Endbericht der
Projektgruppe
Transportoptimierung
Bericht Nr. 1998/10

Universitat
Stuttgart

Endbericht der Projektgruppe
Transportoptimierung

Jorg Fleischmann
Lars Hermes
Tobias Spribille
Frank Wagner

Betreuung
Prof. Dr. Volker Claus
Dipl.-Inform. Friedhelm Buchholz
Dipl.-Inform. Stefan Lewandowski
Abteilung Formale Konzepte
Fakultdt Informatik
Universitét Stuttgart

9. November 1998

Prof. Dr. Volker Claus
Abteilung Formale Konzepte
Institut fiir Informatik
Universitédt Stuttgart

Breitwiesenstr. 20-22
D-70565 Stuttgart

Telefon:

0711-7816-300 (Prof. Dr. V. Claus)
0711-7816-301 (Sekretariat)
0711-7816-330 (FAX)

E-Mail: claus@informatik.uni-stuttgart.de

Inhaltsverzeichnis

1 Einfiihrung

1.1 Der Bericht
1.2 DasProgramm oL

Nachtrag zum Entwurf

2.1 Neue Klassen und Interfaces
2.1.1 Arbeitszeitprofile o L oL
2.1.2 DienstplanErstellbar
2.1.3 Zahler-Interface oL
2.1.4 Druckbar oo

2.2 Allgemeine Konzepte L.
2.2.1 Stationen und Anbindungspunkte.
2.2.2 Untertour
2.2.3 Verkehrsmodul,

Implementierung
3.1 Entwurfsentscheidungen auf Programmiersprachenebene
3.1.1 Allgemeine Konzepte
3.1.2 GUI-Erweiterungen.
3.2 Designentscheidungen,
3.2.1 Fensterauftbau oo Lo
3.2.2 Destruktoren oo
3.3 Umsetzung des Entwurfs in der Implementierung
3.3.1 Personenklassen
3.3.2 Datenhaltungo oL
3.3.3 Konsistenztests oo oL
3.34 Analysedaten
3.3.5 Datenausgabe oo oL
3.4 Probleme beim Umsetzen des Entwurfs.
3.4.1 Unvollstdndige Details im Entwurf
3.4.2 Einfach, aber aufwendig
3.5 Implementierung ausgehend von einem Prototyp
3.6 Verwendung externer Programme: Das Verkehrsmodul
3.7 Erfahrungen mit Java L 0oL
3.7.1 Javas Klassenbibliothek
3.7.2 Entwicklungsumgebung,

oo

10
10
10
12
12
12
12
12
14
18

4 Test 47

4.1 Funktionstest des Gesamtprogramms 47
4.1.1 Szenario 47
4.1.2 Kunden und Dienstwiinsche 48
4.1.3 Touren, Untertouren und Fahrten. 48
4.1.4 Test der Meniipunkte Ressourcen, Ausgabe, Analyse und

Einstellungen o . 48

4.1.5 Probleme unter Windows und JDK1.1.5 49

4.1.6 allgemeine Fehler 49

4.1.7 Erganzungen zum Test 49

4.2 Grenzen des Systems: Test mit grofen Datenmengen 50
4.3 Abgleich mit den Anforderungen 52

5 Architektur des Programms TROSS 56

5.1 Architektur des System TROSS 56

5.2 Graphische Benutzungsoberfliche 56

5.3 Verkehrsmodul 0. 56

5.4 Klassenhierarchie o oo 60

6 Erweiterungsmoglichkeiten 67

6.1 Mogliche Verbesserungen am Programm 67

6.2 Hilfestellungen fiir den Benutzer 67

6.3 Erweiterungsmoglichkeiten o0 68

7 Bedienungsanleitung 69

7.1 Systemvoraussetzungen, 69

7.2 Installation 69

7.3 Grundlegende Konzepte 70
7.3.1 Erweiterbare Listen 70
7.3.2 Eingabedialoge 70

74 Szenario 70
741 Neu e 71
742 Laden 71
743 Speichern L o 71
7.4.4 Szenario zum Masterszenario machen 71
7.4.5 Untermenu Tourszenario 71
7.4.6 Programm beenden. 72

7.5 Kunden e 72
7.5.1 Kundenliste oo 72
7.5.2 Eingabedialoge fiir Dienstwiinsche 74
7.5.3 Dienstwiinsche erfillt? L. 76

7.6 Touren 76
7.6.1 Tourenliste 77
7.6.2 Fahrtenliste oo 80
7.6.3 Fahrten erzeugen 81
7.6.4 Fahrten archivieren. 81
7.6.5 Konsistenzpriffung L. 81

7.7 Ressourceno 82
7.7.1 Mitarbeitero 82

7.7.2 Fahrzeuge 82

7.8 Ausgabe L.
78.1 Tourplan
7.8.2 Dienstplan
7.8.3 Gesamtdienstplan
7.8.4 Angezeigten Plan drucken
7.8.5 Untermenu Pléne drucken

7.9 Analyse
7.9.1 Auslastung Mitarbeiter
7.9.2 Ausfallzeiten
7.9.3 Fahrzeugbesetzung
7.9.4 Auslastung Mitarbeiter drucken
7.9.5 Auslastung Fahrzeuge drucken
7.9.6 Ausfall Mitarbeiter drucken
7.9.7 Ausfall Fahrzeuge drucken

7.10 Einstellungen
7.10.1 Qualifikationen
7.10.2 Arbeitszeitprofile
7.10.3 Fahrzeugtypen
7.10.4 Institutionen
7.10.5 Stationen
7.10.6 Hilfsmittel
7.10.7 Essensarten
7.10.8 Feiertage
7.10.9 Verkehrstool
7.10.10 Entfernungen korrigieren.
7.10.11 Maximale Fahrzeit

8 Projektplanung
8.1 Planung fiir das Projekt Transportoptimierung

8.1.1 Planung des Zeit- und Kostenaufwandes

8.1.2 Meilensteine.
8.1.3 Projektverlauf
8.1.4 Tatsichlicher Zeit- und Kostenaufwand

9 Riickblick
9.1 Zeitplanung oL
9.2 Umfang der Aufgabenstellung

9.3 Zusténdigkeiten und Kompetenzen in der Projektgruppe

9.4 Empfehlungen an zukiinftige Projektgruppen

Literaturverzeichnis

83
83
83
83
83
83
84
84
84
85
85
85
85
85
85
85
85
86
86
86
87
87
87
87
88
88

89
89
89
90
91
93

95
95
96
96
96

98

Kapitel 1

Einfihrung

1.1 Der Bericht

Dieses Dokument ist nicht als alleinstehender Bericht aufzufassen, sondern
kniipft direkt an den Zwischenbericht der Projektgruppe Transportoptimierung
[Pro98] an. Beide Berichte zusammen ergeben einen kontinuierlichen Uberblick
iiber die Arbeit der Projektgruppe von Oktober 1997 bis September 1998. Die
Lektiire dieses Endberichts setzt also teilweise die Kenntnis des Zwischenbe-
richts voraus. Begriffe, die bereits im Zwischenbericht ausfiihrlich eingefiihrt
und definiert wurden, werden hier ohne erneute Definition benutzt. Leser, die
daran interessiert sind, woraus z.B. die praxisnahe Lehrveranstaltungsform der
Projektgruppe im einzelnen besteht, kénnen dies im Zwischenbericht nachlesen.

Der Endbericht setzt dort an, wo der Zwischenbericht endet: Beim Entwurf.
Teile des Entwurfs, die erst nach dem Zwischenbericht fertiggestellt wurden, oder
deren Notwendigkeit sich gar erst wihrend der Implementierungsphase ergab,
sind hier festgehalten. Danach folgt der Bericht iiber die wichtigsten Aspekte der
Projektphasen Implementierung und Test (dem sicherlich nicht die gebiihren-
de Aufmerksamkeit geschenkt wurde, aber Zeitprobleme scheinen offensichtlich
zum Wesen einer Projektgruppe zu gehoren). Eine Ubersicht iiber das entstan-
dene Programm aus Programmierersicht zeigt Kapitel 5 mit einer schematischen
Darstellung der Architektur des Systems, die Benutzerseite beschreibt die Be-
dienungsanleitung in Kapitel 7.

Ein solch langes und aufwendiges Projekt soll natiirlich nicht ohne ein ab-
schlieftendes Fazit bleiben: Moglichkeiten zur Erweiterung des Programms wur-
den zusammengestellt (moglicherweise als Anregung fiir folgende Projektgrup-
pen), dem theoretische Zeitplan wird der tatséchliche Ablauf des Projekts gegen-
iibergestellt und schliefslich fafst ein Riickblick einige gute und weniger gelungene
Aspekte der Projektgruppe zusammen, um daraus Empfehlungen fiir kommende
Projektgruppen (oder ganz allgemein Programmierteams) abzuleiten.

1.2 Das Programm

Eines der Ziele der Projektgruppe war die Erstellung eines Programms zur Ver-
waltung und Planung der sozialen Fahrdienste des DRK in Bad Cannstatt. Wenn
dieses Ziel auch etwas zu hoch gesteckt war (was in diesem Bericht noch aus-

1.2. DAS PROGRAMM 9

fithrlicher geschildert werden wird), ist trotzdem ein Programm entstanden, das
die wichtigsten Funktionen zur Verwaltung und manuellen Organisation der Da-
ten des DRK zur Verfiigung stellt. Uber eine graphische Benutzungsschnittstelle
1aft es sich komfortabel bedienen.

Das Programm tragt den Namen TROSS, was bereits eine gewisse Bedeu-
tung in sich trigt, vor allem jedoch als Abkiirzung zu verstehen ist: TRansport
Organisation for Social Services, oder auch Transport-Organisation fiir Soziale
Serviceanbieter.

Kapitel 2

Nachtrag zum Entwurf

2.1 Neue Klassen und Interfaces

2.1.1 Arbeitszeitprofile

Bei der Einteilung von Mitarbeitern fiir Touren und Fahrten sollte iiberpriift
werden kdnnen, ob der Mitarbeiter zur vorgesehenen Zeit iiberhaupt eingesetzt
werden kann. Dabei soll zum einen beriicksichtigt werden, an welchen Tagen
bzw. zu welchen Zeiten ein Mitarbeiter prinzipiell im Dienst ist, zum anderen
gibt es nicht nur fiir die wochentliche, sondern auch fiir die tégliche Arbeitszeit
Grenzen, so daf nicht immer der bestpassende Mitarbeiter eingesetzt werden
kann.

Im Gesprich mit dem Benutzer am Ende der Entwurfsphase stellte sich daher
die Notwendigkeit heraus, die Mitarbeiter beziiglich ihrer Arbeitszeit zu klassi-
fizieren. Diesem Zweck dienen drei Arten von Arbeitszeitprofilen, deren einzelne
Parameter frei definierbar sind und somit unterschiedlichste Einsatzzeiten be-
schreiben konnen:

Vollzeitkrifte Diese Mitarbeiter sind prinzipiell ,immer* verfiigbar, eine wo-
chentliche sowie eine maximale tigliche Arbeitszeit sind die Grenzen. Dies
sind Soll-Vorgaben, die im Einzelfall durch den Benutzer aufer Kraft ge-
setzt werden konnen.

Tageweise beschiftigte Teilzeitkrifte Solche Mitarbeiter arbeiten nur an
manchen Wochentagen fiir das DRK und/oder nur zu gewissen Zeiten an
diesen Tagen.

Teilzeitkrifte auf Stundenbasis Hierunter fallen Mitarbeiter, die nach
Stunden bezahlt werden und meist eine bestimmte Obergrenze nicht
tiberschreiten diirfen (sogenannte ,,620-Mark-Jobs“). Auch hier muf auf
eine Obergrenze fiir die tigliche Arbeitszeit geachtet werden.

10

2.1. NEUE KLASSEN UND INTERFACES 11

ArbeitszeitProfil

N

[l |

VollzeitProfil TellzeitTageProfil TeilzeitStundenProfil

ArbeitszeitProfil: abstrakt
e Attribute

bezeichnung: String Bezeichner, mit dem verschiedene Arbeitszeitpro-
file identifiziert und auseinandergehalten werden kénnen.

e Methoden

abstrakt art: int Die Unterklassen geben hier jeweils ihre Art zuriick

VollzeitProfil: ArbeitszeitProfil
e Attribute

zeitProWoche: int wochentliche Arbeitszeit in Minuten

maxZeitProTag: int Hochstgrenze fiir die tagliche Arbeitszeit in Minu-
ten

TeilzeitTageProfil: ArbeitszeitProfil
e Attribute

zeitProTag: Zeitspanne|] Fiir jeden Wochentag die Zeitspanne, an der
der Mitarbeiter arbeitet

maxZeitProTag: int Hochstgrenze fiir die tégliche Arbeitszeit in Minu-
ten. Eine Zahl, die fiir alle Wochentage gleichermafsen gilt.

TeilzeitStundenProfil: ArbeitszeitProfil
o Attribute

zeitProMonat: int monatliche Arbeitszeit in Minuten

maxZeitProTag: int Hochstgrenze fiir die tagliche Arbeitszeit in Minu-
ten

Samtliche Werte sind Mufswerte.

Diese drei Arbeitszeitprofile stellen einen Kompromift dar zwischen Erfas-
sung aller Moglichkeiten von Teilzeitarbeit und sinnvollem Aufwand bei der
programminternen Realisierung (und auch der Dateneingabe). Ein Mitarbeiter,
der nur Montags oder Dienstags eingesetzt werden kann, aber eine monatliche
Arbeitszeit von 50 Stunden hat, kann mit den vorliegenden Arbeitszeitprofilen
nicht dargestellt werden. Eine Anndherung koénnte hier durch ein TeilzeitTa-
geProfil erreicht werden, das fiir Montag und Dienstag eine 5,5 Stunden lange
Zeitspanne enthélt.

12 KAPITEL 2. NACHTRAG ZUM ENTWURF

2.1.2 DienstplanErstellbar

Das DienstplanErstellbar-Interface dient als einheitliche Schnittstelle aller Ob-
jekte, fiir die ein Dienstplan erstellt werden kann. Dies sind die Objekte Mitar-
beiter, Fahrzeug und Kunde. Mit dem ,,Dienstplan® fiir Kunden kann der DRK-
Einsatzplaner schnell feststellen, wann bei einem bestimmten Kunden Dienste
verrichtet werden.

Um das DienstplanErstellbar-Interface benutzen zu kénnen, miissen folgende
Methoden implementiert werden:

Fahrt[] dienstplanFahrten(Datumsspanne) Liefert alle Fahrten fiir das
Objekt innerhalb der iibergebenen Datumsspanne, sortiert nach Datum,
zuriick.

String dienstplanName() Liefert einen Namen bzw. eine Bezeichnung fiir
das Objekt zuriick, fiir welches der Plan erstellt wird (z.B. Mitarbeiterna-
me).

String dienstplanBezeichnung() Gibt die Uberschrift zuriick, die der
Dienstplan haben soll.

2.1.3 Zahler-Interface

Das Zahlerinterface legt eine einheitliche Schnittstelle fiir alle Objekte fest, die
als Rechnungsempfinger in Frage kommen. Dazu stehen folgende Methoden zur
Verfiigung:

String zahlerName() Gibt den nicht notwendigerweise eindeutigen Namen
des Zahlers zuriick.

BankVerbindung|] zahlerBankVerbindungen() Gibt alle Bankverbindun-
gen des Zahlers zuriick.

2.1.4 Druckbar

Fiir den mehrseitigen Ausdruck benétigt das druckbare Component einen Print-
job, um den Seitenvorschub selbst vornehmen zu kénnen. Wird das Interface
Druckbar implementiert, ist das implementierende Component fiir den Aus-
druck vollig selbstverantwortlich, d.h. es bekommt nur einen PrintJob und muf
daraus nach Bedarf Graphics-Objekte erzeugen und freigeben. Insbesondere ist
darauf zu achten, daf auch das letzte Graphics-Objekt wieder mit dispose()
freigegeben wird.

Um das DienstplanErstellbar-Interface benutzen zu kénnen, muf folgende
Methode implementiert werden:

void drucken(PrintJob) initiert den evtl. mehrseitigen Ausdruck des imple-
mentierenden Components.

2.2 Allgemeine Konzepte

2.2.1 Stationen und Anbindungspunkte

Um Adressen fiir Anfragen an das Verkehrstool benutzen zu kénnen, hat jede
Station eine Referenz auf einen Anbindungspunkt. Dies ist eine Adresse im For-

2.2. ALLGEMEINE KONZEPTE 13

mat des Verkehrstools, die entweder mit der Adresse der Station {ibereinstimmt
oder in deren Nihe liegt, falls die Stationsadresse selbst im Verkehrstool nicht
bekannt ist.

Da manche Adressen recht oft bendtigt werden (z.B. Schulen, zu denen eine
grofere Anzahl Kunden beférdert werden soll), wurde als Eingabehilfe das Kon-
zept der benannten Stationen entwickelt. Jeder Station kann optional ein Name
zugewiesen werden, iiber den dann spéter ohne erneute Eingabe der gesamten
Adresse auf diese Station zuriickgegriffen werden kann.

Die im Szenario gespeicherten Stationen lassen sich dadurch in zwei Gruppen
einteilen:

1. Stationen ohne Namen stehen fiir beliebige einmalige Adressen. Dabei
kénnen mehrere Stationsobjekte zu einer Adresse existieren, falls z.B. zwei
Kunden im selben Haus wohnen oder ein Kunde mehrere Dienstwiinsche
mit derselben Adresse hat.

2. Benannte Stationen sind iiber ihren Namen eindeutig unterscheidbar. Ha-
ben z.B. mehrere Kunden dasselbe Ziel, verweisen zwei Dienstwiinsche auf
dieselbe benannte Station.

Die Eingabe von Stationen geht folgendermafien vor sich:
o Der Benutzer gibt die Adresse einer Station ein.

e Hierzu kann er aus den bereits im System bekannten benannten Stationen
auswéhlen. Name und Adresse der gewdhlten Station werden ggf. in die
Eingabemaske eingetragen.

e Beendet der Benutzer die Eingabe, wird zunéichst ein Anbindungspunkt
zur Station ermittelt. Ist die Station benannt und bereits im Szenario be-
kannt, wird diese bekannte Station mitsamt ihrem bereits bekannten An-
bindungspunkt benutzt. Ansonsten muf der Anbindungspunkt mit Hilfe
des Verkehrsmoduls bestimmt werden.

Hierzu wird die eingegebene Adresse beim Verkehrstool angefragt, welches
einen, keinen oder mehrere alternative Anbindungspunkte zuriickgibt. Die
letzten beiden Félle erfordern eine Riickfrage beim Benutzer. Dieser hat
die Moglichkeit, aus den angegebenen Alternativen eine zu wéahlen, oder
er gibt eine weitere Adresse fiir den Anbindungspunkt ein, die wiederum
vom Verkehrstool gepriift wird.

Konnte der Station auf diese Weise ein Anbindungspunkt zugeordnet wer-
den, mufs noch unterschieden werden, ob es sich um eine benannte Station
handelt:

— Ist kein Name angegeben, wird eine neue Station erzeugt und im
Dienstwunsch gespeichert.

— Wurde ein Name eingegeben, wird diese Station dem Szenario gemel-
det. Sollte ein Konflikt mit einer bereits bekannten Station auftreten,
wird der Benutzer dariiber informiert und kann seine Eingabe &ndern.
Sonst wird eine neue benannte Station angelegt, der Dienstwunsch
speichert nur eine Referenz darauf.

14 KAPITEL 2. NACHTRAG ZUM ENTWURF

2.2.2 Untertour

Die Schnittstelle der Untertour hat sich nachtriglich geéindert. Einzelne Ande-
rungen werden in den folgenden Abschnitten beschrieben.

e Attribute

nummer : String die Nummer der Untertour (a . ..zz).

bezeichnung : String Eine frei vergebbare Bezeichnung fiir die Unter-
tour. Die Bezeichnungen der Untertouren einer Tour miissen verschie-
den sein.

tour : Tour ein Verweis auf die Tour

teilWuensche : Vector (of TeilDienstwunsch) Hier werden alle Teil-
dienstwiinsche gespeichert, die in dieser Untertour erfiillt werden sol-
len.

anfangsStation : Station Gibt eine Station an, die immer als erste an-
gefahren werden muf, z.B. die Kiiche bei einer Essen-Tour.

endStation : Station . Gibt eine Station an, die unbedingt als letzte
angefahren werden muf.

anfangsZeit : Uhrzeit Die Zeit, zu der die Untertour beginnt.
endZeit : Uhrzeit Die Zeit, zu der die Tour beendet wird.

halte : Vector (of UntertourHalt) In diesem Vector steht, in welcher
Reihenfolge welche Halte anzufahren sind.

fahrten : Vector (of Fahrt) Die erstellten Fahrten zu der Untertour
sortiert nach Datum.

e Methoden

anfangsUndEndZeitAnpassen() Wenn die anfangsZeit nach
der ankunftsZeit des ersten Haltes liegt, wird sie auf diese
ankunftsZeit gesetzt. Entsprechend wird mit der endZeit und
der abfahrtsZeit des letzten Haltes verfahren.

sucheErsteFahrt(Datum) : Fahrt liefert die erste Fahrt, die an oder
nach dem angegebenen Datum stattfindet.

fahrtenInZeitraum (Zeitraum) : Fahrt[] liefert ein Array aller Fahr-
ten im angegebenen Zeitraum. Noch nicht erzeugte Fahrten werden
vorher erstellt.

fahrt AnTag(Datum) : Fahrt liefert die Fahrt an dem angegebenen
Tag zuriick, wenn es sie schon gibt. Sonst wird null zuriickgegeben.

erstelleFahrten(Zeitraum) : Fahrt[] erstellt noch fehlende Fahrten
im angegebenen Zeitraum und gibt diese auch zuriick, um sie z.B.
dem Benutzer zur Kontrolle anzeigen zu konnen.

fahrtenSchreibenUndLoeschen(Datum, PrintWriter) Wenn es ei-
ne Fahrt an dem angegebenen Tag gibt, wird eine Info-Zeile in den
PrintWriter geschrieben und die Fahrt anschlieftend gel6scht.

loescheFahrtenAb(Datum) 16scht alle Fahrten ab dem angegebenen
Datum, ohne sie zu archivieren.

2.2. ALLGEMEINE KONZEPTE 15

fahrdauer(int von, int nach) liefert die Fahrzeit in Minuten zwischen
den zwei durch ihre Position angegebenen Halten. Dies ist die Diffe-
renz von Ankunftszeit bei nach und Abfahrtszeit bei von.

aufenthaltsDauer(int) Liefert die Aufenthaltszeit in Minuten an dem
durch seine Position gegebenen Halt.

aendereAufenthaltsDauer(int, int) Andert die Aufenthaltsdauer an
dem angegebenen Halt um das als zweites Argument angegebene Del-
ta.

aendereAufenthaltsDauerAbsolut(int, int) Setzt die Aufenthalts-
dauer an dem angegebenen Halt auf die als zweites Argument an-
gegebene Dauer.

pruefeHalteReihenfolge(Vector) : boolean Priift, ob die Reihenfol-
ge der Stationen im Vector mit der von den Dienstwiinschen der
Untertour vorgesehenen Reihenfolgeiibereinstimmt.

korrigiereFahrzeiten(Vector) Setzt die Fahrzeiten zwischen den Hal-
ten im angegebenen Vector auf die vom Verkehrsmodul geliefer-
ten Werte. An- und Abfahrtszeiten werden entsprechend angepafst.
Klappt dies nicht (weil z.B. Map&Guide nicht 14uft), wird eineUn-
bekannteFahrzeitenException, die die fehlenden Strecken enthilt, ge-
worfen.

verschiebeHalt (int, int) Verschiebt den Halt an der angegebenen Po-
sition (erstes Argument) an eine neue Position (zweites Argument).
Alle Dienstwiinsche an dem Halt werden mit verschoben. Gibt es an
der angegebenen Position schon einen Halt mit der gleichen Station,
werden die beiden Halte verschmolzen.

verschiebeDienstwunsch(Dienstwunsch, int, int) Verschiebt einen
Dienstwunsch aus dem UntertourHalt an der alten Position (zwei-
tes Argument) zur neuen Position (drittes Argument). Gibt es an
dieser Position schon einen Halt mit der Station des zu verschieben-
den Dienstwunsches, wird der Dienstwunsch an diesem Halt erfiillt,
ansonsten wird ein neuer UntertourHalt angelegt.

dienstwuensche() : Dienstwunsch[] Liefert ein Feld mit den Dienst-
wiinschen, die sich aus den Teildienstwiinschen ergeben.

teilDienstwunschHinzufuegen(TeilDienstwunsch) Nimmt den Teil-
Dienstwunsch mit seinen Stationen zur Untertour hinzu. Bei einer
Riickfahrt wird die Stationenfolge umgedreht.
Um fiir den Benutzer aufwendige Verschiebungen méglichst zu ver-
meiden, wird eine gemeinsame Station von Teildienstwunsch und bis-
heriger Untertour gesucht. Gibt es eine solche Station, werden alle
Stationen des Teildienstwunsches vor dieser Station am Anfang der
Untertour angefiigt, und der Halt mit der gleiche Station wird ge-
meinsam verwendet. Die restlichen Stationen — alle, wenn es keine
gemeinsame Station gibt — werden an das Ende angehéngt.
Bei der anschliefsenden Korrektur der Fahrzeiten kann es zu Fehler-
meldungen des Verkehrsmoduls kommen, die weitergereicht werden.
Ob Rhythmen oder Wochentage passen, wird hier nicht gepriift, da
das Aufgabe der Konsistenzpriifung ist.

16 KAPITEL 2. NACHTRAG ZUM ENTWURF

teilDienstwunschEntfernen(TeilDienstwunsch) Entfernt den ange-
gebenen TeilDienstwunsch aus der Untertour. War er der letzte Teil
eines Dienstwunsches in der Untertour, so werden auch alle nicht
mehr bendtigten UntertourHalte entfernt.

wunschEntfernen(Dienstwunsch) Entfernt alle Teildienstwiinsche,
die zu dem angegebenen Dienstwunsch gehoren, aus der Untertour.
Die Fahrten bleiben erhalten, sollten aber geloscht werden (die Be-
nutzungsoberfliche erledigt dies automatisch: Nach Anderungen an
einer Tour oder Untertour werden alle noch nicht erfolgten Fahrten
(deren Datum in der Zukunft liegt) geloscht).

laenge() : int Die Linge der Untertour in Metern. Beinhaltet auch
Anfangs- und Endstation.

2.2.2.1 TeilDienstwunsch

Im Entwurf waren die Untertouren als einfache Datenklassen gedacht, denen
die Stationen mit den Ankunfts- und Abfahrtszeiten einfach iibergeben werden.
Wiéhrend der Implementierung kam dann der Wunsch auf, Dienstwiinsche in
die Untertour einzufiigen. Da ein Dienstwunsch aber unterschiedliche Rhythmen
haben kann, und unter Umstédnden auch Riickfahrten enthilt, ist nicht klar, wie
ein neuer Dienstwunsch die bestehende Stationenfolge verindern soll. Deshalb
wurde die Klasse TeilDienstwunsch eingefiihrt. Ein TeilDienstwunsch ist ein
Teil eines Dienstwunsches, der genau einen Rhythmus hat, an einem Wochentag
stattfindet und entweder Hin- oder Riickfahrt ist.

e Attribute

wunsch : Dienstwunsch der Dienstwunsch, zu dem dieser TeilDienst-
wunsch gehort

wochentag : int der Wochentag
rhythmus : Rhythmus ein Verweis auf den Rhythmus

hinFahrt : boolean gibt an, ob der TeilDienstwunsch zu einer Hin-Fahrt
gehort. Gibt es von einem Dienstwunsch keine Riickfahrten, ist dieses
Feld true.

e Methoden

beginn() : Zeitspanne liefert die Zeitspanne, innerhalb der der zugehd-
rige Dienstwunsch anfangen soll.

dauer(Station) : int liefert die Aufenthaltsdauer an der angegebenen
Station.

2.2.2.2 UntertourHalt

Ein weiteres Problem war die Zuordnung der Teildienstwiinsche zu den Statio-
nen. Wenn eine Station doppelt in einer Untertour vorkommt, kdnnen die Teil-
dienstwiinsche nicht per Algorithmus auf die Stationen verteilt werden, da der
Benutzer eventuell eine andere Verteilung modchte. Deshalb wurden die Eintrage
im Vector stationen um die dort behandelten Teildienstwiinsche erweitert. Zu-
dem wurde das Attribut umbenannt in halte und ist ein Vector mit Elementen
vom Typ UntertourHalt:

2.2. ALLGEMEINE KONZEPTE 17

e Erbt von
StationMitZeiten
e Attribute

wuensche : Vector enthilt die Dienstwiinsche, die an dem Halt behan-
delt werden. Damit sind auch die Teildienstwiinsche festgelegt, da
alle Teildienstwiinsche eines Dienstwunsches in einer Untertour im-
mer gleich behandelt werden.

2.2.2.3 StationMitZeiten

Eine Record-Klasse, von der UntertourHalt erbt.

e Attribute

station : Station die Station, zu der Zeiten gespeichert werden sollen.
ankunftsZeit : Uhrzeit Die Ankunftszeit an der Station.
abfahrtsZeit : Uhrzeit Die Abfahrtszeit an der Station.

2.2.2.4 Fahrten

Wihrend der Implementierung kam die Frage auf, was mit Dienstwiinschen ge-
schehen soll, die nicht sofort wirksam werden, oder an denen nur Anderungen
vorgenommen wurden. Da, die meisten Anderungen vermutlich zu diesen Grup-
pen gehoren, mufte ein einfach aufsetzbares Konzept gesucht werden.

Die beste Moglichkeit wire gewesen, den Untertouren und unter Umstédnden
auch den Touren eine Datumsspanne zu geben, wihrend der sie giiltig sind.
Dies héatte jedoch umfangreiche Verdnderungen am gesamten System zur Folge
gehabt, weshalb eine andere Losung gesucht wurde.

Das System kennt von einer Untertour immer nur eine Version. Der Benutzer
muf sich geplante Anderungen extra aufschreiben und zum gegebenen Zeit-
punkt einfiigen. Um feststellen zu kdnnen, welche Wiinsche eines Kunden er-
fiillt wurden, werden alle Fahrten, bevor sie geléscht werden, in eine Log-Datei
geschrieben, die von TROSS nicht weiter verwendet wird, aber z.B. in eine Ta-
bellenkalkulation geladen werden kann. In dieser Datei werden fiir jede statt-
gefundene Fahrt alle Halte mit den jeweils betroffenen Kunden gespeichert. Je
nach Dienstart werden auch noch zusétzliche Informationen gespeichert, wie
zum Beispiel bei einem Essens-Dienstwunsch Art und Anzahl der Essen. Durch
dieses Auslagern wird auch der aktive Datenbestand von TROSS immer wieder
reduziert.

Die Fahrt hat nun folgenden Aufbau:

e Attribute

untertour : Untertour die Untertour, zu der die Fahrt gehort
datum : Datum

anfangsZeit : Uhrzeit

endZeit : Uhrzeit

18

KAPITEL 2. NACHTRAG ZUM ENTWURF

wuensche : Vector ein Vector mit den tatsichlich erfiillten Dienstwiin-
schen.

fahrzeug : Fahrzeug
ersterMitarbeiter : Mitarbeiter

zweiterMitarbeiter : Mitarbeiter

In der Log-Datei wird fiir jeden Halt und jeden dort bedienten Dienstwunsch
eine Zeile mit folgenden Inhalten angelegt:

Das Datum (z.B. 24.12.1997)
Die Nummer der Untertour (z.B. 2b)

Die Kurzbezeichnung der Dienstart der Tour, und damit aller ihrer Dienst-
wiinsche (z.B. Schule)

Die Bezeichnung des Fahrzeugs (z.B. 123)

Der erste Mitarbeiter (z.B. "Zivi, Zacharias; 12")
Der zweite Mitarbeiter (z.B. "")

Uhrzeit der Ankunft (z.B. 16:23)

Die Adresse (z.B. "Die Strasse 12, 70123 Stuttgart")
Der Kunde (z.B. "Sparwasser, Emma; 11")

Bei einem Essensdienstwunsch die Anzahl der bestellten Essen je Essensart
(z.B. 2*Diit)

Die Bemerkung vom Tourplan

Die einzelnen Eintrage sind durch Tabulatoren getrennt, einige Eintrige wer-
den durch Hochkommata vor dem Auftrennen geschiitzt.

2.2.3 Verkehrsmodul

An der Schnittstelle zum Verkehrsmodul gab es Anderungen, die zu folgendem
Aufbau fiihrten:

Attribute

anbindungsPunkte : Hashtable in dieser Hashtabelle werden die
Anbindungspunkte gespeichert. Schliissel sind die Map&Guide-
Stationen, die Daten sind AnbindungsPunkte.

entfernungen : EntfernungsTabelle
MapAndGuidePfad : String der Pfad zu mg.exe.

MapAndGuideAuftragsVerzeichnis : String Das Verzeichnis, in
dem Map& Guide nach Auftrags-Dateien sucht, z.B. C:\MG41\Jobs.

timeOut : int die Zeit in Sekunden, die auf eine Antwort von
Map&Guide gewartet werden soll.

2.2. ALLGEMEINE KONZEPTE 19

e Methoden

speichern(ObjectOutputStream) speichert alle Daten des Verkehrs-
moduls.

laden(ObjectInputStream) lidt die Daten des Verkehrsmoduls aus
dem angegebenen Stream.

starteVerkehrstool() : Moeglicher AnbindungsPunkt][] startet
Map&Guide und gibt ein Feld mit noch nicht korrekt angebun-
denen Stationen zuriick.

verwendeVerkehrstool : Moeglicher AnbindungsPunkt[] wie
starteVerkehrstool, nur daff Map&Guide nicht neu gestartet
wird.

anbindungInOrdnung(Moeglicher AnbindungsPunkt) : boolean
gibt true zurlick, wenn die Anbindung in Ordnung (sie-
he 3.6) ist oder das Verkehrstool nicht lduft. Ersetzt
sucheMoeglicheAnbindungsPunkte.

erstelleAnbindungsPunkt(Moeglicher AnbindungsPunkt) :
AnbindungsPunkt Erstellt einen AnbindungsPunkt. Ist der
mogliche Anbindungspunkt nicht gepriift worden oder ist er nicht in
Ordnung, wird ein Dummy erstellt.

entferneAnbindungsPunkt(AnbindungsPunkt) macht den angege-
benen Anbindungspunkt ungiiltig und entfernt ihn (wenn er nicht
nochmal verwendet wird) aus den Tabellen.

Die Abfrage- und Vorbereitungs-Anfragen haben sich (von der Schnittstelle
her) nicht verdndert und wurden deshalb nicht wieder aufgefiihrt.

Um die im Cache vorhandenen Entfernungen beriicksichtigen zu kénnen, wur-
de der Algorithmus der bereiteVor-Methode, die alle Entfernungen zwischen
den angegebenen Knoten ermittelt und in der Entfernungstabelle speichert, ge-
dndert.

Dabei ist N die Menge der Knoten, [N| also die Anzahl der Knoten und N[0]
der erste Knoten. Jeder Knoten wird als Menge von Kanten gedacht, sodaff [n|
die Anzahl der von Knoten n € N ausgehenden Kanten angibt. Diese werden
in einer Record-Schreibweise als n.Kanten bezeichnet, n.Kanten[0] ist also die
(in irgendeiner Hinsicht) erste der vom Knoten n ausgehenden Kanten.

proc bereiteVor(N : Menge von Knoten)
{
while (n = sucheStartKnoten()) {
fahreNach(n) ;
while (n = naechsterKnoten(n)) {
fahreNach(n) ;
}
}
teilAuftragStarten();
}

proc sucheStartKnoten() {
if (3 n € N mit |n| ungerade) {

20 KAPITEL 2. NACHTRAG ZUM ENTWURF

return n;
} else if (|N] == 0) {
return null;
} else {
return N[0];
}
}

func Knoten naechsterKnoten(Knoten n) {
if (jn|] == 0) return null;
return n.Kanten[0] ;

}

proc fahreNach(Knoten n) {
schreibt den Knoten in die Auftrags-Datei
wenn schon 20 Knoten geschrieben wurden {
teilAuftragStarten();
X
X

proc teilAuftragStarten() {
uebergibt die Datei an Map&Guide
warte auf Map&Guide
werte das Ergebnis aus

3

Da die momentane Implementierung dieses Algorithmus’ auf naheliegende Op-
timierungsansétze verzichtet, ergibt sich bereits fiir die Suche nach dem néchsten
Startknoten eine Laufzeit von O(|gesuchte Kanten|?) (Ermittlung der Kanten-
anzahl per Schleife, erst danach Vergleich mit 0). Deswegen ist dieser Algorith-
mus mit einem Aufwand von O(n*) auch langsamer als der alte, im Kapitel
Feinentwurf des Zwischenberichts vorgestellte, mit einem Aufwand von O(n?)
(Durch kleine Optimierungen koénnte dies auf O(n -m) € O(n?) verbessert wer-
den, n=Anzahl Knoten, m=Anzahl Kanten). In der Praxis werden aber die
gesparten Kanten durch den (nur im neuen Algorithmus beriicksichtigten) Ca-
che den Ausschlag geben, da die Kommunikation mit Map&Guide lange dauert
(nach bisheriger Erfahrung midestens 5 Sekunden).

Fiir alle 11175 Entfernungen zwischen 150 Knoten, miissen etwa 559 Anfragen
an Map& Guide gestellt werden. Die Zeit dafiir wurde nicht gestoppt, diirfte aber
in der Grofsenordnung von 2 Stunden liegen.

Allerdings wird diese Methode in der aktuellen Implementierung gar nicht ver-
wendet (eine automatische Optimierung ist nicht Bestandteil des Programms).
Das System in seiner momentanen Gestalt bendtigt Entfernungen nur zwischen
den aufeinanderfolgenden Stationen einer Untertour. Diese Kantenmenge 1dft
sich fiir normale Touren (mit nicht mehr als 20 Stationen) in etwa 15 Sekunden
bearbeiten.

2.2. ALLGEMEINE KONZEPTE 21

2.2.3.1 Moeglicher AnbindungsPunkt

Objekte dieser Klasse werden zum Erstellen von Anbindungspunkten fiir Sta-
tionen benotigt.

e Attribute

station : Station ein Verweis auf die Station.
strasse : String Der Name der Strafse.
hausNr : String Die Hausnummer.
postLeitZahl : String Die Postleitzahl.
ortsname : String Der Name des Ortes.

MGStation : String Der String, der an Map&Guide iibergeben werden
soll. Kann null sein.

korrekturListe : String|[] Die von Map&Guide gelieferten ,Alternati-
ven“.

e Methoden

MGStation() : String Gibt den String zuriick, der an Map&Guide
iibergeben werden soll. Wurde MGStation nicht gesetzt wird das Er-
gebnis von standardMGStation() zuriickgegeben.

istInOrdnung() : boolean Gibt true zuriick gdw. in der
korrekturListe genau ein Eintrag enthalten ist.

standardM GStation() : String Liefert "Orte,"+ postLeitZahl + " +
ortsName + ",:"+ strasse + ’’ + hausNr.
2.2.3.2 AnbindungsPunkt

Zwischen Paaren von Anbindungspunkten speichert das Verkehrsmodul Entfer-
nungen und Fahrzeiten.

e Attribute

MGStation : String Der Ortsbezeichner fiir Map& Guide.

anzahlVerwendungen : int gibt an, wie oft dieser Anbindungspunkt
verwendet wird.

e Methoden

istDummy() : boolean Gibt true zuriick, wenn der Anbindungspunkt
kein von Map&Guide gepriifter Anbindungspunkt ist (Verkehrstool
wird nicht verwendet).

2.2.3.3 EntfernungsTabelle

In einer Instanz dieser Klasse werden die Entfernungen zwischen den Anbin-
dungspunkten gespeichert.

e Attribute

22 KAPITEL 2. NACHTRAG ZUM ENTWURF

tabelle : Hashtable In dieser Tabelle werden Paaren von Anbindungs-
punkten EntfernungsTabellenEintrige zugeordnet. Die Tabelle ist
symmetrisch.

e Methoden

setzeEintrag (AnbindungsPunkt von, AnbindungsPunkt nach,
int fahrdauer, int entfernung, boolean vonBenutzer) setzt den
Eintrag in der Entfernungstabelle.

eintrag(AnbindungsPunkt, AnbindungsPunkt) : Entfernungs-
TabellenEintrag liefert den Eintrag zu den beiden Anbindungs-
punkten oder null.

entferneEintraegeMit AnbindungsPunkt(AnbindungsPunkt)
Entfernt alle Eintrage mit dem angegebenen AnbindungsPunkt aus
der Tabelle.

2.2.3.4 EntfernungsTabellenEintrag
Ein Eintrag in der Hashtabelle tabelle einer EntfernungsTabelle.

e Attribute

fahrdauer : int die Fahrdauer in Minuten.
entfernung : int die Entfernung in Kilometern.

vonBenutzer : boolean true, wenn der Eintrag vom Benutzer gesetzt
wurde und nicht vom Verkehrstool stammt.

Kapitel 3

Implementierung

3.1 Entwurfsentscheidungen auf Programmier-
sprachenebene

3.1.1 Allgemeine Konzepte
3.1.1.1 Sortieren und Sortierbarkeit

Da Java kein Konzept fiir sortierbare Objekte bietet, mufste ein solches von
der Projektgruppe selbst entworfen und implementiert werden. Um Klassen wie
selbstsortierende Listen zu realisieren, wurden zwei Interfaces definiert, die von
allen Klassen implementiert werden miissen, deren Instanzen in einer solchen
Liste gespeichert bzw. angezeigt werden sollen:

Comparable Vergleichbare Objekte implementieren die Methode compareTo
nach dem Vorbild des JDK. Leider konnen die fertigen Java-Klassen dieses
Interface nicht mehr implementieren, selbst wenn sie eine entsprechende
Methode besitzen.

ListenElement Elemente, die in einer selbstsortierenden Liste von der gra-
phischen Benutzungsoberfliche dargestellt werden sollen, implementieren
zusétzlich zum Interface Comparable die Methode listenText, die eine
textuelle Darstellung des Objekts fiir die Liste liefert.

Im Laufe der Implementierung stellte sich heraus, daf es die Performance von
Java nicht zuldft, umfangreichere Listen vor jedem Anzeigen neu zu sortieren.
Deswegen wurden umfangreiche dynamischen Arrays der Klasse Szenario von
der Klasse java.util.Vector auf eine eigene Klasse TRO.SortierterVektor
umgestellt. Mit den oben beschrieben Interfaces konnte eine automatische Sor-
tierung (durch binéres Einfligen) leicht erfolgen, und durch die Anpassung der
Schnittstelle des selbstsortierenden Arrays an die von java.util.Vector waren
in den Datenklassen praktisch keine zusétzlichen Verdnderungen erforderlich.

3.1.1.2 Datum und Zeit

Die Verwaltung von Kalenderdaten und Uhrzeiten wurde zwischen den Java-
Versionen JDK 1.0 und JDK 1.1 erheblich verdndert. In der aktuellen Klas-
senbibliothek existiert eine Klasse, die beide Funktionalititen vereinen soll. Da

23

24 KAPITEL 3. IMPLEMENTIERUNG

die Konzepte dieser Datums- und Zeitverwaltung der Projektgruppe zum einen
nicht gut durchdacht und daher schlecht handhabbar erschienen, zum anderen
die vorliegende Version des JDK noch offensichtliche Fehler enthielt, die sich
beim Umgang mit Daten und Zeiten bemerkbar machten, wurden eigene Klas-
sen fiir Uhrzeit und Datum implementiert, die im wesentlichen unabhingig vom
JDK arbeiten und nur fiir einige komplexe Berechnungsfunktionen auf dessen
Mboglichkeiten zuriickgreifen. Ebenso lassen die von Java zur Verfiigung gestell-
ten Datums- und Zeitklassen eine Funktion zum Uberpriifen, ob ein Datum bzw.
eine Uhrzeit sinnvoll eingegeben wurde, vermissen. Da die Implementierung ei-
ner solchen Priiffunktion sich als sehr komplex herausgestellt hat, und nur mit
erheblichen Aufwand realisiert werden konnte, wurde im Hinblick auf die knap-
pe Zeit darauf verzichtet. Auf falsche Eingaben eines Datums oder einer Uhrzeit
wird nun mit der von Java vorgegebenen Methodik reagiert, nach der die Ein-
gabe in eine sinnvolle iiberfiihrt wird. So wird z.B. auf die Eingabe ,35.13.1998*
nicht mit einer Fehlermeldung reagiert, sondern diese stillschweigend von Java
in das néchste sinnvolle, in diesem Falle den ,,4.1.1999“ iiberfiihrt.

3.1.2 GUI-Erweiterungen

Die graphische Benutzungsoberfliche wurde stark modular konzipiert, um den
Entwicklungsaufwand moglichst gering zu halten. Alle mehrfach bené6tigten
Oberfléchenelemente wurden als eigene Klassen realisiert, die dann zur allgemei-
nen Verwendung fiir die restliche Benutzungsoberfliche zur Verfligung stehen.
Hier sind insbesondere zu nennen:

e cinfache und zusammengesetzte Eingabefelder fiir haufig bendtigte Da-
tentypen. Diese konvertieren selbstdndig zwischen den Datenobjekten und
den in Javas Textfeldern ein- und ausgegebenen Strings und kénnen dabei
gleich Typ- und Wertebereichspriifungen vornehmen.

Analog zu den Datenklassen setzen sich die zugehorigen Eingabefelder aus
anderen Eingabefeldern niedrigerer Komplexitit zusammen:

— ganze Zahlen

— Datum, Uhrzeit

— Datumsspanne, Zeitspanne

— Stationen

— Personendaten (die wiederum nur einen Teil der Daten eines Kunden
oder Mitarbeiters ausmachen)

— etc.
e Dialogriimpfe fiir die wichtigsten Grundfunktionen:

— Zuweisen von Tastendriicken an Buttons und andere Bedienelemente
(TastaturDialog)

— Eingabedialoge, die mit ,,OK* bestétigt oder mit ,Abbruch® abgebro-
chen werden kénnen (0OKCancelDialog)

— Umfangreiche Eingabemasken, die nach dem Vorbild von Register-
karten zwischen verschiedenen, thematisch zusammengefafsten Ein-
gaberegionen umschalten kénnen (RegisterDialog)

3.1. ENTWURFSENTSCHEIDUNGEN AUF PROGRAMMIERSPRACHENEBENE25

3.1.2.1 Typisierte Eingabefelder

Da Javas Klassenbibliothek keinerlei Unterstiitzung fiir typisierte Eingabefelder
bietet, wurden fiir das Projekt TROSS zusitzliche Eingabefelder fiir die Datenty-
pen Integer und Datum geschaffen, die die Konvertierung in Strings selbstindig
vornehmen. Aus diesen elementaren Eingabefeldern wurden komplexere zusam-
mengestellt (um z.B. Zeitrdume einzugeben), die als fertige Module wie einfache
Textfelder in die Oberfliche integriert werden kdnnen.

Das Auslesen und Setzen von Eingabewerten zusammengesetzter Dialoge soll
atomar erfolgen: Kann ein Feld wegen fehlerhafter Eingabe nicht ausgewertet
werden, diirfen auch die Werte der anderen Felder noch nicht propagiert wer-
den, sondern es muf ein Riicksprung zur Eingabe erfolgen. Auch fiir solche
kombinierten Konsistenzpriifungen stellt Java keine Unterstiitzung bereitstellt.
Deshalb wurde in die neuen Eingabefeld-Klassen ein Mechanismus integriert,
der ohne grofsen Aufwand fiir den Aufrufer nicht nur die Atomaritit des Ausle-
sevorgangs sicherstellt, sondern bei Fehlern im Eingabeformat auch eine prazise
Riickmeldung an den Benutzer erlaubt.

Hierbei wird in der Art des in der Transaktionsverarbeitung eingesetzten
Zwei-Phasen-Commit-Protokolls vorgegangen [BN97]:

1. Ein komplexes Eingabeobjekt (Dialog oder zusammengesetztes Eingabe-
feld) stellt zunéchst den ,Ready-to-Commit“-Status sicher, indem es alle
untergeordneten Eingabefelder zum Auslesen der Eingabewerte auffordert.
Jedem Teilfeld wird hierbei eine Bezeichnung mitgegeben, mit der im Falle
eines Auslese-Fehlers dem Benutzer genau mitgeteilt werden kann, welche
seiner Eingaben unkorrekt war bzw. ein falsches Format hatte.

2. Konnten alle Eingaben in die passenden Datentypen umgesetzt werden,
werden in der zweiten Phase tatséchlich die Werte in den Datenstrukturen
gesetzt.

Dieses synchronisierte Setzen von Werten gilt allerdings nur fiir direkt ein-
gegebene Werte. Anderungen in Listen (wie in 3.1.2.2 und 3.1.2.5 beschrieben)
werden direkt nach deren Bestétigung in den Datenobjekten durchgefiihrt, da
die obige Vorgehensweise hier noch deutlich komplizierter umzusetzen wére.

3.1.2.2 Auswahl aus Listen

Eine haufige Aktion bei der Arbeit mit der graphischen Benutzungsoberfliche
stellt die Auswahl eines oder mehrerer Elemente aus einer Menge dar.

e Zur Auswahl genau eines Elements dienen herunterklappende Auswahlli-
sten, die jeweils nur das gewéahlte Element zeigen (Java nennt diese ,,Choi-
ce®, unter MS Windows sind sie als ,,Combobox* bekannt).

Da nicht in jedem Fall eine Auswahl aus der angebotenen Liste obligato-
risch ist (z.B. ist eine Tour auch ohne Angabe der Soll-Mitarbeiter giiltig),
bietet die Auswahlliste gegebenenfalls ein Dummy-Element ,Keine Aus-
wahl“ an erster Stelle an, nach dessen Auswahl die zugehorige Variable
auf null gesetzt wird.

e Die Auswahl mehrerer Elemente, also einer Teilmenge, geschieht je nach
Grofse auf zwei unterschiedliche Arten:

26 KAPITEL 3. IMPLEMENTIERUNG

— Kleinere Listen (z.B. mogliche Qualifikationen der Mitarbeiter), bei
denen auch der Uberblick iiber die nicht gewihlten Elemente interes-
sant ist, werden komplett dargestellt (bzw. ein mehrelementiger Aus-
schnitt mit Scrollbalken). Die Auswahl und Abwahl von Elementen
erfolgt durch Mausklick, worauf das gewéhlte Element durch inverse
Darstellung gekennzeichnet wird.

— Von langen Listen werden nur die momentan ausgewéhlten Elemente
in einer eigenen Liste présentiert. Uber einen Button kann ein eigenes
Dialogfenster gedffnet werden, das die Verdnderung der Teilmenge
durch Auswahl aus der Gesamtmenge erlaubt.

3.1.2.3 Eingabedialoge

Der typische Eingabedialog besteht aus einer Menge von Eingabefeldern, Aus-
wahllisten und anderen Oberflichenelementen zur Datenerfassung, sowie den
zwei Buttons ,,OK“ zur Bestiitigung der Eingabe und Ubernahme der Werte und
,2Abbruch“ zur Beendigung des Dialogs, ohne die eingegebenen Werte zu tiber-
nehmen. Die Klasse TRO.GUI.0KCancelDialog bietet diese Grundfunktionali-
tét an. Sdmtliche Eingabedialoge im Programm TROSS erben von dieser Klasse
und besitzen dadurch ohne zusétzliche Programmierung diese zwei grundlegen-
den Buttons, die auch {iber die Tasten Enter bzw. Escape ausgeldst werden
koénnen.

Die Aktivierung eines dieser Buttons ruft die passende Methode der Dialog-
klasse auf, die sich gegebenenfalls um das Auslesen der Werte kiimmert (unter
Benutzung des in 3.1.2.1 beschriebenen zweistufigen Mechanismus’) und dann
den Dialog schliefit.

3.1.2.4 Unterteilte Dialoge (Register)

Da einige Datenobjekte eine Vielzahl an Eingaben erfordern, wurde im Verlauf
der Implementierung bald der Punkt erreicht, an dem die entstehenden Einga-
bemasken nicht mehr vollstandig auf den Bildschirm pafsten. Auch aus Griinden
der Ubersichtlichkeit war hier eine Unterteilung notwendig, die nach dem Prin-
zip der sogenannten ,Registerkarten” erfolgte:

Eine Reihe von Buttons am oberen Rand des Fensters ermoglicht das Um-
schalten zwischen verschiedenen ,Seiten mit thematisch zusammengehorigen
Eingabefeldern. Die Gesamtheit all dieser Seiten ergibt den Eingabedialog, die
Eingabefelder aller Seiten erfassen das zugehorige Datenobjekt in seiner Ge-
samtheit.

Diese Grundfunktionalitit wurde in der Klasse TRO.GUI.RegisterDialog
verwirklicht, so daf alle komplexen Dialoge lediglich davon abgeleitet und in
passende Seiten aufgeteilt werden mufsten.

3.1.2.5 Erweiterbare Listen

Bereits bei der Erstellung des Prototyps der graphischen Benutzungsoberfla-
che hatte sich gezeigt, daff das Programm TROSS eine Vielzahl von Listen
verwaltet, deren Elemente vom Benutzer beliebig gedndert, erweitert und ge-
16scht werden sollen. Um dies sowohl moglichst einfach als auch universell zu
unterstiitzen, wurde die Klasse TRO.GUI.ObjektListePanel geschaffen. Diese

3.2. DESIGNENTSCHEIDUNGEN 27

présentiert sich auf dem Bildschirm als eine geordnete Liste von Objekten mit
den drei Buttons ,Einfiigen“, ,Andern“ und ,Loschen®. Die jeweils individuelle
Funktionalitdt der Buttons wird vom aufrufenden Programmteil zur Verfiigung
gestellt, indem sogenannte ,Listener“~-Objekte definiert werden, wie sie in Javas
AWT an vielen Stellen zum Einsatz kommen, um auf gewisse Ereignisse der
Benutzungsoberfliche kontextspezifisch reagieren zu kénnen.

3.1.2.6 Eingabe von Hashtabellen

Hashtabellen werden an verschiedenen Stellen im Projekt TROSS eingesetzt,
unter anderem zur Speicherung der gewiinschten Mengen verschiedener Essens-
arten. Da es unter den Standardeingabeelementen, die unter Java zur Verfii-
gung stehen, keine Tabellen gibt, sondern nur eindimensionale Listen, mufsten
die Hashtabellen (bzw. Tabellen aller Art) zur Eingabe in ihre einzelnen Dimen-
sionen zerlegt werden: Eine Liste zeigt alle Essensarten an, bei Auswahl einer
Essenart wird die zugehorige Anzahl angezeigt und kann gedndert werden. Un-
erliflich fiir die sinnvolle Bedienung war es hier, auf Anfrage eine Ubersichtsliste
anzuzeigen, die wenigstens in der Ausgabe alle in der Hashtabelle zugeordneten
Objekte tabellenartig anzeigt.

3.2 Designentscheidungen

3.2.1 Fensteraufbau

Da der Aufbau eines Fensters unter Java relativ viel Zeit in Anspruch nimmt
(weil jedesmal die Anordnung aller Elemente berechnet werden muf), wurde
die Moglichkeit diskutiert, einmal getffnete Fenster nur auf dem Bildschirm un-
sichtbar zu machen und fiir weitere Verwendungen zu speichern. Dies hitte zwar
einen Vorteil in der Laufzeit gebracht, wurde aber aus zwei Griinden verworfen:

1. Das Umschreiben aller Dialoge wiire mit erheblichem Aufwand verbunden,
den die zeitliche Situation der Projektgruppe nicht erlaubt.

2. Die meisten Dialoge bekommen die zu bearbeitenden Objekte im Kon-
struktor libergeben, da diese immer gesetzt werden miissen. Soll ein ein-
mal erzeugter Dialog nochmals benutzt werden, miiffiten diese Objekte
mit eigenen Methoden gesetzt werden. Das Dialogfenster miifite bei jeder
erneuten Benutzung Priifungen durchfiihren, ob diese Werte alle gesetzt
wurden und gegebenenfalls Exceptions auslosen, die im aufrufenden Ob-
jekt abgefangen werden miifsten.

Letztlich miiiten also auch alle Aufrufer gedndert werden. Die Projekt-
gruppe entschied sich dafiir, die iibersichtliche Handhabung der Dialogfen-
ster im Programm nicht dafiir zu opfern, Probleme der Laufzeitumgebung
zu kompensieren.

Aufserdem kann das Zeitproblem durch den Einsatz eines Compilers, der Java in
reinen Maschinencode fiir das Zielsystem umsetzt, vermutlich stark relativiert
werden.

28 KAPITEL 3. IMPLEMENTIERUNG

3.2.2 Destruktoren

In Java arbeitet die Speicherverwaltung automatisch und fiir den Programmierer
weitgehend unsichtbar. Neue Objekte werden mit new angefordert, um eine Frei-
gabe braucht sich das Programm nicht zu kiimmern. Diese wird vom Laufzeit-
system erledigt, das in gewissen Abstinden seinen garbage collector aktiviert,
der alle Objekte, die im Programm nicht mehr referenziert werden, aufsammelt
und den zugehorigen Speicher freigibt.

Klassen konnen die Methode finalize implementieren, um externe Ressour-
cen vor dem Loschen des Objekts durch den Garbage collector freizugeben. Im
Projekt TROSS ist es notig, beim Loschen einer Station den zugeordneten An-
bindungspunkt beim Verkehrsmodul abzumelden, damit dieses seine internen
Tabellen so klein wie moglich halten kann.

Ein selbstverwaltetes Abmelden aller geléschten Stationen im Programm wé-
re mit immensem Aufwand verbunden und sehr fehleranféllig. Auferdem wider-
spriche ein solches Vorgehen dem grundsétzlichen Speicherkonzept der Sprache
Java, das oben erldutert wurde.

Leider 1éfst Javas Dokumentation gewisse Zweifel an der Vollstédndigkeit und
Korrektheit der Speicherverwaltung offen: Der Aufruf des Garbage collectors ist
mit folgendem Kommentar versehen:

Runs the garbage collector.

Calling this method suggests that the Java Virtual Machine expend
effort toward recycling unused objects in order to make the memory
they currently occupy available for quick reuse. When control returns
from the method call, the Java Virtual Machine has made its best
effort to recycle all unused objects.

Die Projektgruppe entschied sich dennoch, mit den finalize-Methoden zu ar-
beiten. Mogliche Fehlfunktion des Java-Laufzeitsystems sollten nicht zu unnoti-
gem Programmieraufwand der Anwendung fithren. Fiir die korrekte Arbeitswei-
se des Programms TROSS gilt also die Annahme, dafs Javas Garbage collector
alle nicht mehr referenzierten Objekte erkennt und deren finalize-Methode auf-
ruft.

3.3 Umsetzung des Entwurfs in der Implementie-
rung

3.3.1 Personenklassen

In den folgenden Abschnitten werden die Implementierung und Abweichungen
vom Feinentwurf der Personenklassen beschrieben. Alle Klassen besitzen zusétz-
lich die standardméfigen setze- und lese-Methoden'. Ebenso wurde, wenn nicht
anders angegeben, bei allen Klassen ein leerer Konstruktor (der alle referenzier-
ten Objekte mit new initialisiert) und ein vollstdndiger Konstruktor, der alle
Werte mit den iibergebenen initialisiert, implementiert.

Zu den Schliisselattributen ist anzumerken, daf deren Schliisseleigenschaft
von der Benutzungsoberfliche unter Verwendung des Packages Konsistenztests,

IParameter/Riickgabewerte gleichen Typs wie die Attribute, lese-Methoden heifien genauso
wie das Attribut, die setze-Methoden heifsen ,setze“+ Attribut-Name

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 29

und nicht von den Klassen selbst, sichergestellt wird. Das gleiche gilt fiir die
Mufiwerte. Auch hier ist die Angabe beim jeweiligen Attribut nur eine Informa-
tion fiir die entsprechende Umsetzung in der Benutzungsoberfliche.

3.3.1.1 Bank

Diese Klasse wurde gegeniiber dem Feinentwurf nur marginal verdndert.
o Attribute

bankLeitZahl : int Die Bankleitzahl wurde wegen der -einfacheren
Handhabung als Integer anstatt als String implementiert. Aufferdem
wurde die Begrenzung auf acht Stellen aufgehoben.

bankName: String Name der Bank mit obiger Bankleitzahl.

3.3.1.2 Bankverbindung

e Attribute

bank : Bank Dient zur Referenzierung des zugehorigen Bankobjektes
der Bank, bei dem die Bankverbindung besteht. Damit ersetzt ,bank*
das im Feinentwurf vorgesehene Attribut ,BLZ*.

kontoNr : String Die Kontonummer, ohne die im Feinentwurf gemachte
Einschrinkung auf zehn Ziffern.

einzug : boolean Ist true, wenn eine Einzugserméchtigung vorliegt. Vor-
einstellung: true.

Zusatzlich wurde das Interface Listenelement implementiert.

3.3.1.3 Bezugsperson

Unterklasse von Person.
o Attribute

bezugsArt : String Gibt die Art des Bezuges zum Kunden an. Z.B.
Familienverhéltnis, Arzt, etc.

bemerkung : String Dieses Attribut wird jetzt aus der Oberklasse Per-
son geerbt.

Zusatzlich wurde das Interface Listenelement implementiert.

3.3.1.4 Institution

e Attribute
name : String Name des Institus, z.B. Krankenkasse X, Sozialamt Y,
Versicherung Z.

adressen : Vector In diesem Attribut, das gegeniiber dem Feinentwurf
erginzt wurde, werden alle Adressen einer Institution vermerkt.

30 KAPITEL 3. IMPLEMENTIERUNG

bankVerbindungen : Vector In diesem Attribut, das gegeniiber dem
Feinentwurf ergéinzt wurde, werden alle Bankverbindungen einer In-
stitution vermerkt.

kommunikationsVerbindungen : Vector In diesem Attribut, das ge-
geniiber dem Feinentwurf erginzt wurde, werden alle Kommunikati-
onsverbindungen einer Institution vermerkt.

Zusatzliche wurden die Interfaces Listenelement und Zahler implementiert.
Durch das Zahlerinterface kann eine Institution als Rechnungsempfanger bei
den Dienstwiinschen der Kunden eingetragen werden.

3.3.1.5 Kommunikationsverbindung

Abgesehen von der Implementierung des Listenelements wurde gegeniiber dem
Feinentwurf keine Anderung vorgenommen.

e Attribute

art : String (Mufiwert) Gibt die Art der Kommunikationsverbindung
an (Telefon, Fax, Email, etc.).

eintrag : String (Mufiwert) Zur Art passender Eintrag, z.B. Telefon-
nummer, Email-Adresse, etc.

Zusatzlich wurde das Interface Listenelement implementiert.

3.3.1.6 Kunde

Unterklasse von Person.
e Attribute

kundenNr : String (Schliissel) Eindeutige Nummer, welche den Kun-
den innerhalb des DRK identifiziert.

hausschluesselZahl : int Anzahl der Haus- bzw. Wohnungsschliissel,
die der Kunde dem DRK iiberlassen hat. Dieses Attribut wurde we-
gen der einfacheren Handhabung als Integer (statt als String) imple-
mentiert.

hausSchluesselText : String Beliebige Bemerkungen zu den Schliis-
seln, beispielsweise vergebene Schliisselnummern, fiir welche Tir, etc.

maxFahrDauer : int Gibt an, wieviele Minuten ein Kunde maximal
in einem Fahrzeug zubringen darf. Die globalen Obergrenzen (z.B.
Schulfahrten max. 2h) bleiben davon unberiihrt. Im Feinentwurf wur-
de noch der Typ short vorgesehen.

bemerkung : String wird jetzt aus der Oberklasse Person geerbt.

bezugsPersonen : Vector Die zum Kunden gehorenden Bezugsperso-
nen wie Hausarzt und Familienangehorige. Institutionen werden jetzt
in einem eigenen Vektor beriicksichtigt. Kundenbetreuer der Institu-
tionen konnen nach wie vor als Bezugspersonen hier hinterlegt wer-
den.

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 31

institutionen : Vector Hier werden die Institutionen abgelegt, die einen
Bezug zum Kunden haben.

bevorzugt : Vector Die vom Kunden bevorzugten Mitarbeiter, diese
sollen i.d.R. dessen Dienstwiinsche erfiillen.

abgelehnt : Vector Die vom Kunden abgelehnten Mitarbeiter, diese
diirfen keine Dienste beim Kunden verrichten.

hilfsmittel : Vector Die vom Kunden benétigten Hilfsmittel wie Sitz-
kissen u.d., die iiber die Attribute des Dienstwunsches hinausgehen.
Diese Werte sind nur informativ und werden bei der automatischen
Planung nicht beriicksichtigt.

zulaessigeFahrzeuge : Vector Fahrzeuge, die fiir den Kunden vom
DRK freigegeben wurden. Ist dieser Vektor leer, diirfen alle Fahr-
zeuge bei dem Kunden eingesetzt werden.

dienstwuensche : Vector Die Dienstwiinsche des Kunden.

Zusatzlich wurde das Interface Listenelement implementiert.

3.3.1.7 Mitarbeiter
Unterklasse von Person.

e Attribute

personalNr : String (Schliissel) Personalnummer des Mitarbeiters
beim DRK, die diesen eindeutig identifiziert.

dienstantrittsDatum : Datum Datum, zu dem der Mitarbeiter seinen
Dienst beim DRK antritt. Der im Feinentwurf vorgesehene Typ Date
wurde durch die eigene Klasse Datum ersetzt.

entlassungsDatum : Datum Datum, zu dem der Mitarbeiter ausschei-
det. Bei festangestellten Mitarbeitern ist dieser Eintrag in der Regel
leer. Der im Feinentwurf vorgesehene Typ Date wurde durch die ei-
gene Klasse Datum ersetzt.

verfiigbarkeitsZeiten : Zeitraum Daten, an denen der Mitarbeiter
eingesetzt werden kann.

bemerkung : String Wird jetzt aus der Oberklasse Person geerbt.

erfuellteQualifikationen : Vector Die vom Mitarbeiter erfiillten Qua-
lifikationen.

arbeitszeit : ArbeitszeitProfil Dieses Attribut ist zum Feinentwurf
hinzugekommen und nimmt ein Arbeitszeitprofil (Sollarbeitszeit) fiir
den Mitarbeiter auf.

Zusatzlich wurde das Interface Listenelement implementiert.

3.3.1.8 Ort
e Attribute

PLZ : String Postleitzahl, ohne Einschriankung auf fiinf Stellen. Damit
sind auch Postleitzahlen im Ausland (z.B. fiir private Versicherungen)
moglich.

32 KAPITEL 3. IMPLEMENTIERUNG

name : String Name des Ortes, der zu obiger Postleitzahl gehort.
e Methoden

boolean gleich(Ort) Gibt true zuriick, wenn dieser Ort mit dem Uber-
gebenen in Postleitzahl und Namen tibereinstimmt.

3.3.1.9 Person
o Attribute

name : String Nachname der Person.
vorName : String Vorname der Person.

geburtsDatum : Datum Geburtsdatum der Person. Jetzt als Datum
statt als Date.

adressen : Vector Die zur Person gehdrenden Stationen.

kommunikationsVerbindungen : Vector Die Kommunikationsver-
bindungen der Person.

bankVerbindungen : Vector Die Bankverbindungen der Person

bemerkung : String Hier kann ein beliebiger Text als Anmerkung ein-
gegeben werden, der vom System nicht weiter verwendet wird.

Zusatzlich wurde das Zahlerinterface implementiert, das es jeder Person erlaubt,
Rechnungsempfinger fiir Dienstwiinsche zu sein.

3.3.1.10 Sachbearbeiter
Unterklasse von Person, die gegeniiber dem Feinentwurf nicht gedndert wurde.
e Attribute

angestelltBei : Institution Arbeitgeber des Sachbearbeiters, beispiels-
weise Sozialamt oder Krankenkasse.

3.3.1.11 Station
e Attribute

strasse : String Strafsen- oder Platzname bzw. Postfach.

hausNr : String In diesem Attribut, das im Feinentwurf noch nicht vor-
gesehen war, wird die Hausnummer der Station gespeichert. Die Tren-
nung vom Strafsennamen wurde wegen der einfacheren Anbindung an
das Verkehrstool vorgenommen.

ort : Ort Als Referenz zum Ort der Adresse. Dies ersetzt die im Feinent-
wurf vorgesehene Postleitzahl.

anbindungspunkt : AnbindungsPunkt Bezeichnung, unter der die
Station im Verkehrsmodul vermerkt ist (i.d.R. die Adresse oder ein
Punkt, der moglichst nahe an der Station liegt).

name: String (SCHLUSSEL) Name einer Station als Eingabehilfe fiir
den Anwender (Konzept der benannten Station siehe 2.2.1).

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 33

e Methoden

void entferneAnbindungsPunkt() Veranlafit die Entfernung des An-
bindungspunkts aus dem Verkehrsmodul.

boolean adressenGleich(Station) Uberpriift, ob diese Station mit der
Ubergebenen in der Adresse iibereinstimmt. Dies ist der Fall, wenn
sowohl der Strafenname (String.equals) als auch der Ort (Ort.gleich)
iibereinstimmen.

void finalize() Sorgt dafiir, daf eine unreferenzierte Station durch den
Garbage-Collector aus dem Verkehrsmodul abgemeldet wird, be-
vor sie aus dem Speicher entfernt wird. Um garantiert alle unrefe-
renzierten Stationen aus dem Verkehrsmodul abzumelden, muifs der
Garbage-Collector vor dem Speichern explizit aufgerufen werden.

Zusatzliche wurde das Interface Listenelement implementiert.

3.3.1.12 Qualifikation
e Attribute

bezeichnung : String (Schliissel) Eindeutiger (Kurz-)Bezeichner fiir
die Qualifikation.

beschreibung : String Nihere Beschreibung der Qualifikation.

verrechnungsWert : int Kostenfaktor, der bei der Optimierung be-
riicksichtigt wird, falls diese Qualifikation erfiillt, jedoch nicht gefor-
dert wird. Dieser Wert wird automatisch berechnet, falls autoWert
true ist und sich Mitarbeiterdaten (bzgl. der Qualifikation) dndern.
Im Feinentwurf war noch der Typ byte vorgesehen.

autoWert : boolean Ist autoWert false, findet keine automatische Be-
rechnung des Verrechnungswertes mehr statt. Wird der Verrech-
nungswert manuell gedndert, wird autoWert auf false gesetzt.

Zusatzlich wurde das Interface Listenelement implementiert.

3.3.2 Datenhaltung

Die Daten werden mit der in Java vorgesehenen Moglichkeit der Objekt-Seriali-
sation in eine Datei geschrieben. Dazu werden die Objekte von Szenarien ver-
waltet. Wie in Abbildung 3.1 zu sehen, lassen sich folgende zwei Szenarioarten
unterscheiden:

1. Tourszenarien: Mit den Tourszenarien koénnen, bei gleichbleibenden
Stammdaten, verschiedene Tourkonstellationen ausprobiert werden. Da
diese logisch zu den gleichen Stammdaten gehoren, werden alle Tour-
szenarien samt den Stammdaten in einer Datei gespeichert.

2. Allgemeine Szenarien: Hierbei kdnnen auch Stammdaten geéndert wer-
den, um beispielsweise zu testen, wie sich eine Verringerung der Fahr-
zeugflotte auswirken wiirde. Diese allgemeinen Szenarien werden jeweils
in einer eigenen Datei gespeichert und im folgenden kurz als Szenarien
bezeichnet.

34

KAPITEL 3. IMPLEMENTIERUNG

e . M
Szenario 1
Personen Dienstwiinsche Fahrzeuge Fahrten
Qualifikationen Dienstarten Fahrzeugtypen Touren
Stationen Essensarten Fahrzeugkonfig. Untertouren
Komm.Verb. Hilfsmittel
Bankverbindung Institutionen
L J

Tourszenario 1

Touren °

Untertouren

Fahrten

Tourszenario i

° Touren PRy
Untertouren
Fahrten

Tourszenario n

Touren
Untertouren
Fahrten

e
e
e
e ; M
Szenario k
Personen Dienstwiinsche Fahrzeuge Fahrten
Qualifikationen Dienstarten Fahrzeugtypen Touren
Stationen Essensarten Fahrzeugkonfig. Untertouren
Komm.Verb. Hilfsmittel
Bankverbindung Institutionen
N J

Tourszenario 1

Touren °

Untertouren

Fahrten

Tourszenario i

° Touren e o
Untertouren
Fahrten

Tourszenario n

Touren
Untertouren
Fahrten

Abbildung 3.1: Datenhaltung in TROSS

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 35

Neben dem Dateimanagement bieten die Szenarien auch objektiibergreifende
Methoden (z.B. Verwaltung benannter Stationen) an.

Im Gegensatz zum Feinentwurf werden nicht alle Objekte direkt von den
Szenarien referenziert, sondern nur solche, die nicht von anderen Objekten refe-
renziert werden oder die in globalen Listen vorgehalten werden (z.B. benannte
Stationen, Mitarbeiter, Qualifikationen etc.).

Im folgenden nun die Beschreibung zur Implementierung der Verwaltungs-
klassen.

3.3.2.1 Szenario
o Attribute

name : String (Schliissel) Name des Szenarios.
geaendert : Boolean Ist true, wenn der Datenbestand gedndert wurde.

mitarbeiter : SortierterVektor Referenz auf alle Mitarbeiter des Sze-
narios.

kunden : SortierterVector Referenz auf alle Kunden des Szenarios.

institutionen : SortierterVektor Referenz auf alle Institutionen des
Szenarios.

qualifikationen : SortierterVektor Referenz auf alle Qualifikationen
des Szenarios.

fahrzeuge : SortierterVektor Referenz auf alle Fahrzeuge des Szena-
rios.

fahrzeugtypen : SortierterVektor Referenz auf alle Fahrzeugtypen
des Szenarios.

stationen : SortierterVektor Referenz auf alle benannten Stationen
des Szenarios.

essensarten : SortierterVektor Referenz auf alle Essensarten des Sze-
narios.

hilfsmittel : SortierterVektor Referenz auf alle Hilfsmittel des Szena-
rios.

arbeitszeitProfile : SortierterVektor Referenz auf alle Arbeitszeit-
profile des Szenarios.

tourSzenarien : SortierterVektor Referenz auf alle Tourszenarien des
Szenarios.

aktivesTourszenario : TourSzenario Referenz auf das aktuell akti-
vierte Tourszenario.

e Methoden

void wurdeGeaendert() Setzt das Gedndert-Flag auf wahr und muf§
immer aufgerufen werden, wenn sich irgendein Objekt &ndert. Diese
Methode ersetzt die setzeGeaendert-Methode, da das Geéndert-Flag
von auften nicht auf false gesetzt werden darf.

Szenario laden(String pfad, String name) Lidt das angegebene
Szenario in den Speicher. Die Methode soll nur aufgerufen werden,
wenn sich kein verdndertes Szenario im Speicher befindet.

36 KAPITEL 3. IMPLEMENTIERUNG

void speichern(String pfad, String name) Speichert das im Haupt-
speicher befindliche Szenario unter dem angegebenen Namen und
setzt das Verdnderungsflag auf false. Stimmt der {ibergebene Name
nicht mit dem des Szenarios {iberein (speichern als), wird der tiber-
gebene Name als neuer Szenarioname iibernommen.

boolean istStationBekannt(String name) Uberpriift, ob der iiberge-
bene Name schon fiir eine benannte Station verwendet wurde und
gibt einen entsprechenden Wahrheitswert zuriick.

Station sucheStation(String name) Gibt die Station zum {ibergebe-
nen Namen zuriick.

Die Methoden zum Léschen und Kopieren wurden aus Zeitgriinden nicht imple-
mentiert, da diese durch entsprechende Dateioperationen auf Betriebssystem-
ebene erreicht werden konnen. Anstelle der neuen Klasse SortierterVektor (sie-
he 3.1.1.1) war im Feinentwurf noch die Klasse Vector vorgesehen. Diese Klasse
erlaubt die Objekte sortiert abzulegen und damit eine wesentlich effizientere
Implementierung der hiufig bendtigten sortierten Ausgaben.

3.3.2.2 Tourszenario

e Attribute

name : String (Schliissel) Name des Tourszenarios.

touren : Vector Touren des Tourszenarios, die wiederum auf die fahr-
tenreferenzierenden Untertouren verweisen.

e Methoden

Fahrt[] objektFahrten(Object, Zeitraum) Gibt alle Fahrten zuriick,
die das iibergebene Objekt innerhalb des iibergebenen Zeitraums zu
erledigen hat. Dazu werden alle Touren, deren Untertouren und Fahr-
ten durchlaufen. Damit liegt der Aufwand in O(Anz. d. Fahrten).

Zusatzlich wurde das ListenElement-Interface implementiert.
Welches Tourszenario aktiv (Mastertourszenario) ist, wird abweichend vom
Feinentwurf jetzt durch das zugehorige Szenario verwaltet.

3.3.3 Konsistenztests

Die Konsistenztests wurden entsprechend dem Entwurf als automatische Prii-
fungen implementiert: Nach der Eingabe von Daten wird die Einhaltung von
Integritdtsbedingungen und Vorgaben durch das neu Eingegebene gepriift. Ver-
stoflen die Daten gegen Integritdtsbedingungen, mufs die Eingabe wiederholt
werden. Vorgaben kdnnen hingegen explizit aufer Kraft gesetzt werden. Um den
Uberblick iiber solche explizit akzeptierten VerstoRe gegen Vorgaben zu behal-
ten, kann dieser Teil der Konsistenzpriifung auch von Hand aufgerufen werden.
Daraufhin bekommt der Benutzer alle Verstofe gegen die Vorgaben gemeldet.
Ein gezieltes Fragen nach einzelnen Vorgaben wurde bis auf wenige Ausnahmen
nicht implementiert,.

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 37

3.3.3.1 Referenzintegritit

Die Referenzintegritét wird im Programm TROSS gewahrt, indem das Loschen
von Fremdschliisseln verhindert wird. So darf z.B. eine Qualifikation nicht ge-
16scht werden, wenn sie einem Mitarbeiter zugeordnet ist oder von einem Kun-
den gefordert wird.

Da keine Datenwerte als Fremdschliissel dienen, sondern direkte Referenzen
auf die Java-Objekte gespeichert werden, findet eine Verdnderung von Fremd-
schliisseln durch die Eingabe nicht statt, hier mufs also nichts gepriift werden.

3.3.3.2 Vorgaben

+Weiche Konsistenzbedingungen, die Bedingungen der realen Welt darstellen,
sind fiir die Touren, Untertouren und Fahrten definiert. Diese werden automa-
tisch aufgerufen, wenn der Benutzer eine Tour, Untertour oder Fahrt im Dialog
bearbeitet. Da dieser explizit Verstofe gegen Konsistenzbedingungen zulassen
kann, ist es auflerdem moglich, die Konsistenzpriifung der Touren manuell zu
starten, um einen Uberblick iiber die bewuRt akzeptierten UnregelmiRigkeiten
zu bekommen.

Fiir die leicht nachzuvollziehenden Laufzeitabschitzungen der Konsistenzprii-
fungen werden folgende Bezeichnungen benutzt:

DW Menge aller Dienstwiinsche

T Menge aller Touren

K Menge aller Kunden

DWW}, Menge der Dienstwiinsche des Kunden k € K

DW,; Menge der Dienstwiinsche, die auf Tour t € T erfiillt werden
AZ,, Menge der Ausnahmezeiten fiir die Verfiigharkeit des Mitarbeiter m
AZ; Menge der Ausnahmezeiten fiir die Verfligbarkeit des Fahrzeugs f
M A Menge aller Mitarbeiter

FZ Menge aller Fahrzeuge

QF Menge aller Qualifikationen

Folgende Kriterien werden gepriift:

Mitarbeiter

e Sind erster und zweiter Mitarbeiter unterschiedlich? O(1)

e Ist ein zweiter Mitarbeiter eingeteilt, falls die Dienstwiinsche dies
verlangen? O(|DWy|)

e Sind die Mitarbeiter am Tag einer Fahrt verfugbar? O(|AZ,|)

e Sind die Mitarbeiter fiir alle Kunden einer Tour zuléssig (also nicht
bei den Abneigungen der Kunden erfafit)? O(|DW;| - |M A|)

e Besitzen die Mitarbeiter alle geforderten Qualifikationen? O(|DWy| -
|QF?)

38 KAPITEL 3. IMPLEMENTIERUNG

Fahrzeuge

e Ist das Fahrzeug am Tag einer Fahrt verfiigbar? O(|AZy|)

e Wird die maximale Sitzplatzzahl eingehalten (bei Fahrdiensten)?
o)

e Ist das Fahrzeug unter den fiir den Kunden zuléssigen (bei Fahrdien-
sten oder MSD, wenn der Kunde mitfihrt)? O(|DW,|- |FZ|)

Zeiten

e Werden die Zeitvorgaben in den Rhythmen der Dienstwiinsche ein-
gehalten? O(|DW|)

Vollstandigkeit

e Werden alle Dienstwiinsche komplett erfiillt (also alle Teildienstwiin-
sche beriicksichtigt)? O(|DW| - Y, [DWy]) € O(IT| - [DW|?)

Nicht gepriift wird die Arbeitszeit der Mitarbeiter im Vergleich zu den in
den Arbeitszeitprofilen definierten Obergrenzen, da dies zum einen nicht ganz
einfach zu implementieren ist und zum anderen fiir die zersplitterte Arbeitszeit-
verteilung der Zivis beim DRK nur wenig Aussagekraft besitzt.

3.3.3.3 Vorgehensweise

Die Uberpriifung auf Konsistenz der eingegebene Daten erfolgt an zwei Stellen
der Eingabe:

1. Beim Loschen von Objekten wird die Referenzintegritét gepriift: Es diir-
fen nur solche Objekte geloscht werden, die von keinem anderen Objekt
referenziert werden.

Dazu muf z.B. fiir Qualifikationen jeder Mitarbeiter gepriift werden, ob
diesem die Qualifikation zugeordnet ist, sowie jeder Dienstwunsch, ob die-
ser die Qualifikation fordert. Ist also M die Menge der Mitarbeiter und
DWy, die Menge der Dienstwiinsche des Kunden k, hat die Priifung, ob eine
Qualifikation geldscht werden darf, den Aufwand O((|M |+, cx [DWi|)*
|QF]).

Dieser einmalige grofe Aufwand liefe sich in mehrere kleinere Teile auf-
trennen, indem jede Qualifikation Riickwéartsreferenzen auf alle Mitarbei-
ter und Dienstwiinsche mitfiihrt, die die Qualifikation referenzieren. Da-
durch verlagerten sich allerdings Aufgaben der Konsistenzpriifung in die
Datenobjekte, wodurch auch das abgespeicherte Szenario stark wiichse. Da
das Loschen von Objekten durch den Benutzer keine zeitkritische Aufgabe
darstellt (und auch bei einigen hundert Kunden mit insgesamt einigen tau-
send Dienstwiinschen noch in akzeptabler Zeit durchzufiihren sein sollte),
wurde hier die einfach und sicher zu implementierende Methode gewéhlt.

2. Beim Andern von Objekten (dazu gehort auch das Setzen von Daten
in neu erzeugten Objekten) wird kontrolliert, daf allen vorgeschriebe-
nen Datenfeldern auch wirklich ein Wert zugewiesen wurde (Mufiwert-
Priifung), auferdem werden die Werte bestimmter Felder auf Einmaligkeit

3.3. UMSETZUNG DES ENTWURFS IN DER IMPLEMENTIERUNG 39

(Schliisselwert-Priifung) und Einhaltung von Wertebereichen bzw. andere
Kriterien fiir sinnvolle Werte gepriift.

Fiir die Schliisselwert-Priifung ist jeweils eine Iteration iiber alle Objek-
te derselben Art notwendig, um das Schliisselattribut zu vergleichen. Ist
also K die Menge aller Kunden, hat die Uberpriifung einer eingegebenen
Kundennummer auf Einmaligkeit den Aufwand O(|K]).

Eine eventuelle Konsistenzverletzung wird dem Programm durch Exceptions
der Priiffunktion mitgeteilt. Zu diesem Zweck wurde eine Menge von hierarchisch
voneinander abgeleiteten Exceptions definiert, die fiir die verschiedenen Arten
von Verstofen gegen die Konsistenzregeln stehen. Dadurch kann dem Benutzer
eine genaue Riickmeldung gegeben werden, mit deren Hilfe er seine Eingabeda-
ten nochmals durchsehen und berichtigen kann. Die Vererbungshierarchie der
Exceptions mit einer gemeinsamen Wurzel in der Klasse KonsistenzException
ermoglicht die einfache Behandlung solcher Exceptions im Programm, ohne nach
jeder Eingabe zwischen diversen moglichen Konsistenzfehlern unterscheiden zu
miissen.

Durch diese einheitliche Gestaltung der Konsistenzpriifung besteht auch kein
wesentlicher konzeptioneller Unterschied zwischen ,harten” Integritatsbedingun-
gen, die auf jeden Fall erfiillt sein miissen, da sonst die Daten in sich keinen
Sinn geben, und ,weichen* semantischen Konsistenzbedingungen (im Entwurf
als ,Vorgaben“ bezeichnet), die Beziehungen zwischen Objekten der realen Welt
beschreiben und vom Benutzer im Einzelfall aufter Kraft gesetzt werden kénnen.

Verstofe gegen Integritatsbedingungen werden durch Exceptions angezeigt,
die von der Klasse IntegritédtsException abgeleitet sind. Andere, von
KonsistenzException abgeleitete Exceptions stehen fiir semantische Konsi-
stenzverletzungen. Somit kann durch eine minimale Fallunterscheidung bei der
Dateneingabe festgestellt werden, ob die Daten im eingegebenen Zustand ak-
zeptiert werden diirfen.

Samtliche Konsistenzpriiffungen liegen in einem eigenen Modul
TRO.Konsistenztests, das zu jeder zu priifenden Datenklasse eine zuge-
horige Priifklasse definiert. Durch diese Trennung der Konsistenzpriifungen von
sowohl Dateneingabe als auch den Daten selbst kann die interne Durchfiih-
rung der Priifungen ohne Auswirkungen auf das restliche System geplant und
umgesetzt werden. Eine Verdnderung der Priifalgorithmen oder auch die Ver-
dnderung der Priifkriterien und dadurch notwendige Hinzunahme neuer Tests
oder Auslassung bestehender kann somit lokal im Modul TRO.Konsistenztests
erfolgen. Anderungen an anderen Programmteilen sind bis auf eventuelle kleine
Veranderungen der Aufrufschnittstelle nicht notig.

3.3.4 Analysedaten

Aus der Fiille der in der Spezifikation geplanten Analysedaten wurden im Ge-
sprich mit dem Kunden diejenigen ausgew#hlt, die fiir den Kunden wichtig und
interessant sind:

e Auslastung der Mitarbeiter
e Ressourcenbindung (= Fahrzeugauslastung)

e Anzahl km und Zeit pro Dienstart

40 KAPITEL 3. IMPLEMENTIERUNG

o Ausfallzeiten der Mitarbeiter und der Fahrzeuge

3.3.4.1 Darstellung

Fiir die grafische Darstellung der Auslastungen wurde eine generische Klasse
entworfen, die fiir jeden Mitarbeiter bzw. jedes Fahrzeug nach einer textuellen
Beschreibung des Mitarbeiters (Name und Mitarbeiternummer) bzw. des Fahr-
zeugs (Fahrzeugnummer) einen Balken darstellt, dessen Linge dem prozentua-
len Verhéltnis der Auslastung des Mitarbeiters bzw. des Fahrzeuges entspricht.
Den Balken werden dabei zwei Farben zugewiesen: Solange die Auslastung unter
100% bleibt, ist der Balken griin, steigt die Auslastung jedoch iiber 100% wird
der Balken in roter Farbe dargestellt. Die Ubergabe der Analysedaten an die
Klasse zur grafischen Darstellung (TRO.Analyse.ProzentGrafik) erfolgt mittels
einer eigens dafiir entworfenen Record-Klasse (TRO.Analyse.ProzentRecord).
Die Darstellung der anderen Analysedaten, Zeit- und km-Aufwand bzw. Aus-
fallzeiten, erfolgt in tabellarischer Form. Dem Benutzer bietet sich auch die
Moglichkeit diese Pléne auszudrucken.

3.3.4.2 Vorgehensweise

Auslastung der Mitarbeiter Die Analyse der Mitarbeiterauslastung erfolgt
iiber die geplanten Touren bzw. Untertouren in einem vom Benutzer frei wéhlba-
ren Zeitrahmen, in dem die Sollarbeitszeit der Mitarbeiter (im Arbeitszeitprofil
festgehalten) mit ihrer geplanten Einsatzzeit ins Verhéltnis gesetzt wird. Daraus
folgt, dafl es dem Benutzer nur mdoglich ist, seine Planung zu analysieren und
gegebenenfalls zu verbessern. Eine Feststellung der tatsichlichen Auslastung
ist nicht vorgesehen. Um also ein realistisches Ergebnis zu erhalten, wird eine
Zuweisung der Sollmitarbeiter in den Touren erforderlich, d.h. ein Offenlassen
dieser Zuordnung, die dem Benutzer in einer frithen Planungsphase moglich ist,
fiihrt zu Verfalschungen des Ergebnisses.

Ressourcenbindung Die Analyse der Fahrzeugauslastung erfolgt nur fiir die-
jenigen Dienstwiinsche, bei denen Gruppen von Kunden transportiert werden
(Schulfahrt, Tagespflege und Dialyse). Dabei wird in einem vom Kunden frei zu
wahlenden Zeitraum die flir Fahrgéiste verfiigbare Sitzplatzzahl eines Fahrzeu-
ges mit der fiir den gew#hlten Zeitraum durchschnittlichen Zahl mitfahrender
Kunden ins Verhéltnis gesetzt.

Zeit- und km-Aufwand pro Dienstart Hierbei werden pro Dienstart und
pro Untertour die gefahrenen km bzw. der zeitliche Aufwand fiir die Untertour
aufsummiert.

Ausfallzeiten der Mitarbeiter / Fahrzeuge Bildung einer Summe iiber
die vom Benutzer im System pro Mitarbeiter bzw. pro Fahrzeug eingetragenen
Ausfallzeiten. Da im System keine genaue Aufteilung iiber die Art des Ausfalls
der einzelnen Ressourcen erfolgt, kann diese folglich auch nicht in der Analyse
dargestellt werden. Dieser Analysepunkt soll dem Benutzer vielmehr mittels
eines Uberblicks Auffilligkeiten aufzeigen, die er dann verfolgen kann.

3.4. PROBLEME BEIM UMSETZEN DES ENTWURFS 41

3.3.5 Datenausgabe
3.3.5.1 Einzeldienstplan

Der Einzeldienstplan wurde als Balkendiagramm realisiert. Er kann fiir Objek-
te, die das DienstplanErstellbar-Interface implementieren, iiber eine beliebige
Datumsspanne erzeugt werden. Zur Auswertung wird die Methode objektFahr-
ten des Tourszenarios aufgerufen. Damit liegt der Aufwand, wie im Abschnitt
3.3.2.2 beschrieben, in O(Anz. d. Fahrten).

Das im Abschnitt 2.1.2 beschriebene DienstplanErstellbar-Interface dient als
Schnittstelle, die fiir beliebige (sinnvolle) Objekte implementiert werden kann.
Dadurch ist es moglich, neben Dienstplidnen fiir Mitarbeiter auch Fahrzeugein-
satzplane zu erzeugen und darzustellen, wann ein Kunde vom DRK betreut
wird.

3.3.5.2 Gesamtdienstplan

Der Gesamtdienstplan wurde als Exportfile implementiert. Dieses Exportfile
enthélt zu allen Mitarbeitern die Fahrten, die sie im angegebenen Zeitraum
zu erledigen haben. Dieses Exportfile kann dann mit einem anderen Programm
(z.B. einer Tabellenkalkulation) beliebig aufbereitet und gedruckt werden. Auch
der Gesamtdiensplan kann, ebenso wie der Diensplan, fiir alle Objekte erzeugt
werden, die das DienstplanErstellbar-Interface implementieren. Dazu wird wie-
der die in 3.3.2.2 beschriebene Methode objektFahrten des Tourszenarios ver-
wendet, die fiir jedes Objekt einmal aufgerufen wird. Der Aufwand liegt damit
in O(Anz. d. Objekte * Anz. d. Fahrten). Eine effizientere Methode wére das
einmalige Durchlaufen aller Fahrten, wobei fiir jedes Objekt ein Zahler (z.B.
in einer Hashtable) mitgefiihrt wird. Der Aufwand ldge dann, wie bei objekt-
Fahrten, in O(Anz. d. Fahrten). Wegen der Code-Wiederverwendung und aus
Zeitgriinden wurde diese Variante jedoch nicht implementiert.

3.3.5.3 Tourplan

Der Tourplan listet zu allen Touren die zugehdrigen Untertouren mit den ge-
planten Mitarbeitern, dem geplanten Fahrzeug und den anzufahrenden Statio-
nen incl. dortiger Ankunfts- und Abfahrtszeit auf. Zudem wird bei jeder Sta-
tion angegeben, welche Personen ein- oder aussteigen. Ferner werden fiir alle
im Rahmen der Tour beférderten Kunden die Bezugspersonen ausgegeben, die
beim zugehorigen Dienstwunsch angegeben wurden.

3.4 Probleme beim Umsetzen des Entwurfs

3.4.1 Unvollstindige Details im Entwurf

Einige Probleme bei der Umsetzung des Entwurfs riihrten daher, daf im Ent-
wurf nicht alles bis ins Detail zu Ende gedacht war. Hier wurde insbesondere
deutlich, daf sich manche sprachlich einfachen Konstrukte als tiickisch bei der
Implementierung herausstellten. Auf jeden Fall mufste hier der fehlende Ent-
wurfsschritt nachgeholt werden, was teilweise nicht im ersten Versuch gelang.

42 KAPITEL 3. IMPLEMENTIERUNG

Als Beispiel soll hier die Speicherung von Essensarten und deren Anzahlen
im EARDienstwunsch erliutert werden: Der Entwurf 14t mit der Formulierung
HEssensart X int“ die genaue Umsetzung offen.

Ein erster Versuch bei der Implementierung benutzte zusétzliche interne Klas-
sen zur Speicherung von Essensarten und Anzahl. Es stellte sich aber heraus,
daf diese schlecht zu handhaben sind (eigene Lese- und Setzmethoden sowie
Verwaltung der Liste mit Eintragen, Loschen und Suchen wiren ndétig). Also
mufste eine andere Losung gesucht werden. Die Speicherung der Anzahlen in
einer Hashtabelle mit Essensarten als Schliissel leistet dies auf elegante Weise,
ist allerdings nicht ganz trivial in ein gut bedienbares Oberflichenelement zur
Eingabe umzusetzen (siche 3.4.2.1).

3.4.2 Einfach, aber aufwendig

Manche Datenstrukturen lassen sich umgangssprachlich (und auch in der Pro-
grammiersprache) leicht ausdriicken, sind aber semantisch recht komplex, so dafs
ihre Eingabe nicht einfach zu modellieren ist.

3.4.2.1 Hashtabellen

Ein Beispiel dafiir sind Hashtabellen, die einer Menge von Schliisselobjekten je
einen Eintrag zuordnen. Da weder unter den gingigen Fenstersystemen, noch
unter Java Eingabemdoglichkeiten fiir (in der Grofe nicht von vornherein festge-
legte) zweidimensionale Tabellen bestehen, sondern nur eindimensionale Listen,
mufsten die Hashtabellen (bzw. Tabellen aller Art) zur Eingabe in ihre einzelnen
Dimensionen zerlegt werden (siehe 3.1.2.6).

3.4.2.2 Teilbare Einheiten

Aufwendig in der Handhabung sind auch Werte mit teilbaren Einheiten: Die
Speicherung von Zeitdauern in Minuten ist zweifelsohne sinnvoll, um ohne auf-
wendige und fehlertrichtige Gleitkommaarithmetik auszukommen. Bei der Ein-
gabe ist es aber in den meisten Fallen nicht zumutbar, alles in Minuten umzu-
rechnen (man denke z.B. an die Erfassung der wichentlichen Arbeitszeit). Dem
Benutzer sollte eine Ausgabe in Form ,hh:mm* (je zwei Stellen fiir Stunden und
Minuten) bzw. getrennte Eingabefelder fiir Stunden und Minuten angeboten
werden.

Hier ist wieder zusétzlicher Aufwand notig, um einen gegegeben Wert fiir die
Ein- und Ausgabe zu teilen, die Teile einzeln zu editieren und hinterher wieder
zusammenzusetzen.

3.4.2.3 Aufwand durch Allgemeingiiltigkeit

Manche Teile des Entwurfs der Datenklassen wurden bewuft allgemeingiiltig ge-
halten, um nicht von vornherein gewisse Eingabemdglichkeiten auszuschlieffen:
Es fand z.B. keine Einschrinkung auf zwei Adressen oder Telephonnummern pro
Person/Kunde statt, statt dessen kann eine (theoretisch beliebig grofe) Menge
von Adressen, Bank- sowie Kommunikationsverbindungen eingegeben werden.
Dies 14t sich zwar auch in der Benutzungsoberfliche recht einfach umsetzen,
ist aber etwas unhandlich in der Bedienung, insbesondere nimmt die Darstellung

3.5. IMPLEMENTIERUNG AUSGEHEND VON EINEM PROTOTYP 43

solcher Listen einen nicht unerheblichen Teil der doch begrenzten Bildschirm-
fliche in Anspruch.

3.5 Implementierung ausgehend von einem Pro-
totyp

Um dem DRK schon friih eine anschaulichen Uberblick iiber den Planungs-
stand geben zu koénnen, wurde bereits parallel zur Anforderungsanalyse ein
Prototyp der graphischen Benutzungsoberfliche erstellt (im Akkord iiber die
Weihnachts, ferien®).

Die Existenz dieses Prototyps wurde dann naiverweise als ein bereits betrécht-
licher Fortschritt bei der Implementierung gewertet. Daf dem nicht so war, sollte
sich recht schnell nach Beginn der tatséchlichen Implementierungsphase heraus-
stellen:

Die Eingabedialoge und Datenfelder waren auf Datenklassen bezogen, die
ebenso ad hoc im Kopf entworfen wurden wie der gesamte Prototyp. Da in
Spezifikation und Entwurf die Struktur und Zusammenhénge dieser Datenklas-
sen deutlich vom Prototyp abwich, konnte lediglich ein minimaler Teil der alten
Oberfliche wiederverwendet werden (um z.B. gewisse Teile von Eingabefenstern
aufzubauen). Insbesondere die Anbindung an die Datenklassen (Werte setzen
und lesen, siehe 3.1.2.1) war recht aufwendig.

Fiir eine Anwendung, die so unmittelbar auf der Struktur des Datenmodells
aufsetzt, wie dies bei der Datenverwaltung des Programms TROSS der Fall ist,
ist es sicher sinnvoller, den Prototyp zu einem spéteren Zeitpunkt zu beginnen.
Denkbar ist eine Vorgehensweise parallel zum Design des Datenmodells: Zu den
bereits spezifizierten Datenobjekten kénnen Eingabemasken entworfen werden,
die dann einerseits zur Veranschaulichung des Planungsstandes im Dialog mit
dem Anwender dienen, zum anderen aber eine Basis fiir die endgiiltige Imple-
mentierung bieten, da sicher viele Teile iibernommen werden kénnen.

3.6 Verwendung externer Programme: Das Ver-
kehrsmodul

Als wesentliches Problem bei der Implementierung des Verkehrsmoduls hat sich
die Batch-Schnittstelle von Map&Guide herausgestellt, die fiir eine solche Ver-
wendung (zumindest mit der vorhandenen spérlichen Dokumentation) eigentlich
nicht geeignet ist. Sie ist dafiir ausgelegt, dafs die Benutzer ihre Anfragen in einer
Auftragsdatei (.asc) an Map&Guide geben, und dieses eine Tourbeschreibung
in einer Ergebnisdatei (.st) speichert, oder die Tour textuell oder graphisch
auf einem Drucker ausgibt. Aus der Tourbeschreibung kann zwar prinzipiell die
Entfernung zwischen den Stationen herausgelesen werden, aber dafiir muf es in
dieser Preislage eigentlich besser geeignete Moglichkeiten geben.

Zunichst war die Frage, wie eine Station fiir Map&Guide aussehen muf. Des-
halb wurden einige Beispiele entsprechend dem Handbuch eingegeben. Als erstes
Problem stellte sich die Ubergabe von Strafennamen heraus, die nicht zu funk-
tionieren schien. Nachdem die Antwort des Supports von Map&Guide nicht
funktionierte, fand sich dann doch die Losung im Handbuch: wenn das erste

44 KAPITEL 3. IMPLEMENTIERUNG

Kommentarfeld der Auftragsdatei mit einem Doppelpunkt beginnt, wird der
Rest des Feldes als Strafie interpretiert. Wer bitte kommt auf solche Ideen?

Als néchstes wurde die Vorschlagsliste (.cor) untersucht, die Map&Guide im-
mer anlegt. Anhand dieser kann eine neue eindeutige Auftragsdatei erstellt wer-
den. Allerdings fehlten dabei stets die Hausnummern, weshalb die gelieferten
Stationen zum Teil nicht eindeutig sind. Als erste Losung wurde die Hausnum-
mer aus der Anfrage einfach wieder an die Strafe angehéingt. Nach einer Dis-
kussion in einer Sitzung wurde diese Alternative verworfen, da es kaum moglich
ist, den Straffennamen algorithmisch von der Hausnummer zu trennen. Deshalb
wurde das Attribut Strafe in der Station aufgetrennt in zwei Attribute Strafse
und Hausnummer.

Die néchste Eigenheit von Map&Guide liefs nicht lange auf sich warten: die
Postleitzahlen in der Vorschlagsliste waren zum Teil falsch (9xxxx fiir Stationen
in Stuttgart), zum Teil aber auch grofie negative Zahlen. Diese Vorschlége in eine
neue Auftragsdatei gepackt brachten wie erwartet keine sinnvollen Ergebnisse.

Aufgrund dieser Probleme mit der Vorschlagsliste werden die Vorschlige
nun nicht mehr zur Erzeugung neuer, giiltiger Anbindungspunkte verwendet.
Statt dessen muf jeder mogliche Anbindungspunkt gepriift werden (Methode
Verkehrsmodul.anbindungInOrdnung), und nur wenn in der Vorschlagsliste
nur eine Alternative zuriickgegeben wird, ist der Anbindungspunkt giiltig. Die
Alternativen werden dem Benutzer nur noch zur Hilfe angezeigt.

Als néchstes Problem trat in Map&Guide eine falsch kodierte Strafe auf: die
Sommerrainstrafe in Stuttgart Sommerrain ist in zwei Teile aufgeteilt, deren
Hausnummern-Mengen nicht disjunkt sind. Deshalb sind Hausnummern grofier
41 nie eindeutig. In solchen Féllen gibt es zwei Moglichkeiten: entweder einfach
eine andere Hausnummer, oder die geographischen Koordinaten als Anbindungs-
punkt eingeben (ndheres dazu steht im Handbuch von Map&Guide [CAS97]).

Um die Arbeitsweise von Map& Guide zu beeinflussen, gibt es zum einen die
Parameterdatei (param.mgb), zum anderen koénnen die Parameter aber auch
an den Anfang der Auftragsdatei gestellt werden. Nur funktionierte die zweite
Moglichkeit zunéchst nicht. Nach etlichen Stunden war die Ursache gefunden:
Wenn Map&Guide die Parameterdatei nicht findet, ignoriert es auch die Pa-
rameter in der Auftragsdatei. Deshalb wird nun eine Parameterdatei angelegt,
wenn noch keine vorhanden ist.

Zu kldren war auch die Frage, wie viele Stationen Map& Guide wohl in ei-
ner Anfrage schafft. Im Handbuch steht nur, daf bei aktivierter Reihenfolge-
Optimierung der Stationen maximal 20 Zwischenstationen moglich sind. Es
stellte sich heraus, dafs iiberhaupt nur 20 Stationen, d.h. 19 Kanten moglich
sind. Dadurch wird die Anfrage an das Verkehrsmodul zum Vorbereiten aller
Entfernungen zwischen je zwei Stationen einer groferen Menge eigentlich un-
brauchbar. Ein geringe Verbesserung wird durch einen anderen Algorithmus
erreicht (siehe 2.2.3).

Das Erkennen der Fehler von Map& Guide ist nicht einfach, da je nach Art des
Fehlers manche Dateien erzeugt werden und andere nicht. Eine Datei, die sich
bei einem Fehler immer &ndert, ist die Fehler-Datei Error.mgb. Ihr Inhalt ist
aber kaum fiir eine Auswertung per Programm geeignet, da die Anzahl der an-
gehingten Zeilen schwankt. Das Verkehrsmodul meldet nun einen Fehler, wenn
sich der Zeitstempel dieser Datei geandert hat, kann aber keine genaueren An-
gaben zum Fehler machen. Wenn nur Anbindungen gepriift werden, wird dieser
Fehler ignoriert.

3.7. ERFAHRUNGEN MIT JAVA 45

3.7 Erfahrungen mit Java

3.7.1 Javas Klassenbibliothek

Javas Klassenbibliothek enthilt zwar alle grundlegenden Objekte und Funktio-
nen zur Verwaltung von Daten und Erstellung von graphischen Benutzungsober-
flachen, allerdings auch nicht mehr. Semantisch hohere Konstrukte sind bis auf
Ausnahmen kaum zu finden, vor allem das ,,Abstract Window Toolkit* (AWT)
fiir die Programmierung von Oberfléchen bietet nur die iiblichen Primitive, die
von den gingigen Fenstersystemen direkt zur Verfiigung gestellt werden.

Manche grundlegenden Konzepte, die in anderen objektorientierten Program-
miersystemen zum Standard gehoren, sind in Java noch unausgereift oder
schlicht nicht vorhanden. Als Beispiel sei hier die Eigenschaft der Vergleichbar-
keit genannt, die Voraussetzung fiir das Sortieren von Objekten ist. Zwar haben
manche Java-Klassen bereits eine Methode namens compareTo implementiert,
die diesen Vergleich durchfiihrt, jedoch ist diese Methode nicht Teil eines Inter-
face, mit dessen Hilfe man die Vergleichbarkeit von Objekten erzwingen konnte
(um sie z.B. in eine sortierte Liste aufzunehmen). Folgerichtig gibt es auch keine
Listenklassen, die ihren Inhalt automatisch sortieren. Da im Projekt TROSS sol-
che sortierten Listen aber gebraucht wurden, mufiten die meisten Datenklassen
mit zwei selbsterstellten Interfaces implementiert werden (siehe 3.1.1.1).

Der Verzicht auf Mehrfachvererbung 16st zwar gewisse semantische Eindeu-
tigkeitsprobleme, bedeutet aber manchmal zusdtzlichen Programmieraufwand
durch Verlust an Modularitit. Javas Interfaces konnen zwar wie abstrakte Su-
perklassen gehandhabt werden, bieten aber nicht die M6glichkeit des ,code reu-
se“ durch Vererbung von Methoden.

Im Projekt wére es z.B. wiinschenswert gewesen, sowohl Personen als auch In-
stitutionen in einen Zusammenhang mit Kunden zu bringen. Dies kénnte durch
eine Superklasse Bezug realisiert werden, von der sowohl BezugsPerson als auch
Institution erben. Da BezugsPerson aber auf jeden Fall von Person erbt,
mufste diese Realisierungsmoglichkeit ausscheiden. Wir haben uns fiir die Ver-
kniipfung von Kunde und Institution iiber einen Sachbearbeiter entschieden, der
eine Bezugsperson ist und von dieser Klasse erbt.

Mehrfachvererbung hétte es auch ermoglicht, dem in 3.1.1.1 erwdhnten Inter-
face Comparable eine Standard-Implementierung der Vergleichsmethode mitzu-
geben. In Java mufite der etwas aufwendige Stringvergleich nach landerspezifi-
schen Sortierregeln vielfach redundant codiert werden.

3.7.1.1 Das Abstract Window Toolkit (AWT)

Auch im package java.awt zur Erstellung der graphischen Benutzungsoberfla-
che wurden einige vielverwendete Klassen schmerzlich vermisst. Zum Beispiel
mufite ein LayoutManager, der die simple Aufgabe erfiillt, Oberflichenelemen-
te untereinander in einem Dialog anzuordnen, komplett selbst implementiert
werden.

Besonders deutlich bemerkbar macht sich die fehlende Unterstiitzung typisier-
ter Eingabefelder, sowohl beim Setzen als auch beim Auslesen von Werten: Das
JDK bietet nur reine Textfelder als fertige Oberflichenelemente an. Um andere
Datentypen als Strings zu erfassen, muf sich der Programmierer um die Kon-
vertierung der Grofe in einen String genauso kiimmern wie um das Umsetzen

46 KAPITEL 3. IMPLEMENTIERUNG

der eingegebenen Zeichenkette in das gewiinschte Datum. Vor allem letzteres
ist mit einem gewissen Aufwand verbunden, da diverse Exceptions behandelt
werden miissen. Selbst fiir elementare Datentypen wie ganze Zahlen (int) muf§
der Umweg iiber Textfelder von Hand programmiert werden.

3.7.2 Entwicklungsumgebung

Die Entwicklungsumgebung fiir das Projekt TROSS zeichnete sich vor allem da-
durch aus, daf keine Entwicklungsumgebung vorhanden war (Programmierung,
Compilieren und Testen mufsten von Hand via Editor und Kommandozeilen-
aufrufe der Java-Tools gemacht werden). Zwei Punkte diirften dazu wesentlich
beigetragen haben:

1. Die Entscheidung, welche Programmiersprache eingesetzt wird, wurde
erst sehr spat gefiihrt. Das fiihrte dazu, daf der gesamte Prototyp von
Hand erstellt werden mufite. Eine komplette Neuerstellung wére wohl auch
mit Entwicklungsumgebung recht zeitaufwendig geworden. Dariiberhinaus
hitte die Suche nach einer geeigneten Entwicklungsumgebung sowie die
Einarbeitung darin einige Projektzeit verschlungen.

Wire zu Beginn der Projektgruppe wenigstens dieses Grundhandwerks-
zeug dagewesen, hitte sicher mancher spétere Aufwand vermieden werden
konnen.

2. Da zu Beginn der Projektgruppe die Maxime ausgegeben wurde, alle ver-
wendeten Programme diirften moéglichst nichts kosten, war es kaum mog-
lich, eine leistungsfahige Entwicklungsumgebung zu bekommen.

Wir mufsten also auch ohne GUI-Builder auskommen, der beim Erstellen der
Benutzungsoberflache eine betréichtliche Hilfe dargestellt hétte. Viel Handar-
beit war angesagt, um zusétzliche Oberflichenelemente zu realisieren und die
bestehenden mit ihrer rudimentéren Schnittstelle zu bedienen. Insbesondere das
Setzen und Auslesen von Eingabewerten (siehe 3.1.2.1) hétte sich mit einem gut
konzipierten GUI-Builder ergeblich vereinfacht.

Lange Zeit gab es auch regelméfige Probleme mit dem Versionsverwaltungs-
system CVS, dessen Funktionsweise und Bedienung nicht unmittelbar einleuch-
tete. Erst nach wiederholten Datenverlusten beim Einchecken neuer Versionen
wurde die korrekte Handhabung klar.

Kapitel 4

Test

4.1 Funktionstest des Gesamtprogramms

Eigentlich hitte vor Beginn der Testphase ein Schnitt gemacht werden sollen,
so dafs nach einem Implementierungsstop eine definierte ,Version 0“ des Pro-
gramms zur Verfiigung gestanden hétte. Da dies durch krampfhaftes Festhalten
an der Fertigstellung gewisser Programmteile so nicht realisiert werden konn-
te, griindete der Funktionstest nicht nur auf von Teil zu Teil unterschiedlichen
Versionen, sondern stellte teilweise auch Fehler fest, die mittlerweile lingst be-
hoben waren. Da es sich hierbei teilweise um wichtige Programmteile handelt,
sollen hier kurz diejenigen Punkte wiedergegeben werden, die der Funktionstest
als fehlerhaft beschreibt, die aber im Programm zum Zeitpunkt des Endberichts
korrigiert waren:

4.1.1 Szenario

Fiir die folgenden Tests wurden verschiedene Szenarien (u.A. mit DRK-
Testdaten, mit generierten Testdaten und mit Daten aus 4.3) verwendet.

Die Meniipunkte neu, dffnen und Szenario zum Masterszenario machen zeig-
ten bei mehrmaligen Aufrufen und auch bei zwischenzeitlichem Verlassen des
Programms die gewiinschte Wirkung. Das Speichern scheint jedoch Probleme zu
machen (oder kam nicht immer der Hinweis ,Szenario gendert! - Speichern?)?
Jedenfalls waren nicht immer alle Daten da, die zuvor eingegeben wurden. Al-
lerdings konnte dieser Fehler bisher nicht reproduziert werden.

Auch beim Test der Funktionen des Untermeniis TourSzenario gab es Pro-
bleme:

wechseln zeigte keine Wirkung.

kopieren schligt fehl, da die vom System automatisch aufgerufene Methode
korrigiereFahrzeiten() zu einer Exception fiihrte.

zum Master machen Funktioniert auf den ersten Blick, allerdings sieht
man auf der Konsole, daff das unbekannte Kommando tourszena-
rio_ fahrten_ schreiben aufgerufen wird.

Die {ibrigen Meniipunkte zeigten bei mehrmaligen Aufrufen und auch bei zwi-
schenzeitlichem Verlassen des Programms die gewiinschte Wirkung.

47

48 KAPITEL 4. TEST

4.1.2 Kunden und Dienstwiinsche

Abgesehen von den in Kapitel 4.3 genannten Fehlern fiel nichts mehr auf. Der
Menitipunkt Dienstwiinsche erfillt? dirfte den Planer nur fiir kurze Zeit erfreu-
en: es werden angeblich immer alle Wiinsche erfiillt!

4.1.3 Touren, Untertouren und Fahrten

Die Probleme, die sich hinter dem Meniipunkt Tourenliste verbergen, werden
im Detail in 4.3 beschreiben. Insbesondere liefen sich keine Untertouren bilden.
Damit war auch ein Test aller Meniipunkte/Dialoge, die sich auf Untertouren
oder Fahrten beziehen, nicht moglich.

Der Konsistenztest entdeckte fehlende Mitarbeiter und Qualifikationen. Eben-
so wurden zugewiesene, aber vom Kunden abgelehnte Mitarbeiter korrekt ent-
deckt. Auf mehrfach verplante Mitarbeiter und Fahrzeuge wurde jedoch nicht
hingewiesen.

4.1.4 Test der Meniipunkte Ressourcen, Ausgabe, Analy-
se und Einstellungen

4.1.4.1 Vorgehensweise

In diesem Testabschnitt sollten die Eingabemasken fiir Mitarbeiter, Fahrzeuge
und die systemweit bekannten Daten (=Einstellungen), sowie die Ausgabe- und
Analysefunktionen auf ihre Funktionalitdt hin {iberpriift werden. Die Vorge-
hensweise fiir den Test der Eingabemasken war folgende: Eingabe neuer Daten
(auch falsche Formate), Andern und Léschen bestehender Daten. Fiir den Test
der Ausgabe- und Analysefunktionen wurde auf schon bestehende Daten zuge-
griffen.

4.1.4.2 Ressourcen

Sowohl die Masken zur Neueingabe, zum Andern und zum Loschen von Mit-
arbeitern, sowie die zur Manipulation der Fahrzeugdaten funktionieren im ge-
wiinschten Umfang. Bei der Neueingabe diverser Daten (z.B. Adressen, Kommu-
nikationsverbindungen. ..) eines fiir das System neuen Mitarbeiters bzw. Fahr-
zeugs erscheint im Titel des Fensters nicht der Name des Mitarbeiters bzw.
Fahrzeugs, sondern null null. Dies ist bedingt durch das Konzept des Zwei-
Phasen-Commit, welches sdmtliche Eingaben nach Driicken des OK Button erst
priift und danach dem System bekannt macht.

4.1.4.3 Ausgabe

Die Meniipunkte zur Ausgabe waren zum Zeitpunkt an dem der Test durchge-
fithrt wurde, teilweise noch nicht vollstindig implementiert und funktionierten
dementsprechend noch nicht.

4.1.4.4 Analyse

Die Meniipunkte zur Anzeige der Mitarbeiterauslastung und zur Fahrzeugbeset-
zung zeigten die gewiinschten Daten richtig an. Die weiteren Analysefunktionen

4.1. FUNKTIONSTEST DES GESAMTPROGRAMMS 49

waren zum Testzeitpunkt noch nicht vollstdndig implementiert und konnten so-
mit nicht getestet werden. Die Funktionen zum Drucken funktionieren mit der
Solaris-Version des JDK nicht (X11MOTIF-Exception).

4.1.4.5 Einstellungen

Die Masken zur Eingabe der einzelnen, systemweit bekannten Daten, funktio-
nierten zur vollen Zufriedenheit. Auch falls die Daten in anderen Masken (z.B.
Fahrzeugeingabe) verdndert oder ergénzt werden. Die Eingaben falscher Daten-
formate (z.B. Eingabe von Buchstaben statt Zahlen) werden von den Konsi-
stenztests sicher erkannt und erfolgreich abgewiesen.

4.1.4.6 Allgemeine Systemprobleme

Bei manchen Testldufen kam es vor, daf das System ohne Fehlermeldung ab-
stiirzte oder einfach hdngen blieb und dadurch von aufien beendet werden mufste.
Da diese Fehler in unterschiedlichen Bediensituationen auftraten, liegt die Ur-
sache wahrscheinlich in einer gewissen Instabilitéit der Java-Laufzeitumgebung.

4.1.5 Probleme unter Windows und JDK1.1.5

e Die Eingabe des Zeichens ,Q“ ist nicht moglich.

e Der Warte-Mauscursor wird erst nach einer Mausbewegung wieder in einen
Aktiv-Mauscursor geéndert. Spielt man nicht die ganze Zeit mit der Maus,
kann man lange warten, bis eine Aktion beendet ist.

e Zeitrahmen werden immer um einen Tag nach vorne geschoben

4.1.6 allgemeine Fehler

e Bilden von Untertouren nicht moglich.

e Es ist nicht mdoglich, einen Dienstwunsch zu 16schen, der von Touren refe-
renziert wird. Es erscheint zwar die Frage ,,Dienstwunsch aus allen Touren
entfernen?”, eine Antwort mit ok wird jedoch nur durch eine Exception
quittiert.

4.1.7 Erganzungen zum Test

Tourszenarien Tourszenarien kénnen jetzt kopiert werden, zwischen verschie-
denen Tourszenarien eines Szenarios kann gewechselt werden, und das je-
weils aktive Tourszenario kann zum Master-Tourszenario gemacht werden
(notwendige Bedingung fiir das Schreiben von Fahrten).

Untertouren erstellen Untertouren konnten erstellt werden und mit Teil-
dienstwiinschen bestiickt werden. Das Verschieben einzelner Teildienst-
wiinsche klappte ebenso wie das Verschieben von Halten, wobei die Prii-
fung auf richtige Reihenfolge der Stationen korrekt arbeitete. Da im Modus
ohne Verkehrstool getestet wurde, wurden unbekannte Entfernungen bzw.
Fahrzeiten angezeigt und konnten vom Benutzer eingegeben werden.

50 KAPITEL 4. TEST

Fahrten erzeugen Zu den erzeugten Untertouren wurden Fahrten erzeugt.
Dabei wurden die Zeitrdume der Dienstwiinsche beachtet und gegebenen-
falls keine neuen Fahrten erzeugt. Die neu erzeugten Fahrten wurden dem
Benutzer zur Uberpriifung und mdoglichen Bearbeitung prisentiert. Hier
konnten Mitarbeiter und Fahrzeug angepafst werden, sowie Dienstwiinsche
entfernt und wieder eingefiigt werden.

Das Erstellen von Dienstplanen auf der Basis dieser Fahrten gelang, ebenso
wie das Archivieren von Fahrten in eine Log-Datei.

Erfiillung von Dienstwiinschen priifen Es wurden zwei Dienstwiinsche
iiberpriift, von denen einer teilweise in Touren und Untertouren enthal-
ten war. Das Programm meldete korrekt alle Teildienstwiinsche dieser
Dienstwiinsche, die nicht in den bestehenden Untertouren erfiillt wurden.

Loschen von Dienstwiinschen, die in Touren enthalten sind Nach der
Warnmeldung, daf der zu l6schende Dienstwunsch noch in Touren steckt,
wurde die Option gewé&hlt, diesen automatisch auch dort entfernen zu las-
sen. Nach Eingabe einer Entfernung (die in der Untertour durch Wegfall
des Dienstwunsches benétigt wurde) war der Dienstwunsch sowohl aus der
Wunschliste des Kunden als auch aus der Tour und Untertour geloscht, in
denen er zuvor noch referenziert worden war.

Drucken von Analysen und Plinen Plidne und Analysedaten kénnen jetzt
auch ausgedruckt werden. Analyselisten werden dabei in Seiten umbro-
chen, von Dienstplinen wird jeweils nur der Teil ausgedruckt, der auf eine
Seite pakt (dies ist etwa eine Woche).

4.2 Grenzen des Systems: Test mit grofien Da-
tenmengen

Um die Grenzen des Systems zu erkunden, wurde ein Programm geschrieben, das
grofte Mengen zufilliger Daten anlegt, wobei verschiedene Parameter eingestellt
werden konnen. Die Daten werden in Szenarien gespeichert, die dann von TROSS
geladen werden konnen. Mit diesem Programm wurden zwei Szenarien erzeugt:

1. Das erste Szenario enthilt je 50 Qualifikationen, Essensarten, Hilfsmittel
und Fahrzeugtypen, je 200 Fahrzeuge und Mitarbeiter, 500 Kunden mit
jeweils 0 bis 2 Dienstwiinschen, 10 Schulen, 150 Schultouren mit 3 bis
6 Kindern und die Untertouren zu den Schultouren (eine Hin- und eine
Riickfahrt).

2. Im zweiten Szenario wurde die Zahl der Kunden auf 1000 erhoht, die Zahl
der Schulen auf 20 und die Zahl der Schultouren auf 300.

Diese Szenarien wurden geladen und verschiedene Funktionen von TROSS auf-
gerufen, um die Schwachstellen zu finden. Fiir diese wurden dann Zeitmessungen
durchgefiihrt. In Tabelle 4.1 werden die nacheinander aufgerufenen Funktionen
und die benotigten (gestoppten) Zeiten in Sekunden auf zwei Rechnern (beide
Windows 95 mit JDK 1.1.6) angegeben.

4.2. GRENZEN DES SYSTEMS: TEST MIT GROSSEN DATENMENGENb51

Funktion Cyrix 166/32MB | P100/24MB
Szenario 1 laden 115 319
Kunden anzeigen 5 12
speichern als Szenario 3 100 152
Szenario 3 laden 110 307
Kunden anzeigen 2,5 8
Szenario 2 laden 305 912
Kunden anzeigen 8 18
Touren anzeigen 2)

Tabelle 4.1: Zeiten fiir verschiedene Funktionen

Das grofe Problem: das Laden (und Speichern) der Daten. In TROSS wird
die Serialisation von Java verwendet, wobei die Daten noch komprimiert wer-
den. Auch das Abschalten der Komprimierung dnderte kaum etwas. Der Profiler
ermittelt fiir das Laden des kleinen Szenarios die folgenden Top-Rechenzeit-
Verbraucher:

59,4% ObjectInputStream.inputClassFields(Object, Class, int][])
20,9% System.gc()
11,2% Object.wait(long)

Alle drei Methoden kommen von Java. Die erste Methode ist nicht dokumen-
tiert, dem Namen nach liest sie die Attribute der Objekte. Die zweite ist der
Garbage-Collector und die dritte dient zur Synchronisation paralleler Zugriffe.
Eine Laufzeit-Optimierung ist hier also nicht moglich, am einfachsten kénnen
die 21% fiir den Garbage-Collector durch mehr Speicher verringert werden.

Die {ibrigen gestoppten Zeiten wéren auf dem Cyrix-Prozessor gerade noch
hinnehmbar, das Laden und Speichern mittels Objekt-Serialisation ist aber nicht
akzeptabel, kann aber wegen Zeitmangels nicht mehr geindert werden.

Fiir die folgenden Versuche wurde ein viertes Szenario mit vom zukiinftigen
Benutzer von TROSS gelieferten Daten erstellt. Dieses enthélt 46 Fahrzeuge, 63
Mitarbeiter, 94 Kunden mit Dienstwiinschen (Essen auf Ridern und Schulfahr-
ten) und 11 Schultouren.

Bei ausgeschaltenem Verkehrstool wurden die Dienstwiinsche angelegt. Da-
nach wurde das Verkehrstool eingeschaltet. Fiir das Anbinden der 95 Statio-
nen (94 und eine Schule) wurden 95 Sekunden benétigt. Danach wurden fiir
alle 11 Schultouren die Entfernungen zwischen den einzelnen Stationen ermit-
telt. Das dauerte 160 Sekunden. Hier wurden etwa 160/11 = 15 Sekunden pro
Map&Guide Auftrag.

Der benotigte Speicherplatz auf der Festplatte hélt sich dank der Kompression
in Grenzen. Tabelle 4.2 zeigt die Dateigrofen in Bytes verschiedener Szenarien.
Weshalb das Szenario 3 kleiner ist als Szenario 1, ist nicht erklérbar.

Die Szenarien in den letzten drei Zeilen enthalten jeweils noch die Fahrten
der Schultouren fiir 1, 2 bzw. 3 Wochen. Pro Fahrt werden etwa (17905 —
17187)/220 = 3,2 Bytes benotigt. Dank der Kompression gibt es hier also keine
Engpésse.

52 KAPITEL 4. TEST

Szenario Grofe in Bytes
Szenario 1 134.472
Szenario 2 254.954
Szenario 3 134.423
Szenario 4 16.292
Szenario 4 + 1 Woche 17.187
Szenario 4 + 2 Wochen 17.513
Szenario 4 + 3 Wochen 17.905

Tabelle 4.2: Groflen verschiedener Szenarien

4.3 Abgleich mit den Anforderungen: Durchspie-
len der Szenarien

Ein Teil der Testphase bestand darin, die Daten aus den Szenarien der Anforde-
rungsanalyse mit TROSS zu verarbeiten. Im folgenden soll dargestellt werden,
welche Teile mit TROSS verarbeitet werden konnten, welche sich aufgrund von
Fehlern nicht verarbeiten lieen und welche aus konzeptionellen Griinden nicht
mit TROSS verarbeitet werden konnten.

4.3.0.1 Schulfahrten

Szenario 1 Die Qualifikationen ,Lastenheben“ und ,Epilepsie-Umgang* wur-
den neu angelegt. Darauthin wurden die Zivildienstleistenden Gustav Hiberle
und Karl Tremmle gem&fi den Vorgaben des Szenarios erfafst. Danach wurden
die vier vorgegebenen Kunden erfaft und zu einer Tour zusammengestellt, die
wie gefordert fiir die automatische Optimierung gesperrt wurde. Da die Schii-
lerin Karin Klein krank ist, wurde in ihrem Dienstwunsch die voraussichtliche
Dauer der Krankheit vom Zeitrahmen ausgenommen.

Probleme

e Da fiir Touren keine Bemerkung vorgesehen ist, mufy der Auftrag, die
Schiiler in die Klassen zu bringen, bei jedem Dienstwunsch angegeben
werden.

e Der Zivi Karl Tremmle machte zu Beginn seiner Dienstzeit einen
Lehrgang. Dies sollte in TROSS durch eine Datumsspanne fiir die
Zeit des Lehrgangs dargestellt werden. Dazu wére es wiinschenswert
gewesen, bei den Ausnahemzeitrdumen auch Bemerkungen eingeben
zu konnen, damit man weifs, warum ein Mitarbeiter fehlt. Bisher kann
nur dargestellt werden, daf ein Mitarbeiter nicht verfiigbar ist, aber
nicht, warum er fehlt.

e Dak der Klassenlehrer von Karin Klein iiber deren Krankheit unter-
richtet werden soll, ist im System nicht sinnvoll darstellbar, da der
entsprechende Dienstwunsch nicht mehr in der Fahrt auftaucht.

e Die Zeitangabe ohne Minuten (,,16: “) fiilhrte zu der verwirrenden
Fehlermeldung ,,ganze Zahl eingeben‘.

Fehler

4.3. ABGLEICH MIT DEN ANFORDERUNGEN 33

e Beim Erstellen von Untertouren trat eine Exception auf. Daher konn-
te auch nicht festgestellt werden, ob es moglich ist, daf die Schiilerin
Susanne Schlecht auf der Hinfahrt garantiert als letzte abgeholt und
bei der Riickfahrt als erste abgeliefert wird.

Szenario 2 Das Szenario konnte mit dem System komplett umgesetzt werden.
Ob die Anderungen der Dienstwiinsche in den Touren durch Umsetzen der Kun-
den in den Untertouren und Fahrten richtig nachvollzogen wird, konnte nicht
festgestellt werden, da es nicht moglich war, Untertouren zu bilden.

4.3.0.2 MSD / Pflegedienst

Szenario 1 Das Szenario konnte mit TROSS nachvollzogen werden. Die Vor-
gabe, beide Dienstanforderungen als einen Dienstwunsch zu erfassen, kann nach-
vollzogen werden, hat im System jedoch folgendes Problem: Auf der Tour muf
immer ein teurer Pfleger mitgehen, auch wenn nur Einkiufe zu erledigen sind.

Szenario 2 Bei der Umsetzung des zweiten MSD-Szenarios traten zwei Fehler
auf. Zum einen war gefordert, einen bevorzugten Mitarbeiter festzulegen. Dies
geschah bei der Eingabe des Dienstwunsches, allerdings war die Eingabe beim
nichsten Aufruf der Dienstwunschmaske wieder verschwunden.

Das zweite Problem machte die Ausnahmezeiterfassung beim Kunden. Es
sollten zwei Zeitrdume eingegeben werden, in denen die Kundin nicht bedient
werden soll. Allerdings wurde die zweite Eingabe ignoriert und dafiir der erste
Zeitraum (unter Windows) um einen Tag nach vorne verschoben.

4.3.0.3 Essen auf Riadern

Szenario 1 Das Szenario konnte erfolgreich nachvollzogen werden.

Szenario 2 Bei diesem Szenario traten folgende Probleme auf:

Zunichst sollte eine Email-Adresse eingegeben werden, da der Kunde per
Email bestellte. Dabei fiel auf, dafs unter Windows95 die Eingabe des Zeichens
,@“ nicht moglich ist, obwohl dies unter UNIX funktioniert.

Das néchste Problem war die nachtrégliche Adreferfassung in der Dienst-
wunschmaske. Da zunéchst keine Lieferadresse angegeben war, erschien korrek-
terweise eine entsprechende Fehlermeldung. Darauthin wurde die Lieferadresse
erginzt. Diese konnte vom Verkehrsmodul nicht angebunden werden, weshalb
ein entsprechender Hinweis kam, der mit Abbrechen beendet werden sollte. Lei-
der blieb daraufhin auch TROSS stehen und mufte von aufsen verlassen werden.

Nachdem der Dienstwunsch wegen obigem Fehler nochmals erfafst war, soll-
te sichergestellt werden, daft er am Ende einer Essenstour erledigt wird. Eine
Reihenfolge kann jedoch erst bei Untertouren festgelegt werden, die wie schon
erwahnt nicht funktionierte. Damit bleibt dieser Punkt ungepriift. Als Alterna-
tive wurde eine spite Lieferzeit eingegeben, die jedoch nichts garantiert.

Die Verquickung mit einem MSD-Dienstwunsch ist aus konzeptionellen Griin-
den nicht direkt moglich. Dies muf bei der Tourplanung manuell beriicksichtigt
werden (wobei die beiden Dienstwiinsche wegen der unterschiedlichen Dienstar-
ten nicht in einer Tour erledigt werden diirfen!). Eine andere Moglichkeit wére

54 KAPITEL 4. TEST

ein MSD-Dienstwunsch mit der Bemerkung , Essen mitnehmen* oder ein EAR-
Dienstwunsch mit einer lingeren Aufenthaltszeit. Dies bringt aber Probleme fiir
die (in dieser Version nicht realisierte) automatische Abrechnung mit sich, da
sich diese auf die Dienstart stiitzt und somit entweder ein Essen oder MSD-
Stunden in Rechnung stellen kénnte.

Szenario 3 Beim Szenario 3 ergeben sich durch die geforderte Verbindung von
EAR- und MSD-Dienst die schon oben genannten Probleme. Weitere Probleme
traten in Verbindung mit der Erfassung von Institutionen auf:

e Obwohl die Klasse Kunde einen Vektor fiir die Aufnahme von Institutionen
besitzt, ist es ist nicht moglich, dem Kunden direkt, d.h. ohne bekannten
Sachbearbeiter, eine Institution zuzuweisen. Ist der Sachbearbeiter unbe-
kannt, mufs die Institution iiber eine Dummy-Bezugsperson referenziert
werden.

o Es ist keine Angabe der Versicherten-Nummer vorgesehen. Diese kann
zwar im Feld Bemerkung untergebracht werden, verhindert aber (z.B. fiir
automatische Rechnungsstellung) eine Auswertung durch das Systems.

Szenario 4 Das Szenario konnte mit TROSS erfafst werden. Ein Problem trat
unter Windows95, jedoch nicht bei UNIX auf: Der Zeitrahmen wird beim Ver-
lassen der Zeitrahmeneingabe um einen Tag nach vorne verschoben.

Szenario 5 Das Szenario 5 konnte problemlos nachvollzogen werden.

Szenario 6 Der entsprechende Ausnahmezeitraum wurde erfaft (und nach
Szenario 4 erwartungsgemif verschoben). Auswirkungen auf die Fahrten konn-
ten nicht getestet werden, da es nicht moglich war, Fahrten zu erzeugen.

Szenario 7 Der nicht mehr benétigte Dienstwunsch wurde durch Angabe ei-
nes Enddatums in seiner Zeitspanne suspendiert. Die Entfernung aus der ent-
sprechenden Tour mufl manuell erfolgen, Auswirkungen auf die Untertouren und
Fahrten konnten nicht getestet werden.

Szenario 8 Solche kurzfristigen Anderungen werden vermutlich nicht {iber das
System laufen. Falls doch, miissen die entsprechenden Fahrten geindert werden
(2 Fahrten zu einer Untertour, wobei jede einen Teil erledigt). Dies konnte nicht
getestet werden, da es nicht moéglich war, Fahrten zu erzeugen.

4.3.0.4 Individualfahrten

Szenario 1 Dieses Szenario (Kundin fihrt zum Arzt und wieder zuriick) kann
problemlos nachvollzogen werden.

Szenario 2 Bei der Eingabe dieses Szenarios einer Individualfahrt mit ei-
ner Zwischenstation blieb die Frage offen, wann die Zwischenstation im System
beriicksichtigt wird (auf der Hinfahrt, auf der Riickfahrt, immer?). Auferdem
kann nur angeben werden, ob der Mitarbeiter zwischen der Hin- und Riickfahrt

4.3. ABGLEICH MIT DEN ANFORDERUNGEN 35

anwesend sein muf, fiir Zwischenstationen ist keine Angabe moglich. Eine an-
dere Moglichkeit dieses Szenario so einzugeben, daf der Mitarbeiter dem DRK
zwischen allen Stationen zur Verfiigung steht, wére die Aufspaltung des Dienst-
wunsches auf drei Individualfahrten (Wohnung, Friedhof), (Friedhof, Gemein-
dehaus), (Gemeindehaus, Wohnung).

Aufserdem war es wegen Exceptions nicht moglich, iiberhaupt Zwischensta-
tionen anzugeben.

Szenario 3 Entspricht, abgesehen von der Anfangszeit, dem Szenario 2.

Szenario 4 Ist fiir die Dateneingabe vollig uninteressant, da die Fahrt abge-
lehnt wird. Diese Entscheidung kann auf Grundlage der Datenausgabe getroffen
werden, deren Testergebnisse in 4.1.4.3 zu finden sind.

Kapitel 5

Architektur des Programms
TROSS

5.1 Architektur des System TROSS

Abbildung 5.1 bietet einen Uberblick iiber die gesamte Architektur des System
TROSS.

5.2 Graphische Benutzungsoberflache

Eine schematische Ubersicht bietet Abbildung 5.2

5.3 Verkehrsmodul

Abbildung 5.3 zeigt den prinzipiellen Aufbau und die Verwendung des Verkehrs-
moduls.

o6

Ausgabe

Plaene Analysg

TNAONSYHHAMYHA "€°¢

Eingabe Szenario2 Verkehrsmodul

Szenariol

- _ Cache- —»

Mask Konsistenz- - bell M&G
asken sicherung <> tabelle

—
Tour- Tour-
szenariogl [szenario2

persistenter Speicher

Abbildung 5.1: Architektur des System TROSS

LG

KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

58

TRO.GUI

java.lang.Dialog

java.lang.Panel

TastaturDialog GroupFramePanel ZeitspannePanel \\ \H UhrzeitPanel IntegerFeld DatumsFeld [] [)
, ; |/
Von ///l_ stunden ///!l\\; \»
! , Bis —__ _V minuten — 1 _ _ -
OKCancelDialog ObjektListePanel
Amo.ocm.x:sam: TRO.GUI.Ressourcen TRO.GUI.Ausgabe TRO.GUL.Touren
° ° ° [] [} [] [] [} [] ° ° °
; ; TRO.GUI.Dienste TRO.GUI.Analyse
KundeDialog KundenListePanel ° o o ° R o UntertourDialog
<init> <init> \IM_zzv
okAktion elementEntfernen oo
\ TRO.GUL.Definitionen TRO.GUI.Menu OkAktion
/ e o o e o o \
/ / k \L»\|4/r ~~ M Y
TRO TRO.Konsistenztests TRO.Verkehrsmodul

Abbildung 5.2: Architektur der graphischen Benutzungsoberfliche

Konstruktor(station) > Verkehrsmodul .anbindunglnOrdnung
Station j » MoeglicherAnbindungsPunkt
1 § T M oeglicherAnbindungsPunkt.korrekturListe
| : Verkehrsmodul .erstelleAnbindungsPunkt
| .
| v von
R ————————————————— AnbindungsPunkt EntfernungsT abellenEintrag
| nach
| :
‘ y‘ anbindungsPunkte
. entfernung : ®
: fahrzeit j Verkehrsmodul EntfernungsTabelle
. bereiteVor :
1 TROVerkehrsmodul b
RO
tross.st
trossasc Auftrag Antwort tross.cor
tross.bal
! error.mgb
Map& Guide

Abbildung 5.3: Prinzipskizze des Verkehrsmoduls

TNAONSYHHAMYHA "€°¢

69

60 KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

5.4 Klassenhierarchie

* class java.lang.0Object
o class TRO.Verkehrsmodul.AnbindungsPunkt (implements
java.io.Serializable)
o class TRO.ArbeitszeitProfil (implements java.io.Serializable,
TRO.ListenElement)
+ class TRO.TeilzeitStundenProfil (implements
java.io.Serializable)
+ class TRO.TeilzeitTageProfil (implements
java.io.Serializable)
+ class TRO.VollzeitProfil (implements java.io.Serializable)
o class TRO.Bank (implements java.io.Serializable)
o class TRO.BankVerbindung (implements java.io.Serializable,
TRO.ListenElement)
o class TRO.GUI.ColumnConstraints (implements java.lang.Cloneable,
java.io.Serializable)
o class TRO.GUI.ColumnLayout (implements java.awt.LayoutManager?2,
java.io.Serializable)
o interface TRO.Comparable
o class java.awt.Component (implements java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable)
+ class java.awt.Choice (implements java.awt.ItemSelectable)
+ class TRO.GUI.ObjektAuswahl
+ class java.awt.Container
+ class java.awt.Panel
+ class TRO.GUI.Definitionen.ArbeitszeitPanel
+ class
TRO.GUI.Definitionen.TeilzeitStundenPanel
+ class TRO.GUI.Definitionen.TeilzeitTagePanel
+ class TRO.GUI.Definitionen.VollzeitPanel
+ class TRO.GUI.DatumsspannePanel
+ class TRO.GUI.GroupFramePanel
class TRO.GUI.AuswahlListePanel
class TRO.GUI.HashPanel
class TRO.GUI.Dienste.KonfigurationsPanel
class TRO.GUI.ObjektListePanel

+ class TRO.GUI.Dienste.BezugspersonenPanel
(implements TRO.GUI.ObjektListePanel.
ElementListener)

+ class
TRO.GUI.Dienste.DienstwunschListePanel
(implements TRO.GUI.ObjektListePanel.
ElementListener)

+ class TRO.GUI.Touren.FahrtenListePanel
(implements TRO.GUI.ObjektListePanel.
ElementListener)

+ class
TRO.GUI.Ressourcen.FahrzeuglistePanel

+

+ + +

5.4. KLASSENHIERARCHIE

61

(implements TRO.GUI.ObjektListePanel.
ElementListener)

class TRO.GUI.Kunden.KundenListePanel
(implements TRO.GUI.ObjektListePanel.
ElementListener)

class

TRO.GUI.Ressourcen.MitarbeiterListePanel
(implements TRO.GUI.ObjektListePanel.
ElementListener)

class TRO.GUI.Touren.StationenListePanel
(implements
java.awt.event.ActionListener,
TRO.GUI.ObjektListePanel.
InformationListener)

class TRO.GUI.Dienste.StationenPanel
(implements TRO.GUI.ObjektListePanel.
ElementListener,
TRO.GUI.ObjektListePanel.
InformationListener,
java.awt.event.ActionListener)

class TRO.GUI.Dienste.ZahlerPanel
(implements TRO.GUI.ObjektListePanel.
ElementListener,
TRO.GUI.ObjektListePanel.
InformationListener)

+ class TRO.GUI.Kunden.PersonPanel

+

class TRO.GUI.Dienste.QualifikationsPanel

+ class TRO.GUI.StationPanel (implements
java.awt.event.ActionListener)

+ class TRO.GUI.Dienste.TerminPanel (implements
TRO.GUI.ObjektListePanel. ElementListener)

class TRO.GUI.Touren.TourQualifikationsPanel

+ + + +

class
class
class

+ + + +

class
+ class

class TRO.GUI.Touren.TourVorliebenPanel
class TRO.GUI.Kunden.VorliebenPanel

class TRO.GUI.ZeitraumPanel (implements
TRO.GUI.ObjektListePanel. ElementListener)
TRO.GUI.Touren.TourenlListePanel
TRO.UeberTrossPanel

TRO.GUI.UhrzeitPanel
TRO.GUI.ZeitdauerPanel
TRO.GUI.ZeitspannePanel

+ class java.awt.Window

+ class
+

+

+

java.awt.Dialog

class TRO.GUI.AnbindungspunktWahlDialog
(implements java.awt.event.ActionListener)
class
TRO.GUI.Definitionen.ArbeitszeitArtDialog
(implements java.awt.event.ActionListener)
class TRO.GUI.Dienste.DienstartDialog
(implements java.awt.event.ActionListener)

62 KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

+ class TRO.GUI.TastaturDialog (implements
java.awt.event.KeyListener,
java.awt.event.ContainerListener)

+ class TRO.GUI.JaNeinDialog
+ class TRO.GUI.OKCancelDialog
+ class TRO.GUI.AdresseDialog
+ class
TRO.GUI.Definitionen.ArbeitszeitProfilDialog
+ class
TRO.GUI.Kunden.BankverbindungsDialog
+ class
TRO.GUI.Definitionen.BenannteStationDialog
+ class

TRO.GUI.Kunden.BezugsPersonDialog

class TRO.GUI.DatumsspanneDialog

class TRO.GUI.DienstwunschWahlDialog

class TRO.GUI.ElementWahlDialog

class

TRO.GUI.Definitionen.EntfernungDialog

+ class
TRO.GUI.Definitionen.EssensartDialog

+ class TRO.GUI.Touren.FahrtDialog
(implements
java.awt.event.ActionListener)

+ class
TRO.GUI.Definitionen.FahrzeugkonfigurationsDialo
(implements TRO.GUI.HashPanel.
HashListener)

+ class
TRO.GUI.Definitionen.FahrzeugtypDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener)

+ class
TRO.GUI.Definitionen.FeiertagDialog

+ class
TRO.GUI.Definitionen.HilfsmittelDialog

+ class
TRO.GUI.Definitionen.InstitutionDialog

+ class
TRO.GUI.Kunden.KommunikationsverbindungsDialog

+ class TRO.GUI.KonsistenzDialog

+ class
TRO.GUI.Definitionen.QualifikationDialog

+ class TRO.GUI.RegisterDialog

+ class
TRO.GUI.Dienste.EssenDialog
(implements TRO.GUI.HashPanel.
HashListener)

+ class

+ + + +

5.4. KLASSENHIERARCHIE 63

TRO.GUI.Ressourcen.FahrzeugDialog
(implements TRO.GUI.HashPanel.
HashListener)

+ class
TRO.GUI.Dienste.IndividualfahrtDialog

+ class
TRO.GUI.Kunden.KundeDialog

+ class TRO.GUI.Dienste.MSDDialog

+ class
TRO.GUI.Ressourcen.MitarbeiterDialog

+ class
TRO.GUI.Dienste.SchulfahrtDialog

+ class TRO.GUI.Dienste.RhythmusDialog

+ class
TRO.GUI.Kunden.SachbearbeiterDialog

+ class
TRO.GUI.Dienste.StationZeitDialog

+ class

TRO.GUI.TeilDienstwunschWahlDialog

+ class TRO.GUI.TeilListeWahlDialog

+ class TRO.GUI.TextEingabeDialog

+ class TRO.GUI.Touren.TourDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener)

+ class TRO.GUI.UhrzeitDialog

+ class TRO.GUI.Touren.UntertourDialog

+ class
TRO.GUI.Definitionen.VerkehrstoolDialog

+ class TRO.GUI.ZahlEingabeDialog

+ class TRO.GUI.ZeitdauerDialog

+ class TRO.GUI.OKDialog

+ class
TRO.GUI.Definitionen.ArbeitszeitProfileDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener)

+ class
TRO.GUI.Definitionen.BenannteStationenDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener)

+ class
TRO.GUI.Definitionen.EssensartenDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener,
TRO.GUI.ObjektListePanel.
InformationListener)

+ class

64

+ class java.awt.

KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

TRO.GUI.Touren.FahrtenListeDialog
class
TRO.GUI.Definitionen.FahrzeugtypenDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener)
class
TRO.GUI.Definitionen.FeiertageDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener)
class
TRO.GUI.Definitionen.HilfsmittelListeDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener,
TRO.GUI.ObjektListePanel.
InformationListener)
class
TRO.GUI.Definitionen.InstitutionenDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener)
class TRO.GUI.MeldungDialog
+ class

TRO.GUI.VerkehrstoolLaeuftNichtDialog
class
TRO.GUI.Definitionen.QualifikationenDialog
(implements
TRO.GUI.ObjektListePanel.
ElementListener,
TRO.GUI.ObjektListePanel.
InformationListener)
Frame (implements

java.awt.MenuContainer)

+ class TRO.

Tross (implements

java.awt.event.ActionListener)

+ class java.awt.
+ class TRO.
+ class java.awt.

List (implements java.awt.ItemSelectable)
GUI.ObjektListe
TextComponent

+ class java.awt.TextField
+ class TRO.GUI.DatumsFeld
+ class TRO.GUI.IntegerFeld
o class TRO.Datum (implements java.lang.Cloneable,

java.io.Serializable)

o class TRO.Datumsspanne (implements java.io.Serializable,

TRO.ListenElement)

o class TRO.Dienstwunsch (implements java.io.Serializable,

TRO.ListenElement)

+ class TRO.EARDienstwunsch (implements java.io.Serializable)

5.4. KLASSENHIERARCHIE 65

+ class TRO.MSDDienstwunsch (implements java.io.Serializable)
+ class TRO.TransportDienstwunsch (implements
java.io.Serializable)
o interface TRO.Druckbar
o class TRO.Essensart (implements java.io.Serializable,
TRO.ListenElement)
o class TRO.Fahrt (implements java.lang.Cloneable,
java.io.Serializable, TRO.ListenElement)
o class TRO.Fahrzeug (implements java.io.Serializable,
TRO.ListenElement)
o class TRO.Fahrzeugkonfiguration (implements java.io.Serializable,
TRO.ListenElement)
o class TRO.Fahrzeugtyp (implements java.io.Serializable,
TRO.ListenElement)
o class TRO.Feiertag (implements TRO.ListenElement,
java.io.Serializable)
o class TRO.GUI.GUIHelfer
o class TRO.Helfer
o class TRO.Hilfsmittel (implements TRO.ListenElement,
java.io.Serializable)
o class TRO.Institution (implements java.io.Serializable,
TRO.Zahler)
o class TRO.KommunikationsVerbindung (implements
java.io.Serializable, TRO.ListenElement)
o class TRO.KontaktPerson (implements TRO.ListenElement)
o interface TRO.ListenElement (extends TRO.Comparable)
o class TRO.Verkehrsmodul.MoeglicherAnbindungsPunkt (implements
TRO.ListenElement, java.io.Serializable)
o class TRO.Ort (implements java.io.Serializable)
o class TRO.Person (implements java.io.Serializable, TRO.Zahler)
+ class TRO.BezugsPerson (implements TRO.ListenElement)
+ class TRO.Sachbearbeiter
+ class TRO.Kunde (implements TRO.ListenElement,
java.io.Serializable)
+ class TRO.Mitarbeiter (implements TRO.ListenElement,
java.io.Serializable)
o class TRO.Qualifikation (implements java.io.Serializable,
TRO.ListenElement)
o class TRO.Rhythmus (implements java.io.Serializable,
TRO.ListenElement)
o class TRO.SortierterVektor (implements java.lang.Cloneable,
java.io.Serializable)
o class TRO.Station (implements java.io.Serializable,
java.lang.Cloneable, TRO.ListenElement)
o class TRO.StationMitZeiten (implements java.io.Serializable,
java.lang.Cloneable, TRO.ListenElement)
+ class TRO.UntertourHalt (implements java.io.Serializable,
java.lang.Cloneable, TRO.ListenElement)
o class TRO.Strecke
o class TRO.Verkehrsmodul.Strecke (implements java.io.Serializable)

66

KAPITEL 5. ARCHITEKTUR DES PROGRAMMS TROSS

class TRO.Szenario (implements java.io.Serializable)
class TRO.TeilDienstwunsch (implements java.io.Serializable,
TRO.ListenElement)
class TRO.Termin (implements java.io.Serializable)
class java.lang.Throwable (implements java.io.Serializable)
+ class java.lang.Exception
+ class TRO.GUI.EingabeFormatException
+ class TRO.IstMasterSzenario
+ class TRO.UnbekannteFahrzeitenException
+ class TRO.Verkehrsmodul.VerkehrstoolLaeuftNicht
+ class TRO.VerschiebungNichtErlaubtException
+ class TRO.Verkehrsmodul.WertNichtBekanntException
class TRO.Tour (implements java.lang.Cloneable,
java.io.Serializable, TRO.ListenElement)
class TRO.TourSzenario (implements java.lang.Cloneable,
java.io.Serializable, TRO.ListenElement)
class TRO.Uhrzeit (implements java.io.Serializable,
java.lang.Cloneable)
class TRO.Untertour (implements java.lang.Cloneable,
java.io.Serializable, TRO.ListenElement)
class TRO.Verkehrsmodul.Verkehrsmodul
interface TRO.Zahler (extends TRO.ListenElement)
class TRO.Zeit (implements java.io.Serializable)

+ class TRO.Aufenthaltszeit (implements java.io.Serializable)

+ class TRO.Lieferzeit

+ class TRO.Transportzeit
class TRO.Zeitraum (implements java.io.Serializable)
class TRO.Zeitspanne (implements java.io.Serializable,
TRO.ListenElement)

Kapitel 6

Erweilterungsmoglichkeiten

6.1

6.2

Mogliche Verbesserungen am Programm

Bei der Kundeneingabe erscheint bei den dienstbezogenen Daten kein
Kundenname, es wire jedoch hilfreich zu wissen, welcher Kunde gerade
bearbeitet wird. Bei der Dienstwunscheingabe wird zwar ein Kundenna-
me angezeigt, dieser ist jedoch bei Kundenneuanlage null, null.

Bei der Tourplanung erhilt der Benutzer keinen Hinweis, wenn Mitarbei-
ter oder Fahrzeuge mehrfach verplant werden, obwohl das System diese
Informationen schon hat.

Die Dialogbox Dienstart wihlen kann nicht abgebrochen werden.

Vermifit wurde eine globale Zeitgrenze fiir Essenstouren, die in der Regel
zwischen 10:45 und 12:30 erledigt werden miissen.

Hilfestellungen fiir den Benutzer

Die Einfiihrung benannter Rhythmen kénnte die Eingabe von héufig auf-
tretenden Rhythmen (z.B. Schulfahrten) erheblich vereinfachen.

An allen Stellen, an denen aus globalen Listen (z.B. Hilfsmittel) ausge-
wahlt werden kann, sollte auch eine Modifizierung der Liste moglich sein.

Wird eine Riickfahrzeit angegeben, sollte das Riickfahrt-Flag automatisch
gesetzt werden, anstatt die eingegebenen Riickfahrtzeiten zu ignorieren.

Es ware schon, wenn auch Kunden Ausnahme-Datumsspannen hitten, um
alle Dienstwiinsche des Kunden auf einfache Weise zu suspendieren.

Bei der Untertourzusammenstellung wiren die Funktionen alle ,Hin- bzw.
Riickfahrten wihlen/16schen® sehr hilfreich.

Die Unterstiitzung des direkten Umsetzens (Dienstwunsch in einer Tour
wéhlen und in eine andere Tour verschieben) wéire wiinschenswert.

67

68

KAPITEL 6. ERWEITERUNGSMOGLICHKEITEN

Bei Dienstwiinschen kénnen nur Bezugspersonen angegeben werden, die
schon beim Kunden definiert wurden. Es wéire wesentlich einfacher, auch
hier die Neuanlage von Bezugspersonen zu erméglichen.

6.3 Erweiterungsmoglichkeiten

Aufgrund der modularen Programmierweise kdnnen einzelne Teile leicht erwei-
tert oder gar ganz ausgetauscht werden, um leistungsfihigeren Konzepten Platz
zu machen.

Weitere Konsistenztests konnen fast ohne Anderungen am restlichen Pro-
gramm implementiert werden.

Fiir eine Zusammenarbeit mit einem anderen Verkehrstool als Map& Guide
(vielleicht mit einem Programm, das als Bibliothek vorliegt und direkt vom
Programm aus ohne Umwege iiber Batchdateien aufgerufen werden kann;
oder gar eine Online-Abfrage iiber ein geeignetes Netzwerk) muf nur das
Verkehrsmodul intern angepaft werden. Uber die definierten Schnittstellen
kann die Datenverwaltung wie bisher damit kommunizieren.

Da Map&Guide beim Einsatz im System TROSS doch einige Schwéchen
aufzeigt, wire es vielleicht vorteilhaft dieses durch ein geeignetes Verkehrs-
tools bzw. sogar durch nackte Verkehrsdaten zu ersetzen.

Einer Umsetzung der Datenverwaltung auf eine Datenbank kommt das
Datenmodell durch eine gewisse Normierung (siehe Klassen Ort und Bank)
entgegen. Die in der Oberfliche benutzte Vorgehensweise zum Uberpriifen
und Setzen von Werten eignet durch ihre Anlehnung an das Zwei-Phasen-
Commit-Konzept gut fiir die Umsetzung auf ein Datenbanksystem.

Aufsetzen des System TROSS auf ein DBMS: Dies konnte zum einen evtl.
die schlechte Lade- und Speicher-Performance ausgleichen, und zum an-
deren konnte dem Benutzer die Méglichkeit geboten werden, die Analyse-
und Ausgabefunktionen dynamisch zu erweitern (z.B. Heraussuchen wie-
viele Kunden im Plz-Bereich 7xxxx (= best. Stadteil (z.B. Stuttgart
West)) wohnen).

Da TROSS mit sehr grofer Wahrscheinlichkeit auf einem Windows95-
System zum FEinsatz kommt, bestiinde die Moglichkeit, das System an-
statt in plattformunabhingigen Bytecode, in einen plattformabhingigen
Microcode zu iibersetzen, um so das Laufzeitverhalten zu verbessern.

Da es sich bei Java um eine sehr junge Programmiersprache handelt, die
sich aber trotzdem oder gerade deswegen sehr dynamisch entwickelt, wére
es wiinschenswert, das System TROSS an neue Entwicklungen der Sprache
Java anzupassen. Insbesondere bei den noch recht spartanischen Moglich-
keiten der Benutzungsoberflichenprogrammierung der Version 1.1.

Eine weitere Anpassungsmoglichkeit bestiinde beim Einsatz der generi-
schen Containerbibliothek JGL (=Java Generic Library) die Moglichkei-
ten zur Listenbehandlung, Sortierung u.&. bietet.

Kapitel 7

Bedienungsanleitung

Der Aufbau dieser Bedienungsanleitung entspricht der Anordnung der Menu-
punkte im Programm TROSS, so dafs sie vor allem zum schnellen Nachschlagen
bei Unklarheiten im Umgang mit dem Programm geeignet ist.

Trotzdem sollte jeder Benutzer vor der Arbeit mit dem Programm TROSS
alle Punkte durchgehen, um die Konzepte und Arbeitsweisen zu verstehen, die
z.B. eine gewisse Reihenfolge mancher Bedienungsschritte erfordern.

7.1 Systemvoraussetzungen
Das Programm benétigt eine Rechnerplattform, auf der Java lauft (entwickelt
und getestet wurde es unter Sun Solaris 2.3 sowie Microsoft Windows NT 4.0).

Soll das Verkehrstool ,Map&Guide*“ benutzt werden (siehe 7.10.9), ist Microsoft
Windows als Betriebssystem notwendig.

7.2 Installation

Das Programm besteht aus drei Dateien:
Tross.jar Diese Datei enthélt alle ausfiihrbare Teile des Programms TROSS
Tross.gif Das Titelbild

Tross.ini Hier werden die globalen Einstellungen des Programms gespeichert,
z.B. die Einstellungen zum Verkehrstool.

Diese Dateien miissen in ein Verzeichnis auf der Festplatte kopiert werden. Im
folgenden nehmen wir an, daft die Programmdateien im Verzeichnis \tross
liegen, und das Java Development Kit unter \ java zu finden ist (auf einem PC
unter MS Windows).

Dann wird das Programm mit folgendem Aufruf gestartet:

jre -cp \java\lib\classes.zip;\tross\tross.jar TRO.Tross

69

70 KAPITEL 7. BEDIENUNGSANLEITUNG

7.3 Grundlegende Konzepte

7.3.1 Erweiterbare Listen

An vielen Stellen des Programms werden Listen angezeigt, die vom Benutzer
beliebig erweitert oder verkleinert werden konnen. Dazu dienen die Buttons
JEinfiigen®, ,Andern“ und ,Loschen rechts neben der Liste. Diese haben folgende
Bedeutung;:

Einfiigen Offnet einen Eingabedialog, um ein neues Element einzugeben.
Schlieftt der Benutzer seine Eingabe mit ,OK"“ ab, wird das neue Element
an der passenden Stelle in der Liste eingefiigt.

Andern Dieser Button hat nur dann eine Funktion, wenn ein Element der Liste
durch Anklicken ausgewéhlt wurde. Dann wird ein Dialogfenster gedffnet,
um die Daten des gewdhlten Elements zu dndern. Nach Bestitigung der
Eingabe erscheint das Element im gednderten Zustand in der Liste.

Léschen Auch hierzu mufl ein Element ausgewéhlt sein. Dieses wird aus der
Liste geloscht, falls keine Konsistenzbedingungen dies verbieten.

7.3.2 Eingabedialoge

Jeder Eingabedialog (egal, ob zur Erfassung eines neuen Datenobjekts oder zur
Anderung eines bestehenden) hat am unteren Rand zwei Buttons ,,0K*“ und
LAbbruch®. Mit ,OK* wird die Eingabe bestiitigt und alle Anderungen iiber-
nommen. Bei ,Abbruch“ werden alle direkten Anderungen verworfen und das
Datenobjekt bleibt im urspriinglichen Zustand. Dies gilt nicht fiir Anderungen
an Listen (wie in 7.3.1 beschrieben), die unmittelbar nach Eingabe wirksam
werden. Beispielsweise ist die Erfassung einer Kundenadresse bereits dann ge-
speichert, wenn die Eingabe der Adresse bestatigt wurde und diese in der Liste
erscheint. Ein spateres Abbrechen des Dialogs zur Kundeneingabe hat hierauf
keinen Einflufs.

Die Buttons ,,0K* und ,,Abbruch® kénnen auch direkt per Tastaturkiirzel ak-
tiviert werden: <Enter> (auch als <Return> oder <Eingabe> bezeichnet) be-
stitigt die Eingabe und beendet den Dialog, mit <Escape> wird die Eingabe
verworfen und der Dialog abgebrochen.

Dialoge fiir umfangreichere Eingaben sind in mehrere ,Register” unterteilt.
Dazu bietet ein solcher Dialog eine waagrechte Reihe von Buttons am oberen
Rand, mit denen zwischen den verschiedenen Teilen des Dialogs umgeschaltet
werden kann. Trotzdem gehdren alle Eingabefelder zusammen, auch wenn sie
verschiedenen Registern zugeordnet sind. Der Button ,,OK* bestétigt also auch
hier alle Eingaben und schliefst den Dialog, nicht nur die jeweilige Registerseite.

7.4 Szenario

Zur Unterstiitzung manueller Planung und Optimierung bietet TROSS das Kon-
zept der Szenarien an. Ein Szenario besteht aus den Stammdaten (Kunden mit
ihren Dienstwiinschen, Ressourcen und allen Einstellungen) einerseits und einer
Menge von Tourszenarien andererseits. Ein Tourszenario wiederum enthélt alle

7.4. SZENARIO 71

Tourdaten (Touren, Untertouren und Fahrten) zu den Stammdaten des Szena-
rios. Jedes Szenario kann in eine Datei gespeichert und wieder geladen werden.

Dadurch kénnen Planungsansétze mit der Methode ,Was wire, wenn?* leicht
durchgefiihrt werden:

Sollen unterschiedliche Touren ausprobiert werden, um z.B. verschiedene Ver-
teilungen der Fahrdienstkunden auf die Fahrzeuge zu vergleichen, werden in-
nerhalb eines Szenarios verschiedene Tourszenarien angelegt, die verschiedene
Moglichkeiten darstellen, denselben Kundenkreis mit denselben Ressourcen zu
bedienen. Von den Tourszenarien eines Szenarios ist immer eines aktiv, d.h.
alle Anderungen an Touren, Untertouren und Fahrten beziehen sich auf das
momentan aktive Tourszenario.

Noch weitergehende Planspiele bieten verschiedene Szenarien: Hier ist z.B.
ein Kapazitatsvergleich moglich, wenn nach dem Ausscheiden eines Zivildienst-
leistenden im einen Fall ein Nachfolger eingestellt wird, im anderen Fall mit
einem Mitarbeiter weniger gearbeitet werden muf.

Um den Uberblick bei vielen Szenarien und Tourszenarien zu behalten, hat
jedes einen eindeutigen Namen. Die Titelzeile des Hauptfensters gibt Auskunft
iiber das momentan geladene Szenario und dessen aktives Tourszenario. Uber-
dies ist ein Szenario als sogenanntes ,Master-Szenario* sowie eines seiner Tour-
szenarien als ,Master-Tourszenario” ausgezeichnet. Diese Kennzeichnung ist fiir
die real giiltigen Daten gedacht, also die tatsdchlich vorhandenen Ressourcen
des Benutzers und die wirklich durchgefiihrten Fahrten. Erweist sich eine andere
Planungsvariante als so gut, dafs sie anstelle der bisherigen benutzt werden soll,
kann diese jederzeit zum Masterszenario gemacht werden. Der Benutzer sollte
also darauf achten, daf das Masterszenario und das Master-Tourszenario stets
mit der Realitét tibereinstimmen (also auch regelméfig mitgefiihrt werden).

7.4.1 Neu

Erstellt ein neues, leeres Szenario. Dessen Name wird vom Benutzer definiert.

7.4.2 Laden

Ladt ein gespeichertes Szenario.

7.4.3 Speichern

Speichert das aktuelle Szenario in einer Datei.

7.4.4 Szenario zum Masterszenario machen

Macht das aktuelle Szenario zum Masterszenario. Zukiinftig sollten also alle
Anderungen am Datenbestand an diesem Szenario durchgefiihrt werden.

7.4.5 Untermenu Tourszenario
7.4.5.1 Neu

Erstellt im aktuellen Szenario ein weiteres, leeres Tourszenario.

72 KAPITEL 7. BEDIENUNGSANLEITUNG

7.4.5.2 'Wechseln

Wechselt das aktive Tourszenario.

7.4.5.3 Kopieren

Erstellt eine Kopie des aktiven Tourszenarios unter anderem Namen. Dadurch
kénnen, ausgehend vom momentanen Datenbestand, beliebige Verdnderungen
auf der Kopie ausprobiert werden, ohne das urspriingliche Tourszenario zu ver-
dndern.

7.4.5.4 Loschen

Loscht ein Tourszenario mit allen seinen Daten aus dem Szenario.

7.4.5.5 Umbenennen

Gibt einem Tourszenario einen anderen Namen.

7.4.5.6 Zum Master-Tourszenario machen

Macht das aktive Tourszenario zum Master-Tourszenario, falls das momentan
geladene Szenario das Master-Szenario ist.

7.4.6 Programm beenden

Beendet das Programm. Wurde das Szenario seit der letzten Anderung nicht
gespeichert, erfolgt eine Sicherheitsabfrage.

7.5 Kunden

7.5.1 Kundenliste

Zeigt eine dnderbare Liste mit allen Kunden des Szenarios an. Diese sind alpha-
betisch nach Nachnamen sortiert.

7.5.1.1 Eingabedialog fiir Kunden
Personliche Daten Hier werden folgende Daten erfafit:

Kundennummer Jeder Kunden braucht zur eindeutigen Identifikation eine
Kundennummer, da Namen mehrfach vorkommen kénnen.

Maximale Fahrdauer Zeitdauer, die der Kunde bei einer Fahrt maximal im
Fahrzeug verbringen darf. Falls hier ein Wert angegeben wird, hat dieser
Vorrang vor dem global definierten. Fehlt eine Angabe, gilt die globale
Obergrenze (siehe 7.10.11).

Anzahl Schliissel Anzahl der Hausschliissel des Kunden, die dieser zur Durch-
filhrung von Diensten zur Verfligung gestellt hat.

Bemerkungen (Schliissel) Beliebige Bemerkungen zu den Hausschliisseln.
Hier konnte z.B. die Nummer stehen, unter der dieser Hausschliissel im
Schliisselschrank zu finden ist.

7.5. KUNDEN 73

Allgemeine Personendaten

Name Der Nachname der Person. Dieser Wert mufl immer angegeben werden.
Vorname Der Vorname (optional).

Geburtsdatum Das Geburtsdatum (optional).

Adressen Jeder Person kénnen mehrere Adressen zugeordnet werden. Die erste
dieser Adressen gilt als Wohnort des Kunden, der als Vorgabewert fiir
Dienstwiinsche benutzt wird (z.B. Abholadresse fiir Fahrten).

Kommunikationsverbindungen Eine Kommunikationsverbindung besteht
aus der Art (z.B. ,Telephon“) und dem Eintrag (z.B. ,0815/4711¢);

Bankverbindungen Bankverbindungen bestehen aus Bankname, Bankleit-
zahl, Kontonummer und der Angabe, ob fiir dieses Konto eine Einzugser-
méchtigung vorliegt.

Dienstbezogene Daten

Vorlieben und Abneigungen Definiert Mitarbeiter, die der Kunde gerne fiir
seine Dienstwiinsche eingesetzt hitte (dies ist eine Soll-Vorgabe) und sol-
che, die auf keinen Fall bei dem Kunden eingesetzt werden diirfen (dies ist
eine Muf-Vorgabe). Der Button ,Andern“ unter der jeweiligen Liste 6ffnet
ein Fenster, worin diese Liste verindert werden kann, indem Mitarbeiter
entfernt oder weitere aus der Gesamtliste eingefiigt werden.

Benotigte Hilfsmittel Hier konnen aus der Liste der definierten Hilfsmittel
(siehe 7.10.6) diejenigen ausgewahlt werden, die der Kunde bendtigt. Hier-
mit kann z.B. ein Abgleich zwischen geforderten Kindersitzen und tat-
séchlich im Fahrzeug vorhandenen stattfinden. Das Programm macht dies
jedoch nicht.

Zulissige Fahrzeuge Darf ein Kunde nur mit bestimmten Fahrzeugen be-
fordert werden, konnen diese hier ausgewdhlt werden. Ist die Liste leer,
kommt prinzipiell jedes Fahrzeug in Frage.

Bezugspersonen Hier konnen beliebige Personen erfafit werden, deren Daten
fiir die Ausfiihrung von Diensten bei diesem Kunden relevant sind, z.B.
Eltern eines behinderten Kindes, der Hausarzt etc. Zusétzlich zu den allge-
meinen Personendaten (siehe 7.5.1.1) sind diese durch die Art des Bezuges
charakterisiert (hier konnte ,Hausarzt oder ,Mutter” eingetragen wer-
den). Ein gewisser Sonderfall sind Sachbearbeiter einer Institution, z.B.
der Krankenkasse des Kunden. Diese haben als Bezug generell ,Sachbear-
beiter”, sind aber zur niheren Identifikation einer Institution zugeordnet
(zur Eingabe von Institutionen siehe 7.10.4).

Dienstwiinsche Hier werden die Dienstwiinsche des Kunden erfafst. Diese
stehen nach Dienstart sortiert in der Liste.

74 KAPITEL 7. BEDIENUNGSANLEITUNG

7.5.2 Eingabedialoge fiir Dienstwiinsche

Zur Eingabe eines neuen Dienstwunsches mufs zunéchst die zugehorige Dienstart
gewidhlt werden, bevor der passende Dienstwunschdialog gedffnet wird. Die
Dienstwunschdialoge sind zweigeteilt:

Anforderungen Hier konnen verschiedene dienstwunschspezifische Anforde-
rungen des Kunden erfafit werden, wie z.B. Art des bendtigten Sitzplatzes
oder die Art des zu liefernden Essens.

Allen Dienstwiinschen gemeinsam ist eine Liste von Rechnungsempfingern
fiir den Dienst (dies konnen der Kunde selbst, Bezugspersonen oder In-
stitutionen sein; eine der angegebenen Bankverbindungen muf fiir diesen
Dienstwunsch ausgewihlt werden) sowie eine Liste mit Bezugspersonen,
deren Daten mit auf dem Tourplan abgedurckt werden sollen (dies konnte
z.B. der Hausarzt von anfallsgefihrdeten Kunden sein).

Ort und Zeit Erfakt einen oder mehrere Orte (je nach Dienstart) sowie den
Termin des Dienstwunsches. Ein Termin enthilt einen Zeitraum sowie eine
Menge von Rhythmen.

Der Zeitraum gibt den Datumsbereich an, innerhalb dessen der Dienst
ausgefiihrt werden soll. Angegeben werden kann ein Rahmen (z.B. ein
Schuljahr) sowie eine Menge von Ausnahmezeiten (z.B. Ferien), wihrend
derer der Dienst nicht erwiinscht ist. Ist der Rahmen leer, hat dies die
Bedeutung ,Immer*.

Ein Rhythmus gibt an, wie oft und regelméfig ein Dienst stattfinden soll.
Die gewiinschten Wochentage konnen bestimmt werden, ebenso, ob der
Dienst nur an Werktagen stattfinden soll (also ausfillt, falls der angege-
bene Wochentag ein Feiertag ist). Ist das Kéastchen ,Nachricht an Feierta-
gen‘ angekreuzt, erscheint beim Laden des Szenarios eine Warnmeldung,
falls der Dienst wegen eines Feiertages ausfallen wiirde. Dadurch kann der
Dienst in der kritischen Woche rechtzeitig vorher auf einen anderen Tag
verlegt werden. Fiir seltener stattfindende Dienste kann angegeben wer-
den, alle wieviel Wochen die Ausfiihrung erwiinscht ist.

Aufserdem enthilt ein Rhythmus die Uhrzeit, zu der ein Dienst an den
angegebenen Tagen stattfinden soll. Die hierfiir bendtigten Angaben sind
von der Dienstart abhingig und werden in Zusammenhang mit den dienst-
spezifischen Anforderungen erlautert.

7.5. KUNDEN 75

Abbildung 7.1: Eingabedialog fiir Ort und Zeit

Schulfahrten, Dialysefahrten und Fahrten zur Tagespflege Hier kon-
nen folgende Anforderungen erfafit werden:

e Die Art des bendétigten Platzes im Fahrzeug: Sitzplatz, Rollstuhlplatz oder
Sitzplatz mit fest montiertem Hilfsmittel einer bestimmten Art

e Die Forderung, daf ein zweiter Mitarbeiter bei der Aufiihrung des Dienstes
dabei sein mufs

e die erforderlichen Qualifikationen des oder der Mitarbeiter

e Die Vorlieben und Abneigungen des Kunden sind hier zur Information
nochmals angezeigt, eine Anderung wirkt sich aber stets auf die Kunden-
daten aus, gilt also fiir alle Dienstwiinsche.

Fiir die Fahrt muf ein Startort angegeben werden, an dem der Kunde abgeholt
werden soll, und ein Zielort, zu dem der Kunde gebracht wird.

Die Angaben zur Zeit sind in Daten fiir die Hin- und Riickfahrt eingeteilt.
Die Zeiten fiir die Riickfahrt kommen allerdings nur dann zur Geltung, wenn
die Checkbox ,Riickfahrt* angekreuzt ist. Fiir jede dieser Teilfahrten kénnen
Abholzeit und Ankunftszeit vorgegeben werden, sowie die benotigten Zeitdauern
zum FEin- und Aussteigen in das beférdernde Fahrzeug. Die Zeiten sind jeweils
als Zeitspanne definiert, so daf eine gewiinschte Toleranz explizit angegeben

76 KAPITEL 7. BEDIENUNGSANLEITUNG

werden kann. Von den vier moglichen Uhrzeitangaben muf nur eine angegeben
werden, z.B. bedeutet der Eintrag ,8:00 Uhr“ bei ,,Ankunft bis“, daf der Kunde
spatestens um 8 Uhr am Zielort ankommen muf. Die Abholzeit kann abhingig
hiervon beliebig gewahlt werden.

Individualfahrten Fiir Individualfahrten kénnen dieselben Anforderungen
erfaftt werden wie fiir Schulfahrten. Zusétzlich kann gefordert werden, daf die
Mitarbeiter zwischen Hin- und Riickfahrt am Zielort bleiben, um z.B. mit ei-
nem behinderten Kunden ein Konzert zu besuchen. Aufierdem kénnen beliebige
Zwischenstationen mit Aufenthaltsdauern angegeben werden, die auf der Fahrt
zum Ziel angefahren werden sollen.

Essen auf Ridern Hier werden unter Anforderungen die Anzahl der bestell-
ten Essen erfafit. Zu jeder vorratigen Essensart (Eingabe siehe 7.10.7) kann eine
Anzahl zu liefernder Essen angegeben werden.

Als Ort wird die Adresse erfalt, an die die Essen gebracht werden sollen. Die
Uhrzeit besteht aus Zeitspanne, innerhalb derer das Essen geliefert werden muf,
sowie einer Dauer fiir das Abgeben des Essens.

MSD / APD Die Anforderungen umfassen neben den Anspriichen an Mitar-
beiter (Qualifikationen und Vorlieben/Abneigungen) die Angabe, ob der Kunde
bei der Verrichtung des Dienstes im Fahrzeug mitfahren soll (z.B. zum Ein-
kaufen). Ist dies angekreuzt, kann die Art des erforderlichen Platzes angegeben
werden.

Es muf ein Dienstort angegeben werden, an dem der Dienst stattfindet, sowie
die Uhrzeit (wieder als Zeitspanne) des Beginns und die Dauer des Dienstes.

7.5.3 Dienstwiinsche erfiillt?

Ermoglicht das gezielte Uberpriifen einer Menge von Dienstwiinschen. Der Be-
nutzer wéhlt eine Menge von Dienstwiinschen, die mit den bestehenden Tou-
ren und Untertouren abgeglichen werden. Samtliche Teildienstwiinsche (siehe
7.6.1.2), die nicht durch das aktive Tourszenario erfiillt werden, werden dem
Benutzer gemeldet. Daraus kann z.B. ganz gezielt erkannt werden, dafs fiir einen
Dienstwunsch noch eine Riickfahrt am Freitag fehlt.

7.6 Touren

Zur Beschreibung der geplanten und tatsichlich stattfindenden Fahrten, auf
denen die diversen Dienstwiinsche der Kunden erfiillt werden, benutzt das Pro-
gramm TROSS folgende Bezeichnungen:

Tour Eine Tour besteht aus einer Menge von Dienstwiinschen, die nacheinan-
der von denselben Mitarbeitern mit demselben Fahrzeug erfiillt werden.
Bei Fahrdiensten entspricht dies also einer ,,Fahrgemeinschaft von Kun-
den. Die Angabe von Mitarbeitern und Fahrzeug ist optional, eine Tour
beschreibt lediglich die Planung, d.h. sie hat kein Datum, sondern be-
schreibt ein regelméfig wiederkehrendes Ereignis.

7.6. TOUREN 77

Untertour Jede Tour besteht aus einer Menge von Untertouren, die diese wei-
ter konkretisieren. Eine Untertour findet an gewissen Wochentagen mit
einem gewissen Rhythmus statt und kann entweder eine Hinfahrt oder
eine Riickfahrt der Kunden zu einem Ziel sein. In der Untertour werden
die verschiedenen anzufahrenden Stationen in eine Reihenfolge gebracht.
Auch die Untertouren beschreiben die Planung.

Fahrt Eine Fahrt ist eine an einem konkreten Datum stattfindende Untertour.
Gegeniiber Tour und Untertour kann sie gewisse Abweichungen aufwei-
sen, die angeben, wie die tatsichliche Dienstausfiihrung von der Planung
abwich.

Da die Fahrten die tatséchliche Durchfiihrung von Diensten abbilden, kdnnen sie
die Grundlage einer Buchfiihrung {iber diese Dienstleistungen bilden. Dazu kann
jede Fahrt, falls n6tig, gegeniiber der geplanten Untertour verindert werden, um
z.B. festzuhalten, dafs ein anderer Mitarbeiter den Dienst erledigt hat oder einer
der Kunden an diesem Tag nicht mitfuhr.

In den Eingabedialogen fiir Touren und Untertouren sind noch verschiede-
ne Eingabefelder zum Sperren einzelner Dienstwiinsche sowie ganzer Touren
fiir die Optimierung vorhanden. Da diese automatische Optimierung von der
Projektgruppe TRO (Wintersemester 1997/98 und Sommersemester 1998) aus
Zeitgriinden nicht mehr implementiert werden konnte, haben diese Eingaben
keinerlei Wirkung. Sie wurden jedoch im Programm belassen, um fiir eine mog-
liche spédtere Erweiterung zur Verfiigung zu stehen.

7.6.1 Tourenliste

Zeigt eine dnderbare Liste mit allen Touren und Untertouren des aktiven Tour-
szenarios an. Nach Auswahl einer Tour durch Mausklick in der linken Liste wer-
den in der rechten Liste alle Untertouren dieser Tour angezeigt. Sowohl Touren
als auch Untertouren konnen beliebig neu angelegt, verdndert, sowie geloscht
werden. Beim Verdndern von Touren/Untertouren mufs allerdings Riicksicht auf
die zugehorigen Fahrten genommen werden (siehe 7.6.4).

7.6.1.1 Eingabedialog fiir Touren

Jede Tour wird durch eine Nummer eindeutig gekennzeichnet. Zusédtzlich kann
eine Bezeichnung angegeben werden, um die Touren fiir den Benutzer besser
identifizierbar zu machen.

Jeder Tour konnen ein oder zwei Mitarbeiter sowie ein Fahrzeug zugewiesen
werden, die diese Tour normalerweise fahren. Es ist sinnvoll, diese Eintrige zu
machen, da sonst alle Fahrten von Hand bearbeitet werden miissen (da fiir sie
diese Angaben obligatorisch sind) und auflerdem die Analysefunktionen sonst
keine sinnvollen Werte liefern.

In der Liste ,,Dienstwiinsche werden alle Dienstwiinsche angezeigt, die auf der
Tour erfiillt werden (damit enthélt die Liste alle Kunden, die diese Tour bedient).
Der Button ,Einfligen* 6ffnet ein Dialogfenster zur Auswahl eines Dienstwun-
sches: Zunédchst mufs in der linken Liste ein Kunde ausgewihlt werden, drauthin
erscheinen in der rechten Liste dessen Dienstwiinsche, von denen einer gewéhlt
werden kann.

78 KAPITEL 7. BEDIENUNGSANLEITUNG

Im unteren Teil des Tourdialoges werden die vereinigten Anforderungen aller
Dienstwiinsche der Tour angezeigt. Diese Angaben dienen nur der Information
und Ubersicht und sollten daher vom Benutzer nicht verdndert werden.

mam [Brirabe s 4 [T T

[— e - [R e —. [L I 4|

- LHRGARET e T T e e g e

e YT T - T AT -

= T e L L = . o ol 4 1 iy
[
-

e o

o= et [T e i

T
Bl rie ¥ bbbt 1 H‘

Abbildung 7.2: Eingabedialog fiir Touren

7.6.1.2 Eingabedialog fiir Untertouren

Da ein Dienstwunsch ein relativ komplexes Gebilde mit verschiedenen Zeiten
an verschiedenen Wochentagen sein kann, wurde fiir die Untertour der Begriff
des Teildienstwunsches eingefiihrt. Ein Teildienstwunsch ist ein Dienstwunsch,
eingeschriankt auf einen Wochentag und entweder Hin- oder Riickfahrt. Dem-
nach besteht jeder Dienstwunsch aus einem oder mehreren Teildienstwiinschen.
Genauso, wie eine Tour aus verschiedenen Dienstwiinschen besteht, beinhaltet
eine Untertour eine Menge von Teildienstwiinschen.

Um eine neue Untertour zu definieren, kénnen deshalb zunéchst Teildienst-
wiinsche gewéhlt werden, die die Untertour erfiillen soll.

Die Untertour wird durch einen alphanumerischen Zusatz zur Tournummer
gekennzeichnet. Diese Untertournummer kann Werte von ,a“ bis ,z° und ,aa‘“
bis ,zz‘ annehmen (fiir neu erstellte Untertouren wird jeweils ein passender
Wert vorgeschlagen). Zur leichteren Unterscheidbarkeit kann jeder Untertour
eine Bezeichnung gegeben werden.

Dienstart, Mitarbeiter und Fahrzeug der Tour werden zur Information hier
nochmals angezeigt.

Der wesentliche Teil der Untertour besteht in den diversen Stationen, die bei
ihrer Ausfiihrung angefahren werden sollen. Dies sind neben den Stationen, an
denen Kunden abgeholt, beliefert oder anderweitig bedient werden, eine unab-
hangige Anfangs- und Endstation mit zugehorigen Zeitangaben. Die Untertour
beginnt an der Anfangsstation zur angegebenen Zeit (dies kann die Einsatz-
zentrale sein, oder auch die Endstation einer unmittelbar vorausgegangenen
Untertour) und endet an der Endstation zur angegebenen Zeit. Anfangs- und

7.6. TOUREN 79

Endzeit werden automatisch angepafst, falls sie im Widerspruch zu den Zeiten
der Stationenliste stehen.

Diese Stationenliste enthilt alle Untertourhalte, die aufgrund der in der Un-
tertour enthaltenen (Teil-)Dienstwiinsche angefahren werden sollen. Ein Unter-
tourhalt enthilt neben der Station, an der der Halt stattfindet, die Ankunfts-
und Wiederabfahrtszeit. Da vor allem bei Schulfahrten die Dienstwiinsche vieler
Kunden dasselbe Ziel haben (das aber nur einmal in der Liste auftauchen soll),
sind jedem Halt auch die Dienstwiinsche zugeordnet, die diese Station fordern.

Die Liste mit den Untertourhalten 145t sich mit den rechts daneben angeord-
neten Buttons auf vielfiltige Weise verdndern (die Operationen ,auf* und ,ab*
beziehen sich hierbei immer auf den ausgewéhlten Halt):

Dienstwunsch Auf Verschiebt einen in einem Untertourhalt enthaltenen
Dienstwunsch eine Position nach oben. Dadurch entsteht ein neuer Halt
mit diesem einen Dienstwunsch an der zugehorigen Station.

Dienstwunsch Ab Verschiebt einen Dienstwunsch aus dem gewidhlten Halt
auf dieselbe Art nach unten.

Halt Auf Verschiebt einen Halt mit allen enthaltenen Dienstwiinschen eine
Position nach oben.

Halt Ab Verschiebt einen Halt mit allen enthaltenen Dienstwiinschen eine Po-
sition nach unten.

Fahrzeit #indern Andert die Fahrzeit zwischen der Station des gewihlten Hal-
tes und der des vorausgehenden. Ist der erste Halt in der Liste gewé&hlt,
kann die dortige Ankunftszeit gesetzt werden.

Aufenthaltszeit findern Andert die Aufenthaltszeit an einem Halt. Standard-
mifig entspricht die Aufenthaltszeit der im Dienstwunsch geforderten
(z.B. Einsteigezeit der Kunden, die dort abgeholt werden), so dafl Kor-
rekturen zunichst einmal dort gemacht werden sollten. Trotzdem kann es
im Einzelfall sinnvoll sein, hier die gesamte Aufenthaltszeit explizit anzu-
geben.

Dienstwunsch komplett entfernen Entfernt einen Dienstwunsch mit allen
Teildienstwiinschen aus der Untertour. Dadurch kénnen auch einzelne Hal-
te verschwinden.

Teildienstwunsch einfiigen Fiigt einen weiteren Teildienstwunsch zur Unter-
tour hinzu und héngt die neuen Halte an die Liste an.

Teildienstwunsch entfernen Entfernt einen Teildienstwunsch und gegebe-
nenfalls die zugehorigen Halte aus der Liste.

Verschieben von Dienstwiinschen und Halten in der Liste ist nur dann mdog-
lich, wenn die Reihenfolge der Stationen innerhalb der einzelnen Dienstwiinsche
gewahrt bleibt. Da es z.B. wenig Sinn hat, den Zielort einer Dialysefahrt zu
erreichen, bevor man alle zu transportierenden Kunden abgeholt hat, wird in
einem solchen Fall mit einer Warnmeldung das Verschieben verweigert,.

Nach Anderungen an einer Untertour werden alle zugehorigen Fahrten ge-
16scht, deren Datum in der Zukunft liegt. Altere, die also bereits erfolgt sind,

80 KAPITEL 7. BEDIENUNGSANLEITUNG

bleiben bestehen, kdnnen sich aber moglicherweise auch verdndern. Daher sollten
vor Anderungen gegebenenfalls erst die alten Fahrten archiviert werden (siehe
7.6.4).

Wi &
[O pemmimen [| Gsisseeyees

Dmpemgn Cosmar Myl | iyl Dl B Sipeeip T Do Deteee B L = B]

Abbildung 7.3: Eingabedialog fiir Untertouren

7.6.2 Fahrtenliste

Zeigt alle Fahrten des aktiven Tourszenarios an. Diese werden zunéchst nach
Tour- und Untertournummer, dann nach Datum sortiert. Ein ,,** vor der Fahrt
zeigt an, dafs diese gegeniiber den Planungsdaten in Tour und Untertour ver-
andert wurde (indem Mitarbeiter bzw. Fahrzeug gedndert oder Dienstwiinsche
entfernt wurden). Diese konnen einzeln geéndert werden, um Abweichungen der
tatsdchlich durchgefithrten Fahrten von den geplanten Untertouren zu doku-
mentieren.

7.6.2.1 Dialog zur Anderung von Fahrten

Der Dialog fiir Fahrten zeigt Tournummer, Datum und Dienstart zur Informa-
tion mit an.

Mitarbeiter und Fahrzeuge sind bei neu erzeugten Fahrten zunfchst auf die
Werte der Tour gesetzt (ist dort nichts angegeben, wird automatisch der erste
mogliche Eintrag in der Liste gewéahlt), konnen aber geindert werden. Ebenso
kénnen die Anfangs- und Endstation mit den zugehorigen Zeiten abweichend
von der Untertour eingetragen werden.

7.6. TOUREN 81

Die anzufahrenden Stationen werden in einer Liste angezeigt. Werden bei einer
Fahrt einzelne Dienstwiinsche der Untertour nicht erfiillt, konnen diese mit dem
Button ,Dienstwunsch entfernen* aus der Fahrt entfernt werden (mit ,,Dienst-
wunsch einfligen® kann dies wieder riickgéingig gemacht werden). Die Liste wird
dann dementsprechend verdndert, so daff nur diejenigen Stationen angezeigt
werden, die sich auf Dienstwiinsche beziehen, die der Fahrt noch zugeordnet
sind.

Die Zeitangaben in der Liste sind die in der Untertour ermittelten. Beim
Loschen von Dienstwiinschen aus einer Fahrt werden sie nicht angepalt (eine
Erfassung dieser Zeiten wére sicher auch nicht sinnvoll, da sonst alle ,,Etappen-
zeiten“ von real durchgefiihrten Fahrten notiert und im Programm gegebenen-
falls angepafit werden miifiten).

7.6.3 Fahrten erzeugen

Erzeugt aus den Untertouren Fahrten fiir einen vom Benutzer angegebenen Zeit-
raum. Bereits bestehende Fahrten werden dadurch nicht beeinflufst. Die neu
erzeugten Fahrten werden zum Durchsehen und Bearbeiten aufgelistet.

7.6.4 Fahrten archivieren

Um erfolgte Fahrten archivieren zu kénnen, bietet TROSS die Moglichkeit, diese
in einem tabellarischen Format abzuspeichern (siehe 2.2.2.4). Die entstehende
Datei kann in eine Textverarbeitung, Tabellenkalkulation oder Datenbank gela-
den und den Bediirfnissen des Anwenders geméfs aufbereitet werden. Nach dem
Speichern werden die archivierten Fahrten gelscht.

Achtung: TROSS bietet kein Konzept zur Verwaltung der Historie von Tou-
ren, Untertouren und Fahrten. Fahrten im Tourszenario beziehen sich direkt
auf den status quo der zugeordneten Untertour, so daf sich Anderungen an ei-
ner Tour oder Untertour direkt auf die Fahrten auswirken (z.B. Entfernen eines
Dienstwunsches).

Vor Anderungen an einer Tour oder Untertour des Master-Tourszenarios ist
es daher sinnvoll, die bereits erfolgten Fahrten (die also vor dem jeweiligen
Tagesdatum liegen) zu archivieren.

7.6.5 Konsistenzpriifung

Uberpriift alle Touren, Untertouren und Fahrten des aktiven Tourszenarios auf
ihre Konsistenz mit den Vorgaben der Dienstwiinsche. Verstofie gegen diese Re-
geln werden dem Benutzer in einer Liste angezeigt.

Folgende Kriterien werden abgepriift:

Mitarbeiter

e Sind erster und zweiter Mitarbeiter unterschiedlich?

e Ist ein zweiter Mitarbeiter eingeteilt, falls die Dienstwiinsche dies
verlangen?

e Sind die Mitarbeiter am Tag einer Fahrt verfiigbar?

e Sind die Mitarbeiter fiir den Dienst an den Kunden der Tour zuldssig
(werden also von diesen Kunden nicht abgelehnt)?

82 KAPITEL 7. BEDIENUNGSANLEITUNG

e Haben die Mitarbeiter alle geforderten Qualifikationen?
Fahrzeuge

e Ist das Fahrzeug am Tag einer Fahrt verfiigbar?
e Wir die maximale Sitzplatzzahl eingehalten (bei Fahrdiensten)?

e Ist das Fahrzeug fiir alle Kunden als zuléssig eingetragen (bei Fahr-
diensten oder MSD+Kunde féhrt mit)?

Zeiten

o Entsprechen die Zeiten der Untertour den Zeitvorgaben der Dienst-
wiinsche?

7.7 Ressourcen

Hier werden die wichtigsten Ressourcen verwaltet, die zur Verfiigung stehen, um
Dienstwiinsche der Kunden zu erfiillen: Mitarbeiter und Fahrzeuge.

7.7.1 Mitarbeiter

Zeigt eine dnderbare Liste aller Mitarbeiter an.

7.7.1.1 Eingabedialog fiir Mitarbeiter

Neben den allgemeinen Personendaten (siehe 7.5.1.1) hat jeder Mitarbeiter ei-
ne Personalnummer, die ihn eindeutig kennzeichnet. Diese kann aus beliebigen
Zeichen bestehen (ist also nicht nur auf Ziffern beschréinkt).

Ein Dienstantrittsdatum sowie ein Entlassungsdatum kann hier erfaftt werden
(was insbesondere bei Zivildienstleistenden eine wichtige Information fiir die
Einsatzplanung ist). Durch Auswahl eines Arbeitszeitprofils (siehe 7.10.2) wird
festgelegt, zu welchen Zeiten bzw. wie lang ein Mitarbeiter im Dienst ist. Diese
Information wird zur Darstellung der Mitarbeiterauslastung bendtigt.

Die Verfiigbarkeit eines Mitarbeiters wird durch einen Zeitrahmen (z.B. das
laufende Kalenderjahr oder den Rest der Dienstzeit) sowie durch Ausnahmezei-
ten gekennzeichnet (z.B. Krankheit, Urlaub oder Schulung). Werden bekannte
Ausnahmezeiten rechtzeitig vorher hier eingetragen (z.B. Urlaub), wird dies bei
der Konsistenziiberpriifung beachtet und gegebenenfalls gewarnt, falls ein mo-
mentan nicht verfiighbarer Mitarbeiter fiir Fahrten eingeteilt ist.

Aus den definierten Qualifikationen (siehe 7.10.1) kénnen durch Auswahl in
der Liste diejenigen bestimmt werden, die der Mitarbeiter besitzt. Diese Infor-
mation ist wichtig, um die Féhigkeiten von Mitarbeitern mit den Anforderungen
der Kunden in ihren Dienstwiinschen abgleichen zu kénnen.

7.7.2 Fahrzeuge

Zeigt eine dnderbare Liste aller Fahrzeuge an.

7.8. AUSGABE 83

7.7.2.1 Eingabedialog fiir Fahrzeuge

Ein Fahrzeug wird durch Angabe von Modell, amtlichem Kennzeichen sowie
einer internen Nummer identifiziert (im Programm TROSS dient die interne
Nummer als Unterscheidungsmerkmal, z.B. in der Liste aller Fahrzeuge).

Drei wichtige Termine kénnen fiir jedes Fahrzeug erfatt werden: Die néchste
Hauptuntersuchung beim TUV, die nichste ASU, sowie der niichste Kunden-
dienst. Beim Laden eines Szenarios werden diese Werte mit dem Tagesdatum
verglichen und dem Benutzer gemeldet, falls sie innerhalb der nichsten zwei
Wochen fillig werden.

Die Austattung eines Fahrzeugs wird durch die Eingabefelder ,spezielle Da-
ten“ definiert: Fiir jedes definierte Hilfsmittel kann die Anzahl der davon im
Fahrzeug mitgefiihrten Exemplare angegeben werden (gemeint sind hier nur
lose Hilfsmittel wie z.B. spezielle Sitzkissen, die einfach auf einem Sitzplatz an-
gebracht und wieder von dort entfernt werden kénnen; fest montiere Hilfsmittel
werden in der Fahrzeugkonfiguration erfaft).

Durch Auswahl eines Fahrzeugtyps und einer diesem Typ zugeordneten Fahr-
zeugkonfiguration wird der mogliche sowie momentane ,,Umbauzustand des
Fahrzeugs beschrieben (siehe hierzu auch 7.10.3 und 7.10.3.2).

7.8 Ausgabe

7.8.1 Tourplan

Zeigt eine Tour mit allen Untertouren schematisch an. Hieraus kénnen sowohl
der Benutzer als auch die ausfithrenden Mitarbeiter erkennen, welcher Dienst
wann erledigt werden soll.

7.8.2 Dienstplan

Datengrundlage fiir Dienstpldne sind die Fahrten eines Zeitraum, den der Benut-
zer vorgibt. Dadurch werden einzelne Anderungen an Fahrten (z.B. kurzzeitiger
Austausch eines Mitarbeiters wegen Krankheit) in die Pléne {ibernommen.

Der Plan zeigt eine graphische Ubersicht iiber den gewiinschten Zeitraum.
Darin werden alle Fahrten, die der gewihlte Mitarbeiter ausfiihren soll, als Bal-
ken dargestellt.

7.8.3 Gesamtdienstplan
7.8.4 Angezeigten Plan drucken

Gibt den gerade im Hauptfenster angezeigten Plan auf den Drucker aus.

7.8.5 Untermenu Plidne drucken
7.8.5.1 Dienstpline

Druckt eine Menge von Dienstpldnen, ohne diese einzeln auf dem Bildschirm an-
zuzeigen. Der Benutzer kann eine beliebige Teilmenge aller Mitarbeiter angeben,
fiir die die Pléne gedruckt werden sollen.

84 KAPITEL 7. BEDIENUNGSANLEITUNG

L L O R L L]

Drenalplan fur Helfgot, Dewd, 2017

[T F

Abbildung 7.4: Beispiel fiir einen Tourplan

7.8.5.2 Tourpline

Druckt eine Menge von Tourplidnen, ohne diese einzeln anzuzeigen. Der Benutzer
wéhlt die Touren aus.

7.9 Analyse

Alle Analysedaten basieren auf den Plandaten, also Touren und Untertouren.

7.9.1 Auslastung Mitarbeiter

Zeigt die Zeit, die die Mitarbeiter auf Touren beschéftigt sind, im Verhéltnis
zur Sollarbeitszeit, die durch die Arbeitsprofile vorgegeben wird.

7.9.2 Ausfallzeiten

7.9.2.1 Ausfallzeiten Mitarbeiter

Zeigt die Anzahl der Tage, die die Mitarbeiter fiir einen gegebenen Zeitraum
ausfallt.

7.9.2.2 Ausfallzeiten Fahrzeuge

Zeigt die Anzahl der Tage, die die Fahrzeuge fiir einen gegebenen Zeitraum
ausféllt.

7.10. EINSTELLUNGEN 85

7.9.3 Fahrzeugbesetzung

Zeigt die Anzahl der Passagiere pro Fahrzeug im Verhéltnis zur maximalen
Sitzplatzzahl (im Fahrzeugtyp definiert).

7.9.4 Auslastung Mitarbeiter drucken

Druckt die Auslastungsgraphik fiir alle Mitarbeiter, mit automatischem Seite-
numbruch.

7.9.5 Auslastung Fahrzeuge drucken

Druckt die Auslastungsgraphik fiir alle Fahrzeuge, mit automatischem Seite-
numbruch.

7.9.6 Ausfall Mitarbeiter drucken

Druckt die Ausfallzeiten fiir alle Mitarbeiter, mit automatischem Seitenum-
bruch.

7.9.7 Ausfall Fahrzeuge drucken

Druckt die Ausfallzeiten fiir alle Fahrzeuge, mit automatischem Seitenumbruch.

7.10 Einstellungen

7.10.1 Qualifikationen

Alle Qualifikationen, die Mitarbeitern zugewiesen werden sollen, miissen zuvor
in dieser Liste definiert werden.

7.10.1.1 Eingabedialog fiir Qualifikationen

Eine Qualifikation hat eine kurze Bezeichnung (die im Programm als Identifi-
kation dient und z.B. in Listen angezeigt wird), sowie eine ausfiihrlichere Be-
schreibung.

Die Felder fiir Verrechnungswerte beziehen sich auf eine (nicht implementier-
te) automatische Optimierung, sind hier also bedeutungslos.

7.10.2 Arbeitszeitprofile

Alle Arbeitszeitprofile, die Mitarbeitern zugewiesen werden sollen, miissen zuvor
in dieser Liste definiert werden. Ein Arbeitszeitprofil gibt an, wann und wie lange
ein Mitarbeiter im Dienst ist.

7.10.2.1 Eingabedialog fiir Arbeitszeitprofile

Es gibt drei Arten von Arbeitszeitprofilen, mit denen die meisten tatséchlichen
Arbeitszeitverhaltnis dargestellt werden kénnen:

Vollzeit Mitarbeiter mit einer bestimmten Arbeitszeit pro Woche.

86 KAPITEL 7. BEDIENUNGSANLEITUNG

Teilzeit (tageweise) Mitarbeiter, die je nach Wochentag zu bestimmten Uhr-
zeiten arbeiten.

Teilzeit (stundenweise) Mitarbeiter mit einer bestimmten Arbeitszeit pro
Monat.

Allen Arbeitszeitprofilen gemeinsam ist die Angabe einer maximalen Arbeitszeit
pro Tag (wie sie z.B. von Arbeitsschutzrichtlinien vorgeschrieben wird).

7.10.3 Fahrzeugtypen

Alle Typen der vorhandenen Fahrzeuge miissen zuvor in dieser Liste definiert
werden.

7.10.3.1 Eingabedialog fiir Fahrzeugtypen

Ein Fahrzeugtyp hat neben einer kurzen Bezeichnung und einer ausfiihrlichen
Beschreibung eine maximal zuldssige Sitzplatzzahl sowie einen Kilometerpreis.
Die verschiedenen Moglichkeiten, ein Fahrzeug umzubauen (z.B. zur Schaffung
von Rollstuhlpldtzen durch Ausbau von Sitzbénken) werden durch eine Menge
von Fahrzeugkonfigurationen beschrieben. Fiir jeden tatsichlich vorhandenen
Zustand eines Fahrzeuges mufs in dessen Typ die passende Konfiguration defi-
niert werden.

7.10.3.2 Eingabedialog fiir Fahrzeugkonfigurationen

Die Konfiguration wird durch Angabe der Anzahl vorhandener Plétze pro Platz-
art angegeben: Anzahl Sitzpldtze, Anzahl Rollstuhlplitze, sowie zu jedem de-
finierten Hilfsmittel die Anzahl Pldtze, an denen ein solches Hilfsmittel fest
montiert ist. Falls die Fahrzeugkonfiguration {iber eine Kiihlmdoglichkeit verfiigt
(z.B. Schienen fiir einen Kiihlcontainer und ausreichend Platz fiir dessen Trans-
port), kann dies angegeben werden.

7.10.4 Institutionen

Hier konnen alle Institutionen erfafst werden, die mit einem Kunden in Bezie-
hung stehen, z.B. Krankenkassen als Rechnungsempfinger.

7.10.4.1 Eingabedialog fiir Institutionen

Eine Insitution hat aufser einem eindeutigen Namen eine Menge von Adressen,
Kommunikations- und Bankverbindungen.

7.10.5 Stationen

Manche Stationen werden sehr oft verwendet, da sie z.B. das gemeinsame Ziel
vieler Fahrten darstellen (Schulen oder Krankenh#user). Deshalb konnen sie
unter einem kennzeichnenden Namen hier erfafit werden und stehen dann bei
jeder Eingabe einer Station {iber den Button ,Nachschlagen zur Verfiigung.
Wird bei der Eingabe einer Station, z.B. in einem Dienstwunsch, diese mit
einem Namen versehen, wird sie ebenfalls in die globale Liste eingetragen.

7.10. EINSTELLUNGEN 87

7.10.5.1 Eingabedialog fiir benannte Stationen

Zusétzlich zur Adresse muf hier auch ein Name fiir die Station eingegeben wer-
den, unter dem sie spéter gefunden werden kann.

Ist das Verkehrstool angeschaltet (siehe 7.10.9), wird ermittelt, ob die Adres-
se dort bekannt ist. Konnte sie nicht eindeutig identifiziert werden, erscheint
ein Dialog mit Alternativvorschldgen des Verkehrstools. In den Eingabefeldern
kann jetzt entweder einer dieser Vorschlége {ibernommen werden, oder man gibt
eine Adresse an, die in der Ndhe der urspriinglich gewiinschten liegt (z.B. die
nichstgrofiere Strafe). Ist diese Adresse dem Verkehrstool bekannt, wird sie als
Grundlage fiir Fahrzeitberechnungen benutzt.

7.10.6 Hilfsmittel

Hier konnen alle Hilfsmittel erfafst werden, die Kunden benétigen und deshalb
in ihren Dienstwiinschen fordern.

7.10.6.1 Eingabedialog fiir Hilfsmittel

Hilfsmittel werden durch eine kurze Bezeichnung sowie eine ausfiihrlichere Be-
schreibung definiert.

7.10.7 Essensarten

Alle Essensarten, die der Dienst ,Essen auf Ridern“ anbietet, miissen hier erfafit
werden, damit sie in den Dienstwiinschen gew#hlt werden kénnen.

7.10.7.1 Eingabedialog fiir Essensarten

Essensarten werden durch eine kurze Bezeichnung sowie eine ausfiihrlichere Be-
schreibung definiert.

7.10.8 Feiertage

Damit das Programm weifs, welche Tage Feiertage sind (was sich auf das Statt-
finden von Diensten auswirkt), miissen hier deren Daten eingegeben werden. Es
empfiehlt sich, die Feiertage immer einige Monate im voraus zu erfassen, da-
mit eventuelle Auswirkungen auf die Planung rechtzeitig beriicksichtigt werden
konnen.

7.10.8.1 Eingabedialog fiir Feiertage

Ein Feiertag wird durch Namen und Datum charakterisiert.

7.10.9 Verkehrstool

Um Entfernungen und Fahrzeiten zwischen den diversen Stationen automatisch
ermitteln zu kénnen, ist das Programm TROSS in der Lage, mit dem Routen-
planungsprogramm ,,Map&Guide” zusammenzuarbeiten. Dieses Programm wird
hier als Verkehrstool bezeichnet.

88 KAPITEL 7. BEDIENUNGSANLEITUNG

7.10.9.1 Einstellungsdialog fiir das Verkehrstool

Hier kann angegeben werden, ob Map& Guide als Verkehrstool verwendet werden
soll. Fiir den Einsatz von Map&Guide mufl der Pfad zu diesem Programm sowie
ein Verzeichnis angegeben werden, in das die Auftragsdateien fiir dessen Batch-
Schnittstelle abgelegt werden (nihere Informationen hierzu sind dem Handbuch
zu Map&Guide zu entnehmen sein).

Je nach Wahl des Benutzers arbeitet TROSS also in einem von zwei Modi:

mit Verkehrstool Hier werden simtliche Entfernungen und Fahrzeiten vom
Verkehrstool erfragt. Ebenso werden alle Stationen nach ihrer Eingabe
dahingehend iiberpriift, ob sie dem Verkehrstool bekannt sind.

Da diese Anfragen iiber die langsame Batch-Schnittstelle von Map&Guide
laufen, kann es jeweils zu gewissen Wartezeiten kommen.

Sollte der Modus mit Verkehrstool eingestellt sein, dieses aber aus irgend-
welchen Griinden nicht korrekt ansprechbar sein, wird die momentane
Operation mit einer entsprechenden Fehlermeldung abgebrochen.

ohne Verkehrstool Ist die Verwendung des Verkehrstool nicht vorgesehen,
miissen alle im Programm notwendigen Entfernungen und Fahrzeiten von
Hand eingegeben werden. Dazu wird dem Benutzer zur gegebenen Zeit ein
Eingabedialog prisentiert, wo er die fehlenden Daten eintragen kann.

Achtung: Da im Modus ohne Verkehrstool keine Stationen gepriift werden kon-
nen, werden diese zunéchst als ungepriift gekennzeichnet. Bei einem Wechsel in
den Modus mit Verkehrstool miissen zunéchst all diese Stationen vom Verkehrs-
tool iliberpriift und gegebenenfalls vom Benutzer noch korrigiert werden. Beim
Umschalten in den Modus mit Verkehrstool muft daher mit einer lingeren War-
tezeit gerechnet werden.

7.10.10 Entfernungen korrigieren

Ermoéglicht die manuelle Eingabe von Entfernungen und Fahrzeiten zwischen
zwel Stationen. Die hier eingegebenen Werte haben Vorrang vor denen des Ver-
kehrstools und kénnen somit benutzt werden, um dessen Werte zu korrigieren.

7.10.11 Maximale Fahrzeit

Hier wird der Standardwert fiir die Zeit erfafit, die ein Kunde maximal im Fahr-
zeug verbringen darf. Dieser Wert gilt fiir alle Kunden, fiir die keine individuelle
Grenze angegeben wurde.

Kapitel 8

Projektplanung

8.1 Planung fiir das Projekt Transportoptimie-
rung

Da die Seminare nur indirekt mit dem Projekt bzw. dem Ziel der Erstellung
eines lauffdhigen Softwaresystems in Verbindung zu bringen sind, wurde diese
Phase bei der Planung nicht beriicksichtigt. Die urspriingliche Zahl von fiinf
Projektgruppenmitgliedern verringerte sich auf vier, nachdem der fiinfte Mann
die Projektgruppe kurz nach dem Ende der Seminarphase verlassen hatte. Da
dieser fiir die Projektgruppe prinzipiell keine verwendbaren Ergebnisse hinter-
lassen hatte, taucht er in der weiteren Planung nicht mehr auf.

8.1.1 Planung des Zeit- und Kostenaufwandes

Die Planung beruht auf den oben genannten Annahmen, sowie einem fikitiven
Plan, der im Rahmen eines Vortrages {iber Projektplanung von Anke Drappa,
einer Mitarbeiterin der Abteilung Software Engineering der Fakultét fiir In-
formatik der Universitat Stuttgart, vorgestellt wurde. Der von den Betreuern
vorgegebene Rahmen fiir die einzelnen Phasen der Projektgruppe sah folgender-
mafien aus:

e 17.11.97 - 21.12.97 Anforderungsanalyse (5 Wochen)
e 22.12.97 - 31.01.98 Spezifikation (6 Wochen)

e 01.02.98 - 15.03.98 Entwurf (5 Wochen)

e 16.03.98 - 29.03.98 Zwischenbericht (2 Wochen)

e 30.03.98 - 24.05.98 Implementierung (8 Wochen)

e 25.05.98 - 28.06.98 Test (5 Wochen)

e 29.06.98 - 15.07.98 Enddokumentation (2,5 Wochen)

Dies entspricht einem Gesamtaufwand von 33,5 Wochen fiir das gesamte Soft-
wareprojekt. Abweichend vom Vorschlag von Anke Drappa, wurden die beiden
Berichtsphasen mit einbezogen, da es sich bei diesen nicht um eine Erstellung

89

90 KAPITEL 8. PROJEKTPLANUNG

von Berichten, sondern vielmehr um eine Zusammenfiigung bestehender Doku-
mente handelte, die im Rahmen der Projektarbeit erstellt wurden.

Betrachtet man die Kapazitéit eines einzelnen Mitarbeiters, kommt man auf fol-
genden Aufwand pro Projektgruppenmitglied:

33,5 Wochen - 2 Mitarbeitertage = 67 Mitarbeitertage = 502,5 Mitarbeiterstun-
den. Wobei von einem wochentlichen Aufwand pro Mitarbeiter von ungefihr
15512%21?(% 2T age) ausgegangen wurde. Umgerechnet auf alle Mitarbeiter er-
gibt sich daraus folgender Gesamtaufwand fiir das Projekt:

33,5 Wochen - 4 Mitarbeiter = 134 Mitarbeiterwochen = 268 Mitarbeitertage.
Werden pro Mitarbeiterstunde die fiktiven Kosten von 150,- DM angesetzt,
die wahrscheinlich weit unter einem realistischen, in der freien Wirtschaft ver-
anlagten Wert liegen, ergeben sich folgende Kosten:

268 Mitarbeitertage - 7,5 Stunden - 150,- DM = 301 500,- DM.

8.1.2 Meilensteine

Bei einem Meilenstein handelt es sich um einen ausgezeichnten Zeitpunkt wih-
rend des Projektverlaufes, an diesem ein vorher festgelegtes Ergebnis erwartet
wird. Folgende Meilensteine waren wihrend des Projekts zu erreichen:

e Beendigung der Anforderungsanalyse
Ergebnis: angenommenes Dokument
geplant : 21.12.97
Abnahme : durch Review

e Beendigung der Spezifikation
Ergebnis: angenommenes Dokument
geplant : 30.01.98
Abnahme : durch Review

e Vorfithrung Prototyp Oberfliche
Ergebnis: Prototyp fiir die Benutzungsschnittstelle
geplant : 06.02.98
Abnahme : durch Kunden

e Beendigung des Entwurfs
Ergebnis: angenommenes Dokument
geplant : 13.03.98
Abnahme : durch Review

e Beendigung des Zwischenberichts
Ergebnis: angenommenes Dokument
geplant : 27.03.98
Abnahme : durch Review

e Beendigung der Implementierung
Ergebnis: angenommenes Dokument
geplant : 22.05.98
Abnahme : durch Review/Kunden

e Beendigung des Tests
Ergebnis: angenommenes Dokument

8.1. PLANUNG FUR DAS PROJEKT TRANSPORTOPTIMIERUNG 91

geplant : 26.06.98
Abnahme : durch Review

e Beendigung des Endberichtes
Ergebnis: angenommenes Dokument
geplant : 15.07.98
Abnahme : durch Review

Hinzu kamen noch verschieden Besprechungstermine, um die Anforderungen des
Kunden herauszuarbeiten und um offene Fragen beziiglich der Realisierung zu
klaren.

8.1.3 Projektverlauf

Die Zusammenfassung des Projektes ’ahnlich erfolgt, wie bei der Vorstellung
der Meilensteine (8.1.2), in tabellarischer Form. Die einzelnen Daten werden
doppelt dargestellt: Auf der einen Seite das Datum, an dem der Projektabschnitt
tatsdchlich begonnen hat, und auf der anderen Seite in Klammern der geplante
Beginn. Eine Uberschneidung der einzelnen Phasen kommt dadurch zustande,
dafs die einzelnen Phasen an ihren Schnittstellen teilweise parallel bearbeitet
wurden, d.h. der Abschluff der einen Phase (Korrektur der Berichte, kleinere
Anderungen, ...), fiel in den Beginn der neuen Phase.

e Anforderungsanalyse
Beginn: 17.11.1997 (17.11.1997)
was wurde getan:

— einige Vortrige iiber Werkzeuge und Programmiersprachen, die fiir
das Projekt niitzlich sein kénnten:

* Genetische Algorithmen und das System Genom
(Nicole Weickert und Alexander Leonardi)

* Java
(Fritz Hohl)
Projektplanung und MS-Project
(Anke Drappa)
C++ und wxwin
(Stefan Lewandowski)
* Smalltalk und Visual Works

(Tobias Spribille)

— Vortrag des Kunden (Herr Schroff) iiber die Anforderungen an das

System und die aktuelle Abwicklung der Fahrdienstplanung des DRK
Stuttgart

*

*

— Analyse des Ist-Zustandes beim Kunden

— Erfassung der notwendigen Eingabedaten

Mitfahrt bei einzelnen Diensten zur Erfahrungssammlung

Erstellung einzelner Szenarien

Review: 16.1.1998 (21.12.1997)

KAPITEL 8. PROJEKTPLANUNG

e Sperzifikation
Beginn: 19.1.1998 (22.12.1997)
was wurde getan:
— Architektur des Gesamtsystems
— Erstellung eines Datenmodells
— Aufbau und Funktionsweise des Verkehrsmoduls

— Zusammenstellung der Datenausgabe

Moglichkeiten der Optimierung
— Aussehen der Benutzungsoberfliche

— Erstellung eines Prototyps fiir die Benutzungsoberfliche
Review: 27.3.1998 (13.3.1998)

e Entwurf
Beginn: 2.3.1998 (2.3.1998)
was wurde getan:
— Umsetzung der Spezifikation in passende Klassenstruktur
— Konzepte der Datenhaltung
— Erstellung der Meniistruktur

Review: 27.3.1998 (13.3.1998)

e Zwischenbericht
Beginn: 30.3.1998 (16.3.1998)
was wurde getan:

— Zusammenstellung bisher erstellter Dokumente

— korrekturlesen
Dokument fertig: 29.4.1998 (27.3.1998)

e Implementierung
Beginn: 3.4.1998 (30.3.1998)
was wurde getan:

— Ausprogrammierung des Enturfs
(aufgrund des grofen Zeitaufwandes fiel die Optimierung weg)

— Vorfiihrung einer Version 0

Review iiber Teile 20.7.1998 (22.5.1998)
vollsténdige Abgabe Version 1: 13.8.1998
Ubergabe an den Kunden: 21.9.1998

o Test
Beginn 9.7.1998 (1.6.1998)
was wurde getan:
— Test erfolgte iiber eine unvollstindige Implementierung!

— Funktionalititstest der einzelnen Masken

8.1. PLANUNG FUR DAS PROJEKT TRANSPORTOPTIMIERUNG 93

— Test des Laufzeitverhaltens

— Abgleich mit den Szenarien
Review: 23.7.1998 (26.6.1998)

e Endbericht
Beginn: 2.7.1998 (29.6.1998)
was wurde getan:

— Zusammenstellung bisher erstellter Dokumente

— korrekturlesen

Abgabe Rohfassung: 18.8.1998 Dokument fertig: 5.10.1998 (15.7.1998)

8.1.4 Tatsichlicher Zeit- und Kostenaufwand

Zum Abschliessen des Projektes wurde als Stichtag der Abgabetag des End-
berichtes (18.08.98) genommen. Gegeniiber dem geplanten Aufwand von 33,5
Wochen steht ein tatsichlicher Aufwand von 39 Wochen. Dieser Rahmen
konnte aber nur eingehalten werden, da — vor allem in der Schlufphase der
Projektgruppe — vieles parallel bearbeitet wurde. Den Arbeitsaufwand pro Pro-
jektgruppenmitglied lafst zeigt Abbildung 8.1. Somit ergibt sich ein Gesamtauf-
wand fiir das Projekt von 2186 Stunden bzw. ungefihr 292 Tagen. Werden
die unter 8.1.1 angesetzten fiktiven Kosten von 150,- DM pro Mitarbeiterstun-
de angesetzt, ergeben sich folgende Kosten:

2186 Mitarbeiterstunden - 150,- DM = 327 900,- DM. Das geplante Budget
wurde also um 26400,- DM iiberschritten. Ware das System wie geplant aus-
programmiert worden, wiren der Kosten- und Zeitiiberhang noch deutlicher
ausgefallen.

94

KAPITEL 8. PROJEKTPLANUNG

Arbeitszeitaufwand pro Mitarbeiter

Woche Frank Jorg Lars Tobias
47 7,50 7,50 5,00 6,50
48 7,50 7,50 6,00 5,50
49 7,50 7,50 6,00 8,50
50 7,50 7,50 7,00 11,50
51 7,50 7,50 6,00 13,00
52 7,50 7,50 20,50 18,50

1 7,50 7,50 16,00 31,00
2 7,50 7,50 11,00 8,50
3 7,50 17,25 8,50 12,50
4 19,75 22,00 14,50 17,00
5 14,00 17,00 18,50 22,00
6 4,25 23,25 17,50 22,00
7 22,00 24,25 18,00 19,00
8 10,00 21,75 14,00 15,50
9 22,25 9,00 13,50 10,00
10 8,75 9,50 12,00 13,50
11 13,50 20,00 18,50 4,50
12 6,00 18,00 9,00 6,50
13 0,00 16,25 13,00 9,50
14 12,00 12,00 13,00 0,00
15 9,50 10,00 18,00 0,00
16 16,00 15,75 0,00 7,50
17 17,00 14,00 17,00 11,00
18 9,00 17,00 16,50 14,50
19 15,00 10,75 21,00 28,50
20 26,00 15,50 23,00 35,00
21 17,25 21,50 19,50 19,00
22 26,25 20,75 23,00 26,00
23 25,75 19,75 21,00 22,50
24 40,75 17,00 28,00 19,00
25 7,50 14,75 16,50 23,50
26 37,50 11,00 7,00 15,50
27 15,25 10,50 5,00 21,00
28 35,50 19,25 5,00 25,00
29 17,75 22,00 18,00 11,00
30 26,50 31,00 17,00 0,00
31 0,00 11,00 12,00 0,00
32 0,00 21,25 12,00 0,00
33 0,00 0,00 9,50 0,00
Gesamt 542,50 573,00 536,50 534,00

Abbildung 8.1: Stundenzahl pro Projektgruppenmitglied

Kapitel 9

Riuckblick

9.1 Zeitplanung

Der grobe Zeitrahmen fiir die einzelnen Phasen der Projektgruppe war bereits
zu Anfang von den Betreuern fest vorgegeben. Da er seltsamerweise zwei Mona-
te iiber das Ende der Projektgruppenzeit hinausging, mufste er gekiirzt werden,
um alle vorgesehenen Phasen bis zum Ende des Vorlesungszeitraums im Juli
1998 unterzubringen. Die beiden letzten Phasen, ndmlich Implementierung und
Test, wurden radikal gekiirzt. Im Nachhinein trigt diese Mafnahme entschei-
dend dazu bei, daf nicht alles im Programm umgesetzt werden konnte und selbst
die wichtigsten Bestandteile nur durch enorme Mehrarbeit der Projektgruppe
in der Implementierungsphase {iberhaupt bis zur vollen Funktionalitit gebracht
werden konnten.

Ein weiteres zeitliches Problem war natiirlich die Aufgabenstellung, die insge-
samt einfach zu komplex war, um sie mit vier Personen in dieser Zeit komplett
zu bewiltigen (siehe 9.2). Sowohl dem Verlauf als auch dem Ergebnis der Pro-
jektgruppe wére es sicher zugute gekommen, nach der Anforderungsanalyse, als
die Uberdimensionierung der Aufgabe durchaus schon zu sehen war, einen sau-
beren Schnitt zu machen. Spétestens aber nach dem Entwurf hitte man sich
dazu durchringen miissen, im Interesse eines laufféhigen Gesamtsystems von
vornherein gewisse Teile nicht zu implementieren. So wurden zunéchst nahezu
alle Module parallel begonnen, und am Schluf$ fehlte die Zeit, die Arbeit wirklich
zu Ende zu fiihren.

Ebenso wurde der Zeitaufwand fiir die Reviews nach jeder Phase bei der
Planung nicht extra eingeplant, so daf letztlich jede Phase um eine bis zwei
Wochen in die néchste iiberhing, wihrend derer das Review vorbereitet und
durchgefiihrt werden mufte.

Besonders realitidtsfern war das Vorhaben, die gesamten vorlesungsfreie Zeit
zu verplanen. Daf in dieser Zeit mit Priifungen zu rechnen war, sollte jedem, der
selbst einmal studiert hat, ebenso klar sein, wie die Tatsache, dafs intensive Prii-
fungsvorbereitung eine gewisse Zeit erfordert, in der fiir umfangreiche sonstige
Aufgaben kein Platz ist, weder zeitlich noch gedanklich. Zeit fiir Urlaub oder
sonstige Erholung (die in der freien Wirtschaft lingst als grundlegend wichtig
fiir die Motivation und die Leistungsfihigkeit der Mitarbeiter erkannt wurde)
wurde den Studenten der Projektgruppe im Zeitplan nicht zugestanden.

95

96 KAPITEL 9. RUCKBLICK

9.2 Umfang der Aufgabenstellung

Mit einem echten Kunden konnte bisher noch keine Projektgruppe der Uni
Stuttgart arbeiten, so dafs zundchst eine gewisse ,Wie im richtigen Leben‘-
Euphorie vorhanden war. Daf allerdings eine detaillgetreue Modellierung der
Realitét einen enormen Aufwand erfordert, wurde schnell klar. Bereits die halb-
wegs schematisch geordnete Erfassung und Dokumentation der Anforderungen
zeigte die besonders komplizierten (oder auch nur komplexen) Begriffe auf. Wih-
rend Spezifikation und Entwurf, beim Umsetzen in Datenstrukturen und Algo-
rithmen, Verfahren und Schnittstellen kam deutlich zutage, daf mit vier Perso-
nen in acht Wochen an eine komplette Umsetzung der bisher entwickelten Ideen
in ein laufendes Programm nicht zu denken war.

9.3 Zustandigkeiten und Kompetenzen in der
Projektgruppe

Ein Grundproblem bei der praktischen Durchfithrung dieser Projektgruppe war
die weder eindeutig noch sinnvoll festgelegte Verteilung von Entscheidungskom-
petenz einerseits und Verantwortung fiir Entscheidungen andererseits:

So wurden sowohl Zeitplan als auch die Aufgabe von den Betreuern vorge-
geben. Versuche von Seiten der Projektgruppe, die Aufgabenstellung auf das
zeitlich Mogliche einzuschréanken, wurden meist abgeblockt mit Auflistung von
Funktionen, die noch ,,gemacht werden miissen®. Der ,fiir den Zeitplan zustin-
dige* Student konnte diese Vorgaben lediglich mit dem Programm ,MS Project
verwalten, und hatte die undankbare Aufgabe, die regelméfigen Kassandra-Rufe
zum zeitlichen Stand des Projekts zu verkiinden.

Die Beschaffung des Verkehrstools (Map&Guide) erfolgte als verbliiffender
Schnellschuf: Lange Zeit ruhte man sich auf der scheinbaren Gewifiheit aus,
dafl passende Verkehrsdaten zur Verfligung stehen wiirden. Nachdem sich dies
als falsch herausstellte (da die an der Universitidt vorhandenen Verkehrsdaten
nicht an einen Fremdkunden der Projektgruppe weitergegeben werden durften),
mufte auch das Verkehrstool selbst beschafft werden. Wihrend der zusténdi-
ge Projektgruppenteilnehmer noch Anbieter von Streckenplanungsprogrammen
anschrieb, um eine moglichst kostenlose Uberlassung der Daten zu Studien-
zwecken zu erbetteln, war plotzlich das Programm Map& Guide schon gekauft
(zu einem Betrag, den wir nie fiir Hilfsmittel einzuplanen gewagt hiitten). Dafs
das Programm eine externe Schnittstelle anbietet, war die einzige Information,
die vor dessen Eintreffen an der Uni zur Verfiigung stand. Spéter stellte sich
dann heraus, daf die Batch-Schnittstelle weder von der Geschwindigkeit noch
vom moglichen Umfang der Anfragen fiir die Anforderungen des Programms
TROSS geeignet war.

9.4 Empfehlungen an zukiinftige Projektgruppen

Auch wenn es bisher in diesem Dokument (wie auch schon im Zwischenbericht)
fast immer nur um die zu modellierende Aufgabenstellung und das dafiir ge-
schriebene Programm ging, sind das Hauptziel einer Projektgruppe die vielfil-
tigen Lerneffekte. Um die diversen Erfahrungen dieser Projektgruppe, die oft

9.4. EMPFEHLUNGEN AN ZUKUNFTIGE PROJEKTGRUPPEN 97

genug durch miithsames ,Learning by doing* erzielt wurden, nicht nur fiir uns zu
behalten, sollen hier einige Punkte genannt werden, die kiinftige Projektgrup-
pen unserer Meinung nach beachten sollten. Dadurch kann hoffentlich (bis zu
einem gewissen Grad) vermieden werden, dafs jede Projektgruppe wieder — wie
wir — von Null auf beginnt, sondern durch Nutzung dieser Erkenntnisse die Pro-
jektzeit sinnvoller fiir die eigentlich interessanten Problemstellungen verwendet.
Das schlégt sich bestimmt auch positiv im Ergebnis nieder (also in einem guten,
lauffahigen Programm).

Der Zeitplan sollte die verfiighare Zeit nicht bis auf den letzten Tag verpla-
nen. Der Verlauf mehrerer Projektgruppen hat gezeigt, daf die Zeit immer
iiberschétzt (bzw. die Aufgabe unterschitzt) wird. Ein Pufferzeitraum am
Ende wire sicherlich kein Fehler.

Reviews miissen als feste Grofen im Zeitplan vorgesehen werden. Dazu
mufs nach der eigentlichen Durchfiihrung jeder Phase mindestens eine Wo-
che ausschliefslich fiir Vorbereitung, Durchfiihrung und Nachbereitung des
Reviews zur Verfiigung stehen.

Die Aufgabenstellung erforderlichenfalls anpassen. Lieber ein kleines, lauf-
fahiges Programm, als eine grofe, universelle Planungsruine.

Die Entscheidung iiber die benutzte Programmiersprache sollte méglichst
friih fallen. Dann kann man sich rechtzeitig nach Entwicklungsumgebun-
gen, Bibliotheken mit Hilfsfunktionen etc. umschauen und in die Syntax
und Philosophie der Sprache einarbeiten.

Ein Prototyp sollte nicht zu friih erstellt werden, da man sonst nicht nur
viel zusétzliche Arbeit hat, sondern sich auch in selbsterdachten Daten-
strukturen verrennt, die dem tatséchlichen Datenmodell dann in die Quere
kommen (siehe 3.5).

Literaturverzeichnis

[Balo6]

[BN97]

[CAS97]
[F1a97]

[Pre92]

[Pro98]

BALZERT, HELMUT: Lehrbuch der Softwaretechnik, Band 1: Software-
Entwicklung. Spektrum-Verlag, 1996.

BERNSTEIN, PHILIP A. und ERIC NEWCOMER: Principles of transac-
tion processing. The Morgan Kaufmann series in data management
systems. Morgan Kaufmann, San Francisco, Calif., 1997. XXIV, 358
S.

CAS SOFTWARE GMBH: MapéGuide Benutzerhandbuch, 1997.

FLANAGAN, DAVID: Java in a Nutshell. O’Reilly, Zweite Auflage, Mai
1997.

PRESSMAN, ROGER S.: Software engineering : a practitioner’s ap-
proach. McGraw-Hill international editions : computer science series.
McGraw-Hill, New York [u.a.], Dritte Auflage, 1992. 793 S.

PROJEKTGRUPPE TRANSPORTOPTIMIERUNG: Zwischenbericht — Be-
richt 1998/06. Institut fiir Informatik der Universitit Stuttgart, 1998.

98

