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Abstract

Mobile agent technology has received a rapidly growing attention over the
last few years. A number of mobile agent systems are under development in
academic as well as industrial environments, there are already various moves to
popularize and standardize mobile agent facilities and architectures. It has been
argued that mobile agents provide certain advantages as compared to traditional
approaches in terms of providing facilities like software-distribution on demand
at reduced communication costs, better support for asynchronous tasks, and
scalibility due to dynamic deployment which is based on a taxonomy of mo-
bility. The employment of mobile agents has been particularly attractive in
applications like information retrieval in widely distributed heterogeneous envi-
ronments, network management, electronic commerce and in mobile computing.

Inspite of all this growing interest and efforts the agent technology is in
a fairly early stage and a number of technical problems should be solved in
order to make this new technology a commercial success. These open problems
include mechenisms for agent security, control structures, transactional support,
and design of communication models. In this paper we extend previous research
conducted on mobile agents regarding their communication performance models.
It has been indicated that the optimal performance of an agent is achieved by
a critical sequence of mixed remote procedure calls and agent migration. We
provide here exact algorithms to solve various variants of this problem under
certain restrictions on the sequence of interactions of the mobile agents.

*Currently with the Department of Electrical Engineering, University of Engineering & Technol-
ogy, Lahore-54890, Pakistan, email:ashraf@igbal.lhr.aster.com.pk.



1 Introduction

Mobile agents are computer programs which can be migrated from a client com-
puter and dispatched to a remote host for execution [BRAD97]. The Mobile Agent
technology, which implements the concept of mobile agents in a commercial environ-
ment, is a new promising technology moving towards the vision of usuable distributed
systems in distributed heterogeneous open networks [BAUM9S,LANGE9S,PEIN97,
POPE97]. This promises to offer an appropriate framework for a unified and scal-
able electronic market. The salient features of this new technology is that a user
computer and a server can interact without using the network once the network has
transported an agent between them. Thus any ongoing interaction does not need
ongoing communication between a user and a server computer [BRADIT7].

The current organizing principle of computer communication networks is Remote
Procedure Calling (RPC). Designed in the seventies, the RPC paradigm models
computer to computer communication as enabling one computer to call procedures in
the other machine. Each message that is sent on the network transports either requests
(i.e., procedure’s arguments) or acknowledges a procedure’s performance in terms of
data which are its results. The salient features of RPC is that each interaction between
the user computer and the server consists of two steps of communication, in the first
step the server is requested to perform an operation on a given set of arguments, and
in the second step is to acknowledge or receive the results of the operation from the
server. Thus under RPC ongoing interaction requires ongoing communication.

Under this new technology one computer not only calls procedures in another
machine but also supplies procedures to the other machine for execution. A client
computer, with functions to be performed by a server, sends to the server an agent
while the agent and not the client computer orchestrates the work, making on site
decisions while performing its job. Thus under agent technology ongoing interaction
does not require ongoing communication. The public telephone systems and today’s
wireless networks presents greater opportunities for the agent technology as under
such systems a user computer is connected to a network occasionally rather than
permanently. The client machine should be connected to the network just long enough
to send the agent on its way, and later to receive it at home, it needs not be connected
while the agent carries out its assignment.

Basic Concepts

The commercial focus of mobile agent technology is the electronic marketplace
consisting of a public network that will design a platform for providers and consumers



of goods and services where business transactions are carried out electronically. The
technology of the so called future marketplace is based on the following concepts. The
network of computers is modelled as a collection of places, each place provides a
service and the agent can migrate to any place to request for the service it provides.
An agent occupies a particular place, it can move from place to place thus occupying
different places at different times. Travel from one place to another provides a facility
for the agent to obtain a service offered remotely and is the most distinguished feature
of this technology. Two different agents can meet in the same place, a meeting lets
agents in the same computer to call one another’s procedures. An agent’s travel is
not restricted to a migration to a single place, the agent is powerful or independent
enough to travel to several places in succession, taking advantage of the basic services
of the places it visits, the roaming agent can thus provide a sophisticated range of
composite services.

Several researchers have suggested that mobile agents provide an innovative tech-
nique of performing transactions and information retrival in computer networks [HARI95].
Other researchers have, however, indicated a number of serious problems which must
be overcome before the agent technology becomes commercially useful and cost effec-
tive [ROTH97]. The following are some of the problems which should be tackled by

researchers working in the said field.

e Virus scanning and epidemic control mechenisms should be designed and
performance limitations resulting from security issues should be well under-
stood. In other words there is a growing need for highly secure agent execution
environments.

e The problem of migrating agent execution environments onto a large number of
third party servers should be solved. In particular the third party servers should
appreciate the potential advantage of allowing or supporting the computa-
tional load of mobile agents.

o Due to their asynchronous nature, agents are best suited to be engaged in long-
lived activities most probably where it has to migrate to a large number of
places in a sequence in order to provide a number of composite services. A
communication model should be developed which can help us to design an
optimal agent migration strategy exactly specifying places where an RPC
is cost effective and others where the agent should migrate in order to provide
the required services at minimal cost.

In this paper we extend previous research conducted on mobile agents regard-
ing their communication performance models. It has been indicated that the optimal



performance of an agent is achieved by a critical sequence of mixed remote proce-
dure calls and agent migration. We provide exact algorithms as well as approximate
schemes to solve this problem provided the sequence of interactions is fixed and can be
represented by a constrained graph. We also study the performance model when the
sequence of interactions is not fixed, we provide approximate solutions and fast heuris-
tics for this otherwise NP-complete problem. The paper is organized in the following
manner. In Section 2 we describe an exact algorithm for finding an optimal agent
migration strategy provided the sequence of interactions is fixed and is represented
by a chain structure. We extend this algorithm for tree structured and series-parallel
graphs in Section 3. We conclude the paper in Section 4.

2 Agent Migration versus RPC

The key advantage of agent migration as compared to RPC lies in the reduction of
expensive global communication costs and that is achived by moving the computation
to the place which houses the relevant information or services. Under what conditions
this argument is true or false? In order to answer this question one has to evaluate the
performance of agent migration as compared to communication by RPC on a quan-
titative fashion. A simple performance model was studied in [CARZ97], [CHIA97].
Another performance model for mobile agent systems where agents can alternatively
use RPC or migrate to different places is considered in [MARK97]. It has been as-
sumed that the sequence of interaction partners and their locations, as well as each
request size, reply size, selectivity, and number of communications per location is
known in advance. It has also been assumed that the average delays and the average
throughput in the network are already known for every possible interconnection.

2.1 Assumptions

It has been shown [MARK97| that a particular alternating sequence of of agent mi-
grations and remote procedure calls performs better than a simple sequence of RPC’s
or a sequence of agent migrations to all possible places. The theoretical result was
confirmed by actual measurements on a prototype implementation of a mobile agent
system known as the Mole. In this section we work under the same constraints as are
made in [MARKO97], we thus assume that the complete sequence of interactions with
different places is fixed. We also assume that the cost of interaction under RPC as
well as under agent migration is also known before hand.



2.2 Definitions

The agent communicates with a number of places in a fixed sequence. The set of
places with which the agent communicates is denoted by SCP, the size of this set is
denoted by y. The agent is allowed to migrate to a specified number of locations, these
locations are represented by the set SMP, the size of this set is assumed to be equal
to z. We assume that the agent communicates with places (belonging to the set SCP)
in a fixed sequence, the sequence is known as CS, we assume that the communication
takes place n times. Thus C'S(i) specifies the place with which the ith communication
takes place. In order to communicate with different places the agent migrates, the
migration sequence is represented by MS. Thus M S(¢) specifies the position of the
agent when the ith communication takes place, 1 < ¢ < n. It is important to note
that a single communication step is composed of two basic operations:

e In the first operation the agent migrates from M S(i — 1) to its new location

which is MS(7).

o In the second operation the agent makes a remote procedure call to location

CS(i).

Let us assume that M Cost(a,b) is the cost of migrating the agent from location a to
location b. We represent the cost of making a remote procedure call from location ¢
to location d by RCost(c,d). Thus the Cost of making an ith communication would
be equal to the sum of the above two costs and is given by the following equation.

Cost(i) = MCost(MS(i — 1), MS(2)) + RCost(MS(z),CS(1))

The total cost of communication would be 3%, C'ost(z), and is donated by TCost.

Example 1

Let us assume that the agent communicates 5 times, thus n=>5. Further assume that
SCP = {1,2,3}, and SMP = {1,2,a,b,¢,d}. The communication sequence is given
by the following equation.

CS={2—-3—-1—-2-3}

We assume that the agent is currently residing at place 1 and the migration sequence
is given below.

MS={b—c—2—2—=b}



Thus in order to communicate for the first time, i.e., with C'S(1) = 2, the agent
migrates to location M S(1) = b from its present position, which is 1, and then makes
a remote procedure call to location 2. Similarly C'S(4) = 2, while M S(4) = 2, and the
old position of the agent is M S(3) = 2, that means that the agent will stay at location
2 and shall make a local communication with location 2. The last communication
takes place with C'S(5) = 3, the agent migrates to location b from its old position
and then makes a remote procedure call to location 3, after that the agent returns to
its home position which was location 1. The value for Cost(i) would be given by the
following equations:

+ RCost
Cost(b) = MCost(2,b) + RCost(b,3)

The total cost would be the sum of all the above costs, we assume here that the agent
does not return to its starting position which is location 1. If it does return to its
home position then an extra cost equal to M Cost(b, 1) should be added into the above
costs.

Problem Definition

Given a fixed communication sequence in terms of C'S(i), 1 < ¢ < n, the migration
cost matrix MCost(a,b), the remote procedure call cost matrix RCost(c,d), find a
migration sequence MS so that the total cost of communication T'Cost is minimal.
Note that MCost is a z X z matrix while RCost is a z X y matrix

2.3 An Optimal Decision Graph (ODG)

We can find an optimal agent migration sequence, i.e., the migration sequence of
minimal total cost by drawing an optimal decision graph, this is a layered graph
having as many layers as the size of the communication sequence, i.e., n. In addition
to the n layers the ODG has a start and an end node. The start node signifies the
starting or the home location of the agent while the end vertex corresponds to the final
destination of the agent. A shortest path between the start and the end node in this
graph determines the optimal migration sequence [ASHR96, GABR97]. The optimal
decision graph has the following properties:
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Figure 1: An Optimal Decision Graph (ODG) indicating a path between the start and
the end node. Each such path represents an agent migration sequence. In order to
avoid confusion all edges are not shown in the graph.

o There are n layers in the ODG, the th layer corresponds to the :th communi-
cation step in the communication sequence C'S(7), 1 <17 < n.

e Each layer ¢ has as many vertices as the size of SMP, i.e., z, we label these

vertices as ab, where a = C'S(1), and b € SMP.

e A path passing through vertex ab in the ith layer, where « = C'S(i), and b €
SM P, signifies that the ith communication step takes place while the agent



is currently residing at location b and from that location it makes a RPC to
location a.

e The start node is connected to each vertex ab in the first layer, where a =
CS(1)and b € SMP. This implies that the agent has migrated from its home
location to location b and makes an RPC from b to a. The cost associated with

edge(start,ab) is Cost(1) = MCost(home,b) + RCost(b, a).

e Each vertex ab in layer ¢ — 1 is connected to each vertex cd in layer 7, the cost
associated with this edge is Cost(1) = MCost(b,d) + RCost(d,c). There are z

incoming edges at each vertex ¢d in layer ¢ from each vertex in layer ¢ — 1.

o Each vertex ab belonging to the nth layer is connected to the end node, each
such edge signifies that the agent returns from its last position (which is b) to

its home vertex, note that @ = C'S(n). The cost associated with edge(ab, end)
is MCost(b, home).

e There is a one to one correspondence between an agent migration sequence and a
path between the start and the end node in the optimal decision graph. The cost
of the agent migration sequence is represented by the length of the corresponding
path in the optimal decision graph. In order to find the optimal agent migration
sequence we should find a shortest path between the start and the end vertex in
the optimal decision graph.

Example 2

An optimal decision graph corresponding the agent migration problem described in
Example 1 is shown in Fig. 1. The following information is reproduced from Example

1.
SCP=1{1,2,3}
SMP ={1,2,a,b,¢,d}
CS={2—-3—-1—-2-3}

We assume that the agent is currently residing at place 1 and the migration sequence
is given below.

MS={b—c—2—2—=b}

Note that any agent migration sequence can be represented by a distinct path
between the start and the end nodes in the optimal decision graph. Consider the MS,
given above, the corresponding path in the optimal decision graph is shown in bold in
Fig. 1. The length of this path is equal to the cost of the MS.



An Algorithm to Find an Optimal Agent Migration Sequence

The problem is to find a shortest path in the optimal decision graph. We consider all
outgoing paths from each vertex ab belonging to the second last layer, i.e., the n — 1
layer.

1. Find a shortest path from each vertex ab to the end node. This would involve a

number of comparisons equal to the square of the size of SMP, i.e., 22

2. Move one layer up at a time until you reach the start vertex, and consider each
vertex ab in that layer, now go to step number 1. Processing of each layer will
take time proportional to z2.

The total complexity of the algorithm would be O(nz?).

3 When Comunication Sequence is Not Fixed

It has been assumed in the last section that the agent communicates with different
places in a fixed sequence, i.e., there is only a single place with which the ith commu-
nication can take place, where 1 <7 < n. The communication sequence can thus be
represented by a chain structured graph, there are n vertices in this graph connected
in the form of a chain, the ith vertex represents the ith communication step. For
example, if CS ={2 -3 -1 —2—=3} and MS ={b > ¢ — 2 — 2 — b}, as
in Example 1, then this information can be represented by a chain structured graph
as shown in Fig. 2. For each vertex 7 in this graph, C'S(7) is shown at the top of
vertex ¢ while M S(7) is indicated in the bottom of each vertex. Note that in a graph,
representing a fixed communication sequence, the out degree of each vertex is not
more than one. In this section we consider cases where the communication sequence
is not fixed and is represented by tree or series-parallel graphs.

3.1 When CS is Tree Sructured

A tree structured communication sequence graph is shown in Fig. 3. Note that after
communication step 2, the agent can communicate with place 1 or with place 2, the
communication sequence is thus not fixed, and the out degree of a vertex in a graph,
representing such a situation, can be more than 1. We handle this situation by cloning
the agent, i.e., the original agent can take care of communication steps 3, 4, and 5
(Fig. 3), while the clone, known as agent™® is responsible for communication steps 3%,
4%, and 5*. A possible migration sequence M S(z) is also indicated at the bottom of
each vertex ¢ in the graph of Fig. 3.



O-0=0=0~0

Figure 2: A chain structured graph represents a fixed communication sequence.

The Migration Tree

The vertices of the optimal decision graph for a tree structured communication se-
quence graph are shown in Fig. 4. The ODG is so designed that each migration
sequence corresponds to some subset of vertices of the ODG. The subgraph generated
by these vertices in the ODG is a tree, known as the Migration Tree. It is important
to note that the migration tree contains one and only one node from each layer of the
ODG, and there is a one to one correspondence between a migration tree and the mi-
gration sequence. The migration tree within the ODG, shown in Fig. 4, corresponds
to the migration sequence of Fig. 3.

CHORNCR O

2 1 3
O—=O—=
b 1 a

Figure 3: A tree structured communication sequence graph.

10



©®

/
@@oo\@o
® 66

/\

@(f. ONONOPONCNO

ONONORO), /

@ @ @ ® © @
ONONONCNORONONCJONONOXO,

e

Figure 4: An Optimal Decision Graph for a tree structured communication sequence
graph. A migration tree is also shown within the ODG. Note that all edges of the
ODG are not indicated.

Finding the Optimal Migration Tree

Consider the tree structured communication sequence graph as shown in Fig. 3.
Remember that vertex 2 of this graph is a so called Fork vertex, and it is the presence
of fork vertices in the CS graph which differentiates a tree(Fig. 3) from a chain
structure(Fig. 2). Corresponding to this fork vertex in the CS graph, there are a
total of z fork vertices in the ODG as shown in Fig. 4. From each such vertex there
are two outgoing paths, one leading towards E1, while the other path terminating at
E2. We shall find the shortest path from each such fork vertex to each of the end
vertices. For example let us assume that the shortest path from vertex 3¢ to El is
3¢ - 12 — 22 — 3b — F1, and from 3¢ to E2 it is 3¢ — 2b — 11 — 3a — E2.

11



We represent these two paths by a single edge from vertex 3¢ to a pseudo end node
represented by E. the weight of this edge is equal to the sum of the two paths it
represents as shown in Fig. 5. We use this procedure in a bottom up fashion to find
the optimal migration tree as described in the following algorithm.

The Algorithm

We know that there is a one-to-one correspondence between a migration tree and a
migration sequence, and that the weight of each migration tree, i.e., the sum of the
weights of all edges in it, equals the cost of the migration sequence. Thus in order
to find the optimal migration sequence we should find the migration tree of minimum
weight. Corresponding to each fork vertex in the communication sequence graph,
there are z fork vertices in the ODG. From each such fork vertex xy find shortest
paths from zy to each of the end vertices. Merge these shortest paths into a single
edge between vertex xy and a pseudo end vertex in the simplified ODG. Move in the
ODG in a bottom up fashion unitil the minimal weight migration tree is found. The
complexity of the algorithm would still be O(nz?).

3.2 When CS is a Series-Parallel Graph

In the last section it was assumed that the communication sequence can be represented
by a tree structured graph like the one shown in Fig. 3. Under such conditions the
original agent is responsible for communication steps 1, 2, 3, 4, and 5, while the
clone handles communication steps 3*, 4*, and 5*. The agent after communication
step 5 may return to its home location while the clone after communication step 5
may return to a different home location. It is very much possible that the clone
may be assigned a relatively small number of communication steps and after that it
reports its findings to the original agent and terminates itself. Under such a scenario
the communication sequence would no longer be represented by a tree but would be
expressed by a series-parallel graph as shown in Fig. 6. We assume that:

SOP ={1,2,3,6}

SMP ={1,2,a,b,¢,d}

For each vertex ¢ in the graph of Fig. 6, C'S(7) is indicated at the top of each vertex
i, while MS(i) is shown at the bottom of each vertex. The agent is responsible
for communication steps 1, 2, 3, 4, & 5. It migrates to location b and makes an
RPC to location 2 in the first communication step. From location b, it migrates

12
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Figure 6: A communication sequence in the form of a series-parallel graph.

to location ¢, and makes an RPC to location 3 in the second communication step.
After this communication step, the agent migrates to location 2 and stays there till
communication step 5. The clone activates itself during communication step 2, it
migrates to location a, makes an RPC to location 6, and reports its findings to the
agent who is residing at location 2. The clone, after finishing its task, terminates
itself, and the rest of the communication steps are taken care off by the original agent
alone.

The Optimal Decision Graph

An optimal decision graph for such a situation is shown in Fig. 7. The path s — 2b —
3¢ — 12 — 22 — 3b — F infact represents the migration sequence for the agent while
the path 3¢ — 6a — 22 represents the migration sequence for the clone. Note that
there are two Parallel Paths emerging from vertex 3¢, and terminating at vertex 22
as shown in bold in Fig. 8(top). Path Pl= 3¢ — 12 — 22 represents the migration
sequence of the agent, while P2=3¢ — 6a — 22 represents the migration of the clone.
The two parallel paths can be merged together into a single edge in the simplified
optimal decision graph as shown in Fig. 8 (bottom). The weight of the edge(3¢, 22) is
equal to the sum of the two parallel paths. This transformation of multiple parallel
paths into a single edge provides a very powerful technique which helps us find the
optimal migration sequence for a communication sequence which can be represented
by a series-parallel graph.

14
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The Algorithm

The Optimal Decision Graph is so constructed that the subgraph induced by selecting
one vertex from each layer corresponds to a migration sequence. One such subgraph,
shown in Fig. 7, represents the migration sequence shown in Fig. 6. The weight of
the subgraph is equal to the cost of the migration sequence, thus in order to find the
optimal migration sequence, we should find the subgraph of minimal weight.

Find two layers in the ODG which are connected by parallel paths. Find shortest
paths from each node in the top layer to each node in the bottom layer. These paths
can be combined to get z? sets of shortest path combinations, one for each top and
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bottom vertices, with total weight equal to the sum of the individual paths. The
parallel paths are thus merged into a single edge in the simplified ODG. Repeat this
process until all parallel paths are transformed into a single edge. The complexity of
the resulting algorithm would be O(nz?).

4 Conclusions

Mobile agent technology has recently received a rapidly growing attention over the last
few years. Development of mobile agent systems is under way in both academic and
industrial environments. In addition, there are already various efforts to standardize
mobile agent facilities and architectures. There are, however, a number of technical
problems that have still to be solved to allow the exploitation of agent technology on
a large scale. One of these problems is the support for a communication performance
model, that allows agents to decide if, given a communication pattern, they should
migrate to a site and communicate locally, or the communication should be done
remotely. In this paper we have extended previous research conducted on mobile
agents regarding their communication performance models. It has been indicated
that the optimal performance of an agent is achieved by a critical sequence of mixed
remote procedure calls and agent migration. We have provided here exact algorithms
to solve various variants of this problem under certain restrictions on the sequence of
interactions of the mobile agents.
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