
Endbericht der

Projektgruppe

Transportoptimierung

Bericht Nr. 1998/10

P
Universität
Stuttgart

Endbericht der Projektgruppe

Transportoptimierung

Jörg Fleischmann
Lars Hermes

Tobias Spribille
Frank Wagner

Betreuung

Prof. Dr. Volker Claus
Dipl.-Inform. Friedhelm Buchholz
Dipl.-Inform. Stefan Lewandowski

Abteilung Formale Konzepte
Fakultät Informatik
Universität Stuttgart

9. November 1998

Prof. Dr. Volker Claus

Abteilung Formale Konzepte

Institut für Informatik

Universität Stuttgart

Breitwiesenstr. 20-22

D-70565 Stuttgart

Telefon:

0711-7816-300 (Prof. Dr. V. Claus)
0711-7816-301 (Sekretariat)
0711-7816-330 (FAX)

E-Mail: claus@informatik.uni-stuttgart.de

Inhaltsverzeichnis

1 Einführung 8
1.1 Der Bericht . 8

1.2 Das Programm . 8

2 Nachtrag zum Entwurf 10
2.1 Neue Klassen und Interfaces . 10

2.1.1 Arbeitszeitpro�le . 10

2.1.2 DienstplanErstellbar . 12

2.1.3 Zahler-Interface . 12

2.1.4 Druckbar . 12

2.2 Allgemeine Konzepte . 12

2.2.1 Stationen und Anbindungspunkte 12

2.2.2 Untertour . 14

2.2.3 Verkehrsmodul . 18

3 Implementierung 23
3.1 Entwurfsentscheidungen auf Programmiersprachenebene 23

3.1.1 Allgemeine Konzepte . 23

3.1.2 GUI-Erweiterungen . 24

3.2 Designentscheidungen . 27

3.2.1 Fensteraufbau . 27

3.2.2 Destruktoren . 28

3.3 Umsetzung des Entwurfs in der Implementierung 28

3.3.1 Personenklassen . 28

3.3.2 Datenhaltung . 33

3.3.3 Konsistenztests . 36

3.3.4 Analysedaten . 39

3.3.5 Datenausgabe . 41

3.4 Probleme beim Umsetzen des Entwurfs 41

3.4.1 Unvollständige Details im Entwurf 41

3.4.2 Einfach, aber aufwendig 42

3.5 Implementierung ausgehend von einem Prototyp 43

3.6 Verwendung externer Programme: Das Verkehrsmodul 43

3.7 Erfahrungen mit Java . 45

3.7.1 Javas Klassenbibliothek 45

3.7.2 Entwicklungsumgebung 46

5

4 Test 47
4.1 Funktionstest des Gesamtprogramms 47

4.1.1 Szenario . 47
4.1.2 Kunden und Dienstwünsche 48
4.1.3 Touren, Untertouren und Fahrten 48
4.1.4 Test der Menüpunkte Ressourcen, Ausgabe, Analyse und

Einstellungen . 48
4.1.5 Probleme unter Windows und JDK1.1.5 49
4.1.6 allgemeine Fehler . 49
4.1.7 Ergänzungen zum Test . 49

4.2 Grenzen des Systems: Test mit groÿen Datenmengen 50
4.3 Abgleich mit den Anforderungen 52

5 Architektur des Programms TROSS 56
5.1 Architektur des System TROSS 56
5.2 Graphische Benutzungsober�äche 56
5.3 Verkehrsmodul . 56
5.4 Klassenhierarchie . 60

6 Erweiterungsmöglichkeiten 67
6.1 Mögliche Verbesserungen am Programm 67
6.2 Hilfestellungen für den Benutzer 67
6.3 Erweiterungsmöglichkeiten . 68

7 Bedienungsanleitung 69
7.1 Systemvoraussetzungen . 69
7.2 Installation . 69
7.3 Grundlegende Konzepte . 70

7.3.1 Erweiterbare Listen . 70
7.3.2 Eingabedialoge . 70

7.4 Szenario . 70
7.4.1 Neu . 71
7.4.2 Laden . 71
7.4.3 Speichern . 71
7.4.4 Szenario zum Masterszenario machen 71
7.4.5 Untermenu Tourszenario 71
7.4.6 Programm beenden . 72

7.5 Kunden . 72
7.5.1 Kundenliste . 72
7.5.2 Eingabedialoge für Dienstwünsche 74
7.5.3 Dienstwünsche erfüllt? . 76

7.6 Touren . 76
7.6.1 Tourenliste . 77
7.6.2 Fahrtenliste . 80
7.6.3 Fahrten erzeugen . 81
7.6.4 Fahrten archivieren . 81
7.6.5 Konsistenzprüfung . 81

7.7 Ressourcen . 82
7.7.1 Mitarbeiter . 82
7.7.2 Fahrzeuge . 82

7

7.8 Ausgabe . 83
7.8.1 Tourplan . 83
7.8.2 Dienstplan . 83
7.8.3 Gesamtdienstplan . 83
7.8.4 Angezeigten Plan drucken 83
7.8.5 Untermenu Pläne drucken 83

7.9 Analyse . 84
7.9.1 Auslastung Mitarbeiter 84
7.9.2 Ausfallzeiten . 84
7.9.3 Fahrzeugbesetzung . 85
7.9.4 Auslastung Mitarbeiter drucken 85
7.9.5 Auslastung Fahrzeuge drucken 85
7.9.6 Ausfall Mitarbeiter drucken 85
7.9.7 Ausfall Fahrzeuge drucken 85

7.10 Einstellungen . 85
7.10.1 Quali�kationen . 85
7.10.2 Arbeitszeitpro�le . 85
7.10.3 Fahrzeugtypen . 86
7.10.4 Institutionen . 86
7.10.5 Stationen . 86
7.10.6 Hilfsmittel . 87
7.10.7 Essensarten . 87
7.10.8 Feiertage . 87
7.10.9 Verkehrstool . 87
7.10.10Entfernungen korrigieren 88
7.10.11Maximale Fahrzeit . 88

8 Projektplanung 89
8.1 Planung für das Projekt Transportoptimierung 89

8.1.1 Planung des Zeit- und Kostenaufwandes 89
8.1.2 Meilensteine . 90
8.1.3 Projektverlauf . 91
8.1.4 Tatsächlicher Zeit- und Kostenaufwand 93

9 Rückblick 95
9.1 Zeitplanung . 95
9.2 Umfang der Aufgabenstellung . 96
9.3 Zuständigkeiten und Kompetenzen in der Projektgruppe 96
9.4 Empfehlungen an zukünftige Projektgruppen 96

Literaturverzeichnis 98

Kapitel 1

Einführung

1.1 Der Bericht

Dieses Dokument ist nicht als alleinstehender Bericht aufzufassen, sondern
knüpft direkt an den Zwischenbericht der Projektgruppe Transportoptimierung
[Pro98] an. Beide Berichte zusammen ergeben einen kontinuierlichen Überblick
über die Arbeit der Projektgruppe von Oktober 1997 bis September 1998. Die
Lektüre dieses Endberichts setzt also teilweise die Kenntnis des Zwischenbe-
richts voraus. Begri�e, die bereits im Zwischenbericht ausführlich eingeführt
und de�niert wurden, werden hier ohne erneute De�nition benutzt. Leser, die
daran interessiert sind, woraus z.B. die praxisnahe Lehrveranstaltungsform der
Projektgruppe im einzelnen besteht, können dies im Zwischenbericht nachlesen.

Der Endbericht setzt dort an, wo der Zwischenbericht endet: Beim Entwurf.
Teile des Entwurfs, die erst nach dem Zwischenbericht fertiggestellt wurden, oder
deren Notwendigkeit sich gar erst während der Implementierungsphase ergab,
sind hier festgehalten. Danach folgt der Bericht über die wichtigsten Aspekte der
Projektphasen Implementierung und Test (dem sicherlich nicht die gebühren-
de Aufmerksamkeit geschenkt wurde, aber Zeitprobleme scheinen o�ensichtlich
zum Wesen einer Projektgruppe zu gehören). Eine Übersicht über das entstan-
dene Programm aus Programmierersicht zeigt Kapitel 5 mit einer schematischen
Darstellung der Architektur des Systems, die Benutzerseite beschreibt die Be-
dienungsanleitung in Kapitel 7.

Ein solch langes und aufwendiges Projekt soll natürlich nicht ohne ein ab-
schlieÿendes Fazit bleiben: Möglichkeiten zur Erweiterung des Programms wur-
den zusammengestellt (möglicherweise als Anregung für folgende Projektgrup-
pen), dem theoretische Zeitplan wird der tatsächliche Ablauf des Projekts gegen-
übergestellt und schlieÿlich faÿt ein Rückblick einige gute und weniger gelungene
Aspekte der Projektgruppe zusammen, um daraus Empfehlungen für kommende
Projektgruppen (oder ganz allgemein Programmierteams) abzuleiten.

1.2 Das Programm

Eines der Ziele der Projektgruppe war die Erstellung eines Programms zur Ver-
waltung und Planung der sozialen Fahrdienste des DRK in Bad Cannstatt. Wenn
dieses Ziel auch etwas zu hoch gesteckt war (was in diesem Bericht noch aus-

8

1.2. DAS PROGRAMM 9

führlicher geschildert werden wird), ist trotzdem ein Programm entstanden, das
die wichtigsten Funktionen zur Verwaltung und manuellen Organisation der Da-
ten des DRK zur Verfügung stellt. Über eine graphische Benutzungsschnittstelle
läÿt es sich komfortabel bedienen.
Das Programm trägt den Namen TROSS, was bereits eine gewisse Bedeu-

tung in sich trägt, vor allem jedoch als Abkürzung zu verstehen ist: TRansport
Organisation for Social Services, oder auch Transport-Organisation für Soziale
Serviceanbieter.

Kapitel 2

Nachtrag zum Entwurf

2.1 Neue Klassen und Interfaces

2.1.1 Arbeitszeitpro�le

Bei der Einteilung von Mitarbeitern für Touren und Fahrten sollte überprüft
werden können, ob der Mitarbeiter zur vorgesehenen Zeit überhaupt eingesetzt
werden kann. Dabei soll zum einen berücksichtigt werden, an welchen Tagen
bzw. zu welchen Zeiten ein Mitarbeiter prinzipiell im Dienst ist, zum anderen
gibt es nicht nur für die wöchentliche, sondern auch für die tägliche Arbeitszeit
Grenzen, so daÿ nicht immer der bestpassende Mitarbeiter eingesetzt werden
kann.

Im Gespräch mit dem Benutzer am Ende der Entwurfsphase stellte sich daher
die Notwendigkeit heraus, die Mitarbeiter bezüglich ihrer Arbeitszeit zu klassi-
�zieren. Diesem Zweck dienen drei Arten von Arbeitszeitpro�len, deren einzelne
Parameter frei de�nierbar sind und somit unterschiedlichste Einsatzzeiten be-
schreiben können:

Vollzeitkräfte Diese Mitarbeiter sind prinzipiell �immer� verfügbar, eine wö-
chentliche sowie eine maximale tägliche Arbeitszeit sind die Grenzen. Dies
sind Soll-Vorgaben, die im Einzelfall durch den Benutzer auÿer Kraft ge-
setzt werden können.

Tageweise beschäftigte Teilzeitkräfte Solche Mitarbeiter arbeiten nur an
manchen Wochentagen für das DRK und/oder nur zu gewissen Zeiten an
diesen Tagen.

Teilzeitkräfte auf Stundenbasis Hierunter fallen Mitarbeiter, die nach
Stunden bezahlt werden und meist eine bestimmte Obergrenze nicht
überschreiten dürfen (sogenannte �620-Mark-Jobs�). Auch hier muÿ auf
eine Obergrenze für die tägliche Arbeitszeit geachtet werden.

10

2.1. NEUE KLASSEN UND INTERFACES 11

TeilzeitTageProfil TeilzeitStundenProfil

ArbeitszeitProfil

VollzeitProfil

ArbeitszeitPro�l: abstrakt

� Attribute

bezeichnung: String Bezeichner, mit dem verschiedene Arbeitszeitpro-
�le identi�ziert und auseinandergehalten werden können.

� Methoden

abstrakt art: int Die Unterklassen geben hier jeweils ihre Art zurück

VollzeitPro�l: ArbeitszeitPro�l

� Attribute

zeitProWoche: int wöchentliche Arbeitszeit in Minuten

maxZeitProTag: int Höchstgrenze für die tägliche Arbeitszeit in Minu-
ten

TeilzeitTagePro�l: ArbeitszeitPro�l

� Attribute

zeitProTag: Zeitspanne[] Für jeden Wochentag die Zeitspanne, an der
der Mitarbeiter arbeitet

maxZeitProTag: int Höchstgrenze für die tägliche Arbeitszeit in Minu-
ten. Eine Zahl, die für alle Wochentage gleichermaÿen gilt.

TeilzeitStundenPro�l: ArbeitszeitPro�l

� Attribute

zeitProMonat: int monatliche Arbeitszeit in Minuten

maxZeitProTag: int Höchstgrenze für die tägliche Arbeitszeit in Minu-
ten

Sämtliche Werte sind Muÿwerte.

Diese drei Arbeitszeitpro�le stellen einen Kompromiÿ dar zwischen Erfas-
sung aller Möglichkeiten von Teilzeitarbeit und sinnvollem Aufwand bei der
programminternen Realisierung (und auch der Dateneingabe). Ein Mitarbeiter,
der nur Montags oder Dienstags eingesetzt werden kann, aber eine monatliche
Arbeitszeit von 50 Stunden hat, kann mit den vorliegenden Arbeitszeitpro�len
nicht dargestellt werden. Eine Annäherung könnte hier durch ein TeilzeitTa-
gePro�l erreicht werden, das für Montag und Dienstag eine 5,5 Stunden lange
Zeitspanne enthält.

12 KAPITEL 2. NACHTRAG ZUM ENTWURF

2.1.2 DienstplanErstellbar

Das DienstplanErstellbar-Interface dient als einheitliche Schnittstelle aller Ob-
jekte, für die ein Dienstplan erstellt werden kann. Dies sind die Objekte Mitar-
beiter, Fahrzeug und Kunde. Mit dem �Dienstplan� für Kunden kann der DRK-
Einsatzplaner schnell feststellen, wann bei einem bestimmten Kunden Dienste
verrichtet werden.
Um das DienstplanErstellbar-Interface benutzen zu können, müssen folgende

Methoden implementiert werden:

Fahrt[] dienstplanFahrten(Datumsspanne) Liefert alle Fahrten für das
Objekt innerhalb der übergebenen Datumsspanne, sortiert nach Datum,
zurück.

String dienstplanName() Liefert einen Namen bzw. eine Bezeichnung für
das Objekt zurück, für welches der Plan erstellt wird (z.B. Mitarbeiterna-
me).

String dienstplanBezeichnung() Gibt die Überschrift zurück, die der
Dienstplan haben soll.

2.1.3 Zahler-Interface

Das Zahlerinterface legt eine einheitliche Schnittstelle für alle Objekte fest, die
als Rechnungsempfänger in Frage kommen. Dazu stehen folgende Methoden zur
Verfügung:

String zahlerName() Gibt den nicht notwendigerweise eindeutigen Namen
des Zahlers zurück.

BankVerbindung[] zahlerBankVerbindungen() Gibt alle Bankverbindun-
gen des Zahlers zurück.

2.1.4 Druckbar

Für den mehrseitigen Ausdruck benötigt das druckbare Component einen Print-
job, um den Seitenvorschub selbst vornehmen zu können. Wird das Interface
Druckbar implementiert, ist das implementierende Component für den Aus-
druck völlig selbstverantwortlich, d.h. es bekommt nur einen PrintJob und muÿ
daraus nach Bedarf Graphics-Objekte erzeugen und freigeben. Insbesondere ist
darauf zu achten, daÿ auch das letzte Graphics-Objekt wieder mit dispose()
freigegeben wird.
Um das DienstplanErstellbar-Interface benutzen zu können, muÿ folgende

Methode implementiert werden:

void drucken(PrintJob) initiert den evtl. mehrseitigen Ausdruck des imple-
mentierenden Components.

2.2 Allgemeine Konzepte

2.2.1 Stationen und Anbindungspunkte

Um Adressen für Anfragen an das Verkehrstool benutzen zu können, hat jede
Station eine Referenz auf einen Anbindungspunkt. Dies ist eine Adresse im For-

2.2. ALLGEMEINE KONZEPTE 13

mat des Verkehrstools, die entweder mit der Adresse der Station übereinstimmt
oder in deren Nähe liegt, falls die Stationsadresse selbst im Verkehrstool nicht
bekannt ist.

Da manche Adressen recht oft benötigt werden (z.B. Schulen, zu denen eine
gröÿere Anzahl Kunden befördert werden soll), wurde als Eingabehilfe das Kon-
zept der benannten Stationen entwickelt. Jeder Station kann optional ein Name
zugewiesen werden, über den dann später ohne erneute Eingabe der gesamten
Adresse auf diese Station zurückgegri�en werden kann.

Die im Szenario gespeicherten Stationen lassen sich dadurch in zwei Gruppen
einteilen:

1. Stationen ohne Namen stehen für beliebige einmalige Adressen. Dabei
können mehrere Stationsobjekte zu einer Adresse existieren, falls z.B. zwei
Kunden im selben Haus wohnen oder ein Kunde mehrere Dienstwünsche
mit derselben Adresse hat.

2. Benannte Stationen sind über ihren Namen eindeutig unterscheidbar. Ha-
ben z.B. mehrere Kunden dasselbe Ziel, verweisen zwei Dienstwünsche auf
dieselbe benannte Station.

Die Eingabe von Stationen geht folgendermaÿen vor sich:

� Der Benutzer gibt die Adresse einer Station ein.

� Hierzu kann er aus den bereits im System bekannten benannten Stationen
auswählen. Name und Adresse der gewählten Station werden ggf. in die
Eingabemaske eingetragen.

� Beendet der Benutzer die Eingabe, wird zunächst ein Anbindungspunkt
zur Station ermittelt. Ist die Station benannt und bereits im Szenario be-
kannt, wird diese bekannte Station mitsamt ihrem bereits bekannten An-
bindungspunkt benutzt. Ansonsten muÿ der Anbindungspunkt mit Hilfe
des Verkehrsmoduls bestimmt werden.

Hierzu wird die eingegebene Adresse beim Verkehrstool angefragt, welches
einen, keinen oder mehrere alternative Anbindungspunkte zurückgibt. Die
letzten beiden Fälle erfordern eine Rückfrage beim Benutzer. Dieser hat
die Möglichkeit, aus den angegebenen Alternativen eine zu wählen, oder
er gibt eine weitere Adresse für den Anbindungspunkt ein, die wiederum
vom Verkehrstool geprüft wird.

Konnte der Station auf diese Weise ein Anbindungspunkt zugeordnet wer-
den, muÿ noch unterschieden werden, ob es sich um eine benannte Station
handelt:

� Ist kein Name angegeben, wird eine neue Station erzeugt und im
Dienstwunsch gespeichert.

� Wurde ein Name eingegeben, wird diese Station dem Szenario gemel-
det. Sollte ein Kon�ikt mit einer bereits bekannten Station auftreten,
wird der Benutzer darüber informiert und kann seine Eingabe ändern.
Sonst wird eine neue benannte Station angelegt, der Dienstwunsch
speichert nur eine Referenz darauf.

14 KAPITEL 2. NACHTRAG ZUM ENTWURF

2.2.2 Untertour

Die Schnittstelle der Untertour hat sich nachträglich geändert. Einzelne Ände-
rungen werden in den folgenden Abschnitten beschrieben.

� Attribute

nummer : String die Nummer der Untertour (a . . . zz).

bezeichnung : String Eine frei vergebbare Bezeichnung für die Unter-
tour. Die Bezeichnungen der Untertouren einer Tour müssen verschie-
den sein.

tour : Tour ein Verweis auf die Tour

teilWuensche : Vector (of TeilDienstwunsch) Hier werden alle Teil-
dienstwünsche gespeichert, die in dieser Untertour erfüllt werden sol-
len.

anfangsStation : Station Gibt eine Station an, die immer als erste an-
gefahren werden muÿ, z.B. die Küche bei einer Essen-Tour.

endStation : Station . Gibt eine Station an, die unbedingt als letzte
angefahren werden muÿ.

anfangsZeit : Uhrzeit Die Zeit, zu der die Untertour beginnt.

endZeit : Uhrzeit Die Zeit, zu der die Tour beendet wird.

halte : Vector (of UntertourHalt) In diesem Vector steht, in welcher
Reihenfolge welche Halte anzufahren sind.

fahrten : Vector (of Fahrt) Die erstellten Fahrten zu der Untertour
sortiert nach Datum.

� Methoden

anfangsUndEndZeitAnpassen() Wenn die anfangsZeit nach
der ankunftsZeit des ersten Haltes liegt, wird sie auf diese
ankunftsZeit gesetzt. Entsprechend wird mit der endZeit und
der abfahrtsZeit des letzten Haltes verfahren.

sucheErsteFahrt(Datum) : Fahrt liefert die erste Fahrt, die an oder
nach dem angegebenen Datum statt�ndet.

fahrtenInZeitraum(Zeitraum) : Fahrt[] liefert ein Array aller Fahr-
ten im angegebenen Zeitraum. Noch nicht erzeugte Fahrten werden
vorher erstellt.

fahrtAnTag(Datum) : Fahrt liefert die Fahrt an dem angegebenen
Tag zurück, wenn es sie schon gibt. Sonst wird null zurückgegeben.

erstelleFahrten(Zeitraum) : Fahrt[] erstellt noch fehlende Fahrten
im angegebenen Zeitraum und gibt diese auch zurück, um sie z.B.
dem Benutzer zur Kontrolle anzeigen zu können.

fahrtenSchreibenUndLoeschen(Datum, PrintWriter) Wenn es ei-
ne Fahrt an dem angegebenen Tag gibt, wird eine Info-Zeile in den
PrintWriter geschrieben und die Fahrt anschlieÿend gelöscht.

loescheFahrtenAb(Datum) löscht alle Fahrten ab dem angegebenen
Datum, ohne sie zu archivieren.

2.2. ALLGEMEINE KONZEPTE 15

fahrdauer(int von, int nach) liefert die Fahrzeit in Minuten zwischen
den zwei durch ihre Position angegebenen Halten. Dies ist die Di�e-
renz von Ankunftszeit bei nach und Abfahrtszeit bei von.

aufenthaltsDauer(int) Liefert die Aufenthaltszeit in Minuten an dem
durch seine Position gegebenen Halt.

aendereAufenthaltsDauer(int, int) Ändert die Aufenthaltsdauer an
dem angegebenen Halt um das als zweites Argument angegebene Del-
ta.

aendereAufenthaltsDauerAbsolut(int, int) Setzt die Aufenthalts-
dauer an dem angegebenen Halt auf die als zweites Argument an-
gegebene Dauer.

pruefeHalteReihenfolge(Vector) : boolean Prüft, ob die Reihenfol-
ge der Stationen im Vector mit der von den Dienstwünschen der
Untertour vorgesehenen Reihenfolgeübereinstimmt.

korrigiereFahrzeiten(Vector) Setzt die Fahrzeiten zwischen den Hal-
ten im angegebenen Vector auf die vom Verkehrsmodul geliefer-
ten Werte. An- und Abfahrtszeiten werden entsprechend angepaÿt.
Klappt dies nicht (weil z.B. Map&Guide nicht läuft), wird eineUn-
bekannteFahrzeitenException, die die fehlenden Strecken enthält, ge-
worfen.

verschiebeHalt(int, int) Verschiebt den Halt an der angegebenen Po-
sition (erstes Argument) an eine neue Position (zweites Argument).
Alle Dienstwünsche an dem Halt werden mit verschoben. Gibt es an
der angegebenen Position schon einen Halt mit der gleichen Station,
werden die beiden Halte verschmolzen.

verschiebeDienstwunsch(Dienstwunsch, int, int) Verschiebt einen
Dienstwunsch aus dem UntertourHalt an der alten Position (zwei-
tes Argument) zur neuen Position (drittes Argument). Gibt es an
dieser Position schon einen Halt mit der Station des zu verschieben-
den Dienstwunsches, wird der Dienstwunsch an diesem Halt erfüllt,
ansonsten wird ein neuer UntertourHalt angelegt.

dienstwuensche() : Dienstwunsch[] Liefert ein Feld mit den Dienst-
wünschen, die sich aus den Teildienstwünschen ergeben.

teilDienstwunschHinzufuegen(TeilDienstwunsch) Nimmt den Teil-
Dienstwunsch mit seinen Stationen zur Untertour hinzu. Bei einer
Rückfahrt wird die Stationenfolge umgedreht.

Um für den Benutzer aufwendige Verschiebungen möglichst zu ver-
meiden, wird eine gemeinsame Station von Teildienstwunsch und bis-
heriger Untertour gesucht. Gibt es eine solche Station, werden alle
Stationen des Teildienstwunsches vor dieser Station am Anfang der
Untertour angefügt, und der Halt mit der gleiche Station wird ge-
meinsam verwendet. Die restlichen Stationen � alle, wenn es keine
gemeinsame Station gibt � werden an das Ende angehängt.

Bei der anschlieÿenden Korrektur der Fahrzeiten kann es zu Fehler-
meldungen des Verkehrsmoduls kommen, die weitergereicht werden.

Ob Rhythmen oder Wochentage passen, wird hier nicht geprüft, da
das Aufgabe der Konsistenzprüfung ist.

16 KAPITEL 2. NACHTRAG ZUM ENTWURF

teilDienstwunschEntfernen(TeilDienstwunsch) Entfernt den ange-
gebenen TeilDienstwunsch aus der Untertour. War er der letzte Teil
eines Dienstwunsches in der Untertour, so werden auch alle nicht
mehr benötigten UntertourHalte entfernt.

wunschEntfernen(Dienstwunsch) Entfernt alle Teildienstwünsche,
die zu dem angegebenen Dienstwunsch gehören, aus der Untertour.
Die Fahrten bleiben erhalten, sollten aber gelöscht werden (die Be-
nutzungsober�äche erledigt dies automatisch: Nach Änderungen an
einer Tour oder Untertour werden alle noch nicht erfolgten Fahrten
(deren Datum in der Zukunft liegt) gelöscht).

laenge() : int Die Länge der Untertour in Metern. Beinhaltet auch
Anfangs- und Endstation.

2.2.2.1 TeilDienstwunsch

Im Entwurf waren die Untertouren als einfache Datenklassen gedacht, denen
die Stationen mit den Ankunfts- und Abfahrtszeiten einfach übergeben werden.
Während der Implementierung kam dann der Wunsch auf, Dienstwünsche in
die Untertour einzufügen. Da ein Dienstwunsch aber unterschiedliche Rhythmen
haben kann, und unter Umständen auch Rückfahrten enthält, ist nicht klar, wie
ein neuer Dienstwunsch die bestehende Stationenfolge verändern soll. Deshalb
wurde die Klasse TeilDienstwunsch eingeführt. Ein TeilDienstwunsch ist ein
Teil eines Dienstwunsches, der genau einen Rhythmus hat, an einem Wochentag
statt�ndet und entweder Hin- oder Rückfahrt ist.

� Attribute

wunsch : Dienstwunsch der Dienstwunsch, zu dem dieser TeilDienst-
wunsch gehört

wochentag : int der Wochentag

rhythmus : Rhythmus ein Verweis auf den Rhythmus

hinFahrt : boolean gibt an, ob der TeilDienstwunsch zu einer Hin-Fahrt
gehört. Gibt es von einem Dienstwunsch keine Rückfahrten, ist dieses
Feld true.

� Methoden

beginn() : Zeitspanne liefert die Zeitspanne, innerhalb der der zugehö-
rige Dienstwunsch anfangen soll.

dauer(Station) : int liefert die Aufenthaltsdauer an der angegebenen
Station.

2.2.2.2 UntertourHalt

Ein weiteres Problem war die Zuordnung der Teildienstwünsche zu den Statio-
nen. Wenn eine Station doppelt in einer Untertour vorkommt, können die Teil-
dienstwünsche nicht per Algorithmus auf die Stationen verteilt werden, da der
Benutzer eventuell eine andere Verteilung möchte. Deshalb wurden die Einträge
im Vector stationen um die dort behandelten Teildienstwünsche erweitert. Zu-
dem wurde das Attribut umbenannt in halte und ist ein Vector mit Elementen
vom Typ UntertourHalt:

2.2. ALLGEMEINE KONZEPTE 17

� Erbt von

StationMitZeiten

� Attribute

wuensche : Vector enthält die Dienstwünsche, die an dem Halt behan-
delt werden. Damit sind auch die Teildienstwünsche festgelegt, da
alle Teildienstwünsche eines Dienstwunsches in einer Untertour im-
mer gleich behandelt werden.

2.2.2.3 StationMitZeiten

Eine Record-Klasse, von der UntertourHalt erbt.

� Attribute

station : Station die Station, zu der Zeiten gespeichert werden sollen.

ankunftsZeit : Uhrzeit Die Ankunftszeit an der Station.

abfahrtsZeit : Uhrzeit Die Abfahrtszeit an der Station.

2.2.2.4 Fahrten

Während der Implementierung kam die Frage auf, was mit Dienstwünschen ge-
schehen soll, die nicht sofort wirksam werden, oder an denen nur Änderungen
vorgenommen wurden. Da die meisten Änderungen vermutlich zu diesen Grup-
pen gehören, muÿte ein einfach aufsetzbares Konzept gesucht werden.

Die beste Möglichkeit wäre gewesen, den Untertouren und unter Umständen
auch den Touren eine Datumsspanne zu geben, während der sie gültig sind.
Dies hätte jedoch umfangreiche Veränderungen am gesamten System zur Folge
gehabt, weshalb eine andere Lösung gesucht wurde.
Das System kennt von einer Untertour immer nur eine Version. Der Benutzer

muÿ sich geplante Änderungen extra aufschreiben und zum gegebenen Zeit-
punkt einfügen. Um feststellen zu können, welche Wünsche eines Kunden er-
füllt wurden, werden alle Fahrten, bevor sie gelöscht werden, in eine Log-Datei
geschrieben, die von TROSS nicht weiter verwendet wird, aber z.B. in eine Ta-
bellenkalkulation geladen werden kann. In dieser Datei werden für jede statt-
gefundene Fahrt alle Halte mit den jeweils betro�enen Kunden gespeichert. Je
nach Dienstart werden auch noch zusätzliche Informationen gespeichert, wie
zum Beispiel bei einem Essens-Dienstwunsch Art und Anzahl der Essen. Durch
dieses Auslagern wird auch der aktive Datenbestand von TROSS immer wieder
reduziert.

Die Fahrt hat nun folgenden Aufbau:

� Attribute

untertour : Untertour die Untertour, zu der die Fahrt gehört

datum : Datum

anfangsZeit : Uhrzeit

endZeit : Uhrzeit

18 KAPITEL 2. NACHTRAG ZUM ENTWURF

wuensche : Vector ein Vector mit den tatsächlich erfüllten Dienstwün-
schen.

fahrzeug : Fahrzeug

ersterMitarbeiter : Mitarbeiter

zweiterMitarbeiter : Mitarbeiter

In der Log-Datei wird für jeden Halt und jeden dort bedienten Dienstwunsch
eine Zeile mit folgenden Inhalten angelegt:

� Das Datum (z.B. 24.12.1997)

� Die Nummer der Untertour (z.B. 2b)

� Die Kurzbezeichnung der Dienstart der Tour, und damit aller ihrer Dienst-
wünsche (z.B. Schule)

� Die Bezeichnung des Fahrzeugs (z.B. 123)

� Der erste Mitarbeiter (z.B. "Zivi, Zacharias; 12")

� Der zweite Mitarbeiter (z.B. "")

� Uhrzeit der Ankunft (z.B. 16:23)

� Die Adresse (z.B. "Die Strasse 12, 70123 Stuttgart")

� Der Kunde (z.B. "Sparwasser, Emma; 11")

� Bei einem Essensdienstwunsch die Anzahl der bestellten Essen je Essensart
(z.B. 2*Diät)

� Die Bemerkung vom Tourplan

Die einzelnen Einträge sind durch Tabulatoren getrennt, einige Einträge wer-
den durch Hochkommata vor dem Auftrennen geschützt.

2.2.3 Verkehrsmodul

An der Schnittstelle zum Verkehrsmodul gab es Änderungen, die zu folgendem
Aufbau führten:

� Attribute

anbindungsPunkte : Hashtable in dieser Hashtabelle werden die
Anbindungspunkte gespeichert. Schlüssel sind die Map&Guide-
Stationen, die Daten sind AnbindungsPunkte.

entfernungen : EntfernungsTabelle

MapAndGuidePfad : String der Pfad zu mg.exe.

MapAndGuideAuftragsVerzeichnis : String Das Verzeichnis, in
dem Map&Guide nach Auftrags-Dateien sucht, z.B. C:\MG41\Jobs.

timeOut : int die Zeit in Sekunden, die auf eine Antwort von
Map&Guide gewartet werden soll.

2.2. ALLGEMEINE KONZEPTE 19

� Methoden

speichern(ObjectOutputStream) speichert alle Daten des Verkehrs-
moduls.

laden(ObjectInputStream) lädt die Daten des Verkehrsmoduls aus
dem angegebenen Stream.

starteVerkehrstool() : MoeglicherAnbindungsPunkt[] startet
Map&Guide und gibt ein Feld mit noch nicht korrekt angebun-
denen Stationen zurück.

verwendeVerkehrstool : MoeglicherAnbindungsPunkt[] wie
starteVerkehrstool, nur daÿ Map&Guide nicht neu gestartet
wird.

anbindungInOrdnung(MoeglicherAnbindungsPunkt) : boolean
gibt true zurück, wenn die Anbindung in Ordnung (sie-
he 3.6) ist oder das Verkehrstool nicht läuft. Ersetzt
sucheMoeglicheAnbindungsPunkte.

erstelleAnbindungsPunkt(MoeglicherAnbindungsPunkt) :
AnbindungsPunkt Erstellt einen AnbindungsPunkt. Ist der
mögliche Anbindungspunkt nicht geprüft worden oder ist er nicht in
Ordnung, wird ein Dummy erstellt.

entferneAnbindungsPunkt(AnbindungsPunkt) macht den angege-
benen Anbindungspunkt ungültig und entfernt ihn (wenn er nicht
nochmal verwendet wird) aus den Tabellen.

Die Abfrage- und Vorbereitungs-Anfragen haben sich (von der Schnittstelle
her) nicht verändert und wurden deshalb nicht wieder aufgeführt.
Um die im Cache vorhandenen Entfernungen berücksichtigen zu können, wur-

de der Algorithmus der bereiteVor-Methode, die alle Entfernungen zwischen
den angegebenen Knoten ermittelt und in der Entfernungstabelle speichert, ge-
ändert.
Dabei ist N die Menge der Knoten, |N| also die Anzahl der Knoten und N[0]

der erste Knoten. Jeder Knoten wird als Menge von Kanten gedacht, sodaÿ |n|
die Anzahl der von Knoten n 2 N ausgehenden Kanten angibt. Diese werden
in einer Record-Schreibweise als n.Kanten bezeichnet, n.Kanten[0] ist also die
(in irgendeiner Hinsicht) erste der vom Knoten n ausgehenden Kanten.

proc bereiteVor(N : Menge von Knoten)

{

while (n = sucheStartKnoten()) {

fahreNach(n);

while (n = naechsterKnoten(n)) {

fahreNach(n);

}

}

teilAuftragStarten();

}

proc sucheStartKnoten() {

if (9 n 2 N mit jnj ungerade) {

20 KAPITEL 2. NACHTRAG ZUM ENTWURF

return n;

} else if (jNj == 0) {

return null;

} else {

return N[0];

}

}

func Knoten naechsterKnoten(Knoten n) {

if (jnj == 0) return null;

return n.Kanten[0];

}

proc fahreNach(Knoten n) {

schreibt den Knoten in die Auftrags-Datei

wenn schon 20 Knoten geschrieben wurden {

teilAuftragStarten();

}

}

proc teilAuftragStarten() {

uebergibt die Datei an Map&Guide

warte auf Map&Guide

werte das Ergebnis aus

}

Da die momentane Implementierung dieses Algorithmus' auf naheliegende Op-
timierungsansätze verzichtet, ergibt sich bereits für die Suche nach dem nächsten
Startknoten eine Laufzeit von O(jgesuchte Kantenj2) (Ermittlung der Kanten-
anzahl per Schleife, erst danach Vergleich mit 0). Deswegen ist dieser Algorith-
mus mit einem Aufwand von O(n4) auch langsamer als der alte, im Kapitel
Feinentwurf des Zwischenberichts vorgestellte, mit einem Aufwand von O(n2)
(Durch kleine Optimierungen könnte dies auf O(n �m) 2 O(n3) verbessert wer-
den, n=Anzahl Knoten, m=Anzahl Kanten). In der Praxis werden aber die
gesparten Kanten durch den (nur im neuen Algorithmus berücksichtigten) Ca-
che den Ausschlag geben, da die Kommunikation mit Map&Guide lange dauert
(nach bisheriger Erfahrung midestens 5 Sekunden).

Für alle 11175 Entfernungen zwischen 150 Knoten, müssen etwa 559 Anfragen
an Map&Guide gestellt werden. Die Zeit dafür wurde nicht gestoppt, dürfte aber
in der Gröÿenordnung von 2 Stunden liegen.

Allerdings wird diese Methode in der aktuellen Implementierung gar nicht ver-
wendet (eine automatische Optimierung ist nicht Bestandteil des Programms).
Das System in seiner momentanen Gestalt benötigt Entfernungen nur zwischen
den aufeinanderfolgenden Stationen einer Untertour. Diese Kantenmenge läÿt
sich für normale Touren (mit nicht mehr als 20 Stationen) in etwa 15 Sekunden
bearbeiten.

2.2. ALLGEMEINE KONZEPTE 21

2.2.3.1 MoeglicherAnbindungsPunkt

Objekte dieser Klasse werden zum Erstellen von Anbindungspunkten für Sta-
tionen benötigt.

� Attribute

station : Station ein Verweis auf die Station.

strasse : String Der Name der Straÿe.

hausNr : String Die Hausnummer.

postLeitZahl : String Die Postleitzahl.

ortsname : String Der Name des Ortes.

MGStation : String Der String, der an Map&Guide übergeben werden
soll. Kann null sein.

korrekturListe : String[] Die von Map&Guide gelieferten �Alternati-
ven�.

� Methoden

MGStation() : String Gibt den String zurück, der an Map&Guide
übergeben werden soll. Wurde MGStation nicht gesetzt wird das Er-
gebnis von standardMGStation() zurückgegeben.

istInOrdnung() : boolean Gibt true zurück gdw. in der
korrekturListe genau ein Eintrag enthalten ist.

standardMGStation() : String Liefert "Orte,"+ postLeitZahl + ',' +
ortsName + "�:"+ strasse + ' ' + hausNr.

2.2.3.2 AnbindungsPunkt

Zwischen Paaren von Anbindungspunkten speichert das Verkehrsmodul Entfer-
nungen und Fahrzeiten.

� Attribute

MGStation : String Der Ortsbezeichner für Map&Guide.

anzahlVerwendungen : int gibt an, wie oft dieser Anbindungspunkt
verwendet wird.

� Methoden

istDummy() : boolean Gibt true zurück, wenn der Anbindungspunkt
kein von Map&Guide geprüfter Anbindungspunkt ist (Verkehrstool
wird nicht verwendet).

2.2.3.3 EntfernungsTabelle

In einer Instanz dieser Klasse werden die Entfernungen zwischen den Anbin-
dungspunkten gespeichert.

� Attribute

22 KAPITEL 2. NACHTRAG ZUM ENTWURF

tabelle : Hashtable In dieser Tabelle werden Paaren von Anbindungs-
punkten EntfernungsTabellenEinträge zugeordnet. Die Tabelle ist
symmetrisch.

� Methoden

setzeEintrag (AnbindungsPunkt von, AnbindungsPunkt nach,
int fahrdauer, int entfernung, boolean vonBenutzer) setzt den
Eintrag in der Entfernungstabelle.

eintrag(AnbindungsPunkt, AnbindungsPunkt) : Entfernungs-
TabellenEintrag liefert den Eintrag zu den beiden Anbindungs-
punkten oder null.

entferneEintraegeMitAnbindungsPunkt(AnbindungsPunkt)
Entfernt alle Einträge mit dem angegebenen AnbindungsPunkt aus
der Tabelle.

2.2.3.4 EntfernungsTabellenEintrag

Ein Eintrag in der Hashtabelle tabelle einer EntfernungsTabelle.

� Attribute

fahrdauer : int die Fahrdauer in Minuten.

entfernung : int die Entfernung in Kilometern.

vonBenutzer : boolean true, wenn der Eintrag vom Benutzer gesetzt
wurde und nicht vom Verkehrstool stammt.

Kapitel 3

Implementierung

3.1 Entwurfsentscheidungen auf Programmier-

sprachenebene

3.1.1 Allgemeine Konzepte

3.1.1.1 Sortieren und Sortierbarkeit

Da Java kein Konzept für sortierbare Objekte bietet, muÿte ein solches von
der Projektgruppe selbst entworfen und implementiert werden. Um Klassen wie
selbstsortierende Listen zu realisieren, wurden zwei Interfaces de�niert, die von
allen Klassen implementiert werden müssen, deren Instanzen in einer solchen
Liste gespeichert bzw. angezeigt werden sollen:

Comparable Vergleichbare Objekte implementieren die Methode compareTo

nach dem Vorbild des JDK. Leider können die fertigen Java-Klassen dieses
Interface nicht mehr implementieren, selbst wenn sie eine entsprechende
Methode besitzen.

ListenElement Elemente, die in einer selbstsortierenden Liste von der gra-
phischen Benutzungsober�äche dargestellt werden sollen, implementieren
zusätzlich zum Interface Comparable die Methode listenText, die eine
textuelle Darstellung des Objekts für die Liste liefert.

Im Laufe der Implementierung stellte sich heraus, daÿ es die Performance von
Java nicht zuläÿt, umfangreichere Listen vor jedem Anzeigen neu zu sortieren.
Deswegen wurden umfangreiche dynamischen Arrays der Klasse Szenario von
der Klasse java.util.Vector auf eine eigene Klasse TRO.SortierterVektor

umgestellt. Mit den oben beschrieben Interfaces konnte eine automatische Sor-
tierung (durch binäres Einfügen) leicht erfolgen, und durch die Anpassung der
Schnittstelle des selbstsortierenden Arrays an die von java.util.Vectorwaren
in den Datenklassen praktisch keine zusätzlichen Veränderungen erforderlich.

3.1.1.2 Datum und Zeit

Die Verwaltung von Kalenderdaten und Uhrzeiten wurde zwischen den Java-
Versionen JDK 1.0 und JDK 1.1 erheblich verändert. In der aktuellen Klas-
senbibliothek existiert eine Klasse, die beide Funktionalitäten vereinen soll. Da

23

24 KAPITEL 3. IMPLEMENTIERUNG

die Konzepte dieser Datums- und Zeitverwaltung der Projektgruppe zum einen
nicht gut durchdacht und daher schlecht handhabbar erschienen, zum anderen
die vorliegende Version des JDK noch o�ensichtliche Fehler enthielt, die sich
beim Umgang mit Daten und Zeiten bemerkbar machten, wurden eigene Klas-
sen für Uhrzeit und Datum implementiert, die im wesentlichen unabhängig vom
JDK arbeiten und nur für einige komplexe Berechnungsfunktionen auf dessen
Möglichkeiten zurückgreifen. Ebenso lassen die von Java zur Verfügung gestell-
ten Datums- und Zeitklassen eine Funktion zum Überprüfen, ob ein Datum bzw.
eine Uhrzeit sinnvoll eingegeben wurde, vermissen. Da die Implementierung ei-
ner solchen Prü�unktion sich als sehr komplex herausgestellt hat, und nur mit
erheblichen Aufwand realisiert werden könnte, wurde im Hinblick auf die knap-
pe Zeit darauf verzichtet. Auf falsche Eingaben eines Datums oder einer Uhrzeit
wird nun mit der von Java vorgegebenen Methodik reagiert, nach der die Ein-
gabe in eine sinnvolle überführt wird. So wird z.B. auf die Eingabe �35.13.1998�
nicht mit einer Fehlermeldung reagiert, sondern diese stillschweigend von Java
in das nächste sinnvolle, in diesem Falle den �4.1.1999� überführt.

3.1.2 GUI-Erweiterungen

Die graphische Benutzungsober�äche wurde stark modular konzipiert, um den
Entwicklungsaufwand möglichst gering zu halten. Alle mehrfach benötigten
Ober�ächenelemente wurden als eigene Klassen realisiert, die dann zur allgemei-
nen Verwendung für die restliche Benutzungsober�äche zur Verfügung stehen.
Hier sind insbesondere zu nennen:

� einfache und zusammengesetzte Eingabefelder für häu�g benötigte Da-
tentypen. Diese konvertieren selbständig zwischen den Datenobjekten und
den in Javas Textfeldern ein- und ausgegebenen Strings und können dabei
gleich Typ- und Wertebereichsprüfungen vornehmen.

Analog zu den Datenklassen setzen sich die zugehörigen Eingabefelder aus
anderen Eingabefeldern niedrigerer Komplexität zusammen:

� ganze Zahlen

� Datum, Uhrzeit

� Datumsspanne, Zeitspanne

� Stationen

� Personendaten (die wiederum nur einen Teil der Daten eines Kunden
oder Mitarbeiters ausmachen)

� etc.

� Dialogrümpfe für die wichtigsten Grundfunktionen:

� Zuweisen von Tastendrücken an Buttons und andere Bedienelemente
(TastaturDialog)

� Eingabedialoge, die mit �OK� bestätigt oder mit �Abbruch� abgebro-
chen werden können (OKCancelDialog)

� Umfangreiche Eingabemasken, die nach dem Vorbild von Register-
karten zwischen verschiedenen, thematisch zusammengefaÿten Ein-
gaberegionen umschalten können (RegisterDialog)

3.1. ENTWURFSENTSCHEIDUNGEN AUF PROGRAMMIERSPRACHENEBENE25

3.1.2.1 Typisierte Eingabefelder

Da Javas Klassenbibliothek keinerlei Unterstützung für typisierte Eingabefelder
bietet, wurden für das Projekt TROSS zusätzliche Eingabefelder für die Datenty-
pen Integer und Datum gescha�en, die die Konvertierung in Strings selbständig
vornehmen. Aus diesen elementaren Eingabefeldern wurden komplexere zusam-
mengestellt (um z.B. Zeiträume einzugeben), die als fertige Module wie einfache
Textfelder in die Ober�äche integriert werden können.
Das Auslesen und Setzen von Eingabewerten zusammengesetzter Dialoge soll

atomar erfolgen: Kann ein Feld wegen fehlerhafter Eingabe nicht ausgewertet
werden, dürfen auch die Werte der anderen Felder noch nicht propagiert wer-
den, sondern es muÿ ein Rücksprung zur Eingabe erfolgen. Auch für solche
kombinierten Konsistenzprüfungen stellt Java keine Unterstützung bereitstellt.
Deshalb wurde in die neuen Eingabefeld-Klassen ein Mechanismus integriert,
der ohne groÿen Aufwand für den Aufrufer nicht nur die Atomarität des Ausle-
sevorgangs sicherstellt, sondern bei Fehlern im Eingabeformat auch eine präzise
Rückmeldung an den Benutzer erlaubt.
Hierbei wird in der Art des in der Transaktionsverarbeitung eingesetzten

Zwei-Phasen-Commit-Protokolls vorgegangen [BN97]:

1. Ein komplexes Eingabeobjekt (Dialog oder zusammengesetztes Eingabe-
feld) stellt zunächst den �Ready-to-Commit�-Status sicher, indem es alle
untergeordneten Eingabefelder zum Auslesen der Eingabewerte au�ordert.
Jedem Teilfeld wird hierbei eine Bezeichnung mitgegeben, mit der im Falle
eines Auslese-Fehlers dem Benutzer genau mitgeteilt werden kann, welche
seiner Eingaben unkorrekt war bzw. ein falsches Format hatte.

2. Konnten alle Eingaben in die passenden Datentypen umgesetzt werden,
werden in der zweiten Phase tatsächlich die Werte in den Datenstrukturen
gesetzt.

Dieses synchronisierte Setzen von Werten gilt allerdings nur für direkt ein-
gegebene Werte. Änderungen in Listen (wie in 3.1.2.2 und 3.1.2.5 beschrieben)
werden direkt nach deren Bestätigung in den Datenobjekten durchgeführt, da
die obige Vorgehensweise hier noch deutlich komplizierter umzusetzen wäre.

3.1.2.2 Auswahl aus Listen

Eine häu�ge Aktion bei der Arbeit mit der graphischen Benutzungsober�äche
stellt die Auswahl eines oder mehrerer Elemente aus einer Menge dar.

� Zur Auswahl genau eines Elements dienen herunterklappende Auswahlli-
sten, die jeweils nur das gewählte Element zeigen (Java nennt diese �Choi-
ce�, unter MS Windows sind sie als �Combobox� bekannt).

Da nicht in jedem Fall eine Auswahl aus der angebotenen Liste obligato-
risch ist (z.B. ist eine Tour auch ohne Angabe der Soll-Mitarbeiter gültig),
bietet die Auswahlliste gegebenenfalls ein Dummy-Element �Keine Aus-
wahl� an erster Stelle an, nach dessen Auswahl die zugehörige Variable
auf null gesetzt wird.

� Die Auswahl mehrerer Elemente, also einer Teilmenge, geschieht je nach
Gröÿe auf zwei unterschiedliche Arten:

26 KAPITEL 3. IMPLEMENTIERUNG

� Kleinere Listen (z.B. mögliche Quali�kationen der Mitarbeiter), bei
denen auch der Überblick über die nicht gewählten Elemente interes-
sant ist, werden komplett dargestellt (bzw. ein mehrelementiger Aus-
schnitt mit Scrollbalken). Die Auswahl und Abwahl von Elementen
erfolgt durch Mausklick, worauf das gewählte Element durch inverse
Darstellung gekennzeichnet wird.

� Von langen Listen werden nur die momentan ausgewählten Elemente
in einer eigenen Liste präsentiert. Über einen Button kann ein eigenes
Dialogfenster geö�net werden, das die Veränderung der Teilmenge
durch Auswahl aus der Gesamtmenge erlaubt.

3.1.2.3 Eingabedialoge

Der typische Eingabedialog besteht aus einer Menge von Eingabefeldern, Aus-
wahllisten und anderen Ober�ächenelementen zur Datenerfassung, sowie den
zwei Buttons �OK� zur Bestätigung der Eingabe und Übernahme der Werte und
�Abbruch� zur Beendigung des Dialogs, ohne die eingegebenen Werte zu über-
nehmen. Die Klasse TRO.GUI.OKCancelDialog bietet diese Grundfunktionali-
tät an. Sämtliche Eingabedialoge im Programm TROSS erben von dieser Klasse
und besitzen dadurch ohne zusätzliche Programmierung diese zwei grundlegen-
den Buttons, die auch über die Tasten Enter bzw. Escape ausgelöst werden
können.

Die Aktivierung eines dieser Buttons ruft die passende Methode der Dialog-
klasse auf, die sich gegebenenfalls um das Auslesen der Werte kümmert (unter
Benutzung des in 3.1.2.1 beschriebenen zweistu�gen Mechanismus') und dann
den Dialog schlieÿt.

3.1.2.4 Unterteilte Dialoge (Register)

Da einige Datenobjekte eine Vielzahl an Eingaben erfordern, wurde im Verlauf
der Implementierung bald der Punkt erreicht, an dem die entstehenden Einga-
bemasken nicht mehr vollständig auf den Bildschirm paÿten. Auch aus Gründen
der Übersichtlichkeit war hier eine Unterteilung notwendig, die nach dem Prin-
zip der sogenannten �Registerkarten� erfolgte:

Eine Reihe von Buttons am oberen Rand des Fensters ermöglicht das Um-
schalten zwischen verschiedenen �Seiten� mit thematisch zusammengehörigen
Eingabefeldern. Die Gesamtheit all dieser Seiten ergibt den Eingabedialog, die
Eingabefelder aller Seiten erfassen das zugehörige Datenobjekt in seiner Ge-
samtheit.
Diese Grundfunktionalität wurde in der Klasse TRO.GUI.RegisterDialog

verwirklicht, so daÿ alle komplexen Dialoge lediglich davon abgeleitet und in
passende Seiten aufgeteilt werden muÿten.

3.1.2.5 Erweiterbare Listen

Bereits bei der Erstellung des Prototyps der graphischen Benutzungsober�ä-
che hatte sich gezeigt, daÿ das Programm TROSS eine Vielzahl von Listen
verwaltet, deren Elemente vom Benutzer beliebig geändert, erweitert und ge-
löscht werden sollen. Um dies sowohl möglichst einfach als auch universell zu
unterstützen, wurde die Klasse TRO.GUI.ObjektListePanel gescha�en. Diese

3.2. DESIGNENTSCHEIDUNGEN 27

präsentiert sich auf dem Bildschirm als eine geordnete Liste von Objekten mit
den drei Buttons �Einfügen�, �Ändern� und �Löschen�. Die jeweils individuelle
Funktionalität der Buttons wird vom aufrufenden Programmteil zur Verfügung
gestellt, indem sogenannte �Listener�-Objekte de�niert werden, wie sie in Javas
AWT an vielen Stellen zum Einsatz kommen, um auf gewisse Ereignisse der
Benutzungsober�äche kontextspezi�sch reagieren zu können.

3.1.2.6 Eingabe von Hashtabellen

Hashtabellen werden an verschiedenen Stellen im Projekt TROSS eingesetzt,
unter anderem zur Speicherung der gewünschten Mengen verschiedener Essens-
arten. Da es unter den Standardeingabeelementen, die unter Java zur Verfü-
gung stehen, keine Tabellen gibt, sondern nur eindimensionale Listen, muÿten
die Hashtabellen (bzw. Tabellen aller Art) zur Eingabe in ihre einzelnen Dimen-
sionen zerlegt werden: Eine Liste zeigt alle Essensarten an, bei Auswahl einer
Essenart wird die zugehörige Anzahl angezeigt und kann geändert werden. Un-
erläÿlich für die sinnvolle Bedienung war es hier, auf Anfrage eine Übersichtsliste
anzuzeigen, die wenigstens in der Ausgabe alle in der Hashtabelle zugeordneten
Objekte tabellenartig anzeigt.

3.2 Designentscheidungen

3.2.1 Fensteraufbau

Da der Aufbau eines Fensters unter Java relativ viel Zeit in Anspruch nimmt
(weil jedesmal die Anordnung aller Elemente berechnet werden muÿ), wurde
die Möglichkeit diskutiert, einmal geö�nete Fenster nur auf dem Bildschirm un-
sichtbar zu machen und für weitere Verwendungen zu speichern. Dies hätte zwar
einen Vorteil in der Laufzeit gebracht, wurde aber aus zwei Gründen verworfen:

1. Das Umschreiben aller Dialoge wäre mit erheblichem Aufwand verbunden,
den die zeitliche Situation der Projektgruppe nicht erlaubt.

2. Die meisten Dialoge bekommen die zu bearbeitenden Objekte im Kon-
struktor übergeben, da diese immer gesetzt werden müssen. Soll ein ein-
mal erzeugter Dialog nochmals benutzt werden, müÿten diese Objekte
mit eigenen Methoden gesetzt werden. Das Dialogfenster müÿte bei jeder
erneuten Benutzung Prüfungen durchführen, ob diese Werte alle gesetzt
wurden und gegebenenfalls Exceptions auslösen, die im aufrufenden Ob-
jekt abgefangen werden müÿten.

Letztlich müÿten also auch alle Aufrufer geändert werden. Die Projekt-
gruppe entschied sich dafür, die übersichtliche Handhabung der Dialogfen-
ster im Programm nicht dafür zu opfern, Probleme der Laufzeitumgebung
zu kompensieren.

Auÿerdem kann das Zeitproblem durch den Einsatz eines Compilers, der Java in
reinen Maschinencode für das Zielsystem umsetzt, vermutlich stark relativiert
werden.

28 KAPITEL 3. IMPLEMENTIERUNG

3.2.2 Destruktoren

In Java arbeitet die Speicherverwaltung automatisch und für den Programmierer
weitgehend unsichtbar. Neue Objekte werden mit new angefordert, um eine Frei-
gabe braucht sich das Programm nicht zu kümmern. Diese wird vom Laufzeit-
system erledigt, das in gewissen Abständen seinen garbage collector aktiviert,
der alle Objekte, die im Programm nicht mehr referenziert werden, aufsammelt
und den zugehörigen Speicher freigibt.
Klassen können die Methode finalize implementieren, um externe Ressour-

cen vor dem Löschen des Objekts durch den Garbage collector freizugeben. Im
Projekt TROSS ist es nötig, beim Löschen einer Station den zugeordneten An-
bindungspunkt beim Verkehrsmodul abzumelden, damit dieses seine internen
Tabellen so klein wie möglich halten kann.
Ein selbstverwaltetes Abmelden aller gelöschten Stationen im Programm wä-

re mit immensem Aufwand verbunden und sehr fehleranfällig. Auÿerdem wider-
spräche ein solches Vorgehen dem grundsätzlichen Speicherkonzept der Sprache
Java, das oben erläutert wurde.
Leider läÿt Javas Dokumentation gewisse Zweifel an der Vollständigkeit und

Korrektheit der Speicherverwaltung o�en: Der Aufruf des Garbage collectors ist
mit folgendem Kommentar versehen:

Runs the garbage collector.
Calling this method suggests that the Java Virtual Machine expend
e�ort toward recycling unused objects in order to make the memory
they currently occupy available for quick reuse. When control returns
from the method call, the Java Virtual Machine has made its best
e�ort to recycle all unused objects.

Die Projektgruppe entschied sich dennoch, mit den �nalize-Methoden zu ar-
beiten. Mögliche Fehlfunktion des Java-Laufzeitsystems sollten nicht zu unnöti-
gem Programmieraufwand der Anwendung führen. Für die korrekte Arbeitswei-
se des Programms TROSS gilt also die Annahme, daÿ Javas Garbage collector
alle nicht mehr referenzierten Objekte erkennt und deren �nalize-Methode auf-
ruft.

3.3 Umsetzung des Entwurfs in der Implementie-

rung

3.3.1 Personenklassen

In den folgenden Abschnitten werden die Implementierung und Abweichungen
vom Feinentwurf der Personenklassen beschrieben. Alle Klassen besitzen zusätz-
lich die standardmäÿigen setze- und lese-Methoden1. Ebenso wurde, wenn nicht
anders angegeben, bei allen Klassen ein leerer Konstruktor (der alle referenzier-
ten Objekte mit new initialisiert) und ein vollständiger Konstruktor, der alle
Werte mit den übergebenen initialisiert, implementiert.
Zu den Schlüsselattributen ist anzumerken, daÿ deren Schlüsseleigenschaft

von der Benutzungsober�äche unter Verwendung des Packages Konsistenztests,

1Parameter/Rückgabewerte gleichen Typs wie die Attribute, lese-Methoden heiÿen genauso

wie das Attribut, die setze-Methoden heiÿen �setze�+Attribut-Name

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 29

und nicht von den Klassen selbst, sichergestellt wird. Das gleiche gilt für die
Muÿwerte. Auch hier ist die Angabe beim jeweiligen Attribut nur eine Informa-
tion für die entsprechende Umsetzung in der Benutzungsober�äche.

3.3.1.1 Bank

Diese Klasse wurde gegenüber dem Feinentwurf nur marginal verändert.

� Attribute

bankLeitZahl : int Die Bankleitzahl wurde wegen der einfacheren
Handhabung als Integer anstatt als String implementiert. Auÿerdem
wurde die Begrenzung auf acht Stellen aufgehoben.

bankName: String Name der Bank mit obiger Bankleitzahl.

3.3.1.2 Bankverbindung

� Attribute

bank : Bank Dient zur Referenzierung des zugehörigen Bankobjektes
der Bank, bei dem die Bankverbindung besteht. Damit ersetzt �bank�
das im Feinentwurf vorgesehene Attribut �BLZ�.

kontoNr : String Die Kontonummer, ohne die im Feinentwurf gemachte
Einschränkung auf zehn Zi�ern.

einzug : boolean Ist true, wenn eine Einzugsermächtigung vorliegt. Vor-
einstellung: true.

Zusätzlich wurde das Interface Listenelement implementiert.

3.3.1.3 Bezugsperson

Unterklasse von Person.

� Attribute

bezugsArt : String Gibt die Art des Bezuges zum Kunden an. Z.B.
Familienverhältnis, Arzt, etc.

bemerkung : String Dieses Attribut wird jetzt aus der Oberklasse Per-
son geerbt.

Zusätzlich wurde das Interface Listenelement implementiert.

3.3.1.4 Institution

� Attribute

name : String Name des Institus, z.B. Krankenkasse X, Sozialamt Y,
Versicherung Z.

adressen : Vector In diesem Attribut, das gegenüber dem Feinentwurf
ergänzt wurde, werden alle Adressen einer Institution vermerkt.

30 KAPITEL 3. IMPLEMENTIERUNG

bankVerbindungen : Vector In diesem Attribut, das gegenüber dem
Feinentwurf ergänzt wurde, werden alle Bankverbindungen einer In-
stitution vermerkt.

kommunikationsVerbindungen : Vector In diesem Attribut, das ge-
genüber dem Feinentwurf ergänzt wurde, werden alle Kommunikati-
onsverbindungen einer Institution vermerkt.

Zusätzliche wurden die Interfaces Listenelement und Zahler implementiert.
Durch das Zahlerinterface kann eine Institution als Rechnungsempfänger bei
den Dienstwünschen der Kunden eingetragen werden.

3.3.1.5 Kommunikationsverbindung

Abgesehen von der Implementierung des Listenelements wurde gegenüber dem
Feinentwurf keine Änderung vorgenommen.

� Attribute

art : String (Muÿwert) Gibt die Art der Kommunikationsverbindung
an (Telefon, Fax, Email, etc.).

eintrag : String (Muÿwert) Zur Art passender Eintrag, z.B. Telefon-
nummer, Email-Adresse, etc.

Zusätzlich wurde das Interface Listenelement implementiert.

3.3.1.6 Kunde

Unterklasse von Person.

� Attribute

kundenNr : String (Schlüssel) Eindeutige Nummer, welche den Kun-
den innerhalb des DRK identi�ziert.

hausschluesselZahl : int Anzahl der Haus- bzw. Wohnungsschlüssel,
die der Kunde dem DRK überlassen hat. Dieses Attribut wurde we-
gen der einfacheren Handhabung als Integer (statt als String) imple-
mentiert.

hausSchluesselText : String Beliebige Bemerkungen zu den Schlüs-
seln, beispielsweise vergebene Schlüsselnummern, für welche Tür, etc.

maxFahrDauer : int Gibt an, wieviele Minuten ein Kunde maximal
in einem Fahrzeug zubringen darf. Die globalen Obergrenzen (z.B.
Schulfahrten max. 2h) bleiben davon unberührt. Im Feinentwurf wur-
de noch der Typ short vorgesehen.

bemerkung : String wird jetzt aus der Oberklasse Person geerbt.

bezugsPersonen : Vector Die zum Kunden gehörenden Bezugsperso-
nen wie Hausarzt und Familienangehörige. Institutionen werden jetzt
in einem eigenen Vektor berücksichtigt. Kundenbetreuer der Institu-
tionen können nach wie vor als Bezugspersonen hier hinterlegt wer-
den.

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 31

institutionen : Vector Hier werden die Institutionen abgelegt, die einen
Bezug zum Kunden haben.

bevorzugt : Vector Die vom Kunden bevorzugten Mitarbeiter, diese
sollen i.d.R. dessen Dienstwünsche erfüllen.

abgelehnt : Vector Die vom Kunden abgelehnten Mitarbeiter, diese
dürfen keine Dienste beim Kunden verrichten.

hilfsmittel : Vector Die vom Kunden benötigten Hilfsmittel wie Sitz-
kissen u.ä., die über die Attribute des Dienstwunsches hinausgehen.
Diese Werte sind nur informativ und werden bei der automatischen
Planung nicht berücksichtigt.

zulaessigeFahrzeuge : Vector Fahrzeuge, die für den Kunden vom
DRK freigegeben wurden. Ist dieser Vektor leer, dürfen alle Fahr-
zeuge bei dem Kunden eingesetzt werden.

dienstwuensche : Vector Die Dienstwünsche des Kunden.

Zusätzlich wurde das Interface Listenelement implementiert.

3.3.1.7 Mitarbeiter

Unterklasse von Person.

� Attribute

personalNr : String (Schlüssel) Personalnummer des Mitarbeiters
beim DRK, die diesen eindeutig identi�ziert.

dienstantrittsDatum : Datum Datum, zu dem der Mitarbeiter seinen
Dienst beim DRK antritt. Der im Feinentwurf vorgesehene Typ Date
wurde durch die eigene Klasse Datum ersetzt.

entlassungsDatum : Datum Datum, zu dem der Mitarbeiter ausschei-
det. Bei festangestellten Mitarbeitern ist dieser Eintrag in der Regel
leer. Der im Feinentwurf vorgesehene Typ Date wurde durch die ei-
gene Klasse Datum ersetzt.

verfügbarkeitsZeiten : Zeitraum Daten, an denen der Mitarbeiter
eingesetzt werden kann.

bemerkung : String Wird jetzt aus der Oberklasse Person geerbt.

erfuellteQuali�kationen : Vector Die vom Mitarbeiter erfüllten Qua-
li�kationen.

arbeitszeit : ArbeitszeitPro�l Dieses Attribut ist zum Feinentwurf
hinzugekommen und nimmt ein Arbeitszeitpro�l (Sollarbeitszeit) für
den Mitarbeiter auf.

Zusätzlich wurde das Interface Listenelement implementiert.

3.3.1.8 Ort

� Attribute

PLZ : String Postleitzahl, ohne Einschränkung auf fünf Stellen. Damit
sind auch Postleitzahlen im Ausland (z.B. für private Versicherungen)
möglich.

32 KAPITEL 3. IMPLEMENTIERUNG

name : String Name des Ortes, der zu obiger Postleitzahl gehört.

� Methoden

boolean gleich(Ort) Gibt true zurück, wenn dieser Ort mit dem Über-
gebenen in Postleitzahl und Namen übereinstimmt.

3.3.1.9 Person

� Attribute

name : String Nachname der Person.

vorName : String Vorname der Person.

geburtsDatum : Datum Geburtsdatum der Person. Jetzt als Datum
statt als Date.

adressen : Vector Die zur Person gehörenden Stationen.

kommunikationsVerbindungen : Vector Die Kommunikationsver-
bindungen der Person.

bankVerbindungen : Vector Die Bankverbindungen der Person

bemerkung : String Hier kann ein beliebiger Text als Anmerkung ein-
gegeben werden, der vom System nicht weiter verwendet wird.

Zusätzlich wurde das Zahlerinterface implementiert, das es jeder Person erlaubt,
Rechnungsempfänger für Dienstwünsche zu sein.

3.3.1.10 Sachbearbeiter

Unterklasse von Person, die gegenüber dem Feinentwurf nicht geändert wurde.

� Attribute

angestelltBei : Institution Arbeitgeber des Sachbearbeiters, beispiels-
weise Sozialamt oder Krankenkasse.

3.3.1.11 Station

� Attribute

strasse : String Straÿen- oder Platzname bzw. Postfach.

hausNr : String In diesem Attribut, das im Feinentwurf noch nicht vor-
gesehen war, wird die Hausnummer der Station gespeichert. Die Tren-
nung vom Straÿennamen wurde wegen der einfacheren Anbindung an
das Verkehrstool vorgenommen.

ort : Ort Als Referenz zum Ort der Adresse. Dies ersetzt die im Feinent-
wurf vorgesehene Postleitzahl.

anbindungspunkt : AnbindungsPunkt Bezeichnung, unter der die
Station im Verkehrsmodul vermerkt ist (i.d.R. die Adresse oder ein
Punkt, der möglichst nahe an der Station liegt).

name: String (SCHLÜSSEL) Name einer Station als Eingabehilfe für
den Anwender (Konzept der benannten Station siehe 2.2.1).

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 33

� Methoden

void entferneAnbindungsPunkt() Veranlaÿt die Entfernung des An-
bindungspunkts aus dem Verkehrsmodul.

boolean adressenGleich(Station) Überprüft, ob diese Station mit der
Übergebenen in der Adresse übereinstimmt. Dies ist der Fall, wenn
sowohl der Straÿenname (String.equals) als auch der Ort (Ort.gleich)
übereinstimmen.

void �nalize() Sorgt dafür, daÿ eine unreferenzierte Station durch den
Garbage-Collector aus dem Verkehrsmodul abgemeldet wird, be-
vor sie aus dem Speicher entfernt wird. Um garantiert alle unrefe-
renzierten Stationen aus dem Verkehrsmodul abzumelden, muÿ der
Garbage-Collector vor dem Speichern explizit aufgerufen werden.

Zusätzliche wurde das Interface Listenelement implementiert.

3.3.1.12 Quali�kation

� Attribute

bezeichnung : String (Schlüssel) Eindeutiger (Kurz-)Bezeichner für
die Quali�kation.

beschreibung : String Nähere Beschreibung der Quali�kation.

verrechnungsWert : int Kostenfaktor, der bei der Optimierung be-
rücksichtigt wird, falls diese Quali�kation erfüllt, jedoch nicht gefor-
dert wird. Dieser Wert wird automatisch berechnet, falls autoWert
true ist und sich Mitarbeiterdaten (bzgl. der Quali�kation) ändern.
Im Feinentwurf war noch der Typ byte vorgesehen.

autoWert : boolean Ist autoWert false, �ndet keine automatische Be-
rechnung des Verrechnungswertes mehr statt. Wird der Verrech-
nungswert manuell geändert, wird autoWert auf false gesetzt.

Zusätzlich wurde das Interface Listenelement implementiert.

3.3.2 Datenhaltung

Die Daten werden mit der in Java vorgesehenen Möglichkeit der Objekt-Seriali-
sation in eine Datei geschrieben. Dazu werden die Objekte von Szenarien ver-
waltet. Wie in Abbildung 3.1 zu sehen, lassen sich folgende zwei Szenarioarten
unterscheiden:

1. Tourszenarien: Mit den Tourszenarien können, bei gleichbleibenden
Stammdaten, verschiedene Tourkonstellationen ausprobiert werden. Da
diese logisch zu den gleichen Stammdaten gehören, werden alle Tour-
szenarien samt den Stammdaten in einer Datei gespeichert.

2. Allgemeine Szenarien: Hierbei können auch Stammdaten geändert wer-
den, um beispielsweise zu testen, wie sich eine Verringerung der Fahr-
zeug�otte auswirken würde. Diese allgemeinen Szenarien werden jeweils
in einer eigenen Datei gespeichert und im folgenden kurz als Szenarien
bezeichnet.

34 KAPITEL 3. IMPLEMENTIERUNG

Dienstwünsche
Dienstarten
Essensarten
Hilfsmittel
Institutionen

Personen
Qualifikationen

Stationen
Komm.Verb.

Bankverbindung.

Fahrzeuge

Fahrzeugkonfig.
Fahrzeugtypen

Untertouren

Fahrten
Touren

Szenario 1

Tourszenario 1

Touren
Untertouren

Fahrten

Touren
Untertouren

Fahrten

Tourszenario i

Touren
Untertouren

Fahrten

Tourszenario n

Tourszenario 1

Touren
Untertouren

Fahrten

Touren
Untertouren

Fahrten

Tourszenario i

Touren
Untertouren

Fahrten

Tourszenario n

Dienstwünsche
Dienstarten
Essensarten
Hilfsmittel
Institutionen

Personen
Qualifikationen

Stationen
Komm.Verb.

Bankverbindung.

Fahrzeuge

Fahrzeugkonfig.
Fahrzeugtypen

Untertouren

Fahrten
Touren

Szenario k

Abbildung 3.1: Datenhaltung in TROSS

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 35

Neben dem Dateimanagement bieten die Szenarien auch objektübergreifende
Methoden (z.B. Verwaltung benannter Stationen) an.
Im Gegensatz zum Feinentwurf werden nicht alle Objekte direkt von den

Szenarien referenziert, sondern nur solche, die nicht von anderen Objekten refe-
renziert werden oder die in globalen Listen vorgehalten werden (z.B. benannte
Stationen, Mitarbeiter, Quali�kationen etc.).
Im folgenden nun die Beschreibung zur Implementierung der Verwaltungs-

klassen.

3.3.2.1 Szenario

� Attribute

name : String (Schlüssel) Name des Szenarios.

geaendert : Boolean Ist true, wenn der Datenbestand geändert wurde.

mitarbeiter : SortierterVektor Referenz auf alle Mitarbeiter des Sze-
narios.

kunden : SortierterVector Referenz auf alle Kunden des Szenarios.

institutionen : SortierterVektor Referenz auf alle Institutionen des
Szenarios.

quali�kationen : SortierterVektor Referenz auf alle Quali�kationen
des Szenarios.

fahrzeuge : SortierterVektor Referenz auf alle Fahrzeuge des Szena-
rios.

fahrzeugtypen : SortierterVektor Referenz auf alle Fahrzeugtypen
des Szenarios.

stationen : SortierterVektor Referenz auf alle benannten Stationen
des Szenarios.

essensarten : SortierterVektor Referenz auf alle Essensarten des Sze-
narios.

hilfsmittel : SortierterVektor Referenz auf alle Hilfsmittel des Szena-
rios.

arbeitszeitPro�le : SortierterVektor Referenz auf alle Arbeitszeit-
pro�le des Szenarios.

tourSzenarien : SortierterVektor Referenz auf alle Tourszenarien des
Szenarios.

aktivesTourszenario : TourSzenario Referenz auf das aktuell akti-
vierte Tourszenario.

� Methoden

void wurdeGeaendert() Setzt das Geändert-Flag auf wahr und muÿ
immer aufgerufen werden, wenn sich irgendein Objekt ändert. Diese
Methode ersetzt die setzeGeaendert-Methode, da das Geändert-Flag
von auÿen nicht auf false gesetzt werden darf.

Szenario laden(String pfad, String name) Lädt das angegebene
Szenario in den Speicher. Die Methode soll nur aufgerufen werden,
wenn sich kein verändertes Szenario im Speicher be�ndet.

36 KAPITEL 3. IMPLEMENTIERUNG

void speichern(String pfad, String name) Speichert das im Haupt-
speicher be�ndliche Szenario unter dem angegebenen Namen und
setzt das Veränderungs�ag auf false. Stimmt der übergebene Name
nicht mit dem des Szenarios überein (speichern als), wird der über-
gebene Name als neuer Szenarioname übernommen.

boolean istStationBekannt(String name) Überprüft, ob der überge-
bene Name schon für eine benannte Station verwendet wurde und
gibt einen entsprechenden Wahrheitswert zurück.

Station sucheStation(String name) Gibt die Station zum übergebe-
nen Namen zurück.

Die Methoden zum Löschen und Kopieren wurden aus Zeitgründen nicht imple-
mentiert, da diese durch entsprechende Dateioperationen auf Betriebssystem-
ebene erreicht werden können. Anstelle der neuen Klasse SortierterVektor (sie-
he 3.1.1.1) war im Feinentwurf noch die Klasse Vector vorgesehen. Diese Klasse
erlaubt die Objekte sortiert abzulegen und damit eine wesentlich e�zientere
Implementierung der häu�g benötigten sortierten Ausgaben.

3.3.2.2 Tourszenario

� Attribute

name : String (Schlüssel) Name des Tourszenarios.

touren : Vector Touren des Tourszenarios, die wiederum auf die fahr-
tenreferenzierenden Untertouren verweisen.

� Methoden

Fahrt[] objektFahrten(Object, Zeitraum) Gibt alle Fahrten zurück,
die das übergebene Objekt innerhalb des übergebenen Zeitraums zu
erledigen hat. Dazu werden alle Touren, deren Untertouren und Fahr-
ten durchlaufen. Damit liegt der Aufwand in O(Anz. d. Fahrten).

Zusätzlich wurde das ListenElement-Interface implementiert.

Welches Tourszenario aktiv (Mastertourszenario) ist, wird abweichend vom
Feinentwurf jetzt durch das zugehörige Szenario verwaltet.

3.3.3 Konsistenztests

Die Konsistenztests wurden entsprechend dem Entwurf als automatische Prü-
fungen implementiert: Nach der Eingabe von Daten wird die Einhaltung von
Integritätsbedingungen und Vorgaben durch das neu Eingegebene geprüft. Ver-
stoÿen die Daten gegen Integritätsbedingungen, muÿ die Eingabe wiederholt
werden. Vorgaben können hingegen explizit auÿer Kraft gesetzt werden. Um den
Überblick über solche explizit akzeptierten Verstöÿe gegen Vorgaben zu behal-
ten, kann dieser Teil der Konsistenzprüfung auch von Hand aufgerufen werden.
Daraufhin bekommt der Benutzer alle Verstöÿe gegen die Vorgaben gemeldet.
Ein gezieltes Fragen nach einzelnen Vorgaben wurde bis auf wenige Ausnahmen
nicht implementiert.

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 37

3.3.3.1 Referenzintegrität

Die Referenzintegrität wird im Programm TROSS gewahrt, indem das Löschen
von Fremdschlüsseln verhindert wird. So darf z.B. eine Quali�kation nicht ge-
löscht werden, wenn sie einem Mitarbeiter zugeordnet ist oder von einem Kun-
den gefordert wird.
Da keine Datenwerte als Fremdschlüssel dienen, sondern direkte Referenzen

auf die Java-Objekte gespeichert werden, �ndet eine Veränderung von Fremd-
schlüsseln durch die Eingabe nicht statt, hier muÿ also nichts geprüft werden.

3.3.3.2 Vorgaben

�Weiche� Konsistenzbedingungen, die Bedingungen der realen Welt darstellen,
sind für die Touren, Untertouren und Fahrten de�niert. Diese werden automa-
tisch aufgerufen, wenn der Benutzer eine Tour, Untertour oder Fahrt im Dialog
bearbeitet. Da dieser explizit Verstöÿe gegen Konsistenzbedingungen zulassen
kann, ist es auÿerdem möglich, die Konsistenzprüfung der Touren manuell zu
starten, um einen Überblick über die bewuÿt akzeptierten Unregelmäÿigkeiten
zu bekommen.
Für die leicht nachzuvollziehenden Laufzeitabschätzungen der Konsistenzprü-

fungen werden folgende Bezeichnungen benutzt:

DW Menge aller Dienstwünsche

T Menge aller Touren

K Menge aller Kunden

DWk Menge der Dienstwünsche des Kunden k 2 K

DWt Menge der Dienstwünsche, die auf Tour t 2 T erfüllt werden

AZm Menge der Ausnahmezeiten für die Verfügbarkeit des Mitarbeiter m

AZf Menge der Ausnahmezeiten für die Verfügbarkeit des Fahrzeugs f

MA Menge aller Mitarbeiter

FZ Menge aller Fahrzeuge

QF Menge aller Quali�kationen

Folgende Kriterien werden geprüft:

Mitarbeiter

� Sind erster und zweiter Mitarbeiter unterschiedlich? O(1)

� Ist ein zweiter Mitarbeiter eingeteilt, falls die Dienstwünsche dies
verlangen? O(jDWtj)

� Sind die Mitarbeiter am Tag einer Fahrt verfügbar? O(jAZmj)

� Sind die Mitarbeiter für alle Kunden einer Tour zulässig (also nicht
bei den Abneigungen der Kunden erfaÿt)? O(jDWtj � jMAj)

� Besitzen die Mitarbeiter alle geforderten Quali�kationen? O(jDWtj �

jQF j2)

38 KAPITEL 3. IMPLEMENTIERUNG

Fahrzeuge

� Ist das Fahrzeug am Tag einer Fahrt verfügbar? O(jAZf j)

� Wird die maximale Sitzplatzzahl eingehalten (bei Fahrdiensten)?
O(1)

� Ist das Fahrzeug unter den für den Kunden zulässigen (bei Fahrdien-
sten oder MSD, wenn der Kunde mitfährt)? O(jDWtj � jFZj)

Zeiten

� Werden die Zeitvorgaben in den Rhythmen der Dienstwünsche ein-
gehalten? O(jDWtj)

Vollständigkeit

� Werden alle Dienstwünsche komplett erfüllt (also alle Teildienstwün-
sche berücksichtigt)? O(jDW j �

P
t2T jDWtj) 2 O(jT j � jDW j2)

Nicht geprüft wird die Arbeitszeit der Mitarbeiter im Vergleich zu den in
den Arbeitszeitpro�len de�nierten Obergrenzen, da dies zum einen nicht ganz
einfach zu implementieren ist und zum anderen für die zersplitterte Arbeitszeit-
verteilung der Zivis beim DRK nur wenig Aussagekraft besitzt.

3.3.3.3 Vorgehensweise

Die Überprüfung auf Konsistenz der eingegebene Daten erfolgt an zwei Stellen
der Eingabe:

1. Beim Löschen von Objekten wird die Referenzintegrität geprüft: Es dür-
fen nur solche Objekte gelöscht werden, die von keinem anderen Objekt
referenziert werden.

Dazu muÿ z.B. für Quali�kationen jeder Mitarbeiter geprüft werden, ob
diesem die Quali�kation zugeordnet ist, sowie jeder Dienstwunsch, ob die-
ser die Quali�kation fordert. Ist also M die Menge der Mitarbeiter und
DWk die Menge der Dienstwünsche des Kunden k, hat die Prüfung, ob eine
Quali�kation gelöscht werden darf, den Aufwand O((jM j+

P
k2K jDWk j)�

jQF j).

Dieser einmalige groÿe Aufwand lieÿe sich in mehrere kleinere Teile auf-
trennen, indem jede Quali�kation Rückwärtsreferenzen auf alle Mitarbei-
ter und Dienstwünsche mitführt, die die Quali�kation referenzieren. Da-
durch verlagerten sich allerdings Aufgaben der Konsistenzprüfung in die
Datenobjekte, wodurch auch das abgespeicherte Szenario stark wüchse. Da
das Löschen von Objekten durch den Benutzer keine zeitkritische Aufgabe
darstellt (und auch bei einigen hundert Kunden mit insgesamt einigen tau-
send Dienstwünschen noch in akzeptabler Zeit durchzuführen sein sollte),
wurde hier die einfach und sicher zu implementierende Methode gewählt.

2. Beim Ändern von Objekten (dazu gehört auch das Setzen von Daten
in neu erzeugten Objekten) wird kontrolliert, daÿ allen vorgeschriebe-
nen Datenfeldern auch wirklich ein Wert zugewiesen wurde (Muÿwert-
Prüfung), auÿerdem werden die Werte bestimmter Felder auf Einmaligkeit

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 39

(Schlüsselwert-Prüfung) und Einhaltung von Wertebereichen bzw. andere
Kriterien für sinnvolle Werte geprüft.

Für die Schlüsselwert-Prüfung ist jeweils eine Iteration über alle Objek-
te derselben Art notwendig, um das Schlüsselattribut zu vergleichen. Ist
also K die Menge aller Kunden, hat die Überprüfung einer eingegebenen
Kundennummer auf Einmaligkeit den Aufwand O(jKj).

Eine eventuelle Konsistenzverletzung wird dem Programm durch Exceptions
der Prü�unktion mitgeteilt. Zu diesem Zweck wurde eine Menge von hierarchisch
voneinander abgeleiteten Exceptions de�niert, die für die verschiedenen Arten
von Verstöÿen gegen die Konsistenzregeln stehen. Dadurch kann dem Benutzer
eine genaue Rückmeldung gegeben werden, mit deren Hilfe er seine Eingabeda-
ten nochmals durchsehen und berichtigen kann. Die Vererbungshierarchie der
Exceptions mit einer gemeinsamen Wurzel in der Klasse KonsistenzException
ermöglicht die einfache Behandlung solcher Exceptions im Programm, ohne nach
jeder Eingabe zwischen diversen möglichen Konsistenzfehlern unterscheiden zu
müssen.
Durch diese einheitliche Gestaltung der Konsistenzprüfung besteht auch kein

wesentlicher konzeptioneller Unterschied zwischen �harten� Integritätsbedingun-
gen, die auf jeden Fall erfüllt sein müssen, da sonst die Daten in sich keinen
Sinn geben, und �weichen� semantischen Konsistenzbedingungen (im Entwurf
als �Vorgaben� bezeichnet), die Beziehungen zwischen Objekten der realen Welt
beschreiben und vom Benutzer im Einzelfall auÿer Kraft gesetzt werden können.
Verstöÿe gegen Integritätsbedingungen werden durch Exceptions angezeigt,

die von der Klasse IntegritätsException abgeleitet sind. Andere, von
KonsistenzException abgeleitete Exceptions stehen für semantische Konsi-
stenzverletzungen. Somit kann durch eine minimale Fallunterscheidung bei der
Dateneingabe festgestellt werden, ob die Daten im eingegebenen Zustand ak-
zeptiert werden dürfen.
Sämtliche Konsistenzprüfungen liegen in einem eigenen Modul

TRO.Konsistenztests, das zu jeder zu prüfenden Datenklasse eine zuge-
hörige Prüfklasse de�niert. Durch diese Trennung der Konsistenzprüfungen von
sowohl Dateneingabe als auch den Daten selbst kann die interne Durchfüh-
rung der Prüfungen ohne Auswirkungen auf das restliche System geplant und
umgesetzt werden. Eine Veränderung der Prüfalgorithmen oder auch die Ver-
änderung der Prüfkriterien und dadurch notwendige Hinzunahme neuer Tests
oder Auslassung bestehender kann somit lokal im Modul TRO.Konsistenztests
erfolgen. Änderungen an anderen Programmteilen sind bis auf eventuelle kleine
Veränderungen der Aufrufschnittstelle nicht nötig.

3.3.4 Analysedaten

Aus der Fülle der in der Spezi�kation geplanten Analysedaten wurden im Ge-
spräch mit dem Kunden diejenigen ausgewählt, die für den Kunden wichtig und
interessant sind:

� Auslastung der Mitarbeiter

� Ressourcenbindung (= Fahrzeugauslastung)

� Anzahl km und Zeit pro Dienstart

40 KAPITEL 3. IMPLEMENTIERUNG

� Ausfallzeiten der Mitarbeiter und der Fahrzeuge

3.3.4.1 Darstellung

Für die gra�sche Darstellung der Auslastungen wurde eine generische Klasse
entworfen, die für jeden Mitarbeiter bzw. jedes Fahrzeug nach einer textuellen
Beschreibung des Mitarbeiters (Name und Mitarbeiternummer) bzw. des Fahr-
zeugs (Fahrzeugnummer) einen Balken darstellt, dessen Länge dem prozentua-
len Verhältnis der Auslastung des Mitarbeiters bzw. des Fahrzeuges entspricht.
Den Balken werden dabei zwei Farben zugewiesen: Solange die Auslastung unter
100% bleibt, ist der Balken grün, steigt die Auslastung jedoch über 100% wird
der Balken in roter Farbe dargestellt. Die Übergabe der Analysedaten an die
Klasse zur gra�schen Darstellung (TRO.Analyse.ProzentGra�k) erfolgt mittels
einer eigens dafür entworfenen Record-Klasse (TRO.Analyse.ProzentRecord).
Die Darstellung der anderen Analysedaten, Zeit- und km-Aufwand bzw. Aus-
fallzeiten, erfolgt in tabellarischer Form. Dem Benutzer bietet sich auch die
Möglichkeit diese Pläne auszudrucken.

3.3.4.2 Vorgehensweise

Auslastung der Mitarbeiter Die Analyse der Mitarbeiterauslastung erfolgt
über die geplanten Touren bzw. Untertouren in einem vom Benutzer frei wählba-
ren Zeitrahmen, in dem die Sollarbeitszeit der Mitarbeiter (im Arbeitszeitpro�l
festgehalten) mit ihrer geplanten Einsatzzeit ins Verhältnis gesetzt wird. Daraus
folgt, daÿ es dem Benutzer nur möglich ist, seine Planung zu analysieren und
gegebenenfalls zu verbessern. Eine Feststellung der tatsächlichen Auslastung
ist nicht vorgesehen. Um also ein realistisches Ergebnis zu erhalten, wird eine
Zuweisung der Sollmitarbeiter in den Touren erforderlich, d.h. ein O�enlassen
dieser Zuordnung, die dem Benutzer in einer frühen Planungsphase möglich ist,
führt zu Verfälschungen des Ergebnisses.

Ressourcenbindung Die Analyse der Fahrzeugauslastung erfolgt nur für die-
jenigen Dienstwünsche, bei denen Gruppen von Kunden transportiert werden
(Schulfahrt, Tagesp�ege und Dialyse). Dabei wird in einem vom Kunden frei zu
wählenden Zeitraum die für Fahrgäste verfügbare Sitzplatzzahl eines Fahrzeu-
ges mit der für den gewählten Zeitraum durchschnittlichen Zahl mitfahrender
Kunden ins Verhältnis gesetzt.

Zeit- und km-Aufwand pro Dienstart Hierbei werden pro Dienstart und
pro Untertour die gefahrenen km bzw. der zeitliche Aufwand für die Untertour
aufsummiert.

Ausfallzeiten der Mitarbeiter / Fahrzeuge Bildung einer Summe über
die vom Benutzer im System pro Mitarbeiter bzw. pro Fahrzeug eingetragenen
Ausfallzeiten. Da im System keine genaue Aufteilung über die Art des Ausfalls
der einzelnen Ressourcen erfolgt, kann diese folglich auch nicht in der Analyse
dargestellt werden. Dieser Analysepunkt soll dem Benutzer vielmehr mittels
eines Überblicks Au�älligkeiten aufzeigen, die er dann verfolgen kann.

3.4. PROBLEME BEIM UMSETZEN DES ENTWURFS 41

3.3.5 Datenausgabe

3.3.5.1 Einzeldienstplan

Der Einzeldienstplan wurde als Balkendiagramm realisiert. Er kann für Objek-
te, die das DienstplanErstellbar-Interface implementieren, über eine beliebige
Datumsspanne erzeugt werden. Zur Auswertung wird die Methode objektFahr-
ten des Tourszenarios aufgerufen. Damit liegt der Aufwand, wie im Abschnitt
3.3.2.2 beschrieben, in O(Anz. d. Fahrten).

Das im Abschnitt 2.1.2 beschriebene DienstplanErstellbar-Interface dient als
Schnittstelle, die für beliebige (sinnvolle) Objekte implementiert werden kann.
Dadurch ist es möglich, neben Dienstplänen für Mitarbeiter auch Fahrzeugein-
satzpläne zu erzeugen und darzustellen, wann ein Kunde vom DRK betreut
wird.

3.3.5.2 Gesamtdienstplan

Der Gesamtdienstplan wurde als Export�le implementiert. Dieses Export�le
enthält zu allen Mitarbeitern die Fahrten, die sie im angegebenen Zeitraum
zu erledigen haben. Dieses Export�le kann dann mit einem anderen Programm
(z.B. einer Tabellenkalkulation) beliebig aufbereitet und gedruckt werden. Auch
der Gesamtdiensplan kann, ebenso wie der Diensplan, für alle Objekte erzeugt
werden, die das DienstplanErstellbar-Interface implementieren. Dazu wird wie-
der die in 3.3.2.2 beschriebene Methode objektFahrten des Tourszenarios ver-
wendet, die für jedes Objekt einmal aufgerufen wird. Der Aufwand liegt damit
in O(Anz. d. Objekte * Anz. d. Fahrten). Eine e�zientere Methode wäre das
einmalige Durchlaufen aller Fahrten, wobei für jedes Objekt ein Zähler (z.B.
in einer Hashtable) mitgeführt wird. Der Aufwand läge dann, wie bei objekt-
Fahrten, in O(Anz. d. Fahrten). Wegen der Code-Wiederverwendung und aus
Zeitgründen wurde diese Variante jedoch nicht implementiert.

3.3.5.3 Tourplan

Der Tourplan listet zu allen Touren die zugehörigen Untertouren mit den ge-
planten Mitarbeitern, dem geplanten Fahrzeug und den anzufahrenden Statio-
nen incl. dortiger Ankunfts- und Abfahrtszeit auf. Zudem wird bei jeder Sta-
tion angegeben, welche Personen ein- oder aussteigen. Ferner werden für alle
im Rahmen der Tour beförderten Kunden die Bezugspersonen ausgegeben, die
beim zugehörigen Dienstwunsch angegeben wurden.

3.4 Probleme beim Umsetzen des Entwurfs

3.4.1 Unvollständige Details im Entwurf

Einige Probleme bei der Umsetzung des Entwurfs rührten daher, daÿ im Ent-
wurf nicht alles bis ins Detail zu Ende gedacht war. Hier wurde insbesondere
deutlich, daÿ sich manche sprachlich einfachen Konstrukte als tückisch bei der
Implementierung herausstellten. Auf jeden Fall muÿte hier der fehlende Ent-
wurfsschritt nachgeholt werden, was teilweise nicht im ersten Versuch gelang.

42 KAPITEL 3. IMPLEMENTIERUNG

Als Beispiel soll hier die Speicherung von Essensarten und deren Anzahlen
im EARDienstwunsch erläutert werden: Der Entwurf läÿt mit der Formulierung
�Essensart � int� die genaue Umsetzung o�en.

Ein erster Versuch bei der Implementierung benutzte zusätzliche interne Klas-
sen zur Speicherung von Essensarten und Anzahl. Es stellte sich aber heraus,
daÿ diese schlecht zu handhaben sind (eigene Lese- und Setzmethoden sowie
Verwaltung der Liste mit Eintragen, Löschen und Suchen wären nötig). Also
muÿte eine andere Lösung gesucht werden. Die Speicherung der Anzahlen in
einer Hashtabelle mit Essensarten als Schlüssel leistet dies auf elegante Weise,
ist allerdings nicht ganz trivial in ein gut bedienbares Ober�ächenelement zur
Eingabe umzusetzen (siehe 3.4.2.1).

3.4.2 Einfach, aber aufwendig

Manche Datenstrukturen lassen sich umgangssprachlich (und auch in der Pro-
grammiersprache) leicht ausdrücken, sind aber semantisch recht komplex, so daÿ
ihre Eingabe nicht einfach zu modellieren ist.

3.4.2.1 Hashtabellen

Ein Beispiel dafür sind Hashtabellen, die einer Menge von Schlüsselobjekten je
einen Eintrag zuordnen. Da weder unter den gängigen Fenstersystemen, noch
unter Java Eingabemöglichkeiten für (in der Gröÿe nicht von vornherein festge-
legte) zweidimensionale Tabellen bestehen, sondern nur eindimensionale Listen,
muÿten die Hashtabellen (bzw. Tabellen aller Art) zur Eingabe in ihre einzelnen
Dimensionen zerlegt werden (siehe 3.1.2.6).

3.4.2.2 Teilbare Einheiten

Aufwendig in der Handhabung sind auch Werte mit teilbaren Einheiten: Die
Speicherung von Zeitdauern in Minuten ist zweifelsohne sinnvoll, um ohne auf-
wendige und fehlerträchtige Gleitkommaarithmetik auszukommen. Bei der Ein-
gabe ist es aber in den meisten Fällen nicht zumutbar, alles in Minuten umzu-
rechnen (man denke z.B. an die Erfassung der wöchentlichen Arbeitszeit). Dem
Benutzer sollte eine Ausgabe in Form �hh:mm� (je zwei Stellen für Stunden und
Minuten) bzw. getrennte Eingabefelder für Stunden und Minuten angeboten
werden.

Hier ist wieder zusätzlicher Aufwand nötig, um einen gegegeben Wert für die
Ein- und Ausgabe zu teilen, die Teile einzeln zu editieren und hinterher wieder
zusammenzusetzen.

3.4.2.3 Aufwand durch Allgemeingültigkeit

Manche Teile des Entwurfs der Datenklassen wurden bewuÿt allgemeingültig ge-
halten, um nicht von vornherein gewisse Eingabemöglichkeiten auszuschlieÿen:
Es fand z.B. keine Einschränkung auf zwei Adressen oder Telephonnummern pro
Person/Kunde statt, statt dessen kann eine (theoretisch beliebig groÿe) Menge
von Adressen, Bank- sowie Kommunikationsverbindungen eingegeben werden.

Dies läÿt sich zwar auch in der Benutzungsober�äche recht einfach umsetzen,
ist aber etwas unhandlich in der Bedienung, insbesondere nimmt die Darstellung

3.5. IMPLEMENTIERUNG AUSGEHEND VON EINEM PROTOTYP 43

solcher Listen einen nicht unerheblichen Teil der doch begrenzten Bildschirm-
�äche in Anspruch.

3.5 Implementierung ausgehend von einem Pro-

totyp

Um dem DRK schon früh eine anschaulichen Überblick über den Planungs-
stand geben zu können, wurde bereits parallel zur Anforderungsanalyse ein
Prototyp der graphischen Benutzungsober�äche erstellt (im Akkord über die
Weihnachts�ferien�).

Die Existenz dieses Prototyps wurde dann naiverweise als ein bereits beträcht-
licher Fortschritt bei der Implementierung gewertet. Daÿ dem nicht so war, sollte
sich recht schnell nach Beginn der tatsächlichen Implementierungsphase heraus-
stellen:

Die Eingabedialoge und Datenfelder waren auf Datenklassen bezogen, die
ebenso ad hoc im Kopf entworfen wurden wie der gesamte Prototyp. Da in
Spezi�kation und Entwurf die Struktur und Zusammenhänge dieser Datenklas-
sen deutlich vom Prototyp abwich, konnte lediglich ein minimaler Teil der alten
Ober�äche wiederverwendet werden (um z.B. gewisse Teile von Eingabefenstern
aufzubauen). Insbesondere die Anbindung an die Datenklassen (Werte setzen
und lesen, siehe 3.1.2.1) war recht aufwendig.

Für eine Anwendung, die so unmittelbar auf der Struktur des Datenmodells
aufsetzt, wie dies bei der Datenverwaltung des Programms TROSS der Fall ist,
ist es sicher sinnvoller, den Prototyp zu einem späteren Zeitpunkt zu beginnen.
Denkbar ist eine Vorgehensweise parallel zum Design des Datenmodells: Zu den
bereits spezi�zierten Datenobjekten können Eingabemasken entworfen werden,
die dann einerseits zur Veranschaulichung des Planungsstandes im Dialog mit
dem Anwender dienen, zum anderen aber eine Basis für die endgültige Imple-
mentierung bieten, da sicher viele Teile übernommen werden können.

3.6 Verwendung externer Programme: Das Ver-

kehrsmodul

Als wesentliches Problem bei der Implementierung des Verkehrsmoduls hat sich
die Batch-Schnittstelle von Map&Guide herausgestellt, die für eine solche Ver-
wendung (zumindest mit der vorhandenen spärlichen Dokumentation) eigentlich
nicht geeignet ist. Sie ist dafür ausgelegt, daÿ die Benutzer ihre Anfragen in einer
Auftragsdatei (.asc) an Map&Guide geben, und dieses eine Tourbeschreibung
in einer Ergebnisdatei (.lst) speichert, oder die Tour textuell oder graphisch
auf einem Drucker ausgibt. Aus der Tourbeschreibung kann zwar prinzipiell die
Entfernung zwischen den Stationen herausgelesen werden, aber dafür muÿ es in
dieser Preislage eigentlich besser geeignete Möglichkeiten geben.

Zunächst war die Frage, wie eine Station für Map&Guide aussehen muÿ. Des-
halb wurden einige Beispiele entsprechend dem Handbuch eingegeben. Als erstes
Problem stellte sich die Übergabe von Straÿennamen heraus, die nicht zu funk-
tionieren schien. Nachdem die Antwort des Supports von Map&Guide nicht
funktionierte, fand sich dann doch die Lösung im Handbuch: wenn das erste

44 KAPITEL 3. IMPLEMENTIERUNG

Kommentarfeld der Auftragsdatei mit einem Doppelpunkt beginnt, wird der
Rest des Feldes als Straÿe interpretiert. Wer bitte kommt auf solche Ideen?
Als nächstes wurde die Vorschlagsliste (.cor) untersucht, die Map&Guide im-

mer anlegt. Anhand dieser kann eine neue eindeutige Auftragsdatei erstellt wer-
den. Allerdings fehlten dabei stets die Hausnummern, weshalb die gelieferten
Stationen zum Teil nicht eindeutig sind. Als erste Lösung wurde die Hausnum-
mer aus der Anfrage einfach wieder an die Straÿe angehängt. Nach einer Dis-
kussion in einer Sitzung wurde diese Alternative verworfen, da es kaum möglich
ist, den Straÿennamen algorithmisch von der Hausnummer zu trennen. Deshalb
wurde das Attribut Straÿe in der Station aufgetrennt in zwei Attribute Straÿe
und Hausnummer.
Die nächste Eigenheit von Map&Guide lieÿ nicht lange auf sich warten: die

Postleitzahlen in der Vorschlagsliste waren zum Teil falsch (9xxxx für Stationen
in Stuttgart), zum Teil aber auch groÿe negative Zahlen. Diese Vorschläge in eine
neue Auftragsdatei gepackt brachten wie erwartet keine sinnvollen Ergebnisse.
Aufgrund dieser Probleme mit der Vorschlagsliste werden die Vorschläge

nun nicht mehr zur Erzeugung neuer, gültiger Anbindungspunkte verwendet.
Statt dessen muÿ jeder mögliche Anbindungspunkt geprüft werden (Methode
Verkehrsmodul.anbindungInOrdnung), und nur wenn in der Vorschlagsliste
nur eine Alternative zurückgegeben wird, ist der Anbindungspunkt gültig. Die
Alternativen werden dem Benutzer nur noch zur Hilfe angezeigt.
Als nächstes Problem trat in Map&Guide eine falsch kodierte Straÿe auf: die

Sommerrainstraÿe in Stuttgart Sommerrain ist in zwei Teile aufgeteilt, deren
Hausnummern-Mengen nicht disjunkt sind. Deshalb sind Hausnummern gröÿer
41 nie eindeutig. In solchen Fällen gibt es zwei Möglichkeiten: entweder einfach
eine andere Hausnummer, oder die geographischen Koordinaten als Anbindungs-
punkt eingeben (näheres dazu steht im Handbuch von Map&Guide [CAS97]).
Um die Arbeitsweise von Map&Guide zu beein�ussen, gibt es zum einen die

Parameterdatei (param.mgb), zum anderen können die Parameter aber auch
an den Anfang der Auftragsdatei gestellt werden. Nur funktionierte die zweite
Möglichkeit zunächst nicht. Nach etlichen Stunden war die Ursache gefunden:
Wenn Map&Guide die Parameterdatei nicht �ndet, ignoriert es auch die Pa-
rameter in der Auftragsdatei. Deshalb wird nun eine Parameterdatei angelegt,
wenn noch keine vorhanden ist.
Zu klären war auch die Frage, wie viele Stationen Map&Guide wohl in ei-

ner Anfrage scha�t. Im Handbuch steht nur, daÿ bei aktivierter Reihenfolge-
Optimierung der Stationen maximal 20 Zwischenstationen möglich sind. Es
stellte sich heraus, daÿ überhaupt nur 20 Stationen, d.h. 19 Kanten möglich
sind. Dadurch wird die Anfrage an das Verkehrsmodul zum Vorbereiten aller
Entfernungen zwischen je zwei Stationen einer gröÿeren Menge eigentlich un-
brauchbar. Ein geringe Verbesserung wird durch einen anderen Algorithmus
erreicht (siehe 2.2.3).
Das Erkennen der Fehler von Map&Guide ist nicht einfach, da je nach Art des

Fehlers manche Dateien erzeugt werden und andere nicht. Eine Datei, die sich
bei einem Fehler immer ändert, ist die Fehler-Datei Error.mgb. Ihr Inhalt ist
aber kaum für eine Auswertung per Programm geeignet, da die Anzahl der an-
gehängten Zeilen schwankt. Das Verkehrsmodul meldet nun einen Fehler, wenn
sich der Zeitstempel dieser Datei geändert hat, kann aber keine genaueren An-
gaben zum Fehler machen. Wenn nur Anbindungen geprüft werden, wird dieser
Fehler ignoriert.

3.7. ERFAHRUNGEN MIT JAVA 45

3.7 Erfahrungen mit Java

3.7.1 Javas Klassenbibliothek

Javas Klassenbibliothek enthält zwar alle grundlegenden Objekte und Funktio-
nen zur Verwaltung von Daten und Erstellung von graphischen Benutzungsober-
�ächen, allerdings auch nicht mehr. Semantisch höhere Konstrukte sind bis auf
Ausnahmen kaum zu �nden, vor allem das �Abstract Window Toolkit� (AWT)
für die Programmierung von Ober�ächen bietet nur die üblichen Primitive, die
von den gängigen Fenstersystemen direkt zur Verfügung gestellt werden.

Manche grundlegenden Konzepte, die in anderen objektorientierten Program-
miersystemen zum Standard gehören, sind in Java noch unausgereift oder
schlicht nicht vorhanden. Als Beispiel sei hier die Eigenschaft der Vergleichbar-
keit genannt, die Voraussetzung für das Sortieren von Objekten ist. Zwar haben
manche Java-Klassen bereits eine Methode namens compareTo implementiert,
die diesen Vergleich durchführt, jedoch ist diese Methode nicht Teil eines Inter-
face, mit dessen Hilfe man die Vergleichbarkeit von Objekten erzwingen könnte
(um sie z.B. in eine sortierte Liste aufzunehmen). Folgerichtig gibt es auch keine
Listenklassen, die ihren Inhalt automatisch sortieren. Da im Projekt TROSS sol-
che sortierten Listen aber gebraucht wurden, muÿten die meisten Datenklassen
mit zwei selbsterstellten Interfaces implementiert werden (siehe 3.1.1.1).

Der Verzicht auf Mehrfachvererbung löst zwar gewisse semantische Eindeu-
tigkeitsprobleme, bedeutet aber manchmal zusätzlichen Programmieraufwand
durch Verlust an Modularität. Javas Interfaces können zwar wie abstrakte Su-
perklassen gehandhabt werden, bieten aber nicht die Möglichkeit des �code reu-
se� durch Vererbung von Methoden.

Im Projekt wäre es z.B. wünschenswert gewesen, sowohl Personen als auch In-
stitutionen in einen Zusammenhang mit Kunden zu bringen. Dies könnte durch
eine Superklasse Bezug realisiert werden, von der sowohl BezugsPerson als auch
Institution erben. Da BezugsPerson aber auf jeden Fall von Person erbt,
muÿte diese Realisierungsmöglichkeit ausscheiden. Wir haben uns für die Ver-
knüpfung von Kunde und Institution über einen Sachbearbeiter entschieden, der
eine Bezugsperson ist und von dieser Klasse erbt.

Mehrfachvererbung hätte es auch ermöglicht, dem in 3.1.1.1 erwähnten Inter-
face Comparable eine Standard-Implementierung der Vergleichsmethode mitzu-
geben. In Java muÿte der etwas aufwendige Stringvergleich nach länderspezi�-
schen Sortierregeln vielfach redundant codiert werden.

3.7.1.1 Das Abstract Window Toolkit (AWT)

Auch im package java.awt zur Erstellung der graphischen Benutzungsober�ä-
che wurden einige vielverwendete Klassen schmerzlich vermisst. Zum Beispiel
muÿte ein LayoutManager, der die simple Aufgabe erfüllt, Ober�ächenelemen-
te untereinander in einem Dialog anzuordnen, komplett selbst implementiert
werden.

Besonders deutlich bemerkbar macht sich die fehlende Unterstützung typisier-
ter Eingabefelder, sowohl beim Setzen als auch beim Auslesen von Werten: Das
JDK bietet nur reine Textfelder als fertige Ober�ächenelemente an. Um andere
Datentypen als Strings zu erfassen, muÿ sich der Programmierer um die Kon-
vertierung der Gröÿe in einen String genauso kümmern wie um das Umsetzen

46 KAPITEL 3. IMPLEMENTIERUNG

der eingegebenen Zeichenkette in das gewünschte Datum. Vor allem letzteres
ist mit einem gewissen Aufwand verbunden, da diverse Exceptions behandelt
werden müssen. Selbst für elementare Datentypen wie ganze Zahlen (int) muÿ
der Umweg über Textfelder von Hand programmiert werden.

3.7.2 Entwicklungsumgebung

Die Entwicklungsumgebung für das Projekt TROSS zeichnete sich vor allem da-
durch aus, daÿ keine Entwicklungsumgebung vorhanden war (Programmierung,
Compilieren und Testen muÿten von Hand via Editor und Kommandozeilen-
aufrufe der Java-Tools gemacht werden). Zwei Punkte dürften dazu wesentlich
beigetragen haben:

1. Die Entscheidung, welche Programmiersprache eingesetzt wird, wurde
erst sehr spät geführt. Das führte dazu, daÿ der gesamte Prototyp von
Hand erstellt werden muÿte. Eine komplette Neuerstellung wäre wohl auch
mit Entwicklungsumgebung recht zeitaufwendig geworden. Darüberhinaus
hätte die Suche nach einer geeigneten Entwicklungsumgebung sowie die
Einarbeitung darin einige Projektzeit verschlungen.

Wäre zu Beginn der Projektgruppe wenigstens dieses Grundhandwerks-
zeug dagewesen, hätte sicher mancher spätere Aufwand vermieden werden
können.

2. Da zu Beginn der Projektgruppe die Maxime ausgegeben wurde, alle ver-
wendeten Programme dürften möglichst nichts kosten, war es kaum mög-
lich, eine leistungsfähige Entwicklungsumgebung zu bekommen.

Wir muÿten also auch ohne GUI-Builder auskommen, der beim Erstellen der
Benutzungsober�äche eine beträchtliche Hilfe dargestellt hätte. Viel Handar-
beit war angesagt, um zusätzliche Ober�ächenelemente zu realisieren und die
bestehenden mit ihrer rudimentären Schnittstelle zu bedienen. Insbesondere das
Setzen und Auslesen von Eingabewerten (siehe 3.1.2.1) hätte sich mit einem gut
konzipierten GUI-Builder ergeblich vereinfacht.
Lange Zeit gab es auch regelmäÿige Probleme mit dem Versionsverwaltungs-

system CVS, dessen Funktionsweise und Bedienung nicht unmittelbar einleuch-
tete. Erst nach wiederholten Datenverlusten beim Einchecken neuer Versionen
wurde die korrekte Handhabung klar.

Kapitel 4

Test

4.1 Funktionstest des Gesamtprogramms

Eigentlich hätte vor Beginn der Testphase ein Schnitt gemacht werden sollen,
so daÿ nach einem Implementierungsstop eine de�nierte �Version 0� des Pro-
gramms zur Verfügung gestanden hätte. Da dies durch krampfhaftes Festhalten
an der Fertigstellung gewisser Programmteile so nicht realisiert werden konn-
te, gründete der Funktionstest nicht nur auf von Teil zu Teil unterschiedlichen
Versionen, sondern stellte teilweise auch Fehler fest, die mittlerweile längst be-
hoben waren. Da es sich hierbei teilweise um wichtige Programmteile handelt,
sollen hier kurz diejenigen Punkte wiedergegeben werden, die der Funktionstest
als fehlerhaft beschreibt, die aber im Programm zum Zeitpunkt des Endberichts
korrigiert waren:

4.1.1 Szenario

Für die folgenden Tests wurden verschiedene Szenarien (u.A. mit DRK-
Testdaten, mit generierten Testdaten und mit Daten aus 4.3) verwendet.
Die Menüpunkte neu, ö�nen und Szenario zum Masterszenario machen zeig-

ten bei mehrmaligen Aufrufen und auch bei zwischenzeitlichem Verlassen des
Programms die gewünschte Wirkung. Das Speichern scheint jedoch Probleme zu
machen (oder kam nicht immer der Hinweis �Szenario geändert! - Speichern?�)?
Jedenfalls waren nicht immer alle Daten da, die zuvor eingegeben wurden. Al-
lerdings konnte dieser Fehler bisher nicht reproduziert werden.
Auch beim Test der Funktionen des Untermenüs TourSzenario gab es Pro-

bleme:

wechseln zeigte keine Wirkung.

kopieren schlägt fehl, da die vom System automatisch aufgerufene Methode
korrigiereFahrzeiten() zu einer Exception führte.

zum Master machen Funktioniert auf den ersten Blick, allerdings sieht
man auf der Konsole, daÿ das unbekannte Kommando tourszena-

rio_fahrten_schreiben aufgerufen wird.

Die übrigen Menüpunkte zeigten bei mehrmaligen Aufrufen und auch bei zwi-
schenzeitlichem Verlassen des Programms die gewünschte Wirkung.

47

48 KAPITEL 4. TEST

4.1.2 Kunden und Dienstwünsche

Abgesehen von den in Kapitel 4.3 genannten Fehlern �el nichts mehr auf. Der
Menüpunkt Dienstwünsche erfüllt? dürfte den Planer nur für kurze Zeit erfreu-
en: es werden angeblich immer alle Wünsche erfüllt!

4.1.3 Touren, Untertouren und Fahrten

Die Probleme, die sich hinter dem Menüpunkt Tourenliste verbergen, werden
im Detail in 4.3 beschreiben. Insbesondere lieÿen sich keine Untertouren bilden.
Damit war auch ein Test aller Menüpunkte/Dialoge, die sich auf Untertouren
oder Fahrten beziehen, nicht möglich.

Der Konsistenztest entdeckte fehlende Mitarbeiter und Quali�kationen. Eben-
so wurden zugewiesene, aber vom Kunden abgelehnte Mitarbeiter korrekt ent-
deckt. Auf mehrfach verplante Mitarbeiter und Fahrzeuge wurde jedoch nicht
hingewiesen.

4.1.4 Test der Menüpunkte Ressourcen, Ausgabe, Analy-

se und Einstellungen

4.1.4.1 Vorgehensweise

In diesem Testabschnitt sollten die Eingabemasken für Mitarbeiter, Fahrzeuge
und die systemweit bekannten Daten (=Einstellungen), sowie die Ausgabe- und
Analysefunktionen auf ihre Funktionalität hin überprüft werden. Die Vorge-
hensweise für den Test der Eingabemasken war folgende: Eingabe neuer Daten
(auch falsche Formate), Ändern und Löschen bestehender Daten. Für den Test
der Ausgabe- und Analysefunktionen wurde auf schon bestehende Daten zuge-
gri�en.

4.1.4.2 Ressourcen

Sowohl die Masken zur Neueingabe, zum Ändern und zum Löschen von Mit-
arbeitern, sowie die zur Manipulation der Fahrzeugdaten funktionieren im ge-
wünschten Umfang. Bei der Neueingabe diverser Daten (z.B. Adressen, Kommu-
nikationsverbindungen. . .) eines für das System neuen Mitarbeiters bzw. Fahr-
zeugs erscheint im Titel des Fensters nicht der Name des Mitarbeiters bzw.
Fahrzeugs, sondern null null. Dies ist bedingt durch das Konzept des Zwei-
Phasen-Commit, welches sämtliche Eingaben nach Drücken des OK Button erst
prüft und danach dem System bekannt macht.

4.1.4.3 Ausgabe

Die Menüpunkte zur Ausgabe waren zum Zeitpunkt an dem der Test durchge-
führt wurde, teilweise noch nicht vollständig implementiert und funktionierten
dementsprechend noch nicht.

4.1.4.4 Analyse

Die Menüpunkte zur Anzeige der Mitarbeiterauslastung und zur Fahrzeugbeset-
zung zeigten die gewünschten Daten richtig an. Die weiteren Analysefunktionen

4.1. FUNKTIONSTEST DES GESAMTPROGRAMMS 49

waren zum Testzeitpunkt noch nicht vollständig implementiert und konnten so-
mit nicht getestet werden. Die Funktionen zum Drucken funktionieren mit der
Solaris-Version des JDK nicht (X11MOTIF-Exception).

4.1.4.5 Einstellungen

Die Masken zur Eingabe der einzelnen, systemweit bekannten Daten, funktio-
nierten zur vollen Zufriedenheit. Auch falls die Daten in anderen Masken (z.B.
Fahrzeugeingabe) verändert oder ergänzt werden. Die Eingaben falscher Daten-
formate (z.B. Eingabe von Buchstaben statt Zahlen) werden von den Konsi-
stenztests sicher erkannt und erfolgreich abgewiesen.

4.1.4.6 Allgemeine Systemprobleme

Bei manchen Testläufen kam es vor, daÿ das System ohne Fehlermeldung ab-

stürzte oder einfach hängen blieb und dadurch von auÿen beendet werden muÿte.
Da diese Fehler in unterschiedlichen Bediensituationen auftraten, liegt die Ur-
sache wahrscheinlich in einer gewissen Instabilität der Java-Laufzeitumgebung.

4.1.5 Probleme unter Windows und JDK1.1.5

� Die Eingabe des Zeichens �@� ist nicht möglich.

� Der Warte-Mauscursor wird erst nach einer Mausbewegung wieder in einen
Aktiv-Mauscursor geändert. Spielt man nicht die ganze Zeit mit der Maus,
kann man lange warten, bis eine Aktion beendet ist.

� Zeitrahmen werden immer um einen Tag nach vorne geschoben

4.1.6 allgemeine Fehler

� Bilden von Untertouren nicht möglich.

� Es ist nicht möglich, einen Dienstwunsch zu löschen, der von Touren refe-
renziert wird. Es erscheint zwar die Frage �Dienstwunsch aus allen Touren
entfernen?�, eine Antwort mit ok wird jedoch nur durch eine Exception
quittiert.

4.1.7 Ergänzungen zum Test

Tourszenarien Tourszenarien können jetzt kopiert werden, zwischen verschie-
denen Tourszenarien eines Szenarios kann gewechselt werden, und das je-
weils aktive Tourszenario kann zum Master-Tourszenario gemacht werden
(notwendige Bedingung für das Schreiben von Fahrten).

Untertouren erstellen Untertouren konnten erstellt werden und mit Teil-
dienstwünschen bestückt werden. Das Verschieben einzelner Teildienst-
wünsche klappte ebenso wie das Verschieben von Halten, wobei die Prü-
fung auf richtige Reihenfolge der Stationen korrekt arbeitete. Da imModus
ohne Verkehrstool getestet wurde, wurden unbekannte Entfernungen bzw.
Fahrzeiten angezeigt und konnten vom Benutzer eingegeben werden.

50 KAPITEL 4. TEST

Fahrten erzeugen Zu den erzeugten Untertouren wurden Fahrten erzeugt.
Dabei wurden die Zeiträume der Dienstwünsche beachtet und gegebenen-
falls keine neuen Fahrten erzeugt. Die neu erzeugten Fahrten wurden dem
Benutzer zur Überprüfung und möglichen Bearbeitung präsentiert. Hier
konnten Mitarbeiter und Fahrzeug angepaÿt werden, sowie Dienstwünsche
entfernt und wieder eingefügt werden.

Das Erstellen von Dienstplänen auf der Basis dieser Fahrten gelang, ebenso
wie das Archivieren von Fahrten in eine Log-Datei.

Erfüllung von Dienstwünschen prüfen Es wurden zwei Dienstwünsche
überprüft, von denen einer teilweise in Touren und Untertouren enthal-
ten war. Das Programm meldete korrekt alle Teildienstwünsche dieser
Dienstwünsche, die nicht in den bestehenden Untertouren erfüllt wurden.

Löschen von Dienstwünschen, die in Touren enthalten sind Nach der
Warnmeldung, daÿ der zu löschende Dienstwunsch noch in Touren steckt,
wurde die Option gewählt, diesen automatisch auch dort entfernen zu las-
sen. Nach Eingabe einer Entfernung (die in der Untertour durch Wegfall
des Dienstwunsches benötigt wurde) war der Dienstwunsch sowohl aus der
Wunschliste des Kunden als auch aus der Tour und Untertour gelöscht, in
denen er zuvor noch referenziert worden war.

Drucken von Analysen und Plänen Pläne und Analysedaten können jetzt
auch ausgedruckt werden. Analyselisten werden dabei in Seiten umbro-
chen, von Dienstplänen wird jeweils nur der Teil ausgedruckt, der auf eine
Seite paÿt (dies ist etwa eine Woche).

4.2 Grenzen des Systems: Test mit groÿen Da-

tenmengen

Um die Grenzen des Systems zu erkunden, wurde ein Programm geschrieben, das
groÿe Mengen zufälliger Daten anlegt, wobei verschiedene Parameter eingestellt
werden können. Die Daten werden in Szenarien gespeichert, die dann von TROSS
geladen werden können. Mit diesem Programm wurden zwei Szenarien erzeugt:

1. Das erste Szenario enthält je 50 Quali�kationen, Essensarten, Hilfsmittel
und Fahrzeugtypen, je 200 Fahrzeuge und Mitarbeiter, 500 Kunden mit
jeweils 0 bis 2 Dienstwünschen, 10 Schulen, 150 Schultouren mit 3 bis
6 Kindern und die Untertouren zu den Schultouren (eine Hin- und eine
Rückfahrt).

2. Im zweiten Szenario wurde die Zahl der Kunden auf 1000 erhöht, die Zahl
der Schulen auf 20 und die Zahl der Schultouren auf 300.

Diese Szenarien wurden geladen und verschiedene Funktionen von TROSS auf-
gerufen, um die Schwachstellen zu �nden. Für diese wurden dann Zeitmessungen
durchgeführt. In Tabelle 4.1 werden die nacheinander aufgerufenen Funktionen
und die benötigten (gestoppten) Zeiten in Sekunden auf zwei Rechnern (beide
Windows 95 mit JDK 1.1.6) angegeben.

4.2. GRENZEN DES SYSTEMS: TEST MIT GROßEN DATENMENGEN51

Funktion Cyrix 166/32MB P100/24MB

Szenario 1 laden 115 319
Kunden anzeigen 5 12
speichern als Szenario 3 100 152
Szenario 3 laden 110 307
Kunden anzeigen 2,5 8

Szenario 2 laden 305 912
Kunden anzeigen 8 18
Touren anzeigen 2 5

Tabelle 4.1: Zeiten für verschiedene Funktionen

Das groÿe Problem: das Laden (und Speichern) der Daten. In TROSS wird
die Serialisation von Java verwendet, wobei die Daten noch komprimiert wer-
den. Auch das Abschalten der Komprimierung änderte kaum etwas. Der Pro�ler
ermittelt für das Laden des kleinen Szenarios die folgenden Top-Rechenzeit-
Verbraucher:

59,4% ObjectInputStream.inputClassFields(Object, Class, int[])
20,9% System.gc()
11,2% Object.wait(long)

Alle drei Methoden kommen von Java. Die erste Methode ist nicht dokumen-
tiert, dem Namen nach liest sie die Attribute der Objekte. Die zweite ist der
Garbage-Collector und die dritte dient zur Synchronisation paralleler Zugri�e.
Eine Laufzeit-Optimierung ist hier also nicht möglich, am einfachsten können
die 21% für den Garbage-Collector durch mehr Speicher verringert werden.

Die übrigen gestoppten Zeiten wären auf dem Cyrix-Prozessor gerade noch
hinnehmbar, das Laden und Speichern mittels Objekt-Serialisation ist aber nicht
akzeptabel, kann aber wegen Zeitmangels nicht mehr geändert werden.

Für die folgenden Versuche wurde ein viertes Szenario mit vom zukünftigen
Benutzer von TROSS gelieferten Daten erstellt. Dieses enthält 46 Fahrzeuge, 63
Mitarbeiter, 94 Kunden mit Dienstwünschen (Essen auf Rädern und Schulfahr-
ten) und 11 Schultouren.

Bei ausgeschaltenem Verkehrstool wurden die Dienstwünsche angelegt. Da-
nach wurde das Verkehrstool eingeschaltet. Für das Anbinden der 95 Statio-
nen (94 und eine Schule) wurden 95 Sekunden benötigt. Danach wurden für
alle 11 Schultouren die Entfernungen zwischen den einzelnen Stationen ermit-
telt. Das dauerte 160 Sekunden. Hier wurden etwa 160=11 = 15 Sekunden pro
Map&Guide Auftrag.

Der benötigte Speicherplatz auf der Festplatte hält sich dank der Kompression
in Grenzen. Tabelle 4.2 zeigt die Dateigröÿen in Bytes verschiedener Szenarien.
Weshalb das Szenario 3 kleiner ist als Szenario 1, ist nicht erklärbar.

Die Szenarien in den letzten drei Zeilen enthalten jeweils noch die Fahrten
der Schultouren für 1, 2 bzw. 3 Wochen. Pro Fahrt werden etwa (17905 �
17187)=220 = 3; 2 Bytes benötigt. Dank der Kompression gibt es hier also keine
Engpässe.

52 KAPITEL 4. TEST

Szenario Gröÿe in Bytes

Szenario 1 134.472
Szenario 2 254.954
Szenario 3 134.423
Szenario 4 16.292
Szenario 4 + 1 Woche 17.187
Szenario 4 + 2 Wochen 17.513
Szenario 4 + 3 Wochen 17.905

Tabelle 4.2: Gröÿen verschiedener Szenarien

4.3 Abgleich mit den Anforderungen: Durchspie-

len der Szenarien

Ein Teil der Testphase bestand darin, die Daten aus den Szenarien der Anforde-
rungsanalyse mit TROSS zu verarbeiten. Im folgenden soll dargestellt werden,
welche Teile mit TROSS verarbeitet werden konnten, welche sich aufgrund von
Fehlern nicht verarbeiten lieÿen und welche aus konzeptionellen Gründen nicht
mit TROSS verarbeitet werden konnten.

4.3.0.1 Schulfahrten

Szenario 1 Die Quali�kationen �Lastenheben� und �Epilepsie-Umgang� wur-
den neu angelegt. Daraufhin wurden die Zivildienstleistenden Gustav Häberle
und Karl Tremmle gemäÿ den Vorgaben des Szenarios erfaÿt. Danach wurden
die vier vorgegebenen Kunden erfaÿt und zu einer Tour zusammengestellt, die
wie gefordert für die automatische Optimierung gesperrt wurde. Da die Schü-
lerin Karin Klein krank ist, wurde in ihrem Dienstwunsch die voraussichtliche
Dauer der Krankheit vom Zeitrahmen ausgenommen.

Probleme

� Da für Touren keine Bemerkung vorgesehen ist, muÿ der Auftrag, die
Schüler in die Klassen zu bringen, bei jedem Dienstwunsch angegeben
werden.

� Der Zivi Karl Tremmle machte zu Beginn seiner Dienstzeit einen
Lehrgang. Dies sollte in TROSS durch eine Datumsspanne für die
Zeit des Lehrgangs dargestellt werden. Dazu wäre es wünschenswert
gewesen, bei den Ausnahemzeiträumen auch Bemerkungen eingeben
zu können, damit man weiÿ, warum ein Mitarbeiter fehlt. Bisher kann
nur dargestellt werden, daÿ ein Mitarbeiter nicht verfügbar ist, aber
nicht, warum er fehlt.

� Daÿ der Klassenlehrer von Karin Klein über deren Krankheit unter-
richtet werden soll, ist im System nicht sinnvoll darstellbar, da der
entsprechende Dienstwunsch nicht mehr in der Fahrt auftaucht.

� Die Zeitangabe ohne Minuten (�16: �) führte zu der verwirrenden
Fehlermeldung �ganze Zahl eingeben�.

Fehler

4.3. ABGLEICH MIT DEN ANFORDERUNGEN 53

� Beim Erstellen von Untertouren trat eine Exception auf. Daher konn-
te auch nicht festgestellt werden, ob es möglich ist, daÿ die Schülerin
Susanne Schlecht auf der Hinfahrt garantiert als letzte abgeholt und
bei der Rückfahrt als erste abgeliefert wird.

Szenario 2 Das Szenario konnte mit dem System komplett umgesetzt werden.
Ob die Änderungen der Dienstwünsche in den Touren durch Umsetzen der Kun-
den in den Untertouren und Fahrten richtig nachvollzogen wird, konnte nicht
festgestellt werden, da es nicht möglich war, Untertouren zu bilden.

4.3.0.2 MSD / P�egedienst

Szenario 1 Das Szenario konnte mit TROSS nachvollzogen werden. Die Vor-
gabe, beide Dienstanforderungen als einen Dienstwunsch zu erfassen, kann nach-
vollzogen werden, hat im System jedoch folgendes Problem: Auf der Tour muÿ
immer ein teurer P�eger mitgehen, auch wenn nur Einkäufe zu erledigen sind.

Szenario 2 Bei der Umsetzung des zweiten MSD-Szenarios traten zwei Fehler
auf. Zum einen war gefordert, einen bevorzugten Mitarbeiter festzulegen. Dies
geschah bei der Eingabe des Dienstwunsches, allerdings war die Eingabe beim
nächsten Aufruf der Dienstwunschmaske wieder verschwunden.

Das zweite Problem machte die Ausnahmezeiterfassung beim Kunden. Es
sollten zwei Zeiträume eingegeben werden, in denen die Kundin nicht bedient
werden soll. Allerdings wurde die zweite Eingabe ignoriert und dafür der erste
Zeitraum (unter Windows) um einen Tag nach vorne verschoben.

4.3.0.3 Essen auf Rädern

Szenario 1 Das Szenario konnte erfolgreich nachvollzogen werden.

Szenario 2 Bei diesem Szenario traten folgende Probleme auf:

Zunächst sollte eine Email-Adresse eingegeben werden, da der Kunde per
Email bestellte. Dabei �el auf, daÿ unter Windows95 die Eingabe des Zeichens
�@� nicht möglich ist, obwohl dies unter UNIX funktioniert.

Das nächste Problem war die nachträgliche Adreÿerfassung in der Dienst-
wunschmaske. Da zunächst keine Lieferadresse angegeben war, erschien korrek-
terweise eine entsprechende Fehlermeldung. Daraufhin wurde die Lieferadresse
ergänzt. Diese konnte vom Verkehrsmodul nicht angebunden werden, weshalb
ein entsprechender Hinweis kam, der mit Abbrechen beendet werden sollte. Lei-
der blieb daraufhin auch TROSS stehen und muÿte von auÿen verlassen werden.

Nachdem der Dienstwunsch wegen obigem Fehler nochmals erfaÿt war, soll-
te sichergestellt werden, daÿ er am Ende einer Essenstour erledigt wird. Eine
Reihenfolge kann jedoch erst bei Untertouren festgelegt werden, die wie schon
erwähnt nicht funktionierte. Damit bleibt dieser Punkt ungeprüft. Als Alterna-
tive wurde eine späte Lieferzeit eingegeben, die jedoch nichts garantiert.

Die Verquickung mit einem MSD-Dienstwunsch ist aus konzeptionellen Grün-
den nicht direkt möglich. Dies muÿ bei der Tourplanung manuell berücksichtigt
werden (wobei die beiden Dienstwünsche wegen der unterschiedlichen Dienstar-
ten nicht in einer Tour erledigt werden dürfen!). Eine andere Möglichkeit wäre

54 KAPITEL 4. TEST

ein MSD-Dienstwunsch mit der Bemerkung �Essen mitnehmen� oder ein EAR-
Dienstwunsch mit einer längeren Aufenthaltszeit. Dies bringt aber Probleme für
die (in dieser Version nicht realisierte) automatische Abrechnung mit sich, da
sich diese auf die Dienstart stützt und somit entweder ein Essen oder MSD-
Stunden in Rechnung stellen könnte.

Szenario 3 Beim Szenario 3 ergeben sich durch die geforderte Verbindung von
EAR- und MSD-Dienst die schon oben genannten Probleme. Weitere Probleme
traten in Verbindung mit der Erfassung von Institutionen auf:

� Obwohl die Klasse Kunde einen Vektor für die Aufnahme von Institutionen
besitzt, ist es ist nicht möglich, dem Kunden direkt, d.h. ohne bekannten
Sachbearbeiter, eine Institution zuzuweisen. Ist der Sachbearbeiter unbe-
kannt, muÿ die Institution über eine Dummy-Bezugsperson referenziert
werden.

� Es ist keine Angabe der Versicherten-Nummer vorgesehen. Diese kann
zwar im Feld Bemerkung untergebracht werden, verhindert aber (z.B. für
automatische Rechnungsstellung) eine Auswertung durch das Systems.

Szenario 4 Das Szenario konnte mit TROSS erfaÿt werden. Ein Problem trat
unter Windows95, jedoch nicht bei UNIX auf: Der Zeitrahmen wird beim Ver-
lassen der Zeitrahmeneingabe um einen Tag nach vorne verschoben.

Szenario 5 Das Szenario 5 konnte problemlos nachvollzogen werden.

Szenario 6 Der entsprechende Ausnahmezeitraum wurde erfaÿt (und nach
Szenario 4 erwartungsgemäÿ verschoben). Auswirkungen auf die Fahrten konn-
ten nicht getestet werden, da es nicht möglich war, Fahrten zu erzeugen.

Szenario 7 Der nicht mehr benötigte Dienstwunsch wurde durch Angabe ei-
nes Enddatums in seiner Zeitspanne suspendiert. Die Entfernung aus der ent-
sprechenden Tour muÿ manuell erfolgen, Auswirkungen auf die Untertouren und
Fahrten konnten nicht getestet werden.

Szenario 8 Solche kurzfristigen Änderungen werden vermutlich nicht über das
System laufen. Falls doch, müssen die entsprechenden Fahrten geändert werden
(2 Fahrten zu einer Untertour, wobei jede einen Teil erledigt). Dies konnte nicht
getestet werden, da es nicht möglich war, Fahrten zu erzeugen.

4.3.0.4 Individualfahrten

Szenario 1 Dieses Szenario (Kundin fährt zum Arzt und wieder zurück) kann
problemlos nachvollzogen werden.

Szenario 2 Bei der Eingabe dieses Szenarios einer Individualfahrt mit ei-
ner Zwischenstation blieb die Frage o�en, wann die Zwischenstation im System
berücksichtigt wird (auf der Hinfahrt, auf der Rückfahrt, immer?). Auÿerdem
kann nur angeben werden, ob der Mitarbeiter zwischen der Hin- und Rückfahrt

4.3. ABGLEICH MIT DEN ANFORDERUNGEN 55

anwesend sein muÿ, für Zwischenstationen ist keine Angabe möglich. Eine an-
dere Möglichkeit dieses Szenario so einzugeben, daÿ der Mitarbeiter dem DRK
zwischen allen Stationen zur Verfügung steht, wäre die Aufspaltung des Dienst-
wunsches auf drei Individualfahrten (Wohnung, Friedhof), (Friedhof, Gemein-
dehaus), (Gemeindehaus, Wohnung).
Auÿerdem war es wegen Exceptions nicht möglich, überhaupt Zwischensta-

tionen anzugeben.

Szenario 3 Entspricht, abgesehen von der Anfangszeit, dem Szenario 2.

Szenario 4 Ist für die Dateneingabe völlig uninteressant, da die Fahrt abge-
lehnt wird. Diese Entscheidung kann auf Grundlage der Datenausgabe getro�en
werden, deren Testergebnisse in 4.1.4.3 zu �nden sind.

Kapitel 5

Architektur des Programms

TROSS

5.1 Architektur des System TROSS

Abbildung 5.1 bietet einen Überblick über die gesamte Architektur des System
TROSS.

5.2 Graphische Benutzungsober�äche

Eine schematische Übersicht bietet Abbildung 5.2

5.3 Verkehrsmodul

Abbildung 5.3 zeigt den prinzipiellen Aufbau und die Verwendung des Verkehrs-
moduls.

56

5
.3
.
V
E
R
K
E
H
R
S
M
O
D
U
L

5
7

Tour-
szenario1

Tour-
szenario2

Szenario1
Szenario2

Plaene Analyse

Ausgabe

M&G

persistenter Speicher

Konsistenz-
sicherungMasken

Eingabe

Cache-

tabelle

Verkehrsmodul

Abbildung 5.1: Architektur des System TROSS

58 KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

A
b
b
ild
u
n
g
5
.2
:
A
rch
itek
tu
r
d
er
g
ra
p
h
isch
en
B
en
u
tzu
n
g
so
b
er�
ä
ch
e

5
.3
.
V
E
R
K
E
H
R
S
M
O
D
U
L

5
9

MoeglicherAnbindungsPunktStation

entfernung
fahrzeit
bereiteVor

MoeglicherAnbindungsPunkt.korrekturListe

Verkehrsmodul.anbindungInOrdnung

Verkehrsmodul.erstelleAnbindungsPunkt

nach

von

EntfernungsTabelle

AnbindungsPunkt

Verkehrsmodul

Konstruktor(station)

Auftragtross.asc Antwort

Map&Guide

tross.lst

tross.bal
error.mgb

tross.cor

TRO
TRO.Verkehrsmodul

EntfernungsTabellenEintrag

anbindungsPunkte

Abbildung 5.3: Prinzipskizze des Verkehrsmoduls

60 KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

5.4 Klassenhierarchie

* class java.lang.Object

o class TRO.Verkehrsmodul.AnbindungsPunkt (implements

java.io.Serializable)

o class TRO.ArbeitszeitProfil (implements java.io.Serializable,

TRO.ListenElement)

+ class TRO.TeilzeitStundenProfil (implements

java.io.Serializable)

+ class TRO.TeilzeitTageProfil (implements

java.io.Serializable)

+ class TRO.VollzeitProfil (implements java.io.Serializable)

o class TRO.Bank (implements java.io.Serializable)

o class TRO.BankVerbindung (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.GUI.ColumnConstraints (implements java.lang.Cloneable,

java.io.Serializable)

o class TRO.GUI.ColumnLayout (implements java.awt.LayoutManager2,

java.io.Serializable)

o interface TRO.Comparable

o class java.awt.Component (implements java.awt.image.ImageObserver,

java.awt.MenuContainer, java.io.Serializable)

+ class java.awt.Choice (implements java.awt.ItemSelectable)

+ class TRO.GUI.ObjektAuswahl

+ class java.awt.Container

+ class java.awt.Panel

+ class TRO.GUI.Definitionen.ArbeitszeitPanel

+ class

TRO.GUI.Definitionen.TeilzeitStundenPanel

+ class TRO.GUI.Definitionen.TeilzeitTagePanel

+ class TRO.GUI.Definitionen.VollzeitPanel

+ class TRO.GUI.DatumsspannePanel

+ class TRO.GUI.GroupFramePanel

+ class TRO.GUI.AuswahlListePanel

+ class TRO.GUI.HashPanel

+ class TRO.GUI.Dienste.KonfigurationsPanel

+ class TRO.GUI.ObjektListePanel

+ class TRO.GUI.Dienste.BezugspersonenPanel

(implements TRO.GUI.ObjektListePanel.

ElementListener)

+ class

TRO.GUI.Dienste.DienstwunschListePanel

(implements TRO.GUI.ObjektListePanel.

ElementListener)

+ class TRO.GUI.Touren.FahrtenListePanel

(implements TRO.GUI.ObjektListePanel.

ElementListener)

+ class

TRO.GUI.Ressourcen.FahrzeugListePanel

5.4. KLASSENHIERARCHIE 61

(implements TRO.GUI.ObjektListePanel.

ElementListener)

+ class TRO.GUI.Kunden.KundenListePanel

(implements TRO.GUI.ObjektListePanel.

ElementListener)

+ class

TRO.GUI.Ressourcen.MitarbeiterListePanel

(implements TRO.GUI.ObjektListePanel.

ElementListener)

+ class TRO.GUI.Touren.StationenListePanel

(implements

java.awt.event.ActionListener,

TRO.GUI.ObjektListePanel.

InformationListener)

+ class TRO.GUI.Dienste.StationenPanel

(implements TRO.GUI.ObjektListePanel.

ElementListener,

TRO.GUI.ObjektListePanel.

InformationListener,

java.awt.event.ActionListener)

+ class TRO.GUI.Dienste.ZahlerPanel

(implements TRO.GUI.ObjektListePanel.

ElementListener,

TRO.GUI.ObjektListePanel.

InformationListener)

+ class TRO.GUI.Kunden.PersonPanel

+ class TRO.GUI.Dienste.QualifikationsPanel

+ class TRO.GUI.StationPanel (implements

java.awt.event.ActionListener)

+ class TRO.GUI.Dienste.TerminPanel (implements

TRO.GUI.ObjektListePanel. ElementListener)

+ class TRO.GUI.Touren.TourQualifikationsPanel

+ class TRO.GUI.Touren.TourVorliebenPanel

+ class TRO.GUI.Kunden.VorliebenPanel

+ class TRO.GUI.ZeitraumPanel (implements

TRO.GUI.ObjektListePanel. ElementListener)

+ class TRO.GUI.Touren.TourenListePanel

+ class TRO.UeberTrossPanel

+ class TRO.GUI.UhrzeitPanel

+ class TRO.GUI.ZeitdauerPanel

+ class TRO.GUI.ZeitspannePanel

+ class java.awt.Window

+ class java.awt.Dialog

+ class TRO.GUI.AnbindungspunktWahlDialog

(implements java.awt.event.ActionListener)

+ class

TRO.GUI.Definitionen.ArbeitszeitArtDialog

(implements java.awt.event.ActionListener)

+ class TRO.GUI.Dienste.DienstartDialog

(implements java.awt.event.ActionListener)

62 KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

+ class TRO.GUI.TastaturDialog (implements

java.awt.event.KeyListener,

java.awt.event.ContainerListener)

+ class TRO.GUI.JaNeinDialog

+ class TRO.GUI.OKCancelDialog

+ class TRO.GUI.AdresseDialog

+ class

TRO.GUI.Definitionen.ArbeitszeitProfilDialog

+ class

TRO.GUI.Kunden.BankverbindungsDialog

+ class

TRO.GUI.Definitionen.BenannteStationDialog

+ class

TRO.GUI.Kunden.BezugsPersonDialog

+ class TRO.GUI.DatumsspanneDialog

+ class TRO.GUI.DienstwunschWahlDialog

+ class TRO.GUI.ElementWahlDialog

+ class

TRO.GUI.Definitionen.EntfernungDialog

+ class

TRO.GUI.Definitionen.EssensartDialog

+ class TRO.GUI.Touren.FahrtDialog

(implements

java.awt.event.ActionListener)

+ class

TRO.GUI.Definitionen.FahrzeugkonfigurationsDialog

(implements TRO.GUI.HashPanel.

HashListener)

+ class

TRO.GUI.Definitionen.FahrzeugtypDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener)

+ class

TRO.GUI.Definitionen.FeiertagDialog

+ class

TRO.GUI.Definitionen.HilfsmittelDialog

+ class

TRO.GUI.Definitionen.InstitutionDialog

+ class

TRO.GUI.Kunden.KommunikationsverbindungsDialog

+ class TRO.GUI.KonsistenzDialog

+ class

TRO.GUI.Definitionen.QualifikationDialog

+ class TRO.GUI.RegisterDialog

+ class

TRO.GUI.Dienste.EssenDialog

(implements TRO.GUI.HashPanel.

HashListener)

+ class

5.4. KLASSENHIERARCHIE 63

TRO.GUI.Ressourcen.FahrzeugDialog

(implements TRO.GUI.HashPanel.

HashListener)

+ class

TRO.GUI.Dienste.IndividualfahrtDialog

+ class

TRO.GUI.Kunden.KundeDialog

+ class TRO.GUI.Dienste.MSDDialog

+ class

TRO.GUI.Ressourcen.MitarbeiterDialog

+ class

TRO.GUI.Dienste.SchulfahrtDialog

+ class TRO.GUI.Dienste.RhythmusDialog

+ class

TRO.GUI.Kunden.SachbearbeiterDialog

+ class

TRO.GUI.Dienste.StationZeitDialog

+ class

TRO.GUI.TeilDienstwunschWahlDialog

+ class TRO.GUI.TeilListeWahlDialog

+ class TRO.GUI.TextEingabeDialog

+ class TRO.GUI.Touren.TourDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener)

+ class TRO.GUI.UhrzeitDialog

+ class TRO.GUI.Touren.UntertourDialog

+ class

TRO.GUI.Definitionen.VerkehrstoolDialog

+ class TRO.GUI.ZahlEingabeDialog

+ class TRO.GUI.ZeitdauerDialog

+ class TRO.GUI.OKDialog

+ class

TRO.GUI.Definitionen.ArbeitszeitProfileDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener)

+ class

TRO.GUI.Definitionen.BenannteStationenDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener)

+ class

TRO.GUI.Definitionen.EssensartenDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener,

TRO.GUI.ObjektListePanel.

InformationListener)

+ class

64 KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

TRO.GUI.Touren.FahrtenListeDialog

+ class

TRO.GUI.Definitionen.FahrzeugtypenDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener)

+ class

TRO.GUI.Definitionen.FeiertageDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener)

+ class

TRO.GUI.Definitionen.HilfsmittelListeDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener,

TRO.GUI.ObjektListePanel.

InformationListener)

+ class

TRO.GUI.Definitionen.InstitutionenDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener)

+ class TRO.GUI.MeldungDialog

+ class

TRO.GUI.VerkehrstoolLaeuftNichtDialog

+ class

TRO.GUI.Definitionen.QualifikationenDialog

(implements

TRO.GUI.ObjektListePanel.

ElementListener,

TRO.GUI.ObjektListePanel.

InformationListener)

+ class java.awt.Frame (implements

java.awt.MenuContainer)

+ class TRO.Tross (implements

java.awt.event.ActionListener)

+ class java.awt.List (implements java.awt.ItemSelectable)

+ class TRO.GUI.ObjektListe

+ class java.awt.TextComponent

+ class java.awt.TextField

+ class TRO.GUI.DatumsFeld

+ class TRO.GUI.IntegerFeld

o class TRO.Datum (implements java.lang.Cloneable,

java.io.Serializable)

o class TRO.Datumsspanne (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.Dienstwunsch (implements java.io.Serializable,

TRO.ListenElement)

+ class TRO.EARDienstwunsch (implements java.io.Serializable)

5.4. KLASSENHIERARCHIE 65

+ class TRO.MSDDienstwunsch (implements java.io.Serializable)

+ class TRO.TransportDienstwunsch (implements

java.io.Serializable)

o interface TRO.Druckbar

o class TRO.Essensart (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.Fahrt (implements java.lang.Cloneable,

java.io.Serializable, TRO.ListenElement)

o class TRO.Fahrzeug (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.Fahrzeugkonfiguration (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.Fahrzeugtyp (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.Feiertag (implements TRO.ListenElement,

java.io.Serializable)

o class TRO.GUI.GUIHelfer

o class TRO.Helfer

o class TRO.Hilfsmittel (implements TRO.ListenElement,

java.io.Serializable)

o class TRO.Institution (implements java.io.Serializable,

TRO.Zahler)

o class TRO.KommunikationsVerbindung (implements

java.io.Serializable, TRO.ListenElement)

o class TRO.KontaktPerson (implements TRO.ListenElement)

o interface TRO.ListenElement (extends TRO.Comparable)

o class TRO.Verkehrsmodul.MoeglicherAnbindungsPunkt (implements

TRO.ListenElement, java.io.Serializable)

o class TRO.Ort (implements java.io.Serializable)

o class TRO.Person (implements java.io.Serializable, TRO.Zahler)

+ class TRO.BezugsPerson (implements TRO.ListenElement)

+ class TRO.Sachbearbeiter

+ class TRO.Kunde (implements TRO.ListenElement,

java.io.Serializable)

+ class TRO.Mitarbeiter (implements TRO.ListenElement,

java.io.Serializable)

o class TRO.Qualifikation (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.Rhythmus (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.SortierterVektor (implements java.lang.Cloneable,

java.io.Serializable)

o class TRO.Station (implements java.io.Serializable,

java.lang.Cloneable, TRO.ListenElement)

o class TRO.StationMitZeiten (implements java.io.Serializable,

java.lang.Cloneable, TRO.ListenElement)

+ class TRO.UntertourHalt (implements java.io.Serializable,

java.lang.Cloneable, TRO.ListenElement)

o class TRO.Strecke

o class TRO.Verkehrsmodul.Strecke (implements java.io.Serializable)

66 KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

o class TRO.Szenario (implements java.io.Serializable)

o class TRO.TeilDienstwunsch (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.Termin (implements java.io.Serializable)

o class java.lang.Throwable (implements java.io.Serializable)

+ class java.lang.Exception

+ class TRO.GUI.EingabeFormatException

+ class TRO.IstMasterSzenario

+ class TRO.UnbekannteFahrzeitenException

+ class TRO.Verkehrsmodul.VerkehrstoolLaeuftNicht

+ class TRO.VerschiebungNichtErlaubtException

+ class TRO.Verkehrsmodul.WertNichtBekanntException

o class TRO.Tour (implements java.lang.Cloneable,

java.io.Serializable, TRO.ListenElement)

o class TRO.TourSzenario (implements java.lang.Cloneable,

java.io.Serializable, TRO.ListenElement)

o class TRO.Uhrzeit (implements java.io.Serializable,

java.lang.Cloneable)

o class TRO.Untertour (implements java.lang.Cloneable,

java.io.Serializable, TRO.ListenElement)

o class TRO.Verkehrsmodul.Verkehrsmodul

o interface TRO.Zahler (extends TRO.ListenElement)

o class TRO.Zeit (implements java.io.Serializable)

+ class TRO.Aufenthaltszeit (implements java.io.Serializable)

+ class TRO.Lieferzeit

+ class TRO.Transportzeit

o class TRO.Zeitraum (implements java.io.Serializable)

o class TRO.Zeitspanne (implements java.io.Serializable,

TRO.ListenElement)

Kapitel 6

Erweiterungsmöglichkeiten

6.1 Mögliche Verbesserungen am Programm

� Bei der Kundeneingabe erscheint bei den dienstbezogenen Daten kein
Kundenname, es wäre jedoch hilfreich zu wissen, welcher Kunde gerade
bearbeitet wird. Bei der Dienstwunscheingabe wird zwar ein Kundenna-
me angezeigt, dieser ist jedoch bei Kundenneuanlage null, null.

� Bei der Tourplanung erhält der Benutzer keinen Hinweis, wenn Mitarbei-
ter oder Fahrzeuge mehrfach verplant werden, obwohl das System diese
Informationen schon hat.

� Die Dialogbox Dienstart wählen kann nicht abgebrochen werden.

� Vermiÿt wurde eine globale Zeitgrenze für Essenstouren, die in der Regel
zwischen 10:45 und 12:30 erledigt werden müssen.

6.2 Hilfestellungen für den Benutzer

� Die Einführung benannter Rhythmen könnte die Eingabe von häu�g auf-
tretenden Rhythmen (z.B. Schulfahrten) erheblich vereinfachen.

� An allen Stellen, an denen aus globalen Listen (z.B. Hilfsmittel) ausge-
wählt werden kann, sollte auch eine Modi�zierung der Liste möglich sein.

� Wird eine Rückfahrzeit angegeben, sollte das Rückfahrt-Flag automatisch
gesetzt werden, anstatt die eingegebenen Rückfahrtzeiten zu ignorieren.

� Es wäre schön, wenn auch Kunden Ausnahme-Datumsspannen hätten, um
alle Dienstwünsche des Kunden auf einfache Weise zu suspendieren.

� Bei der Untertourzusammenstellung wären die Funktionen alle �Hin- bzw.
Rückfahrten wählen/löschen� sehr hilfreich.

� Die Unterstützung des direkten Umsetzens (Dienstwunsch in einer Tour
wählen und in eine andere Tour verschieben) wäre wünschenswert.

67

68 KAPITEL 6. ERWEITERUNGSMÖGLICHKEITEN

� Bei Dienstwünschen können nur Bezugspersonen angegeben werden, die
schon beim Kunden de�niert wurden. Es wäre wesentlich einfacher, auch
hier die Neuanlage von Bezugspersonen zu ermöglichen.

6.3 Erweiterungsmöglichkeiten

Aufgrund der modularen Programmierweise können einzelne Teile leicht erwei-
tert oder gar ganz ausgetauscht werden, um leistungsfähigeren Konzepten Platz
zu machen.

� Weitere Konsistenztests können fast ohne Änderungen am restlichen Pro-
gramm implementiert werden.

� Für eine Zusammenarbeit mit einem anderen Verkehrstool als Map&Guide
(vielleicht mit einem Programm, das als Bibliothek vorliegt und direkt vom
Programm aus ohne Umwege über Batchdateien aufgerufen werden kann;
oder gar eine Online-Abfrage über ein geeignetes Netzwerk) muÿ nur das
Verkehrsmodul intern angepaÿt werden. Über die de�nierten Schnittstellen
kann die Datenverwaltung wie bisher damit kommunizieren.

� Da Map&Guide beim Einsatz im System TROSS doch einige Schwächen
aufzeigt, wäre es vielleicht vorteilhaft dieses durch ein geeignetes Verkehrs-
tools bzw. sogar durch nackte Verkehrsdaten zu ersetzen.

� Einer Umsetzung der Datenverwaltung auf eine Datenbank kommt das
Datenmodell durch eine gewisse Normierung (siehe Klassen Ort und Bank)
entgegen. Die in der Ober�äche benutzte Vorgehensweise zum Überprüfen
und Setzen von Werten eignet durch ihre Anlehnung an das Zwei-Phasen-
Commit-Konzept gut für die Umsetzung auf ein Datenbanksystem.

� Aufsetzen des System TROSS auf ein DBMS: Dies könnte zum einen evtl.
die schlechte Lade- und Speicher-Performance ausgleichen, und zum an-
deren könnte dem Benutzer die Möglichkeit geboten werden, die Analyse-
und Ausgabefunktionen dynamisch zu erweitern (z.B. Heraussuchen wie-
viele Kunden im Plz-Bereich 7xxxx (= best. Stadteil (z.B. Stuttgart
West)) wohnen).

� Da TROSS mit sehr groÿer Wahrscheinlichkeit auf einem Windows95-
System zum Einsatz kommt, bestünde die Möglichkeit, das System an-
statt in plattformunabhängigen Bytecode, in einen plattformabhängigen
Microcode zu übersetzen, um so das Laufzeitverhalten zu verbessern.

� Da es sich bei Java um eine sehr junge Programmiersprache handelt, die
sich aber trotzdem oder gerade deswegen sehr dynamisch entwickelt, wäre
es wünschenswert, das System TROSS an neue Entwicklungen der Sprache
Java anzupassen. Insbesondere bei den noch recht spartanischen Möglich-
keiten der Benutzungsober�ächenprogrammierung der Version 1.1.

� Eine weitere Anpassungsmöglichkeit bestünde beim Einsatz der generi-
schen Containerbibliothek JGL (=Java Generic Library) die Möglichkei-
ten zur Listenbehandlung, Sortierung u.ä. bietet.

Kapitel 7

Bedienungsanleitung

Der Aufbau dieser Bedienungsanleitung entspricht der Anordnung der Menu-
punkte im Programm TROSS, so daÿ sie vor allem zum schnellen Nachschlagen
bei Unklarheiten im Umgang mit dem Programm geeignet ist.

Trotzdem sollte jeder Benutzer vor der Arbeit mit dem Programm TROSS

alle Punkte durchgehen, um die Konzepte und Arbeitsweisen zu verstehen, die
z.B. eine gewisse Reihenfolge mancher Bedienungsschritte erfordern.

7.1 Systemvoraussetzungen

Das Programm benötigt eine Rechnerplattform, auf der Java läuft (entwickelt
und getestet wurde es unter Sun Solaris 2.3 sowie Microsoft Windows NT 4.0).
Soll das Verkehrstool �Map&Guide� benutzt werden (siehe 7.10.9), ist Microsoft
Windows als Betriebssystem notwendig.

7.2 Installation

Das Programm besteht aus drei Dateien:

Tross.jar Diese Datei enthält alle ausführbare Teile des Programms TROSS

Tross.gif Das Titelbild

Tross.ini Hier werden die globalen Einstellungen des Programms gespeichert,
z.B. die Einstellungen zum Verkehrstool.

Diese Dateien müssen in ein Verzeichnis auf der Festplatte kopiert werden. Im
folgenden nehmen wir an, daÿ die Programmdateien im Verzeichnis \tross

liegen, und das Java Development Kit unter \java zu �nden ist (auf einem PC
unter MS Windows).

Dann wird das Programm mit folgendem Aufruf gestartet:

jre -cp \java\lib\classes.zip;\tross\tross.jar TRO.Tross

69

70 KAPITEL 7. BEDIENUNGSANLEITUNG

7.3 Grundlegende Konzepte

7.3.1 Erweiterbare Listen

An vielen Stellen des Programms werden Listen angezeigt, die vom Benutzer
beliebig erweitert oder verkleinert werden können. Dazu dienen die Buttons
�Einfügen�, �Ändern� und �Löschen� rechts neben der Liste. Diese haben folgende
Bedeutung:

Einfügen Ö�net einen Eingabedialog, um ein neues Element einzugeben.
Schlieÿt der Benutzer seine Eingabe mit �OK� ab, wird das neue Element
an der passenden Stelle in der Liste eingefügt.

Ändern Dieser Button hat nur dann eine Funktion, wenn ein Element der Liste
durch Anklicken ausgewählt wurde. Dann wird ein Dialogfenster geö�net,
um die Daten des gewählten Elements zu ändern. Nach Bestätigung der
Eingabe erscheint das Element im geänderten Zustand in der Liste.

Löschen Auch hierzu muÿ ein Element ausgewählt sein. Dieses wird aus der
Liste gelöscht, falls keine Konsistenzbedingungen dies verbieten.

7.3.2 Eingabedialoge

Jeder Eingabedialog (egal, ob zur Erfassung eines neuen Datenobjekts oder zur
Änderung eines bestehenden) hat am unteren Rand zwei Buttons �OK� und
�Abbruch�. Mit �OK� wird die Eingabe bestätigt und alle Änderungen über-
nommen. Bei �Abbruch� werden alle direkten Änderungen verworfen und das
Datenobjekt bleibt im ursprünglichen Zustand. Dies gilt nicht für Änderungen
an Listen (wie in 7.3.1 beschrieben), die unmittelbar nach Eingabe wirksam
werden. Beispielsweise ist die Erfassung einer Kundenadresse bereits dann ge-
speichert, wenn die Eingabe der Adresse bestätigt wurde und diese in der Liste
erscheint. Ein späteres Abbrechen des Dialogs zur Kundeneingabe hat hierauf
keinen Ein�uÿ.

Die Buttons �OK� und �Abbruch� können auch direkt per Tastaturkürzel ak-
tiviert werden: <Enter> (auch als <Return> oder <Eingabe> bezeichnet) be-
stätigt die Eingabe und beendet den Dialog, mit <Escape> wird die Eingabe
verworfen und der Dialog abgebrochen.

Dialoge für umfangreichere Eingaben sind in mehrere �Register� unterteilt.
Dazu bietet ein solcher Dialog eine waagrechte Reihe von Buttons am oberen
Rand, mit denen zwischen den verschiedenen Teilen des Dialogs umgeschaltet
werden kann. Trotzdem gehören alle Eingabefelder zusammen, auch wenn sie
verschiedenen Registern zugeordnet sind. Der Button �OK� bestätigt also auch
hier alle Eingaben und schlieÿt den Dialog, nicht nur die jeweilige Registerseite.

7.4 Szenario

Zur Unterstützung manueller Planung und Optimierung bietet TROSS das Kon-
zept der Szenarien an. Ein Szenario besteht aus den Stammdaten (Kunden mit
ihren Dienstwünschen, Ressourcen und allen Einstellungen) einerseits und einer
Menge von Tourszenarien andererseits. Ein Tourszenario wiederum enthält alle

7.4. SZENARIO 71

Tourdaten (Touren, Untertouren und Fahrten) zu den Stammdaten des Szena-
rios. Jedes Szenario kann in eine Datei gespeichert und wieder geladen werden.

Dadurch können Planungsansätze mit der Methode �Was wäre, wenn?� leicht
durchgeführt werden:

Sollen unterschiedliche Touren ausprobiert werden, um z.B. verschiedene Ver-
teilungen der Fahrdienstkunden auf die Fahrzeuge zu vergleichen, werden in-
nerhalb eines Szenarios verschiedene Tourszenarien angelegt, die verschiedene
Möglichkeiten darstellen, denselben Kundenkreis mit denselben Ressourcen zu
bedienen. Von den Tourszenarien eines Szenarios ist immer eines aktiv, d.h.
alle Änderungen an Touren, Untertouren und Fahrten beziehen sich auf das
momentan aktive Tourszenario.

Noch weitergehende Planspiele bieten verschiedene Szenarien: Hier ist z.B.
ein Kapazitätsvergleich möglich, wenn nach dem Ausscheiden eines Zivildienst-
leistenden im einen Fall ein Nachfolger eingestellt wird, im anderen Fall mit
einem Mitarbeiter weniger gearbeitet werden muÿ.

Um den Überblick bei vielen Szenarien und Tourszenarien zu behalten, hat
jedes einen eindeutigen Namen. Die Titelzeile des Hauptfensters gibt Auskunft
über das momentan geladene Szenario und dessen aktives Tourszenario. Über-
dies ist ein Szenario als sogenanntes �Master-Szenario� sowie eines seiner Tour-
szenarien als �Master-Tourszenario� ausgezeichnet. Diese Kennzeichnung ist für
die real gültigen Daten gedacht, also die tatsächlich vorhandenen Ressourcen
des Benutzers und die wirklich durchgeführten Fahrten. Erweist sich eine andere
Planungsvariante als so gut, daÿ sie anstelle der bisherigen benutzt werden soll,
kann diese jederzeit zum Masterszenario gemacht werden. Der Benutzer sollte
also darauf achten, daÿ das Masterszenario und das Master-Tourszenario stets
mit der Realität übereinstimmen (also auch regelmäÿig mitgeführt werden).

7.4.1 Neu

Erstellt ein neues, leeres Szenario. Dessen Name wird vom Benutzer de�niert.

7.4.2 Laden

Lädt ein gespeichertes Szenario.

7.4.3 Speichern

Speichert das aktuelle Szenario in einer Datei.

7.4.4 Szenario zum Masterszenario machen

Macht das aktuelle Szenario zum Masterszenario. Zukünftig sollten also alle
Änderungen am Datenbestand an diesem Szenario durchgeführt werden.

7.4.5 Untermenu Tourszenario

7.4.5.1 Neu

Erstellt im aktuellen Szenario ein weiteres, leeres Tourszenario.

72 KAPITEL 7. BEDIENUNGSANLEITUNG

7.4.5.2 Wechseln

Wechselt das aktive Tourszenario.

7.4.5.3 Kopieren

Erstellt eine Kopie des aktiven Tourszenarios unter anderem Namen. Dadurch
können, ausgehend vom momentanen Datenbestand, beliebige Veränderungen
auf der Kopie ausprobiert werden, ohne das ursprüngliche Tourszenario zu ver-
ändern.

7.4.5.4 Löschen

Löscht ein Tourszenario mit allen seinen Daten aus dem Szenario.

7.4.5.5 Umbenennen

Gibt einem Tourszenario einen anderen Namen.

7.4.5.6 Zum Master-Tourszenario machen

Macht das aktive Tourszenario zum Master-Tourszenario, falls das momentan
geladene Szenario das Master-Szenario ist.

7.4.6 Programm beenden

Beendet das Programm. Wurde das Szenario seit der letzten Änderung nicht
gespeichert, erfolgt eine Sicherheitsabfrage.

7.5 Kunden

7.5.1 Kundenliste

Zeigt eine änderbare Liste mit allen Kunden des Szenarios an. Diese sind alpha-
betisch nach Nachnamen sortiert.

7.5.1.1 Eingabedialog für Kunden

Persönliche Daten Hier werden folgende Daten erfaÿt:

Kundennummer Jeder Kunden braucht zur eindeutigen Identi�kation eine
Kundennummer, da Namen mehrfach vorkommen können.

Maximale Fahrdauer Zeitdauer, die der Kunde bei einer Fahrt maximal im
Fahrzeug verbringen darf. Falls hier ein Wert angegeben wird, hat dieser
Vorrang vor dem global de�nierten. Fehlt eine Angabe, gilt die globale
Obergrenze (siehe 7.10.11).

Anzahl Schlüssel Anzahl der Hausschlüssel des Kunden, die dieser zur Durch-
führung von Diensten zur Verfügung gestellt hat.

Bemerkungen (Schlüssel) Beliebige Bemerkungen zu den Hausschlüsseln.
Hier könnte z.B. die Nummer stehen, unter der dieser Hausschlüssel im
Schlüsselschrank zu �nden ist.

7.5. KUNDEN 73

Allgemeine Personendaten

Name Der Nachname der Person. Dieser Wert muÿ immer angegeben werden.

Vorname Der Vorname (optional).

Geburtsdatum Das Geburtsdatum (optional).

Adressen Jeder Person können mehrere Adressen zugeordnet werden. Die erste
dieser Adressen gilt als Wohnort des Kunden, der als Vorgabewert für
Dienstwünsche benutzt wird (z.B. Abholadresse für Fahrten).

Kommunikationsverbindungen Eine Kommunikationsverbindung besteht
aus der Art (z.B. �Telephon�) und dem Eintrag (z.B. �0815/4711�);

Bankverbindungen Bankverbindungen bestehen aus Bankname, Bankleit-
zahl, Kontonummer und der Angabe, ob für dieses Konto eine Einzugser-
mächtigung vorliegt.

Dienstbezogene Daten

Vorlieben und Abneigungen De�niert Mitarbeiter, die der Kunde gerne für
seine Dienstwünsche eingesetzt hätte (dies ist eine Soll-Vorgabe) und sol-
che, die auf keinen Fall bei dem Kunden eingesetzt werden dürfen (dies ist
eine Muÿ-Vorgabe). Der Button �Ändern� unter der jeweiligen Liste ö�net
ein Fenster, worin diese Liste verändert werden kann, indem Mitarbeiter
entfernt oder weitere aus der Gesamtliste eingefügt werden.

Benötigte Hilfsmittel Hier können aus der Liste der de�nierten Hilfsmittel
(siehe 7.10.6) diejenigen ausgewählt werden, die der Kunde benötigt. Hier-
mit kann z.B. ein Abgleich zwischen geforderten Kindersitzen und tat-
sächlich im Fahrzeug vorhandenen statt�nden. Das Programm macht dies
jedoch nicht.

Zulässige Fahrzeuge Darf ein Kunde nur mit bestimmten Fahrzeugen be-
fördert werden, können diese hier ausgewählt werden. Ist die Liste leer,
kommt prinzipiell jedes Fahrzeug in Frage.

Bezugspersonen Hier können beliebige Personen erfaÿt werden, deren Daten
für die Ausführung von Diensten bei diesem Kunden relevant sind, z.B.
Eltern eines behinderten Kindes, der Hausarzt etc. Zusätzlich zu den allge-
meinen Personendaten (siehe 7.5.1.1) sind diese durch die Art des Bezuges
charakterisiert (hier könnte �Hausarzt� oder �Mutter� eingetragen wer-
den). Ein gewisser Sonderfall sind Sachbearbeiter einer Institution, z.B.
der Krankenkasse des Kunden. Diese haben als Bezug generell �Sachbear-
beiter�, sind aber zur näheren Identi�kation einer Institution zugeordnet
(zur Eingabe von Institutionen siehe 7.10.4).

Dienstwünsche Hier werden die Dienstwünsche des Kunden erfaÿt. Diese
stehen nach Dienstart sortiert in der Liste.

74 KAPITEL 7. BEDIENUNGSANLEITUNG

7.5.2 Eingabedialoge für Dienstwünsche

Zur Eingabe eines neuen Dienstwunsches muÿ zunächst die zugehörige Dienstart
gewählt werden, bevor der passende Dienstwunschdialog geö�net wird. Die
Dienstwunschdialoge sind zweigeteilt:

Anforderungen Hier können verschiedene dienstwunschspezi�sche Anforde-
rungen des Kunden erfaÿt werden, wie z.B. Art des benötigten Sitzplatzes
oder die Art des zu liefernden Essens.

Allen Dienstwünschen gemeinsam ist eine Liste von Rechnungsempfängern
für den Dienst (dies können der Kunde selbst, Bezugspersonen oder In-
stitutionen sein; eine der angegebenen Bankverbindungen muÿ für diesen
Dienstwunsch ausgewählt werden) sowie eine Liste mit Bezugspersonen,
deren Daten mit auf dem Tourplan abgedurckt werden sollen (dies könnte
z.B. der Hausarzt von anfallsgefährdeten Kunden sein).

Ort und Zeit Erfaÿt einen oder mehrere Orte (je nach Dienstart) sowie den
Termin des Dienstwunsches. Ein Termin enthält einen Zeitraum sowie eine
Menge von Rhythmen.

Der Zeitraum gibt den Datumsbereich an, innerhalb dessen der Dienst
ausgeführt werden soll. Angegeben werden kann ein Rahmen (z.B. ein
Schuljahr) sowie eine Menge von Ausnahmezeiten (z.B. Ferien), während
derer der Dienst nicht erwünscht ist. Ist der Rahmen leer, hat dies die
Bedeutung �Immer�.

Ein Rhythmus gibt an, wie oft und regelmäÿig ein Dienst statt�nden soll.
Die gewünschten Wochentage können bestimmt werden, ebenso, ob der
Dienst nur an Werktagen statt�nden soll (also ausfällt, falls der angege-
bene Wochentag ein Feiertag ist). Ist das Kästchen �Nachricht an Feierta-
gen� angekreuzt, erscheint beim Laden des Szenarios eine Warnmeldung,
falls der Dienst wegen eines Feiertages ausfallen würde. Dadurch kann der
Dienst in der kritischen Woche rechtzeitig vorher auf einen anderen Tag
verlegt werden. Für seltener statt�ndende Dienste kann angegeben wer-
den, alle wieviel Wochen die Ausführung erwünscht ist.

Auÿerdem enthält ein Rhythmus die Uhrzeit, zu der ein Dienst an den
angegebenen Tagen statt�nden soll. Die hierfür benötigten Angaben sind
von der Dienstart abhängig und werden in Zusammenhang mit den dienst-
spezi�schen Anforderungen erläutert.

7.5. KUNDEN 75

Abbildung 7.1: Eingabedialog für Ort und Zeit

Schulfahrten, Dialysefahrten und Fahrten zur Tagesp�ege Hier kön-
nen folgende Anforderungen erfaÿt werden:

� Die Art des benötigten Platzes im Fahrzeug: Sitzplatz, Rollstuhlplatz oder
Sitzplatz mit fest montiertem Hilfsmittel einer bestimmten Art

� Die Forderung, daÿ ein zweiter Mitarbeiter bei der Auführung des Dienstes
dabei sein muÿ

� die erforderlichen Quali�kationen des oder der Mitarbeiter

� Die Vorlieben und Abneigungen des Kunden sind hier zur Information
nochmals angezeigt, eine Änderung wirkt sich aber stets auf die Kunden-
daten aus, gilt also für alle Dienstwünsche.

Für die Fahrt muÿ ein Startort angegeben werden, an dem der Kunde abgeholt
werden soll, und ein Zielort, zu dem der Kunde gebracht wird.
Die Angaben zur Zeit sind in Daten für die Hin- und Rückfahrt eingeteilt.

Die Zeiten für die Rückfahrt kommen allerdings nur dann zur Geltung, wenn
die Checkbox �Rückfahrt� angekreuzt ist. Für jede dieser Teilfahrten können
Abholzeit und Ankunftszeit vorgegeben werden, sowie die benötigten Zeitdauern
zum Ein- und Aussteigen in das befördernde Fahrzeug. Die Zeiten sind jeweils
als Zeitspanne de�niert, so daÿ eine gewünschte Toleranz explizit angegeben

76 KAPITEL 7. BEDIENUNGSANLEITUNG

werden kann. Von den vier möglichen Uhrzeitangaben muÿ nur eine angegeben
werden, z.B. bedeutet der Eintrag �8:00 Uhr� bei �Ankunft bis�, daÿ der Kunde
spätestens um 8 Uhr am Zielort ankommen muÿ. Die Abholzeit kann abhängig
hiervon beliebig gewählt werden.

Individualfahrten Für Individualfahrten können dieselben Anforderungen
erfaÿt werden wie für Schulfahrten. Zusätzlich kann gefordert werden, daÿ die
Mitarbeiter zwischen Hin- und Rückfahrt am Zielort bleiben, um z.B. mit ei-
nem behinderten Kunden ein Konzert zu besuchen. Auÿerdem können beliebige
Zwischenstationen mit Aufenthaltsdauern angegeben werden, die auf der Fahrt
zum Ziel angefahren werden sollen.

Essen auf Rädern Hier werden unter Anforderungen die Anzahl der bestell-
ten Essen erfaÿt. Zu jeder vorrätigen Essensart (Eingabe siehe 7.10.7) kann eine
Anzahl zu liefernder Essen angegeben werden.

Als Ort wird die Adresse erfaÿt, an die die Essen gebracht werden sollen. Die
Uhrzeit besteht aus Zeitspanne, innerhalb derer das Essen geliefert werden muÿ,
sowie einer Dauer für das Abgeben des Essens.

MSD / APD Die Anforderungen umfassen neben den Ansprüchen an Mitar-
beiter (Quali�kationen und Vorlieben/Abneigungen) die Angabe, ob der Kunde
bei der Verrichtung des Dienstes im Fahrzeug mitfahren soll (z.B. zum Ein-
kaufen). Ist dies angekreuzt, kann die Art des erforderlichen Platzes angegeben
werden.

Es muÿ ein Dienstort angegeben werden, an dem der Dienst statt�ndet, sowie
die Uhrzeit (wieder als Zeitspanne) des Beginns und die Dauer des Dienstes.

7.5.3 Dienstwünsche erfüllt?

Ermöglicht das gezielte Überprüfen einer Menge von Dienstwünschen. Der Be-
nutzer wählt eine Menge von Dienstwünschen, die mit den bestehenden Tou-
ren und Untertouren abgeglichen werden. Sämtliche Teildienstwünsche (siehe
7.6.1.2), die nicht durch das aktive Tourszenario erfüllt werden, werden dem
Benutzer gemeldet. Daraus kann z.B. ganz gezielt erkannt werden, daÿ für einen
Dienstwunsch noch eine Rückfahrt am Freitag fehlt.

7.6 Touren

Zur Beschreibung der geplanten und tatsächlich statt�ndenden Fahrten, auf
denen die diversen Dienstwünsche der Kunden erfüllt werden, benutzt das Pro-
gramm TROSS folgende Bezeichnungen:

Tour Eine Tour besteht aus einer Menge von Dienstwünschen, die nacheinan-
der von denselben Mitarbeitern mit demselben Fahrzeug erfüllt werden.
Bei Fahrdiensten entspricht dies also einer �Fahrgemeinschaft� von Kun-
den. Die Angabe von Mitarbeitern und Fahrzeug ist optional, eine Tour
beschreibt lediglich die Planung, d.h. sie hat kein Datum, sondern be-
schreibt ein regelmäÿig wiederkehrendes Ereignis.

7.6. TOUREN 77

Untertour Jede Tour besteht aus einer Menge von Untertouren, die diese wei-
ter konkretisieren. Eine Untertour �ndet an gewissen Wochentagen mit
einem gewissen Rhythmus statt und kann entweder eine Hinfahrt oder
eine Rückfahrt der Kunden zu einem Ziel sein. In der Untertour werden
die verschiedenen anzufahrenden Stationen in eine Reihenfolge gebracht.
Auch die Untertouren beschreiben die Planung.

Fahrt Eine Fahrt ist eine an einem konkreten Datum statt�ndende Untertour.
Gegenüber Tour und Untertour kann sie gewisse Abweichungen aufwei-
sen, die angeben, wie die tatsächliche Dienstausführung von der Planung
abwich.

Da die Fahrten die tatsächliche Durchführung von Diensten abbilden, können sie
die Grundlage einer Buchführung über diese Dienstleistungen bilden. Dazu kann
jede Fahrt, falls nötig, gegenüber der geplanten Untertour verändert werden, um
z.B. festzuhalten, daÿ ein anderer Mitarbeiter den Dienst erledigt hat oder einer
der Kunden an diesem Tag nicht mitfuhr.

In den Eingabedialogen für Touren und Untertouren sind noch verschiede-
ne Eingabefelder zum Sperren einzelner Dienstwünsche sowie ganzer Touren
für die Optimierung vorhanden. Da diese automatische Optimierung von der
Projektgruppe TRO (Wintersemester 1997/98 und Sommersemester 1998) aus
Zeitgründen nicht mehr implementiert werden konnte, haben diese Eingaben
keinerlei Wirkung. Sie wurden jedoch im Programm belassen, um für eine mög-
liche spätere Erweiterung zur Verfügung zu stehen.

7.6.1 Tourenliste

Zeigt eine änderbare Liste mit allen Touren und Untertouren des aktiven Tour-
szenarios an. Nach Auswahl einer Tour durch Mausklick in der linken Liste wer-
den in der rechten Liste alle Untertouren dieser Tour angezeigt. Sowohl Touren
als auch Untertouren können beliebig neu angelegt, verändert, sowie gelöscht
werden. Beim Verändern von Touren/Untertouren muÿ allerdings Rücksicht auf
die zugehörigen Fahrten genommen werden (siehe 7.6.4).

7.6.1.1 Eingabedialog für Touren

Jede Tour wird durch eine Nummer eindeutig gekennzeichnet. Zusätzlich kann
eine Bezeichnung angegeben werden, um die Touren für den Benutzer besser
identi�zierbar zu machen.

Jeder Tour können ein oder zwei Mitarbeiter sowie ein Fahrzeug zugewiesen
werden, die diese Tour normalerweise fahren. Es ist sinnvoll, diese Einträge zu
machen, da sonst alle Fahrten von Hand bearbeitet werden müssen (da für sie
diese Angaben obligatorisch sind) und auÿerdem die Analysefunktionen sonst
keine sinnvollen Werte liefern.

In der Liste �Dienstwünsche� werden alle Dienstwünsche angezeigt, die auf der
Tour erfüllt werden (damit enthält die Liste alle Kunden, die diese Tour bedient).
Der Button �Einfügen� ö�net ein Dialogfenster zur Auswahl eines Dienstwun-
sches: Zunächst muÿ in der linken Liste ein Kunde ausgewählt werden, draufhin
erscheinen in der rechten Liste dessen Dienstwünsche, von denen einer gewählt
werden kann.

78 KAPITEL 7. BEDIENUNGSANLEITUNG

Im unteren Teil des Tourdialoges werden die vereinigten Anforderungen aller
Dienstwünsche der Tour angezeigt. Diese Angaben dienen nur der Information
und Übersicht und sollten daher vom Benutzer nicht verändert werden.

Abbildung 7.2: Eingabedialog für Touren

7.6.1.2 Eingabedialog für Untertouren

Da ein Dienstwunsch ein relativ komplexes Gebilde mit verschiedenen Zeiten
an verschiedenen Wochentagen sein kann, wurde für die Untertour der Begri�
des Teildienstwunsches eingeführt. Ein Teildienstwunsch ist ein Dienstwunsch,
eingeschränkt auf einen Wochentag und entweder Hin- oder Rückfahrt. Dem-
nach besteht jeder Dienstwunsch aus einem oder mehreren Teildienstwünschen.
Genauso, wie eine Tour aus verschiedenen Dienstwünschen besteht, beinhaltet
eine Untertour eine Menge von Teildienstwünschen.

Um eine neue Untertour zu de�nieren, können deshalb zunächst Teildienst-
wünsche gewählt werden, die die Untertour erfüllen soll.

Die Untertour wird durch einen alphanumerischen Zusatz zur Tournummer
gekennzeichnet. Diese Untertournummer kann Werte von �a� bis �z� und �aa�
bis �zz� annehmen (für neu erstellte Untertouren wird jeweils ein passender
Wert vorgeschlagen). Zur leichteren Unterscheidbarkeit kann jeder Untertour
eine Bezeichnung gegeben werden.

Dienstart, Mitarbeiter und Fahrzeug der Tour werden zur Information hier
nochmals angezeigt.

Der wesentliche Teil der Untertour besteht in den diversen Stationen, die bei
ihrer Ausführung angefahren werden sollen. Dies sind neben den Stationen, an
denen Kunden abgeholt, beliefert oder anderweitig bedient werden, eine unab-
hängige Anfangs- und Endstation mit zugehörigen Zeitangaben. Die Untertour
beginnt an der Anfangsstation zur angegebenen Zeit (dies kann die Einsatz-
zentrale sein, oder auch die Endstation einer unmittelbar vorausgegangenen
Untertour) und endet an der Endstation zur angegebenen Zeit. Anfangs- und

7.6. TOUREN 79

Endzeit werden automatisch angepaÿt, falls sie im Widerspruch zu den Zeiten
der Stationenliste stehen.
Diese Stationenliste enthält alle Untertourhalte, die aufgrund der in der Un-

tertour enthaltenen (Teil-)Dienstwünsche angefahren werden sollen. Ein Unter-

tourhalt enthält neben der Station, an der der Halt statt�ndet, die Ankunfts-
und Wiederabfahrtszeit. Da vor allem bei Schulfahrten die Dienstwünsche vieler
Kunden dasselbe Ziel haben (das aber nur einmal in der Liste auftauchen soll),
sind jedem Halt auch die Dienstwünsche zugeordnet, die diese Station fordern.
Die Liste mit den Untertourhalten läÿt sich mit den rechts daneben angeord-

neten Buttons auf vielfältige Weise verändern (die Operationen �auf� und �ab�
beziehen sich hierbei immer auf den ausgewählten Halt):

Dienstwunsch Auf Verschiebt einen in einem Untertourhalt enthaltenen
Dienstwunsch eine Position nach oben. Dadurch entsteht ein neuer Halt
mit diesem einen Dienstwunsch an der zugehörigen Station.

Dienstwunsch Ab Verschiebt einen Dienstwunsch aus dem gewählten Halt
auf dieselbe Art nach unten.

Halt Auf Verschiebt einen Halt mit allen enthaltenen Dienstwünschen eine
Position nach oben.

Halt Ab Verschiebt einen Halt mit allen enthaltenen Dienstwünschen eine Po-
sition nach unten.

Fahrzeit ändern Ändert die Fahrzeit zwischen der Station des gewählten Hal-
tes und der des vorausgehenden. Ist der erste Halt in der Liste gewählt,
kann die dortige Ankunftszeit gesetzt werden.

Aufenthaltszeit ändern Ändert die Aufenthaltszeit an einem Halt. Standard-
mäÿig entspricht die Aufenthaltszeit der im Dienstwunsch geforderten
(z.B. Einsteigezeit der Kunden, die dort abgeholt werden), so daÿ Kor-
rekturen zunächst einmal dort gemacht werden sollten. Trotzdem kann es
im Einzelfall sinnvoll sein, hier die gesamte Aufenthaltszeit explizit anzu-
geben.

Dienstwunsch komplett entfernen Entfernt einen Dienstwunsch mit allen
Teildienstwünschen aus der Untertour. Dadurch können auch einzelne Hal-
te verschwinden.

Teildienstwunsch einfügen Fügt einen weiteren Teildienstwunsch zur Unter-
tour hinzu und hängt die neuen Halte an die Liste an.

Teildienstwunsch entfernen Entfernt einen Teildienstwunsch und gegebe-
nenfalls die zugehörigen Halte aus der Liste.

Verschieben von Dienstwünschen und Halten in der Liste ist nur dann mög-
lich, wenn die Reihenfolge der Stationen innerhalb der einzelnen Dienstwünsche
gewahrt bleibt. Da es z.B. wenig Sinn hat, den Zielort einer Dialysefahrt zu
erreichen, bevor man alle zu transportierenden Kunden abgeholt hat, wird in
einem solchen Fall mit einer Warnmeldung das Verschieben verweigert.
Nach Änderungen an einer Untertour werden alle zugehörigen Fahrten ge-

löscht, deren Datum in der Zukunft liegt. Ältere, die also bereits erfolgt sind,

80 KAPITEL 7. BEDIENUNGSANLEITUNG

bleiben bestehen, können sich aber möglicherweise auch verändern. Daher sollten
vor Änderungen gegebenenfalls erst die alten Fahrten archiviert werden (siehe
7.6.4).

Abbildung 7.3: Eingabedialog für Untertouren

7.6.2 Fahrtenliste

Zeigt alle Fahrten des aktiven Tourszenarios an. Diese werden zunächst nach
Tour- und Untertournummer, dann nach Datum sortiert. Ein �*� vor der Fahrt
zeigt an, daÿ diese gegenüber den Planungsdaten in Tour und Untertour ver-
ändert wurde (indem Mitarbeiter bzw. Fahrzeug geändert oder Dienstwünsche
entfernt wurden). Diese können einzeln geändert werden, um Abweichungen der
tatsächlich durchgeführten Fahrten von den geplanten Untertouren zu doku-
mentieren.

7.6.2.1 Dialog zur Änderung von Fahrten

Der Dialog für Fahrten zeigt Tournummer, Datum und Dienstart zur Informa-
tion mit an.

Mitarbeiter und Fahrzeuge sind bei neu erzeugten Fahrten zunächst auf die
Werte der Tour gesetzt (ist dort nichts angegeben, wird automatisch der erste
mögliche Eintrag in der Liste gewählt), können aber geändert werden. Ebenso
können die Anfangs- und Endstation mit den zugehörigen Zeiten abweichend
von der Untertour eingetragen werden.

7.6. TOUREN 81

Die anzufahrenden Stationen werden in einer Liste angezeigt.Werden bei einer
Fahrt einzelne Dienstwünsche der Untertour nicht erfüllt, können diese mit dem
Button �Dienstwunsch entfernen� aus der Fahrt entfernt werden (mit �Dienst-
wunsch einfügen� kann dies wieder rückgängig gemacht werden). Die Liste wird
dann dementsprechend verändert, so daÿ nur diejenigen Stationen angezeigt
werden, die sich auf Dienstwünsche beziehen, die der Fahrt noch zugeordnet
sind.
Die Zeitangaben in der Liste sind die in der Untertour ermittelten. Beim

Löschen von Dienstwünschen aus einer Fahrt werden sie nicht angepaÿt (eine
Erfassung dieser Zeiten wäre sicher auch nicht sinnvoll, da sonst alle �Etappen-
zeiten� von real durchgeführten Fahrten notiert und im Programm gegebenen-
falls angepaÿt werden müÿten).

7.6.3 Fahrten erzeugen

Erzeugt aus den Untertouren Fahrten für einen vom Benutzer angegebenen Zeit-
raum. Bereits bestehende Fahrten werden dadurch nicht beein�uÿt. Die neu
erzeugten Fahrten werden zum Durchsehen und Bearbeiten aufgelistet.

7.6.4 Fahrten archivieren

Um erfolgte Fahrten archivieren zu können, bietet TROSS die Möglichkeit, diese
in einem tabellarischen Format abzuspeichern (siehe 2.2.2.4). Die entstehende
Datei kann in eine Textverarbeitung, Tabellenkalkulation oder Datenbank gela-
den und den Bedürfnissen des Anwenders gemäÿ aufbereitet werden. Nach dem
Speichern werden die archivierten Fahrten gelöscht.
Achtung: TROSS bietet kein Konzept zur Verwaltung der Historie von Tou-

ren, Untertouren und Fahrten. Fahrten im Tourszenario beziehen sich direkt
auf den status quo der zugeordneten Untertour, so daÿ sich Änderungen an ei-
ner Tour oder Untertour direkt auf die Fahrten auswirken (z.B. Entfernen eines
Dienstwunsches).
Vor Änderungen an einer Tour oder Untertour des Master-Tourszenarios ist

es daher sinnvoll, die bereits erfolgten Fahrten (die also vor dem jeweiligen
Tagesdatum liegen) zu archivieren.

7.6.5 Konsistenzprüfung

Überprüft alle Touren, Untertouren und Fahrten des aktiven Tourszenarios auf
ihre Konsistenz mit den Vorgaben der Dienstwünsche. Verstöÿe gegen diese Re-
geln werden dem Benutzer in einer Liste angezeigt.
Folgende Kriterien werden abgeprüft:

Mitarbeiter

� Sind erster und zweiter Mitarbeiter unterschiedlich?

� Ist ein zweiter Mitarbeiter eingeteilt, falls die Dienstwünsche dies
verlangen?

� Sind die Mitarbeiter am Tag einer Fahrt verfügbar?

� Sind die Mitarbeiter für den Dienst an den Kunden der Tour zulässig
(werden also von diesen Kunden nicht abgelehnt)?

82 KAPITEL 7. BEDIENUNGSANLEITUNG

� Haben die Mitarbeiter alle geforderten Quali�kationen?

Fahrzeuge

� Ist das Fahrzeug am Tag einer Fahrt verfügbar?

� Wir die maximale Sitzplatzzahl eingehalten (bei Fahrdiensten)?

� Ist das Fahrzeug für alle Kunden als zulässig eingetragen (bei Fahr-
diensten oder MSD+Kunde fährt mit)?

Zeiten

� Entsprechen die Zeiten der Untertour den Zeitvorgaben der Dienst-
wünsche?

7.7 Ressourcen

Hier werden die wichtigsten Ressourcen verwaltet, die zur Verfügung stehen, um
Dienstwünsche der Kunden zu erfüllen: Mitarbeiter und Fahrzeuge.

7.7.1 Mitarbeiter

Zeigt eine änderbare Liste aller Mitarbeiter an.

7.7.1.1 Eingabedialog für Mitarbeiter

Neben den allgemeinen Personendaten (siehe 7.5.1.1) hat jeder Mitarbeiter ei-
ne Personalnummer, die ihn eindeutig kennzeichnet. Diese kann aus beliebigen
Zeichen bestehen (ist also nicht nur auf Zi�ern beschränkt).

Ein Dienstantrittsdatum sowie ein Entlassungsdatum kann hier erfaÿt werden
(was insbesondere bei Zivildienstleistenden eine wichtige Information für die
Einsatzplanung ist). Durch Auswahl eines Arbeitszeitpro�ls (siehe 7.10.2) wird
festgelegt, zu welchen Zeiten bzw. wie lang ein Mitarbeiter im Dienst ist. Diese
Information wird zur Darstellung der Mitarbeiterauslastung benötigt.

Die Verfügbarkeit eines Mitarbeiters wird durch einen Zeitrahmen (z.B. das
laufende Kalenderjahr oder den Rest der Dienstzeit) sowie durch Ausnahmezei-
ten gekennzeichnet (z.B. Krankheit, Urlaub oder Schulung). Werden bekannte
Ausnahmezeiten rechtzeitig vorher hier eingetragen (z.B. Urlaub), wird dies bei
der Konsistenzüberprüfung beachtet und gegebenenfalls gewarnt, falls ein mo-
mentan nicht verfügbarer Mitarbeiter für Fahrten eingeteilt ist.

Aus den de�nierten Quali�kationen (siehe 7.10.1) können durch Auswahl in
der Liste diejenigen bestimmt werden, die der Mitarbeiter besitzt. Diese Infor-
mation ist wichtig, um die Fähigkeiten von Mitarbeitern mit den Anforderungen
der Kunden in ihren Dienstwünschen abgleichen zu können.

7.7.2 Fahrzeuge

Zeigt eine änderbare Liste aller Fahrzeuge an.

7.8. AUSGABE 83

7.7.2.1 Eingabedialog für Fahrzeuge

Ein Fahrzeug wird durch Angabe von Modell, amtlichem Kennzeichen sowie
einer internen Nummer identi�ziert (im Programm TROSS dient die interne
Nummer als Unterscheidungsmerkmal, z.B. in der Liste aller Fahrzeuge).

Drei wichtige Termine können für jedes Fahrzeug erfaÿt werden: Die nächste
Hauptuntersuchung beim TÜV, die nächste ASU, sowie der nächste Kunden-
dienst. Beim Laden eines Szenarios werden diese Werte mit dem Tagesdatum
verglichen und dem Benutzer gemeldet, falls sie innerhalb der nächsten zwei
Wochen fällig werden.

Die Austattung eines Fahrzeugs wird durch die Eingabefelder �spezielle Da-
ten� de�niert: Für jedes de�nierte Hilfsmittel kann die Anzahl der davon im
Fahrzeug mitgeführten Exemplare angegeben werden (gemeint sind hier nur
lose Hilfsmittel wie z.B. spezielle Sitzkissen, die einfach auf einem Sitzplatz an-
gebracht und wieder von dort entfernt werden können; fest montiere Hilfsmittel
werden in der Fahrzeugkon�guration erfaÿt).

Durch Auswahl eines Fahrzeugtyps und einer diesem Typ zugeordneten Fahr-
zeugkon�guration wird der mögliche sowie momentane �Umbauzustand� des
Fahrzeugs beschrieben (siehe hierzu auch 7.10.3 und 7.10.3.2).

7.8 Ausgabe

7.8.1 Tourplan

Zeigt eine Tour mit allen Untertouren schematisch an. Hieraus können sowohl
der Benutzer als auch die ausführenden Mitarbeiter erkennen, welcher Dienst
wann erledigt werden soll.

7.8.2 Dienstplan

Datengrundlage für Dienstpläne sind die Fahrten eines Zeitraum, den der Benut-
zer vorgibt. Dadurch werden einzelne Änderungen an Fahrten (z.B. kurzzeitiger
Austausch eines Mitarbeiters wegen Krankheit) in die Pläne übernommen.

Der Plan zeigt eine graphische Übersicht über den gewünschten Zeitraum.
Darin werden alle Fahrten, die der gewählte Mitarbeiter ausführen soll, als Bal-
ken dargestellt.

7.8.3 Gesamtdienstplan

7.8.4 Angezeigten Plan drucken

Gibt den gerade im Hauptfenster angezeigten Plan auf den Drucker aus.

7.8.5 Untermenu Pläne drucken

7.8.5.1 Dienstpläne

Druckt eine Menge von Dienstplänen, ohne diese einzeln auf dem Bildschirm an-
zuzeigen. Der Benutzer kann eine beliebige Teilmenge aller Mitarbeiter angeben,
für die die Pläne gedruckt werden sollen.

84 KAPITEL 7. BEDIENUNGSANLEITUNG

Abbildung 7.4: Beispiel für einen Tourplan

7.8.5.2 Tourpläne

Druckt eine Menge von Tourplänen, ohne diese einzeln anzuzeigen. Der Benutzer
wählt die Touren aus.

7.9 Analyse

Alle Analysedaten basieren auf den Plandaten, also Touren und Untertouren.

7.9.1 Auslastung Mitarbeiter

Zeigt die Zeit, die die Mitarbeiter auf Touren beschäftigt sind, im Verhältnis
zur Sollarbeitszeit, die durch die Arbeitspro�le vorgegeben wird.

7.9.2 Ausfallzeiten

7.9.2.1 Ausfallzeiten Mitarbeiter

Zeigt die Anzahl der Tage, die die Mitarbeiter für einen gegebenen Zeitraum
ausfällt.

7.9.2.2 Ausfallzeiten Fahrzeuge

Zeigt die Anzahl der Tage, die die Fahrzeuge für einen gegebenen Zeitraum
ausfällt.

7.10. EINSTELLUNGEN 85

7.9.3 Fahrzeugbesetzung

Zeigt die Anzahl der Passagiere pro Fahrzeug im Verhältnis zur maximalen
Sitzplatzzahl (im Fahrzeugtyp de�niert).

7.9.4 Auslastung Mitarbeiter drucken

Druckt die Auslastungsgraphik für alle Mitarbeiter, mit automatischem Seite-
numbruch.

7.9.5 Auslastung Fahrzeuge drucken

Druckt die Auslastungsgraphik für alle Fahrzeuge, mit automatischem Seite-
numbruch.

7.9.6 Ausfall Mitarbeiter drucken

Druckt die Ausfallzeiten für alle Mitarbeiter, mit automatischem Seitenum-
bruch.

7.9.7 Ausfall Fahrzeuge drucken

Druckt die Ausfallzeiten für alle Fahrzeuge, mit automatischem Seitenumbruch.

7.10 Einstellungen

7.10.1 Quali�kationen

Alle Quali�kationen, die Mitarbeitern zugewiesen werden sollen, müssen zuvor
in dieser Liste de�niert werden.

7.10.1.1 Eingabedialog für Quali�kationen

Eine Quali�kation hat eine kurze Bezeichnung (die im Programm als Identi�-
kation dient und z.B. in Listen angezeigt wird), sowie eine ausführlichere Be-
schreibung.
Die Felder für Verrechnungswerte beziehen sich auf eine (nicht implementier-

te) automatische Optimierung, sind hier also bedeutungslos.

7.10.2 Arbeitszeitpro�le

Alle Arbeitszeitpro�le, die Mitarbeitern zugewiesen werden sollen, müssen zuvor
in dieser Liste de�niert werden. Ein Arbeitszeitpro�l gibt an, wann und wie lange
ein Mitarbeiter im Dienst ist.

7.10.2.1 Eingabedialog für Arbeitszeitpro�le

Es gibt drei Arten von Arbeitszeitpro�len, mit denen die meisten tatsächlichen
Arbeitszeitverhältnis dargestellt werden können:

Vollzeit Mitarbeiter mit einer bestimmten Arbeitszeit pro Woche.

86 KAPITEL 7. BEDIENUNGSANLEITUNG

Teilzeit (tageweise) Mitarbeiter, die je nach Wochentag zu bestimmten Uhr-
zeiten arbeiten.

Teilzeit (stundenweise) Mitarbeiter mit einer bestimmten Arbeitszeit pro
Monat.

Allen Arbeitszeitpro�len gemeinsam ist die Angabe einer maximalen Arbeitszeit
pro Tag (wie sie z.B. von Arbeitsschutzrichtlinien vorgeschrieben wird).

7.10.3 Fahrzeugtypen

Alle Typen der vorhandenen Fahrzeuge müssen zuvor in dieser Liste de�niert
werden.

7.10.3.1 Eingabedialog für Fahrzeugtypen

Ein Fahrzeugtyp hat neben einer kurzen Bezeichnung und einer ausführlichen
Beschreibung eine maximal zulässige Sitzplatzzahl sowie einen Kilometerpreis.
Die verschiedenen Möglichkeiten, ein Fahrzeug umzubauen (z.B. zur Scha�ung
von Rollstuhlplätzen durch Ausbau von Sitzbänken) werden durch eine Menge
von Fahrzeugkon�gurationen beschrieben. Für jeden tatsächlich vorhandenen
Zustand eines Fahrzeuges muÿ in dessen Typ die passende Kon�guration de�-
niert werden.

7.10.3.2 Eingabedialog für Fahrzeugkon�gurationen

Die Kon�guration wird durch Angabe der Anzahl vorhandener Plätze pro Platz-
art angegeben: Anzahl Sitzplätze, Anzahl Rollstuhlplätze, sowie zu jedem de-
�nierten Hilfsmittel die Anzahl Plätze, an denen ein solches Hilfsmittel fest
montiert ist. Falls die Fahrzeugkon�guration über eine Kühlmöglichkeit verfügt
(z.B. Schienen für einen Kühlcontainer und ausreichend Platz für dessen Trans-
port), kann dies angegeben werden.

7.10.4 Institutionen

Hier können alle Institutionen erfaÿt werden, die mit einem Kunden in Bezie-
hung stehen, z.B. Krankenkassen als Rechnungsempfänger.

7.10.4.1 Eingabedialog für Institutionen

Eine Insitution hat auÿer einem eindeutigen Namen eine Menge von Adressen,
Kommunikations- und Bankverbindungen.

7.10.5 Stationen

Manche Stationen werden sehr oft verwendet, da sie z.B. das gemeinsame Ziel
vieler Fahrten darstellen (Schulen oder Krankenhäuser). Deshalb können sie
unter einem kennzeichnenden Namen hier erfaÿt werden und stehen dann bei
jeder Eingabe einer Station über den Button �Nachschlagen� zur Verfügung.
Wird bei der Eingabe einer Station, z.B. in einem Dienstwunsch, diese mit
einem Namen versehen, wird sie ebenfalls in die globale Liste eingetragen.

7.10. EINSTELLUNGEN 87

7.10.5.1 Eingabedialog für benannte Stationen

Zusätzlich zur Adresse muÿ hier auch ein Name für die Station eingegeben wer-
den, unter dem sie später gefunden werden kann.

Ist das Verkehrstool angeschaltet (siehe 7.10.9), wird ermittelt, ob die Adres-
se dort bekannt ist. Konnte sie nicht eindeutig identi�ziert werden, erscheint
ein Dialog mit Alternativvorschlägen des Verkehrstools. In den Eingabefeldern
kann jetzt entweder einer dieser Vorschläge übernommen werden, oder man gibt
eine Adresse an, die in der Nähe der ursprünglich gewünschten liegt (z.B. die
nächstgröÿere Straÿe). Ist diese Adresse dem Verkehrstool bekannt, wird sie als
Grundlage für Fahrzeitberechnungen benutzt.

7.10.6 Hilfsmittel

Hier können alle Hilfsmittel erfaÿt werden, die Kunden benötigen und deshalb
in ihren Dienstwünschen fordern.

7.10.6.1 Eingabedialog für Hilfsmittel

Hilfsmittel werden durch eine kurze Bezeichnung sowie eine ausführlichere Be-
schreibung de�niert.

7.10.7 Essensarten

Alle Essensarten, die der Dienst �Essen auf Rädern� anbietet, müssen hier erfaÿt
werden, damit sie in den Dienstwünschen gewählt werden können.

7.10.7.1 Eingabedialog für Essensarten

Essensarten werden durch eine kurze Bezeichnung sowie eine ausführlichere Be-
schreibung de�niert.

7.10.8 Feiertage

Damit das Programm weiÿ, welche Tage Feiertage sind (was sich auf das Statt-
�nden von Diensten auswirkt), müssen hier deren Daten eingegeben werden. Es
emp�ehlt sich, die Feiertage immer einige Monate im voraus zu erfassen, da-
mit eventuelle Auswirkungen auf die Planung rechtzeitig berücksichtigt werden
können.

7.10.8.1 Eingabedialog für Feiertage

Ein Feiertag wird durch Namen und Datum charakterisiert.

7.10.9 Verkehrstool

Um Entfernungen und Fahrzeiten zwischen den diversen Stationen automatisch
ermitteln zu können, ist das Programm TROSS in der Lage, mit dem Routen-
planungsprogramm �Map&Guide� zusammenzuarbeiten. Dieses Programm wird
hier als Verkehrstool bezeichnet.

88 KAPITEL 7. BEDIENUNGSANLEITUNG

7.10.9.1 Einstellungsdialog für das Verkehrstool

Hier kann angegeben werden, ob Map&Guide als Verkehrstool verwendet werden
soll. Für den Einsatz von Map&Guide muÿ der Pfad zu diesem Programm sowie
ein Verzeichnis angegeben werden, in das die Auftragsdateien für dessen Batch-
Schnittstelle abgelegt werden (nähere Informationen hierzu sind dem Handbuch
zu Map&Guide zu entnehmen sein).
Je nach Wahl des Benutzers arbeitet TROSS also in einem von zwei Modi:

mit Verkehrstool Hier werden sämtliche Entfernungen und Fahrzeiten vom
Verkehrstool erfragt. Ebenso werden alle Stationen nach ihrer Eingabe
dahingehend überprüft, ob sie dem Verkehrstool bekannt sind.

Da diese Anfragen über die langsame Batch-Schnittstelle von Map&Guide
laufen, kann es jeweils zu gewissen Wartezeiten kommen.

Sollte der Modus mit Verkehrstool eingestellt sein, dieses aber aus irgend-
welchen Gründen nicht korrekt ansprechbar sein, wird die momentane
Operation mit einer entsprechenden Fehlermeldung abgebrochen.

ohne Verkehrstool Ist die Verwendung des Verkehrstool nicht vorgesehen,
müssen alle im Programm notwendigen Entfernungen und Fahrzeiten von
Hand eingegeben werden. Dazu wird dem Benutzer zur gegebenen Zeit ein
Eingabedialog präsentiert, wo er die fehlenden Daten eintragen kann.

Achtung: Da im Modus ohne Verkehrstool keine Stationen geprüft werden kön-
nen, werden diese zunächst als ungeprüft gekennzeichnet. Bei einem Wechsel in
den Modus mit Verkehrstool müssen zunächst all diese Stationen vom Verkehrs-
tool überprüft und gegebenenfalls vom Benutzer noch korrigiert werden. Beim
Umschalten in den Modus mit Verkehrstool muÿ daher mit einer längeren War-
tezeit gerechnet werden.

7.10.10 Entfernungen korrigieren

Ermöglicht die manuelle Eingabe von Entfernungen und Fahrzeiten zwischen
zwei Stationen. Die hier eingegebenen Werte haben Vorrang vor denen des Ver-
kehrstools und können somit benutzt werden, um dessen Werte zu korrigieren.

7.10.11 Maximale Fahrzeit

Hier wird der Standardwert für die Zeit erfaÿt, die ein Kunde maximal im Fahr-
zeug verbringen darf. Dieser Wert gilt für alle Kunden, für die keine individuelle
Grenze angegeben wurde.

Kapitel 8

Projektplanung

8.1 Planung für das Projekt Transportoptimie-

rung

Da die Seminare nur indirekt mit dem Projekt bzw. dem Ziel der Erstellung
eines lau�ähigen Softwaresystems in Verbindung zu bringen sind, wurde diese
Phase bei der Planung nicht berücksichtigt. Die ursprüngliche Zahl von fünf
Projektgruppenmitgliedern verringerte sich auf vier, nachdem der fünfte Mann
die Projektgruppe kurz nach dem Ende der Seminarphase verlassen hatte. Da
dieser für die Projektgruppe prinzipiell keine verwendbaren Ergebnisse hinter-
lassen hatte, taucht er in der weiteren Planung nicht mehr auf.

8.1.1 Planung des Zeit- und Kostenaufwandes

Die Planung beruht auf den oben genannten Annahmen, sowie einem �kitiven
Plan, der im Rahmen eines Vortrages über Projektplanung von Anke Drappa,
einer Mitarbeiterin der Abteilung Software Engineering der Fakultät für In-
formatik der Universität Stuttgart, vorgestellt wurde. Der von den Betreuern
vorgegebene Rahmen für die einzelnen Phasen der Projektgruppe sah folgender-
maÿen aus:

� 17.11.97 - 21.12.97 Anforderungsanalyse (5 Wochen)

� 22.12.97 - 31.01.98 Spezi�kation (6 Wochen)

� 01.02.98 - 15.03.98 Entwurf (5 Wochen)

� 16.03.98 - 29.03.98 Zwischenbericht (2 Wochen)

� 30.03.98 - 24.05.98 Implementierung (8 Wochen)

� 25.05.98 - 28.06.98 Test (5 Wochen)

� 29.06.98 - 15.07.98 Enddokumentation (2,5 Wochen)

Dies entspricht einem Gesamtaufwand von 33,5 Wochen für das gesamte Soft-
wareprojekt. Abweichend vom Vorschlag von Anke Drappa, wurden die beiden
Berichtsphasen mit einbezogen, da es sich bei diesen nicht um eine Erstellung

89

90 KAPITEL 8. PROJEKTPLANUNG

von Berichten, sondern vielmehr um eine Zusammenfügung bestehender Doku-
mente handelte, die im Rahmen der Projektarbeit erstellt wurden.
Betrachtet man die Kapazität eines einzelnen Mitarbeiters, kommt man auf fol-
genden Aufwand pro Projektgruppenmitglied:
33,5 Wochen � 2 Mitarbeitertage = 67 Mitarbeitertage = 502,5 Mitarbeiterstun-
den. Wobei von einem wöchentlichen Aufwand pro Mitarbeiter von ungefähr
15Stunden

Woche
(�= 2Tage) ausgegangen wurde. Umgerechnet auf alle Mitarbeiter er-

gibt sich daraus folgender Gesamtaufwand für das Projekt:
33,5 Wochen � 4 Mitarbeiter = 134 Mitarbeiterwochen = 268 Mitarbeitertage.
Werden pro Mitarbeiterstunde die �ktiven Kosten von 150,- DM angesetzt,
die wahrscheinlich weit unter einem realistischen, in der freien Wirtschaft ver-
anlagten Wert liegen, ergeben sich folgende Kosten:
268 Mitarbeitertage � 7,5 Stunden � 150,- DM = 301 500,- DM.

8.1.2 Meilensteine

Bei einem Meilenstein handelt es sich um einen ausgezeichnten Zeitpunkt wäh-
rend des Projektverlaufes, an diesem ein vorher festgelegtes Ergebnis erwartet
wird. Folgende Meilensteine waren während des Projekts zu erreichen:

� Beendigung der Anforderungsanalyse
Ergebnis: angenommenes Dokument
geplant : 21.12.97
Abnahme : durch Review

� Beendigung der Spezi�kation
Ergebnis: angenommenes Dokument
geplant : 30.01.98
Abnahme : durch Review

� Vorführung Prototyp Ober�äche
Ergebnis: Prototyp für die Benutzungsschnittstelle
geplant : 06.02.98
Abnahme : durch Kunden

� Beendigung des Entwurfs
Ergebnis: angenommenes Dokument
geplant : 13.03.98
Abnahme : durch Review

� Beendigung des Zwischenberichts
Ergebnis: angenommenes Dokument
geplant : 27.03.98
Abnahme : durch Review

� Beendigung der Implementierung
Ergebnis: angenommenes Dokument
geplant : 22.05.98
Abnahme : durch Review/Kunden

� Beendigung des Tests
Ergebnis: angenommenes Dokument

8.1. PLANUNG FÜR DAS PROJEKT TRANSPORTOPTIMIERUNG 91

geplant : 26.06.98
Abnahme : durch Review

� Beendigung des Endberichtes
Ergebnis: angenommenes Dokument
geplant : 15.07.98
Abnahme : durch Review

Hinzu kamen noch verschieden Besprechungstermine, um die Anforderungen des
Kunden herauszuarbeiten und um o�ene Fragen bezüglich der Realisierung zu
klären.

8.1.3 Projektverlauf

Die Zusammenfassung des Projektes 'ahnlich erfolgt, wie bei der Vorstellung
der Meilensteine (8.1.2), in tabellarischer Form. Die einzelnen Daten werden
doppelt dargestellt: Auf der einen Seite das Datum, an dem der Projektabschnitt
tatsächlich begonnen hat, und auf der anderen Seite in Klammern der geplante
Beginn. Eine Überschneidung der einzelnen Phasen kommt dadurch zustande,
daÿ die einzelnen Phasen an ihren Schnittstellen teilweise parallel bearbeitet
wurden, d.h. der Abschluÿ der einen Phase (Korrektur der Berichte, kleinere
Änderungen, . . .), �el in den Beginn der neuen Phase.

� Anforderungsanalyse
Beginn: 17.11.1997 (17.11.1997)
was wurde getan:

� einige Vorträge über Werkzeuge und Programmiersprachen, die für
das Projekt nützlich sein könnten:

� Genetische Algorithmen und das System Genom
(Nicole Weickert und Alexander Leonardi)

� Java
(Fritz Hohl)

� Projektplanung und MS-Project
(Anke Drappa)

� C++ und wxwin
(Stefan Lewandowski)

� Smalltalk und Visual Works
(Tobias Spribille)

� Vortrag des Kunden (Herr Schro�) über die Anforderungen an das
System und die aktuelle Abwicklung der Fahrdienstplanung des DRK
Stuttgart

� Analyse des Ist-Zustandes beim Kunden

� Erfassung der notwendigen Eingabedaten

� Mitfahrt bei einzelnen Diensten zur Erfahrungssammlung

� Erstellung einzelner Szenarien

Review: 16.1.1998 (21.12.1997)

92 KAPITEL 8. PROJEKTPLANUNG

� Spezi�kation
Beginn: 19.1.1998 (22.12.1997)
was wurde getan:

� Architektur des Gesamtsystems

� Erstellung eines Datenmodells

� Aufbau und Funktionsweise des Verkehrsmoduls

� Zusammenstellung der Datenausgabe

� Möglichkeiten der Optimierung

� Aussehen der Benutzungsober�äche

� Erstellung eines Prototyps für die Benutzungsober�äche

Review: 27.3.1998 (13.3.1998)

� Entwurf
Beginn: 2.3.1998 (2.3.1998)
was wurde getan:

� Umsetzung der Spezi�kation in passende Klassenstruktur

� Konzepte der Datenhaltung

� Erstellung der Menüstruktur

Review: 27.3.1998 (13.3.1998)

� Zwischenbericht
Beginn: 30.3.1998 (16.3.1998)
was wurde getan:

� Zusammenstellung bisher erstellter Dokumente

� korrekturlesen

Dokument fertig: 29.4.1998 (27.3.1998)

� Implementierung
Beginn: 3.4.1998 (30.3.1998)
was wurde getan:

� Ausprogrammierung des Enturfs
(aufgrund des groÿen Zeitaufwandes �el die Optimierung weg)

� Vorführung einer Version 0

Review über Teile 20.7.1998 (22.5.1998)
vollständige Abgabe Version 1: 13.8.1998
Übergabe an den Kunden: 21.9.1998

� Test
Beginn 9.7.1998 (1.6.1998)
was wurde getan:
! Test erfolgte über eine unvollständige Implementierung!

� Funktionalitätstest der einzelnen Masken

8.1. PLANUNG FÜR DAS PROJEKT TRANSPORTOPTIMIERUNG 93

� Test des Laufzeitverhaltens

� Abgleich mit den Szenarien

Review: 23.7.1998 (26.6.1998)

� Endbericht
Beginn: 2.7.1998 (29.6.1998)
was wurde getan:

� Zusammenstellung bisher erstellter Dokumente

� korrekturlesen

Abgabe Rohfassung: 18.8.1998 Dokument fertig: 5.10.1998 (15.7.1998)

8.1.4 Tatsächlicher Zeit- und Kostenaufwand

Zum Abschliessen des Projektes wurde als Stichtag der Abgabetag des End-
berichtes (18.08.98) genommen. Gegenüber dem geplanten Aufwand von 33,5
Wochen steht ein tatsächlicher Aufwand von 39 Wochen. Dieser Rahmen
konnte aber nur eingehalten werden, da � vor allem in der Schluÿphase der
Projektgruppe � vieles parallel bearbeitet wurde. Den Arbeitsaufwand pro Pro-
jektgruppenmitglied läÿt zeigt Abbildung 8.1. Somit ergibt sich ein Gesamtauf-
wand für das Projekt von 2186 Stunden bzw. ungefähr 292 Tagen. Werden
die unter 8.1.1 angesetzten �ktiven Kosten von 150,- DM pro Mitarbeiterstun-
de angesetzt, ergeben sich folgende Kosten:
2186 Mitarbeiterstunden � 150,- DM = 327 900,- DM. Das geplante Budget
wurde also um 26400,- DM überschritten. Wäre das System wie geplant aus-
programmiert worden, wären der Kosten- und Zeitüberhang noch deutlicher
ausgefallen.

94 KAPITEL 8. PROJEKTPLANUNG

Arbeitszeitaufwand pro Mitarbeiter

Woche Frank Jörg Lars Tobias
47 7,50 7,50 5,00 6,50
48 7,50 7,50 6,00 5,50
49 7,50 7,50 6,00 8,50
50 7,50 7,50 7,00 11,50
51 7,50 7,50 6,00 13,00
52 7,50 7,50 20,50 18,50

1 7,50 7,50 16,00 31,00
2 7,50 7,50 11,00 8,50
3 7,50 17,25 8,50 12,50
4 19,75 22,00 14,50 17,00
5 14,00 17,00 18,50 22,00
6 4,25 23,25 17,50 22,00
7 22,00 24,25 18,00 19,00
8 10,00 21,75 14,00 15,50
9 22,25 9,00 13,50 10,00

10 8,75 9,50 12,00 13,50
11 13,50 20,00 18,50 4,50
12 6,00 18,00 9,00 6,50
13 0,00 16,25 13,00 9,50
14 12,00 12,00 13,00 0,00
15 9,50 10,00 18,00 0,00
16 16,00 15,75 0,00 7,50
17 17,00 14,00 17,00 11,00
18 9,00 17,00 16,50 14,50
19 15,00 10,75 21,00 28,50
20 26,00 15,50 23,00 35,00
21 17,25 21,50 19,50 19,00
22 26,25 20,75 23,00 26,00
23 25,75 19,75 21,00 22,50
24 40,75 17,00 28,00 19,00
25 7,50 14,75 16,50 23,50
26 37,50 11,00 7,00 15,50
27 15,25 10,50 5,00 21,00
28 35,50 19,25 5,00 25,00
29 17,75 22,00 18,00 11,00
30 26,50 31,00 17,00 0,00
31 0,00 11,00 12,00 0,00
32 0,00 21,25 12,00 0,00
33 0,00 0,00 9,50 0,00

Gesamt 542,50 573,00 536,50 534,00

Abbildung 8.1: Stundenzahl pro Projektgruppenmitglied

Kapitel 9

Rückblick

9.1 Zeitplanung

Der grobe Zeitrahmen für die einzelnen Phasen der Projektgruppe war bereits
zu Anfang von den Betreuern fest vorgegeben. Da er seltsamerweise zwei Mona-
te über das Ende der Projektgruppenzeit hinausging, muÿte er gekürzt werden,
um alle vorgesehenen Phasen bis zum Ende des Vorlesungszeitraums im Juli
1998 unterzubringen. Die beiden letzten Phasen, nämlich Implementierung und
Test, wurden radikal gekürzt. Im Nachhinein trägt diese Maÿnahme entschei-
dend dazu bei, daÿ nicht alles im Programm umgesetzt werden konnte und selbst
die wichtigsten Bestandteile nur durch enorme Mehrarbeit der Projektgruppe
in der Implementierungsphase überhaupt bis zur vollen Funktionalität gebracht
werden konnten.

Ein weiteres zeitliches Problem war natürlich die Aufgabenstellung, die insge-
samt einfach zu komplex war, um sie mit vier Personen in dieser Zeit komplett
zu bewältigen (siehe 9.2). Sowohl dem Verlauf als auch dem Ergebnis der Pro-
jektgruppe wäre es sicher zugute gekommen, nach der Anforderungsanalyse, als
die Überdimensionierung der Aufgabe durchaus schon zu sehen war, einen sau-
beren Schnitt zu machen. Spätestens aber nach dem Entwurf hätte man sich
dazu durchringen müssen, im Interesse eines lau�ähigen Gesamtsystems von
vornherein gewisse Teile nicht zu implementieren. So wurden zunächst nahezu
alle Module parallel begonnen, und am Schluÿ fehlte die Zeit, die Arbeit wirklich
zu Ende zu führen.

Ebenso wurde der Zeitaufwand für die Reviews nach jeder Phase bei der
Planung nicht extra eingeplant, so daÿ letztlich jede Phase um eine bis zwei
Wochen in die nächste überhing, während derer das Review vorbereitet und
durchgeführt werden muÿte.

Besonders realitätsfern war das Vorhaben, die gesamten vorlesungsfreie Zeit
zu verplanen. Daÿ in dieser Zeit mit Prüfungen zu rechnen war, sollte jedem, der
selbst einmal studiert hat, ebenso klar sein, wie die Tatsache, daÿ intensive Prü-
fungsvorbereitung eine gewisse Zeit erfordert, in der für umfangreiche sonstige
Aufgaben kein Platz ist, weder zeitlich noch gedanklich. Zeit für Urlaub oder
sonstige Erholung (die in der freien Wirtschaft längst als grundlegend wichtig
für die Motivation und die Leistungsfähigkeit der Mitarbeiter erkannt wurde)
wurde den Studenten der Projektgruppe im Zeitplan nicht zugestanden.

95

96 KAPITEL 9. RÜCKBLICK

9.2 Umfang der Aufgabenstellung

Mit einem echten Kunden konnte bisher noch keine Projektgruppe der Uni
Stuttgart arbeiten, so daÿ zunächst eine gewisse �Wie im richtigen Leben�-
Euphorie vorhanden war. Daÿ allerdings eine detaillgetreue Modellierung der
Realität einen enormen Aufwand erfordert, wurde schnell klar. Bereits die halb-
wegs schematisch geordnete Erfassung und Dokumentation der Anforderungen
zeigte die besonders komplizierten (oder auch nur komplexen) Begri�e auf. Wäh-
rend Spezi�kation und Entwurf, beim Umsetzen in Datenstrukturen und Algo-
rithmen, Verfahren und Schnittstellen kam deutlich zutage, daÿ mit vier Perso-
nen in acht Wochen an eine komplette Umsetzung der bisher entwickelten Ideen
in ein laufendes Programm nicht zu denken war.

9.3 Zuständigkeiten und Kompetenzen in der

Projektgruppe

Ein Grundproblem bei der praktischen Durchführung dieser Projektgruppe war
die weder eindeutig noch sinnvoll festgelegte Verteilung von Entscheidungskom-
petenz einerseits und Verantwortung für Entscheidungen andererseits:

So wurden sowohl Zeitplan als auch die Aufgabe von den Betreuern vorge-
geben. Versuche von Seiten der Projektgruppe, die Aufgabenstellung auf das
zeitlich Mögliche einzuschränken, wurden meist abgeblockt mit Au�istung von
Funktionen, die noch �gemacht werden müssen�. Der �für den Zeitplan zustän-
dige� Student konnte diese Vorgaben lediglich mit dem Programm �MS Project�
verwalten, und hatte die undankbare Aufgabe, die regelmäÿigen Kassandra-Rufe
zum zeitlichen Stand des Projekts zu verkünden.

Die Bescha�ung des Verkehrstools (Map&Guide) erfolgte als verblü�ender
Schnellschuÿ: Lange Zeit ruhte man sich auf der scheinbaren Gewiÿheit aus,
daÿ passende Verkehrsdaten zur Verfügung stehen würden. Nachdem sich dies
als falsch herausstellte (da die an der Universität vorhandenen Verkehrsdaten
nicht an einen Fremdkunden der Projektgruppe weitergegeben werden durften),
muÿte auch das Verkehrstool selbst bescha�t werden. Während der zuständi-
ge Projektgruppenteilnehmer noch Anbieter von Streckenplanungsprogrammen
anschrieb, um eine möglichst kostenlose Überlassung der Daten zu Studien-
zwecken zu erbetteln, war plötzlich das Programm Map&Guide schon gekauft
(zu einem Betrag, den wir nie für Hilfsmittel einzuplanen gewagt hätten). Daÿ
das Programm eine externe Schnittstelle anbietet, war die einzige Information,
die vor dessen Eintre�en an der Uni zur Verfügung stand. Später stellte sich
dann heraus, daÿ die Batch-Schnittstelle weder von der Geschwindigkeit noch
vom möglichen Umfang der Anfragen für die Anforderungen des Programms
TROSS geeignet war.

9.4 Empfehlungen an zukünftige Projektgruppen

Auch wenn es bisher in diesem Dokument (wie auch schon im Zwischenbericht)
fast immer nur um die zu modellierende Aufgabenstellung und das dafür ge-
schriebene Programm ging, sind das Hauptziel einer Projektgruppe die vielfäl-
tigen Lerne�ekte. Um die diversen Erfahrungen dieser Projektgruppe, die oft

9.4. EMPFEHLUNGEN AN ZUKÜNFTIGE PROJEKTGRUPPEN 97

genug durch mühsames �Learning by doing� erzielt wurden, nicht nur für uns zu
behalten, sollen hier einige Punkte genannt werden, die künftige Projektgrup-
pen unserer Meinung nach beachten sollten. Dadurch kann ho�entlich (bis zu
einem gewissen Grad) vermieden werden, daÿ jede Projektgruppe wieder � wie
wir � von Null auf beginnt, sondern durch Nutzung dieser Erkenntnisse die Pro-
jektzeit sinnvoller für die eigentlich interessanten Problemstellungen verwendet.
Das schlägt sich bestimmt auch positiv im Ergebnis nieder (also in einem guten,
lau�ähigen Programm).

� Der Zeitplan sollte die verfügbare Zeit nicht bis auf den letzten Tag verpla-
nen. Der Verlauf mehrerer Projektgruppen hat gezeigt, daÿ die Zeit immer
überschätzt (bzw. die Aufgabe unterschätzt) wird. Ein Pu�erzeitraum am
Ende wäre sicherlich kein Fehler.

� Reviews müssen als feste Gröÿen im Zeitplan vorgesehen werden. Dazu
muÿ nach der eigentlichen Durchführung jeder Phase mindestens eine Wo-
che ausschlieÿlich für Vorbereitung, Durchführung und Nachbereitung des
Reviews zur Verfügung stehen.

� Die Aufgabenstellung erforderlichenfalls anpassen. Lieber ein kleines, lauf-
fähiges Programm, als eine groÿe, universelle Planungsruine.

� Die Entscheidung über die benutzte Programmiersprache sollte möglichst
früh fallen. Dann kann man sich rechtzeitig nach Entwicklungsumgebun-
gen, Bibliotheken mit Hilfsfunktionen etc. umschauen und in die Syntax
und Philosophie der Sprache einarbeiten.

� Ein Prototyp sollte nicht zu früh erstellt werden, da man sonst nicht nur
viel zusätzliche Arbeit hat, sondern sich auch in selbsterdachten Daten-
strukturen verrennt, die dem tatsächlichen Datenmodell dann in die Quere
kommen (siehe 3.5).

Literaturverzeichnis

[Bal96] Balzert, Helmut: Lehrbuch der Softwaretechnik, Band 1: Software-
Entwicklung. Spektrum-Verlag, 1996.

[BN97] Bernstein, Philip A. und Eric Newcomer: Principles of transac-
tion processing. The Morgan Kaufmann series in data management
systems. Morgan Kaufmann, San Francisco, Calif., 1997. XXIV, 358
S.

[CAS97] CAS Software GmbH: Map&Guide Benutzerhandbuch, 1997.

[Fla97] Flanagan, David: Java in a Nutshell. O'Reilly, Zweite Auflage, Mai
1997.

[Pre92] Pressman, Roger S.: Software engineering : a practitioner's ap-

proach. McGraw-Hill international editions : computer science series.
McGraw-Hill, New York [u.a.], Dritte Au�age, 1992. 793 S.

[Pro98] Projektgruppe Transportoptimierung: Zwischenbericht � Be-

richt 1998/06. Institut für Informatik der Universität Stuttgart, 1998.

98

