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Abstract

Mobile agents are autonomous objects that can migrate from node to node of a computer
network. Mobile agent technology has been proposed for various application areas, including
electronic commerce, systems management and active messaging. Many of these applications -
especially those for electronic commerce - require agents to be performed “exactly once”,
independent of communication and node failures. In other words, once a mobile agent has been
launched, it must never be lost before its execution is finished. Moreover, each “portion” of the
agent performed at the visited nodes is performed exactly once.

Due to the autonomy of mobile agents, there is no “natural” instance that monitors the progress
of an agent’s execution. As a result of that agents may be blocked due to node crashes or
network partitioning even if there are other nodes available that could continue processing. In
this paper, we will describe a protocol that ensures the exactly once property of agents and
additionally reduces the blocking probability of agents by introducing so-called observer nodes
for monitoring the progress of agents. This protocol is based on conventional transactional
technology, such as defined by X/Open DTP or CORBA OTS. Itis implemented in the Mole, a
mobile agent system developed at Stuttgart University.

1. Introduction

Over the last few years, the concept of mobile agents has drawn a lot of attention in both
academia and industry. Today many prototypes of mobile agent systems exist, most of them
based on the Java programming language. Moreover, various efforts to standardize mobile
agent technology are already underway (e.g., OMG MAF, CSELT FIPA). However, despite of
all these activities, only few “real” applications based on mobile agents exist today. One reason
for that might be that current mobile agent platforms are in a rather early stage. Application
critical functions, such as security mechanisms, are often incomplete or missing at all.
Moreover, only little work has been done so far in studying the problem of integrating agent
technology with legacy systems, such as TP-Monitors and transactional resource managers. In
this paper, we will show how agent technology can be integrated with transactional technology
to improve fault-tolerance.

Mobile agents are autonomous objects that are able to migrate from node to node in a computer
network. When an agent decides to migrate to another node, the agent's code, data and
execution stafeis captured and transferred to the next node, where it is initiated after arrival.

1. This work was funded by Tandem Computers Inc.; Cupertino (CA)
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Agent execution proceeds in so-called stages [Sch97], where the operations of a stage are
performed at a single node. Whenever an agent moves to a new node, this ends the current stage
and begins a new one. The assignment of stages to nodes can be defined by means of a user-
defined itinerary [LO97][GM] before the agent is launched, or on the fly by the agent logic
taking into account the current system state [PS97][SBH96].

The use of mobile agents has been proposed for many application areas, including electronic
commerce, systems management, or active messaging. In electronic commerce scenarios, for
instance, agents autonomously go shopping on a user’s behalf, do the reservations needed for a
business trip, or monitor the stock market and trigger user-defined operations when certain
conditions occur. Obviously, many of these applications require an agent to be executed
“exactly once”. For example, assume a user that launches a mobile agent to make a flight and
hotel reservation for a forthcoming business trip.The agent is expected to make both
reservations if possible, and in any case return a status message back to the user. Of course, the
user will only delegate this job to an agent if it is guaranteed that the agent does it “exactly
once”. In other words, independent of node and communication failures it must be ensured that
the agent is never lost and hence will eventually get its job done. Moreover, failures may not
cause the agent to perform operations more than once (e.g., to reserve and pay two seats instead
of one).

The exactly once property has been already defined for RPC systems [Spe82], where it defines
the failure semantics of a single remote procedure. In the context of mobile agents, a sequence
of agent stages are to be considered rather than a single procedure. An agent execution is defined
to be “exactly once” if the entire sequence of its stages is eventually performed, and all
operations of each stage are executed exactly once.

In this paper, we will first describe a simple protocol based on transactional message queues
(e.g. IBM MQSeries, see [BE97][Bla95]). This protocol already provides the “exactly-once”
semantics as defined above. However, for many applications it is not sufficient to get the job
“eventually” done but as fast as possible or even up to a certain deadline. In our reservation
example above, the agent’s status message should arrive at least before the date the business trip
is scheduled. The problem with our simple protocol is that an agent may be blocked due to a
node crash or network partitioning even if there are other nodes, where it could continue
processing. Therefore, we propose an extension of this simple protocol to reduce the probability
of agents to be blocked. The extended protocol allows a number of so-called observer nodes to
be assigned to each stage. The observers monitor the stage node currently executing the agent
and take over agent execution when this node becomes unavailable. A voting procedure
integrated in commit processing ensures the “exactly-once” semantics. The protocol is currently
implemented in Mole [Mole][SBH96], a mobile agent system developed at Stuttgart University.

The remainder of the paper is structured as follows. In the next section, we will describe the
simple protocol and discuss the problems associated with it. Sec. 3 introduces a model for agent
processing and gives an overview of the extended algorithm, which is subdivided in a voting
protocol and a so-called selection protocol. These two protocols are described in detail in Sec.
4 and 5. Related work is discussed in Sec. 6, before the paper concludes with a brief summary.

2. Actually we distinguish betweestrongandweak migratiorfGV97]. While weak migration only trans-
fers the code and data, strong migration also transfers the agent’s execution state.
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2. A Simple Solution

The exactly once property of mobile agents can be achieved in a simple way by using
transactional message queues (e.g., see [GR94]). Message queues provide for asynchronous
communication between processes residing on the same or different nodes, where the sender of
a messagPutsthis message on a queue and its recébeatsit from that queue. Transactional
message queues provide for persistent messages and ensure the exactly-once delivery, i.e. once
a gueue manager has accepted a message, it will be delivered once, independent of node and
communication failures. Moreover, tReitandGetoperations can be performed within ACID
transactions [HR93]. A message is only is only placed on or removed from a queue if the
transaction including the correspondiRgt resp.Get operation is committed. Transactional
message queues are supported by a wide range of middleware technology (e.g., see IBM
MQSeries, TUXEDO[GR94], Encina[Encina][GR94]).

Fig. 1 depicts how transactional message queues can be used to implement exactly once agents.
Assume that an agent moves from node to node along rge®N>...->N,_1->Ni. As an

agent may visit the same node several timesadl N (1<i,j<k) may denote the same or
different nodes. Assume further that an agent is stored in a message queue when it is accepted
by the agent system for execution. Once the agent has been stored in the initial gureaer(Q
example), the owner of the agent can be informed that this agent - no matter what happens - will
be eventually performed exactly once.

T T Ty1 Tk
| 7 AN 7/ AN 7/ AN 7 N
— Ge Put Ge Put Ge Put Ge \
Ql\ / Q2 Q3 o \ / Qk /
/
Launch ~ Execute < Execute < Execute < Execute

Figure 1: Simple implementation of exactly-once agents using message queues

Except N, each other node is performing the following sequence of operations:
Begin_TransactionGe{Agent); Execut€Agent); Put(Agent); Commit Getremoves an agent

from the node’s input queuExecuteperforms the received agent locally, &hd places it on

the input queue of node visited next. All three operations are performed within a transaction and
hence build an atomic unit of work. So, if for instance transactji@bdrts due to a node or

transaction failure, recovery undoes all of the agent’s effectsatd\restores the agent in its
original state in Q Any effects in Q , are undone also. After recovery is finisheg¢dhtinues

normal processing and will eventually execute this agent and then hand it over to its successor.
Of course, the last node in the agent’s itinerany, dées not have to perforRut, it simply

destroys the agent when the execution is finished.

The problem with this simple solution stems from the autonomy of agents. Due to this property
there is no “natural” instance that monitors the progress of an agent. If a node crashes after the
agent has been placed in its (local) input queue and before it is moved to the next queue, the
agent is “caught” as long as the node is down. A partitioning of the underlying network may
have similar effects. Note that this is different in client/server systems, where a client calling the
operations of a server monitors the availability of this server. When it detects a server failure,
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the client can continue processing by using alternative servers offering the same or similar
services.

With the above protocol, there is no system entity that will notice that an agent is “caught”. Of
course, the end user might notice it when the agent misses a deadline. This is a serious drawback
since agent processing is blocked even if alternative nodes providing the needed services are
available. Even if those nodes do not exist, some sort of exception handling should be
performed, e.g., informing the user that the agent will most probably miss the deadline. Below
we will extend the simple protocol described above to reduce the probability of agents to be
blocked due to failures.

3. Models and Protocol Overview

In our model, agents are performed by nodes, that are interconnected by means of a
communication network. Each node is assumed to have volatile and stable storage [Lam81],
where the latter is never lost, independent of failures. Moreover, nodes are assumed to suffer
from crash failures [Jal94] only. Network partitioning may occur due to communication
failures. Both, the network and nodes are assumed to eventually recover from failures

The network provides for reliable message delivery: A message is delivered to its receiver,
provided that the sender and receiver are in the same network partition and the receiver is up.
Messages are authentic, and there are no lost, duplicated or out of sequence messages. Note that
this type of failure semantics is provided by most reliable, connection-oriented communication
protocols, such as TCP or LU 6.2.

The execution of an agent proceeds in a sequence of sostalied The operations associated

with a stage are entirely performed at a single node, and an agent enters a new stage whenever
it moves to the next node. For each stage there exists a non-empty set of nodes which
alternatively can perform that stage. This set initially includes a so-eatidekr node, which

is responsible for executing the agent in this stage, the other nodésareersnonitoring the
availability of the stage’s worker. When the worker fails, this will be detected by the observers,
which then will elect a new worker from the set of available stage nodes. Each stage node is
associated with ariority3, which defines a total ordering between the nodes belonging to the
same stage. The initial worker of a stage will become the node with the highest priority. Fig. 2
shows a 4-stage execution of an agent. For example, stdges 8o observers, while stage S

is associated with one worker, and 4 observersgJrih® node with the highest priority (1)
failed and the node with priority 2 was elected the new worker.

What are the functional capabilities expected from observers? Ideally, an observer provides the
same set of services an agent expects to find at the initial worker (e.g., a flight reservation
service). However, an observer that offers no more than an environment for running agents is
also acceptable. At such a node an agent can perform the exception handling mentioned above.
For example, it can use the infrastructure services to find alternative servers, it can change its
travel plans, or it can just move back to the user’'s machine to report the problems and receive
new directions.

To allow an observer to take over agent execution, it obviously needs a copy of the agent.

3. Node priorities are required for the voting and selection process.

Page 5



@/
S
Figure 2: Execution of an agent in 4 stages

Therefore, in our scheme, a worker sends the agent not only to the (initial) worker but to all
nodes of the next stage when it has finished processing. However, only the worker initiates
agent processing, while the observers just do the monitoring for this stage. As in our simple
protocol above, we use transactional message queues to move agents from one stage to another.
Stage processing has the following structure (see FigB&)in_TransactionGefAgent);
ExecutéAgent); Put{Agent)to (AIINodesOfNextStage)C:ommit4

S T S

e vl ©
e -l o

Get
Put >|

Get
1
Execute

Figure 3: The transactional processing of an agent in a stage

The monitoring protocol ensures that an observer eventually recognizes when a worker
becomes unavailable. In such a case, the observers of that stage select a new worker, which
initiates anew stage processing transaction comprising the sequence of operations described
above. Now, there is an obvious problem with this approach. Since the observers in general
cannot decide whether an unavailable worker has crashed or is still active in a different partition
of the network, it may happen that two or more nodes of the same stage execute the agent at the
same time. However, the exactly once property of agents requires that exactly one stage
transaction is committed per stage. In order to achieve this, we integrate a voting protocol into
the two-phase commit (2PC) processing [GR94] of stage transactions: a transaction can only
commit if a majority of stage nodes agree. It is also the responsibility of this voting protocol to
make sure that all observers of a stage forget about the agent when a worker’s stage transaction
commits (see th&et* operations in Fig. 3).

In Sec. 4, we will propose our voting protocol and show how it can be integrated in standard
2PC processing. We will assume an (X/Open Distributed Transaction Processing [X/091] like)

4. Note that th&etoperations of the observer nodes are not part of the transaction. If they would be
included in the transaction, this would require all nodes of a stage to be available to execute an agent at
that stage. Clearly, this increases the probability that an agent becomes “caught” rather than decreas-
ing it. It is important to notice that having sevdralsinstead of one in the transaction does not
increase the “caught” probability as the observers for the next stage can be determined on the fly from
the set of available nodes.
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architecture, which consists of transaction managers running the 2PC protocol and resource
managers maintaining the recoverable data. Fig. 4 only depicts the components and interactions

| Agenda:
IQM: Queue Manager |

T™ |¢ ,@ .
RM: Resource Manager
| ! 99

O: Orchestrator

RM l'y- |
Sit1
Figure 4: Components and interactions relevant to process a stage

relevant for the processing of stage When the worker of ;Scalls Commit the local TM
initiates 2PC processing, which involves the worker itself and all nodegofC&iring the

commit procedure, each involved TM interacts with those local resource managers that were
involved in stage processing. For example, at the worker node this is the queue manager
associated with the worker’s input queue and the other local resource managers (e.g. a DBMS)
that have been involved in agent execution. In addition, the worker's TM interacts with another
type of resource manager calleathestrator The orchestrator, which communicates with the
so-calledvotersbelonging to its stage, is responsible for orchestrating the voting procedure.
Each stage node runs a voter, which determines and communicates the node’s vote. The
orchestrator and the voters of a stage communicate according to the voting protocol presented
in the next section.

It is important to notice that the proposed architecture nicely separates voting and 2PC
processing. From a TM’s point of view, the orchestrator is just another resource manager, which
provides the same interface as all other resource managers (e.g., an XA interface [X/
091][BE97]). Consequently, the voting procedure can be easily integrated in existing
middleware systems, such as CORBA [OMG96] or X/Open compliant systems, just by
implementing a new resource manager, or a new recoverable server to use the CORBA
terminology.

Besides the voting proceduresalection protocols needed allowing the observers of a stage

to select a new worker when they recognize that the old one failed. Since the voting during 2PC
processing already ensures that only one stage transaction commits, the exactly once property
is not jeopardized even if more than one new worker is selected. Actually, each observer that
recognizes a worker failure could select itself without talking to the other observers.
Consequently, the problem of selecting a new worker differs from the well-known election
problem as defined in the literature (e.g., see [GM82]). For that reason we are using the term
“selection” rather than “election” throughout this paper.

The selection protocol proposed in Sec.5 is a “light-weight” protocol, which usually selects one

new worker, but also can end up with multiple workers in rare situations. Each worker and
observer node runs monitor processes that do the monitoring and the selection of new workers
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if needed.
4. Voting Protocol

In this section, we will focus on the voting protocol and its integration into 2PC processing.
Instead of describing the well-known 2PC procedure, we will confine ourselves on presenting
the interactions between the transaction manager (TM) and the local voting orchestrator (see
Fig. 4).

As already stated in the previous section, from the TM’s point of view the orchestrator looks
like an ordinary resource manager. We assume that resource managers implement an XA-like
interface with the following operationsm_prepare rm_commitandrm_rollback The first
operation, called in the first phase of 2PC, returns eitmeryesor rm_nq depending on
whether or not the resource manager is able to prepare for commitment. In the second phase,
the TM calls eitherm_commitor rm_rollbackdepending on the transaction’s outcome. Upon
such a call a resource manager terminates the transaction accordingly andmetachto the

TM.

The voting protocol is run between the orchestrator and the voters of a stage. While the
orchestrator is located at a worker node only, there exists a voter at each stage node. When 2PC
processing is started at the orchestrator (i.e., wineprepareis called), it issues vote requests

to the voters of its stage and then collects the returned votes. Only if it receives a majority or
yes votes, the orchestrator returnsma yesto its local TM, and am_no otherwise. In other

words, only if majority of voters vote yes, the transaction can be committed. That is why only
one transaction can commit per stage even if there is more than one worker.

We distinguish between two types of stable states, namaglgaction statemndstage states

Both are stored in stable storage and thus are supposed to survive node failures. Transaction
states are maintained by orchestrators, while voters maintain stage states. A transaction’s state
can be “Unknown”, “Ready” or “Committed”, while a stage’s state may be “Unknown” or
“Active”. For both types of states “Unknown” means that no state information is stored in stable
storage for the corresponding transaction or stage.

The state information of an “Active” stage is stored in a so-catbagk recoran stable storage.

It contains the following information:

» Identifier of the stage, which consists of algéntld HopCounj pair. Agentld is a
globally unique agent identifier andopCountis incremented whenever the agent is
moved to the next stage.

» List of nodes participating in the stage. For each node the node’s identifier and priority is
included.

When an agent moves to the next stage, not only the agent itself but also the stage record of the
next stage i®utinto the input queues of the nodes associated with the next stage. Each stage
node reads the stage record without actually removing it. Once the stage record Hag been
into the message queue (on stable storage), the stage becomes “Active” at the corresponding
node. Since alPutoperations are performed in a single transaction (see Fig. 3), either all stage
nodes are “Active”, or none of them. Initially, the stage node with the highest priority becomes
the worker, while all other nodes take over the observer role.

Voters and orchestrators are identified by globally unique node ids, i.e., a voter and orchestrator
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residing on the same node have the same id. In analogy to 2PC processing, our voting protocol
proceeds in two phases.

Normal Processing: Phase 1

Phase 1 of the voting protocol is initiated when an orchestrator receivas preparecall

from its local TM. First, the orchestrator sends a VOTE request to each voter of its stage. This
request includes several globally unique identifiers: the id of the stage currently processed, the
orchestrator’s id, and the id of the transaction the orchestrator is currently involv&tien,

the orchestrator waits for the answers, periodically resending the VOTE request to all stage
nodes that have not yet answered.

To record its votes already given to orchestrators, a voter maintains a list@adlesetin

stable storage. Whenever the voter returns a yes vote, the identifier of the receiving orchestrator
is recorded iOrchSet Normally,OrchSetends up with one node identifier. In the presence of
failures, however, there might be several orchestrators competing for a node’s vote.

A voter receiving a VOTEtageld Tid, Orchld request for stagBtagelddetermines its reply
based on it©rchSet If OrchSetis empty, the voter has not voted yes before. In this case,
Orchld is added toOrchSetand a YES$tageld Tld, Voterld) reply is sent back to the
orchestrator, wher€oterldidentifies the voter.

If OrchSetis not empty instead, there are obviously several orchestrators competing for the
vote. To make sure that one of the them will eventually receive a majority of votes, our voting
protocol prefers the orchestrator with the highest priority. AssumeéNtisathe node with the
highest priority inOrchSet If OrchSeis not empty an®rchld has a lower priority thaN, then

the voter has already voted yes for a node with a higher priority. In this case, the voter replies
with NO(Stageld TlId, Voterld), i.e.,Orchidloses the competition.

If OrchSets not empty an@rchld has a higher priority thad, then the voter has already voted
but only for orchestrators with a lower priority. N is not the voter's node, the voter
immediately sends back a COND_YB&geld Tid, OrchSet Voterld) and then add®rchlid

to its OrchSet The semantics of this vote is thatterld votes yes, provided that all nodes in
OrchSetalso vote YES.

If N equals the voter’'s node, there exists a local orchestrator, which has already initiated a
competing voting procedure. Sin@echld has a higher priority than the local orchestrator, the

latter one is supposed to give up. This, however, is only possible (and desirable) before the stage
transaction at the orchestrator has entered the “Ready” state (i.e., before the orchestrator has got
a majority of votes). To check the transaction’s state, the voter sends a HIGHER_PRIO request
to the local orchestrator, which returns either GAVE_UP to indicate its stage transaction has
been aborted, or ALREADY_DONE if the transaction state is already “Committed” or
“Ready”. If ALREADY_DONE is returned, the voter sends a B@geld Tid, Voterld)

message toOrchld, and a COND_YEStageld TId, OrchSet-{N} Voterld message
otherwise.

5. The transaction identifier is received in thre preparecall and is used here to match VOTE requests
with the corresponding votes. Due to node failures it may happen that the same orchestrator starts sev-
eral rounds of voting.
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To record the received votes matching the cufilelh the orchestrator maintains three sets in
volatile storageYesVotesdNoVotesandCondYesVotedVhen it receives a YES or NO vote, it
includes the voter’s id ifesVotesr NoVotesrespectively. If it receives a COND_YES, it adds
the (Voterld OrchSe} pair included in this message@ondYesVotedote that this conditional
yes becomes a “real” yes after all nodeOithSetvoted yes. In other words, @rchSet
YesVotegquals the empty séfpterld can be added tgesVotesand {oterld OrchSe} can
removed fromCondYesVoteObviously, this check has to be performed when Watefld,
OrchSe} pair is added t€ondYesVoteand wheneveYesVotess changed.

OnceYesVotegsontains a majority of votes, the orchestrator moves into the “Ready” state and
then returnsm_yesto its local TM. Then it waits for the TM’s commit or abort decision. Note
that therm_yesresponse is only a prerequisite for commitment rather than a commit decision.
If a majority becomes impossible (i.e., at least half of the voters voted NO), the orchestrator
returns arm_noto its local TM, sends an UN_VOTS&iageld, Tld, Orchldmessage to all
voters recorded in itsesVoteandCondYesVoteset, and then forgets the transaction. Note that
therm_noresponse forces the TM to abort the stage transaction.The orchestrator’s node then
changes from the worker to the observer role (see Sec. 5).

When the orchestrator receives a HHGHER_PRIO message, it replies ALREADY_DONE if its
stage transaction is already “Ready” or “Committed”. If the transaction is still in the
“Unknown” state, it sends back GAVE_UP to the local voter and retarnsoto the local TM.
Furthermore, it sends UN_VOTE messages to all voters recorded ive#gotesand
CondYesVoteset before it forgets the transaction. As above, orchestrator’'s node then changes
from the worker to the observer role.

An orchestrator receives a GIVE_UP request from the local voter if another stage node already
committed its stage transaction (see below). Clearly, this message can only arrive while the
receiving orchestrator resides in the “Unknown” transaction state. When GIVE_UP arrives, it
immediately forgets the transaction, and retumsnoto the local TM.

Normal Operation: Phase 2

If the TM commits the transaction, it issu@s_commitfor each local participating resource
manager. Whemm_commitis called, the orchestrator atomically enters the “Committed” state
and returns amm_ackto the local TM. Subsequently, it sends a FORG&EAdeld Orchid)
message to all voters of its stage and then waits for the acknowledgements to arrive. It
periodically resends FORGET until it received an ACK from each voter. When the ACKs are
complete, it moves to the “Unknown” transaction state before it forgets the transaction.

A voter receiving FORGET atomically goes into the “Unknown” stage state, i.e. the stage’s
stage record (together with the agent) is removed from the voter’s transactional input queue in
an atomic fashion. Subsequently, the voter sends back anSa&€ld message to the sender

of FORGET and removes the stag@i€hSetirom stable storage. If there happens to be a local
orchestrator different fror@rchld, the voter sends GIVE_UP to this orchestrator, causing the
locally initiated stage transaction be aborted.

If the orchestrator receives_abortinstead ofm_commitfrom its TM, it enters the transaction
state “Unknown” and then sends UN_VOTE requests to all voters recorded asiste®r
CondYesVoteset. Then orchestrators node restarts the transaction. Voters receiving an
UN_VOTE removeOrchld from theirOrchSeti.e., they withdraw their votes previously given
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to Orchld. Note that this “unvote” mechanism is needed to allow a lower priority node to
achieve a majority after some higher priority node gave up. Remember that a voter only votes
(cond)yes if it has not already voted (cond)yes for some other node with a higher priority.

Failure Recovery

Once a voter has returned a vote to an orchestrator, it can expect either a FORGET or UN-
VOTE response. When the voter times out while waiting on the response, it sends an INQUIRY
message to the corresponding orchestrator. INQUIRY messages are sent periodically until
FORGET (or GAVE_UP) is received, or each orchestrator recorded in the vOtefiSet
returned a UN_VOTE response.

An orchestrator’s response on an incoming INQUIM¢eld Voterld) request depends on its
current transaction state. If the transaction state is “Ready”, the orchestratviotafit$to its
YesVoteset if it is not already included. This ensures that the identified voter will be notified
accordingly as soon as the TM issues commitor rm_abort If the orchestrator is in the
“Committed” state when receiving an inquiry, it responds with a FORGET message. If the
orchestrator resides in the “Unknown” state, two cases must be distinguished: If there is no
active transaction belonging to the stage identifiedSkggeld the orchestrator returns an
UN_VOTE message. If there is an active transaction instead (i.e., voting is still in progress for
the stage) the INQUIRY can be ignored. Let us briefly argue whyotérld is already in
YesVotesr CondYesVotesr will be included at a later point in time, the identified voter will

be informed during phase 2. Even if this is not the case, a future INQUIRY will eventually find
no locally active transaction, causing an UN_VOTE to be returned to the voter.

When a node recovers from a failure, it reads the transaction and stage states recorded in stable
storage. Orchestrator recovery only takes place if the transaction state is “Committed” or
“Ready”. If the transaction is “Ready” after restart, the orchestrator waits until it is informed by
the local TM about the transaction’s outcome, and then proceeds as described above. If the
transaction is already “Committed” instead, the orchestrator sends FORGET to all voters of the
stage and collects the ACKs. After having received all ACKs, it can enter the “Unknown”
transaction state.

A voter only performs recovery if its stage state is “Active”. In this case, the voter periodically
sends INQUIRY request to all orchestrators recorded iDithSet.It continues to send
inquiries until it receives FORGET from some orchestrator, or it got an UN_VOTE from each
orchestrator irDrchSet It acts upon the received responses as described above.

Correctness Arguments

In the following, we will give some informal correctness arguments for the voting protocol
described above. We will assume that the selection protocol ensures that there eventually exists
a non-empty set of orchestrators (or workers). The objective of the voting protocol is to
guarantee that exactly one of these orchestrators will commit its state transaction.

Let us first show that - given a non-empty set of orchestrators - exactly one of them will

eventually enter the “Ready” transaction state. If there is only one orchestrator, it will get YES
votes from all available voters. As soon as a majority of voters is available, it can enter the
“Ready” state.
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Now assume that there are several competing orchestrators; @1th© one with the highest
priority. When another orchestrator, say, @ceives @s vote request, it has either already
entered the “Ready” or “Committed” state, or it gives up. In the first cagea£got a majority

of votes, which allows no other orchestrator to move into the “Ready” state. In the latter case,
O, sends UN_VOTE to its voters, allowing its local voter to send a YES vote bagk £l O

other voters either return a YES or COND_YES)(@®essage back to;Odepending on the
sequence ©s and Q's vote requests arrived. Since, Qeturned a YES vote, the
COND_YES(Q) votes can be interpreted as yes votes. ConsequentlyilOeventually
receive a majority of votes and thus can enter the “Ready” state.

If O, aborts its transaction, the “unvote” mechanism ensures that all voters will eventually
withdraw their votes given to O(or forget the stage). Therefore, also a lower priority
orchestrator will get the chance to collect a majority of votes.

As shown above, if there are several orchestrators, exactly one of them will eventually enter the
“Ready” state. This orchestrator's transaction will either commit or abort. In the case of
commitment, all stage nodes forget the stage, and thus no other transaction of this stage will be
able to commit any more. In the case of abort, the transaction becomes “Unknown” and its
orchestrator starts a new transaction. In the latter case, as shown above, this or another
orchestrator will eventually become “Ready”. Consequently, exactly one orchestrator will
eventually perform commitment.

5. Selection Protocol

In the previous section, we already pointed out that in addition to the agent also the stage record
of the stage to be performed next, Saixg Putinto the input queues of the nodes associated with

S. Remember that all the&eit operations are performed within the transaction of the pervious
stage and thus are “all or nothing”. Each stage node reads the stage record without removing it
from its input queue and decides its initial role depending on the priorities recorded in the stage
record. The node with the highest priority becomes the worker node, which then performs the
sequence of operations already outlined in Sec.B8gin_Transaction Gei(Agent);
ExecutéAgent); Put(Agent, StageRecordp (AlINodesOfNext-Stage)Commit The other

stage nodes are observers, which monitor the worker.

A worker, sayW, periodically sends |_AM_ALIVE messages to the observers of its stage. If it
receivesan|_AM_ALIVE or|_AM_SELECTED (see below) message from another node, then
there obviously exists a competing worker, $aylf W has a higher priority thaw, W sends

a HIGHER_PRIO request to the local orchestrator. If the response is GAVE_UP (see Sec. 5),
W becomes an observer monitorig

When an observer times out while waiting on the worker’s |_AM_ALIVE messages, it assumes
that the worker is not available any more and initiates the procedure for selecting a new worker.
The selection protocol described below adopts the basic principles of the bully algorithm
[GM82].

A node initiating the selection procedure sends ARE_YOU_THERE messages to all stage

nodes with a higher priority. Available nodes (observers as well as workers) reply on this
message with an |_AM_THERE message. If no reply arrives within a reasonable time, the
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initiator is selected to be the new worker. The newly selected worker sends an
| AM_SELECTED message to all other stage nodes, and starts a new stage transaction
comprising the sequence of operations sketched above. If the initiator receives a reply instead,
it waits on the I|_AM_SELECTED (or I_AM_ALIVE) of the new worker to arrive. When this
message arrives, it starts monitoring the new worker.

In the presence of network partitioning, the protocol presented so far selects a worker in each
partition, if two partitions are joined, two workers remain in the resulting partition. Note that
this is not a problem since our voting protocol ensures that only one worker will commit.

Starting a transaction in a partition that does not include a majority of nodes is at least
questionable. With a little modification of the protocol, starting transactions in partitions
without a majority of nodes can be avoided: Observers getting an|_AM_SELECTED message
are supposed to reply with an ACK, and the initiator of the selection protocol becomes the new
worker only if it receives a majority of ACKs. Therefore, the initiator periodically sends

| AM_SELECTED messages until it receives either a majority of ACKs or an

| AM_SELECTED from a higher priority node. In the first case, it becomes the new worker,
while it continues to be an observer in the latter case.

6. Related Work

In the field of mobile agents, only few researchers have considered aspects of transaction
management and fault tolerance so far. In [Sch97], a stage model similar to the one in this paper
is proposed. However, the paper focuses on a different aspect of fault-tolerance. Nodes are not
assumed to be fail-stop but potentially non-deterministic. Fault tolerance is achieved by
processing the agent on each stage node (in parallel) and to send the migrating agent to all nodes
of the following stage. Stage nodes perform voting on incoming agents to determine a majority
of equal agents. Only an agent from this majority is processed further. In [SK97], an agent-
based transaction model is presented. Similar to our model, an agent executes a transaction
while moving from node to node. To prevent the blocking of agents due to long lasting failures,
the use of monitoring components is proposed. However, this paper purely concentrates on
modelling aspects, and hence protocols or algorithms are not given.

In addition, there has been some related work in the field of transaction processing. The
ConTract model [WR92][RSS97] also aims at the exactly-once property and similar to our
approach only allows for forward recovery. A ConTract is defined by a script which is
performed by a ConTract manager. A first prototype implementation, APRICOTS [Sch93], will
allow the migration of scripts between ConTract managers, even in the case that the ConTract
manager processing the script crashed, by using logging information written during the
execution of the script to recover the state of the script on another node. However, there is
currently no component which autonomously (and reliably) initiates the migration of a script to
another ConTract manager if the ConTract manager executing the script crashes.

7. Summary
We have investigated how the exactly once property can be ensured in mobile agent systems.
We presented a protocol guaranteeing this property, while reducing the probability for agent

blocking. Moreover, we proposed an architecture that allows to integrate the protocol in
standard transactional technology. In other words, the proposed mechanism can be realized on
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top of conventional TP-monitors and transactional message queues. Currently, the protocol is
under implementation in the Mole system. Future work will be to evaluate this protocol in terms
of performance. Results are expected to be available in spring next 1998.

On the system level, the current protocol allows for forward recovery only. In other words, if a
user wants to abort an agent, the potentially required compensation operations are not
automatically triggered on the system level. Instead, the logic to perform compensations must
be provided in the agent by the agent programmer. This goes in line with the experiences made
with today’s workflow systems that many operations can only be compensated in a very
application specific manner and often requires the intervention of human users. However, some
compensation can be done automatically, and hence future work will be to investigate, what
concepts and protocols are needed to support compensation on the system level. We are
confident that we can learn from the research conducted in the field of transaction models (e.g.,
Sagas [GMS87], open nested transaction [Wei91][WS91], etc.).
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