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Zusammenfassung

F�ur ungerichtete Graphen werden hierarchische und regionenhierarchische Graphen de�niert.
In planaren hierarchischen Graphen l�a�t sich die k�urzeste Entfernung zwischen zwei Knoten in
der Laufzeit O(

p
n) ermitteln (n sei die Anzahl der Knoten in dem gegebenen Graphen). Der

k�urzeste Weg mit l Knoten kann in O(
p
n+ l) Operationen berechnet werden. Beide Typen

von hierarchischen Graphen ben�otigen dabei O(n1:5) Platz f�ur die Speicherung der Hilfsta-
bellen. W�ahrend f�ur den Aufbau von allgemeinen hierarchischen Graphen O(n2) Operationen
ben�otigt werden, k�onnen regionenhierarchische Graphen in O(n1:5) Operationen aufgebaut
werden. Zur Konstruktion der hierarchischen Graphen benutzen wir das Separatortheorem
von Lipton und Tarjan [11].

1 Einf�uhrung

Die k�urzeste Wegesuche ist ein ausf�uhrlich untersuchtes Problem in der Graphentheorie, das
allerdings insbesondere in den letzten Jahren erneut bzgl. anderer Nebenbedingungen be-
arbeitet wird. Wenn man keine Preprocessing-Phase erlaubt, l�a�t sich die k�urzeste Entfer-
nung in einem planaren Graphen mit n Knoten in O(n) Zeit �nden [10]. Wenn man in ei-
ner Preprocessing-Phase in O(n2) Operationen alle k�urzesten Entfernungen berechnet und
in einer Tabelle zwischenspeichert, kann man durch Zugri� auf die Tabelle in O(1) Ope-
rationen die k�urzeste Entfernung bestimmen. Es stellt sich die Frage nach hierarchischen
Datenstrukturen, die wenig Platz ben�otigen und sich in einer Preprocessing-Phase e�zient
konstruieren lassen, so da� die Entfernungsberechnung ebenfalls e�zient m�oglich ist. Diese
Fragestellung ist insbesondere im Bereich von Verkehrsinformationssystemen von gro�em In-
teresse. In [9],[1],[3],[4],[8],[13] �nden sich diverse praktische Ans�atze zur Hierarchiebildung,
deren E�ektivit�at zum Teil an realen Stra�endaten nachgewiesen wurde. Leider wurden diese
Verfahren entweder nicht bez�uglich der Komplexit�at untersucht, oder sie berechnen lediglich
N�aherungen zum Bestweg.

Um Komplexit�atsuntersuchungen zu vereinfachen, d.h. um insbesondere die Ergebnisse der
Separation von planaren Graphen ausnutzen zu k�onnen [11], betrachten wir in dieser Arbeit
planare Graphen. F�ur diese konstruieren wir in einer Preprocessing-Phase in O(n1:5) Zeit
auf O(n1:5) Platz einen hierarchischen Graph, der die Berechnung der k�urzesten Entfernung
zwischen zwei Knoten in O(

p
n) Zeit zusichert. Zur Berechnung k�urzester Wege innerhalb

unseres Verfahrens benutzen wir einen linearen Algorithmus, der von Klein u.a. entwickelt
wurde [10]. Einzelne Ergebnisse dieser Arbeit sind auch in [12] nachzulesen.

Die Arbeit ist folgenderma�en aufgebaut: Abschnitt 2 enth�alt grundlegende De�nitio-
nen, in Abschnitt 3 werden hierarchische Graphen de�niert, und in Abschnitt 4 wird ein
Konstruktionsverfahren f�ur hierarchische Graphen vorgestellt. In Abschnitt 5 werden einige
vorbereitende �Uberlegungen �uber den Verlauf von Wegen gemacht, die in den Abschnitten
6 und 7 beim Aufbau von gewichteten und regionengewichteten hierarchischen Graphen be-
nutzt werden. Hinweise zur Implementierung und Ergebnisse von Experimenten sind in den
Abschnitten 8 und 9 zusammengefa�t.
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2 De�nitionen

In dieser Arbeit betrachten wir nur ungerichtete Graphen ohne Mehrfachkanten. Schlingen,
d.h. Kanten von einem Knoten zu sich selbst, spielen bei unseren Untersuchungen keine Rolle,
so da� wir darauf nicht weiter eingehen. Die �Ubertragung der Ergebnisse auf gerichtete Gra-
phen bereitet keine Probleme. Ein ungerichteter Graph G = (V;E) besitzt die Knotenmenge
V und die Kantenmenge E � ffu; vg j u 2 V; v 2 V g. Der Graph hei�t vollst�andig, wenn f�ur
die Kantenmenge gilt: E = ffu; vg j u 2 V; v 2 V g. F�ur beliebige Knotenmengen A;B � V

sei:

[A;B] := ffa; bg j a 2 A; b 2 Bg

In dem Graphen G = (V;E) induziert die Knotenmenge A � V den Graph

GA = (A; ffu; vg 2 E j u; v 2 Ag)

Ein Graph G0 = (V 0; E0) ist ein Teilgraph vom Graphen G = (V;E), wenn gilt: V 0 � V und
E0 � E (Schreibweise G0 � G). Ein Graph G = (V;E) hei�t planar, wenn sich der Graph G

so in die Ebene zeichnen l�a�t, da� sich keine Kanten �uberkreuzen.
Eine Menge fA1; A2; : : : ; Akg hei�t eine Partition einer Menge M , wenn gilt:

Ai � M 8 1 � i � k

M =
k[
i=1

Ai

Ai \Aj = ; 8 1 � i < j � k

Die M�achtigkeit einer Menge M bezeichnen wir mit jM j. Zu einem Graphen G = (V;E) hei�t
die Partition fA;B;Cg der Knotenmenge V eine Separation mit trennender Knoten-

menge C , wenn gilt: E \ [A;B] = ;. Es gibt also keine Kante in E zwischen den Knoten-
mengen A;B. Ein Graph G = (V;E; �) ist ein Graph G = (V;E) mit Kantengewichtsfunktion
� : E ! IR+. Ein Weg w = [u1; u2; : : : ; uk] im Graphen G ist eine Knotenfolge ui 2 V f�ur
1 � i � k, wobei die Kanten fui; ui+1g f�ur 1 � i < k in der Kantenmenge E liegen. s(w)
sei der Startknoten u1 des Weges w und e(w) sei der Endknoten uk. Der Weg w verl�auft

vollst�andig in einem induzierten Graphen G0 von G, falls w ein Weg in G ist und alle Knoten
auf w in der Knotenmenge von G0 liegen. Die Kantengewichtsfunktion � sei wie folgt auf Wege
w = [u1; u2; : : : ; uk] f�ur k � 2 (f�ur k = 1 sei �(w) = 0) und Knotenpaare u; v 2 V fortgesetzt:

�(w) :=
k�1X
i=1

�(fui; ui+1g)

�(u; v) := minf�(w) j s(w) = u; e(w) = v; w ist ein Weg in Gg

Falls kein Weg von u nach v in G existiert, setzen wir �(u; v) :=1.
Die endliche Menge � nennen wir auch ein endliches Alphabet. Die Menge aller W�orter

�uber dem Alphabet � sei �� :=
S1
i=0�

i. Dabei enth�alt �i alle W�orter � der L�ange i (Schreib-
weise j�j = i und �0 = f�g). �i;j := f� 2 �� j i � j�j � jg sind alle W�orter mit einer L�ange
zwischen i und j, wobei i � j gelte. (�)i sei das Pr�a�x der L�ange 0 � i � j�j des Wortes �.
� bezeichne die Konkatenation von W�ortern.
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3 Hierarchische Graphen

De�nition 1 Gegeben seien ein Graph G = (V;E) und das Alphabet � = f1; 2g.

HG := fG� j � 2 �0;kg

hei�t hierarchischer Graph mit k Stufen von G, wenn gilt:

1. F�ur alle � 2 �0;k gilt: G� = (R�; [T�; R�]) ist ein Graph mit T� � R�.

2. R� = V .

3. F�ur alle � 2 �0;k�1 und x 2 � gilt:

G� = (R�; [T�; R�]) 2 HG =) G��x = (R��x; [T��x; R��x]) 2 HG

und R��1; R��2; T� ist eine Separation von R� mit trennender Knotenmenge T� in dem

von R� induzierten Graphen GR�
� G = (V;E).

4. F�ur alle � 2 �k gilt: T� = R�.

Ein Graph G� 2 HG hei�t Graph der Stufe j�j. r(v) = � hei�t der Regionenname des

Knotens v 2 V , falls v 2 T� gilt.

Der Aufbau eines hierarchischen Graphen HG aus einem Graphen G erfolgt sukzessive
von Stufe Null bis zur Stufe k. V = R� ist die Knotenmenge des obersten Graphen G�,
d.h. der Graph der Stufe Null aus HG. Dann wird eine Separation R1; R2; T� von G mit der
trennenden Knotenmenge T� festgelegt, wodurch der Graph G� = (R�; [T�; R�]) vollst�andig
bestimmt ist. Die Graphen G1 = (R1; [T1; R1]) und G2 = (R2; [T2; R2]) werden durch Se-
paration der Knotenmengen R1; R2 in R11; R12; T1 bzw. R21; R22; T2 bzgl. der durch R1; R2

in G induzierten Graphen bestimmt usw. Alle Graphen auf der Stufe k eines hierarchischen
Graphen sind vollst�andig, da T� = R� ist. In Abbildung 1 ist ein planarer Graph und eine
m�ogliche Separation in Teilgraphen dargestellt. Man beachte, da� die Graphen GR�

nicht
zum hierarchischen Graphen geh�oren, sondern die von R� in dem gegebenen Graphen indu-
zierten Teilgraphen sind. Die trennenden Mengen auf der Stufe drei sind: T111 = fv1g; T112 =
;; T121 = fv3g; T122 = fv7g; T211 = fv10g; T212 = ;; T221 = fv14g; T222 = fv16g. Der Aufbau
des zugeh�origen hierarchischen Graphen HG ist in Abbildung 2 skizziert, und die Graphen
G�; G1 2 HG sind exemplarisch dargestellt.

Die Stufe 0 � i � k eines hierarchischen Graphen mit k+1 Stufen besteht aus 2i Graphen.
Aus Gr�unden der Einfachheit haben wir nur den speziellen Fall des 'vollst�andig ausgegliche-
nen' hierarchischen Graphen de�niert. Die Verallgemeinerung ergibt sich durch Entfernen von
leeren Graphen.

De�nition 2 Seien f : IN �! IR+ eine monoton wachsende Funktion und �; � 2 IR+ feste

Parameter mit 1
2 � � < 1; � � 0. Ein hierarchischer Graph HG mit n Knoten in G� 2 HG

hei�t �-�-f(n)-HG, wenn f�ur alle Graphen G� = (R�; [T�; R�]) 2 HG gilt:

1. jR�j � �j�jn und

2. jT�j � �f(jR�j).
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Abbildung 1: Ein planarer Graph mit Separationen in Teilgraphen.

Durch Einsetzen der ersten Bedingung in die zweite folgt: jT�j � �f(�j�jn). Dies werden
wir bei den Komplexit�atsuntersuchungen ausnutzen. Man beachte, da� ein hierarchischer �-
�-f(n)-HG Graph , der nur nichtleere Graphen enth�alt, wegen Bedingung (1) nicht mehr als
O(log n) nicht-leere Stufen besitzt. F�ur f(n) werden wir

p
n einsetzen, d.h. jede trennende

Knotenmenge T� enth�alt in einem �-�-
p
n-HG h�ochstens �

p
�j�jn Knoten.

4 Aufbau eines hierarchischen Graphen

Das folgende Theorem wurde in einer allgemeineren Form von Lipton und Tarjan bewiesen
[11].

Theorem 1 Gegeben sei ein planarer Graph G = (V;E) mit n Knoten. Eine Separation

fA;B;Cg von V mit trennender Knotenmenge C, die folgende Bedingungen erf�ullt:

� jAj; jBj � �n und

� jCj � �
p
n

existiert f�ur die Parameter � = 1
2 ; � = 2

p
2

1�
p

2

3

� 15:5 stets und kann in O(n) Operationen

berechnet werden.
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Abbildung 2: Struktur eines hierarchischen Graphen HG und G�; G1 2 HG.

Es wurden mehrfache Verbesserungen dieses Separatortheorems f�ur die Parameter � und
� angegeben, die in [5] und [7] nachgelesen werden k�onnen. F�ur die Komplexit�atsuntersuchun-
gen, die wir durchf�uhren, sind die genauen Werte irrelevant, so da� wir � und � als konstant
annehmen k�onnen.

Theorem 2 Gegeben seien obige Parameter � und � und ein planarer Graph G = (V;E). Zu
G l�a�t sich ein hierarchischer �-�-

p
n-HG Graph der Stufe O(log n) in O(n1:5) Operationen

konstruieren.

Beweis: Der hierarchische Graph habe k + 1 Stufen. Er wird sukzessive von Stufe Null bis
zur Stufe k durch Anwendung des Separatortheorems 1 aufgebaut. Da die Separierung
nur linearen Aufwand in der Anzahl der Knoten ben�otigt und in jeder Stufe weniger als
n verschiedene Knoten existieren, ist insgesamt h�ochstens mit O(n log n) Operationen
f�ur die Separierung zu rechnen. Da die Knotenmengen T� f�ur alle � 2 �0;k paarweise
diskunkt sind, ist zum Aufbau der Kantenmengen [T�; R�] in jedem Graph G� 2 HG
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folgender Aufwand notwendig:

j
[

�2�0;k

[T�; R�]j =
X

�2�0;k

j[T�; R�]j

=
X

�2�0;k

jT�jjR�j

�|{z}
nach Def. 2

kX
i=0

�
q
(�in)

X

�2�i

jR�j

�|{z}
wegen

P
�2�i jR�j�n

�n1:5
kX

i=0

(
p
�)i

2|{z}
wegen

P1
i=0

(
p
�)i= 1

1�
p
�

O(n1:5)

Ein hierarchischer �-�-
p
n-HG Graph zu einem planaren Graph ben�otigt nach Theorem

2 h�ochstens den Speicheraufwand O(n1:5). In dem Beispiel ist ein hierarchischer 1
2 -1-

p
n-HG

Graph dargestellt (siehe Abbildung 2).

5 Vorbereitung zur Wegsuche im hierarchischen Graphen

De�nition 3 Sei HG ein hierarchischer Graph zum Graphen G = (V;E). F�ur die Knoten

u; v 2 V hei�t LGG(u; v) = � letzter gemeinsamer Graphname genau dann, wenn gilt:

� ist das l�angste gemeinsame Pr�a�x von r(u) und r(v). Die Knotenmenge Rand(u; v) =SjLGG(u;v)j
i=0 T(LGG(u;v))i hei�t Randknotenmenge von u; v 2 V .

Lemma 1 Gegeben sei ein hierarchischer Graph HG zu einem Graph G. In jedem Weg w,

der vollst�andig in einem Teilgraphen GR�
f�ur

G� = (R�; [T�; R�]) 2 HG verl�auft, aber f�ur alle x 2 � = f1; 2g nicht vollst�andig in GR��x
f�ur G��x 2 HG verl�auft, gibt es einen Knoten v 2 T�.

Beweis: Da R��1; R��2; T� eine Separation mit trennender Knotenmenge T� in GR�
ist, folgt

die Aussage.

Lemma 2 Gegeben sei ein hierarchischer Graph HG zu dem Graphen G. Ein Weg w, der

vollst�andig in GR�
f�ur G� 2 HG verl�auft, verl�auft auch vollst�andig in GR(�)i

f�ur jedes 0 �
i � j�j.

Beweis: Die Aussage folgt aus GR(�)j
� GR(�)i

f�ur 0 � i � j � j�j.
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Theorem 3 Sei HG ein hierarchischer Graph zum Graphen G = (V;E). F�ur jeden Weg w

von u nach v in G gibt es einen Knoten z 2 Rand(u; v), der auf dem Weg w liegt.

Beweis: Sei LGG(u; v) = �. F�ur den Fall u 2 T� oder v 2 T� sind wir bereits fertig, da u

oder v der gesuchte Knoten ist. Im anderen Fall sei o.B.d.A. u 2 R��1 und v 2 R��2. Der
Weg w verl�auft vollst�andig in G, aber nicht vollst�andig in GR��1 und nicht vollst�andig
in GR��2 . Nach Lemma 2 gibt es ein maximales 0 � i � j�j, so da� w vollst�andig in
GR(�)i

verl�auft. Nach Lemma 1 gibt es dann einen Knoten z 2 T(�)i, der auf w liegt.

Aus Rand(u; v) =
Sj�j
i=0 T(�)i folgt das Theorem.

In dem Beispiel ist der letzte gemeinsame Graphname LGG(v3; v4) = 1. Jeder Weg vom
Knoten v3 zum Knoten v4 f�uhrt also �uber einen der Knoten Rand(v3; v4) = T� [ T1 =
fv2; v5; v8; v9g (siehe Abbildung 1).

Lemma 3 Sei �-�-
p
n-HG ein hierarchischer Graph zum Graphen G = (V;E). Es gilt f�ur

alle Knotenpaare u; v 2 V : jRand(u; v)j 2 O(
p
n).

Beweis: Der hierarchische Graph habe k + 1 Stufen. Nach De�nition 2 und 3 gilt:

jRand(u; v)j �
jLGG(u;v)jX

i=0

jT(LGG(u;v))ij �
kX
i=0

�
p
�in � �

p
n

1X
i=0

(
p
�)i 2 O(

p
n)

6 Gewichtete hierarchische Graphen

Wir betrachten nun gewichtete planare Graphen und erweitern alle Graphen eines hierar-
chischen Graphen um eine Kantengewichtsfunktion.

De�nition 4 Der um die Kantengewichtsfunktion erweiterte hierarchische Graph HG zu

dem Graphen G = (V;E; �) hei�t gewichteter hierarchischer Graph zu G, wenn f�ur alle Gra-

phen G� = (R�; [T�; R�]; ��) 2 HG gilt:

��(fu; vg) = �(u; v) 8fu; vg 2 [T�; R�]:

Theorem 4 Gegeben sei ein planarer Graph G = (V;E; �). Ein gewichteter hierarchischer

Graph �-�-
p
n-HG zu G l�a�t sich in O(n2) Schritten berechnen.

Beweis: Ohne die Kantengewichtsfunktion l�a�t sich der hierachische Graph HG nach Theo-
rem 2 in O(n1:5) Schritten berechnen. Mit dem von Klein u.a. entwickelten Verfahren
zur Berechnung der k�urzesten Entfernung in O(n) Zeit in planaren Graphen lassen sich
in O(n2) Zeit f�ur alle Knotenpaare die k�urzesten Entfernungen bestimmen [10].
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Zwar ben�otigen wir im hierarchischen Graphen nicht die Entfernung f�ur jedes Knotenpaar,
aber zur Berechnung der k�urzesten Entfernungen auf den Stufen gr�o�er als Null im hierar-
chischen Graphen reicht die Betrachtung der induzierten Graphen nicht aus, sondern es mu�
der gesamte gegebene planare Graph einbezogen werden. Auch die Einbeziehung bereits be-
rechneter Entfernungen bringt keine Laufzeitverbesserung, da die gesamte Randknotenmenge
betrachtet werden mu� (siehe auch [12]).

Theorem 5 Gegeben sei ein gewichteter hierarchischer �-�-
p
n-HG Graph zu dem planaren

Graphen G = (V;E; �). Die L�ange des k�urzesten Weges �(u; v) kann f�ur je zwei beliebige

Knoten u; v 2 V in O(
p
n) Operationen berechnet werden.

Beweis: In O(log n) Schritten wird LGG(u; v) berechnet (vgl. Abschnitt 8). Dann wird ein
Knoten z 2 Rand(u; v) mit folgender Eigenschaft gesucht:

�(u; z) + �(z; v) = minf�(u; y) + �(y; v) j y 2 Rand(u; v)g
Nach Theorem 3 gilt: �(u; v) = �(u; z) + �(z; v), und nach Lemma 3 (jRand(u; v)j 2
O(
p
n)) folgt die Behauptung.

In dem Beispielgraphen aus Abschnitt 3 sei das Kantengewicht �(fv1; v4g) = 3 und alle
anderen Kantengewichte seien eins. Dann ergibt sich der in Abbildung 3 dargestellte Teilgraph
G1 2 HG f�ur den gewichteten hierarchischen Graphen. Die k�urzeste Entfernung �(v3; v4) = 4
l�a�t sich durch die Betrachtung von Rand(v3; v4) = fv2; v5; v8; v9g ermitteln.

T1

v4v1

v2

v3

v7

1
3

3 3

2 2

11

G1

3
2

1

v6

v5

Abbildung 3: Gewichteter Teilgraph G1 2 HG.

Wenn ein k�urzester Weg mit l Knoten ausgegeben werden soll, sind dazu weitere O(l)
Operationen aufzuwenden. F�ur jede Kante in einem Graphen G� des hierarchischen Graphen,
an der nach De�nition 4 der k�urzeste Weg vermerkt ist, mu� dazu ein Knoten auf diesem
k�urzesten Weg gespeichert werden. Da auch die Teilwege von k�urzesten Wegen k�urzeste We-
ge sind, kann anhand dieser Knoten durch erneuten Zugri� auf den Graphen G� in O(l)
Operationen der k�urzeste Weg zusammengesetzt werden.

7 Regionengewichtete hierarchische Graphen

Die Kantengewichte in gewichteten hierarchischen Graphen entsprechen immer den k�urzesten
Entfernungen im zugrundeliegenden Graphen. Es reicht jedoch f�ur die Wegberechnung mit
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dem hierarchischen Graphen aus, die k�urzeste Entfernung in einem induzierten Teilgraphen
des zugrundeliegenden Graphen zu vermerken. F�ur eine Kante des GraphenG� = (R�; [T�; R�]) 2
HG werden wir die k�urzeste Entfernung bezogen auf den von R� in G induzierten Graphen
GR�

bestimmen.

De�nition 5 Der hierarchische Graph HG zu G = (V;E; �) hei�t regionengewichteter hier-
archischer Graph, falls f�ur alle G� = (R�; [T�; R�]; ��) 2 HG und f�ur alle Kanten fu; vg 2
[T�; R�] gilt:

��(fu; vg) = �R�
(u; v)

Dabei ist �R�
die auf Knoten fortgesetzte Kantengewichtsfunktion in dem von R� � V in G

induzierten Graphen.

Der regionengewichtete hierarchische Graph zum Beispielgraphen aus Abschnitt 3 als ge-
wichteter Graph mit �(fv1; v4g) = 3 (alle anderen Kantengewichte seien eins) ist wiederum
exemplarisch f�ur G1 2 HG in Abbildung 4 dargestellt.

T1

v4v1

v2

v3

v7

1
3

3

2 2

11

G1

4
4

1

4

v6

v5

Abbildung 4: Regionengewichteter Teilgraph G1 2 HG.

Theorem 6 Gegeben sei ein planarer Graph G = (V;E; �). Ein regionengewichteter hierar-

chischer �-�-
p
n-HG Graph zu G l�a�t sich in O(n1:5) Operationen berechnen.

Beweis: Nach Theorem 2 wird der hierarchische GraphHG ohne die Kantengewichtsfunktion
in O(n1:5) Operationen berechnet. Um die Kantengewichte ��(fu; vg) f�ur einen Knoten
u 2 T� und alle Knoten v 2 R� zu bestimmen, gen�ugt es, den Algorithmus aus [10] in
dem planaren Teilgraphen GR�

� G einzusetzen. Im worst-case wird somit h�ochstens
der Aufwand O(jR�j) ben�otigt. Zur Berechnung von allen Kantengewichten von [T�; R�]
f�ur alle Graphen G� 2 HG ergibt sich nach den selben Gleichungsumformungen wie im
Beweis zu Theorem 2 f�ur einen hierarchischen Graphen mit k + 1 Stufen:

X

�2�0;k

jT�jO(jR�j) 2 O(n1:5)
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Um nachzuweisen, da� die Bestimmung der k�urzesten Entfernung mit regionengewichteten
hierarchischen Graphen in O(

p
n) Zeit m�oglich ist, beziehen wir uns auf das Theorem 3:

Jeder Weg von einem Knoten u 2 V zu einem Knoten v 2 V enth�alt einen Knoten aus
Rand(u; v). Die kurze Argumentation im Beweis zu Theorem 5 reicht hier nicht aus, da im
regionengewichteten Graphen die Kantengewichte i.A. nicht den k�urzesten Entfernungen im
zugrundeliegenden Graphen entsprechen.

Theorem 7 Sei �-�-
p
n-HG ein regionengewichteter hierarchischer Graph zu einem Gra-

phen G. Die L�ange des k�urzesten Weges �(u; v) kann f�ur je zwei beliebige Knoten u; v 2 V in

O(
p
n) Operationen berechnet werden.

Beweis: Wir verfolgen zun�achst dieselbe Argumentation wie in Theorem 3. Sei LGG(u; v) =
�, und o.B.d.A. seien u 2 R��1 und v 2 R��2. Nach Lemma 2 gibt es ein maximales
0 � i � j�j, so da� der k�urzeste Weg w von u nach v vollst�andig in GR(�)i

verl�auft. Nach
Lemma 1 gibt es dann einen Knoten z 2 T(�)i, der auf w liegt. Es gilt also:

�(w) = �(u; z) + �(z; v) = �R(�)i
(u; z) + �R(�)i

(z; v)

Da im regionengewichteten hierarchischen Graphen f�ur alle Kanten fp; qg 2 [T(�)i; R(�)i]
gilt:

�(�)i(fp; qg) = �R(�)i
(p; q)

gen�ugt die Betrachtung von Rand(u; v), um die L�ange des k�urzesten Weges von u nach
v zu bestimmen. Nach Lemma 3 (jRand(u; v)j 2 O(

p
n)) folgt das Theorem.

In dem gewichteten Beispiel (�(fv1; v4g) = 3) gibt es zwei k�urzeste Wege zwischen v3
und v4, die beide �uber den Knoten v8 f�uhren (siehe Abbildung 1). In dem Graphen G� des
regionengewichteten hierarchischen Graphen HG gibt es die Kanten fv4; v8g; fv3; v8g mit
folgenden Kantengewichten: ��(fv4; v8g) = �R�(v4; v8) = 1 und ��(fv3; v8g) = �R�(v3; v8) =
3. Die Betrachtung der Randknotenmenge Rand(v3; v4) gen�ugt wiederum, um die k�urzeste
Entfernung zwischen v3 und v4 zu bestimmen.

In regionengewichteten hierarchischen Graphen wird nach Theorem 7 analog zu den ge-
wichteten hierarchischen Graphen ein k�urzester Weg mit l Knoten in O(

p
n+ l) Operationen

berechnet.

8 Implementierung

Der zugrundeliegende Graph sei in Form von Adjazenzlisten gespeichert. Bei der Separierung
sind zum einen die induzierten Teilgraphen des zugrundeliegenden Graphen ebenfalls in Form
von Adjazenzlisten zu speichern. Dies ist in jeder Stufe in O(n) Zeit m�oglich. Zum anderen
wird die Kantengewichtsfunktion jedes Graphen G� = (R�; [T�; R�]; ��) eines hierarchischen
Graphen in einer Tabelle mit jR�j Zeilen und jT�j Spalten gespeichert, so da� der Zugri� f�ur
ein Knotenpaar in konstanter Zeit m�oglich ist. Jeder Tabelleneintrag Tab(u; v) enth�alt neben
dem Kantengewicht den n�achsten Knoten nach u, der auf dem k�urzesten Weg von u nach v

liegt. Dieser Knoten wird gebraucht, um den k�urzesten Weg ausgeben zu k�onnen. Au�erdem
wird bei der Separation ein Baum B mit den W�ortern � 2 �0;k als Knoten aufgebaut, bei
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dem f�ur jeden Knoten � ein Verweis auf die trennende Menge T� mitgef�uhrt wird. F�ur jeden
Knoten v 2 V des zugrundeliegenden Graphen wird weiterhin der Regionenname r(v) (falls
v 2 T�) vermerkt.

Die Berechnung des k�urzesten Weges zwischen u; v 2 V erfolgt dann in zwei Schritten:

1. Berechne LGG(u; v). Dies ist das l�angste gemeinsame Pr�a�x von r(u) und r(v), d.h. es
werden h�ochstens O(log n) Operationen ben�otigt.

2. Minimumbildung �uber Rand(u; v). Im Baum B werden vom Knoten LGG(u; v) (di-
rekter Zugri�) auf dem Pfad bis zur Wurzel die trennenden Mengen aufgesucht. Das
Kantengewicht kann jeweils durch einen Zugri� auf die angelegten Tabellen ermittelt
werden.

9 Experimente

Da Stra�ennetze in der Regel wegen Br�ucken und Untertunnelungen nur fast planar sind, l�a�t
sich das Separatortheorem nicht direkt anwenden. Stattdessen haben wir eine Heuristik zur
Separation verwendet. Die uns vorliegenden Stra�endaten sind im GDF-Format gespeichert,
in dem die Stra�en in neun Geschwindigkeitsklassen eingeteilt sind. Das Stra�ennetz vom
Gro�raum Stuttgart mit 15224 Knoten und 38032 Kanten wurde sukzessive von der Stufe
i = 0 bis zur Stufe i = 8 entlang der Stra�en der Klasse i separiert. Da bei jeder Separation
mindestens f�unf verschiedene Zusammenhangskomponenten aufgetreten sind, haben wir einen
hierarchischen Graphen zu � = f1; 2; 3; 4; 5g konstruiert. Der Graph besitzt neun Stufen und
ben�otigt 42.8 MBytes Speicherplatz. Schon das Stuttgarter Stra�ennetz ben�otigt 3.5 MBytes.
Dieser spezielle hierarchische Graph ist ein �-�-

p
n-HG mit � = 1

2 und � = 5
2 .

Auf einer SPARCstation 10=40 mit 128 MBytes Hauptspeicher ergaben sich unter dem Be-
triebssystem SunOS 5.4 folgende Laufzeiten: Der gewichtete hierarchische Graph wurde in 104
Minuten aufgebaut, und die Berechnung der k�urzesten Entfernung ben�otigt im average-case
0:305 Millisekunden. Im Vergleich dazu brauchte der Dijkstra Algorithmus 586 Millisekunden
[6]. Eine vollst�andige Tabelle f�ur die Entfernungen aller Knotenpaare braucht fast 0:5 GBytes
an Speicherplatz, die nicht im Hauptspeicher untergebracht werden konnten. Die reine CPU-
Zeit zur Entfernungsberechnung betr�agt unter 0.3 Millisekunden, aber da ein Plattenzugri�
notwendig ist, ergibt sich eine gesamte Laufzeit von durchschnittlich 60 Millisekunden pro
Tabellenzugri�.

10 Ausblick

Wir werden versuchen, die Ergebnisse von planaren Graphen auf d�unne Graphen ((jEj 2
O(n)) zu verallgemeinern. Zwar haben Bui und Jones in [2] nachgewiesen, da� bereits die
Separation von Graphen mit Grad drei auch f�ur N�aherungen NP-hart ist, aber uns gen�ugen
Separationen der Gr�o�e O(

p
n).

F�ur Verkehrsinformationssysteme ist es entscheidend, da� ein Update auf dem zugrunde-
liegenden Stra�ennetz nur zu kleinen �Anderungen in der hierarchischen Struktur f�uhrt. Da
sich Stra�ennetze j�ahrlich durchschnittlich um 5 % �andern, w�are eine Neuberechnung der hie-
rarchischen Struktur bei jeder �Anderung inakzeptabel. Es sind die Bedingungen festzustellen,
unter denen ein Update nur kleine �Anderungen des hierarchischen Graphen nach sich zieht.
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