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Abstract

This annual technical report presents the current state of the project OPTIMUS 01 IR 605
‘Optimization, Modeling and Implementation of Distributed Multimedia Systems’, which is a research
activity at St. Petersburg Technical University, Distributed Computing and Networks Department in
collaboration with Stuttgart University, Distributed Systems Department. The project is supported by a
research grant of the ‘Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie‘ of
Germany1.

The project is dedicated to the problems of configuration and synchronization management modeling,
analysis, optimization and development for distributed multimedia systems.

The annual report presents the methods, models, algorithms, mechanisms, and a simulation tool
developed for analysis, optimization and design of distributed multimedia application configuration
management, negotiation and resource reservation protocol, and adaptive synchronization protocol,
that support configurable distributed multimedia applications. Results of computational experiments
conducted for complexity evaluation of algorithms proposed are presented as well. Problems of
testbed platform development and implementation for configuration and synchronization management
of distributed multimedia systems are discussed.

The research results obtained are oriented on the further development of CINEMA (Configurable
IntEgrated Multimedia Architecture) that was designed at the Distributed Systems Department of
Stuttgart University and supports development and control of multimedia applications with arbitrary
processing topologies consisting of multiple data sources and sinks as well as arbitrary intermediate
processing stages.

                                                          
1 Das diesem Bericht zugrundeliegende Vorhaben OPTIMUS wurde mit Mitteln des
Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie unter dem
Förderkennzeichen 01 IR 605 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung
liegt bei den  Autoren.
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1 Introduction

This annual technical report presents the current state of the project OPTIMUS 01 IR 605
‘Optimization, Modeling and Implementation of Distributed Multimedia Systems’, which is a research
activity at St. Petersburg Technical University, Distributed Computing and Networks Department in
collaboration with Stuttgart University, Distributed Systems Department. The project is supported by a
research grant of the ‘Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie‘ of
Germany.

Distributed multimedia applications (DMA) such as multimedia mail, collaborative work systems,
teleconferencing, kiosks, virtual reality applications and others require high-speed computer networks
with high processing and transfer rate, adaptive, lightweight transmission protocols on top of the
network.

The usage of multimedia was enabled by the technological progress in the fields of networks and
endsystems that supply needful equipment for an even increasing transmission ant computational
power. However, the functionality of modern operating and transport systems is not sufficient to allow
the efficient development, implementation and control of distributed multimedia applications. A
multimedia development platform is required to enrich the given functionality by specialized
abstractions and mechanisms that support distributed multimedia processing. The main issues that
have to be tackled are communication and processing of multimedia data under real-time conditions,
the automatic placement of DMA in distributed computer systems (DCS), resource reservation, and
synchronization of multimedia data streams.

The project is dedicated to the problems of configuration and synchronization management modeling,
analysis, optimization and development for distributed multimedia systems. The goal of OPTIMUS
project is as follows:

• to develop an approach, models, optimization methods and algorithms for configuration
management based on automatic mapping of a distributed multimedia application (DMA) to a
distributed computer system (DCS) and negotiation and resource reservation protocol,

• to develop the adaptive synchronization protocol and elaborate simulation models for its
analysis and optimization,

• to develop a testbed platform to probe and evaluate algorithms and mechanisms proposed for
DMA management

The annual report presents the methods, models, algorithms, mechanisms, and a simulation tool
COVERS developed and used for analysis, optimization and design of DMA configuration
management, negotiation and resource reservation protocol, and adaptive synchronization protocol,
that support configurable distributed multimedia applications. Results of computational experiments
conducted for evaluation of complexity of algorithms proposed are presented as well. Problems of
testbed platform development and implementation for configuration and synchronization management
of distributed multimedia systems are discussed.

The research results obtained are oriented on the further development of CINEMA (Configurable
IntEgrated Multimedia Architecture) that was designed at the Distributed Systems Department of
Stuttgart University and supports the development and control of multimedia applications with
arbitrary processing topologies consisting of multiple data sources and sinks as well as arbitrary
intermediate processing stages.

The remaining part of the report is organized in the following way. In Section 2, the DMA lifecycle
and management tasks at each stage are described, the problems concerning the paper are formulated.
In Section 3, architecture and models of CINEMA system for configuring and controlling DMA are
presented. In Section 4, negotiation requirements, architecture and an algorithm of configuration
service are described.
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In Section 5, the problem of mapping a DMA to a DCS is discussed and formulated, mapping
algorithms that differs by computational complexity and solution error are proposed, experimental
results of algorithms’ complexity analysis are presented and discussed.

In Section 6, the adaptive synchronization protocol developed at the IPVR is considered. A formal
specification and model of the protocol are described using the abstractions, high-level language, and
functionality provided by COVERS software platform elaborated by the research team of the
Technical University of St. Petersburg. The protocol performance evaluation and optimization
problems are formulated.

In Section 7, a prototype of videoconferencing system as base of a designed platform for configuration
and synchronization management is described.

In Conclusions, the main results obtained are summarized. In Appendix, mapping problem
specification language developed and implemented in C++ is represented.
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2 Application lifecycle

To get better understanding of management tasks concerning a DMA we consider the following
application lifecycle a DMA follows after it’s installed on a computer system (Figure 2.1).

Preparation Session set-up Active phase Termination

• DMA logical
topology spec

• User QoS reqs
• DMA logical topology

& QoS negotiation
• Layer-to-layer QoS

mapping
• DMA-to-DCS mapping
• Admission Control
• DMA instantiation
• Synchronization

mechanisms set-up
• Resource reservation

& allocation
• Accounting

• Resource
• deallocation
• User notification

• QoS monitoring
• QoS maintenance
• QoS adaptation
• QoS re-negotiation
• Layer-to-layer  QoS

re-mapping
• DMA re-configuration
• Re-accounting

Lifecycle
Phases

Mgmt tasks

Figure 2.1 Distributed Multimedia Application Lifecycle and management tasks

We suggest to consider the following four steps during the lifecycle of a DMA session: the preparation
phase, the session set-up phase, the active phase and the termination phase. To provide a requested
service, the management system should analyze the correctness of a user request and specify DMA
logical structure (topology) at the preparation phase, to establish a DMA session with QoS requested
by the user, to control and to maintain the session QoS during the active phase, and to terminate the
session when requested by the user or due to a failure, e.g. during heavy network congestion.

Let us give a brief description of DMA management tasks needed during these four phases.

2.1 Preparation phase

Initially a user specifies a DMA logical topology he wants to utilize. The user also can be asked to
specify how he is going to work with the application - supposed session time (i.e. how long), start time
(immediately or at any time in the future), etc. The user may declare some QoS management policies,
such as what the system should do if QoS degrades below a particular level - terminate the application,
try to automatically adapt QoS without user intervention or negotiate new QoS with the user, - what
QoS requirements the user is ready to weaken, if all the requirements can’t be satisfied all together,
etc. Doing that the user and the system prepare a contract, in which the user is obliged to use the
application in a certain manner, and the system has to provide a certain level of QoS in turn. The
contract assignment will be done in the next phase, when DMA will be placed in the DCS and user
QoS requirements will be negotiated with the DMA topology.
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DMA logical topology specification is concerned with defining DMA topology as a set of components
interconnected via links. Components are processing elements encapsulating functions for capturing,
storing, presenting and manipulating continuos data streams. A link is an abstraction of an
unidirectional communication channel, conveying stream from one component to one or more others.

The specified DMA topology is checked syntactically and semantically for media stream compatibility
between interconnected components.

2.2 Establishment phase
After DMA user submitted logical topology and the topology was checked, the session set-up phase
begins.

User specifies QoS and stream synchronization requirements, the sources and sinks of the DMA, that
have to be established at a time. The management system negotiates the QoS requirements of the user
and QoS constraints of the DMA topology, finds a DMA placement in the DCS, defines required
resources needed to support desired QoS, reserves the resources, prepares all mechanisms needful for
streams’ synchronization. After that, the session can be initiated at the given start time by launching
the DMA and its associated clock.

Additionally the user may require in advance the fixed allocation of particular DMA components
(usually sources and sinks) in the DCS, i.e. which components have to be placed to which computers.

User QoS requirements are concerned with defining required levels of QoS for the DMA user(s).
Required QoS values may be expressed in terms of advisory values, mandatory values, upper and
lower thresholds or a variety of other forms.

Layer-to-layer QoS mapping performs the translation between representations of QoS at different
system levels. In particular, this mapping function is required to translate the user QoS parameter
values to those of the service provider to perform resource reservation as required to support the
requested QoS.

DMA logical topology & QoS negotiation permits to refine a DMA topology, which might support the
requested QoS. QoS requirements of the DMA user(s) have to be mapped to each component of the
DMA. So, the problem is to decompose the QoS requirements of the DMA users to QoS requirements
to each component of the DMA taking into account the DMA topology, functional capabilities and
resource availability of the DCS.

Moreover, because a DMA can have many users with different conflicting QoS requirements, the
management system analyses correctness of every user request and negotiates the QoS requirements
of the different DMA users with each other and with the DMA topology. When user specifications are
submitted, the management system is to check for inconsistencies among the requirements of a single
user as well as the whole user community. If the system cannot provide requested QoS for a user, it
should re-negotiate QoS requirements with the user or refuse the user request.

DMA-to-DCS mapping permits to find the optimal placement plan of the DMA topology into a given
DCS taking into account the resources required by the DMA and the DCS resources available in an
offered time interval of the DMA session.

Admission control is responsible for comparing the resource requirements that arise from the QoS
levels associated with a new DMA, and the available resources in the DCS.

Synchronization mechanisms set-up allows controlling and synchronizing the data flow of data
streams arriving at sink components.

DMA instantiation is concerned with loading DMA component code.

Resource reservation & allocation is usually necessary in order to support a given level of QoS during
DMA session.  While resource reservation is done during DMA-to-DCS mapping operation, allocation
of the resources is conducted after DMA instantiation, i.e. just before the beginning of the active
phase.
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Accounting concerns with the evaluation of the costs relative to a service requested by a user.

2.3 Active phase

The active phase starts at the time specified by a user, i.e. immediately or at any time in future. In the
last case, the management system provides advance reservations for guaranteed and predictive service

as shown in [DKPS95], [FGV95], [WDS+95].

At the active stage the application is launched providing certain services to its users. The management
system should support QoS monitoring and maintenance, if QoS requirements are violated.

QoS maintenance is based on dynamic mechanisms (e.g., fine grained resource tuning strategies),
which allow to ensure that the required performance of individual DMA components as well as of
DMA as the whole are kept within given bounds.

QoS monitoring is used to allow each layer of the system to track the ongoing QoS levels and compare
them with the initial QoS requirements.

QoS adaptation implements coarse grained QoS maintenance control and must be able to exhibit
graceful degradation reacting adaptively on changes in the environment and to violations of the
contracted QoS.

QoS re-negotiation, layer-to-layer QoS re-mapping, DMA reconfiguration and re-accounting are
performed if the DMA performance violates the contracted QoS.

2.4 Termination phase

It’s time when all the resources submitted to the application (or its part) should be freed and the users
should be notified about session termination. The latter is important when application termination was
initiated not by the users, but by the system due to the certain reasons (allowed service usage time has
elapsed, or an unrecoverable error occurred). Resource deallocation procedure sends the notifications
to all entities involved in the QoS provision relative to this DMA session to free reserved resources.

2.5 Concern of this paper

Undoubtedly, being different all the DMA management tasks mentioned above have a lot of common
properties. To perform any of them one should have dependencies between QoS parameters, which
comprise a QoS goal, and system parameters at various levels of system architecture. Expressed in
some form these dependencies are interpreted specifically for a particular management task (e.g.
monitoring, diagnosis or operational control) and management policies. For instance, in papers
[AH+97], [AH+97a], the active phase of the distributed application lifecycle mostly is considered,
when all application components are attached to the resources, and management architecture, model
based approach for QoS monitoring and operational control schemes for the World Wide Web system
are proposed.

In our paper, we will discuss mostly the preparation and session set-up phases, algorithms and
protocols used for management tasks of these two DMA lifecycle phases.
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3 CINEMA system for configuring and controlling distributed
multimedia applications

3.1 Application model

In this section we briefly introduce abstractions for modeling configurable distributed multimedia

applications. Similar concepts are pursued by various research groups [KHSM95], [BCA+92]
including the group defining IMA MMS [IMA93]. Here we describe the terminology used for
CINEMA (Configurable INtEgrated Multimedia Architecture) development platform. For detailed
description of CINEMA we refer to [RBH94], [RDF97].

DMA are employed to generate, process and consume (e.g. present) continuous (e.g. audio, video)
data streams over distributed locations into computer network. Generally, a DMA consists of some or
more components, interacting  with each other by data streams [RBH94]. Source components generate
data, filters and mixers manipulate data, and sink components present data to users. DMA can be
represented by one or some data flow graphs, composed out of such components and links
representing the data streams between components.

Components encapsulate processing of multimedia data, e.g. for generating, presenting or
manipulating data. To provide a uniform data access point for components, ports are used that deliver
data units to the component (input port) or take data units from the component (output port). Source
components are associated with output ports only, sink components – with input ports only.
Intermediate components receive data from a number of input ports, perform some operation on the
received data, and send the result via a number of output ports.

An application is constructed by specifying a topology of components interconnected via links. A link
indicates a data flow between two interconnected ports and provides an abstraction from underlying
communication mechanisms that may be used to perform the transport of data units.

3.2 CINEMA system architecture

CINEMA [RBH94] is a middleware system that provides high abstractions and services for
configuration distributed multimedia applications, the set-up of communication sessions along with
QoS negotiation and resource reservation, as well as the service for data flow control and
synchronization. CINEMA assists the client in these services in an integrated way.

Architecture of CINEMA system is depicted in Figure 3.1.

A client is a program entity that realizes, on one hand, a graphical interface service towards human
end-users and, on the other hand, performs DMA topology construction, session set-up and data flow
control using the services offered by CINEMA.

In CINEMA, a configurable distributed multimedia application is defined as a client containing the
description of a topology of interconnected components, temporal properties of the topology and a
session. The session is defined to select parts of the topology, that shall be established at a time, and to
specify a media-specific and end-to-end QoS parameters corresponding to a QoS requested by end-
user. The QoS description is located at the input ports of sinks.

In [RBF96], [RDF97] and [Bar96], configuration and session management services were defined
assuming that a location of a DMA in a DCS is specified in any way in advance (e.g., by end-user).
Now we consider extended configuration management that includes the automated mapping a logical
application topology to a computer network. Adding the mapping function causes some
rearrangements of the previous function distribution between the configuration and session services.
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The configuration process is executed during the preparation and session set-up phases. First, the
client refers to existing components by globally unique names and interconnects components to a
logical application topology. Each stream and all ports connected to the stream are associated with one
media type, e.g. “MPEG_encoded_video”. A specified DMA logical topology is checked syntactically
and semantically (for compatibility between interconnected ports) by the configuration service.

The second step of the configuration process is initialized when the client starts a session set-up.
During the session set-up phase, the components necessary for the session (may be not all ones of the
DMA) are selected. Desired QoS has to be indicated to CINEMA. Stream media values between the
component ports are negotiated corresponding to the requested QoS taking into account a set of
acceptable computers, their functional capabilities and resource availability. Then an optimal
placement of the DMA in the DCS is found, resource reservation for the components and links is
executed, and the physical application topology is instantiated.  The instantiation concerns the
provision of runnable code for components and links and the establishment of communication
channels required for managing subsequent services.

Synchronization management is used within a session to control the data flow of data streams arriving
at sink ports. CINEMA offers VCR-like commands to start, stop, and scale data flow of such streams.
In addition, CINEMA allows to group streams for atomic control and to specify synchronization
requirements between several streams by offering the concept of clock hierarchies [RH96a].

A stream synchronization service frees a client from the ever-recurring task of implementing flow
control and synchronization algorithms as part of the development process of each multimedia
application. By using the middleware service for stream synchronization, time-dependent data streams
can easily be integrated into various applications, such as CSCW applications or tools to present
multimedia documents.

3.3 QoS architecture

The necessity of different QoS levels arises from different tasks that have to be solved by a user and
by a service provider. At highest level, end-user oriented QoS abstractions must be allowed to express
user QoS requirements. At the lowest level, QoS descriptions serve to indicate resource demands.
Consequently, the lowest level QoS description is resource oriented and independent on media-
specific characteristics.

Besides at the middle level, media-specific QoS parameters are needed to negotiate QoS. The goal of
the QoS negotiation is to settle on the best QoS complying with client (user) QoS request under two

Distributed Multimedia System Services

Configuration
Management

Session
Management

Stream Control &
Synchronization
Management

Client

End-user

Figure 3.1 Architecture of CINEMA system
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kinds of restrictions: limited functional capabilities of computers that are used for allocation and
processing DMA components, and limited resource availability for links and components.

In CINEMA, three levels of QoS are considered: client level QoS (C-QoS), session level QoS (S-QoS)
and transport level QoS (T-QoS).

At the highest level, C-QoS is specified in a manner appropriate to end users, and hence is end-user-
specific.

The QoS specified at the session level is media-specific. The media parameters of the stream’s type
and a number of generic parameters, such as delay, jitter and loss rate, define S-QoS of a stream. The
client is responsible to map the C-QoS specified by the end user to the S-QoS at the session level. Of
course, for a given type of S-QoS, various types of C-QoS and mappings are conceivable.

At the transport level, T-QoS is specified in a media independent fashion, e.g., such parameters as
packet size, packet rate, burst size, delay, and jitter. In CINEMA, the mapping from media-specific
QoS parameters to the T-QoS parameters is done within the link objects.

During session establishment, flowspecs are used to convey QoS information at the session and
transport level. At the transport level, a flowspec carries media-independent parameters and is
communicated along the selected network path. At the session level, a flowspec contains media
specific and generic parameters and is passed along the flow graph structure, where both links and
components are involved in QoS negotiation.
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4 Configuration service

4.1 Negotiation requirements

Before discussing the configuration management, we consider DMA topology peculiarities, which
cause QoS dependencies across the application topology. These dependencies have to be taken into
account to construct QoS negotiation and mapping algorithms and protocols of the configuration
service.

4.1.1 Functional capabilities and resource shortages

Functional capabilities of a DMA component to support different QoS levels are restricted. Limited
functional capabilities of components depend on their design. This kind of capabilities has to be taken
into account just at the preparation phase of the DMA life cycle.

Moreover, different computers can implement components in various soft- and hardware ways,
thereby it may also influence the component functional capabilities that are practicable. So, functional
capabilities of DMA components may depend on functional capabilities of computers (their soft- and
hardware) on which they are placed.

Resource shortage somewhere in a DCS (e.g. on the computer) forces a component or link (located in
the computer) to support QoS below their functional limitations.

4.1.2 Port type compatibility

In distributed multimedia applications, data streams are typed. Each media type defines a set of so-
called media parameters, which specify the characteristics of a particular stream instance. As streams
are communicated via ports, ports objects are typed and can only be linked if they are of compatible
type. Such port type checking is performed during the preparation phase when application logical
topology is instantiated.

4.1.3 Format constraints of media parameters

As ports are typed, only a certain type of stream can be communicated via a given port. However, the
instances of a particular stream type may significantly differ in their media parameter values. It cannot
be assumed that a component port supports the entire value range for each media parameter.

To express the capabilities of components with regard to the stream formats they are able to consume
and/or produce, so-called format constraints are introduced in [RDF97]. Each component port is
associated with a media that is characterized by appropriate media parameters. Each media parameter
has a (possibly empty) set of format constraints, which indicate the value range of such parameter that
can be supported by the component at that port.

Format constraints for each media parameter associated with each component port depend on
functional capabilities of computer, on which the component is placed. Hence, unlike XNRP, format
constraints relate both to components and computers, and they have to be specified for each
(component, computer) pair.

4.1.4 Stream relations

In addition to format constraints, so-called stream relations between ports of a same component have
to be considered by the negotiation process [RDF97]. For example, an audio mixer mixing several
audio streams usually requires the same quality to be delivered at all input ports.
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For fixed filter, a stream relation between input and output ports is as follows:

param: @outport = F * @inport.

Such stream relation means that the value of media parameter at input port is to be F times greater
than the value of this parameter at the output port. Here F denotes the filter factor.

For mixer components, mixing stream relations are defined between pairs of input ports (i,j):

param: @inport_i =  fi,j * @inport_j.

The relation means that the value of media parameter at input port i is to be fi,j times the value of this

parameter at input port j. For the mixer with n input ports, it is enough to specify n-1 factors fi,j
relative to any input port j.

Mixing relation between the output port and an input port of a mixer

param: @outport_k = fk,j * @inport_j.

Usually, input port j of the mixer is chosen such that fk,j = 1 and such input port j is used for

specification other n-1 input ports. Hence, to define all stream relations between input and output ports
of a mixer, it is enough to specify number of input ports and number j of the input port, relative to
which filter factors of other input ports are specified. Such input port j of a mixer is called key port.

Obviously, the stream relations defined at a component not only affect the media parameters of this
component’s input and output streams but impact the entire flow graph.

4.1.5 Topology complexity

Introducing mixing components and multicasting links into application topology makes the topology
more complex. Such components and links complicate the negotiation process and cause additional
QoS dependencies that reduce QoS ranges for which the negotiation process will be successful. To
isolate and to reduce the impact of such QoS dependencies, the concept of special components, termed
variable filters, is proposed in [DFR95], [DFBR95].

In effect, a variable filter decouples QoS provided at its input port from QoS delivered at its output
port. This feature of the variable filter allows negotiating QoS for the DMA topology closer to QoS
requirements and raises DMA session flexibility for “heterogeneous” QoS requests reflecting the
varying QoS requests of independent (human) end-users supported by the client.

4.1.6 Requirements to the configuration service

Above arguments laid the ground for requirements to the configuration service for distributed
multimedia applications:

• Support for media specific QoS parameters,
• Support for port type compatibility for DMA logical topology (at the preparation phase),
• Support for various QoS due to limited functional capabilities of components, computers and

resource availability of the computers,
• Support for media parameter format constraints associated with each component port. Unlike

NRP [DFBR95] and XNRP [RDF97], the format constraints relate both to components and
computers, and they have to be specified for each (component, computer) pair,

• Support for stream relations,
• Support for complex DMA topologies including mixing components, variable filters and

multicasting links.

All these requirements have to be taken into account for development of the configuration service
(realized by Configuration server).
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4.2 Configuration service architecture

The configuration service is divided into three parts. One part, called application handler [Bar96], is
located on the system the client is established and services the client to build up DMA logical
topology as a flow graph at the preparation phase (see Figure 2.1). Application handler checks
syntactically and semantically the topology, e.g., port type compatibility.

The second part, called configuration server, can be organized as a centralized entity. It starts at the
session set-up phase (see Figure 2.1) and defines DMA physical topology including:

• selecting all DMA components that are part of session creation,
• defining format constraints for each component port,
• pre-negotiating media values between component ports for given QoS requirements taking into

account format constraints and a set of acceptable computers for each component,
• mapping pre-negotiated DMA topology to the DCS,
• resource reservation for components, and sending and receiving sides of links,
• loading and instantiating components.

The third part, we call configuration handler following [Bar96], is based on XNRP [RDF97] and is
distributed over the computers that have been used for allocation of DMA components. The
configuration handler completes the session set-up phase including following operations:

• final QoS negotiation taking into account communication resource demands of the links and
resource availability of the transport network,

• final computational and communication resource reservation,
• distribution of components on threads,
• preparation of all mechanisms necessary for stream synchronization.

At the termination phase (see Figure 2.1), configuration service selects all components that are part of
session deletion, terminates the session and releases all resources occupied by the components.

The algorithms for selecting components, which are part of session creation and deletion, as well as
for distribution of components on threads are proposed in [Bar96].

Let us discuss the configuration server in detail.

The main complexity to develop an algorithm of the configuration server is the interdependency of the
QoS negotiation and DMA mapping processes. Actually, as argued above, format constraints relate
both to components and computers, and they have to be specified for each (component, computer)
pair. So, to negotiate QoS, format constraints for each port of every component must be given. To
define format constraints, the functional capabilities and resource availability of computers, on which
the components will be placed, have to be given, i.e. the components must be pre-attached to
computers. However to find an acceptable or an optimal placement of components on computers,
required resources of components and links are necessary. To define required resources, negotiated
values of media parameters at each port corresponding to QoS requirements have to be given. Thus
the “closed circle” is got that verifies the interdependency mentioned above.

To construct a configuration server algorithm, we base on approaches, methods and algorithms for
QoS negotiation implemented in NRP [DFBR95] and XNRP [RDF97], and for DMA to DCS mapping
developed in [HRD96], [HRD96a], [IH96].

It is important to note that QoS negotiation algorithms deal with QoS value ranges, i.e. format
constraints. And they compute one value of each media parameter at every port in the DMA topology.
Such set of point values obtained, on one hand, minimizes resource consumption, and on the other
hand, supports the highest possible QoS values in the acceptable intervals of QoS requirements
specified by the client at sink components.

In opposite side, at the beginning, the mapping algorithms deal with one value of resource demands
for each resource type for every DMA component and link, and also with point values of available
corresponding resources of a computer network. And they try to find an optimal or quasi-optimal
placement of the DMA in the computer network.
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Hence, the problem is to define initial format constraints as input data for the QoS negotiation
algorithm. Then the point media values obtained by the algorithm are transformed to resource
demands, which are used as input data by the mapping algorithm for DMA placement in the DCS.

The proposed approach for definition of initial format constraints is as follows. Configuration server
asks every computer what kind of components and what format constraints for each component type it
can support. Then, for each component of the DMA, a set of acceptable computers is created. After,
the aggregated format constraints are defined for ports of each DMA component taking into
account the corresponding set of acceptable computers and their format constraints.

When QoS negotiation algorithm will obtain the negotiated media values, these values will be used for
refining the set of acceptable computers for every component. Obviously, every such refined set will
contain not more computers than corresponding initial set.

4.3 Configuration service algorithm

4.3.1 General algorithm

General representation of the configuration service algorithm is as follows:

1. Specifying (by the client) and checking (by the application handler) a DMA flow graph.

2. Specifying (by the client) clocks for stream synchronization, all source and sink components that
have to be active in a session, QoS requirements, the component placement constraints.

3. Selecting all components that will be part of the session.

4. Specifying a set of acceptable computers and aggregated format constraints for each component.

5. Negotiating media values between component ports for highest possible user QoS requirements
such that each media parameter at each port is characterized by one value and aggregated format
constraints are satisfied. If the QoS negotiation failed then notify the client that user request can
be not satisfied, stop.

6. Refining the set of acceptable computers for each component on the base of media values
obtained.

7. Deriving resource requirements for each acceptable (component, computer) pair as well resource
requirements of component’s ingoing and outgoing links.

8. Assigning the DMA to the DCS.

9. If the assigning is not successful then checking whether the DMA can be placed in the DCS for
lowest possible user QoS. For such checking, steps 5 - 8 are repeated but for lowest user QoS
requirements.

If re-assigning failed then notify client that user-request can not be satisfied and stop, otherwise
any policy can be used to improve the DMA assignment obtained.

10. Reservation of computer resources needed for components as well as for its sending and receiving
links, loading and instantiating the components.

11. The configuration handler based on XNRP executes the operations mentioned in 4.2.

The configuration server executes steps 3 – 10.

4.3.2 Input data for the configuration server

Configuration server collects following information
1. From client:
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• flow graph, including
a) both all components (their classes and their port types) and links (adjacent components as well

as type of their output and input ports connected by the link) specification,
b) for each fixed filter, filter factor,
c) for each mixer

- number of input ports,
- key input port,
- filter factors of input ports relative to the key port,

• QoS requests specified for input ports of sinks,
• the set of (pre-attached component, computer) pairs defining what components and to which

computer they are assigned in advance (these are usually sink and source components).
2. From computers:

• set of component types supported by each computer (as result of admission control using
information of functional capabilities and resource availability of the computers),

• format constraints for each (component type, acceptable computer) pair,
• resource requirements for (component, its negotiated media values, acceptable computer)

triple,
• resource requirements for sending side (output port of one adjacent component) and

receiving side (input port of other adjacent component) of each link,
• resource availability,
• cost of each resource type.

The configuration server asks and uses the data1 from the client at step 3 (see 4.3.1).

The information about sets of supported components and format constraints is asked from computers
and used at step 4 to derive aggregated format constraints. The latter is used then for QoS negotiation
at step 5.

The data of resource requirements are asked from computers and used at step 7. It is important to note
that QoS negotiation at step 5 makes possible to ask resource demand for each (component, its
negotiated media values, acceptable computer) triple not for all values of media parameter range but
only for one media value obtained at the step 5.

At step 8, the server asks and uses the data of resource availability and resource costs.

Thus, the configuration server requests the input data not simultaneously but consistently (step by
step) and exactly at the step when the data is needed. Such approach allows to get actual data and take
into account the results of the previous steps for revision the volume and content of the required data.

4.3.3 Refinement of the configuration server algorithm

Let us refine some steps of the general algorithm (see 4.3.1)

At step 4, the configuration server receives from each computer the set of supportable component
types. Let SupCmpon denotes the set of component types supported by the computer n. Then to
specify the set of acceptable computers AcCmpuj for a DMA component j, the server includes in the
set AcCmpuj every such computer n which set SupCmpon contains the component j.

At step 4, the server receives also format constraints for each (component type, acceptable computer)
pair.  Assume that from all acceptable computers, the server got format constraints for a media
parameter V for component j FormCstrj = {(minVn … maxVn), n ∈ AcCmpuj)}, where (minVn …
maxVn) denotes value range for the parameter V provided by the computer n. Then the aggregated
format constraints for the component j is obtained as (minV, maxV), where minV = min{minVn, n ∈
AcCmpuj) and maxV = max{maxVn, n ∈ AcCmpuj). So, the aggregated format constraints for any

                                                          
1 To include into consideration also end-to-end QoS requirements, (throughput, delay, loss-rate),
additional input data are needed, namely corresponding QoS parameter values for each (component,
computer) and (link, virtual channel) pairs. In the current report, to simplify a general conception of
configuration server represented, we omit the end-to-end parameters.
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media parameter at any port of a DMA component are obtained by merging all format constraints
from all computers acceptable for the component.

At step 5, the server negotiates media values between ports of all DMA components in two phases. In
the first phase, the aggregated format constraints are “propagated” in a down stream direction from
source components to sink components. The results of the phase are possible QoS ranges provided by
the sources to the sinks. In the second phase, best acceptable QoS are defined for sinks taking into
account the QoS ranges obtained for sinks at the first phase and QoS requirements specified by the
client at the input ports of sinks. Then obtained best acceptable QoS values are “propagated” from
sinks to sources to define needed exact media values at every port of components including source
components. During the propagation of QoS in both phases, the aggregated format constraints and
stream relations are taken into account.

At step 5, the server realizes the first and second phases of XNRP [RDF97] but without resource
constraint consideration, i.e. assuming that resources are unlimited. However it is important to note,
that actually resource constraints were introduced before in aggregated format constraints, and thus,
they are taken into account implicitly at the step 5. For a detailed description of the two phases
algorithm we refer to [RDF97].

Negotiated media values for every port of DMA components obtained at step 5 are used for
refinement of acceptable computers set for every component at step 6. It means the computers of set
AcCmpuj that can not provide a negotiated media value for component j must be excluded from the set
AcCmpuj of computers acceptable for this component.

Mapping the DMA to the DCS executed at step 8 will be discussed in detail in the next section.

At step 9, if the mapping for the best possible QoS is not successful then the server re-negotiates the
DMA logical topology for lowest possible QoS and tries to map such the DMA to the DCS.

At step 10, the obtained DMA placement in the DCS with best possible QoS or with lowest possible
QoS is used by the server to complete the session set-up phase.

It is important to note the step 9 could be supplemented such that if a DMA placement for lowest QoS
is found, then one can try to re-place the DMA in a way to improve QoS. Different policy for DMA
re-mapping can be used. Let us consider such one.

There are given

• for lowest user QoS requirements, resource requirements of each DMA component, sending and
receiving links

• for highest QoS requirements, also resource requirements of each DMA component, sending and
reciving links

Hence, each component i is characterized by resource difference dRi needed to improve user QoS
from the lower level to highest one. Using the flow graph of the DMA, one can determine which sinks
are influenced by component i. Let dQoSi is the sum of differences in QoS between the highest and
the lowest levels for all sinks connected directly or indirectly with component i.

Then the component n with maximum value dQoSn/dRn is a start point for improving the QoS. The
next acceptable higher media value of format constraints is chosen for this component, and one
continues the algorithm from step 5 to renegotiate the port format constraints of DMA components
and so on.

Thus we not have to do immediately with sink QoS requirements but with a component which
minimum resource demand increase allows getting maximum QoS improvement.

If no acceptable DMA allocation exists for such DMA graph with new port format constraints then
other component with maximum value dQoSn/dRn will be considered and so on until an acceptable
DMA location for best possible QoS is found or a permissible time for the DMA mapping is finished.
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5 Mapping a DMA to a DCS

5.1 Introduction to mapping problem

The general mapping problem1 deals with the question of assigning components of a DMA to
computers of a distributed system (network) so as to minimize a criterion (e.g. cost of usage of DCS
resources) satisfying QoS requirements of DMA users and taking into account DCS functionality and
resource constraints. The particular mapping problem deals with a DMA which components and links
are specified by required computation and communicational resources that can guarantee requested
QoS. Thus, in the particular mapping problem, QoS requirements are taken into account in an indirect
way.

Several formulations of the mapping problem are known to be NP-Complete (e.g., [HDR96],
[HDR96a]). Approximate techniques with polynomial complexity for mapping DMA, whose topology
are restricted to a chain-like and tree-like structures are presented in [IH96]. In [HDR96] the mapping
algorithm based on branch-bound method is proposed, and in [HDR96a] the technique for DMA
initial placement improvement is considered.

There are no simple procedures, which can guarantee an optimal solution to the mapping problem due
to its complexity. Therefore, heuristics techniques are employed as well to find pseudo-optimum or
local optimum solutions.

Mapping techniques are usually either constructive or iterative. A constructive approach assigns the
components one a time to the different computers until all components are eventually assigned.
Constructive methods can be distinguished by the strategies to select the next unassigned component,
and to assign the selected component.

Iterative methods transform a given complete placement into a new, hopefully improved, complete
placement. If an acceptable criterion is satisfied, the new placement replaces the current one. This
process is repeated until a stopping criterion is satisfied. During each iteration, a new placement is
found by selecting some components and moving them to alternate computers. The initial placement
needed to start the iterative process can be generated in any way, e.g. manually by user, randomly or,
at last, using a constructive method.

In the paper, both constructive and iterative methods will be discussed.

Let us consider some peculiarities of the DMA topology and requirements of the real time resource
management that must be taken into account for the mapping problem formulation.

The first one is the multicasting communication mode, that allows to use the capacity of a single real
channel to transfer the same data to many sinks and is widely used in distributed multimedia
applications. The DMA topology consisting of a single source, multicasting link and many sinks is the
simplest example of multicasting application. . Multicasting logical topology can be mapped to
multicasting physical topology if and only if the DCS (or some needful channels in a DCS) supports
multicasting mode.

The multicasting case influences the computations of cost functions and resource usage in mapping
algorithms.

Another feature of a DMA concerns, that computer resources needed for a component depend on
whether adjacent components are placed in the same computer or in other one. If two adjacent
components are allocated on the same computer no additional expenses are needed for their
communication. In this case the capacity of required resources is determined only by processing
modules of both components as soon as its link does not require the mapping to a DCS channel.
                                                          
1 The problems closed to the mapping are also addressed in literature as assignment problem (e.g.
[Bok97]) or placement problem (e.g. [RPP94]). All these terms we use in our paper as synonyms.
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However, should these components be placed on the different computers each of them will require,
usually, transport and compression or decompression processing modules to interact. Hence, in the last
case, such modules require additional computer resources that increase the total cost of DMA
allocation. Thus, computation resources required by a component depend on whether the connected
components are allocated to the same computer or not.

The next important property that must be taken into consideration is dynamic nature of the processes
of allocatingand releasing resources performed by distributed applications, which can start and
terminate atrandom moments. So, the current resource availability of DCS units and channels  varies
in time. It makes the practical solution of the mapping problem even more complex. There is some
kind of a contradiction: on one hand, the most mapping techniques assume that the DCS resource
availability is fixed until the DMA assignment solution will be obtained. On other hand, the DCS
resource availability is a function of a time and depends on other applications’ activities.

In [RDH96a], static, pseudo-static and dynamic mapping policies that differ in duration of blocking
the DCS available resources are considered. The dynamic policy does not require blocking but allows
only step by step DMA component assignment and requires any re-assignment mechanism in the case
if the resource manager can not support the requested resources for the allocation of the component
assigned.

The duration of blocking in static and pseudo-static policies has a threshold, its violation may cause a
deterioration of behavior of applications running at the same time in the DCS. Therefore, a mapping
algorithm consuming a lot of time should be manageable to be interrupted at any time, to place already
assigned components in a DCS, and to resume the work from an interrupted point when the control is
given back from the system. Thus, it is desirable that a mapping algorithm assigning and allocating
once a component to a computer does not revise that assignment. Just a few of mapping approaches
have such a property, e.g., branch bound method based approach [HDR96] does not have this
property.

5.2 Mathematical formulation

The mapping problem formulation is as follows. We are given:

1. A flow graph of DMA topology including
η − a set of components,
di(n) - a conditional required computational capacity for every component i (i.e. CPU cycles per

second needed by the component to run normally) provided that computer n is used to assign
component i,

mi(n) - a conditional required memory amount for every component i  provided that computer n is
used to assign component i,

λ - a set of links connecting components with each other, λ = {(i,j), i,j ∈ η)},
bij - a required bandwidth for every link (i,j) ∈ λ,
d(ij)(nm)1, d(ij)(nm)2 - a conditional required computational capacity for component i (a sender) and

component j (a receiver) of a link (i,j) ∈ λ correspondingly to transfer (i.e. to send and to
receive) data through the link provided that the components i and j are mapped to computers
n and m. Parameters d(ij)(nm)1, d(ij)(nm)2 compose a matrix of (|2λ|*|π|) elements,

m(ij)(nm)1, m(ij)(nm)2 - a conditional required memory amount for component i (a sender) and
component j (a receiver) of link (i,j) ∈ λ correspondingly provided that computers n and m
are used1. Parameters m(ij)(nm)1, m(ij)(nm)2  compose a matrix of (|2λ|*|π|) elements,

ζi - a set of acceptable locations (computers) for every component i ∈ η in the DCS.

2. A DCS topology including
ζ - a set of computers,

                                                          
1 In so-called homogeneous situation, when computational and memory resources required by every
component do not depend on which computer is used for placement, the parameter n can be omitted.
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- a set of virtual channels (simply channels) connecting computers with each other, ζ = {(n,m),
n,m ∈ ζ)},

Rn, Mn - an available (vacant) computation and memory resources of every computer n ∈ ζ,
- a set of shared or/and dedicated communicational resources in the DCS1,
ρnm - a set of communicational resources of the DCS used by channel (n,m), ρnm ∈ ρ, ρ = ∪ ρnm,

πs - a set of channels routed over communicational resources s ∈ ρ, π = ∪ πs,
As - a bandwidth of a communicational resource s available to the DMA, s ∈ ρ.

3. Cost functions
f - a matrix (|η|*|ζ|) of component’s allocations costs, an element fin of f specifies the cost of

mapping component i to computer n. If component i can not be assigned to computer n then
fin = ∞,

g - a matrix (|λ|*|π|) of link’s allocations costs, an element g(ij)(nm) of g specifies the cost of
mapping link (i,j) to virtual channel (n,m). If link (i,j) can not be assigned to channel (n,m)
then g(ij)(nm)  = ∞,

u - a matrix (|2λ|*|π|) of costs for link sending and receiving sides allocations, an elements
u(ij)(nm)1 and u(ij)(nm)2 of u specifies the cost of mapping the link sending side (output port of
component i) to computer n and the link receiving side (input port of component j) to
computer m correspondingly. If link (i,j) can not be assigned to channel (n,m) then u(ij)(nm)1 =
∞ and u(ij)(nm)2 = ∞.

The solution variables are xin such that xin = 1, if component I is assigned to computer n, and xin = 0
otherwise.

The general mapping problem is to minimize the total cost of DCS resources used for DMA allocation

F(xin) = min { Σ n∈ζΣ i∈η  xin* fin +
+ Σ (n,m)∈ πΣ (i,j)∈ λ  xin* xjm* (g(ij)(nm) + u(ij)(nm)1 + u(ij)(nm)2) } (5.1)

subject to

every component i of the DMA have to be placed on a DCS computer and only on one computer

Σ n∈ζ  xin = 1, ∀  i ∈  η , (5.2)

computational resource of each computer n ∈ ζ used by all components assigned to the computer, and
also by corresponding sending and receiving sides of links, must not exceed the available resource of
the computer

Σ i∈η  [xin* di(n) + Σ j∈η  Σ m∈ ζ  xjm* (d(i,j)(nm)1 + d(ji)(mn)2 )] ≤  Rn ,
∀  n ∈  ζ ,, i ≠  j, n ≠  m (5.3)

memory units of each computer n ∈ ζ used by all components assigned to the computer, and also by
corresponding sending and receiving sides of links, must not exceed the available resource of the
computer

Σ i∈η  [xin* mi(n) + Σ j∈η  Σ n∈ ζ  xjm* (m(i,j)(nm)1 + m(ji)(mn)2)] ≤  Mn ,
∀  n ∈  ζ ,, i ≠  j, n ≠  m (5.4)

total bandwidth of all DMA links mapped on communication resource s must not exceed the available
bandwidth of the resource

Σ (n,m)∈ πΣ (i,j)∈ λ  xin* xjm* bij ≤  As , ∀  s ∈  ρ (5.5)

Here g(ij)(nn) = 0 if components i and j are assigned to a same computer n, (i,j) ∈ λ; g(ij)(nm) > 0 if
components i and j are assigned to different computers, i.e. n ≠ m, (i,j) ∈ λ and (n,m) ∈ π. Similarly,
u(ij)(nn)1 = 0 and u(ij)(nn)2 = 0 if components i and j are assigned to a same computer n, (i,j) ∈ λ; u(ij)(nm)1 >

                                                          
1 Depending on used mapping algorithm, different communication resources can be taken into
account. For example, to simplify the mapping algorithm only computer interfaces and its bandwidths
(and no communication links or networks) can be considered.
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0 and u(ij)(nn)2 > 0 if components i and j are assigned to different computers, i.e. m ≠ n, (i,j) ∈ λ and
(n,m) ∈ π.

It is important to note that if it is needed take into account no resources of the communication network
of the DCS then one omits coefficients g(ij)(nm) in the objective function F and considers
communication constraints (5.5) only for computer communication interfaces.

This mapping problem formulation is a nonlinear integer programming NP problem with Boolean
variables.

5.3 Mapping algorithms

Several algorithms for mapping problem solution are presented in this section below.

5.3.1 An exact searching algorithm

An exact algorithm is based on a branch-bound method [Min86] and takes into account the
peculiarities of the mapping problem by building the search tree, choosing the bounding function to be
assigned with each leaf of this tree and searching for the “optimal” vertex on each step that
corresponds to the component that has to be mapped.

Actually, the exact algorithm we propose, consists of the following steps:

1. Mapping the pre-attached components (that are assigned to particular computers by the client in
advance).

2. Choosing the next component to be mapped.
3. Generating all acceptable locations for this component.
4. Computing the bounding function for every feasible location.
5. Choosing the best assignment for the component using the bounding values found above.

6. Checking whether all components have been assigned. Return to step 2 if there’re unassigned
component in a DMA otherwise an optimal DMA placement in the DCS is found.

7. The obvious advantage of the exact mapping algorithm is concluded in its orientation on
obtaining an optimal mapping variant. However, exponential complexity of its implementation
does not allow using this method in practice for really large mapping problems.

Let us consider several rules that allow to improve time complexity of the algorithm (still keeping it as
exponential).

The first problem we face at step 2 is to select the unassigned component. All selection rules can be
divided into the two general classes: static and dynamic.

A static selection rule orders all components with respect to a chosen criterion only once, usually at
the beginning of the algorithm. Then the algorithm chooses sequentially, from this ordered set, the
next component to assign. An advantage of static rules is its low time expense. A disadvantage is the
impossibility to take into account dynamic features of assignment process, unassigned part of the
DMA topology and available DCS resources.

A dynamic rule computes a selection criterion on every step of an algorithm. Dynamic rules do not
need a preliminary complete ordering of all components as the static mode. It is enough to find the
next component according to criterion chosen without ordering the other components every time. A
criterion of a dynamic rule can take into account dynamic features mentioned above; and therefore, in
comparison with static one, usually it narrows the domain of optimal solution search more effectively.
However, on the other hand, the regular re-computation of the criterion increases time expenses and
the total algorithm complexity.

Before considering several rules to select a component, we would like to introduce so-called
TIGHTNESS value. As computational experiments have shown, TIGHTNESS is very useful for
algorithm efficiency analysis and to get a domain of advantageous usage for rules and heuristics.
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TIGHTNESS value is used to specify the relative difference between the amount of available DCS
resources and the amount of DCS resources required by the DMA components and links. Let Di be the
amount of a resource required by component i, and Rn be the amount of available resources on
computer n. Then for computer n and for given resource type

TIGHTNESS(n) = Σ i Di / Rn * 100%, (5.6)

where the sum is taken over all components for which the computer n is acceptable.

Actually, when TIGTNESS value is set to 100, one can expect the redundancy of available network
resources. That fact, in its turn, may lead to the existence of a large number of feasible mapping
variants, and finding an optimal allocation in this case may require more time. With TIGHTNESS
value set to 100, we can also expect that all DMA components would finally be allocated to the same
DCS computer thereby making the communicational expenses negligible. However, this way doesn’t
always lead to the optimal solution, especially when the computational resources required by the
DMA components excel the communicational expenses required by the DMA graph in values.

By decreasing the TIGHTNESS value, one can achieve the situation in which there exist only few
possible DMA allocation variants over the DCS graph. Actually, there is a limit for the TIGHTNESS
value below that we cannot obtain any feasible mapping variants.

Several examples to demonstrate the effect of TIGHTNESS on solutions found by different algorithms
will be presented below.

5.3.1.1 Component selection rules

The proposed component selection rules and their characteristics are presented in Table 5.1.

The first simple one is to choose the next component in the increasing order of the number of
acceptable computers. Thus, the component that has less initial acceptable locations will be chosen for
assignment before others.

Obviously, in the dynamic mode, the minimum number of acceptable computers can only be
decreased during the algorithm execution with increasing number components assigned and
decreasing available DCS resources. If not yet assigned component i has a current set ζi of acceptable
computers then the next component with minimum{| ζi |, i is varied over all not yet assigned
components} will be chosen, where | ζi | is a cardinality of set ζi .

This dynamic rule is very useful if, on every step of the algorithm, there exists only one acceptable
computer for one or more components. Such components have so-called non-alternative assignment.
Every such component must be assigned as early as possible. If its assignment will be postponed then
chances to map the component will decrease in time because the available resources of the acceptable
computer will decrease as well. This rule allows rejecting, as early as possible, the vertices in a search
tree that can lead to a DMA allocation that is not acceptable. So, the rule supports the narrowing of the
domain of optimal solution search.

Note, that the pre-attached components, that are assigned by the client in advance have also non-
alternative assignments. At step 1, the algorithm checks the possibility of such assignments.

The rule to select the next component in the order of increasing the number of acceptable computers is
one of the best from the point of time expense for static mode. However, in the static mode, only a
situation at the beginning of the algorithm is considered. On the contrary, in the dynamic mode,
current number of acceptable computers for each component is taken into account. That is right for all
other rules: a dynamic rule takes into account a current value of a criterion used.

The second rule considered is to select the next component in the order of decreasing the resources
required for component allocation. So, a component with largest resource demand will be chosen
before others. This rule is useful in the case when one or more computers are acceptable for many
components that have a large variation in the resource demands provided that the computers have a
low or moderate TIGHTNESS. The rule allows to avoid the situation when components with relative
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low resource demands will be placed first on such computer and do not permit to place the
components with higher resource demands.

Table 5.1 Rules for choosing the next component to be assigned

Rule Static Dynamic1

Selecting
the next not
yet assigned
component
that has

Minimum
number of
computers
acceptable
for the
component

Maximum
resources
required by
the
component

Maximum
degree

Minimum
number of
computers
acceptable
for the
component

Maximum
resources
required by
the
component

Maximum
degree

Advantages Low time
expense

Low time
expense

Low time
expense

More
effective for
narrowing
the solution
search
domain

More
effective for
narrowing
the solution
search
domain

More
effective for
narrowing
the solution
search
domain

Disadvanta-
ges

High time
expense

High time
expense

High time
expense

When the
rule is
useful

Large
variation of
acceptable
computer
number for
different
components

High
intersection
of computer
sets
acceptable
for different
components

Low
TIGHT-
NESS

Large
variation of
computer
resource
demands

High
intersection
of
acceptable
computer
sets

High
TIGHT-
NESS

Large
variation of
component
degrees

There are
computers
with high
acceptabilit
y and
resource
availability

Because there are more than one type of resources (e.g., CPU, memory, bus rate, interface bandwidth
etc.), a transformation of component requirements for resources of different types to one scale can be
made. Several different approaches to build up the criterion function can be proposed. Let us consider
some of them.

Let RTnk be the available DCS resource of type k on computer n, and Dik be the type k resource
demand of component i. Ratio Dik/ RTnk denotes the fraction of computer resource of type k required
by component i if latter will be assigned to computer n. The optimistic and pessimistic criteria for
component arrange can be defined in min-max and max-max forms correspondingly:

P1i = min {max [(Dik/ RTnk), ∀  k], n ∈  ζ ι },
P2i = max {max [(Dik/ RTnk), ∀  k], n ∈  ζ ι }.

The optimistic (pessimistic) criterion means that component placement on the computer with
minimum (maximum) required resources is expected.

                                                          
1 Dynamic rules do not need a preliminary complete ordering all components. It is enough to find the
next component in accordance with the rule without ordering the other components every time.
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As follows from the definitions of the criteria, firstly for given acceptable computer, the type of
resource with maximum fraction of usage by the component (or, in other words, with minimum
resource excess) is obtained. Then, for the optimistic case, minimum (or, for the pessimistic case,
maximum) of obtained values over all computers acceptable for the component is found.

Of course, other criteria defined over component resource requirements and DCS resource availability
can be specified. For example, following parameter P3i represents the resource demands relative to the
total available DCS resources of acceptable computers

P3i = Σ k (Dik/ Σ n ∈  ζ  RTnk).

The third rule proposed is based on DMA topology peculiarities and takes into account so-called
degree of a component. The degree means a number of links incident at the component. The degree
shows the communication connectivity level of the component with the rest of DMA topology graph.
So, the rule to select the component with highest degree allows placing first ‘gravitation centers’ of
DMA topology. If such components will be placed on computers with high acceptability and resource
availability, then it can be expected that minimum communication expenses will be achieved after
DMA allocation.

In practice, a combination of the rules considered can be used in the mapping algorithm (e.g., first and
second rules, or first and third rules). We propose to detect the peculiarities of the DMA and the DCS
before use one particular or any combination of the rules. In Table 5.1 the conditions those favor the
use of the individual rules are depicted. Further analysis of the rule computational efficiency based on
experiments permits to refine such conditions.

The efficiency of proposed and other rules for component selection rules is for further research.

5.3.1.2 Bounding function

At each stage of the algorithm for every terminal vertex of the search tree, a lower bound of objective
function F in (1) is needed. Suppose components of set Z are already assigned and ones of set Y are
not yet assigned. The cost function F can be presented as sum of two term F = F(Z) + F(Y), where
F(Z) and F(Y) are the allocation cost of components of set Z and Y respectively. Using formula (1),
one can compute the placement cost F(Z) of assigned components. To compute a lower bound for
F(Y), the best placement for every unassigned component and its not yet mapped links is determined
and the total cost of such allocations is used for the lower bound

It’s important to note that computations of the bounding values may be skipped in order to diminish
the total complexity of the algorithm, to decrease the amount of memory required and to achieve the
more compact implementation. However, in this case, the search tree may grow up unpredictably and
therefore the total time for obtaining the optimal solution can increase considerably.

5.3.2 Approximate algorithm

In [IH96] efficient approximate mapping algorithm is proposed. It can allocate chain or tree structured
DMA consisting of several heterogeneous components across the distributed computers
interconnected using a general purpose LAN interconnection.

In this section, we present an approximate algorithm as a simple modification of the exact algorithm
proposed above. It allows considering general DMA topology and does not constraint communication
network structure. The complexity of the algorithm remains exponential but the time required for
obtaining pseudo-optimal solution depends on a given acceptable error of the solution, and the time
can be considerably less than the run time of the exact algorithm.

Suppose, one would be satisfied with the solution A produced by the mapping algorithm if it differed
from the optimal solution B by no more than eps:

A = B * (1 + eps’),  /eps’/ ≤ eps

where eps’ is the actual relative error of the solution produced by the approximate algorithm.
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Further, to satisfy this constraint we propose to change the current search direction in the exact
algorithm only if there exists another search direction in the search tree with the bounding value that
exceeds (or is less than) the current one by eps or more. By going this way, we will obtain the solution
that differs from the optimal one by no more than eps.  The search tree will grow “in depth” faster and
the amount of memory required as well as time required for the implementation will decrease. It’s
important to note that eps may be tuned interactively during the process of mapping. Depending on
eps specified one can obtain less accurate results in shorter time or the solution very close to the
optimal one but with greater time complexity (the more eps we specify the “faster” and less accurate
results we’ll get). For example, when the search tree grows “in breadth” rapidly thereby slowing the
algorithm down, it may be justified to set the larger eps in order to make the tree grow “in depth”.

Obviously, if eps = ∞  then so-called ‘depth first search’ method [Min86], which chooses a vertex of
maximum depth among those vertices not yet branched. If there is more than one, then one could
choose that which corresponds to the lowest bounding value. This method aims at exhibiting a (good)
solution of the problem as soon as possible. Then value Fo of the got solution is used for narrowing the
domain of optimal solution search by rejection of those vertices for which lower bound of the
objective function is not less than Fo. By limiting, at each stage, the computation of the bounds to the
successors of only those vertices for which lower bound is not more than Fo, a considerable reduction
of the number of vertices actually examined can be obtained, a reduction sufficient to deal with
problems of a fairly large size.

However, this modification won’t work properly for large-dimensional mapping tasks just because
one will be forced to set too large eps in order to produce the solution in acceptable time. It’s clear,
that the error of the results obtained in this way will depend on the dimension of a mapping task (e.g.
on the number of DCS computers) and will be inadmissible for large mapping problems. That is why
an effective heuristic method to find the pseudo-optimal solution with an acceptable error and an
acceptable time complexity should be developed. In general, this is a problem to find just a feasible
assignment of an arbitrary DMA graph over an arbitrary DCS structure.

5.3.3 Heuristic algorithm based on cluster analysis

As it was mentioned above, by mapping a DMA to a DCS one has to optimize the usage of
communicational resources required by the DMA components connected via links. When assigned to
the same computer, interacting DMA components need no additional resources to transfer the data.
That is why the problem to optimize the usage of communicational resources in a DCS might be
considered as a problem of grouping the most “interacting” DMA components on a single DCS
computer thereby making possible communicational expenses negligible. Moreover, minimization of
the communication channels used favors indirectly improvement of end-to-end QoS such as delay and
reliability.

The optimization problem considered differs from the original one (5.1) – (5.5). So, the problem is to
place a DMA in a DCS such that to minimize total communication resource (bandwidth) used
satisfying resource constraint (5.3) and (5.4). In other words, the problem is to partition the given set
of the DMA components into some N subsets (clusters), where N is not more than a number of DCS
computers available for mapping, and to map each subset to an individual computer taking into
account resource constraints.

We propose an approach based on clustering DMA components to solve that problem. Pre-attached
components placed on computers in advance represent a set of assigned clusters. All pre-attached
components placed on a same computer are merged in an individual cluster. Further, an assigned
cluster can be enlarged by including new not yet assigned DMA components. Therefore the assigned
clusters are taken into account as well as unassigned DMA components.

Let object denotes an unassigned DMA component, or assigned cluster. We merge objects
sequentially. On every current step, we select two objects with maximum interconnection weight that
must be merged next such that to minimize the cluster interconnections. (The mutual interconnection
weight between DMA components will be defined below as a function of bandwidth required by a link
connecting them). If both objects are unassigned DMA components then we try to include them, or at
least one of them, in a new cluster that is not yet assigned. At every time we have only one new
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cluster. If one of two selected objects is a cluster already assigned then we try include not yet assigned
object in that cluster. If both objects represent different clusters already assigned to different
computers then the interconnection between such the objects is marked as disabled and we choose
other pair of objects.

We assign every new cluster formed to a certain DCS computer chosen in advance according to a
particular policy. We select a DCS computer with the maximum amount of resources currently
available. This strategy is oriented on building larger clusters and minimizes the communication
resources used.

We constrain the size of a new cluster formed by the amount of available resources on a DCS
computer this cluster is pre-assigned. One can propose two approaches to take into account the
resource constraints of the DCS computer. The first one, so-called pessimistic approach, assumes that
all unassigned components adjacent at the new cluster will be placed on different computers, and it
checks the resource constraints (3) - (5) both for components and for their sending and receiving links.

The second approach, so-called optimistic one, assumes that all adjacent unassigned components will
be placed on a same computer and no resources for links will be needed. It means that only resource
constraints (3) - (4) are checked and only for components and not for their sending and receiving links.

Obviously, the optimistic approach consumes less computational time than the pessimistic one but it
obtains more often DMA assignment solutions that are not feasible because of a violation of resource
constraints for ingoing and outgoing links.

On the other hand, the pessimistic approach guarantees that no such the violations occurs but
sometimes it can not find a feasible solution that exists due to the assumption it makes. Actually, it can
reject a component assignment because the available I/O bandwidth is not sufficient to satisfy the
required total bandwidth of all incident links to communicate with adjacent not yet assigned
components. However some of such the components could be placed on next steps on the same
computer and, therefore, do not really need the communication resources.

Let us introduce factor P which denotes "pessimism-factor" - the less it is the more optimistic the
approach will be. In case P = 1 we get absolutely pessimistic approach, in case P = 0 we get the
optimistic one. Let B be the bandwidth required by links not yet mapped and incident at a component
that must be assigned next. Then one compares B*P obtained with the target computer’s I/O capability
and decides whether the new component can be included in the cluster or not.

Let New_Cluster be the currently building cluster not yet assigned. Let Target be a DCS computer the
New_Cluster is assigned to.

Then the implementation of suggested algorithm is as follows:

1. Mapping the pre-attached components. If any resource constraint is violated then no acceptable
DMA location in the DCS exists and go to 15.

All components assigned to a same computer are merged in one cluster. The assigned clusters are
taken into account on next steps as well as unassigned DMA components.

2. Mark the interconnections between assigned clusters as disabled. If any cluster has no (allowable)
interconnections with not yet assigned DMA components then exclude such the cluster from
further considertation.

3. Create empty New_Cluster.
4. Using CLUSTERING procedure, find the next two objects to group. Mark the found objects as

Obj1 and Obj2.
5. If one of objects Obj1 and Obj2 is a cluster already mapped to computer n then check whether the

computer n has enough resources to place the unassigned object as well. If no then{mark the
interconnection between these objects as disabled; if the object already assigned has no
interconnections with other objects then exclude such the object from further consideration; return
to step 4} otherwise merge both objects in one cluster and place this cluster on the computer n.

6. If New_Cluster is not empty then go to 10. (Both objects Obj1 and Obj2 are unassigned DMA
components or one of them can be New_Cluster that is not yet assigned as well).

7. Add Obj1 to New_Cluster, if Obj1 had not been already included in New_Cluster.
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8. Map all non-alternative DMA components that have a single acceptable computer on current step.
If any resource constraint is violated then no acceptable DMA location in the DCS is found and
go to 15.

9. If no assigned clusters exist then using maximum available resources strategy, otherwise using
maximum allocated components strategy, find Target that is acceptable for both Obj1 and Obj2. If
such the Target is found then go to 11 otherwise mark the interconnection between Obj1 and Obj2
as disabled and select another Target that is acceptable for New_Cluster (i.e. Obj1). If it is
successful then go to 11 otherwise go to 15.

10. Add Obj1 to New_Cluster, if Obj1 had not been already included in New_Cluster.
11. If Target cannot hold New_Cluster due to lack of available resources then delete the last added

object from New_Cluster and allocate New_Cluster on Target.
Mark the interconnections between New_Cluster and other clusters (which are assigned already) as
disabled. If any cluster has no (allowable) interconnections with not yet assigned DMA
components then exclude such the cluster from the further considertation

12. If all DMA components are assigned to the DCS computers then go to 14, else go to 3.
13. The same as steps 10, 11 and 12 but with Obj2
14. DMA assignment was completed successfully. Stop.
15. DMA assignment failed. Stop.

Mentioned optimistic and pessimistic approaches for checking resource constraints (that influence the
Cluster size) are used at steps 1, 5, 8, 11 and 13 of the algorithm. At step 1, if pessimism-factor P>0
then I/O constraints are checked for ingoing and outgoing links connecting only preattached
components and for the links (preattached component, non-preattached one) where non-preattached
component has not preattached component’s computer in ist acceptable computer list or can not be
placed on that computer because of resource constraint violation.

The procedure of adding an object to a cluster includes the object in the cluster and updates the DMA
graph such that the node representing that object and links connecting it with the Cluster are removed,
and the node representing the cluster gets additional links that have communicated the object included
with its adjacent ones that are not in the Cluster. If a pair of duplicated links is obtained, then it must
be replaced by one link with total bandwidth weight equal to sum of two previous ones.

Let D be maximum degree of a component in the DMA graphs, N be the number of unassigned DMA
components, M be the number of computers. Then the worth case algorithm complexity would be
bounded by O(ND) for steps 1 and 8, O(KN3) for step 3, O(M) for step 9, O(N) for steps 4, 5 and 7,
and constant for others. Here K is the number of so-called interconnection matrix transformations (see
below). As shown in [Sol91], for practice purpose, value of K not more than 10 is usually sufficient.
Thus, the worth case complexity for every cycle of the algorithm is bounded by O(aKN3+ bM), where
a and b are constants. Number of the cycles is not more than the number of components that must be
clustered and assigned to computers. Then the total complexity of the algorithm is bounded by
O(aKN4+ bNM) in the worst case . Really, the complexity is less because the number of unassigned
(non-clustered) components decreases from N to 1. Therefore more correctly, the algorithm
complexity is bounded by Σn=1,N O(aKn3+ bM).

5.3.4 An algorithm to find the feasible assignment of a DMA to a DCS

Several approaches can be proposed to find a feasible assignment of a DMA to a DCS.

As follows from 5.3.2, such an assignment can be produced by the approximate method with eps set
large enough or assigned to ∞.

Of course, a DMA assignment that is found by the heuristic algorithm (see 5.3.3) added by the
complete checking resource constraints for such the assignment can be considered as a feasible
placement also.

Below we propose yet another algorithm that is a modification of exact algorithm and is characterized
by following features:

• No bounding values for vertices are computed.
• The ‘depth first search’ method mentioned above is used for the branching vertex at each stage.
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Before presenting the algorithm, we remember the procedure of the search tree construction. As
known [Min86], the search tree is structured hierarchically in such a way that every level of the tree
corresponds to individual component, and vertices of a level correspond to acceptable locations of the
component. A rule of the vertex selection at a particular level of the search tree determines what
computer is chosen for assignment of the component corresponding to such the level.

The algorithm we propose, consists of the following steps:

1. Mapping the pre-attached components
2. Choosing the next component to be mapped
3. Generating all acceptable locations for this component.
4. If there is no acceptable location and the component is the first one then there exists no acceptable

DMA location in the DCS
5. If there is no acceptable location and the component is not the first one then return to the previous

component assigned (i.e., to the previous level of the search tree), exclude its assignment from the
further consideration, set the previous component as current one, and go to step 4

6. Choosing the acceptable location for the component
7. Checking whether all components have been assigned. If no then return to step 2 else a feasible

DMA placement in the DCS is found.

Skipping the bounding value computations conduces to reduction of the algorithm time complexity if
and only if a rule of the selecting an acceptable computer for the component permits to construct the
search tree mainly in vertical direction (i.e. in depth) and to avoid the growing the search tree in
horizontal direction. Note that the component selection rules mentioned above in 5.3.1.1 can be used
at step 2 of the algorithm. And it is important to agree the component selection rule with component
allocation selection rule. For example if the second rule of maximum resources required by a
component is used for choosing the next component (see Table 5.1) then, to select a location for the
component, the rule of maximum available resources of the computer have to be used.

The proposed component location selection rules and their characteristics are presented in Table 5.2.

5.3.5 Initial asSIGnment iMproving Algorithm (SIGMA)

In this section, we consider iterative algorithms that start with a feasible initial assignment of DMA
components and try to improve the DMA allocation from the point of objective function. Such an
assignment can be found in advance using one of the algorithms of sections 5.3.3, 5.3.4

5.3.5.1 Original algorithm

In [HDR96a], such the algorithm is proposed. It is based on so-called sequential method [Sol91] that
is characterized by polynomial complexity. However the complexity of the proposed algorithm
depends not only on the sequential method but also on the procedure used for component removal
from one computer to another so that a new DMA allocation obtained will be feasible as before. No
effective algorithm for such the procedure was proposed.

Besides, the algorithm uses the notion of so-called redundant computer. For a current acceptable DMA
allocation, a computer is defined as redundant one if another acceptable DMA allocation can be
obtained without this computer and with objective function value less than current one. It was shown
that use of a redundant computer does not permit to get optimal solution. A heuristic criterion to detect
redundant computers was proposed in [HDR96a]; but it can not guarantee that the algorithm will
exclude all redundant computers from the consideration.

The idea of the algorithm is as follows. At the beginning, all DMA components, excepting pre-
attached ones, are marked as black components. A black component is a component that is allocated in
any way into the DCS but the algorithm does not yet confirm its allocation. So, each component starts
with a given (black) placement and ends up with a confirmed (so-called white) placement. In between,
there can be at most one reallocation for each component. Thus, at each step the algorithm either
removes any black component to a new location or confirms the current location of any black
component. In the latter case the black component becomes white and after that it can not be removed
at all.
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Below we propose a heuristic modification of the algorithm that, in comparison with original one,
does not use the conception of redundant computers, realizes the removal procedure in polynomial
time, and therefore is characterized by a polynomial complexity.

Table 5.2 Rules for choosing component location

Rule Static Dynamic

To place
the
compo-
nent,
select the
computer
that has

Maxi-
mum
number
of
compo-
nents for
which
the
computer
is accept-
able

Maximum
available
CPU
resource

Maximum
available
communi-
cation
resource
of its
interfaces

Preference
in round-
robin
discipline

Maximum
number of
componen
ts, for
which the
computer
is
acceptable

Maximum
available
CPU
resource

Maximum
available
communi-
cation
resource
of its
interfaces

Advanta-
ges

Low time
expense

Low time
expense

Low time
expense

Low time
expense

More
effective
for
narrowing
the
solution
search
domain

More
effective
for
narrowing
the
solution
search
domain

More
effective
for
narrowing
the
solution
search
domain

Disad-
vantages

High time
expense

High time
expense

High time
expense

When the
rule is
useful

Large
variation
of
accept-
able
compo-
nent
number
for
different
compu-
ers

High
intersec-
tion of
compo-
nent sets
accept-
able for
different
compu-
ters

High
TIGHT-
NESS

Large
variation
of
available
CPU
resource
for
different
compo-
nents

Low
TIGHT-
NESS

Large
variation
of
available
interface
communi-
cation
resource
for
different
computers

High
intersec-
tion of
acceptable
computer
sets

High
TIGHT-
NESS but
less than
100%

There are
computers
with high
accept-
ability

5.3.5.2 Modified algorithm

Let us first describe some concepts particular for the algorithm.
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Firstly, we construct so-called cost matrix C. It consists of N rows (N is a number of the black DMA
components) and M columns (M is a number of the acceptable DCS computers). Each element cin of
the matrix represents the “local” cost of mapping DMA component to computer n. At every stage of
the algorithm there exists a current acceptable DMA allocation, i.e. all components are placed,
therefore the cost of any replacement of one component can be exactly computed. Moreover, the
procedure of computing elements of the matrix can take into account the peculiarities of the DMA and
the DCS mentioned above in 5.1, namely multicasting and dependence of component allocation cost
on placement of adjacent components.

If component i can be allocated on computer n then cost elements cin is computed, using cost matrices
f, u and g for cost evaluation of mapping components, outgoing and incoming links to computers and
links to virtual channels correspondingly (see 5.2)

cin =  fin + (Σ  j  u(ij)(nm)1 + u(ji)(mn)2 ) + (Σ  j g(ij)(nm) + g(ji)(mn)) / 2.

Here the first term is the cost of mapping the component i to computer n. The first sum is the total cost
of mapping sending side of all outgoing links and receiving side of all incoming links of component i
to computer n.  The second sum is the total cost of mapping output and input links incident at
component i to corresponding output and input channels of computer n. Obviously, the mapping of the
links depends on the allocations of the adjacent components, i.e. on the current DMA allocation in the
DCS. The factor ½ is used to share the cost for the communication channel between component i and
the other one, connected to it via the link.

If component n is not acceptable for allocation of component i then we assume cin = ∞.

The cost matrix C is transformed to the so-called INTERCONNECTION_MATRIX H0

[HDR95] according to the formula

h0
in = max {ckl, ∀  k,l} - cin

Matrix H0 provides transform the original minimization problem (5.1) – (5.5) to a corresponding
maximization problem. Element hin of the matrix H0 can be interpreted as an economic benefit if
component i will be assigned to computer n.

Secondly, we build so-called relative INTERCONNECTION_MATRIX H1 in other way as described
in [HDR96a], to find the next assignment (component, computer).

To avoid the influence of the redundant computers (see [HDR96a]), we propose the following formula
for the element of matrix H1:

h1
in = h0

in / Σ k h
0
ik (5.7)

where h1in is an element of the matrix H1. In accordance with (5.7), element h1
in evaluates a relative

gain of the assignment of component i to computer n relative to other computers acceptable.
Maximum element h1in of R determines next assignment i to n to be made.

In comparison with the algorithm [HDR96a], the transformation of the
INTERCONNECTION_MATRIX by (5.7) is now made only once because, after the first
transformation, all elements will be not change and the sum of elements of any row will be always
equal to 1.

According to the formula (5.7), the search of redundant computers is not needed any more. Actually,
algorithm proposed in [HDR96a] and based on the sequential method [Sol91] uses multiple
transformation of matrix H0 by the recurrent formula

hin(k) = hin(k-1) / (Σ l hln(k-1) + Σ l hil(k-1)), ∀  i,j;  k > 0 (5.8)

where hij(k) is an element of the matrix Hk of the k-th order.

As follows from (5.8), two kinds of interconnections between components and computers are taken
into account. The first kind of interconnections reflected by the first sum in (5.8) and represented in
(5.7) is a gain factor of the assignment of given component i to a computer n relative to other
computers acceptable. So, it permits to find the best location for given component.
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The second kind of interconnections reflected by the second sum in (5.8) is gain factor of selecting
component i to assign it to given computer n relative to other components for which the computer n is
acceptable too. So, it allows to find what component can satisfy the given computer n in the best way.

Thus, formula (5.8) proceeds from the fact that every component must be allocated and every
computer has to be used for the DMA allocation. In other words, every computer has to get at least
one DMA component. However the last premise is not right for the DMA mapping problem as shown
in [HDR96a]. Just that is why the concept of redundant computers was introduced in the original
algorithm proposed in [HDR96a].

Note that formula (5.8) was successfully used in the sequential method [Sol91] to solve (in polynomial
time) the classical assignment problem of N individuals and N jobs. In such the problem, really, each
individual must be assigned to a job and each job has to get an individual.

Contrary, formula (5.7) takes into account only “the interest of components to be allocated in the best
way” and ignores “the interest of every computer to catch the best (in the sense of the computer) DMA
component”. Therefore formula (5.7) does not need the concept of redundant computers.

Thirdly, we introduce the parameter LAST_ACTION to determine the last action taken place thus
simplifying the algorithm implementation. These actions are:

LA_START that refers to the beginning of the algorithm

LA_ENABLEBLACK which means that a DMA component has been re-mapped for the first time
onto a DCS computer and remains “black” (see [HDR96a])

LA_ENABLEWHITE which means that a DMA component has been mapped onto a same DCS node
for the second time thereby becoming “white”

LA_DISABLED which means that a pair (component, computer) has been disabled (see [HDR96a])

The algorithm proposed is as follows:

1. Set LAST_ACTION to LA_START
2. If (LAST_ACTION equals to LA_ENABLEBLACK) compute COST_MATRIX  for the current

DMA assignment
3. Transform COST_MATRIX to the INTERCONNECTION_MATRIX H0 and the latter to the

relative INTERCONNECTION_MATRIX H1 by the single matrix transformation
4. Choose the maximum element (i,n)  in matrix H1

5. If component i is already allocated on the computer n then mark i as a white component, exclude
it from the COST_MATRIX, set LAST_ACTION to LA_ENABLEWHITE and go to 9

6. If component i can be placed on computer n without resource violation then mark i as a black
component, set LAST_ACTION to LA_ENABLEBLACK and go to 9

7. Try to remove the black components from the computer n until its available capacity will be
enough to allocate the component i. If the removal is successful, go to 6.

8. Mark pair (i,n) as disabled in the COST_MATRIX and matrices H0 and H1, set LAST_ACTION
to LA_DISABLED and go to 2

9. If there are no black components then the best DMA assignment has been found, stop, else - go to
2

Component REMOVAL procedure described in [HDR96a] is now implemented in the heuristic way
to achieve the faster implementation. Components can be moved only one by one (grouped
components movements are not considered) so that each component can be assigned directly to the
determined destination computer without multiple movements.

The proposed matrix transformation and removal procedures provide a reduction of the algorithm
complexity and its running time.

5.3.5.3 Complexity of the algorithm

For every step of the algorithm proposed, the worth case complexity would be bounded by

1. Constant
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2. O(DNM).
3. O(NM2)
4. O(NM)
5. O(NM)
6. O(D)
7. O(DNM).
8. Constant

So, the complexity of one algorithm cycle in the worst case is bounded by O(DNM2). In the algorithm
the number of removal of each component is restricted by one. Therefore the number of the cycles is
not more than twice the number of components that must be assigned to computers. Then the total
complexity of the algorithm is bounded by O(DN2M2) in the worst case . Really, the complexity is less
because the number of unassigned components decreases from N to 1. Therefore more correctly, the
algorithm complexity is bounded by Σn=1,N O(DN2M2).

5.4 Experiment: computational complexity and accuracy of mapping
algorithms

5.4.1 Technology

We have tested the algorithms we proposed on the large number of numeric examples. Each test we
made corresponds to a randomly weighted DMA graph being mapped to a DCS structure with random
parameters. All DMA graphs were generated in advance and every graph we used had a certain base
structure that was replicated by a given factor to produce the needful testable graph. Examples of
testable graphs are shown below.

5.4.2 Testable DMA graphs

We have considered two different types of three-level and a type of five-level graphs that are typical
for distributed multimedia applications. Such kinds of graph structures we have used as the examples
to test the algorithms we proposed. The DCS structure was formed by a variable set of computers
connected via LAN. We have assumed that source and sink components are assigned to computers in
advance and the problem is to find the optimal placement for intermediate components of a DMA
structure.

5.4.2.1 The first testable DMA graph

The first graph we considered (GRAPH1) was being generated from the base one depicted in Figure
5.1 by replicating the base structure by a given factor. For example, GRAPH1(3) is depicted in Figure
5.2 and corresponds to the factor equal to 3. Thus, the number of components that have to be assigned
is equal to the replicated factor n.

In general GRAPH1(n) consists of the three levels: the level of source components (depicted in gray),
the level of mixers (depicted in white), the level of sink components (depicted in black).

Source components generate multimedia data, mixers process and transform this data, and sinks
consume the incoming streams.

Other DMA graph parameters (such as component CPU and memory requirements) were generated in
a random way.
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Figure 5.1 The base graph 1

Figure 5.2 The testable three-level graph GRAPH1(3)

5.4.2.2 The second testable DMA graph

The second graph we examined consists of the three components levels as well - the “source” level,
the level of mixers and the “sink” level. This graph - GRAPH2(n, m) was parameterized by  the
number of source components - n  and the number of mixer components - m (the number of sink
components was supposed to be the same as for sources only to restrict the variety of such graphs).
Every source component is connected with every mixer which, in its turn, is connected with every
sink.

The number of mixers m defines the components that have to be assigned1.

An example of such the DMA topology is CSCW, where n users interaction with each other in m
shared spaces. Such spaces could be shared whiteboard, virtual space, audio conference (audio space),
etc. For example, each user has one source and one sink component for every space type. One mixer,
m = 1, (corresponding to a space) receives the data flows from the sources of the users, mixes the data
and transforms the mixed data to sinks of the users.

5.4.2.3 The third testable graph

The third graph GRAPH3(n,m) we considered consists of the five following components levels:
source level with n source components, level of n filters connected to sources (shortly, source filter
level), mixing level with one mixer, sink filter level with m filters and sink level consisting of m sink
components. The example of graph GRAPH(3,2) is depicted in Figure 5.5. Testable graphs

                                                          
1 The number of sources (sinks) n is considered also as parameter of this type of testable graph
because, in experiments conducted,  the number of acceptable computers is defined as total number of
DMA components, i.e. 2n+m. Thus parameter n also influences on the mapping problem dimension.
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Figure 5.3 The testable three-level graph GRAPH2(3,2)

GRAPH3(n,m) are generated by replicating the components of source and sink levels and both filter
levels corresponding to two previous ones.

For this kind of testable graphs, the number of free components for assignment procedure is equal to
(n+m) + 1.

Multimedia bridge in Figure 5.5 is likely an intellectual mixer responsible for computing various
multimedia streams sent from one network to another one with different communication protocol
parameters.

5.4.3 Results

For each DMA graph we considered, experiment was made once, and results for every experiment are
represented in a row of the tables shown below.

Source2Source1

Filter1

Multimedia bridge

Filter3

Sink1

Source3

Filter2

Filter3

Filter4

Sink2

Figure 5.5 The testable five-level graph GRAPH3(3,2)
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We have obtained for different testable DMA graphs described above:

• the financial cost of the solutions produced by the different mapping algorithms proposed (see
5.3),

• the cost of the initial assignment produced by one of constructive algorithms (e.g. by one of the
algorithms proposed in 5.3.4 or by the heuristic algorithm suggested by G.Dermler) and the
improved assignment obtained by the iterative algorithm SIGMA (see 5.3.5),

• computational complexities of different algorithms,
• the relative cost differences between the optimal assignment produced by the exact algorithm (see

5.3.1) and the one produced by an algorithm analysed.

We have controlled:

• the number of DMA components (i.e. parameters of testable graphs),
• the number of DCS computers. For GRAPH1(n), this number was equal to 5n; for GRAPH2(n,

m), it was equal to 2n + m, i.e. was the same as the number of DMA components; for
GRAPH3(n) it was variable,

• the TIGNTNESS value.

As mentioned above, we used a TIGHTNESS value to control the relative difference between the
amount of available DCS resources and the amount of DCS resources required by the DMA
components and links. The TIGHTNESS value was varied from 10 to 100 % and it was the same for
different computers and types of resources (CPU, memory, and bandwidth) in each experiment.

With TIGHTNESS value set to 100%, we can also expect that all DMA components would finally be
allocated to the same DCS computer thereby making the communicational expenses negligible.
However, this way doesn’t always lead to the optimal solution, especially when the expenses of
computational resources required by the DMA components excel the communicational expenses
required by the DMA graph in values. For example, in one experiment, the optimal solution found by
the exact algorithm  for the GRAPH1(3) differs from the solution produced by SIGMA, in which  all
DMA components had been allocated to the same DCS node.

 By decreasing the TIGHTNESS value, one can achieve the situation in which there exist only few
possible DMA allocation variants over the DCS graph. Actually, there is a limit for the TIGHTNESS
value below that we cannot obtain any feasible mapping variants. For example, as depicted in Table
5.11, GRAPH2(6,5) had such a limit equal to 22%.

 Results obtained for testable graphs are given below.

5.4.3.1 DMA graph GRAPH1(n)

In Tables 5.3 - 5.5, accuracy analysis of the iterative SIGMA algorithm is represented for the DMA
graph GRAPH1(n) with different replicated factors n = 3, 4, 5 and for full-connected DCS graph with
different numbers of computers 15, 20, 25 correspondingly.

The TIGHTNESS value was varied from 50% to 100%.

To obtain a feasible DMA initial assignment, the heuristic algorithm proposed by G.Dermler. This
algorithm looks for DMA allocation that minimizes end-to-end delay for DMA structures restricted by
mixing and multicasting zones. Therefore the evaluation of this algorithm errors displayed in the
tables are used not for accuracy comparison with the exact solution but only to understand how close
can be the solutions obtained if different criteria are used by the algorithms. Here the exact algorithm
uses the cost criterion, and the algorithm for the initial feasible DMA placement – the end-to-end
delay criterion.

The solutions obtained by the exact algorithm (see 5.3.1) are depicted in column ‘Exact’, initial DMA
allocations produced by the Dermler’s algorithm are represented in column ‘Initial’, improved DMA
assignments obtained by the SIGMA algorithm (see 5.3.5) are illustrated in column SIGMA. For
every heuristic algorithm, the errors of solutions found are depicted also.

Accuracy analysis of SIGMA shows efficiency of the method we proposed - the relative error didn’t
exceed 3.1% for all conducted experiments. Moreover, the computational time required by SIGMA,
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implemented in Unix/Solaris, SunSparc20, was shorter than 1s for all DMA graphs GRAPH1(n) and
GRAPH2(n,m) we examined.

Table 5.3 Accuracy analysis of SIGMA algorithm for replicated factor n = 3

TIGHTNESS Exact Initial
(Dermler’s
algorithm)

Error, % SIGMA Error, %

50 97 009 105 168 8.41 97 470 0.4
60 79 396 89 269 12.43 79 745 0.4
70 82 613 104 006 25.89 83 854 1.5
80 116 379 134 935 15.94 116 379 0
90 96 483 110 892 14.93 98 800 2.4

100 113 623 135 374 19.14 114 080 0.4

Table 5.4 Accuracy analysis of SIGMA algorithm for replicated factor n = 4

TIGHTNESS Exact Initial
(Dermler’s
algorithm)

Error, % SIGMA Error, %

50 170 652 205 322 20.31 170 652 0
60 111 597 144 058 24.62 113 540 1.7
70 127 425 163 701 28.46 131 409 3.1
80 117 941 149 375 26.65 117 941 0
90 126 022 171 760 36.29 128 725 2.0

100 140 348 168 135 19.79 140 348 0

Table 5.5 Accuracy analysis of SIGMA algorithm for replicated factor n = 5

TIGHTNESS Exact Initial
(Dermler’s
algorithm)

Error, % SIGMA Error, %

50 171 405 209 966 22.49 175 848 2.5
60 144 286 195 282 35.43 145 070 0.5
70 161 563 211 611 30.97 162 012 0.03
80 150 072 189 195 26.06 151 197 0.7
90 134 664 188 679 40.11 134 664 0

100 154 880 191 353 23.54 154 880 0

In Table 5.6, results of the accuracy and time complexity analysis of the cluster analysis based
algorithm (shortly, cluster algorithm) and SIGMA algorithm are displayed for 20 DCS computers and
DMA graph GRAPH1(n) with factor n = 4. Thus (5n)n = 204 possible DMA assignments are possible,
where 5n defines the computer number and n – number of components that must be assigned.

The cluster algorithm version represented in Table 5.6 uses the optimistic policy for target computer
selection (see 5.3.3).

The computation time of the algorithms is measured for its implementations on Pentium 166 MHz 32
MB RAM, Windows 95.

It is important to note that the optimization criteria are the same only for the exact and SIGMA
algorithms (that is cost function). For the cluster algorithm it is minimum total bandwidth of
communication network used, and for the initial DMA assignment algorithm it is minimum end-to-end
delay. Therefore, only SIGMA algorithm errors can be considered as accuracy algorithm estimation.
The errors of other two algorithms only illustrate the closeness of solutions obtained if different
criteria are used for DMA mapping.

In the columns of the cluster algorithm, the empty cells denote that this algorithm obtained no feasible
solution when the optimistic strategy for the target computer selection is used.
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Note that a combination of SIGMA with one of constructive algorithms (to obtain an initial DMA
assignment) requires the computation time considerably less than the exact algorithm (namely, by ten
times and more). It suggests that such the algorithms would be effective for real protocols in
distributed multimedia systems.

Table 5.6 Accuracy and time complexity analysis of cluster and SIGMA algorithms for replicated
factor n = 4 and 20 DCS computers

TI
GH
TN
ES
S

Exact Time
ms

Cluster
(opti-
mistic
ap-
proach)

Ti-
me
ms

Error, % Initial
(Derm-
ler’s
algo-
rithm)

Ti-
me
ms

Error, % SIGMA Ti-
me
ms

Error,
%

50 119 336 14 532 - 248 - 132 332 224 10.89 120 880 139 1.29
60 130 461 3 171 - 234 - 159 974 220 22.62 130 461 137 0
70 104 985 3 625 121 679 280 15.90 136 477 220 30.00 104 985 114 0
80 142 839 12 075 154 568 265 8.21 157 837 170 10.50 143 175 165 0.24
90 130 516 6 662 150 604 230 15.39 154 181 160 18.13 130 925 124 0.31

100 105 038 6 031 122 931 263 17.03 138 543 110 31.89 105 038 68 0

5.4.3.2 DMA graph GRAPH2(n, m)

In Tables 5.7 - 5.11 accuracy analysis of the iterative SIGMA algorithm is represented for the DMA
graph GRAPH2(n,m) with variable number of DMA source  components n = 2, 3, 4, 5, 6 and number
of mixers m = 5. The number of DCS computers is defined as 2n + m and equal to 9, 11, 13, 15, 17
according to n.

The relative error of SIGMA does not exceed 6.3% for all conducted experiments.

The experiments conducted show that SIGMA is capable to reduce the large solution error of an initial
DMA assignment to negligible value. For example, as follows from Table 5.7 for TIGHTNESS value
100, SIGMA could reduce the initial solution error 128% to 0% by re-mapping the DMA, i.e. SIGMA
obtained the exact solution of the mapping problem.

Table 5.7 Accuracy analysis of SIGMA algorithm for n = 2 and m = 5

TIGHTNESS Exact Initial
(Dermler’s
algorithm)

Error, % SIGMA
Error, %

50 83 922 103 043 22.78 87 941 4.7
60 74 449 82 011 10.15 76 392 2.5
70 101 903 129 099 26.68 103 126 1.2
80 71 823 97 266 35.42 71 823 0
90 56 646 65 140 14.99 57 129 0.8

100 68 224 155 857 128.44 68 224 0

Table 5.8 Accuracy analysis of SIGMA algorithm for n = 3 and m = 5

TIGHTNESS Exact Initial
(Dermler’s
algorithm)

Error, % SIGMA Error, %

50 105 933 170 291 60.75 11 607 5.3
60 96 110 152 530 58.70 100 104 4.1
70 107 988 126 673 17.30 114 811 6.3
80 109 838 114 055 3.83 11 429 1.4
90 118 667 144 823 22.04 119 530 0.7

100 111 625 152 880 36.95 111 812 0.01
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Table 5.9 Accuracy analysis of SIGMA algorithm for n = 4 and m = 5

TIGHTNESS Exact Initial
(Dermler’s
algorithm)

Error, % SIGMA Error, %

50 148 288 162 266 9.42 152 522 2.8
60 145 806 169 358 16.15 148 938 2.1
70 165 070 229 554 39.06 174 112 5.4
80 146 014 182 836 25.21 146 014 0
90 131 469 133 668 1.67 131 469 0

100 113 258 127 527 12.59 113 730 0.4

Table 5.10 Accuracy analysis of SIGMA algorithm for n = 5 and m = 5

TIGHTNESS Exact Initial
(Dermler’s
algorithm)

Error, % SIGMA Error, %

50 204 331 209 389 2.47 208 470 1.9
60 189 477 272 457 43.79 189 477 0
70 175 591 242 703 38.22 175 591 0
80 162 033 179 545 10.80 162 630 0.3
90 155 091 231 031 48.96 161 451 4.1

100 146 598 203 509 38.82 146 598 0

Table 5.11 Accuracy analysis of SIGMA algorithm for n = 6 and m = 5

TIGHTNESS Exact Initial
(Dermler’s
algorithm)

Error, % SIGMA Error, %

22 203 691 203 691 0 203 691 0
23 291 389 297 706 2.16 297 706 2.1
24 250 907 253 056 0.85 253 056 1.1
25 255 891 263 990 3.16 263 990 3.1
26 289 246 322 342 11.44 294 141 1.6
27 243 134 263 113 8.21 245 497 0.9
28 234 184 242 125 3.39 236 970 1.1
29 218 721 264 557 20.95 218 721 0
30 218 376 281 154 28.74 221 683 1.5
40 212 833 256 184 20.36 222 164 2
50 222 664 330 005 48.20 227 814 2.3
60 228 991 276 119 20.58 228 991 0
70 198 885 212 640 6.91 198 885 0
80 207 218 315 647 52.32 213 557 3
90 211 166 217 767 3.12 213 622 1.1

100 181 658 298 928 64.55 181 658 0

In Table 5.12, results of the accuracy and time complexity analysis of the cluster algorithm and
SIGMA algorithm are displayed for 12 DCS computers and DMA graph GRAPH2(n,m) with n = 4
and m = 4. Thus (2n + m)m = 124 possible DMA assignments are possible.

The computation time of the algorithms is measured for its implementations on Pentium 166 MHz 32
MB RAM, Windows 95.
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The cluster algorithm obtained two DMA assignments that are not feasible because of the
communication constraints violation.

Note that a combination of SIGMA with one of constructive algorithm requires again the computation
time considerably less than the exact algorithm.

Table 5.12 Accuracy and time complexity analysis of cluster and SIGMA algorithms for n = 4, m=4
and 12 DCS computers

TIG
HT
NES
S

Exact Time Cluster
(opti-
mistic
ap-
proach)

Time Error,
%

Initial
(Derm-
ler’s
algo-
rithm)

Time Error,
%

SIGMA Time Error,
%

50 119 702 11 783 - 137 - 155 428 110 29.85 119 702 135 0
60 111 100 11 617 - 96 - 150 818 110 35.75 111 322 82 0.20
70 126 554 3 764 177 963 89 40.62 178 883 170 41.35 127 537 68 0.78
80 62 569 2 651 95 465 109 52.58 94 155 160 50.48 63 156 80 0.94
90 137 564 19 731 167 181 101 21.53 174 798 110 27.07 138 598 89 0.75

100 83 768 2 582 128 874 81 53.85 83 768 160 0 83 768 68 0

5.4.3.3 DMA graph GRAPH3(n,m)

In Tables 5.13 and 5.14, the accuracy and computation complexity analysis of the iterative SIGMA
algorithm is represented for the five-level DMA graph GRAPH3(n,m) with variable numbers of
sources and sinks. For (n,m) = (3,3), the mapping algorithm starts with 7 unassigned DMA
components and 13 acceptable DCS computers; there are 137 possible DMA allocations in the DCS.
For (n,m) = (4,4), there are 9 DMA components that must be assigned, 17 acceptable DCS computers
and 179 possible DMA allocations.

To produce an initial feasible DMA assignment, the algorithm described in 5.3.4 was used. The static
strategies were used to select the next unassigned component and the next acceptable computer. The
components and computers were selected according to their numeration that was made arbitrarily in
advance.

The computation time of the algorithms is measured for its implementations on Pentium 166 MHz 32
MB RAM, Windows 95.

Table 5.13 Accuracy and time complexity analysis of SIGMA for n = 3, m=3 and 13 DCS computers

TIGHT
NESS

Exact Time,
ms

Initial Time,
ms

Error, % SIGMA Time,
ms

Error, %

50 540 3 558 590 5 367 9.26 553 310 2.41
60 561 3 551 561 4 470 0 561 215 0
70 341 3 758 387 4 070 13.49 348 212 2.05
80 266 2 565 292 4 087 9.77 272 219 2.26
90 210 4 165 264 5 074 25.71 220 108 4.76

100 167 5 068 192 6 085 14.97 172 210 2.99

Table 5.14 Accuracy and time complexity analysis of SIGMA for n = 4, m=4 and 17 DCS computers

TIGHT
NESS

Exact Time,
ms

Initial Time,
ms

Error, % SIGMA Time,
ms

Error, %

50 735 15 020 850 34 510 15.65 750 410 2.04
60 860 29 651 910 32 070 5.81 871 523 1.28
70 750 40 100 855 85 704 14.00 772 109 2.93
80 634 60 625 649 80 200 2.37 649 619 2.37
90 920 63 165 985 > 100 000 7.06 932 650 1.30

100 467 140 268 543 > 100 000 16.27 475 1028 1.7
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The relative error of SIGMA does not exceed 4.8% for all conducted experiments.

As follows from Table 5.13 and 5.14 the computation time of the exact and initial assignment
algorithms depends on TIGHTNESS value, and SIGMA does not demonstrate such kind of
dependency. Obviously, increasing the TIGHTNESS value increases the number of components that
can be assigned to each computer, and, hence, increases exponentially the number of possible DMA
assignments in the DCS. The size of the set, which is checked by the exact (or initial) algorithm,
depends also on efficiency of the component (and computer) selection strategy used. Moreover, the
computer with high TIGHTNESS value (close to 100%) and cheapest resources significantly narrows
the domain of optimal solution search by assigning all (or nearly all) components to the computer.

Thus, the increasing TIGHTNESS value causes two contrary factors: exponential increasing the
number of possible DMA assignments and narrowing the domain of optimal solution search because
of possibility to assign most or all components to the cheapest computers with higher TIGHTNESS
value. Beginning from Table 5.13 the first factor dominates that causes the sharp increase of
computation time.

In contrary, computation complexity of SIGMA is a polynomial function of the number of unassigned
components and the number of acceptable computers (see 5.3.5.3). TIGHTNESS influences only on
element values of cost and interconnection matrices in SIGMA algorithm. Therefore, SIGMA permits
to perform (within acceptable time, e.g., 1 s) the DMA and DCS structures more complex that ones
represented in the tables. The problem is to develop an initial feasible DMA assignment algorithm
with polynomial complexity not exceeding the computation complexity of SIGMA.

Cluster algorithm with polynomial complexity described in 5.3.3 can be successfully used for
generating an initial DMA assignment. The computation complexity of the cluster algorithm has the
same order with SIGMA. We guess, pessimistic approach mentioned above in 5.3.3 and target
computer selection strategy with respect to maximum computer resources available will be more
successfully for this purpose. Actually, the pessimistic approach is characterized by less probability to
obtain a not feasible DMA assignment than the optimistic one. In comparison with the minimum
available resources target selection strategy, mentioned above one favors decreasing number of
clusters created and, hence, number of appropriate computers used for DMA component allocations,
produces better solution for less time. It is illustrated in Tables 5.15 and 5.16

Table 5.15 Strategy to select the next target computer with minimum CPU cycles available

TIGHTNESS Cluster
(optimistic
approach)

Time,
ms

50 1 200 160
60 1 332 270
70 865 390
80 1 090 457
90 980 540

100 1 400 685

Table 5.16 Strategy to select the next target computer with maximum CPU cycles available

TIGHTNESS Cluster
(optimistic
approach)

Time,
Ms

50 1 320 260
60 768 270
70 445 390
80 1 340 352
90 980 460

100 1 230 465
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6 Performance evaluation and optimization of an adaptive protocol
for synchronizing media stream

6.1 Modeling and simulation environment COVERS 3.0

COVERS® is an object-oriented environment aimed to help in the design of distributed and parallel
systems. COVERS enables the user to build and simulate the models of such systems. The models are
used to evaluate the system correctness and performance, as well as to visualize its behavior.

The main construction unit of a COVERS model is called active object. Active objects are
independent concurrently-active event-driven logical machines. COVERS modeling language
framework includes diagrams of object structure and interconnection, state-charts as a behavior
description, and C++ for data objects and functions.

The structure and behavior of active objects is specified graphically, and the C++ code is added to the
specification if required. The graphical constructs are also mapped into C++, so that active object class
becomes a normal C++ class. The model is compiled and linked with COVERS runtime C++ libraries
to produce the executable. The executable is a normal Windows applications. It can be ported to any
computer independently of COVERS.

The user can build model executables of two types: interactive and console. In the interactive model
every bit of the graphical specification is animated and is accessible by the user, so that debugging and
analysis is done in terms of the original specification. Console models are used for “heavy”
simulations where serious statistics are collected.

Compiled active object classes can be grouped into libraries. The basic resource and network models
are supplied with COVERS as a standard library set. The user can create his own domain-specific
libraries to reduce the modeling process to connecting objects and specifying their parameters.

COVERS is especially suitable to model and analyze systems of various nature and scale that can be
characterized as

• Non-terminating

• Continuously interacting with the environment

• Having discrete, event-driven behavior

• Consisting of concurrent interacting components

• Having timeliness an important design issue.

Among others, this domain includes:

• Distributed algorithms and applications

• Client/server systems

• Communication systems

• Computer systems and components

• Networks

• Real-time control systems



39

The designer of such a system can benefit from using its executable model throughout the whole
design cycle in several ways. At the first place, the model will help to overcome the “sequentiality” of
human’s way of thinking and to understand what actually happens in the complex concurrent system.
Specific correctness issues, such as

• Deadlocks
• Starvation
• Racing
• Critical sections
• Real-time temporal properties can be tested as well as the general functionality. And of course,

the designer can investigate the system performance, including
• Response times
• Message latencies
• System throughput
• Resource utilization

In particular, for distributed software applications the executable model will allow to predict the effect
of deployment topology on the application performance and find out how good does the application
scale.

6.1.1 COVERS 3.0 modeling methodology

The main building block of a COVERS model is called active object, or simply object. Objects are
independent concurrently-active event-driven logical machines. Depending of the level of abstraction,
object can represent, for example:

• Piece of hardware

• UNIX process

• Human user

• WAN link

• Client or server

• Physical object

The basic mechanism of object interaction is message passing. (Shared variables and RPC are
modeled on top of it.) Whenever an object wants to send or receive a message, it is done through a
port. The set of ports comprises the object interface.

Object internal structure. We have borrowed some elements of the graphical notation for the object
internal structure and the corresponding terminology from ROOM approach [BR96].

Objects may contain other objects to any desired depth. The encapsulated objects run concurrently
with each other and with the container object. They can export their ports to the container object
interface.

Figure 6.1 shows the internal structure of a simple Server object. Server contains objects representing
two hardware resources, CPU and RAM, and two software processes which access these resources.
Whenever a new transaction arrives at LocalPort, the server activates Main object. The latter creates a
new instance of Process object. Process executes the transaction (i.e. accesses CPU and RAM and,
probably makes a remote request through a WANPort), replies to Main and then deletes itself.

This example shows two important features of COVERS model:

Replication of objects. Replicated object represents a collection of objects of the same type connected
the same way. A port of a replicated object is equivalent to a collection of ports of all object copies.

Dynamic creation and destruction of objects. Any object can be created and destroyed while the
model is running.
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6.1.2 Object behavior

Object behavior is a part of the object specification that answers the question: when and how does the
object react to the external events and conditions. In COVERS the behavior is described in the form of
a sequential statechart.

Statecharts (an advanced state-machine notation introduced by David Harel’s [2]) are accepted as
object behavior specification technique by almost all leading OO design methods, including the
Unified Method [BKR95]. COVERS supports hyperstates, conditional branching of transitions and
history states. To illustrate convenience and expressive power of statecharts, we show COVERS
model of the behavior of 100VG station (a part of the Demand Priority protocol, IEEE 802.12
standard), see Figure 6.2.

Process

Main

TServer

CPU

LocalPort

WANPort

MainPort

Encapsulated
object of class TResource

Replicated
object

Relay
port

End portContainer
object

RAM

Figure 6.1 Internal structure of a simple server
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Active
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Working

Crash

Recovery

Figure 6.2 Behavior of 100VG station
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When the station is switched on, it first executes some Training procedure (details not shown) and,
having successfully identified itself, comes to an active mode, represented by Active hyperstate. While
the station is active, it can be either Idle, or sending/receiving information. If it is Idle and doesn’t
have any user’s frames to send, it is in the No Frame state waiting for new frames. When a new frame
comes (transition New Frame), station goes to the Frame Ready state and waits for a Grant from the
hub. If the Grant comes, the frame is transmitted and the station returns to the No Frame state. At the
same time, no matter whether there is user’s frame ready or not, the Incoming signal may come (the
corresponding transition exits the Idle hyperstate and thus works for both No Frame and Frame Ready
states). After the reception is finished, the station returns to where it had been when it was interrupted
by the Incoming signal. This is modeled by the history state within the Idle hyperstate.

At any time during the station operation, it can crash. This is modeled by the Crash transition exiting
Working hyperstate. After Recovery it comes back, and, following the initial state marker, starts the
training procedure.

Whereas visual appearance of statecharts and the semantics behind hyperstates, etc. is more or less
standard and well understood, the exact attributes of states and transitions vary from implementation
to implementation. In COVERS each state (primitive or hyperstate) has entry action and exit action,
and each transition has guard, delay and action associated with it. Actions are executed only when a
transition is taken in the order shown in Figure 6.3.

Transition firing takes zero time, hence an object spends all the time in its states. While in a state, an
object is passive, nothing is executed. Transition with a delay t is taken after it has been enabled (i.e.
its guard has been true) for exactly t.

Object data members, member functions and data classes used for inter-object communication are
specified in C++.

Model semantics. COVERS model has a formally defined semantics based on Timed Transition
Systems [Har90] and is fully executable. Timed Transition Systems extend simple and economical
interleaving approach to real time. There are two types of steps the model can make: time steps, during
which the time progresses, but the model state remain the same, and event steps when the model state
changes instantly, see Figure 6.2. This allows us to handle correctly subtle aspects of concurrent
system behavior, such as non-determinism or racing.

Exit Action:  C++ code

Entry Action:  C++ code

Guard: C++ Boolean expression
Delay: C++ expression of type TTime
Action:C++ code

Exit Action:  C++ code

Entry Action:  C++ code

2

1

3

4

5

S0
S1

S3
S2

T

Figure 6.3 Order of action execution
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In the situations when two or more events are scheduled exactly at the same time (like A,B,C and D)
most of the simulation tools will always choose the first (in some deterministic order) alternative.
COVERS will either make a random choice, or, in the interactive mode, leave it to the user. This
ensures that a bigger part of the system state space is covered by a simulation, so it is more likely that
an undesirable behaviour is detected.

In general, the formal semantics gives clear answers to the questions like:

• Why does non-determinism appear, and how should it be treated during the model execution?

• Which actions are atomic and which are not?

• What is done instantly and what requires non-zero time?

• What is the semantics of communication of the model components?

• What comprises the global state of the model?

which are important in the system domain we investigate.

6.1.3 COVERS 3.0 environment

After the user inputs the system specification, COVERS generates a C++ code, where object and port
types also become C++ classes. The following code, for example, will be generated for Server object
Figure 1:

class TServer: public TObject
  {
  public:
    TServer();

    void Setup();

    TInOutRelay*               WANPort;
    TInOut< TTransaction >*    MainPort;
    TInOut< TTransaction >*    LocalPort;

    TVectorP< class TProcess > Process;
    class TResource*           RAM;
    class TMain*               Main;
    class TTimeShareResource*  CPU;
    …
  };

TServer::TServer()
  {
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Figure 6.2 Semantical model
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  Setup();
  }

void TServer::Setup()
  {
  int i, count;
  WANPort   = new TInOutRelay();
  MainPort  = new TInOut< TTransaction >();
  LocalPort = new TInOut< TTransaction >();
  count = ( 10 );
  for ( i = 0; i < count; i++ )
    {
    Process.Add( new TProcess() );
    Process[i]->SetReplicated();
    }
  RAM  = new TResource();
  Main = new TMain();
  CPU  = new TTimeShareResource();
  // Connect ports
  for ( i = 0; i < count; i++ )
    {
    Main->ProcessPort->Connect( Process[i]->Port );
    Process[i]->Port->Connect( Main->ProcessPort );
    }
  RAM->Port->Connect( Main->RAMPort );
  Main->RAMPort->Connect( RAM->Port );

  … // etc.
  }

This mapping into C++ makes the modeling technology very flexible, providing, for example, for
construction of template object classes, i.e. those parameterized with the classes of other objects.

Before the generated C++ code is compiled, the user is allowed to modify it, so that arbitrary complex
model structure or functionality can be achieved.

The complete picture of what COVERS generates and builds is depicted in Figure 6.5.
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6.1.4 Interactive model execution

COVERS enables the user to perform the whole modeling and simulation cycle within a single
graphical environment. During the interactive execution every bit of the graphical specification is
animated and is accessible by the user, so that model debugging and analysis is done in terms of the
original specification. COVERS highlights object interaction, current states and active transitions.
Message queues, event lists, active timers are shown and controllable. COVERS collects and displays
statistics for each piece of the model, e.g. for sojourn time in a state, queue length in a port, inter-firing
interval of a transition.

Traditional debugging tools are also available in COVERS environment, such as

• Inspect
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• Breakpoints

• Break conditions

• Logs.

6.1.5 Statistics collection and reporting

COVERS 3.0 C++ class library includes:

Generic parameter class

Classes for statistics collection and reporting for both discrete and continuous statistics

Data set class

Any model parameter can be specified by the user as iterated through a set of values. COVERS will
perform as many simulation runs as required in order to cover the whole parameter space.

Several kinds of plots can be obtained using COVERS: an observable value versus simulation time,
observable value versus iterated model parameter, etc. COVERS can build plots itself or export data
sets to other applications, such as MS Excel.

When graphical debugging is no longer needed, COVERS can produce a fast 16 or 32 bit no-GUI
executable. This executable can be used for serious statistics collection in long simulation runs.

6.1.6 Comments

We have outlined the modeling approach and a tool with the following features, which set it apart
from the existing packages, such as BONeS Designer, SES Workbench, OPNET or Statemate:

Object-oriented. COVERS supports object-oriented modeling methodology and provides for
building hierarchical object models of arbitrary complexity and scale.

Statecharts. COVERS supports Statecharts, an advanced notation for object behavior,
accepted by all leading OO design methods, including the Unified Method.

C++. COVERS model is completely based on and mapped into C++ - a standard, well-
known language.

Formal semantics. COVERS simulation engine is build according to the formally defined
semantics and treats correctly subtle aspects of concurrent system behavior, such as
nondeterminism, atomicity or racing.

Open. COVERS is 100% open at the level of the C++ code it generates from the user
specification, allowing an the user to construct models of arbitrary complex structure and
functionality.

Extendible libraries. The library of frequently needed objects is supplied with COVERS and
can be easily modified and extended.

Cheap platform. COVERS runs on cheap, highly available platform: 486 or Pentium
processor running MS Windows 3.1, Windows 95 or Windows NT.

User-friendly. COVERS enables the user to perform the whole modeling and simulation
cycle within a single graphical environment where every bit of the specification is animated
and accessible. COVERS offers as much comfort as Borland or Microsoft C++ development
environments.

COVERS 3.0 with libraries and examples is available free over the Internet for non-commercial use.
Watch our site: http://dcn.nord.nw.ru.
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6.2 Modeling the Adaptive Synchronization Protocol using COVERS
3.0

The Adaptive Synchronization Protocol (ASP) [RH96] is a typical example of real-time event-based
software system. In spite of clear ideas behind ASP its behavior is not fully understandable and it is
difficult to predict the optimal policies and the optimal ranges of its parameters for stream
synchronization in different environments. So the modeling is the only way to understand the ASP and
to analyze its behavior.

6.2.1 A COVERS model of the Adaptive Synchronization Protocol

6.2.1.1 System structure.

The structure of a system where ASP is running is designed using COVERS graphical editor and
consists of a set of encapsulated objects: streams, which is controlled by a single controller (see Figure
6.6). The system here is represented as a main active object TSystem, and its encapsulated objects are
an object Controller and a replicated object which represents a collection of objects Stream of the
same type TStream connected the same way with Controller. A port of a replicated object Stream is
equivalent to a collection of ports of all object copies.

Each class TStream encapsulates an object Source (of the type TSource) and a Sink (of the type
TSink), communicating through a Channel (of the type TChannel) (see Figure 6.7). Besides, TStream
has relay port ControlPort through which Source and Sink communicate with Controller.

Classes TController, TSource, TSink and TNetworkChannel are primitive classes, which don’t
encapsulate other classes.

Stream

Controller

TSystem

Figure 6.6 ASP structure

TStream

SinkSource NetworkChannel

Figure 6.7 Stream structure
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6.2.1.2 Class TController

This class has only one input-output port to communicate with Streams. In current version of the
model only Start-up protocol and Buffer Control protocol are implemented. TController class behavior
is shown in Figure 6.8.

In StartUp state Controller broadcasts Start message contained NominalRate and additional time Delta
to all Streams. Both these parameters can be modified at runtime. To do this just right-click on the
Controller object in the TSystem Structure window and choose "Modify" entry. Messages which are
broadcasted by Controller are of the class TControlMessage, which contains two data objects:
NominalRate and Delta.

In Operate state Controller waits for Stream messages to take part in Master/Slave Synchronization
protocol and Master Switching protocol.

6.2.1.3 Class TSource

Class TSource is a subclass of TActiveObject class, which is basic COVERS class. Class TSource has
two states: StartUp and Generation states (Figure 6.9). In StartUp state Source is waiting for a Control
Message, broadcasted by Controller and then comes to a Generation state. While transition, it selects
NominalRate data from the received message and starts Generation Timer. After activation this timer
sends Frame Messages every 1/NominalRate sec. Generated Frame Messages are stamped by
sequential numbers.

6.2.1.4 Class TNetworkChannel

This class models transition delay of incoming messages in network for a random time. Network
Channel has the only state and one transition (Figure 6.10). The transition activates when next
message comes to it Inbound port. When InMessage transition fires, InMessageAction() function is
called. This function creates a dynamic timer, which immediately becomes set. The timer expires after
a time which is defined by the exponential distribution with the given mean and deviation. When the
event of expiration happens, the timer calls Expiry() function, which transmits the message to the
output Outbound channel port. Both mean and deviation parameters can be modified at runtime. To do
this right-click on the NetwoorkChannel object in the Stream[i] Structure window and choose
"Modify" entry.

Figure 6.8 Controller behavior

Figure 6.9 Source behavior
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6.2.1.5 Class TSink

Input port of TSink class is redefined: its virtual function Receive() defined in such a way, that when a
message frame comes to the port, this message is places into a PlayoutBuffer according to its
timestamp in increasing order of timestamps.

Class TSink has four states (Figure 6.11). In Initial state it waits for a Control Message, broadcasted
by Controller. Receiving a Control message, Sink selects two parameters: Nominal Rate and Delta
which are broadcasted by Controller at the first stage of the protocol.

Delta defines a delay before playout start. This value stands in the delay entry of a transition from
StartUp state to Normal state. When this transition fires, Playout Timer is activated with the delay
1/PlayoutRate. When the Timer expires, the next frame is released from the PlayoutBuffer. Playout
Timer then periodically releases next frame from the buffer with the period 1/PlayoutRate.
PlayoutRate is normally equal to NominalRate but in Adaptation phase is changed according to the
protocol.

6.2.1.6 Visualisation

COVERS has various facilities to collect and display data during the simulation. In Inspect window
the following data are shown during the simulation:

• Playout buffer volume;

• Playout frame number;

• Number of late frames;

• Delay in buffer;

• Playout rate.

Figure 6.10 Network Channel behavior

Figure 6.11 Sink behavior
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Besides, for the analysis user can define plots to show time dependencies of every parameter. Some
plots, which were used during analysis of the ASP, are shown below.
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The user can define own data sets and watch them during simulation run.

6.2.2 Future work

Analysis of the two first phases of Adaptive Synchronization Protocol has shown that the COVERS
model is really convenient for understanding of the ASP behavior and examining its characteristics.
The following problems has to be solved at the next stage of research:

1. Examining two first stages of the ASP for real multimedia streams and real distribution of
transmission delay.

2. Elaborating of optimization criteria for synchronization of media streams, which includes: End-
to-end delay, percent of late data units in a stream, jitter and skew.

3. Design of optimization procedure, which finds optimal parameters for synchronization of
multimedia streams on the base of the ASP.

4. Investigation of multicast protocols (ABCAST, CBCAST and GBCAST) for correct
implementation of Master Switching Protocol.
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7 Platform for configuration and synchronization management
investigation

We propose to use prototype of videoconferencing system as platform for configuration and
synchronization investigation.

Videoconferencing systems like many distributed multimedia applications (video-on-demand,
multimedia mail and so on) are known for high requirements they put on computational power of DCS
computers and bandwidth of communicational resources in a DCS and therefore can be considered as
a typical resource-intensive distributed applications. That’s why to organize videoconferencing means
to apply the newest multimedia technologies in the field of signal processing and recognition, visual
communications, integrated digital networking and so on. And that is why a software system based on
a videoconferencing technology may be used as a robust sample platform to test various multimedia
solutions, techniques and protocols.

Abstract software to support videoconferencing should meet the following requirements:

• capable to set up videoconferencing connections

• can handle hardware and software collisions

• has means to synchronise multimedia streams on the client’s end

• capable to manage communicational resources in a DCS

• capable to reconfigure a videoconferencing structure

The existing videoconferencing systems (Intel ProShare(™) Personal Conferencing, LANDesk™
Personal Conferencing Manager, Lotus RealNotes etc.) solve most of the above-mentioned problems.
However, they are pretty hard to manage on a system level and too enormous and universal to use as
an easily manageable and configurable test platform for distributed applications and protocols.

We propose a prototype of the simplest distributed videoconferencing application with the following
characteristics:

• client-server architecture based and implemented on so-called mailslots mechanism

• arbitrary number of “dynamic” clients (“dynamic” clients connect to and disconnect from a
server any time they want)

• arbitrary structure of multimedia streams (video/audio/sequence of pictures/text/etc.)
broadcasted from a server to all connected clients

• 100 % open at C++ level

Mailslots mechanism belongs to Win32 API and allows to:

• create a mailslot with a given name – an entity to receive the data - on a client’s end  of  a
system

• send the data packets of arbitrary structure from a server’s end of a system

• broadcast the data to all mailslot with the same name

• regulate the size of  a buffer on both ends of a stream

At present we plan to use this prototype as a platform to organize the simplest video-education system
where a server-teacher broadcasts two concurrent streams – a stream of pictures and a stream of
comments to those pictures – to all connected clients-pupils. Adaptive synchronization protocol (see
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6) will be embedded in the prototype to synchronize the two above-mentioned streams on every client
computer.

We plan to manage:

• a number of active clients-pupils

• a bandwidth for every channel “teacher-pupil”

• a size of a buffer for every client computer

• ASP parameters (low/high water mark for every client computer, target zone for  master stream
“teacher-pupil” and so on)

We plan to measure:

• end-to-end delay for every client stream

• jitter for every client stream

• a skew between two concurrent stream for every client-pupil

• percentage of pictures and comments lost for every client

• number of service ASP messages sent over the network  by clients

In the near future we plan to use this prototype as a platform to model mapping algorithms with
simultaneous instantiation of the DMA components (clients) and visual control of QoS
degradation/improvement.



53

8 Conclusions

At present, audio, video, graphics, image processing and real-time processing are not new areas.
However, as argued in [StNa95], the simple composition of existing systems and methods is not a
global multimedia solution. Particularly, the management problems of configuring DMA and
synchronizing media streams, the subject of the project OPTIMUS, need to be developed and are such
the examples of research and development directions which will dominate today and in the nearest
future.

The main research and practical results obtained within the OPTIMUS project are as follows:

1. System-approach-based methodology for distributed multimedia application management is
proposed. A management architecture supported by CINEMA system includes configuration,
session and synchronization management subsystems described.

2. Management tasks that have to be solved during the preparation, establishment, active and
termination phases of distributed application lifecycle are considered and analyzed. It was shown,
that the management system necessarily has to support solving some management tasks, such as
QoS (re)-negotiation, application-to-computer system (re)-mapping more than once and at
different phases of the application lifecycle

3. QoS architecture provided by CINEMA development platform is described. Application clients
can specify QoS request as QoS ranges in order to allow the best possible QoS choise by
configuration service. Application level negotiation has to encompass all components and links of
DMA flow graph model, even if resource reservation is not performed. Application level
negotiation differs from transport level negotiation. It requires a separation of QoS abstraction
levels for media specific and transport level characteristics and definition of mappings between
them.

4. Configuration service requirements, functions and algorithms are considered in details.
Requirements to the configuration service include following supports:

• for media specific QoS parameters,
• for port type compatibility for DMA logical topology,
• for various QoS due to limited functional capabilities of components, computers and resource

availability of the computers,
• for media parameter format constraints associated with each component port. It is important

to note that the format constraints relate both to components and computers, and they have to
be specified for each (component, computer) pair,

• for stream relations,
• for complex DMA topologies.

5. Configuration service architecture proposed covers the first two phases of the DMA lifecycle, i.e.
preparation  and session set-up phases, and consists of three subsystems:

• application handler that is located on the system the client is established and services the
client to build up a DMA flow graph at the preparation phase,

• configuration server as centralized entity that defines DMA physical topology, i.e. it
negotiate media values in the DMA flow graph for given QoS requirements, maps the DMA
flow graph to the DCS and instantiates the DMA components in the DCS computers chosen,

• configuration handler as an entity distributed over DCS, based on extended negotiation and
resource reservation protocol XNRP and performing the final QoS negotiation, completes the
session set-up phase with resource reservation for components and links of the DMA
topology.
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6. The general configuration service algorithm describing functions and interconnections of all three
above-mentioned parts above is presented. The algorithm for configuration server and its input
and output data are refined.

7. Problem of mapping a DMA to a DCS is described and its mathematical formulation is proposed.
Constructive and iterative algorithms that differ in computation complexity and relative error are
developed, described and implemented in C++. All algorithms proposed can perform mapping
for:

• the arbitrary topologies of distributed multimedia applications,
• the arbitrary topologies of distributed computer systems,
• computation and communication resource constraints of the DCS,
• multicasting,
• allocation dependency of computational resource requirements of adjacent DMA components

mapped to the same or to different computers.

8. The technology for experimental analysis of efficiency of the mapping algorithms is proposed.
The technology is based on a set of testable graph structures each of that can be parameterized
randomly and replicated. The structures of graphs proposed are typical for real DMA flow graphs.
Program generators for these types of DMA graphs are implemented in C++.

9. Experimental analysis of computation complexity and solution error of the mapping algorithms
developed was performed using the generators of random DMA flow graphs. Experiments results
were presented in tables and discussed. The exact searching algorithm based on the branch-bound
method with exponential complexity was used to obtain the exact solution. The heuristic
algorithm based on cluster analysis with polynomial complexity is useful to obtain an acceptable
DMA assignment. The iterative algorithm SIGMA that has polynomial complexity allows
improving an initial feasible DMA placement. For all experiments performed on Pentium 166
MHz 32 MB RAM, Windows 95 the total computational time of cluster and SIGMA algorithms
was less than 1 s with solution error less than 6.3%.

10. Modeling methodology based on the object-oriented environment COVERS® developed by the
research team of the Technical University of St. Petersburg is described. COVERS is aimed to
help an user to model and design distributed and parallel systems. It enables the user to build and
simulate the models of these systems. The models are used to evaluate the system correctness and
performance, as well as to visualize its behavior. The methodology and COVERS tool were used
for model design and modeling of the Adaptive Synchronization Protocol for distributed
multimedia systems. (The protocol was developed by the research team of the University of
Stuttgart).

11. Analysis of the two first phases of Adaptive Synchronization Protocol has shown that the
COVERS model is really convenient for understanding of the ASP behavior and examining its
characteristics. The following problems has to be solved at the next stage of the research:

• Examining two first stages of the ASP for real multimedia streams and real distribution of
transmission delay.

• Elaborating of optimization criteria for media streams synchronization, which includes: end-
to-end delay, percent of late data units in a stream, jitter and skew.

• Design of optimization procedure, which finds optimal parameters for synchronization of
multimedia streams on the base of the ASP.

• Investigation of multicast protocols (ABCAST, CBCAST and GBCAST) for correct
implementation of Master Switching Protocol.

12. Testbed platform for the configuration and synchronization management mechanisms of
distributed multimedia applications investigation is described, and its functions and aims are
discussed. A prototype of the distributed videoconferencing application with the following
characteristics is proposed:

• client-server architecture based and implemented on so-called mailslots mechanism
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• arbitrary number of “dynamic” clients (“dynamic” clients connect to and disconnect from a
server any time they want)

• arbitrary structure of multimedia streams (video/audio/sequence of pictures/text/etc.)
broadcasted from a server to all connected clients

• 100 % open at C++ level

In the future we would like

• to refine the mapping algorithms,

• to continue the mapping algorithms efficiency analysis on the base of extended set of real DMA
topologies,

• to combine the mapping algorithms with negotiation and resource reservation protocol such that
to cover the main phases of the DMA configuration management,

• to model and to optimize the adaptive synchronization protocol,

• to implement the DMA testbed platform for the configuration and synchronization management
mechanisms investigation.
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10 Appendix 1. Mapping problem specification language

We propose the following data format to specify a DMA graph including components and links as
well as a DCS graph formed by computers and virtual channels routed over one or more
communication resources. In a DMA graph nodes represent components that are interconnected by
arcs representing links (i.e. data streams) between components. The DCS graph shows possible virtual
channel connections between the computers of the DCS. The mapping problem itself is described by
means of a simple presentation language. Proposed language has a limited set of operators each of
them allows to declare the certain DMA or DCS entities such as the DCS computers or the DMA
components.

10.1 DMA graph presentation

10.1.1 DMA component specification structure

The DMA component is represented by a simple record containing the information about
computational resources required by this component (i.e. CPU cycles per second needed by this
component to run normally) and the amount of free memory needful to launch this component. In so-
called heterogeneous situation  one has to specified the separate requirements for each DCS node this
component can be assigned to.

The common syntax of such a structure looks as follows:

• in homogenous situation:

component component_name( cpu_req, mem_req );

• in heterogeneous situation:

component component_name( computer, cpu_req, mem_req );

The examples of various component specifications are given below:

• for homogenous situation:

component mixer( 120, 50 );

This operator declares the component named “mixer” that requires 120 units of computational
resources and 50 memory units.

• for heterogeneous situation:

component mixer( P100, 120, 50 );

component mixer( P120, 100, 40 );

This operator declares the component named “mixer” that requires 120 units of computational
resources and 50 memory units if assigned to the DCS computer named P100 and 100 CPU units with
40 memory units if assigned to P120.

10.1.2 DMA link specification structure

The DMA link is represented by a record as well. Firstly, such a record holds the information about
the components (a source and a sink) this link is formed by. Secondly, the bandwidth required by this
link is specified. And finally, one have to specify CPU and memory units needed by the source and the
sink components to transfer (i.e. to send and to receive) data through the link.
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The syntax of such a structure looks as follows:

link ( source_name, sink_name, src_cpu_req, src_mem_req, rcv_cpu_req, rcv_mem_req, bandwidth );

And below follows the example of a link structure:

link ( source, sink, 10, 5, 5, 2, 5 );

This operator declares a link with the source component named “source” that requires 10 CPU units
and 5 memory units to send the data and the sink component named “sink” that requires 5 CPU units
and 2 memory units to receive the data. Communication requirements of this link are set to 5 data
units per second.

10.2 The DCS graph presentation

10.2.1 DCS computer specification structure

An abstract DCS computer is supposed to have certain types of available resources. They are:
computational resources measured in CPU cycles per second this computer can perform, memory
units available on this computer and communication resources measured in data units per second. The
costfactors (i.e. the financial cost of a resource unit) for each type of the above-mentioned resources
have to be specified as well.

The syntax of such a structure is specified as:

computer computer_name( cpu_cap, cpu_cost, mem_cap, mem_cost, io_cap, io_cost );

The example computer structure looks as follows:

computer  P100 ( 100, 1, 64, 1, 50, 2 );

Such an operator declares the DCS computer named “P100” that has 100 CPU units, 64 memory units
and 50 “communication” units available. The costfactors for this computer’s resources are 1, 1 and 2
correspondingly.

10.2.2 DCS virtual connection specification structure

A virtual channel connection (VC) is a directed logical connection between two DCS computers with
assigned communication capacity. Actually, a VC is routed over one or more physical links of the
DCS (network segments, networks) and the available capacity of a VC is equal to the minimum
available capacities of all DCS communication resources this VC is routed over. Proceeding from the
above considerations we can propose the following VC presentation structure:

vc ( computer1, computer2, commrc1, commrc2 … commrcN );

This structure may be illustrated by the following example:

vc ( P100, P120, LAN1, LAN2 );

This operator declares a virtual channel connection between the computers “P100” and “P20” routed
over the networks: LAN1 and LAN2. Note that communication resource (e.g., LAN1 or LAN2) may
be shared by one or more else virtual connection and its capacity may be  distributed among all VCs
traversing this resource.

10.2.3 DCS communication resource specification structure

Communication resource is a physical link in a DCS. It may be specified by communication capacity
measured in data units per second that may be transferred through this resource and the costfactor (i.e.
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the financial cost of each data unit transferred by means of this resource). The possible communication
resource presentation follows:

commrc commrc_name ( bandwidth, cost );

An example of the commrc structure follows:

commrc LAN ( 100, 1 );

We have just declared a commrc named “LAN” with communication capacity equal to 100 and the
costfactor equal to 1.

10.3 Initial assignment specification

The INITIAL assignment presentation format is required to specify a feasible initial mapping variant
of a DMA graph to a DCS. Such a language is needful only for a certain class of mapping algorithms
that are designed to improve the given assignment (e.g. the algorithm proposed in 1.4).

The common syntax of the “assignment” operator looks the following way:

assign component_name to computer_name;

An example of this operator is shown below:

assign mixer to P100;

This operator assigns the component named mixer to the DCS computer named P100.

10.4 Example of specification file

[DCS]

computer A ( 7, 1, 7, 1, 7, 1 );
computer B ( 7, 2, 5, 2, 6, 2 );
computer C ( 7, 3, 4, 1, 8, 0 );
computer D ( 7, 2, 10, 1, 10, 3 );

commrc AB ( 6, 2 );
commrc AC ( 6, 3 );
commrc AD ( 6, 1 );
commrc BC ( 6, 1 );
commrc BD ( 6, 4 );
commrc CD ( 6, 2 );

vc ( A, B, AB );
vc ( A, C, AC );
vc ( A, D, AD );
vc ( B, C, BC );
vc ( B, D, BD );
vc ( C, D, CD );

[DMA]

component a (A, 2, 1);
component a (B ,2, 0);
component b (3, 1);
component c (4, 1);
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component d (2, 1);

link ( a, c, 1, 1, 1, 1, 2 );
link ( b, c, 3, 2, 1, 2, 1 );
link ( c, d, 2, 2, 1, 2, 1 );

[INITIAL]

assign a to A
assign b to B
assign c to C
assign d to D


