s, Universitat Stuttgart
Fakultat Informatik

Mole - Concepts of a Mobile Agent System

Authors:

Dipl.-Inform. J. Baumann
Dipl.-Inform. F. Hohl
Prof. Dr. K. Rothermel
Dipl.-Inform. M. StralRer

Institut fir Parallele und Verteilte
Hdchstleistungsrechner (IPVR)
Fakultat Informatik

Universitat Stuttgart
Breitwiesenstr. 20 - 22

D-70565 Stuttgart

Mole - Concepts of a Mobile Agent
System

J. Baumann, F. Hohl, K. Rothermel, M. StralRer

Bericht 1997/15
August 1997

1 Introduction 1

Mole - Concepts of a Mobile Agent System

J. Baumann, F. Hohl, M. Stral3er, K. Rothermel

IPVR (Institute for Parallel and Distributed High-Performance Computers)
Breitwiesenstral3e 20-22
70565 Stuttgart
EMail: Joachim.Baumann@informatik.uni-stuttgart.de

Abstract

Due to its salient properties, mobile agent technology has received a rapidly growing atten-
tion over the last few years. Many developments of mobile agent systems are under way in
both academic and industrial environments. In addition, there are already various efforts to
standardize mobile agent facilities and architectures.

Mole is the first Mobile Agent System that has been developed in the Java language. The
first version has been finished in 1995, and since then Mole has been constantly improved.
Mole provides a stable environment for the development and usage of mobile agents in the
area of distributed applications.

In this paper we describe implementation techniques for mobility, present communication
concepts we implemented in Mole, discuss security concerning Mobile Agent Systems, and
present system services provided by Mole.

1 Introduction

Throughout the past years the concept of software agents has received a great deal of attention.
Depending on the particular point of view the term ‘agent’ is associated with different properties
and functionalities, ranging from adaptive user interfaces, cooperating intelligent processes to
mobile objects. Our particular interest lies in the exploration of mobile agents in the Internet and
the key benefits provided by the application of this new technology (e.g. in the area of the
WWW).

Mobile agents are defined as active objects (or clusters of objects) that have behaviour, state and
location. Mobile agents asutonomoupecause once they are invoked they will autonomously
decide which locations they will visit and what instructions they will perform. This behaviour

is either defined implicitly through the agent code (see e.g. [Gray95]) or alternatively specified
by an - at runtime modifiable - itinary (see e.g. [WongEA97]). Mobile agents are mobile since
they are able to migrate between locations that basically provide the environment for the agents’
execution and represent an abstraction from the underlying network and operating system.

With the properties printed out above it has been often argued that mobile agents provide certain
advantages compared to traditional approaches as the reduction of communication costs, better
support of asynchronous interactions, or enhanced flexibility in the process of software distri-
bution. The employment of mobile agents has been particularly promising in application do-
mains like information retrieval in widely distributed heterogeneous open environments (e.g.
the WWW), network management, electronic commerce, or mobile computing. The question
what real advantages mobile agents offer has been subject of various papers (e.g. [HaChKe95],

2 Our Agent Model 2

[BaTsVi96], [RoHoRa97]) and ongoing discussions in mobile agent mailing lists. The results
of these investigations and discussions show that we are far from a common understanding con-
cerning the pros and cons of mobile agent technology. But all agree on the following:

To support the paradigm of mobile agents, a system infrastructure is needed, that provides the
functionality for the agents to move, to communicate with each other and to interact with the
underlying computer system. Furthermore this infrastructure has to guarantee privacy and in-
tegrity of agents and underlying system to prevent malicious agents attacking other agents or
the computer system. At the same time the agents have to be protected against a malicious sys-
tem to avoid manipulations of the agents while they visit this system.

In this paper we describe the current state of our agent system infrastructure, the Mobile Agent
System Mole V2. Mole builds on Java [Sun97] as the environment for the agent system and as
the language for the implementation of the agents.

This paper is organized as follows: after a short introduction into our agent model in section 2
we discuss possible mobility concept for mobile agent in section 3 and present the choice we
made for Mole. In section 4 we describe the communication concepts of Mole V2. In section 5
security concerning Mobile Agent Systems is examined. After presenting our notion of agent
ids in section 6 we discuss the Mole system services in section 7. In section 8 we give an over-
view over related work. In section 9 we summarize the paper and present our planned future
work.

2 Our Agent Model

In this section we will give only a short overview| of *
our agent model, that has been described in muc

more detail in [StBaH096] and [BaumEA97a]. Qu
model of an agent-based system - as various (@

models - is mainly based on the concepts of agents @

mobile agent

service agent

' migration

and places. An agent system consists of a number o "
(abstract) places, being the home of various seryices.
Agents are active entities, which may move frem
place to place to meet other agents and access t@gure 1: The Agent Model

places’ services. In our model, agents may be multi-threaded entities, whose state and code is
transferred to the new place when agent migration takes place. Places provide the environment
for safely executing local as well as visiting agents.

place C

Each agent is identified by a globally unique agent identifier. An agent’s identifier is generated
by the system at agent creation time. The creating place can be derived from this name. It is in-
dependent of the agent’s current place, i.e. it does not change when the agent moves to a new
place. In other words, the applied identifier scheme provides location transparency.

A place is entirely located at a single node of the underlying network, but multiple places may
be implemented on a given node. For example, a node may provide a number of places, each
one assigned to a certain agent community, allowing access to a certain set of services or imple-
menting a certain prizing policy. Locations are divided into two types, depending on the con-
nectivity of the underlying system. If a system is connected to the network all the time (barring
network failures and system crashes), a location on this systems icoaltettedIf a system

is only part-time connected to the network, e.g. a user's PDA (Personal Digital Assistant), the
location is calledissociated

3 Mobility Concepts for Mobile Agents 3

3 Mobility Concepts for Mobile Agents

In this section we discuss the different kinds of mobility. We define a taxonomy of the different
kinds of mobility, discuss the advantages of the different approaches and present the implemen-
tation of mobility in Mole.

3.1 Taxonomy of Mobility

Different degrees of mobility can be distinguished (see figure 2):

transport of migration of migration of
code + data code + data state code + data state + ex. state
O —<orsms paramete’ manual state encodlng'> mobility
Remote Executio .
Code Mobility
Weak Migration Strong Migratio Agent Mobility

Figure 2: Degree of mobility

In the case oRemote Executionthe agent program is transferred before its activation to some
remote node, where it runs until to its termination, i.e., an agent is transferred only once. The
information transferred includes the agent code plus a set of parameters (although the transfer
of code may not be necessary at runtime, compare e.g. [HoKIBa97] for a discussion of code
transport issues). Once activated, an agent itself may usethete Executiomechanism to

start the execution of other agents. A very similar approach - tailored to a client/server-style of
interaction - is thé&kemote Evaluatioscheme introduced by Stamos [Stamo0s1986]. With this
approach, an operation (e.g. a procedure plus parameters) is transferred to a remote site, where
it is performed entirely. After executing the operation, the remote site returns the operation’s re-
sults back to the issuer of the remote evaluation. The remote evaluation mechanism can be ap-
plied recursively, resulting in a tree-structured execution model.

With the above scheme, the destination of the agent program to be transferred is determined by
the entity initiating the remote execution. In contrast, ddde on Demangthe destination

itself initiates the transfer of the program code. If@loele on Demansgcheme is used in client/

server settings, programs stored on server machines are downloaded to clients on demand. The
currently most popular technologies supporting this type of mobility are ActiveX (see e.g.
[AarAar97]) and Java Applets (see e.g. [Sun94)).

Both Remote ExecutioendCode on Demansgupport ‘code mobility’ rather than ‘agent mobil-

ity’ as both schemes transfer agent programs before their activation. In the following two
schemes, agents (i.e., executions of agent programs) may migrate from node to node in a com-
puter network. Obviously, for migrating agents not only code but also the state of the agent has
to be transferred to the destination. We will start v@ttong Migrationand then motivate the
existence ofVeak Migration For our discussion we will assume that an agent’s state consists

of data state (i.e. the arbitrary content of the global or instance variables) and execution state
(i.e. the content of the local variables and parameters and the executing threads).

The highest degree of mobility 8rong Migration[GheVig97]. In this scheme, the underlying
system captures the entire agent state (consisting of data and execution state) and transfers it to-
gether with the code to the next location. Once the agent is received at its new location, its state

3 Mobility Concepts for Mobile Agents 4

Is automatically restored. From a programmer’s perspective, this scheme is very attractive since
capturing, transfer and restoration of the complete agent state is done transparently by the un-
derlying system. On the other hand, providing this degree of transparency in heterogeneous en-
vironments at least requires a global model of agent state as well as a transfer syntax for this
information. Moreover, an agent system must provide functions to externalize and internalize
agent state. Only few languages allow to externalize state at such a high level, e.g., Facile
[Knabe95] or Tycoon [MaMaSc95]. Since the complete agent state (including data and execu-
tion state) can be large - in particular for multi-threaded agents - strong migration can be a very
time-consuming and expensive operation.

These difficulties have led to the development of the so-caleak Migrationscheme, where

only data state information is transferred. The size of the transferred state information can be
limited even more by letting the programmer select the variables making up the agent state. As
a consequence, the programmer is responsible for encoding the agent’s relevant execution states
in program variables. Moreover, the programmer must provide some sataofraethod that

decides, on the basis of the encoded state information, where to continue execution after migra-
tion. This method reduces substantially the amount of state to be transferred. But it changes the
semantics of a migration, a fact that every agent programmer has to be aware of.

The following table classifies existing agent systems with regard to the degree of mobility sup-
ported.

Table 1: Mobile Agent Systems Classified

Type of Mobility Systems
Remote Execution Java Servlets (push [Sun96]) Remote Evaluation [Stamos86] Tacoma [JovRSc95]
Code on Demand ActiveX [AarAar97] Java Applets [Sun94] Java Servlets (pull [Sun9p])
Weak Migration Aglets [IBM96] Mole Odyssey [GenMag97]
Strong Migration AgentTcl [Gray95] Ara [Peine97] Telescript [GenMag96]

3.2 Advantages of Code and Agent Mobility

In the following, we will examine the advantages resulting from code and agent mobility. Dur-
ing our discussions, for each of the indicated advantages we will point out which degree of mo-
bility is required. We have identified the following prime advantages: Software distribution on-
demand, asynchronous operation of tasks, reduction of communication cost, scalability due to
dynamic placement of functions.

Software-Distribution on Demand

In existing client-server systems, new code has to be installed manually by users or system op-
erators. The installation is sometimes rather challenging and often requires detailed knowledge

about the current state of the used computer system. Finally, software tends to depend on certain
versions of other software packages and the installation varies on different machines, operating

systems and so on.

With the wide employment of Code on Demand systems (i.e. the success of Java-enabled web
browsers) another, easier installation alternative showed ugofitveare-Distribution on De-
mandwhich is able not only to transport code, but also to install packages automatically. For

3 Mobility Concepts for Mobile Agents 5

achieving that, code servers offer programs to clients, which include an environment to install
these modules. The usage of a platform-independent language like Java allows the system to
employ the same installation process on each system and hides differences at the execution of
the code. Since software-distribution on Demand is a potential advantage of every mobile code
system, mobile agent systems can offer it also, but since the latter uses a less transient model of
applications (e.g. the active existence of Java Applets is bound to the existence of the invocation
of a browser), code can be installed in a persistent way.

What degree of mobility is needed here? If the client actively calls the €ode,on Demand
is certainly the matching scheme, but also a kirffeshote Executioran be applied if the serv-
er e.g. periodically disseminates new versions of a program to registered clients.

Software-distribution on demand only simplifies the management of an existing structure. The
following advantages will allow to build up new structures that are better than the old ones in
some aspects.

Reduction of Communication Costs

Using agent technology does not reduce communication cost per se. However, in certain situa-
tions mobile programs/agents may reduce this cost substantially. Two types of reductions can
be distinguished:

* number of (remote) interactions (i.e., between entities residing on different nodes), and
» the amount of data communicated over the network

The first type of reduction can be achieved by bringing two entities that (heavily) interact with
each other to the same location. For the second type of reduction consider a client/server rela-
tionship, where the client includes a function filtering the data retrieved from the server. The
amount of data transferred from the server to the client can be reduced by moving the filter func-
tion (or the entire client) to the server. Then, filtering can be done before the data is communi-
cated over the network.

Of course, moving agents is not for free. An overall cost reduction is only obtained if the per-
formance gains exceed the extra overhead for transferring agents. A performance model taking
into account an agent’s itinary is described in [StrSch97]. Other models are given in [CaPiVi97]
and in [ChiKan97].

Communication cost reductions can already be achieved witRehwte Executioacheme.
However, agent mobility provides more room for optimizations.

Asynchronous Tasks

Asynchronous communication mechanisms, such as asynchronous message queues (see e.g.
[IBM93]), allow asynchronous processing of requests (figure 3). While the individual requests

of a task can be processed asynchronously, the client performing this task must be available to
receive replies and react on them. Especially in the case of mobile cli@stsocrateglaces

3 Mobility Concepts for Mobile Agents 6

this can be problematic. Keeping a mobile client up and connected while task processing is in
progress is expensive at least and might even be impossible.

Client Server
Request (opl)

Tas Request (op2

Result

Result execute op?

Figure 3: Asynchronous tasks using message queues

With agent technology, the client part of the application can be transferred from the mobile de-
vice to stationary servers in the network. From an end user’s perspective, not only individual
requests but the entire task is moved to the network, where it is performed asynchronously.
Clearly, once the task transfer is complete, the mobile device can be disconnected from the net-
work. Later, after days or even weeks, the device can be reconnected to receive the task’s results.
It is important to notice that the hidden assumption of those scenarios is that the underlying sys-
tem guarantees ‘exactly once’ semantics of agents, i.e. when accepting an agent, the network
guarantees that the agent is not lost and is performed exactly once, independent of communica-
tion and node failures. Unfortunately, none of the current agent systems supports this level of
fault-tolerance.

Client Agent Server

Launch Request (op1)

execute op]

Result

Request (op2)

Result

I execute op?

Terminate

Figure 4: Asynchronous tasks using mobile agents

Now, the question is what degree of mobility is required for those scerReiomte Execution

Is sufficient for moving the client program te@nnectedlace. Thiconnecteglace (see sec-

tion 2) is assumed to be an infrastructure component, whose purpose is to host clients down-
loaded to the network. Downloaded clients run on these places and access remote services to
perform their tasks. In general, common servers cannot be used to do this hosting job, e.g., a
Lufthansa server is certainly not willing to host an agent booking a flight with a remote BA serv-
er. With aWeakor Strong Migrationscheme, hosting agents are not needed anymore. An agent
moves from server to server to achieve its task. In our example above, the mobile agent just goes
on to the BA server if the Lufthansa server cannot offer the desired flight.

Scalability Due to Dynamic Deployment

Dynamic deployment of agent programs allows for more scalable applications. Assume, for ex-
ample, a search application that accesses a large number of globally distributed data sources.
Assume documents are retrieved from the data sources and selected (or indexed) based on a con-
tent-based filtering function. In a pure client/server setting, a client would access the remote data

3 Mobility Concepts for Mobile Agents 7

sources, and all retrieved documents would be transferred to the client. The final filtering would
be performed at the client site. If accessing the data sources is performed in parallel, the client
as well as (parts of) the network may become a bottleneck.

With mobile agents, a hierarchy of filter agents can be set up. Filter agents not only perform con-
tent-based filtering but also get rid of redundantly retrieved documents. The structure of the hi-
erarchy and the placement of the individual filter agents mainly depends on the set of data sourc-
es accessed. Both placement and structure can change if new data sources are detected while the
search operation is in progress. Obviously, this setting is more scalable since filtering is distrib-
uted and can be performed close to the data sources. Moreover, redundant information can be
detected early and thus does not have to be transported all the way to the client.

What degree of mobility is needed heR&mote Executiois certainly sufficient if the place-

ment of (filter) agents is static for a given search operation. If, however, the placement is
changed and (filter) agents maintain context information (e.g., in order to detect redundant doc-
uments) Strongor Weak Migrationwould simplify the implementation.

3.3 Mobility in Mole

As has been discussed abadviigration, be itWeakor Strong has many advantagd®emote
Execution while sufficient for many applications, provides neither the flexibility nor the sim-
plicity in use, thaiMeakandStrong Migrationsupply.

The difference betwe@WeakandStrong Migrationis a change in semantics, but not in expres-

sive power. We have decided not to implentindtng Migration but to choos&/eak Migration
instead. Why? One of the design goals of Mole is the ability to run out of the box on every Java
virtual machine (VM). A normal Java VM doesn’t support capturing the state of a thread, which
would be a prerequisite for capturing the execution state. Thus our decision was to choose the
changed semantics and with it the ability to run Mole on unchanged Java interpreters. This in-
cludes that, while agents in Mole can be multithreaded, after a migration only one thread is start-
ed. If more threads are necessary the agent has to start them explicitly.

Weak Migrationin Mole is implemented by using a part 3fstart0

the Remote Method Invocation package RMI, the object sg-

rialization provided as part of Java 1.1. After an agent thiiead // here starts the agent thread
calls the migrateTo()-method, all threads belonging to |the // after migration or at instantiation
agent are suspended (not stopped). No new messages anateto(targetiocation):
calls (RPC) to the agent are accepted. After all pending mes-

sages to the agent have been delivered, the agent is remove@migrationfailed if control flow
from the list of active agents. Now the agent is serialized us- "/ &ecutes the following statemerjts
ing the object serialization. The object serialization cam-
putes the transitive closure of all objects belonging to ‘the
agent (ignoring transient objects and threads), and create
system-independent representation of the agentséhis-
izedversion of the agent is sent to the target location that reinstantiates the agent. If any of the
java classes needed are not available locally, the target location requests these classes either
from a code server [HoKIBa97], or from the source location. Now the agent is reinstantiated.
One new agent thread is started. This thread begins its work at the start()-method. As soon as
the thread assumes control of the agent, a success message is sent back to the source location.
The source location now terminates all threads pertaining to the agent and removes it from the
system.

yre 5: Migration of an agent

4 Communication Concepts for Mobile Agents 8

If at any stage of the migration an error occurs, the migration is stopped and the agent threads
at the source location are resumed. The control flow continues after the migrateTo() statement,
where error handling can be implemented.

Interestingly, experience showed that the semantiégeak Migrationare well understood and
easily used even by inexperienced agent programmers. After workingvegtk Migratiorfor
over two years we no longer de&tnong Migrationnecessary, and a large fraction of agent sys-
tem builders concurs [BaumEA97b].

4 Communication Concepts for Mobile Agents

In this section, we will address the various types of communication suitable for agents and dis-
cuss their use in Mole. An in-depth discussion of communication paradigms suitable for agents
can be found in [BaumEA97a].

A fundamental question tightly related to communication is how mobile agents are identified.
On the one hand, there is certainly a need for globally unique agentlds (we will discuss in sec-
tion 6). Identifier schemes that provide for migration transparency are well-understood today.
However, such a scheme might be too inflexible in agent-based systems. Assume for example,
that a group of agents cooperatively perform a user-defined task. Assume further that one group
member wants to meet another member of this group at a particular place for the purpose of co-
operation. In this case, the member should be identifiedddg@eld, groupld)pair. If the agent

to be met additionally is expected to play a particular role in this group, the identifier would have
the form(placeld, groupld, roleld)For supporting those application-specific naming schemes
we propose the concept of badges.

For the purpose of cooperation mobile agents must 'meet’ and establish communication rela-
tionships from time to time. For this purpose, we introduce the concept of a session, which is an
extension of Telescript's meeting metaphor [GenMag96]. A number of the currently existing
agent systems are purely based on an RPC-style communication. While this type of communi-
cation is mostly appropriate for interactions with service agents, i.e. those agents that represent
services in the agents’ world, it has its limitations if agents interact like peers. Therefore, we
support both message passing and remote method invocations (with or without session context).

In the general case, a group of agents performing a common task may be arbitrarily structured
and highly dynamic. In those environments, we can not assume that an agent that wants to syn-
chronize on an event (e.g., some subtask this agent depends upon is finished) knows a priori
which agent or agent subgroup is responsible for generating this event. Therefore, we use the
concept of anonymous communication, allowing agents to generate events and register for the
events they are interested in, as a foundation for agent synchronization.

4.1 Types of Agent Communication

Considering inter-agent interaction, we distinguish between following types of communication:

* Agent/service agent interaction
Since service agents are the representatives of services in the agent world, the style of in-
teraction is typically client/server. Consequently, services are requested by issuing requests,
results are reported by responses. To simplify the development of agent software, an RPC-
like communication mechanism should be provided.

4 Communication Concepts for Mobile Agents 9

* Mobile Agent/Mobile Agent Interaction
This type of interaction significantly differs from the previous one. The role of the commu-
nication partners are peer-to-peer rather than client/server. Each mobile agent has its own
agenda and hence initiates and controls its interactions according to its needs and goals.
Furthermore, the communication patterns that may occur in this type of interaction might
not be limited to request/response only. Assume e.g. a mobile agent passing a form to an-
other agent and terminating afterwards. The receiving agent would fill out that form by us-
ing various services and finally would deliver the filled out form to another agent waiting
at some previously specified place. The required degree of flexibility for those interactions
is provided by a message passing scheme. Even higher-layer cooperation protocols, such as
KQML/KIF [FIMKME94], are based on message passing.

* Anonymous agent group interaction
In the previous two types, we have assumed that the communication partners know each
other, i.e. the sender of a message or RPC is able to identify the recipient(s). However, there
are situations, where a sender does not know the identities of the agents that are interested
in the message sent. Assume, for example, a given task is performed by a group of agents,
each agent taking over a subtask. In order to perform their subtasks, agents themselves may
dynamically create subgroups of agents. In other words, the member set of the agent group
responsible for performing the original task is highly dynamic. Of course, the same holds
true for each of the subgroups involved in this task. Now assume that some agent wants to
terminate the entire group or some subgroup. In general, the agent that has to send out the
terminaterequest does not know the individual members of the group to be terminated.
Therefore, communication has to be anonymous, i.e., the sender does not identify the re-
cipients. This type of communication is supported by group communication protocols (e.g.,
see [BirvRe94, KaaTan91]), the concept of tuple spaces [CarGel89], as well as sophisticat-
ed event managers. In the latter approach, senders send out event messages anonymously,
and receivers explicitly register for those events they are interested in. A group model using
such a distributed event service for the coordination has been presented in [BauRad97].

» User/Agent Interaction
Although a very interesting area of research, the interaction between human users and soft-
ware agents is beyond the scope of this paper. For a discussion of this type of communica-
tion the reader is referred to e.g. [Maes94].

Let us briefly summarize our findings. Different types of communication schemes are needed in
agent-based systems. Besides anonymous communication for group interactions, message pass-
ing and an RPC-style of communication is needed. In our model, message passing and RPC is
session-oriented, which means that agents wanting to communicate have to establish a session
before they can send and receive data. In the remainder of the section, we discuss the concept
of session-oriented communication in the context of Mole and examine event management as a
means for anonymous communication.

4.2 Session-Oriented Communication

As will be seen below, a session between agents can be established only if the agents can iden-
tify each other. In our model, there are basically two ways how agents can be identified, the
agent_lds introduced above and the so-called badges.

Agent_lds are well-suited for identifying service agents, as long as there exists a directory sys-
tem, that maps user-defined service names to service agent_lds. Note, however, that the direc-

4 Communication Concepts for Mobile Agents 10

tory service is not part of our base system, i.e., we clearly separate the mechanism for identify-

ing services from the one for finding services. As a consequence, different naming schemes and
directory systems can be used on top of this system. We will present the directory service Mole

provides in section 7.

In the case of mobile agents the concept of agent_lds is not always sufficient. Assume for ex-
ample, that an agent wants to meet some other agent participating in the same task at a given
place. If only agent_lds were available, both agents would have to know each others ids. Actu-
ally, for identification it would be sufficient to say ,At place XYZ | would like to meet an agent
participating in task ABC". This type of identification is supported by the concept of badges. A
badge is an application-generated identifier, such as ,task ABC", which agents can ,pin on* and
»pin off*. An agent may have several badges pinned on at the same time. Badges may be copied
and passed on from agent to agent, and hence multiple agents can wear the same badge. For ex-
ample, all agents participating in a subtask may wear a badge for the subtask and another one
for the overall task. The agent that carries the result of the subtask may have an additional badge
saying ,CarryResult".

Using badges, an agent is identified bplade |Id badge predicatepair, which identifies all

agents fulfilling thébadge predicatat the place identified hylace Id. A badge predicate is a
logical expression, such as (,task ABC* AND (,,CarryResult* OR ,Coordinator”)) . Obviously,

this is a very flexible naming scheme, which allows to assign any number of application-specific
names to agents. To change the name assignments two functions are provided, PinOn-
badge(badge) and PinOffbadge(badge).

Now let us take a closer look to sessions. A session defines a communication relationship be-
tween a pair of agents. Agents that want to communicate with each other, must establish a ses-
sion before the actual communication can be started. After session setup, the agents can interact
by remote method invocation or by message passing. When all information has been communi-
cated, the session is terminated. Sessions have the following characteristics:

» Sessions may be intra-place as well as inter-place communication relationships, i.e., two
agents participating in a session are not required to reside at the same place. Limiting ses-
sions to intra-place relationships seems to be too restrictive. There are many situations,
where it is more efficient to communicate from place to place (i.e., generally over the net-
work) than migrating the caller to the place where the callee lives. Consequently, we feel
that the mobility of agents cannot replace the remote communication in all cases.

* In order to preserve the autonomy of agents, each session peer must explicitly agree to par-
ticipate in the session. Further, an agent may unilaterally terminate the sessions it is in-
volved in at any point in time. Consequently, agents cannot be “trapped” in sessions.

* While an agent is involved in a session, it is not supposed to move to another place. How-
ever, if it decides to move anyway, the session is terminated implicitly. The main reason for
this property is to simplify the underlying communication mechanism, e.g., to avoid the
need for message forwarding.

The question may arise, why sessions are needed at all. There are basically two reasons: Firstly,
the concept of a session can be used to synchronize agents that want to ‘meet’ for cooperation.
Note that the first property stated above allows agents to ‘meet’ even if they stay on different
places. The concept of a session is introduced to allow agents to specify which other agents they
are interested to meet at which places. Furthermore, it allows agents to wait until the desired
cooperation partner arrives at the place and indicates its willingness to participate.

4 Communication Concepts for Mobile Agents 11

Secondly, we want to support both “stateless” and “stateful” interactions. In contrast to the first,
the latter maintain state information for a sequence of requests. Obviously, if they encapsulate
“stateful” servers, service agents have to be “stateful” also. A prerequisite for building “stateful”
entities are explicit communication relationships, such as sessions.

Session Establishment

In order to set up sessions two operations are offeemdjveSetUpndActiveSetUp(see figure

6). The first operation is hon-blocking and is used by agents to express that they are willing to
participate in a session. In contrasttiveSetUps used to issue a synchronous setup request,
l.e., the caller is blocked until either the session is successfully established or a timeout occurs.

void PassiveSetUfPeerQualifier , Placeld)
SessionObjedctiveSetUp(PeerQualifier, Placeld, Timeoyt)
void cb(SessionObject)

void SessionObject. Terminat€)

Figure 6: Session Methods

If ActiveSetUsucceeds, it returns the reference of the newly created session object to the caller.
Input parametePlaceldidentifies the place, where the desired session peer is expected, and
PeerQualifierqualifies the peer at the specified plac&e&rQualifieris either an agent_Id or

a badge predicate. Note that at most one agent qualifies in the case of a single agent_Id, while
several agents may qualify if a single badge predicate is specified. In that case a randomly
picked agent is chosen. To avoid infinite blocking, the paramietexOutcan be used to specify

a timeout interval. The operation blocks until the session is established or a timeout occurs,
whatever happens first.

The parameterBeerQualifierandPlace_Idof the operatioPassiveSetUpre optional. If nei-

ther of both parameters is specified, the caller expresses its willingness to establish a session
with any agent residing at any place. By specifytace ldand / orPeerQualifierthe calling

agent may limit the group of potential peers. For example, a group may be limited to all agents
wearing the badge “Stuttgart University” and / or that are located at the caller’s place.

As pointed out above, before a session is established both participants must agree explicitly. An
agreement for session setup is achieved if both agents issue matching setup requests. Two setup
requests, say Rand Ry of agents A resp. B, match if

* Place_Idin Ry and Ry identifies the current location of B and A, respectively, and

» PeerQualifierin Ry and Ry qualifies B and A, respectively.

If a setup request issued by an agent matches more than one setup request, one request is chosen
randomly and a session is established with the corresponding agent.

A combination ofPassiveSetUpandActiveSetumllows a

client/ server style of communication (see figure 7). The pr
agent playing the server role once issEPassiveSetU[|
(2

when it is ready to receive requests. When an agent pl;
]
[SetUng

the client role invoke#\ctiveSetupthis causes th8etUp
method of the server side to be invoked impliciBgtUp
implicitly establishes a session with the caller and assigns
a thread for handling this session. Therefore, once the [serv-
er agent has callegassiveSetypany number of sessions

Figure 7: Client / Server Interaction

4 Communication Concepts for Mobile Agents 12

can be established in parallel, where session establishment is purely client driven.

If both agents issue (matchingrtiveSetUprequests this

communication, i.e., both decide - depending on their ingigure 8: peer to peer interaction
vidual goals - when they want to interact with whom in
which way.

Communication

As pointed out above, Remote Method Invocation (RMI), the object-oriented equivalent to
RPC, seems to be the most appropriate communication paradigm for a client / server style of
interaction, while message passing is required to support peer-to-peer communication patterns.
The available communication mechanisms are realized by so-calfedbjects. Currently,

there are two types @abmobjects, RMI objects and Messaging objects.

Comobjects are associated with sessions. Each session may have an RMI object, a Messaging
object, or both. Each session object offers a method for creatngbjects associated with this
session.

With the RMI object the methods exporte @ - =
by the session peer can be invoked. It can b€ d A \
compared with a proxy object known from /

distributed object-oriented systems. FigyrgRM! obj. alpha alpha|
9 shows the RMI object enabling access to beta beta
methodsalphaandbetaof object B.

Figure 9: RMI Object

With the Messaging objectmessages can
be conveyed asynchronously between thg
participants of a session (see figure 10).
Messages are sent by calling gfemdmeth-
od. For receiving messages tieeeiveand
subscribe methods are provided. The re-
ceive method blocks until a message is [re-subscribe
ceived or timeout occurs, whatever happens
first. If thesubscribemethod is invoked in-
stead, the incoming messages are handed over by callingegsagenethod of the recipient
and passing the message as method parameter.

L

Figure 10: Message Object

The advantage of having the conceptaiobjects is twofold. Firstly, only those communica-

tion mechanisms have to be initiated that are actually needed during a session, and secondly,
other mechanisms, such as streams, can be added to the system. The latter advantage enhances
the extensibility of the system.

4 Communication Concepts for Mobile Agents 13

Session Termination

At any time, a session can be terminated unilaterally by each of the both session participants,
either explicitly or implicitly. A session is terminated explicitly by callifegminate(see figure

6), and implicitly when a session participant moves to another place. When a session is termi-
nated, this is indicated by calling tBessionTerminatetethod exported by agents. Moreover,

all resources associated with the terminated session are released.

We want to mention, that for easier programming, we still allow the programmer to use “tradi-
tional” RMIs or messages without the need of a session overhead, giving them the opportunity
to issue single communication acts.

After we saw a session-oriented communication scheme for one-to-one agent interaction, we
will now investigate an anonymous communication scheme that is used for group interactions.

4.3 Anonymous Communication at the Example of Agent Synchronization

Two widely deployed concepts for anonymous communication are tuple spaces and sophisticat-
ed event managers. In contrast to the blackboard concept, tuple spaces provide additional access
control mechanisms. Agents employ tuple spaces to leave messages without having any knowl-
edge who will actually read them. For a discussion of the tuple space concept the reader is re-
ferred to [CarGel89] or [LiDrD095]. In the remainder of this section we will concentrate on
event mechanisms as a well-suited concept for inter-agent synchronization.

Applications can be modelled as a sequence of reactions to events, that in turn generate new
events. Events may be user- (e.g. reaction to a message), application-, or system-initiated (e.g.
signal sent by a process). An event-based view maps quite closely onto real life, and any pro-
gramming primitives that support event-based concepts tend to be more flexible in modelling a
given problem.

The event model is particularly well-suited for distributed communication since it abstracts
from the receiver’s identity. As a consequence, it enables the specification of complex interac-
tions without the need to know the communication partners in advance. With regard to agent
systems, the event model simplifies application- as well as system-level communication. On the
application level, events are employed as a general communication means. On the system level,
events can be used to design and implement protocols that encompass agent synchronization,
termination, and orphan detection.

We will now show the suitability of an event service as an infrastructural component at the ex-
ample of inter-agent synchronization. The general case of using an event service for the inter-
agent communication and coordination in agent groups has already been presented in detail in
[BauRad97]. First we will define our notion of events, and based on this notion the concept of
synchronization objects is presented. We will explore an application scenario, where synchro-
nization is managed through this concept. Finally, a brief overview of the OMG event model is
given and the realization of synchronization objects by employing the OMG terminology is de-
scribed.

4.3.1 Events

In our notion, events are objects of a specific type, containing some information. Events are gen-
erated by so-called producers and are transferred to the consumer by the event service. Consum-

4 Communication Concepts for Mobile Agents 14

ers (and, depending on the actual implementation of the event service, also producers) have to
register at the event service for the type of events they want to receive or send.

As consumers and producers may only interact if both know which events to produce or to con-
sume, they necessarily have to share common knowledge of the used event types in an interac-
tion group. For this, there exist two alternatives: Either the event types are negotiated at start-up
time, then this information configures the agents before a migration, or the event types have to
be communicated to the members of the interaction group.

4.3.2 Synchronization objects

Synchronization objects (figure 11) are defined as active components responsible for the syn-
chronization of an entire application or parts of it. Synchronization objects monitor specific in-
put events. Depending on these events, internal rules, state information and timeout intervals,
output events are generated, that in turn may be the input for other synchronization objects.

o) Rule 12:
synchronization object if ((event98 and event51) or
(event3 and variablel==true))
B rules / {
send(event90);
T Y variablel=false;
state }
input events output events
P timer . variablel: boolean = false;
/ \ timerl = after 10 seconds:
{
send(event51);
}

Figure 11: Synchronization Object

Rules are arbitrarily complex expressions triggered through input events. They consist of a con-
dition and an action part. The condition part is a logical expression composed of event types and
state information of the synchronization object. If the logical condition becomes true, the action
part is triggered. The action part itself consists of simple commands (e.g. send output events,
change internal state, stop the synchronization object in processing events). The state consists
of a set of variables. Timers are special rules with no input events that trigger actions after a
specified amount of time.

An agent group comprises logically related agents. Synchronization objects are well-suited to
model dependencies within agent groups. Relationships between agents are expressed by the
synchronization object’s internal rules and can be defined in terms of success (i.e. a group is
only successful if a well defined set of the group members have succeeded). Agents participat-
ing in such groups send success events after they have accomplished their task. The synchroni-
zation object receives success events and processes this input through its internal rules. As a re-
sult, output events are generated. In case a generated event is an success event it can be used to
nest groups (i.e. an output event of one group is used as an input event of another group).

4.3.3 Example: OR and AND groups

Two agent group types of particular interest are the OR-group and the AND-group. For the OR-
group’s success it is sufficient if at least one group agent accomplishes its task. OR-groups are

4 Communication Concepts for Mobile Agents 15

eligible for parallel searching in a set of information sources. As soon as one agent has found
the required information the group has succeeded in its task.

A simple OR group (figure 12) includes only three event types. The inputay@amsuccess

if (agentsuccess)
i send(successful); stop;
agentsucce simple —» successful { send(); stop;}

OR-G[‘OUF_> not successful timerl = after (30min){
- send(not_successful); stop;}

Figure 12: Simple OR Group

signalling the success of an agent, and the output emgetessfuandnot_successfukignal-

ling the group’s success. The OR group employs only one rule and one timer. The rule causes
the synchronization object to send an event signalling the group’s susgesssisfiland to

disable itself afterwards. If the timer fires first (e.g. caused by application specific timeouts or
processing failures like deadlocks or crashes), the synchronization objectsajnaiscessful

and stops the processing.

The presented model is not very
efficient: if one group member<’Jlglen'f59CCGSS—>
succeeds, all other group mem- register — OR-Group —- not_successful
bers are obsolete and, if gl giveup — — terminate
group members detect that the% , L
embers: integer; if (giveup) {

are not able to complete the r_f(t ' members=members-1-

. - 1 if (agentsuccess . '
task, the group fails. T_he defin(- send(successful): if (m(;mbers:O){ .
tion of the OR-group illustrated send(terminate); stop;} sen (not__succe_ss ul);
by figure 13 takes these casesegisten | :fonp‘igterm'”ate)’
into account. Agents detecting members = members+1;} _ _

timerl = after (30min){

that they cannot succeed, genér-

) send(not_successful);
ate thegiveupevent. If all group send(terminate); stop}

members signal @iveup the Figure 13: Optimized OR Group

group fails. For this, the group

has to know its members - either by keeping them in mind at the group’s creation time or by
registering group agents through tegisterevent. In the latter case the number of members
potentially being able to succeed is counted and stored in the state vaeafbergmore so-
phisticated approaches could maintain agentld list, transmitted via the events and ensuring that
only events from subscribed agents are acceptednelhbersbecomes zero, the event
not_successfus instantly generated. Therminateevent (to terminate the group members) is
generated if the group either succeeds or fails.

— > successful

Alternatively, crash events are used instead of timeout intervals. Crash events are reliable signals
that are sent if agents are prevented to terminate their processing successfully (e.g. caused by
network partitions, node crashes, or byzantine agent errors). Consequently, if agents can gener-
ate success or crash events, no timeout mechanism is needed. However, crash event manage-
ment is very hard to accomplish. The necessary surveillance protocols are very complex (see
[Walter82], [HamShi80]) and do not consider migrating elements. Furthermore, mobile devices
are hard to surveil due to their sporadic connection to the rest of the network.

In contrast to OR-groups, AND-groups succeed only if all agents have accomplished their task.
AND-groups are well suited for various scenarios (e.g. a customer wants to buy a flight, book a
hotel and rent a car. For each subtask an agent is created and added to the AND-group. Only the

4 Communication Concepts for Mobile Agents 16

success of all three subtasks together leads to a success of the AND-group). The structure of
AND groups is very similar to the structure of OR-groups and therefore omitted here.

4.3.4 The OMG event model

The Object Management Group event services specification ((OMG94]) defines the Event Serv-
ice in terms of suppliers and consumers. Suppliers are objects that produce event data and pro-
vide them via the event service, consumers process the event data provided by the event service.
If a consumer is interested in receiving specific events, it has to register for them. This means a
supplier of events knows who the recipients are (this does not exactly conform to the original
definition of event mechanisms). Two communication models are supported between suppliers
and consumers, tiushmodel and thg@ull model. In both models all communication is syn-
chronous. In the push model, a supplier pushes event data to the consumer, sending to each of
the registered objects the event. In the pull model, consumers pull event data by requesting it
from the supplier.

What makes this event service flexible and powerful, is th no

tion of the event channel. To a supplier, an event channel | o

. pull
like a consumer. To a consumer on the other hand, the eve \
channel seems to be a supplier. Furthermore, the commupni [Event Channd

tion model between the different participants can be chosen 7, push
freely. By using an event channel, suppliers and consumers Q
decoupled and can communicate without knowing each otheggppliers Consumefs
identity. Suppliers and consumers communicate synchron@jggre 14: OMG Event Channels

ly with the event channel but the semantics of the delivery are

up to the designer of the specific event channel. Two types of channels are defined, typed and
untyped channels. How these event channels are implemented is not defined in the OMG spec-
ification. By not imposing any restrictions on the semantics, the specification allows implemen-
tations to provide additional functionality in the event channel implementation. Persistent
events (events that are logged) or reliable event delivery mechanisms come to mind. Because
the event channel interface complies to the definition of the consumer’s interface and to the def-
inition of the supplier’s interface, they can be chained without problems. This allows to build
arbitrarily complex event channel hierarchies with a broad functionality.

Products following the OMG specification are commercially available (e.g. lona Or-
bixTalk[IONA96], or Sunsoft's NEO [Sun96]) or under development (IBM OpenBlueprint
[IBM95]).

But none of these products supports mobile participants, a necessary functionality if an event
service has to be used with mobile agents. Thus at the University of Stuttgart an event service
following the OMG model has been developed that supports mobile participants [Beck97]. This
event service builds a hierarchical structure that contains so-calbedinatorsfor every par-
ticipating local network, and in the local netwakent demonfr every machine. Theoordi-
natorscommunicate via TCP/IP over a minimal spanning tree, that is built dynamically to allow
coordinatorsto be added and removed from this communication backbone transparently. The
communication with thevent demonis done via local broadcast, which allows efficient com-
munication. Hand-over of mobile participants is done in a way that guarantees reliable delivery
of events.

5 Security for Mobile Agent Systems 17

4.3.5 Synchronization using the OMG model

With the employment of an untyped evef =———=——————= <

channel for group communication, OR and | Event Channel \
AND-groups can be implemented (see figure 4 4 I Other
15). The channel is untyped because differ- | | I Events
ent event types are transmitted through it. As * o v
the information about success is of forem Sync

importance to the synchronization obje \ Group Agent Objeét |_>Success
agents and synchronization object imple- /’ Event
ment thepushmodel. The synchronization —— —— — — — — — —

object contains a reference to the event chan- Agent Group

nel. The agent that creates the group has Ejgure 15: Synchronization using the OMG model

cess to its synchronization object and thus the ability to forward the event channel reference to
other agents, e.g. at creation time. The group members subscribe to the event channel as suppli-
ers (e.g. foagentsuccesasvent) as well as consumers (e.g.téwminationevent). The commu-

nication to non-group entities is handled by the synchronization object, either by sending the
events directly to an agent (e.g. the parent agent creating the group) or by using another event
channel (e.g. an event channel of a higher-level group).

5 Security for Mobile Agent
Systems

The vision of mobile agents as the key tech
nology for future electronic commerce appli-
cations can only become reality if all security
issues are well understood and the corre
sponding mechanisms in place. As illustrateg
by figure 16, four security areas within mobile
agent systems can be identified, namely @iyure 16: Security Areas of Mobile Agent Systems
inter-agent security, (2) agent-host security,

(3) inter-host security, and (4) security between hosts and unauthorized third parties. Existing
cryptographic technology seems to be applicable to areas (1), (3) and (4), but area (2) is specific
to mobile code systems (see [Hohl97] for an overview).

Unauthorized third parties

The security between host and agent is twofold: on the one side, hosts have to be protected
against malicious agents, on the other side, agents have also to be protected against malicious
hosts. The first direction, protection against agents, can be solved using existing technology
known from Java Applets and SafeTcl programs, since there the same problem exists, the exe-
cution of unknown programs. Both systems use an approach, the soSaliélooxsecurity

model, where all potential dangerous procedure calls are restricted by special security control
components that decide which programs can use these procedures and which not.

The other direction, the protection of agents against malicious hosts, is specific to mobile
agents, and ongoing research efforts try to provide approaches in this field. Currently four re-
search directions exist: the organizational approach (as in [GenMag96]) eliminates the problem
by allowing only trustworthy institutions to run mobile agent systems (and does, therefore not
allow open systems), the trust/reputation approach (see [FaGuSw96] or [RasJan96]) allows
agents to migrate only to trusted hosts or such with good reputation (but trust/reputation are

6 Agentlds 18

problematic terms or they restrict the openness of the system), the manipulation detection ap-
proach [Vigna97] offers mechanisms to detect manipulations of agent data or the execution of
code (but does not protect against read attacks) and the blackbox protection approach [Hohl97].
This last approach tries to generate a ‘blackbox’ out of agent code by using code obfuscating
techniques. Since an attacker needs time to analyse the blackbox code before it can attack the
code, the agent is protected for a certain interval. After this ‘expiration interval’, the agent and
the data it transports become invalid. All of these approaches are subject of ongoing work, none
of them is currently used in real-world application.

6 Agentlds

In Mole, an agent is seen as a unique entity. This view is supported by using a globally unique
name for every agent. This name is immutable, i.e. it does not change when the agent migrates.
The uniqueness can only be guaranteed if the system creates the names used. If the system cre-
ates the agent ids, then these ids should be devisable without global knowledge. Additionally it

is of advantage to be able to derive the site where the agent has been created from the agent id.

Why do we place such constraints on the agent id? First, to be able to identify an agent (this is
needed for communication, termination etc.), its name must be unique locally. Second, to be
able to do the same after an agent has migrated, the name has to be immutable. From this follows
that the agent id has to be globally unique.

This can only be guaranteed if the system itself provides a service to create agent ids conforming

to these requirements. If global knowledge is needed to create this agent name, then either a ex-
pensive mechanism has to be implemented to obtain the global knowledge, or a single point of

failure is introduced if e.g. an id server creating these ids is brought into the system (see e.g the
Amoeba sequencer in [Tanenb95]).

The ability to derive the site where the agent has been created is of advantage e.g for finding
algorithms utilizing home location registry approach. This approach is used in GSM (see e.g.
[MauPau92]), where the id of the user (his telephone number) leads to a designated place (the
home location registry) that contains the information how this user can be reached.

The agent id in Mole is created from information that can be obtained locally. Table 2 contains
the components of the agent id. The IP v6 address of the underlying system together with the
port number of the engine allows to identify the engine on which the agent has been created.
The uniqueness of the name is guaranteed by using a combination of a normal counter that is
set to O at the start of the engine, and a so-called crash counter, that is incremented every time
the engine is started. If more thaif Agents are started the crash counter is incremented also.

2 more bytes are reserved for future use, giving a total of 24 bytes.

Table 2: The components of the Agent Id

Bytes Meaning

4 Dynamic Counter, incremented for every new agent id
4 Crash counter, incremented every time the system is started. Also incremented if dynamic counter oyerflows.

12 IP Version 6 address of the system on which the engine runs
2 The port number of the engine

2 Reserved for future use (set to 0)

7 Mole System Services 19

7 Mole System Services

In this section we describe the Mole system services that provide functionality needed on dif-
ferent levels, from the communication and migration level, to the level of system and user
agents. First we discuss the naming of agents used in Mole, and present the directory services.
Then security mechanisms for Mole are discussed, a service to find agents and resource man-
agement for Mole is presented.

7.1 Security

In Mole theSandboxsecurity model (as described above) is enforced by implementing a simple
concept. In section 2 we presented our agent model, and with it user and service agents. User
agents are the normal mobile agents, programmed and employed by the user. They have abso-
lutely no access to the underlying system. Service agents are agents with access to system re-
sources, providing controlled, secure abstractions of these resources inside the agent system.
Furthermore, service agents may offer access to legacy software, using the native code interface
offered by Java. This does not cause any security problems, because the service agents are im-
mobile and may be started only by the administrator of the location. User agents may only com-
municate with other agents and have no direct access to system resources.

Additionally it can be decided on a per-location basis which types of agents to allow on a place.
Only agents that are derived from the specific type given can migrate to a place. This mechanism
can be used to implement access restrictions. Take e.g. a place that allows only agents of a very
specific type. These can only be created at one other, open place. Then every agent wanting to
access a service on the first, closed place has to migrate to the open place and request a service.
This service then creates one of the specific agents that migrate to the closed place.

7.2 Directory Service

A directory service is an electronic database that contains information on entities. An example
for a directory service is X.500 (see e.g. [Chadwi94]). In our Mole system we provide a simple
local directory service, that provides information on agents providing a service denoted by a
string. This local directory service exists on every place.

An agent can register itself locally if it provides a service by submitting a string identifying the
service to the directory service.

Another agent wanting to use this service first asks the directory service. The directory service
returns a list containing all agents providing the service. This list is either empty, or contains one
or more agent ids. The agent now chooses one of the agent ids and contacts the agent.

7.3 Resource Management

Resource management is necessary for two purposes. One is accounting, the other is resource
control. Acounting is a prerequisite for commercial applications with agents and resource con-
trol is necessary to prevent e.g. service denial attacks. In Mole the following resources are man-
aged:

» CPUtime

* local network communication

8 Related Work 20

¢ communication with remote networks
« number of created children
* total time at the local place

The CPU time used is calculated by counting the time slices given to threads of an agent. Mole
has a central object, the MCP (Master Control Process), that schedules all threads in the Mole
system. We decided to implement our own scheduler, when problems with Java 1.02 lead to the
conclusion that the java scheduler of the solaris implementation had problems with more than

3 threads of the same priority.

The network communication is an important cost factor. Thus it is important for both accounting
and resource control. Because all agent communication has to use the mechanisms provided by
the agent system, control is done here.

When an agent arrives at one place the arrival time is noted down. This way the total time at the
local place can be computed without problems.

8 Related Work

In table 3 an overview over available mobile agent systems is given. Many of these agent sys-

tems are research prototypes, and only a few of these have users outside their own university or
research institute. We have already classified most of these systems regarding mobility support
(see table 1), now we will examine the systems on the subject of communication support.

Table 3: Mobile Agent Systems and their Availability

NaSrr;:tZ:nthe Supported Languages Company Availability
ARA Tcl, C, Java University of Kaiserslautern, Germany free
ffMAIN Tcl, Perl, Java University of Frankfurt, Germany no
Tacoma Tcl, C, Python, Scheme, Perl Cormell (USA), Tromso, Norway free
AgentTcl Tcl Dartmouth College, USA free
Aglets Java IBM, Japan binary only
Concordia Java Mitsubishi, USA binary only
CyberAgents Java FTP Software, Inc., USA no longe
Java-2-go Java University of California at Berkeley, USA free
Kafka Java Fujitsu, Japan binary onl
Messengers MO University of Zurich, Switzerland free
MOA Java The Open Group, USA no
Mole Java University of Stuttgart, Germany free
MonJa Java Mitsubishi, Japan binary only
Odyssey Java General Magic, USA binary only
Telescript Telescript General Magic, USA binary only
Voyager Java ObjectSpace, Inc., USA binary onlly

9 Conclusion and Future Work 21

All of these systems for mobile agents employ many communication mechanisms such as mes-
sages, local and remote procedure calls or sockets, but, to our knowledge, no system uses a glo-
bal event management for communication and synchronization. There are “events” in AgentTcl
[GrayEA96], but they are simply (local) messages plus a numerical tag.

Although the use of sessions offers certain advantages as shown above, existing agent systems
barely provide session support. Telescript [GenMag96], for example, which introduced a kind

of sessions by using the temeetingfor mobile agent processing, offers only local meetings,

that allow the agents only to exchange local agent references. The meet command is asymmet-
ric, i.e. there is an active meeting requester, the “petitioner” and a passive meeting accepter, the
“petitionee”. The petitionee can accept or reject a meeting, but only the petitioner gets a refer-
ence to the petitionee. Agents communicate after opening a meeting by calling procedures of
each other (i.e. the petitioner can call procedures of the petitionee). As there is no possibility
during the execution of a procedure to obtain information about an enclosing meeting, agents
cannot access session context data. Furthermore, an agent can open only one meeting per agent
as a petitioner. Finally, agents may migrate during meetings, and if an agent takes shared objects
with it, the other agent will not see this until it tries to access a shared object and gets a “Refer-
ence void” exception. To summarize the Telescript meeting, we can say, that it is not a session
according to our definition.

There are also “meetings” in ARA[Peine96] and in AgentTcl. Meetings in ARA build up com-
munication relations between two agents over which (string) messages can be exchanged, meet-
ings are local and the only supported “specification method” is anonymous addressing via meet-
ing names. Meetings in AgentTcl are just a mechanism that opens a socket between two agents.

9 Conclusion and Future Work

In this paper we presented the Mobile Agent System Mole and the design decisions that led to
the existing implementation of Mole V2. Different kinds of mobility have been discuRsed,

mote ExecutiolCode on DemandVeak MigratiorandStrong Migration and their advantages

and disadvantages have been discussed. We gave the reasons for dNeakiijgrationin

Mole. The communication concepts implemented in Mole have been presented, namely ses-
sions, badges, and event services for mobile participants. Security problems in Mobile Agent
Systems have been reviewed, the structure of agent ids as used in Mole have been presented,
and the system services of Mole have been discussed.

Since its beginning the system had external active users, that give us feedback (i.e. bug reports,
new features etc.) and thus help to improve the system. These are Siemens GmbH, Tandem
Computers, University of Freiburg, University of Zurich, and University of Geneva.

Mole is used, among other things, as the infrastructure for an electronic documents system
[KoMoVi96], as a simulation environment for distributed network management, as an environ-
ment for an enhanced WWW server, as an execution environment for server classes [StraEA97],
and in a distributed variant of a Multi-User Dungeon (MUD), in which players can use mobile
agents as artificial team-mates.

Apart from these active users over 400 different persons downloaded the version 1.0 of Mole,
and in the 2 months since the new version of Mole has been released, already nearly 200 down-
loads have been counted.

Mole is available as source code. Further informations about the Mole project can be found at
http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html.

9 Conclusion and Future Work 22

The next problems we will investigate are group models, a performance model and the area of
commercial applications.

It is often argued that the advantage of agent migration lies in the reduction of (expensive) global
communication costs by moving the computation to the data [GenMag96, HaChKe95]. Al-
though this argument is understandable from an intuitive point of view, not much work has yet
been done to evaluate the performance of migration on a quantitative basis. A performance mod-
el could provide help to identify situations in which agent migration is advantageous compared
to remote procedure calls.

A considerable part of today’s commercial applications require a high degree of robustness. An
exactly-oncesemantics for task processing will be a prerequisite for a majority of future net-
based applications. Those semantics require a tight integration of agent technology and transac-
tion management. There are two challenges to achieve this integration. Firstly, due to their asyn-
chronous nature, agents are best suited to be engaged in long-lived activities. It must be inves-
tigated, which transaction models meet these requirements, where Contracts [WaeReu92] and
Sagas [GarciaEA91] seem to be a good starting point. Secondly, at least parts of the agent state
must be made recoverable. Current approaches to integrate mobile entities and transactions,
such as Java Database Connection (JDBC, see [HaCaFi97]) and Java Transaction Service (JTS,
see [JavaSoft97]), only consider server state to be recoverable. If operations performed on mo-
bile state are part of transactions existing protocols for transaction management, such as commit
protocols, must be modified.

Furthermore we will continue to investigate agent group models, agent security issues and ad-
vanced communication concepts.

Acknowledgements:A system as large as this cannot be implemented with only a few research-
ers. We wish to thank the many students that have implemented parts of the system as their stu-
dent or diploma thesis.

A References

[AarAar97] B. Aaron, A. Aaron. “ActiveX Technical Reference”, Prima Pub, 1997.

[AgSoc97] The Agent Society. “The Agent Society Web Page”, 1997,

URL: http://www.agent.org/

[BaumEA97a] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, M. Stral3er.
“Communication Concepts for Mobile Agent Systems”, in Proc. Mobile
Agents ‘97, Springer Verlag, 1997.

[BaumEA97b] J. Baumann, M. Shapiro, C. Tschudin, J. Vitek. “Mobile Object Systems:
Workshop Summary”, Workshop Proceedings for the third ECOOP Workshop
on Mobile Object Systems, 1997, to appear.

[Bauman97] J. Baumann. “A Protocol for Orphan Detection and Termination in Mobile
Agent Systems*, Technical Report Nr. 1997/09, Faculty of Computer Science,
University of Stuttgart, 1997.

[BauRad97] J. Baumann, N. Radouniklis. “Agent Groups for Mobile Agent Systems*, in
Proc. DAIS '97, to appear.

[BaTsVi96] J. Baumann, C. Tschudin, J. Vitek. “Mobile Object Systems: Workshop
Summary”, Workshop Proceedings for the 2nd Workshop on Mobile Object
Systems, in Workshop Reader ECOOP '96, dpunkt, 1997.

9 Conclusion and Future Work 23

[Beck97]

[BirvRen94]

[CaPiVio7]

[Chadwi94]
[ChiKan97]

[CarGel89]
[FaGuSw96]

[FIMKME94]

[FIPA97]
[GarciaEA91]
[GenMag96]

[GenMag97]
[GheVig97]

[Goscin9l]
[Gray95]
[GrayEA96]
[HaCaFi97]

[HamShi80]

[HaChKe95]

[Hohl97]

B. Beck. “Terminierung und Waisenerkennung in einem System mobiler
Software-Agenten” (german), Diploma Thesis, Faculty of Computer Science,
University of Stuttgart, 1997.

K. P. Birman, R. van Renesse. “Reliable Distributed Computing with the ISIS
Toolkit”, IEEE Computer Society Press, 1994,

A. Carzaniga, G. Picco, G. Vigna. “Designing Distributed Applications with
Mobile Code Paradigms”, To appear in Proc. 19th Int. Conf. on Software
Engineering, Boston, 1997.

D. Chadwick. “Understanding the X.500 Directory”, Chapman & Hall, 1994.
T.-H. Chia, S. Kannapan. “Strategically Mobile Agents”, in Proceedings of the
First International Workshop on Mobile Agents, MA'97, Springer Verlag,
1997.

N. Carriero, D. Gelernter. “Linda in Context”, CACM 32(4), April 1989

W. Farmer, J. Guttmann, V. Swarup. “Security for Mobile Agents:
Authentication and State Appraisal’, in: Proceedings of the European
Symposium on Research in Computer Security (ESORICS), 1996.
T. Finin, D. McKay, R. McEntire. “KQML as an Agent Communication
Language”, in Proc. Third Int. Conf. On Information and Knowledge
Management, ACM Press, November 1994.

FIPA. “Foundation for Intelligent Physical Agents”, 1997.

URL: http://drogo.cselt.it/fipa/

H. Garcia-Molina, D. Gawlick, J. Klein, et al. “Modeling Long-Running
Activities as Nested Sagas”, Data Engineering Bulletin 14(1): 14-18 (1991) .
General Magic, Inc. “The Telescript Language Reference”, 1996. URL: http://
www.genmagic.com/Telescript/ TDE/TDEDOCS_HTML/telescript.html
General Magic, “Odyssey Web Site”. URL: http://www.genmagic.com/agents/
C. Ghezzi, G. Vigna. “Mobile Code Paradigms and Technologies: A Case
Study”, in Proc. Mobile Agents ‘97, Springer Verlag, 1997.

A. Goscinski. “Distributed Operating Systems - The Logical Design”,
Addison-Wesley, 1991.

R. S. Gray. “AgentTcl: A Transportable Agent System”, Proc. CIKM'95
Workshop on Intelligent Information Agents, 1995.

R. Gray, G. Cybenko, D. Kotz, D. Rus. “Agent Tcl.”, Itinerant Agents:
Explanations and Examples with CD-ROM, Manning Publishing, 1996.
Hamilton, Cattell, Fisher. “JDBC Database Access with Java”, JavaSoft Press,
Addison-Wesley, to appear.

M. Hammer, D. Shipman. “Reliability Mechanisms for SDD-1: A System for
Distributed Databases”, in: ACM Transactions on Database Systems 5:4,
December 1980.

C. Harrison, D. Chess, A. Kershenbaum. “Mobile Agents: Are they a good
idea?”, IBM Research Report, IBM T.J. Watson Research Center, 1995.

F. Hohl. “An approach to solve the problem of malicious hosts”, Technical
Report Nr. 1997/03, Faculty of Computer Science, University of Stuttgart,
1997.

9 Conclusion and Future Work 24

[HoKIBa97]
[IBMO3]
[IBM95]
[IBM96]

[IONA96]
[JavaSoft97]

[JOVRSc95]

[KaaTan91]

[Knabe95]

[KoMoVi96]

[LiDrD095]

[Maes94]

[MaMaSc95]

[MauPau92]
[Mole97]
[OMG94]
[OMG97]
[Peine9s]

[RasJan96]

[RoHORa97]

F. Hohl, P. Klar, J. Baumann.”Efficient Code Migration for Modular Mobile
Agents”, accepted Submission for the Third ECOOP Workshop on Mobile
Object Systems: Operating System support for Mobile Object Systems, 1997.
IBM Corp. “Messaging and Queuing Technical Reference”, SC33-0850, 1993.
IBM Corporation: “Open Blueprint Introduction”, 1995.
http://www.software.ibm.com./openblue/papers/obintrwb.htm

IBM Tokyo Research Labs. “Aglets Workbench: Programming Mobile Agents
in Java”, 1996. http://www.trl.ibm.co.jp/aglets

IONA Technologies Ltd. “OrbixTalk Programming Guide”, April 1996.

JavaSoft, Inc. “The Java Transaction Service API. Web Page.”

URL: http://splash.javasoft.com/jts/jts.html

D. Johansen, R. van Renesse, F. Schneider. “An Introduction to the TACOMA
Distributed System - Version 1.0”, Technical Report 95-23, University of
Tromso, 1995.

M. F. Kaashoek, A. S. Tanenbaum. “Group Communication in the Amoeba
Distributed Operating System.”, In Proceedings of the 11th Conference on
Distributed Computing Systems, 1991.

F. Knabe. “Language Support for Mobile Agents”, PhD dissertation, School of
Computer Science, Carnegie Mellon University, 1995.

D. Konstantas, J.H. Morin, J. Vitek. “MEDIA: A Platform for The
Commercialization of Electronic Documents”, in: Object Applications, ed.
Dennis Tsichritzis, University of Geneva, 1996.

A. Lingnau, O. Drobnik, P. Doemel. “An HTTP-based Infrastructure for
Mobile Agents”, Proc. of the 4th International WWW Conference, December
1995. URL: http://www.w3.org/pub/Conferences/WWW4/Papers/150/

P. Maes. “Agents that Reduce Work and Information Overload”, in CACM
37(7), July 1994.

B. Matthiske, F. Matthes, J. Schmidt. “On migrating threads”, in Proceedings
of the Second International Workshop on Next Generation Information
Technologies and Systems, 1995.

M. Mauly, M. Paulet. “The GSM System for mobile Communication.”, Europe
Media Publications S. A., 1992.

“Mole Project Pages”. University of Stuttgart,
http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.htmi

“Common Object Services Specification”, Volume 1, OMG Document
Number 94-1-1, March 1994.

Object Management Group. “Mobile Agent Facility (MAF) specification”,
http://www.omg.org/library/schedule/CF_RFP3.htm

H. Peine. “Ara: Agents for Remote Action.ltinerant Agents: Explanations
and Examples with CD-RONWanning Publishing, 1996.

L. Rasmusson, S. Jansson. “Simulated Social Control for Secure Internet
Commerce”, Accepted Position Paper to the New Security Paradigms '96
Workshop. URL: http://www.sics.se/~Ira/nsp96/nsp96.html
K. Rothermel, F. Hohl, N. Radouniklis. “Mobile Agent Systems: What is
Missing?“, in Proc. DAIS '97, to appear.

9 Conclusion and Future Work 25

[Stamos86]
[StBaH096]

[StraEA97]

[StrSch97]

[Sun94]
[Sun96]
[Sun97]
[Tacoma97]
[Tanenb95]
[Vigna97]
[WaeReu92]

[Walter82]

[White94a]
[White94Db]

[WongEA97]

J. W. Stamos. “Remote Evaluation”, TR-354, MIT, 1986.

M. Stral3er, J. Baumann, F.Hohl. “Mole - A Java Based Mobile Agent System”,
in Workshop Reader ECOOP '96, dpunkt, 1996.

M. Stral3er, J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, M. Schwehm,
“ATOMAS: A Transaction-oriented Open Multi Agent-System. Annual
Report”, Technical Report Nr. 1997/14, Faculty of Computer Science,
University of Stuttgart, 1997.

M. Stral3er, M. Schwehm. “A Performance Model for Mobile Agent Systems”,
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications PDPTA’97, Las Vegas 1997.

Sun Microsystems. “The Java Language: A White Paper”, Technical Report,
Sun Microsystems, 1994.

Sun Microsystems. “Solaris NEO: Operating Environment Product Overview”,
March 1996.
http://www.sun.com/solaris/neo/whitepapers/SolarisNEO.front1.html
The Java Web Pages. URL: http://www.javasoft.com

Tacoma Project Pages. http://www.cs.uit.no/DOS/Tacoma/index.html

A. Tanenbaum. “Distributed Operating Systems”, Prentice Hall, 1995.

G. Vigna. “Protecting Mobile Agents through Tracing”. Accepted Submission
for the Third ECOOP Workshop on Mobile Object Systems: Operating System
support for Mobile Object Systems, 1997.

H. Wachter, A. Reuter. “The ConTract Model”, in Transaction Models (ed. A.
Elmagarmid), Morgan Kaufmann, 1992.

B. Walter. “A Robust and Efficient Protocol for Checking the Availability of
Remote Sites”, in: Proc. 6th Berkeley Workshop on Distributed Data
Management and Computer Networks, Pacific Grove, February 1982.

J. E. White. “Telescript Technology: The Foundation of the Electronic
Marketplace”, General Magic, 1994.

J. E. White. “Telescript Technology: Scenes from the Electronic Marketplace”,
General Magic, 1994.

D. Wong, N. Paciorek, T. Walsh. “Concordia: An Infrastructure for
Collaborating Mobile Agents”, in Proceedings of the First International
Workshop on Mobile Agents, MA’97, Springer Verlag, 1997.

