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Zusammenfassung

Fiir ungerichtete Graphen werden hierarchische und regionenhierarchische Graphen definiert.
In planaren hierarchischen Graphen 148t sich die kiirzeste Entfernung zwischen zwei Knoten in
der Laufzeit O(y/n) ermitteln (n sei die Anzahl der Knoten in dem gegebenen Graphen). Der
kiirzeste Weg mit ! Knoten kann in O(y/n + 1) Operationen berechnet werden. Beide Typen
von hierarchischen Graphen benétigen dabei O(n'-%) Platz fiir die Speicherung der Hilfsta-
bellen. Withrend fiir den Aufbau von allgemeinen hierarchischen Graphen O(n?) Operationen
benétigt werden, kénnen regionenhierarchische Graphen in O(n!?®) Operationen aufgebaut
werden. Zur Konstruktion der hierarchischen Graphen benutzen wir das Separatortheorem
von Lipton und Tarjan [11].

1 Einfiihrung

Die kiirzeste Wegesuche ist ein ausfiihrlich untersuchtes Problem in der Graphentheorie, das
allerdings insbesondere in den letzten Jahren erneut bzgl. anderer Nebenbedingungen be-
arbeitet wird. Wenn man keine Preprocessing-Phase erlaubt, 148t sich die kiirzeste Entfer-
nung in einem planaren Graphen mit n Knoten in O(n) Zeit finden [10]. Wenn man in ei-
ner Preprocessing-Phase in O(n?) Operationen alle kiirzesten Entfernungen berechnet und
in einer Tabelle zwischenspeichert, kann man durch Zugriff auf die Tabelle in O(1) Ope-
rationen die kiirzeste Entfernung bestimmen. Es stellt sich die Frage nach hierarchischen
Datenstrukturen, die wenig Platz benétigen und sich in einer Preprocessing-Phase effizient
konstruieren lassen, so dal die Entfernungsberechnung ebenfalls effizient mdoglich ist. Diese
Fragestellung ist insbesondere im Bereich von Verkehrsinformationssystemen von grofiem In-
teresse. In [9],[1],[3],[4],[8],[13] finden sich diverse praktische Ansitze zur Hierarchiebildung,
deren Effektivitdt zum Teil an realen Straflendaten nachgewiesen wurde. Leider wurden diese
Verfahren entweder nicht beziiglich der Komplexitit untersucht, oder sie berechnen lediglich
N&herungen zum Bestweg.

Um Komplexitéitsuntersuchungen zu vereinfachen, d.h. um insbesondere die Ergebnisse der
Separation von planaren Graphen ausnutzen zu kénnen [11], betrachten wir in dieser Arbeit
planare Graphen. Fiir diese konstruieren wir in einer Preprocessing-Phase in O(n'®) Zeit
auf O(n'") Platz einen hierarchischen Graph, der die Berechnung der kiirzesten Entfernung
zwischen zwei Knoten in O(y/n) Zeit zusichert. Zur Berechnung kiirzester Wege innerhalb
unseres Verfahrens benutzen wir einen linearen Algorithmus, der von Klein u.a. entwickelt
wurde [10]. Einzelne Ergebnisse dieser Arbeit sind auch in [12] nachzulesen.

Die Arbeit ist folgendermaflen aufgebaut: Abschnitt 2 enthilt grundlegende Definitio-
nen, in Abschnitt 3 werden hierarchische Graphen definiert, und in Abschnitt 4 wird ein
Konstruktionsverfahren fiir hierarchische Graphen vorgestellt. In Abschnitt 5 werden einige
vorbereitende Uberlegungen iiber den Verlauf von Wegen gemacht, die in den Abschnitten
6 und 7 beim Aufbau von gewichteten und regionengewichteten hierarchischen Graphen be-
nutzt werden. Hinweise zur Implementierung und Ergebnisse von Experimenten sind in den
Abschnitten 8 und 9 zusammengefafit.



2 Definitionen

In dieser Arbeit betrachten wir nur ungerichtete Graphen ohne Mehrfachkanten. Schlingen,
d.h. Kanten von einem Knoten zu sich selbst, spielen bei unseren Untersuchungen keine Rolle,
so daB wir darauf nicht weiter eingehen. Die Ubertragung der Ergebnisse auf gerichtete Gra-
phen bereitet keine Probleme. Ein ungerichteter Graph G = (V, E) besitzt die Knotenmenge
V und die Kantenmenge E C {{u,v} | u € V,v € V}. Der Graph heifit vollstindig, wenn fiir
die Kantenmenge gilt: £ = {{u,v} | u € V,v € V}. Fiir beliebige Knotenmengen A,B C V
sei:

[A,B] = {{a,b}|acAbeB}
In dem Graphen G = (V, E) induziert die Knotenmenge A C V' den Graph
Ga = (A,{{’U,,’U} €E | u,v € A})

Ein Graph G’ = (V', E') ist ein Teilgraph vom Graphen G = (V, E), wenn gilt: V' C V und
E' C E (Schreibweise G’ C G). Ein Graph G = (V, E) heifit planar, wenn sich der Graph G
so in die Ebene zeichnen 148t, daf} sich keine Kanten tiberkreuzen.

Eine Menge {41, Ag, ..., Ax} heifit eine Partition einer Menge M, wenn gilt:

A, C M V1<i<k
k
M = [J4
i=1
AiﬂAj = 0 Vi<i<ji<k

Die Machtigkeit einer Menge M bezeichnen wir mit |M|. Zu einem Graphen G = (V, E) heifit
die Partition {4, B,C} der Knotenmenge V eine Separation mit trennender Knoten-
menge C' | wenn gilt: £ N [A, B] = (). Es gibt also keine Kante in E zwischen den Knoten-
mengen A, B. Ein Graph G = (V| E, §) ist ein Graph G = (V, E) mit Kantengewichtsfunktion
§: E — R'. Ein Weg w = [u1,us,...,u;] im Graphen G ist eine Knotenfolge u; € V fiir
1 < i <k, wobei die Kanten {u;,u;41} fiir 1 < i < k in der Kantenmenge E liegen. s(w)
sei der Startknoten u; des Weges w und e(w) sei der Endknoten ug. Der Weg w verlduft
vollstindig in einem induzierten Graphen G’ von G, falls w ein Weg in G ist und alle Knoten
auf w in der Knotenmenge von G’ liegen. Die Kantengewichtsfunktion § sei wie folgt auf Wege
w = [u1,ug,...,u) fir k> 2 (fiir £ =1 sei 6(w) = 0) und Knotenpaare u,v € V fortgesetzt:

k—1
d(w) = Y 6({ui,uit1})
i=1
d(u,v) = min{d(w) | s(w) =u,e(w) =v,w ist ein Weg in G}

Falls kein Weg von u nach v in G existiert, setzen wir d(u,v) := oo.

Die endliche Menge ¥ nennen wir auch ein endliches Alphabet. Die Menge aller Worter
iiber dem Alphabet ¥ sei ¥* := [J22, % Dabei enthélt %* alle Wérter A der Linge i (Schreib-
weise |A| = i und X0 = {e}). &% := {\ € ©* | i < |A| < j} sind alle Worter mit einer Linge
zwischen i und j, wobei i < j gelte. (A)i sei das Préfix der Lange 0 < i < |A| des Wortes .
o bezeichne die Konkatenation von Wortern.



3 Hierarchische Graphen
Definition 1 Gegeben seien ein Graph G = (V, E) und das Alphabet ¥ = {1,2}.
HG = {G\|Xex%}

heifst hierarchischer Graph mit k& Stufen von G, wenn gilt:

1. Fiir alle X € OF gilt: Gy = (R, [Ty, R))) ist ein Graph mit Ty C Ry.

2. Re=V.

3. Fir alle A € 0%~ und z € & gilt:

Gy = (R\,[T\,R)\]) € HG = Goz = (Raox, [Thows Rroz]) € HG

und Rxo1, Ryo2, Ty ist eine Separation von R) mit trennender Knotenmenge Ty in dem
von Ry induzierten Graphen G, C G = (V,E).

4. Fir alle A € ©F gilt: T = R).

Ein Graph Gy € HG heifst Graph der Stufe |\|. r(v) = X heifit der Regionenname des
Knotens v € V, falls v € Ty, gilt.

Der Aufbau eines hierarchischen Graphen HG aus einem Graphen G erfolgt sukzessive
von Stufe Null bis zur Stufe k. V' = R, ist die Knotenmenge des obersten Graphen G,
d.h. der Graph der Stufe Null aus HG. Dann wird eine Separation R;, Ro,T. von G mit der
trennenden Knotenmenge T, festgelegt, wodurch der Graph G, = (R, [T, R.]) vollstindig
bestimmt ist. Die Graphen G| = (Ry,[T1,R1]) und G2 = (R, [T2, R2]) werden durch Se-
paration der Knotenmengen R;, Re in Ry, Ri2,T1 bzw. Ra1, Ras,T5 bzgl. der durch Ry, Ry
in G induzierten Graphen bestimmt usw. Alle Graphen auf der Stufe k eines hierarchischen
Graphen sind vollstindig, da T\ = R ist. In Abbildung 1 ist ein planarer Graph und eine
mogliche Separation in Teilgraphen dargestellt. Man beachte, dafl die Graphen Gg, nicht
zum hierarchischen Graphen gehoren, sondern die von R) in dem gegebenen Graphen indu-
zierten Teilgraphen sind. Die trennenden Mengen auf der Stufe drei sind: 7711 = {v1},Th12 =
0, Th21 = {v3},Ti22 = {vr}, Torr = {vi0}, To12 = 0, Too1 = {via}, To2e = {vi6}. Der Aufbau
des zugehorigen hierarchischen Graphen H(G ist in Abbildung 2 skizziert, und die Graphen
G¢,G1 € HG sind exemplarisch dargestellt.

Die Stufe 0 < i < k eines hierarchischen Graphen mit k4 1 Stufen besteht aus 2 Graphen.
Aus Griinden der Einfachheit haben wir nur den speziellen Fall des ’vollstindig ausgegliche-
nen’ hierarchischen Graphen definiert. Die Verallgemeinerung ergibt sich durch Entfernen von
leeren Graphen.

Definition 2 Seien f : N — R eine monoton wachsende Funktion und o, 3 € RT feste
Parameter mit % <a<1,8>0. Ein hierarchischer Graph HG mit n Knoten in G, € HG
heifst a-p-f(n)-HG, wenn fir alle Graphen G\ = (Ry, [T\, R)]) € HG gilt:

1. |Ry| < aPln und

2. |Tx| < Bf(|RA])-
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Abbildung 1: Ein planarer Graph mit Separationen in Teilgraphen.

Durch Einsetzen der ersten Bedingung in die zweite folgt: |T| < 6f(al*n). Dies werden
wir bei den Komplexitéitsuntersuchungen ausnutzen. Man beachte, dafl ein hierarchischer a-
B-f(n)-HG Graph , der nur nichtleere Graphen enthélt, wegen Bedingung (1) nicht mehr als
O(logn) nicht-leere Stufen besitzt. Fiir f(n) werden wir y/n einsetzen, d.h. jede trennende
Knotenmenge T enthilt in einem a-3-\/n-HG hochstens SV al*n Knoten.

4 Awufbau eines hierarchischen Graphen

Das folgende Theorem wurde in einer allgemeineren Form von Lipton und Tarjan bewiesen
[11].

Theorem 1 Gegeben sei ein planarer Graph G = (V,E) mit n Knoten. Eine Separation
{A, B,C} von V' mit trennender Knotenmenge C, die folgende Bedingungen erfillt:

e |A],|B| < an und
e [C]<BVn

ezistiert fir die Parameter a = %,ﬁ — 2V2 < 15.5 stets und kann in O(n) Operationen

berechnet werden.

W
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Abbildung 2: Struktur eines hierarchischen Graphen HG und G, G; € HG.

Es wurden mehrfache Verbesserungen dieses Separatortheorems fiir die Parameter v und
[ angegeben, die in [5] und [7] nachgelesen werden kénnen. Fiir die Komplexititsuntersuchun-
gen, die wir durchfiihren, sind die genauen Werte irrelevant, so dafl wir o und /3 als konstant
annehmen kénnen.

Theorem 2 Gegeben seien obige Parameter o und 3 und ein planarer Graph G = (V, E). Zu
G lapt sich ein hierarchischer a-B-/n-HG Graph der Stufe O(logn) in O(n'®) Operationen
konstruieren.

Beweis: Der hierarchische Graph habe k£ + 1 Stufen. Er wird sukzessive von Stufe Null bis
zur Stufe £ durch Anwendung des Separatortheorems 1 aufgebaut. Da die Separierung
nur linearen Aufwand in der Anzahl der Knoten benétigt und in jeder Stufe weniger als
n verschiedene Knoten existieren, ist insgesamt hochstens mit O(nlogn) Operationen
fiir die Separierung zu rechnen. Da die Knotenmengen T} fiir alle A € £%* paarweise
diskunkt sind, ist zum Aufbau der Kantenmengen [Ty, R,| in jedem Graph G € HG



folgender Aufwand notwendig:

| U [T Ry = > Ty, Ryl
Aezo,k )\ezo,k
= > TRy
)\ezo,k
k
= Zﬁ\/ (afn) Z |R)\|
nach Def. 2 =0 AEL!
k
< Anl?> (V)
S~~~ =0

wegen )\ o |Ry|<n

\E’/ O(n1.5)

wegen $07(va)=iz

Ein hierarchischer a-3-v/n-HG Graph zu einem planaren Graph benotigt nach Theorem
2 hochstens den Speicheraufwand O(n'-5). In dem Beispiel ist ein hierarchischer -1-\/n-HG
Graph dargestellt (siehe Abbildung 2).

5 Vorbereitung zur Wegsuche im hierarchischen Graphen

Definition 3 Sei HG ein hierarchischer Graph zum Graphen G = (V, E). Fir die Knoten
u,v € V heifft LGG(u,v) = X letzter gemeinsamer Graphname genau dann, wenn gilt:
A ist das ldngste gemeinsame Prdfiz von r(u) und r(v). Die Knotenmenge Rand(u,v) =
UligG(u’v)‘ T(LGG(uw))i heift Randknotenmenge von u,v € V.

Lemma 1 Gegeben sei ein hierarchischer Graph HG zu einem Graph G. In jedem Weg w,
der vollstindig in einem Teilgraphen Gg, fir

Gy = (Ry, [T\, Ry]) € HG verliuft, aber fir alle z € ¥ = {1,2} nicht vollstindig in Gg,,_,
fir Gyop € HG verlduft, gibt es einen Knoten v € Ty.

Beweis: Da R)o1, Ryo2, T eine Separation mit trennender Knotenmenge T in G, ist, folgt
die Aussage.

|
Lemma 2 Gegeben sei ein hierarchischer Graph HG zu dem Graphen G. Ein Weg w, der
vollstindig in G, fir Gx € HG verlduft, verliuft auch vollstindig in Gr,,, fir jedes 0 <
i <Al

Beweis: Die Aussage folgt aus G ,,. C Gg,,, fiir 0 <i<j < |A]-



Theorem 3 Sei HG ein hierarchischer Graph zum Graphen G = (V, E). Fiir jeden Weg w
von u nach v in G gibt es einen Knoten z € Rand(u,v), der auf dem Weg w liegt.

Beweis: Sei LGG(u,v) = A. Fiir den Fall u € T oder v € T) sind wir bereits fertig, da u
oder v der gesuchte Knoten ist. Im anderen Fall sei 0.B.d.A. u € R),1 und v € Ryo2. Der
Weg w verlduft vollstindig in G, aber nicht vollstindig in G'g, , und nicht vollsténdig
in GR,,,. Nach Lemma 2 gibt es ein maximales 0 < i < |A|, so dafl w vollstdndig in
GR,); verlduft. Nach Lemma 1 gibt es dann einen Knoten z € T{y);, der auf w liegt.

Aus Rand(u,v) = UL/L‘O Ty folgt das Theorem.
|
In dem Beispiel ist der letzte gemeinsame Graphname LGG(vs,v4) = 1. Jeder Weg vom

Knoten v3 zum Knoten v, fithrt also iiber einen der Knoten Rand(vs,v4) = T UT) =
{ve,v5,v8,v9} (siche Abbildung 1).

Lemma 3 Sei a-B-\/n-HG ein hierarchischer Graph zum Graphen G = (V, E). Es gilt fiir
alle Knotenpaare u,v € V: |Rand(u,v)| € O(y/n).

Beweis: Der hierarchische Graph habe £ + 1 Stufen. Nach Definition 2 und 3 gilt:

|LGG(u,)] k ) _
|Rand(u,v)| < Z T Lacuv)il < 25\/ ain < Byvn z:(\/a)Z € O(v/n)
i=0 i=0 i=0

6 Gewichtete hierarchische Graphen

Wir betrachten nun gewichtete planare Graphen und erweitern alle Graphen eines hierar-
chischen Graphen um eine Kantengewichtsfunktion.

Definition 4 Der um die Kantengewichtsfunktion erweiterte hierarchische Graph HG zu
dem Graphen G = (V, E,0) heifit gewichteter hierarchischer Graph zu G, wenn fir alle Gra-
phen G = (R)\, [T)\,R,\], (5)\) € HG gilt:

Hh{u,v}) = d(u,v) V{u,v} € [Tx, Ry].

Theorem 4 Gegeben sei ein planarer Graph G = (V, E,d). Ein gewichteter hierarchischer
Graph a-B-y/n-HG zu G 1t sich in O(n?) Schritten berechnen.

Beweis: Ohne die Kantengewichtsfunktion 148t sich der hierachische Graph HG nach Theo-
rem 2 in O(n!%) Schritten berechnen. Mit dem von Klein u.a. entwickelten Verfahren
zur Berechnung der kiirzesten Entfernung in O(n) Zeit in planaren Graphen lassen sich
in O(n?) Zeit fiir alle Knotenpaare die kiirzesten Entfernungen bestimmen [10].



Zwar benétigen wir im hierarchischen Graphen nicht die Entfernung fiir jedes Knotenpaar,
aber zur Berechnung der kiirzesten Entfernungen auf den Stufen gréfer als Null im hierar-
chischen Graphen reicht die Betrachtung der induzierten Graphen nicht aus, sondern es muf)
der gesamte gegebene planare Graph einbezogen werden. Auch die Einbeziehung bereits be-
rechneter Entfernungen bringt keine Laufzeitverbesserung, da die gesamte Randknotenmenge
betrachtet werden muf (siehe auch [12]).

Theorem 5 Gegeben sei ein gewichteter hierarchischer a--/n-HG Graph zu dem planaren
Graphen G = (V,E,§). Die Linge des kiirzesten Weges §(u,v) kann fir je zwei beliebige
Knoten u,v € V in O(y/n) Operationen berechnet werden.

Beweis: In O(logn) Schritten wird LGG(u,v) berechnet (vgl. Abschnitt 8). Dann wird ein
Knoten z € Rand(u,v) mit folgender Eigenschaft gesucht:

d(u,z) +0(z,v) = min{d(u,y) + d(y,v) | y € Rand(u,v)}

Nach Theorem 3 gilt: 6(u,v) = 0(u,2) + §(z,v), und nach Lemma 3 (|Rand(u,v)| €
O(y/n)) folgt die Behauptung.

|
In dem Beispielgraphen aus Abschnitt 3 sei das Kantengewicht d({vi,v4}) = 3 und alle
anderen Kantengewichte seien eins. Dann ergibt sich der in Abbildung 3 dargestellte Teilgraph

G € HQG fiir den gewichteten hierarchischen Graphen. Die kiirzeste Entfernung §(vs,vs) = 4
1aBt sich durch die Betrachtung von Rand(vs,vs) = {ve,vs,vs,v9} ermitteln.

Gy

Abbildung 3: Gewichteter Teilgraph G; € HG.

Wenn ein kiirzester Weg mit [ Knoten ausgegeben werden soll, sind dazu weitere O(1)
Operationen aufzuwenden. Fiir jede Kante in einem Graphen G des hierarchischen Graphen,
an der nach Definition 4 der kiirzeste Weg vermerkt ist, mul dazu ein Knoten auf diesem
kiirzesten Weg gespeichert werden. Da auch die Teilwege von kiirzesten Wegen kiirzeste We-
ge sind, kann anhand dieser Knoten durch erneuten Zugriff auf den Graphen G in O(I)
Operationen der kiirzeste Weg zusammengesetzt werden.

7 Regionengewichtete hierarchische Graphen

Die Kantengewichte in gewichteten hierarchischen Graphen entsprechen immer den kiirzesten
Entfernungen im zugrundeliegenden Graphen. Es reicht jedoch fiir die Wegberechnung mit



dem hierarchischen Graphen aus, die kiirzeste Entfernung in einem induzierten Teilgraphen
des zugrundeliegenden Graphen zu vermerken. Fiir eine Kante des Graphen G = (Ry, [Th, R)]) €
HG werden wir die kiirzeste Entfernung bezogen auf den von R) in G induzierten Graphen

G R, bestimmen.

Definition 5 Der hierarchische Graph HG zu G = (V, E, ) heif§t regionengewichteter hier-
archischer Graph, falls fir alle Gy = (Ry, [T, R)],0x) € HG und fir alle Kanten {u,v} €
[T, R)] gilt:

6/\({uv 1)}) = 6R>\ (U’a U)

Dabei ist o, die auf Knoten fortgesetzte Kantengewichtsfunktion in dem von Ry CV in G
induzierten Graphen.

Der regionengewichtete hierarchische Graph zum Beispielgraphen aus Abschnitt 3 als ge-

wichteter Graph mit 6({vi,v4}) = 3 (alle anderen Kantengewichte seien eins) ist wiederum
exemplarisch fiir G; € HG in Abbildung 4 dargestellt.

Gy

Abbildung 4: Regionengewichteter Teilgraph G1 € HG.

Theorem 6 Gegeben sei ein planarer Graph G = (V, E, ). Ein regionengewichteter hierar-
chischer a-B-\/n-HG Graph zu G lift sich in O(n'®) Operationen berechnen.

Beweis: Nach Theorem 2 wird der hierarchische Graph H G ohne die Kantengewichtsfunktion
in O(n'®) Operationen berechnet. Um die Kantengewichte dy({u,v}) fiir einen Knoten
u € Ty und alle Knoten v € Ry zu bestimmen, geniigt es, den Algorithmus aus [10] in
dem planaren Teilgraphen Gr, C G einzusetzen. Im worst-case wird somit héchstens
der Aufwand O(|R,|) benétigt. Zur Berechnung von allen Kantengewichten von [T}, R)]
fiir alle Graphen G\ € HG ergibt sich nach den selben Gleichungsumformungen wie im
Beweis zu Theorem 2 fiir einen hierarchischen Graphen mit k£ + 1 Stufen:

> ITA\O(IRA]) € O(n™?)
AEXOk



Um nachzuweisen, daf§ die Bestimmung der kiirzesten Entfernung mit regionengewichteten
hierarchischen Graphen in O(y/n) Zeit moglich ist, beziehen wir uns auf das Theorem 3:
Jeder Weg von einem Knoten u € V zu einem Knoten v € V enthilt einen Knoten aus
Rand(u,v). Die kurze Argumentation im Beweis zu Theorem 5 reicht hier nicht aus, da im
regionengewichteten Graphen die Kantengewichte i.A. nicht den kiirzesten Entfernungen im
zugrundeliegenden Graphen entsprechen.

Theorem 7 Sei a-3-/n-HG ein regionengewichteter hierarchischer Graph zu einem Gra-
phen G. Die Linge des kiirzesten Weges 6(u,v) kann fiir je zwei beliebige Knoten u,v € V in
O(y/n) Operationen berechnet werden.

Beweis: Wir verfolgen zunéchst dieselbe Argumentation wie in Theorem 3. Sei LGG(u,v) =
A, und 0.B.d.A. seien u € Ryo; und v € R).3. Nach Lemma 2 gibt es ein maximales
0 <4 < |A|, so da$} der kiirzeste Weg w von u nach v vollstindig in Gg,,,, verlduft. Nach
Lemma 1 gibt es dann einen Knoten 2z € T,);, der auf w liegt. Es gilt also:

6(11)) = 6(“1 Z) + 6(23 1)) = 6R(>\)i(ua Z) + 6R(A)i (Za 1))

Da im regionengewichteten hierarchischen Graphen fiir alle Kanten {p, ¢} € [T{5)i, R(\)]
gilt:

doni{p,a}) = Orgy,(pyq)

geniigt die Betrachtung von Rand(u,v), um die Linge des kiirzesten Weges von u nach
v zu bestimmen. Nach Lemma 3 (|Rand(u,v)| € O(y/n)) folgt das Theorem.

In dem gewichteten Beispiel (§({v1,v4}) = 3) gibt es zwei kiirzeste Wege zwischen vs
und vy, die beide iiber den Knoten wvg fiithren (sieche Abbildung 1). In dem Graphen G, des
regionengewichteten hierarchischen Graphen HG gibt es die Kanten {v4,vg}, {vs,vg} mit
folgenden Kantengewichten: 6.({vs4,vs}) = 0r.(v4,v8) = 1 und 6.({vs,vs}) = 0r.(v3,vg) =
3. Die Betrachtung der Randknotenmenge Rand(vs,vs) geniigt wiederum, um die kiirzeste
Entfernung zwischen v3 und v4 zu bestimmen.

In regionengewichteten hierarchischen Graphen wird nach Theorem 7 analog zu den ge-
wichteten hierarchischen Graphen ein kiirzester Weg mit [ Knoten in O(y/n + 1) Operationen
berechnet.

8 Implementierung

Der zugrundeliegende Graph sei in Form von Adjazenzlisten gespeichert. Bei der Separierung
sind zum einen die induzierten Teilgraphen des zugrundeliegenden Graphen ebenfalls in Form
von Adjazenzlisten zu speichern. Dies ist in jeder Stufe in O(n) Zeit moglich. Zum anderen
wird die Kantengewichtsfunktion jedes Graphen G) = (Ry, [T\, R)],d)) eines hierarchischen
Graphen in einer Tabelle mit |Ry| Zeilen und |T5| Spalten gespeichert, so daf der Zugriff fiir
ein Knotenpaar in konstanter Zeit moglich ist. Jeder Tabelleneintrag T'ab(u, v) enthélt neben
dem Kantengewicht den néchsten Knoten nach u, der auf dem kiirzesten Weg von u nach v
liegt. Dieser Knoten wird gebraucht, um den kiirzesten Weg ausgeben zu kénnen. Auflerdem
wird bei der Separation ein Baum B mit den Waortern A € £%* als Knoten aufgebaut, bei
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dem fiir jeden Knoten A ein Verweis auf die trennende Menge T\ mitgefiihrt wird. Fiir jeden
Knoten v € V' des zugrundeliegenden Graphen wird weiterhin der Regionenname r(v) (falls
v € T)) vermerkt.

Die Berechnung des kiirzesten Weges zwischen u,v € V erfolgt dann in zwei Schritten:

1. Berechne LGG(u,v). Dies ist das ldngste gemeinsame Prifix von r(u) und r(v), d.h. es
werden hochstens O(logn) Operationen benétigt.

2. Minimumbildung iiber Rand(u,v). Im Baum B werden vom Knoten LGG(u,v) (di-
rekter Zugriff) auf dem Pfad bis zur Wurzel die trennenden Mengen aufgesucht. Das
Kantengewicht kann jeweils durch einen Zugriff auf die angelegten Tabellen ermittelt
werden.

9 Experimente

Da Straflennetze in der Regel wegen Briicken und Untertunnelungen nur fast planar sind, 148t
sich das Separatortheorem nicht direkt anwenden. Stattdessen haben wir eine Heuristik zur
Separation verwendet. Die uns vorliegenden Straflendaten sind im GDF-Format gespeichert,
in dem die Straflen in neun Geschwindigkeitsklassen eingeteilt sind. Das Straflennetz vom
Grofiraum Stuttgart mit 15224 Knoten und 38032 Kanten wurde sukzessive von der Stufe
i = 0 bis zur Stufe 7 = 8 entlang der Straflen der Klasse 4 separiert. Da bei jeder Separation
mindestens fiinf verschiedene Zusammenhangskomponenten aufgetreten sind, haben wir einen
hierarchischen Graphen zu ¥ = {1,2,3,4,5} konstruiert. Der Graph besitzt neun Stufen und
benétigt 42.8 MBytes Speicherplatz. Schon das Stuttgarter Straflennetz bendtigt 3.5 MBytes.
Dieser spezielle hierarchische Graph ist ein a-3-y/n-HG mit o = % und G = g

Auf einer SPARCstation 10/40 mit 128 MBytes Hauptspeicher ergaben sich unter dem Be-
triebssystem SunOS 5.4 folgende Laufzeiten: Der gewichtete hierarchische Graph wurde in 104
Minuten aufgebaut, und die Berechnung der kiirzesten Entfernung benétigt im average-case
0.305 Millisekunden. Im Vergleich dazu brauchte der Dijkstra Algorithmus 586 Millisekunden
[6]. Eine vollstdndige Tabelle fiir die Entfernungen aller Knotenpaare braucht fast 0.5 GBytes
an Speicherplatz, die nicht im Hauptspeicher untergebracht werden konnten. Die reine CPU-
Zeit zur Entfernungsberechnung betrigt unter 0.3 Millisekunden, aber da ein Plattenzugriff
notwendig ist, ergibt sich eine gesamte Laufzeit von durchschnittlich 60 Millisekunden pro
Tabellenzugriff.

10 Ausblick

Wir werden versuchen, die Ergebnisse von planaren Graphen auf diinne Graphen ((|E| €
O(n)) zu verallgemeinern. Zwar haben Bui und Jones in [2] nachgewiesen, dafl bereits die
Separation von Graphen mit Grad drei auch fiir Ndherungen NP-hart ist, aber uns geniigen
Separationen der Grofle O(y/n).

Fiir Verkehrsinformationssysteme ist es entscheidend, dafl ein Update auf dem zugrunde-
liegenden Strafiennetz nur zu kleinen Anderungen in der hierarchischen Struktur fijhrt. Da
sich Stralennetze jihrlich durchschnittlich um 5 % dndern, wére eine Neuberechnung der hie-
rarchischen Struktur bei jeder Anderung inakzeptabel. Es sind die Bedingungen festzustellen,
unter denen ein Update nur kleine Anderungen des hierarchischen Graphen nach sich zieht.
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