<
<
0.0,
TR 4
OIS
LR 4
LI S
5¢5 ¢S
L 2K
0:0’

<

0038
.
2o
&

&
0

ARAA

Universitat Stuttgart
Fakultat Informatik

.
A
e
2
&

OO0
283
2%
o
+%6%%
o
A

)

%0

%

s
)
@,
&

00000
L OAAANCR

*
*
*
*
*

Institut fiir parallele und verteilte
Hochstleistungsrechnersysteme
Breitwiesenstrafle 20-22

D-70565 Stuttgart

Statistische Objekterkennung
durch nichtparametrische
Hypothesenverifizierung

N. Oswald und P. Levi

1997/17

Oktober 1997

CR: 1.2.10, 1.3.5, L4.7, 1.5.1



Zusammenfassung

In diesem Bericht wird ein Verfahren vorgestellt, mit dem die Ahnlichkeit
zweier komplexer 3D-Objekte an Hand nichtparametrischer statistischer Tests
festgestellt werden kann. Dabei werden Objekte zun&chst in einen normier-
ten skalierungs- und translationsinvarianten Merkmalsraum abgebildet und an-
schliefend unter Anwendung von Verfahren, die auf dem Vergleich von Ver-
teilungsfunktionen basieren, mit verschiedenen Modellansichten verglichen. Zur
Generierung eines BewertungsmaBes fiir die Ahnlichkeit von Objekten verwen-
den wir die uni- und bivariaten Teststatistiken von Kolmogoroff und Smirnow
sowie die von Cramer und von von Mises. Wie die Experimente zeigen, a8t
sich mit diesem schnellen Verfahren besonders bei den bivariaten Tests eine
hohe Signifikanz erzielen. Durch Gruppierung der Merkmale ist eine weitere
Effizienzsteigerung bei der Erkennung der Objekte moglich.



1 Einleitung

Eine zentrale Aufgabe in der Robotik, sei es in Verkehrs-, Fertigungs- oder Dienstleistungsszena-
rien, ist das schnelle Erkennen von Objekten in einer Szene, in der die Objekte an beliebiger Posi-
tion und in beliebiger Orientierung sichtbar sind. Bei diesen Objekten handelt es sich meist um
hochkomplexe Gebilde, deren Identifizierung hohe Anforderungen an die Bildverarbeitung stellt.
Um komplexe Objekte zu erkennen, reduziert man Ublicherweise die zu verarbeitende Information,
indem zur Segmentierung Aufmerksamkeitserreger wie Bewegung oder Farbe benutzt werden. Die
Qualitat der Objekterkennung héngt dann stark von der Qualitdt der Segmentierung ab. Um auch
zusatzliche EinfliRe wie projektive Verzerrungen oder Beleuchtungsschwankungen weitestgehend
kompensieren zu kénnen, missen Objekterkennungsverfahren vor allem robust sein.

In [12] wurden zwei schnelle Matchingverfahren vorgestellt, die auf einem translations- und skalie-
rungsinvarianten Konfigurationsraum fir ikonische Merkmale basieren. Durch Aufsummieren der
Differenzen korrespondierender Raster wurden bei groBen Merkmalsmengen Energiewerte
bestimmt, die allerdings nicht normiert waren, so dal} sich die anschlieRende Klassifikation als
schwierig gestaltete. Dies fiihrte zu der Uberlegung, die Verteilung der Punktanordnungen im Konfi-
gurationsraum als zufallig aufzufassen und mit mathematisch fundierten statistischen Methoden zu
analysieren. Um Unabhangigkeit zu bestimmten Verteilungsformen zu gewahrleisten, haben wir
nichtparametrische Verfahren verwendet, die auch unter relativ geringen Anforderungen an der den
Daten zugrundeliegenden Grundgesamtheit angewendet werden kdnnen. Diese Verfahren sind selbst
im Falle normalverteilter Grundgesamtheiten nur unwesentlich weniger effizient als parametrische
Verfahren [8]. Die Qualitat einzelner Testverfahren wird im Schrifttum sehr unterschiedlich bewer-
tet [10]. In unseren Anwendungen hat sich gezeigt, dal insbesondere Testverfahren geeignet sind -
im Gegensatz beispielsweise zu Rangordnungsverfahren -, die auf dem Vergleich von Verteilungs-
funktionen basieren. Aus den potentiellen Testverfahren haben wir das bekannte Testkriterium der
maximalen Differenz von Kolmogoroff und Smirnow sowie das der integrierten quadrierten Diffe-
renz von Cramer und vonMises ausgewahilt.

Die statistische Objekterkennung ist bislang nicht sehr verbreitet. Sie besteht nach [16] erstens aus
dem Erstellen einer formalen Beschreibung fiir ein Objekt und zweitens dem Klassifizieren des dar-
aus resultierenden Musters. Statistische Methoden werden bisher hauptsachlich zur Klassifikation
eingesetzt (siehe z.B. [11]), wahrend das Erstellen von Objektbeschreibungen mangels formaler
Modelle meist der Intuition des Designers unterliegt [16]. Eine formale Objektbeschreibung, die auf
der statistischen Modellierung von Objekten beruht, wird in [9] vorgestellt. Dieser wahrscheinlich-
keitsbasierte Ansatz zur Erkennung und Lokalisierung von Objekten basiert jedoch auf parametri-
schen statistischen Methoden. Auch [6] verwendet eine feste Verteilungsfunktion. Die statistische
Objektidentifikation erfolgt dort, indem die Ereignisverteilung der Daten im Hough-Raum mit
einem Anpassungstest auf eine geometrische Verteilung hin untersucht werden. In [15] wird ein sta-
tistisches Modell vorgestellt, mit dem korrekte und nicht korrekte Objekthypothesen unterschieden
werden kénnen, womit die Fehlerwahrscheinlichkeit bei der Wahl von Schwellwerten reduziert
wird.



2 Erstellen einer formalen Objektbeschreibung

Zum Erstellen einer formalen Objektbeschreibung werden aus einem Grauwertbild, welches vor-
wiegend das gesuchte Objekt enthalt, zunaehst  relevante ikonische Mekkmate[1, m{ ) wie
Grauwerte, Kanten oder Ecken bestimmt. Die Merkmale werden durch geometrische Attribute
beschrieben, die die Positionen der Merkmale im Objektraum  angeben. Anschliel3end erfolgt eine
Normierung der Merkmale bzgl. ihrer geometrischen Positionen durch Transformatiomn vom -
dimensionalen Objektraum in den in [12] vorgestellten translations- und skalierungsinvarianten
Konfigurationsraunx . Fal3t man die entstandene Anordnung der Punktmerkmale in  als zufallig
auf, so kénnen mit Hilfe nichtparametrischer Verfahren aus dem Matching eines Objekts mit vor-
handenen Modellobjekten statistische Merkmale extrahiert und anschliel3end klassifiziert werden.

2.1 Repréasentation von Merkmalen im Konfigurationsraum

Der Konfigurationsraum ist ein normierter kontinuierlicher Raum mit dem Wertebgreigh fir
jede Koordinatenachse t{[1,n] ). Bei Verwendung punktférmiger Merkmale (z.B. Kantenpixel
oder Grauwerte) entspricht die Dimension des Konfigurationsraumes der des Objektvaumes . Die
den Konfigurationsraum aufspannenden Merkmalsvektéren (b, , ..., b, )" sind entsprechend
der geometrischen Position der Merkmslle  nif1, m] im Objektraum  relativ zu den Gbrigen
Merkmalenm; (O[1,m] Oj#i ) angeordnet. Der Konfigurationsraum entspricht somit einem Quan-
tilisierungsraum. Die Abbildung eines Merkmais von  nach mitfo, 1" erfolgt durch
Bestimmung der Werte, ;  fur jede Koordinatenachse

m-1
oL falls o jsop +e Dj#i

-1 - _
bt,i _m—l Z ft, |j mit ft, Ij =0
j =1 %) sonst

(1)

Der Merkmalvektorsg, eines transformierten Merkmals  im Konfigurationsraum besteft aus
Elementenb, ; , die aus dem Vergleich der Koordinatgn des Merkmals mit allen Ubrigen
Merkmalen ino bestimmt werden, wobei der Wert  eine Uberlappungstoleranz definiert. Der so
erstellte Konfigurationsraum ist, wie schon in [12] gezeigt, sowohl translations- als auch skalie-
rungsinvariant und wird im weiteren Verlauf die Basis fur die angewandten statistischen Methoden
darstellen. Der Einflu3 der Skalierung auf den Konfigurationsraum wird an den verschiedenen Auf-
I6sungen eines kantengefilterten mobilen Roboters in Abb. 2-1 deutlich. Die Pixelreduktion sorgt
zwar fir eine Ausdiinnung der Punktanordnung, die Objektform wird jedoch beibehalten.

e ——
£

Abbildung 2-1: Skalierung des Konfigurationsraumes mit 100%, 80%, 60%, 40%, 30% und 20%



2.2 Extraktion statistischer Merkmale

Die statistische Testtheorie basiert auf der Vorgehensweise, liber eine Stichprobe eine Vermutung in
Form einer Nullhypothese auszudriicken und diese unter Auswahl einer geeigneten Testfunktion
gegen eine Alternativhypothese unter Angabe von Giutemalien zu Uberprufen. Die Frage nach der
Verteilung einer solchen Stichprobenfunktion gehért dabei zu den Grundproblemen in der mathema-
tischen Statistik [5]. Fir wenige Sonderfélle, in denen normalverteilte Grundgesamtheiten ange-
nommen werden, gibt es verhaltnisméRig einfache Methoden zur Bestimmung der exakten
Verteilung der Stichprobenfunktion. Ansonsten ist die Bestimmung der exakten Verteilung sehr auf-
wendig, so daf? man stattdessen die Grenzverteilung der Stichprobenfunktion §ir bestimmt,
ohne dabei Annahmen an eine Verteilungsfunktion zu treffen.

2.2.1 Bestimmen eines Bewertungsmalies fur statistische Tests

Betrachtet man die Modelldaten als gegeben und vollstédndig, so geht es beim Einstichprobenfall
darum, ein zu analysierendes Objekt, dessen Reprasentation im Konfigurationsraum als Stichprobe
aufgefaldt wird, an ein Modell anzupassen, indem auf den kontinuierlichen Punktmerkmalen des
Konfigurationsraumes uni- oder multivariate Tests angewandt werden. Als Nullhypethese  fur die
verschiedenen Tests wird die Vermutung aufgestellt, daf die Bild- und Modelldaten aus der gleichen
Grundgesamtheit, als Alternativhypothesg , daf’ sie aus verschiedenen Grundgesamtheiten ent-
stammen. Ziel bei diesen dualen Entscheidungen ist nun einerseits, eine hohe Sicherfeit flr zZu
erzielen, so daB eine falschliche Ablehnung Mgn  vermieden wird und , der Fehler 1. Art, gegen
Null geht. Andererseits mochte man eine hohe Trennschérfe zwisghen H, und erreichen, so dal3
der Fehler 2. Artf ), die irrtimliche Beibehaltung vef , gegen Null geht. Einen derart idealen
Test kann man jedoch nicht erhalten [5].

Um von dem dualen Entscheidungskonzept statistischer Tests hin zu einem Bewertungsmal fur die
Ahnlichkeit von Objekten zu gelangen, wird zunachst fir den Vergleich zweier Stichproben aus

und k, das nominelle Signifikanzniveay (der sogenannte p-Wert [7]) des angewandten Tests
ermittelt, bei dem dieser gerade abgelehnt worden ware. Je grpRBer , desto grof3er ist die Wahr-
scheinlichkeit, dafi, falschlicherweise abgelehnt wurde, gleichzeitig sinkt aber auch der Fehler 2.
Art. Diese kritische Irrtumswahrscheinlichkeif ~ wird im folgenden als Bewertungsmal fir das
Matching verwendet. Das bedeutet, falls der Wiert  kleiner als ein vorgegebenes ist, wird der
jeweils angewandte Test zu einer Ablehnung Mgn  fiihren.

2.2.2 Der uni- und bivariate Test von Kolmogoroff und Smirnow

Der Test von Kolmogoroff und Smirnow (KS-Test) ermittelt den Unterschied zweier Verteilungs-
funktionen, indem er die zentrale Tendenz, Streuung und Schiefe der Verteilungen erfal3t. Vorausset-
zungen fur den KS-Test sind unabhangige Daten, die ein kardinales Mef3niveau besitzen und eine
stetige Verteilungsfunktion besitzen. Diese Voraussetzungen sind gewahrleistet zum einen durch die
Quantilisierungseigenschaft van , womit der Abstand zweier Merkiale  bestimmbar ist, zum
anderen durch die aus dBn  generierte empirische Verteilungsfurkion mit



Eo fur Bj< B,

F(B) = %% fir By <B;<By+q1 (k=1,2...,m) (2)
%1 flr Si > Sm
die nicht abnehmend und linksseitig stetig ist. Als Prifgro3e dient die gréRte Ordinatendifferenz
zwischen den empirischen Verteilungsfunktionen von ObEkB;) und ReferenzniSciz)
D = sup|F°(B) - FX(8) (3)
Fir einfache Stichproben vom Umfang  ergibt sich fir die Operationscharakte(istik nach

dem Satz von Kolmogoroff [5] die folgende Grenzverteilung:

o2 J 2Ms” L
rr!imem()\KS) =Q(Aks) = % Z (-1)te fir Ags>0 4)
[0 sonst

Nach [14] lait sich das bendtigtes ~ im Einstichprobenfall fir den univariaten KS-Test durch fol-
gende Formel naherungsweise bestimmen:

Aks = H/m+0, 12+07;]1 ®)

As €rrechnet sich in Abhangigkeit vom Stichprobenumfang mind , wobei sich demWert — aus
der Anzahl der Merkmale des ObjekitS und des Referenzmodells  wie in (6) zusammensetzt.

0. R

m

mz—mO = (6)
m”+m

Die empirische VerteilungsfunktiorF°(8;) konvergiert nach dem Satz von Gliwenko [5] fur

m - » mit Wahrscheinlichkeit 1 zur tatséchlichen Verteilungsfunktitis;) , fallsBdie  kvon
gemérSCR(Bi) verteilt sind. Als Bewertungsmal3 verwenden wir die kritische Irrtumswahrscheinlich-
keit a, = 1-Q(A\cs) - Liegen nun gleiche Grundgesamtheiten vor, werden sowghl als auch

Q(Ag) Mit zunehmendenm immer kleiner,  wird dagegen immer grof3er. Hohe Wertg, von
bedeuten also, dafR eine Ahnlichkeit zwischen Objekt und Modellansicht vorliegt.

Einen univariaten KS-Test kann man auf einen zweidimensionalen Konfigurationsraum anwenden,
indem mark ins, vertikale und, horizontale Streifen zerlegt und die gro3te Ordinatendifferenz
D flr eine Koordinatenachse  nach (3) bestimmt. Der KS-Test wird dann in jedem Siteifen

bzw. s, ¢ durchgefihrt, so dald sie ~ gemal (7) aus dem arithmetischen Mittel der Streifenergeb-
nisse ergibt. Fir den Fall eines dreidimensionalen verféahrt man analog.

S2
SZ s[

- +82 QZ ak z ' [ (7)

s=1

Der bivariate Test von Kolmogoroff und Smirnow (KS2D-Test) I&Rt sich auf einen zweidimensiona-



len Konfigurationsraum dagegen direkt anwenden.  berechnet sich nach (3), diesmal jedoch aus
dem Maximum uber beide Koordinatenachsen wnd . Voraussetzung fiir den KS2D-Test ist, daf3
die beiden Verteilungsfunktioner®(B;) unel(B)) ahnliche Korrelationskoeffizienten besit-
zen. Fur die Zufallsvariable.s,, verwenden wir die in [14] angegebene Naherungformel:

Jm (8)

m
0, 757

, 25— ——
E? m U

Aks2p =D
1+41- r2

Die Operationscharakteristif(\s,,)  bzw. das Bewertungsmal®  berechnet sich durch Einsetzen
voNn Ags,p IN (4). Im Falle korrelierter Daten reduziert sich der KS2D-Test auf den KS-Test. Bei
dreidimensionalen Eingabedaten kann der dreidimensianale entlang einer beliebigen Koordina-
tenachse;, in Ebenen zerlegt werden. Anschlieend wird in jeder dieser Ebenen der KS2D-Test
durchgefuhrt und das Bewertungsma/3 z.B. wie in (7) aus dem arithmetischen Mittel aller Ebe-
nenergebnisse bestimmt.

2.2.3 Der uni- und bivariate Test von Cramer und vonMises

Der Test von Cramer und vonMises (CM-Test) basiert ebenfalls auf dem Vergleich zweier Vertei-
lungsfunktionen. Statt der gro3ten Differenz wie im KS-Test wird die integrierte quadrierte Diffe-
renz zweier Verteilungsfunktionen berechnet. Fir den CM-Test gelten die gleichen Voraussetzungen
wie fur den KS-Test. In Anlehnung an [2] verwenden wir flr den univariaten CM-Test bezogen auf
den Konfigurationsraum die folgende Teststatistik fiir eine Koordinatenachse

1
Aew =m [ (FOB)-FB) aB ©)
0

Um ein Bewertungsma®, zu erhalten, wurde aus den Quantileg,fur , die man beispielsweise
aus [3] entnimmt, die folgende Bewertungsfunktiondfir ~ approximiert [1]:

H1-1244 682, +16, 9002, 0<Acy <0, 05

o 2
= [0 .4 29%¢y—9 08¢y +0,32
ay Ee cM cmt 0,05< )\CM <1,0 (10)
HO sonst

Auch beim bivariaten Cramer und vonMises Test [4] wird die Verteilungsfunktion der Merkmale

B; im Falle eines zweidimensionalen direkt bestimmt. Die Teststatistik, hat folgende Form:
11 2
Mewzo = M[[(FO(B) ~F (8)) dB, (11)
00

Das Bewertungsmadd,  erhalt man, indegy,p in (10) eingesetzt wird.

3 Klassifikation

Jeder Vergleich zweier Stichproben durch eines der oben beschriebenen Testverfahren liefert ein
Bewertungsmafd, . Gleichzeitig erfolgt durch jeden Test bzgl. eines Niweaus eine Klassifikation



nachH, odeH, .Bezogen auf das Bewertungsmald  bedeutet das, falls  kleiner als ein vorge-
gebenesx ist, fuhrt der verwandte Test zu einer Annahmeiyon . Diese Art der Klassifizierung ist
jedoch fur eine Objekterkennungsaufgabe nicht ausreichend. Stattdessen wird nun die Klassifikation
dera, so durchgefiihrt, daf3 einerseits eine Zuordnung zu einer Objektklasse erfolgen kann, anderer-
seits die jeweilige Ansicht eines Objekts bestimmbar wird. Dazu wird die ansichtsbasierte Modell-
datenbank als eine hierarchische baumartige Struktur aufgefal3t, die verschiedene st?l‘odelle als
Blatter enthalt, von denen jedes  definierte Ansich&jn besitzt.

Nach jedem Test existiert fur jedes Modell ein Merkmalsvektar mit

0; = (P(R). P(R,), --uP(RJA,“))T; der die Bewertungen, = P(F{,j) fur alllefIJ enthalt. Dig
spannen somit einen statistischen Merkmalsraum auf. Die Hypothesenwahrscheinhimfk)eit far
ein Modell Rj“" ergibt sich aus der besten Bewertaywy P(R’f,j) . Damit entspricht diese Art der
Klassifikation dem Verwenden von Diskriminanzgeraden. Eine Aussage Uber die Trennscharfe der
Modelle bzw. Aspekte ergibt sich aus der Modell- und der Aspektsignifikanz. Die Modellsignifikanz
SG('% berechnet sich aus der relativen Differenz der beiden besten Modellbewertwnqen

und H(R}\g) , die Aspektsignifikangg( F{ll) ergibt sich aus der relativen Differenz der beiden besten
Aspektbewertunger(Rf, ) und(r}') . Ein groRer Wee(R") bedeutet, daR? es sich mit hoher
Wahrscheinlichkeit uijM handelt. Die Ahnlichkeit eines analysierten Objekts zu einer bestimmter
Ansicht Rflj wird durch einen hohen West( R, )  ausgedriickt.

4 Experimentelle Ergebnisse

In den Experimenten verwenden wir als Eingabe Grauwertbilder, die Uberwiegend das zu identifi-
zierende Objekt enthalten. Mit Hilfe des Canny-Operators werden Punktmerkmale extrahiert und in
den Konfigurationsraum transformiert (Abb. 4-2). Das Matching mit dem Eingabeobjekt erfolgt
durch Vergleich mit Modellansichten aus einer ansichtsbasierten Modelldatenbank, in der sich defi-
nierte Ansichten von Objekten befinden, die zu einer festen Kamerapositicdh$cHriten aufge-
nommen wurden (vgl. Abb. 4-3). Somit liegen fir jedes Objekt pro Entfernungsposition 24
Ansichten vor.

==
L1

(@) (b)

Abbildung 4-2: Grauwertbild (a), canny-gefiltertes Bild (b) und der resultierende Konfigurationsraum (c)

Zum Zwecke einer effizienten Berechnung der Differenzen der Verteilungsfunktionen wird der Kon-
figurationsraum diskretisiert und werden die Merkmale gruppiert. Bei einer sehr feinen Diskretisie-
rung - mit maximal einem Merkmal pro Raster - bildet man die empirische Verteilungsfunktion



quasi direkt aus dem Konfigurationsraum. Eine grobe Diskretisierung hat, wie die Experimente zei-

Abbildung 4-3: Modellansichten des mobilen Robotéthosin 15°-Schritten

gen, zur Folge, dal3 nur geringfugige Signifikanzverluste gegenuber einer feinen Diskretisierung
auftreten [1], gleichzeitig aber der quadratische Rechenaufwand sinkt. Aus Abb. 4-4 (a+b) wird am
Beispiel des KS2D-Tests deutlich, daf3 bereits mit einerio -Rasterung eine hohe Trennschéarfe
erreicht wird, da die Bewertungen sehr eng um die korrekte Ansicht Ydiegén.

Der EinfluR der Skalierung auf den Konfigurationsraum wird an den verschiedenen Auflosungen
eines mobilen Roboters in Abb. 2-1 deutlich. Versuche haben gezeigt, dal3 trotz der theoretischen
Eigenschaft der Skalierungsinvarianz aufgrund der Quantisierung eine Mindestanzahl an Kantenpi-
xel, mindestens 30%, sichtbar sein mul3. Zur Bestimmung der Orientierungsgenauigkeit wurden
Aufnahmen eines Greifarms irf-Schritten mit Modelldaten, die in 3Gchritten aufgenommen
wurden, verglichen. Abb. 4-4 (c+d) zeigt, daR bei einer Abweichung von biznoab eine kor-

rekte Zuordnung erfolgen kann. Die Aspekttoleranz fur eine grobe Objektunterscheidung liegt damit
bei ca. 36. Eine feinere Unterscheidung der Ansichten eines Objektes bedarf dagegen bei der
Modellierung einer sehr hohen MefRgenauigkeit, wobei eine genauere AuflosubinalesRegel

nicht erzielt werden kann. Die Ansicht eines Objektes hangt nicht nur von seiner Orientierung ab,
sondern auch von der Beobachtungshdhe bzw. -entfernung. Die Robustheit gegentuber perspektivi-
schen Verzerrungen aufgrund der Beobachtungshéhe wurde be®etwsg@macht.

Das Bewertungsmal (Aspektbewertung) fur eine korrekte Zuordnung ist in einer idealen Szene typi-
scherweise hoch und sehr trennscharf, so dal3 man eine hohe Modellsignifikanz erhalt. Fir den Ver-
such in Abb. 4-4 (e), in dem der Robotgamisaus etwa 225mit den Modellen vorthos Aramis



und Baggerverglichen wurde, betragt die Modellsignifikanz ca. 95%. Die Aspektsignfikanz liegt
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Abbildung 4-4: Einflu® der Diskretisierung auf die Aspektbewertung beim KS2D-Test (a + b),
Aspekttoleranz bzgl. der Objektorientierung beim CM2D-Tests (c+d), Aspekt-
bewertungen bei bekannten (e) und unbekannten Objekten (f) mit KS2D-Test

hier bei etwa 15%. Beim Vergleich mit unbekannten Objekten erhalt man nur sehr schwache
Aspektbewertungen, wie etwa in Abb. 4-2 (f), wo efeesonmit den drei Modellen aus Abb. 4-4
(e) verglichen wurde.

In realen Szenen mit heterogenem Hintergrund missen die Verfahren robust gegenuber Verzeich-
nungen des Hintergrundes sein. Um dies zu testen, wurden fiir die Experimente sogenannte Regions
of Interest (Rol) als Eingabedaten verwendet, die durch Ausnutzen der Objektbewegung in Form
einer kowexen Hille - wie in [13] beschrieben - segmentiert wurden. Durch dieses nur grobe
UmschlieBen der Objekte kann die zu analysierende Rol Stérungen in Form fehlender oder zusatzli-
cher Informationen beinhalten, die dann in den Konfigurationsraum abgebildet werden. Wie die
Bildfolge in Abb. 4-5 zeigt, erhalt man mit beiden bivariaten Tests trotz der vorhandenen Stérung
korrekte Ergebnisse, die Modellsignifikanz ist jedoch deutlich niedriger. Die univariaten Tests
schneiden hier deutlich schwacher ab. Man erkennt an diesen Bewertungen auferdem, dafd bei der
Identifizierung mit ansichtsbasierten Modellen vor allem bei Symmetrien Entscheidungsprobleme
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Abbildung 4-5: Bildfolge aus einer realen Szene, Konfigurationsraume aus den konvexen Hiillen und Vergleich der
Bewertungen mit KS2D- und CM2D-Test

auftreten kénnen. Solche und andere Klassifikationsprobleme kénnen beispielsweise durch die in
[13] vorgestellte fortlaufende Betrachtung bzw. kooperative Objekterkennung gelost werden.

Insgesamt schneiden von den vorgestellten Tests die bivariaten am besten ab, da sie signifikantere
Bewertungen durch eine héhere Trennscharfe auch fir reale Szenen liefern. Die Laufzeiten - gemes-
sen auf einer SPARCstation 10 - werden bei diesen Tests praktisch nur durch die Anzahl der Diskre-
tisierungsraster beeinfluf3t, dann jedoch quadratisch. Bei einemo -Raster benétigen sowohl
KS2D- als auch CM2D-Test fast konstant 100ms, sind damit also nahezu unabhéngig von der
Anzahl der verwendeten Modellansichten. Die univariaten Tests werden aul3er durch die Anzahl der
Streifen auch durch die Anzahl der Kantenpixel beeinfluf3t. So liegt die Laufzeit bei je 10 Streifen
und ca. 3300 Kantenpixeln bei etwa 400ms, bei ca. 7200 Kantenpixel schon bei 1,2s.

5 Zusammenfassung und Ausblick

Es wurde eine Methode vorgestellt, mit der die Ahnlichkeit zweier Objekte an Hand statistischer
Merkmale bestimmt werden kann. Ausgehend von der Merkmalsreprasentation im Konfigurations-
raum wird aus dem Unterschied der empirischen Verteilungsfunktionen von Objekt und Modell mit
Hilfe der nichtparametrischen Tests von Kolmogoroff und Smirnow und von Cramer und vonMises

ein Bewertungsmaf bestimmt.



Die statistischen Verfahren ermoglichen, wie sich an Experimenten gezeigt hat, in idealen Szenen
ein absolut robustes Matching, da projektive Verzerrungen oder fehlende Kantenpixel durch die
Eigenschaften des Konfigurationsraumes bis zu einem gewissen Grad kompensiert werden. Dies gilt
auch fur reale Szenen, sofern die Segmentierung nicht zuviele Stérungen beinhaltet. Von den vorge-
stellten Tests schneiden die bivariaten insgesamt am besten ab, da sie meist eine signifikantere
Bewertung mit einer hdheren Trennscharfe liefern. Zudem sind die bivariaten Verfahren durch eine
grobe Diskretisierung des Konfigurationsraumes sehr schnell, so daf3 die Indizierung in diesem Fall
eine untergeordnete Rolle spielt. Experimente zur Bestimmung der Aspekttoleranz haben gezeigt,
daR - je nach Aufgabenstellung - eine Modellierung der Ansichten bzgl. der Orientierur?g in 30
Schritten und bzgl. der Beobachtungshohe®iséhritten ausreichen kann.

Gegenwatrtig erweitern wir die Objekterkennung dahingehend, dal sie einerseits robuster gegentber
segmentierten Eingabedaten niedriger Qualitat wird, andererseits, dal} sie den Prozel3 der Segmen-
tierung zur Steigerung der Segmentierungsqualitat unterstitzt.
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