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Abstract

In this paper we present different possible approaches for locating mobile agents and introduce a classification for
them. We will use this classification to categorize mechanisms proposed in standards and implemented in mobile
agent systems. Then we assess the different mechanisms regarding their fault tolerance, their message complexity
and the migration delay they induce. We conclude by combining the different assessments to allow a comparison of
all mechanisms.
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1 Introduction

Due to its notable properties the mobile agent paradigm has received a rapidly growing attention over the last few years.
The research community involved in the area of mobile agents is steadily growing, and more and more systems are
developed in both academia and industry. Moreover, standardization efforts for mobile agent facilities and architectures

are already in progress.

These architectures have to provide functionality for agent migration, communication of agents with other agents and
with the underlying system, and for agent control (i.e. to start agents, to stop agents, to find agents etc.). In this paper

we will concentrate on mechanisms that allow to locate a mobile agent. We will discuss the advantages and disadvan-



tages of the different existing approaches, provide a classification and examine the mechanisms’ fault tolerance and

message complexity.

The paper is structured as follows: we start with discussing the need for mechanisms to locate agents in Section 2,
present a minimal agent, system and fault model in Section 3, and examine and classify the different possible approach-
es in Section 4. In Section 5 we will discuss existing mechanisms, some of which are combinations of different ap-
proaches discussed in Section 4, and categorize them. We will analyse the mechanisms’ fault tolerance, message com-
plexity, and their effects on the agent autonomy in Section 6. We conclude with an assessment of the qualities of the

different mechanisms in Section 7.

2 Why Mechanisms to Locate Mobile Agents?

Regardless of the application employing mobile agents, the ability to get information about the computation in progress
(i.e. the status information from the agents) is a crucial prerequisite to decide on further behaviour (e.g. to stop the agent
or to start additional ones). To request such information from an agent, the agent’s location has to be known, which
implies that the agent has to be located by the system. In theory, global communication mechanisms such as a distrib-
uted tuple space could be an alternative (for an introduction to tuple spaceReeEERGCAND GELERNTER (1989)) or

event channels as defined by the OMG could be used fs@eMBIN ET AL. (1997) for usage examples). But the com-
munication costs for maintaining distributed tuple spaces (i.e. for maintaining the global consistency of the tuple space)
are extremely high, and implementations of OMG event channels normally provide only best-effort semantics. One ex-
ception is an event mechanism for mobile agents developeddyy (B997) providing a reliable causal-order event
channel, but the communication costs are extremely high (in fact, a reliable multicast tree is created that is extended
and pruned with every movement of a member). It is useful if employed for agent coordination (see e.g.
BAUMANN AND RADOUNIKLIS (1997)), but too expensive to be used for control mechanisms Asee$(1998) for

details). Thus other mechanisms are needed that provide the ability to locate an agent with lower costs.



3 Agent, System and Fault Model

3.1 The Agent Model

The minimal agent model used for this paper contains only properties that are either common to existing mobile agent
systems, or can be implemented without problems on top of existing systems. The agent model is based on the concepts

of places and agents (see Figure 1).

O Place

O Mobile Agent 1
|:| Application Re%;:rec;
_\ Agent Migration
4 Local Communication
4 Global Communication User Application L egacy Software

Figure 1. The agent model

Places provide the environment for executing mobile agents. Additionally they may provide abstractions of services of

the underlying system. A placeisentirely located on asingle node of the underlying network. An agent system consists

of anumber of these places. M obile agents are active entities, which may move from place to place to meet other agents

and to access the places’ services. An agent can be identified by a globally unique agent identifier, which is generated
at the agent’s creation time and is not changed throughout its life. The place on which the agent has been created can

be derived from the identifier. Communication between agents may be local or global.

3.2 System and Fault Model

Throughout this paper we will use the terminology definechirode (1994). We assume a large, distributed system
(e.g. the Internet), on top of which the mobile agent systems (of principally the same size) are executed. This distributed

system consists of autonomous nodes that are connected to each other by a communication network. Each node consists



of aprocessor, private volatile and private stable storage. The nodes are loosely coupled, do not have shared memory

and communi cate via message passing. The communication network is assumed to be point-to-paint.

In this large, distributed system we can distinguish node and network faults. We assume that nodes suffer from crash
failures only. The failure causes the node to halt and to lose its internal volatile state. The stable storage survives fail-
ures. We assume a communication protocol is used that supports full connectivity between the nodes, and the delivery
of messages in order, correct, and exactly-once as long as no network fault occurs. Furthermore, we assume the com-
munication protocol to be fail-aware. Protocols providing this type of reliable datagram service are common, i.e. this
assumption is close to reality. Consequently the following can be assumed: the communication network is fully con-
nected and it provides reliable communication channels as long as no network fault occurs. Communication networks
can suffer from crash failures that may cause the network to be partitioned. In the case of a network partition the com-
munication channel between sender and receiver in different partitionsfails, but continuesto work between participants
in the same partition. We assume that no failure is permanent, i.e. every encountered network or node failure is tran-

sient. Node and network failures are detectable, but not distinguishable.

4 Categorizing Mechanisms for Locating Agents

Different approaches for locating agents can be identified, depending on the assumptions about migrational behaviour,
on assumptions about the size of the agent system, and on assumptions about the communication costs. In this section

we present the different possible approaches that could be used for locating agents, and categorize them.

4.1 Possible Approaches

41.1 Preordained Migration Paths

If we assume that an agent migrates only along a preordai ned migration path, then by probing the different places along
its path, we sooner or later haveto find it. This can be done either sequentially (probing one place at atime) or in parallel
(probing morethan one place at atime). Additional information gathered from the places, e.g. whether the agent already

visited this place, or the time an agent remains on a place on average, can help to identify the next place(s) to probe.



Simple examplesfor algorithmsto identify the next placeto probe are binary search (sequential case) and ternary search

(parallel case).

4.1.2 Autonomous Migration

If we assume that the mobile agent hasfull autonomy, i.e. that it has no preordained migration path to follow, then prob-
ing is not practical. The following approaches are usable instead if the migration path of the agent is not known in ad-

vance.

4.1.2.1 Logging

These approaches store information that ultimately leads to the place on which the agent resides. This can be done di-

rectly, in adatabase or indirectly, with path proxies.

Global Database. If every agent, upon every migration, informs a global database about its new location, then the

problem of finding an agent is reduced to requesting its location from the database. This database might simply be a

file on one node in the network. The disadvantage is that the migration of every agent now depends on the database’s
availability (this includes the availability of the node on which the database resides and the communication channel

between this node and the agent place).

Local Database. This approach has the same characteristics as the approach employing a global database with the
additional advantage, that distributing data over different local databases scales better (i.e. will not be one central bot-
tleneck even with a high number of migrating agents). The disadvantage is that now the correct local database has to

be identified. One simple method to do this is to define a relationship between (unique) agent name and database node.

Untimed Path Proxies. If an agent stores on every place it visits, when leaving, a pointer to the target place of its
migration, then a path q@iroxies is created. Following this path of proxies eventually leads to the agent. Since the in-
formation is stored along the path, no additional communication is necessary for maintaining the path. A similar tech-

nigue has been used in Emerald (object proxies, discussed@m 4L. (1988)).

Timed Path Proxies. The problem of the untimed path proxies is the unbounded length of the path. This leads, de-

pending on the length of the path, to a low availability and to a high message volume along the path if an agent has to



be located (see discussion in Section 6.1.1). This problem can be solved by assigning a time-to-live or ttl to the path
proxies. After the ttl the path is shortened. This leads to dightly higher costs for maintaining the path (one additional
message for every ttl interval). But this solution provides a better availability and lower message volume when an agent

has to be located than the untimed path proxies (we elaborate on thisin Section 6.1.2).

4.1.2.2 No Logging

Here no information about the agent’s location is saved, i.e. the mechanisms have to use a brute force approach to find
the agent. The message volume created by these mechanisms is comparatively high (we examine the message complex-

ity of the different mechanisms in Section 6.2).

Sequential Brute Force. Here the search is done sequentially, one place at a time. On average the number of mes-
sages sent equals the number of places, since on average the agent is found after half the places have been searched
(each inquiry needs a request and a reply). The assumption here is that the agent does not migrate while the search is
in progress. If that happens, then in the worst case the agent is not found (if the agent migrates from a place not yet

examined to an already searched place).

Parallel Brute Force. If the search is done in parallel instead, i.e. a broadcast with the request is sent to every place
in the system, then the answer is obtained faster, but the message volume equals twice the number of places. The
number of messages can be reduced (down to the number of places plus one message for the reply), if only a positive

reply is sent. Again the assumption is that the agent does not move while the search is in progress.

4.1.2.3 Non Deterministic Approaches

These approaches do not allow to locate the agent always. Instead, the necessary information is only provided occa-

sionally.

Advertising. Here the agent advertises its location (sends its place to a database) whenever it (more precisely the
agent’s programmer) deems it necessary. Whenever an agent migrates and does not advertise, it cannot be found with

this approach.

Energy. In its life an agent consumes resources of the places on which it resides (e.g. cpu time) and uses services pro-

vided on a place (e.g. a directory service). This approach assumes that access to each service and use of every resource



are associated with a cost, which we call energy. An agent gets an amount of energy and uses this energy to access the
services and to use the resources provided. As soon asits energy is depleted, the agent has to contact e.g. a database to
request more energy, and incidentally the database is updated. Each time this happens the agent can be found until its

next migration.

4.2 Classification

A graphical representation of these different approaches|eadsto the classification in Figure 2. Mechanismsfor locating
agents assume either preordained paths or autonomy of the agent migration. In the first case, the path can be probed
either sequentially or in parallel. In the second case (agent autonomy) three different classes can be distinguished, the
non deterministic mechanisms, mechanisms using logging to identify the location of the agent, and mechanisms using

brute force to find the agent.

Locating
Autonomous/\ Preordained
Migration Path/Probing
Logging
Nondeterministic No Logging/Brute Force
Path Proxies Database
Advertising Energy Untimed Timed  Global Local Sequential Parallel Sequential Parallel

Figure 2: Locating agents: a classification

5 Actual Mechanisms

We will now examine mechanisms that have been proposed or have actually been implemented. We will start with the
mechanisms for finding agents that have been proposed in the MASIF standard, the OMG Mobile Agent System Inter-
operability Facility (see MiLoaciC ET AL. (1998) for a description of the standard). Then we will examine the mecha

nisms implemented in the Aglets Workbench (an introduction can be found in LANGE AND OsHIMA (1998)), some of



which are exactly the mechanisms proposed in the MASIF standard (which is quite understandable, considering that
two authors of the MASIF standard were part of the Aglets team). We will continue by investigating the mechanisms
that have been implemented for the Mole system (see BAUMANN ET AL. (1998a) for an introduction to the concepts).
Last we will discuss a mechanism that has been proposed by CHEN AND LENG (1997) for mobile agents with a preor-

dained path. We will give a short introduction to the standard respectively the system, where appropriate.

5.1 MASIF

MASIF tries to define aminimal interoperable interface for mobile agent systems. Agentsin the MASIF standard can
migrate between places, and they have auniqueidentifier. Communication between agentsis not addressed in the stand-

ard. Thus the MASIF agent model conformsto the model given in Section 3.1.

According to MiLoaiciC ET AL. (1998) MASIF defines an interface named MAFFinder, which offers the following

mechanisms to locate agents (in braces the category according to the classification is given):

» Bruteforce search (autonomous | no logging | parallel). This technique first identifies every place in a region (a set
of places owned by the same person or organization), then checks each place to find the agent.

» Logging (autonomous | logging | path proxies| untimed). Whenever an agent leaves a place, it leaves a log entry on
it (called mark) pointing to the target place of the migration. The log entries are garbage-collected after the agent
dies (it is not discussed how this can be done).

» Agent registration (autonomous | logging | database | global). Every agent registers its current location in a global
database. This database can be queried to find the agent.

» Agent advertisement (autonomous | nondeterministic | advertising). The agent advertises its location whenever it

deems it necessary. To find an agent for which the advertised information is out-of-date, brute force search is used.

5.2 Aglets

The Aglets Workbench was created at the IBM Tokyo Research Laboratory (see IBM (1999)). An aglet is a combina-
tion of the applet model and the agent model, in principle adding mobility to applets. While this approach allows an

applet programmer to quickly grasp the functionality of aglets, it constrains aglets to a mainly event-based model.



Adglets have immutable, globally unique names and can communicate with other aglets via messages. Communication
can belocal and global, synchronous or asynchronous. Aglets can migrate between contexts (the framework’s term for
a place) to access services provided by the context or to communicate with other agents. Thus the agent model used in

the Aglets workbench also conforms to our agent model.

ARIDOR AND OsHIMA (1998) discuss requirements for a mobile agent infrastructure and present their implementation
in the Aglets Workbench. The schemes for locating agents discussed here are similar to those given in the MASIF. The

main differences are:

« the brute force search can be done either sequer{Batiynomous | no logging | sequential) or in parallel(auton-
omous | no logging | parallel).

« paths created by the logging scheme can be cut short.

* registration can be used with distributed data bés#snomous | logging | database | local).

« The advertisement scheme is not part of the Aglets Workbench.

5.3 Mole

Mole is one of the first Java based mobile agent systems and was developed at the University of Stuttgart. Agents in
Mole have immutable, globally unique names. They can migrate between different places to access services or to com-
municate locally with other agents. Mole supports a large variety of communication mechanisms (see

BAUMANN ET AL. (1997) for a detailed description). The agent model used in Mole concurs with our agent model.

Mole contains three different mechanisms for locating mobile agents, which have been presentacabyB1997)

and by B\UMANN AND ROTHERMEL (1998&). The different mechanisms are:

» Energy (autonomous | nondeterministic | energy). The implementation in Mole is a realization of an orphan detec-
tion scheme. Finding an agent works as described above, but additionally an agent is terminated as soon as it has
no energy left (e.g. because no additional energy has been granted).

» Paths(autonomous | logging | path proxies| untimed). The path concept is an implementation of untimed path prox-

ies as described above.
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» Shadows (autonomous | logging | database | local), (autonomous | logging | path proxies| timed). The shadow con-
cept is a combination of the distributed database approach (with the shadow acting as the local database) with timed
path proxies to minimize the communication cost while maintaining a high availability. Additionally to providing
the functionality to locate agents it allows orphan detection and termination. We will examine only the basic proto-
col.
Each application creates one or mgivadows (holding the information about the locations of the depending agents)
on a place. In regular intervals (caltedeto live orttl) the place on which the agent resides updates the information

in the associated shadow (see Figure 3).

Path Proxy

— % >

Update ~ — -
Message

Agent A

Path Proxy

Ack \@\ Agent A
Message

Shadow
Agent A

Place

Figure 3: Shadows: regular update of proxy paths

Now the old path proxies are no longer needed. By keepintl twith every path proxy, this can be determined
locally, i.e. without additional communication. Even if the path is broken (e.g. because a node crashed) the worst-
case time until the agent is reachable again igl{H®cause after that time it will have contacted the shadow again.

By changing the value for th# the mechanism can be adapted to changing costs and fault tolerance requirements.



54 Locating Agents with the Help of a Probability Function

CHEN AND LENG (1997) have proposed a mechanism that uses the knowledge of an agent’s movements to guess its lo-
cation with the help of a probability functigprobing | sequential). It assumes a predefined path from which the agent
cannot deviate, and tries to compute the current place of the agent using the time interval since the agent left (assuming

a binomial distribution of the execution time on each place).

5.5 Categorizing the Mechanisms

If we add the results of our discussion of existing mechanisms into the classification, we yield Figure 4. It can be seen

that every system and standard provides mechanisms of widely different types.

1 Aglets Locating
2 Chen and Leng
3 MASIF . .
4 Mole Dynamic Preordained
Path Path/Probing
Logging Parallel Sequential
Nondeterministic No Logging
Path Proxies Database
Advertising Energy Untimed _ Timed _Global Local _ Sequential _Parallel Guessing
Advertise- Energy  Path4 Shadow# Registratiod® Shadow$ Brute Brute Probability
ment3 Concept ogging'3 Registratioh  Forcé® Forcd Functiorf

Figure 4: Locating agents: the mechanisms existing in different systems

6 Assessing the Mechanisms

To assess the discussed mechanisms we will determine their fault tolerance, their message complexity and the con-

straints they put on the autonomy of the mobile agents (i.e. whether the migration is delayed).
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6.1 Fault Tolerance

To assess the fault tolerance of a mechanism the availability hasto be computed. We will again use the terminology and
methodology given by JALOTE (1994). For most of the mechanisms thisis quite simple; these are advertisement, ener-
gy, global and local databases, sequential and parallel brute force, and the probing mechanism. In every one of these
types, two nodes (the agent node and the node holding the database or energy source) and two communication channels
are involved (one between inquirer and database and one between inquirer and agent place). Let us denote the failure
rate for nodeswith A, and the failure rate for communication channels A . . Thisleads to the following equation for the
availability :

_ __ MTTF__ _ 1
MTTF + MTTR ~ 1+MTTR(2\, + 2\,)

(Equation 1)

If we assume that the mean time to repair (MTTR) is 0,5 hours and that the failure rate for nodes A, and the failure

rate for communication channels A, is of the same value A , then the availability a, is:

(Equation 2)

With an MTTF for the single components of 50 hours (failure rate A of 0.02/hour), the availability o, is0.96.

6.1.1 Untimed Path Proxies

For untimed path proxies the fault sensitivity added by the paths as presented above manifestsitself in the dependency
on the availability of all nodes containing a proxy, i.e. on those nodes that are part of a path. Additionally the place on
which the path ends (the agent place) and the place on which the path starts (the anchor node), afflict the reliability. Let
i be the length of the path (i.e. the number of proxy nodes plus the anchor node and the agent node) and M therelia-

bility of anode k. The reliability R(i) of the path can then be calculated by the following equation:

R(i) = I‘l M (Equation 3)
k=1

If we simplify the equation by assigning the same reliability r, to every node in the path, then we get the following

simple expression:
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R(i,r,) = rni (Equation 4)

The reliability leads directly to the MTTF of the path. Figure 5 shows the development of the MTTF with increasing
path length and three different failure rates A for the nodes of 0.10, 0.02 and 0.01. The graph shows that, if e.g. each
component of the path hasan MTTF of 50 hours (failurerate A of 0.02/hour), the MTTF for apath of length 50 isonly

1 hour.
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Irs] OA=0.01
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6,0
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{ ml | o]
5 10 15 20 25 30 35 40 45 50
Path length i

Figure 5: Path concept: the MTTF of a path

If we actually want to follow the path, then the reliability of the underlying communication network has to be regarded
aso. Let us make the same assumption as with the different nodes along the path, i.e. the communication channels be-
tween two nodes have all the samereliability r.. If the path hasi nodes, then communication channels are needed;

between the path nodes (including anchor and agent node), and 1 each between inquirer and anchor node, and

inquirer and agent node. Assuming an exponential distribution this leads to:

(Equation 5)

From this follows the MTTF of the path:

(Equation 6)

L et us now make the following additional assumptions: the path information is stored on stable storage, andthe MTTR

(mean time to repair) for both communication channels and nodes is 0.5 hours. We get the availability
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1
MTTE ~ AL+ (i +1))\C

MTTF + MTTR 1
A+ (i + 1))\C

(Equation 7)
+0,5

1
1+0,5(IA,+ (i + 1))\C)

If wemake afinal assumption, namely that thefailureratefor nodes A, andthefailureratefor communication channels
A, isof the samevalue A, then the availability a; ) can beillustrated as in Figure 6. We can see that withan MTTF
for the single components of the path of 50 hours (failure rate A of 0.02/hour) and an MTTR of 0.5 hours, the availa-
bility o A for apath of length 50 (i.e. 48 hops by the agent) is only 0.5. Even doubling the MTTF of the components

leads only to an availability a; , of 0.66.
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Figure 6: Path concept: the availability of a path
(path information on stable storage, MTTR = 0.5 hours)
A small remedy is the specification of a maximum path length as proposed by ARIDOR AND OSHIMA (1998), i. e. the
path is shortened automatically after a certain number of hops. The disadvantage is the additional communication for
shortening the path, i.e. a message from the source place of a migration to the anchor place, and then “shortenPath”-
messages along the path, leadingte 1 additional messages &egy. This mechanism can be used to recreate
the path in the presence of faults, after the agent has mauh tiap. The problem is that it is unforeseeable when the

nth hop takes place, if ever (i.e. the worst-case time bound for MTTR s still the MTTR of the single devices).
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6.1.2 Timed Path Proxies

Again the proxy path (including anchor place and agent place) is the determining factor. By introducing the ttl, after
which the agent has to contact the anchor place, it is guaranteed that even if the path is broken, the new place of the
agent is known after the ttl has passed (as a worst-case bound), as long as either the network partition is short-term, or
agent place and anchor place arein the same partition. Let usfirst examine the availability of the path. We again assume
the same failure rate for all nodes containing a proxy. But with the automatic update of the path we essentially have a

repair functionality with a maximum time to repair that equals ttl, and a minimum time to repair that equals 0, i.e. a

mean time to repair that equals %l . Thus we get the following availability o :

o = —Mjl—l (Equation 8)
MTTF + t.;_

If we make the same simplifications as before, namely one failure rate for all nodes A, and one for all communication

channels A ., we get the following first equation for the availability &i in dependence of the path lengthi:

1

- (IA,+(I+DA)
a; = MTTF P = d c I (Equation 9)
mrrr+ 1 W
2 (|)\n+(|+1))\c) 2

1
1+%Win i+
2N c
What hasn’t been included yet is the shortening of the path. The availability as computed with Equation 9 assumes that
after the contact with the anchor place the path length stays the same, when in reality it is shortened to 2 (anchor place
and agent place). If we assume that the agent movement is linear, i.e. it stays on every place for the same time, then we

yield the following equation (the average of the availability for all the different path lengths):

[ i
~ 1 1 .
a; = — Z og = — z (Equation 10)
i—1 i—1 ttl
(=2 =21+ S (kA + (k+ DA
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Let us now make the following additional assumptions (the same as in Section 6.1.1): firstly, the failure rate for nodes
A, and the failure rate for communication channels A, is of the same value A , and secondly, all agents have attl of 6
minutes, i.e. every agent contacts its anchor place 10 times an hour. Now the availability a; can beillustrated as in
Figure 7. We can see that e.g. with an MTTF for the single component of 50 hours (failure rate A of 0.02/hour), the
availability of a path of length 50 (i.e. 48 hops by the agent) is 0.95. Thus even if, with these assumptions, an agent

migrates nearly 50 times every 6 minutes, the probability of an inquirer being able to contact it is still 95%.

10

0,9 4 I
0,8 4 I
0,7 4 I
0,6 4 I

Availabilitya 0,5 {

0,4 |

0,3 4 I

0,2 H

0,1+ I

0,0 + | |
5 10 15 20 25 30 35 40 45 50
Path length i

Figure 7: Timed Path Proxies. the average availability of the path
(ttl = 0.1 hours)

6.2 Message Complexity

When examining the message complexity of the different mechanisms we have to distinguish between the message

complexity for maintaining the information and the message complexity for actually using the mechanism.

6.2.1 Maintenance

Advertising. Since the message cost depends entirely on the decisions of the programmer when to advertise the new
location, the message cost cannot be given precisely. But if the agent’s location is never advertised, the message cost is
0, and if the agent’s location is advertised every time it migrates, the cost is 2 messages per agent per migration (i.e.

one message advertising the new location, and one acknowledgment message).
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Energy. The message cost added by the protocol is 2 messages per agent per granted energy request, and 1 additional
message for a denied request. If we assume that the common usage of the energy concept is for agents that wait for
something, e.g. for a specific change in a remote database, then the request can be piggy-backed on the message sig-

nalling the change. This reduces the message cost to 1 message if additional energy is granted and to O if denied.

Untimed Path Proxies. Since the path information is maintained locally, no messages are needed to maintain the
path. Thus the message cost for maintaining untimed path proxiesis 0. Additional messages are needed though to re-
move the path of ano longer existing agent (the same cost as for using the mechanism to cut the path short). Shortening
the path involves sending a “shortenPath” message along the old, superfluous path. This leads tma dost of mes-

sages for a path length of

Timed Path Proxies. As has been described in Section 4.1.2.1 the path is shortened in regular intervals, i.e. every
time the agent'#tl has dropped to 0. Shortening the path includes one message from the agent to the anchor place (the
update message) and one from the anchor place to the agent (the acknowledgment message). The intermediate path

proxies are removed without additional communication. This leads to a cost of 2 messages per &#bent and

Database. The database (global or local) is updated every time the agent migrates. Thus a message is needed for the
update, and furthermore an acknowledgment message is needed to guarantee that the information has been added to the

database. Thus the message cost is 2 messages per agent per migration.
No Logging. Since no information is maintained, the maintenance message cost for these mechanisms is 0.

Probing. Since no information is maintained, the maintenance message cost for these mechanisms is 0.

6.2.2 Using the Mechanism

Advertising. Locating an agent involves inquiring at the database, i.e. one request message and one message answer-

ing the request, if the information is not outdated. Otherwise the agent is not locatable.

Energy. Locating an agent involves inquiring at the database, i.e. one request message and one message answering the

request, if the information is not outdated. Otherwise the agent is not locatable.

Untimed Path Proxies. A search request is forwarded along the path, and answered by the agent node sending a

message back to the initiator node. If the path contaprexies, thenn+ 1 messages are sent along the path.
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Timed Path Proxies. The message complexity is the same as with untimed path proxies, namely n+1 messages

along the path.

Database. Locating an agent involvesinquiring at the database, i.e. one request message and one message answering

the request.

No Logging. As has been pointed out already, the message complexity of sequential brute force and of parallel brute
force differs. In the case of sequential brute force the number of messages for locating the agent on average equals the
number of places, since on average the agent is found after half the places have been found (and each inquiry needs a
reguest and a reply). With parallel brute force the message volume equals twice the number of places. This can bere-

duced (as has been discussed in Section 4.1.2.2) to the number of places plus 1 (if only a positive reply is sent back).

Probing. In the best case the first message probing for the agent locates it, and in the worst case the number of mes-
sages equal s the number of placesto be visited by the agent depending on the algorithm used for probing. If for instance

abinary search algorithm is used, then the number of messagesin the average case equals 1d(n) .

6.2.3 Overall Message Complexity

To simplify comparing the different mechanismswe define three different degrees of message complexity: low, medium
and high message complexity. Using the results of the above discussion for the message complexity for maintenance
and for locating agents and our assumption about the possible size of the mobile agent system from Section 3.2 weyield

Figure 8.

Since the overdl cost can only be given correctly if the application is known exactly, we simplify again by defining
concentric zones of low, medium and high message complexity. Following this classification the energy approach is of
low message complexity, advertising, timed path proxies and untimed path proxies are of middle message complexity,

and database approaches and approaches using no logging have a high message complexity.
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Figure 8: The message complexity of the different mechanisms

6.3 Migration Delay

If amechanism for locating agents restricts the migration operation, then it violates the autonomy of the agent, and thus
the mobile agent paradigm (constituting mobile agent autonomy). Hence we will examine the different approaches re-

garding their intrusion upon the migration. Let us distinguish the following three classes of migration delay:

e every migration is delayed. Mechanisms of the first class are those that force a contact with a third party before the
agent migrates, i.e. the agent is delayed until the answer (the acknowledgment) is received. An example for this
class is a mechanism using a database for registering the new location of the agent, that waits for the acknowledg-
ment at the source place before allowing the migration.

* subsequent migrations are delayed. This class contains all those mechanisms that contact a third party after the mi-
gration takes place, i.e. the agent has to wait for the answer on the target place, and subsequent migrations can only
take place after receipt of this answer. An example for this class is a mechanism using a database, that forces the
agent to wait at the target place for the acknowledgment.

e migrations are not delayed. The third class of mechanisms never delays the agent, either because no third party is
involved, or because no acknowledgment is needed. An example for this class is a mechanism using untimed path

proxies.
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We combine the first and second class (and name it first/following), since mechanisms of these classes can be trans-
formed into mechanisms of the other class by sending the acknowledgment to the source place of the migration (to con-
vert mechanisms of the second classto mechanisms of thefirst class) or to the target place (to convert mechanismsfrom

the first to second class). The third class we name no-delay.

Advertising is in the first/following class, since every time the agent advertises its location it has to wait for the ac-
knowledgment that the information has been received. All those mechanisms updating databases for every migration

delay the migration (the update has to be acknowledged), i.e. they are also in the first/following class.

The energy concept never delays migration (we ignore the rare case of having to request additional energy) and isthus
in the no-delay class. The mechanisms implementing untimed path proxies are in the same no-delay class (they never
delay the migration; only aproxy is left on the source place). Timed path proxies (i.e. Shadows) aso do not delay the
migration (here the infrequent case that the path is shortened is ignored), hence they are in the no-delay class as well.
Lastly, the mechanisms using no logging (i.e. Brute Force) and the probing mechanisms are of the no-delay class, be-

cause these mechanism do not modify the migration operation at all.

6.4 Merging the Assessments

L et us assume the following conditions: afailurerate A of 0.02/hour and an MTTR of 0.5 hours, attl of 6 minutes for
the timed paths and 50 migrations of an agent during this time. With these values we get the following results for the

availability of the different mechanisms:

« For advertisement, energy, centralized and distributed registration, sequential and parallel brute force, and the prob-
ing mechanism the availability according to Equation 2 is 0.96.
* For paths and logging the availability with the above conditions is 0.50 (see Figure 6).

« The shadow concept has an availability of 0.95 with the above conditions (compare with Figure 7).

Let us draw a line at 80%, i.e. an availability of 0.8 and higher is deemed as a high availability, and an availability of

lower than 0.8 is considered a low availability (actually the results would be the same for any percentage between
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51% - 94%). If we now combine the assessments regarding availability, message complexity and migration delay, we

yield Figure 9.

Message 1 Information
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first/ never Delay
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Figure 9: Control mechanisms. combining the assessments for existing mechanisms

It can be observed that the mechanismsimplementing untimed paths (i.e. the path concept and the logging mechanisms)
provide only alow availability. But their advantage is their low message complexity (i.e. no messages are used for

maintaining the path) and that they do not delay the agent migration.

The energy concept seems to have perfect qualities, i.e. low message complexity combined with high availability and
no migration delay, but it has the big drawback, that the information provided may be incorrect. The same drawback

holds for the advertisement mechanism, making these two unsuitable for locating agents reliably.

The registration mechanism has a high availability, but its drawbacks are a high message complexity and the delay of

the agent migration.

The brute force mechanism has the same high availability and does not delay the agent migration, but its message com-
plexity isvery high (at least half the number of placesin the agent system). This makes the mechanism unusablein an

environment as large as the one we assumed in Section 3.2.
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The guessing mechanism has medium message complexity, high availability and does not delay the agent migration.
But this mechanism assumes preordained paths, i.e. it changes the agent model. Whether this constraint is acceptable

has to be decided by the agent programmer, but it definitely makes this approach a less general one.

The shadow mechanism is more general, since it makes no assumptions about agent migration. At the sametimeit has
ahigh availability, medium message complexity and introduces no delay on migration. Furthermore, the message com-
plexity of the shadow concept is adjustable even at runtime, allowing the mechanism to react to a changing environ-

ment.
The results of comparing the existing mechanisms for locating agents are:

« Brute force has a extremely high message complexity and is unusable in real-world mobile agent systems.

« The energy concept and the advertising mechanism are unsuitable for locating mobile agents reliably.

« The registration mechanisms (both with global and local databases) have a high message complexity compared to
other mechanisms, i.e. they should not be used as long as alternatives exist. Furthermore, they delay the agent mi-
gration, thus interfering with the autonomy of the agent.

* The mechanisms employing the path concept provide only a low availability compared to the other discussed mech-
anisms. This more than negates their advantages of low message complexity and of no interference with agent au-
tonomy (i.e. no delay of agent migrations).

» The guessing mechanism is only usable in situations where the constraint put on the agent model, i.e. that the agent
migration follows a preordained path, is acceptable.

e The shadow mechanism needs only moderate message complexity compared to most of the other mechanisms while

providing a high availability and without interfering with the agent autonomy.

7 Conclusion

In this paper we have discussed different possible solutions for locating agents in a mobile agent system. We have in-
troduced a classification of these possible approaches and have categorized mechanisms proposed in the MASIF stand-
ard and mechanisms implemented in the Aglets Workbench and in Mole. The comparison of the different mechanisms

yielded as a result that the shadow mechanism (implemented in Mole) provides the best combination of properties (i.e.
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message compl exity, availability and non-interference with the agent autonomy) for the general usage. Furthermorethis
mechanism provides termination and orphan detection for mobile agents, an additional feature that none of the other

mechanisms provides (see BAUMANN AND ROTHERMEL (1998B) for the details).

The other mechanisms can still be the better choice for specific applicationsthat provide additional knowledge. In these
cases e.g. the advertisement scheme might perform much better by using the application-specific knowledge to decide

when to update the location information.
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