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Abstract

We give a self-contained proof of a fundamental result of Makanin (1977), which solves the
satisfiability problem of equations with constants over free monoids. Owur presentation of
Makanin’s algorithm is borrows Schulz (1992a), where Makanin’s result is extended to the
case where solutions are restricted by imposing regular constraints on the variables.

This report appears (with minor modifications) as a chapter of the new book of M. Lothaire
Algebraic Combinatorics on Words.
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1 Introduction

The aim of this text is to give a self-contained proof of a fundamental result of Makanin
which implies that the existential theory of word equations over free monoids is decidable. In
other terms, Makanin’s result is the decidability of the existential theory of concatenation.
Let A be an alphabet of constants and let €2 be a set of variables. A word equation L = R
is a pair (L,R) € (AUQ)* x (AUQ)*, and a system of word equations is a set of equations
{L1 = Ry,...,Ly = Ri}. A solution is a homomorphism o : (AU Q)* — A* leaving the
letters of A invariant such that o(L;) = o(R;) for all 1 < ¢ < k. A solution is henceforth
identified with a mapping o : Q@ — A*. It is called non-singular, if o(z) # 1 for all z € Q.
Otherwise it is called singular. The satisfiability problem for word equations is to decide
whether a given word equation has a solution. The problem is usually stated for a single
equation, but this is no loss of generality. Given a propositional formula over word equations
all negations can be eliminated; and then, passing to a disjunctive normal form, the problem
of satisfiability can be reduced to a single conjunction. It is therefore enough to consider
a system of word equations, which in turn can be transformed into a single word equation.
This way the decidability of propositional formulas over word equations can be reduced to the



satisfiability problem of single word equations. Makanin (1977) yields a decision procedure
for the satisfiability problem of word equations; and the decidability of the existential theory
over free monoids follows. Since the problem is semi-decidable by its nature, a positive answer
suffices to compute (if desired) a solution o : @ — A* which is minimal, say with respect to
Y zcqlo(z)]. Here and in the following computation means that there is an effective procedure
in the mathematical sense. We shall derive a double exponential space bound only to solve
the satisfiability problem, and the length of a minimal solution will be at most four times
exponential in the input size of the word equation. These upper bounds are far beyond any
practical meaning, but it is not clear that this reflects the inherent complexity of the problem.
In practice the algorithm seems to behave much better. For example, up to now no solvable
word equation is known where the minimal solution exceeds exponential length.

Example 1.1 Let A = {a,b} and Q = {z,y, z,u}. Consider the equation
rauzau = yzbraaby
This equation is solvable, a possible non-singular solution is given by:
o(x) =abb, o(y) =ab, o(z) =ba, o(u)= bab.
We have
abbababbaabab = o(rauzau) = o(yzbraaby).

There is a rather straightforward algorithm to decide the solvability of a system of word
equations where each variable occurs at most twice. This algorithm is due to Matiyasevich
(1968). Since the general solution refers (implicitly) to the underlying idea, we explain it
here as an introductory example. Let E = {L; = Ry,...,Ly = Ry} be a system of word

k

equations where every variable z € Q occurs at most twice in E. Let ||E| = ) |L;R;| denote

the denotational length of E. The question is whether there is a solution. ZUlsing induction
on || we describe a non-deterministic decision algorithm which works without exceeding a
linear space bound in || E||. The basis Q@ = 0 is clear, hence let Q # (). The first step is then to
guess whether there is a solution o : & — A* where o(z) = 1 for some z € Q. This is done by
choosing some z € ) and replacing the occurrences of z in £ by the empty word. We obtain
a new system E’ over Q\ {z} and recursively we decide in non-deterministic linear space
whether E’ has a solution. Thus, after this step we are looking for non-singular solutions of
E, only. We may assume that the first equation is either of the form

= q--- withzeQ, ac A
or  x-- = y---  withzeQ,yeQ, z#£y.

By symmetry (or a non-deterministic guess to interchange the réle of L; and R;) we may
either write x = az or £ = yz, where z is a new variable. Replacing all occurrences of = by az
or yz respectively, we obtain a new system where z does not occur any more and z occurs at
most twice. On the left of the first equation we may cancel either ¢ or y, and then y occurs
also at most twice. Hence we end up with a new system E’ where the number of variables is
the same as in E, every variable occurs at most twice and we have |E’|| < ||E||. Note that E’
may have a singular solution with o(z) = 1. However, if E’ is solvable, then E is also solvable.



Now, let o :  — A* be a non-singular solution of E where ) |o()| is minimal. Then we
find a solution o’ for E' with |0(2)| < |o(z)]| since o(y) # 1. Thus, the length of a shortest
solution has decreased, showing that the non-deterministic procedure will find a solution, if
there is any. Since we have a linear space bound, the procedure can be transformed into a
deterministic decision algorithm of at most exponential time.

The presentation of the general case will mainly follow Schulz (1992a), thereby showing
the result of Makanin in a more general setting. Assume that for every & € Q a regular
language L, C A* is given as part of the problem instance together with the equation L = R.
Then we can decide whether or not there exists a solution o : Q — A* satisfying additionally
the regular constraints o(z) € L, for all z € €. (For example, we can prescribe the alphabet
in a solution o(z) for all z € €2.)

In the following we do not focus very much on necessary decidable conditions which are
useful to prune the search tree. A good pruning strategy is of course extremely important for
an implementation since the search tree tends to be huge. However pruning the tree doesn’t
help to understand the algorithm nor it seems to have any effect on the worst-case analysis.

2 Simple facts on words and on equations

2.1 Notations and combinatorial properties

Throughout this chapter A = {a,b, ...} denotes an alphabet of constants and Q is a set of
variables (or unknowns) such that AN Q = (). We shall use the same symbol o to denote a
mapping o : 8 — A* and its canonical extension to a homomorphism o : (AUQ)* — A*. The
symbol 1 denotes the empty word and the unit element in other monoids and also the natural
number 1 € N. The length of a word w is denoted by |w|. The prefix relation (proper prefix
relation) of words is denoted by u < v ( u < v resp.). Recall that a word p is called primitive,
if it cannot be written in the form p = r® with a # 1. Lower case Greek letters «, 3 etc. are
mostly used to denote natural numbers. The set of natural numbers is N, it includes zero,
the set of integers is Z. By log @ we mean max{1, [log, «]}.

Two words y,z € A* are conjugates, if y = zx for some x € A*. The next proposition
shows that in free monoids conjugates are obtained by transposition.

Proposition 2.1 Let z,y,z € A* be words, y,z # 1. Then the following assertions are
equivalent:

1. zy = zx,
2. 3dr,s€ A% s # 1L, a>0:2 = (rs)%, y=sr, and z =rs.

Proposition 2.2 Let p € A* be primitive and p*> = xpy for some x,y € A*. Then we have
either x =1 or y =1 (but not both).

Proofs of Props. 2.1 and 2.2 can be found in Lothaire (1983) or elsewhere.
An overlapping of two words wy and ws is depicted by the following figure:

| w1 |




It says that the common border is an identical factor, i.e., w; = zy, we = zz. Usually we
mean x # 1 and sometimes the figure also indicates that both y £ 1 and z # 1. But there will
be no risk of confusion. For example, Prop. 2.2 can be rephrased by saying that the following
picture is not possible for a primitive word p € A*:

| P | P |

2.2 Domino Towers

Every non-empty word w € A1 can be written in the form w = (rs)"~'r with s # 1, h > 2.
Then it can be arranged in figure looking like a domino tower of height h:

( TS TS TS -+ TSTS r‘
‘7“3 rsS rs -+ TrsSTrSs 7"‘
‘7“3 rslrs -+ rsors 7"‘
height h <
‘rs TS rs -+ [rsrs 7"
‘rs rs rs -+ rTS8|rs 7"
\ ‘7"3 rs rs -+ TSTSs 7“‘

The position of the vertical line says that the upper left boundary is not on the right of
the lower right boundary. The formal definition of such an arrangement allows also a less
regular shape. It is as follows:

Definition 2.3 Let h > 2. We say that a non-empty word w € A" can be arranged in
a domino tower of height h, if there are words z1,... ,zp_1 € A* and non-empty words
Ylyern sYh_1s 224+ 21 € AT such that

1. w=uzy; = ziy1x; for all 1 < i < h,
2. |2y zp] < |w).

Note that for h = 2 the domino tower may degenerate as in the following figure.

Definition 2.4 Let w € A* be a word. The exponent of periodicity exp(w) is defined by
exp(w) = max{a € N| Ir,s,p € A", p#1:w=rp*s}.

Lemma 2.5 Let w € A" be a non-empty word which can be arranged in a domino tower of
height h. Then we have exp(w) > h <1.



Proof. Choose a domino tower and words x;, y;, z; as in the definition above. Let z = z; €
{#2,...,2n} be of minimal length, z = z;_1, y = y;_1. Then (h <1)|z] < |w| and we have
xy = zx = w. Hence y and z are conjugates and we may apply Prop. 2.1. We obtain z = rs
and x = (rs)%r for some a > 0 and |r| < |z|. Hence w = 2" and therefore

(h&1)|z] < w| < (a+2)]2].

Since |z| > 0 we see that h &1 < a+ 1 < exp(w). O

2.3 Stable normal forms

One of the key ideas in Makanin’s proof is that, given a word equation, the exponent of
periodicity of a shortest solution has an effective upper bound. This relies on the notion of
p-stable normal form.

Definition 2.6 Let p € A" be a primitive word. The p-stable normal form of the word
w € A* is a shortest sequence

(wo, 1, ULy - ooy Oy Ug)

such that k > 0 (k is minimal), ug,u; € A*, a; > 0 for 1 <1 <k, and the following conditions
are satisfied:

1. We have w = ugp™ uq - - - p*kuy.

2. We have k = 0 if and only if p? is not a factor of w.

3. If k> 1, then we have:
ug € A*p\ A*p*A*,
u; € (A*pNpA*)\ A*p?A* for 1 <i <k,
up € pA*\ A*p?A*.

Proposition 2.7 Let p € AT be primitive. The p-stable normal form of w € A* is uniquely
defined. This means, if (ug,a1,u1,... ,qp,ug) and (vg,B1,-..,0e,v¢) are p-stable normal
forms of the same word w € A*, then they are identical, i.e., we have k = £, ug = vy, u; = vj,
and a; = B; for 1 <i<k.

Proof. Assume that (ug,oq,uq,... ,qk, ux) and (vg, B1,v1,--. , B¢, v¢) are both p-stable
normal forms of w. Since these are shortest sequences, the indices £ and ¢ are both minimal,
hence k = /.

For k = 0 we have w = ug = vg, hence let £k =/¢ > 1.

We show first that ugp = vg. To see this, suppose by symmetry that |ug| < |vg|. Since
ugp € A*p? and vy € (A*p\ A*p?A*), we obtain that ug < vy < ugp. By Prop. 2.2 this yields
ug = vp.

Let w' denote the word uip®wus---p*ug. A simple reflection using u; # p, Prop. 2.2,
and u; € (A*pNpA*)\ A*p?A* shows that p*tw’ € pMT1A*\ p® T2 A%, This implies a; = 31
and w' = v1pP2vy - - pPruy. Since we have w' € pA*, we see that the first component of its

p-stable normal form is in pA*. Hence (u1, g, ug,... ,ak,ur) is the p-stable normal form
of w'. By induction we conclude (u1,as9,us, ... ,ak,ur) = (v1,B2,v2,... Bk, vg). Hence the
proposition. O



2.4 From a system to a single equation and vice versa

The existential theory of equations over free monoids is decidable, i.e., the satisfiability of any
propositional formula over word equations (with regular constraints) can be decided. Let us
show the reduction to Makanin’s result. In a first step we may assume that all negations in
a given formula are of type L # R. Due to the following proposition these negations can be
eliminated.

Proposition 2.8 An inequality L # R is equivalent with respect to satisfiability to the fol-
lowing formula using x,y and z as new variables:

\/(L:Rava:Lax)\/ \/ (L = zay AN R = zbz) .

acA a,be A
a#b

In a second step the formula (without negations) is written in disjunctive normal form.
Then, for satisfiability, it is enough to see how a system of word equations can be transformed
into a single word equation. The method is given in Prop. 2.9. It relies on the trivial fact
that if ua < va,ub < vb, u,v € A*, a,b € A, and a # b, then we have u = v.

Proposition 2.9 Let a,b € A be distinct letters (if A = {a}, then let b denote a new letter
resp.) and let E = {L; = Ry,... ,Ly = Ri} be a system of word equations. Then the set
of solutions of E is identical (in canonical bijection resp.) with the set of solutions of the
following equation:

Lla---LkaRl---Rkle---Lkb = Rla---RkaLl---Lleb---Rkb.

Sometimes it is useful to do the opposite of the proposition above and to split a single
word equation into a system where all equations are of type xy = z with x,y,z € AUQ. This
can be derived from the next proposition. Again its (simple) proof is left to the reader.

Proposition 2.10 Let 1 - 24 = 41 -+ 24 be a word equation with 1 < g <d, z; € AU
for 1 < i < d. Then the set of solutions of L = R is in canonical bijection with the set of
solutions of the following system:

r1 = Y Tg+1 = Yg+1,
Yix2 = Y2, Yg+1Tg+2 = Yg+2,
Yg—1Tg = Yy, Yd—1Td = Yd,
Yg = Ya-
In the system above y1,... ,yq denote new variables.

2.5 A single variable

A parametric description of the set of all solutions can be computed in polynomial time,
if there is only one variable occurring in the equation. This serves as an example of why
p-stable normal forms might be useful, but it is not used elsewhere. The reader may skip this
subsection.



Let E be a set of word equations where exactly one variable z occurs, Q = {z}. By
Prop. 2.9 E is given by a single equation L = R with L, R € (AU {z})*. The first check is
whether o(x) = 1 yields the singular solution. It is then enough to consider only non-singular
solutions. Let us denote by £ a list of pairs (p,r) where p € A" is primitive and r € A* is a
prefix r < p. We say that L is complete for the equation L = R, if every non-singular solution
o has the form o(z) = p®r for some o > 0 and (p,r) € L.

Since our intention here is to give an application for p-stable normal forms, assume for
a moment that a finite complete list £ has already been computed in a first phase of the
algorithm. Then we proceed as follows. For each pair (p,r) € L we make a first test whether
o(x) = r is a solution and a second test whether o(z) = pr is a solution. After that we search
(for this pair (p,r)) for solutions where o(x) = p®r with @ > 2. Replace all occurrences of
in the equation L = R by the expression pp® 2pr, where o now denotes an integer variable.
Thus, the problem is now to find solutions for « such that @ > 2. Using the symbolic
expression we can factorize L and R in their p-stable normal forms:

mi1a+ng mka—l—nkuk
9’

L = wp Uy p

R — Uopmlla+nll/l)1 .. pm,[a—i—nllvz
Note that k,£ > 0 and m;,m}; € N, n;,n}; € Z for 1 <i <k and 1 <j </ By Prop. 2.7 we
have to verify k = ¢, u; = v; for 0 <+ < k and we have to solve a linear Diophantine system:

(m; ©m))a = n, &n; for 1 <i<k.

There are three cases. Either no or exactly one @ > 2 or all a > 2 satisfy these equations.

Note that for each pair (p,r) the necessary computations can be done in linear time. The
performance of the algorithm depends therefore on an efficient computation of a short and
complete list L.

We may assume that L = uzx--- and R = zvcldots, where u € AT, v € A* and both words
v and v are of maximal length. Let p € AT be the primitive root of u, i.e., p is primitive and
u = p® for some e > 1. If o is a solution of L = R, then o solves also an equation of type
uz = zw for some word w € AT. By Prop. 2.1 it is immediate that we have o(z) = p®r for
some « > 0 and r < p. Thus, the simple method is to define the list £ by all pairs (p,r)
where r < p. We obtain a list £ with ||p|| elements. It is clear that all computations can be
done in polynomial time. In fact square time is enough.

There is an improvement to an O(||E||log || E'||)-algorithm due to Eyono Obono, Goralcik,
and Maksimenko (1994). This improvement is a clever method to compute a complete list £
of at most logarithmic length. The method uses a finer combinatorial analysis and it relies,
in particular, on the following facts which can be found in Lothaire (1983):

e Let r,s € A*. If the word sr is primitive, then rs is also primitive.

e Let p,q € AT be primitive words and u = p¢, w = ¢/ for some e, f > 1. If v and w are
conjugates, then p and q are conjugates and there is a unique factorization p = rs, q = sr
with » < p. Moreover, if ux = xw for some word = € A*, then we have x = p®r for
some « > 0 and the unique prefix r < p above.

e Let p,q,r € AT be primitive words such that p? < ¢ < r2. Then we have |p|+|q| < |r|.
In particular, a word w € A* of length n has at most O(logn) distinct prefixes of the
form pp where p is primitive.



The aim is to compute a complete list £ for the equation L = R of length O(|LR|).
For this purpose we divide the set of non-singular solutions into two classes. The first class
contains all solutions where |o(z)| > |u| <|v|. (Of course, in the case |u| < |v| all solutions
satisfy this condition.) Let w be the prefix of the word vu such that |w| = |u|. If 0 is a
solution with |o(x)| > |u| <|v|, then we have uo(z) = o(z)w. Let p be the primitive root
of v and let ¢ be the primitive root of w. Then o(z) = p®r for some o > 0 and the unique
prefix r < p such that p = rs and ¢ = sr. If p and ¢ are not conjugates, then there is no such
solution. Otherwise, if p and ¢ are conjugates, we include the unique pair (p,r) into £. This
pair covers all solutions where |o(z)| > |u| < |v].

Now, let o be a non-singular solution such that 0 # |o(z)| < |u| < |v|. This implies
that R has the form R = zvz--- and that o(z)vo(z) < uo(xz). Hence o(z)vo(x) < uu and
ww < vuu, where w denotes the non-empty word vo(z). Let ¢ be the primitive root of w,
then we have qq < vuu.

There is a unique factorization ¢ = sr with s < ¢ such that v € ¢*s. the word rs is also
primitive and we have o(z) = (rs)®r for some a > 0. Therefore it is enough to compute the
list of all primitive words ¢ such that qq¢ < vuu. If v = 1, then we add all pairs (¢,1) to L.
Otherwise, if v # 1, then we compute for each ¢ the unique factorization ¢ = sr with s # 1
such that v € ¢*s. We add all pairs (rs,r) to L.

3 Linear Diophantine equations: Bounding the exponent of
periodicity

The input for the algorithm is an equation L = R with L, R € (AU Q)* together with regular
languages L, C A* for all variables x € Q2. We are looking for a solution o : 2 — A* such that
o(L) = o(R) and o(x) € Ly for all z € 2. For notational convenience we don’t distinguish
variables from constants in the equation henceforth. Every constant a € A is replaced by a
new variable z, and the constraint L;, = {a} for all @ € A. (For readability we use constants
in examples however.) From now on the equation is given as

xl...xg:xg_i_l...xd

with z; € Q. In order to exclude trivial cases we shall assume 1 < g < d whenever convenient.
The number d is called the denotational length of the equation. It is enough to consider
non-singular solutions. Hence we shall assume that 1 € L, for all x € 2. Next we fix a finite
semigroup S and a semigroup homomorphism ¢ : AT — S such that L, = ¢~ '¢(L,) for
all z € Q. For later use we demand that ¢ is surjective. The semigroup S can be realized
as the image ¢(A™) of the canonical homomorphism to the direct product of the syntactical
monoids with respect to L, for z € 2. Sometimes it is more convenient to work with monoids
instead of semigroups. We denote by S' the monoid, which is obtained by adjoining by a unit
element 1 to S. We have S'\ {1} = S and the homomorphism ¢ is extended to a monoid
homomorphism ¢ : A* — S1. We have ¢ (1) = {1} and p(AT) = S.

Given S we can compute constants t(S) > 0 and ¢(S) > 0 such that s/(9)+4(5) = 54S) for
all s € S'. In the following we actually use another constant c¢(S), which is defined as the least
multiple of ¢(S) such that ¢(S) > max{2,#(S)}. Note that this implies s"+¢(5) = gr+Ac(5)
for all s € S' and » > 0 and o, 8 > 1.



Remark 3.1 Assume that each regular language L, is specified by an NFA with r, states,

xz €Q. Let r = ) ry. Then we may choose the semigroup S such that
e

|S] < 2" and c(S) <rl

A proof for these bounds can be found in Markowsky (1977), where a more precise analysis
is given. For the moment explicit upper bounds for |S| and c(S) are not used. They are used
only later (Sect. 5.3) when complexity issues are investigated.

The important point here is that our knowledge from linear algebra how to find all minimal
solutions of a system of linear Diophantine equations yields an effective upper bound for the
exponent of periodicity of a solution of minimal length of a given word equation (with regular
constraints). Any effective upper bound would be sufficient, but one can do better. The
upper bound is exponential in the input size, and this is essentially optimal. In the proof
below a rather detailed analysis is given. So the proof becomes quite technical, which might
hide the beautiful and simple idea behind it. Readers who are mainly interested in the pure
decidability result are invited to ignore the exact values.

Theorem 3.2 Let d > 1 be a natural number, o : A* — S a homomorphism, and c(S) > 2
as above. There is a computable number e(c(S),d) € ¢(S) - 299 satisfying the following
assertion.

Given as instance a word equation x1--- Ty = Tgy1---Tq of denotational length d together
with a solution o' : Q — A*, we can effectively find a solution o : Q@ — A* and a word w € A*
such that the following conditions hold:

1. po'(z) = po(z) for all z € Q,
2. w=o0(x1-Ty) =0(Tgp1-Zq),
3. exp(w) < e(e(S),d).

Proof . For g =0 or g = d, we have exp(w) = 0, hence let 1 < g < d.

Testing all words of length up to |o'(z1 - z,4)| we find a solution ¢ and a word w such
that w = o(z1---249) = 0(xg41---2¢) is of minimal length among all solutions o where
o' (z) = po(z) for all z € Q. Recall that @1 --- 24 = 2441 - - - 24 is equivalent to the following
system:

rr = Y1, Tg+1 = Yg+1,
nxre2 = Y2, Yg+1Zg+2 = Yg+2,
Yg—-1Zg = Yg, Yd—1Zd = Yd,
Yg = Yd

Note also that exp(w) = exp(o(y,)). After an obvious elimination of variables, the system
above is equivalent to a system of d <2 equations of type

Ty =2, z,1y,z € Q.



Choose a primitive word p € A1 such that w = up®™P®)y for some u,v € A*. Consider an
equation zy = z from the system above and write the words o(x),o(y),o(2) in their p-stable
normal forms:

o(x) : (ug,r1 + ar1c(S),ut,... ,re + ape(S), uk),
o(y) : (vo,s1+ Bic(S),v1,... 50+ Bec(S),ve),
O'(Z) : (wﬂatl —{—’)’16(5),’(1}1, s 7tm +7mc(8)7wm)

The natural numbers r;, s;,¢;, o, 5;, and 7; are uniquely determined by w, ¢(S), and the
requirement 0 < r;, s;,t; < ¢(5).

Since w is a solution, there are many equations among the words and among the integers.
For example, for k,¢ > 2 we have uy = wyp, v; = W, 11 = t1, @1 = 1, etc. In order to be
precise, we shall use:

@ = 7, ceey Q1 = YEk-1,
B2 = Ym—t42s --- s Be = Ym.

We have no bound on k, ¢, or m, but we have |k + ¢ <m| < 2. What exactly happens
depends on the p-stable normal form of the product ugvg. Since uy, vy ¢ A*p?A*, it is enough
to distinguish nine cases. Here are the nine possible p-stable normal forms of uvg, where
t € {0,1}, ug,vp € A*, and uj, vy, w' € AT:

(UkU()), (patap)a (patapvf))a
(upp,t,p), (upp, t, pvg), (p,0,',0,p),
(p7 0,’[0’,0,])’06), (u;{;p7 O,UJI,O,p), (u;{;p7 0,’[0’,0,])1)6)-

The case (p,0,w’,0,p) can be produced, if p has an overlap as in p = ababa. Then we
might have up = pabab,vg = abap, which yields ugvy = ppbap = pabpp and abp = pba. Hence
the p-stable normal form ugvg is (p,0, abp,0,p). We may conclude wy1 = abp and

tr + ’ka(S) =71+ ozkc(S) + 1, ty1 + ’Y].;.HC(S) =581 + ,816(5) + 1.

In particular & + ¢ = m. If ri < ¢(S) <1, then ay = g, otherwise ay + 1 = 7. Similarly, if
s1 < ¢(S) &1, then By = yg41, otherwise 51 + 1 = ygy1.

A p-stable normal form of type (u'p,0,w’, 0, pv’) with v’,v',w" € A" leads to k+/£ =m+2
and 0 = 7, = yk4+1. Let us consider another example. If upvy = p?, then k + ¢ = m + 1 and
we have

T+ 81+ 3+ (ag + Br)e(S) = tr + yre(S).
Since by assumption ¢(S) > 2, the case uyvg = p* leads to the equation:
Ve < (g + £1) = ¢ with ¢ € {0,1,2}.

We have seen that there are various possibilities for uizvg. However, always the same
phenomenon arises. First of all we obtain a bunch of trivial equations which can be eliminated
by renaming. All equations of type v = 0 are eliminated by substitution. Then, for each
xy = z either there are at most two equations of type v = « + 1 or there is one equation of
type v <(a+ ) = ¢ with ¢ € {0,1,2}. If there are two equations of type v = a+ 1, then one
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of them is eliminated by substitution. So after renaming and substituting we end up with at
most one non-trivial equation having at most three variables. Proceeding this way through all
d<?2 word equations we have various interactions due to renaming and substitution. However,
finally each equation zy = z leads to at most one non-trivial equation with at most three
variables. The type of this equation is:

€17y + 11 e &9 <=>63,3 Si3 =c
where we have 0 <iy,i9,i3 < d <2, 0 < ¢ <2, €,€e9,e3 € {0,1}. This can be written as:
€17 Seaa ez = ¢ with || < 2d 2.

This type introduces a coefficient <2 for a = f and € = €3 = €3 = 1.

We have viewed the symbols «, 3,... as variables ranging over natural numbers. Going
back to the solution o the symbols aq,... , a1, 81, .-, 8¢,71,--- , ¥m represent concrete values
which are given by the word w. Some of them might still be zero. These are eliminated now.
The reason is that they cannot be replaced by other values without risk of changing the image
by ¢. If § > 1 is a remaining value, i.e., a number greater than zero, then we replace it by
0 = 1+ Zs where now Z5 denotes a variable over N. For example an equation

yeasp ="

with «, 3,7 > 1 is transformed to a linear Diophantine equation with integer variables
Za, 2, 2, > 0 as follows:

ZyeZo=Zs=c 4+ 1 with [ + 1] < 2d 1.

Putting all equations of type 2y = z together we obtain a (perhaps) huge system of linear
equations. After substitution and elimination of variables, we end up with a system of at
most d <2 equations and n integer variables with n < 3(d <2). The absolute values of the
coefficients are bounded by 2 and that of the constants by 2d < 1. For each equation the
sum over the squares over the coefficients is bounded by 5. The linear Diophantine system is
defined by w and the word w provides a non-negative integer solution.

What becomes crucial now is the converse: Every solution in non-negative integers yields
by backward substitution a word w” and a solution " : Q@ — A* satisfying (¢) and (i7) of the
theorem. Therefore: Since w was chosen of minimal length, the solution of the integer system
given by w is a minimal solution with respect to the natural partial ordering of N*. In this
ordering we have (aq,... ,a,) < (B1,...,0,) if and only if a; < G; for all 1 <7 < mn.

For @ = (ai,...,a,) € N* let ||@]| = max{a; | 1 < i < n}. All we need is a recursive
bound for the following value:

e(d) = max{||@|| | & is a minimal solution of a system of linear Diophantine
equations with at most d <2 equations, 3(d <2) variables,
where the absolute value of the coefficients is bounded
by 2, the sum over the squares over the coefficients in
each equation is bounded by 5, and the absolute value
of constants is bounded by 2d <1}.

Obviously, there are only finitely many systems of linear Diophantine equations where
the number of equations, variables, and the absolute value of coefficients and constants is
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bounded. For each system the set of minimal solutions is finite, this is a special case of
Lemma A in Dickson (1913). Moreover the set of minimal solutions is effectively computable.
Hence, the set of values of ||@|| above is finite and effectively computable. Therefore e(d) is
computable. Since e(d) +d <1 > ay,...,0,... for original values under the consideration
above, we obtain a recursive upper bound for the exponent of periodicity. A much more
precise statement is possible. It follows from the work of Koscielski and Pacholski (1996) that
e(d) € 294 see also Rem. 3.3 below. Hence we can state:

exp(w) < 2+ (¢(S) ©1) + (e(d) + d 1) - ¢(S) € ¢(S) - 2°9.

This proves the theorem. O

Remark 3.3 The analysis of Koscielski and Pacholski (1996) is more accurate than the
one presented here, and it leads to linear Diophantine systems having a slightly different
structure. The authors make use of the results given in the paper von zur Gathen and Sieveking
(1978) They show that the exponent of periodicity of a minimal solution of a word equation
of denotational length d is in O(2'97%). The authors don’t consider reqular constraints, but,
as it is shown above, this doesn’t change the situation very much: It yields the factor ¢(S).
Therefore the actual result including regular constraints is:

e(c(S),d) € ¢(S) - 02107,

It is rather difficult to obtain this very good bound. However, we can circumvent this
difficulty. A bound which is already nice and certainly good enough to establish Thm. 3.2
is e(d) € O(2°Y) for some constant c, say ¢ = 4. Such a more moderate bound can be
obtained without any difficulty using the present approach and some standard knowledge in
linear algebra, see Prob. 3.1 below.

Example 3.4 Consider ¢,n > 2 and let S = Z/cZ be the cyclic group of ¢ elements. We
give a reqular constraint for the variable x1 by defining

Ly, ={we€ A" | |lw|=0 (mod c)}.

The system is given by

___c .2 _ 2
ry =a, T2 =T, ey Tp = Tp_1-
. . . 9i—1 . . .
Its unique solution o is: o(x;) = a2 1< ransformation into a single equa-
2 9

1 <n. A
tion according to Prop. 2.9 shows that e(c(S),d) € ¢(S) -
Thm. 3.2 1s essentially optimal.

t
2UD)  Thus, the assertion given in

The following example shows that the length of a minimal solution can be very long
although the exponent of periodicity is bounded by a constant.

Example 3.5 Let n > 1. Consider the following well-known system of word equations:

o = a, Yo = b7
T = Ti1Yi-1, Yi = Y1z for 1 < <n.

The unique solution is the Thue-Morse word:
o(x,) = abbabaabbaababbabaababbaabbabaab - -+ for n > 5.
We have |o(z,)| = 2", but exp(o(zy,)) = 2.
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Example 3.6 Consider the equation with regular constraints:

azTyz = z2Tay,

Ly =d%a*, L,={a,b}*\ (a*Ub*), L,={a,b}".

A suitable homomorphism ¢ : {a,b}t — S is given by the canonical homomorphism onto the
quotient semigroup of {a,b}™, which is presented by the defining relations

a? =a3,b=0b? ab = ba = aab.
Thus, S is a semigroup with a zero, 0 = ab; and S has four elements:
S ={a,a®b,0}.

The constant ¢(S) = 2 fits the requirement s"T°5) = s7+2(9) for il s € S* and r > 0, a > 1.
It is not difficult to find a solution o for the equation above, e.g. o(x) = a®, o(y) = ba?, and
o(z) = a®ba®. Now let a, B, v, 6 be some integer variables and let u,v, and w be parametric
words, which are described by the following a-stable normal forms:

u: (a,2a,a), wv:(ba,28,a), w:(a,1+27y,aba,24 a).

In order to derive the system of linear Diophantine equations, we make a direct approach: We
want to solve auvw = wuav. First we write auvw as a sequence of a—stable normal forms:

((a), (a,2a, a), (ba, 28, a), (a, 1 + 27, aba, 20,a)).
The resulting a—stable normal form is:
(a,2a + 1, aba, 26 + 2y + 3, aba, 26, a).
Now consider the right-hand side wuav. This yields:
(a,2y + 1,aba,2a + 20 + 3, aba, 203, a).

We obtain the linear Diophantine system:

204+1 = 2v+41,
26+2y+3 = 2a+20+3,
20 = 20.

Going back to the equation we see that for all « > 0 and § > « the mapping

o(z) = a®*?, o(y) = ba®*?,  o(z) = a>F2a?+

yields a solution of the equation axyz = zxay satisfying the regular constraints.
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4 Boundary equations

4.1 Linear orders over S

Let us start with an informal explanation of the notions discussed in this subsection. Assume
that z1-- 2y = 2441 24,1 < g <d, z; € Qfor 1 <1 < d is a solvable word equation with
regular constraints and that there is a non-singular solution o. The solution is given by some
word w € A*. The equation corresponds to two factorizations w = uy -+ ug = ugy1 -+ uq
yielding two sequences of non-empty words:

(w1, .. yug), (Ugs1s- - s UQ)-

Using the word w these sequences can be merged into a single one such that each u; is a
product of some wy:

w=(wy,...,wp), wg#l, 1<k<m, m<d.

Let us see what happens if we pass via ¢ to the finite semigroup S. Two sequences
(p1,-..,pg) €89 and (pgi1,-.. ,pa) € S4 9 are merged into a single sequence (s1,... ,8y) €
S™ m < d such that each p; € S is a product of some s;. We shall say that (s1,...,s,) is a
common refinement of (p1,... ,py) and (pg+1,... ,pa). However, for a given input d, there are
only finitely many possibilities for sequences of the form (si,...,sy), s; € 5,1 <j<m <d.
Thus, in a non-deterministic step we can guess and fix such a sequence which is the ¢-image
of (wi,... ,wn).

A basic technique of solving word equations is to split a variable. Working over the
sequence (81,...,8,) € S™, a splitting of a variable z = z'z” is accompanied with a splitting
of some s; and a guess of s, s” € S such that s; = s’s”. In this way the length of the sequences
is increasing.

Example 4.1 Consider the equation rauzau = yzbxraaby. The solution, which was given
in Ex. 1.1, leads to the sequences (abb,a,bab,ba,a,bab) and (ab,ba,b,abb,a,a,b,ab), where
(ab,b,a,b,ab,b,a,a,b,ab) is a common refinement. This can be best visualized by the following

figure.
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Passing to the semigroup S from Ex. 3.6 we could start to search for a solution with the
sequence (0,b,a,b,0,b,a,a,b,0) € S19.

We now start the formal discussion of this section. The semigroup S and the homo-
morphism ¢ : AT &+ S is given as in precedent section. An S-sequence is a sequence
(81, y8m) € 8™, m > 0. A representation of (s1,...,8y) is a triple (I, <, @) such that
(I1,<) is a totally ordered set of m + 1 elements and

or:{(i,j) €eIxI]i<j}— S
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is a mapping satisfying for some order respecting bijection p : I5{0,... ,m} the condition
0r1(iyJ) = Spays1- Sp) €S foralli,j € 1,i <j

Note that we have ¢;(i,7) = 1 if and only if i = 5 and ¢;(i,k) = ¢;(i,7)er(j, k) for all
i keli<j<k.

The standard representation of (si,... ,Sy) is simply (I, <, pr) where I = {0,... ,m} and
or(i,j) = si41---s; for 4,5 € 1,4 < j. Hence for the standard representation the bijection p
is the identity.

In the following any representation (I, <,¢r) of some S-sequence is called a linear order
over S.

Remark 4.2 An S-sequence can be viewed as an abstraction of a linear order over S. In
most cases we are interested in the abstract objects only, but if we work with them we have to
pass to concrete representations. When counting linear orders over S (c.f. Lem. 4.9 below),
by convention, we count only standard representations and mappings between them.

Let w=a; - ay, € A*,a; € Afor 1 <i<m. Theset {0,... ,m} is the set of positions of
w, and for 0 < i < j < m let w(i,j) denote the factor a;;1---a;. The associated S-sequence
of w is defined by wg = (¢(a1),... ,p(amn)). The notation wg refers also to its standard

representation wg = ({0,... ,m}, <, ¢y ). The mapping ¢, is defined by ¢, (%, j) = ©(w(, j))
forall0 <i <75 <m.

Definition 4.3 Let s,s’ be S-sequences given by some representations (I, <,pr) and (I', <
,or). We say that s’ is a refinement of s (or that s matches s'), if there exists an order
respecting injective mapping p : I — I' such that @1(i,7) = @p(p(i), p(4)) for alli,j € I,i < j.
We write either s < s' or, more precisely, s <, s' and (I,<,¢r) <, (I',<,pr) in this case.

Remark 4.4 Let s,s" be S-sequences such that s < s’. Then we may choose concrete repre-
sentations and a refinement (I,<,¢r) <, (I',<,¢) such that p: I — I' is an inclusion, i.e.,
I C I and oy is the restriction of op to I.

Definition 4.5 Let s be an S-sequence and (I,<,pr) some representation. A word w € A*
is called model of s (of (I,<,r) resp.), if the associated S-sequence wg is a refinement of s,
ie. , (I,<,01) <, ws for some p.

If w is a model of s, then we write w = s or w = (I,<,¢r). By abuse of language, we
make the following convention. As soon as we have chosen a word w as a model, we are free
to view the set I as a subset of positions of w, i.e., p becomes an inclusion and therefore

e1(i,7) = p(w(i, j)) for all i,j € I,i < j.
Lemma 4.6 Every S-sequence (S1,...,8m) has a model w € A*.

Proof . Since ¢ is surjective, there are non-empty words w; € A such that s; = ¢(w;) for
all 1 <i<m. Let w =w; - wy,, then we have w = (s1,... ,5m). O

The lemma above will yield the positive termination step in Makanin’s algorithm if there
are no more variables. In the positive case we can eventually reconstruct some S-sequence
such that some model w describes a solution of the word equation.
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Let 4,5 € I,i < j be positions in a linear order over S. Then [i, j] denotes the interval from
i to j, this is a linear sub-order over S which is induced by the subset {k € I | i < k < j}. More
generally, let T' C T be a subset, then we view (T, <, ¢7) as a linear suborder of (I, <, ;). In
the following min(7") and max(T') refer to the minimal respectively to the maximal element
of a subset T of a linear order 1.

Definition 4.7 Let (I,<,pr) be a representation of some S-sequence, T C I a non-empty
subset, and £*,r* € I be positions such that £* < r*.

An admissible extension of (I, <,¢r) by T at [£*,7*] is given by a linear order (I*, <, pr+)
and two refinements (I,<,pr) <, (I*,<,¢r+) and (T, <, o71) <, (I*,<,01+) such that the
following two conditions are satisfied:

11 = p(D) U p*(T),
2. min(p*(T)) = £* and max(p*(T)) = r*.

The intuition behind the last definition it should be rather clear. An admissible extension
refines (I, <, ;) by defining new positions between £* and r* until 7" matches the enlarged
interval [£*,7*] in such a way that all new points have a corresponding point in 7" and such
that min(7") is mapped to ¢* and max(T) is mapped to r*. The other way round: Let
(I*,<,pr+) denote an admissible extension of (I,<,¢r) by T at [¢*,7*], then we may view
I C I*, whence T' C I*. There is a subset T* C I* representing the same S-sequence as T
and we have I* = T UT*, min(T™*) = ¢*, and max(T™*) = r*.

Example 4.8 Let (s1,...,86) be some S-sequence, (I,<,pr) its standard representation,
0 =4 and r* = 6. Let (I*,<,pr+) represent an admissible extension of (I,<,¢r) by
{0,3,4,5} at [4,6]. Then we may assume I* = {0,...,6} U {3",4*} with 0 < 1 < 2 <
3<4<5<6and4 <3 <4* <6.

We may or may not have 5 € {3*,4*}. Say we have 5 = 3*. Then the corresponding
S-sequence has the form

(31332383384335334335)
such that s5 = $15983 and Sg = $4S5.

Lemma 4.9 Given (I,<,¢51),T C I,¢*,r* € 1. Then the list of all admissible extensions of
(I,<,¢1) by T at [£*,77] is finite and effectively computable.

Proof . Trivial, since the cardinality of an admissible extension is bounded by |I|+ |T|. O

4.2 From word equations to boundary equations

Let 12y = zg11--2¢,1 < g < d, z; € Q for 1 < i < d be a word equation with
regular constraints L, C A* for all # € Q. Recall we are only interested in non-singular
solutions and that we fixed a homomorphism ¢ : AT — S to a finite semigroup S such that
o 'o(Ly) = L, for x € Q. Hence without restriction it holds 1 & L, # 0 for all z € €.
Since the images ¢(L,) C S are finite sets we can split into finitely many cases where in
each case p(L,) is a singleton. Thus, it is enough to consider a situation where the input is
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T1- Ty = Tgq1-- T4, 1 < g <dand the question is the existence of a non-singular solution
o:Q — AT satisfying ) = ¢ o o for some fixed mapping 1 : & — S. The question will be
reformulated in terms of boundary equations. A system of boundary equations is defined as
follows.

Definition 4.10 Let n >0 and ¢ : AT — S be a homomorphism to a finite semigroup S.

1. A system of boundary equations is specified by a tuple
B = ((a v_)a (I, < 901)’ left, B)

where , is a set of 2n wvariables, ~ :, — , is an involution without fized points, i.e.,
T=x,c#T, for all x €, , the triple (I, <,pr) is a linear order over S, left:, — I is
a mapping, and B is a set of boundary equations. Fvery boundary equation b € B has
the form b = (z,i,%,j) with x € , , i,7 € I such that left(x) < i and left(T) < j.

2. A solution of B is a model w = (I, <, 1), w € A*, such that
w(left(x),i) = w(left(x), j) for all (x,i,Z,j) € B.
(Recall that if a word w € A* is a model for (I,<,pr), then we view I as a subset of
positions of w. Hence it makes sense to write w(p,q) for p,q € I, p <q.)

3. If B is solvable, then the exponent of periodicity exp(B) of B is defined by

exp(B) = min{exp(w) | w is a solution of B}.

Remark 4.11 Ifn = 0, then there are no variables, hence no boundary equations, and any
model w = (I,<,1) is a solution is a solution of B. In particular, if n = 0, then the system
18 solvable by Lem. 4.6.

Consider a word equation z1 -+ x4 = z441 -+ ¢ and a mapping 9 : 2 — S. We are going
to construct a system

B=((,,),I,<,¢r),left, B)
of boundary equations having the following two properties.

1.) Let 0 : 2 — A" be a solution of the word equation such that ) = ¢ oo, and let v € A*
be a word with v = o (21 -+~ z4) = 0(2g41 -+ 24). Then w = vv is a solution of B.

2.) Let w = (I,<,¢r) be a solution of B. Then we have w € A*vvA* for some v € A*
and there is a solution of the word equation o : & — AT such that ¢ = ¢ oo and
v=0(x1xg) = 0(Tgq1- " Tq).

In order to define B we start with the S-sequence
(Q/)(a:l)a s 71/)(]7(1))

Let (I, <,¢r) be some representation, I = {ig,... ,iq}, 39 < --- < ig. The next step is to define
the pair (, ,7) and the mapping left : , — I. To this purpose we introduce an undirected
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graph. Let (V,E) be the undirected graph with vertex set V' = {1,...,d} and edge set
E ={(p,q) € VXV | zp, =x4}. Theideais that for v =o(z1,... ,24) = 0(2g41,... ,24) and
w = vv we can realize I as a subset of positions of w such that both w |= (¢¥(z1),... ,9¥(zq))
and the following equations hold:

w(ip, ig) = wlig,iq), w(ip—1,ip) = w(ig—1,%4) for all (p,q) € E.

For the first equation we shall introduce an extra variable zy (and its dual Zg) below; in the
other list of equations there is some redundancy. For (p,q),(q,7) € E, we have by definition
(p,r) € E, but the equations w(ip—1,ip) = w(ig—1,%4) and w(ig—1,4q) = w(iyr—1,%,) already
imply w(ip—1,%p) = w(iy—1,%r). Hence we don’t need the edge (p,r) for the equation. To
avoid this redundancy we let F C E be a spanning forest of (V, E). This means F = F~!,
F* = E* and (V, F) is an acyclic undirected graph. We have |F| = 2(d <¢), where c is the
number of connected components of (V, E). The elements of F' are called variables and for
each z = (p,q) € F we define its dual and two positions left(z), right(z):

T = (Qap)a left(x) = ip—l, rlght(x) = ip.

Note that * # T and T = z for all x € F. Taking duals corresponds to edge reversing in
(V, F). Define two new extra variables zo and Zg with T = z¢ and define , = {z¢,Zo} U F
and:

left(xo) = 40, right(zo) = iy = left(Zp), right(Zg) = i4.

This defines the set , , the involution without fixed points = : , — ,, and the mapping
left : , — I.

The last step of the construction is to define the set B of boundary equations. It should
be clear what to do. We define

B = {(z,right(z),z,right(Z)) | z €, }.
We have to verify two properties.

1. Let 0 : © — AT be a solution such that ¢y = ¢ oo, and let w = vv, where v =
(1 xg) = 0(g41---2q). The word w has positions 0 =iy < iy < --- < iq, where ig4
is the last position and the following equations hold:

w(io,ig) = w(ig,ta), w(ip—1,ip) =0(zp) for 1 <p <d.
In particular, w |= (I, <, pr) and w is a solution of B.

2. Let w = (I, <, 1) be a solution of B. Without restriction we may view I as a subset
of positions of w. Consider the factors w(ig,i4) and w(ig,iq). The boundary equation
(zo, right(xo), Zo, right(Zp)) € B implies w(ig,iq) = w(igy,iq) and it follows that w €
A*vvA* for v = w(ig,iy). We define o : @ — A" by o(z,) = w(ip—1,7p). Since
ip—1 < ip, this is a non-empty word. The elements (z,right(z),Z,right(z)) € B for
z = (p,q), T = (¢,p), (p,q) € T imply w(ip—1,ip) = w(ig—1,i) whenever z, = z,.
Hence o is well-defined. We have go(z,) = ow(ip_1,ip) = ¢ (z)p) since w = (I, <, ¢r).
Finally, v = w(ig,44) = w(ig,iq) implies v = o(z1 -+ 24) = o(Tgq1 - Ta).
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Thus, the word equation with regular constraints given by the mapping ¢ has a solution
if and only if the system of boundary equations is solvable. The construction of the system
B above can be performed in polynomial time; more precisely, the construction yields a
logspace-reduction. Due to this reduction, Makanin’s result follows from the next theorem.
The assertion of Thm. 4.12 is in fact equivalent to Makanin’s result, see Lem. 4.14 below.

Theorem 4.12 [t is decidable whether a system of boundary equations has a solution.

The rest of this chapter is devoted to the proof of Thm. 4.12. An important property
is stated in the next proposition: We can bound the exponent of periodicity while searching
for a solution. Note however that bounding the exponent of periodicity of some word gives
absolutely no bound on the length of this word.

Proposition 4.13 Given as instance a system of boundary equations B, we can compute a
number e(B) having the property that if B is solvable, then we have exp(B) < e(B).

The proof of Prop. 4.13 could be based on the same techniques as presented in Sect. 3.
However, for our purposes we prefer to prove Prop. 4.13 via a reduction to word equations.

Lemma 4.14 There is an effective reduction of the solvability of a system of boundary equa-
tions B to some word equation with reqular constraints. Moreover, there is a reduction
such that if w € A* is a solution of the word equation, then B is solvable and we have
exp(B) < exp(w).

Proof. Let B = ((, ,7),(I,<,¢r),left, B) be a system of boundary equations. We may
assume that the linear order (I, <,y) is the standard representation of its underlying S-se-
quence s = (s1,... ,8py). Introduce new variables y1,... , y,, with regular constraints ¢ (y,) =
5p, 1 <p<m.

For each boundary equation b = (z,4,Z,j) € B we introduce a word equation

Yleft(x)+1 """ Yi = Yleft(z)+1 """ Yj-

This system of word equations with regular constraints is solvable if and only if B is
solvable. Indeed, if w € A* is a solution of B, then, by definition, we have (I, <, 1) <, ws,
and p(I) is a subset of positions of w. All word equations

w(p(left(z)), p(i)) = w(p(left (7)), p(4))

are satisfied for (z,4,7, j) € B. Hence defining o(y,) = w(p(p 1), p(p)), 1 <p < m yields a
solution of the system of word equations.

For the other direction let o(y,) = v,, 1 < p < m be some solution of the system of word
equations. Due to the regular constraints we have 1(y,) = s, and v, # 1 for all 1 <p < m.
Therefore the word v = o(y1) - - - 0(ym) solves B.

Next, we transform the system of word equations into a single word equation L = R
using Prop. 2.9 and finally we reduce to the word equation Ly ---y, = Ryi---ym. The
point is that if w is a solution of this equation, then some suffix v of w solves 5. Hence
exp(B) < exp(v) < exp(w). This yields Lem. 4.14. Now, let d be the denotational length of
Ly; - ym = Ry1- - Ym. Then define the number e(B) = e(c(S5),d), which has been given in
Thm. 3.2. We can choose w such that exp(w) < e(c(S),d). This proves Prop. 4.13. 0
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4.3 The convex chain condition

Let B=((,,7),(I,<,¢r),left, B) be a system of boundary equations. A boundary equation
b= (z,i,%,j) € B is also called a brick henceforth. The variable z is called the label of the
brick b = (z,1,7Z, 7). Pictorially a brick is given as follows:

z
T J

The dual brick b of b = (z,i,7, j) is given by reversing the brick, it has the label Z:

T J
z

Henceforth, we make the assumption that B is closed under duals (i.e., b € B implies
b € B) and that there is at least one brick b € B having label z for all z € , . Clearly,
this is no restriction. For 2z € , let B(z) C B be the subset of bricks with label 2. Then
B(z) = {(z,41,Z,j1),--. , (x,ir, T, jr)} for some non-empty subset {iy,...,%,} C I such that
left(z) < iy < --- <i4,. The right boundary of z is defined by by right(z) = i,.

Before we continue, we make some additional assumptions on B. All of them are necessary
conditions for solvability and easily verified.

Let (z,4,%,9), (¥,4,9,7), (y,4,7,7') € B. Then we assume from now on:

e left(z) < left(z) if and only if i < 7,

o rlefi(z), i) = pr(lefi(7), ),

o left(z) < left(y) if and only if left(z) < left(y),
e ; <i if and only if j < 5.

These assumptions imply that if B(z) = {(z,i1,%Z,j1),... , (x,ir, T, jr)} is given such that
left(z) < iy <--- <i,, then we also have left(Z) < j; < --- < j,. In particular, B(x) contains
a brick (z,right(z),T,right(T)). The set B(z) can be depicted as follows:

B(w):{

x

1

x

12

T

J1

T

J2

X

right(z)

T

right(7)

}

In our pictures a brick (z,i, %, j) can be placed upon (y, j',7, k), if and only if j = j'. We
obtain one of out of three different shapes:

T 7 T 7 x 7
T J x 7 T J
y J y J y J
Y k Y k Y k
Which one of these cases occurs is determined by the function left : , — I. The leftmost

picture corresponds to left(Z) < left(y), the picture in the middle corresponds to left(z) =
left(y), the picture on the right means left(Z) > left(y).
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Definition 4.15 Let m > 1. A chain C of length m is a sequence of bricks

C= ((wlailaw_lﬂiQ)a (aniQa(I;_Qa Z-3)3 sy ((I;maimama im—l—l))a

where (Tp,ip, Tp,ipt1) € B for all 1 <p < m.
A chain C is called convex, if for some index q with 1 < ¢ < m we have:

left(T;)
left(Ty)

A convex chain C is called clean, if the bricks of C' are pairwise distinct.

A brick (x,i,%,j) is linked via a convex chain of length m to the brick («',i',%',7"), if
there is a convex chain C of length m as above such that m > 1, (z,i,%,7) = (z1,41,%1,12),
and (ajlvilajlajl) = ($m,im,%, 7:m+1)-

left(zpy1) for 1 <p <gq,

>
< left(wptr) for g <p <m.

Remark 4.16 If C = (by,... ,by) is a convex chain, then its dual C = (b,,...,b1) and

(bpy ..., bg), 1 < p < q < m are convex chains. If by, = (zp,ip, Tp,ip) for some 1 < p < m,
then (bi,... ,bp—1,bpt1,...by) is a convex chain. If b, = by for some 1 < p < q < m, then
(b1,... ,bp_1,bq,...by,) is also a convex chain. In particular, if two bricks are linked via a

convex chain, then they are linked via some clean convex chain. The shortest chain linking
two bricks to each other is certainly clean.

A typical picture of a convex chain is depicted in the following figure.

z1 1

T1 19

9 ’i2

2y 23

3 13

3 14

T4 4

T4 15

Tm tm

Tm im+1

Definition 4.17 Let F C I be a subset. A brick (z,i,7%,j) € B is called a basis or foundation
with respect to F, if j € F. We say that B satisfies the convex chain condition (with respect
to F), if every brick b € B can be linked via some convez chain to some basis. The set F is
also called the set of final indices.
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Note that if in the figure above we have {is, ... , i1 }NF # 0, then the brick (z1,141, %7, i2)
is linked via a convex chain with a basis.

Lemma 4.18 Let n,m,f € N and B = ((, ,7), (I, <,¢1),left, B) be a system of boundary
equations with |, | = 2n. Let F' C I have size f. Suppose that every brick b € B can be linked

via a convex chain of length at most m to a basis with respect to F. Then we can bound the
size of B by

|B| < 2n)™ - 2f.
Proof. Consider a convex chain of length &k, & < m, where the last brick is a basis:

C= ((151,7:1,(1}_1, i?)a (anian_Qai?))a ey (xkaikax_ka ik+1))

Given any pair z € , ,j € I, there exists at most one brick (z,i,Z,j) € B. Therefore the
whole chain is uniquely defined by the sequence (z1,z9,... ,Zg,ix41) € , ¥ x F. The number
of these chains is bounded by |, |¥ - |F|. Finally, observe that every brick b € B can be
linked via a convex chain either of length m <1 or of length m to some basis. Indeed, if
(b,bg, ... ,bp_1,b) is a convex chain of length k, then (b, by, ... ,br_1, bk, bk, by) is a convex
chain of length k£ 4+ 2. Therefore we obtain

Bl <[, ["7H AR+ | ™ [F) < (20)™ - 2f.

|

Remark 4.19 FEvery system of boundary equations B satisfies the convex chain condition
with respect to the set I, trivially. Furthermore, if we construct B by starting from a word
equation Ti---Ty = Tgp1- -4, 1 < g < d, then we have [I| < d. The transformation rules
below will neither increase the number 2n of variables nor the sum 2n+ f. It will increase the
sizes of I and of B. However, Lem. /.18 says that a large number of boundary equations (i.e.,
a large set of bricks) yields that there are long convex chains in order to satisfy the convex
chain condition (pictorially: many bricks build skyscrapers). The next step is to show that
long convex chains lead to high domino towers (pictorially: skyscrapers hide high towers) and
hence to a lower bound on the exponent of periodicity in any solution.

Proposition 4.20 Let n,m € N and B = ((, , ), (I, <,¢1), left, B) be a solvable system of
boundary equations with |, | = 2n. Let w = (I,<,¢r) be a solution of B. Suppose that B
contains a clean convex chain of length at least m. Then we have the following lower bound
for the exponent of periodicity of the solution w:

m < 4n? - (exp(w) + 1) &1

Proof. The hypothesis of the proposition implies n # 0, hence w # 1. Then the assertion
becomes trivial for m < 8n?. Hence let n > 1 and [72:21] > 2.
Since w is a solution we may assume that I is a subset of positions of w and it holds that

or(l,r) = e(w(l,r)) forall ,r € I, £ <r. For all z € , define a word w(z) € A* by

w(z) = w(left(z), right(z)).
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This permits also a notion of w-length for z € , . We define
%0 = |w(z)].

Note that w(z) = w(Z) and hence |z|, = |T|, for all z € , . Let C = (by,...,by) be a clean
convex chain of length m, where b, = (i, 9p, Ti,, ipy1) for all 1 < p < m. Define m’ = [mT‘H],
then by duality (replacing C' by C) we may assume:

left(Z7) > left(zo), left(zz) > left(zs),..., left(Ty—1) > left(zy,y).

The upper part of the chain C up to m’ might look like in in the following figure, where e.g.
m = 11.

z1 i1

1 i2

Z2 19

2 i3

T3 i3

T3 iq

T4 iq

T4 i5

x5 i5
T5 i6
T i6
T6 i7

In the following we need a long chain where the label of the last brick has minimal w-
length. In order to find such a chain we scan (by,... ,b,) from right to left. We find a
sequence of indices

0=po<pr < <pp—1 <pp=m
such that £ <n and for all ¢,j where p; 1 < ¢ <pj;, 1 <j <k we have:
|Zglw > |='Epj|w-

This means that in each interval [p; 1 + 1, p;] the last label x,, has minimal w-length. By
the pigeon hole principle there is at least one index j € {1,... ,k} such that

m+1
Pj P12 o
We conclude that (after renaming) there is a clean convex chain C = (by,... , by) satisfying
the following properties:
¢ = ),
left(z,) > left(zpy1) for 1<p</,
|Zplw > |zl for 1<p<V/.
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Next define A (which will become the hight of a domino tower) by h = [’Z;gl] Then it holds
h > 2 and

2n(h@1)+1§[m+1-|.

2n

Hence there is some index p, 1 < p < /£ such that the label z, occurs at least h times in
the the clean convex chain C'. We may assume that this is the first label 2y and still £ > h.

Hence, there is a clean convex chain C' = (by, ... , by), which satisfies the following properties:
£ > h,
left(z,) > left(z,+1) for 1<p<V,
|Zplw > |Ze|w for 1<p<y¥,

the label z; occurs exactly h times.
This is the point where we switch from the chain to the sequence of words:
(w(@1), ..., w(ze))-

We obtain a tower of words where w(z,) has minimal length and the word w(z;) occurs at
least h times.

w(zs) |

Define v, € A* to be the prefix of w(z,) of length |w(z,)| and let w, = w(left(z,),i,) for
1 < p < ¢ Since |uy| < |w(left(zy),i)| < |ve] = |vp|, the word wu, is a prefix of v, for all
1 < p < L. The sequence (v1,... ,v7) can be arranged in a tower of words which is already in
better shape: All words v, have equal length.

]
V2
U3
]
Us
Ve

The vertical line corresponds to the factorization v, = upu;, for1 <p<V/.

Finally, let {q1,q2,... ,qn} be a set of the h indices where the bricks have label z;. Since
the convex chain leading to this tower is clean, we see that ug, # ug, forall1 <j,k < h, j # k.
(This is the only point where it is used that the chain is clean!) We obtain:

0< |U’L11| < |U’L12| << |U’l1h|'
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Moreover, we have v; = vy, = vg, = -+ = vg,. We omit all other words in the tower above
and we see that the word v; can be arranged in a domino tower of height h and h > 2.
Applying Lem. 2.5 we obtain h <1 < exp(w;) < exp(w). Since [’Z;gl] < h, the assertion of
the proposition follows. O

Corollary 4.21 Let B=((,,7),(I,<,¢r),left, B) denote a solvable system of boundary equa-
tions which satisfies the convex chain condition with respect to some subset F' C I. Then we
have

1B| < |, ||F|2(exp(8)+1)—1 - 2|F).

If moreover |, |,|F| € O(d), and exp(B) € 20(¢H+108e(S)  then we have

|B| c 22O(d+10gc(5))
Proof. Let 2n = |, |, f = |F|, and m be the maximal length of a clean convex chain in B.
By Lem. 4.18 and Rem 4.16 we have

|B| < (2n)™ - 2f.

Choose a solution w such that exp(w) < exp(B). Prop. 4.20 yields a lower bound for the
exponent of periodicity for all solutions. Hence:

m < 4n? - (exp(w) + 1) 1.
Putting things together we obtain:
|B| < (2n)*n* (exp(@)+1) =1 g ¢ < (gp)4n*(exp(B)+1) -1 9 ¢

The result follows. O

4.4 Transformation rules

We are ready to define the (non-deterministic) transformation rules of Makanin’s algorithm.
If we apply a rule to a system B = ((, ,7), (I, <, 1), left, B), then the new system is denoted
by B = ((,',7),I",<,pr),left’, B"). The transformation rules below will have the property
that if B = ((,,7), (I, <, 1), left, B) satisfies the convex chain condition with respect to some
subset F' C I, then B’ satisfies the convex chain condition with respect to some subset F’ C I’
such that |, | + |F'| < |, | + |F|. Thus, if we start with a system By where |, o| = 2n¢ and
|Ip] < d, then throughout the whole procedure the size of the set of final indices is smaller
than or equal to 2ng + d.

We say that a (non-deterministic) rule is downward correct, if w € A* is a solution of
B, then (for at least one non-deterministic choice) some suffix w' of w is a solution of B,
and moreover either |,’| < |, | or |w'| < |w|. Thus, applied to solvable systems at least one
sequence of choices of downward correct rules leads to termination.

We say that a (non-deterministic) rule is upward correct, if w' € A* is a solution of B’
(and B’ is the result of any non-deterministic choice), then there is word w € A* which is a
solution of B.
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Rule 1 If there is some z €, with left(z) = right(z), then cancel both bricks
(z, right(x), Z, right(Z)) and (Z, right(Z), z, right(x))

from B. Cancel z and T from , .

Remark 4.22 Obviously Rule 1 is upward and downward correct since we have w(i,i) = 1 for
all words w and aoll positions i of w. Hence the set of solutions is the same. In order to preserve
the convex chain condition we introduce two new final indices. Let © € , such that left(x) =
right(z) and assume that x,T are canceled by Rule 1. Define F' = F U {left(z), left(T)}.
Consider a convex chain C = (by,... ,by) where for some 1 < p < m the brick b, has the
form b, = (z,right(x), T, right(T)). Hence the brick by is canceled. However, the brick by
is linked to by,_ via a convez chain and by_y is now a basis since right(z) = left(x) € F'.
Thus, if B satisfies the convex chain condition with respect to F, then the system B’ (after
an application of Rule 1) satisfies the convex chain condition with respect to F'. We have
L+ P < |+ I

Rule 2 If there exists some 2 € , with left(x) = left(Z), then cancel all bricks (z, 7,7, j) and
(Z,j,z,j) from B. Cancel x and T from , .

Remark 4.23 Recall that for (x,i,T,j) € B we have left(x) = left(T) if and only if i = j.
Thus, if left(x) = left(T), then all bricks with label x have the form (x,j,%,j). Again, Rule 2
15 obviously upward and downward correct. For the convex chain condition consider a convez
chain C = (b1, ... ,by) where by = (z,4,%,7) for some 1 < p < m. If we have p < m, then
C'=(bi,...,bp_1,bps1,...,bp) is a shorter convex chain linking by with a basis. For p=m
we have 7 € F. Hence by,—1 s also a basis.

Rule 3 Let £ = min(I). If ¢ & left(, ), then cancel the index ¢ from I. This means we replace
the linear order over S by the induced sub-order (I’, <,¢;) where I' = I'\ {/}.

Remark 4.24 Clearly, the convex chain condition is not affected by this rule. Downward
correctness is obvious, too. To see the upward correctness let (I,<,pr) be given by the S-
sequence (81,... ,8m) and let w' € A* be a solution of the new system after an application of
Rule 3 such that min(I") is the first position of w'. By definition of an S-sequence there is a
non-empty word v € AT with (u) = s1. Then the first position of w' is not equal to the first
position in the word uw', and uvw' is a solution of B. For later use notice that we can choose
u such that |u] <|S|.

The next rule is very complex. It is the heart of the algorithm. Before we apply it to
some system B = ((, ,7), (I, <,pr),left, B), we apply Rules 1, 2 or 3 as often as possible. In
particular, we shall assume that left(z) < right(x), left(z) # left(z) for all z € , , and that
there exists some z € , with left(z) = min(]).

Rule 4 We divide Rule 4 into six steps.
We need some notation. Define £ = min(/) and r = max{right(z) | z € , , left(z) = ¢}.
Note that ¢ € left(, ), hence r € I exists and we have £ < r. Choose (and fix) some z, € ,
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with left(z,) = ¢ and right(z,) = r. Define ¢* = left(z,) and r* = right(z,). Define the
critical boundary ¢ € T by ¢ = min{d,r} where

¢ = min{left(z) | z €, , r < right(z)}.

Note that since r < r* = right(T,), the minimum ¢’ and hence the critical boundary ¢ exists.
We have ¢ < ¢ <r < r* and ¢ < £* < r*, but the ordering of r and ¢* depends on the system.
Define the subset T' C I of transport positions by

T={iel|i<ctUu{iel]|3I,i,7,j) € B :left(z) < c}

Note that min(7T) = ¢ and that i € T for all (z,,1,T,,j) € B. Moreover, since left(z) < ¢
implies right(z) < r, we have max(T) = r.

Step 1 Choose some admissible extension (I*, < ¢r+) of (I,<,pr) by T at [¢*,r*]. By con-
vention we identify I as a subset of I'*, whence I C I*, and there is a subset T* C I* with
min(7T*) = ¢*, max(T*) = r*, and which is in order respecting bijection with 7. For each
1 € T the corresponding position in 7* is denoted *. Having these notations we put a further
restriction on the admissible extension: We consider only those admissible extensions where
first, 2 < ¢* for all 1 € T' and second:

left(z)* <left(z) <& @ i* <},
left(z)" > left(z) <& ">

for all (z,4,7,j) € B with left(z) < c. Note that for all (z,,7,T,,j) € B this implies i* = j.
If such an admissible extension is not possible, then Step 1 cannot be completed and Rule 4
is not applicable.

Step 2 Introduce new variables z;, and Z,, and define left(z,) = ¢, left(z;) = ¢*. Foralli € T
such that there is some (z,4,T,7) € B with left(z) < ¢ < i introduce new bricks (z,,1,%,,1*)
and (Tp,1*, @y, 1).

Step 3 As long as there is a variable z € , with left(x) < c, replace left(z) by left'(z) =
left(z)* and replace all bricks (z,4,%, ), (T, j,z,4) € B by (z,i*,7Z,7) and (T, j, z,7%).

Remark 4.25 To have some notation let x denote a variable before Step 3 and let x' be the
corresponding variable after Step 3. Likewise let b = (,i,%,j) denote a brick before Step 3
and let V' = (2',4',T,4) be the corresponding brick after Step 3. If left(x) = left (z'), then
sometimes we may still write z = x'. In particular, z, = 2., T, =T, Ty = T, but T, # T, .
For b= (z,i1,Z,j) and b/ = (2',i', %', §') there are four cases:
b = (2%, 7, 5%) if lefi(z) <e, lefl(T) < e,
b= (2,17, 5)  if lefi(z) <c, c<left(z),
b = (x,1,7',5%) if ¢ <left(z), left(T) <c,
b = (2,1,%Z,7) if ¢ < left(z), c<left(T).
Note that after Step 3 all bricks (z,,1,T,,7) € B have the form (x},1*,T,,i").

27



Step 4 Define as the new set of final indices

F'={i*eI'|i<candie€ F}U{i € F|c<i}.

Step 5 Cancel all bricks with label z! or T, i.e., cancel all bricks of the form (z!,i*,Z,, ")

0
or (T,,i*,z),i*). Then cancel the variables z,, Z,.
Step 6 Replace I* by I' = {i € I* | ¢ < i} and consider the linear order (I, <, p;/) induced
by I' C I*.

After Step 6 the transformation rule is finished. The new system is denoted by B’ =
("), I, <,0p),left’ B"). We will show from Lem. 4.30 to 4.33 below that B’ satisfies the
convex chain condition with respect to F’. The first lemma is a trivial observation.

Lemma 4.26 We have |,'| = |, | and |F'| <|F|.

Proof. In Step 2 new variables z, and T, are introduced, but in Step 5 the variables zj,
and T are canceled. Hence |, /| = |, |. The set of final indices is changed in Step 4. However,
the assertion |F'| < |F| is clear by the definition of F’. O

The following lemma is crucial to bound the size of I during the transformation procedure.
The lemma has a rather subtle proof.

Lemma 4.27 Let 3 = |{(«',7,7',5') € B | left(z') < i'}| and 8 = |{(x,i,Z,j) € B |
left(x) < i}|. Then we have

21I' &' < 2|1 8.

Proof. The inequality can be destroyed either by a new position i* € T \ I or by the can-
celation of bricks (z!,i*,%,,1*), (T5,4%, 2,,4*) in Step 5, where £* < i*. (Recall the definition
of B and (' and that left(aco) =/, left'(z]) = ¢*. ) The cancelation of these bricks involves
agaln a position of type ¢* € T™*. Fortunately, if (2!,4*,T,,1*) is canceled, where £* < 7*, then

= j for some j € I\ {¢/}. In particular, i* is not a new p0s1t10n and the two cases don’t
occur simultaneously. Therefore it is enough to find for each i* € T* \ {£*} either two new
bricks which are introduced in Step 2 or one position which is canceled in Step 6. Then the
total balance will be negative or zero.

Let us consider the positions of type i* € T \ {£*} one by one. If ¢* < i*, then by the
definition of T" and Step 2 there are two new bricks (z,,1,%,,1*), (Ty,7*,2,,1) € B’ and we
have left(z,) < i, left(T,) < i*. Next consider i* = ¢*. At least one position (namely /) is
canceled in Step 6. Next let £* < i* < ¢*, i.e., £ < ¢ < c¢. The position 7 is canceled in Step 6.
Hence we have the assertion of the lemma. O

Lemma 4.28 Rule 4 is downward correct.
Proof. Let w € A* be a solution of B. Since w = (I,<,pr), we can view I as a subset of

positions of w with £ = 0. Let w = vw’ where v = w(4,¢). The word v is a non-empty prefix
of w(¢,r). The word w(¥,r) is a prefix of w and at the same time another factor of w'; we
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have w(¢,r) = w(¢*,r*) with £ < ¢* due to the brick (z,,r,T,,r") € B. The set T is a subset
of positions of w(¥,r), hence we find a corresponding subset T of positions of w(£*,r*). The
union I UT™* leads to an admissible extension (I*, <, ;) such that first, 1 < ¢* for all 4 € T
and second, w(j, k) = w(5*,k*) for all j,k € T,j < k. A careful but easy inspection of Rule 4
then shows that w' |= (I', <,¢p) and w' is a solution of B'. O

Lemma 4.29 Rule 4 is upward correct.

Proof. Let w' € A* be a solution of B'. Since w' = (I', <,¢)), we can view I’ as a subset
of positions of w’ where ¢ is the first position of w'. Define v = w'(I*,¢*) and let w = vw'.
Then we have w = (I, <, - ) such that v = w(l,c) = w(l*,c*). With the help of the bricks
(zy,1,T,,1*) we conclude that w(j, k) = w(j*, k*) for all j,k € T,j < k. Therefore we have
w(left(z),7) = w(left(T), ) for all (z,i,%,j) € B. Since I C I'*, we have w = (I, <, ¢r) and
w is a solution of B. O

Finally we show that Rule 4 preserves the convex condition. This is clear for Step 1, for
the other steps we state lemmata.

Lemma 4.30 Step 2 preserves the convex chain condition with respect to the set F.

Proof. The new bricks in Step 2 have the form (z,,4,%,,:*) and (Z,,i*, z,,1) for some
(2,4,T,7) € B with left(z) < ¢ = left(x,) < i. Since (z,1,7Z,j) € B can be linked via a convex
chain to some basis, it is enough to consider the following figure:

Ty
Ty 7
Ty i
T, 7
xr
z J

|

Lemma 4.31 Let C = (by,... ,by) be a convex chain before Step 3 linking by with by,. Then
after Step 3 there is a convex chain C' linking b\ with b .

Proof . Let us have a local look at the convex chain:

C=(...,(z,4,7,9),(y,5,7,k)...).

By symmetry we may assume that left(Z) > left(y). Pictorially this local part is then given
by the following figure.

3]

<
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This is the situation before Step 3. After Step 3 let us denote the corresponding bricks
by («',4',7',7") and (v, j",%',k"). This yields the following figure.

z! i
EI jl
y/ j//
y/ L

The question is whether or not j' = j”. If §/ = j* or 5/ = j, then we have j' = j”, and
the chain is not broken. Hence we have to consider the case 7' = j and 7" = j5*, only. This
case is equivalent to

left(y) < ¢ <left(z) < j.

With the help of the brick (z,,7,%,,7*), which was introduced in Step 2, we can repair the
broken chain. We have

left(z,) = ¢ < left(z), left'(y') < c* = left(z,)

and we obtain the following figure:

x i
T J
Ty J
T, J*
Y J*
yl kl
Doing this transformation wherever necessary we construct the convex chain C”. O

Note that C’ constructed in the lemma above may contain many bricks of the form
(x!,1*,T5,4") and (Z,,4*,z),7*). These bricks were canceled only later in Step 5. In fact

their presence in the next lemma is very useful again.
Lemma 4.32 After Step 4 the convex chain condition is satisfied with respect to the set F'.

Proof. Let b/ be a brick after Step 3 and b the corresponding brick before Step 3. This brick
b is linked before Step 3 via a convex chain to some basis (z,4,T,7) with j € F. Lem. 4.31
states that after Step 3 the brick b’ is linked via a convex chain to the corresponding brick
(',i',T',5"). For j < ¢ we have left(T) < ¢ and j' = j* € F'. Hence (2/,7,7',7*) is again a
basis. For j/ = j we have ¢ < j and therefore 5 € F’. This solves also the case j' = j. The
remaining case is ¢ < j and j' = j*. This means left(T) < ¢ < j. By Step 2 there is a brick
(T, 5%, zy,7) and we have left'(z') < ¢* = left(z,). We may put the brick (z',i',Z’,5*) upon
the basis (Z,,j*,z,,7). Since j € F N F', it is in fact a basis before and after Step 4. We
obtain the following figure:
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z i
7' J*
z, J"
Ty .7

a

Lemma 4.33 Steps 5 and 6 preserve the convex chain condition with respect to the set F'.

Proof. Step 5 is a special case of an application of Rule 2, likewise Step 6 is a special case
of applications of Rule 3. In particular, the convex chain condition is preserved. O

The lemmata above yield to the following proposition:

Proposition 4.34 Rule 4 is upward and downward correct. It preserves the convex chain
condition.

Example 4.35 Letzy---xy = 2441+ xq be a word equation, 1 < g < d such that the reqular
constraints are given by a mapping ¢ : Q@ — S. Let

B= ((a v_)a(IaSa(PI)alefth)

be the result of the (logspace-) reduction presented in Sect. 4. Recall that (I,<,@r) represents
the S-sequence

(1/)(331)7 s 71/)($g)7z/)($g+1)7 s 71/)(xd))

We may assume that (I,<,pr) is in its standard representation, I = {0,... ,d}. According
to the reduction the set , contains two variables xo and Tg such that left(xg) = 0, right(xo) =
g = left(Zg), and right(Tg) = d. The set B contains at most d boundary equations (or bricks),
among them there is the brick:

T g
Zo d
We have |I| =d+ 1 and |, | = |B| < 2d. If the word equation has a non-singular solution

satisfying the regular constraints, then exp(B) < 2-e(c(S),d).
Rules 1 to 3 are not applicable to B, but we can try Rule 4. Doing this we find:

To=1x9, (=0, c=g=r=I1% andc" =g " =r"=d.

The set T of transport positions is T = {0,... ,g}.

In Step 1 we have to choose some admissible extension of (I,<,¢r) by T at [g,d]. In
general it is not clear that such an extension exists. Under the hypothesis that x1--- 24 =
Tgy1- - T4 has a non-singular solution o : Q@ — AT with ¢ o 0 = 1 we can continue. Let
v = o(z1---z4) and assume that v has minimal length among all solutions satisfying the
reqular constraints given by . With the help of this word Step 1 can be completed: Define
w = vv, then we have

w = (Y1), - P (2a))-
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The set of positions of w is {0,... ,m,m +1,... ,2m} where m = |v|. The fact that w is a
model of (I,<,r) is realized by an order respecting injective mapping

p:40,...,d} = {0,...,2m}.

Define T* = {m+p(i) | 0 <i < g} and I* = p(I)UT*. Since I'* is a subset of positions of w,
this induces a linear suborder over S, which is denoted by (I*, <, pr<). We have |I*| < d+g&l.
After renaming we may assume I* = {0,... ,d}UT*, T* = {0*,... ,g*} such that 0* = c =g,
c* = g* =d. This completes Step 1 of Rule 4. Since in reality we usually do not know v, the
choice of I* is a non-deterministic guess!

The next steps in Rule 4 are deterministic. In Step 2 we introduce new variables x, and
T, with left(x,) = g = right(z,) and left(T,) = d = right(T,).

In Step 3 we transport the structure of the interval [0, g] to [0*, g*] = [g,d]. If we still view
I* as a subset of positions of w, then this reflects a transport to the positions from the first
to the second factor v in the word w = vv.

The definition of F' according to Step 4 is

Fl={iel"|g<i}.

In Step 5 we cancel the bricks (z,,d, To,d), (To,d, zo,d) and the variables z,, T,.

In Step 6 we replace I* by I' = F'.

Rule 4 is finished. The cardinality of I' is bounded by d. Let B' denote the new system,
then the word v is a solution, v = (I', <, p(I").

Since in the present situation left(x,) = right(z,) = g, Rule 1 is now applicable to B',
it cancels the superfluous bricks (z,,9,T,,d), (Ty,d,z,,q) and the variables z, and T,. The
new system after an application of Rule 1 is denoted by B" = ((, 7, ), (I, <, 1), lefty, BY)).
We have |I"| < d, |,"| = |B"| < 2(d <1). It is now the word v which is a solution of B",
hence exp(B") < exp(v). Therefore, we can choose e(B") = e(c(S),d).

5 Proof of Theorem 4.12

5.1 Decidability

The proof of Thm. 4.12 is a reduction to a reachability problem in some finite directed graph.
The implications for space- and time bounds for Makanin’s algorithm are given later.
The instance is a system of boundary equations

BO = ((a Oa_)a (IOa Sa(pfo)alefthBO)-

We may assume that By satisfies the assumptions made at the beginning of Sect. 4.3, because
otherwise By is not solvable. For trivial reasons the system B satisfies the convex chain
condition with respect to the set Fy = Ij.

Let 2ng = |, o| and fo = |Fo| = |Io|. According to Prop. 4.13 choose a number e(B) such
that either By is not solvable or exp(w) < e(By) for some solution w of By. Define an integer

Bmax by
ﬂmax _ (2n0)4n8(e(30)+1)71 . 2(2’/7,0 + fO)

Note that this value is defined just to fit Cor. 4.21 for a set of final indices having size at most
2ng + f().
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Now, define a directed graph G (the search graph of Makanin’s algorithm) as follows.
The nodes of the search graph G are the systems of boundary equations B = ((, , ), (I, <
, 1), left, B), where:

|7| < 2ny,

ng + 2
1 < =5 fmax,
Bl < Bmax.

For systems B,B’ € G we define an arc from B to B’ whenever first, there is a transformation
rule is applicable to B and second, B’ is the result of the corresponding transformation. A
system B € G with an empty set of variables is called a terminal node.

Clearly, By € G and the search graph G has only finitely many nodes. Hence, it is enough
to show the following claim: The system By has a solution if and only if there is a directed
path in G from By to some terminal node.

The ”if”-direction of the claim is trivial since all transformation rules are upward correct
and since all terminal nodes are solvable by Lem. 4.6. For the ”only-if”-direction let By be
solvable and let wy |= (Iy, <,¢r1,) be a solution satisfying exp (wy) < exp (By).

Let M > 0 and assume that there is an inductively defined sequence of solvable systems
(Bo, Bi,... ,By), M > 0 such that the following properties are satisfied for all 1 < k < M:

o Br=(( k) Ik, <, 1,), lefty, B) is the result of some transformation rule applied to
Bk)—la

e B} has a solution wy |= (g, <, ¢r, ) such that wy is a suffix of wy_1,
e cither |, x| < |, k_1| or |we_1| < |wgl,

e By satisfies the convex chain condition with respect to some subset Fj, C I}, with |Fj| <
2no <, k| + fo.

If Bys is a system of boundary equations without variables, then we stop. Otherwise,
since By is solvable, a transformation rule is applicable. Consequently, the sequence can be
continued by some solvable system By satisfying all properties above. The third property
however implies that M < ng+|wy|. Hence, finally we must reach a system without variables.
We may assume that this happens with reaching B,;. Let us show that all B are nodes of G
for all 0 < k < M. This will imply the claim since then there is a directed path to By, and
By is a terminal node.

We have to verify |, x| < 2ng, |Ix]| < "OT"'Q * Bmax, and |Bg| < Bmax-

The assertion |, x| < 2nyg is trivial. The second property of the sequence implies exp (By) <
exp (wg) < exp (wp) < e(Bp). By Cor. 4.21 and the fourth property we have |Bi| < fmax-
The next lemma yields an invariant which will give the desired bound on the size of every I.

Lemma 5.1 For 0 < k < M define By, = |{(z,i,%,j) € By | lefty(x) < i}|. Then for all
1 <k <M we have:

s k—
. ﬁmax S 2 |Ik71| <:>/8kfl + M : ﬁmax-

2|1y Bk + 5

|’ k|
2
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Proof. Consider the rule which was applied to pass from Bi_; to B. For Rule 1 or 2 we
have:

|ak| = |ak71|<:>2a
|2k | k-1,
/Blc—l <:>/8k < /Bmax-

For Rule 3 we have:

|a k| = |a k71|a

|Ik| = |Ik,1| &1,
Bkl = Bkl
Finally, for Rule 4 we have |, x| = |, x—1| and Lem. 4.27 says:

2|1y &0k < 2|I—1| ©Br-1.

The assertion of the lemma follows. O

A consequence of Lem. 5.1 (and i < fpnax) is:

2|Ik| < 2|I()| + (’n() + 1)/8max forall 0 <k < M.

Since |Ip| < %ﬂmax, we obtain | I < ”OQ'QBmaX. Hence B, € G for all 0 < k < M. This proves
Thm. 4.12, hence Makanin’s result.

5.2 Complexity in terms of the semigroup S and the maximal number of
boundary equations

Our estimations on the upper bounds of Makanin’s algorithm are given by the size of the
semigroup S and the number B« as defined in the precedent section, which is the maximal
number of boundary equations.

A node B=((,,7),(I,<,¢r),left, B) of the search graph G is encoded as a binary string
over {0, 1} as follows: The code for (, , ") is simply the number n written in binary such that
|, | = 2n. Thus, O (logng) bits are enough for this part. The linear order (I, <, ¢r) is encoded
by its underlying S-sequence. For this part O(ngfmaxlog|S|) bits are used. The mapping
left : , — I is encoded by using O(ng log (nofmax)) bits. Finally, the set of bricks B can be
encoded by using O(fmax 10g (10Omax)) bits. Note that ny < log fmax. It follows that there
is effectively a constant ¢ € N such that every B € G can be described by a bit string of
length equal to ¢ - (log|S] - Bmax - 10g (Bmax)). Up to some calculations performed over S this
is the essential upper space bound for the non-deterministic procedure. It is at most double
exponential in the input size, but we will come back to this point later.

The number of bits we need for the code yields an upper bound for the size of G. Using
the constant ¢ above, define a natural number ynyax by:

Ymax = 20'(10g|s|'ﬁmax'log(ﬁmax)) c QO(log‘S|'ﬁmax'10g(ﬁmax)).

Lemma 5.2 The number of nodes in G is less than or equal to ymax-
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Proof. The number of nodes is as most exponential in the number of bits used in a
description for a node. O

The following assertion is now clear:
Proposition 5.3 The system By is solvable if and only if G contains a directed path
(Bo,y ..., Bn)
to the terminal node By, = (0,0,0,0) such that m < ypax-

Proof. 1If there is a path to some terminal node then this path can be elongated by
applications of Rule 3 until finally the underlying linear order is the empty set. We may
assume that this path is without cycles, then Lem. 5.2 implies m < Ymax- O

Corollary 5.4 Let By be solvable and let wy = (lo, <, p1,) be a solution, where the length
|wo| is minimal. Then we have

lwp| < |S| - 27max,

Proof . Consider a sequence (By, ... ,B), m < Ymax to the terminal node B,,, = (0,0, 0, 0)
as in Prop. 5.3. Going the path backwards we define inductively solutions vy, vp—1,... , v
of the systems B,,, Bp—1,...,Bp as follows. The initial solution is v,, = 1. Assume that
Umy--- Uk, 1 <k <m are already defined. Depending on the transformation rule which link
Bj,_1 to By, we define the solution vy, = (Ik,l, <, <p1k_1) of the system B .

For Rule 1 or 2 we define v;_; = vg. For Rule 3 we define v;_1 = uv; for some suitable
u € AT, Tt is clear that we can choose u such that |u| < |S|. Hence |vg_1| < |S| + |vk]-

For Rule 4 we find a solution v;_1 = uvg, where u is a factor of v;. Hence |vg_1| < 2|vy].

We end up with a solution vy = (o, <, ¢1,) of By such that |vg| < |S| - 27mex,

Since wy is of minimal length we have |wg| < |vg|. 0

Remark 5.5 Assume that By is solvable and wq is a solution of minimal length. The word
wy can be used as a model for constructing a path

(BO?"' aBM)a MZI

to some terminal node. However, we cannot exclude that this path has many cycles. In
particular, M need not to be the number m, which was used in the proof of Cor. 5.4. Due to
the construction of the solution vy above, it is possible that vy # wo and e(By) < exp(vy).

Corollary 5.6 In deterministic time

9O(|S]-27max)

we find by exhaustive search either a solution of minimal length or we can report that By is
not solvable. This upper bound is five times exponential in the input size (number of bits used
in the encoding) of By.

Proof. Test all strings up to the length of |S| - 27max whether they are a solution. Stop
when the first solution is encountered. If no solution up to this length is found, then By is
not solvable. O

35



5.3 An upper bound for the complexity of solving word equations

The original question of the chapter is whether a given word equation x1--- 2y = z441- - 24,
1 < g < d with regular constraints has a solution. We may assume that each regular language
L, C A* is specified by an NFA with r, states, z € 2. Define r = ), 7;; we are going to
measure the complexity of Makanin’s algorithm in terms of d and r. First, we choose a suitable
semigroup S and a homomorphism ¢ : AT — S. By Rem. 3.1 we may assume that S satisfies
15| <2 and ¢(S) < r!. By Thm. 3.2 choose a value e (¢ (S) ,d) € ¢(S) - 20(@ C 20(d+rlogr)
such that e (c(S),d) is an upper bound for the exponent of periodicity. Transform the word
equation (by a non-deterministic guess) into a system of boundary equations

Bo = ((, 0, ), (o, <, 01,), lefty, By).

such that the word equation has a solution satisfying the regular constraints if and only if By
is solvable. This is possible such that first, |Iy|, |, o|, |Bo| € O(d), and second, if By is solvable,
then

e(By) <2-e(c(S),d) € 20(dtrlogr),

More precisely, by Ex. 4.35 we can say |Iy] < d <1, |, o] = |Bo| < 2(d &1) and, if By is
solvable, then e (By) < e(c(S5),d).
Compute a value Bpax € 92°(@Hr1osT) 1 ch that the search graph G satisfies Prop. 5.3 for the
corresponding value ymax. Recall that [pax is an upper bound for the number of boundary
equations of each node and that vy an upper bound for the number of nodes in G. The
number fp.x is double exponential in the input size, which is for simplicity d + r. The
value Bpax is large enough to perform all computations over the semigroup S and it is small
enough in order to solve the reachability problem in the search graph G in non-deterministic
space NSPACE(220(d+T logT)). Using standard knowledge in complexity theory (like Savitch’s
Theorem, c.f. Hopcroft and Ullman (1979)), we can state:

Theorem 5.7 The satisfiability problem for word equations with regqular constraints is in the
following complexity classes:

DSPACE (220(‘“” logr)) , i.e., double exponential deterministic space,

920 (d+rlogr) . . . C
DTIME { 2 , i.€., triple exponential deterministic time.

The length of a shortest solution is at most four times exponential in the input size, it can be

bounded by

22O(d+7‘ log )
2

2

The computation of a shortest solution by exhaustive search is possible in at most five times
deterministic exponential time.

Remark 5.8 The complexity bounds given above are slightly different from other bounds pub-
lished in the literature so far. In Koscielski and Pacholski (1996: Cor. 4.6) a triple exponential
non-deterministic time bound for the satisfiability problem is given. Here we have triple expo-
nential deterministic time, since in the formulation as a graph reachability problem it is the

36



number of nodes which becomes important. The upper bound for the exponent of periodicity
given in Schulz (1992a) for the situation including regular constraints is based on the tech-
niques of the original article of Makanin. This yields a double exponential bound whereas it is
shown here that one exponential is enough. The upper bound for the exponent of periodicity
is essentially optimal; the optimality is not known for the bounds mentioned in Thm. 5.7

6 Notes

A systematic study of equations in free monoids was initiated by A. A. Markov in the late
1950’s in connection with Hilbert’s Tenth Problem, see Hmelevskii (1971), Makanin (1981).
It is not difficult to see that the matrices having non-negative integer coefficients and de-
terminant 1 form a free monoid inside the special linear group SLy(Z). The free generators

are:
11 10
= fon) = (00)

Let L = R be a word equation over {a,b} in unknowns Q = {z1,... ,z,}. Replace each
variable z; € Q by a matrix
< @i o )
iz Qg )’

where «;; denote variables over N. Multiplying matrices corresponding to the words L and
R yields an equation of the form
< Q1 Qo )
Qs Q4 )

P P
P Py

The coefficients P,..., (4 are polynomials in the c;;. It is clear that the equation L = R
has a solution if and only if the following Diophantine system has a non-negative solution:

P = Qi7 1=1,...,4,
Q104 Sagoay = 1, 1=1,...,n

The hope of Markov was to prove this way the unsolvability of Hilbert’s Tenth Problem,
which was not settled at that time. This failed: The unsolvability of Hilbert’s Tenth Problem
was shown in 1970 by Matiyasevich using quite different methods, see Matiyasevich (1993).
The solvability of word equations is, needless to say at this place, due to Makanin (1977).
Before Makanin obtained the breakthrough only partial results were known. In 1964
and 1967 Hmelevskii found a positive solution for the cases with two and three variables
respectively, see Hmelevskii (1971). In the case of two variables a polynomial time algorithm
for the satisfiability problem is given in Charatonik and Pacholski (1993). The solvability
in the case where each variable occurs at most twice is due to Matiyasevich (1968). Other
special cases were solved in Plotkin (1972) and Lentin (1972). After the general solution
was established in 1977 other questions became central. In Makanin (1979) it is shown that
the rank of an equation is computable, see also Pécuchet (1981). Makanin’s algorithm was
implemented in 1987 at Rouen, see Abdulrab and Pécuchet (1990). The inherent complexity
of the satisfiability problem of word equations is not known. The lower bound is NP-hardness
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for equations without regular constraints and PSPACE-hardness for equations with regular
constraints. The known upper bounds to date for Makanin’s algorithm are given in Thm. 5.7.
There is a double exponential gap between lower and upper bound for the space complexity.

The original article Makanin (1977) is very technical. In the sequel other presentations
with various improvements were given, let us refer to Jaffar (1990), Schulz (1992a, 1993).
The present chapter is along this line, it is rather close to Schulz (1992a). A brief survey on
equations in words can be found in Perrin (1989); more material on equations in free monoids
and, especially on equations without constants, is in the Handbook of Formal Languages, see
Choffrut and Karhuméki (1997). There are also two volumes in the Springer lecture notes
series dedicated to word equations and related topics: Schulz (1992b) and Abdulrab and
Pécuchet (1993).

Equations in free groups are defined analogously to word equations. The situation however
becomes extremely complicated. It was Makanin himself who mastered also this problem. In
Makanin (1982) and with a correction in Makanin (1984) it is shown that the satisfiability of
group equations with constants in decidable. In Razborov (1984) an algorithm is presented
which generates all solutions to a given equation. The inherent complexity of Makanin’s
algorithm for groups is investigated in Koscielski and Pacholski (1998). The authors define the
notion of abstract Makanin algorithm. They show that this abstract scheme is not primitive
recursive.

Another direction to extend Makanin’s result is to include partial commutation: Let
I C ¥ x X be a relation between letters, which says when letters may commute (i.e., when
they are independent). The quotient monoid M (X,I) = ¥*/{ab = ba | (a,b) € I} is called
the free partially commutative monoid. It was introduced in Cartier and Foata (1969), where
interesting combinatorial properties were discovered. In computer science free partially com-
mutative monoids are usually called trace monoids, a notion which is due to Mazurkiewicz
(1977). The interest is that partial commutation expresses some basic phenomena of concur-
rency, let us refer to Diekert and Rozenberg (1995) for an overview. Syntactically, a system
of trace equations is the same as a system of words equations, but solutions are searched in
the trace monoid, this means the commutation relations ab = ba can be used for free for all
(a,b) € I. For example, if (a,b) € I, then, contrary to the situation in free monoids, the trace
equation axb = bya has a solution o(z) = o(y) = 1. The set of all solutions of this trace
equation is given by o(z) = o(y) and alphabetic constraints.

It is shown in Matiyasevich (1997) that the satisfiability of a system of trace equations is
decidable. The proof is a reduction of trace equations to word equations with regular con-
straints. As a byproduct of the reduction we may put arbitrary recognizable constraints on the
variables without loosing satisfiability. Another reduction using a new result on lexicographic
normal forms of traces is presented in Diekert, Matiyasevich, and Muscholl (1997).

A challenging open question to date is a generalization of Makanin’s result to free partially
commutative groups. But this is only one of many open questions in this area. The theory
of word equations is still exciting and many problems remain to be solved.
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Problems

Section 1

1.1

Decide whether or not the solution abbababbaabab given to Ex. 1.1 is a non-singular
solution of minimal length.

1.2 Show that the satisfiability problem of systems of word equations without regular
constraints is NP-hard.
Hint: Show that the problem is NP-complete, if there is exactly one constant, A = {a}.
Use the fact that linear integer programming is NP-hard, even in unary notation.

1.3 Modify the decision procedure, where each variable occurs at most twice, to include the
case where we have regular constraints. Show that the underlying decision procedure
is PSPACE complete, if the regular constraints are specified by a list of NFA (non-
deterministic finite automata).
Hint: The hardness follows directly from well-known PSPACE complete problems on
regular sets.

Section 2

2.1 Give a greedy algorithm to compute the p-stable normal form of a word w € A*.
Modify the algorithm by pattern matching techniques such that it runs in linear time
O[] + Ip).

2.2 Prove Props. 2.8, 2.9, and 2.10. Show that the results remain true when there are
regular constraints.

2.8 Show that the satisfiability problem of single word equations without regular con-
straints is NP-hard.
Hint: Compare this problem with Prob. 1.2.

2.4 Let L, C A* be a regular language. Describe the set of all solutions o for an equation
with only one unknown z under the constraint o(z) € L.

Section 3

3.1 An instance of a linear integer programming problem is given by an m X n matrix

D € Z™*™ and a vector ¢ € Z™. Let x € N* be a minimal vector such that Dz = c.
Assume that the sum over the squares over the coefficients in each row of D is in O(1)
and ||c|| € O(n?). Show by elementary methods that there is a (small) constant ¢ such
that

lz]] € O2).

Hint: The proof is a slight modification of the standard proof which shows that linear
integer programming is NP-complete. Use Hadamard’s Inequality for an upper bound
for the maximal absolute value over the determinants of square submatrices of D.
Next, show that if £ € N” is a minimal solution, then there is also a minimal solution
2z’ € N* such that first, the absolute value of at least one component can be bounded

and second, Y 1, x; < Y | zi. Freeze by an additional equation one variable of z'
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to be a constant. Repeat the process until the homogeneous system Dz = ¢ has only
the trivial solution. Then apply Cramer’s Rule.

It should be noted that this method doesn’t yield the best possible result. But it is
good enough to establish that e(d) € 294, which was used in the proof of Thm. 3.2.

Section 4

4.1 Consider the reduction in the proof of Lem. 4.14. Give an estimation for the length d of
the word equation and thereby for an upper bound of e(B). Define another reduction
where the denotational length of the resulting word equation becomes smaller. This
improves also the estimation for e(B). Give a third estimation for e(B) based on the
techniques presented in Sect. 3.

Hint to the second part: If a system contains two equations z = z’ and zy = z'v/,
then the second one can be replaced by y = 3/.

4.2 The lower bound for e(¢(S), d) given in Ex. 3.4 can be refined. Koscielski and Pacholski
(1996: Thm. 4.8) consider the following equation with k¥ = 5:

LTn0Lnbxp_1b- - Tobx = awnxfl_lbxfl_Zb- .- x’fba.

Show that there is a unique solution. Derive from this solution a lower bound for the
constant hidden in the notation e(c(S),d) € ¢(S) - 2%49). Why is k = 5 a good value?
Hint: Show first that o(z;) € a* for all 1 <7 <n.

References

Abdulrab, H. and Pécuchet, J. (1990). Solving word equations, J. Symbolic Computation,
8(5), 499-521.

Abdulrab, H. and Pécuchet, J. (Eds.). (1993). Proceedings of Word Equations and Related
Topics (IWWERT ’91), Vol. 677 of Lect. Notes Comp. Sci., Berlin-Heidelberg-New
York. Springer-Verlag.

Cartier, P. and Foata, D. (1969). Problémes combinatoires de commutation et réarrangements.
No. 85 in Lecture Notes in Mathematics. Springer, Berlin-Heidelberg-New York.

Charatonik, W. and Pacholski, L. (1993). Word Equations with Two Variables, In Abdulrab,
H. and Pécuchet, J.-P. (Eds.), Proceedings of Word Equations and Related Topics, Sec-
ond International Workshop, IWWERT 91, Rouen, France, Vol. 677 of Lect. Notes
Comp. Sci., pp. 43-56 Berlin-Heidelberg-New York. Springer-Verlag.

Choffrut, C. and Karhumaiki, J. (1997). Combinatorics of Words, In Rozenberg, G. and
Salomaa, A. (Eds.), Handbook of Formal Languages, Vol. 1, pp. 329-438. Springer,
Berlin-Heidelberg-New York.

Dickson, L. E. (1913). Finiteness of the odd perfect and primitive abundant numbers with n
distinct prime factors, American Journal of Math., 35, 413-422.

40



Diekert, V., Matiyasevich, Yu., and Muscholl, A. (1997). Solving trace equations using lexi-
cographical normal forms, In Degano, P., Gorrieri, R., and Marchetti-Spaccamela, A.
(Eds.), Proc. of the 24th ICALP, Bologna, 1997, No. 1256 in Lect. Notes Comp. Sci.,
pp- 336-347 Berlin-Heidelberg-New York. Springer-Verlag.

Diekert, V. and Rozenberg, G. (Eds.). (1995). The Book of Traces. World Scientific, Singapore.

Eyono Obono, S., Goralcik, P., and Maksimenko, M. (1994). Efficient Solving of the Word
Equations in One Variable, In Privara, I. et al. (Eds.), 19th Symposium on Mathematical
Foundations of Computer Science (MFCS’94), Kogsice (Slovakia) 1994, No. 841 in Lect.
Notes Comp. Sci., pp. 336-341 Berlin-Heidelberg-New York. Springer.

Gathen, J. von zur and Sieveking, M. (1978). A bound on solutions of linear integer equalities
and inequalities, Proceedings of the American Mathematical Society, 72(1), 155-158.

Hmelevskii, Ju. I. (1971). Equations in Free Semigroups, In Petrovskii, I. G. (Ed.), Trudy
Mat. Inst. Steklov. 107. (In Russian) English translation in: Proceedings of the Steklov
Institute of Mathematics 107 (1976). American Mathematical Society.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA.

Jaffar, J. (1990). Minimal and Complete Word Unification, J. Assoc. Comput. Mach., 37(1),
47-85.

Koscielski, A. and Pacholski, L. (1996). Complexity of Makanin’s Algorithm, .J. Assoc.
Comput. Mach., 43(4), 670-684. Preliminary version in Proc. of the 31st Annual IEEE
Symposium on Foundations of Computer Science, Los Alamitos (1990).

Kodcielski, A. and Pacholski, L. (1998). Makanin’s algorithm is not primitive recursive,
Theoret. Comput. Sci., 191(1-2), 145-156.

Lentin, A. (1972). Equations dans les monoides libres. Gauthiers-Villars.

Lothaire, M. (1983). Combinatorics on Words, Vol. 17 of Encyclopedia of Mathematics and
its Applications. Addison-Wesley, Reading, MA.

Makanin, G. S. (1977). The problem of solvability of equations in a free semigroup, Mat.
Sbornik, 103(2), 147-236. (In Russian) English translation in: Math. USSR Sbornik 32
(1977) 129-198.

Makanin, G. S. (1979). Recognition of the rank of equations in a free semigroup, Izv. Akad.
Nauk SSR, Ser. Mat. 43. (In Russian) English translation in: Math. USSR Izvestija 14
(1980) 499-545.

Makanin, G. S. (1981). Equations in a free semigroup, American Mathematical Society
translations (2), 117, 1-6.

Makanin, G. S. (1982). Equations in a free group, Izv. Akad. Nauk SSR, Ser. Mat. 46, 1199—
1273. (In Russian) English translation in: Math. USSR Izvestija 21 (1983) 483-546.

41



Makanin, G. S. (1984). Decidability of the universal and positive theories of a free group,
Izv. Akad. Nauk SSR, Ser. Mat. 48, 735-749. (In Russian) English translation in:
Math. USSR Izvestija 25 (1985) 75-88.

Markowsky, G. (1977). Bounds on the index and period of a binary relation on a finite set,
Semigroup Forum, 13, 253-259.

Matiyasevich, Yu. (1968). A connection between systems of word and length equations and
Hilbert’s Tenth Problem, Sem. Mat. V. A. Steklov Math. Inst. Leningrad, 8, 132—
144. (In Russian) English translation in: Seminars in Mathematics, V. A. Steklov
Mathematical Institute 8 (1970) 61-67.

Matiyasevich, Yu. (1993). Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts.

Matiyasevich, Yu. (1997). Some Decision Problems for Traces, In Adian, S. and Nerode,
A. (Eds.), Proceedings of the 4th International Symposium on Logical Foundations of
Computer Science (LFCS’97), Yaroslavl, Russia, July 6-12, 1997, No. 1234 in Lect.
Notes Comp. Sci., pp. 248-257 Berlin-Heidelberg-New York. Springer-Verlag.

Mazurkiewicz, A. (1977). Concurrent Program Schemes and their Interpretations, DAIMI
Rep. PB 78, Aarhus University, Aarhus.

Pécuchet, J.-P. (1981). Sur la détermination du rang d’une équation dans le monoide libre,
Theoret. Comput. Sci., 16, 337-340.

Perrin, D. (1989). Equations in words, In Ait-Kaci, H. and Nivat, M. (Eds.), Resolution of
equations in algebraic structures, Vol. 2, pp. 275-298. Academic Press.

Plotkin, G. (1972). Building in equational theories, Machine Intelligence, 7, 115-162.

Razborov, A. A. (1984). On systems of equations in a free group, Izv. Akad. Nauk SSR, Ser.
Mat. 48, 779-832. (In Russian) English translation in: Math. USSR Izvestija 25 (1985)
115-162.

Schulz, K. U. (1992a). Makanin’s Algorithm for Word Equations: Two Improvements and
a Generalization, In Schulz, K.-U. (Ed.), Proceedings of Word Equations and Related
Topics, 1st International Workshop, IWWERT’90, Tibingen, Germany, Vol. 572 of
Lect. Notes Comp. Sci., pp. 85-150 Berlin-Heidelberg-New York. Springer-Verlag.

Schulz, K. U. (Ed.). (1992b). Proceedings of Word Equations and Related Topics (IWWERT
’90), Vol. 572 of Lect. Notes Comp. Sci., Berlin-Heidelberg-New York. Springer-Verlag.

Schulz, K. U. (1993). Word Unification and Transformation of Generalized Equations, Journal
of Automated Reasoning, 11(2), 149-184.

42



Index
admissible extension, 16

basis, 22
brick, 20

clean convex chain, 21
conjugates, 3

convex chain, 21

convex chain condition, 22
critical boundary, 27

denotational length, 8
domino tower, 4
downward correctness, 26

exponent of periodicity, 5, 17

final index, 22
foundation, 22
free partially commutative monoid, 38

linear order over S, 15
model, 15
non-singular solution, 1

position, 15
primitive word, 3

refinement, 14
right boundary, 20

singular solution, 1

solution, 1, 17

stable normal form, 5

standard representation, 15
system of boundary equations, 17
system of word equations, 1

terminal node, 33
trace monoid, 38
transport position, 27

upward correctness, 26

43



