
Dynamic Distance Maps of the Internet

Wolfgang Theilmann, Kurt Rothermel

Institute of Parallel and Distributed High-Performance Systems (IPVR),

University of Stuttgart, D-70565 Stuttgart, Germany

email: [theilmannjrothermel]@informatik.uni-stuttgart.de

Fakult�atsbericht (Technical Report) 1999/08

Department of Computer Science

University of Stuttgart, Germany

July 1999

Abstract

There is an increasing number of Internet applications that attempt to optimize
their network communication by considering the network distance across which data
is transferred. Such applications range from replication management to mobile
agent applications. One major problem of these applications is to eÆciently acquire
distance information for large computer networks.
This paper presents an approach to create a global view on the Internet, a so-called

network distance map, which realizes a hierarchical decomposition of the network
into regions and which allows to estimate the network distance between any two
hosts. This view is not only a single snapshot but is dynamically adapted to the
continuously changing network conditions. The main idea is to use a certain set of
hosts for performing distance measurements and to use the so gained information for
estimating the distance between arbitrary hosts. A hierarchical clustering provides
the notion of regions and allows to coordinate the measurements in such a way that
the resulting network load is minimized.
An experimental evaluation on the basis of 119 globally distributed measurement

servers shows that already a small number of measurement servers allows to con-
struct fairly accurate distance maps at low costs.

1 Introduction

The Internet, today's most important and largest computer network, is su�ering from seri-
ous performance problems. Apart from improving the protocols on the network layer, various

1

approaches have been undertaken to speed up communication at the application level by mini-
mizing the distance across which data is transferred. For example, clients of replicated services
or replicated data want to locate the nearest location of a replicated entity [3, 11]. Replication
servers want to disseminate popular data items towards large client groups [12, 2, 16]. Hierar-
chical caches and distributed object repositories aim to re
ect a decomposition of the network
into a hierarchy of regions [4, 20]. Routing of user queries in distributed Digital Libraries is
optimized at the application level [14]. Finally, in mobile agent systems the distance between
client and server is needed to decide whether to ship the client or to load the data over the
network [19].

A major problem of all these applications is to learn about network distances without
probing the whole network. For many of them it would even be enough to learn about the
coarse adherence of hosts to regions (e.g. [2, 12, 14, 20]). However, most current applications
are based on ad hoc solutions, which do not really solve the problem. In addition, most
solutions are only appropriate for a particular application scenario and cannot be shared by
di�erent applications.

This paper presents so-called network distance maps, which o�er a global view on a com-
puter network such that the distance between any two network hosts can be derived. Besides,
distance maps provide a decomposition of the network into a hierarchy of regions. They can
be constructed for any distance metric. Moreover, distance maps are dynamic in the way that
they adapt continuously to changing network conditions. The main idea of this approach is to
use a subset of hosts to perform distance measurements and to cluster these hosts hierarchically
into regions of closely connected hosts. It is important to stress that the approach applies to
any interconnected network that supports some form of distance measurement.

The remainder of this paper proceeds as follows. After a discussion of related work in
Section 2, Section 3 introduces some general assumptions, goals and restrictions of our approach.
Section 4 presents the approach of network distance maps in detail and Section 5 reports on
an experimental evaluation. Finally, Section 6 summarizes our conclusions.

2 Related Work

The estimation of real network distances through geographic distances has been proposed by
Gwertzman and Seltzer [12]. However, they found out that the correlation between geographic
distances and network distances is rather poor, especially between di�erent backbones. In
addition, there is, so far, no possibility to automatically determine the geographic location of
all Internet hosts.

Various approaches propose to perform local measurements, e.g. from clients to replication
servers ([3, 11]) or vice versa [2]. This way, a host is able to learn the distance between
itself and some remote hosts, but it cannot derive the distance between two remote hosts.
This is especially required for replication servers, which need to discover the distance between
possible replication locations and clients [2]. A second de�ciency of these approaches is the high
overhead that occurs if every single host is responsible for performing measurements. Consider,
for example, two closely connected clients of a replicated service. Since they do not know of
each other they have to do almost the same measurements.

2

Rabinovich et al. exploit the information available in the routing tables of Internet routers
[16]. In comparison to probing approaches this is a very eÆcient way of learning network
distances. On the other hand, such an approach is bound to the distance metrics available in
the routing tables. This can be an important restriction since, for example, the distance metric
used for the routing between autonomous systems (ASs) is simply the number of traversed
ASs [17]. In addition, the access to such tables is not public. So in general, such an approach
can only be followed by the operator of an autonomous system and is restricted to distances
between hosts within this system.

Two protocols for the dissemination of distance information, namely the SONAR- and the
HOPS-service, have been proposed by [15], [5] respectively. A SONAR-server o�ers distance
information between itself and arbitrary remote hosts. The HOPS-service o�ers distances
between arbitrary hosts, by distributing the information in a DNS-like hierarchy. However, the
problem of acquiring distance information is not addressed.

To our knowledge, the �rst and only approach for a global, measurement based view on
the Internet has been presented by Francis et al. [6]. They propose to use a set of servers that
measure the distances between themselves and to other end systems. Shortest path algorithms
shall prune the resulting data structure. Two di�erent models are presented. The �rst one tries
to discover the real Internet topology, i.e. determines autonomous systems (ASs) and inter-AS
links as well as intra-AS links. The second model is simply based on the measurement of end-
to-end distances. To determine the closest measurement server for every end systems, they
propose a random driven approach in which each server repeatedly measures its distance to
a randomly selected end system and checks whether it is closer than the so far closest known
server. Unfortunately, the whole discussion is determined by the goal to minimize the amount
of data needed to store the network distance information. The network load caused by the
measurements is not considered. No concrete algorithms have been presented and the problem
of updating the acquired data structures is poorly discussed. We di�er from the proposed
methods in that we try to achieve scalability (both in terms of network load and storage
requirements) by clustering the set of measurement servers hierarchically.

3 Assumptions, Goals and Restrictions

This section introduces the major assumptions and goals of our approach and provides a dis-
cussion of the inherent restrictions, we have to face.

3.1 System Model

Network. Our model of a network consists of a set of hosts H together with a function �(x; y)
that assigns a distance to each pair of hosts x; y 2 H. We assume distances to be non-negative
and symmetric. We will discuss the necessity of this symmetry assumption in Section 4 and
will show the extent of its validity for our experimental validation in Section 5.

We neither require any special distance metric nor care about the method for performing a
single distance measurement. Instead, our approach can be used with any distance metric, for
example, the number of hops (i.e. the number of network routers existing on a path between

3

two hosts), the round trip time (the time needed to transmit a simple datagram packet to a
remote host and back), packet loss rates, bandwidth or anything else.

Because of space limitations, we do not discuss how our algorithms deal with host or network
failures. Instead, we assume for our presentation that any pair of network hosts is connected.
Section 4.5 presents some basic principles how fault tolerance can be included into our approach.

A possible optimization, which we do not discuss in this paper but which could be easily
integrated into our approach, is to reduce the granularity of the considered Internet to address
pre�xes, i.e. to group together all hosts with the same address pre�x. A good discussion of this
optimization idea can be found in [6].

Network View. Of course, we cannot assume to have access to every network's host in order
to perform distance measurements. However, we assume the availability of a set M � H of
measurement servers (called mServers for the remainder of this article) that allow to perform
distance measurements to arbitrary hosts. Remark that this applies only to the \public" part
of the Internet since we cannot measure distances to hosts behind �rewalls or to hosts within
private networks. But even the distance to a �rewall should be quite useful for an application
from the outside. In the following, we will call a host simple host if we want to emphasize that
it is not an mServer.

3.2 Accuracy and Timeliness of Distance Information

An important aspect of network distance maps is the quality (i.e. the accuracy and timeliness)
of the distance information they provide. However, this aspect is in
uenced by some factors,
external to the development of network map algorithms: First of all, there is the extra commu-
nication overhead we want to spend. This tolerable overhead in turn depends on the number
of applications that make use of the distance map. Given the tolerable overhead, accuracy
and timeliness depend on two additional factors: One is the e�ort needed to perform a single
distance measurement. For example, the measurement of the currently available bandwidth
causes an overhead much higher than the measurement of the current round trip time [3]. The
other is the variation scale of the respective metric. For example, #hops distances are supposed
to be relatively static, while current round trip time is highly dynamic.

To enable a maximum of
exibility for the operator of a distance map, we developed algo-
rithms that can be tuned to arbitrary degrees of accuracy and timeliness.

3.3 Scalability

There are three requirements in terms of scalability that must be satis�ed by algorithms to
distance maps. Firstly, the network load caused by the process of constructing and maintaining
a map must be limited. Because large computer networks consist of millions of hosts, it is out
of question to perform measurements from every host to every other host. Secondly, distance
maps should have small storage requirements. This allows to replicate them to almost any
ordinary server system. Finally, the derivation of distance values should be quickly feasible so
that a distance map server can satisfy a lot of requests almost simultaneously.

4

4 Network Distance Maps

This section introduces the approach of network distance maps in detail. After an overview on
the basic ideas of our approach, we proceed with the main data structure. Then, we present
the algorithms for constructing and updating a map and �nally, we discuss extensions for the
treatment of failures.

4.1 Overview

The basic ideas of our approach are (1) to rely on a set of measurement servers (mServers),
(2) to measure the distances between these mServers, (3) to assign simple hosts to their most
closely connected mServer and (4) to estimate the distance between two hosts by the distance
between their two assigned closest mServers.

The accuracy of this approach is limited by the number and distribution of the mServers.
The more mServers we have the average distance between a host and its closest mServer becomes
smaller, and so the estimation by the distance between mServers becomes more accurate. Figure
1 sketches this scenario. The distances between hosts 1 and 2 and between hosts 2 and 3 are both

measurement server

simple host

3 2
A

B

C

true distance

inter server distance

dist. to closest server

1

Figure 1: Distance estimation with measurement servers.

estimated by the distance between mServers A and B. While the �rst estimation is supposed
to be relatively precise, the second one is not due to the large distance between host 3 and its
closest mServer A.

Two problems in terms of scalability of the network load arise with this approach. Firstly,
the computation of the closest assignment for simple hosts requires to measure the distance
to this host from every mServer. Secondly, the number of distance measurements between
mServers grows quadratically with the number of mServers. A lot of these measurements are
redundant. For example in the scenario sketched in Figure 1, the distance between mServers
A and C need not be measured if we know that C is close to B and B is far from A.

To solve these problems we cluster the mServers in a hierarchical manner, thus achieving
a decomposition into regions in which each region is further re�ned into subregions. For each
region/cluster we select a representative mServer. Then, the closest assignment for simple
hosts can be done hierarchically by measuring the distance of the respective host to each
representative of a toplevel cluster. The cluster with the closest representative is selected and
the process is continued for its subclusters. Since we do not want to measure all distances
between mServers for the initial clustering, we propose a mixed algorithm, that �rst computes
a pre-clustering on a subset of the available mServers and then assigns the additional mServers
to their most appropriate cluster.

5

It is important to remark that our cluster algorithms require symmetric distances. Otherwise
they cannot decide whether to group together two entities or not, especially if the two distances
signi�cantly di�er from each other.

4.2 Data Structure

The data structure of a network distance map is presented in Figure 2. It consists of a cluster
tree and the additional assignment of simple hosts to their closest mServer. Inner nodes of
this tree represent clusters of mServers, leaf nodes correspond to single mServers. The tree is

is partitioned into

measurement server
host

cluster

distance between 2

distance between host
and closest
measurement server

clusters / servers

...Cluster 1 Cluster 2

Cluster 2.1 Cluster 2.2

Network

......

Figure 2: Representation of a network distance map.

extended by distance values between sibling nodes. The distance between two sibling clusters
is an estimation for the average distance between arbitrary hosts belonging to these clusters.
The distance between sibling mServers is directly derived from the corresponding network
measurement. In addition, the assignment between simple hosts and their closest mServer is
extended with the associated, measured network distance.

Distances (denoted by k�; �k) can be derived from this tree representation as follows. The
distance km1; m2k between two mServers m1 and m2 is estimated as the distance between the
children of the least common ancestor1 of m1 and m2. Based on this, the distance kh1; h2k
between two arbitrary hosts h1 and h2 is estimated as

maxfkcl(h1); cl(h2)k; �(h1; cl(h1)); �(h2; cl(h2))g;

where cl denotes the closest assignment and � the associated, measured distances. Note that
the �rst argument in the max-function is estimated from the cluster tree while the other ones are
gained by network measurements. The max-function guarantees accurate distance estimations
also for hosts, which are connected to the same mServer, and for hosts, which are not closely
connected to any mServer, i.e. which are not well covered by the cluster tree. The derivation
of any distance is feasible in linear time, i.e. linear to the tree's depth.

The storage requirements of a cluster tree can be estimated as follows: Let k be the maxi-
mum number of sub-clusters or mServers within one cluster and d the depth of the cluster tree

1
The ancestor-relation is the transitive extension of the parent-relation.

6

(the root's depth is de�ned as 0). Then, a complete cluster tree consists of (kd+1 � 1)=(k � 1)
nodes. Since each node must contain distance values for its siblings (at most k�1) and assum-
ing a well balanced tree with jMj = kd we can specify an upper bound for the amount of data
required for this representation of a network to

O

jHj+

kd+1 � 1

k � 1
� (k � 1)

!
= O (jHj+ jMj � k) :

The parameter k determines the tradeo� between the accuracy of the network's representation
and the amount of required data. Setting k to jMj would result in an exact representation of a
network view except for the fact that the simple hosts are only linked to their closest mServer.
Taking an example network with 10.000 mServers and 1 million hosts and assuming k = 10
we need only 1:1 � 106 data items which is better by orders of magnitude than the 1010 items
required for a complete representation of a network view.

Cluster Representative. A cluster representative should satisfy two con
icting goals: On the
one hand, it should be \representative" in the way that distances from hosts outside the cluster
to the cluster representative should be similar to the distances to the other cluster's hosts.
On the other hand, the election of a representative should not induce a tremendous additional
network load. This is especially important for the updating process.

We decided to take the cluster centre as the representative, i.e. the host for which the
maximum distance to the other hosts of a cluster is minimal. This choice has several advantages:
It does not require any additional network measurements, neither for the initial computation
nor for the updating. If we compute the centres hierarchically, that is if the centre of each cluster
is computed as the centre of its child-clusters' centres, we can use the distances derived from
the cluster tree. In addition, cluster centres, which are characterized by their good internal
connectivity, are supposed not to have an unrepresentative bad connectivity to the outside.
Therefore, they are quite appropriate for the insertion and updating of simple hosts (compare
to the algorithms in the next paragraphs).

4.3 Initial Computation of a Distance Map

Cluster Criteria. The �rst question is how to compute an e�ective clustering. Francis et
al. discuss the value of clustering according to autonomous systems (ASs) in the Internet [6].
However, they abandon this idea since ASs may be very widespread and hosts from di�erent
AS may be close to each other (in terms of latency).

According to our way of deriving distances from the cluster tree, the optimal cluster criterion
would be the Min k-Avg-Error criterion, which minimizes the average error that occurs from
our distance estimation, i.e. minimizes the expressionX

i;j2[1::k]
i<j

X
x2Ci
y2Cj

j�(x; y)��(Ci; Cj)j:

In this formula, k denotes the given number of resulting clusters, Ci a single cluster and
�(Ci; Cj) the average distance between hosts in the two clusters Ci; Cj. Unfortunately, we
do not know any polynomial solution or approximation to this optimization problem.

7

Therefore, we evaluated some heuristic criteria that either seek to maximize the distances
between two di�erent clusters or to minimize the distances that occur within one cluster. By
either optimizing the average or the extreme value we have four possible criteria, which we
discuss in the following:

A Max k-Separation maximizes the minimum distance between any two clusters, i.e. maxi-
mizes the expression

min
i;j2[1::k]; i<j

x2Ci; y2Cj

�(x; y):

According to [18], it is computable in O(n2 � logn).
A Max k-Cut maximizes the average distance between any two clusters, i.e. maximizes the

expression X
i;j2[1::k]

i<j

X
x2Ci
y2Cj

�(x; y):

It is NP-complete to optimize and the best known approximation ratio [7] is 1=(1 � 1=k +
2 lnk=k2), which is rather bad if we consider that a random clustering already achieves an
approximation ratio of 1=(1� 1=k).

A Min k-Clustering minimizes the maximum distance between any two hosts within the
same cluster, i.e. minimizes the expression

max
i2[1::k]; x;y2Ci

�(x; y):

An approximation for this NP-complete problem with the optimal ratio 2 can be computed in
O(n � k) if we assume the triangle inequality2[9].

A Min k-Clustering Sum minimizes the average distance between any two hosts within the
same cluster, i.e. minimizes the expression

kX
i=1

X
x;y2Ci

�(x; y):

The fastest known approximation with ratio 2 for this NP-complete problem has a computation
complexity of O(nk), which is too expensive for our application [10].

The experiments in the next section are performed with the two extreme cluster criteria,
Max k-Separation and Min k-Clustering. Optimization of extreme values can sometimes lead
to unexpected results since the process can be completely determined by one single data item.
For a better understanding of such e�ects we present two example clusterings in Figure 3.
Distances in these examples are de�ned through planar geometry. The remarkable e�ects are
that a Max k-Separation may lead to unbalanced clusters and a Min k-Clustering may result in
closely connected hosts that reside in di�erent clusters.

The total processing time of a cluster tree computation depends on the cluster criteria
and the extent to which the computed clusters are well balanced, i.e. how often and on which
set sizes the partitioning has to be repeated. Especially for the Max k-Separation, where the
computation has quadratic order, the time signi�cantly depends on the balancing e�ectiveness.

2
The triangle inequality is satis�ed i� for any three hosts a; b; c the distances obey ja; cj � ja; bj+ jb; cj.

8

a Max 2-Separation

host

clustera Min 2-Clustering

Figure 3: Two extreme clustering results.

Mixed Clustering. As discussed in Section 4.1 the algorithm for computing an initial clus-
tering follows a mixed strategy by �rst computing an optimal clustering on a certain mServer
subset (according to a selected criterion) and then assigning the additional mServers to the
most appropriate clusters. Therefore, the algorithm is determined by two parameters: The re-
�nement factor k describes the number of clusters to be computed at each level of this recursive
process. The selectivity s denotes the number of mServers that are considered for the optimal
clustering step. The algorithm consists of the following steps:

(1) select a set S of s mServers randomly from M

(2) measure distances between all hosts in S

(3) do optimal clustering of S into k clusters C1; : : : ; Ck

(4) compute cluster distances as average value

(5) compute cluster centres

(6) for each additional mServer m 2M n S

(7) measure distances to all cluster centres

(8) assign m to cluster with closest centre

(9) update distances between clusters

(10) for each cluster Ci

(11) perform step (1) recursively for the mServers in Ci

The distance update in step (9) is done for the distance estimations between the closest cluster
and all the other clusters. Since we measured the distance between mServer m and all cluster
centres we have for each such cluster pair a new measurement, which allows to re�ne our dis-
tance estimation. If C denotes the cluster selected for mServer m and di denotes the distance
between m and the centre of cluster i then the distance between C and Ci (Ci 6= C) is updated
according to

jC;Cij := jC;Cij+ (d� jC;Cij) �
1

jCj+jCij
.

The re�nement factor k determines the granularity of the cluster tree and so the accuracy
of distance estimations. The selectivity s determines the probability for an e�ective clustering,
i.e. the probability that the randomly determined set S enables the computation of \represen-
tative" clusters.

The number of network measurements resulting from the �rst recursion level of the initial
clustering is s � (s � 1)=2 + k � (jMj � s). Remark that symmetric distances only need to be
measured once. If we assume s = kn and jMj = kd (0 < n < d) we can specify the total number
of measurements required for a complete, recursive clustering that leads to a well balanced tree

9

to
d�nX
i=0

ki �

s � (s� 1)

2
+ k � (kd�i � s)

!
: (1)

If, for example, we have 1000 mServers a clustering with k = 10 and s = 100 requires 63450
measurements, which is about 8 times less than measuring the distances between all mServers
(499500).

Insertion of Simple Hosts. The insertion of simple hosts into a cluster tree is similar to
the insertion process described above. At each level, distances between the new host and the
respective cluster centres are measured. The process is recursively continued for the cluster
with the closest centre. The insertion of a single host into an optimal balanced tree of depth d

and re�nement factor k requires d � k network measurements.
We also realized an extended version of the above algorithm in which the insertion of simple

hosts is performed more sophisticatedly. In this version, we check if several cluster centres have
a similar distance to the new host than the closest cluster centre. For each such cluster, we
concurrently continue the insertion process until one cluster turns out to be signi�cantly better
than the other ones. This extended version is driven by a similarity threshold that bounds the
range up to which additional centres are further examined. The performance evaluation of this
version is done empirically in Section 5.3.

4.4 Map Updating

The updating of a distance map shall adapt this map to changing network conditions. A trivial
and expensive solution is, of course, to recompute the whole map at regular time intervals.
However, we also developed mechanisms that allow a less expensive and continuous updating.

Updating of Simple Hosts. There are two basic possibilities for updating the closest assign-
ment of simple hosts. Either we re-insert each host from higher nodes in the cluster tree or we
perform a kind of radial search that frequently checks if other mServers in the neighbourhood
of the closest mServer have become closer than this original one. With both approaches we
can limit the range within updates shall be done. This allows to perform local updates more
frequently than global ones, i.e. checks in the near neighbourhood (from direct super-clusters)
can be done more often than in the further neighbourhood (further super-clusters). The under-
lying heuristic of this method is that small changes in the network conditions are more likely
to occur than large changes.

We developed an algorithm that combines the above introduced policies and that is driven
by two parameters: the radius, i.e. the number of neighboured mServers or clusters, which are
examined in the order of their proximity, and the similarity threshold, which is used for the
insertion process into neighboured clusters. The closest assignment of a simple host is changed
if another, more closely connected mServer is detected by this algorithm.

Updating of Cluster Trees. Cluster trees are updated by reclustering parts of them. The
main parameter that determines this process is the tree level at which the reclustering shall be

10

done. We de�ne the tree level of the root node as 0. Reclustering at level l e�ects that for every
cluster at level l its associated mServers are collected and a new clustering is performed on the
basis of this set of mServers. A reclustering at level 0 is identical to a complete clustering.

The e�ort, both in times of computing complexity and network load, for reclustering a well
balanced tree at level l is kl times the e�ort for clustering a set of jMj=kl mServers. Continuing
the example we presented for equation 1, i.e. 1000 mServers and k = 10, an optimal reclustering
at level 1 requires 49500 measurements which is 10 times less than an optimal reclustering at
level 0.

4.5 Treatment of Failures

The consideration of network or host failures can be easily integrated into our algorithms.
Basically, three methods are needed: During the clustering process, not measurable connections
are re
ected by the value of in�nity. If during the insertion or update of hosts the distance
to a cluster representative cannot be obtained, other members of the respective cluster have
to be taken instead. If the distance to none of these other cluster members can be obtained,
the distance between the host and the cluster is set to in�nity. Finally, crashed mServers can
be easily retracted from the cluster tree by assigning its associated simple hosts to its closest
neighboured mServer.

5 Experimental Evaluation

In this section, we present an experimental validation of our approach to compute network
distance maps on the basis of data acquired from Internet measurements. Various distance
metrics might be interesting, for example the number of hops, the round trip time, packet loss
rates, bandwidth and many others. We performed experiments for the #hops and round trip
time metric because of their distinct \nature" and because we were able to measure them in a
large scale.

5.1 Methodology

We performed network measurements on the Internet by using the tool traceroute, which allows
to trace the routing path between two Internet hosts [13]. The resulting data allows to derive
the number of hops and a very rough estimation of the round trip time (rtt). As Acharya and
Saltz [1] have shown, rtt has a large temporal variation and a value that well characterizes a rtt
distribution requires a larger sample of single rtt measurements. However, we decided to take
these rough estimations for evaluating the behaviour of our algorithms for di�erent distance
metrics. A second source of imprecise and incomplete measurements is that traceroute does
not always succeed since it is not supported by every host or router. A detailed discussion of
traceroute's caveats can be found in [8].

Various web servers on the Internet o�er the service of performing traceroute measurements
from their location to an arbitrary Internet host. We compiled a set of 119 such web servers
(mServers) and 460 simple hosts, which are distributed among 5 continents and numerous

11

autonomous systems. A �rst data collection (D1) was gathered from February 1 to February
11, 1999. We performed measurements from every mServer to every other host, in total 68782
measurements. Since we did not want to overload the mServers we provided an interval of
2{5 minutes between two consecutive traceroute's from a single mServer. In addition, we
took care that every host is target of a traceroute measurement at most every 2{5 minutes.
These mechanisms ensure that we do not have a signi�cant interference between the distributed
measurement activities.

From March 24 to April 1, 1999 we gathered a second data collection (D2), based on 110
mServers and 467 simple hosts. Unfortunately, 9 mServers shut down their service and 2 simple
hosts were not reachable anymore. So this second collection is based on 110 mServers and 467
additional hosts (we used the shut down mServers at least as simple hosts). Comparisons
between these two collections are always done on the basis of the common mServers and simple
hosts, which are exactly those used in D2.

5.2 Data Analysis

Figure 4 shows the histograms of the 67961 successfully measured distances in collection D1.
The rightmost column of both histograms presents cumulative values for the open distance
interval that starts at the rightmost histogram's argument. These distributions are quite similar

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30
#hops

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000 1200 1400
rtt [ms]

Figure 4: Histograms of the measured distances.

to those measured elsewhere, for example [3].
Our �rst examination targeted the validation of the symmetry assumption made in our

network model (compare to Section 3.1). On the basis of 6960 successful bidirectional measure-
ments we computed the average symmetry error of the hops measurements to 2.0 hops (standard
deviation 2.3). The average symmetry error of the rtt measurements is 119ms (std.dev. 266ms).
Though the de�nition of rtt e�ects symmetric distances in theory it is not surprising that this
property is not well ful�lled by our measurements because of the poor measurement method.

Next, we examined the validity of the triangle inequality, which is assumed by some of the
cluster criteria, presented in Section 4.3. From more than 7 million host triplets we derived
that the triangle inequality is valid in 99.5% for the #hops metric and in 87.6% for the rtt
metric.

12

Finally, we computed for every simple host its most closely connected mServer. The average
value for the #hops metric is 7.1, which is about two �fth of the average of #hops distances
(16.2). The average value for the rtt metric is 27ms, which is about one tenth of the average
of rtt distances (255ms). This shows that in the sense of rtt our set of mServers covers the
Internet quite well. For every simple host there is a comparatively closely connected mServer.
This property is ful�lled much worse for the #hops distances.

The same evaluations for the second data collectionD2 brought out very similar results. We
additionally computed the divergence of distances between the two collections, i.e. for every
pair of distances d1 2 D1 and d2 2 D2 we computed the ratio max(d1;d2)�min(d1;d2)

max(d1;d2)
. This is

depicted in Figure 5. The average divergence for the #hops metric is 8.2% (standard deviation

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 c

on
ne

ct
io

ns
 (

in
 %

)

divergence (in %)

#hops
rtt

Figure 5: Divergence between D1 and D2.

10.7%) and 24.8% for the rtt metric (std.dev. 24.0%). Unsurprisingly, the #hops distances turn
out to be much more stable than the rtt distances.

5.3 Initial Map Computation

The following experiments on cluster trees are based on averaged values for bidirectionally mea-
sured distances. This is necessary because our cluster algorithms require symmetric distances.
We used data collection D1 for the evaluation of the initial map construction. Collection D2
was used for the update evaluation.

Optimal Clustering. Our �rst experiments target a comparison of the two cluster criteria
Max k-Separation and Min k-Clustering. We computed cluster trees for both criteria, for both
distance metrics and varied k between 2 and 119. The selectivity s was always set to jMj. The
accuracy of a cluster tree is described by the estimation error between measured and estimated
distances. The relative estimation error between a measured distance m and the associated
estimation e is computed as max(m;e)�min(m;e)

max(m;e)
, thus it is a normalized value between 0 and 1.

A second parameter that describes cluster trees is the tree's depth. It is an important factor
since deeper trees e�ect a higher e�ort (i.e. a larger number of network measurements) needed
for the insertion and updating of simple hosts. Figure 6 shows the relative estimation error
(the average for all pairs of measured and estimated distances) and the tree depth for each
computed cluster tree.

13

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

es
tim

at
io

n
er

ro
r

(in
 %

)

k

Max-k-Sep hops
Min-k-Clust hops

Max-k-Sep rtt
Min-k-Clust rtt

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40

tr
ee

 d
ep

th

k

Max-k-Sep hops
Min-k-Clust hops

Max-k-Sep rtt
Min-k-Clust rtt

Figure 6: Characteristics of cluster trees.

We can see that the estimation of #hops distances is signi�cantly better than for rtt dis-
tances. However, this was already indicated by our data analysis in the previous section. Both
errors decrease with an increasing k. Of course the error is 0 for k = 119 since in this case
the tree contains all measured distance values between pairs of mServers. We can also see that
the distance estimations are slightly better if we use the Max k-Separation criterion, especially
for the rtt metric. On the other hand, the tree depths resulting from the Min k-Clustering are
signi�cantly smaller. For example, the tree depth for the #hops metric and k = 10 is only 2
while it is 11 for the Max 10-Separation tree. This indicates that the problem of unbalanced
trees (described in Section 4.3) occurs for the Max k-Separation trees.

Another observation is that the correlation between k and the estimation error is roughly
linear. This allows the conclusion that there is no natural clustering, which should be preferred
for getting an optimal balance between k and the resulting estimation error. Of course, it is
possible that there will be a natural clustering for larger numbers of mServers, for example,
according to autonomous systems or backbones in the Internet. However, our experiments do
not allow such a conclusion.

Next, we analysed the quality of the hierarchical re�nement of clusters. Table 1 contains
some characteristic parameters that describe the three highest tree levels for some example
trees. Due to space limitations we only present results for trees with k = 10. However, these
are also characteristic for trees with other re�nement factors. For each described tree level
l, we show the average measured distance between mServers that share the same cluster at
level l and the associated absolute estimation error. Round trip time distances are always
presented in milliseconds. We can see that the average measured distance decreases for deeper

network distances / abs. estimation error

criterion level 0 level 1 level 2

10-Sep. #hops 15.6 / 2.47 15.1 / 2.46 14.7 / 2.45

10-Clu. #hops 15.6 / 2.65 12.7 / 1.52 1.52 / 0.0

10-Sep. rtt 249 / 91 163 / 70 145 / 67

10-Clu. rtt 249 / 109 147 / 39 80 / 16

Table 1: Cluster tree quality at levels 0{2.

14

tree levels, thus hierarchical clustering is useful. The absolute estimation error also decreases
for deeper tree levels, which proves that the cluster tree distances well re
ect this increased
proximity. Both e�ects are more clearly for the Min 10-Clustering criterion, which shows that
the corresponding trees are better balanced.

Mixed Clustering. Another aspect of investigation was the extent to which we can use the
mixed clustering strategy, described in Section 4.3. We performed test series for cluster trees
with a re�nement factor k = 10 and varied the selectivity s between 10 and 119. The resulting
estimation errors for each constellation are depicted in the graph of Figure 7. We can see that

10

15

20

25

30

35

0 20 40 60 80 100 120

es
tim

at
io

n
er

ro
r

(in
 %

)

selectivity

Max-10-Sep hops
Min-10-Clust hops

Max-10-Sep rtt
Min-10-Clust rtt

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120
#m

ea
su

re
m

en
ts

 (
in

 %
)

selectivity

Figure 7: Mixed clustering.

the mixed algorithm can provide fairly good results at low costs. This is especially the case for
the Min k-Clustering criterion where a selectivity of 20 allows to approximate the optimum,
which is represented by the rightmost value and the maximum selectivity, up to 1% (#hops)
resp. 0.3% (rtt). This approximation is less fast for the Max k-Separation criterion but still
very useful. The number of network measurements, shown at the right side of Figure 7 grows
roughly linear with the selectivity, starting with about 1800 (26%) network measurements up
to the maximum of 7021 (100%). A selectivity of 20 reduces the required number of network
measurements to 28%. Due to space limitations, we do not present the corresponding graph.

Insertion of Simple Hosts. Next, we analysed the algorithm for the hierarchical insertion of
simple hosts into a cluster tree. For the clarity of the presentation, we do not show the di�erent
settings of the radius and similarity parameters (see Section 4.3). Instead, Figure 8 presents
for each setting the resulting number of network measurements and the closest approximation
which is the ratio of the optimal distance to the closest mServer and the distance to the actu-
ally assigned mServer. Both parameters are presented as the average for all simple hosts. The
leftmost value of each line represents the case of performing the basic insertion algorithm that
does not consider similar clusters concurrently.
We can see that the approximation is quite good for the #hops metric and the Min 10-

Clustering. An average of 30 measurements per simple host, which is one fourth of the maximum
number of measurements, leads to a closest approximation of about 83%. The approximation
for the Max 10-Separation tree is much worse due to its unbalanced shape. The approximations

15

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 110 120

cl
os

es
t a

pp
ro

xi
m

at
io

n
(in

 %
)

#measurements

Max-10-Sep hops
Min-10-Clust hops

Max-10-Sep rtt
Min-10-Clust rtt

Figure 8: Insertion of simple hosts.

for the rtt metric are quite similar for both criteria. Naturally, they are worse than for the
#hops metric. However, an average of 40 measurements leads to an approximation of 76%{79%.

Distance Estimation for Simple Hosts. Since we cannot measure the distance between simple
hosts we computed various distance maps, always keeping exactly one mServer unused for the
cluster tree computation. Distances between this unused mServer and other (real) simple hosts
allow to evaluate the quality of distance estimations between simple hosts. Figure 9 shows the
absolute rtt estimation errors at the �rst two tree levels for various constellations.

60

80

100

120

140

160

180

0 20 40 60 80 100 120

rt
t e

st
im

at
io

n
er

ro
r

[m
s]

k

Max k-Sep level 0
Max k-Sep level 1

Min k-Clu level 0
Min k-Clu level 1

Figure 9: Simple host distance estimation (rtt).

We can observe that the level-0 curves decrease towards the middle of the graph (the optimal
relative estimation error is 32.5%) and then increase for larger values of k. The �rst of these
two e�ects well conforms to our previous evaluations. However, the latter one needs further
explanation: For large values of k the number of mServers within each cluster becomes very
small. Therefore, the estimation of distances between clusters becomes less robust. Considering
the extremely simple method of measuring rtt distances (compare to Section 5.1) this e�ects
the worse estimation of distances between simple hosts. The level-1 curves show that distance
estimations at the next tree level are signi�cantly better and become more precise if k increases.

Figure 10 shows the absolute #hops estimation errors for the same scenarios as above.
Surprisingly, the estimation error does not decrease or even increases for larger values of k.

16

3

4

5

6

7

8

0 20 40 60 80 100 120

#h
op

s
es

tim
at

io
n

er
ro

r

k

Max k-Sep level 0
Max k-Sep level 1

Min k-Clu level 0
Min k-Clu level 1

Figure 10: Simple host distance estimation (#hops).

The reason for this e�ect can be found in the large average distance between simple hosts and
their closest mServer, which is 7.1 hops (2/5 of the average of hops distances). Even if the
estimation of distances between mServers becomes more precise there remains a path of about
7.1 hops that is not considered by the distance estimations for the simple hosts. The optimal
relative estimation error for the #hops metric is 19.9%.

5.4 Map Updating

The experiments in this section are based on both data collections, D1 and D2. The �rst one
is used to compute an initial distance map. This map is updated with measurements gained
from the second collection. The resulting map is compared to the optimal one, which results
from a complete computation on the basis of the collection D2.

Updating of Simple Hosts. We present the analysis of the algorithm for updating the closest
assignment of simple hosts in the same way than we did for the insertion algorithm. Once more,
we show the closest approximation as a function of the required number of measurements. Both
parameters are presented as the average for all simple hosts. Figure 11 presents the results for
trees with parameter k = 10. For the purpose of comparison, we also plotted the results of a
random algorithm that checks the distance to randomly chosen mServers.

75

80

85

90

95

100

0 10 20 30 40 50 60

cl
os

es
t a

pp
ro

xi
m

at
io

n
(in

 %
)

#measurements

Min 10-Clust hops
Max 10-Sep hops

random hops
Min 10-Clust rtt
Max 10-Sep rtt

random rtt

Figure 11: Update of simple hosts.

17

We can see that the initial approximation for the #hops metric is much better than for the rtt
metric. This corresponds to the distinct divergence distributions presented in Section 5.2. The
approximation quality is fairly similar for both cluster criteria and clearly better than for the
random algorithm. An approximation of 95% for the #hops metric is possible with an average
of 10 measurements (20 for the random algorithm) and rtt can be approximated to 90% with
13 measurements (42 for the random algorithm).

Updating the Cluster Tree. We have also performed update experiments for cluster trees with
various settings for parameter k. As a representative example, we show the results for k = 10 in
Table 2. We took the cluster trees originating from data collectionD1 and updated them at the
levels 2 and 1 by applying the complete cluster algorithm. For each of these trees we computed
the estimation error of distances between mServers with respect to collection D2. This error
was computed for the tree levels 0{2 and is shown in columns 3{5 of Table 2. Column 2 shows
the number of network measurements needed for the reclustering operations. For comparison
purposes, we also show the corresponding parameters of the actual tree, computed on the basis
of collection D2.

#network

measurements

absolute estimation error

level 0 level 1 level 2

Max 10-Sep #hops

D1-tree - 2.69 2.7 2.69

recluster level 2 4186 2.55 2.53 2.48

recluster level 1 5050 2.51 2.48 2.46

D2-tree 5995 2.47 2.46 2.44

Min 10-Clu #hops

D1-tree - 2.76 1.83 0.94

recluster level 2 109 2.74 1.74 0.0

recluster level 1 1060 2.71 1.56 0.0

D2-tree 5995 2.66 1.49 0.0

Max 10-Sep rtt

D1-tree - 119 103 99

recluster level 2 1369 115 94 83

recluster level 1 2385 110 82 80

D2-tree 5995 109 85 83

Min 10-Clu rtt

D1-tree - 134 81 34

recluster level 2 433 134 81 32

recluster level 1 1227 128 53 9

D2-tree 5995 139 55 0

Table 2: Cluster trees updated at level 1 and 2.

We can see that reclustering at tree levels lower than the root level is quite e�ective and that
it even improves distance estimations at higher levels. The reclustering is most e�ective for the

18

Min k-Clustering trees where a fairly good approximation of the actual tree is achieved with
about 1200 measurements, which is only one �fth of the number of measurements required for
the complete recomputation. The reclustering ofMax k-Separation trees is more costly in terms
of network measurements due to the more unbalanced shape of these trees.

5.5 Discussion

The experiments have shown that the construction of cluster trees and the determination of
closest mServers, i.e. the hierarchical decomposition of a network into regions, works very well
and at reasonable costs.

However, the distance estimation for simple hosts is not yet satisfying for two reasons:
Firstly, the distribution of #hops distances has a small deviation around the mean. Therefore,
the average distance between simple hosts and their closest mServer is rather high (compared to
the general average of #hops distances). To overcome this de�ciency, a larger set of mServers
would be needed. Secondly, our method for measuring round trip times is too simple for
achieving characteristic rtt values. As Acharya and Saltz [1] have shown, the mode value of
a larger sample of rtt measurements is a good characterisation of rtt distribution and remains
valid for about 45 minutes. Despite these de�ciencies, the achieved distance estimations with
an error of 19.9% (#hops) resp. 32.5% (rtt) are quite useful (see [6] for a discussion of useful
ranges of estimation errors).

We have already successfully deployed distance maps for the coordination of mobile agents
[19]. There, we were able to reduce the network load up to 90%.

6 Conclusions

This contribution has presented the concept of network distance maps, which allow to estimate
the network distance between arbitrary Internet hosts. Besides, network maps provide a de-
composition of the network into a hierarchy of regions of closely connected hosts. By means of
hierarchical clustering, we have been able to achieve a highly scalable solution in terms of net-
work load, storage requirements and distance computing complexity. Algorithms for the initial
construction of network maps and for their updating have been presented and the approach
has been successfully validated for two completely di�erent distance metrics.

Future work concentrates on the development of fault tolerant protocols for the coordination
of the measurement activities and for the dissemination of the distance information. In addition,
we intend to improve the algorithm for updating cluster trees, realizing this process in a more
distributed way.

References

[1] A. Acharya, J. Saltz: A Study of Internet Round-trip Delay. Technical report CS-TR-3736,
Department of Computer Science, University of Maryland, USA, December 1996

19

[2] A. Bestavros: WWW TraÆc Reduction and Load Balancing through Server-Based Caching.

IEEE Concurrency, Special Issue on Parallel and Distributed Technology, vol. 5, Jan-March
1997, pp. 56-67

[3] R.L. Carter, M.E. Crovella: Dynamic Server Selection using Bandwidth Probing in Wide-

Area Networks. Proc. 16th IEEE Infocom'97, Kobe, Japan, 1997, IEEE Press

[4] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwarz, K.J. Worrel: A Hierarchical

Internet Object Cache. Proc. USENIX Annual Technical Conference (USENIX'96), San
Diego, CA, USA, January 22{26, 1996, USENIX
URL: http://www.usenix.org/publications/library/proceedings/sd96/

[5] P. Francis: A Call for an Internet-wide Host Proximity Service (HOPS). White paper,
March 1997, URL: http://www.ingrid.org/hops/wp.html

[6] P. Francis, S. Jamin, V. Paxon, L. Zhang, D. Gryniewicz, Y. Jin: An Architecture for a

Global Internet Host Distance Estimation Service. Proc. 18th IEEE Infocom'99, New York,
USA, March 21{25, 1999, IEEE Press

[7] A. Frieze, M. Jerrum: Improved approximation algorithms for MAX k-CUT and MAX BI-

SECTION. Proc. 4th Int. Conf. on Integer Programming and Combinatorial Optimization,
Lecture Notes in Computer Science, vol. 920, Springer{Verlag, 1995, pp. 1{13

[8] G. Gardner: Understanding Traceroute. GeoNet Communications, white paper, 1998, URL:
http://www.noc.geo.net/support/traceroute.html

[9] T.F. Gonz�alez: Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science 38, North-Holland, pp. 293{306, 1985

[10] N. Guttmann-Beck, R. Hassin: Approximation algorithms for min-sum p-clustering. Dis-
crete Applied Mathematics, Elsevier, 1999 (to appear)

[11] J.D. Guyton, M.F. Schwarz: Locating Nearby Copies of Replicated Internet Servers. ACM
SIGCOMM'95, in: Computer Communication Review, 25 : 4, October 1995, ACM SIG-
COMM

[12] J. Gwertzman, M. Seltzer: The Case for Geographical Push-Cashing. Proc. 5th Conf. on
Hot Topics in Operating Systems (HotOS'95), Orcas Island (WA), USA, May 1995

[13] V. Jacobsen: traceroute. December 1988. Documentation and software available from URL:
ftp://ftp.ee.lbl.gov/pub/traceroute.tar.Z

[14] C. Lagoze, D. Fielding, S. Payette: Making Global Digital Libraries Work: Collection

Services, Connectivity Regions, and Collection Views. Proc. 3rd ACM Conf. on Digital
Libraries (DL'98), Pittsburgh (PA), USA, June 23{26, 1998, ACM Press

[15] K. Moore: SONAR - A Network Proximity Service. Internet-Draft, August 1998, URL:
ftp://ftp.isi.edu/internet-drafts/draft-moore-sonar-03.txt

20

[16] M. Rabinovich, I. Rabinovich, R. Rajaraman, A. Aggarwal: A Dynamic Object Replication

and Migration Protocol for an Internet Hosting Service. Proc. 19th IEEE Int. Conf. on
Distributed Computing Systems, Austin (TX), USA, May 31{June 5, 1999, M. Gouda
(Ed.), IEEE Computer Society, pp. 101{113

[17] Y. Rekhter, T. Li: A Border Gateway Protocol 4 (BGP-4). RFC 1771, March 1995

[18] W. Theilmann, K. Rothermel: EÆcient Dissemination of Mobile Agents. Proc. 19th IEEE
Int. Conf. on Distributed Computing Systems Workshop on Web Based Applications, Austin
(TX), USA, May 31{June 5, 1999, W. Sun et al. (Eds.), IEEE Press, pp. 9{14

[19] W. Theilmann, K. Rothermel: Disseminating Mobile Agents for Distributed Information

Filtering. Proc. Joint Symposium ASA/MA'99 of 1st Int. Symp. on Agent Systems and
Applications (ASA'99) and 3rd Int. Symp. on Mobile Agents (MA'99), Palm Springs (CA),
USA, October 3{6, 1999, IEEE Press (to appear)

[20] M. van Steen, P. Homburg, A.S. Tanenbaum: The Architectural Design of Globe: A Wide-

Area Distributed System. Internal report IR-422, Vrije University, Netherlands, March 1997

21

