C++. SML ist eine funktionale
Sprache mit strengem Typsystem, Java und C++ sind Vertreter der objektori-
entierten Sprachen und ADA wird als eine Sprache bezeichnet, die verschiedene
Paradigmen unterstiitzt.

Die Grundlagen fiir die Sprachentscheidung waren spezielle Fachvortrige, die
Kundenanforderungen und die perstnlichen Erfahrungen der Projektgruppen-
teilnehmer. Aufgrund des gesammelten Wissen wurde wie folgt eine Program-
miersprache ausgewé&hlt:

Die Sprache SML scheiterte an der Kundenanforderung, eine prozedurale Pro-
grammiersprache zu verwenden. Es sind Probleme bei der Anbindung von Algo-
rithmen, die prozedural geschrieben sind, zu erwarten, da SML eine funktionale
Sprache ist. Die geforderte zukiinftige Erweiterung, eine direkte Anbindung ei-
ner graphischen Benutzungsoberfliche, gab den Anlaf} dafiir, ADA zu streichen.
Ein weiterer Grund war die Darstellung der Objekte, die nur durch Records re-
prisentiert werden kénnen. Da Java eine recht neue Programmiersprache ist und
nicht gewifl war, wann die neue Entwicklungsumgebungsversion kommt, wihl-
te man fiir die Implementierung nicht Java, sondern die Programmiersprache
C++. C++ besitzt all die Eigenschaften, die an die Programmiersprache ge-
stellt wurden: prozedural, objektorientierte Programmierung, Anbindung einer
graphischen Benutzungsoberfliche und Effizienz in bezug auf schnelle Algorith-
men und grofle Datenmengen. Fiir die Implementierung werden die Standard
Template Library und die Leda Library verwendet, die einige Standardfunktio-
nen bieten. Zur Beschreibung und zur Darstellung der Klassen wird ein OO-
Browser verwendet, der in einer Emacs-Umgebung fiir C++ arbeitet.

Kapitel 3
Seminarvortrige

In diesem Kapitel befinden sich die Ausarbeitungen der Vortriige, die im Rah-
men der Seminarphase von den Teilnehmern gehalten wurden.

3.1 Nachbarschaftssuche im RY und Geometri-
sche Datenstrukturen

3.1.1 Einfiihrung

Bei der Bildung von Fahrgemeinschaften soll der fiir den Fahrer entstehende
Umweg eine gewisse Zumutbarkeitsgrenze nicht {iberschreiten. Da das Problem
der Zuordnung von Personen zu Fahrgemeinschaften NP-hart ist (siehe [3]),
miissen heuristische Verfahren angewendet werden. Zieht man z.B. nur Personen
mit dhnlichen Start-, Zielorten und Fahrtzeiten fiir eine Fahrgemeinschaft in
Betracht und notiert die Daten jeder Person als 6-Tupel (Zstart, Ystarts Tiels Yziels
tabfahrt tankunyst), SO entspricht dies einer Nachbarschaftssuche auf Punkten im
RS. Im folgenden sollen hierfiir geometrische Algorithmen und Datenstrukturen
vorgestellt werden, die man bei einer Implementierung verwenden koénnte.

Im ersten Teil wird ein Algorithmus zur Bestimmung aller Punktepaare mit
Maximalabstand § vorgestellt. Daran schliefit sich eine Laufzeitabschiitzung an.

Im zweiten Teil werden drei geometrische Datenstrukturen zur Verwaltung einer
Punktmenge betrachtet. Fiir die einzelnen Operationen auf den Datenstruktu-
ren werden Laufzeitabschitzungen angegeben. Fiir Nachbarschaftsprobleme ist
dabei insbesondere die Bereichssuche wichtig. Im abschlielenden Vergleich der
Datenstrukturen wird der Unterschied zwischen statischen und dynamischen
Datenstrukturen hervorgehoben.

Um mit diesen Hilfsmitteln benachbarte Punkte zu bestimmen, kénnte man in
zwei Schritten vorgehen: Zunéchst fithrt man eine Bereichssuche auf der gewé&hl-
ten Datenstruktur in der Umgebung eines festen Punktes durch und bestimmt
dann im fraglichen Bereich alle benachbarten Punkte mit Hilfe des Algorithmus
fiir 6-Paare.

15

16 KAPITEL 3. SEMINARVORTRAGE

3.1.2 Algorithmus fiir §-Paare
3.1.2.1 Definitionen

Eine untere Schranke fiir die Laufzeit eines Algorithmus fiir benachbarte Punk-
te ist sicherlich der Wiedergabeaufwand, d.h. wieviele Punktepaare tatséichlich
gefunden und ausgegeben werden miissen. Diese Anzahl hingt von der Dich-
te (bzw. Spérlichkeit) der betrachteten Punktmenge ab, deshalb definieren wir
zunéchst ein Maf fiir die maximale Dichte einer Punktmenge (vgl. [17]):

Definition 1 (Spérlichkeit) Eine Punktmenge S C RY hat die Spdrlichkeit
¢ € N fiir § > 0, falls alle d-dimensionalen Wiirfel der Kantenlinge 26 hochstens
¢ Punkte enthalten.

Zur Veranschaulichung betrachte man Abb. 3.1. Verschiebt man ein Quadrat
der Seitenléinge 2 tiber die Punktmenge S, so liegen maximal vier Punkte im
Quadrat, also betrigt die Spérlichkeit ¢ = 4 fiir 6 = 1.

y

20

0 P

Abb. 3.1: Spérlichkeit ¢ = 4 fiir § = 1

Bei einer hohen Spirlichkeit ¢ fiir ein vorgegebenes § mufl man also bei N Punk-
ten mit einer Laufzeit von O(N?) rechnen (alle Punktepaare werden zuriickge-
geben), nur bei diinnen Punktmengen ist eine Verbesserung zu erwarten. Als
Abstandsmafl verwenden wir nicht den euklidischen Abstand, sondern betrach-
ten jede Koordinate einzeln, wie in der folgenden Definition.

Definition 2 (6-Paar) Zwei Punktex = (z1,...,24)", y = (y1,...,94)7 € R?
sind ein 6-Paar
<= |z ey <6 Vie{l,2,...,d}

Mit diesen beiden Begriffen 148t sich nun unser Problem formulieren:

Gegeben sei eine Punktmenge S C R? mit Spérlichkeit ¢ fiir § und
ein Maximalabstand 4. Gesucht sind alle §-Paare in S.

3.1. NACHBARSCHAFT IM RP 17

3.1.2.2 Algorithmus NN (nearest neighbour)

Um dieses Problem mit einem divide-and-conquer-Ansatz zu l6sen, teilt man die
Punktmenge S durch eine Hyperebene [senkrecht zu einer Koordinatenachse
zp in zwei Mengen S; und Sy (sieche Abb. 3.2). Die zur Koordinatenachse k
senkrecht stehende Ebene [sei dabei durch die Gleichung z; = [gegeben.
Lost man nun das Problem fiir diese Mengen rekursiv, so erhélt man aber nur
0-Paare, die ganz in S; oder Ss liegen. Fiir Paare, bei denen ein Punkt in Sy,
der andere in S, liegt, geniigt es, den Bereich in der §-Scheibe S5 um ! zu
untersuchen, wobei

S5 1= {X €]Rd“l‘k <:>lk| < (5}

Wenn ein Punkt gerade auf [liegt, kann der Partner héchstens ¢ von [entfernt
sein.

| |
| |
S S
| |
| ° |
C |
| | °
° | e
| |
| |
° | | °
o ©)
o ! | o
| |
| |
-
o4
l‘:lk

Abb. 3.2: im R? ist | eine Gerade

Im ungiinstigen Fall liegen allerdings alle Punkte der Ausgangsmenge S auch
in S5 (dichte Punktmenge), das urspriingliche Problem wurde also nicht ver-
kleinert. Deswegen projiziert man die Punkte in S5 auf [und gewinnt somit
eine Verkleinerung in der Dimension. Wenn man bei einer Dimension angelangt
ist, konnen die §-Paare durch direkten Vergleich der Nachbarn auf der Geraden
bestimmt werden. Die Rekursion kann ebenfalls abgebrochen werden, wenn die
Punktezahl unter eine bestimmte Schranke fillt, dann lohnt der Teilungsauf-
wand nicht mehr und man vergleicht alle Punktepaare direkt.

Algorithmus:

1. Eingabe: Punktmenge S C R?, Maximalabstand 6.
2. Ausgabe: alle 6-Paare in S.

3. Vorsortierung: Sortiere S beziiglich aller £ Koordinaten in die Felder F7, ...

 Fp.

18 KAPITEL 3. SEMINARVORTRAGE

procedure deltapaare(S: Punktmenge, d:Dim.zahl)
begin
if |S| < K then
vergleiche alle Punktepaare direkt
else if d =1 then
for i:=1to |S| <1 do
ji=i+1;
while F'[j]; ©F'[il; < § and j < |S]| do
vergleiche Projektionslisten von F'[j] und F'[i];
if §-Paar gefunden then Paar ausgeben;
=i+
endwhile;
endfor;
else
wdhle Hyperebene [;
spalte S in S1, So und S5 auf;
deltapaare(S, d);
deltapaare(Ss, d);
projiziere Punkte in Ss auf [;
deltapaare(Ss, d <1);
end

Nach der Durchfiihrung der Vorsortierung wird deltapaare mit der zu untersu-
chenden Punktmenge S und der Anzahl der Raumdimensionen d aufgerufen.
Die ersten beiden Fille der if-Anweisung behandeln den Rekursionsabbruch,
wir betrachten zunéchst den else-Teil. Man wihlt eine Hyperebene [und teilt
Sin 51, Sz und S;. Dabei werden die Felder Fi, ..., F}, in die neuen Felder F},
F? und F? (fiir i = 1...k) aufgespalten, wobei die Sortierung erhalten bleibt.
Dann erfolgt Rekursion auf S; und Sy in d Dimensionen. Bei der Projektion
der Punkte in S5 auf | wird die verlorengegangene Koordinate jedes Punktes in
seiner Projektionsliste gespeichert. Danach erfolgt wiederum Rekursion auf der
projizierten Menge in d <1 Dimensionen.

Im Fall |S| < K vergleicht man alle Punktepaare direkt. Bei nur einer Dimension
(d =1) liege die Punktmenge nach der Koordinate x; sortiert im Feld F' vor.
Man betrachtet dann fiir jeden Punkt nur Nachbarn in der §-Umgebung (while-
Schleife, F'[j]; < F'[i]; ist der Abstand in der Koordinate z;) und stellt anhand
der Projektionslisten fest, ob ein d-Paar vorliegt.

Als Beispiel betrachte man Abb. 3.3. Im ersten Bild sind die in der Ausgangs-
menge S vorhandenen §-Paare durch gestrichelte Linien verbunden. Im ersten
Teilungsschritt liegen zwei Punkte in S5 und werden auf [projiziert. Wihrend in
Ss und Sy die §-Paare direkt bestimmt werden kénnen (Rekursionsabbruch we-
gen d = 1 bzw. |S| < 3), wird S; nochmals in S7, S§ und S5 geteilt. Man findet
schlieflich alle drei §-Paare, die in S§ und S; gefundenen Paare sind identisch.

3.1. NACHBARSCHAFT IM RP

Qo
- = ,Q, ,,,,,,,,,,
,,,,,, o
6-Paar
S S S!
(o]
(o]
[6) o— © 0 [6)
-
o-Paar 0-Paar 0-Paar

Abb. 3.3: Beispiel

kein 6-Paar

20 KAPITEL 3. SEMINARVORTRAGE

3.1.2.3 'Wahl der Hyperebene

Der folgende Satz zeigt, wie man bei der Bestimmung der Hyperebene vorge-
hen kann, um eine ,gerechte“ Teilung von S zu erreichen. Wie auch bei ande-
ren divide-and-conquer-Verfahren (Bsp. quicksort) wiire die Laufzeit bei einem
grofien Ungleichgewicht zwischen |S1| und |Sz| wiederum in O(N?).

Satz 1 (Existenz einer giinstigen Hyperebene) Fiir eine Punktmenge S C R?,
|S| = N mit Spirlichkeit ¢ fir § gibt es eine Hyperebene | und eine dazu senk-
rechte Koordinatenachse mit folgenden Eigenschaften:

1. Die Mengen S1 und S> zu beiden Seiten von | enthalten jeweils mindestens
4—1\; Punkte.

2. In der 6-Scheibe S; wm | liegen hichstens d - ¢ - N*—1/® Punkte.

Beweis: fiir d = 2

yll ‘_l_ |

" —
SRR I R

mn — 1.

1 ‘l"H a‘:’ Ty T
1 s 2
-
Y

0.B.d.A. sei N = 8N'. Bestimme ein Intervall [z, 2], so daf rechts und links
des vertikalen Streifens 7' := {(z,y) € R?|z1 < z < 25} jeweils & Punkte
liegen. Bestimme [y1, y2] analog. Die beiden Intervalle spannen das Rechteck
R := [z1,22] X [y1,y2] auf. Falls beide Intervalle die Lénge null haben, gibt
es kein [mit den gewiinschten Eigenschaften. Alle Punkte sind dann identisch
und es gilt N < ¢ aufgrund der Spérlichkeitseigenschaft. Falls nur ein Intervall
verschwindet, wihlen wir [so, dafl das andere Intervall halbiert wird. In Ss liegen
dann maximal ¢ Punkte, weil in einem Quadrat der Seitenliinge 26 hochstens ¢
Punkte enthalten sind (Definition der Spérlichkeit). Im folgenden nehmen wir
also an, dafl 5 <x1 > 0 und y» <y, > 0. Bestimme nun auf der z-Achse das
groBte Intervall [z), x4] in [21, 5], das die Projektionen von héchstens 2¢- N'/2

3.1. NACHBARSCHAFT IM RP 21

Punkten enthilt. Ebenso [y1, y5]. Sei v das Maximum der beiden Intervallédngen,
0.B.d.A. v =1z}, &xf.

Die Schnittlinie [mit der Gleichung z = 3 - (z{ + z}) hat die gewiinschten
Eigenschaften. Dazu zeigen wir v > 2§. Dann gilt 1., weil rechts und links von
[z1,22] & Punkte liegen. Aufierdem gilt 2., weil in [z}, 5] maximal 2c- N1/?

Punkte liegen.

Annahme: v < 2§
Dann enthilt jeder vertikale Streifen der Breite 26 im Intervall [z, z2] mehr als
2¢ - N'/? Punkte (wegen der Maximalitit von).

Ty =T 1/2 3 Ty =T 3N1/2
— | -2¢eN < =N <= <
[12N s g =5 1= =
N1/2
analog : |_y2 ;:gylj < 3 8

R enthilt hochstens [#25571] - [£24] Quadrate der Seitenlinge 24, die nach
Voraussetzung hochstens ¢ Punkte enthalten (Definition der Spérlichkeit). Fiir
die Punktezahl in R ergibt sich:

Ty T Y2 <Y1 Ty ST Y <Y1
(OIS < (P) (|2)
3N1/2
< 1)2-
< 8¢ +1)7e

3N1/2
< 2. z.
< (V2 8o) -c

Die letzte Ungleichung gilt wegen N >> c. Der letzte Term wird wegen N > c fiir
¢ = 1 maximal, also enthélt R héchstens 2- (2)2N ~ 0.28N Punkte. Auferhalb
von R liegen héchstens 2 - 1 - N = 1N Punkte (|4| = N, |B] = IN und
|A| U |B| < |A| + |B]), also kann R nicht weniger als 0.5N Punkte enthalten.
Widerspruch!

3.1.2.4 Aufwandsabschitzung fiir NN

T (N, d) bezeichne die Laufzeit des Algorithmus fiir N Punkte im R?. Die Spérlich-
keit der Punktemenge sei wiederum c. Wir beschrénken uns auf den Fall d = 2.
Fiir die einzelnen Phasen von NN ergeben sich dann folgende Abschitzungen:

1. Vorsortierung:
Sortiere S nach jeder Dimension (Felder Fy, F»).
Aufwand: O(2N -log N) = O(N -log N).

2. Teilungsschritt:

¢ Bestimmung von [z1,z2] und [y1,y2] in O(1).

e Bestimmung von [z}, 5] und [y}, y5] in O(2N), indem die Intervalle
[x1, 2] und [y1,y2] einmal durchlaufen werden.

22 KAPITEL 3. SEMINARVORTRAGE

e Sin S, Sy und S;s teilen, indem die sortierten Felder Fy, Fy in F},
F? und F? geteilt werden. (1 <i < 2)
Wenn man z.B. beziiglich der x-Dimension teilt, wird F; in drei Tei-
le gespalten, F» muf} ebenfalls einmal durchlaufen werden, um die
Punkte einzeln in die F3* einzufiigen. Die Sortierung wird dabei bei-
behalten.
Aufwand: O(2N)

Gesamtaufwand: O(N).
3. Rekursionsabbruch:

(a) T(K,d) € O(1). Fiir das direkte Vergleichen von K Punkten benotigt

man 3 - K - (K <1) Operationen.

(b) T(N,1)=2¢-N:
Man geht die auf einer Geraden liegenden, sortierten Punkte nach-
einander durch. Dies sind maximal N Punkte, im Umkreis § jedes
Punktes liegen maximal ¢ Punkte, bei denen man zwei Koordinaten
priifen muf.

4. Rekursion:

o fiir Sy, So: T(a- N,2) und T((1 ©a) - N, 2)
o fiir S5: T(2¢-VN,1) = 4¢®> - /N

wobei 2 <a < I (vgl. Satz 1).

Damit ergibt sich folgende Rekursionsgleichung:

S1 Sa Teilen Ss
-~ % ~ A N ——
T(N,2) =T(a-N,2)+T((1&a)-N,2)+O(N) +T(2¢-VN,1)
~————
=4c2-V/N
O(N)

mit der bekannten Lésung (vgl. z.B. mergesort):
T(N,2) € O(N -logN)

Die Vorsortierung ist ebenfalls von dieser Ordnung, also ergibt sich eine Ge-
samtlaufzeit von O(N -log N).

3.1.3 Datenstrukturen zur Verwaltung einer Punktmenge
3.1.3.1 Einfiihrung

Im folgenden werden drei geometrische Datenstrukturen vorgestellt, die man zur
Verwaltung der Personendaten verwenden kénnte. Dabei sind folgende Opera-
tionen moglich (p € R? sei ein beliebiger Punkt, S C R? die gespeicherte Punkt-
menge):

3.1. NACHBARSCHAFT IM RP 23

e Finfiigen eines Punktes
e Loschen eines Punktes

e Punktsuche:
Hier soll die Frage p € S? beantwortet werden.

e Bereichssuche:
Gesucht sind die Punkte aus S, die im Hyperquader [lo, ho] X ... X [lg—1, ha—1]
liegen.

Zur Losung des Nachbarschaftsproblems interessiert uns insbesondere die Be-
reichssuche.

3.1.3.2 k-D-Biume

Einfiihrung

Analog zu bindren Suchbdumen fiir den eindimensionalen Fall méchte man ei-
ne hierarchische Strukturierung der Daten erreichen, um eine schnelle Suche
zu ermoglichen. Zum Aufbau eines k-D-Baums teilt man die vorliegende Punk-
temenge durch eine Hyperebene (Gerade), die mindestens einen dieser Punk-
te enthélt. Dieser wird zu Wurzel mit den Unterbdumen T, 75 und 77—, die
die Punktemengen rechts, links und innerhalb der Ebene enthalten. Auf diesen
Punktemengen setzt man rekursiv fort.

Als Beispiel betrachte man Abb. 3.4. Wihlt man die erste Trennungsgerade

Cor S
~~~~~ e S A I
g AN

Abb. 3.4: 2-D-Baum

senkrecht durch den Punkt b, somit wird b zur Wurzel. Die Punktmenge zur lin-
ken Seite trennt man waagrecht durch d, dieser Punkt wird also der <-Sohn von
b usw. Dabei unterscheidet man von Baumlevel zu Baumlevel abwechselnd nach
z- und y-Koordinaten. Damit ergibt sich eine eineindeutige Beziehung zwischen
Baumknoten und Punkten. Zu jedem Knoten v gehtrt auflerdem eine Region
R(v) C R*. Darunter versteht man man das Raumgebiet, das vom Teilbaum
mit der Wurzel v abgedeckt wird. R(c) entspricht also z.B. dem Quadranten



24 KAPITEL 3. SEMINARVORTRAGE

rechts oben. Man erhilt also eine Partitionierung des Raums in Abhéngigkeit
von der gespeicherten Punktmenge.

Bei allgemeiner Dimension k£ geht man die Koordinaten von Baumlevel zu
Baumlevel zyklisch durch (vgl. [15]):

Definition 3 (k-D-Baum) Sei S C R¥, |S| =n und x = (vo,21,... ,7k-1) €
R*. Ein bei Koordinate i beginnender k-D-Baum wird folgendermafen definiert:
1. fiir k = n =1 besteht er aus einem einzigen Blatt x € S.

2. fiir k > 1 oder n > 1 besteht er aus

o ciner Wurzel w € S, w; € R bezeichnet die trennende Hyperebene senk-
recht zur Koordinate i. (Ebenengleichung z; = w;)

o den Unterbiumen T, T—, Ts

— T ist ein bei Koordinate (i + 1) mod k beginnender k-D-Baum fiir
Sc ={x € Slz; <w;}.

— Ts ist ein bei Koordinate (i + 1) mod k beginnender k-D-Baum fiir
Ss ={x € Slz; > w;}.

— T= ist ein bei Koordinate i mod (k<1) beginnender (k <1)-D-Baum
fiir
S_ = {(2170, ey L1, Tty - - .,a:k_l) € Rk-1

|E|X €S :x= (3707- s Lj—1, Wiy Tit-1, - - '7:17]6—1)} \{w}

Wie bei den bindren Suchbidumen fiihrt man balancierte Biume ein, um die
Suchzeiten gering zu halten (vgl. [15]):

Definition 4 (idealer k-D-Baum) Ein k-D-Baum ist ideal, wenn fir jeden
Knoten v gilt: Die Unterbdume T< und T enthalten jeweils héchstens die Hilfte
aller Knoten im Teilbaum mit Wurzel v.

Aufbau eines idealen k-D-Baums

Fiir eine gegebene Punktmenge S 148t sich ein idealer k-D-Baum durch eine
einfache Median-Strategie konstruieren, um so die gewiinschte Balancierung zu
erreichen. Man bestimmt den Median beziiglich der Koordinate, die zum ent-
sprechenden Baumlevel gehért und teilt in S<, Ss und S—.

Algorithmus:

1. Eingabe: Punktmenge S C R*, |S| = n.
2. Ausgabe: idealer k-D-Baum fiir S.

3. Vorsortierung (einmal):
Sortiere S nach jeder Koordinate. (Felder FO, ... K Fk—1)
Aufwand: O(k - n -logn)

4. Teilungsschritt:
Sei i die Koordinate, die zum aktuellen Baumlevel gehért. Bestimme den
Median von F' (in O(1)) und teile S in S<, S— und Ss, also F7 in FZ,
FJ und FY (fiir j =0...k 1) auf.
Aufwand: O(k - n), weil die Sortierung beibehalten wird.



3.1. NACHBARSCHAFT IM RP 25

5. Rekursion:
Teilbdume fiir S, S— und S5 aufbauen.

Pro Baumlevel werden hochstens k - n Operationen ausgefiihrt, wegen der Ba-
lancierung gibt es logn Level. Inklusive Vorsortierung ergibt sich also ein Ge-
samtaufwand von O(k -n -logn).

Operationen

1. Einfiigen

Ein nachtrigliches Einfiigen von Punkten mit der naiven Methode fiihrt zu un-
ausgeglichenen Bdumen mit schlechten Suchzeiten. Eine Rebalancierung wie z.B.
bei AVL-B&umen ist schwierig, da man nicht auf Rotationen zuriickgreifen kann
(zyklischer Koordinatenwechsel). Der in 3.1.3.2 vorgestellte Algorithmus setzt
eine statische Punktmenge voraus, in diesem Fall sind ideale Bidume moglich,
die Baumtiefe betrigt dann O(logn).

2. Léschen

Wird ein innerer Knoten geloscht, mufl der abgetrennte Teilbaum neu aufgebaut
werden. Im worst case wird die Wurzel geloscht und der gesamte Baum muf} neu
aufgebaut werden, Aufwand O(k - n -logn).

3. Punktsuche

Wie bei bindren Suchbidumen sucht man je nach Suchkoordinate in T, T—
oder T rekursiv weiter, bis man auf ein Blatt trifft oder den vorgegebenen
Punkt findet. Bei idealen k-D-Biumen 148t sich die Suchzeit folgendermafien
abschétzen: Wegen der Balancierung liegen hochstens logn <- oder >-Zeiger
auf dem Suchpfad (vgl. Definition 4). Da es k& Koordinaten gibt, sind maximal

k =-Zeiger moglich. Der Suchaufwand betrigt also O(k + logn).

4. Bereichssuche
Dazu geben wir die entsprechende Prozedur in Pseudocode an:

Bezeichnungen:

e Suchbereich R = [x1, 73] X [y1,y2] (im R?)
e P(v): Punkt, der zum Knoten v gehort.

e S(v): Punktmenge im Baum mit Wurzel v.
e v. > v. <, v. =: S6hne von v.

e R(v): Region von v.

procedure region(v:Knoten, R:Rechteck)
begin
if P(v) € R then P(v) ausgeben;
if |S(v)| > 1 then
begin
if R(v. >) N R # () then region(v. >, R);
if R(v. <) N R # () then region(v. <, R);



26 KAPITEL 3. SEMINARVORTRAGE

if R(v. =) N R # 0 then region(v. =, R);
end
end.

Beim Prozeduraufruf steht in v die Wurzel des zu durchsuchenden k-D-Baums,
in R der gewiinschte Suchbereich. Liegt der dem Knoten v zugeordnete Punkt
im Suchbereich, wird dieser ausgegeben. Falls v kein Blatt ist, werden die Un-
terbdume rekursiv durchsucht, deren Regionen sich mit dem Suchbereich tiber-
lappen. Eine Laufzeitabschétzung hierzu findet man in [15] und [4]:

Satz 2 Sei T ein idealer k-D-Baum fir S C RF, |S| = n. Dann ist eine Be-
reichsanfrage in der Zeit

O(k - 4% . n'=Vk L | |A))

mdoglich, wobei A die Menge der Antworten ist.

Beweis: fir k=2: 0O(32-y/n+2-|4|)

Sei R(v) die zum Knoten v zugehorige Region, d.h. alle Punkte im Teilbaum
mit der Wurzel v liegen in dieser Region. Es gibt 7 Regionentypen (Abb. 3.5).
Die Wurzel von T habe den Baumlevel 0, dann treten auf Level 1 die Typen 1
und 5 (Halbebene und Gerade) auf. Ab Level 2 gibt es Quadranten (Typ 2) und
Halbgeraden (Typ 6). Ab Level 3 hat man drei Begrenzungslinien zu Verfiigung,
deswegen ist Typ 3 moglich (Streifen). Ab Level 4 tauchen Rechtecke (Typ 4)
und Strecken (Typ 7) auf. Zur Aufwandsabsschiitzung zihlen wir die Anzahl der

%

1,2: Halbebenen 3,4: Rechtecke 5: Gerade 6: Halbgerade 7: Strecke

Level 1

Abb. 3.5: Regionentypen

Knoten im Teilbaum T, der bei der Bearbeitung der Bereichsanfrage fiir das
Rechteck R = [z1,22] X [y1,y2] besucht wird. Ein Knoten v wird genau dann
besucht, wenn sich Region und Suchbereich iiberlappen, also:

veET < RW)NR#D
T' zerlegen wir in drei disjunkte Knotenmengen X, Y und Z:
X = {veT'|R(w)CR}
Y {veT'RW)NR#D,R(v) &R #0und R<R(v) # 0}
Z = {veT'|RCR()}



3.1. NACHBARSCHAFT IM RP 27

| X | kann leicht durch | A| nach oben abgeschitzt werden, weil X C A (die Region
liegt ganz im Suchbereich, also auch der Knoten selber).Beim Test P(v) € R
fallen dann 2-]A| Operationen an, da beide Koordinaten gepriift werden miissen.

Anzahl der Tests P(v) € R: 2 |A] (3.1

Fiir Z gilt |Z| < logn, weil alle Knoten v; € Z auf einem Pfad liegen
(R(v1) D R(v2) 2 ...) und logn die Baumtiefe ist.

|Z| <logn (3.2)

Gilt v € Y, so mufl R(v) mindestens einmal den Rand von R schneiden, weil ein
Teil von R(v) innerhalb von R liegt, ein Teil auBerhalb. Der Rand von R besteht
aus vier Randstiicken (Rechteckseiten). Sei L das Randstiick, das am hiufigsten
von solchen Knoten geschnitten wird und #,,,, die Anzahl der Knoten v € Y,
deren Region L schneidet. Fiir Y erhalten wir dann

|Y| S 4. tmaz (33)

Um t,,4, zu bestimmen, nehmen wir im folgenden 0.B.d.A. an, daf} L der rechte
Rand von R ist. Die Menge der Knoten, die L schneiden, zerlegen wir in V und
W, dabei wird nach der Gestalt der Knotenregionen unterschieden:

V= {v € Y|R(v) ist eindimensional } (Typ 5-7)
W = {veY]|R(v) ist zweidimensional } (Typ 1-4)
tmaz = V| +|W|

Auf dem Pfad zu einem Knoten w € W kommt also kein =-Zeiger vor, bei
einem Knoten z € V' genau einer (eine Koordinate ist schon fest).

W; C W sei die Menge der Knoten aus W auf dem Level I des Baums,
W = U}():gon W;. Jeder Knoten v € W; hat zwei Level tiefer htchstens zwei Enkel
aus W, also |Wj 2| < 2 - |IW;|. Dazu betrachte man Abb. 3.6. Nach der Wahl der

n R(v),v e W,
1.
9 R(ul) uy € ‘/Vl+2
R(U'?) U € VVH_Q
L

Abb. 3.6: zwei Enkel

ersten Splitlinie kommt der Bereich, der ganz in R liegt (oder derjenige, der ganz
auflerhalb von R liegt), fiir W nicht mehr in Frage. Nach dem zweiten Splitten
entstehen also hochstens zwei Enkel in Wi, », wie in der Abbildung dargestellt.



28 KAPITEL 3. SEMINARVORTRAGE

Mit der Anfangsbedingung |[Wp| < |W;| < 2 ergibt sich

[Waom| < 2|Wapm—a|
[Womti1| < 2|Wapm—1]

< L <2 W <2-2m (3.4)
< L <2MW <2-2m (3.5)

Nun z#hlen wir die Knoten in V, sie sind S6hne von Knoten aus W, weil eine
eindimensionale Region immer in einer zweidimensionalen liegt und der Vater
ebenfalls L schneiden muf.

Bezeichne S(u) fiir uw € S die im Teilbaum mit Wurzel u gespeicherte Punkt-
menge. Sei z € V der =-Sohn von w € W, dann gilt R(z) C R(w) und somit
|S(2)| < |S(w)| < 53¢ (ein Teilbaum mit Wurzel w auf Level [ hat hochstens g
Knoten wegen der Balancierungseigenschaft) (siehe Abb. 3.7).

w

¥4

log|S(2)| | log 3

2 Pfade

Abb. 3. 7T"weW,und z € V

Weiterhin hat z hochstens 2-log |S(z)| Nachfolger, die ebenfalls in V' liegen. R(z)
ist ndmlich eine horizontale oder vertikale Linie (siehe Abb. 3.8). Im ersten Fall

Abb. 3.8: R(z) horizontal bzw. vertikal

liegen alle Nachfolger von z, die L schneiden, auf einem Pfad im Baum T, weil
man entweder den <- oder den >-Zeiger verfolgen mufl. Fiir die Region des
Nachfolgers von z (gestrichelt) gilt wiederum dasselbe. Im zweiten Fall sind
zwei Pfade moglich, man verfolgt beide Zeiger und hat dann bei den beiden
Nachfolgern wiederum den ersten Fall vorliegen. Die Anzahl der Nachfolger ist
also hochstens

2-log|S(z)| <2 log% (3.6)



3.1. NACHBARSCHAFT IM RP 29

Um |V| + |W| nach oben abzuschitzen, zihlen wir fiir jeden Baumlevel I die
Knoten w € W; und deren Nachfolger in V', wobei hierbei natiirlich Knoten aus
V' doppelt gezdhlt werden (siehe Abb. 3.9).

w1 w

Level [
log 3¢ l /( gé: i; %

Abb. 3.9: pro w € W, sind zwei Pfade moglich

logn

n .
tmaz = |V| + |W| < Z |I/Vl| ) QIOgg (mlt 36)
=0
logn n
< ; 2.2l/2 +2-log; (it 3.5)
logn
= 4. Z 212 . (logn <)
=0
logn _
= 4vn- Z 22" . (logn <)
logn

= 4{2 L.1e0(4vn)

Fiir Y ergibt sich also |Y| € O(16-+/n) (wegen 3.3) und |Y|+|Z| € O(16-y/n+
logn) = O(16 - v/n) (mit 3.2). Fiir jeden besuchten Knoten fallen beim Test
P(v) € R zwei Operationen an, also erhélt man mit (3.1) den Gesamtaufwand:

0(32-Vn+2-]A))

3.1.3.3 Quad-Trees

Einfiihrung

Die wohl bekannteste geometrische Datenstruktur ist der Quad-Tree (siehe [1]).
Wir betrachten wiederum nur den zweidimensionalen Fall, die Verallgemeine-
rung fiir hohere Dimensionen (Okt-Trees usw.) macht keine besonderen Schwie-
rigkeiten. Wahrend bei den k-D-Bidumen eine Unterteilung in Halbebenen er-
folgte, unterscheidet man nun vier Quadranten, es ergeben sich also Bidume mit
dem Verzweigungsgrad vier (im RF Verzweigungsgrad 2¥). Die Zuordnung der



30 KAPITEL 3. SEMINARVORTRAGE

IT I

NW NO

SW SO

I11 v

Abb. 3.10: Punktmenge und zugehoriger Quad-Tree

Punkte auf den Trennungslinien kann man willkiirlich wihlen, z.B. seien im
folgenden Quadrant I und Quadrant IIT abgeschlossen.

Als Beispiel betrachte man Abb. 3.10. Wihlt man den Punkt A als Wurzel, so
liegt B im ersten Quadranten von A, wird also der erste Sohn von A. C liegt
im vierten Quadranten und wird der vierte Sohn. D liegt im ersten Quadranten
von A, da aber dort schon der Sohn B existiert, bestimmt man den Quadranten
von D bzgl. von B usw.

Operationen

1. Einfiigen, Punktsuche
Verzichtet man auf eine Balancierung der Baume, kann man die iibliche Einfiige-
prozedur verwenden:

procedure insert(v:Knoten, p: Punkt)
begin
direction:=compare(v,p); (* Quadrant von p bzgl. v¥)
if v.direction#£nil
then insert(v.direction, p)
else v.direction:=p;
end.

Beim Prozeduraufruf enthilt v die Wurzel des zu durchsuchenden Quad-Trees
und p ist der gesuchte Punkt. Zunichst bestimmt man den Quadranten, in dem



3.1. NACHBARSCHAFT IM RP 31

p in Bezug auf v liegt. Wenn kein entsprechender Sohn von v existiert, kann
p eingefligt werden, ansonsten Rekursion auf dem Unterbaum. Die Punktsuche
erfolgt durch den iiblichen rekursiven Abstieg.

Empirische Untersuchungen fiir den average case in [1] ergaben eine Baumtiefe
von O(log, n), so dafl Einfiigen und Punktsuche ebenfalls in O(log, n) moglich
sind. Der worst case liegt z.B. dann vor, wenn die Punkte auf einer Geraden
liegen, in diesem Fall entartet der Quad-Tree zu einer linearen Liste. Damit
steigt der Aufwand fiir das Einfiigen und die Punktsuche auf O(n).

Um dies zu vermeiden, kann man wiederum ideale Quad-Trees einfiihren. Wihlt
man als Wurzel den Median beziiglich einer Koordinate, dann enthélt jeder der
vier Teilbaume hichstens die Hilfte der Knoten. Damit ist die Baumtiefe wieder
in O(log, n). Wie bei den idealen k-D-Bidumen setzt dies aber eine statische
Punktmenge voraus, ein nachtréigliches Einfiigen zerstort die Balancierung.

2. Léschen

Wird ein innerer Knoten aus dem Baum entfernt, so mufl der abgetrennte Teil-
baum wieder angefiigt werden. Dabei bleibt einem nichts anderes iibrig, als die
Knoten dieses Teilbaums wieder einzeln einzufiigen, falls die Wurzel gel6scht
wurde, betriigt der Aufwand O(n - log, n).

3. Bereichssuche

Der Algorithmus entspricht dem fiir die Bereichssuche in k-D-B&umen mit dem
Unterschied, dal nun eine vierfache Rekursion aufgrund des Verzweigungsgrads
vier auftritt. Eine worst-case-Analyse fiir balancierte Biume in [12] ergab einen
Aufwand von O(y/n) (O(n'~'/*) fiir den k-dimensionalen Fall). Damit ist die
Bereichssuche in Quad-Trees ebenso effizient wie in 2-D-B&dumen.

3.1.3.4 Grid-File

Einfiihrung

Bei den oben vorgestellten Baumstrukturen erhilt man eine Unterteilung des
Raums in Abhéngigkeit von der gespeicherten Punktmenge. Im Grid-File wird
ein anderer Ansatz verfolgt; man gibt die Unterteilung des Suchraums explizit
vor (siehe [20]). Legt man ein Gitter iiber die Punktmenge S und speichert die
Punkte einer Gitterzelle in einer Punktliste, mufl man bei einer Bereichsanfrage
nur die iiberdeckten Gitterzellen durchsuchen. Um die Punktzahl pro Gitter-
zelle konstant zu halten, pafit man die Feinheit des Gitters der Punktdichte
lokal an. Beim Grid-File gilt fiir die Verfeinerung das Matrixprinzip, d.h. die
Gitterlinien durchziehen den ganzen Suchraum. In Abb. 3.11 sieht man links
eine Veranschaulichung des Gitters, rechts ein Beispiel fiir ein Gridfile: In der
rechten Abbildung findet man die Einteilung in neun Gitterzellen wieder. Da
bei geringer Besetzung einer Gitterzelle eine eigene Punktliste (im folgenden
Datenblock) nicht lohnt, falt man benachbarte Gitterzellen zu Blockregionen
zusammen (abgerundete Boxen). Eine Blockregion hat immer die Form eines
Rechtecks und umfafit die Gitterzellen, die zum selben Datenblock gehoren.

Zur Speicherung der Intervallteilungen legt man fiir jede Dimension ein eindi-
mensionales Feld an, ein sogenannter Scale (im Bsp.: 0, 25, 50, 100 fiir x und



32 KAPITEL 3. SEMINARVORTRAGE

yA
T T B A
% e ° ° ° ° B
° ° ° ’ S I J
IR R 50 T F (C N
b T % ° E . Dn C
- J{ N Y, .
0 50 100 z

Abb. 3.11: Gridfile

y). Die Elemente der Directory-Matriz (=Gitterzellen) enthalten einen Zeiger
auf den zugehorigen Datenblock. In den Datenblocken werden die eigentlichen
Punktkoordinaten gespeichert. Da diese auf Festplatte gespeichert werden, er-
gibt sich aus der Plattenblockgrofe eine Blockkapazitiit von b Punkten (im Bsp.
b=2).

Als das Gridfile Mitte der 80er Jahre entwickelt wurde, wurden lediglich die
Scales im (damals kleinen) Hauptspeicher gehalten, wihrend Directory-Matriz
und Datenblicke auf Festplatte gespeichert wurden. Bei den heutigen Haupt-
speichergrofien ist diese strikte Trennung nicht mehr nétig.

Operationen

Zur Aufwandsabschitzung gehen wir von dieser getrennten Datenhaltung aus
und zdhlen die Anzahl der Zugriffe auf Directory-Matrix und Datenblécke.

1. Punktsuche
Bei der Punktsuche gilt das Zwei-Zugriffs-Prinzip, d.h. man kommt mit zwei
Plattenzugriffen aus:

1. Eingabe: Punkt (z,y)

2. Mittels z- und y-Scale Spalte und Zeile der Directory-Matrix bestimmen.
(Hauptspeicher)

3. Directory-Element holen. (1. Plattenzugriff)
4. Mittels Zeiger den Datenblock holen. (2. Plattenzugriff)
5. Datenblock nach (z,y) durchsuchen.

2. Einfiigen

Zunichst wird der entsprechende Datenblock wie bei der Punktsuche von der
Platte geholt. Befinden sich darin weniger als b Punkte (Blockkapazitét), so



3.1. NACHBARSCHAFT IM RP 33

kann der neue Punkt einfach eingefiigt werden. Im anderen Fall miissen der
Datenblock und die zugehorige Blockregion geteilt werden. In Abb. 3.12 soll ein
neuer Punkt in den Datenblock D eingefiigt werden, letzterer wird in die neuen
Blocke D und E geteilt:

A B A B

.

Do -lc - ) (BEe.)C )
: : o e -

. I\ ) . )

Abb. 3.12: Einfiigen

Da hierbei auch unbeteiligte Blockregionen geteilt werden (im Bsp.: Region
C), wichst das Directory stérker als eigentlich nétig. Der worst case tritt bei
einer starken Haufung der Punkte auf einem Fleck auf, dadurch werden viele
Teilungslinien nétig, die den ganzen Suchraum durchziehen.

Bei der Wahl der Splitdimension kann man unterschiedliche Strategien verfolgen,
als Beispiele seien genannt:

o teile die lingste Seite der Blockregion.
o teile gem#f schon vorhandenen Gitterzellen (im Bsp.: Region C).

e teile die Dimension mit der kleinsten Anzahl von bisher erfolgten Teilun-
gen.

3. Loschen

Zunichst wird wieder der Datenblock aufgesucht und der zu 16schende Punkt
entfernt. Um keinen Speicherplatz zu verschwenden, sollte die Blockauslastung
nicht zu klein werden. Deswegen wird noch iiberpriift, ob eine Blockverschmel-
zung durchgefiihrt werden kann. Dafiir miissen zwei Bedingungen erfiillt sein:

1. Blockauslastung < untere Schranke (z.B. 30%)

2. Blockauslastung im resultierenden Block < obere Schranke (z.B. 70%)

Die zweite Bedingung verhindert dabei, daf auf eine Verschmelzung sofort wie-
der eine Teilung folgt.

Bei der Auswahl der Nachbarregion, mit der die Verschmelzung durchgefiihrt
wird, muf} natiirlich beachtet werden, daf} die resultierende Blockregion wieder
rechteckig sein muf}. Fiir die Auswahl gibt es unterschiedliche Strategien. Bei der
Bruderstrategie macht eine Verschmelzung gerade eine Teilung riickgéingig, d.h.
nur ,Briider®, die aus einer Teilung hervorgegangen sind, kénnen wieder ver-
schmolzen werden (Bsp.: s.o., Riickrichtung). Die weniger restriktive Nachbar-
strategie 148t alle Nachbarregionen zu, sofern sie die Rechteckbedingung erfiillen:



34 KAPITEL 3. SEMINARVORTRAGE

Abb. 3.13: Loschen

Nach dem Lo&schen des markierten Punktes in Datenblock D werden die Blocke
A und D verschmolzen (Abb. 3.13).

4. Bereichssuche

Der Suchbereich sei wieder durch das Rechteck R = [z, 22] X [y1, y2] gegeben.
Zunichst sucht man nach dem Punkt (z1,y1) (Ecke links unten) im Grid-File
und iiberpriift die Punkte im zugehorigen Datenblock. Danach muf} im Directory
nach oben und nach rechts weitergesucht werden, was einer Bereichsanfrage auf
der Directory-Matrix entspricht. Wir erldutern das Vorgehen an einem Beispiel.
In Abb. 3.14 ist ein Grid-File mit entsprechendem Suchbereich dargestellt. Fiir

e M

A |A B

° o

Abb. 3.14: einstufiges Grid-File

die Bereichssuche sind in diesem Beispiel 7 Plattenzugriffe n6tig, und zwar fiir
4 Directoryelemente und 3 Datenbldcke (A, C und D).

Dieses einstufige Grid-File 148t sich zu einem zweistufigen erweitern. Hierbei
werden Gitterzellen zu Blockdirectories zusammengefafit und dariiber ein Wur-
zeldirectory im Hauptspeicher gehéngt, das Zeiger auf die Blockdirectories enthélt
(Abb. 3.15). Mit dieser Mafinahme braucht man nur noch 5 Plattenzugriffe, 2
fiir die beiden Blockdirectories und 3 fiir die Datenbltcke.

3.1.3.5 Vergleich

k-D-Baume und Quad-Trees sind statische Datenstrukturen, ein nachtréigliches
Einfiigen und Loschen von Punkten fiihrt zu unausgeglichenen Biumen und
kommt somit nicht in Betracht. Bei beiden ist eine effiziente Bereichsanfrage
mit dem Aufwand O(y/n + |A]) moglich (fiir den zweidimensionalen Fall). Eine



3.1. NACHBARSCHAFT IM RP 35

A AlA B

B B CL ) D
Wurzeldirectory Blockdirectories
(Hauptspeicher) (Platte)

Abb. 3.15: zweistufiges Grid-File

Implementierung von Pointerstrukturen ist nur im Hauptspeicher sinnvoll, man
wiirde sonst zuviele Plattenzugriffe benttigen.

Demgegeniiber ist das Grid-File eine dynamische Datenstruktur, Einfiigen und
Loschen ist mit geringem Overhead (split und merge) méglich. Die Bereichsan-
frage ist ebenfalls sehr effizient und die dafiir bendtigte Zeit hingt nur von der
Grofe des Suchbereichs, nicht der gesamten Punktezahl ab. Durch mehrstufi-
ge Grid-Files kann die Effizienz noch verbessert werden. Das Grid-File wurde
urspriinglich fiir Sekundérspeicher konzipiert, kénnte aber durchaus auch im
Hauptspeicher gehalten werden.

Abb. 3.16: Grid-Quad-Baum

Quad-Tree und Gridfile lassen sich zum Grid-Quad-Baum kombinieren. Dabei
handelt es sich um ein Gridfile, bei dem die Aufteilung des Raums nicht nach
dem Matrixprinzip, sondern wie bei den Quad-Trees erfolgt (s. Abb. 3.16). Man
baut als einen Quad-Tree auf, bei dem nur die Blitter Datenbltcke der Kapa-
zitit b enthalten. Wie beim Gridfile werden die abzuspeichernden Punkte in die
Datenblocke eingetragen. Beim Teilen von Datenblécken werden vier Unterqua-
dranten erzeugt, beim Verschmelzen geht man nach der Bruderstrategie vor.
Durch diese neue Aufteilung des Raums vermeidet man den hohen Speicherauf-
wand, der beim Matrixprinzip entsteht.



36 KAPITEL 3. SEMINARVORTRAGE

3.2 Matching Verfahren

3.2.1 Einleitung

Diese Ausarbeitung zeigt wie das 2’er FGM-Problem effizient gelost werden
kann. Dazu wird zuniichst der Ubergang von diesem Problem zu dem in der
Graphentheorie bekannten Problem des Maximalen Matchings erldutert. Dann
wird ein Algorithmus vorgestellt, der ein Maximales Matching mit einem Auf-
wand von héchstens O(|V|*®) Operationen findet. Dieser Algorithmus besteht
aus zwei Teilen. Der erste Teil, die duflere Schleife, wurde von Hopcroft und
Karp [8] entwickelt und der zweite Teil, die innere Schleife, von Micali und
Vazirani [16].

3.2.2 Vom 2’er FGM-Problem zum Maximalen Matching
3.2.2.1 2’er FGM-Problem

Der Ausgangspunkt ist eine Menge von Personen, von denen Eigenschaften wie
z.B. Wohnort, Arbeitszeit, Arbeitsort und Raucher/Nichtraucher, bekannt sind.
Das Problem besteht darin, aus dieser Personenmenge eine maximale Anzahl
von 2’er-Fahrgemeinschaften zu bilden. Dabei sollen der fiir den Fahrer ent-
stehende Umweg und die Eigenschaften der einzelnen Personen beriicksichtigt
werden. Zur effizienten Losung diese Problems werden Erkenntnisse aus der
Graphentheorie benutzt.

3.2.2.2 Personengraph

Aus der in Abschnitt 3.2.2.1 vorgestellten Personenmenge und den Eigenschaf-
ten der einzelnen Personen wird ein Personengraph G = (V, E) gebildet. Die
Knoten v € V reprisentieren dabei die Personen und eine Kante e € F bedeu-
tet, dal die verbundenen Personen zusammen in einer Fahrgemeinschaft fahren
konnten. Zur Erstellung des Personengraphen wird fiir jedes Personenpaar ge-
priift, ob eine Fahrgemeinschaft moglich ist, und wenn ja, dann wird eine Kante
in den Graph eingefiigt. Ab jetzt wird das Problem nur noch aus Sicht der
Graphentheorie gesehen. Es gibt nur noch einen Graphen mit Knoten und Kan-
ten, dessen Entstehung fiir die Losung des Problems zunichst nicht mehr von
Bedeutung ist.

3.2.2.3 Matching
Definition

Sei G = (V, E) ein Graph mit der Knotenmenge V' und der Kantenmenge E.
Dann heifit die Menge M C E Matching, wenn kein Knoten v € V' mit mehr
als einer Kante aus M verbunden ist; (Abbildung 3.17).

Eine Kante e € F heifit ‘matched’, wenn e € M ist.
Eine Kante e € E heifit ‘unmatched’, wenn e € (E < M) ist.



3.2. MATCHING VERFAHREN 37

4 5 6
M={(1,2),(4.5)}

unmatched Kante

~N N~ matched Kante

Abb. 3.17: Beispiel fiir ein Matching

1 2 3

4 5 6
M={(1,2),(4.5).(3,6)}

Abb. 3.18: Beispiel fiir ein Maximales Matching

Bei allen Abbildungen werden ‘matched’ Kanten als Wellenlinie und ‘unmat-
ched’ Kanten als gerade Linien dargestellt.

3.2.2.4 Maximales Matching
Definition

Ein Matching M auf einem Graphen G heifit Maximales Matching, wenn
kein Matching M existiert, das mehr Kanten als M enthélt; (Abbildung 3.18).

Ein Maximales Matching ist nicht eindeutig, es kann zu einem Graphen mehre-
re Maximale Matchings geben, nur die Grofle dieser maximalen Matchings ist
eindeutig.

3.2.3 MM-Algorithmus

Zur Berechnung eines Maximalen Matchings auf einem ungerichteten Graphen
kann der von Hopcroft und Karp [8] und Micali und Vazirani [16] entwickelte



38 KAPITEL 3. SEMINARVORTRAGE

Algorithmus verwendet werden. In diesem und den folgenden Abschnitten wird
die Funktionsweise vorgestellt und die Laufzeit des MM-Algorithmus betrachtet.
Um den Algorithmus verstehen zu konnen, miissen zunéchst einige neue Begriffe
eingefiihrt werden.

Definitionen
Sei G = (V, E) ein Graph und M ein Matching.

e Ein Knoten v € V heiflt freier Knoten, falls v mit keiner Kante aus M
verbunden ist.

e Ein Pfad (vi,v2,v3,...,05) mit (v;,v;01) € E; 1 <4 < kund k € N,
heifit alternierender Pfad, falls dessen Kanten (v;,v;y1) abwechselnd
‘matched’ und ‘unmatched’ sind.

e Ein Pfad (vi,v2,v3,...,v) mit (v;,v;01) € E, 1 <i < kund k € N, heifit
augmentierender Pfad, falls er alternierend ist und die Knoten v; und
vy, freie Knoten sind.

Um ein gefundenes nicht maximales Matching zu vergrofiern, wird wéhrend der
Berechnung immer wieder das Matching mit einem augmentierenden Pfad durch
‘disjunktives oder’ verkniipft. Diese Verkniipfung wird an dieser Stelle kurz
erlidutert, bevor der Algorithmus niiher beschrieben wird.

In Abbildung 3.19 ist am Beispiel zu sehen, wie Matchings (M;) mit augmen-
tierenden Pfaden (P;) durch ‘disjunktives oder’ (&) verkniipft werden.

Das Ergebnis der Verkniipfung M;_; ® P; ist M;. M; ist wieder ein Matching
und enthilt genau eine Kante mehr als M;_;. Wie auch im Beispiel zu sehen,
besteht M; aus allen Kanten, die entweder zu M;_; oder zu Pi aber nicht zu
M;_, und zu P; gehoren.

Der MM-Algorithmus berechnet zu einem ungerichteten Graphen G = (V, E)
ein Maximales Matching. Dazu wird, beginnend beim leeren Matching M = 0,
die maximale Menge kiirzester augmentierender Pfade beziiglich M gesucht. Die
Pfade dieser Menge werden dann nacheinander durch ‘disjunktives oder’ mit M
verkniipft, wodurch das Matching M erweitert wird. Diese Suche der kiirzesten
augmentierenden Pfade und die anschlielende Erweiterung von M wird solan-
ge wiederholt, bis keine augmentierenden Pfade mehr gefunden werden. Dann
wird der Algorithmus abgebrochen, da das Maximale Matching gefunden wur-
de. In der duBleren Schleife des Algorithmus wird die Verkniipfung mit ‘dis-
junktivem oder’ durchgefiihrt und in der inneren Schleife wird die maximale
Menge kiirzester augmentierender Pfade beziiglich M gesucht. Der Aufwand
zur Berechnung des Maximalen Matchings liegt fiir den hier vorgestellten MM-

Algorithmus in O(/|V||E]).

Eingabe Ein ungerichteter Graph G = (V, E).

Schritt 0 M « 0



3.2. MATCHING VERFAHREN 39

4 5 6 5 6
M~ (1.4)} M ={(1.4),(2.3)}
P={(2,3)}

1 2 P 3 1 2 3

M, P=M,
=

4 5 6 4 5 6

M ={(1,4),(2,3)} M ={(1.4).(2.,5).(3,6)}

R={(52),(2.3),(3.6)}

Abb. 3.19: Beispiel fiir Verkniipfungen mit ‘disjunktivem oder’

Schritt 1 Sei (M) die Linge eines kiirzesten augmentierenden Pfades
beziiglich M. Finde eine maximale Menge von Pfaden {Pi, P,..., P}
mit folgenden Eigenschaften:

a) fiir alle 7 ist P; ein augementierender Pfad beziiglich M und |P;| =
[(M);
b) alle P; sind knotendisjunkt

stoppe, wenn kein solcher Pfad mehr existiert.
Schritt 2 M + M ® P, ® P, ®--- & P;; gehe zu Schritt 1
Ausgabe Ein maximales Matching M mit M C E.

3.2.4 AuBlere Schleife

In der duBleren Schleife des MM-Algorithmus wird nach der Initialisierung in
Schritt 0 die innere Schleife in Schritt 1 ausgefiihrt. Nach der Abarbeitung des
Schritt 1 wird dann in Schritt 2 das Matching M um die, bei Ausfithrung der
inneren Schleife gefundenen augmentierenden Pfade {Py, Ps,...,P;} erginzt.
Dann wird wieder Schritt 1 aufgerufen. Werden bei einem Aufruf der inneren
Schleife keine augmentierenden Pfade mehr gefunden, so ist M das Maximale
Matching und der Algorithmus wird abgebrochen.

Es kann gezeigt werden, dafl der Schritt 1 des MM-Algorithmus zur Berechnung
eines Maximalen Matchings M mit |M| = s hochstens 2|+/s| +2 mal ausgefiihrt
werden muB. Deshalb liegt der Aufwand fiir die iuBere Schleife in O(+/]V]). Die
Beweisfithrung ist in [8] und [3] enthalten.



40 KAPITEL 3. SEMINARVORTRAGE

1 2 3 4

10 11 12 13

Abb. 3.20: Graph G und Matching Mjy

3.2.5 Innere Schleife

In der Inneren Schleife des MM-Algorithmus wird eine maximale Menge kiirzester
augmentierender Pfade beziiglich eines Matchings M gesucht. Die Vorgehens-
weise wird zunichst an einem einfachen Beispiel gezeigt und dann im Detail
erldutert.

3.2.5.1 Einfaches Beispiel zur Inneren Schleife

Die Berechnung eines Maximalen Matchings auf dem Graphen G = (V, E) ist
bei dem Matching M;5 angelangt (Abbildung 3.20). Die ‘matched’ Kanten sind
in Abbildung 3.20 wieder als Wellenlinie und die ‘unmatched’ Kanten als gerade
Linien gezeichnet.

In der nun folgenden Abarbeitung der inneren Schleife wird eine maximale Men-
ge kiirzester augmentierender Pfade gefunden. Dazu wird der Graph mit Brei-
tensuche ausgehend von allen freien Knoten durchlaufen.

Im Beispiel sind die Knoten 5, 8 und 10 die Startpunkte der Suche nach den aug-
mentierenden Pfaden. Da ein augmentierender Pfad an den Enden ‘unmatched’
Kanten besitzt, werden im ersten Schritt der Suche nur solche Kanten beriick-
sichtigt. Der nach dem ersten Schritt der Suche entstandene Breitensuchbaum
ist in Abbildung 3.21 dargestellt. Beim Knoten 5 wurde die Kante (5,1), beim
Knoten 8 die Kante (8,9) und beim Knoten 10 die Kante (10,6) gefunden.

Im néchsten Schritt wird nur nach ‘matched’ Kanten gesucht, da augmentie-
rende Pfade abwechselnd aus ‘matched’ und ‘unmatched’ Kanten bestehen. Das
Ergebnis des zweiten Schritts ist die Erweiterung des Suchbaums um die Kan-
ten (1,2), (9,4) und (6,3). Im dritten Schritt werden dann wieder ‘unmatched’
Kanten gesucht, wobei die Kanten (2,7), (2,11) und (4,3) gefunden werden.
Der nach den beiden Schritten erstellte Breitensuchbaum ist in Abbildung 3.22
zu sehen.



3.2. MATCHING VERFAHREN 41

Baumstufen Wurzeln
¢ R
0 5 8 10
1 1 9 6

Abb. 3.21: Breitensuchbaum nach dem ersten Schritt der Suche

Baumstufen Wurzeln

'

R
0 5 8 10
1 1 9 6
2 2 4 3
3 7 11

Abb. 3.22: Breitensuchbaum nach dem dritten Schritt der Suche



42 KAPITEL 3. SEMINARVORTRAGE

10 11 12 13

Abb. 3.23: Graph G und Matching Mg

Beim dritten Schritt haben sich die Aste mit den Wurzelknoten 8 und 10 ge-
troffen, womit ein kiirzester augmentierender Pfad P gefunden wurde. Da sich
im dritten Schritt nur zwei Aste getroffen haben, besteht die maximale Menge
kiirzester Augmentierender Pfade aus genau einem Pfad. Wiirde im néchsten
Schritt ein augmentierender Pfad gefunden, so wére dieser langer als der Pfad P
von 8 nach 9 und deshalb kein kiirzester Pfad. Da die maximale Menge kiirzester
Augmentierender Pfade im dritten Schritt gefunden wurde, wird die Ausfiihrung
der inneren Schleife beendet.

Nach dem Ende der inneren Schleife wiirde nun die d&uflere Schleife weiter fort-
gesetzt, wobei sich durch die Verkniipfung M5 & P das in Abbildung 3.23 dar-
gestellte Matching Mg ergibt.

Der in dem Beispiel angedeutete Algorithmus zum Berechnen einer maximalen
Menge kiirzester augmentierender Pfade beziiglich eines Matchings M, wurde
von Micali und Vazirani [16] entwickelt. Fiir diese Berechnung benétigt der
Algorithmus héchstens O(|E|) Operationen. Die wesentlichen Bestandteile des
Algorithmus sind die vier Routinen SEARCH, BLOSS-AUG, FINDPATH und
TOPOLOGICAL ERASE, die im Weiteren genau beschrieben werden.

3.2.5.2 SEARCH

Die Routine SEARCH durchliduft den Graphen, in dem augmentierende Pfa-
de gesucht werden, mit Breitensuche und baut dabei einen Breitensuchbaum
auf. Fiir jeden Knoten und einige Kanten des Suchbaums werden Eigenschaf-
ten bestimmt und abgespeichert. Zur Beschreibung dieser Eigenschaften ist die
Einfiihrung einiger Begriffe notig,.

Definitionen

evenlevel(v) Ist die Linge des kiirzesten alternierenden Pfades vom Knoten v
zu einem freien Knoten, wobei die Anzahl der Kanten des Pfades gerade



3.2. MATCHING VERFAHREN 43

ist. Wenn kein solcher Pfad existiert, dann ist evenlevel unendlich.

oddlevel(v) Ist die Linge des kiirzesten alternierenden Pfades vom Knoten v zu
einem freien Knoten, wobei die Anzahl der Kanten des Pfades ungerade
ist. Wenn kein solcher Pfad existiert, dann ist oddlevel unendlich.

level(v) Ist das Minimum aus evenlevel(v) und oddlevel(v).
outer Ein Knoten v heifit outer, wenn level(v) gerade ist.
inner Ein Knoten v heifit inner, wenn level(v) ungerade ist.

other level(v) Wenn v outer ist, dann ist other level(v) =oddlevel(v), wenn v
inner ist, dann ist other level(v) =evenlevel(v).

bridge Eine Kante(u,v) heifit bridge, wenn etweder evenlevel(u) < oo und
evenlevel(v) < 0o, oder oddlevel(u) < co und oddlevel(v) < oo ist.

tenacity(u,v) Ist das Minimum aus ((evenlevel(u)+evenlevel(v)),
(oddlevel(u)+oddlevel(v))) + 1.

Das Ziel der Suche ist erreicht, wenn eine maximale Menge kiirzester augmentie-
render Pfade beziiglich eines Matchings M gefunden wurde. Die Operationen-
folge zur Berechnung einer maximalen Menge wird als eine Phase bezeichnet.
In einer solchen Phase wird jeder Knoten des Graphen von SEARCH héchstens
einmal durchlaufen.

Wihrend der Breitensuche wird der Breitensuchbaum aufgebaut und zu jedem
besuchten Knoten werden Eigenschaften abgespeichert. Die Suche beginnt bei
allen freien Knoten, d.h. zuerst wird von jedem freien Knoten mindestens ein
Nachbarknoten besucht und erst dann wird die Suche, bei den in den Baum
aufgenommenen Nachbarknoten, fortgesetzt.

Die Baumstufen des Breitensuchbaums werden als level bezeichnet, wobei die
Zshlung bei der Wurzel mit 0 beginnt. Das bedeutet, daf} sich alle freien Knoten
im level 0 befinden und deren Nachbarknoten bilden dann das level 1. Das level
1 gibt an wieviele Kanten ein Knoten v von dem néchsten freien Knoten entfernt
ist. Dieser freie Knoten ist der Wurzelknoten, der Vorgénger von v ist.

Die Entfernung, zwischen v und dem freien Knoten, kann gerade und ungerade
Linge haben und da dies fiir die Erkennung von augmentierenden Pfaden wich-
tig ist, bekommt jeder Knoten zwei Parameter. Die Paremeter sind oddlevel
und evenlevel und werden mit unendlich initialisiert. Bei der Suche wird fiir
einen Knoten, der in einem ungeraden level liegt, oddlevel auf den Wert der
Entfernung zum n#chsten freien Knoten gesetz und bei Knoten in geraden le-
veln entsprechend evenlevel. Der im Beispiel in Abschnitt 3.2.5.1 entstandene
Breitensuchbaum ist in Abbildung 3.24 mit den Angaben zu level, evenlevel und
oddlevel dargestellt.

Die Suche im level ¢ wird in Abhéngigkeit von ¢ in folgender Weise fortgesetzt:

e j ist gerade

— Bei der Suche wird von allen Knoten v mit evenlevel(v) = i ausge-
gangen.



44 KAPITEL 3. SEMINARVORTRAGE

Ieyel evenlevel oddlevel
0 50 000 8 00 10e 00 outer Knoten

1 ool inner Knoten

2 2,3 outer Knoten
A\ bridge

3 76 03 11e o3 inner Knoten

Abb. 3.24: Breitensuchbaum mit Eigenschaften der Knoten

— Es werden alle Nachbarknoten u besucht, die mit v durch ‘unmatched’
und bloss-unbenutzte (siehe 3.2.5.3) Kanten verbunden sind.

— Wenn oddlevel(u) = oo, dann wird oddlevel(u) auf ¢ + 1 gesetzt.
e § ist ungerade

— Bei der Suche wird von allen Knoten v mit oddlevel(v) = i ausgegan-
gen.

— Es wird ein Nachbarknoten u gesucht, der mit v duch eine ‘matched’
Kante verbunden ist.

— Evenlevel(u) wird auf i + 1 gesetzt.

Beim Aufbau des Breitensuchbaums wird fiir jede neu hinzugekommene Kante
gepriift, ob sie eine bridge ist. Immer wenn eine Kante in den Breitensuch-
baum aufgenommen wird, die die bridge-Eigenschaft erfiillt, werden durch diese
Kante zwei Aste des Baumes miteinander verbunden. Deshalb ist es moglich,
daf} diese bridge Teil eines augmentierenden Pfades ist. Da nicht jede bridge zu
einem augmentierenden Pfad gehort, wird wihrend der Suche im level ¢ eine
Liste bridges(i) angelget, in die alle gefundenen Kanten mit bridge-Eigenschaft
eingetragen werden.

Nachdem die Suche an allen Knoten dieses Levels beendet ist, wird fiir jede
gefundene bridge die Routine BLOSS-AUG (3.2.5.3) aufgerufen. BLOSS-AUG
iiberpriift dann fiir jede einzelne Kante e € bridges(i) , ob sie Teil eines aug-
mentierenden Pfades ist und leitet gegebenenfalls eine Sonderbehandlung dieses
Pfades ein.



3.2. MATCHING VERFAHREN 45

Wenn bei der Abarbeitung der Menge bridges(i) durch BLOSS-AUG kein aug-
mentierender Pfad gefunden wurde, so wird die Suche von SEARCH ausgehend
vom level i fortgesetzt.

Wird jedoch mindestens ein augmentierender Pfad gefunden, dann bildet dieser
zusammen mit allen weiteren in diesem level gefundenen Pfaden die maxima-
le Menge kiirzester augmentierender Pfade beziiglich des Ausgangsmatchings
und die Phase wird durch Abbruch der inneren Schleife beendet. Jeder augmen-
tierende Pfad, der bei Fortsetzung der Breitensuche durch SEARCH in einem
hoheren level j > level ¢ gefunden wiirde, ist kein kiirzester Pfad mehr und
gehort deshalb nicht zu der gesuchten Menge. Das liegt daran, daf} ein im level
i gefundener Pfad die Linge 2i + 1 hat und wegen j > i sind Pfade der Linge
2j + 1 keine kiirzesten augmentierenden Pfade.

Es gibt zwei Fille, in denen eine Phase beendet wird. Im ersten Fall, der oben
beschrieben ist, wird die Ausfithrung abgebrochen, wenn in dem aktuellen level
augmentierende Pfade gefunden wurden. Der zweite Fall tritt ein, wenn die
Suche einen level erreicht hat, in dem keine Kanten mehr erreichbar sind, die in
den Suchbaum aufgenommen werden kénnen. Der Suchbaum kann ausgehend
von inner Knoten nur mit ‘matched’ Kanten und ausgehend von outer Knoten
nur mit ‘unmatched’ Kanten erweitert werden.

Wird in einer Phase kein augmentierender Pfad mehr gefunden, so war das
Matching schon zu Beginn der Phase maximal und der Algorithmus wird abge-
brochen. Zum Abbruch des Algorithmus wird die innere und die dufiere Schleife
beendet.

3.2.5.3 BLOSS-AUG

Die Routine BLOSS-AUG wird von der Routine SEARCH am Ende jedes Le-
vels fiir jede gefundene bridge aufgerufen. Um die in BLOSS-AUG enthaltene
Erkennung der augmentierenden Pfade durchfiihren zu kénnen, werden von al-
len Knoten aufler oddlevel und evenlevel noch andere Eigenschaften benétigt.
Deshalb wird fiir jeden Knoten die Menge predecessors(u) verwaltet.

Definitionen

predecessors(u) Ist die Menge aller direkten Vorgéinger v des Knotens u.

ancestors(v) Ist die Menge aller Vorgiinger des Knotens v.

Beim Aufruf von BLOSS-AUG wird eine bridge (u,v) als Parameter iibergeben.
BLOSS-AUG priift dann, ob diese bridge Teil eines augmentierenden Pfades ist
und ruft fiir einen gefundenen Pfad FINDPATH (siehe Abschnitt 3.2.5.4) auf.
Ist (u,v) nicht Teil eines augmentierenden Pfades, so wird ein neues blossom
konstruiert,.

Was ist ein blossom?

Wihrend des Aufbaus eines Breitensuchbaums von SEARCH kann es vorkom-
men, daf sich im level 7 ein Ast in mehrere Zweige aufteilt. Wenn sich dann in



46 KAPITEL 3. SEMINARVORTRAGE

Wurzel

level
\ [ oddieve
1 0,00,0,00

t other level
level

blossom B
/

left peak(B) right peak(B)

Abb. 3.25: Ausschnitt aus einem Breitensuchbaum

einem hoheren level zwei der Zweige wieder treffen wird die Kante, die die Zwei-
ge verbindet, als bridge erkannt. Der Aufruf von BLOSS-AUG zu dieser bridge
liefert aber keinen augmentierenden Pfad, da beide Zweige den gleichen freien
Knoten als Ursprung haben. Damit die Laufzeit des MM-Algorithmus linear in
der Anzahl der Kanten bleibt, wird aus den Knoten zwischen der Gabelung und
der bridge ein blossom gebildet. Ein blossom ist eine Menge von Knoten, von
denen einer als left peak(B) und einer als right peak(B) gekennzeichnet ist. Der
Knoten an der Gabelung wird als base(B) bezeichnet und ist dem blossom B
zugeordnet.

In Abbildung 3.25 ist ein Ausschnitt aus einem Breitensuchbaum dargestellt.
Die Knoten 4,5,6 und 7, die sich innerhalb des eingezeichneten Kreises befin-
den bilden das neu entstandene blossom B. Der Knoten 3 wird als base(B)
bezeichnet und die Knoten 6 und 7 sind die peaks des blossoms B.

Konstruktionsbedingungen eines blossoms

1. 3z : z € ancestors(u) A z € ancestors(v)

2. u und v haben keinen anderen Vorgédnger mit dem gleichen Level wie 2z



3.2. MATCHING VERFAHREN 47

Abb. 3.26: Schrumpfung eines blossoms

Die Knoten v und v sind die Knoten der bridge (u,v), fiir die die Konstrukti-
onsbedingungen zu priifen ist.

Die Konstruktionsbedingungen sind erfiillt, wenn die beiden Knoten einer bridge

im level 7 in einem level j < level 7 genau einen gemeinsamen Vorgéngerknoten
haben.

Wurde festgestellt, daB fiir eine bridge (u,v) die Konstruktionsbedingungen gel-
ten, so wird ein neues blossom B erstellt. Das blossom B besteht aus allen
Knoten w, deren other level oo ist und mit dem Pfad, von w iiber die bridge
(u,v) zu einem freien Knoten, auf einen endlichen Wert gesetzt werden kann
(sieche Abbildung 3.25).

Blossoms werden gebildet, um die Laufzeit des MM-Algorithmus zu verbessern.
Die Laufzeitverbesserung wird erreicht, da die blossoms nach ihrer Bildung fiir
die weitere Suche in der aktuellen Phase als zusammengeschrumpft betrachtet
werden. Das bedeutet, dafl die Suche, wenn sie an einem Knoten des blossoms B
angekommen ist, direkt an dem Knoten base(B) fortgesetzt wird. Dadurch wird
verhindert, dafl die Kanten innerhalb eines blossoms bei der Suche nach aug-
mentierenden Pfaden mehrmals durchlaufen werden, so daf3 die Laufzeit nicht
mehr linear in der Anzahl der Kanten wire. Der Schrumpfungseffekt ist in Ab-
bildung 3.26 zu sehen.

Algorithmus zur Erkennung eines blossoms

In diesem und dem n#chsten Abschnitt wird von Tiefensuche gesprochen, des-
halb wird diese zun&chst kurz eingefiihrt. Bei der Tiefensuche geht, im Gegensatz



48 KAPITEL 3. SEMINARVORTRAGE

zu der in SEARCH benutzten Breitensuche, der Suchlauf zuerst in die Tiefe und
erst dann in die Breite des Graphen. Ist die Suche an einem Knoten z ange-
kommen, so wird zunéchst zu einem der noch nicht besuchten Nachbarknoten
gegangen und an diesem die Suche rekursiv fortgesetzt. Erst wenn die Suche
an einem Knoten z angekommen ist, dessen Nachbarknoten alle schon besucht
wurden, wird mit Backtracking zuriick gegangen bis zu einem Knoten, dessen
Nachbarknoten noch nicht alle besucht wurden.

Der Nachbarknoten von z, an dem die Suche fortgesetzt wird, kann zufillig
gewdhlt werden. Es mufl nur gewéhrleistet sein, daf3 keiner der Nachbarknoten
mehrmals ausgew#hlt wird und dafl das Backtracking erst zum Vaterknoten von
x zuriick geht, wenn alle Nachbarknoten von x besucht wurden.

Um entscheiden zu kénnen, ob eine bridge (u,v) Teil eines augmentierenden
Pfades oder eines blossoms ist, wird eine doppelte Tiefensuche durchgefiihrt.
Bei der doppelten Tiefensuche werden parallel zwei Tiefensuchbiume mit den
Knoten w und v als Wurzeln aufgebaut. Der Baum mit Wurzel u heifit 7; und
der Baum mit Wurzel v heifit T,.. Ist die Suche bei den Knoten w; und w,
angekommen, dann wird sie bei w; fortgesetzt, wenn level(w;) > level(w,.) und
sonst bei w,.

Bei der Suche werden nur die predecessors eines Knoten beriicksichtigt und
jeder besuchte Knoten wird als bloss-benutzt markiert, damit er nicht mehrmals
aufgesucht wird. Zusétzlich erhilt noch jeder in T} aufgenommene Knoten eine
left-Markierung und jeder in 7. aufgenommene eine right-Markierung,.

Wenn in T; und 7). verschiedene freie Knoten gefunden wurden, dann gehort die
bridge (u,v) zu einem augmentierenden Pfad und die Routine FINDPATH wird
mit den gefundenen freien Knoten als Parameter aufgerufen. Treffen sich die
beiden Suchbidume jedoch bei einem Knoten w, so muf} eine Sonderbehandlung
eingeleitet werden, da w wegen der Suche nach einem augmentierenden Pfad
nur zu einem der Suchbdume gehoren darf.

In der Sonderbehandlung wird entschieden, ob der Knoten w zu 7; oder zu T,
gehoren soll. Zunéchst erhilt w eine left-Markierung und 7). versucht mit Back-
tracking einen Knoten 2z # w mit gleichem level wie w zu finden. Bei erfolgreicher
Suche mit Backtracking wird die doppelte Tiefensuche an den Knoten z in T;.
und w in 7; fortgesetzt.

War es T, nicht méglich einen Knoten z zu finden, so wird w right-markiert
und 7 startet mit Backtracking die Suche nach einem Knoten z mit z # w.
Wurde von T; ein Knoten z gefunden, dann wird die doppelte Tiefensuche an den
Knoten w in T, und z in T; fortgesetzt. Wenn in keinem der beiden Teilbiume ein
Knoten mit gleichem level wie level(w) aufzufinden ist, wird ein neues blossom
B gebildet, da fiir die bridge (u,v) die Konstruktionsbedingungen gelten. Zur
base(B) wird dabei der Knoten w und die Knoten v und v der bridge sind dann
left peak und right peak des blossoms B.

Das von T; und T, durchgefiihrte Backtracking, kann einen negativen Einfluf§
auf die Laufzeit haben. Deshalb werden noch die zwei Variablen DCV (deepest
common vertex) und barrier eingefiihrt, um das Backtracking zu beschriinken.

Die Variable DCV zeigt immer auf den tiefsten von beiden Teilbdumen gefunde-
nen Knoten. Solange noch kein Knoten sowohl von 7} als auch von 7). gefunden



3.2. MATCHING VERFAHREN 49

base(B)=base* (B)

!
u<B’

Abb. 3.27: geschachtelte blossoms

wurde ist DCV undefiniert. Mit der Variablen barrier wird das Backtracking in
T, begrenzt.

Angenommen 7; und T, treffen sich an dem Knoten w und das Backtracking
von T, bleibt erfolglos, aber T; findet einen Knoten mit gleichem level wie w.
Bei einem erneuten Treffen der beiden Suchb&ume in einem hoheren level sollte
T, beim Backtracking nicht weiter als bis zum Knoten w zuriickgehen. Deshalb
wird bei jedem erfolglosen Backtracking von 7). barrier auf DCV gesetzt und
dann nicht mehr weiter als zu barrier zuriickgegangen.

Wie oben beschrieben wird ein blossom auf die base(B) zusammengeschrumpft,
damit die Kanten des blossoms bei der Suche nicht mehrmals durchlaufen wer-
den. Bei der bisherigen Betrachtung wurde immer nur ein einzelnes blossom
betrachtet und deshalb stellt sich die Frage, wie geschachtelte blossoms behan-
delt werden.

Wenn blossoms wie in Abbildung 3.27 geschachtelt vorkommen, dann wird die
Suche an der base mit dem geringsten level fortgesetzt. Dieser Knoten heifit
dann base*(B).

3.2.5.4 FINDPATH

Findpath wird mit zwei Knoten als Parameter aufgerufen und berechnet den
Weg zwischen diesen Knoten. Als weiteren Parameter kann noch ein Blossom
B iibergeben werden, wenn ein Weg innerhalb des Blossoms B gesucht wird.
Die beiden iibergebenen Knoten heiflen high und low und dabei muf} gelten,
level(high) > level(low). Das Ergebnis der Routine FINDPATH ist die genaue



50 KAPITEL 3. SEMINARVORTRAGE

Pfadbeschreibung des alternierenden Pfades zwischen den als Parameter iiber-
gebenen Knoten.

Findpath durchsucht den durch SEARCH und BLOSS-AUG erstellten Breiten-
suchbaum mit Tiefensuche, ausgehend von high. Diese Tiefensuche hat folgende
Eigenschaften:

e Wurden als Parameter zwei Knoten und kein Blossom tibergeben, so wird
ein alternierender Pfad zwischen den zwei Knoten gesucht.

e Wurden als Parameter zwei Knoten und ein Blossom B iibergeben, dann
wird innerhalb des Blossoms ein alternierender Pfad zwischen den angege-
benen Knoten gesucht. Alle Knoten u, die zusammen mit einem Blos-
som B als Parameter iibergeben wurden, sind entweder base(B) oder
u € B. Wechselt der Ausgangspunkt der Suche von v zu einem Knoten
u € predecessors(v), so wird v zum Vaterknoten von w. Ein Aufruf von
FINDPATH mit einem Blossom als Parameter erfolgt immer von OPEN
(siehe Abschnitt 3.2.5.4).

e Bei der Suche werden alle Blossoms aufler dem als Parameter iibergebenen
als geschrumpft angesehen. Wenn die Suche an einem Knoten w ankommt
mit w € B’', so wird sie direkt bei base(B') = b fortgesetzt und w wird
zum Vaterknoten von b.

e In dem Blossom B wird die Suche nur mit Knoten fortgesetzt, deren
‘left /right-Markierung’ gleich der von high und deren level kleiner als le-
vel(low) ist.

Wenn die Suche beim Knoten low angekommen ist, dann konstruiert FIND-
PATH den allgemeinen Pfad von high zu low, durch Zuriickgehen entlang der
Vaterknotenkette von low zu high. Der entstandene Pfad ist ein allgemeiner
Pfad, da er Knoten enthalten kann, die zu einem Blossom gehtren. Die Suche
wurde bei diesen Knoten direkt an der base des blossoms fortgesetzt und des-
halb werden diese blossoms getffnet, um zu entschieden, auf welchem Pfad sie
durchlaufen werden. Erst wenn von allen blossoms der richtige Pfad bekannt
ist, kann gewihrleistet werden, daf§ der Pfad von low zu high ein alternierender
Pfad ist. Das Offnen der blossoms wird mit der Routine OPEN durchgefiihrt.

OPEN

OPEN offnet ein als Parameter tibergebenes blossom und sucht mit Hilfe eines
Aufrufs von FINDPATH den Pfad durch das blossom. Als Parameter wird au-
Ber dem blossom B’ noch der im allgemeinen Pfad enthaltene Knoten w € B’
iibergeben. Wenn w ein outer Knoten ist, dann wird FINDPATH mit den Pa-
rametern w, base(B’') und B’ aufgerufen. Ist w ein inner Knoten, dann wird
FINDPATH zweimal aufgerufen, einmal mit den Parametern left peak(B'), w,
B’ und das zweite mal mit right peak(B’), base(B') und B’. Aus dem Ergebnis
der Aufrufe von FINDPATH wird dann der richtige Pfad zusammengesetzt und
als Ergebnis von OPEN zuriickgegeben.



3.2. MATCHING VERFAHREN 51

3.2.5.5 TOPOLOGICAL ERASE

Wenn von FINDPATH ein kiirzester augmentierender Pfad gefunden wurde,
dann wird das Matching um diesen Pfad erweitert. Alle Knoten und Kanten des
Pfades werden dann von TOPOLOGICAL ERASE markiert, damit sie bei der
weiteren Suche in dieser Phase nicht mehr gefunden werden kénnen. Dadurch
wird erreicht, daf} alle Pfade, die in einer Phase gefunden werden, disjunkt sind.

3.2.5.6 Laufzeitbetrachtung zur inneren Schleife

Zum Aufbau des Breitensuchbaums wird jede Kante héchstens einmal durch-
laufen. Dazu benétigt die Routine SEARCH hochstens |E| Operationen. Die
Erkennung von blossoms durch die Routine BLOSS-AUG und deren Verwal-
tung kann durch die doppelte Tiefensuche und den Einsatz von barrier und
DCV auf hochstens |V| + |E| weitere Operationen beschrinkt werden. Die
Routine FINDPATH durchléuft jede Kante hochstens zwei mal und bendtigt
deshalb maximal 2|E| weitere Operationen. Unter Beriicksichtigung des Ver-
waltungsaufwands der durch TOPOLOGICAL ERASE geloschten Kanten von
hochstens |V| Operationen, ergibt sich ein Gesamtaufwand pro Phase von ma-
ximal (6|E| + 2|V]) € O(|E)).

Durch Multiplikation mit dem in Abschnitt 3.2.4 erwihnten Aufwand der dufle-
ren Schleife kann der Gesamtaufwand des MM-Algorithmus bestimmt werden.
Dieser liegt in O(1/|V || E|) und kann wegen |E| < |V|?> mit O(|V'|?%) abgeschiitzt
werden.



52 KAPITEL 3. SEMINARVORTRAGE

3.3 Kiirzeste Wege in Planaren Graphen

3.3.1 Ubersicht

In diesem Abschnitt wird ein Verfahren betrachtet, mit dem man die kiirzesten
Wege in einem planaren Graphen ausgehend von einer Quelle berechnen kann.

Nach einer Einfithrung in die Problemstellung wird der bekannte Algorithmus
von Dijkstra vorgestellt. Der Algorithmus von Frederickson verringert die Lauf-
zeit gegeniiber dem Algorithmus von Dijkstra von O(nlogn) auf O(n+/logn), in-
dem er ein divide and conquer-Verfahren verwendet. Dazu werden einige Grund-
lagen erldutert; ein Separator Theorem, eine Technik, Graphen in Regionen zu
unterteilen und eine Topologiebaumtechnik. Anschlieflend werden der verbes-
serte Algorithmus und seine Laufzeit betrachtet.

3.3.2 Einleitung

In Graphen interessiert man sich oft fiir kiirzeste Wege zwischen zwei oder mehr
Knoten. Dabei gibt es grundsétzlich zwei Problemstellungen: das single source
shortest path- (SSSP) und das all pairs-Problem. Bei dem SSSP-Problem sucht
man ausgehend von einem Quellknoten s alle kiirzesten Wege zu den von s er-
reichbaren Knoten. Bei dem all pairs-Problem sucht man die kiirzesten Wege
zwischen allen miteinander verbundenen Knoten in einem Graphen. Die Gra-
phen kénnen jeweils gerichtet oder ungerichtet sein.

Ublicherweise wird zur Losung des SSSP-Problems das Verfahren von Dijkstra
verwendet, das auf planaren Graphen bei Verwendung eines heap einen Aufwand
von O(nlogn) hat.

Der Algorithmus von Frederickson [6] hat fiir das gleiche Problem bei planaren
Graphen nur einen Aufwand von O(n+/logn). Dies wird durch ein divide and
conquer-Verfahren erreicht, bei dem der Graph in Regionen unterteilt wird.
Innerhalb der Regionen wird das Verfahren von Dijkstra fiir die Ermittlung
der kiirzesten Wege benutzt. Mit Hilfe einer Topologiebaumtechnik werden die
kiirzesten Wege innerhalb der Regionen auf den ganzen Graphen iibertragen.

Im folgenden beschrénke ich mich auf ungerichtete planare Graphen. Ich benutze
n fiir die Anzahl der Knoten (|V'|) und m fiir die Anzahl der Kanten (|E|), wenn
nicht explizit etwas anderes vereinbart wird.

3.3.3 Planare Graphen

Ein planarer Graph ist ein Graph G = (V, E), fiir den eine Abbildung in den
zweidimensionalen Raum existiert, so daf} sich keine Kanten schneiden. Ein be-

kannter nichtplanarer Graph ist ein K35, der vollstindig verbundene Graph mit
fiinf Knoten (siehe Abbildung 3.28).

Planare Graphen besitzen Eigenschaften, die man nutzen kann, um effizientere
Algorithmen auf ihnen zu formulieren als auf allgemeinen Graphen.



3.3. KURZESTE WEGE

33

Abb. 3.28: Beispiel eines nichtplanaren Graphen: der K

1. Die Anzahl der Kanten steigt linear mit der Anzahl der Knoten

m < 3n &6

2. Man kann einen planaren Graphen G in einen planaren Graphen G’
iiberfithren, so dal jeder Knoten maximal den Grad drei hat und

[V'| = n' mit n' < 6n <12

den Eigenschaften aus Punkt 2

Konstruktionsverfahren “transform” fiir einen ungerichteten planaren Graphen mit

INPUT: G=(V,E) der urspriingliche Graph
OUTPUT: G' = (V',E") ein Graph bei dem gilt: Yo € V' : deg(v) < 3
transform(G) =

V'« V; E' < E;
foreach v € V do
if deg(v) > 3 then

V= (VI a{v}) U{v,..,v}, n=deg(v);
foreach w; € V, (v,w;) € E do
E':= (B &{(v,w;)}) U{(vi,w;), (vi,vi41) };

od;
fi;

od

return < G' = (V' E')

3.3.4 Single Source Shortest Path-Algorithmus

Die Algorithmen fiir das Finden der kiirzesten Entfernungen von einer Quelle
s zu allen anderen Knoten in einem Graphen G nennt man single source shor-
test path-Algorithmen. Zumeist wird der Algorithmus von Dijkstra verwendet,




54 KAPITEL 3. SEMINARVORTRAGE

der auf planaren Graphen einen Aufwand von O(nlogn) hat. Dabei tragen die
Kanten ein Gewicht, das einer Entfernung entspricht. Es kann sich dabei um
eine echte Entfernung, den Zeitaufwand oder kompliziertere Werte handeln, die
verschiedene Widerstédnde zu Kosten verrechnen. Die kiirzeste Entfernung zwi-
schen den Knoten u und v ist also die Lange des Pfades von u nach v , dessen
Kantengewichte sich zu der geringsten Entfernung summieren.

3.3.4.1 Dijkstra

Der Algorithmus von Dijkstra verwaltet drei Mengen von Knoten: bekannte
Knoten, Randknoten und unbekannte Knoten. Die bekannten Knoten B sind die
Knoten, zu denen die kiirzeste Entfernung bereits bekannt ist. Die Randknoten
sind die Knoten in der Umgebung der bekannten Knoten R = U(B) < B, wobei
die Umgebung U(v) = {w € V|(v,w) € E} ist. Die unbekannten Knoten sind
die restlichen Knoten. Schritt fiir Schritt wird ausgehend von der Quelle s die
Menge der bekannten Knoten um einen Randknoten v erweitert, fiir den gilt: die
Entfernung von s zu v ist minimal. Die Entfernung zwischen zwei Knoten wird
durch ein Gewicht an der Kante zwischen diesen Knoten angegeben w(v,w).
Alle Knoten w € U(v)<B werden zu Randknoten. Der Algorithmus terminiert,
wenn die Menge der Randknoten leer ist.



3.3. KURZESTE WEGE

35

Algorithmus von “Dijkstra”: Die Mengen der bekannten Knoten B und der Randkno-

ten R werden Schritt fiir Schritt erweitert, bis die kiirzesten Entfernungen zu allen

Knoten bekannt sind, die von s aus erreichbar sind. Dazu wird die kiirzeste Entfernung

p(v) nach jedem Durchgang auf den neuesten Stand gebracht.

INPUT: G=(V,E,w) kantengewichteter, ungerichteter und zusam-
menh#ngender Graph, wobei V' =Menge der
Knoten, £ =Menge der Kanten und w : £ —
R ordnet jeder Kante (v,w) die Entfernung
zwischen v und w zu.

s die Quelle
OUTPUT: Yo eV :p(v) p(v) =minimale Entfernung von s nach v

Dijkstra(G,s) =
B+« s; R+ U(s); p(s) «+ 0
YoeV, v#s: p(v) + oo;
Yo e R: p(v) < w(s,v);
while R # () do
suche v € R mit p(v) = min{p(w)|w € R};
B :=BU{v};
R:=RUU(v) &B;
Yw e R: p(w) = min{p(w), p(v) + w(v,w)}
od
return < Yv €V :p(v)

Hieraus ergibt sich ein Aufwand von O(n?), den man durch Verwenden eines
Fibonnacci-heap auf O(m + nlogn) reduzieren kann. Bei planaren Graphen
ergibt sich durch die Linearitit der Kanten bei Benutzung eines heap O(nlogn).

3.3.4.2 Frederickson

Der Algorithmus von Frederickson verbessert die Laufzeit des Algorithmus von
Dijkstra, indem er ein divide and conquer-Verfahren anwendet. Der Graph wird
in mehrere iiberlappende Regionen aufgespaltet. Man erreicht Knoten innerhalb
einer Region nur iiber solche Uberlappungsknoten (Gufere Knoten). Kennt man
kiirzeste Wege von einer Quelle s zu diesen dufleren Knoten, kann man leicht
die kiirzesten Wege zu den noch verbleibenden Knoten herausfinden.

3.3.5 Vorbereitungen zum Algorithmus von Frederickson

Der Algorithmus l48t sich grob in zwei Phasen unterteilen. Das preprocessing
und die search phase. Im preprocessing wird der Graph G = (V, E,w) in Regio-
nen unterteilt und das all pairs-Problem fiir die dufleren Knoten dieser Regionen
berechnet. In der search phase berechnet man nun die kiirzesten Wege von der
Quelle s zu den duferen Knoten (main phase) und anschlielend die restlichen
kiirzesten Wege ausgehend von der Quelle und den dufleren Knoten (mop-up).



56 KAPITEL 3. SEMINARVORTRAGE

Fiir das Aufspalten des Graphen benstigt man ein Separator Theorem und
geeignete Regionen. Fiir das Ermitteln kiirzester Wege verwendet Frederickson
den Algorithmus von Dijkstra. Die Zusammenfiihrung der Teilergebnisse erfolgt
mit Hilfe topologiebasierter Biume (Topologiebdume). Im weiteren werden die
Techniken vorgestellt, die die Grundlage fiir den Algorithmus von Frederickson
bilden.

3.3.5.1 Das Separator Theorem

Ein f(n)-Separator Theorem, n € N, fiir eine Graphenklasse S ist ein Theorem
der folgenden Form:

3 Konstanten a < 1,8 > 0, fiir die die Knotenmenge eines Graphen G = (V, E)
aus S in drei disjunkte Mengen A, B, C partitioniert werden kann, so daf} gilt:

e -J(a,b) e Emitace Aundb€e B
e |A| <an, |B|<an, |C| <Bf(n)

Man erhélt dadurch also zwei durch C' voneinander getrennte Teilgraphen. Dies
ist in vielen Féllen sehr hilfreich, weil man dadurch Bereiche einengen kann,
auf denen Algorithmen laufen, oder fiir die man etwas beweisen mochte. Der
Algorithmus von Frederickson benutzt das folgende Separator Theorem, um
einen Graphen in Regionen zu unterteilen.

Im +/n-Separator Theorem von Lipton und Tarjan[13] “separate” ergeben sich a =
%, 8 = 2v/2. Der Algorithmus hat lineare Laufzeit. Er wird in dem Artikel von Lipton
und Tarjan[13] genauer beschrieben.

INPUT: G=(V,E) Graph mit Knoten- und Kantenmenge
OUTPUT: AB,C die drei Mengen, wobei [A] < 2n, [B] < 2n
und |C| < 2v2y/n

—

Abb. 3.29: Ergebnis des Separator Theorems

3.3.5.2 Ein Divide And Conquer-Verfahren fiir SSSP

Um den Aufwand, den der Algorithmus von Dijkstra braucht, zu verringern,
nimmt man ein divide and conquer-Verfahren. Der Graph wird in eine Menge



3.3. KURZESTE WEGE 57

von Regionen {Ry,..., R;} aufgespalten. Dies geschieht durch ein relativ einfa-
ches Verfahren.

Regionen

Man kann einen Graphen G = (V, E) in mehrere Regionen {R, ..., R;} auf-
spalten, die Knoten enthalten. Die Regionen kénnen sich {iberlappen, so daf
Knoten in mehreren Regionen enthalten sind. Aufere Knoten sind Knoten v,
fiir die gilt:

Fi,je{l,.,l},i#Aj:vER AvE R;.
Innere Knoten sind Knoten w, fiir die gilt:
Vi, je{l,.,l}: (w € RiAw € R;j) =i=1j.

Im Beispiel in der Abbildung 3.30 ist {vi,v2,vs,vs} die Menge der duferen
Knoten.

Abb. 3.30: Aufteilung eines Graphen in Regionen

Eine r-Division

Eine r-Division ist die Aufspaltung eines Graphen G = (V, E) in | Regionen
{Ry, ..., Ri}, so daB} gilt:

[ ] Uiﬁ:l RZ = V
e Vie{l,.,l}:|Ri|<r
Eine geeignete r-Division

Eine geeignete r-Division ist eine Aufspaltung des Graphen G in | Regionen
{Ry, ..., Ri}, so daf} gilt:



58 KAPITEL 3. SEMINARVORTRAGE

e {Ry,...,R;} ist eine r-Division von G
e cs gibt O(%) dufere Knoten
° 1< 0O(2)

Eine solche geeignete r-Division kann in O(nlogn) gefunden werden[6].

Ein Verfahren zur Ermittlung einer geeigneten r-Division

Das Verfahren fiir eine geeignete r-Division “rDivision” transformiert den Graphen
G = (V,E) in einen Graphen G' = (V'  E’) (siehe Kapitel 3.3.3). Dazu wird rekursiv
das Separator Theorem auf Knotenmengen angewandt, die zu grofl sind. Am Ende
werden noch einige Mengen zusammengefaf3t.

INPUT: G=(V,E) der Ausgangsgraph
T die Grofe fiir die r-Division
OUTPUT: M eine Menge von Knotenmengen, wobei jede
Knotenmenge einer Region entspricht

rDivision(G,r) =
G' « transform(G);
M« {V'};
while 3R € M, mit |R| > r do
(A, B, C) := separate(R);
C':={velC|-Fwe (AUB): (v,w) € E'};
C"=C el
Suche Zusammenhangskomponenten Ay, As, ..., Ay in
(AuBUC");
Ist ein Knoten v in C" nur mit Knoten aus A; verbunden :
C":=C" &{v}; A=A, U{v};
M:=(M<&R)U{A,...,A};
od;
Vereinige alle Paare von Mengen R;, R; € M, fir die gilt :
e (RN Ry AR < SAIR;| <3
Vereinige alle Paare von Mengen R;, R; € M, fiir die gilt :

|R;| < g, |R;| < g A (beide enthalten eine oder mehrere

Kanten in die Menge Ry, V beide enthalten eine oder

mehrere Kanten in die Mengen Ry, Ry, wobei k,1 #1,j)
Yv e C", fir die gilt : 3w € R, (v,w) € E: R:= RU{v}
return <« M



3.3. KURZESTE WEGE 59

Aquivalenzklassen duferer Knoten

Wenn duffere Knoten in den gleichen Schnittmengen von Regionen liegen, kann
man sie zu Aquivalenzklassen zusammenfassen. Nummeriert man die Regionen
des Graphen, lassen sich die Knoten in den Aquivalenzklassen lexikographisch
anordnen. Das wird fiir das Verfahren verwendet, das mittels eines Topologie-
baumes kiirzeste Wege propagiert.

3.3.5.3 Topologiebdume

Um die Strukturierung eines Graphen G = (V, E,w) in Regionen fiir die kiirzeste
Wegesuche ausnutzen zu kénnen, verwendet der Algorithmus von Frederick-
son einen Topologiebaum. Dies ist ein ausgeglichener Bindrbaum, der die dufe-
ren Knoten der Regionen in lexikographischer Ordnung der Regionennummern
enthilt. Im Beispiel aus Abbildung 3.31, kann man die duferen Knoten folgen-
dermaflen anordnen : {vs}, {v1,va, vs,v4}, {vs, v}, {ve,v7}.

- \_e———m T T T TS
’ ‘ - R2
‘RL .y Puae ‘
/ 9 \ \
1 Je Ve \
' V1 N !
\ I v ] \\\\/8 !
. e. R4 ° /
\ @ NI
\ \ N Y
\ V2 o-. S .-
\ \\V [ ] [ ] !

Abb. 3.31: Regionen mit dufleren Knoten

v5 vl

Abb. 3.32: Topologiebaum

Hieraus ergibt sich dann der in Abbildung 3.32 dargestellte ausgeglichene Bi-
ndrbaum. Die inneren Knoten des Baumes werden mit der minimalen kiirzesten
Entfernung zwischen den darunter liegenden Blittern und der Quelle s markiert.



60 KAPITEL 3. SEMINARVORTRAGE

An einem Beispiel wird jetzt gezeigt, wie man innerhalb einer Region mit der
Topologiebaumtechnik das all pairs-Problem 16sen kann. Gegeben sei ein unge-
richteter Graph G = ({a,b, ¢, d},{(a,b), (a,c), (a,d), (b,c), (¢,d)},w) mit Kan-
tengewichten wie in Abbildung 3.33.

Abb. 3.33: Beispielgraph mit Kantengewichten

Fiihrt man nun innerhalb der Regionen R1 und R2 fiir jeden duferen Knoten
den SSSP-Algorithmus von Dijkstra durch, kann man den kiirzesten Weg von
a nach c in beiden Regionen bestimmen. Es kommt der Baum aus Abbildung
3.34 heraus.

b a C d
(a3) (b3) (a2 (a2)
(c5) (c2) (b9 (c1)

(d2) (d1)

Abb. 3.34: Ergebnis nach SSSP mit Dijkstra

Nun sucht man fiir die restlichen Wege eine Verbindung von dem Ausgangs-
knoten zum Zielknoten iiber mindestens einen dufferen Knoten. In diesem Fall
geht man von b aus zunéchst nach a mit der Entfernung 3. Dort findet man
eine Verbindung zu d mit der Entfernung 2. Der Weg zu c ist genauso lang,
scheidet daher direkt aus. Jeder andere Pfad scheidet auch aus, da von a aus
nur Wege mit der Entfernung 2, wie bei dem bereits gefundenen Pfad, oder
mehr fortfithren. Es ergibt sich also ein Baum wie in Abbildung 3.35, der alle
kiirzesten Wege zwischen den Knoten der Regionen R; und R» enthiilt.



3.3. KURZESTE WEGE 61

b a C d
(a3 (b3) (a2 (a2
(c5) (c2) (b5 (c1)
(d5) (d2) (d1) (b5)

Abb. 3.35: Endergebnis nach Topologiebaumtechnik

3.3.6 Der Algorithmus von Frederickson

Dieser Algorithmus “Frederickson” benutzt das Topologiebaumverfahren “toptree” auf
Regionen und den SSSP-Algorithmus von Dijkstra. Er kann grob in zwei Phasen
unterteilt werden. Im preprocessing werden die kiirzesten Wege zwischen duferen
Knoten ermittelt. In der search phase sucht man die kiirzesten Wege von der Quelle
s zu allen anderen Knoten.

INPUT: G=(V,E,w) der Graph mit gewichteten Kanten
S die Quelle

OUTPUT: Yo eV :p(v) die kiirzeste Entfernung von s nach v
Yo eV :p(s,v) der kiirzeste Weg von s nach v

3.3.6.1 Das preprocessing

Der Graph wird durch eine r-Division in [ Regionen { Ry, ..., R; } unterteilt (Ebe-
ne 1). Diese Regionen werden mit einer r»-Division in k;,7 € {1,..,1} Regionen
aufgegliedert (Ebene 2)

{R117 aeey R1k17"‘7Rl1? aeey lel}'

Fiir jeden dufleren Knoten der Ebenen 1 und 2 wird der Algorithmus von
Dijkstra innerhalb der Regionen {Riy,..., Ry, } durchgefiihrt. Mit der Topo-
logiebaumtechnik ermittelt man die kiirzesten Wege im Graphen zwischen allen
dufSeren Knoten der Ebene 1.

3.3.6.2 Die search phase

Diese Phase lafit sich in den main thrust und das mop-up unterteilen. Im
main thrust benutzt man die Topologiebaumtechnik, um die kiirzesten Wege
zwischen der Quelle s und den duferen Knoten der Ebene 1 zu finden. Im
mop-up findet man nun die noch fehlenden Wege mithilfe eines modifizierten
Dijkstra-Algorithmus. Hierbei fiihrt man in den Regionen {Ry, ..., R;} den SSSP-
Algorithmus fiir jeden dufleren Knoten der Ebene 1 durch, nachdem man diesen
kurzzeitig mit einer Entfernungsmarke belegt hat, die der kiirzesten Entfernung
von ihm zur Quelle s entspricht.



62 KAPITEL 3. SEMINARVORTRAGE

3.3.6.3 Der Algorithmus

transform(graph) liefert einen Graphen fiir die r-Division (Kapitel 3.3.3)

r Division(region,r) hat als Ergebnis eine Menge von Regionen
toptree(set-of-nodes,set-of-edges) erzeugt einen Topologiebaum fiir set-of-nodes
outer(set-of-regions) selektiert die dufferen Knoten der Regionen
dijkstra(node,region) fiihrt einen Dijkstra-Algorithmus fiir node innerhalb von
region aus und trigt die Ergebnisse in den Topologiebaum ein
mark(set-of-nodes) markiert die Knoten mit ihrer Entfernung zur Quelle s
sort(set-of-nodes,set-of-regions) erzeugt eine lexikographische Ordnung

es gilt: outer(LevelOneRegions) C outer(LevelTwoRegions)

Frederickson =
preprocessing :
G' + transform(G), n:= V|
LevelOneRegions < rDivision(V',logn)
LevelTwoRegions < 0, i :=1
foreach R € LevelOneRegions do
LevelTwoRegions := LevelTwoRegions U rDivision(R,loglogn?)
od
toptree(sort(outer(Level One Regions), LevelOneRegions), E')
foreach R € LevelTwoRegions do
foreach v € (outer(LevelTwoRegions) N R do
dijkstra(R,v)
od
od
main thrust :
toptree(sort(outer(Level OneRegions) U s, LevelOneRegions), E')
mop <up :
mark(outer(LevelOneRegions))
foreach R € LevelOneRegions do
foreach v € outer(LevelOneRegions) N R do
dijkstra(R,v)
od
od
return < Yv € V : p(v) und p(s,v)



3.3. KURZESTE WEGE 63

3.3.6.4 Der Aufwand
e Topologiebaumtechnik nach r-Division: O(n + % logn)
e Dijkstra-SSSP mit heap: O(nlogn)
ey =logn
o 75 = loglogn®
Der Aufwand des Algorithmus ergibt sich folgendermafien:
e Die erste rDivision wird durch einen Algorithmus von Frederickson mit
Aufwand O(nlogry + 7 log n) ersetzt[6].
= O(nloglogn + ny/logn)

e Die folgenden rDivision-Aufrufe benétigen O(ry logri) * ©(;%)
= O(nloglogn)

e Dijkstra auf den LevelTwoRegions benétigt O(rs logry * \/LE)
= O(nloglognlogloglogn)

¢ Die Topologiebaumtechnik benétigt O(ry + (&7{—2) logry) * O(
= 0(r)  O()
= O(ny/logn)

e Der main thrust benétigt O(n + (\/’;_1) logn)
= O(ny/Togn)

e Das mop-up benétigt O(ry logri) x ©(;)

i)

= O(nloglogn)

Der Gesamtaufwand des Algorithmus ergibt sich aus seiner gréfiten Komponen-
te. Das ist in diesem Fall O(n+/logn).



64 KAPITEL 3. SEMINARVORTRAGE

3.4 Softwareengineering und Objektorientierte
Entwicklung

3.4.1 Einleitung

Bei der Entwicklung grofler Softwaresysteme gewinnen ingenieurtechnische
Ansitze mehr und mehr an Bedeutung. Grund dafiir ist die wachsende Notwen-
digkeit, von Qualitéitssicherung und Planbarkeit sowie die zunehmende Kom-
plexitdt der Computersysteme. Durch Softwareengineering versucht man hier
Losungsansétze zu finden.

Dabei werden an ein Projekt folgende Anforderungen gestellt:

e Personen-, Zeit- und Finanzbedarf sollen planbar und minimal sein
e Das Endprodukt soll eine gesicherte Qualitdt haben

e Die Weiterentwicklung soll einfach moglich sein (Wartbarkeit)

Fiir den Entwicklungsproze von Software existieren verschiedene Modelle. Ei-
nes davon, das Wasserfallmodell, wird in Kapitel 3.4.2 niiher erldutert. Beson-
ders wichtig fiir Planbarkeit und Qualititssicherung sind dabei die frithen Pha-
sen wie Analyse und Spezifikation. Bei herkdmmlichen Projekten sind diese mit
dem Entwurf und der Implemtierung fest verbunden, so da3 nicht unterschieden
werden kann, welche Entscheidungen auf welcher Ebene getroffen wurden. Die
Trennung der Phasen fiihrt zu einer Dokumentation des Projektfortschritts.

3.4.1.1 Der Entwicklungsprozef

Reale Welt

Anwendungsfeld

System

Abb. 3.36: Schichtenmodell



3.4. SOFTWAREENGINEERING 65

Ein Softwaresystem kann nicht fiir sich alleine entwickelt werden. Es ist ein-
gebettet in verschiedene Schichten, die es wie Zwiebelschalen umgeben (Abb.
3.36).

Da ist zunéchst das System, auf und in dem die Software 14uft, also der Rechner,
die Peripheriegeriite, das Netzwerk usw. Das System wird im Anwendungsfeld
eingesetzt, in dem sich Personen, Arbeitsablidufe, Daten und Informationen be-
finden [11]. Das Anwendungsfeld schliefilich ist eingebettet in die ,reale Welt*,
die die Software mit ihren Gegebenheiten beeinfluflit (z.B. Stromausfall).

Aus diesem Schichtenmodell ergeben sich nun die verschiedenen Phasen des Ent-
wicklungsmodells. Dabei arbeitet sich der Prozef von auflen an den Kern des Sy-
stems, die Software, heran, um diese dann wieder in die umgebenden Schichten
zu integrieren. Die Analysephase findet im Anwendungsfeld statt und erforscht
die Beziehungen zwischen dem System und der es betreffenden Welt. Wahrend
der Spezifikation wird das genaue Systemverhalten definiert. Im Entwurf kon-
kretisiert man nun, auf welche Weise dieses Verhalten im Programm realisiert
wird. Die Implementierung schlief8lich fithrt zum ausfiihrbaren Programm, wel-
ches dann in Integration und Test wieder in die dufleren Schichten eingebettet
wird. Dieser Verlauf wird durch den Pfeil in Abbildung 3.36 verdeutlicht.

3.4.1.2 Die Badewannenkurve

Anayse Einsatz
Spezifikation System-Integration
Entwurf Modul-Integration

Implementierung

Abb. 3.37: Die Badewannenkurve

In Abbildung 3.37 ist zu erkennen, wie die friithen Phasen im Entwicklungspro-
zefl mit den spiten zusammenhingen, da sie in der selben Schicht stattfinden.
Jeweils zusammengehorige Phasen haben die Eigenschaft, dafl Fehler, die in der
einen auftreten, wenn nicht sofort, dann erst in der anderen entdeckt werden.
Fehler der Implementierung werden im Test erkannt. Fehler beim Entwurf tau-
chen in dem Moment auf, wo man versucht, die einzelnen Module zu integrieren.
Zur Beseitigung mufl nun die Implementierungs- und Testphase erneut durch-
laufen werden. Fehler bei der Spezifikation werden in der Regel erst bei der
Systemintegration deutlich, wenn das System nicht mit dem Anwendungsfeld
zusammenpaflt. Und grundsitzliche Fehler bei der Analyse merkt man meist
erst im Einsatz. Hier miiflen dann oft sdmtliche Phasen erneut durchlaufen wer-
den.

Aufgrund seiner Form nennt man dieses Modell die ,,Badewannenkurve“. Es
verdeutlicht, dafl Fehler immer teurer werden, je spéter sie erkannt werden.
Als zweite Konsequenz erkennt man die Wichtigkeit der frithen Phasen: ihre



66 KAPITEL 3. SEMINARVORTRAGE

Ergebnisse sind nicht unmittelbar testbar wie z.B. Quelltext, ihre Fehler sind
aber besonders kritisch fiir das Projekt. Methoden aus dem Softwareengineering
wie z.B. technische Reviews (siehe Kapitel 3.4.4.4) konnen hier helfen, diese
Fehler friihzeitig zu entdecken [14].

3.4.2 Das Wasserfallmodell

Die verschiedenen Phasen, die beim Entwicklungsprozef ablaufen, wurden schon
1970 von Royce [18] in einem Modell beschrieben, das sich aus anderen Inge-
nieurswissenschaften herleitet. Aufgrund der kaskadeniihnlichen Folge der ver-
schiedenen Phasen wird es als das ,, Wasserfallmodell“ bezeichnet (siehe Abbil-
dung 3.38).

Anforderungsanalyse

Spezifikation
(Systemdesign)
Entwurf

(Softwaredesign) ‘@
Implementation
— Modultest ‘@

Integration

Systemtest

Einsatz
Wartung

|::> HauptfluB im ProzeR ~ —— Rucksprung bei Fehlern
Abb. 3.38: Das Wasserfallmodell nach Royce

In dieser Darstellung sieht man auch das Hauptproblem beim Wasserfallmodell.
Es ist ein Aktivititenmodell. Bei Fehlern, die in einer Phase erkannt werden,
kann in frithere Phasen zuriickgesprungen werden. Das macht es jedoch schwie-
rig, feste Termine einzuhalten, die fiir die Planung eines Projekts unbedingt
notwendig sind. Durch die Einfiihrung von ,Meilensteinen“ kann dieses Pro-
blem abgeschwiicht werden. Meilensteine sind Abschlufidokumente und auch
-termine, die eine Phase beenden. Auf die Bedeutung von Meilensteinen wird
spéter in 3.4.4.2 eingegangen.

Im Rahmen des Projekts Fahrgemeinschaften kommt - wie in einer Projektgrup-
pe an der Fakultit Informatik iiblich - die letzte Phase, Einsatz und Wartung,
nicht zum Zuge. Um das Modell den Gegebenheiten anzupassen, kann man
die letzte Phase durch ,,Endbericht und Abschlu3priasentation® ersetzen. Damit



3.4. SOFTWAREENGINEERING

67

lassen sich die Phasen gut auf den Zeitplan der Projektgruppe abbilden (Abb.
3.39). Dieser Zeitplan enthilt nun feste Meilensteine und Termine, bis zu denen
alle Riickspriinge in friithere Phasen beendet sein miissen.

6

Seminarphase %g:ﬁ):g
Anforderungsanalyse Anforderungs-
analyse 2107
Spezifikation
(Systemdesign) ‘@ Spezifikation 14.2.97
Zwischenbericht 21497
Entwurf 2597
(Softwaredesign)
Entwurf 17.2.97
Implementation
Modultest ‘@ Implementation| 4.7.97
Integration
SyStemtESt ‘@ Test/Review 29.8.97
T AbschluRbericht
Préasentation AbschluRberich{ 26.9.67
Zeitplan der
|::> HauptfluR im ProzeR ~ —®  Riicksprung bei Fehlern _p
Projektgruppe

Abb. 3.39: Das Wasserfallmodell fiir eine Projektgruppe

Im folgenden werden nun die einzelnen Phasen des Wasserfallmodells erldutert.



68 KAPITEL 3. SEMINARVORTRAGE

3.4.2.1 Anforderungsanalyse

Die Anforderungsanalyse dient der genauen Klirung des Problems. Sie fin-
det komplett im Anwendungsfeld in Interaktion mit dem Kunden statt. Sie
durchliuft folgende Phasen:

1. Machbarkeit und Notwendigkeit

Bevor mit einem kostspieligen Projekt begonnen wird, sollte zunéchst fest-
gestellt werden, ob es iiberhaupt notwendig ist. Vielleicht gibt es dhnliche
Produkte wie das zu entwickelnde schon auf dem Markt. Oder der Rech-
nereinsatz an sich ist fiir die Losung des Problems nicht angebracht. Wenn
sich die Notwendigkeit des Produkts ergibt, wird gepriift, ob es durchfiihr-
bar ist und ob die notwendigen Resourcen zur Verfiigung stehen. In dieser
Phase konnen viele Projekte schon abgebrochen werden, bevor sie nach
teuren Entwicklungsversuchen scheitern.

2. Analyse des Anwendungsfelds
Bei der Analyse des Anwendungsfelds kommt es darauf an, die Welt des
Kunden zu verstehen. Wichtig ist, dafl zunicht der Ist-Zustand genau
festgehalten wird. In der Regel soll dieser durch ein neues System nur
verbessert, aber nicht vollig verdndert werden. Deswegen liegt hier ein
grofler Teil der Arbeit. Es entstehen Modelle, die den bisherigen und den
gewiinschten Zustand beschreiben.

3. Erstellen des Anforderungskatalogs
Nun werden die Wiinsche des Kunden erfafit und im Anforderungskata-
log aufgefiihrt. Dabei muf} er unterstiitzt werden, damit er sich das neue
System vorstellen kann. Dies kann durch Prototypen oder Szenarien ge-
schehen. Man muf} versuchen, vermeintliche von echten Anforderungen
zu trennen. Nicht immer ist dies moglich. Im Zweifelsfall entscheidet der
Kunde iiber die Relevanz einer Anforderung.

In der Regel gibt es auch nicht nur einen Kunden, sondern eine Reihe von
Menschen, die unterschiedliche Erwartungen an das System stellen. Deswe-
gen muf} zu jeder neuen Anforderung genau dokumentiert werden, woher
sie stammt und wie relevant sie in bezug auf das System ist. Das Zielsy-
stem muf} von vielen verschiedenen Blickwinkeln aus beleuchtet werden,
wie z.B. Datenflufl, Bedienung, Schnittstellen, Sicherheit oder Wartung.
Dies fiir zu detaillierteren Systemmodellen.

4. Klassifizieren der Anforderungen
Der Anforderungskatalog wird nun geordnet. Die Anfordrungen werden
nach verschiedenen Gesichtspunkten klassifiziert, wie z.B. funktionale An-
forderungen, Anforderungen an die Schnittstellen, an die Benutzungsober-
fliche oder an die Sicherheit.

5. Konflikte 16sen
Bei sich widersprechenden Anforderungen miissen Losungen oder Synthe-
sen gefunden werden. Dazu ist moglicherweise Riicksprache mit dem Kun-
den erforderlich.



3.4. SOFTWAREENGINEERING 69

6. Prioritdten setzen
Nun werden die Anforderungen mit Priorititen versehen, um einen Spiel-
raum fiir den Fortgang des Projekts zu bekommen. Wichtige Funktiona-
litdt wird zuerst entwickelt, weniger wichtige ist optional.

7. Evaluierung der Anforderungen auf

e Konsistenz - sind noch Konflikte vorhanden?
e Allgemeingiiltigkeit - wollen das auch alle so?
e Vollstindigkeit - wurden wichtige Entscheidungen vergessen?

o Realisierbarkeit - sind die Anforderungen tiberhaupt machbar?

Waurden in einem dieser Punkte Defizite festgestellt, so wird eine der vor-
herigen Phasen zuriickgesprungen, um diese auszugleichen.

8. Abnahme durch den Kunden
Das Ergebnis dieser Phase ist der Meilenstein Anforderungsanalyse. Er
enthilt die klassifizierten und evaluierten Anforderungen des Kunden und
sollte nun von ihm abgenommen werden.

3.4.2.2 Spezifikation

Die Sperzifikation ist eine geordnete Menge von Anforderungen. Das duflere Sy-
stemverhalten - und nur das dufere! - wird detailliert beschrieben. Sie liegt damit
auf der Schnittstelle zwischen dem System und dem Anwendungsfeld [11].

Es gibt es prinzipiell zwei Moglichkeiten zu spezifizieren: die formale und die
informale Spezifikation.

1. Formale Spezifikation Das Problem der natiirlichen Sprache ist, daf} sie
oft mehrdeutig und unvollsténdig ist. Bei der formalen Spezifikation wird
daher eine eindeutig definierte Notation verwendet. Dies hat den Vorteil,
dal man die Korrektheit formal beweisen kann. Es gibt auch Werkzeuge,
um aus einer formalen Spezifikation Programmcode zu erzeugen. Forma-
le Spezifikationen erfordern eine spezielle Notation, die zunichst erlernt
werden mufl. Dies kann man héchstens einem Entwickler, nicht aber dem
Kunden zumuten. Da die Spezifikation aber die Grundlage fiir den Entwurf
ist, sollte sie jeder lesen kénnen. Jede formale Spezifikation mufl deswegen
durch eine informale ergidnzt werden.

Bei sicherheitsrelevanten Systemen ist die formale Spezifikation jedoch von
immanenter Bedeutung. Bei einem Programm, das einen Airbus steuert,
darf es einfach keinen Programm- und/oder Flugzeugabsturz durch eine
fehlerhafte Spezifikation geben. Hier ist die Beweisbarkeit der Korrektheit
eine lebenswichtige Eigenschaft.

Ideal ist deshalb eine Kombination aus formaler und informaler Spezifi-
kation, wobei alles informal und die sicherheitsrelevanten Teile zusétzlich
noch formal spezifieziert werden.



70 KAPITEL 3. SEMINARVORTRAGE

2. Informale Spezifikation

Eine informale oder natiirlichsprachliche Spezifikation ist also unumging-
lich. Auch hier kann ein gewisser Formalismus verwendet werden. Folgt
man Standards, so kann man sicher gehen, dafl man keine wichtigen Teile
vergift. Ein solcher Standard findet sich bei IEEE [10].

Die Sperzifikation setzt sich also zusammen aus einer informalen und evtl. for-
malen Beschreibung des duBeren Systemverhaltens. Bei spéteren Anderungen
muf} es aktualisiert werden. Sie stellt eine Art Vertrag dar. Das und nur das,
was in der Spezifikation beschreiben wird, mufl auch entwickelt werden. Das
Systemverhalten wird so beschrieben, daf3 es nachher mit dem fertigen Produkt
verglichen werden kann: Wurden die Anforderungen erfiillt? Sie ist die Schnitt-
stelle zwischen dem Anwendungsfeld und der Implementation. Als Grundlage
fiir den Entwurf befreit sie auch den Entwickler von wichtigen Entscheidungen
iiber das Systemverhalten.

3.4.2.3 Entwurf

Beim Entwurf wird nun, ausgehend von der Spezifikation, das System in im-
mer kleinere Komponenten zerlegt, bis hin zu den grundlegenden Datenstruk-
turen und Algorithmen. Ein guter Entwurf fordert die Arbeitsteilung: da die
Schnittstellen zwischen den Subsystemen festgelegt werden, kénnen die Einzel-
teile unabhéngig voneinander entwickelt und getestet werden. Der Entwurf 14uft
in folgenden Phasen ab:

1. Architektur
Das System wird in einem Grobentwurf analysiert. Es werden Subsysteme
identifiziert und Zusammenhinge und Schnittstellen erkannt.

2. Sperzifikation der Subsysteme
Die einzelnen Subsysteme und ihr Datenflufl werden spezifiziert.

3. Schnittstellen
Die Schnittstellen der Subsysteme werden spezifiziert. Dabei ist auf Kap-
selung und schmale Schnittstellen zu achten.

4. Modulentwurf
Die Subsysteme werden in einzelne Module gegliedert, denen Aufgaben
zugeordnet werden. Die Schnittstellen zwischen den Modulen werden de-
finiert.

5. Datenstrukturen
Die den Modulen zugrundeliegenden Datenstrukturen werden identifiziert.

6. Algorithmen
Die Algorithmen, die auf den Datenstrukturen laufen, werden spezifiziert.



3.4. SOFTWAREENGINEERING 71

3.4.2.4 Implementierung

Da beim Entwurf schon der Aufbau des Systems beschrieben wurde, kénnen die
Einzelteile nun unabhéngig voneinander entwickelt und getestet werden. Wich-
tig ist, da} es Richtlinien fiir die Programmierung gibt, in denen die Wahl von
Bezeichnern, die Versionskontrolle, die Grofle von Modulen, etc festgelegt wer-
den. Wie das konkret aussieht, ist nebenséchlich; nur einheitlich sollte es sein.
Ein guter Programmierstil zeichnet sich dadurch aus, daf3 er nicht als solcher er-
kennbar ist, das bedeutet, dal von dem Programmcode nicht auf den Entwickler
geschlossen werden kann.

3.4.2.5 Integration und Test

Nach der Implementierung des Systems werden die einzelnen Module und Sub-
systeme nach und nach zusammengesetzt oder integriert und dann systematisch
getestet. Ein systematischer Test besteht aus einem Testdatensatz und einem
Sollresultat, das aus der Spezifikation abgeleitet wird. Nach Durchfiihrung des
Tests wird das Ergebnis mit dem Sollresultat verglichen. Stimmen sie nicht
tiberein, so ist der Test positiv verlaufen, es wurde ein Fehler gefunden. Erst
nach der ersten Testreihe sollten diese Fehler korrigiert werden. Denn eine so-
fortige Korrektur kénnte entweder neue Fehler erbringen oder spitere Fehler
verdecken. Wenn keine Fehler mehr gefunden werden, kann das System in den
Einsatz gehen. Im Fall einer Projektgruppe wird dann der Endbericht und die
Abschlufiprisentation vorbereitet.

3.4.3 Besonderheiten bei objektorientierter Entwicklung

Das folgende Kapitel gibt eine grobe Einfiihrung in die objektorientierte Ent-
wicklung nach Booch [2].

3.4.3.1 Das Objektmodell

Der objektorientierten Entwicklung liegt eine bestimmte Sicht auf die Dinge
zugrunde, das Objektmodell. Dieses kann von Sprache zu Sprache variieren. Es
konnen jedoch folgende Eigenschaften identifiziert werden, die man z.B. bei den
Sprachen Smalltalk oder C++ auch wiederfindet.

Anders als bei herkbmmlicher Programmierung die die kleinste Einheit nicht der
Algorithmus, sondern das Objekt. Ein Objekt ist eine Einheit, die aus Daten und
Algorithmen auf diesen Daten besteht. Es besitzt eine gewisse Integritit und
ist fiir seine Daten selbst verantwortlich. Objekte sind Instanzen von Klassen,
die das Objektverhalten beschreiben. Eine Klasse kann man als die Idee eines
Objekts beschreiben, wihrend das Objekt als Instanz einer Klasse eine konkrete
Materialisierung dieser Idee darstellt. Die Hauptelemente des Objektmodells
sind folgende:

1. Abstraktion.
Es werden jeweils nur die fiir das Problem konkret interessanten Eigen-
schaften eines Objekts betrachtet, relativ zur Perspektive des Betrachters.



72 KAPITEL 3. SEMINARVORTRAGE

2. Kapselung.
Die Details der Implementierung werden vor der Auflenwelt verborgen.
Das Objekt liefert nach auflen nur Methoden zur Manipulation seiner Da-
ten, verbirgt jedoch deren konkrete Realisierung.

3. Modularitét.
Verschiedene Objekte kéonnen zu Modulen zusammengefaflt werden, die
fiir sich wiederum das Prinzip der Abstraktion und der Kapselung inneha-
ben. Dadurch kann das System auf immer héherer Ebene abstrahiert und
beschrieben werden.

4. Hierarchie.
Die Klassen stehen in einer hierarchischen Beziehung zueinander. Niedere
Klassen werden von hoheren Klassen abgeleitet und erben von diesen alle
Eigenschaften. Diese konnen sie ergéinzen oder {iberschreiben.

5. Typisierung.

Daten haben Typen. Daten unterschiedlichen Typs kénnen nicht ohne wei-
teres miteinander kombiniert werden, sondern bediirfen besonderer Kon-
vertierung. Auch Klassen werden als Typ behandelt und bieten oft selbst
unterschiedliche Zugriffe. Eine Klasse Integer konnte zum Beispiel eine
Methode anbieten, die den Wert des Objekts als Real-Zahl zuriick gibt.
Dies folgt wiederum dem Prinzip der Kapselung: Die konkrete Implemen-
tierung der Integerzahl bleibt dadurch verborgen.

6. Nebenldufigkeit.
Das Objektmodell beinhaltet eine Parallelitdt bei der Ausfithrung. Ver-
schiedene Objekte konnen gleichzeitig unabhingig voneinander agieren
oder sich auch gegenseitig beeinfluflen.

7. Persistenz.
Objekte haben eine Lebensdauer. Diese kann von wenigen Taktzyklen wie
z.B. einer Schleifenvariablen, die nur kurz instanziiert und dann wieder
freigegeben wird, bis iiber die Laufzeit der Anwendung hinaus reichen wie
bei Datenbankobjekten.

3.4.3.2 Die Phasen bei der objektorientierten Entwicklung

Analyse Bei der Analyse betrachtet man die Anforderungen aus der Sicht der
Klassen und Objekte. Man sammelt sie und klassifiziert sie zu Einheiten, die
spéiter Objekte werden kénnten.

Spezifikation Die objektorientierte Spezifikation unterscheidet sich nicht von
der ,normalen®, da die Spezifikation nur das duflere Systemverhalten, nicht aber
die Implementierung beschreibt. Ein Fenster wird einfach geschlossen, egal, ob
es die Methode eines Objektes Fenster oder einfach eine entsprechende Prozedur
war.



3.4. SOFTWAREENGINEERING 73

Entwurf Beim objektorientierten Entwurf wird das Problem nicht in Algo-
rithmen, sondern in Objekte, Klassen und ihre Beziehungen zueinander zerlegt.
Sehr hilfreich ist eine Notation, die die Zusammenhé&nge iibersichtlich beschreibt.
Eine méchtige Methode findet sich bei Booch [2]. Dabei kénnen die Klassen und
ihre Beziehungen voneinander graphisch dargestellt und einfach um zusétzliche
Erkenntnisse erweitert werden.

Programmierung Grundsitzlich kann in jeder Sprache objektorientiert pro-
grammiert werden. Manche legen es jedoch niher als andere. Die Konzepte des
Objektmodells sollten ein Bestandteil der Programmierung sein. Ohne Verer-
bung unterscheidet es sich z.B. nicht vom Programmieren mit abstrakten Da-
tentypen. Bekannte OO-Sprachen sind Smalltalk oder C++. Inzwischen bieten
aber viele andere Sprachen objektorientierte Zusitze.

3.4.4 Techniken der Dokumentation

Der Stellenwert der Dokumentation in einem Projekt ist meist untergeordnet.
Sie kostet eine Menge Zeit und hilt den Entwicklungsprozel auf. Aber ohne
Dokumentation gibt es keine Sicherheiten, keine Vereinbarungen, auf die man
sich verlassen kann. Da man aus fritheren Fehlern nicht lernen kann, gibt es
auch keinen Fortschritt im Prozefl. Dokumentation gehort genauso zur Software
wie der Programmcode. Gerade in den frithen Phasen wie Anforderungsanalyse
oder Spezifikation kommt man ohne eine Dokumentation nicht aus, da es sonst
keine Dokumente iiber den Stand und den Fortgang des Projekts gibt.

3.4.4.1 Prozefldokumentation

Fiir jede Phase muf} der Projektstand und die Ergebnisse der Phase dokumen-
tiert werden. Dazu gehoren Protokolle der Sitzungen, Untergruppenberichte und
Vereinbarungen. In der Regel wird nur dann regelmiflig und zuverléssig doku-
mentiert, wenn es kein zu hoher Aufwand ist. Deswegen braucht man fiir alle
diese Dokumente Formulare, die das Verfassen erleichtern und ihnen auch ein
einheitliches Aussehen geben. Die mindeste Information, die ein Dokument ent-
halten muf}, ist das Datum und den Verfasser, damit man es in den zeitlichen
Ablauf des Projekts einordnen kann.

3.4.4.2 Meilensteine

Meilensteine sind sowohl Termine als auch Abschlufdokumente der verschie-
denen Phasen. Sie sind jeweils der Ausgangspunkt fiir die folgende Phase und
beeinflufien diese nachhaltig. Anderungen an Meilensteinen, sobald sie abgenom-
men wurden, miissen deshalb wohliiberlegt und selten sein. Die Meilensteine
eines Projekts heilen Anforderungsanalyse, Spezifikation, Entwurf, Zwischen-
bericht, Endbericht und Programmecode.



74 KAPITEL 3. SEMINARVORTRAGE

3.4.4.3 Dokumentation von Programmcode

Viele verstehen unter Dokumentation nur die Kommentare im Programmecode.
Dies ist jedoch nur ein kleiner Teil davon. Nichtsdestotrotz sind Kommentare
auflerordentlich wichtig, nicht nur, wenn mehrere Menschen am selben Code
arbeiten. Man versuche nur, sich vier Wochen nach dem Verfassen noch an die
Absichten hinter einem Stiick Programm zu erinnern.

Gute Kommentare wiederholen nicht das Offensichtliche, sondern erldutern die
Absichten.

e schlechtes Beispiel:
x:=1; // x bekommt den Wert Eins

Was im Kommentar steht, kann jeder aus der Programmzeile entnehmen.
Solche Kommentare blidhen den Code nur unnétig auf. Auflerdem ist der
Variablenname alles andere als sprechend.

e gutes Beispiel:
zaehler:=1; // Der Zaehler wird initialisiert

Hier offenbart der Kommentar, welche Absicht der Autor mit dieser Zeile
verfolgt.

3.4.4.4 Reviews

Technische Reviews dienen zur Uberpriifung von Dokumenten und Programm-
code. Gerade bei den friithen Phasen sind sie unumgénglich, da mit einem Text-
dokument kein systematischer Test gemacht werden kann.

Werden technische Reviews eingefiihrt, so findet man am Anfang viele kleine,
z.B. Rechtschreib- oder Formfehler. Mit der Zeit werden die Autoren jedoch
besser und es ist eine Qualititsverbesserung festzustellen: Es werden die struk-
turellen, die wirklich ,,teuren“ Fehler gefunden.

Personen und Rollen

e Autor. Nimmt am Review teil, muf sich jedoch nicht rechtfertigen. Es
wird das Produkt, nicht sein Autor gereviewed.

o Sitzungsleitung. Ladt zum Review ein und verschickt das anstehende Do-
kument.

o Protokollant. Schreibt alles mit, was an Fehlern gefunden wird und lésst
es dem Autor zukommen.

e Manager oder Auftraggeber. Nimmt am Review nicht teil. Das technische
Review ist eine interne Angelegenheit der Entwickler zur Verbesserung des
Produkts.

o Gutachter. Die Gutachter sind meist andere Entwickler, die den Priifling
auf Fehler untersuchen.



3.4. SOFTWAREENGINEERING 75

Vorbereitung Um ein technisches Review durchzufiihren, benétigt man eine
Version des zu priifenden Dokuments, die wihrend der Reviewphase nicht mehr
veréndert wird. Ein Review auf einem veraltenden Priifling ist nutzlos.

Dieses Dokument verschickt nun die Sitzungsleitung an die Teilnehmer des Re-
views zusammen mit der Einladung und einer Aufgabenverteilung. Dies muf}
rechtzeitig vor dem Termin erfolgen, damit die Gutachter nun anhand den ih-
nen zugeteilten Aspekten den Priifling untersuchen kénnen. Dabei registrieren
sie auch Fehler, die nicht in ihrem Bereich liegen. Durch die Konzentration auf
bestimmte Aspekte werden jedoch mehr Fehler gefunden.

Ablauf Ein technisches Review beginnt damit, dafl der Sitzungsleiter fest-
stellt, ob die Gutachter erschienen sind und ihre Arbeit erledigt haben. Ist dies
nicht der Fall, kann das Review abgebrochen werden.

Beim eigentlichen Review wird das Dokument absatzweise durchgegangen. Jeder
Gutachter sagt dabei, welche Fehler er unter seinem Aspekt gefunden hat. Der
Protokollant notiert dies. Nach dem Review stellt die Runde noch ein Ergebnis
aus. Mogliche Ergebnisse sind

e Keine Beanstandungen. Das Dokument wird so, wie es ist, angenommen.

e Kleine Anderungen, kein weiteres Review. Nach der Einarbeitung der
erwihnten Anderungen durch den Autor wird das Dokument ohne wei-
teres Review angenommen.

¢ Grofle Anderungen, weiteres Review. Der Autor arbeitet die Anderungen
ein. Danach wird ein weiteres Review angesetzt.

o Gravierende Beanstandungen. Das Dokument wird nicht angenommen. Es
wird empfohlen, es von Grund auf neu zu schreiben.

3.4.5 Vereinbarungen

Um in einem Projekt Techniken des Softwareengineerings anzuwenden, ist es
umbedingt notwendig, dafl die Teilnehmer Vereinbarungen treffen. Es ist nicht
wichtig, was konkret vereinbart wird, sondern daf} etwas vereinbart wird. Diese
Vereinbarungen enthalten dann Absprachen, Formulare, Standards, Entschei-
dungen und Style Guides. Sie sind die Referenz fiir die einzelnen Teilnehmer
und miissen stets aktualisiert werden, wenn sich etwas gedndert hat oder eine
neue Absprache dazugekommen ist.



76 KAPITEL 3. SEMINARVORTRAGE

3.5 Constraint Programmierung

3.5.1 Einleitung

Immer haufiger werden zum Losen von Problemstellungen elektronische Gerite
eingesetzt. Angefangen bei einfachen Kiichengeriten iiber Telefonanlagen
bis hin zu hochentwickelten Industrierobotern, die entsprechend ihrem Ein-
satzgebiet ausgesucht und eingesetzt werden. Aber dennoch gilt fiir jedes
Gerat, die Losung zur vorhandenen Problemstellung so einfach wie moglich zu
programmieren. Dabei stellt sich die Frage, auf welche Art und Weise kann
iiberhaupt programmiert werden ?

Eine Art ist die herkbmmliche Programmiermethode. Das bedeutet, man gibt
eine genaue Handlungsanweisung an, wie das Problem zu 16sen ist.

Beispiel:

begin
fithre A aus;
fithre B aus;
fithre C aus;
if D = true then

fiihre E aus;

else F

end

Allerdings kann hier in einigen Fillen nicht das gesamte Problemfeld abgedeckt
werden. Vor allem dann nicht, wenn sich zur Laufzeit die Verhéltnisse dndern.
Diese waren zu Anfang in dieser Weise nicht bekannt oder sind einfach vergessen
worden. Probleme ergeben sich auch, falls mehrere Losungen zulissig sind. Zum
Beispiel besitzt ein Industrieroboter unterschiedlich angeordnete Gelenke, die
zum Losen der Problemstellung entsprechend angesteuert werden miissen. Dabei
kommt es nicht auf die Position des einzelnen Gelenks an, sondern auf die Ge-
samtposition des Roboters. Folglich sind mehrere Losungen moglich und richtig.

Wie man sieht sind dieser Programmiermethode Grenzen gesetzt. Damit
die oben genannten Probleme dennoch gelost werden kénnen, wurde die
Constraint Programmierung entwickelte.

Die Constraint Programmierung besitzt folgende Eigenschaft: Man gibt nicht
mehr an, wie ein Problem gel6st werden soll, sondern beschreibt das Problem
mit Bedingungen, die erfiillt sein miissen bzw. sollen.

Constraint Programmierung bedeutet weiterhin, dafl der Programmierer nicht
mehr selbst die Ubertragung von der Beschreibung der Bedingungen zur
tatsdchlichen Lésung zu machen braucht. Dies {ibernimmt ein System, das
Algorithmen zur Auflssung von Constraint einsetzt.

Weitere Einzelheiten der Constraint Programmierung werden nun in den



3.5. CONSTRAINT PROGRAMMIERUNG 7

folgenden Abschnitten vorgestellt und erklirt, wobei auf den Auflésungsalgo-
rithmus genauer eingegangen wird.

3.5.2 Constraint Programmierung

Bereits in der Einleitung wurde die Grundidee der Constraint Programmierung
vorgestellt: Man gibt nicht mehr an, wie eine Aufgabe geldst werden soll, son-
dern welche Bedingung nach der Bearbeitung der Aufgabe gelten sollen. Durch
diese Eigenschaft entstand eine neue Programmmiertechnik, fiir die ein entspre-
chender Programmierablauf eingehalten werden sollte. Solch ein Ablauf wird
nun im folgenden allgemein vorgestellt.

3.5.2.1 Allgemeiner Programmierablauf

Bevor man anfingt zu programmieren, mufl die Problemstellung analysiert
und detailliert aufgeschrieben werden. Danach definiert man alle denkbaren
Constraints, die das Problem komplett beschreiben. Wird nur eine Teilmenge
der Constraints benétigt, mufl eine Auswahl getroffen werden, die wirklich zum
Losen der Problemstellung beitragen. Nachdem die Constraints ausgewéhlt
wurden, wird ein Auflésungsalgorithmus gestartet, der als Ergebnis eine
Losung oder ein entsprechendes Verhalten berechnet. Danach wird eine Losung
ausgegeben bzw. ein Verhalten ausgefiihrt.

Schematischer Ablauf:

1. Problemanalyse
2. Definition der Constraints
3. Auswahl einer Teilmenge von Constraints

4. Auflssungsalgorithmus

ot

. Losung bzw. entsprechendes Verhalten

3.5.2.2 Constraints

Wihrend der grobe Ablauf der Constraint Programmierung nur erwihnt, dafl
entsprechende Constraints definiert werden miissen, soll hier kurz eine Definiti-
on der Constraints zum Verstidndnis gegeben werden.

Constraints sind Bedingungen, die als Relationen {iber Variablen definiert wer-
den. Ein Constraint C mit Variablen py,... ,p, legt eine beliebige Relation R
zwischen den einzelnen p;, ¢ = 1,... ,n fest. Wenn fiir alle Variablen eine ent-
sprechende Wertzuweisung gefunden wurde, ist ein Constraint erfiillt.
Beispielsweise wird der numerische Constraint Summe als Summe(a, b, ¢) darge-
stellt. Zur Verarbeitung dieses Constraints ist jedoch eine speziellere Darstellung



78 KAPITEL 3. SEMINARVORTRAGE

der Relation notwendig:

Summe(a,b,c) & (c=a+b)
(b=cea)
(a=ceb)

Diese Darstellung hat den Vorteil, da8 fiir jede Variable der Relation ein eigener
Ausdruck vorliegt und so die weitere Verarbeitung ohne zusétzliches Wissen iiber
andere Relationen moglich ist.

3.5.2.3 Anwendungen

Im folgenden werden zwei Anwendungsgebiete vorgestellt, die sich fiir die Cons-
traint Programmierung besonders gut eignen. Dabei werden die Constraints
konkretisiert und zum anderen wird gezeigt, wie bzw. wo sie in Programmen
eingesetzt werden konnen.

Die folgenden Beispiele stammen aus den zwei Anwendungsgebieten:

1. Regel- und Steuerungstechnik

2. Berechnungstechnik

1. Regel- und Steuerungstechnik

Zu diesem groflen Gebiet der Regel- und Steuerungstechnik gehort unter ande-
rem der Bereich der Roboterprogrammierung. Roboterprogrammierung basiert
zum grofiten Teil auf einer Bewegungsbeschreibung, die mit Hilfe von Bewe-
gungsbahnen in einem Konfigurationsraum oder einem Zustandsraum beschrie-
ben wird. Meist werden bei Industrieroboter diese Bewegungsbahnen von Hand
spezifiziert. Das ist einfach, intuitiv und ausreichend fiir einige Anwendungen.

Gehmaschine

Fiir das Programmieren einer Gehmaschine, die sich dynamisch in drei Dimen-
sionen fortbewegen kann, bereitet dieses herkdmmliche Vorfahren grofie Schwie-
rigkeiten. Hierfiir miiite nach immer wiederkehrende Bewegungsabliufe der ein-
zelnen Gelenke gesucht werden. Anschlieend werden diese Abldufe geplant und
in einer entsprechender Reihenfolge aufgerufen. Das ist sehr kompliziert und
komplex.

Diese Aufgabe kann mit der Constraint Programmierung eleganter gelost wer-
den. Dazu miissen allerdings entsprechende Constraints fiir das gewtiinschte Ver-
halten definiert werden, die etwa so aussehen kénnen:

Constraint,= Fuf} sollte wihrend der Schwingphase des Beines keinen Kontakt
zum Boden haben.



3.5. CONSTRAINT PROGRAMMIERUNG 79

Constrainta= Die Fuflplazierung muf} so gewéhlt werden, daf} ein ausgegliche-
nes Gleichgewicht vorliegt.

Damit die Gehmaschine richtig laufen kann, miissen zur Laufzeit die Constraints
stindig auf Erfiillung kontrolliert werden. Stellt sich heraus, da3 die beiden Be-
dingungen nicht ausreichend sind, kann durch Hinzufiigen eines neuen Cons-
traints das existierende Programm erweitert werden.

Constraints= Das Becken muf} {iber einer bestimmten Hohe sein.

Mobile Roboter

End -
Zone

Abb. 3.40: Versuchsanordnung

Mit einem weiteren Beispiel der Roboterprogrammierung, den mobilen Robo-
tern, koénnen folgende niitzliche Eigenschaften der Constraints charakterisiert
werden. Dazu werden funkgesteuerte mobile Roboter in einer Versuchsanord-
nung betrachtet, bei denen die Richtung und die Geschwindigkeit iiber eine
entsprechende Vorrichtung eingestellt werden kénnen (Abbildung 3.40).

Die Constraints, die die Fahrt eines solchen mobilen Roboters vollstindig be-
schreiben, lassen sich untergliedern in:

1. Constraints, die zu Beginn des Programms initialisiert werden.

1. Fahr-Constraint
2. Geschwindigkeits-Constraint
3. Richtungs-Constraint

4. Endzone-Contraint
Der mobile Roboter wird so gesteuert, daf er in Richtung Endzone
fahrt.

2. Constraints, die zur Laufzeit generiert werden.



80 KAPITEL 3. SEMINARVORTRAGE

1. Wand und Hindernis-Constraint

Der mobile Roboter befindet sich in einem abgeschlossenen Raum.
Kommt es nun zu einer Beriihrung zwischen dem Roboter und einer
Kante, so wird ein Constraint generiert. Dieser Constraint veranlaft
eine virtuelle Kante w, die mit Abstand d,, entlang der realen Kan-
te in Richtung des freien Raumes eingefiigt wird. Dadurch gelangt
der Roboter in Zukunft nicht mehr an die reale Kante. Dem Roboter
wurde angelernt, wo eine Kante ist.

Diese Lerneigenschaft mit Hilfe von Constraints macht sich die
Kiinstliche Intelligenz zu nutze, da nur wenige Programmiersprachen
diese Eigenschaft des Lernens komfortabel unterstiitzen.

Fazit

In den Beispielen wurde gezeigt, dafl Generierung von Constraints zur Laufzeit
und Erginzungen, wie im Beispiel Gehmaschine durch das Constraint 3, einfach
realisiert und ohne Probleme in das System integriert werden kénnen. Mit ande-
ren Programmiermethoden wire dies bedingt moglich, jedoch wenn {iberhaupt,
nur sehr umsténdlich.

Durch die Kombination dieser vielfiltigen Eigenschaften der Constraints ist es
durchaus moglich, komplizierte Problemstellungen in der Regel-und Steuerungs-
technik sehr einfach und vorallem sehr schnell zu programmieren.

2. Berechnungstechnik

Ein weiteres Aufgabengebiet der Constraint Programmierung ist das Lésen von
Berechnungsaufgaben. Auch hier wiinscht man sich eine einfache Beschreibung
der Aufgabe und eine schnelle Losung.

Viele Berechnungsconstraints konnen wie elektrische Schaltkreise (Abbil-
dung 3.41) dargestellt werden. Bildhaft kann man sich einen Constraint als
Blackbox vorstellen. Im Gegensatz zu einem elektrischen Schaltkreis gibt es
jedoch keine vordefinierte Berechnungsrichtung. Dadurch kann ein beliebig
ausgewdhlter Anschlufl eines Constraints aus den iibrigen Anschliissen berech-
net werden. Beispielsweise besitzt der Addierer add-1 aus Abbildung 3.41 drei
Anschliisse: A,B und C'. Wenn nun zwei der drei Anschliisse Werte besitzen,
wobei Anschlufl B durch die Konstante immer einen Wert besitzt, wird der
Wert fiir den dritten Anschlufl so berechnet, dal die Summe der Werte der
Anschliisse A und B gleich dem Wert von Anschlufl C ist, d.h. wenn der Wert
von Anschlufl C' gegeben und A gesucht ist, wird subtrahiert: A = C < B.

Die Anschliisse von Constraintinstanzen kénnen miteinander verbunden werden,
so da} Constraintnetze entstehen (Abbildung 3.41). Alle miteinander verbun-
denen Anschliisse besitzen den gleichen Wert. Ist das nicht der Fall, so befindet
sich das Netz in einem Konfliktzustand und es muf} eine Auflésung des Konflik-
tes erfolgen.

Wie solch eine allgemeine Auflosung im einzelnen funktioniert wird im nichsten
Abschnitt erklart.



3.5. CONSTRAINT PROGRAMMIERUNG 81

FAHRENHEIT CELSIUS
s A s
B
add-1 mult-2 mult-1

Abb. 3.41: Temperaturkonverter

3.5.3 Auflésungsalgorithmus

In den vergangenen Abschnitten wurden die Eigenschaften der Constraints
vorgestellt, was Constraints sind und wie bzw. wo sie eingesetzt werden kénnen.
Dabei wurde auf die Beschreibung der Problemstellung mit Constraints
eingegangen und nicht wie das System eine bzw. mehrere Losungen berechnet.
Das WIE wird nun in diesem Abschnitt niher beschrieben.

Aus Abschnitt 3.5.2.1 ist bekannt, dafl nach der Auswahl der Constraints
ein Auflosungsalgorithmus gestartet wird, der die Losung oder ein Verhalten
berechnet. Der hier vorgestellte Auflésungsalgorithmus bezieht sich nur auf die
zweite vorgestellte Anwendung: Berechnungstechnik.

Der nun betrachtete Aufldsungsalgorithmus (vgl. [19]) stellt ein inkrementelles
Verfahren dar, das durch schrittweises Einsetzen der Constraints gelost wird.

3.5.3.1 Vorbemerkungen

Im nichsten Abschnitt werden zur Beschreibung des Auflosungsalgorithmus Be-
griffe verwendet, die im folgenden definiert werden.

e Constraint Hierarchie

Eine Constraint Hierarchie H ist ein 5-Tupel (Vars,Cons,D,level,d),
wobei gilt:

1. Vars = {vy,vs,... ,v,} ist eine Menge aus Variablen

2. Cons = {c1,ca,... ,cn} ist eine Menge aus Constraints
3. D ist ein endlicher Definitionsbereich aller Variablen
4.

level ist eine Funktion, die die Prioritdt der einzelnen Constraints
ausgibt

level : Cons - Ny; ¢; = n,

wobei level(c;) = n auch als ¢;@n geschrieben wird



82

KAPITEL 3. SEMINARVORTRAGE

5. d ist eine Funktion, die jeder Variable einen Definitionsbereich zu-
ordnet
d:Vars - D; wv;— D;CD

e Constraint Speicher

Ein Constraint Speicher S ist eine Menge S C Cons, die beziiglich der
Prioritéat unterteilt werden kann.

S = S[i] \ S[<i] Vv S[>i] wobei i eine Prioritét ist

Konfiguration einer Hierarchie

Eine Konfiguration ®, der Hierarchie H, besteht aus drei verschiedenen
Constraint Speichern (AS ¢ RS e US), wobei AS der Active Speicher, RS
der Relaxed Speicher und US der Unexplored Speicher ist.

Der Speicher AS beinhaltet Constraints, die aufgrund des eingeschriankten
Definitionsbereichs erfiillt sind. Der Speicher RS enthiilt aus dem Speicher
AS stammende Constraints, die zur Zeit der Aktivierung einen Konflikt
hervorgerufen haben. Der Speicher U S ist ein Zwischenspeicher. Er enthélt
nur die Constraints, die zum Ausfiihren der Regeln notwendig sind. Anson-
sten fiillt der Speicher US seinen Inhalt mit immer nur einem Constraint
aus der Menge C'ons auf.

Konflikt

Man spricht von einem Konflikt, wenn der Definitionsbereich einer Varia-
blen die leere Menge ist. Dazu werden nur die Variablen der Constraints
im Speicher AS betrachtet.

Besser Priadikat

Gegeben seien zwei Konfiguration ® und ®'. ® ist besser als &' (Schreib-
weise ® < @), gdw

1. & = @' oder
2. (Ek' >0,Vi < k), ﬁRS[i] = ﬁRS[Il] und ﬁRS[k] < ﬁRS['k]

3.5.3.2 Beschreibung des Algorithmus

Im folgenden wird nun der Algorithmus mit seinen Regeln und Abbruchkriterien
vorgestellt und ndher erldutert.



3.5. CONSTRAINT PROGRAMMIERUNG 83

e Final Konfiguration

Eine Konfiguration ® ist eine Final Konfiguration (Schreibweise F'C(®))
genau dann, wenn

1. Ve € AS: ¢ ist erfiillt
2. Vce Cons :ce AS oder c € RS

e Promising Konfiguration

Eine  Konfiguration ® ist eine Promising Konfiguration
(Schreibweise PC(®)) genau dann, wenn

1. Ve € AS: c erfiillt ist
2. 2FC(®") < PC(®) (Es gibt keine bessere Final Konfiguration)

e Dead End

Ein Dead End bedeutet, dafl weder die Forward Regel noch die Backward
Regel angewendet werden kann. Fiir die Forward Regel bedeutet dies, es
liegt bereits eine Final Konfiguration vor, die besser ist als die aktuelle
Konfiguration. Wahrend mit Hilfe der Backward Regel keine schlechtere
Konfiguration succ(®cons) bestimmt werden kann, da im Aktiv Speicher
nur noch Constraints mit der Prioritéit O enthalten sind, die nicht deakti-
viert werden kénnen.

Algorithmus

begin
Durchlauf = 1;
repeat
if (Speicher US = leer) then
fiige ein Constraint aus der Cons Menge in den
Speicher U S}
if (aktuelle Konfiguration = Promising Konfiguration) then
fiihre die Forward Regel aus;
schrinke die Definitionsbereiche der Variablen entsprechend
der ¢; € AS ein;
if (mindestens ein Definitionsbereich einer Variablen = ) then
fithre die Backward Regel aus;
Durchlauf = Durchlauf + 1;
until (Konfiguration = Final) oder (Konfiguration = Dead End)
end

e Forward Regel

Die Forward Regel entfernt aus dem Speicher US ein Constraint und fiigt
es in den Aktiv Speicher ein (Aktivierung eines Constraints), sofern die



84

KAPITEL 3. SEMINARVORTRAGE
aktuelle Konfiguration eine Promising Konfiguration ist. Sei also ® die
aktuelle Konfiguration und ¢ das aktivierte Constraint.

Forward Regel

PC(®) deeUS
® o (ASU{c} e RSeUS\ {c})

Backward Regel

Im Falle eines Konfliktes sucht die Regel nach einer alternativen Promising
Konfiguration. Dazu werden Constraints mit Prioritédt grofier 0 aus dem
Speicher AS in den Speicher RS verschoben (Deaktivierung eines Cons-
traints) und in einem friitheren Duchlauf dorthin verschobene Constraints,
konnen wieder in den Speicher AS reaktiviert werden. Auch hier wird
der Definitionsbereich entsprechend den nun vorhandenen Constraints im
Speicher AS angepaft. Im folgenden sei ®, die aktuelle Konfiguration,
gegeben, aus der die Konfliktkonfiguration ®.,,s abgeleitet wird. Daraus
ergibt sich dann eine schlechtere Konfiguration succ(®conf).

Vorgehensweise der Backward Regel

1. Zunichst legt die Backward Regel einen Konfliktspeicher C'S C AS
an, in dem das aktivierte Constraint (das zuletzt in AS eingefiigte)
zusammen mit den Constraints des Aktiv Speichers, die den Defini-
tionsbereich mindestens einer Variablen des aktivierten Constraints
beeinflussen, enthalten sind.

2. Aus diesem Konfliktspeicher wird eine Konfliktkonfiguration ®coyf
erstellt, die aus den drei Speichern Activeronfiikt, Relazedionfiikt
und Unezploredr on ikt besteht. Diese drei Speicher werden entspre-
chend der aktuellen Konfiguration ® mit Constraints aus der Menge
Conscons belegt, d.h. Constraints, die in Konfiguration ® im Spei-
cher AS waren, bleiben auch in der Konflikt Konfiguration ®.o,s im
Speicher AS. Die Menge Conscony besteht aus der Vereinigung aller
fritheren Konfliktspeichern inklusiv der aktuellen.

3. Die Konfiguration ®.,,s dient zur Festlegung einer schlechteren Kon-
figuration succ(®conys), aus der die Constraints zur De- und Reakti-
vierung bestimmt werden. Dabei konnen mehrere Moglichkeiten ent-
stehen. Laut dem Besser Pridikat geniigt es nun, ein oder mehrere
Constraint aus dem Speicher AS in den Speicher RS zu verschieben
bzw. umgekehrt. Den Inhalt des Speichers AS bezeichnet man im
folgenden als Activate und den Speicher RS als Relazx.

4. Wird ein Constraint deaktiviert, werden alle Nachfolge-Constraints
gesucht. Nachfolge-Constraints sind Constraints, die zeitlich spéter
in den Speicher AS eingefiigt worden sind, als das deaktivierte Cons-
traint. Weiterhin gilt, dal nur nach solchen Nachfolge-Constraints
gesucht wird, die dieselben Variablen benutzen, wie das deaktivierte



3.5. CONSTRAINT PROGRAMMIERUNG 85

Constraint. Dies hat zur Folge, dal der Definitionsbereich der Varia-
blen fiir die Nachfolge-Constraints im Speicher AS abgeéndert wer-
den mufl. Dazu werden die gefundenen Nachfolge-Constraints in der
Menge Reset abgelegt, wobei gilt Reset C AS.

Nachdem diese einzelnen Mengen bestimmt sind, kann die Nachfolge-
konfiguration ® entsprechend den Berechnungsformeln berechnet werden.

Backward Regel

AStkax L APeony C @ JdReset C AS
b o P

wobei fiir ' = (AS’ @ RS' ¢ US’) gilt:

1. (Activate ® Relaz) « succ(Peons, <)\ Peonf
2. AS" + AS\ (Relax U Reset)

3. RS + (RS \ Activate) U Relax

4. US' + (US\ Relazx) U Reset U Activate

und AS F x 1:< de; € AS @ so daB ¢; nicht erfiillt ist

3.5.3.3 Beispiel

Die abgebildete Auflssungstabelle (Tabelle 3.1) zeigt, wie der Algorithmus zur
Bestimmung einer moglichen Losung vorgeht. Dabei werden die verwendeten
Regeln und die daraus entstehenden Konfigurationen mit entsprechendem Defi-
nitionsbereich angegeben. Zum Bestimmen einer alternativen Konfiguration bei
Auftritt eines Konfliktes, werden aus der Tabelle 3.2 die notwendigen Mengen
verwendet.

Fiir das Beispiel sei folgende Hierarchie H gegeben:

H= ({xay}a {cla C2,C3,C4,Cs, cﬁ}aza levelad)

mit den Definitionsbereichen
d(z)=[1...10] d(y)=11...10]
und den Prioritdten der Constraints
0 fur i=25,6

level(c;) =< 1 fur i=1,2
2 fir i=3,4



86

KAPITEL 3. SEMINARVORTRAGE

Die verwendeten Constraints besitzen folgende Definition:

C1
C2
C3
Cq
Cs

Cé

= z4+y=15
3xzx ey <15
r>y+1

x <7

= <8

= y<5>

Die dargestellten Beispieldurchliufe dienen zur Erklirung der Auflésungstabel-
le. Dazu werden zwei Teilberechnungen aus der gesamten Auflésungstabelle (Ta-
belle 3.1) genauer beschrieben.

1. Beispieldurchlauf

Der Auflssungsalgorithmus startet mit dem Constraint ¢; im Speicher US
(Durchlauf 0). Aufgrund der vorliegenden Promising Konfiguration, wird
die Forward Regel ausgefiihrt. Dabei gelangt ¢; in den Speicher AS und
der Definitionsbereich der beiden Variablen wird so eingeschrénkt, daf
das Constraint erfiillt ist (Durchlauf 1). Aus der Menge Cons wird ein
néchstes Constraint ¢ in den Speicher US eingefiigt. Da auch hier eine
Promising Konfiguration vorliegt, wird die Forward Regel angewendet und
das Constraint wandert in den Speicher AS (Durchlauf 2). Dabei entsteht
ein Konflikt, da es keinen geeigneten Definitionsbereich fiir die vorhande-
nen Variablen gibt, so daf§ die Constraints ¢; und ¢ erfiillt sind. Deshalb
muf} die Backward Regel angewendet werden. Hierzu werden entsprechen-
de Speicher und Konfigurationen laut der Vorgehensweise der Backward
Regel ermittelt. Aufgrund der Regel 2: AS" + AS \ (Relax U Reset) und
der Regel 3: RS" + (RS \ Activate) U Relax , wird das Constraint c,
aus dem Speicher AS in den Speicher RS verschoben und der vorherige
Definitionsbereich wieder hergestellt (Durchgang 3).

Die weiteren Durchldufe werden analog behandelt.

. Beispieldurchlauf

Eine Besonderheit des Auflosungsalgorithmus entsteht ab Durchlauf 6. Zur
Situation: ¢1,c3 € AS, ¢3,¢4 € RS und ¢5 € US.

Durch die Forward Regel gelangt das Constraint cs in den Speicher AS
und es entsteht ein Konflikt. Die Backward Regel muf3 angesetzt werden
(Durchlauf 7). Da das Constraint ¢5 die Prioritéit level(cs) = 0 besitzt,
kann c5 nicht in den Speicher RS verschoben werden. Deshalb muf} ein
anderes Constraint aus dem Speicher AS gefunden werden, das in Spei-
cher RS verschoben werden kann. In diesem Beispiel ist es das Constraint
c3. Da das Constraint c; zwar verantwortlich fiir den Konflikt war, aber
nicht in den Speicher RS verschoben werden kann, wird ¢; nochmals in
den Speicher US hinzugefiigt, entsprechend der Regel 4 der Backwardre-
gel (Durchlauf 8). Dadurch ergibt sich folgende Situation: ¢; € AS | ¢,
c3, ¢4 € RS und ¢; € US. Die Definitionsbereiche werden entsprechend
dem {ibrig gebliebenen Constraint im Speicher AS eingeschrankt.



3.5. CONSTRAINT PROGRAMMIERUNG 87

Eine dhnlich Situation erfolgt ab Durchlauf 9 - 11. Allerdings werden nicht
nur die Constraints mit der Prioritdt level(c;) = 0 in den Speicher US
verschoben, sondern auch die Constraints hoherer Ordnung. Grund: Die
Bestimmung einer schlechteren Konfiguration ist nur vom Speicher RS
abhéngig. Dadurch kénnen auch Constraints level(c;) > 0 wieder reakti-
viert werden, falls das Besser Predikat erfiillt ist.

Durchlauf | Konfiguration d(x) d(y) Regel | Konfikt
®=(ASeRSeUS)
0 {}o{}e{ci} 1...10 1...10 fw
1 {cle{}e{} 5...10 | 5...10
{c1} o {} o {c2} 5...10 | 5...10 fw
2 | {enete{te () 0 0 | bw | v
3 {c1} o {ca} o {} 5...10 | 5...10
{c1} o {ca} o {c3} 5...10 | 5...10 fw
1 | eneshele)od) 010 | 56
{c1,c3} o {ca} o {c4} 9,10 5,6 fw
5 {ei,e3,cat @ {ca} o {} 0 0 bw Vv
6 {01)03}.{02704}.{} 9,10 9,6
{c1,c3} o {ca,ca} o {c5} 9,10 5,6 fw
7 {c1,c3,¢5} o {ca,ca} 0 {} 0 0 bw Vv
8 {c1} o {ca,c3,c4} @ {c5} 5...10 | 5... 10 fw
9 {c1,¢5} @ {ca,c3,c4} 0 {} 5...7 |5...10
{c1,¢c5} o {ca,c3,ca} @ {c6} 5...7 |5...10 | fw
10 {c1,c5,c6} @ {ca,c3,c4} @ {} 0 0 bw Vv
11 {}e{ci,e2} @ {c3,c4,¢5,c6} | 1...10 1...10 fw
12 {c5} o {c1,c2} @ {c3, 4,06} 1...7 1...10 fw
13 {c5,c6} o {c1,c0} @ {c3,ca} 1...7 1...8 fw
14 {c5,¢6,c3,} @ {c1,cat o {ca} | 3...7 1...8 fw
15 {05,06,03,04}0{01,02}0{} 3...6 1...8 fw

Tabelle 3.1: Auflosungstabelle

Zur Losung der gestellten Aufgabe, kénnen die Constraints cs, cg, c3 und ¢4 ohne
gegenseitige Beeinflussung verwendet werden. Das Ergebnis, das mit Hilfe des
Auflésungsalgorithmus geltst wurde, besitzt folgende Konfiguration:

® = ({cs,c6,c3,c4} @ {c1,c2} o {})

Alle Constraints im Speicher AS sind erfiillt, da es eine giiltige Wertzuweisung
der Variablen gibt. Die Variablen x und y besitzen dabei folgende eingeschrénkte
Definitionsbereiche:

Die Constraints ¢;, ¢z befinden sich im Speicher RS, da es fiir diese keine giiltigen
Definitionsbereiche der Variablen im Speicher AS gibt.



88

KAPITEL 3. SEMINARVORTRAGE

Durchlauf | Konflikt- Konflikt- schlechtere Reset Menge
speicher konfiguration Konfiguration
CS; CAS; | ®eony C P succ(®eony) Reset C AS
2 {c1, 2} Do, = {}o{ca} o {} {}
fer,cabe{}e{}
) {c1,¢e3,¢4} | Posoness = {}o{co,ca}o{} {
{ci,e3,ca} @ {ca} o {}
7 {e1,e3} ®cs,nesn0S: = {} o {ca,c3,ca} 0 {} {es}
fer,csto{es,cat o {}
10 {ei} Pes,nessnCsnCS, = | 1,¢3,caf o {ci,caf o {} | {cs5,c6}
fer} o fes,cs,cat 0 {}

Tabelle 3.2: Mengen zur Bestimmung einer alternativ Konfiguration

3.5.4 Ausblick
3.5.4.1 Vor- und Nachteile

Die Constraint Programmierung zeichnet sich gegeniiber anderen Programmier-
sprachen vor allem durch die folgenden Vorteile aus:

e Die Aufgabenbeschreibung kann intuitiv angegeben werden.
e Die Losungsbeschreibung ist transparent.

e Das System kann durch einfaches Hinzufiigen von Constraints erweitert
werden.

e Constraints konnen zur Laufzeit generiert werden.

e Die Prioritéit eines Constraints kann durch Angabe von Werten festgelegt
werden.

e Die Losungsberechnung iibernimmt ein Auflésungsalgorithmus.
Die Constraint Programmierung hat natiirlich auch Nachteile:

e Die Constraint Programmierung ist nicht fiir schnelle Entscheidungen ge-
eignet.

e Der Auflésungsalgorithmus kann sehr kompliziert und aufwendig zu pro-
grammieren sein.

Da das Bestimmen eines geeigneten Auflosungsalgorithmus eine Schwierigkeit
der Constraint Programmierung ist, wird die Constraint Programmierung nur
in bestimmten Féllen eingesetzt. Zum einen wenn der Auflésungsalgorithmus
einfach bestimmbar ist und zum anderen wenn es sich lohnt einen komplexen
Auflésungsalgorithmus zu programmieren, weil viele #hnliche Anwendungen da-
mit laufen sollen. Aber dennoch wird in Zukunft eine Weiterentwicklung dieser
Programmiermethode zu erwarten sein.



3.5. CONSTRAINT PROGRAMMIERUNG 89

3.5.4.2 Fahrgemeinschaftssystem

Sicherlich hat jede Programmiermethode ihre Vor- und Nachteile. Der entschei-
dende Vorteil der Constraint Programmierung ist jedoch die Einfachheit, mit der
eine Aufgabe gel6st werden kann. Man gibt nicht an, wie eine Aufgabe gelost
werden soll, sondern welche Bedingungen nach der Bearbeitung der Aufgabe
gelten sollen. Dadurch lassen sich in vielen Anwendungsgebieten, komplizierte
und komplexe Aufgaben 16sen.

Ein mogliches komplexes Anwendungsgebiet ist das Berechnen von Fahrgemein-
schaften. Eine Fahrgemeinschaft ist eine Gruppe von Personen, die mit einem
Fahrzeug einen gemeinsamen Weg zuriicklegen will. Zum Bilden einer Fahrge-
meinschaft miissen verschiedene Bedingungen beriicksichtigt werden:

1. Der Umweg einer FGM ist der nach der Wegstrecke berechnete zusitzli-
che Weg.

2. Die Personenzahl einer FGM gibt an, wieviele Personen in der Fahrge-
meinschaft mitfahren.

3. Die Eigenschaften einer Person geben Auskunft iiber Geschlecht, Rau-
cher oder Nichtraucher, Musikgeschmack usw.

Diese Bedingungen kénnen mit Constraints einfach beschrieben werden.

Constraint¢gm1= Umweg < einer Schranke k
Constraint ggma= Personenanzahl im Auto < einer Schranke m

Constraint¢gms= Eigenschaften(Person;) = Eigenschaft(Person;)

Der Auflosungsalgorithmus berechnet dann aufgrund der oben definierten Cons-
traints eine mogliche Fahrgemeinschafteneinteilung.



Kapitel 4

Anforderungsanalyse

Die Anforderungsanalyse spiegelt die Eigenschaften einer aus der Sicht des Kun-
den optimalen Software zur Losung seines Problems wider. Wahrend der Anfor-
derungsanalyse wird versucht, alle Anforderungen und Wiinsche, die der Kunde
an die Software hat, zu erfassen. Das Dokument enthéilt nur Anforderungen, die
fiir den Kunden wichtig sind. Deshalb ist die Menge dieser Anforderungen weder
vollstindig, noch sind Aussagen {iber deren Realisierbarkeit getroffen worden.
Es wird sich erst in der Spezifikation zeigen, welche der gewiinschten Anforde-
rungen in das Endprodukt eingehen.

Szenarien dienen dazu, die Anforderungen an das System darzustellen und zu
vervollstindigen. Sie beschreiben Situationen, in denen der zukiinftige Benutzer
mit dem System umgeht. In den folgenden Abschnitten wird jeweils ein solches
Szenario erliutert.

4.1 Neuer Fahrgemeinschafts-Teilnehmer

Eine Person kommt in eine FGM-Zentrale und mochte als neues Mitglied in
einer Fahrgemeinschaft aufgenommen werden. Dazu miissen zunéchst Persona-
lien, personliche Eigenschaften (z.B. Auto, Fiihrerschein, Raucher, usw.), aber
auch Abneigungseigenschaften (Musikgeschmack, ménnlich/weiblich,
Raucher/Nichtraucher, usw.) iiber eine Eingabemaske erfafit werden. Zusétzli-
che Angaben, wie z.B. Person A sollte bzw. sollte nicht in der Fahrgemeinschaft
sein, kénnen ebenfalls erfaf3t werden.

Nachdem alle notwendigen Angaben eingegeben sind, kann eine entsprechende
FGM gesucht werden. Hierzu kann folgendermafien vorgegangen werden:

1. Manuell

Hier kann eine Person von Hand in eine bestehende oder neue Fahrgemein-
schaft eingefiigt werden. Dazu wird eine Liste aller Fahrgemeinschaften
ausgegeben, die auch durch einen Filter eingeschréankt werden kann. Da-
nach kann die Person einer FGM zugeordnet werden, indem sie iiber den

90



4.2. SYSTEM-AUFBAU 91

Index angewihlt wird. Anschlieflend kann mit Hilfe einer Bewertungsfunk-
tion {iberpriift werden, wie gut oder wie schlecht diese FGM ist. Voriiber-
gehend kann erstmal ein Platz fiir diese Person reserviert werden, damit
sich die betroffenen Teilnehmer dieser FGM informieren und dazu duflern
koénnen. Nach Uberpriifung muB der Benutzer entscheiden, ob diese FGM
in die Partition mitaufgenommen wird oder nicht.

2. Uber ein ’Suchsystem’.

Wird der Meniipunkt ’Suchsystem’ aufgerufen, bekommt man fiir die neue
Person eine Liste von Fahrgemeinschaften angezeigt, die fiir diese Person
in Frage kommen. Dabei werden die Fahrgemeinschaften herausgesucht,
die gut zu der Person passen, abhiingig von der Bewertungsfunktion (z.B.
ghnliche Start- und Zielorte). Danach kann die Person einer FGM zu-
geordnet werden, indem sie iiber den Index angewihlt wird. Auch hier
entscheidet der Benutzer, ob die gewihlte FGM in die Partition mitauf-
genommen wird oder nicht.

4.2 System-Aufbau

Normalerweise werden Fahrgemeinschaften in einer FGM-Zentrale von Hand
(mit Fdhnchen und Landkarten) ausgetiiftelt. Natiirlich will man auch hier eine
Software-Losung, die diese Arbeit abnimmt. Die Basis eines solchen Systems
bilden die Personen- und Verkehrsdaten.

Personendaten kénnen zum einen iiber ein spezifiziertes Datenformat (inkl. Ei-
genschaften) eingelesen bzw. iiber Tastatur und eine Eingabemaske eingegeben
werden.

Verkehrsdaten konnen auf zwei Arten eingelesen werden:

1. GDF-Daten koénnen eingelesen werden.

2. Mit Hilfe eines Graph-Editors (Graphlet, Leda, ...) kénnen Verkehrsdaten
manuell erstellt werden.

Das System besitzt eine weitere Moglichkeit, Daten einzugeben und zwar Parti-
tionen von Personen, d.h. es konnen Fahrgemeinschaften mit allen Eigenschaften
(Personen, wer ist Fahrer, Route usw.) eingegeben werden.

Der Benutzer kann die Daten mit Hilfe einer Visualisierung auf dem Bildschirm
bzw. einem Ausdruck iiberpriifen. Dabei werden die Personendaten in einer Ta-
belle und die Verkehrsdaten mit Hilfe eines Editors, der automatisch aufgerufen
wird, angezeigt.

4.3 Anderung eines Fahrgemeinschafts-
Teilnehmers

Natiirlich kommt es auch bei FGM-Teilnehmern vor, daf§ sie sich personlich
bzw. ortlich verindern, d.h. im Klartext fiir das System: Die Eigenschaften



92 KAPITEL 4. ANFORDERUNGSANALYSE

eines FGM-Teilnehmers miissen gedndert werden.

Nach Durchfiihrung der Anderungen meldet das System, wie sich die Qualitiit
der betroffenen Fahrgemeinschaft beziiglich der Bewertungsfunktion gedindert
hat.

4.4 Anderung einer Fahrgemeinschaft

Die Adresse eines FGM-Teilnehmers hat sich geéindert. Um Konflikte auszu-
schliefen, wird die FGM aufgelost. Da alle Teilnehmer der bisherigen FGM
auch in Zukunft noch an einer FGM teilnehmen wollen, miissen neue FGMs ge-
funden werden. Dazu wird festgestellt, welche Teilnehmer iiberhaupt diese FGM
gebildet haben. Nun wird fiir jeden Teilnehmer eine Liste von Fahrgemeinschaf-
ten angezeigt, die beziiglich der Bewertungsfunktion gut zu ihm passen wiirden.
Dabei kann jeder Teilnehmer einer neuen FGM zugeordnet werden, indem er
iiber den Index angewihlt wird. Voriibergehend kann erstmal ein Platz fiir die-
sen Teilnehmer reserviert werden, damit sich die betroffenen Teilnehmer dieser
neuen FGM informieren und dazu duflern kénnen. Die Liste der betroffenen
Teilnehmer wird ausgegeben.

Damit der Benutzer aber zun#chst ein Gefiihl bekommt, wie gut diese Fahrge-
meinschaft letztendlich ist, kann er eine Bewertungsfunktion darauf anwenden.
Diese berechnet einen Wert und gibt ihn auf dem Bildschirm aus. Danach muf}
der Benutzer entscheiden, ob diese Fahrgemeinschaft in die Partition mitaufge-
nommen werden soll oder nicht.

Weiterhin kann der Benutzer Partitionen mit und ohne Anderung miteinan-
der vergleichen. Dazu miissen die einzelnen Partitionen getrennt voneinander
mit Hilfe einer Bewertungsfunktion bewertet werden. Das Ergebnis wird wie
gewohnt ausgegeben. Hier mufl der Benutzer entscheiden, welche Partition die
aktuelle werden soll.

4.5 FEine neue Partition

Szenario

Da sich einiges geédndert hat, z.B. viele neue Daten in das System integriert
wurden, mochte der Benutzer eine vollig neue Partition erstellen.

Vorgehen

Zuerst sichert er die aktuelle Partition mit Hilfe eines Menupunkts “aktuelle Par-
tition sichern“ auf einen Datentriger. Diese Partition kann spéter mit “Partition
laden“ wiederhergestellt werden, ganz allgemein kénnen mehrere Partitionen auf
dem Datentriger verwaltet werden. Dann w&hlt er einen Menupunkt ,,Partition
16schen®. Nach einer Sicherheitsabfrage werden alle aktuellen Fahrgemeinschaf-
ten zerschlagen, ausgenommen diejenigen, die auf jeden Fall erhalten bleiben



4.6. DIE OPTIMALE LOSUNG 93

sollen (wurden vom Benutzer vorher markiert). Das System befindet sich in ei-
nem Zustand, als wiren die Personendaten gerade erst eingelesen worden. Nun
wihlt der Benutzer einen Menupunkt ,Partition erstellen“. Das System sucht
nun mit heuristischen Algorithmen nach einer in bezug auf die eingestellte Be-
wertungsfunktion moglichst guten Losung des Problems.

4.6 Die optimale Losung

Szenario:

Das Fahrgemeinschaftensystem (FGM-System) hat einen kleinen Datenstamm
an Verkehrs- und Kundendaten eingelesen. Der Benutzer méchte nun eine opti-
male Partition auf diesem Datenstamm berechnen.

Vorgehen:

Das FGM-System bietet dem Benutzer den Meniipunkt ,,optimale Losung be-
rechnen“. Er wihlt diese aus und zusétzlich noch den Meniipunkt ,,verbose mode
on“. Das System beginnt mit der Berechnung der optimalen Partition (bezogen
auf die aktuelle Bewertungsfunktion) und gibt wihrenddessen Ausgaben auf
den Bildschirm und in ein Logfile aus, die Aufschluf} iiber den Fortgang der
Berechnung geben. Da das Problem sicherlich NP-hart ist, und der Benutzer
eine Mittagspause machen mdochte, wihlt er den Meniipunkt ,,Berechnung un-
terbrechen® aus. FGM unterbricht die Berechnung und merkt sich den aktuellen
Stand.

Nach der Mittagspause mochte der Benutzer die Berechnung fortsetzen. Er wihlt
den Meniipunkt ,,mit letzter Berechnung fortfahren“, FGM rechnet weiter und
gibt nach einer gewissen Zeit die optimale Partition auf dem Bildschirm aus.

4.7 Inkrementelle Verbesserung von Partitionen

Es soll auch die Verbesserung von schon vorhandenen Partitionen moglich sein.
Die Startpartition wird aus einer Datei eingelesen und durch Umsetzen von
Personen inkrementell verbessert. Dadurch ergibt sich eine Partitionenfolge, die
bei Erreichen einer bestimmten Qualitit abgebrochen wird.

4.8 Festlegung der Bewertungsfunktion

Szenario:

Der Benutzer méchte die Bewertungsfunktion angeben.



94 KAPITEL 4. ANFORDERUNGSANALYSE

Vorgehen:

FGM bietet ihm die Moglichkeit, in einer dokumentierten Notation Gewichte
fiir die unten aufgefiihrten Bereiche zu verteilen. Die Gewichte sind Parameter
einer fest vorgegebenen Bewertungsfunktion.

o Wegstrecke/Umwege: dhnliche Start-/Zielorte der Personen.
o Arbeitszeiten: dhnliche Arbeitszeiten der Personen.

e FEigenschaftsabneigungen: gewiinschte Eigenschaften der Mitfahrer, die
Menge der Eigenschaftsabneigungen ist erweiterbar.

e Explizite Zuneigungen: jemand will unbedingt mit einer bestimmten Per-
son zusammenfahren.

e Explizite Abneigungen: analog

4.9 Kiirzeste Wegestrecke

Szenario:

Der Benutzer hat seinen Arbeitstag beendet und moéchte noch auf eine Party.
Er mochte nun das FGM-System zur Berechnung des kiirzesten Wegs einsetzen.

Vorgehen:

Er wihlt den Meniipunkt ,, Kiirzeste Wegesuche® aus. Dann gibt er als Startort
seinen Arbeitsplatz und als Zielort die Party als postalische Adresse an. Das
FGM-System berechnet ihm den kiirzesten Weg, zeigt seine Linge und eine
Wegbeschreibung als Liste auf dem Bildschirm an. Auf Wunsch zeigt es den Weg
mit Hilfe eines externen Graphen-Viewer an und gibt ihn in ein Postscriptfile
aus.

4.10 Neuer Algorithmus

Szenario:

Friedhelm hat einen neuen Algorithmus erfunden, um einen kiirzesten Weg zu
finden. Diesen méchte er nun im FGM-System verwenden.

Vorgehen:

Er implementiert den Algorithmus in der imperativen, objektorientierten Spra-
che, in der auch der entsprechende Algorithmus des FGM-Systems geschrieben



4.11. HILFESYSTEM 95

ist. Dann ersetzt er das entsprechende Modul mit seinem Algorithmus. Er muf}
nur an wenigen, dokumentierten Stellen etwas dndern. Danach startet er das
FGM-System, das nun bei der Bestimmung kiirzester Wege den neuen Algorith-
mus beniitzt. Im Lieferumfang befinden sich Tools, mit denen er die Laufzeit
verschiedener Module berechnen kann. Damit kann er nun die Effizienz seines
neuen Algorithmus {iberpriifen.

4.11 Hilfesystem

Szenario:

Ein Benutzer, der bisher noch nie mit dem FGM-System gearbeitet hat, setzt
sich an ein Terminal, auf dem es l4uft.

Vorgehen:

Zu jedem Zeitpunkt der Benutzung des Fahrgeminschaftensystems gibt es
unter den Meniipunkten einen, der “Hilfe” heifit. Nach der Auswahl dieses
Meniipunkts wird ihm ein Text angezeigt, aus dem er entnehmen kann, wo er
sich im System befindet, was er hier machen kann, wo er von hier aus hinkommt
und von wo aus er hier hin gekommen sein kann.

4.12 Funktionale Anforderungen

4.12.1 Personen

1. Entstehung

e Eingabe durch den Benutzer.

e Automatische Generierung einer bestimmten Anzahl von Perso-
nen mit zufilligen Eigenschaften. Dabei konnen verschiedene Wahr-
scheinlichkeitsverteilungen fiir die Eigenschaften angegeben werden
(Gleichverteilung oder Normalverteilung mit Parametern).

e Eingabe iiber eine Schnittstelle.
2. Attribute

e Name, Adresse

e Geburtsdatum

e Start- und Zielort
e Arbeitszeiten

— Beginn und Ende der Arbeitszeit als Zeitpunkte oder -intervalle
(Gleitzeit)

— Fiir die einzelnen Wochentage sind unterschiedliche Arbeitszei-
ten moglich.



96 KAPITEL 4. ANFORDERUNGSANALYSE

e zu welcher Fahrgemeinschaft gehort eine Person
e gehort die Person fest oder vorldufig zu einer Fahrgemeinschaft
e Eigenschaften von Personen (als Teilmenge der Personenattribute)

— minnlich/weiblich

— Raucher/Nichtraucher
— Musikgeschmack

— kann und will fahren

— Komfortklasse des eigenen Autos
e Priferenzen von Personen

— minnlich/weiblich
— Raucher/Nichtraucher
— Musikgeschmack

— geforderte Komfortklasse des Autos
e Menge der Eigenschaften und Priferenzen ist erweiterbar.
e Figenschaften und Priferenzen einer Person sind #nderbar.

e Fiir die Priferenzen kann jede Person Prioritéten angeben (z.B. Mu-
sik egal, aber auf keinen Fall Raucher als Mitfahrer).

e Beziehungen zwischen Personen

— explizite Abneigung (jede Person kann eine Menge von Personen
angeben, mit denen sie nicht zusammenfahren mochte)

— explizite Zuneigung (Personen, mit denen man zusammenfahren
mochte)

4.12.2 Fahrgemeinschaften
1. Entstehung

¢ Eingabe durch den Benutzer, wobei zwei Fille zu unterscheiden sind:
Eingabe von kompletten Fahrgemeinschaften oder Hinzunahme von
Personen in bestehende Fahrgemeinschaften.

¢ Eingabe {iber eine Datei

¢ Automatische Generierung aus einer Personenmenge P unter Bertick-
sichtigung bereits bestehender Fahrgemeinschaften (Partition M
iiber einer Teilmenge von P) und einer Bewertungsfunktion f.

2. Loschen

e manuelles Loschen

e Auflgsen aller Fahrgemeinschaften



4.13. WEITERE ANFORDERUNGEN 97

Anforderungen

e Anzahl der vom Fahrer angebotenen freien Plitze

e Fahrer in einer Fahrgemeinschaft

e Komfortklasse des Autos, mit dem die Fahrgemeinschaft fihrt

e welche Personen gehoren zu einer Fahrgemeinschaft (mit Status)
e Startort und Zielort einer Fahrgemeinschaft

e Route

e Zeitplan fiir das Aufnehmen und Absetzen von Personen

e Entstehungszeitpunkt der Fahrgemeinschaft

e Datum der letzten Anderung der Fahrgemeinschaft

e Markierung, ob diese Fahrgemeinschaft erhalten werden soll

4.12.3 Partitionen

Eine Partition ist eine Einteilung einer Personenmenge in Fahrgemeinschaften.
Im FGM-System konnen mehrere Partitionen verwaltet werden, wobei immer
eine Partition als die aktuelle Partition gilt.

Entstehung einer Partition Aus einer Personenmenge P und einer Bewer-
tungsfunktion f wird eine Partition M berechnet, die optimal beziiglich f ist
oder eine bestimmte Qualititsschranke iiberschreitet. Dabei konnen verschiede-
ne Algorithmen angewendet bzw. neue Algorithmen eingesetzt werden.

4.12.3.1 Anderung einer Partition

Eine neue Personenmenge P’ wird anhand von einer Partition M {iber der Per-
sonenmenge P (P’ N P = @) und einer Bewertungsfunktion auf die Fahrgemein-
schaften von M aufgeteilt. Dabei kann man zwischen zwei Verfahren unterschei-
den. Beim inkrementellen Verfahren werden die Personen aus P’ einzeln in die
bestehenden Fahrgemeinschaften eingefiigt. Beim optimalen Verfahren wird eine
Partition von P’ berechnet und diese zur Partition M hinzugefiigt.

4.13 Weitere Anforderungen

4.13.1 Anforderungen unter dem Aspekt Graphen
4.13.1.1 Eingabe von Verkehrsgraphen

Verkehrsgraphen kénnen iiber einen noch auszuwihlenden Grapheneditor (LE-
DA, GraphEd, Graphlet ...) eingegeben werden. Das Dateiformat fiir Graphen



98 KAPITEL 4. ANFORDERUNGSANALYSE

wird dementsprechend festgelegt. AuBlerdem konnen GDF-Daten in dieses Gra-
phenformat konvertiert werden. Die Detaillierung und Attributierung des Ver-
kehrsgraphen hingt dabei von den zur Verfiigung gestellten Daten ab. Als Kan-
tenbeschriftungen sind Strafienléingen, Stralennamen und Strafienklassen (Au-
tobahn, Bundesstrafe...) vorgesehen. Zur Bestimmung der Fahrtzeit trigt jede
Kante aulerdem einen Widerstand (Maf fiir den Durchsatz), die Fahrtzeit er-
gibt sich dann aus Widerstand*Linge. Die Knoten tragen (z,y)-Koordinaten
und Kreuzungsnamen.

4.13.1.2 Hierarchische Verkehrsgraphen

Aus dem flachen Verkehrsgraphen soll zur Beschleunigung der Wegsuche ein
hierarchischer Verkehrsgraph aufgebaut werden. Dafiir kommen zwei Modelle in
Frage. Beim Levelgraph erhilt man eine Hierarchie durch Ausblenden bestimm-
ter Stralenklassen bzw. Kanten (z.B. Autobahn, Bundesstrafe, Siedlungsstrafe
...) auf den verschiedenen Ebenen. Bei einer Knotenhierarchie werden benach-
barte Knoten in einem iibergeordneten Level zu einem neuen Knoten zusam-
mengefafit. Die Knoten stellen je nach Level z.B. Kreuzungen, Stadtteile oder
Ortschaften dar. Beim Aufbau des hierarchischen Graphen kann die Laufzeit
gemessen werden.

4.13.1.3 Wegsuche auf Verkehrsgraphen

Es wird ein Algorithmus zur Bestimmung des kiirzesten Weges zwischen zwei
Orten A und B implementiert. Die Eingabe von Start- und Zielknoten erfolgt
iiber Knotenkennungen oder Koordinaten. Auflerdem kann der kiirzeste Weg
zwischen zwei Kanten bestimmt werden (Eingabe der Stralennamen). Die Weg-
suche erfolgt auf dem hierarchischen oder flachen Verkehrsgraphen. Der berech-
nete Weg wird mit Hilfe des Grapheneditors visualisiert. Auflerdem ist eine Lauf-
zeitmessung moglich. Der Benutzer wird im verbose-Mode durch Bildschirmmel-
dungen tiber den aktuellen Stand der Berechnung informiert.

Der Algorithmus zur kiirzesten Wegesuche soll als Teilmodul implementiert wer-
den, so daf er auch unabhingig vom FGM-System eingesetzt werden kann. Au-
Berdem soll dieses Modul leicht durch ein anderes ersetzbar sein.

4.13.1.4 Personengraph

Nach der Bestimmung der kiirzesten Wege zwischen den Start- und Zielorten der
Personen wird ein Personengraph aufgebaut. Die Personen werden als Knoten
dargestellt, die Kantengewichte werden mit der Bewertungsfunktion bestimmt
und stellen die abstoBende Kraft zwischen zwei Personen dar. Dieser Graph ist
die Grundlage fiir Matchingverfahren.

4.13.1.5 Ausgabe iiber den Grapheneditor

Die graphische Darstellung des Verkehrsgraphen erfolgt iber den Graphenedi-
tor. Dieser dient nur zur Ausgabe, eine Interaktion des Benutzers zur Eingabe



4.13. WEITERE ANFORDERUNGEN 99

von Start- und Zielorten ist nicht vorgesehen. Auflerdem werden kiirzeste We-
ge, Start- und Zielorte und die Einteilungen in Fahrgemeinschaften visualisiert.
Dies héngt aber stark von den Fihigkeiten des verwendeten Editors ab.

4.13.1.6 Erweiterung

Spéter sollen Sammelpunkte fiir Fahrgemeinschaften moglich sein. Dazu muf} der
Verkehrsgraph eventuell um Parkplédtze, Halteverbote und &hnliches erweitert
werden. Auflerdem sollte die Eingabe von Sammelpunkten moglich sein.



Kapitel 5

Spezifikation

5.1 Einfiihrung

Dieser Abschnitt enthilt die Spezifikation des Softwaresystems Mobidick (Mobil
durch intelligentes Kombinieren) und wurde nach den IEEE-Richtlinien aus [9]
erstellt. Es baut auf der Anforderungsanalyse auf und dient der Beschreibung
des dufleren Systemverhaltens. Es ist damit die Grundlage fiir alle weiteren im
Ablauf der Projektgruppe entstehenden Dokumente.

Die Sperifikation gliedert sich wie folgt: Kapitel 5.2 gibt einen allgemeinen Uber-
blick iiber das System Mobidick. Kapitel 5.3 beschreibt die funktionalen Anfor-
derungen, Kapitel 5.4 die Anforderungen an externe Schnittstellen. In Kapi-
tel 5.5 werden die Leistungsanforderungen beschrieben und in Kapitel 5.6 die
zukiinftigen Erweiterungen. Im letzten Kapitel (5.7) sind alle Systemmeldungen
aufgelistet.

5.2 Allgemeine Beschreibung

5.2.1 Umgebung des Produkts

Das Softwaresystem Mobidick soll unter dem Betriebssystem Solaris 2.5 laufen.
Die Ausgabe des Programms erfolgt auf dem Bildschirm oder in eine Datei,
die Eingabe {iber die Tastatur oder eine Maus. Weitere Peripherie wird nicht
benstigt.

Zum System gehort ein Tool namens GDF2GRA, um Verkehrsdaten aus dem
GDF-Format in das Mobidick-Verkehrsdatenformat zu konvertieren. Das GDF-
Format ist in der Dokumentation zu GDF2GRA beschrieben. Personendaten
konnen tiber ein spezielles Format aus Dateien eingelesen werden. Dieses Format
ist in der Dokumentation zu Mobidick beschrieben.

Eine direkte Schnittstelle zum Drucker ist nicht vorgesehen. Die Programm-
ausgaben auf dem Bilschirm erfolgen rein textuell. Eine Schnittstelle zu einem
spéter zu entwickelndem Fenstersystem ist vorgesehen.

100



5.3. FUNKTIONALE ANFORDERUNGEN 101

5.2.2 Informelle Beschreibung der Funktionalitit

In diesem Abschnitt wird informell beschrieben, welche Funktionen von Mobi-
dick bereitgestellt werden. Eine genaue Beschreibung kann Kapitel 5.3 entnom-
men werden. Die Interaktion zwischen Benutzer und Programm erfolgt iiber
Meniis.

Zu Programmbeginn erscheint das Hauptmenii mit den Funktionen Dateien,
Personen, Vermittlung, Wegsuche, Bewertungsfunktion, Hilfe und Ende. Diese
Untermeniis enthalten die folgenden Funktionalititen:

e Im Untermenii Dateien findet sich die notwendigen Funktionen zum La-
den und Speichern der Stammdaten. Eine gewisse Konstistenzpriifung fin-
det statt.

e Daten einzelner Personen innerhalb der Stammdaten kénnen im Unter-
menii Personenverwaltung eingefiigt, verdndert oder gelscht werden.
Es besteht die Moglichkeit, zu Testzwecken einen zufilligen Personenda-
tensatz zu generieren.

e Unter Vermittlung kann man Einteilungen in Fahrgemeinschaften be-
rechnen. Es stehen verschiedene heuristische und optimale Algorithmen
zur Verfiigung. Eine Berechnung kann abgebrochen und zu einem spéte-
ren Zeitpunkt fortgesetzt werden.

e Die Wegsuche bietet die Moglichkeit, kiirzeste Wege zwischen zwei Punk-
ten in dem Verkehrsgraphen zu berechnen. Auch hier kdnnen verschiedene
Algorithmen verwendet und die Rechenzeit gemessen werden.

e Die Bewertungsfunktion ist die Grundlage fiir die Einteilung von Perso-
nen in Fahrgemeinschaften. In diesem Menii kann sie verdndert, aus einer
Datei gelesen oder gespeichert werden.

e Die Hilfefunktion zeigt fiir jedes Menii einen jeweils passenden Hilfetext
an.

5.2.3 Charakteristika der Benutzer und Benutzerinnen

In der jetzigen Version kann davon ausgegangen werden, daf} die Benutzer und
Benutzerinnen von Mobidick tiber durchschnittliche Erfahrungen im Umgang
mit Rechnern verfiigen. Fiir die Erweiterung von Mobidick um Algorithmen
werden Erfahrungen mit der Entwicklung in C++ vorrausgesetzt.

5.3 Funktionale Anforderungen

Die funktionalen Anforderungen werden in Form von Use Cases oder Szenarien
formuliert. Ahnliche oder verwandte Anforderungen werden zu einem Use Case
zusammengefafit. In einem Use Case wird das Zusammenspiel zwischen einem
Akteur, in diesem Fall dem Benutzer, und dem System fiir einen konkreten
Anwendungsfall beschrieben.



102 KAPITEL 5. SPEZIFIKATION

5.3.1 Start des Fahrgemeinschaftensystems

Das Programm wird von einem Kommandozeileninterpreter aus durch Eintip-
pen des Namens Mobidick gestartet. Weitere Optionen sich nicht notwendig
und werden vom Programm ignoriert. Nach dem Start wird dem Benutzer das
Hauptmenii am Bildschirm angezeigt und die in den Voreinstellungen (s. Ab-
schnitt 5.3.11) angegebenen Dateien werden getffnet. Der Benutzer ist selbst
dafiir verantwortlich, dafl nicht mehrere gleichzeitig gestartete Programme auf
die gleiche Personendatei zugreifen.

5.3.2 Meniistruktur

Die Mentistruktur des Systems ist folgendermafien aufgebaut:

1. Dateien

1. Personendateien

i. Neu
ii. Laden
iii. Speichern
iv. Speichern unter
v. Schlieflen
vi. Importieren
vii. Zuriick
viii. Hauptmenii
ix. Hilfe
2. Verkehrsgraph laden
3. Fahrgemeinschaftseinteilung

i. Umbenennen
ii. Duplizieren
iii. Loschen
iv. Zuriick
v. Hauptmenii
vi. Hilfe
4. Bewertungsfunktionen
i. Laden
ii. Speichern
iii. Speichern unter
iv. Zuriick
v. Hauptmenii
vi. Hilfe
5. Zuriick

6. Hauptmenii



5.3. FUNKTIONALE ANFORDERUNGEN

7.

Hilfe

2. Personen

1.
2.

Neue Person
Person dndern

Person 16schen

4. Personen generieren

© ® N o

Personen anzeigen
Personeneigenschaften dndern
Zuriick

Hauptmenii

Hilfe

3. Fahrgemeinschaften

1.

Neuer Teilnehmer

i. Manuell eintragen
ii. Suchsystem

iii. Zuriick

iv. Hauptmenii

v. Hilfe

. Teilnehmer fest eintragen

Teilnehmer 16schen

4. Fahrgemeinschaft eingeben

© ® N 2

10.
11.
12.

Fahrgemeinschaft d&ndern
Fahrgemeinschaft auflésen
Fahrgemeinschaft bewerten

Fahrgemeinschaft anzeigen

Fahrgemeinschaft markieren/unmarkieren

Zuriick
Hauptmenii
Hilfe

4. Vermittlung

1.
2.

=W

Einteilung auswéhlen
Systemmeldungen (ein/aus)
Einteilung berechnen

Fortfahren mit letzter Berechnung
Laufzeitmessung (ein/aus)
Einteilung bewerten

Einteilung anzeigen

103



104 KAPITEL 5. SPEZIFIKATION

8. Einteilung auflésen
9. Zuriick

10. Hauptmenii

11. Hilfe

5. Bewertungsfunktionen

1. Neu

2. Andern
Auswihlen
Anzeigen
Zuriick
Hauptmenii
Hilfe

N g W

6. Wegsuche

1. Einzelwegsuche

2. Auswahl des Algorithmus
3. Laufzeit

Systemmeldungen (ein/aus)
Zuriick

Hauptmenii

Hilfe

N g

7. Voreinstellungen
8. Hilfe
9. Ende

5.3.3 Datenmodell

Mit dem Mobidick-System kénnen sogenannte Personendateien verwaltet wer-
den. Diese bestehen aus einer Menge P von Personendaten, Einteilungen M; und
den Einteilungen zugeordneten Bewertungsfunktionen f; (siche Abbildung 5.1).
Die Personendaten einer Person bestehen aus einer eindeutigen Identifikations-
nummer, Angaben zur Arbeitszeit und den Eigenschaften der Person. Eine Ein-
teilung besteht aus einer Menge von Fahrgemeinschaften und einer Bewertungs-
funktion, mit der diese eingeteilt wurden. Fahrgemeinschaften sind Teilmengen
der Personenmenge und alle Fahrgemeinschaften einer Einteilung sind paarweise
disjunkt. Die Vereinigung aller Fahrgemeinschaften einer Einteilung ergibt eine
Teilmenge der Personenmenge.

Es kann immer nur eine Personendatei getffnet sein, d.h. vor dem Offnen einer
anderen Personendatei muf} die bereits gedffnete geschlossen werden. Alle zu ei-
ner Personendatei gehdrenden Daten werden gemeinsam in einer weiteren Datei



5.3. FUNKTIONALE ANFORDERUNGEN 105

/P/ersonendatehm\\
Personenmenge D D
P =

Einteil ungen\

Bewertungsfunktionen=—

Bewertungsfunktionsdateien—
(einzeln abgespeichert) @ @

Abb. 5.1: Datenmodell

abgespeichert. Um dem Benutzer die Moglichkeit zu geben, eine Bewertungs-
funktion aus einer Personendatei D in einer anderen Personendatei D’ anzu-
wenden, kann er Bewertungsfunktionen einzeln in Dateien abspeichern. Solche
unabhingig gespeicherten Bewertungsfunktionen kénnen dann parallel zu einer
Personendatei gedfinet werden (siehe Abbildung 5.1).

Eine in der Personendatei enthaltene und vom Benutzer bestimmte Einteilung
wird als aktuelle Einteilung bezeichnen.

5.3.4 Beenden des Fahrgemeinschaftensystems

Zum Beenden des Programms mufl der Befehl Ende aus dem Hauptmenii aus-
gewdhlt werden. Ist noch eine Personendatei gedffnet, dann wird der Benut-
zer gefragt ,Personendatei <Name> vor dem Beenden speichern? [J/n]“.
Fiir die Behandlung noch gedffneter Bewertungsfunktionen siehe Use Case
5.3.5.5.

5.3.5 Dateien
5.3.5.1 Neue Personendatei anlegen

Durch Auswahl des Meniipunkt Datei-Personendateien-Neu wird eine leere
Personendatei angelegt. Nach Auswahl des Meniipunkts wird dem Benutzer eine
Liste mit den im aktuellen Verzeichnis enthaltenen Personendateien angezeigt.
Dann wird er aufgefordert den neuen Dateinamen anzugeben durch die Mel-
dung ,Neuer Name:“. Gibt der Benutzer einen schon existierenden Namen ein,
so wird die Meldung ,Name existiert schon, trotzdem abspeichern und



106 KAPITEL 5. SPEZIFIKATION

vorhandene Datei iiberschreiben? [j/N]“ angezeigt. Bei Eingabe von ,j“
wird die unter diesem Namen existierende Datei iiberschrieben, bei ,,n“ wird
die Eingabeaufforderung wiederholt.

An den Dateinamen wird vom System die Erweiterung .per angehiingt, mit der
die Datei als Personendatei gekennzeichnet wird.

Das System kann nur eine Personendatei im Hauptspeicher bereithalten. Wenn
wihrend der Auswahl von Neu schon eine Datei gedffnet ist, wird der Benut-
zer gefragt ,Personendatei <Name> vor dem Erstellen der neuen Datei
speichern? [J/n]“. Fiir die Behandlung noch getffneter Bewertungsfunktio-
nen siehe Use Case 5.3.5.5.

5.3.5.2 Personendatei laden

Nach Auswahl des Meniipunkts Datei-Personendateien-Laden wird eine Liste
mit den im aktuellen Verzeichnis enthaltenen Personendateien angezeigt. Aus
dieser Liste kann die gewiinschte Datei ausgewihlt werden.

Wenn wihrend der Auswahl von Laden schon eine Datei gedffnet ist, wird
der Benutzer gefragt ,Personendatei <Name> vor dem Laden der anderen
Datei speichern? [J/n]“. Fiir die Behandlung noch gedffneter Bewertungs-
funktionen siehe Use Case 5.3.5.5.

Enthilt die zu ladende Personendatei eine oder mehrere Einteilungen, dann wer-
den nach dem Ladevorgang die erste Einteilung und deren Bewertungsfunktion
als aktuell eingestellt.

5.3.5.3 Personendatei speichern

Durch Auswahl des Meniipunkt Datei-Personendateien-Speichern wird die
aktuelle Personendatendatei unter dem ihr zugewiesenen Dateinamen abgespei-
chert.

5.3.5.4 Personendatei unter anderem Namen speichern

Nach Auswahl des Meniipunkts Datei-Personendateien-Speichern unter
wird dem Benutzer eine Liste mit den im aktuellen Verzeichnis enthaltenen
Personendateien angezeigt. Dann wird er aufgefordert den neuen Dateinamen
anzugeben. Gibt der Benutzer einen schon existierenden Namen ein, so wird die
Meldung ,Name existiert schon, trotzdem abspeichern und vorhandene
Datei iiberschreiben? [j/N]“ angezeigt. Bei Eingabe von ,j* wird die unter
diesem Namen existierende Datei {iberschrieben, bei ,n“ wird die Eingabeauf-
forderung wiederholt.

5.3.5.5 Personendatei schlief3en

Durch Auswahl des Meniipunkts Datei-Personendateien-Schlieflen wird die
aktuelle Personendatei geschlossen. Dazu wird der Benutzer gefragt ,Datei vor



5.3. FUNKTIONALE ANFORDERUNGEN 107

dem Schlieflen speichern? [J/n]“. Wenn er sie unter einem anderen Namen
abspeichern will, hat er die Moglichkeit, den Vorgang abzubrechen und dies
durch Auswahl des Use Case 5.3.5.4 zu tun. Bei Abbruch des Vorgangs bleibt
die aktuelle Datei unverdndert im Speicher.

Sind noch Bewertungsfunktionen geoffnet, die seit der letzten Anderung
nicht gespeichert wurden, so wird der Benutzer zu jeder Bewertungsfunkti-
on gefragt ,Bewertungsfunktion <Name> vor dem Schlieflen speichern?
[J/n]“. Antwortet der Benutzer mit ,j*, so wird die Bewertungsfunktion ge-
speichert, sonst gehen ihre Werte verloren.

5.3.5.6 Personendatei importieren

Durch das Importieren wird die aktuelle Personendatei um den Inhalt der
auf dem Datentriager abgespeicherten Datei erweitert. Sei D die aktuelle Per-
sonendatei mit der Personenmenge P und den Fahrgemeinschaftseinteilungen
My, ..., My mit den zugehorigen Bewertungsfunktionen fi,..., fr. D' sei die zu
importierende Personendatei mit der Personenmenge P’ und D" die erweiterte
Personendatei mit der Personenmenge P’; dann hat die Importierung folgende
Auswirkungen:

e Die Personenmenge P" ist die disjunkte Vereinigung der Personenmengen
P und P', wobei die Personen-IDs in P’ automatisch angepasst werden,
damit keine ID doppelt vorkommt. Personen die in P und in P’ enthalten
sind werden in P” nur einmal aufgefiihrt. Personen kénnen durch den
Namen und das Geburtsdatum eindeutig identifiziert werden.

e Die Menge der Fahrgemeinschaftseinteilungen in D" enthilt alle Eintei-
lungen aus D und D’. Dabei werden die Personen-IDs der Einteilungen aus
D’ wie oben automatisch angepasst. Alle Personen aus P (P') sind in den
Einteilungen aus D' (D) noch nicht vermittelt. Das bedeutet, daf} alle Ein-
teilungen aus D" nur einen Teil der Personenmenge enthalten kénnen. Will
der Benutzer eine Fahrgemeinschaftseinteilung, die alle Personen beriick-
sichtigt, so muf} er entweder eine neue Einteilung berechnen oder eine der
bestehenden Einteilungen erweitern (siehe 5.3.8.3).

Nach Auswahl des Meniipunkts Datei-Personendateien-Importieren wird
der Benutzer durch die Systemmeldung ,Name:“ aufgefordert, den Namen der
zu importierenden Datei anzugeben.

Es konnen nur Dateien, die dem Personendateiformat entsprechen, importiert
werden. Dieses Format wird im Enfwurf festgelegt.

5.3.5.7 Verkehrsdaten laden

Nach Auswahl des Meniipunkts Datei-Verkehrsdaten Laden wird eine Liste
mit den im aktuellen Verzeichnis enthaltenen Verkehrsgraphen angezeigt. Aus
dieser Liste kann die gewiinschte Datei ausgew#hlt werden. Das System kann
nur einen Verkehrsgraphen im Hauptspeicher bereithalten. Falls zum Zeitpunkt



108 KAPITEL 5. SPEZIFIKATION

des Lade-Befehls schon ein Graph geoffnet ist, so wird dieser vor Ausfiihrung
des Lade-Befehls geschlossen. Es konnen nur Verkehrsgraphen geladen werden,
die dem vom System unterstiitzten Graphenformat entsprechen.

5.3.5.8 Einteilung umbenennen

Nach Auswahl des Meniipunkts Datei-Einteilungen-Umbenennen wird dem
Benutzer eine Liste aller in der Personendatei enthaltenen Einteilungen an-
gezeigt. Dann wird er aufgefordert, den neuen Einteilungsnamen anzuge-
ben. Gibt der Benutzer einen schon existierenden Namen ein, so wird die
Meldung ,Name existiert schon, trotzdem abspeichern und vorhandene
Datei iiberschreiben? [j/N]“ angezeigt. Bei Eingabe von ,j* wird die unter
diesem Namen existierende Datei iiberschrieben, bei ,n“ wird die Eingabeauf-
forderung wiederholt.

5.3.5.9 Einteilung duplizieren

Durch Auswahl des Meniipunkts Datei-Einteilungen-Duplizieren kann eine
bestehende Einteilung dupliziert werden. Nach Auswahl des Meniipunkts wird
dem Benutzer eine Liste aller in der Personendatei enthaltenen Einteilungen
angezeigt und er wird aufgefordert, den Einteilungsnamen des Duplikats an-
zugeben. Gibt der Benutzer einen schon existierenden Namen ein, so wird die
Meldung ,Name existiert schon, trotzdem abspeichern und vorhandene
Datei iiberschreiben? [j/N]“ angezeigt. Bei Eingabe von ,j* wird die unter
diesem Namen existierende Datei iiberschrieben, bei ,n“ wird die Eingabeauffor-
derung wiederholt. Beim duplizieren einer Einteilung werden alle Fahrgemein-
schaften und die Bewertungsfunktion kopiert.

5.3.5.10 Einteilung l6schen

Nach Auswahl des Meniipunkts Datei-Einteilungen-Léschen wird dem Be-
nutzer eine Liste aller in der Personendatei enthaltenen Einteilungen angezeigt.
Daraus kann er die zu 16schende Einteilung auswéhlen. Nach der Auswahl wird
er gefragt ,Einteilung wirklich 18schen? [j/N]“. Antwortet er mit ,,j“, so
wird die ausgewéhlte Einteilung aus der Personendatei gel6scht.

5.3.5.11 Bewertungsfunktion laden

Mit diesem Meniipunkt kann eine Bewertungsfunktion, die zuvor in einer Da-
tei abgespeichert wurde, in die Liste der Bewertungsfunktionen aufgenommen
werden. Der Benutzer erhilt so die Moglichkeit, Bewertungsfunktionen der Per-
sonendatei X abzuspeichern und dann auf eine Fahrgemeinschaftseinteilung der
Personendatei Y anzuwenden.

Nach Auswahl des Meniipunkts Datei-Bewertungsfunktionen-Laden wird ei-
ne Liste mit den im aktuellen Verzeichnis enthaltenen Bewertungsfunktionsda-
teien angezeigt. Aus dieser Liste kann die gewiinschte Datei ausgew#hlt werden.



5.3. FUNKTIONALE ANFORDERUNGEN 109

5.3.5.12 Bewertungsfunktion speichern

Durch Auswahl des Meniipunkts Datei-Bewertungsfunktionen-Speichern
wird die aktuelle Bewertungsfunktion unter dem ihr zugewiesenen Dateinamen
abgespeichert.

5.3.5.13 Bewertungsfunktion unter anderem Namen speichern

Nach Auswahl des Meniipunkts Datei-Bewertungsfunktionen-Speichern
unter wird dem Benutzer eine Liste mit den im aktuellen Verzeichnis enthalte-
nen Bewertungsfunktionsdateien angezeigt. Dann wird er aufgefordert, den neu-
en Dateinamen anzugeben. Gibt der Benutzer einen schon existierenden Namen
ein, so wird die Meldung ,Name existiert schon, trotzdem abspeichern
und vorhandene Datei iiberschreiben? [j/N]“ angezeigt. Bei Eingabe von
»]“ wird die unter diesem Namen existierende Datei {iberschrieben, bei ,n“ wird
die Eingabeaufforderung wiederholt.

5.3.6 Personen
5.3.6.1 Use Case: Neue Person eintragen

Durch Aufruf der Meniipunkte Personen-Neue Person wird der Benutzer durch
mehrere Bildschirmmasken gefiihrt. In der ersten Maske werden die Personenei-
genschaften eingegeben. Auch bei den folgenden Bildschirmmasken bedeutet
(%), daf} eine Wertangabe unbedingt notwendig ist. Wird bei solchen Feldern
kein Wert angegeben, kann die Person zwar in den Personenbestand aufgenom-
men werden, wird aber mit dem Vermerk Daten unvollstindig versehen. Felder,
bei denen nichts eingegeben wurde, tragen den Wert keine Angabe.

1. Name: (*)
Vorname: (*)
Geschlecht: (*)
Geburtsdatum:
StraBe: (*)
Hausnummer: ()

PLZ: (%)

Wohnort: (x)

© ©® N o ook WD

Telefon:
10. email:
11. Raucher?:

12. Fahrer?:



110 KAPITEL 5. SPEZIFIKATION

13. Komfortklasse des Autos:
14. Baujahr:
15. Anzahl Pl&tze:

16. Musikgeschmack:
Bei der Eingabe werden die Felder nacheinander abgefragt. Die Felder 13, 14
und 15 koénnen freigelassen werden, sofern bei 12. Fahrer? ,n“ eingegeben
wurde, d.h. die neue Person kommt nicht als Fahrer in Frage. In diesem Fall
sind die Angaben zum eigenen Auto unnétig. Bei 13. Komfortklasse wird zwi-
schen Kleinwagen, Mittelklasse und gehobener Klasse unterschieden. Bei
15. Anzahl Pl&tze erhélt man durch Driicken der Return-Taste den Default-
wert vier. Bei 16. Musikgeschmack kénnen mehrere Musikrichtungen ausgewahlt

werden (Klassik, Pop, Rock, Schlager), auflerdem gibt es noch die Alter-
nativen Ruhe und Egal.

In der zweiten Maske werden die Daten fiir die gewiinschte Fahrt eingegeben,
fiir die eine Fahrgemeinschaft gesucht wird.

1. Startort (Adresse): (%)
2. Startort (Kanten-ID):
Zielort (Adresse): (*)
Zielort (Kanten-ID):
Ankunftszeit (von): (*)
Ankunftszeit (bis): ()
Riickfahrtzeit (von): ()

Riickfahrtzeit (bis): ()

© ® N o vtk w

Arbeitsdauer:

Start- und Zielort kénnen iiber Eingabe einer Adresse (Strafle, Hausnummer,
Ort) eingegeben werden. Dazu erscheinen nacheinander die Abfragen StraBe?,
Hausnummer? und Ort?. Driickt man bei Ort die Return-Taste, so erhilt man
den Defaultwert Stuttgart. Nach der Eingabe wird die Adresse daraufhin
iiberpriift, ob sie im aktuellen Verkehrsgraphen vorhanden ist. Falls sie nicht
vorhanden ist, erscheint die Fehlermeldung ,Fehler 3: Adresse nicht im
Verkehrsgraphen vorhanden®. Alternativ dazu ist die Eingabe einer Kanten-
ID des Verkehrsgraphen moglich. Falls die ID nicht existiert, erscheint die Feh-
lermeldung ,,Fehler 4: Kante nicht im Verkehrsgraphen vorhanden®.

Wurde ein Adresse oder eine Kante angegeben, die nicht im Verkehrsgraphen
vorhanden ist, so kann die betroffene Person trotzdem gespeichert werden. Sie
erhilt dann den Status Daten unvollstindig.

Bei der Ankunftszeit kann ein Intervall eingegeben werden, das auch die Linge
null haben darf. Bei falscher Eingabe erscheint die Fehlermeldung ,Fehler 5:



5.3. FUNKTIONALE ANFORDERUNGEN 111

Obere Grenze kleiner untere Grenze“.Fiir die Riickfahrtzeit kann ebenfalls
ein Intervall eingegeben werden oder alternativ die gewiinschte Arbeitsdauer.
Die Riickfahrtzeit errechnet sich dann aus Ankunftszeit plus Arbeitsdauer.

In der dritten Maske werden die Wiinsche in bezug auf die Mitfahrer eingegeben.
Jeder Wunsch tréigt einen Gewichtsfaktor von 0 bis 10. 0 steht fiir v6llig unwich-
tig, 10 fiir sehr wichtig. Durch Belegung mit dem Gewicht 0 werden sdmtliche
Wiinsche abgeschaltet. Alle Gewichte haben den Defaultwert 0, zu Wiinschen
mit dem Gewicht 0 muf nichts eingegeben werden.

—

abgelehnte Musikrichtungen:
Gewicht:

Geschlecht:

Gewicht:

Raucher:

Gewicht:

gewlinschte Komfortklasse:

Gewicht:

© »® N ook W

personliche Abneigung: Person hinzufiigen

._.
e

personliche Abneigung: Person loschen

—
—

. personliche Zuneigung: Person hinzufiigen

—
[\

. personliche Zuneigung: Person ldschen

—
w

. Person in Datenbestand iibernehmen

—_
~

. Zuriick

—
(@28

. Hauptmenii

16. Hilfe

Bei 1. abgelehnte Musikrichtungen konnen eine oder mehrere Musikrichtun-
gen aus der Menge Klassik, Pop, Rock, Schlager angegeben werden. Bei
3. Geschlecht kann man angeben, ob man nur mit Mannern oder nur mit Frau-
en fahren will. Bei 5. Raucher wird festgelegt, ob man nur mit Rauchern oder
nur mit Nichtrauchern fahren will. Bei 7. gewiinschte Komfortklasse sind
die drei oben erwihnten Komfortklassen als Eingabe mdglich, die angegebene
Komfortklasse ist als Mindestanforderung zu verstehen.

Durch Aufruf von 9. persdnliche Abneigung: Person hinzufiigen wird di-
rekt zur Filterfunktion von Use Case 5.3.6.5 iibergegangen. Dort wird {iber den
Index der ausgegebenen Personenliste eine Person ausgewéhlt, die dann in die
Liste der abgelehnten Personen eingefiigt wird. Danach befindet man sich wieder
in der urspriinglichen Bildschirmmaske, in der diese Liste auch angezeigt wird
(Personen-IDs). Bei dem Versuch, eine Person wiederholt einzufiigen, erscheint



112 KAPITEL 5. SPEZIFIKATION

die Fehlermeldung ,,Fehler 6: Person bereits vorhanden“. Der Meniipunkt
11. personliche Zuneigung: Person hinzufiigen verhilt sich analog.

Bei Aufruf von 10. persdnliche Abneigung: Person ldschen kann eine
Personen-ID aus der angezeigten Liste eingegeben werden, die betreffende
Person wird dann aus der Liste entfernt. Ist die ID nicht in der Liste vor-
handen, so erscheint die Fehlermeldung ,,Fehler 7: Person nicht in Liste
vorhanden“. Der Meniipunkt 12. persénliche Zuneigung: Person l&éschen
verhélt sich analog.

Nach Aufruf von 13. Person in Datenbestand iibernehmen erscheint die Frage
,Person wirklich iibernehmen? [J/n]“. Bei Eingabe von ,n“ geschieht tiber-
haupt nichts, man befindet sich immer noch im vorherigen Menii.

Der Benutzer kann mit Pfeil rechts und Pfeil links jederzeit zwischen den drei
Bildschirmmasken wechseln.

5.3.6.2 Use Case: Person andern

Durch Aufruf der Meniipunkte Personen-Person dndern wird direkt zur Fil-
terfunktion aus Use Case 5.3.6.5 iibergegangen. Dort kann der Benutzer eine
Person iiber die Personen-ID, Name und Vorname oder ein anderes Kriterium
suchen lassen. Aus den gefundenen Personen wihlt er {iber den Index eine aus.
Danach erscheinen dieselben Bildschirmmasken wie in Use Case 5.3.6.1 und
die Anderungen kénnen vorgenommen werden. Die Anderungen werden erst
wirksam, wenn der Meniipunkt Person in Datenbestand iibernehmen aus-
gewdhlt wird. Falls sich Startort, Zielort, Zeiten oder das Feld Fahrer? geéindert
haben, erscheint die Meldung ,Anderungen fiir Fahrgemeinschaftsbildung
relevant“ und anschlieBend die Frage ,Anderungen vornehmen und Person
aus den betroffenen Fahrgemeinschaften léschen? [J/n]“. Falls durch
die Anderung die Auflésung einer Fahrgemeinschaft notwendig wird (Person
kann nicht mehr fahren), erscheint die Frage ,Anderungen vornehmen und
Fahrgemeinschaft auflésen? [J/n]“. Nach Eingabe von ,j“ wird eine Liste
der Personen ausgegeben, die von dieser Auflésung betroffen sind.

5.3.6.3 Use Case: Person loschen

Durch Aufruf der Meniipunkte Personen-Person 1dschen wird direkt zur Fil-
terfunktion aus Use Case 5.3.6.5 iibergegangen. Die Auswahl einer Person ge-
schieht wie in Use Case 5.3.6.2. Falls die Person Fahrer einer Fahrgemein-
schaft war, erscheint die Meldung ,,Person ist Fahrer, ldschen fiihrt zur
Aufldsung einer Fahrgemeinschaft®“. Danach erscheint die Frage ,Person
wirklich 18schen? [J/n]“. Bei Eingabe von ,j“ wird die Person aus dem
Datenbestand geldscht, eine Liste der von der Auflésung betroffenen Personen
angezeigt und zum Menii Personenverwaltung zuriickgekehrt, bei ,n“ befindet
man sich sofort wieder im Menii Personenverwaltung.



5.3. FUNKTIONALE ANFORDERUNGEN 113

5.3.6.4 Use Case: Personen generieren

Durch Aufruf der Meniipunkte Personen-Personen generieren kann man fiir
Testzwecke eine Personenmenge zufillig zu erzeugen. Da die alte Personenmenge
vor der Generierung geloscht wird, erscheint zunichst die Frage ,Haben Sie
die alte Personenmenge gesichert? [j/N]“. Bei Eingabe von ,n“ befindet
man sich sofort wieder im Menii Personenverwaltung und der Benutzer hat
die Gelegenheit, die Personendatei wie in Use Case 5.3.5.5 zu schliefen. Nach
Eingabe von ,,j* kann der Benutzer folgende Parameter einstellen:

1. Personenzahl: ()

2. Anteil Fahrer: (x)

3. Startorte (Gleichverteilung): (%)
4. Startorte (Rechteck):

5. Startort (fest):

6. Zielorte (Gleichverteilung): (*)
7. Zielorte (Abstand zum Startort):
8. Zielort (fest):

9. Ankunftszeit: (von) (*)

10. Ankunftszeit: (bis) (*)

11. Ankunftszeit: (Intervallangen) (%)
12. Riickfahrtzeit: (von) ()

13. Riickfahrtzeit: (bis) (*)

14. Rickfahrtzeit: (Intervallangen) (*)
15. Personenmenge generieren

16. Zuriick

17. Hauptmeni

18. Hilfe

Bei den Startorten kann zwischen einer Gleichverteilung auf dem ganzen Ver-
kehrsgraphen oder in einem rechteckigen Bereich (Angabe links, rechts, oben,
unten in GaufB-Kriiger-Koordinaten) gewihlt werden. Im letzteren Fall werden
die vier benottigten Werte nacheinander vom Benutzer abgefragt. Auflerdem ist
die Eingabe eines festen Startorts moglich.

Bei den Zielorten gibt es ebenso die Gleichverteilung und alternativ kann der
Abstand zum Startort normalverteilt generiert werden. Dazu werden Mittelwert
und Standardabweichung nacheinander vom Benutzer abgefragt.



114 KAPITEL 5. SPEZIFIKATION

Die Ankunftszeiten unterliegen einer Gleichverteilung auf dem durch von und
bis gegebenen Intervall. Bei falscher Eingabe erscheint die Fehlermeldung
,Fehler 5: Obere Grenze kleiner untere Grenze“. In diesem Intervall lie-
gen die einzelnen Ankunftsintervalle der Personen, deren Linge wird in 11.
Ankunftszeit: (Intervalléngen) angegeben.

Fiir die Riickfahrtzeiten gilt das entsprechende.

Nach Aufruf von 15. Personenmenge generieren wird fiir jede Person ein Start-
, ein Zielort, ein Ankunftsintervall und ein Riickfahrtsintervall generiert, wobei
die Intervallingen fiir alle Personen gleich sind. Alle hier nicht aufgefiihrten
Personeneigenschaften sind nicht vom Benutzer beeinflubar und werden auto-
matisch generiert. Nach der Berechnung erscheint die Frage ,Personenmenge
ibernehmen? [J/n]“. Bei Eingabe von ,j* wird die generierte Personenmenge
als aktuelle Personenmenge iibernommen, bei ,n“ befindet man sich wieder in
obigem Menii und kann die Parameter verdndern.

5.3.6.5 Use Case: Personen anzeigen

Durch Aufruf der Meniipunkte Personen-Personen anzeigen ist die Personen-
suche iiber eine Filterfunktion moglich. Dabei konnen folgende Suchkriterien
angegeben werden:

1. Name:
2. Vorname:

Personen-1ID:

- w

Startort: (StraBenname)

ot

Startort: (Radius)
Zielort: (StraBenname)
Zielort: (Radius)

Ankunftszeit: (von)

© ®»® N

Ankunftszeit: (bis)
10. Riickfahrtzeit: (von)
11. Riickfahrtzeit: (bis)

12. Status: (vermittelbar/als reserviert eingetragen/fest
eingetragen/Daten unvollsténdig)

13. FGM-1ID:
14. Fahrer?:
15. Zuriick

16. Hauptmeni



5.3. FUNKTIONALE ANFORDERUNGEN 115

17. Hilfe

Beim Startort kann ein Straflenname und ein Radius angegeben werden,
in diesem Bereich soll dann der Startort der Person liegen. Analog beim
Zielort. Fiir Ankunfts- und Riickfahrtzeit konnen Intervalle angegeben wer-
den, bei falscher Eingabe erscheint die Fehlermeldung ,Fehler 5: Obere
Grenze kleiner untere Grenze.“ In diesem Intervall miissen die tatséchli-
che Ankunfts- und Riickfahrtszeit der Fahrgemeinschaft liegen, nicht das von
der Person angegebene Wunschintervall.

Beim Status wird zwischen folgenden Personengruppen unterschieden: Eine Per-
son ist vermittelbar, falls sie bisher in keine Fahrgemeinschaft eingetragen wurde.
Sie hat den Status als reserviert eingetragen, falls bereits ein Platz in einer Fahr-
gemeinschaft fiir sie reserviert wurde. Nimmt sie diesen Platz an, geht der Status
iiber in fest eingetragen. Reichen die zu einer Person eingegebenen Daten fiir
eine Vermittlung noch nicht aus, hat sie den Status Daten unvollstindig (siehe
Use Case 5.3.6.1). Das Feld Fahrer? entspricht dem gleichnamigen Feld in Use
Case 5.3.6.1.

Bei den Suchkriterien kénnen auch einzelne Eingabefelder freigelassen werden.
Das System sucht dann nach allen Personen, die alle (UND-Verkniipfung) Krite-
rien erfiillen und gibt sie als Liste mit Index auf dem Bildschirm aus. Es werden
tabellarisch angezeigt:

1. Personen-ID:

2. Name:

Vorname:

Startort:

Zielort:
Ankunftszeitpunkt:

Rickfahrtszeitpunkt:

® N o oA~ W

Status: vermittelbar/als reserviert eingetragen/fest
eingetragen/Daten unvollsténdig

9. Fahrgemeinschafts-ID:

Danach erscheint die Frage ,Tabelle in PostScript-Datei ausgeben?
[j/N]1“. Durch Anwahl iiber die Indexnummer einer Person kann der Benut-
zer zwischen folgenden weitergehenden Informationen zu einer Person wihlen:

1. weitere Personeneigenschaften (s. Use Case 5.3.6.1)
2. Wiinsche der Person (s. Use Case 5.3.6.1)
3. als Fahrer eingeteilt?

4. Datum der Eintragung der Person in das System



116 KAPITEL 5. SPEZIFIKATION

Wird die Filterfunktion zur Auswahl einer bestimmten Person benutzt (z.B.
in Use Case 5.3.6.2), fithrt die Angabe einer Indexnummer nicht zur Anzeige
weitergehender Informationen. Der Vorgang ist dann mit der Auswahl abge-
schlossen.

5.3.6.6 Use Case: Personeneigenschaften erweitern

Durch Aufruf der Meniipunkte Personen-Personeneigenschaften erweitern
ist es moglich, eine weitere Personeneigenschaft hinzuzufiigen. Durch Hinzu-
nahme einer weiteren Personeneigenschaft tritt diese auch bei den Wiinschen
beziiglich der Mitfahrer auf. Fiir eine bereits vorhandene Personenmenge wird
der Wert der neuen Eigenschaft zunéchst offengelassen, dies entspricht dem Wert
keine Angabe.

Es erscheint folgendes Menii:

1. Name der neuen Eigenschaft:
2. Wertebereich:

. eindeutiger Wert

-~ W

. Mehrfachauswahl
. Eigenschaft hinzufiigen
. Zuriick

. Hauptmenii

® N O ot

. Hilfe

Bei 1. kann der Name der neuen Eigenschaft eingegeben werden. Dieser wird
daraufhin iiberpriift, ob er nicht bereits schon fiir eine andere Eigenschaft ver-
wendet wurde. Bei 2. kdnnen die einzelnen Werte in Form von Strings, getrennt
durch Kommata eingegeben werden. Bei Mehrfacheingabe eines Wertes muf
die Eingabe wiederholt werden. In 3. und 4. wird festgelegt, ob einer Person ein
eindeutiger oder mehrere Werte aus dem Wertebereich zugeordnet werden. Die-
se Einstellung gilt dann auch fiir die Wiinsche beziiglich der Mitfahrer. Durch
Auswahl von 5. wird die neue Personeneigenschaft hinzugefiigt.

5.3.7 Fahrgemeinschaften
5.3.7.1 Fahrgemeinschaften-Filter

Das Anzeigen von Fahrgemeinschaften kann durch Filter eingeschrinkt werden.
Dabei werden nach Index die Filterkriterien aufgefiihrt:

1. Anzahl der freien Plitze (min.)

2. Anzahl der Teilnehmer (max.)



5.3. FUNKTIONALE ANFORDERUNGEN 117

Fahrgemeinschaften-ID
Komfortklasse des Autos (min.)
Startort (Punkt und Radius in km)
Zielort (Punkt und Radius in km)
Startzeit (Intervall)

Zielzeit (Intervall)

© »®» N o oA~ W

Markierung

10. Akzeptieren und Weiter

Die Anderungen nimmt man durch Anwihlen des Index und Eingeben des neuen
Wertes vor, wobei gewisse Werte ignoriert werden. Dies sind negative Werte,
nicht existierende Komfortklassen, nicht existierende Punkte und Zeitintervalle.
Zusétzlich gibt es den Punkt Akzeptieren und Weiter, der die Eingabe der
Kriterien beendet.

5.3.7.2 Teilnehmer anzeigen

Die Teilnehmer einer bereits gewihlten Fahrgemeinschaft werden gekiirzt dar-
gestellt. Dabei werden sie beginnend mit eins aufsteigend numeriert und die
Attribute Vorname, Nachname, kann und will fahren, die Markierung (vermit-
telbar, reserviert eingetragen, fest eingetragen), sowie die ID der Person werden
angezeigt.

5.3.7.3 Neuer Teilnehmer

Um einen neuen Teilnehmer in eine Fahrgemeinschaft der aktuel-
len Fahrgemeinschaftseinteilung aufzunehmen, miissen vorher bereits
die Daten des Teilnehmers wie in Use Case 5.3.6.1 eingegeben wor-
den sein. Man kann anschliefend den neuen Teilnehmer manuell oder
per Suchsystem eintragen lassen. Dazu wihlt man den Meniieintrag
Fahrgemeinschaften-Neuer Teilnehmer-Manuell eintragen oder den
Mentieintrag Fahrgemeinschaften-Neuer Teilnehmer-Suchsystem.

manuell eintragen

Man mdochte eine Person in eine bestehende Fahrgemeinschaft per Hand auf-
nehmen. Die betreffende Person wird wie in Use Case 5.3.6.5 beschrieben se-
lektiert. Um nun die Fahrgemeinschaft zu finden, werden Fahrgemeinschaf-
ten angezeigt (siehe Use Case 5.3.7.10). Nun wihlt man {iber den Index eine
der Fahrgemeinschaften aus und beantwortet die Frage des Systems ,,Person
in Fahrgemeinschaft aufnehmen? [J/n]® mit ,,j“. Auf die neue Fahrgemein-
schaft wird dann automatisch die Bewertungsfunktion angewendet und das Er-
gebnis prisentiert.



118 KAPITEL 5. SPEZIFIKATION

Nun beantwortet der Benutzer noch die Frage ,Fahrgemeinschaft
iibernehmen? [J/n]“ mit ,j“ und die neu entstandene Fahrgemeinschaft
wird vom System iibernommen. Der neue Teilnehmer wird als reserviert
eingetragen markiert. Beantwortet man eine der beiden Fragen mit ,n“, so

wird wieder die Liste der Fahrgemeinschaften angezeigt.

Suchsystem

Man mochte eine Person in eine bestehende Fahrgemeinschaft eintragen und da-
bei die Hilfe des Systems in Anspruch nehmen. Dazu wird einem nach der Aus-
wahl der Person wie in Use Case 5.3.6.5 beschrieben eine Liste von Fahrgemein-
schaften angezeigt, die nach der aktuellen Bewertungsfunktion gut zu der Person
passen wiirden (sieche Use Case 5.3.7.10). Nun wéhlt man iiber den Index eine
der Fahrgemeinschaften aus und beantwortet die Frage des Systems ,,Person
in Fahrgemeinschaft aufnehmen? [J/n]“ mit ,j“. Auf die neue Fahrgemein-
schaft wird dann automatisch die Bewertungsfunktion angewendet und das Er-
gebnis prasentiert.

Nun beantwortet der Benutzer noch die Frage ,Fahrgemeinschaft
ibernehmen? [J/n]“ mit ,j“ und die neu entstandene Fahrgemeinschaft
wird vom System {ibernommen. Der neue Teilnehmer wird als reserviert
markiert. Beantwortet man eine der beiden Fragen mit ,n“, so wird wieder die

Liste der Fahrgemeinschaften angezeigt.

5.3.7.4 Teilnehmer fest eintragen

Ein bereits in eine Fahrgemeinschaft eingetragener Teilnehmer, der noch reser-
viert eingetragen ist, wird nun fest eingetragen. Man wéhlt den Mentiipunkt
Fahrgemeinschaften-Teilnehmer fest eintragen. Es wird eine Liste von
Fahrgemeinschaften angezeigt (sieche Use Case 5.3.7.10) die reserviert eingetra-
gene Personen enthalten. Daraus wihlt man dann die betreffende Fahrgemein-
schaft iiber den Index aus.

Die Teilnehmer der Fahrgemeinschaft werden nach Use Case 5.3.7.2 ange-
zeigt und man wihlt die fest einzutragende Person iiber ihren Index an.
Falls die Person bis jetzt reserviert eingetragen war, wird gefragt ,Teilnehmer
fest eintragen? [J/n]“. Sonst wird die Wahl {ibergangen und die Meldung
,Teilnehmer schon fest eingetragen!“ ausgegeben. Wird die Frage mit ,,j“
beantwortet, wird der neue Teilnehmer als fest eingetragen markiert. Beantwor-
tet man die Frage mit ,n“, werden wieder die Teilnehmer der Fahrgemeinschaf-
ten angezeigt.

5.3.7.5 Teilnehmer l6schen

Eine Person, die in eine Fahrgemeinschaft eingetragen ist, soll aus ihr geloscht
werden. Bei dieser Person wird dann nur die Markierung fest eingetragen oder
reserviert eingetragen in vermittelbar abgeindert und sie wird aus der Fahr-
gemeinschaft ausgetragen. Dazu wihlt man Fahrgemeinschaften-Teilnehmer



5.3. FUNKTIONALE ANFORDERUNGEN 119

16schen. Es wird eine Liste von Fahrgemeinschaften angezeigt (siehe Use Case
5.3.7.10). Daraus wihlt man dann die betreffende Fahrgemeinschaft iiber den
Index aus.

Die Teilnehmer der Fahrgemeinschaft werden nach Use Case 5.3.7.2 angezeigt
und man wé#hlt die zu loschende Person iiber ihren Index an. Wird die Frage
des Systems ,Person aus Fahrgemeinschaft 1dschen? [J/nl“ mit ,j* be-
antwortet, wird die Person aus dieser Fahrgemeinschaft gel6scht.

Ist die zu l6schende Person der Fahrer, so erscheint die Systemmeldung
»,Vorsicht. Durch Loeschen des Fahrers wird die Fahrgemeinschaft
aufgeldst.“. Darauthin wird gefragt ,Fahrer 16schen? [j/N]“. Wird diese
Frage mit ,j“ beantwortet, wird die Fahrgemeinschaft aufgeldst (siehe auch
Use Case 5.3.7.8) und eine Liste mit den betroffenen Personen wird angezeigt.
Ansonsten befindet man sich wieder bei der Liste der Personen.

5.3.7.6 Fahrgemeinschaft eingeben

Fahrgemeinschaften kénnen auch manuell zusammengestellt werden. Die Perso-
nen, die hier eingetragen werden sollen, miissen bereits im System erfafit sein.
Der Punkt Fahrgemeinschaften-Fahrgemeinschaft eingeben wird gewé&hlt.
Nun wird zuerst der Fahrer nach Use Case 5.3.6.5 selektiert, wobei nur potenti-
elle Fahrer angezeigt werden, die in keiner Fahrgemeinschaft eingetragen sind.
Die Person wird iiber den Index angewihlt und die Frage ,,Person als Fahrer
iibernehmen? [J/n]“ gestellt. Wird die Frage mit ,,j“ beantwortet, fihrt man
fort, bei ,n“ zeigt man wieder die Liste der potentiellen Fahrer.

Solange freie Plitze vorhanden sind, wird gefragt ,Weiteren Teilnehmer
eintragen [J/n]7“. Wird die Frage mit ,j“ beantwortet, wird wie bei der
Auswahl des Fahrers eine Liste von Personen angezeigt, die noch keiner Fahrge-
meinschaft zugeordnet sind. Man wihlt wieder {iber den Index eine Person aus,
die in die Fahrgemeinschaft iibernommen wird. Wird die Frage mit ,n“ beant-
wortet, oder sind die freien Plitze erschopft, wird die Bewertungsfunktion auf
die Fahrgemeinschaft angewendet und das Ergebnis présentiert. Wird die Frage
,Fahrgemeinschaft iibernehmen? [J/n]“ mit ,j* beantwortet, wird sie in das
System {ibernommen, sonst startet man wieder am Anfang dieses Use Case.

5.3.7.7 Fahrgemeinschaft dndern

Die Eigenschaften einer Fahrgemeinschaft sollen geédndert werden. Dazu
wird nach Auswahl des Meniipunktes Fahrgemeinschaften-Fahrgemeinschaft
andern eine Liste der Fahrgemeinschaften angezeigt (siehe Use Case 5.3.7.10).
Daraus wihlt man dann die betreffende Fahrgemeinschaft iiber den Index aus.
Die dnderbaren Eigenschaften der Fahrgemeinschaft werden mit Index ange-
zeigt:

1. Anzahl der freien Plitze
2. Fahrer

3. Akzeptieren und Verlassen



120 KAPITEL 5. SPEZIFIKATION

Die zu dndernde Komponente wird iiber den Index angewéhlt. Die Anzahl der
freien Plitze kann nicht grofler werden als Autoplédtze minus Teilnehmer. Wird
der Fahrer gewihlt, werden alle Personen in der Fahrgemeinschaft angezeigt,
die potentielle Fahrer sind (siehe Use Case 5.3.7.2). Aus ihnen kann man iiber
den Index einen neuen Fahrer auswahlen. Ergibt sich durch die Wahl ein neuer
Fahrer, wird die Frage ,Neuer Fahrer: Fahrtroute neu berechnen? [j/N]“
ausgegeben und eine neue Wegberechnung durchgefiihrt, falls mit ,j“ geant-
wortet wird. Bei ,,n“ wird der alte Fahrer beibehalten. Mit Akzeptieren und
Verlassen werden die Anderungen iibernommen.

5.3.7.8 Fahrgemeinschaft auflésen

Eine Fahrgemeinschaft aus der aktuellen Einteilung wird aufgelost. Die Teil-
nehmer dieser Fahrgemeinschaft werden dabei nur in ihrer Markierung fest
eingetragen oder reserviert eingetragen geindert, die auf vermittelbar gesetzt
wird. Man wé&hlt den Meniipunkt Fahrgemeinschaften-Fahrgemeinschaft
auflésen. Eine Fahrgemeinschaft wird nach dem Anzeigen (Use Case 5.3.7.10)
iiber ihren Index ausgewéihlt. Der Benutzer wird gefragt ,Fahrgemeinschaft
auflésen? [J/nl“. Wird die Frage mit ,j“ beantwortet und war die Fahr-
gemeinschaft markiert, wird nachgefragt ,Fahrgemeinschaft ist markiert.
Wirklich auflésen? [j/N]“. Wird die Frage auch mit ,,j* beantwortet, werden
die Teilnehmer aus der Fahrgemeinschaft entfernt und die Fahrgemeinschaft aus
dem System geloscht. Sonst werden wieder die Fahrgemeinschaften angezeigt.

5.3.7.9 Fahrgemeinschaft bewerten

Die Qualitdt einer Fahgemeinschaft kann mit der aktuellen Be-
wertungsfunktion bewertet werden, indem man den  Meniipunkt
Fahrgemeinschaften-Fahrgemeinschaft bewerten aufruft. Eine Liste
der Fahrgemeinschaften wird angezeigt (Use Case 5.3.7.10). Die zu bewertende
Fahrgemeinschaft wird iiber ihren Index angewéhlt. Die Bewertungsfunktion
wird auf diese Fahrgemeinschaft angewendet und das Ergebnis prisentiert. Man
kann solange aus der Liste auswéhlen, die wieder angezeigt wird, bis man die
Frage ,Weitere Fahrgemeinschaft bewerten? [J/n]“ mit ,n“ beantwortet.

5.3.7.10 Fahrgemeinschaft anzeigen

Eine Liste der Fahrgemeinschaften mit Einschrinkung durch eine Fil-
terfunktion soll angezeigt werden. Dazu wihlt man den Meniipunkt
Fahrgemeinschaften-Fahrgemeinschaften anzeigen und es wird der Filter
wie in Use Case 5.3.7.1 aufgerufen. Anschliefflend wird eine Liste aller Fahrge-
meinschaften zusammengestellt, die den Bedingungen des Filters geniigen. Sie
werden dabei aufsteigend sortiert und mit ID der Fahrgemeinschaft, einer Liste
der Nachnamen der Teilnehmer und ihrer Markierung dargestellt, wobei der Fah-
rer besonders gekennzeichnet ist. Wahlt man eine der Fahrgemeinschaften {iber
ihren Index an, wird sie im Detail dargestellt. Die Liste der Fahrgemeinschaften
und die detaillierte Anzeige kénnen nach Use Case 5.4.1.4 durch Driicken der
Taste ,d“ in eine PostScript-Datei ausgegeben werden.



5.3. FUNKTIONALE ANFORDERUNGEN 121

Fahrgemeinschaft im Detail anzeigen

Eine Fahrgemeinschaft wird detailliert angezeigt. Dabei werden folgende Attri-
bute aufgefiihrt:

e Anzahl der freien Plitze

e Teilnehmer der Fahrgemeinschaft (Vorname, Nachname, Status, Fahrer)
e Komfortklasse des Autos

e Startort

e Zielort

¢ Entstehungszeitpunkt

e Datum der letzten Anderung

e Markierung (markiert/unmarkiert)
Desweiteren kann man folgende zwei Punkte anwihlen und sich anzeigen lassen:

1. Fahrtroute (graphisch/Strafilennamen)

2. Zeitplan

5.3.7.11 Fahrgemeinschaft markieren/unmarkieren

Man mochte Fahrgemeinschaften vor dem Auflésen schiitzen oder dafiir sorgen,
daf} eine markierte Fahrgemeinschaft doch wieder aufgelost werden darf. Nach
der Auswahl des Meniipunktes Fahrgemeinschaften-Fahrgemeinschaften
markieren/unmarkieren wird der Benutzer gefragt ,Markieren oder
Unmarkieren? [M/u]“. Nach der Wahl der Operation wird dem Benutzer
eine Liste aller Fahrgemeinschaften angezeigt (siehe Use Case 5.3.7.10). Die
Liste wird durch die Wahl der Option eingeschrinkt. Hat der Benutzer ,,m“
gewiihlt, sieht er nur unmarkierte Fahrgemeinschaften, sonst nur markierte. Die
zu verdndernde Fahrgemeinschaft wird iiber ihren Index angew#hlt. Je nach
Wahl der Option wird die Frage ,Fahrgemeinschaft markieren? [J/n]“
oder ,Fahrgemeinschaft unmarkieren? [J/n]“ gestellt. Wird ,j“ gewihlt
und hatte die Fahrgemeinschaft vorher eine andere Einstellung, wird die neue
eingesetzt. Danach sieht man wieder die Liste der Fahrgemeinschaften.

5.3.8 Vermittlung
5.3.8.1 Einteilung auswihlen
Durch Auswahl des Meniipunkts Vermittlung-Einteilung ausw&hlen kann

man die aktuelle Einteilung wechseln. Es werden die Namen der zur aktuellen
Personendatei gehtrenden Einteilungen in einer numerierten Liste angezeigt.



122 KAPITEL 5. SPEZIFIKATION

Die aktuelle Einteilung ist dabei voreingestellt als solche markiert. Wird eine
der Einteilungen ausgewé&hlt, so wird diese zur aktuellen Einteilung. Wird der
Vorgang abgebrochen oder die bisher aktuelle Einteilung gewahlt, so bleibt sie
auch die aktuelle. Beim wechseln der aktuellen Einteilung die Bewertungsfunk-
tion der neuen aktuellen Einteilung zur aktuellen Bewertungsfunktion.

5.3.8.2 Systemmeldungen: ein/aus

Der Benutzer mochte iiber den aktuellen Stand der Berechnung durch
Bildschirmmeldungen, informiert werden. Dazu mufl der Meniipunkt
Vermittlung-Systemmeldungen: ein/aus aufgerufen werden. Dieser verhilt
sich wie ein Wechselschalter (an oder aus). Bei jedem Aufruf dndert sich der
Status und die aktuelle Einstellung wird am Bildschirm angezeigt. Danach
gelangt man automatisch in das Untermenii Vermittlung zuriick. Der Status
hat keine Auswirkungen auf den Meniipunkt Wegsuche-Systemmeldungen:
ein/aus (siehe Use Cases 5.3.10.5).

Wenn die Systemmeldungen eingeschaltet sind, werden bei der Berechnung einer
Einteilung Informationen iiber den Stand und den Verlauf der Berechnung auf
den Bildschirm und in eine Datei namens Mobidick. log ausgegeben.

5.3.8.3 Einteilung berechnen

Der Benutzer muf3 zur Berechnung einer Fahrgemeinschaftseinteilung einen von
mehreren unterschiedlichen Algorithmen auswihlen. Die Menge von Algorith-
men ist in drei Algorithmenklassen eingeteilt. Es gibt heuristische, optimale und
inkrementelle Algorithmen zur Berechnung einer Fahgemeinschaftseinteilung.

Bei den heuristischen und den optimalen Algorithmen kann der Benutzer An-
gaben zur Giite des Ergebnisses machen. Die mdoglichen Angaben beziehen
sich auf die Anzahl der zu berechnenden Fahrgemeinschaften und auf die
bestmogliche Bewertung, die eine Einteilung unter der aktuellen Bewertungs-
funktion erreichen kann. Zur Eingabe der Giite werden dem Benutzer die
Abfragen ,Giite beziiglich der Fahrgemeinschaftenanzahl? [<min §FGM>
- <max {FGM>]“ und ,Giite beziiglich der Bewertung? [<min Bewertung>
- <max Bewertung>]“ angezeigt. Der Benutzer kann dann je einen Wert in-
nerhalb der angegebenen Grenzen eingeben. Gibt er keinen Wert sondern nur
Enter ein, so werden die Werte <min fFGM> und <max Bewertung> als eingege-
ben angesehen. Die Kombination dieser Werte ergibt die beste mogliche Giite.

Der Wert <min fFGM> gibt an wieviele Fahrgemeinschaften eine Einteilung min-
destens enthalten mufl und wird aus der Grofie der Personenmenge und der ma-
ximalen Fahrgemeinschaftsgrofie berechnet. Die maximale Fahrgemeinschafts-
grofe ist vier. Die maximale Anzahl der Fahrgemeinschaften (<min #FGM>) in
einer Einteilung entspricht der Grofle der Personenmenge. Die beste mogliche
Bewertung (<max Bewertung>) und die schlechteste mogliche Berwertung (<min
Bewertung>) werden passend zur aktuellen Bewertungsfunktion berechnet.

Heuristische Algorithmen sind Niherungsverfahren zur Einteilungsberech-
nung. Mit ihrer Hilfe soll es méglich sein, in kurzer Zeit eine gute, aber nicht un-
bedingt optimale Losung zu finden. Bei der Berechnung einer Einteilung kann ein



5.3. FUNKTIONALE ANFORDERUNGEN 123

heuristischer Algorithmus auf die Personendaten, die aktuelle Bewertungsfunk-
tion, eine vom Benutzer anzugebende Giite des Ergebnisses und die kiirzesten
Wege zwischen den Personen untereinander und zu ihren Arbeitsplitzen zugrei-
fen.

Sobald eine Einteilung gefunden wurde, die der Giite des Benutzers entspricht,
wird der Algorithmus beendet und die Einteilung als Ergebnis zuriickgegeben.
Ist wihrend der Berechnung abzusehen, daf3 die Heuristik auf den gegebenen
Personendaten keine Einteilung mit der vom Benutzer geforderten Giite fin-
det, so kann der Vorgang mit einer entsprechenden Fehlermeldung abgebrochen
werden. Am Ende einer erfolgreichen Berechnung wird die gefundene Einteilung
mit der aktuellen Bewertungsfunktion bewertet und das Ergebnis dem Benutzer
angezeigt.

Optimale Algorithmen sind Verfahren zur Einteilungsberechnung, die die
beste Einteilung beziiglich der aktuellen Bewertungsfunktion finden. Optimiert
wird nach der Anzahl der Fahrgemeinschaften, wobei die in der Bewertungsfunk-
tion (siehe 5.3.9.1) enthaltenen Randbedingungen eingehalten werden miissen.
Bei der Einteilungsberechnung kénnen die optimalen Algorithmen auf die glei-
chen Daten wie die heuristischen Algorithmen zugreifen.

Der Benutzer hat auch bei den optimalen Algorithmen die Moglichkeit, eine
Giite fiir das Ergebnis anzugeben. Sobald eine Einteilung der entsprechenden
Giite gefunden wurde wird der Algorithmus abgebrochen. Die dabei berechnete
Einteilung ist aber nicht die optimale Einteilung sondern nur eine Einteilung
mit einer Giite grofler oder gleich der vom Benutzer geforderten Giite. Zur Be-
rechnung der optimalen Einteilung muf} die beste moégliche Giite vom Benutzer
gefordert werden.

Inkrementelle Algorithmen sind Verfahren, die eine bestehende Fahrgemein-
schaftseinteilung erweitern. Bei der Berechnung bleiben zunichst alle Fahrge-
meinschaften bestehen und es wird versucht, die noch nicht vermittelten Perso-
nen in die Fahrgemeinschaften mit freien Pldtzen einzufiigen. Wenn dies nicht
moglich ist, kénnen auch neue Fahrgemeinschaften gebildet werden. Die Inkre-
mentellen Verfahren bieten sich an, wenn die Personenmenge nur um wenige
Personen erweitert wurde.

Wie unten beschrieben, kann der Benutzer nach Auswahl der Algorithmenklasse
einen Algorithmus aussuchen. In dem Mobidick-System werden zu jeder Algo-
rithmenklasse mindestens je ein Algorthmus implementiert. Die Dokumentation
enthilt Hinweise, wie ein neuer Algorithmus in den Quellcode des Systems ein-
gefiigt werden kann.

Der Meniipunkt Vermittlung-Einteilung berechnen fiihrt in ein Untermeni,
wo die Wahl zwischen verschiedenen Arten der Berechnung besteht:

1. heuristisch
2. optimal

3. inkrementell

Bei jeder Auswahl erscheint ein weiteres Menii der Form



124 KAPITEL 5. SPEZIFIKATION

1. Die [art] Einteilung berechnen

. Algorithmus wechseln

2

3. Zuriick
4. Hauptmenii
)

. Hilfe

Dabei steht [art] fiir die vorher gewihlte Art der Berechnung, also heuristisch,
optimal oder inkrementell.

Mit dem ersten Meniipunkt startet man die entsprechende Berechnung. Nach
Auswahl des zweiten Meniipunkts wird eine Liste mit Algorithmen angezeigt,
die vom Typ [art] sind. Aus dieser Liste kann der Benutzer einen Algorithmus
auswihlen, wodurch dieser zum aktuellen Algorithmus seiner Art wird. Zu jeder
Art gibt es einen aktuellen Algorithmus, der ausgefiihrt wird, wenn der Benut-
zer mit dem Meniipunkt eins eine Berechnung seiner Art startet. Die iibrigen
Meniipunkte entsprechen den Erwartungen (siehe 5.4.1).

Nach dem Start eines Algorithmus wird entschieden, ob eine neue Einteilung
berechnet werden soll, oder ob eine schon bestehende Einteilung erweitert wird.
Ist die gewihlte Art inkrementell, so wird die aktuelle Einteilung erweitert. Han-
delt es sich um eine optimale oder heuristische Berechnung, so wird eine neue
Einteilung geoffnet. Dazu wird der Benutzer gefragt ,Aktuelle Einteilung
speichern? [J/n]“. Lautet die Antwort ,j“, so wird sie gespeichert, anson-
sten wird sie verworfen. Nun wird eine neue Einteilung getffnet mit der Frage
,Name der neuen Einteilung:“. Existiert der eingegebene Name schon, so er-
scheint die Fehlermeldung ,Fehler 2: Dieser Name existiert schon!“ und
die Eingabeaufforderung wird wiederholt.

Alle Algorithmen iibernehmen die markierten Fahrgemeinschaften der beim
Aufruf des Algorithmus aktuellen Einteilung. Diese Fahrgemeinschaften diirfen
bei der Berechnung nicht aufgeldst, sondern nur erweitert werden, falls noch
Pliitze frei sind. Der Benutzer kann durch manuelle Anderung der freien Plitze
die Erweiterbarkeit einer Fahrgemeinschaft einschrénken (siehe 5.3.7.7). Durch
das markieren einer Fahrgemeinschaft kann der Benutzer erreichen, daf3 Fahr-
gemeinschaften aus der aktuellen Einteilung in der von einem Algorithmus neu
berechneten Einteilung wieder enthalten sind.

Zur Einteilungsberechnung werden die kiirzesten Wege zwischen allen Start-
und Zielorten benotigt. Deshalb wird vor dem Start des Einteilungsalgorithmus
iiberpriif ob diese bereits berechnet wurden. Falls dies nicht der Fall ist, werden
die kiirzesten Wege mit dem im Untermenii Auswahl des Algorithmus in der
Wegsuche (siehe 5.3.10.3) eingestellten Algorithmus berechnet.

Driickt man die Taste Esc bei einer laufenden Berechnung, so erscheint die Mel-
dung ,,Die Berechnung kann nicht wieder aufgenommen werden.“ und die
Frage ,Wirklich abbrechen? [j/N]7“. Wird die Frage mit ,j* beantwortet,
so wird die Berechnung abgebrochen (und keine Daten zur Fortsetzung werden
gespeichert). Beantwortet man die Frage mit ,n“, so wird sie fortgesetzt.

Nun wird die Berechnung gestartet, die durch Driicken der Taste ,u* (wie unter-
brechen) unterbrochen werden kann. In diesem Fall werden alle zur Fortsetzung



5.3. FUNKTIONALE ANFORDERUNGEN 125

der Berechnung notwendigen Daten bei den zugehorigen Personendaten abge-
speichert. Existieren schon Daten dieser Art, so werden sie iiberschrieben. Es
kann somit immer nur die zuletzt abgebrochene Berechnung fortgesetzt werden
(sieche Use Case 5.3.8.4). Ist die Laufzeitmessung eingeschaltet, so wird nach
Abschluf3 der Berechnung die Laufzeit angezeigt.

5.3.8.4 Fortfahren mit letzter Berechnung

Durch Auswahl des Meniipunkts Vermittlung-Fortfahren mit letzter
Berechnung kann man eine unterbrochene Berechnung fortsetzen. Wurde zu-
vor keine Berechnung unterbrochen, d.h. befindet sich keine Information iiber
eine Berechnung in den Personendaten, so meldet das System ,Es wurde noch
keine Berechnung durchgefiihrt“ und kehrt ing Menii zuriick. Ansonsten 14dt
es die notwendigen Daten fiir die Fortsetzung der Berechnung und fahrt mit der
letzten Berechnung fort. Diese kann wieder mit der Taste ,u“ unterbrochen
werden (siehe 5.3.8.3).

5.3.8.5 Laufzeitmessung (ein/aus)

Der Meniipunkt Vermittlung-Laufzeitmessung (ein/aus) funktioniert wie
ein Wechselschalter. Bei Programmstart ist der Status per Default aus. Da zum
Zeitpunkt der Spezifikation noch nicht bekannt ist, wie dieser Punkt realisiert
werden kann, gibt es hier mehrere Moglichkeiten. Die erste Moglichkeit hat bei
der Entwicklung héchste Prioritét:

Volle Integration

Ist die Laufzeitmessung eingeschaltet, so wird bei weiteren Einteilungsberech-
nungen die Laufzeit nach Abschluf3 der Berechnung angezeigt. Dieser Punkt hat
keine Auswirkungen auf das Verhalten der Laufzeitmessung im Menii ,, Wegsu-
che® (siehe Use Case 5.3.10.4).

Externe Laufzeitmessung

Das System zeigt dem Benutzer einen Informationstext an, in dem detailliert
beschrieben wird, mit welchem Werkzeug er eine Laufzeitmessung auf den Al-
gorithmen durchfiihren kann.

5.3.8.6 Einteilung bewerten

Bei Auswahl des Meniipunkts Vermittlung-Einteilung bewerten wird die
Bewertungsfunktion auf die aktuelle Einteilung angewendet und das Ergebnis
dem Benutzer prisentiert.



126 KAPITEL 5. SPEZIFIKATION

5.3.8.7 Einteilung anzeigen

Nach Auswahl des Meniipunkts Vermittlung-Einteilung anzeigen erhélt der
Benutzer eine Liste der Personen mit ihrem Namen, die nach Fahrgemeinschaf-
ten sortiert sind. Pafit diese Liste nicht auf den Bildschirm, wird er nach jeder
Seite gefragt, ob er noch mehr sehen will oder nicht (siehe 5.4.1.7).

5.3.8.8 Einteilung auflésen

Wi&hlt  der  Benutzer den  Meniipunkt  Vermittlung-Einteilung
auflésen, so wird er gefragt ,Mochten Sie alle bis auf markierte
Fahrgemeinschaften auflésen? [j/N]“. Antwortet er mit ,,j*, so wird noch
gefragt: ,Aktuelle Einteilung speichern? [J/n]“ Beantwortert er auch
diese Abfrage mit ,j“, so werden alle bis auf markierte Fahrgemeinschaften
geloscht. Die aktuelle Einteilung besteht nun nur noch aus den markierten
Fahrgemeinschaften. Alle anderen Personen sind nun wieder zu vermitteln.

5.3.9 Bewertungsfunktionen
5.3.9.1 Aufbau der Bewertungsfunktion
Eingangsgroflen

Zunichst eine Auflistung sdmtlicher Gréflen, die bei der Bewertung der Giite
einer Fahrgemeinschaft eingehen:

1. Umweg des Fahrers (bei mehreren potentiellen Fahrern der kleinste), und
zwar relativ zu seinem alten Weg (vor Bildung der Fahrgemeinschaft)

(s.u.).

2. Arbeitszeiten: jede Person gibt ein Ankunfts- und ein Abfahrtsintervall
an; in diesen Intervallen muf die tatséichliche Ankunfts- bzw. Abfahrtszeit
am Arbeitsplatz liegen. Bei der Abfahrt kann auch die Arbeitsdauer an-
gegeben werden; der fritheste Abfahrtszeitpunkt errechnet sich dann aus
Ankunftszeit plus Arbeitsdauer. In diesem Fall wird nur ein einseitig be-
schréanktes Intervall betrachtet.

3. Wiinsche der Personen (jeweils mit Gewicht):

e abgelehnte Musikrichtungen
e Geschlecht
e Raucher
e Komfortklasse des Autos
e weitere
Bei der Berechnung der Bewertungsfunktion wird fiir jede Person der Fahr-

gemeinschaft gepriift, ob ihre Wiinsche mit den anderen Personen in Kon-
flikt stehen. Dabei wird nur beachtet, ob ein Konflikt vorliegt oder nicht.



5.3. FUNKTIONALE ANFORDERUNGEN 127

Wieviele Personen nicht wunschgemé$ sind, wird dabei nicht betrachtet.
Jeder Wunsch trigt ein Gewicht zwischen 0 und 10 (unwichtig bzw. sehr
wichtig). Wiinsche mit dem Gewicht 10 werden als absolut verbindlich
betrachtet, d.h. es wird keine Fahrgemeinschaft gebildet, in der dieser ver-
letzt wiirde.

4. Zu- und Abneigungen gegeniiber bestimmten Personen:

e Liste der erwiinschten Personen

e Liste der abgelehnten Personen

Bewertungsfunktion fiir Fahrgemeinschaften

Sei P = {p1,...,pn} die betrachtete Personenmenge, M = {fi,..., fm} ei-
ne Einteilung in Fahrgemeinschaften f; = {p;,...,p;;} mit 1 < j < 4.

W = {ws,...,w} sei die Menge der Wiinsche, v1(p), ..., (p) € {0,1,...,10}
die zugehorigen Gewichte fiir jede Person p. Die Bewertungsfunktion

Y : M — R x[0,1] x ([0,1] U {o0}) x [0,1]?
bewertet, eine Fahrgemeinschaft f; mit einem Quintupel von Prozentzahlen:

O (fi) = (U(fi), Z(fi), E(fi), Ne(fi), Na(fi))

Fiir jede Fahrgemeinschaft wird eine Mindestgiite gefordert, d.h.

1/)(fz) S (Umaza ZmazaEmazaNe,mazaNa,maz) sz € M mit

Umaz € R", Znazs Emaz, Nesmazs Na,maz € [0,1]. Die vier Teilfunktionen nun
im einzelnen:

1. U(f;) = minpes, MiN,u wege w mit paneer» U (D, W), wobel U(p,w) = d(w) &
d(sp, zp) den Umweg von Fahrer p beim Fahrgemeinschaftsweg w bezeich-
net. d(w) ist die Linge des Weges w und d(sp, zp) ist die Weglinge zwi-
schen Start- und Zielort von p.

Alternativ zum Umweg des Fahrers konnte man auch die Differenz zwi-
schen den aufsummierten Einzelwegen der Teilnehmer vor Bildung der
Fahrgemeinschaft und dem Fahrgemeinschaftsweg betrachten, falls der
okologische Aspekt wichtiger ist. Obige Umwegdefinition soll dafiir sor-
gen, dafl der Umweg fiir den Fahrer sich in akzeptablen Grenzen hilt.

2. Z(f:) = #””fehé.tf;r‘””v“”e € [0,1]. Hier wird einfach gezihlt, wie oft

ein Ankunfts- oder Abfahrtsintervall nicht beachtet wurde (maximal 2 -
|fi| mal).

3. E: M —[0,1] U co mit

" (Cpes S 28K (.5, £:) - oy, falls %(p) - K(p,j, fi) # 10
E(fi) = , Vpe fi,Vje{l,... k}
00, sonst



128 KAPITEL 5. SPEZIFIKATION

wobel y(p) = Z;?:l vi(p) gilt . Mit K(p, j, f;) wird iiberprift, ob der
Wunsch w; von Person p mit der Fahrgemeinschaft f; in Konflikt steht
(K:Px{l,...,k} x M — [0,1]):

falls Wunsch w; von p in Konflikt mit f;
sonst

Fiir E(f;) ergibt sich der Wert oo , falls ein Wunsch mit Gewicht 10 verletzt
wird. Diese Fahrgemeinschaft kommt dann auf jeden Fall nicht zustande.

4. N.(f;) = 1<:>m 'Zpefi # erwiinschte Personen aus Sicht von p, N, :
M — 0,1
Fiir jede Person p der Fahrgemeinschaft wird die Anzahl der Personen in
fi summiert, die von p erwiinscht sind.

5. No(fi) = m . Zpefi # abgelehnte Personen aus Sicht von p,
N, : M — [0,1]. Fiir jede Person p der Fahrgemeinschaft wird die Anzahl
der Personen in f; summiert, die von p abgelehnt werden.

Bewertungsfunktion fiir Einteilungen

Die Bewertung einer Einteilung M ergibt sich einfach durch Aufsummieren der
Bewertungen der einzelnen Fahrgemeinschaften:

LUM) =gy SsenUlfi) € R

2. A(M) = 3 - Ypienr I(fi) €10,1]

3. E(M) = mp - X poenr B(fi) € [0,1] U {00}
4. Ne(M) = o - 2 poenr Ne(£i) € [0,1]

5. Na(M) = i - X p,ear Nal(fi) € [0,1]

Auch hier wir wieder eine Mindestgiite (M) < (UM, ., Z) . BN o, NM s NMo2)
und eine minimale Anzahl von Fahrgemeinschaften, d.h. | M| minimal gefordert.

5.3.9.2 Neue Bewertungsfunktion anlegen

Durch Auswahl des Meniipunkt Bewertungsfunktionen-neu wird eine neue
Bewertungsfunktion angelegt. Nach Auswahl des Meniipunkts wird dem Benut-
zer eine Liste mit allen gedffneten Bewertungsfunktionen angezeigt. Dann wird
er aufgefordert den neuen Dateinamen anzugeben durch die Meldung ,Neuer
Name: “. Gibt der Benutzer einen schon existierenden Namen ein, so wird die
Fehlermeldung ,Fehler 2: Dieser Name existiert schon!“ angezeigt und

die Eingabeaufforderung wiederholt.



5.3. FUNKTIONALE ANFORDERUNGEN 129

An den Dateinamen wird vom System die Erweiterung .fkt angehdngt, mit
der die Datei als Bewertungsfunktion gekennzeichnet wird. Nach Eingabe des
Namens kann der Benutzer wie in 5.3.9.3 die Parameter der neuen Bewertungs-
funktion anpassen.

5.3.9.3 Bewertungsfunktion dndern

Nach Auswahl des Meniipunkts Bewertungsfunktionen-&dndern kénnen die Pa-
rameter der aktuellen Bewertungsfunktion verindert werden. Die Parameter
werden mit Index prisentiert. W&hlt man einen aus, wird der aktuelle Wert und
der mogliche Bereich angezeigt. Nicht korrekte Werte werden nicht angenommen
und es wird die Fehlermeldung ,Fehler 1: Eingabe enth&lt unzuldssige
Zeichen oder ungiiltigen Bereich!“ angezeigt. Gibt man einen korrekten
Wert ein, wird dieser ibernommen. Zum Verlassen dieses Punktes wihlt man
den Meniieintrag Akzeptieren und Verlassen.

5.3.9.4 Bewertungsfunktion auswéhlen

Nach Auswahl des Meniipunkts Bewertungsfunktionen-auswéhlen wird eine
Liste aller gedffneten Bewertungsfunktionen angezeigt. Aus dieser Liste kann
der Benutzer eine Bewertungsfunktion auswihlen, die dann zur aktuellen wird.

5.3.9.5 Bewertungsfunktion anzeigen

Nach Auswahl des Meniipunkts Bewertungsfunktionen-anzeigen werden die
Parameter der aktuellen Bewertungsfunktion am Bildschirm angezeigt.

5.3.10 Wegsuche
5.3.10.1 Einzelwegsuche

Mit dem Meniipunkt Wegsuche-Einzelwegsuche kann der Benutzer eine Weg-
suche von Strafle A nach Strale B durchfiihren, ohne dabei eine Fahrgemein-
schaft betrachten zu miissen. Nach Auswahl des Meniipunkts wird iiberpiift, ob
iiberhaupt ein Verkehrsgraph geladen wurde. Wenn dies nicht der Fall ist, er-
scheint die Fehlermeldung ,Fehler 8: Kein Verkehrsgraph geladen.“ und
der Vorgang wird abgebrochen. Wenn ja, wird eine Bildschirmmaske angezeigt,
in der die Start- und Zielstrale eingegeben werden muf}. Dabei wird jeweils
tiberpriift, ob der Straflenname mehrmals im System vorkommt. Ist dies der
Fall, wird eine Liste aller Stralennamen mit entsprechender ID anzeigt und der
Benutzer mufl zum Namen noch zusitzlich die ID angeben. Wird nun die Frage
,Wegsuche starten? [J/n]“ mit ,j* beantwortet, startet die Suche. Ist die Su-
che erfolgreich, erscheint der Text ,Wegsuche erfolgreich. Route gefunden“
und die gefundene Route kann mit Hilfe einer Straflenliste oder einem Verkehrs-
graphen angezeigt werden. Mochte man einen Ausdruck von dieser Route haben,
so kann durch Driicken der Taste ,,d“ eine PostScript-Datei erstellt werden.



130 KAPITEL 5. SPEZIFIKATION

Wenn sich im System iiberhaupt kein oder kein giiltiger Verkehrsgraph befindet,
der zu den Strafen paft, wird der gesamte Vorgang abgebrochen.

5.3.10.2 n-Wegesuche

Mit dem Meniipunkt Wegsuche-n-Wegesuche kann der Benutzer die Zeit an-
zeigen lassen, die der aktuelle Wegsuchealgorithmus zur Berechnung von allen
kiirzesten Wegen zwischen n zufillig gewdhlten Paaren aus Start- und Zielor-
ten benotigt. Nach Auswahl des Meniipunkts wird {iberpiift, ob iiberhaupt ein
Verkehrsgraph geladen wurde.

Wenn dies nicht der Fall ist, erscheint die Fehlermeldung ,Fehler 8: Kein
Verkehrsgraph geladen.“ und der Vorgang wird abgebrochen. Sonst wird der
Benutzer aufgefordert die Zahl n einzugeben. Nach der Eingabe werden n We-
ge zwischen zufillig gewdhlten Start- und Zielorten berechnet und die dafiir
benotigte Laufzeit wird ausgegeben.

5.3.10.3 Auswahl des Algorithmus

Mit dem Meniipunkt Wegsuche-Auswahl des Algorithmus kann der Benutzer
einen Wegsuchealgorithmus aus einer Liste iiber einen Index auswéhlen. Der
ausgewihlte Algorithmus wird bei der Wegsuche in 5.3.10.1 und in 5.3.8.3 ver-
wendet.

5.3.10.4 Laufzeit

Der Meniipunkt Wegsuche-Laufzeit funktioniert wie ein Wechselschalter. Bei
Programmstart ist der Status per Default aus. Ist die Laufzeitmessung einge-
schaltet, so wird bei der nichsten Wegsuche die Laufzeit nach Abschlufl der
Berechnung angezeigt. Dieser Punkt hat keine Auswirkungen auf das Verhalten
der Laufzeitmessung im Menii Vermittlung (siche Use Case 5.3.8.5).

5.3.10.5 Systemmeldungen: ein/aus

Der Benutzer mochte iiber den aktuellen Stand der Berechnung, durch
Bildschirmmeldungen, informiert werden. Dazu mufl der Meniipunkt
Wegsuche-Systemmeldungen: ein/aus einfach nur aufgerufen werden.
Dieser verhilt sich wie ein Wechselschalter. Bei jedem Aufruf dndert sich der
Status und die aktuelle Einstellung wird am Bildschirm angezeigt. Danach
gelangt man automatisch in das Untermenii zuriick. Der Status hat keine
Auswirkungen auf die ’Systemmeldung: ein/aus’ im Menii Vermittlung (siehe
Use Case 5.3.8.2).

5.3.11 Voreinstellungen

Nach Anwahl des Meniipunkts Voreinstellungen hat der Benutzer die
Moglichkeit, Pfade und Namen der beim Systemstart zu 6ffnenden Dateien und



5.4. ANFORDERUNGEN AN EXTERNE SCHNITTSTELLEN 131

Default-Pfade anzugeben. Die méglichen Eingaben sind:

e Default-Pfad fiir Personendateien

e Name der zu 6ffnenden Personendatei

Default-Pfad fiir Verkehrsgraphen

Name des zu 6ffnenden Verkehrsgraphen

e Default-Pfad fiir Bewertungsfunktionen

Wenn keine Datei geoffnet werden soll, so wird kein Name sondern die Zei-
chenkette leer eingegeben. Die Zeichenkette leer als Pfad entspricht dem
Pfad \. Beim Beenden der Eingabe wird der Benutzer gefragt: ,Anderungen
speichern? [J/n].

Beim Beenden des Mobidick-Systems werden die in den Voreinstellungen ange-
gebenen Daten in der Datei voreinstellungen.mbd abgespeichert.

5.4 Anforderungen an externe Schnittstellen

5.4.1 Benutzungsschnittstelle
5.4.1.1 Meniipunkt Zuriick

Wird dieser Meniipunkt gewihlt, wird das aktuelle Menii verlassen und man
befindet sich eine Ebene hoher.

5.4.1.2 Meniipunkt Hauptmenii

Wird dieser Meniipunkt gewihlt, wird das aktuelle Menii verlassen und man
befindet sich im Hauptmenii.

5.4.1.3 Meniipunkt Hilfe

Wird dieser Meniipunkt aufgerufen, wird dem Benutzer ein Hilfetext prisentiert.
Er enthélt Informationen dariiber, wo man sich in der Meniistruktur befindet,
wie man hierher kam, wohin man von hier aus gehen kann, was man in diesem
Menii alles anwihlen kann und was dies bewirkt.

5.4.1.4 PostScript-Ausgabe

Einige angezeigte Daten kann man zum spéteren Drucken in eine PostScript-
Datei ausgeben lassen. Dazu driickt man, wenn die entsprechenden Daten ange-
zeigt werden die Taste “d”. Nun bekommt man eine Liste aller Dateien mit der



132 KAPITEL 5. SPEZIFIKATION

Endung “.ps” in dem aktuellen Verzeichnis angezeigt und erhilt eine Eingabe-
aufforderung fiir den Namen der Datei. Wahlt man einen bereits existierenden
Namen aus, wird man gefragt ,Datei existiert bereits. Uberschreiben?
[j/N]“. Antwortet man mit “j”, wird die Datei iiberschrieben und man sieht
wieder die Daten. Antwortet man mit “n”, wird die Eingabeaufforderung wie-

derholt.

5.4.1.5 Markierter Eintrag

Eingestellte Auswahlmeniieintréige werden mit einem % vor der Nummer mar-
kiert. Wird bei einer solchen Auswahl anstelle einer Nummer die Return-Taste
gedriickt, wird der mit * markierte Eintrag ausgewé&hlt.

5.4.1.6 Escape

Durch Driicken der Escape-Taste wird die aktuelle Bearbeitung einer Bild-
schirmmaske abgebrochen und der Ausgangszustand wird wieder hergestellt.
Danach gelangt man in das Menii zuriick, aus dem die Aktion gestartet wurde.

5.4.1.7 Darstellung von Listen

Aufgrund der Linge kann die vollstéindige Darstellung einer Liste im aktuellen
Fenster zu Problemen fithren. Daher wird zunéchst eine Fensterseite angezeigt.
Beanwortet man nun die Frage ,Weiter? [J/n/=]1% mit ,j“, wird die néchste
Fensterseite angezeigt. W&hlt man die Alternative ,n“, wird die Darstellung
abgebrochen und bei ,,=%“ werden die restlichen Seiten ohne Unterbrechung aus-
gegeben.

5.4.1.8 Abfragen

Der Benutzer kann im System die Abfrage auf zwei Arten beantworten. Zum
einen durch Driicken der zugelassenen Zeichen, dabei wird nicht auf die Grof3-
und Kleinschreibung geachtet und zum anderen durch Driicken der Return-
Taste. Die Return-Taste 16st dabei die Aktion aus, die dem GroB3buchstaben
entspricht.

5.4.1.9 Dialoge

Es gibt insgesamt drei verschiedene Arten von Dialogen, die auf unterschiedliche
Weise bedient werden.

Menii: Nachdem das System gestartet wird, erscheint eine allgemeine Bild-
schirmanzeige, die eine Reihe von Auswahleintréigen besitzt. Diese Ein-
trage konnen in der Kommandozeile, die sich unten am Bildschirmrand
befindet, iiber den entsprechenden Index angewéhlt werden.



5.4. ANFORDERUNGEN AN EXTERNE SCHNITTSTELLEN 133

Abfrage von Einzeldaten: Ruft man eine Bildschirmanzeige mit Werten

zum ersten Mal auf, steht hinter jedem Eintrag ein Default-Wert. Will man
diesen Default-Wert dndern, mufl der entsprechende Index in der Kom-
mandozeile angewéhlt werden. Danach kann der Wert eingegeben werden.
Entspricht dieser dem Definitionsbereich, so wird der Wert iibernommen
und in die Bildschirmanzeige eingefiigt. Ansonsten mufl der Wert neu ein-
gegeben werden.

Abfrage von kompletten Datensitzen: Ruft man eine Bildschirmanzeige

auf, in der komplette Datenséitze eingegeben werden miissen, so erfolgt
eine automatische Abfrage der einzelnen Felder. Am Ende wird der kom-
plette Datensatz présentiert und durch Beantworten der Frage: ,Alles
Korrekt? [J/n]“ mit ,j*, wird der Datensatz ins System aufgenommen.
Wenn nein, werden die Abfragen nochmals durchgegangen. Unterschied
zu voher ist, dal der Wert vom vorherigen Durchlauf in der Bildschir-
manzeige steht und nur noch dort gedndert werden muf}, wo ein Fehler
ist.

5.4.2 Hardwareschnittstellen

5.4.2.1 Drucken

Folgende Daten konnen in einer PostScript-Datei abgelegt werden:

Ergebnis der Suche mit Personenfilter
Ergebnis der Suche mit Fahrgemeinschaftenfilter
Ergebnis der Wegsuche (textuell)

Einteilung als Personenliste

5.4.2.2 Sekundéirspeicher

Das System Mobidick verwendet folgende Dateien:

Personendaten mit zugehorigen Einteilungen: Endung .per
Verkehrsgraphen: Endung .gra
Parametereinstellung fiir Bewertungsfunktion: Endung .fkt

Logfile fiir Systemmeldungen bei Weg- und Einteilungsberechnung: En-
dung .log

Die Datei voreinstellungen.mbd, in der die Voreinstellungsparameter
enthalten sind.

Die entsprechenden Dateiformate werden im Entwurf festgelegt. Bei allen Lade-
und Speicheroperationen miissen Name und Pfad frei wihlbar sein.



134 KAPITEL 5. SPEZIFIKATION

5.4.3 Softwareschnittstellen

Das System Mobidick kommuniziert mit einem externen Graphenviewer, dies
ist in 5.5.4 beschrieben.

5.5 Leistungsanforderungen

Das System Mobidick ist fiir den Einbenutzerbetrieb ausgelegt und lduft auf
einem Terminal.

5.5.1 Dateien

Das System soll mit beliebig vielen Einteilungs-, Verkehrsgraphen- und Bewer-
tungsfunktionsdateien umgehen koénnen. Bei den Verkehrsgraphen sollte das
Stadtgebiet von Stuttgart verarbeitet werden kénnen.

5.5.2 Daten im Hauptspeicher

Es wird immer nur ein Verkehrgraph im Hauptspeicher gehalten. Personen-,
Einteilungs- und Bewertungsfunktionsdaten kénnen solange angelegt werden,
bis der Speicher voll ist.

5.5.3 Antwortzeiten

Die folgenden Funktionen sollen interaktiv und dementsprechend schnell sein:

Personenfilter

Filter fiir Fahrgemeinschaften

Bewertung einer Fahrgemeinschaft

Bewertung einer Einteilung

e Suchen einer Fahrgemeinschaft beim manuellen Einfligen

Wegsuche auf dem hierarchischen Graphen

Fiir die optimale, heuristische und inkrementelle Berechnung von Einteilungen
muf} mit lingeren Berechnungszeiten (Stunden, Tage) gerechnet werden.



5.6. ZUKUNFTIGE ERWEITERUNGEN 135

5.5.4 Entwurfseinschrinkungen

Das System Mobidick muf3 auf dem Rechner tagetes des Rechnerpools der Abtei-
lung Formale Konzepte unter Solaris 5.4 laufen. Als Programmiersprache wird
C++ verwendet, und zwar die aktuelle Version des gnu-Compilers.

Da bereits ein Graphenviewer zur Anzeige von Verkehrsgraphen in C++ imple-
mentiert wurde, muf} dieser in die Entwurfsiiberlegungen einbezogen werden. Da
dieser als eigenstidndiges Programm bestehen bleiben soll, muf} eine Kommunika-
tionsschnittstelle zwischen beiden Programmen festgelegt werden. Zur Anzeige
von kiirzesten Wegen miissen die entsprechenden Daten an den Graphenviewer
iibergeben werden.

Zuniichst wird nur eine auf Text basierende Benutzungsoberfliche implemen-
tiert, eine graphische Oberfliche erscheint fiir einen Prototypen zu aufwendig.

An Verkehrsdaten liegt uns bisher der Stadtplan von Stuttgart im GDF-Format
vor (GDF-Version 2.1). Fiir die Umwandlung der GDF-Daten in eine Verkehrs-
graphendatei wurde ein Perlskript implementiert. Dafiir wurde ein vorldufiges
Verkehrsgraphenformat festgelegt. Fiir das Konvertierungsprogramm wird noch
eine Dokumentation erstellt, in der Quell-, Zielformat und die Umwandlung
beschrieben werden.

5.5.5 Attribute

Da es sich um einen Prototyp handelt, wird nichts zur Verfiigbarkeit und zur Si-
cherheit ausgesagt. Die Wartbarkeit wird durch noch festzulegende Codierungs-
und Entwurfsrichtlinien erreicht. Die Portabilitdt wird durch folgende Mafinah-
men erleichtert:

o ausschlieflliche Verwendung von {iberall verfiigbaren C++-Bibliotheken

e separate Module fiir die Programmteile, die auf Bildschirm und Dateien
zugreifen.

5.6 Zukiinftige Erweiterungen

Wochentage: Jeder Teilnehmer kann fiir jeden Wochentag eine andere Ar-
beitszeit angeben. Beispiel: Mo 9.00-17.00 Uhr, Di 8.00-16.00 Uhr, Mi
10.00-13.00 Uhr.

Hin- oder Riickfahrt: Der Teilnehmer kann angeben, ob er mit der Fahrge-
meinschaft beide Wege oder nur einen Weg fahren will.

Statistische Angaben: Der Benutzer kann statistische Daten iiber das FGM-
System erfahren. Beispielweise die Auslastung der Fahrzeuge, die durch-
schnittliche Personenzahl einer FGM und weitere mehr.

Zwischenpunkte bei der Wegsuche: Der Teilnehmer kann zusétzliche Stra-
Bennamen angeben, die bei der Wegsuche beriicksichtigt werden und auf
jeden Fall in der Route enthalten sind.



136 KAPITEL 5. SPEZIFIKATION

Verkniipfungen: Der Benutzer mochte eine Liste aller reservierten Personen.
Danach wihlt er eine Person aus. Dabei besteht die Moglichkeit die ent-
sprechende FGM der Person, mit allen anderen Teilnehmern, anzeigen zu
lassen.

Sammelpunkte: Man mochte Orte angeben, an denen sich Teilnehmende einer
FGM treffen, um von dort loszufahren, oder sich nach dem Ankommen zu
zerstreuen.

Graphische Benutzungsoberfliche: Das System besitzt eine graphische Be-
nutzungsoberfliche (Fenster, Pulldown-Meniis usw.) und kann mit Hilfe
einer Maus gesteuert werden.

5.7 Systemmeldungen

5.7.1 Meldungen

e ,Anderungen fiir Fahrgemeinschaftsbildung relevant® (5.3.6.1)

e  Person ist Fahrer, loschen fiithrt zur Aufldsung einer
Fahrgemeinschaft* (5.3.6.1)

e ,Teilnehmer schon fest eingetragen!“ (5.3.7.4)

e Vorsicht. Durch Loeschen des Fahrers wird die
Fahrgemeinschaft aufgeldst® (5.3.7.5)

e ,Die Berechnung kann nicht wieder aufgenommen werden® (5.3.8.3)
e ,Es wurde noch keine Berechnung durchgefiihrt“ (5.3.8.4)

e ,Wegsuche erfolgreich. Route gefunden® (5.3.10.1)

5.7.2 Fragen

e Personendatei <Name> vor dem Beenden speichern? [J/n]“

(5.3.4)
e ,Neuer Name:“ (5.3.5.1)

e , Personendatei <Name> vor dem Erstellen der neuen Datei
speichern? [J/nl“ (5.3.5.1)

e Name existiert schon, trotzdem abspeichern und vorhandene

Datei iiberschreiben? [j/N]1“ (5.3.5.1,5.3.5.4,5.3.5.8,5.3.5.9, 5.3.5.13)

e ,Personendatei <Name> vor dem Laden der anderen Datei
speichern? [J/nl“ (5.3.5.2)

e ,Datei vor dem SchlieBen speichern? [J/n]“ (5.3.5.5)



5.7. SYSTEMMELDUNGEN 137

e ,Bewertungsfunktion <Name> vor dem Schlieflen speichern?

[J/n]“ (5.3.5.5)
e ,Name:“ (5.3.5.6)
e ,Einteilung wirklich 1éschen? [j/NI1¥ (5.3.5.10)
e ,Person wirklich iibernehmen? [J/n]“ (5.3.6.1)

. 7,]inderungen vornehmen und Person aus den betroffenen
Fahrgemeinschaften 1éschen? [J/n]“ (5.3.6.1)

e  lnderungen vornehmen und Fahrgemeinschaft aufldsen? [J/n]“

(5.3.6.1)
e ,Person wirklich 18schen? [J/n]l“ (5.3.6.1)
e ,Haben Sie die alte Personenmenge gesichert? [j/N]“ (5.3.6.1)
e ,Personenmenge iibernehmen? [J/n]“ (5.3.6.1)
e ,Tabelle in PostScript-Datei ausgeben? [j/NI1“ (5.3.6.1)
e ,Person in Fahrgemeinschaft aufnehmen? [J/n]“ (5.3.7.3, 5.3.7.3)
e  Fahrgemeinschaft iibernehmen? [J/nl“ (5.3.7.3, 5.3.7.3, 5.3.7.6)
e ,Teilnehmer fest eintragen? [J/nl“ (5.3.7.4)
e ,Person aus Fahrgemeinschaft 18schen? [J/n]“ (5.3.7.5)
e  Fahrer 18schen? [j/N]1¢ (5.3.7.5)
e ,Person als Fahrer iibernehmen? [J/n]“ (5.3.7.6)
e ,Weiteren Teilnehmer eintragen? [J/nl* (5.3.7.6)
e ,Neuer Fahrer: Fahrtroute neu berechnen? [j/N]1¢ (5.3.7.7)
e Fahrgemeinschaft aufldsen? [J/n]* (5.3.7.8)

e  Fahrgemeinschaft ist markiert. Wirklich auflésen? [j/N]“

(5.3.7.8)
e ,Weitere Fahrgemeinschaft bewerten? [J/n]“ (5.3.7.9)
e ,Markieren oder Unmarkieren? [M/ul“ (5.3.7.11)
e ,Fahrgemeinschaft markieren? [J/n]“ (5.3.7.11)
e ,Fahrgemeinschaft unmarkieren? [J/n]“ (5.3.7.11)

e  Giite beziiglich der Fahrgemeinschaftenanzahl? [<min {FGM> -
<max fFGM>]“ (5.3.8.3)

e . Giite beziiglich der Bewertung? [<min Bewertung> - <max
Bewertung>]“ (5.3.8.3)

e ,Aktuelle Einteilung speichern? [J/n]l“ (5.3.8.3)



138 KAPITEL 5. SPEZIFIKATION

e ,Name der neuen Einteilung:“ (5.3.8.3)
e ,Wirklich abbrechen? [j/N]17“ (5.3.8.3)

e  Mochten Sie alle bis auf markierte Fahrgemeinschaften
aufldsen? [j/N]1“ (5.3.8.8)

e ,Wegsuche starten? [J/nl“ (5.3.10.1)

e .Anderungen speichern? [J/nl“ (5.3.11)

e ,Datei existiert bereits. Uberschreiben? [j/N]1“ (5.4.1.4)
o  Weiter? [J/n/=1% (5.4.1.7)

e ,Alles Korrekt? [J/nl“ (5.4.1.9)

5.7.3 Fehler

e . Fehler 1: Eingabe enthdlt unzul&dssige Zeichen oder
ungiiltigen Bereich!“ (5.3.9.3)

o  Fehler 3: Adresse nicht im Verkehrsgraphen vorhanden®

(5.3.6.1)
e ,Fehler 4: Kante nicht im Verkehrsgraphen vorhanden® (5.3.6.1)
e ,Fehler 5: Obere Grenze kleiner untere Grenze“ (5.3.6.1)
e ,Fehler 6: Person bereits vorhanden® (5.3.6.1)
e ,Fehler 7: Person nicht in Liste vorhanden® (5.3.6.1)

e ,Fehler 8: Kein Verkehrsgraph geladen“ (5.3.10.1)



Kapitel 6

Grobentwurf

In diesem Kapitel wird der Stand des Entwurfes zum Zeitpunkt des Zwischen-
berichts dargestellt. Ausgehend von einem Grobentwurf wurden Teilgebiete mit
Verantwortlichkeiten festgelegt. Den groben Aufbau des Systems ersieht man

aus Abb. 6.1.

a”e"grow" Ob] e

Datei_Auswahl

Bewertungsverwalter

—-=|  Menueverwalter

Graph

Personenverwalter Eintellungsverwalter

Abb. 6.1: Der Grobaufbau des Systems

Die Teilgebiete und die Verantwortlichen sind:

e Meniiverwalter und Doktor : Daniela Nicklas

L ader/Speicherer

Algorithmenverwalter

o Algorithmenverwalter und Bewertungsverwalter : Herbert Heid und Volker

Scholz

o Personenverwalter und Einteilungsverwalter : Thomas Schéffer

e Fiirsorger, Datei-Auswahl und Lader/Speicherer : Alexander Porrmann

139



140 KAPITEL 6. GROBENTWURF

6.1 Meniiverwalter und Doktor

Die KontrollffluB wihrend des Programmlaufes liegt hauptsichlich beim
Mentiverwalter. Dies ermdglicht ein leichtes Austauschen der textuellen durch
eine graphische Oberfliche. Der Doktor enthilt Warnungen und Fehlermeldun-
gen im Klartext, diese werden von den Meniis auf dem Bildschirm ausgegeben.
Bei einem Fehler wird ein entsprechender Fehlercode als Riickgabewert geliefert,
den das Menii dann behandelt, indem es den Text aus dem Doktor ausliest,
ausgibt und sich dem Fehler entsprechend verhilt. Im Doktor kénnen auch die
Systemmeldungen abgelegt werden.

6.2 Algorithmenverwalter und Bewertungsver-
walter

Hier liegt der Knackpunkt des Entwurfes. Die Algorithmen zur Wegsuche und
zur Berechnung von Einteilungen miissen verwaltet werden und ein Zugriff auf
die entsprechenden Daten gewéhrleistet sein. Hauptpunkt ist hier, sich eine pas-
sende Form fiir die Algorithmen und den Ablauf der Berechnungen zu iiberlegen.
Das Ausprogrammieren der einzelnen Algorithmen wird dann spéter von Un-
tergruppen tibernommen. Der Bewertungsverwalter tibernimmt die Verwaltung
der Bewertungsfunktionen zur Bewertung von Fahrgemeinschaften und Eintei-
lungen.

6.3 Personenverwalter und Einteilungsverwal-
ter

Diese beiden Verwalter wachen iiber die Daten des Systems. Abgespeichert wer-
den hauptséchlich Personen- und Einteilungsdaten. Dies ist wohl der am wenig-
sten komplexe, aber arbeitsaufwendigste Teil.

6.4 Fiirsorger, Datei- Auswahl und La-
der/Speicherer

Der Fiirsorger ist die Schnittstelle zwischen dem Meniiverwalter und dem Rest
des Systems. Er verteilt die Nachrichten und speichert einige Systemeinstellun-
gen. Das gewéhrleistet die Moglichkeit, spiter ein Framework fiir die graphi-
sche Oberfliche zu verwenden, ohne die Systemstruktur zu #ndern. Die Datei-
Auswabhl ist ein Hilfswerkzeug fiir den Filedialog. Der Lader/Speicherer bedient
sich der Voreinstellungen und stellt einen konsistenten Anfangszustand beim
Programmstart her.



Anhang A

(Glossar

Arbeitszeiten Anfangs- und Endzeit der Arbeit bzw. Intervalle bei Gleitzeit.

Attribute einer Person sind Eigenschaften, Préferenzen, Verwaltungsdaten,
die mit einer Person verbunden sind.

automatisches Hilfesystem kontextsensitive Hilfe, die in jeder Situation zur
Verfiigung steht. In unserem Fall durch den Meniipunkt Hilfe.

Benutzer meint Benutzer oder Benutzerin des FGM-Systems.

Bewertungsfunktion h bewertet eine Einteilung, bzw. eine Fahrgemein-
schaft. Sie verwendet den Umweg, Préferenzen und Neigungen.

Datenstatus einer Person ist vollstindig oder unvollstindig.

Eigenschaften der Person gewichtete, erweiterbare Eigenschaften, minde-
stens: Geschlecht, Raucher oder Nichtraucher, Musikgeschmack.

Eingabeschnittstelle die Schnittstelle zur interaktiven Eingabe von Daten
und Dateischnittstelle.

Einteilung siehe Fahrgemeinschaftseinteilung.
entkoppelt vom System als Modul in anderen Programmen einsetzbar

Erweiterbarkeit des Systems heifit klare Festlegung der Algorithmen-
schnittstellen zum einfachen Austausch.

explizite Zu- und Abneigung Funktionen, die einer Person eine Menge von
Personen zuordnen Z(P;) = {Py, P;, P3}, A(P1) = {P», P;}, wobei Z(P)N
A(P) = 0. Zuneigung hat man zu den Personen, mit denen man auf jeden
Fall in einer Fahrgemeinschaft mitfahren méchte. Abneigung analog.

Fahrer einer Fahrgemeinschaft ist die Person, die das Auto fihrt, mit dem die
Teilnehmer der Fahrgemeinschaft reisen.

Fahrgemeinschaft ist eine Gruppe von Personen, die mit einem Fahrzeug
einen gemeinsamen Weg zuriicklegt.

141



142 ANHANG A. GLOSSAR

Fahrgemeinschaftseinteilung ist die Aufteilung des Personenstammes
gemiB einer Bewertungsfunktion in Fahrgemeinschaften, wobei nicht alle
Personen eingeteilt werden miissen.

FGM Abkiirzung fiir Fahrgemeinschaft.

FGM-System das System, das zum Finden und Verwalten von Fahrgemein-
schaften von der Projektgruppe erstellt wird.

Generierung von Personen Zufillige, wahrscheinlichkeitsverteilte Generie-
rung von Personendaten, bei der einzelne Verteilungen angegeben werden
konnen.

Grapheneditor dient der Visualisierung des Verkehrsgraphen, stellt Aus-
schnitte dar.

GDF Geographic Data File, digitales Format zur Darstellung von Verkehrsda-
ten (Ausgangsinformation unseres Systems).

heuristische Partitionierung Die Personen werden entsprechend der Bewer-
tungsfunktion in Fahrgemeinschaften aufgeteilt. Dies geschieht mit Hilfe
von Heuristiken.

hierarchische Graphen Level- oder Regionengraphen zur effizienten kiirzeste
Wege-Berechnung.

Intervall beziiglich der Gleitzeit ein Zeitraum, in dem die Arbeitszeit beginnt
oder endet, z.B. [809-930].

Kommentare Ausgabe von Programmlaufinformationen, falls Systemmeldun-
gen eingeschaltet sind.

kiirzeste Entfernung nach Wegstrecke kiirzeste Entfernung zwischen zwei
Knoten bzw. Kanten.

kiirzeste Weg-Suche Algorithmen zum Finden kiirzester Wege zwischen aus-
gewdhlten Knoten bzw. Kanten.

Laufzeitmessung Messung der effektiven Laufzeiten bestimmter Komponen-
ten des Systems.

Levelgraph Graph aus mehreren Ebenen, bei dem z.B. verschiedene Straflen-
typen auf verschiedenen Leveln liegen (Level 0: Feldwege, Level 1: Ge-
meindestrafien, Level 2: Bundesstrafien, Level 3: Autobahnen).

Markierung von Fahrgemeinschaften kann gesetzt oder nicht gesetzt sein.
Ist eine Fahrgemeinschaft markiert, mufl man sie zum Auflsen freigeben.
Ist eine Fahrgemeinschaft nicht markiert, kann sie problemlos aufgeltst
werden.

Priferenzen Zu- und Abneigungen hinsichtlich bestimmter Eigenschaften, die
in die Bewertungsfunktion eingehen.

Programmausgabe bezieht sich auf die Anfragen, die das System beantwor-
ten kann, die Ausgabe von Personendaten und das Anzeigen des Verkehrs-
graphen.



143

Regionengraph Graph auf mehreren Ebenen, wobei Knoten Regionen ent-
sprechen und Teilmengen von Knoten der nichst niedrigeren Ebene re-
présentieren.

reserviert heifit ein Platz, wenn eine Person einer Fahrgemeinschaft zugeord-
net ist, jedoch noch nicht geklért ist, ob sie dort auch wirklich mitfahrt.

Start- und Zielort der FGM der Start- und Zielknoten des Fahrers bzw. die
Start- und Zielkoordinaten des Fahrers. Der Fahrer wohnt meistens an
einer Strafie (Kante). Zum einfacheren Umgang kann man die Koordinaten
jedoch auf Knoten reduzieren. Die Knoten sind dann die den Koordinaten
am n#chsten liegenden Straflengraphknoten.

Start- und Zielort der Person der Start- und Zielknoten einer Person bzw.
die Start- und Zielkoordinaten einer Person.

Status einer Person kann fest eingetragen, reserviert eingetragen oder wver-
mittelbar sein.

Systemmeldungen Modus, in dem das System laufen kann und dann Kom-
mentare zum aktuellen Stand an den Benutzer ausgibt.

Teilnehmer ist eine Person, deren Daten im System FGM erfaft sind.

Teilnehmer einer Fahrgemeinschaft ist eine Person, die einer Fahrgemein-
schaft zugeordnet ist. Thr Status ist dabei reserviert eingetragen oder fest
eingetragen.

Umweg einer FGM ist der nach Wegstrecke berechnete zusétzliche Weg. Er
berechnet sich aus der Lénge des kiirzesten Weges des Fahrers einer Fahr-
gemeinschaft und dem Fahrtweg, den der Fahrer mit der Fahrgemeinschaft
zuriickzulegen hat.

Unterbrechung des Programmlaufes Bei der Berechnung der Einteilung
kann der Benutzer das System stoppen. Anschliefend kann an der ab-
gebrochenen Stelle fortgefahren werden.

Verkehrsgraph ist der einer Straflenkarte entsprechende Graph mit Kanten-
gewichten.

Wegstrecke ist die von einem Knoten zu einem anderen Knoten im Verkehrs-
graphen zuriickzulegende Wegstrecke in km oder m.



Anhang B

Konvertierung von
Verkehrsdaten

B.1 Einleitung

Zur Berechnung kiirzester Wege bei der Zusammenstellung von Fahrgemein-
schaften benttigt man reale Straflenverkehrsdaten. Mittlerweile liegen diese auch
in elektronischer Form vor und werden z.B. in Autocopiloten (Navigationshilfen)
verwendet. Vom Institut fiir Photogrammetrie wurde uns ein GDF-Datensatz
fiir das Stadtgebiet von Stuttgart zur Verfiigung gestellt (Stand 1993). GDF
steht fiir Geographic Data File und ist ein européischer Standard fiir Straflen-
verkehrsdaten, der von Autoherstellern erarbeitet wurde. Zur weiteren Verwen-
dung im Projekt wurden die relevanten Teile aus den Daten extrahiert und in
ein eigenes Graphenformat gebracht.

Zunichst erfolgt eine Beschreibung des Quellformats (GDF) und des Zielfor-
mats (Graphenformat). Danach wird kurz die Implementierung des Konverters
erldutert und auf die Visualisierung der Daten eingegangen. Im letzten Abschnitt
erfolgt eine Auflistung der wichtigsten Recordformate in GDF.

B.2 GDF-Format

Die zur Verfiigung gestellten Daten lagen in GDF-Version 2.1 vor, fiir die schon
eine umfangreiche Dokumentation existiert (siche [5]). Nach ein paar allgemei-
nen Bemerkungen werden hier nur die fiir die Konvertierung relevanten Teile
beschrieben.

GDF liegt als ASCII-File vor und besteht aus verzeigerten Records, die wich-
tigsten Unterklassen sind Roadelement Records (Strafliensegmente), Junction
Records (Kreuzungen), Edge (Kanten), Node (Knoten) und XY-coordinate
Records (Koordinateninformation). Abb. B.1 zeigt die Verzeigerung dieser
Hauptrecordtypen. Roadelements und Junctions sind den geometrischen Ele-

144



B.2. GDF-FORMAT

145

menten (Edges und Nodes) iibergeordnet, die sich wiederum beide auf XY-
Koordinaten beziehen. Strafiensegmente kénnen mit Attributen (s.u.) und Na-

Roadel ement-Record

Roadelement-ID

Name-ID
Attribute-1D
From-Junction-1D
To-Junction-1D

Edge-ID

-

Junction-Record

Edge-Record

Edge-ID

From-Node-1D
To-Node-ID

XY-ID

>

Junction-ID

Node-ID

Node-Record

|

Abb. B.1: Die wichtigsten Recordtypen und ihre Verzeigerung

Node-ID

XY-ID

XY -coordinate-Rec

XY-ID

X1 ...
Y1 ..

xXn: ...
Yn: ..

men versehen werden; dazu dienen Segmented Attribute Records und Name Re-
cords. Zur Erfassung von Abbiegeverboten gibt es schlieBlich Prohibited Turn
Records, eine Unterklasse der Relationship Records.

In Abschnitt B.6 sind die Formate dieser Recordtypen aufgelistet, jedes Re-
cordfeld ist durch einen Index mit einer Lingenangabe versehen, dabei steht *
fiir ein Feld beliebiger Linge. {}* zeigt an, daf ein Feld auch wiederholt auf-
treten kann, in solchen Fillen wird vorher die Anzahl der Wiederholungen in
einem NUM-Feld angegeben. Ziffernfolgen deuten darauf hin, dafl der Inhalt
des betreffenden Feldes fest ist. Die wichtigsten Recordfelder werden fiir jeden



146 ANHANG B. KONVERTIERUNG VON VERKEHRSDATEN

Recordtyp kurz erlautert.

Im GDF-Format sind nur Zeilen mit einer maximalen Linge von 80 Zeichen
(plus eines oder zwei fiir den Zeilenumbruch) zugelassen, lange Records werden
also umgebrochen und mit einer Umbruchmarkierung versehen.

Folgende Attribute der Straflensegmente wurden aus den Daten extrahiert:

e Straflenname
e Einbahnstraflien

e Functional Road Class: hier werden die Strafien nach Wichtigkeit klassifi-
ziert, laut Dokumentation gibt es folgende Straflenklassen:

Klasse 0: Autobahn

— Klasse 1: Bundesstrafe

— Klasse 2: Hauptstrafle
— Klasse 3: Nebenstrafle
Klassen 4+5: befestigter Fahrweg

Klassen 6-8: undokumentiert, u.a. auch Fuligdngerzonen
e Straflennummer (z.B. B10, E52 falls vorhanden)
Abbiegeverbote liegen als dreistellige Relation zwischen Einfahrtsstrafle, Kreu-

zung und Ausfahrtsstrafle vor.

B.3 Graphenformat

Als vorliufiges Graphenformat wurde drei Dateiformate fiir die Knoten, Kanten
und Abbiegeverbote des Graphen festgelegt. Die Knoten werden mit ID, x- und
y-Koordinate abgespeichert:

| node.id | x-coord | y-coord |

Die Kanten werden ebenfalls als einfache Kantenliste mit den entsprechenden
Attributen abgelegt:

| edge_id | source-_id | target_id | length | road class | direction | road no. | name |

Source_id und target_id beschreiben die inzidenten Knoten und die Richtung
der Kante edge_id, mittels direction werden die moglichen Durchfahrtsrichtun-
gen durch diese Kante angegeben (1=beide, 2=positive, 3=negative Richtung,
bezogen auf die Kantenrichtung). Length gibt die Linge der Kante in Metern
an, die restlichen Felder stehen fiir Straflenklasse, Stralennummer und Straflen-
namen.

Die Abbiegeverbote werden als dreistellige Relation zwischen Kreuzung,
Einfahrts- und Ausfahrtsstrafie abgespeichert:

| junction_id | from_edge_id | to_edge_id |




B.4. UMWANDLUNG 147

B.4 Umwandlung

Zur Umwandlung wurden Perl-Skripte implementiert, mit denen die Verzeige-
rung in assoziativen Arrays im Hauptspeicher aufgebaut wurde. Zur Darstel-
lung des Graphen in der Ebene war noch eine kartographische Projektion notig,
deswegen wurde die in GDF vorliegenden geographischen Koordinaten (Lénge,
Breite) in GauB-Kriiger-Koordinaten umgerechnet (konforme Abbildung, siehe
[7]). Somit trigt jeder Knoten des Graphen eine x- und y-Koordinate in der
Einheit Meter.

B.5 Visualisierung der Daten

Zur Darstellung des Verkehrsgraphen im Graphenformat wurde von Dirk Farin
das Programm GraphView implementiert. Dieses erlaubt die Darstellung belie-
biger Ausschnitte des Verkehrsgraphen, die Straflenklassen haben unterschiedli-
che Farben und konnen selektiv ein- und ausgeschaltet werden. Die Suche nach
Straflennamen ist ebenfalls moglich.

B.6 Recordformate

e Roadelement (Line Feature Record):

38, | LIFEID,, | DESC_IDs | 4110, | NUM_EDGEs | {EDGE_IDy, |
POS_NEG,}" | NUM_ATTs | SATT_IDyy | NUM_NAME, | NAME_IDy, |
FROM_IDyo | TOID, |

— LIFFE_ID: ID des Roadelements

— NUM_EDGE: Anzahl der Edges, die zu diesem Roadelement
gehoren

— EDGE_ID, POS_NEG: Zeiger auf Edges, relative Orientierung der
Edge zu Roadelement

— NUM_ATT: Anzahl der zugehorigen Attribute Records
— SATT_ID: Zeiger auf Attribute Record

— NUM_NAME, NAME_ID: Anzahl Namen, Zeiger auf Name Re-
cord

— FROM_ID, TO_ID: Zeiger auf angrenzende Junctions (from, to)

e Edge Record:

28, | EDGE_IDyo | XY _IDyg | FKNOT_ID:y | TKNOT 1Dy |
LFACE_ID,y | RFACE_IDy |

— EDGE_ID: ID dieser Edge

— XY _ID: Zeiger auf XY-coordinate Record, der die Zwischenpunkte
dieser Edge enthilt



148 ANHANG B. KONVERTIERUNG VON VERKEHRSDATEN

— FKNOT_ID, TKNOT_ID: Zeiger auf angrenzende Nodes (from,
to)

e New Node Record:
[25; | KNOT IDyw | XY IDy | FACEID1 | STATUS: |

— KNOT_ID: ID dieses Nodes
— XY _ID: Zeiger auf XY-coordinate Record, der Nodekoordinaten
enthilt
e XY-coordinate Record:

22, | XY ID1y | GTYPE, | Q.PLAN; | DESC.ID; | NUM_COORD; |
{X_COORD:, | Y-COORD1o} |

— XY _ID: ID dieses XY-coordinate Records
— NUM_COORD: Anzahl Koordinaten in diesem Record
— X_COORD, Y_COORD: geographische Liange, Breite

e Junction (Point Feature Record):

37, | POINT IDyo | DESC_ID; | 4120, | NUM_KNOT; | {KNOT ID1o}" |
NUM_ATT; | {SATT 1D}’ | NUM_NAME; | (NAME_IDy} |

— POINT_ID: ID dieser Junction
— NUM_KNOT: Anzahl der Nodes, die zu dieser Junction gehoren
— KNOT_ID: Zeiger auf zugehorigen Node

— NUM_ATT, SATT_ID: Anzahl Attribute Records, Zeiger auf At-
tribute Record

— NUM_NAME, NAME_ID: Anzahl Namen, Zeiger auf Name Re-
cord
e Segmented Attribute Record:

43, | SATT_ID\o | FROM; | TOs | NUM_ATT; | ATT_TY PE,
DESC_IDs | ATT_V AL |

— SATT_ID: ID diese Attribute Records

— NUM_ATT: Anzahl der Attribute, die in diesem Record abgelegt
sind

— ATT_TYPE, ATT_V AL: Attributtyp (Attribute Type Code), At-
tributwert (Attribute Value Code)

— Attribute Type Codes mit zugehtrigen Attribute Value Codes:

— DF = Direction of Traffic Flow, 1 = both, 2 = positive, 3 = negative,
4 = none

— RN = Route Number (z.B. B10, E52)
— FC = Functional Road Class, Klassen 0-8 (s.0.)

e Name Record:
[41, | NAMEIDy, | DESC.IDs | LAN.CODE; | TEXT. |




B.6. RECORDFORMATE 149

— NAME_ID: ID dieses Name Records
— LAN_CODE: Sprache, GER = Deutsch
— TEXT: Freitextfeld beliebiger Linge

e Prohibited Turn (Relationship Record):

49 | REL_IDyo | 21014 | DESC_IDs | 3, | 21 | FEAT_IDy | 1, | FEAT 1Dy |
2, | FEAT IDyy | NUM_ATTs | SATT_ID,y | NUM_NAME; | NAME_ID5, |

— REL_ID: ID dieses Relationship Records

— 3x FEAT _ID: Zeiger auf Roadelement from, Junction, Roadelement
to (Abbiegeverbot wird durch Einfahrtsstrafie, Kreuzung und Aus-
fahrtsstrafle beschrieben)



Literaturverzeichnis

[1]

[9]

[10]
[11]

[12]

[13]

[14]

J. L. Bentley and R. A. Finkel. Quad trees - A Data Structure for Retrieval
on Composite Keys, chapter 1-9. AA, Acta Informatica 4, 1974.

Grady Booch. Objektorientierte Analyse und Design. Addison Wesley,
1994.

Friedhelm Buchholz. Komplexitit des Fahrgemeinschaften-Problems. Stu-
dienarbeit 1327. Universitdt Stuttgart Institut fiir Informatik, 1994.

Friedhelm Buchholz. Entwurf eines Systems zur Vermittlung von Fahrge-
meinschaften, Diplomarbeit 1226. Universitéit Stuttgart Institut fiir Infor-
matik, 1995.

H. Claussen et al. GDF 2.1 Draft Standard. unpublished, 1992.

Greg N. Frederickson. Fast Algorithms for Shortest Paths in Planar Graphs.
SIAM Journal on computing, IEEE, Vol. 16(No. 6), December 1987.

Walter Grofimann. Geodditische Rechnungen und Abbildungen in der Lan-
desvermessung. Konrad-Wittwer-Verlag, 3rd edition, 1976.

John E. Hopcroft and Richard M. Karp. An n?® algorithm for maximum
matching in bipartite graphs. SIAM Journal on computing, IEEE, pages
225-231, 1973.

IEEE Computer Society (Hrsg.). IEEE guide for software requirements
specification. IEEE Std 830-1984, 1984.

IEEE. Software Engineering Standards Collections, 1994.

Michael Jackson. Software Requirements € Specifications. Addison-Wesley,
1995.

D. T. Lee and C. K. Wong. Worst-Case Analysis for Region and Partial
Region Searches in Multidimensional Binary Search Trees and Balanced
Quad Trees, pages 23-29. AA, Acta Informatica 9, 1977.

Richard J. Lipton and Robert Endre Tarjan. A Separator Theorem for
Planar Graphs. SIAM J. APPL. MATH., Vol. 36(No. 2), April 1979.

Jochen Ludewig. Grundlagen des Software Engineerings. Fachschaft Infor-
matik, 1997. Skript zur Vorlesung im Sommersemester "97.

150



LITERATURVERZEICHNIS 151

[15] K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Sear-
ching and Computational Geometry, pages 24-55. Springer-Verlag, 1984.

[16] Silvio Micali and Vijay V. Vazirani. An O(y/|V||E|) algorithm for finding
maximum matching in general graphs. IEEE Symposium on Foundations
of Computer Science (FOCS), pages 17-27, 1980.

[17] F. P. Preparata and M. L. Shamos. Computational Geometry: An Introduc-
tion, pages 67-77 and 189-199. Springer-Verlag, 1985.

[18] W. W. Royce. Managing the development of large software systems: con-
cepts and techniques. Proc. IEEE WESTCON, Los Angeles, 1970.

[19] Vijay A. Saraswat. Principles and practice of constraint programming - the
newport papers. MIT Press, Cambrigde, 1995.

[20] T. Ottmann und P. Widmayer. Algorithmen und Datenstrukturen, pages
232-242. Reihe Informatik Band 70. BI-Wissenschaftsverlag, 1993.



