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Zusammenfassung

In diesem Bericht wird ein Verfahren vorgestellt, mit dem die �Ahnlichkeit

zweier komplexer 3D-Objekte an Hand nichtparametrischer statistischer Tests

festgestellt werden kann. Dabei werden Objekte zun�achst in einen normier-

ten skalierungs- und translationsinvarianten Merkmalsraum abgebildet und an-

schlie�end unter Anwendung von Verfahren, die auf dem Vergleich von Ver-

teilungsfunktionen basieren, mit verschiedenen Modellansichten verglichen. Zur

Generierung eines Bewertungsma�es f�ur die �Ahnlichkeit von Objekten verwen-

den wir die uni- und bivariaten Teststatistiken von Kolmogoro� und Smirnow

sowie die von Cramer und von von Mises. Wie die Experimente zeigen, l�a�t

sich mit diesem schnellen Verfahren besonders bei den bivariaten Tests eine

hohe Signi�kanz erzielen. Durch Gruppierung der Merkmale ist eine weitere

E�zienzsteigerung bei der Erkennung der Objekte m�oglich.
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1 Einleitung

Eine zentrale Aufgabe in der Robotik, sei es in Verkehrs-, Fertigungs- oder Dienstleistungsszena-
rien, ist das schnelle Erkennen von Objekten in einer Szene, in der die Objekte an beliebiger Posi-
tion und in beliebiger Orientierung sichtbar sind. Bei diesen Objekten handelt es sich meist um
hochkomplexe Gebilde, deren Identifizierung hohe Anforderungen an die Bildverarbeitung stellt.
Um komplexe Objekte zu erkennen, reduziert man üblicherweise die zu verarbeitende Information,
indem zur Segmentierung Aufmerksamkeitserreger wie Bewegung oder Farbe benutzt werden. Die
Qualität der Objekterkennung hängt dann stark von der Qualität der Segmentierung ab. Um auch
zusätzliche Einflüße wie projektive Verzerrungen oder Beleuchtungsschwankungen weitestgehend
kompensieren zu können, müssen Objekterkennungsverfahren vor allem robust sein.

In [12] wurden zwei schnelle Matchingverfahren vorgestellt, die auf einem translations- und skalie-
rungsinvarianten Konfigurationsraum für ikonische Merkmale basieren. Durch Aufsummieren der
Differenzen korrespondierender Raster wurden bei großen Merkmalsmengen Energiewerte
bestimmt, die allerdings nicht normiert waren, so daß sich die anschließende Klassifikation als
schwierig gestaltete. Dies führte zu der Überlegung, die Verteilung der Punktanordnungen im Konfi-
gurationsraum als zufällig aufzufassen und mit mathematisch fundierten statistischen Methoden zu
analysieren. Um Unabhängigkeit zu bestimmten Verteilungsformen zu gewährleisten, haben wir
nichtparametrische Verfahren verwendet, die auch unter relativ geringen Anforderungen an der den
Daten zugrundeliegenden Grundgesamtheit angewendet werden können. Diese Verfahren sind selbst
im Falle normalverteilter Grundgesamtheiten nur unwesentlich weniger effizient als parametrische
Verfahren [8]. Die Qualität einzelner Testverfahren wird im Schrifttum sehr unterschiedlich bewer-
tet [10]. In unseren Anwendungen hat sich gezeigt, daß insbesondere Testverfahren geeignet sind -
im Gegensatz beispielsweise zu Rangordnungsverfahren -, die auf dem Vergleich von Verteilungs-
funktionen basieren. Aus den potentiellen Testverfahren haben wir das bekannte Testkriterium der
maximalen Differenz von Kolmogoroff und Smirnow sowie das der integrierten quadrierten Diffe-
renz von Cramer und vonMises ausgewählt.

Die statistische Objekterkennung ist bislang nicht sehr verbreitet. Sie besteht nach [16] erstens aus
dem Erstellen einer formalen Beschreibung für ein Objekt und zweitens dem Klassifizieren des dar-
aus resultierenden Musters. Statistische Methoden werden bisher hauptsächlich zur Klassifikation
eingesetzt (siehe z.B. [11]), während das Erstellen von Objektbeschreibungen mangels formaler
Modelle meist der Intuition des Designers unterliegt [16]. Eine formale Objektbeschreibung, die auf
der statistischen Modellierung von Objekten beruht, wird in [9] vorgestellt. Dieser wahrscheinlich-
keitsbasierte Ansatz zur Erkennung und Lokalisierung von Objekten basiert jedoch auf parametri-
schen statistischen Methoden. Auch [6] verwendet eine feste Verteilungsfunktion. Die statistische
Objektidentifikation erfolgt dort, indem die Ereignisverteilung der Daten im Hough-Raum mit
einem Anpassungstest auf eine geometrische Verteilung hin untersucht werden. In [15] wird ein sta-
tistisches Modell vorgestellt, mit dem korrekte und nicht korrekte Objekthypothesen unterschieden
werden können, womit die Fehlerwahrscheinlichkeit bei der Wahl von Schwellwerten reduziert
wird.
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2 Erstellen einer formalen Objektbeschreibung

Zum Erstellen einer formalen Objektbeschreibung werden aus einem Grauwertbild, welches vor-
wiegend das gesuchte Objekt enthält, zunächst  relevante ikonische Merkmale  ( ) wie
Grauwerte, Kanten oder Ecken bestimmt. Die Merkmale werden durch geometrische Attribute
beschrieben, die die Positionen der Merkmale im Objektraum  angeben. Anschließend erfolgt eine
Normierung der Merkmale bzgl. ihrer geometrischen Positionen durch Transformation vom -
dimensionalen Objektraum in den in [12] vorgestellten translations- und skalierungsinvarianten
Konfigurationsraum . Faßt man die entstandene Anordnung der Punktmerkmale in  als zufällig
auf, so können mit Hilfe nichtparametrischer Verfahren aus dem Matching eines Objekts mit vor-
handenen Modellobjekten statistische Merkmale extrahiert und anschließend klassifiziert werden.

2.1 Repräsentation von Merkmalen im Konfigurationsraum

Der Konfigurationsraum ist ein normierter kontinuierlicher Raum mit dem Wertebereich  für
jede Koordinatenachse  ( ). Bei Verwendung punktförmiger Merkmale (z.B. Kantenpixel
oder Grauwerte) entspricht die Dimension des Konfigurationsraumes der des Objektraumes . Die
den Konfigurationsraum aufspannenden Merkmalsvektoren  sind entsprechend
der geometrischen Position der Merkmale  mit  im Objektraum  relativ zu den übrigen
Merkmalen  ( ) angeordnet. Der Konfigurationsraum entspricht somit einem Quan-
tilisierungsraum. Die Abbildung eines Merkmals  von  nach mit  erfolgt durch
Bestimmung der Werte  für jede Koordinatenachse :

(1)

Der Merkmalvektors  eines transformierten Merkmals  im Konfigurationsraum besteht aus
Elementen , die aus dem Vergleich der Koordinaten  des Merkmals  mit allen übrigen
Merkmalen in  bestimmt werden, wobei der Wert  eine Überlappungstoleranz definiert. Der so
erstellte Konfigurationsraum ist, wie schon in [12] gezeigt, sowohl translations- als auch skalie-
rungsinvariant und wird im weiteren Verlauf die Basis für die angewandten statistischen Methoden
darstellen. Der Einfluß der Skalierung auf den Konfigurationsraum wird an den verschiedenen Auf-
lösungen eines kantengefilterten mobilen Roboters in Abb. 2-1 deutlich. Die Pixelreduktion sorgt
zwar für eine Ausdünnung der Punktanordnung, die Objektform wird jedoch beibehalten.
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2.2 Extraktion statistischer Merkmale

Die statistische Testtheorie basiert auf der Vorgehensweise, über eine Stichprobe eine Vermutung in
Form einer Nullhypothese auszudrücken und diese unter Auswahl einer geeigneten Testfunktion
gegen eine Alternativhypothese unter Angabe von Gütemaßen zu überprüfen. Die Frage nach der
Verteilung einer solchen Stichprobenfunktion gehört dabei zu den Grundproblemen in der mathema-
tischen Statistik [5]. Für wenige Sonderfälle, in denen normalverteilte Grundgesamtheiten ange-
nommen werden, gibt es verhältnismäßig einfache Methoden zur Bestimmung der exakten
Verteilung der Stichprobenfunktion. Ansonsten ist die Bestimmung der exakten Verteilung sehr auf-
wendig, so daß man stattdessen die Grenzverteilung der Stichprobenfunktion für  bestimmt,
ohne dabei Annahmen an eine Verteilungsfunktion zu treffen.

2.2.1 Bestimmen eines Bewertungsmaßes für statistische Tests

Betrachtet man die Modelldaten als gegeben und vollständig, so geht es beim Einstichprobenfall
darum, ein zu analysierendes Objekt, dessen Repräsentation im Konfigurationsraum als Stichprobe
aufgefaßt wird, an ein Modell anzupassen, indem auf den kontinuierlichen Punktmerkmalen des
Konfigurationsraumes uni- oder multivariate Tests angewandt werden. Als Nullhypothese  für die
verschiedenen Tests wird die Vermutung aufgestellt, daß die Bild- und Modelldaten aus der gleichen
Grundgesamtheit, als Alternativhypothese , daß sie aus verschiedenen Grundgesamtheiten ent-
stammen. Ziel bei diesen dualen Entscheidungen ist nun einerseits, eine hohe Sicherheit für  zu
erzielen, so daß eine fälschliche Ablehnung von  vermieden wird und , der Fehler 1. Art, gegen
Null geht. Andererseits möchte man eine hohe Trennschärfe zwischen  und  erreichen, so daß
der Fehler 2. Art ( ), die irrtümliche Beibehaltung von , gegen Null geht. Einen derart idealen
Test kann man jedoch nicht erhalten [5].

Um von dem dualen Entscheidungskonzept statistischer Tests hin zu einem Bewertungsmaß für die
Ähnlichkeit von Objekten zu gelangen, wird zunächst für den Vergleich zweier Stichproben aus
und  das nominelle Signifikanzniveau  (der sogenannte p-Wert [7]) des angewandten Tests
ermittelt, bei dem dieser gerade abgelehnt worden wäre. Je größer , desto größer ist die Wahr-
scheinlichkeit, daß  fälschlicherweise abgelehnt wurde, gleichzeitig sinkt aber auch der Fehler 2.
Art. Diese kritische Irrtumswahrscheinlichkeit  wird im folgenden als Bewertungsmaß für das
Matching verwendet. Das bedeutet, falls der Wert  kleiner als ein vorgegebenes  ist, wird der
jeweils angewandte Test zu einer Ablehnung von  führen.

2.2.2 Der uni- und bivariate Test von Kolmogoroff und Smirnow

Der Test von Kolmogoroff und Smirnow (KS-Test) ermittelt den Unterschied zweier Verteilungs-
funktionen, indem er die zentrale Tendenz, Streuung und Schiefe der Verteilungen erfaßt. Vorausset-
zungen für den KS-Test sind unabhängige Daten, die ein kardinales Meßniveau besitzen und eine
stetige Verteilungsfunktion besitzen. Diese Voraussetzungen sind gewährleistet zum einen durch die
Quantilisierungseigenschaft von , womit der Abstand zweier Merkmale  bestimmbar ist, zum
anderen durch die aus den  generierte empirische Verteilungsfunktion  mit

m ∞→
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HA

H0

H0 α
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κ2 αk
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(2)

die nicht abnehmend und linksseitig stetig ist. Als Prüfgröße dient die größte Ordinatendifferenz
zwischen den empirischen Verteilungsfunktionen von Objekt  und Referenzmodell :

(3)

Für einfache Stichproben vom Umfang  ergibt sich für die Operationscharakteristik  nach
dem Satz von Kolmogoroff [5] die folgende Grenzverteilung:

(4)

Nach [14] läßt sich das benötigte  im Einstichprobenfall für den univariaten KS-Test durch fol-
gende Formel näherungsweise bestimmen:

(5)

 errechnet sich in Abhängigkeit vom Stichprobenumfang  und , wobei sich der Wert  aus
der Anzahl der Merkmale des Objekts  und des Referenzmodells  wie in (6) zusammensetzt.

(6)

Die empirische Verteilungsfunktion  konvergiert nach dem Satz von Gliwenko [5] für
 mit Wahrscheinlichkeit 1 zur tatsächlichen Verteilungsfunktion , falls die  von

gemäß verteilt sind. Als Bewertungsmaß verwenden wir die kritische Irrtumswahrscheinlich-
keit . Liegen nun gleiche Grundgesamtheiten vor, werden sowohl  als auch

 mit zunehmendem  immer kleiner,  wird dagegen immer größer. Hohe Werte von
bedeuten also, daß eine Ähnlichkeit zwischen Objekt und Modellansicht vorliegt.

Einen univariaten KS-Test kann man auf einen zweidimensionalen Konfigurationsraum anwenden,
indem man  in  vertikale und  horizontale Streifen zerlegt und die größte Ordinatendifferenz

 für eine Koordinatenachse  nach (3) bestimmt. Der KS-Test wird dann in jedem Streifen
bzw.  durchgeführt, so daß sich  gemäß (7) aus dem arithmetischen Mittel der Streifenergeb-
nisse ergibt. Für den Fall eines dreidimensionalen  verfährt man analog.

(7)

Der bivariate Test von Kolmogoroff und Smirnow (KS2D-Test) läßt sich auf einen zweidimensiona-

F Bi( )

0 für Bi B1≤

k
m
---- für Bk Bi< Bk 1+ k=1,2,…˙ m,( )≤

1 für Bi Bm>







=

D

F
O

Bi( ) F
R

Bi( )

D sup
i

F
O

Bi( ) F
R

Bi( )–=

m Q λKS( )

Qm λKS( )
m ∞→
lim Q= λKS( )

1–( ) j
e

2 j2– λKS
2

⋅
j ∞–=

∞

∑ für λKS 0>

0 sonst





=

λKS

λKS m 0 12 0 11,
m

------------+,+ 
  D=

λKS m D m

m
O

m
R

m m
O

m
R⋅

m
O

m
R

+
----------------------=

F
O

Bi( )

m ∞→ F
R

Bi( ) Bi κ

F
R

Bi( )

αk 1 Q λKS( )–= λKS

Q λKS( ) m αk αk

κ S1 S2

D xt S1 s,

S2 s, αk

κ

αk
1

S1 S2+
------------------ αk

S1 s, αk
S2 s,

s 1=

S2

∑+
s 1=

S1

∑ 

 

=



5

len Konfigurationsraum dagegen direkt anwenden.  berechnet sich nach (3), diesmal jedoch aus
dem Maximum über beide Koordinatenachsen  und . Voraussetzung für den KS2D-Test ist, daß
die beiden Verteilungsfunktionen  und  ähnliche Korrelationskoeffizienten  besit-
zen. Für die Zufallsvariable  verwenden wir die in [14] angegebene Näherungformel:

(8)

Die Operationscharakteristik  bzw. das Bewertungsmaß  berechnet sich durch Einsetzen
von  in (4). Im Falle korrelierter Daten reduziert sich der KS2D-Test auf den KS-Test. Bei
dreidimensionalen Eingabedaten kann der dreidimensionale  entlang einer beliebigen Koordina-
tenachse  in Ebenen zerlegt werden. Anschließend wird in jeder dieser Ebenen der KS2D-Test
durchgeführt und das Bewertungsmaß  z.B. wie in (7) aus dem arithmetischen Mittel aller Ebe-
nenergebnisse bestimmt.

2.2.3 Der uni- und bivariate Test von Cramer und von Mises

Der Test von Cramer und vonMises (CM-Test) basiert ebenfalls auf dem Vergleich zweier Vertei-
lungsfunktionen. Statt der größten Differenz wie im KS-Test wird die integrierte quadrierte Diffe-
renz zweier Verteilungsfunktionen berechnet. Für den CM-Test gelten die gleichen Voraussetzungen
wie für den KS-Test. In Anlehnung an [2] verwenden wir für den univariaten CM-Test bezogen auf
den Konfigurationsraum die folgende Teststatistik für eine Koordinatenachse :

(9)

Um ein Bewertungsmaß  zu erhalten, wurde aus den Quantilen für , die man beispielsweise
aus [3] entnimmt, die folgende Bewertungsfunktion für  approximiert [1]:

(10)

Auch beim bivariaten Cramer und vonMises Test [4] wird die Verteilungsfunktion der  Merkmale
 im Falle eines zweidimensionalen  direkt bestimmt. Die Teststatistik  hat folgende Form:

(11)

Das Bewertungsmaß  erhält man, indem  in (10) eingesetzt wird.

3 Klassifikation

Jeder Vergleich zweier Stichproben durch eines der oben beschriebenen Testverfahren liefert ein
Bewertungsmaß . Gleichzeitig erfolgt durch jeden Test bzgl. eines Niveaus  eine Klassifikation
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nach  oder . Bezogen auf das Bewertungsmaß  bedeutet das, falls  kleiner als ein vorge-
gebenes  ist, führt der verwandte Test zu einer Annahme von . Diese Art der Klassifizierung ist
jedoch für eine Objekterkennungsaufgabe nicht ausreichend. Stattdessen wird nun die Klassifikation
der  so durchgeführt, daß einerseits eine Zuordnung zu einer Objektklasse erfolgen kann, anderer-
seits die jeweilige Ansicht eines Objekts bestimmbar wird. Dazu wird die ansichtsbasierte Modell-
datenbank als eine hierarchische baumartige Struktur aufgefaßt, die  verschiedene Modelle  als
Blätter enthält, von denen jedes  definierte Ansichten  besitzt.

Nach jedem Test existiert für jedes Modell ein Merkmalsvektor  mit
, der die Bewertungen  für alle  enthält. Die

spannen somit einen statistischen Merkmalsraum auf. Die Hypothesenwahrscheinlichkeit  für
ein Modell  ergibt sich aus der besten Bewertung . Damit entspricht diese Art der
Klassifikation dem Verwenden von Diskriminanzgeraden. Eine Aussage über die Trennschärfe der
Modelle bzw. Aspekte ergibt sich aus der Modell- und der Aspektsignifikanz. Die Modellsignifikanz

 berechnet sich aus der relativen Differenz der beiden besten Modellbewertungen
und , die Aspektsignifikanz  ergibt sich aus der relativen Differenz der beiden besten
Aspektbewertungen  und . Ein großer Wert  bedeutet, daß es sich mit hoher
Wahrscheinlichkeit um  handelt. Die Ähnlichkeit eines analysierten Objekts zu einer bestimmter
Ansicht  wird durch einen hohen Wert  ausgedrückt.

4 Experimentelle Ergebnisse

In den Experimenten verwenden wir als Eingabe Grauwertbilder, die überwiegend das zu identifi-
zierende Objekt enthalten. Mit Hilfe des Canny-Operators werden Punktmerkmale extrahiert und in
den Konfigurationsraum transformiert (Abb. 4-2). Das Matching mit dem Eingabeobjekt erfolgt
durch Vergleich mit Modellansichten aus einer ansichtsbasierten Modelldatenbank, in der sich defi-
nierte Ansichten von Objekten befinden, die zu einer festen Kameraposition in 15o-Schritten aufge-
nommen wurden (vgl. Abb. 4-3). Somit liegen für jedes Objekt pro Entfernungsposition 24
Ansichten vor.

Zum Zwecke einer effizienten Berechnung der Differenzen der Verteilungsfunktionen wird der Kon-
figurationsraum diskretisiert und werden die Merkmale gruppiert. Bei einer sehr feinen Diskretisie-
rung - mit maximal einem Merkmal pro Raster - bildet man die empirische Verteilungsfunktion

H0 HA αk αk

α HA

αk

j Rj
M

l j Rj l j,
A

υ j

υ j P Rj 1,
A( ) P Rj 2,

A( ) … P Rj l j,
A( ), , ,( )

T
= αk P Rj l j,

A( )= Rj l j,
A υ j

H Rj
M( )

Rj
M max

l j
P Rj l j,

A( )

SG Rj1

M( ) H Rj1

M( )

H Rj2

M( ) SG Rj l 1,
A( )

H Rj l 1,
A( ) H Rj l 2,

A( ) SG Rj1

M( )

Rj
M

Rj l j,
A

SG Rj l 1,
A( )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Abbildung 4-2: Grauwertbild (a), canny-gefiltertes Bild (b) und der resultierende Konfigurationsraum (c)

(a) (b) (c)



7

quasi direkt aus dem Konfigurationsraum. Eine grobe Diskretisierung hat, wie die Experimente zei-

gen, zur Folge, daß nur geringfügige Signifikanzverluste gegenüber einer feinen Diskretisierung
auftreten [1], gleichzeitig aber der quadratische Rechenaufwand sinkt. Aus Abb. 4-4 (a+b) wird am
Beispiel des KS2D-Tests deutlich, daß bereits mit einer -Rasterung eine hohe Trennschärfe
erreicht wird, da die Bewertungen sehr eng um die korrekte Ansicht von 60o liegen.

Der Einfluß der Skalierung auf den Konfigurationsraum wird an den verschiedenen Auflösungen
eines mobilen Roboters in Abb. 2-1 deutlich. Versuche haben gezeigt, daß trotz der theoretischen
Eigenschaft der Skalierungsinvarianz aufgrund der Quantisierung eine Mindestanzahl an Kantenpi-
xel, mindestens 30%, sichtbar sein muß. Zur Bestimmung der Orientierungsgenauigkeit wurden
Aufnahmen eines Greifarms in 5o-Schritten mit Modelldaten, die in 30o-Schritten aufgenommen
wurden, verglichen. Abb. 4-4 (c+d) zeigt, daß bei einer Abweichung von bis zu 15o noch eine kor-
rekte Zuordnung erfolgen kann. Die Aspekttoleranz für eine grobe Objektunterscheidung liegt damit
bei ca. 30o. Eine feinere Unterscheidung der Ansichten eines Objektes bedarf dagegen bei der
Modellierung einer sehr hohen Meßgenauigkeit, wobei eine genauere Auflösung als 5o in der Regel
nicht erzielt werden kann. Die Ansicht eines Objektes hängt nicht nur von seiner Orientierung ab,
sondern auch von der Beobachtungshöhe bzw. -entfernung. Die Robustheit gegenüber perspektivi-
schen Verzerrungen aufgrund der Beobachtungshöhe wurde bei etwa 8o ausgemacht.

Das Bewertungsmaß (Aspektbewertung) für eine korrekte Zuordnung ist in einer idealen Szene typi-
scherweise hoch und sehr trennscharf, so daß man eine hohe Modellsignifikanz erhält. Für den Ver-
such in Abb. 4-4 (e), in dem der RoboterAramis aus etwa 225o mit den Modellen vonAthos, Aramis

Abbildung 4-3: Modellansichten des mobilen RobotersAthos in 15o-Schritten

10 10×
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und Bagger verglichen wurde, beträgt die Modellsignifikanz ca. 95%. Die Aspektsignfikanz liegt

hier bei etwa 15%. Beim Vergleich mit unbekannten Objekten erhält man nur sehr schwache
Aspektbewertungen, wie etwa in Abb. 4-2 (f), wo einePerson mit den drei Modellen aus Abb. 4-4
(e) verglichen wurde.

In realen Szenen mit heterogenem Hintergrund müssen die Verfahren robust gegenüber Verzeich-
nungen des Hintergrundes sein. Um dies zu testen, wurden für die Experimente sogenannte Regions
of Interest (RoI) als Eingabedaten verwendet, die durch Ausnutzen der Objektbewegung in Form
einer konvexen Hülle - wie in [13] beschrieben - segmentiert wurden. Durch dieses nur grobe
Umschließen der Objekte kann die zu analysierende RoI Störungen in Form fehlender oder zusätzli-
cher Informationen beinhalten, die dann in den Konfigurationsraum abgebildet werden. Wie die
Bildfolge in Abb. 4-5 zeigt, erhält man mit beiden bivariaten Tests trotz der vorhandenen Störung
korrekte Ergebnisse, die Modellsignifikanz ist jedoch deutlich niedriger. Die univariaten Tests
schneiden hier deutlich schwächer ab. Man erkennt an diesen Bewertungen außerdem, daß bei der
Identifizierung mit ansichtsbasierten Modellen vor allem bei Symmetrien Entscheidungsprobleme
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bewertungen bei bekannten (e) und unbekannten Objekten (f) mit KS2D-Test
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auftreten können. Solche und andere Klassifikationsprobleme können beispielsweise durch die in
[13] vorgestellte fortlaufende Betrachtung bzw. kooperative Objekterkennung gelöst werden.

Insgesamt schneiden von den vorgestellten Tests die bivariaten am besten ab, da sie signifikantere
Bewertungen durch eine höhere Trennschärfe auch für reale Szenen liefern. Die Laufzeiten - gemes-
sen auf einer SPARCstation 10 - werden bei diesen Tests praktisch nur durch die Anzahl der Diskre-
tisierungsraster beeinflußt, dann jedoch quadratisch. Bei einem -Raster benötigen sowohl
KS2D- als auch CM2D-Test fast konstant 100ms, sind damit also nahezu unabhängig von der
Anzahl der verwendeten Modellansichten. Die univariaten Tests werden außer durch die Anzahl der
Streifen auch durch die Anzahl der Kantenpixel beeinflußt. So liegt die Laufzeit bei je 10 Streifen
und ca. 3300 Kantenpixeln bei etwa 400ms, bei ca. 7200 Kantenpixel schon bei 1,2s.

5 Zusammenfassung und Ausblick

Es wurde eine Methode vorgestellt, mit der die Ähnlichkeit zweier Objekte an Hand statistischer
Merkmale bestimmt werden kann. Ausgehend von der Merkmalsrepräsentation im Konfigurations-
raum wird aus dem Unterschied der empirischen Verteilungsfunktionen von Objekt und Modell mit
Hilfe der nichtparametrischen Tests von Kolmogoroff und Smirnow und von Cramer und vonMises
ein Bewertungsmaß bestimmt.
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Abbildung 4-5: Bildfolge aus einer realen Szene, Konfigurationsräume aus den konvexen Hüllen und Vergleich der
Bewertungen mit KS2D- und CM2D-Test
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Die statistischen Verfahren ermöglichen, wie sich an Experimenten gezeigt hat, in idealen Szenen
ein absolut robustes Matching, da projektive Verzerrungen oder fehlende Kantenpixel durch die
Eigenschaften des Konfigurationsraumes bis zu einem gewissen Grad kompensiert werden. Dies gilt
auch für reale Szenen, sofern die Segmentierung nicht zuviele Störungen beinhaltet. Von den vorge-
stellten Tests schneiden die bivariaten insgesamt am besten ab, da sie meist eine signifikantere
Bewertung mit einer höheren Trennschärfe liefern. Zudem sind die bivariaten Verfahren durch eine
grobe Diskretisierung des Konfigurationsraumes sehr schnell, so daß die Indizierung in diesem Fall
eine untergeordnete Rolle spielt. Experimente zur Bestimmung der Aspekttoleranz haben gezeigt,
daß - je nach Aufgabenstellung - eine Modellierung der Ansichten bzgl. der Orientierung in 300-
Schritten und bzgl. der Beobachtungshöhe in 8o-Schritten ausreichen kann.

Gegenwärtig erweitern wir die Objekterkennung dahingehend, daß sie einerseits robuster gegenüber
segmentierten Eingabedaten niedriger Qualität wird, andererseits, daß sie den Prozeß der Segmen-
tierung zur Steigerung der Segmentierungsqualität unterstützt.
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