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Abstract

This paper explores the problem of object recognition

from multiple observers. The basic idea is to overcome

the limitations of the recognition module by integrating

information from multiple sources. Each observer is

capable of performing appearance-based object recogni-

tion, and through knowledge of their relative positions

and orientations, the observerrs can coordinate their

hypotheses to make object recognition more robust.

A framework is proposed for appearance-based ob-

ject recognition using Canny edge maps that are e�ec-

tively normalized to be translation and scale invariant.

Object matching is formulated as a non-parametric

statistical similarity computation between two distri-

bution functions, while information integration is per-

formed in a Bayesian belief net framework. Such nets

enable both a continuous and a cooperative considera-

tion of recognition result. Experiments which are re-

ported on two observers recognizing mobile robots show

a signi�cant improvent of the recognition results.

1 Introduction

The fast and robust recognition of objects is a cen-
tral task in robotic applications in tra�c, manufactur-
ing or services. In such applications, various objects
with a priori unknown identity, position and orien-
tation are seen with changing background, projective
distortions, and varying illumination conditions from
observers in arbitrary view positions. Thus, the de-
sign of a recognition system requires the avoidance of
misinterpretations caused by the just mentioned dif-
�culties. Consequently, the presumption seems likely
that an observation with distributed visual input from
several cooperative observers will increase robustness
in such applications.

Information integration is a kind of multi-sensor
fusion with homogenouos data. In applications con-
cerning multi-sensor fusion this process can typically
be assigned to di�erent levels of abstraction [8] [11].
Unlike in [2], where cooperation is distinguished be-

tween the levels of sensing, processing, manipulation,
behaviors, and agents, we consider di�erent aims of
cooperation and its prerequisites, and develop a re-
lation to the levels of abstraction. At low-level pro-
cessing, the aim of cooperation is to take advantage
of available required sensory information in a team of
observers. There do not exist any prerequisites for
a single observer. Cooperation leads obviously to an
increasement of knowledge of individual observers if
they are not able to look at the required region. Up
to now, most of the literature concerning cooperation
can be assigned to the intermediate-level. The aim of
cooperation at this level is the composition of object
components provided that a shared and overlapping
�eld of view between combining views exists. [14] de-
scribes a method to generate a 3D reconstruction of an
unknown static scene by combining stereo and focus
data. In [7] the 3D reconstruction is done in a dynamic
manner by fusing data gained from stereo and optical

ow computations. Another approach [1] builds a for-
mal object description from vision and touch that is
used as a base for the recognition task. Recent ap-
proaches [12] [13] [4] that deal with multiple perspec-
tive interactive videos try to enable a 3D scene analy-
sis with the background of in
uencing the individual
perspective view of an observer. Cooperation at high-
level processing assumes an object that is observed
from di�erent view positions and deals with the inte-
gration of object hypotheses. Such integration or fu-
sion of data at a higher level is supported by few agent
architectures [8]. Cooperation aims at this level are of
great interest in multi-agent applications like in [17]
in order to build observers that operate autonomously
by calculating their own estimations. Nevertheless,
research with regard to this level can hardly be found.

The recognition scenario (Fig. 1) discussed in this
article concentrates at high-level processing on the co-
operative recognition with several observers. In such
a shared environment each observer calculates recog-
nition results of a common target object. The object
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Figure 1: Scenario of cooperative recognition

recognition receives relevant data in the form of areas
of motion calculated by a tracking algorithm1 similar
to the one proposed by [22]. The correspondence be-
tween object and model data is done by a new statis-
tical approach that supplies a list of hypotheses. The
hypotheses of each observer were �nally combined by
the use of bayesian belief nets. Experimental results
will indicate the in
uence of cooperation on the qual-
ity of hypotheses.

2 Statistical object recognition

There are mainly two approaches of object mod-
elling, the appearance-based and the geometric one[9]
[19]. The appearance-based approach has the advan-
tage of not requiring a formal description. Thus, any
kind of object can be modelled, but, in general, object
hierarchies do not exist. On the other hand, hierar-
chies are the advantage of the geometric object mod-
elling model. But so far, this approach is limited to
simple objects [15]. Thus, the approach to choose de-
pends on the complexity of the objects. Because of the
robots in Fig. 1 being complex the appearance-based
approach was chosen.

Aside from most isolated applications, the recogni-
tion process in a natural environment has to cope with
a number of di�culties. A target object can be taken
from arbitrary viewing positions with di�erent illumi-
nation conditions and varying background. Current
approaches suggest only solutions to parts of these re-
quirements. In [16] an eigen-value method is proposed
to identify various objects and their orientation, but
this method requires a constant background. Based on
that [3] extended this approach to cope with partly oc-
cluded objects but have not shown yet results in a real
scenario like the one of Fig. 1. [6] presents a recogni-
tion method using quasi-invariants based on segments.

1A detailed description is beyond the scope of this article

To analyse complex objects, a lot of e�ort has to be
investigated in the generation of segments. A lamber-
tian model is proposed by [5] to recognize more com-
plex objects. But this method assumes �xed locations
and does not permit background information.

2.1 Formal object descriptions

Starting out of an intensity image I - received auto-
matically from the tracking algorithm - that contains
mainly the target object T iconic features like gray
values, edges, or corners can be determined to build
a formal object description. Features are put on geo-
metric attributes indicating their location in image I .
So far we found edges generated by the canny �lter as
useful features.

Each object is formally described by a setM of nM
features.

M = fM1;M2; : : : ;MnMg (1)

The geometric position of each feature Mi in I is de-
termined by its edge coordinates ~ci in x and y direc-
tion with ~ci = (cx;i; cy;i). Thus, a feature is de�ned as
a tupel Mi, consisting of its edge coordinates ~ci and
optional a set of further attributes Di to specify the
feature additionally

Mi = f~ci; Dig i = 1; : : : ; nM : (2)

Features are standardized by transformation from I

into a scale and translation invariant space, the con�g-
uration space �. For this geometric transformation the
location of a feature Mi is set in connection with all
remaining feature locations Mj with j 6= i to get the
relative location ofMi. Because I is 2-dimensional, 2

2

possible transformations into � exist. With a criterion
f , two arbitrary features Mi and Mj are marked with
the < relation along x or y as follows

ffx;yg;ij =

�
1 cfx;yg;i < cfx;yg;j � "fx;yg ^ i 6= j

0 otherwise

(3)
"fx;yg enables an overlapping tolerance. With ffx;yg;ij
the relative location of a feature Mi in relation to the
remaining features out of M n fMig along x and y is
given with

bfx;yg;i =
1

nM � 1

nMX
j=1

ffx;yg;ij nM > 1 (4)

For each feature Mi the relative location builds a two-
dimensional destination vector ~bi valid in the range
[0; 1] with ~bi = (bx;i; by;i)

T . Thus the con�guration
space � is a normalized continuous space in the same



range and with the same dimension as I . The trans-
formed features from I to � build the con�guration
space representation of an object (~b1; : : : ;~bnM ).

In Fig. 2 a sample transformation from a refer-
ence object R and a target object T into � using the
canny operator is shown. As can easily be veri�ed, the
emerged con�guration space is translation and scaling
invariant. Because of considering only relative loca-
tions, few disturbances or projective distorsion appear
compensated in �.
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Figure 2: Transformation of reference (left) and target
object (right) via canny edge images into con�guration
spaces �R and �T

2.2 Generation of hypotheses

Because nM of our objects is very high we con-
sider all ~bi in � as randomly located in the statistical
sense. However, except for classi�cation tasks, sta-
tistical methods for recognition are not widely used
yet. [25] provides a recognition method based on the
linear combination of normal distributed density func-
tions from point features. In [10] a formal statistical
object description based on parametric methods is in-
troduced to identify and localize objects. Di�erently,
we compare distribution functions of a reference ob-
ject FR with a target object F T by the use of a non-
parametric statistical test in order to have no con-

straints to the distribution of the point features. This
test calculates a similarity measure between the two
distribution functions. A steady and discrete distri-
bution function F with ~z 2 [0; 1]2 is built from the
destination vectors in � with

F (~z) =

8><
>:

0 ~z <~b1
~bi ~bi � ~z <~bi+1

1 ~z � ~bnM

(5)

In a number of experiments we found the test of
Kuiper useful [21]. This test is a variant of the well-
known test of Kolmogoro� and Smirnow. In contrast
to latter, the maximum distance between the two dis-
tribution functions is calculated in both directions.
The Kuiper statistic D between the distributions of
a target object F T (x) and a reference object FR(x) is
calculated by

D = max
~z
fF T (~z)�FR(~z)g+max

~z
fFR(~z)�F T (~z)g (6)

For a sample set of size nM , the signi�cance is cal-
culated by Q(�)

Q(�) =

8<
:

1P
j=�1

(1� 4j2�2)e�2j
2�2 for � > 0

0 otherwise
(7)

In [21] � is approximated depending on the sample
data nM and the distance D by

� =

�p
m+ 0:155+

0:24p
m

�
D (8)

The number of samples m is calculated from the
number of features of target nM

T and reference object
nM

R with

m =
nM

TnM
R

nMT + nMR
(9)

The more any two distribution functions resemble,
the smaller gets Q(�). Thus, h = 1�Q(�) is used as
hypothesis of the match.

According to the appearance-based approach, each
reference object Ri is modelled by a number of views
nA. Thus, for a statistical match between a target
object T and a reference object Ri, the con�guration
space �T has to be compared with all con�guration
spaces �Ri . The comparison of T with Ri supplies a
hypotheses vector ~hRi with

~hRi = (hR1
; : : : ; hRnA )

T

containing the calculated hypotheses of all matches
between views of Ri and T . The comparison of T with
nR reference objects leads to the resulting hypotheses
set Hi with Hi = f~hR1

; : : : ;~hRnRg.



The results of this method are very robust com-
pared to an ideal scenario with varying distances as
well as few variations in illumination, orientation,
and identical background like in [16]. However, in
real scenes with arbitrary viewing positions, variable
background, and changing illumination conditions the
quality of the segmentation depends on the tracking
algorithm. Results are sometimes not exact, data are
either not relevant or missing. This may lead to mis-
interpretations. To overcome this problem it is useful
to consider recognition results over a time period.

3 Information integration

Various methods in the �eld of information integra-
tion were presented and compared e.g. in [24] [23]. In
contrast to the traditional use of information integra-
tion, the scenario deals with changing object positions
and orientations as well as with insu�cient quality
of hypotheses and thus requires dynamic assignments.
For these reasons we found the method of bayesian be-
lief nets [18] most useful because belief nets are rather
robust in applications with imprecisions [20] [23] and
react rather fast to changes [24].

In our application belief nets are used to verify
recognition result H with H = (H1; : : : ; HnO ) of up
to nO observers. In the case of one observer the be-
lief net estimates the current orientation of a target
object T in the scene based on Hi. In the case of sev-
eral observers, hypotheses of nO involved participants
are combined in the belief net to estimate the objects
identity and orientation.

A belief net consists of a number of single belief
nodes that represent the state of the net at a time
step t. The design of a single belief node Z is shown
in Fig. 3. Each node Z is connected with a prede-
cessor node A and a successor node B that represent
states at time steps t � 1 and t + 1 respectively. To
determine the orientation of a moving object only top-
down propagation is essential. In the single node Z the
causal support �(Zi) is calculated from the propagated
values �Z(Aj) of A and the conditioned probabilities
P (ZijAj) with

�(Zi) =

nAnRX
j=1

P (ZijAj)�Z(Aj) (10)

To get conditioned probabilites P (ZijAj), we use
nAnR � nAnR aspect transition matrices (ATM)
which can be di�erent for each belief node:

2E
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λ
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λ
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Z

Figure 3: Single belief node Z

tk�1ntk R1;1 : : : R1;nA : : : RnR;1 : : : RnR;nA

R1;1 p1;1 : : : p1;nA : : : 0 : : : 0
: : : : : : : : : : : : : : : : : : : : : : : :

R1;nA pnA;1 : : : pnA;nA : : : 0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : :

RnR;1 0 : : : 0 : : : p1;1 : : : p1;nA
: : : : : : : : : : : : : : : : : : : : : : : :

RnR;nA 0 : : : 0 : : : pnA;1 : : : pnA;nA

These matrices describe a priori suspected dependen-
cies of nA aspects and nR models between two time
steps. Dependencies are usually only sensible between
aspects of the same model. All other dependencies are
set to zero. Each cell in ATM indicates the probabil-
ity pu;v, that aspect u of model Ri (written as Ri;u)
at time tk�1 will change to aspect v of model Ri at
tk (Ri;v). All dependencies or assumptions can ba-
sically be described randomly. Assumptions are e.g.
gaussian or uniform distributions applied to a limited
range because ususally the observed object will move
in a continouos manner. Distributions then assess the
transition probability pu;v between selected or all as-
pects of Ri. All other transition probabilities within
one model Ri are marked with 0. As a constraint, each
row in ATM has to sum to 1.

At each state and thus at each time step diagnostic
support from up to nO observers can be processed.
This is modelled in Fig. 3 by nodes Ei that supply
the diagnostic support �(Ei) which contains Hi. The
collection of all observer's hypotheses is done by

�(Zi) =
Y
l

�(El) (11)

The belief values for each belief node are calculated
from causal and diagnostic support normalized by �

BEL(Z) = ��(Zi)�(Zi) (12)

From the current belief values the top-down propaga-
tion values �B(Z) are calculated by

�B(Z) = BEL(Z) (13)



Once a belief node reaches the value zero for one
aspect, this value is propagated to all future belief
nodes. Such a �ltering e�ect is desired, if a really
false aspect is considered. Unluckily, in cases with
insu�cient input, the object recognition will calculate
low or zero probability values for correct aspects. As
a consequence, belief values become zero too. Such
a behavior is unwanted because it is not robust. To
avoid misinterpretations, we extend equation (10) by
a factor � to

�(Zi) =

nAnRX
j=1

P (ZijAj)(�Z(Aj) + �j) (14)

to smooth the causal support �(Zi). To keep the �lter-
ing e�ect, an aspect marking matrix similar to ATM
is used as a criterion whether aspects or models are
still valid or not.

4 Experimental results
In order to examine the consequences of coopera-

tion on the quality of recognition results we will an-
alyze a sampple scenario in detail with two observers
looking at the same moving robot \Aramis". Fig. 5
shows part of that image sequence containing 74 im-
ages of size 384� 288 with the target object observed
from the two viewing angles of E1 and E2. T is marked
by convex hulls automatically generated by our track-
ing algorithm and serves as input I for the recognition.
The orientation angle between E1 and E2 is approx-
imately 190�. To recognize T , both observers used a
model database with �ve reference objects each con-
sisting of 24 aspects taken from �xed distances in 15�

steps from 0� to 360�. The recognition time measured
on a SUN Enterprise amounts 220ms.

In this experiment, the cooperative recognition en-
ables processing of two tasks, the veri�cation and the
localization (Fig. 4). The aim of the veri�cation is
to improve a single observer's recognition results by
combining H1 and H2. To do so, known positions of
observers are assumed and hypotheses are transformed
to a common coordinate system, usually either to the
one used by E1 or E2. In the localization, the sus-
pected reference object is used to locate the relative
spatial orientation between E1 and E2. This has to be
done by using the di�erence of the recognition results
of both observers. Obviously, the latter task requires
precise values H1 and H2.

To examine the consequences of information inte-
gration, cooperative results are compared with single
and continuous results of both observers. Fig. 6 (a)
shows for each of the 74 images both, the assignment
of T to a reference object and the corresponding esti-
mated view in degree. For each ti only the maximum
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Figure 4: Belief nets for veri�cation task (left) and
localization task (right)

hypotheses of E1 and E2 are considered. The recog-
nition results of the Kuiper test are quite di�erent for
E1 and E2. While H1 contains 24% of misinterpreta-
tions, H2 has 44%. The main reason for this lies in
the quality of I depending on the given convex hull.
For comparison the results of the continuous consider-
ations of T by E1 and E2 are shown in Fig. 6 (b) and
(c). The aspect transition matrices are �lled according
to a uniform distribution in the interval [i � 1; i + 1]
around aspect i and � was set to 0:002. In (b) the
respective estimated reference object is shown and in
(c) the corresponding orientation. Note that in (c)
only neighbouring hypotheses of the same reference
object are connected by a line. As e.g. can be seen
in (b) the last four hypotheses of E1 indicate a wrong
model estimation, where T is moving out of E1's �eld
of view. Although the continuous results are signif-
icantly improved, still not all best matches are cor-
rect. Observer E1 calculates hypotheses with approx-
imately 20% misinterpretations, either the wrong view
or the wrong model. Observer E2 could improve its
recognition rate to about 29% misinterpretations.

Now these results are compared with cooperative
results. The veri�cation is done according to the left
picture in Fig. 4. Values of both observers E1 and E2
enter the belief net simultaneously at t. Hypotheses
H2 are transformed to the camera coordinate system
of observer E1. The result of the veri�cation is in-
dicated in Fig. 6 (d) by the square symbols. As can
be seen, the integration of information from the two
di�erent sources E1 and E2 lead to an improvement
of the estimated current orientation of T with no sig-
ni�cant misinterpretations. Due to chosen statistical
recognition method, variations of 15� from the real
aspect are in the range of tolerance. The time for cal-



Figure 5: Images #1, #30, and #60 with convex hulls
of T observed from the view points of E1 and E2

culations in this belief net amounts 20ms on a SUN
Enterprise. Thus the total time for the veri�cation
task (without time for communication and tracking)
is approx. 260ms.

The localization is done according to the right pic-
ture in Fig. 4. To get robust hypotheses, each ob-
server veri�es its hypotheses by using belief net X re-
spectively Y . To ensure, that E1 and E2 suspect the
same reference object, the identity of T is estimated
by using the maximum belief values for each reference
object. These values of BEL(X) and BEL(Y ) enter
a third belief net Z that estimates the identity of T .
With � = 0 and an identity function for the 5 � 5
matrix ATM , where aspects are replaced by models,
\Aramis" remains the only candidate reference object
after t = 3 images. To determine the orientation angle
between E1 and E2 the three highest marked views in
H1 and H2 are used. Such a procedure is necessary in
appearance-based approach due to ambiguous inter-
pretations. The result of the localization is indicated
in Fig. 6 (d) by the plus symbols. As long as T is
completely visible from E1, the estimated orientation
angle between E2 and E1 stays steady between 165�

and 195�. After the 70th image, where T run out of

I , estimations declines.

5 Conclusions
We introduced a framework for cooperative recog-

nition of objects in a multi-robot environment and
showed that the use of integrated information from
multiple sources will increase the robustness of the
recognition process. To identify complex objects in
a real scenario an appearance-based qualitative non-
parametric statistical matching algorithm was devel-
oped. Based on that, belief nets were proposed to
integrate information from both, a single or multiple
observers. Cooperation can be used not only for veri-
�cation but also for the localization of spacial orienta-
tions of several observers. Time considerations showed
that the whole recognition process is rather fast even
with a higher number of models.
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