
A Framework to Protect Mobile
Agents by Using Reference States

Fritz Hohl

Bericht Nr. 2000/03
March 2000

A Framework to Protect Mobile Agents by
Using Reference States

Fritz Hohl

Email: Fritz.Hohl@informatik.uni-stuttgart.de

Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)

Fakultät Informatik
Universität Stuttgart

Breitwiesenstr. 20 - 22
D-70565 Stuttgart

Universität Stuttgart
Fakultät Informatik

A Framework to Protect Mobile Agents by Using Reference States1

Fritz Hohl
Institute of Parallel and Distributed High-Performance Systems

University of Stuttgart, D-70565 Stuttgart, Germany
Fritz.Hohl@informatik.uni-stuttgart.de

Abstract

To protect mobile agents from attacks by their execution
environments, or hosts, one class of protection mechanisms
uses “reference states” to detect modification attacks. Ref-
erence states are agent states that have been produced by
non-attacking, or reference hosts. This paper examines this
class of mechanisms and present the bandwidth of the
achieved protection. First, a new general definition of at-
tacks against mobile agents is presented. As this general
definition does not lead to a practicable protection scheme,
the notion of reference states is introduced. This notion al-
lows to define a protection scheme that can be used to prac-
tically realize a whole number of mechanisms to protect
mobile agents. Therefore, after an initial analysis of al-
ready existing approaches, the abstract features of these
approaches are extracted. A discussion examines the
strengths and weaknesses of the general protection scheme,
and a framework is presented that allows an agent pro-
grammer to choose a level of protection using the reference
states scheme. An example illustrates the usage of the
framework, measurements present the overhead of the
framework for the case of the example mechanism.

1. Introduction

Mobile agents are program instances that are able to mi-
grate from one agent platform to another, thus fulfilling
tasks on behalf of a user or another entity. They consist of
three parts: code, a data state (e.g. instance variables), and
an execution state that allows them to continue their pro-
gram on the next platform. For the area of mobile agents,
security is a very important aspect since neither the provid-
er of an agent platform or an agent-based service, nor the
owner of an agent wants to be harmed by employing this
technology. This is a non-trivial requirement since for the

first time, in mobile agent systems, not only the executing
party has no vital interest to execute a program correctly,
but also the employer of a program has to give away the
control over the execution.

While the mechanisms that allow the executing party to
protect its system seem to be feasible today, the protection
of the agent, and, in turn its owner, is still subject of ongo-
ing research.

One way to protect agents is to follow an organizational
approach, i.e. to make sure that only trustworthy parties ex-
ecute an agent. This can be realized either by maintaining
the whole agent platform by only one institution, or by dis-
allowing migration to unknown agent platforms. Currently,
the first approach does not seem to be feasible since such a
system would require a large number of vendors and clients
in order to be worthwhile. The problem of the second ap-
proach is twofold: on one hand, trust is not a immutable at-
tribute, but may change depending e.g. on the tasks an
agent has to fulfil (although an airline as a big company is
trustworthy, one does not want to depend on the goodwill
of the company’s host when comparing different flight
prizes). On the other hand, not all resources needed for the
execution of a certain agent may be available on trusted
hosts.

Another way to protect agents is to use special, trusted,
tamper-free hardware (see e.g. [11]). To use them in the
near future, at least two things are necessary: the need for
such devices by platform providers and a manufacturer
who builds these devices. Again, currently, no commercial
application fosters this need. Therefore, today, there is no
manufacturer who produces these devices. Another prob-
lem is whether trusted hardware allows the cost-effective
execution of agents, but this aspect will not be discussed
here.

If neither organizational mechanisms nor special hard-
ware can be used, mobile agents have to be protected by
software means only. Currently, there are two approaches
that try to protect an agent from all major attacks. The first
approach, which is called Mobile Cryptography [9], aims at

1. This work was funded by the Deutsche Forschungsgemeinschaft (DFG).

2. Attacks, Reference behaviour, and Reference States 3

converting agents into programs that work on encrypted
data (i.e. the operations use encrypted parameters and re-
turn encrypted results without the need to decrypt these
data during execution). There are three problems which
have to be solved before this approach can be used. First,
currently, only rational polynomial functions can be used
as input “agents” (recently, there are plans to remove this
restriction). Second, the used agent model does not allow
agents that are protected by this approach to return plain-
text data to untrusted hosts (as this could lead to security
problems). Third, the efficiency of this approach is un-
known (there is no implementation yet). The second ap-
proach based completely on software is called Time-limit-
ed Blackbox Protection [3]. Here, the agent code is
obfuscated using techniques that are hard to analyse by
programs. Since such an obfuscation can be broken by a
human attacker given enough time, the agent bears an expi-
ration date, after which the agent gets invalid. Successful
attacks before this expiration date are impossible. In this
approach, the input may be any agent, but there are prob-
lems that seem to prevent the employment in the near fu-
ture. First, it is not known yet whether there are obfuscation
techniques that are “hard” enough. Second, it is unclear
whether the expiration date can be computed. Third, the ef-
ficiency of this approach is currently unknown (but is
seems sure that at least the size of the agent increases sig-
nificantly).

As we have seen, complete software protection of mo-
bile agents is far from being mature enough to be used to-
day. Therefore, other protection mechanisms have to be ex-
amined in meantime. These mechanisms will not be able to
prevent every attack, but provide at least protection from
certain attack classes. As we will see, one important class
of protection mechanisms uses “reference states”, i.e. agent
states that have been produced by non-attacking, or refer-
ence hosts to detect modification attacks of malicious
hosts.

This paper will examine this class of mechanisms and
present the bandwidth of the achieved protection. For that
purpose, a new general definition of attacks against mobile
agents is presented in Section 2. Since this general defini-
tion in itself does not lead to a practicable protection
scheme, the notion of reference states is introduced. This
notion allows to define a protection scheme that can be
used to practically realize a whole number of mechanisms
to protect mobile agents. After an initial analysis of already
existing approaches in Section 3, an extraction of the ab-
stract features of these approaches. A discussion of the
strengths and weaknesses of the general protection scheme
is given in Section 4, In Section 5, a framework is presented
that allows an agent programmer to choose a specific level
of protection using the reference states scheme. An exam-

ple illustrates the advantages of the framework in Section
6. After having measured the example in terms of over-
head, Section 7 concludes this paper.

2. Attacks, Reference behaviour, and Refer-
ence States

In this section, we will examine the question of what an
attack against a mobile agent is, and whether and how the
answer leads to protection schemes. First, the used agent
model is defined.

2.1 Agent execution model

In this paper, the following model of the execution of a mo-

bile agent will be used (see also Figure 1).

The agent is a construct consisting of code, data state,
and execution state. The aim of an agent is to fulfil a task in
behalf of its owner. For this purpose, the agent migrates
along a sequence of hosts. The host takes the initial agent
state, i.e. data and execution state, and starts an execution
session. In this session, the host processes the agent using
the code and some input, producing a resulting agent state.
The input includes all the data injected from the outside of
the agent, i.e. both communication with partners residing
on other hosts and data received directly by or via the cur-
rent host. The latter e.g. includes results from system calls
like random numbers or the current system time. When the
agent migrates to another host or dies, the execution ses-
sion is finished on this host. The resulting state produced by
one host is used as the initial state on the next host.

2.2 Attacks and reference behaviour

In the following, a malicious host is an execution envi-
ronment of an agent that tries to attack (or at least plans to
attack) an agent.

If we examine possible attacks by malicious hosts
against mobile agents, we find lists like this (see Figure 2).
These lists do not state all possible attacks, but areas, in
which attacks can be categorized. An exhausting list of at-

ag
en

t c
re

at
io

n

input

execution

host 1

input

execution

host 2

input

execution

host 3

input

execution

host 4

ag
en

t t
er

m
in

at
io

n

m
ig

ra
tio

n

m
ig

ra
tio

n

m
ig

ra
tio

n

initial state resulting state

Fig. 1: Agent execution model

2. Attacks, Reference behaviour, and Reference States 4

tacks themselves does not exist, since this set is open due
to the problem area (see [3] for a discussion of this aspect).

As shown by [3], this list can be reduced to the areas 2
and 4 - 7 (which can be called “blackbox set”), as other at-
tacks seem either not to be preventable (areas 9, 12) or can
be prevented given the prevention of the blackbox set.

The term “attack” related to mobile agent protection is
rarely defined explicitly, but most often used in an intuitive
manner. Since the term is normally understood as a viola-
tion of the expectations of the agent programmer or owner
we can define attack as follows:

Definition: An attack is a difference in behaviour
between the attacking host and a non-attacking or refer-
ence host, i.e. one that acts as expected (“reference behav-
iour”) given the same state and resources (and
unambiguous, complete specifications).

In this definition, attacks include different behaviour
due to (unintentional) errors, caused by a misinterpretation
of the specifications or by technical faults.

Although this definition seems to be intuitively under-
standable, the term “reference behaviour” needs more ex-
planation. One can argue that first, no two implementations
of a specification behave equally, and second, the behav-
iour of even the same implementation may differ, depend-
ing on external factors, such as the actual state of thread
scheduling, of the random number generator and so on.
This may be true for a number of systems, but not on the
level our notion of behaviour is situated on. We denote with
“behaviour” the level of expectation of the agent program-
mer, i.e. the way the system has to behave in order to exe-
cute an agent. If this behaviour differs from the specifica-
tion, the system acts in a way the programmer did not
expect, so it is likely the agent will fail to run. This expec-
tation of the programmer, based on the specification, will
probably not determine the behaviour of the system in eve-
ry detail (e.g. the implementation of integers at the bit lev-
el), but is, at an overall level, an adequate model of the sys-

tem. Therefore, the difference in behaviour cannot be
measured on a low level automatically, but by using the
knowledge of the programmer to compare two executions
instead.

The attack definition above leads to a protection scheme
where the difference in behaviour is measured to prove or
at least detect misbehaviour. There are two problems that
restrict the practicability of this solution. First, some of the
behaviour of the host cannot be observed from the outside
of the host. In principle, either all malicious behaviour re-
sults sooner or later in perceptible actions, or - as the mali-
cious behaviour does not result in a perceptible action - this
behaviour does not matter since it has no consequences.
Practically, it is too difficult to control all perceptible ac-
tions. Imagine e.g. that if the host reads a secret key of the
agent and uses this key to decrypt some communication of
the agent, this knowledge may result in an action that harms
the agent owner. But first, you have to see that there was a
breach in security, then you have to find out which host can
be blamed for this and finally you have to prove it.

Second, it is at least difficult to provide the reference
host with the state and resources of the untrusted host. As a
host may e.g. offer a whole database, such a provision
would require the transfer of possibly very much data
(apart from the aspect that the host may find it unacceptable
to transfer important data to a third party). Additionally, if
these data have to be transported from the untrusted host,
no one can check the equivalence of this data set to the one
stored in the untrusted host. One could think of the possi-
bility to run the reference host in a “hot stand-by” mode,
providing it with the same input data as the untrusted host
(i.e. if the database receives new data, this data would also
be sent to the reference database). But, also this scheme
fails as soon as new data is created inside the untrusted
host.

2.3 Reference states

What can be done practically is to measure not the dif-
ference in behaviour between an untrusted and a reference
host, but the difference in the variable parts of an agent
computed from the untrusted host on the one hand and a
reference host on the other hand, given the complete input
during the computation. This leads us to:

Definition: A reference state is the combination of the
variable parts (i.e. the state) of a mobile agent executed by
a host showing reference behaviour.

This input includes all the data injected from the outside
of the agent, i.e. both communication with partners resid-
ing on other hosts and data received directly by or via the
current host. The latter includes e.g. results from system
calls like random numbers or the current system time. It

1. spying out code
2. spying out data
3. spying out control flow
4. manipulation of code
5. manipulation of data
6. manipulation of control flow
7. incorrect execution of code
8. masquerading of the host
9. denial of execution
10. spying out interaction with other agents
11. manipulation of interaction with other agents
12. returning wrong results of system calls issued

by the agent

Fig. 2: A list of possible attack areas

3. Analysis of Existing Approaches 5

does not include e.g. results from procedures inside the
agent as these can be recomputed using the agent code.

If we are able to measure the difference in state, we are
able to detect attacks, that differ in the resulting state from
a reference state. These attacks include write or modifica-
tion attacks of the variable parts of the agent and attacks,
where the agent code is not executed according to the spec-
ifications. The advantage of this approach is that even not
every write, modification and incorrect execution attack is
detected, but only those who indeed result in an incorrect
state of the agent. This means e.g. that the host may modify
the agent code temporarily due to optimization reasons
without being blamed to attack the agent. What cannot be
detected by this approach are read attacks and attacks
where the party that compiles the input modifies or sup-
presses input.

3. Analysis of Existing Approaches

In this section, we will analyse the four existing ap-
proaches that fall into the area of mechanisms that use a
kind of reference state to detect attacks by the host. First,
we will describe the mechanisms and state the level of pro-
tection they offer. Afterwards we will classify them accord-
ing to criteria like used moment of checking and the used
reference data.

3.1 State appraisal

Farmer, Guttman and Swarup present in [2] a “state ap-
praisal” mechanism that checks the validity of the state of
an agent as the first step of executing an agent arrived at a
host. This checking mechanism only considers the current
state of the arrived agent. It can consist e.g. of a set of con-
ditions that have to be fulfilled after the execution session.
In this case, the reference data is structured as a set of rules.
These rules are formulated by the programmer who stated
relations between certain elements of the state. The check
is done by the host that received an agent, and it is in the
interest of this host to do so as it wants to execute only val-
id, i.e. untampered agents (which else might attack him). If
the host does not check the agent (e.g. because the host col-
laborates with the attacking host), an attack against an
agent cannot be detected.

The question of which further attacks cannot be detected
depends partly on the powerfulness of the used checking
mechanism. If e.g. for the conditions, only boolean and nu-
merical operators are used (i.e. constructs that are not tur-

ing complete), there are computations that can be done by
programs, but not by conditions. Therefore, there may be
computations that cannot be checked by this kind of rules.
The lack of the input to the agent also leads to attacks that
cannot be detected. Imagine e.g. an agent that remotely re-
ceives prices for a good from different shops. Then a lowest
price is computed and the other prices are removed. The
host may modify the execution and/or the prices at its will
without being detected as it is impossible to find an incon-
sistency in the resulting state without the used prices.

3.2 Server replication

In [8], Minsky et al. propose to use a fault tolerance
mechanism to also detect attacks by malicious hosts. The
authors assume for every stage, i.e. an execution session on
one host, a set of independent, replicated hosts, i.e. hosts
that offer the same set of resources (e.g. the same data), but
do not share the same interest in attacking a host (e.g. be-
cause they are operated by different organizations). Every
execution step is processed in parallel by all replicated
hosts. After the execution, the hosts vote about the result of
the step. At all hosts of the next step, the votes (i.e. the re-
sulting agent states) are collected. The executions with the
most votes wins, and the next step is executed. Obviously,
even (n/2 - 1) malicious hosts can be tolerated. From our
point of view, this means that an execution is checked by
using a set of other executions, and by counting the number
of equal results. Since the hosts work in parallel, the input
to the agent has to be shared and one host must not be able
to hold back input to the other hosts.

The server replication approach can detect all attacks
that result in a different agent state. Collaboration attacks
of less than n/2 malicious hosts of the same step can be de-
tected. Additionally, even collaboration attacks between
hosts of different steps can be found as long as the above
condition holds.

3.3 Execution traces

Apart from checking the inherent integrity of agents or
comparing agent states resulting from parallel execution,
the third major idea to check the execution of an agent is to
let the executing host produce an execution protocol or
trace. In [10], Vigna presents an approach that uses this
idea to allow an agent owner to check the execution ses-
sions at different hosts when a fraud is suspected. For this

3. Analysis of Existing Approaches 6

purpose, every host records a trace that looks like the one
in Figure 3b.

A trace consists of pairs(n,s) wheren denotes the
identifier of the executed code statement. In case this state-
ment modifies the state of the agent using information from
the outside of the agent (i.e. “input” in our terms),s de-
notes the list of variable-value pairs that state the content of
these variables after executing this statement.

After the execution, the host creates a hash of the trace
and a hash of the resulting agent state. Theses hashes are
signed by the host and are sent to the next host, together
with the code and state of the agent. The trace itself has to
be stored by the host. The agent continues to fulfil its task
and returns to its home host afterwards. Now, the agent
owner can decide whether he/she wants to check the agent
or not. In case of a suspicion, he/she requests the traces
from the corresponding hosts starting at the first host. First,
he/she computes a hash of the received trace and compares
this hash with the one stored at the next host. If these hashes
are identical, the host commits on this trace. Then the agent
with its initial state is re-executed. In case of statements
that used input from the outside, the values recorded in the
trace are used. If a hash of the resulting state of the agent
on this host is equal to the one signed by this host (which
can be provided also by the next host), this host did no
cheat, and the checking process continues. The case that
the following host pretends to have received a different in-
itial agent state, is prevented by sending back a signed mes-
sage that commits this state back to the sending host.

Obviously, the length of a trace increases with every ex-
ecution step. Due to performance reasons, Vigna proposes
therefore to use a modified trace without statement identi-
fiers. But there is another reason why we are able to do
without these identifiers. First, it can be argued that it is
more important to check whether an execution yields the
correct final agent state than that the execution followed a
certain way. Second, a list of executed statement identifiers
does not prove anything since an attacker can create a cor-
rect list and augment it with correct or incorrect input data.
In this case, the attack is detected only if the resulting state
is checked, not the statement identifiers. Therefore, identi-
fiers are not needed from a security point of view.

This approach detects all attacks that result in a different
state as long as the host does not lie about the input to the

agent. Note that the owner can only determine which host
played wrong, but not the difference in the agent state as
only hashes of the final states exist.

3.4 Proof Verification

In [12], an approach is presented that uses the notion of
proofs of correct execution. As before, these proofs consist
of some execution information and the final result. The idea
now is that there exists a more efficient way to check the
computation by checking the proof than by recomputing
the execution of the agent. These holographic proofs can be
used to prove the existence of an execution trace that leads
to the final state of an agent by checking only constantly
many bits of the proof. A protocol that uses proof verifica-
tion is described in [1]. Here, all proofs are sent to the agent
originator, which checks the proofs after the agent finishes
with its task. At first, it was only known that this holograph-
ic proof has a length ld (d>0) where l is the size of the exe-
cution trace. Biehl, Meyer and Wetzel proved in [1] that
there exist proofs that are even sublinear or polylogarithmic
in the size of the agent’s running time.

The problem of proof verification is, that currently, only
NP-hard algorithms are known to construct holographic
proofs. Therefore, this approach does currently not lead to
practical mechanisms and will be, therefore, not considered
here further.

3.5 Analysis

To obtain a better understanding of the protection band-
width of the class of mechanisms that use a reference state,
we have to extract the generic attributes out of the present-
ed mechanisms and the relations between these attributes.
These attributes are:

moment of checking
The reference state can be checked either

a) after every execution session on one host
b) after the agent has finished its task

Since the overall aim is to identify the host(s) that at-
tacked an agent during its journey, and since malicious
hosts may occur anywhere along the route, choosing b) also
means that first, the route, i.e. the list of visited hosts has to
be stored somewhere in a secure way. This can happen ei-
ther by dynamically recording the stations, appending this
information digitally signed to the agent data, or by sending
this information to the owner upon every migration, or by
having an a-priori, signed itinerary. Second, the used refer-
ence data has to be stored for every of the execution ses-
sions, since, without this precaution, the malicious host
cannot be identified.

10 read(x)
11 y=x+z
12 m=y+1
13 k=cryptInput
14 m=m+k

Fig. 3a: Code frag-
ment

10 x=5
11
12
13 k=2
14

Fig. 3b: Trace of
the code fragment

4. Strengths and Weaknesses of Mechanisms Using Reference States 7

In principle, one could think of checking in smaller time
intervals, e.g. on the level of single statements. In reality
though, you have to wait until an agent left a host since a
host can always run two agents, a correct executed one and
a manipulated one. Then, the agent that was executed cor-
rectly can be used to produce the (correct) checking output
while using the manipulated agent in reality. Therefore, us-
ing a smaller time interval would not say anything, except
that the host ran one agent correctly.

used reference data
Depending on the moment of checking, the reference

data used by the algorithm might differ. If the execution is
checked after an execution session or after the agent ful-
filled its task, a combination of the initial state, the resulting
state, the input to the session, the execution log and the rep-
licated resources can be used.

used checking algorithm
Independent from the moment of checking, any of the

following checking algorithms can be used (note that the
presented algorithms mark only some points in the contin-
uous bandwidth of possible algorithms):

rules
This term subsumes simple (i.e. non turing complete)

rule mechanisms that allow to check e.g. postconditions
in form of first order logic (e.g. moneySpent + mon-
eyRest = moneyInitial). As has been argued in Section
3.1, such mechanisms may not detect all attacks, but
often rules are easy to state and to check. Rules may
use any of the presented reference data.
proofs

The term proofs denotes in this context representa-
tions of execution traces that are easier to check than
execution traces themselves. Proofs do not need refer-
ence data as parameters, as they include all relevant
data.
re-execution

Re-executions aims at executing an agent according
to the reference specification given the same set of con-
ditions (i.e. input) as the execution to check. As for
rules and proofs, the whole checking process can be
automated, i.e. supported by system mechanisms. After
having re-executed the specified amount of statements
(i.e. one, or a session, or a task), both executions are
compared. This can be done either by comparing the
“execution logs” that can contain e.g. changes in data
and execution state, or by comparing the resulting agent
states (without finding differences in the execution
itself). Therefore, re-execution needs input, initial agent
state, and execution log or resulting agent state as refer-
ence data. The power of the approach depends on the
level of detail of the execution log. In case of using
only the resulting state, the host can lie about the mes-

sages sent to communication partners (such as “send
$100 to the host”). Even if the log contains such mes-
sages, it is not possible to check whether such a mes-
sage was sent by just looking at the logs.

It can be argued that it is impossible to restore the
conditions of the original executions for checking as
these conditions may include e.g. racing conditions in
case of parallel threads (this is no problem for agent
systems that allow only one thread per agent).

Imagine e.g. that an agent computes a list out of an
input, where the ordering of the elements depends on
the timing of two threads the agent uses. Then the list
cannot compared simply with the list of another execu-
tion as the other list may contain the same elements, but
in different order. To solve this problem and the prob-
lem that input should be authenticated, a more powerful
algorithm is needed.
arbitrary program

This is the most powerful algorithm as it includes the
presented ones and allows for more, e.g. a certain com-
pare method for resulting states or the possibility to ask
a communication partner about received messages.
Since this algorithm is not known in advance, the sys-
tem can offer only basic support, i.e. the possibility to
execute the program at the checking moments. There-
fore, any of the reference data may be used by this
checking mechanism.
The combination of these attributes opens a space of po-

tential mechanisms that is much larger than the four ap-
proaches we have seen in this section. If we want to allow
the programmer to choose a protection mechanism that is
appropriate for his/her specific application, we have to of-
fer him/her a framework instead of a single mechanism.

4. Strengths and Weaknesses of Mechanisms
Using Reference States

As mentioned before, mechanisms using reference
states cannot detect all possible attacks by malicious hosts.
In this section, we will analyse the bandwidth of the result-
ing protection, identify applications that cannot be protect-
ed and discuss possible extensions.

4.1 Resulting protection bandwidth

The protection bandwidth depends on the used at-
tributes. i.e. the moment of checking, the used reference da-
ta, and the checking algorithm. A mechanism at the lower
end of the protection scale uses only the weakest attributes,
i.e. it checks after the execution task, uses only the resulting
agent state, and employs rules to check the execution. Since
the check takes place after the agent fulfilled its task, a

5. A Checking Framework for Mobile-Agents-Systems 8

compromised agent (i.e. one that has been attacked) contin-
ue to work on other hosts. Unwanted actions the agent may
have done as a result of the attack in interactions with hon-
est partners can be blamed to the attacker, but it may be dif-
ficult to compensate them. Checking only the resulting
states by using rules allows to detect only attacks that differ
in these states, and that are detectable by the rules. If a rule
e.g. checks whether the initial money equals the spent sum
plus the remaining amount, an attack that led to an unwant-
ed purchase cannot be uncovered. Although this mecha-
nism can be performed very efficiently and does not delay
the execution on the different hosts, it is not very powerful
from a security point of view.

A mechanism at the higher end of the protection scale
checks after every execution session, uses all possible ref-
erence data and allows for an arbitrary checking algorithm.
If the next host checks the execution of the former host, it
can be sure to execute an uncompromised agent in case of
a successful check. Since the mechanism allows for re-ex-
ecuting the agent, the computation of a former host is com-
prehensible. If the checking mechanism additionally al-
lows to ask the communication partners whether a certain
input was issued by them, this aspect can be protected also.
Obviously, this mechanism is more powerful than the sim-
ple one above. But its disadvantage is its computational and
communication overhead: first, the computation is roughly
doubled, and second, the system has to transport one more
agent state plus the input at a host.

In case of the detection of a fraud, the question of the
consequences remains. In a setting where an attacker can
harm a party without consequences, just detecting attacks
is useless. Only if legal, organizational or social steps can
be taken, schemes like the presented one make sense. Al-
though these considerations affects the overall security,
they are outside the scope of this paper. Nevertheless, they
deserve future examination.

4.2 Applications that cannot be protected

Attacks that do not result in a different agent state can-
not be detected by using the presented protection scheme.
Especially read attacks, i.e. attacks that aim solely at the
knowledge of agent data, lie outside the scope, as these at-
tacks do not leave traces in the agent state. If the goal is to
achieve an complete agent protection, other mechanisms
have to be developed for this purpose. Other attacks that
cannot be detected are attacks where the executing host lies
about the input an agent receives, and finally attacks, where
the host forces the agent to do something (like buying a
good), and, subsequently, migrates another, not compro-
mised version of the agent. It can be argued that the latter
attack is rather equal to a read attack, where the host learns
about some agent data, and then uses it to harm an agent

owner, but such a read attack may require more knowledge
about the inner structure of the agent than one that just mis-
uses an agent.

4.3 Possible extensions

To prevent the pretention of false input data, input can
be used, that is signed by the party that produces the input,
and which can be verified by the checking party using cryp-
tographic means. Another possibility is to use a trusted
third party that is used as a relay for input to the agent, so
the input data is no longer controlled by the host.

If the attack that misuses the agent has to be prevented,
again the idea of using a trusted third party can be used to
establish a kind of proxy object for the agent, situated on
another host. Parties wanting to interact with the agent have
then to use this proxy object which is, therefore, able to log
the interactions of the agent.

5. A Checking Framework for Mobile-
Agents-Systems

In this section, a framework is presented that supports
the implementation of a wide range of checking mecha-
nisms using reference states. It provides functionality for
employing the generic attributes found in the last section.
The idea is to let the agent programmer decide about the
check mechanism a host has to execute and to offer basic
functionality like signing by the framework. Although it is
implemented for the mobile agents system Mole, the pre-
sented scheme can be used for nearly every mobile agent
platform implemented in Java that uses a weak migration
scheme (i.e. that lets the programmer encode the execution
state of an agent manually into variables that are transport-
ed automatically, and that executes a start procedure after
every migration), and offers callback methods in agents
called by the host. This is the case for most systems (see [6]
for characteristics of most mobile agent systems). Since we
want to support the generic attributes, we explain the
framework in relation to these attributes:

moment of checking
Here we need callbacks for the different moments (see

Fig. 4), i.e. after an execution session on one host, and after
the agent fulfilled its task. The callback for the check mo-
ment after an execution session is calledcheck-
AfterSession . It is called as the first action on the next
host, as it would be useless to check a session on the same
host since then the host could also manipulate the check.
The callback for the moment after the agent finishes its task
is calledcheckAfterTask . It is called by the last host
that executes the agent, often the home host of the agent.

5. A Checking Framework for Mobile-Agents-Systems 9

used reference data
Here we have to do only two things: First, we have to make

sure that, at the end of an execution session, we have the

needed data in a form that allows to check the execution.

Second, we have to transport this data. For mobile agents,

the latter is trivial. All we have to do is to include the data

in the data part of the agent as this part is transported auto-

matically. For the former, we have to do more. The initial

and resulting states are no problem since it is exactly this

portion of data that has to be transported to and from the ex-

ecuting host. Replicated resources are simply objects that

are appended to the agent (although this part may be large).

To create an input list or an execution log, two ways can be

followed. Either this information is collected by a modified

Virtual Machine (which has easy access e.g. to the line

numbers that may be included in the execution log), or

written to special containers by code that is instrumented

either automatically or manually. Using manually instru-

mented code has the advantage that the programmer can

specify the type and format of the data, which can be more

efficient if the checking algorithm is also provided by him/

her.

Finally, we want to choose which reference data we will
use for checking. In case of creating reference data by man-
ually instrumented code, this is done by the programmer in

the routines that create this data, but if we have automatic
support for creating reference data, this has to be pointed
out to the framework. This can be done by declaring the im-
plementation of interfaces namedInitalStateRe-
quester , ResultingStateRequester , Input-
Requester , ExecutionLogRequester , and Re-
sourceRequester , similar to the usage ofClonable
in Java.

used checking algorithm
As the “arbitrary program” alternative is, on the one

hand, the most powerful approach and, on the other hand,
includes all other alternatives, it is enough to execute code
written by the agent programmer when we want to check an
execution. If we want support the other approaches, we can
either choose to let the programmer include supporting
code or we can offer this code in the system. Rules can be
supported either by using a rule mechanism evaluating the
desired formalism or we can encode the rules manually as
program statements. For supporting proofs, we have to
know the structure of the proof. If it consists of data, the
proof can be transported as a part of the agent. Then we
would have to include only the routines to check the proof.
If the proof consists also of code, it can be encoded as an
arbitrary program. Support for re-execution may happen on
different levels. The problem is the question of how the
original code can be used for re-execution. First, the code
has to be executed a second time using the input taken from
the reference input data. Second, output actions can be sup-
pressed as they are not needed for checking the execution.
Third, the resulting state has to be compared with the one
of the original execution in a manner that can be specified
by the agent programmer (due to the problems discussed in
the last section). Solutions to this problem include a modi-
fied execution environment (i.e. a Java Virtual Machine)
that is able to use the reference input set instead (in this
case the unmodified code can be used), a copy of the orig-

Callbacks in the agent

checkAfterSession()
This method is called by the host as the first ac-
tion when arriving

checkAfterTask()
This method is called by the last host

Interfaces implemented by agent

InitalStateRequester
declares need for initial state

ResultingStateRequester
declares need for resulting state

InputRequester
declares need for input

ExecutionLogRequester
declares need for execution log

ResourceRequester
declares need for host resources

Fig. 4: Framework methods agent

Methods offered by host

Object getInitalState()
returns the intial state

Object getResultingState()
returns the resulting state

Object getInput()
returns the input

Object getExecutionLog()
returns the execution log

Object getResource()
returns the host resources

Fig. 5: Framework methods host

5. A Checking Framework for Mobile-Agents-Systems 10

inal code, automatically instrumented by statements that do
the needed actions (i.e. second execution, output suppres-
sion, and state comparison), and finally, a copy of the orig-
inal code that is instrumented manually by the programmer.
To explore this aspect, the last solution was examined for
the example application (see next section).An Example for
Using the Framework

To illustrate the framework we choose a mechanism that
is powerful, and that is not covered by the existing ap-
proaches. Using this mechanism we protected a generic ex-
ample agent, and measured the overhead caused by using
the protection mechanism. We used as a first step a com-
plete manual approach, i.e. one where the programmer
manually instruments the code to create the required refer-
ence data.

5.1 Used checking mechanism

A new checking mechanism was chosen to demonstrate
that not only the existing approaches described in Section
3 can be based on the framework, but also other algorithms
that are based on the idea of resulting states. The mecha-
nism is described in detail in [4] and can be sketched here
only roughly.

The mechanism is based on the “Traces” approach by
Giovanni Vigna [10], but uses another moment of check-
ing. In the Vigna approach, the owner needs a suspicion to
start checking. In contrast to that, we decided to check an
execution session in every case instead of the whole task if
needed. For performance reasons, we decided to use the
next host to check the execution session of the current host
regardless of whether this next host is a trusted one (like the
home host) or an untrusted one. This decision has the dis-
advantage that collaboration attacks of two and more con-
secutive hosts cannot be detected, but allows on the other
hand to check the execution more timely and allows to pre-
vent attacks due to the fact that checking happens regard-
less of whether the owner has a suspicion or not. As refer-
ence data, the initial and the resulting state of an execution
session are used as well as the input to this session. The
mechanism uses digital signatures and secure hash algo-
rithms to authenticate the data a host produces. To prevent
an attack by the checking host, initial states have to be
signed by both the checking host and the checked host. The
mechanism is optimized in the sense that execution ses-
sions on trusted hosts are not checked (trusted hosts will
not attack by definition). Finally the mechanism is able to
present the complete state of an attacked agent instead of
only hashes of the state, so the owner is able to prove his/
her damage in case of a fraud. The checking mechanism
puts an overhead to the execution of the agent that can be
expected to roughly double the costs of the execution of the
unprotected agent (see [4] for a more detailed analysis).

5.2 Generic example agent

To demonstrate the framework and the used checking
mechanism, a generic agent was implemented. After that, a
second agent was created based on the first one, but protect-
ed using the mechanism described in Section 6.1. This
agent migrates along a path of three hosts, where the first
and the last host are trusted, the second one is untrusted.
The agent can be parametrized by two values. The first pa-
rameter determines a “cycle” value, where every cycle
means an integer summation of 1000 values. This summa-
tion cycle emulates the computational parts of an agent. In
the measurement, a cycle value of either 1 or 10000 was
used. The second parameters determines the number of in-
put elements to the agent. Each input element consisted of
a 10 byte string. In the measurement, a value of either 1 or
100 was used. Using these values, four different agent in-
stances were generated and measured: 1 very small one, 1
with almost no input, but some computation, 1 with almost
no computation, but 100 input elements and 1 agent that
both computed some time and received 100 input elements.
These four agents were executed two times: “plain”, with-
out using the protocol (but being signed and verified as a
whole) and “protected”, using the protocol.

5.3 Measurements

The measurement was implemented for the mobile agents
system Mole [7], which uses Java as the agent program-
ming language. As a security package, IAIK-JCE 2.0 [5]
was used, which offers a pure Java implementation of dif-
ferent cryptographic algorithms. For signing purposes,
DSA using a key length of 512 bits was chosen.

Table 1: Measured times for plain agents in [ms]

sign &
verify

cycle remainder overall

1 input,
1 cycle

209 2 93 304

100 inputs,
1 cycle

409 3 153 564

1 input,
10000 cycles

217 27158 93 27468

100 inputs,
10000 cycles

400 27235 155 27789

6. Conclusion and future work 11

Table 1 shows the measured times for the four plain agents,
Table 2 shows the corresponding times for the protected
agents. The numbers in brackets in Table 2 denote the over-
head factor compared to the values in Table 1. The last col-
umn shows the measured overall times, i.e. from starting
the execution on the first host to the end of the execution on
the last one. The times in the “sign&verify” column denote
the time needed to compute and verify the complete mes-
sage signature. The “cycle” column denotes the time need-
ed for the summation cycles. The “remainder” column
finally determines the times for all actions that do not fall
into the other two categories.

In the configuration used for the measurement, a plain
agent executes its main routine three times, a protected
agent four times since one check is required. Therefore, the
factors of the “cycle” column range about the value 1.3.
The values in the “sign&verify” column change only mod-
erately when using the protocol since signing more data
needs not much more time compared to the time needed to
start the signature. In the remainder column the protocol
has to compare, sign and verify single states. Therefore,
this value is much higher (by a factor of about 4) for a pro-
tected agent.

For the overall values, the factors range from 1.3 and 1.4
for the two agents with an overwhelming portion of com-
putation (i.e. cycle) of over 95% to 1.9 and 2.2 for the two
agents without much computation. Since in the measure-
ments only migration in one address space was used, no
code transfer was needed. The code that may be transferred
can be divided in to parts: one part that includes the func-
tionality of the plain agent and one part that contains the
protection mechanism. The first part is the same for both
agents as the protected agent offers the same functionality.
For often used agent classes, this part may be already stored
in a cache of the host. The second part may be unique for
an agent, i.e. it may have to be transported over the net.

Please note that the times were measured without using
a just-in-time compiler. By using such a compiler, the times
are reduced by a factor of 0.6 for the first two agents and by
about 50 for the last two agents.

6. Conclusion and future work

Security is an important aspect of using open mobile
agent systems, especially in the area of electronic com-
merce. While other problems seems to be soluble today, the
protection of mobile agents from attacks by their executing
environments is still not completely solved if only software
means can be used. One important area of protection mech-
anisms employs “reference states”, i.e. agent states that
have been produced by non-attacking, or reference hosts.
To allow the programmer to select a mechanism out of this
area that is adequate for his/her application, a framework is
needed that is able to offer support for these mechanisms.
Such a framework has been presented in this paper after
having extracted the abstract attributes of four existing ap-
proaches that use reference states. To illustrate the frame-
work, an example mechanism has been described that uses
an approach different to the existing ones. Using this mech-
anism, the overhead of using the protection algorithm has
been measured for a generic mobile agent. It showed that
the example mechanism roughly doubles the costs of the
execution while offering a good level of protection in case
of non-collaborating attackers.

The presented class of mechanism is not able to prevent
every attack, but protects a mobile agent from modification
attacks that result in a state different from the reference
state. To complete the protection level, another mechanism
has to be found that prevents read attacks, i.e. attacks that
aim at reading data values contained in the agent. If such a
mechanism exists and if it can be combined with the frame-
work introduced in this paper, the goal of protecting mobile
agents from malicious hosts may be in range of practical
usability.

References

[1] Biehl, Ingrid; Meyer, Bernd; Wetzel, Susanne: Ensuring the
Integrity of Agent-Based Computations by Short Proofs,
in: Kurt Rothermel, Fritz Hohl (Eds.): Mobile Agents, Pro-
ceedings of the Second International Workshop, MA’98. pp
183-194. Springer-Verlag, Germany, 1998

[2] Farmer, William; Guttmann, Joshua; Swarup, Vipin: Secu-
rity for Mobile Agents: Authentication and State Appraisal,
in: Proceedings of the 4th European Symposium on Re-
search in Computer Security (ESORICS), Springer Verlag,
pages 118-130, September 1996

[3] Hohl, Fritz: Time Limited Blackbox Security: Protecting
Mobile Agents From Malicious Hosts, in: Giovanni Vigna

Table 2: Measured times for protected agents in
[ms]

sign &
verify

cycle remainder overall

1 input,
1 cycle

237
(1.1)

3
(1.7)

345
(3.7)

584
(1.9)

100 inputs,
1 cycle

560
(1.4)

4
(1.5)

670
(4.4)

1234
(2.2)

1 input,
10000 cycles

235
(1.1)

36353
(1.3)

341
(3.7)

36929
(1.3)

100 inputs,
10000 cycles

472
(1.2)

36272
(1.3)

1983
(12.8)

38727
(1.4)

6. Conclusion and future work 12

(Ed.): Mobile Agents and Security. pp 92-113. Springer-
Verlag, 1998

[4] Hohl, Fritz: A New Protocol Protecting Mobile Agents
From Some Modification Attacks. Technical Report Nr. 09/
99, Faculty of Informatics, University of Stuttgart, Germa-
ny, 1999. http://www.informatik.uni-stuttgart.de/ipvr/vs/
projekte/mole/tr9909.ps

[5] The IAIK JCE project page. http://jcewww.iaik.tu-
graz.ac.at/

[6] The Mobile Agents List. http://www.informatik.uni-stutt-
gart.de/ipvr/vs/projekte/mole/mal/mal.html

[7] Baumann, Joachim; Hohl, Fritz; Rothermel, Kurt; Straßer,
Markus: Mole - Concepts of a Mobile Agent System,
World Wide Web, Vol. 1, Nr. 3, pp. 123-137, 1998

[8] Minsky, Yaron; van Renesse, Robbert; Schneider, Fred;
Stoller, Scott: Cryptographic support for fault-tolerant dis-
tributed computing, in: Proceedings of the Seventh ACM
SIGOPS European Workshop, pages 109-114, Connemara,

Ireland, September 1996. http://www.tacoma.cs.uit.no/pa-
pers/SIGOPS.ft-agents.ps

[9] Sander, Tomas; Tschudin, Christian F.: Protecting Mobile
Agents Against Malicious Hosts, in: Giovanni Vigna (Ed.):
Mobile Agents and Security. pp 44-60. Springer-Verlag,
1998

[10] Vigna, Giovanni: Cryptographic Traces for Mobile Agents,
in: Giovanni Vigna (Ed.): Mobile Agents and Security, pag-
es 137-153. Springer-Verlag, 1998

[11] Wilhelm, U.G.; Staamann, S.; Buttyàn, L.: Introducing
trusted third parties to the mobile agent paradigm, in: J.
Vitek and C. Jensen, editors, Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, Lecture
Notes in Computer Science, pages 471-491. Springer-Ver-
lag, 1999.

[12] Yee, Bennet:A Sanctuary for Mobile Agents. Technical Re-
port CS97-537. Computer Science Department, University
of California in San Diego, USA, 1997

