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Abstract

We give a self-contained proof of a fundamental result of Makanin (1977), which solves the

satis�ability problem of equations with constants over free monoids. Our presentation of

Makanin's algorithm is borrows Schulz (1992a), where Makanin's result is extended to the

case where solutions are restricted by imposing regular constraints on the variables.

This report appears (with minor modi�cations) as a chapter of the new book of M. Lothaire

Algebraic Combinatorics on Words.
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1 Introduction

The aim of this text is to give a self-contained proof of a fundamental result of Makanin

which implies that the existential theory of word equations over free monoids is decidable. In

other terms, Makanin's result is the decidability of the existential theory of concatenation.

Let A be an alphabet of constants and let 
 be a set of variables. A word equation L = R

is a pair (L;R) 2 (A [ 
)� � (A [ 
)�, and a system of word equations is a set of equations

fL1 = R1; : : : ; Lk = Rkg. A solution is a homomorphism � : (A [ 
)� ! A� leaving the

letters of A invariant such that �(Li) = �(Ri) for all 1 � i � k. A solution is henceforth

identi�ed with a mapping � : 
 ! A�. It is called non-singular, if �(x) 6= 1 for all x 2 
.

Otherwise it is called singular. The satis�ability problem for word equations is to decide

whether a given word equation has a solution. The problem is usually stated for a single

equation, but this is no loss of generality. Given a propositional formula over word equations

all negations can be eliminated; and then, passing to a disjunctive normal form, the problem

of satis�ability can be reduced to a single conjunction. It is therefore enough to consider

a system of word equations, which in turn can be transformed into a single word equation.

This way the decidability of propositional formulas over word equations can be reduced to the
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satis�ability problem of single word equations. Makanin (1977) yields a decision procedure

for the satis�ability problem of word equations; and the decidability of the existential theory

over free monoids follows. Since the problem is semi-decidable by its nature, a positive answer

su�ces to compute (if desired) a solution � : 
 ! A� which is minimal, say with respect toP
x2
 j�(x)j. Here and in the following computation means that there is an e�ective procedure

in the mathematical sense. We shall derive a double exponential space bound only to solve

the satis�ability problem, and the length of a minimal solution will be at most four times

exponential in the input size of the word equation. These upper bounds are far beyond any

practical meaning, but it is not clear that this re
ects the inherent complexity of the problem.

In practice the algorithm seems to behave much better. For example, up to now no solvable

word equation is known where the minimal solution exceeds exponential length.

Example 1.1 Let A = fa; bg and 
 = fx; y; z; ug: Consider the equation

xauzau = yzbxaaby

This equation is solvable, a possible non-singular solution is given by:

�(x) = abb; �(y) = ab; �(z) = ba; �(u) = bab:

We have

abbababbaabab = �(xauzau) = �(yzbxaaby):

There is a rather straightforward algorithm to decide the solvability of a system of word

equations where each variable occurs at most twice. This algorithm is due to Matiyasevich

(1968). Since the general solution refers (implicitly) to the underlying idea, we explain it

here as an introductory example. Let E = fL1 = R1; : : : ; Lk = Rkg be a system of word

equations where every variable x 2 
 occurs at most twice in E: Let kEk =
kP

i=1

jLiRij denote

the denotational length of E: The question is whether there is a solution. Using induction

on j
j we describe a non-deterministic decision algorithm which works without exceeding a

linear space bound in kEk. The basis 
 = ; is clear, hence let 
 6= ;: The �rst step is then to

guess whether there is a solution � : 
! A� where �(x) = 1 for some x 2 
: This is done by

choosing some x 2 
 and replacing the occurrences of x in E by the empty word. We obtain

a new system E0 over 
 n fxg and recursively we decide in non-deterministic linear space

whether E0 has a solution. Thus, after this step we are looking for non-singular solutions of

E, only. We may assume that the �rst equation is either of the form

x � � � = a � � � with x 2 
; a 2 A

or x � � � = y � � � with x 2 
; y 2 
; x 6= y:

By symmetry (or a non-deterministic guess to interchange the rôle of L1 and R1) we may

either write x = az or x = yz, where z is a new variable. Replacing all occurrences of x by az

or yz respectively, we obtain a new system where x does not occur any more and z occurs at

most twice. On the left of the �rst equation we may cancel either a or y, and then y occurs

also at most twice. Hence we end up with a new system E0 where the number of variables is

the same as in E, every variable occurs at most twice and we have kE0k � kEk. Note that E0

may have a singular solution with �(z) = 1. However, if E0 is solvable, then E is also solvable.
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Now, let � : 
! A� be a non-singular solution of E where
P

x2
 j�(x)j is minimal. Then we

�nd a solution �0 for E0 with j�0(z)j < j�(x)j since �(y) 6= 1. Thus, the length of a shortest

solution has decreased, showing that the non-deterministic procedure will �nd a solution, if

there is any. Since we have a linear space bound, the procedure can be transformed into a

deterministic decision algorithm of at most exponential time.

The presentation of the general case will mainly follow Schulz (1992a), thereby showing

the result of Makanin in a more general setting. Assume that for every x 2 
 a regular

language Lx � A� is given as part of the problem instance together with the equation L = R:

Then we can decide whether or not there exists a solution � : 
! A� satisfying additionally

the regular constraints �(x) 2 Lx for all x 2 
: (For example, we can prescribe the alphabet

in a solution �(x) for all x 2 
:)

In the following we do not focus very much on necessary decidable conditions which are

useful to prune the search tree. A good pruning strategy is of course extremely important for

an implementation since the search tree tends to be huge. However pruning the tree doesn't

help to understand the algorithm nor it seems to have any e�ect on the worst-case analysis.

2 Simple facts on words and on equations

2.1 Notations and combinatorial properties

Throughout this chapter A = fa; b; : : : g denotes an alphabet of constants and 
 is a set of

variables (or unknowns) such that A \ 
 = ;. We shall use the same symbol � to denote a

mapping � : 
! A� and its canonical extension to a homomorphism � : (A[
)� ! A�: The

symbol 1 denotes the empty word and the unit element in other monoids and also the natural

number 1 2 N: The length of a word w is denoted by jwj. The pre�x relation (proper pre�x

relation) of words is denoted by u � v ( u < v resp.). Recall that a word p is called primitive,

if it cannot be written in the form p = r� with � 6= 1: Lower case Greek letters �; � etc. are

mostly used to denote natural numbers. The set of natural numbers is N, it includes zero,

the set of integers is Z. By log� we mean maxf1; dlog2 �eg.

Two words y; z 2 A� are conjugates, if xy = zx for some x 2 A�. The next proposition

shows that in free monoids conjugates are obtained by transposition.

Proposition 2.1 Let x; y; z 2 A� be words, y; z 6= 1. Then the following assertions are

equivalent:

1. xy = zx;

2. 9 r; s 2 A�; s 6= 1; � � 0 : x = (rs)�r; y = sr; and z = rs:

Proposition 2.2 Let p 2 A� be primitive and p2 = xpy for some x; y 2 A�: Then we have

either x = 1 or y = 1 (but not both).

Proofs of Props. 2.1 and 2.2 can be found in Lothaire (1983) or elsewhere.

An overlapping of two words w1 and w2 is depicted by the following �gure:

w1

w2
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It says that the common border is an identical factor, i.e., w1 = xy, w2 = zx. Usually we

mean x 6= 1 and sometimes the �gure also indicates that both y 6= 1 and z 6= 1. But there will

be no risk of confusion. For example, Prop. 2.2 can be rephrased by saying that the following

picture is not possible for a primitive word p 2 A�:

p p

p

2.2 Domino Towers

Every non-empty word w 2 A+ can be written in the form w = (rs)h�1r with s 6= 1, h � 2.

Then it can be arranged in �gure looking like a domino tower of height h:

height h

8>>>>>>>>>><
>>>>>>>>>>:

r s r s r s � � � r s r s r

r s r s r s � � � r s r s r

r s r s r s � � � r s r s r
...

...
...

...
...

...

r s r s r s � � � r s r s r

r s r s r s � � � r s r s r

r s r s r s � � � r s r s r

The position of the vertical line says that the upper left boundary is not on the right of

the lower right boundary. The formal de�nition of such an arrangement allows also a less

regular shape. It is as follows:

De�nition 2.3 Let h � 2. We say that a non-empty word w 2 A+ can be arranged in

a domino tower of height h, if there are words x1; : : : ; xh�1 2 A� and non-empty words

y1; : : : ; yh�1; z2; : : : ; zh 2 A
+ such that

1. w = xiyi = zi+1xi for all 1 � i < h,

2. jz2 � � � zhj � jwj.

Note that for h = 2 the domino tower may degenerate as in the following �gure.

w

w

De�nition 2.4 Let w 2 A� be a word. The exponent of periodicity exp(w) is de�ned by

exp(w) = maxf� 2 N j 9r; s; p 2 A�; p 6= 1 : w = rp�sg:

Lemma 2.5 Let w 2 A+ be a non-empty word which can be arranged in a domino tower of

height h. Then we have exp(w) � h� 1.
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Proof . Choose a domino tower and words xi; yi; zi as in the de�nition above. Let z = zi 2

fz2; : : : ; zhg be of minimal length, x = xi�1, y = yi�1. Then (h � 1)jzj � jwj and we have

xy = zx = w. Hence y and z are conjugates and we may apply Prop. 2.1. We obtain z = rs

and x = (rs)�r for some � � 0 and jrj < jzj. Hence w = z�+1r and therefore

(h� 1)jzj � jwj < (� + 2)jzj :

Since jzj > 0 we see that h� 1 � �+ 1 � exp(w). 2

2.3 Stable normal forms

One of the key ideas in Makanin's proof is that, given a word equation, the exponent of

periodicity of a shortest solution has an e�ective upper bound. This relies on the notion of

p-stable normal form.

De�nition 2.6 Let p 2 A+ be a primitive word. The p-stable normal form of the word

w 2 A� is a shortest sequence

(u0; �1; u1; : : : ; �k; uk)

such that k � 0 (k is minimal), u0; ui 2 A
�; �i � 0 for 1 � i � k, and the following conditions

are satis�ed:

1. We have w = u0p
�1u1 � � � p

�kuk.

2. We have k = 0 if and only if p2 is not a factor of w:

3. If k � 1, then we have:

u0 2 A�p nA�p2A�;

ui 2 (A�p \ pA�) nA�p2A� for 1 � i < k;

uk 2 pA�
nA�p2A�:

Proposition 2.7 Let p 2 A+ be primitive. The p-stable normal form of w 2 A� is uniquely

de�ned. This means, if (u0; �1; u1; : : : ; �k; uk) and (v0; �1; : : : ; �`; v`) are p-stable normal

forms of the same word w 2 A�; then they are identical, i.e., we have k = `; u0 = v0; ui = vi,

and �i = �i for 1 � i � k:

Proof . Assume that (u0; �1; u1; : : : ; �k; uk) and (v0; �1; v1; : : : ; �`; v`) are both p-stable

normal forms of w. Since these are shortest sequences, the indices k and ` are both minimal,

hence k = `.

For k = 0 we have w = u0 = v0, hence let k = ` � 1.

We show �rst that u0 = v0. To see this, suppose by symmetry that ju0j � jv0j. Since

u0p 2 A
�p2 and v0 2 (A�p nA�p2A�), we obtain that u0 � v0 < u0p. By Prop. 2.2 this yields

u0 = v0.

Let w0 denote the word u1p
�2u2 � � � p

�kuk. A simple re
ection using u1 6= p, Prop. 2.2,

and u1 2 (A�p\ pA�) nA�p2A� shows that p�1w0 2 p�1+1A� n p�1+2A�. This implies �1 = �1
and w0 = v1p

�2v2 � � � p
�kvk. Since we have w0 2 pA�, we see that the �rst component of its

p-stable normal form is in pA�. Hence (u1; �2; u2; : : : ; �k; uk) is the p-stable normal form

of w0. By induction we conclude (u1; �2; u2; : : : ; �k; uk) = (v1; �2; v2; : : : ; �k; vk). Hence the

proposition. 2
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2.4 From a system to a single equation and vice versa

The existential theory of equations over free monoids is decidable, i.e., the satis�ability of any

propositional formula over word equations (with regular constraints) can be decided. Let us

show the reduction to Makanin's result. In a �rst step we may assume that all negations in

a given formula are of type L 6= R. Due to the following proposition these negations can be

eliminated.

Proposition 2.8 An inequality L 6= R is equivalent with respect to satis�ability to the fol-

lowing formula using x; y and z as new variables:_
a2A

(L = Rax _R = Lax) _
_

a;b2A
a6=b

(L = xay ^R = xbz) :

In a second step the formula (without negations) is written in disjunctive normal form.

Then, for satis�ability, it is enough to see how a system of word equations can be transformed

into a single word equation. The method is given in Prop. 2.9. It relies on the trivial fact

that if ua � va; ub � vb, u; v 2 A�, a; b 2 A, and a 6= b, then we have u = v.

Proposition 2.9 Let a; b 2 A be distinct letters (if A = fag, then let b denote a new letter

resp.) and let E = fL1 = R1; : : : ; Lk = Rkg be a system of word equations. Then the set

of solutions of E is identical (in canonical bijection resp.) with the set of solutions of the

following equation:

L1a � � �LkaR1 � � �Rk L1b � � �Lkb = R1a � � �RkaL1 � � �LkR1b � � �Rkb:

Sometimes it is useful to do the opposite of the proposition above and to split a single

word equation into a system where all equations are of type xy = z with x; y; z 2 A[
. This

can be derived from the next proposition. Again its (simple) proof is left to the reader.

Proposition 2.10 Let x1 � � � xg = xg+1 � � � xd be a word equation with 1 � g < d; xi 2 A [ 


for 1 � i � d: Then the set of solutions of L = R is in canonical bijection with the set of

solutions of the following system:

x1 = y1; xg+1 = yg+1;

y1x2 = y2; yg+1xg+2 = yg+2;
...

...

yg�1xg = yg; yd�1xd = yd;

yg = yd:

In the system above y1; : : : ; yd denote new variables.

2.5 A single variable

A parametric description of the set of all solutions can be computed in polynomial time,

if there is only one variable occurring in the equation. This serves as an example of why

p-stable normal forms might be useful, but it is not used elsewhere. The reader may skip this

subsection.
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Let E be a set of word equations where exactly one variable x occurs, 
 = fxg. By

Prop. 2.9 E is given by a single equation L = R with L;R 2 (A [ fxg)�: The �rst check is

whether �(x) = 1 yields the singular solution. It is then enough to consider only non-singular

solutions. Let us denote by L a list of pairs (p; r) where p 2 A+ is primitive and r 2 A� is a

pre�x r < p. We say that L is complete for the equation L = R, if every non-singular solution

� has the form �(x) = p�r for some � � 0 and (p; r) 2 L.

Since our intention here is to give an application for p-stable normal forms, assume for

a moment that a �nite complete list L has already been computed in a �rst phase of the

algorithm. Then we proceed as follows. For each pair (p; r) 2 L we make a �rst test whether

�(x) = r is a solution and a second test whether �(x) = pr is a solution. After that we search

(for this pair (p; r)) for solutions where �(x) = p�r with � � 2. Replace all occurrences of x

in the equation L = R by the expression pp��2pr, where � now denotes an integer variable.

Thus, the problem is now to �nd solutions for � such that � � 2. Using the symbolic

expression we can factorize L and R in their p-stable normal forms:

L = u0p
m1�+n1u1 � � � p

mk�+nkuk;

R = v0p
m0
1�+n01v1 � � � p

m0

`�+n0`v`:

Note that k; ` � 0 and mi;m
0
j 2 N; ni; n

0
j 2 Z for 1 � i � k and 1 � j � `. By Prop. 2.7 we

have to verify k = `; ui = vi for 0 � i � k and we have to solve a linear Diophantine system:

(mi �m0
i)� = n0i � ni for 1 � i � k:

There are three cases. Either no or exactly one � � 2 or all � � 2 satisfy these equations.

Note that for each pair (p; r) the necessary computations can be done in linear time. The

performance of the algorithm depends therefore on an e�cient computation of a short and

complete list L.

We may assume that L = ux � � � and R = xvcldots, where u 2 A+; v 2 A� and both words

u and v are of maximal length. Let p 2 A+ be the primitive root of u, i.e., p is primitive and

u = pe for some e � 1. If � is a solution of L = R, then � solves also an equation of type

ux = xw for some word w 2 A+. By Prop. 2.1 it is immediate that we have �(x) = p�r for

some � � 0 and r < p. Thus, the simple method is to de�ne the list L by all pairs (p; r)

where r < p. We obtain a list L with kpk elements. It is clear that all computations can be

done in polynomial time. In fact square time is enough.

There is an improvement to an O(kEk log kEk)-algorithm due to Eyono Obono, Goralcik,

and Maksimenko (1994). This improvement is a clever method to compute a complete list L

of at most logarithmic length. The method uses a �ner combinatorial analysis and it relies,

in particular, on the following facts which can be found in Lothaire (1983):

� Let r; s 2 A�. If the word sr is primitive, then rs is also primitive.

� Let p; q 2 A+ be primitive words and u = pe; w = qf for some e; f � 1. If u and w are

conjugates, then p and q are conjugates and there is a unique factorization p = rs; q = sr

with r < p. Moreover, if ux = xw for some word x 2 A�, then we have x = p�r for

some � � 0 and the unique pre�x r < p above.

� Let p; q; r 2 A+ be primitive words such that p2 < q2 < r2. Then we have jpj+ jqj � jrj.

In particular, a word w 2 A� of length n has at most O(logn) distinct pre�xes of the

form pp where p is primitive.

7



The aim is to compute a complete list L for the equation L = R of length O(jLRj).

For this purpose we divide the set of non-singular solutions into two classes. The �rst class

contains all solutions where j�(x)j � juj � jvj. (Of course, in the case juj � jvj all solutions

satisfy this condition.) Let w be the pre�x of the word vu such that jwj = juj. If � is a

solution with j�(x)j � juj � jvj, then we have u�(x) = �(x)w. Let p be the primitive root

of u and let q be the primitive root of w. Then �(x) = p�r for some � � 0 and the unique

pre�x r < p such that p = rs and q = sr. If p and q are not conjugates, then there is no such

solution. Otherwise, if p and q are conjugates, we include the unique pair (p; r) into L. This

pair covers all solutions where j�(x)j � juj � jvj.

Now, let � be a non-singular solution such that 0 6= j�(x)j < juj � jvj. This implies

that R has the form R = xvx � � � and that �(x)v�(x) < u�(x). Hence �(x)v�(x) < uu and

ww < vuu, where w denotes the non-empty word v�(x). Let q be the primitive root of w,

then we have qq < vuu.

There is a unique factorization q = sr with s < q such that v 2 q�s. the word rs is also

primitive and we have �(x) = (rs)�r for some � � 0. Therefore it is enough to compute the

list of all primitive words q such that qq < vuu. If v = 1, then we add all pairs (q; 1) to L.

Otherwise, if v 6= 1, then we compute for each q the unique factorization q = sr with s 6= 1

such that v 2 q�s. We add all pairs (rs; r) to L.

3 Linear Diophantine equations: Bounding the exponent of

periodicity

The input for the algorithm is an equation L = R with L;R 2 (A[
)� together with regular

languages Lx � A� for all variables x 2 
. We are looking for a solution � : 
! A� such that

�(L) = �(R) and �(x) 2 Lx for all x 2 
. For notational convenience we don't distinguish

variables from constants in the equation henceforth. Every constant a 2 A is replaced by a

new variable xa and the constraint Lxa = fag for all a 2 A. (For readability we use constants

in examples however.) From now on the equation is given as

x1 � � � xg = xg+1 � � � xd

with xi 2 
. In order to exclude trivial cases we shall assume 1 � g < d whenever convenient.

The number d is called the denotational length of the equation. It is enough to consider

non-singular solutions. Hence we shall assume that 1 62 Lx for all x 2 
. Next we �x a �nite

semigroup S and a semigroup homomorphism ' : A+ ! S such that Lx = '�1'(Lx) for

all x 2 
. For later use we demand that ' is surjective. The semigroup S can be realized

as the image '(A+) of the canonical homomorphism to the direct product of the syntactical

monoids with respect to Lx for x 2 
. Sometimes it is more convenient to work with monoids

instead of semigroups. We denote by S1 the monoid, which is obtained by adjoining by a unit

element 1 to S. We have S1 n f1g = S and the homomorphism ' is extended to a monoid

homomorphism ' : A� ! S1. We have '�1(1) = f1g and '(A+) = S.

Given S we can compute constants t(S) � 0 and q(S) > 0 such that st(S)+q(S) = st(S) for

all s 2 S1. In the following we actually use another constant c(S), which is de�ned as the least

multiple of q(S) such that c(S) � maxf2; t(S)g. Note that this implies sr+�c(S) = sr+�c(S)

for all s 2 S1 and r � 0 and �; � � 1.
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Remark 3.1 Assume that each regular language Lx is speci�ed by an NFA with rx states,

x 2 
. Let r =
P
x2


rx. Then we may choose the semigroup S such that

jSj � 2r
2

and c(S) � r!:

A proof for these bounds can be found in Markowsky (1977), where a more precise analysis

is given. For the moment explicit upper bounds for jSj and c(S) are not used. They are used

only later (Sect. 5.3) when complexity issues are investigated.

The important point here is that our knowledge from linear algebra how to �nd all minimal

solutions of a system of linear Diophantine equations yields an e�ective upper bound for the

exponent of periodicity of a solution of minimal length of a given word equation (with regular

constraints). Any e�ective upper bound would be su�cient, but one can do better. The

upper bound is exponential in the input size, and this is essentially optimal. In the proof

below a rather detailed analysis is given. So the proof becomes quite technical, which might

hide the beautiful and simple idea behind it. Readers who are mainly interested in the pure

decidability result are invited to ignore the exact values.

Theorem 3.2 Let d � 1 be a natural number, ' : A� ! S1 a homomorphism, and c(S) � 2

as above. There is a computable number e(c(S); d) 2 c(S) � 2O(d) satisfying the following

assertion.

Given as instance a word equation x1 � � � xg = xg+1 � � � xd of denotational length d together

with a solution �0 : 
! A�, we can e�ectively �nd a solution � : 
! A� and a word w 2 A�

such that the following conditions hold:

1. '�0(x) = '�(x) for all x 2 
,

2. w = �(x1 � � � xg) = �(xg+1 � � � xd),

3. exp(w) � e(c(S); d).

Proof . For g = 0 or g = d, we have exp(w) = 0, hence let 1 � g < d.

Testing all words of length up to j�0(x1 � � � xg)j we �nd a solution � and a word w such

that w = �(x1 � � � xg) = �(xg+1 � � � xd) is of minimal length among all solutions � where

'�0(x) = '�(x) for all x 2 
. Recall that x1 � � � xg = xg+1 � � � xd is equivalent to the following

system:

x1 = y1; xg+1 = yg+1;

y1x2 = y2; yg+1xg+2 = yg+2;
...

...

yg�1xg = yg; yd�1xd = yd;

yg = yd

Note also that exp(w) = exp(�(yg)). After an obvious elimination of variables, the system

above is equivalent to a system of d� 2 equations of type

xy = z ; x; y; z 2 
:

9



Choose a primitive word p 2 A+ such that w = upexp(w)v for some u; v 2 A�. Consider an

equation xy = z from the system above and write the words �(x); �(y); �(z) in their p-stable

normal forms:

�(x) : (u0; r1 + �1c(S); u1; : : : ; rk + �kc(S); uk);

�(y) : (v0; s1 + �1c(S); v1; : : : ; s` + �`c(S); v`);

�(z) : (w0; t1 + 
1c(S); w1; : : : ; tm + 
mc(S); wm):

The natural numbers ri; si; ti; �i; �i, and 
i are uniquely determined by w, c(S), and the

requirement 0 � ri; si; ti < c(S).

Since w is a solution, there are many equations among the words and among the integers.

For example, for k; ` � 2 we have u0 = w0, vl = wm, r1 = t1, �1 = 
1, etc. In order to be

precise, we shall use:

�1 = 
1; : : : ; �k�1 = 
k�1;

�2 = 
m�`+2; : : : ; �` = 
m:

We have no bound on k, `, or m, but we have jk + ` �mj � 2. What exactly happens

depends on the p-stable normal form of the product ukv0. Since uk; v0 =2 A
�p2A�, it is enough

to distinguish nine cases. Here are the nine possible p-stable normal forms of ukv0, where

t 2 f0; 1g; uk ; v0 2 A
�; and u0k; v

0
0
; w0 2 A+:

(ukv0), (p; t; p), (p; t; pv0
0
),

(u0kp; t; p), (u0kp; t; pv
0
0
), (p; 0; w0; 0; p),

(p; 0; w0; 0; pv0
0
), (u0kp; 0; w

0; 0; p), (u0kp; 0; w
0; 0; pv0

0
).

The case (p; 0; w0; 0; p) can be produced, if p has an overlap as in p = ababa. Then we

might have uk = pabab; v0 = abap, which yields ukv0 = ppbap = pabpp and abp = pba. Hence

the p-stable normal form ukv0 is (p; 0; abp; 0; p). We may conclude wk+1 = abp and

tk + 
kc(S) = rk + �kc(S) + 1; tk+1 + 
k+1c(S) = s1 + �1c(S) + 1:

In particular k + ` = m. If rk < c(S) � 1, then �k = 
k, otherwise �k + 1 = 
k. Similarly, if

s1 < c(S)� 1, then �1 = 
k+1, otherwise �1 + 1 = 
k+1.

A p-stable normal form of type (u0p; 0; w0; 0; pv0) with u0; v0; w0 2 A+ leads to k+` = m+2

and 0 = 
k = 
k+1. Let us consider another example. If ukv0 = p3, then k + ` = m+ 1 and

we have

rk + s1 + 3 + (�k + �1)c(S) = tk + 
kc(S):

Since by assumption c(S) � 2, the case ukv0 = p3 leads to the equation:


k � (�k + �1) = c with c 2 f0; 1; 2g:

We have seen that there are various possibilities for ukv0. However, always the same

phenomenon arises. First of all we obtain a bunch of trivial equations which can be eliminated

by renaming. All equations of type 
 = 0 are eliminated by substitution. Then, for each

xy = z either there are at most two equations of type 
 = � + 1 or there is one equation of

type 
� (�+�) = c with c 2 f0; 1; 2g. If there are two equations of type 
 = �+1, then one
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of them is eliminated by substitution. So after renaming and substituting we end up with at

most one non-trivial equation having at most three variables. Proceeding this way through all

d�2 word equations we have various interactions due to renaming and substitution. However,

�nally each equation xy = z leads to at most one non-trivial equation with at most three

variables. The type of this equation is:

�1
 + i1 � �2�� i2 � �3� � i3 = c

where we have 0 � i1; i2; i3 � d� 2; 0 � c � 2; �1; �2; �3 2 f0; 1g. This can be written as:

�1
 � �2�� �3� = c0 with jc0j � 2d� 2:

This type introduces a coe�cient �2 for � = � and �1 = �2 = �3 = 1.

We have viewed the symbols �; �; : : : as variables ranging over natural numbers. Going

back to the solution � the symbols �1; : : : ; �l; �1; : : : ; �`; 
1; : : : ; 
m represent concrete values

which are given by the word w. Some of them might still be zero. These are eliminated now.

The reason is that they cannot be replaced by other values without risk of changing the image

by '. If � � 1 is a remaining value, i.e., a number greater than zero, then we replace it by

� = 1 + Z� where now Z� denotes a variable over N. For example an equation


 � �� � = c0

with �; �; 
 � 1 is transformed to a linear Diophantine equation with integer variables

Z�; Z�; Z
 � 0 as follows:

Z
 � Z� � Z� = c0 + 1 with jc0 + 1j � 2d� 1:

Putting all equations of type xy = z together we obtain a (perhaps) huge system of linear

equations. After substitution and elimination of variables, we end up with a system of at

most d � 2 equations and n integer variables with n � 3(d � 2). The absolute values of the

coe�cients are bounded by 2 and that of the constants by 2d � 1. For each equation the

sum over the squares over the coe�cients is bounded by 5. The linear Diophantine system is

de�ned by w and the word w provides a non-negative integer solution.

What becomes crucial now is the converse: Every solution in non-negative integers yields

by backward substitution a word w00 and a solution �00 : 
! A� satisfying (i) and (ii) of the

theorem. Therefore: Since w was chosen of minimal length, the solution of the integer system

given by w is a minimal solution with respect to the natural partial ordering of Nn . In this

ordering we have (�1; : : : ; �n) � (�1; : : : ; �n) if and only if �i � �i for all 1 � i � n.

For ~� = (�1; : : : ; �n) 2 Nn let k~�k = maxf�i j 1 � i � ng. All we need is a recursive

bound for the following value:

e(d) = maxfk~�k j ~� is a minimal solution of a system of linear Diophantine

equations with at most d� 2 equations, 3(d� 2) variables,

where the absolute value of the coe�cients is bounded

by 2, the sum over the squares over the coe�cients in

each equation is bounded by 5, and the absolute value

of constants is bounded by 2d� 1g:

Obviously, there are only �nitely many systems of linear Diophantine equations where

the number of equations, variables, and the absolute value of coe�cients and constants is
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bounded. For each system the set of minimal solutions is �nite, this is a special case of

Lemma A in Dickson (1913). Moreover the set of minimal solutions is e�ectively computable.

Hence, the set of values of k~�k above is �nite and e�ectively computable. Therefore e(d) is

computable. Since e(d) + d � 1 � �1; : : : ; �1; : : : for original values under the consideration

above, we obtain a recursive upper bound for the exponent of periodicity. A much more

precise statement is possible. It follows from the work of Ko�scielski and Pacholski (1996) that

e(d) 2 2O(d), see also Rem. 3.3 below. Hence we can state:

exp(w) � 2 + (c(S) � 1) + (e(d) + d� 1) � c(S) 2 c(S) � 2O(d):

This proves the theorem. 2

Remark 3.3 The analysis of Ko�scielski and Pacholski (1996) is more accurate than the

one presented here, and it leads to linear Diophantine systems having a slightly di�erent

structure. The authors make use of the results given in the paper von zur Gathen and Sieveking

(1978) They show that the exponent of periodicity of a minimal solution of a word equation

of denotational length d is in O(21:07d). The authors don't consider regular constraints, but,

as it is shown above, this doesn't change the situation very much: It yields the factor c(S).

Therefore the actual result including regular constraints is:

e(c(S); d) 2 c(S) � O(21:07d):

It is rather di�cult to obtain this very good bound. However, we can circumvent this

di�culty. A bound which is already nice and certainly good enough to establish Thm. 3.2

is e(d) 2 O(2cd) for some constant c, say c = 4. Such a more moderate bound can be

obtained without any di�culty using the present approach and some standard knowledge in

linear algebra, see Prob. 3.1 below.

Example 3.4 Consider c; n � 2 and let S = Z=cZ be the cyclic group of c elements. We

give a regular constraint for the variable x1 by de�ning

Lx1 = fw 2 A+
j jwj � 0 (mod c)g:

The system is given by

x1 = ac; x2 = x21; : : : ; xn = x2n�1:

Its unique solution � is: �(xi) = ac�2
i�1
; 1 � i � n: A transformation into a single equa-

tion according to Prop. 2.9 shows that e(c(S); d) 2 c(S) � 2
(d): Thus, the assertion given in

Thm. 3.2 is essentially optimal.

The following example shows that the length of a minimal solution can be very long

although the exponent of periodicity is bounded by a constant.

Example 3.5 Let n � 1. Consider the following well-known system of word equations:

x0 = a; y0 = b;

xi = xi�1yi�1; yi = yi�1xi�1 for 1 � i � n:

The unique solution is the Thue-Morse word:

�(xn) = abbabaabbaababbabaababbaabbabaab � � � for n � 5:

We have j�(xn)j = 2n, but exp(�(xn)) = 2.
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Example 3.6 Consider the equation with regular constraints:

axyz = zxay;

Lx = a2a�; Ly = fa; bg� n (a� [ b�); Lz = fa; bg+:

A suitable homomorphism ' : fa; bg+ ! S is given by the canonical homomorphism onto the

quotient semigroup of fa; bg+, which is presented by the de�ning relations

a2 = a3; b = b2; ab = ba = aab:

Thus, S is a semigroup with a zero, 0 = ab; and S has four elements:

S = fa; a2; b; 0g:

The constant c(S) = 2 �ts the requirement sr+c(S) = sr+�c(S) for all s 2 S1 and r � 0; � � 1.

It is not di�cult to �nd a solution � for the equation above, e.g. �(x) = a2; �(y) = ba2, and

�(z) = a3ba2. Now let �, �, 
, � be some integer variables and let u; v; and w be parametric

words, which are described by the following a-stable normal forms:

u : (a; 2�; a); v : (ba; 2�; a); w : (a; 1 + 2
; aba; 2�; a):

In order to derive the system of linear Diophantine equations, we make a direct approach: We

want to solve auvw = wuav. First we write auvw as a sequence of a{stable normal forms:

((a); (a; 2�; a); (ba; 2�; a); (a; 1 + 2
; aba; 2�; a)):

The resulting a{stable normal form is:

(a; 2� + 1; aba; 2� + 2
 + 3; aba; 2�; a):

Now consider the right-hand side wuav. This yields:

(a; 2
 + 1; aba; 2� + 2� + 3; aba; 2�; a):

We obtain the linear Diophantine system:

2� + 1 = 2
 + 1;

2� + 2
 + 3 = 2�+ 2� + 3;

2� = 2�:

Going back to the equation we see that for all � � 0 and � � � the mapping

�(x) = a2+2�; �(y) = ba2+2� ; �(z) = a3+2�ba2+2�

yields a solution of the equation axyz = zxay satisfying the regular constraints.
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4 Boundary equations

4.1 Linear orders over S

Let us start with an informal explanation of the notions discussed in this subsection. Assume

that x1 � � � xg = xg+1 � � � xd ; 1 � g < d, xi 2 
 for 1 � i � d is a solvable word equation with

regular constraints and that there is a non-singular solution �. The solution is given by some

word w 2 A+. The equation corresponds to two factorizations w = u1 � � � ug = ug+1 � � � ud
yielding two sequences of non-empty words:

(u1; : : : ; ug); (ug+1; : : : ; ud):

Using the word w these sequences can be merged into a single one such that each ui is a

product of some wk:

w = (w1; : : : ; wm); wk 6= 1; 1 � k � m; m < d:

Let us see what happens if we pass via ' to the �nite semigroup S. Two sequences

(p1; : : : ; pg) 2 S
g and (pg+1; : : : ; pd) 2 S

d�g are merged into a single sequence (s1; : : : ; sm) 2

Sm;m < d such that each pi 2 S is a product of some sk. We shall say that (s1; : : : ; sm) is a

common re�nement of (p1; : : : ; pg) and (pg+1; : : : ; pd). However, for a given input d, there are

only �nitely many possibilities for sequences of the form (s1; : : : ; sm); sj 2 S; 1 � j � m < d:

Thus, in a non-deterministic step we can guess and �x such a sequence which is the '-image

of (w1; : : : ; wm).

A basic technique of solving word equations is to split a variable. Working over the

sequence (s1; : : : ; sm) 2 S
m, a splitting of a variable x = x0x00 is accompanied with a splitting

of some si and a guess of s
0; s00 2 S such that si = s0s00. In this way the length of the sequences

is increasing.

Example 4.1 Consider the equation xauzau = yzbxaaby. The solution, which was given

in Ex. 1.1, leads to the sequences (abb; a; bab; ba; a; bab) and (ab; ba; b; abb; a; a; b; ab), where

(ab; b; a; b; ab; b; a; a; b; ab) is a common re�nement. This can be best visualized by the following

�gure.

a b b a b a b b a a b a b

a b b a b a b b a a b a b

a b b a b a b b a a b a b

Passing to the semigroup S from Ex. 3.6 we could start to search for a solution with the

sequence (0; b; a; b; 0; b; a; a; b; 0) 2 S10.

We now start the formal discussion of this section. The semigroup S and the homo-

morphism ' : A+ �! S is given as in precedent section. An S-sequence is a sequence

(s1; : : : ; sm) 2 Sm; m � 0. A representation of (s1; : : : ; sm) is a triple (I;�; 'I) such that

(I;�) is a totally ordered set of m+ 1 elements and

'I : f(i; j) 2 I � I j i � jg ! S1
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is a mapping satisfying for some order respecting bijection � : I ~!f0; : : : ;mg the condition

'I(i; j) = s�(i)+1 � � � s�(j) 2 S
1 for all i; j 2 I; i � j:

Note that we have 'I(i; j) = 1 if and only if i = j and 'I(i; k) = 'I(i; j)'I (j; k) for all

i; j; k 2 I; i � j � k.

The standard representation of (s1; : : : ; sm) is simply (I;�; 'I) where I = f0; : : : ;mg and

'I(i; j) = si+1 � � � sj for i; j 2 I; i � j. Hence for the standard representation the bijection �

is the identity.

In the following any representation (I;�; 'I) of some S-sequence is called a linear order

over S.

Remark 4.2 An S-sequence can be viewed as an abstraction of a linear order over S. In

most cases we are interested in the abstract objects only, but if we work with them we have to

pass to concrete representations. When counting linear orders over S (c.f. Lem. 4.9 below),

by convention, we count only standard representations and mappings between them.

Let w = a1 � � � am 2 A�; ai 2 A for 1 � i � m. The set f0; : : : ;mg is the set of positions of

w, and for 0 � i � j � m let w(i; j) denote the factor ai+1 � � � aj. The associated S-sequence

of w is de�ned by wS = ('(a1); : : : ; '(am)). The notation wS refers also to its standard

representation wS = (f0; : : : ;mg;�; 'w). The mapping 'w is de�ned by 'w(i; j) = '(w(i; j))

for all 0 � i � j � m.

De�nition 4.3 Let s; s0 be S-sequences given by some representations (I;�; 'I ) and (I 0;�

; 'I0). We say that s0 is a re�nement of s (or that s matches s0), if there exists an order

respecting injective mapping � : I ! I 0 such that 'I(i; j) = 'I0(�(i); �(j)) for all i; j 2 I; i � j.

We write either s � s0 or, more precisely, s �� s
0 and (I;�; 'I) �� (I

0;�; 'I0) in this case.

Remark 4.4 Let s; s0 be S-sequences such that s � s0. Then we may choose concrete repre-

sentations and a re�nement (I;�; 'I) �� (I
0;�; '0I) such that � : I ! I 0 is an inclusion, i.e.,

I � I 0 and 'I is the restriction of 'I0 to I.

De�nition 4.5 Let s be an S-sequence and (I;�; 'I) some representation. A word w 2 A�

is called model of s (of (I;�; 'I) resp.), if the associated S-sequence wS is a re�nement of s,

i.e. , (I;�; 'I ) �� wS for some �.

If w is a model of s, then we write w j= s or w j= (I;�; 'I ). By abuse of language, we

make the following convention. As soon as we have chosen a word w as a model, we are free

to view the set I as a subset of positions of w, i.e., � becomes an inclusion and therefore

'I(i; j) = '(w(i; j)) for all i; j 2 I; i � j.

Lemma 4.6 Every S-sequence (s1; : : : ; sm) has a model w 2 A�.

Proof . Since ' is surjective, there are non-empty words wi 2 A
+ such that si = '(wi) for

all 1 � i �m. Let w = w1 � � �wm, then we have w j= (s1; : : : ; sm). 2

The lemma above will yield the positive termination step in Makanin's algorithm if there

are no more variables. In the positive case we can eventually reconstruct some S-sequence

such that some model w describes a solution of the word equation.
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Let i; j 2 I; i � j be positions in a linear order over S. Then [i; j] denotes the interval from

i to j, this is a linear sub-order over S which is induced by the subset fk 2 I j i � k � jg. More

generally, let T � I be a subset, then we view (T;�; 'T ) as a linear suborder of (I;�; 'I ). In

the following min(T ) and max(T ) refer to the minimal respectively to the maximal element

of a subset T of a linear order I.

De�nition 4.7 Let (I;�; 'I ) be a representation of some S-sequence, T � I a non-empty

subset, and `�; r� 2 I be positions such that `� < r�.

An admissible extension of (I;�; 'I) by T at [`�; r�] is given by a linear order (I�;�; 'I�)

and two re�nements (I;�; 'I) �� (I�;�; 'I�) and (T;�; 'T ) ��� (I�;�; 'I�) such that the

following two conditions are satis�ed:

1. I� = �(I) [ ��(T ),

2. min(��(T )) = `� and max(��(T )) = r�.

The intuition behind the last de�nition it should be rather clear. An admissible extension

re�nes (I;�; 'I ) by de�ning new positions between `� and r� until T matches the enlarged

interval [`�; r�] in such a way that all new points have a corresponding point in T and such

that min(T ) is mapped to `� and max(T ) is mapped to r�. The other way round: Let

(I�;�; 'I�) denote an admissible extension of (I;�; 'I) by T at [`�; r�], then we may view

I � I�, whence T � I�. There is a subset T � � I� representing the same S-sequence as T ;

and we have I� = I [ T �, min(T �) = `�, and max(T �) = r�.

Example 4.8 Let (s1; : : : ; s6) be some S-sequence, (I;�; 'I) its standard representation,

`� = 4 and r� = 6. Let (I�;�; 'I�) represent an admissible extension of (I;�; 'I ) by

f0; 3; 4; 5g at [4; 6]. Then we may assume I� = f0; : : : ; 6g [ f3�; 4�g with 0 < 1 < 2 <

3 < 4 < 5 < 6 and 4 < 3� < 4� < 6.

We may or may not have 5 2 f3�; 4�g. Say we have 5 = 3�. Then the corresponding

S-sequence has the form

(s1; s2; s3; s4; s5; s4; s5)

such that s5 = s1s2s3 and s6 = s4s5.

Lemma 4.9 Given (I;�; 'I ); T � I; `�; r� 2 I. Then the list of all admissible extensions of

(I;�; 'I) by T at [`�; r�] is �nite and e�ectively computable.

Proof . Trivial, since the cardinality of an admissible extension is bounded by jIj+ jT j. 2

4.2 From word equations to boundary equations

Let x1 � � � xg = xg+1 � � � xd ; 1 � g < d, xi 2 
 for 1 � i � d be a word equation with

regular constraints Lx � A� for all x 2 
. Recall we are only interested in non-singular

solutions and that we �xed a homomorphism ' : A+ ! S to a �nite semigroup S such that

'�1'(Lx) = Lx for x 2 
. Hence without restriction it holds 1 62 Lx 6= ; for all x 2 
.

Since the images '(Lx) � S are �nite sets we can split into �nitely many cases where in

each case '(Lx) is a singleton. Thus, it is enough to consider a situation where the input is
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x1 � � � xg = xg+1 � � � xd; 1 � g < d and the question is the existence of a non-singular solution

� : 
 ! A+ satisfying  = ' � � for some �xed mapping  : 
 ! S. The question will be

reformulated in terms of boundary equations. A system of boundary equations is de�ned as

follows.

De�nition 4.10 Let n � 0 and ' : A+
! S be a homomorphism to a �nite semigroup S.

1. A system of boundary equations is speci�ed by a tuple

B = ((�;�); (I;�; 'I ); left; B)

where � is a set of 2n variables, � : � ! � is an involution without �xed points, i.e.,

x = x, x 6= x, for all x 2 �, the triple (I;�; 'I) is a linear order over S, left : �! I is

a mapping, and B is a set of boundary equations. Every boundary equation b 2 B has

the form b = (x; i; x; j) with x 2 �, i; j 2 I such that left(x) � i and left(x) � j.

2. A solution of B is a model w j= (I;�; 'I), w 2 A�, such that

w(left(x); i) = w(left(x); j) for all (x; i; x; j) 2 B:

(Recall that if a word w 2 A� is a model for (I;�; 'I), then we view I as a subset of

positions of w. Hence it makes sense to write w(p; q) for p; q 2 I; p � q.)

3. If B is solvable, then the exponent of periodicity exp(B) of B is de�ned by

exp(B) = minfexp(w) j w is a solution of Bg:

Remark 4.11 If n = 0, then there are no variables, hence no boundary equations, and any

model w j= (I;�; 'I) is a solution is a solution of B. In particular, if n = 0, then the system

is solvable by Lem. 4.6.

Consider a word equation x1 � � � xg = xg+1 � � � xd and a mapping  : 
! S. We are going

to construct a system

B = ((�;�); (I;�; 'I ); left; B)

of boundary equations having the following two properties.

1.) Let � : 
! A+ be a solution of the word equation such that  = ' � �, and let v 2 A�

be a word with v = �(x1 � � � xg) = �(xg+1 � � � xd). Then w = vv is a solution of B.

2.) Let w j= (I;�; 'I) be a solution of B. Then we have w 2 A�vvA� for some v 2 A�

and there is a solution of the word equation � : 
 ! A+ such that  = ' � � and

v = �(x1 � � � xg) = �(xg+1 � � � xd).

In order to de�ne B we start with the S-sequence

( (x1); : : : ;  (xd)):

Let (I;�; 'I) be some representation, I = fi0; : : : ; idg, i0 � � � � � id. The next step is to de�ne

the pair (�;�) and the mapping left : � ! I. To this purpose we introduce an undirected
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graph. Let (V;E) be the undirected graph with vertex set V = f1; : : : ; dg and edge set

E = f(p; q) 2 V �V j xp = xqg. The idea is that for v = �(x1; : : : ; xg) = �(xg+1; : : : ; xd) and

w = vv we can realize I as a subset of positions of w such that both w j= ( (x1); : : : ;  (xd))

and the following equations hold:

w(i0; ig) = w(ig; id); w(ip�1; ip) = w(iq�1; iq) for all (p; q) 2 E:

For the �rst equation we shall introduce an extra variable x0 (and its dual x0) below; in the

other list of equations there is some redundancy. For (p; q); (q; r) 2 E, we have by de�nition

(p; r) 2 E, but the equations w(ip�1; ip) = w(iq�1; iq) and w(iq�1; iq) = w(ir�1; ir) already

imply w(ip�1; ip) = w(ir�1; ir). Hence we don't need the edge (p; r) for the equation. To

avoid this redundancy we let F � E be a spanning forest of (V;E). This means F = F�1,

F � = E�, and (V; F ) is an acyclic undirected graph. We have jF j = 2(d � c), where c is the

number of connected components of (V;E). The elements of F are called variables and for

each x = (p; q) 2 F we de�ne its dual and two positions left(x); right(x):

x = (q; p); left(x) = ip�1; right(x) = ip:

Note that x 6= x and x = x for all x 2 F . Taking duals corresponds to edge reversing in

(V; F ). De�ne two new extra variables x0 and x0 with x0 = x0 and de�ne � = fx0; x0g [ F

and:

left(x0) = i0; right(x0) = ig = left(x0); right(x0) = id:

This de�nes the set �, the involution without �xed points � : � ! �, and the mapping

left : �! I.

The last step of the construction is to de�ne the set B of boundary equations. It should

be clear what to do. We de�ne

B = f(x; right(x); x; right(x)) j x 2 �g:

We have to verify two properties.

1. Let � : 
 ! A+ be a solution such that  = ' � �, and let w = vv, where v =

�(x1 � � � xg) = �(xg+1 � � � xd). The word w has positions 0 = i0 < i1 < � � � < id, where id
is the last position and the following equations hold:

w(i0; ig) = w(ig; id); w(ip�1; ip) = �(xp) for 1 � p � d:

In particular, w j= (I;�; 'I) and w is a solution of B.

2. Let w j= (I;�; 'I) be a solution of B. Without restriction we may view I as a subset

of positions of w. Consider the factors w(i0; ig) and w(ig; id). The boundary equation

(x0; right(x0); x0; right(x0)) 2 B implies w(i0; ig) = w(ig ; id) and it follows that w 2

A�vvA� for v = w(i0; ig). We de�ne � : 
 ! A+ by �(xp) = w(ip�1; ip). Since

ip�1 < ip, this is a non-empty word. The elements (x; right(x); x; right(x)) 2 B for

x = (p; q), x = (q; p), (p; q) 2 T imply w(ip�1; ip) = w(iq�1; iq) whenever xp = xq.

Hence � is well-de�ned. We have '�(xp) = 'w(ip�1; ip) =  (xp) since w j= (I;�; 'I).

Finally, v = w(i0; ig) = w(ig; id) implies v = �(x1 � � � xg) = �(xg+1 � � � xd).
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Thus, the word equation with regular constraints given by the mapping  has a solution

if and only if the system of boundary equations is solvable. The construction of the system

B above can be performed in polynomial time; more precisely, the construction yields a

logspace-reduction. Due to this reduction, Makanin's result follows from the next theorem.

The assertion of Thm. 4.12 is in fact equivalent to Makanin's result, see Lem. 4.14 below.

Theorem 4.12 It is decidable whether a system of boundary equations has a solution.

The rest of this chapter is devoted to the proof of Thm. 4.12. An important property

is stated in the next proposition: We can bound the exponent of periodicity while searching

for a solution. Note however that bounding the exponent of periodicity of some word gives

absolutely no bound on the length of this word.

Proposition 4.13 Given as instance a system of boundary equations B, we can compute a

number e(B) having the property that if B is solvable, then we have exp(B) � e(B).

The proof of Prop. 4.13 could be based on the same techniques as presented in Sect. 3.

However, for our purposes we prefer to prove Prop. 4.13 via a reduction to word equations.

Lemma 4.14 There is an e�ective reduction of the solvability of a system of boundary equa-

tions B to some word equation with regular constraints. Moreover, there is a reduction

such that if w 2 A� is a solution of the word equation, then B is solvable and we have

exp(B) � exp(w):

Proof . Let B = ((�;�); (I;�; 'I ); left; B) be a system of boundary equations. We may

assume that the linear order (I;�; 'I ) is the standard representation of its underlying S-se-

quence s = (s1; : : : ; sm). Introduce new variables y1; : : : ; ym with regular constraints  (yp) =

sp, 1 � p � m.

For each boundary equation b = (x; i; x; j) 2 B we introduce a word equation

yleft(x)+1 � � � yi = yleft(x)+1 � � � yj:

This system of word equations with regular constraints is solvable if and only if B is

solvable. Indeed, if w 2 A� is a solution of B, then, by de�nition, we have (I;�; 'I) �� wS ,

and �(I) is a subset of positions of w. All word equations

w(�(left(x)); �(i)) = w(�(left(x)); �(j))

are satis�ed for (x; i; x; j) 2 B. Hence de�ning �(yp) = w(�(p� 1); �(p)); 1 � p � m yields a

solution of the system of word equations.

For the other direction let �(yp) = vp; 1 � p � m be some solution of the system of word

equations. Due to the regular constraints we have  (yp) = sp and vp 6= 1 for all 1 � p � m.

Therefore the word v = �(y1) � � � �(ym) solves B.

Next, we transform the system of word equations into a single word equation L = R

using Prop. 2.9 and �nally we reduce to the word equation Ly1 � � � ym = Ry1 � � � ym. The

point is that if w is a solution of this equation, then some su�x v of w solves B. Hence

exp(B) � exp(v) � exp(w): This yields Lem. 4.14. Now, let d be the denotational length of

Ly1 � � � ym = Ry1 � � � ym. Then de�ne the number e(B) = e(c(S); d), which has been given in

Thm. 3.2. We can choose w such that exp(w) � e(c(S); d). This proves Prop. 4.13. 2
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4.3 The convex chain condition

Let B = ((�;�); (I;�; 'I ); left; B) be a system of boundary equations. A boundary equation

b = (x; i; x; j) 2 B is also called a brick henceforth. The variable x is called the label of the

brick b = (x; i; x; j). Pictorially a brick is given as follows:

x i

x j

The dual brick b of b = (x; i; x; j) is given by reversing the brick, it has the label x:

x j

x i

Henceforth, we make the assumption that B is closed under duals (i.e., b 2 B implies

b 2 B) and that there is at least one brick b 2 B having label x for all x 2 �. Clearly,

this is no restriction. For x 2 � let B(x) � B be the subset of bricks with label x. Then

B(x) = f(x; i1; x; j1); : : : ; (x; ir ; x; jr)g for some non-empty subset fi1; : : : ; irg � I such that

left(x) � i1 � � � � � ir. The right boundary of x is de�ned by by right(x) = ir.

Before we continue, we make some additional assumptions on B. All of them are necessary

conditions for solvability and easily veri�ed.

Let (x; i; x; j); (y; i; y; j); (y; i0; y; j0) 2 B. Then we assume from now on:

� left(x) � left(x) if and only if i � j,

� 'I(left(x); i) = 'I(left(x); j);

� left(x) � left(y) if and only if left(x) � left(y),

� i � i0 if and only if j � j0.

These assumptions imply that if B(x) = f(x; i1; x; j1); : : : ; (x; ir ; x; jr)g is given such that

left(x) � i1 � � � � � ir, then we also have left(x) � j1 � � � � � jr. In particular, B(x) contains

a brick (x; right(x); x; right(x)). The set B(x) can be depicted as follows:

B(x) =

(
x i1
x j1

;
x i2
x j2

; : : : ;
x right(x)

x right(x)

)

In our pictures a brick (x; i; x; j) can be placed upon (y; j0; y; k), if and only if j = j0. We

obtain one of out of three di�erent shapes:

x i

x j

y j

y k

x i

x j

y j

y k

x i

x j

y j

y k

Which one of these cases occurs is determined by the function left : � ! I. The leftmost

picture corresponds to left(x) < left(y), the picture in the middle corresponds to left(x) =

left(y), the picture on the right means left(x) > left(y).
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De�nition 4.15 Let m � 1. A chain C of length m is a sequence of bricks

C = ((x1; i1; x1; i2); (x2; i2; x2; i3); : : : ; (xm; im; xm; im+1));

where (xp; ip; xp; ip+1) 2 B for all 1 � p � m.

A chain C is called convex, if for some index q with 1 � q � m we have:

left(xp) � left(xp+1) for 1 � p < q;

left(xp) � left(xp+1) for q � p < m:

A convex chain C is called clean, if the bricks of C are pairwise distinct.

A brick (x; i; x; j) is linked via a convex chain of length m to the brick (x0; i0; x0; j0), if

there is a convex chain C of length m as above such that m � 1; (x; i; x; j) = (x1; i1; x1; i2),

and (x0; i0; x0; j0) = (xm; im; xm; im+1):

Remark 4.16 If C = (b1; : : : ; bm) is a convex chain, then its dual C = (bm; : : : ; b1) and

(bp; : : : ; bq), 1 � p � q � m are convex chains. If bp = (xp; ip; xp; ip) for some 1 < p < m,

then (b1; : : : ; bp�1; bp+1; : : : bm) is a convex chain. If bp = bq for some 1 < p < q � m, then

(b1; : : : ; bp�1; bq; : : : bm) is also a convex chain. In particular, if two bricks are linked via a

convex chain, then they are linked via some clean convex chain. The shortest chain linking

two bricks to each other is certainly clean.

A typical picture of a convex chain is depicted in the following �gure.

x1 i1
x1 i2

x2 i2
x2 i3
x3 i3
x3 i4

x4 i4
x4 i5

...

xq�1 iq�1
xq�1 iq

xq iq
xq iq+1

xq+1 iq+1

xq+1 iq+2

...

xm im
xm im+1

De�nition 4.17 Let F � I be a subset. A brick (x; i; x; j) 2 B is called a basis or foundation

with respect to F , if j 2 F . We say that B satis�es the convex chain condition (with respect

to F ), if every brick b 2 B can be linked via some convex chain to some basis. The set F is

also called the set of �nal indices.
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Note that if in the �gure above we have fi2; : : : ; im+1g\F 6= ;, then the brick (x1; i1; x1; i2)

is linked via a convex chain with a basis.

Lemma 4.18 Let n;m; f 2 N and B = ((�;�); (I;�; 'I ); left; B) be a system of boundary

equations with j�j = 2n. Let F � I have size f . Suppose that every brick b 2 B can be linked

via a convex chain of length at most m to a basis with respect to F . Then we can bound the

size of B by

jBj � (2n)m � 2f:

Proof . Consider a convex chain of length k, k � m, where the last brick is a basis:

C = ((x1; i1; x1; i2); (x2; i2; x2; i3); : : : ; (xk; ik; xk; ik+1))

Given any pair x 2 �; j 2 I, there exists at most one brick (x; i; x; j) 2 B. Therefore the

whole chain is uniquely de�ned by the sequence (x1; x2; : : : ; xk; ik+1) 2 �k � F . The number

of these chains is bounded by j�jk � jF j. Finally, observe that every brick b 2 B can be

linked via a convex chain either of length m � 1 or of length m to some basis. Indeed, if

(b; b2; : : : ; bk�1; bk) is a convex chain of length k, then (b; b2; : : : ; bk�1; bk; bk; bk) is a convex

chain of length k + 2. Therefore we obtain

jBj � j�jm�1
� jF j+ j�jm � jF j � (2n)m � 2f:

2

Remark 4.19 Every system of boundary equations B satis�es the convex chain condition

with respect to the set I, trivially. Furthermore, if we construct B by starting from a word

equation x1 � � � xg = xg+1 � � � xd, 1 � g < d, then we have jIj � d. The transformation rules

below will neither increase the number 2n of variables nor the sum 2n+f . It will increase the

sizes of I and of B. However, Lem. 4.18 says that a large number of boundary equations (i.e.,

a large set of bricks) yields that there are long convex chains in order to satisfy the convex

chain condition (pictorially: many bricks build skyscrapers). The next step is to show that

long convex chains lead to high domino towers (pictorially: skyscrapers hide high towers) and

hence to a lower bound on the exponent of periodicity in any solution.

Proposition 4.20 Let n;m 2 N and B = ((�;�); (I;�; 'I ); left; B) be a solvable system of

boundary equations with j�j = 2n. Let w j= (I;�; 'I) be a solution of B. Suppose that B

contains a clean convex chain of length at least m. Then we have the following lower bound

for the exponent of periodicity of the solution w:

m � 4n2 � (exp(w) + 1)� 1

Proof . The hypothesis of the proposition implies n 6= 0, hence w 6= 1. Then the assertion

becomes trivial for m < 8n2. Hence let n � 1 and
�
m+1

4n2

�
� 2:

Since w is a solution we may assume that I is a subset of positions of w and it holds that

'I(`; r) = '(w(`; r)) for all `; r 2 I, ` � r. For all x 2 � de�ne a word w(x) 2 A� by

w(x) = w(left(x); right(x)):
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This permits also a notion of w-length for x 2 �. We de�ne

jxjw = jw(x)j:

Note that w(x) = w(x) and hence jxjw = jxjw for all x 2 �. Let C = (b1; : : : ; bm) be a clean

convex chain of lengthm, where bp = (xip ; ip; xip ; ip+1) for all 1 � p � m. De�ne m0 =
�
m+1

2

�
,

then by duality (replacing C by C) we may assume:

left(x1) � left(x2); left(x2) � left(x3); : : : ; left(xm0�1) � left(xm0):

The upper part of the chain C up to m0 might look like in in the following �gure, where e.g.

m = 11.

x1 i1
x1 i2

x2 i2
x2 i3
x3 i3
x3 i4

x4 i4
x4 i5

x5 i5
x5 i6
x6 i6
x6 i7

In the following we need a long chain where the label of the last brick has minimal w-

length. In order to �nd such a chain we scan (b1; : : : ; bm0) from right to left. We �nd a

sequence of indices

0 = p0 < p1 < � � � < pk�1 < pk = m0

such that k � n and for all q; j where pj�1 < q � pj; 1 � j � k we have:

jxqjw � jxpj jw:

This means that in each interval [pj�1 + 1; pj] the last label xpj has minimal w-length. By

the pigeon hole principle there is at least one index j 2 f1; : : : ; kg such that

pj � pj�1 �
m+ 1

2n
:

We conclude that (after renaming) there is a clean convex chain C = (b1; : : : ; b`) satisfying

the following properties:

` =
�
m+1

2n

�
;

left(xp) � left(xp+1) for 1 � p < `;

jxpjw � jx`jw for 1 � p � `:
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Next de�ne h (which will become the hight of a domino tower) by h =
�
m+1

4n2

�
. Then it holds

h � 2 and

2n(h� 1) + 1 �

�
m+ 1

2n

�
:

Hence there is some index p; 1 � p < ` such that the label xp occurs at least h times in

the the clean convex chain C. We may assume that this is the �rst label x1 and still ` � h.

Hence, there is a clean convex chain C = (b1; : : : ; b`), which satis�es the following properties:

` � h;

left(xp) � left(xp+1) for 1 � p < `;

jxpjw � jx`jw for 1 � p � `;

the label x1 occurs exactly h times.

This is the point where we switch from the chain to the sequence of words:

(w(x1); : : : ; w(x`)):

We obtain a tower of words where w(x`) has minimal length and the word w(x1) occurs at

least h times.

w(x6)

w(x5)

w(x4)

w(x3)

w(x2)

w(x1)

De�ne vp 2 A� to be the pre�x of w(xp) of length jw(x`)j and let up = w(left(xp); ip) for

1 � p � `. Since jupj � jw(left(x`); i`)j � jv`j = jvpj, the word up is a pre�x of vp for all

1 � p � `. The sequence (v1; : : : ; v`) can be arranged in a tower of words which is already in

better shape: All words vp have equal length.

v6

v5

v4

v3

v2

v1

The vertical line corresponds to the factorization vp = upu
0
p for 1 � p � `.

Finally, let fq1; q2; : : : ; qhg be a set of the h indices where the bricks have label x1. Since

the convex chain leading to this tower is clean, we see that uqj 6= uqk for all 1 � j; k � h; j 6= k.

(This is the only point where it is used that the chain is clean!) We obtain:

0 � juq1 j < juq2 j < � � � < juqh j:
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Moreover, we have v1 = vq1 = vq2 = � � � = vqh . We omit all other words in the tower above

and we see that the word v1 can be arranged in a domino tower of height h and h � 2.

Applying Lem. 2.5 we obtain h � 1 � exp(w1) � exp(w). Since
�
m+1

4n2

�
� h, the assertion of

the proposition follows. 2

Corollary 4.21 Let B = ((�;�); (I;�; 'I ); left; B) denote a solvable system of boundary equa-

tions which satis�es the convex chain condition with respect to some subset F � I. Then we

have

jBj � j�jj�j
2(exp(B)+1)�1

� 2jF j:

If moreover j�j; jF j 2 O(d), and exp(B) 2 2O(d+log c(S)), then we have

jBj 2 22
O(d+log c(S))

:

Proof . Let 2n = j�j, f = jF j, and m be the maximal length of a clean convex chain in B.

By Lem. 4.18 and Rem 4.16 we have

jBj � (2n)m � 2f:

Choose a solution w such that exp(w) � exp(B). Prop. 4.20 yields a lower bound for the

exponent of periodicity for all solutions. Hence:

m � 4n2 � (exp(w) + 1)� 1:

Putting things together we obtain:

jBj � (2n)4n
2�(exp(w)+1)�1

� 2f � (2n)4n
2�(exp(B)+1)�1

� 2f:

The result follows. 2

4.4 Transformation rules

We are ready to de�ne the (non-deterministic) transformation rules of Makanin's algorithm.

If we apply a rule to a system B = ((�;�); (I;�; 'I ); left; B), then the new system is denoted

by B0 = ((�0;�); (I 0;�; 'I0); left
0; B0). The transformation rules below will have the property

that if B = ((�;�); (I;�; 'I ); left; B) satis�es the convex chain condition with respect to some

subset F � I, then B0 satis�es the convex chain condition with respect to some subset F 0 � I 0

such that j�0j + jF 0j � j�j + jF j. Thus, if we start with a system B0 where j�0j = 2n0 and

jI0j � d, then throughout the whole procedure the size of the set of �nal indices is smaller

than or equal to 2n0 + d.

We say that a (non-deterministic) rule is downward correct, if w 2 A� is a solution of

B, then (for at least one non-deterministic choice) some su�x w0 of w is a solution of B0,

and moreover either j�0j < j�j or jw0j < jwj. Thus, applied to solvable systems at least one

sequence of choices of downward correct rules leads to termination.

We say that a (non-deterministic) rule is upward correct, if w0 2 A� is a solution of B0

(and B0 is the result of any non-deterministic choice), then there is word w 2 A� which is a

solution of B.
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Rule 1 If there is some x 2 � with left(x) = right(x), then cancel both bricks

(x; right(x); x; right(x)) and (x; right(x); x; right(x))

from B. Cancel x and x from �.

Remark 4.22 Obviously Rule 1 is upward and downward correct since we have w(i; i) = 1 for

all words w and all positions i of w. Hence the set of solutions is the same. In order to preserve

the convex chain condition we introduce two new �nal indices. Let x 2 � such that left(x) =

right(x) and assume that x; x are canceled by Rule 1. De�ne F 0 = F [ fleft(x); left(x)g.

Consider a convex chain C = (b1; : : : ; bm) where for some 1 < p � m the brick bp has the

form bp = (x; right(x); x; right(x)). Hence the brick bp is canceled. However, the brick b1
is linked to bp�1 via a convex chain and bp�1 is now a basis since right(x) = left(x) 2 F 0.

Thus, if B satis�es the convex chain condition with respect to F , then the system B
0 (after

an application of Rule 1) satis�es the convex chain condition with respect to F 0. We have

j�0j+ jF 0
j � j�j+ jF j.

Rule 2 If there exists some x 2 � with left(x) = left(x), then cancel all bricks (x; j; x; j) and

(x; j; x; j) from B. Cancel x and x from �.

Remark 4.23 Recall that for (x; i; x; j) 2 B we have left(x) = left(x) if and only if i = j.

Thus, if left(x) = left(x), then all bricks with label x have the form (x; j; x; j). Again, Rule 2

is obviously upward and downward correct. For the convex chain condition consider a convex

chain C = (b1; : : : ; bm) where bp = (x; j; x; j) for some 1 < p � m. If we have p < m, then

C 0 = (b1; : : : ; bp�1; bp+1; : : : ; bm) is a shorter convex chain linking b1 with a basis. For p = m

we have j 2 F . Hence bm�1 is also a basis.

Rule 3 Let ` = min(I). If ` 62 left(�), then cancel the index ` from I. This means we replace

the linear order over S by the induced sub-order (I 0;�; 'I0) where I
0 = I n f`g.

Remark 4.24 Clearly, the convex chain condition is not a�ected by this rule. Downward

correctness is obvious, too. To see the upward correctness let (I;�; 'I ) be given by the S-

sequence (s1; : : : ; sm) and let w0
2 A� be a solution of the new system after an application of

Rule 3 such that min(I 0) is the �rst position of w0. By de�nition of an S-sequence there is a

non-empty word u 2 A+ with '(u) = s1. Then the �rst position of w0 is not equal to the �rst

position in the word uw0, and uw0 is a solution of B. For later use notice that we can choose

u such that juj � jSj.

The next rule is very complex. It is the heart of the algorithm. Before we apply it to

some system B = ((�;�); (I;�; 'I ); left; B), we apply Rules 1, 2 or 3 as often as possible. In

particular, we shall assume that left(x) < right(x), left(x) 6= left(x) for all x 2 �, and that

there exists some x 2 � with left(x) = min(I).

Rule 4 We divide Rule 4 into six steps.

We need some notation. De�ne ` = min(I) and r = maxfright(x) j x 2 �; left(x) = `g:

Note that ` 2 left(�), hence r 2 I exists and we have ` < r. Choose (and �x) some xo 2 �
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with left(xo) = ` and right(xo) = r. De�ne `� = left(xo) and r� = right(xo). De�ne the

critical boundary c 2 I by c = minfc0; rg where

c0 = minfleft(x) j x 2 �; r < right(x)g:

Note that since r < r� = right(xo), the minimum c0 and hence the critical boundary c exists.

We have ` < c � r < r� and c � `� < r�, but the ordering of r and `� depends on the system.

De�ne the subset T � I of transport positions by

T = fi 2 I j i � cg [ fi 2 I j 9(x; i; x; j) 2 B : left(x) < cg

Note that min(T ) = ` and that i 2 T for all (xo; i; xo; j) 2 B. Moreover, since left(x) < c

implies right(x) � r, we have max(T ) = r.

Step 1 Choose some admissible extension (I�;�; 'I�) of (I;�; 'I ) by T at [`�; r�]. By con-

vention we identify I as a subset of I�, whence I � I�, and there is a subset T �
� I� with

min(T �) = `�, max(T �) = r�, and which is in order respecting bijection with T . For each

i 2 T the corresponding position in T � is denoted i�. Having these notations we put a further

restriction on the admissible extension: We consider only those admissible extensions where

�rst, i < i� for all i 2 T and second:

left(x)� � left(x) , i� � j;

left(x)� � left(x) , i� � j

for all (x; i; x; j) 2 B with left(x) < c. Note that for all (xo; i; xo; j) 2 B this implies i� = j.

If such an admissible extension is not possible, then Step 1 cannot be completed and Rule 4

is not applicable.

Step 2 Introduce new variables x� and x� and de�ne left(x�) = c, left(x�) = c�. For all i 2 T

such that there is some (x; i; x; j) 2 B with left(x) < c � i introduce new bricks (x� ; i; x� ; i
�)

and (x� ; i
�; x� ; i).

Step 3 As long as there is a variable x 2 � with left(x) < c, replace left(x) by left0(x) =

left(x)� and replace all bricks (x; i; x; j); (x; j; x; i) 2 B by (x; i�; x; j) and (x; j; x; i�).

Remark 4.25 To have some notation let x denote a variable before Step 3 and let x0 be the

corresponding variable after Step 3. Likewise let b = (x; i; x; j) denote a brick before Step 3

and let b0 = (x0; i0; x0; j) be the corresponding brick after Step 3. If left(x) = left0(x0), then

sometimes we may still write x = x0. In particular, x� = x0�, x� = x�
0, xo = xo

0, but xo 6= xo
0.

For b = (x; i; x; j) and b0 = (x0; i0; x0; j0) there are four cases:

b0 = (x0; i�; x0; j�) if left(x) < c; left(x) < c;

b0 = (x0; i�; x; j) if left(x) < c; c � left(x);

b0 = (x; i; x0; j�) if c � left(x); left(x) < c;

b0 = (x; i; x; j) if c � left(x); c � left(x):

Note that after Step 3 all bricks (xo; i; xo; j) 2 B have the form (x0o; i
�; xo; i

�).
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Step 4 De�ne as the new set of �nal indices

F 0 = fi� 2 I� j i < c and i 2 Fg [ fi 2 F j c � ig:

Step 5 Cancel all bricks with label x0o or xo, i.e., cancel all bricks of the form (x0o; i
�; xo; i

�)

or (xo
0; i�; x0o; i

�). Then cancel the variables xo, xo.

Step 6 Replace I� by I 0 = fi 2 I� j c � ig and consider the linear order (I 0;�; 'I0) induced

by I 0 � I�.

After Step 6 the transformation rule is �nished. The new system is denoted by B
0 =

((�0;�); (I 0;�; 'I0); left
0; B0). We will show from Lem. 4.30 to 4.33 below that B0 satis�es the

convex chain condition with respect to F 0. The �rst lemma is a trivial observation.

Lemma 4.26 We have j�0j = j�j and jF 0
j � jF j.

Proof . In Step 2 new variables x� and x� are introduced, but in Step 5 the variables x0
0

and x0 are canceled. Hence j�
0j = j�j. The set of �nal indices is changed in Step 4. However,

the assertion jF 0j � jF j is clear by the de�nition of F 0. 2

The following lemma is crucial to bound the size of I during the transformation procedure.

The lemma has a rather subtle proof.

Lemma 4.27 Let �0 = jf(x0; i0; x0; j0) 2 B0 j left0(x0) < i0gj and � = jf(x; i; x; j) 2 B j

left(x) < igj. Then we have

2jI 0j � �0 � 2jIj � �:

Proof . The inequality can be destroyed either by a new position i� 2 T � n I or by the can-

celation of bricks (x0o; i
�; xo; i

�), (xo; i
�; x0o; i

�) in Step 5, where `� < i�. (Recall the de�nition

of � and �0 and that left(xo) = `, left0(x0o) = `�.) The cancelation of these bricks involves

again a position of type i� 2 T �. Fortunately, if (x0o; i
�; xo; i

�) is canceled, where `� < i�, then

i� = j for some j 2 I n f`g. In particular, i� is not a new position and the two cases don't

occur simultaneously. Therefore it is enough to �nd for each i� 2 T �
n f`�g either two new

bricks which are introduced in Step 2 or one position which is canceled in Step 6. Then the

total balance will be negative or zero.

Let us consider the positions of type i� 2 T � n f`�g one by one. If c� < i�, then by the

de�nition of T and Step 2 there are two new bricks (x� ; i; x� ; i
�), (x� ; i

�; x� ; i) 2 B0 and we

have left(x�) < i, left(x�) < i�. Next consider i� = c�. At least one position (namely `) is

canceled in Step 6. Next let `� < i� < c�, i.e., ` < i < c. The position i is canceled in Step 6.

Hence we have the assertion of the lemma. 2

Lemma 4.28 Rule 4 is downward correct.

Proof . Let w 2 A� be a solution of B. Since w j= (I;�; 'I ), we can view I as a subset of

positions of w with ` = 0. Let w = vw0 where v = w(`; c). The word v is a non-empty pre�x

of w(`; r). The word w(`; r) is a pre�x of w and at the same time another factor of w0; we
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have w(`; r) = w(`�; r�) with ` < `� due to the brick (xo; r; xo; r
�) 2 B. The set T is a subset

of positions of w(`; r), hence we �nd a corresponding subset T � of positions of w(`�; r�). The

union I [ T � leads to an admissible extension (I�;�; 'I) such that �rst, i < i� for all i 2 T

and second, w(j; k) = w(j�; k�) for all j; k 2 T; j � k. A careful but easy inspection of Rule 4

then shows that w0
j= (I 0;�; 'I0) and w

0 is a solution of B0. 2

Lemma 4.29 Rule 4 is upward correct.

Proof . Let w0
2 A� be a solution of B0. Since w0

j= (I 0;�; '0I), we can view I 0 as a subset

of positions of w0 where c is the �rst position of w0. De�ne v = w0(l�; c�) and let w = vw0.

Then we have w j= (I�;�; 'I�) such that v = w(l; c) = w(l�; c�). With the help of the bricks

(x� ; i; x� ; i
�) we conclude that w(j; k) = w(j�; k�) for all j; k 2 T; j � k. Therefore we have

w(left(x); i) = w(left(x); j) for all (x; i; x; j) 2 B. Since I � I�, we have w j= (I;�; 'I) and

w is a solution of B. 2

Finally we show that Rule 4 preserves the convex condition. This is clear for Step 1, for

the other steps we state lemmata.

Lemma 4.30 Step 2 preserves the convex chain condition with respect to the set F .

Proof . The new bricks in Step 2 have the form (x� ; i; x� ; i
�) and (x� ; i

�; x� ; i) for some

(x; i; x; j) 2 B with left(x) < c = left(x�) � i. Since (x; i; x; j) 2 B can be linked via a convex

chain to some basis, it is enough to consider the following �gure:

x� i

x� i�

x� i�

x� i

x i

x j

2

Lemma 4.31 Let C = (b1; : : : ; bm) be a convex chain before Step 3 linking b1 with bm. Then

after Step 3 there is a convex chain C 0 linking b0
1
with b0m.

Proof . Let us have a local look at the convex chain:

C = ( : : : ; (x; i; x; j); (y; j; y; k) : : : ):

By symmetry we may assume that left(x) � left(y). Pictorially this local part is then given

by the following �gure.

...

x i

x j

y j

y k
...
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This is the situation before Step 3. After Step 3 let us denote the corresponding bricks

by (x0; i0; x0; j0) and (y0; j00; y0; k0). This yields the following �gure.

...

x0 i0

x0 j0

...

y0 j00

y0 k0

...

The question is whether or not j0 = j00. If j0 = j� or j00 = j, then we have j0 = j00, and

the chain is not broken. Hence we have to consider the case j0 = j and j00 = j�, only. This

case is equivalent to

left(y) < c � left(x) � j:

With the help of the brick (x� ; j; x� ; j
�), which was introduced in Step 2, we can repair the

broken chain. We have

left(x�) = c � left(x); left0(y0) < c� = left(x�)

and we obtain the following �gure:

...

x0 i0

x j

x� j

x� j�

y0 j�

y0 k0

...

Doing this transformation wherever necessary we construct the convex chain C 0. 2

Note that C 0 constructed in the lemma above may contain many bricks of the form

(x0o; i
�; xo; i

�) and (xo; i
�; x0o; i

�): These bricks were canceled only later in Step 5. In fact

their presence in the next lemma is very useful again.

Lemma 4.32 After Step 4 the convex chain condition is satis�ed with respect to the set F 0.

Proof . Let b0 be a brick after Step 3 and b the corresponding brick before Step 3. This brick

b is linked before Step 3 via a convex chain to some basis (x; i; x; j) with j 2 F . Lem. 4.31

states that after Step 3 the brick b0 is linked via a convex chain to the corresponding brick

(x0; i0; x0; j0). For j < c we have left(x) < c and j0 = j� 2 F 0. Hence (x0; i0; x0; j�) is again a

basis. For j0 = j we have c � j and therefore j 2 F 0. This solves also the case j0 = j. The

remaining case is c � j and j0 = j�. This means left(x) < c � j. By Step 2 there is a brick

(x� ; j
�; x� ; j) and we have left0(x0) < c� = left(x�). We may put the brick (x0; i0; x0; j�) upon

the basis (x� ; j
�; x� ; j). Since j 2 F \ F 0, it is in fact a basis before and after Step 4. We

obtain the following �gure:
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x0 i0

x0 j�

x� j�

x� j

2

Lemma 4.33 Steps 5 and 6 preserve the convex chain condition with respect to the set F 0.

Proof . Step 5 is a special case of an application of Rule 2, likewise Step 6 is a special case

of applications of Rule 3. In particular, the convex chain condition is preserved. 2

The lemmata above yield to the following proposition:

Proposition 4.34 Rule 4 is upward and downward correct. It preserves the convex chain

condition.

Example 4.35 Let x1 � � � xg = xg+1 � � � xd be a word equation, 1 � g < d such that the regular

constraints are given by a mapping  : 
! S. Let

B = ((�;�); (I;�; 'I ); left; B)

be the result of the (logspace-) reduction presented in Sect. 4. Recall that (I;�; 'I ) represents

the S-sequence

( (x1); : : : ;  (xg);  (xg+1); : : : ;  (xd)):

We may assume that (I;�; 'I) is in its standard representation, I = f0; : : : ; dg. According

to the reduction the set � contains two variables x0 and x0 such that left(x0) = 0, right(x0) =

g = left(x0), and right(x0) = d. The set B contains at most d boundary equations (or bricks),

among them there is the brick:

x0 g

x0 d

We have jIj = d + 1 and j�j = jBj � 2d. If the word equation has a non-singular solution

satisfying the regular constraints, then exp(B) � 2 � e(c(S); d).

Rules 1 to 3 are not applicable to B, but we can try Rule 4. Doing this we �nd:

xo = x0; l = 0; c = g = r = l�; and c� = g� = r� = d:

The set T of transport positions is T = f0; : : : ; gg.

In Step 1 we have to choose some admissible extension of (I;�; 'I) by T at [g; d]. In

general it is not clear that such an extension exists. Under the hypothesis that x1 � � � xg =

xg+1 � � � xd has a non-singular solution � : 
 ! A+ with ' � � =  we can continue. Let

v = �(x1 � � � xg) and assume that v has minimal length among all solutions satisfying the

regular constraints given by  . With the help of this word Step 1 can be completed: De�ne

w = vv, then we have

w j= ( (x1); : : : ;  (xd)):
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The set of positions of w is f0; : : : ;m;m + 1; : : : ; 2mg where m = jvj. The fact that w is a

model of (I;�; 'I) is realized by an order respecting injective mapping

� : f0; : : : ; dg ! f0; : : : ; 2mg:

De�ne T � = fm+�(i) j 0 � i � gg and I� = �(I)[T �. Since I� is a subset of positions of w,

this induces a linear suborder over S, which is denoted by (I�;�; 'I�). We have jI�j � d+g�1.

After renaming we may assume I� = f0; : : : ; dg[T �, T � = f0�; : : : ; g�g such that 0� = c = g,

c� = g� = d. This completes Step 1 of Rule 4. Since in reality we usually do not know v, the

choice of I� is a non-deterministic guess!

The next steps in Rule 4 are deterministic. In Step 2 we introduce new variables x� and

x� with left(x�) = g = right(x�) and left(x�) = d = right(x�).

In Step 3 we transport the structure of the interval [0; g] to [0�; g�] = [g; d]. If we still view

I� as a subset of positions of w, then this re
ects a transport to the positions from the �rst

to the second factor v in the word w = vv.

The de�nition of F 0 according to Step 4 is

F 0 = fi 2 I� j g � ig:

In Step 5 we cancel the bricks (xo; d; xo; d), (xo; d; xo; d) and the variables xo, xo.

In Step 6 we replace I� by I 0 = F 0.

Rule 4 is �nished. The cardinality of I 0 is bounded by d. Let B0 denote the new system,

then the word v is a solution, v j= (I 0;�; '(I
0).

Since in the present situation left(x�) = right(x�) = g, Rule 1 is now applicable to B0,

it cancels the super
uous bricks (x� ; g; x� ; d), (x� ; d; x� ; g) and the variables x� and x� . The

new system after an application of Rule 1 is denoted by B00 = ((�00
0
;�); (I 00

0
;�; 'I000 ); left

00
0; B

00
0
):

We have jI 00j � d; j�00j = jB00j � 2(d � 1). It is now the word v which is a solution of B00,

hence exp(B00) � exp(v). Therefore, we can choose e(B00) = e(c(S); d).

5 Proof of Theorem 4.12

5.1 Decidability

The proof of Thm. 4.12 is a reduction to a reachability problem in some �nite directed graph.

The implications for space- and time bounds for Makanin's algorithm are given later.

The instance is a system of boundary equations

B0 = ((�0;�); (I0;�; 'I0); left0; B0):

We may assume that B0 satis�es the assumptions made at the beginning of Sect. 4.3, because

otherwise B0 is not solvable. For trivial reasons the system B0 satis�es the convex chain

condition with respect to the set F0 = I0:

Let 2n0 = j�0j and f0 = jF0j = jI0j. According to Prop. 4.13 choose a number e(B0) such

that either B0 is not solvable or exp(w) � e(B0) for some solution w of B0. De�ne an integer

�max by

�max = (2n0)
4n20(e(B0)+1)�1

� 2(2n0 + f0):

Note that this value is de�ned just to �t Cor. 4.21 for a set of �nal indices having size at most

2n0 + f0.
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Now, de�ne a directed graph G (the search graph of Makanin's algorithm) as follows.

The nodes of the search graph G are the systems of boundary equations B = ((�;�); (I;�

; 'I); left; B), where:

j�j � 2n0;

jIj �
n0 + 2

2
� �max;

jBj � �max:

For systems B,B0 2 G we de�ne an arc from B to B0 whenever �rst, there is a transformation

rule is applicable to B and second, B0 is the result of the corresponding transformation. A

system B 2 G with an empty set of variables is called a terminal node.

Clearly, B0 2 G and the search graph G has only �nitely many nodes. Hence, it is enough

to show the following claim: The system B0 has a solution if and only if there is a directed

path in G from B0 to some terminal node.

The "if"-direction of the claim is trivial since all transformation rules are upward correct

and since all terminal nodes are solvable by Lem. 4.6. For the "only-if"-direction let B0 be

solvable and let w0 j= (I0;�; 'I0) be a solution satisfying exp (w0) � exp (B0).

Let M � 0 and assume that there is an inductively de�ned sequence of solvable systems

(B0;B1; : : : ;BM ), M � 0 such that the following properties are satis�ed for all 1 � k �M :

� Bk = ((�k;�); (Ik;�; 'Ik); leftk; Bk) is the result of some transformation rule applied to

Bk�1,

� Bk has a solution wk j= (Ik;�; 'Ik) such that wk is a su�x of wk�1,

� either j�kj < j�k�1j or jwk�1j < jwkj,

� Bk satis�es the convex chain condition with respect to some subset Fk � Ik with jFkj �

2n0 � j�kj+ f0.

If BM is a system of boundary equations without variables, then we stop. Otherwise,

since BM is solvable, a transformation rule is applicable. Consequently, the sequence can be

continued by some solvable system BM+1 satisfying all properties above. The third property

however implies thatM � n0+ jw0j. Hence, �nally we must reach a system without variables.

We may assume that this happens with reaching BM . Let us show that all Bk are nodes of G

for all 0 � k � M . This will imply the claim since then there is a directed path to BM , and

BM is a terminal node.

We have to verify j�kj � 2n0; jIkj �
n0+2

2
� �max; and jBkj � �max:

The assertion j�kj � 2n0 is trivial. The second property of the sequence implies exp (Bk) �

exp (wk) � exp (w0) � e(B0). By Cor. 4.21 and the fourth property we have jBkj � �max.

The next lemma yields an invariant which will give the desired bound on the size of every Ik.

Lemma 5.1 For 0 � k � M de�ne �k = jf(x; i; x; j) 2 Bk j leftk(x) < igj. Then for all

1 � k �M we have:

2 jIkj � �k +
j�kj

2
� �max � 2 jIk�1j � �k�1 +

j�k�1j

2
� �max:
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Proof . Consider the rule which was applied to pass from Bk�1 to Bk. For Rule 1 or 2 we

have:

j�kj = j�k�1j � 2;

jIkj = jIk�1j ;

�k�1 � �k � �max:

For Rule 3 we have:

j�kj = j�k�1j ;

jIkj = jIk�1j � 1;

j�kj = j�k�1j :

Finally, for Rule 4 we have j�kj = j�k�1j and Lem. 4.27 says:

2 jIkj � �k � 2 jIk�1j � �k�1:

The assertion of the lemma follows. 2

A consequence of Lem. 5.1 (and �k � �max) is:

2 jIkj � 2 jI0j+ (n0 + 1)�max for all 0 � k �M:

Since jI0j �
1

2
�max, we obtain jIkj �

n0+2

2
�max. Hence Bk 2 G for all 0 � k �M . This proves

Thm. 4.12, hence Makanin's result.

5.2 Complexity in terms of the semigroup S and the maximal number of

boundary equations

Our estimations on the upper bounds of Makanin's algorithm are given by the size of the

semigroup S and the number �max as de�ned in the precedent section, which is the maximal

number of boundary equations.

A node B = ((�;�); (I;�; 'I ); left; B) of the search graph G is encoded as a binary string

over f0; 1g as follows: The code for (�;�) is simply the number n written in binary such that

j�j = 2n. Thus, O (logn0) bits are enough for this part. The linear order (I;�; 'I ) is encoded

by its underlying S-sequence. For this part O(n0�max log jSj) bits are used. The mapping

left : �! I is encoded by using O(n0 log (n0�max)) bits. Finally, the set of bricks B can be

encoded by using O(�max log (n0�max)) bits. Note that n0 � log �max. It follows that there

is e�ectively a constant c 2 N such that every B 2 G can be described by a bit string of

length equal to c � (log jSj � �max � log (�max)). Up to some calculations performed over S this

is the essential upper space bound for the non-deterministic procedure. It is at most double

exponential in the input size, but we will come back to this point later.

The number of bits we need for the code yields an upper bound for the size of G. Using

the constant c above, de�ne a natural number 
max by:


max = 2c�(logjSj��max�log(�max)) 2 2O(logjSj��max�log(�max)):

Lemma 5.2 The number of nodes in G is less than or equal to 
max:
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Proof . The number of nodes is as most exponential in the number of bits used in a

description for a node. 2

The following assertion is now clear:

Proposition 5.3 The system B0 is solvable if and only if G contains a directed path

(B0; : : : ;Bm)

to the terminal node Bm = (;; ;; ;; ;) such that m � 
max:

Proof . If there is a path to some terminal node then this path can be elongated by

applications of Rule 3 until �nally the underlying linear order is the empty set. We may

assume that this path is without cycles, then Lem. 5.2 implies m � 
max: 2

Corollary 5.4 Let B0 be solvable and let w0 j= (I0;�; 'I0) be a solution, where the length

jw0j is minimal. Then we have

jw0j � jSj � 2
max :

Proof . Consider a sequence (B0; : : : ;Bm), m � 
max to the terminal node Bm = (;; ;; ;; ;)

as in Prop. 5.3. Going the path backwards we de�ne inductively solutions vm; vm�1; : : : ; v0
of the systems Bm;Bm�1; : : : ;B0 as follows. The initial solution is vm = 1. Assume that

vm; : : : ; vk, 1 � k � m are already de�ned. Depending on the transformation rule which link

Bk�1 to Bk we de�ne the solution vk�1 j=
�
Ik�1;�; 'Ik�1

�
of the system Bk�1.

For Rule 1 or 2 we de�ne vk�1 = vk. For Rule 3 we de�ne vk�1 = uvk for some suitable

u 2 A+. It is clear that we can choose u such that juj � jSj. Hence jvk�1j � jSj+ jvkj.

For Rule 4 we �nd a solution vk�1 = uvk, where u is a factor of vk. Hence jvk�1j � 2 jvkj.

We end up with a solution v0 j= (I0;�; 'I0) of B0 such that jv0j � jSj � 2
max .

Since w0 is of minimal length we have jw0j � jv0j. 2

Remark 5.5 Assume that B0 is solvable and w0 is a solution of minimal length. The word

w0 can be used as a model for constructing a path

(B0; : : : ;BM ) ; M � 1

to some terminal node. However, we cannot exclude that this path has many cycles. In

particular, M need not to be the number m, which was used in the proof of Cor. 5.4. Due to

the construction of the solution v0 above, it is possible that v0 6= w0 and e(B0) < exp(v0).

Corollary 5.6 In deterministic time

2O(jSj�2
max )

we �nd by exhaustive search either a solution of minimal length or we can report that B0 is

not solvable. This upper bound is �ve times exponential in the input size (number of bits used

in the encoding) of B0.

Proof . Test all strings up to the length of jSj � 2
max whether they are a solution. Stop

when the �rst solution is encountered. If no solution up to this length is found, then B0 is

not solvable. 2
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5.3 An upper bound for the complexity of solving word equations

The original question of the chapter is whether a given word equation x1 � � � xg = xg+1 � � � xd,

1 � g < d with regular constraints has a solution. We may assume that each regular language

Lx � A� is speci�ed by an NFA with rx states, x 2 
. De�ne r =
P

x2
 rx; we are going to

measure the complexity of Makanin's algorithm in terms of d and r. First, we choose a suitable

semigroup S and a homomorphism ' : A+
! S. By Rem. 3.1 we may assume that S satis�es

jSj � 2r
2

and c (S) � r!. By Thm. 3.2 choose a value e (c (S) ; d) 2 c(S) � 2O(d)
� 2O(d+r log r)

such that e (c (S) ; d) is an upper bound for the exponent of periodicity. Transform the word

equation (by a non-deterministic guess) into a system of boundary equations

B0 = ((�0;�); (I0;�; 'I0); left0; B0).

such that the word equation has a solution satisfying the regular constraints if and only if B0
is solvable. This is possible such that �rst, jI0j; j�0j; jB0j 2 O(d), and second, if B0 is solvable,

then

e (B0) � 2 � e (c (S) ; d) 2 2O(d+r log r):

More precisely, by Ex. 4.35 we can say jI0j � d � 1; j�0j = jB0j � 2(d � 1) and, if B0 is

solvable, then e (B0) � e (c (S) ; d) :

Compute a value �max 2 22
�(d+r log r)

such that the search graph G satis�es Prop. 5.3 for the

corresponding value 
max. Recall that �max is an upper bound for the number of boundary

equations of each node and that 
max an upper bound for the number of nodes in G. The

number �max is double exponential in the input size, which is for simplicity d + r. The

value �max is large enough to perform all computations over the semigroup S and it is small

enough in order to solve the reachability problem in the search graph G in non-deterministic

space NSPACE(22
O(d+r log r)

). Using standard knowledge in complexity theory (like Savitch's

Theorem, c.f. Hopcroft and Ullman (1979)), we can state:

Theorem 5.7 The satis�ability problem for word equations with regular constraints is in the

following complexity classes:

DSPACE
�
22

O(d+r log r)
�
, i.e., double exponential deterministic space,

DTIME

�
22

2O(d+r log r)
�
, i.e., triple exponential deterministic time.

The length of a shortest solution is at most four times exponential in the input size, it can be

bounded by

22
22
O(d+r log r)

:

The computation of a shortest solution by exhaustive search is possible in at most �ve times

deterministic exponential time.

Remark 5.8 The complexity bounds given above are slightly di�erent from other bounds pub-

lished in the literature so far. In Ko�scielski and Pacholski (1996: Cor. 4.6) a triple exponential

non-deterministic time bound for the satis�ability problem is given. Here we have triple expo-

nential deterministic time, since in the formulation as a graph reachability problem it is the
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number of nodes which becomes important. The upper bound for the exponent of periodicity

given in Schulz (1992a) for the situation including regular constraints is based on the tech-

niques of the original article of Makanin. This yields a double exponential bound whereas it is

shown here that one exponential is enough. The upper bound for the exponent of periodicity

is essentially optimal; the optimality is not known for the bounds mentioned in Thm. 5.7

6 Notes

A systematic study of equations in free monoids was initiated by A. A. Markov in the late

1950's in connection with Hilbert's Tenth Problem, see Hmelevski�� (1971), Makanin (1981).

It is not di�cult to see that the matrices having non-negative integer coe�cients and de-

terminant 1 form a free monoid inside the special linear group SL2(Z). The free generators

are:

a =

�
1 1

0 1

�
; b =

�
1 0

1 1

�
:

Let L = R be a word equation over fa; bg in unknowns 
 = fx1; : : : ; xng. Replace each

variable xi 2 
 by a matrix �
�i1 �i2
�i3 �i4

�
;

where �ij denote variables over N. Multiplying matrices corresponding to the words L and

R yields an equation of the form�
P1 P2
P3 P4

�
=

�
Q1 Q2

Q3 Q4

�
:

The coe�cients P1; : : : ; Q4 are polynomials in the �ij . It is clear that the equation L = R

has a solution if and only if the following Diophantine system has a non-negative solution:

Pi = Qi; i = 1; : : : ; 4;

�i1�i4 � �i2�i3 = 1; i = 1; : : : ; n:

The hope of Markov was to prove this way the unsolvability of Hilbert's Tenth Problem,

which was not settled at that time. This failed: The unsolvability of Hilbert's Tenth Problem

was shown in 1970 by Matiyasevich using quite di�erent methods, see Matiyasevich (1993).

The solvability of word equations is, needless to say at this place, due to Makanin (1977).

Before Makanin obtained the breakthrough only partial results were known. In 1964

and 1967 Hmelevski�� found a positive solution for the cases with two and three variables

respectively, see Hmelevski�� (1971). In the case of two variables a polynomial time algorithm

for the satis�ability problem is given in Charatonik and Pacholski (1993). The solvability

in the case where each variable occurs at most twice is due to Matiyasevich (1968). Other

special cases were solved in Plotkin (1972) and Lentin (1972). After the general solution

was established in 1977 other questions became central. In Makanin (1979) it is shown that

the rank of an equation is computable, see also P�ecuchet (1981). Makanin's algorithm was

implemented in 1987 at Rouen, see Abdulrab and P�ecuchet (1990). The inherent complexity

of the satis�ability problem of word equations is not known. The lower bound is NP-hardness
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for equations without regular constraints and PSPACE-hardness for equations with regular

constraints. The known upper bounds to date for Makanin's algorithm are given in Thm. 5.7.

There is a double exponential gap between lower and upper bound for the space complexity.

The original article Makanin (1977) is very technical. In the sequel other presentations

with various improvements were given, let us refer to Ja�ar (1990), Schulz (1992a, 1993).

The present chapter is along this line, it is rather close to Schulz (1992a). A brief survey on

equations in words can be found in Perrin (1989); more material on equations in free monoids

and, especially on equations without constants, is in the Handbook of Formal Languages, see

Cho�rut and Karhum�aki (1997). There are also two volumes in the Springer lecture notes

series dedicated to word equations and related topics: Schulz (1992b) and Abdulrab and

P�ecuchet (1993).

Equations in free groups are de�ned analogously to word equations. The situation however

becomes extremely complicated. It was Makanin himself who mastered also this problem. In

Makanin (1982) and with a correction in Makanin (1984) it is shown that the satis�ability of

group equations with constants in decidable. In Razborov (1984) an algorithm is presented

which generates all solutions to a given equation. The inherent complexity of Makanin's

algorithm for groups is investigated in Ko�scielski and Pacholski (1998). The authors de�ne the

notion of abstract Makanin algorithm. They show that this abstract scheme is not primitive

recursive.

Another direction to extend Makanin's result is to include partial commutation: Let

I � � � � be a relation between letters, which says when letters may commute (i.e., when

they are independent). The quotient monoid M(�; I) = ��=fab = ba j (a; b) 2 Ig is called

the free partially commutative monoid. It was introduced in Cartier and Foata (1969), where

interesting combinatorial properties were discovered. In computer science free partially com-

mutative monoids are usually called trace monoids, a notion which is due to Mazurkiewicz

(1977). The interest is that partial commutation expresses some basic phenomena of concur-

rency, let us refer to Diekert and Rozenberg (1995) for an overview. Syntactically, a system

of trace equations is the same as a system of words equations, but solutions are searched in

the trace monoid, this means the commutation relations ab = ba can be used for free for all

(a; b) 2 I. For example, if (a; b) 2 I, then, contrary to the situation in free monoids, the trace

equation axb � bya has a solution �(x) = �(y) = 1. The set of all solutions of this trace

equation is given by �(x) = �(y) and alphabetic constraints.

It is shown in Matiyasevich (1997) that the satis�ability of a system of trace equations is

decidable. The proof is a reduction of trace equations to word equations with regular con-

straints. As a byproduct of the reduction we may put arbitrary recognizable constraints on the

variables without loosing satis�ability. Another reduction using a new result on lexicographic

normal forms of traces is presented in Diekert, Matiyasevich, and Muscholl (1997).

A challenging open question to date is a generalization of Makanin's result to free partially

commutative groups. But this is only one of many open questions in this area. The theory

of word equations is still exciting and many problems remain to be solved.
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Problems

Section 1

1.1 Decide whether or not the solution abbababbaabab given to Ex. 1.1 is a non-singular

solution of minimal length.

1.2 Show that the satis�ability problem of systems of word equations without regular

constraints is NP-hard.

Hint: Show that the problem is NP-complete, if there is exactly one constant, A = fag.

Use the fact that linear integer programming is NP-hard, even in unary notation.

1.3 Modify the decision procedure, where each variable occurs at most twice, to include the

case where we have regular constraints. Show that the underlying decision procedure

is PSPACE complete, if the regular constraints are speci�ed by a list of NFA (non-

deterministic �nite automata).

Hint: The hardness follows directly from well-known PSPACE complete problems on

regular sets.

Section 2

2.1 Give a greedy algorithm to compute the p-stable normal form of a word w 2 A�:

Modify the algorithm by pattern matching techniques such that it runs in linear time

O(jwj+ jpj):

2.2 Prove Props. 2.8, 2.9, and 2.10. Show that the results remain true when there are

regular constraints.

2.3 Show that the satis�ability problem of single word equations without regular con-

straints is NP-hard.

Hint: Compare this problem with Prob. 1.2.

2.4 Let Lx � A� be a regular language. Describe the set of all solutions � for an equation

with only one unknown x under the constraint �(x) 2 Lx.

Section 3

3.1 An instance of a linear integer programming problem is given by an m � n matrix

D 2 Z
m�n and a vector c 2 Z

m. Let x 2 N
n be a minimal vector such that Dx = c.

Assume that the sum over the squares over the coe�cients in each row of D is in O(1)

and kck 2 O(n2). Show by elementary methods that there is a (small) constant c such

that

kxk 2 O(2cn):

Hint: The proof is a slight modi�cation of the standard proof which shows that linear

integer programming is NP-complete. Use Hadamard's Inequality for an upper bound

for the maximal absolute value over the determinants of square submatrices of D.

Next, show that if x 2 Nn is a minimal solution, then there is also a minimal solution

x0 2 Nn such that �rst, the absolute value of at least one component can be bounded

and second,
Pn

i=1
xi �

Pn
i=1

x0i. Freeze by an additional equation one variable of x0
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to be a constant. Repeat the process until the homogeneous system Dx = c has only

the trivial solution. Then apply Cramer's Rule.

It should be noted that this method doesn't yield the best possible result. But it is

good enough to establish that e(d) 2 2O(d), which was used in the proof of Thm. 3.2.

Section 4

4.1 Consider the reduction in the proof of Lem. 4.14. Give an estimation for the length d of

the word equation and thereby for an upper bound of e(B). De�ne another reduction

where the denotational length of the resulting word equation becomes smaller. This

improves also the estimation for e(B). Give a third estimation for e(B) based on the

techniques presented in Sect. 3.

Hint to the second part: If a system contains two equations x = x0 and xy = x0y0,

then the second one can be replaced by y = y0.

4.2 The lower bound for e(c(S); d) given in Ex. 3.4 can be re�ned. Ko�scielski and Pacholski

(1996: Thm. 4.8) consider the following equation with k = 5:

xnaxnbxn�1b � � � x2bx1 = axnx
k
n�1bx

k
n�2b � � � x

k
1ba:

Show that there is a unique solution. Derive from this solution a lower bound for the

constant hidden in the notation e(c(S); d) 2 c(S) � 2
(d). Why is k = 5 a good value?

Hint: Show �rst that �(xi) 2 a
� for all 1 � i � n.
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