s Universitat Stuttgart
%o Fakultat Informatik

A Framework to Protect Mobile Agents by
Using Reference States

Fritz Hohl

Email: Fritz.Hohl@informatik.uni-stuttgart.de

Institut fir Parallele und Verteilte
Hochstleistungsrechner (IPVR)
Fakultat Informatik
Universitat Stuttgart
Breitwiesenstr. 20 - 22
D-70565 Stuttgart

A Framework to Protect Mobile
Agents by Using Reference States

Fritz Hohl

Bericht Nr. 2000/03
March 2000

A Framework to Protect Mobile Agents by Using Reference Statés

Fritz Hohl
Institute of Parallel and Distributed High-Performance Systems
University of Stuttgart, D-70565 Stuttgart, Germany
Fritz.Hohl@informatik.uni-stuttgart.de

Abstract first time, in mobile agent systems, not only the executing
party has no vital interest to execute a program correctly,

To protect mobile agents from attacks by their execution put also the employer of a program has to give away the
environments, or hosts, one class of protection mechanismsontrol over the execution.

uses “reference states” to detect modification attacks. Ref- \while the mechanisms that allow the executing party to
erence states are agent states that have been produced bgrotect its system seem to be feasible today, the protection
non-attacking, or reference hosts. This paper examines thisof the agent, and, in turn its owner, is still subject of ongo-
class of mechanisms and present the bandwidth of theing research.
achieved protection. First, a new general definition of at- One way to protect agents is to follow an organizationa|
tacks against mobile agents is presented. As this generalapproach, i.e. to make sure that only trustworthy parties ex-
definition does not lead to a practicable protection scheme, ecute an agent. This can be realized either by maintaining
the notion of reference states is introduced. This notion al- the whole agent platform by only one institution, or by dis-
lows to define a protection scheme that can be used to prac-allowing migration to unknown agent platforms. Currently,
tically realize a whole number of mechanisms to protect the first approach does not seem to be feasible since such a
mobile agents. Therefore, after an initial analysis of al- system would require a large number of vendors and clients
ready existing approaches, the abstract features of thesein order to be worthwhile. The problem of the second ap-
approaches are extracted. A discussion examines theproach is twofold: on one hand, trust is not a immutable at-
strengths and weaknesses of the general protection schemeyibute, but may change depending e.g. on the tasks an
and a framework is presented that allows an agent pro- agent has to fulfil (although an airline as a big company is
grammer to choose a level of protection using the referencetrystworthy, one does not want to depend on the goodwill
states scheme. An example illustrates the usage of thef the company’s host when comparing different flight
framework, measurements present the overhead of therizes). On the other hand, not all resources needed for the
framework for the case of the example mechanism. execution of a certain agent may be available on trusted
hosts.
Another way to protect agents is to use special, trusted,
tamper-free hardware (see e.g. [11]). To use them in the
) near future, at least two things are necessary: the need for
1. Introduction such devices by platform providers and a manufacturer
who builds these devices. Again, currently, no commercial
Mobile agents are program instances that are able to mi-application fosters this need. Therefore, today, there is no
grate from one agent platform to another, thus fulfilling manufacturer who produces these devices. Another prob-
tasks on behalf of a user or another entity. They consist oflem is whether trusted hardware allows the cost-effective
three parts: code, a data state (e.g. instance variables), anglixecution of agents, but this aspect will not be discussed
an execution state that allows them to continue their pro- here.
gram on the next platform. For the area of mobile agents, |f neither organizational mechanisms nor special hard-
security is a very important aspect since neither the provid-ware can be used, mobile agents have to be protected by
er of an agent platform or an agent-based service, nor thesoftware means only. Currently, there are two approaches
owner of an agent wants to be harmed by employing this that try to protect an agent from all major attacks. The first
technology. This is a non-trivial requirement since for the approach, which is called Mobile Cryptography [9], aims at

1. This work was funded by the Deutsche Forschungsgemeinschaft (DFG).

converting agents into programs that work on encrypted ple illustrates the advantages of the framework in Section
data (i.e. the operations use encrypted parameters and res. After having measured the example in terms of over-
turn encrypted results without the need to decrypt thesehead, Section 7 concludes this paper.

data during execution). There are three problems which

have to be solved before this approach can be used. Firstp Attacks, Reference behaviour, and Refer-
cur'rently,“ only re:t|onal polynomial functions can be useq ence States

as input “agents” (recently, there are plans to remove this
restriction). Second, the used agent model does not allow

. ; In this section, we will examine the question of what an
agents that are protected by this approach to return plain-) . .
. .. attack against a mobile agent is, and whether and how the
text data to untrusted hosts (as this could lead to security

problems). Third, the efficiency of this approach is un- answer leads to protection schemes. First, the used agent

known (there is no implementation yet). The second ap- model is defined.

proach based completely on software is called Time-limit- .

ed Blackbox Protection [3]. Here, the agent code is 2-1 Agent execution model

obfuscated using techniques that are hard to analyse by

programs. Since such an obfuscation can be broken by dn this paper, the following model of the execution of a mo-

human attacker given enough time, the agent bears an expibile agent will be used (see also Figure 1).

ration date, after which the agent gets invalid. Successful

attacks before this expiration date are impossible. In this

approach, the input may be any agent, but there are prob- -

lems that seem to prevent the employment in the near fu-

ture. First, it is not known yet whether there are obfuscation

techniques that are “hard” enough. Second, it is unclear

whether the expiration date can be computed. Third, the ef-

ficiency of this approach is currently unknown (but is

seems sure that at least the size of the agent increases sig-

nificantly). The agent is a construct consisting of code, data state,
As we have seen, complete software protection of mo- and execution state. The aim of an agent is to fulfil a task in

bile agents is far from being mature enough to be used to-behalf of its owner. For this purpose, the agent migrates

day. Therefore, other protection mechanisms have to be ex-along a sequence of hosts. The host takes the initial agent

amined in meantime. These mechanisms will not be able tostate, i.e. data and execution state, and starts an execution

prevent every attack, but provide at least protection from session. In this session, the host processes the agent using

certain attack classes. As we will see, one important classthe code and some input, producing a resulting agent state.

of protection mechanisms uses “reference states”, i.e. agenThe input includes all the data injected from the outside of

states that have been produced by non-attacking, or referthe agent, i.e. both communication with partners residing

ence hosts to detect modification attacks of malicious on other hosts and data received directly by or via the cur-

hosts. rent host. The latter e.g. includes results from system calls
This paper will examine this class of mechanisms and like random numbers or the current system time. When the

present the bandwidth of the achieved protection. For thatagent migrates to another host or dies, the execution ses-

purpose, a new general definition of attacks against mobilesion is finished on this host. The resulting state produced by

agents is presented in Section 2. Since this general defini-one host is used as the initial state on the next host.

tion in itself does not lead to a practicable protection

scheme, the notion of reference states is introduced. Thisp 2 Attacks and reference behaviour

notion allows to define a protection scheme that can be

used to practically realize a whole number of mechanisms |, the following, a malicious host is an execution envi-

to protect mobile agents. After an initial analysis of already onment of an agent that tries to attack (or at least plans to

existing approaches in Section 3, an extraction of the ab-atiack) an agent.

stract features of these approaches. A discussion of the |t we examine possible attacks by malicious hosts

strengths and weaknesses of the general protection schemggainst mobile agents, we find lists like this (see Figure 2).

is given in Section 4, In Section 5, a framework is presented These lists do not state all possible attacks, but areas, in

that allows an agent programmer to choose a specific levelyhich attacks can be categorized. An exhausting list of at-
of protection using the reference states scheme. An exam-

host 1 host 2 host 3 host 4

migration

c
s
8
=)

igration

input input input

execution execution execution execution

agent creation

agent termination

initial state resulting state

Fig. 1: Agent execution model

tacks themselves does not exist, since this set is open duéem. Therefore, the difference in behaviour cannot be
to the problem area (see [3] for a discussion of this aspect). measured on a low level automatically, but by using the
knowledge of the programmer to compare two executions
instead.

The attack definition above leads to a protection scheme
where the difference in behaviour is measured to prove or
at least detect misbehaviour. There are two problems that
restrict the practicability of this solution. First, some of the
behaviour of the host cannot be observed from the outside
of the host. In principle, either all malicious behaviour re-
sults sooner or later in perceptible actions, or - as the mali-
cious behaviour does not result in a perceptible action - this
behaviour does not matter since it has no consequences.
" Practically, it is too difficult to control all perceptible ac-
tions. Imagine e.g. that if the host reads a secret key of the
agent and uses this key to decrypt some communication of
Fig. 2: A list of possible attack areas the agent, this knowledge may resultin an action that harms

the agent owner. But first, you have to see that there was a

As shown by [3], this list can be reduced to the areas 2 preach in security, then you have to find out which host can
and4-7 (WhICh can be called “blackbox set"), as other at- be blamed for this and f|na||y you have to prove it.

tacks seem either not to be preventable (areas 9, 12) orcan Second, it is at least difficult to provide the reference
be prevented given the prevention of the blackbox set. host with the state and resources of the untrusted host. As a
The term “attack” related to mobile agent protection is host may e.g. offer a whole database, such a provision
rarely defined explicitly, but most often used in an intuitive would require the transfer of possibly very much data
manner. Since the term is normally understood as a viola- (apart from the aspect that the host may find it unacceptable
tion of the expectations of the agent programmer or owner to transfer important data to a third party). Additionally, if
we can define attack as follows: these data have to be transported from the untrusted host,
Definition: An attack is a difference in behaviour no one can check the equivalence of this data set to the one
between the attacking host and a non-attacking or refer- stored in the untrusted host. One could think of the possi-
ence host, i.e. one that acts as expectadfgrence behav- bility to run the reference host in a “hot stand-by” mode,
iour”) given the same state and resources (and providing it with the same input data as the untrusted host
unambiguous, complete specifications). (i.e. if the database receives new data, this data would also
In this definition, attacks include different behaviour be sent to the reference database). But, also this scheme
due to (unintentional) errors, caused by a misinterpretationfails as soon as new data is created inside the untrusted
of the specifications or by technical faults. host.
Although this definition seems to be intuitively under-
standable, the term “reference behaviour” needs more ex2.3 Reference states
planation. One can argue that first, no two implementations

of a specification behave equally, and second, the behav- \what can be done practically is to measure not the dif-
iour of even the same implementation may differ, depend- ference in behaviour between an untrusted and a reference
ing on external factors, such as the actual state of threachost, but the difference in the variable parts of an agent
scheduling, of the random number generator and so on.computed from the untrusted host on the one hand and a

This may be true for a number of systems, but not on the reference host on the other hand, given the complete input
level our notion of behaviour is situated on. We denote with during the computation. This leads us to:

“behaviour” the level of expectation of the agent program-
mer, i.e. the way the system has to behave in order to exe
cute an agent. If this behaviour differs from the specifica-
tion, the system acts in a way the programmer did not
expect, so it is likely the agent will fail to run. This expec-

tation of the programmer, based on the specification, will
probably not determine the behaviour of the system in eve-
ry detail (e.g. the implementation of integers at the bit lev-
el), but is, at an overall level, an adequate model of the sys-

1. spying out code

2. spying out data

3. spying out control flow

4. manipulation of code

5. manipulation of data

6. manipulation of control flow

7. incorrect execution of code

8. masquerading of the host

9. denial of execution

10. spying out interaction with other agents

11. manipulation of interaction with other agents

12. returning wrong results of system calls issue
by the agent

Definition: A reference state is the combination of the
'variable parts (i.e. the state) of a mobile agent executed by
a host showing reference behaviour.

This input includes all the data injected from the outside
of the agent, i.e. both communication with partners resid-
ing on other hosts and data received directly by or via the
current host. The latter includes e.g. results from system
calls like random numbers or the current system time. It

does not include e.g. results from procedures inside theing complete), there are computations that can be done by
agent as these can be recomputed using the agent code. programs, but not by conditions. Therefore, there may be
If we are able to measure the difference in state, we arecomputations that cannot be checked by this kind of rules.
able to detect attacks, that differ in the resulting state from The lack of the input to the agent also leads to attacks that
a reference state. These attacks include write or modifica-cannot be detected. Imagine e.g. an agent that remotely re-
tion attacks of the variable parts of the agent and attacks,ceives prices for a good from different shops. Then a lowest
where the agent code is not executed according to the specprice is computed and the other prices are removed. The
ifications. The advantage of this approach is that even nothost may modify the execution and/or the prices at its will
every write, modification and incorrect execution attack is without being detected as it is impossible to find an incon-
detected, but only those who indeed result in an incorrectsistency in the resulting state without the used prices.
state of the agent. This means e.g. that the host may modify
the agent code temporarily due to optimization reasons3.2 Server replication
without being blamed to attack the agent. What cannot be
detected by this approach are read attacks and attacks |n [8] Minsky et al. propose to use a fault tolerance

where the party that compiles the input modifies or sup- mechanism to also detect attacks by malicious hosts. The

presses input. authors assume for every stage, i.e. an execution session on
one host, a set of independent, replicated hosts, i.e. hosts
3. Analysis of Existing Approaches that offer the same set of resources (e.g. the same data), but

do not share the same interest in attacking a host (e.g. be-

In this section, we will analyse the four existing ap- cause they are operated by different organizations). Every
proaches that fall into the area of mechanisms that use aexecution step is processed in parallel by all replicated
kind of reference state to detect attacks by the host. First,hosts. After the execution, the hosts vote about the result of
we will describe the mechanisms and state the level of pro-the step. At all hosts of the next step, the votes (i.e. the re-
tection they offer. Afterwards we will classify them accord- sulting agent states) are collected. The executions with the
ing to criteria like used moment of checking and the used most votes wins, and the next step is executed. Obviously,

reference data. even (n/2 - 1) malicious hosts can be tolerated. From our
point of view, this means that an execution is checked by
3.1 State appraisal using a set of other executions, and by counting the number

of equal results. Since the hosts work in parallel, the input
Farmer, Guttman and Swarup present in [2] a “state ap_to the agent has to be shared and one host must not be able

praisal” mechanism that checks the validity of the state of {0 hold back input to the other hosts.

an agent as the first step of executing an agent arrived at a1 € Server replication approach can detect all attacks
host. This checking mechanism only considers the currentthat result in a different agent state. Collaboration attacks
state of the arrived agent. It can consist e.g. of a set of con-Of €SS than n/2 malicious hosts of the same step can be de-

ditions that have to be fulfilled after the execution session. fecteéd. Additionally, even collaboration attacks between

In this case, the reference data is structured as a set of ruled!0Sts of different steps can be found as long as the above

These rules are formulated by the programmer who stategcndition holds.

relations between certain elements of the state. The check

is done by the host that received an agent, and it is in the3.3 Execution traces

interest of this host to do so as it wants to execute only val-

id, i.e. untampered agents (which else might attack him). If ~ Apart from checking the inherent integrity of agents or

the host does not check the agent (e.g. because the host cotomparing agent states resulting from parallel execution,

laborates with the attacking host), an attack against anthe third major idea to check the execution of an agent is to

agent cannot be detected. let the executing host produce an execution protocol or
The question of which further attacks cannot be detectedtrace. In [10], Vigna presents an approach that uses this

depends partly on the powerfulness of the used checkingidea to allow an agent owner to check the execution ses-

mechanism. If e.g. for the conditions, only boolean and nu- sions at different hosts when a fraud is suspected. For this

merical operators are used (i.e. constructs that are not tur-

purpose, every host records a trace that looks like the oneagent. Note that the owner can only determine which host
in Figure 3b. played wrong, but not the difference in the agent state as

only hashes of the final states exist.
10 read(x) 10 x=5
11 y=x+z 11 e
12 m=y+l 12 3.4 Proof Verification
13 k=cryptinput 13 k=2 . .
_ ypinp In [12], an approach is presented that uses the notion of

14 m=m+k 14 . .

. _ proofs of correct execution. As before, these proofs consist
Fig. 3a: Code frag- Fig. 3b: Trace of of some execution information and the final result. The idea
ment the code fragment now is that there exists a more efficient way to check the

_] computation by checking the proof than by recomputing
A ltrace consists of pairn,s) ~ wheren denotes the e execution of the agent. These holographic proofs can be
identifier of the executed code statement. In case this statey,geq to prove the existence of an execution trace that leads
ment modifies the state of the agent using information from i, he final state of an agent by checking only constantly

the outside of the agent (i.e. “input” in our terms)de- many bits of the proof. A protocol that uses proof verifica-
notes the list of variable-value pairs that state the content ofijo is described in [1]. Here, all proofs are sent to the agent
these variables after executing this statement. originator, which checks the proofs after the agent finishes
After the execution, the host creates a hash of the tracejih jts task. At first, it was only known that this holograph-
and a hash of the resulting agent state. Theses hashes afg proof has a IengthI(d>0) where | is the size of the exe-
signed by the host and are sent to the next host, togethegtion trace. Biehl, Meyer and Wetzel proved in [1] that

with the code and state of the agent. The trace itself has tohere exist proofs that are even sublinear or polylogarithmic
be stored by the host. The agent continues to fulfil its task i, the size of the agent's running time.

and returns to its home host afterwards. Now, the agent The nroblem of proof verification is, that currently, only
owner can decide whether he/she wants to check the agenyp_hard algorithms are known to construct holographic
or not. In case of a suspicion, he/she requests the tracegoofs, Therefore, this approach does currently not lead to

from the corresponding hosts starting at the first host. First, practical mechanisms and will be, therefore, not considered
he/she computes a hash of the received trace and comparg$sre further.

this hash with the one stored at the next host. If these hashes
are identical, the host commits on this trace. Then the agen% 5 Analvsis
with its initial state is re-executed. In case of statements y

that used input from the outside, the values recorded in the . . .
trace are used. If a hash of the resulting state of the agent To obtain a better understanding of the protection band-

on this host is equal to the one signed by this host (which width of the class of mechanisms that use a reference state,

can be provided also by the next host), this host did no Wg have;to gxtract tg‘ihgenel”s attrlgu:es OUttﬁf the pt:e;ze?t-
cheat, and the checking process continues. The case th mechanisms and the relations between these atiributes.

the following host pretends to have received a different in- hese attributes are:
itial agent state, is prevented by sending back a signed mesmoment of checking
sage that commits this state back to the sending host. The reference state can be checked either
Obviously, the length of a trace increases with every ex- a) after every execution session on one host
ecution step. Due to performance reasons, Vigna propose®) after the agent has finished its task
therefore to use a modified trace without statement identi- ~ Since the overall aim is to identify the host(s) that at-
fiers. But there is another reason why we are able to dotacked an agent during its journey, and since malicious
without these identifiers. First, it can be argued that it is hosts may occur anywhere along the route, choosing b) also
more important to check whether an execution yields the means that first, the route, i.e. the list of visited hosts has to
correct final agent state than that the execution followed abe stored somewhere in a secure way. This can happen ei-
certain way. Second, a list of executed statement identifiersther by dynamically recording the stations, appending this
does not prove anything since an attacker can create a corinformation digitally signed to the agent data, or by sending
rect list and augment it with correct or incorrect input data. this information to the owner upon every migration, or by
In this case, the attack is detected only if the resulting statehaving an a-priori, signed itinerary. Second, the used refer-
is checked, not the statement identifiers. Therefore, identi-ence data has to be stored for every of the execution ses-
fiers are not needed from a security point of view. sions, since, without this precaution, the malicious host
This approach detects all attacks that result in a different cannot be identified.
state as long as the host does not lie about the input to the

In principle, one could think of checking in smaller time
intervals, e.g. on the level of single statements. In reality
though, you have to wait until an agent left a host since a
host can always run two agents, a correct executed one and
a manipulated one. Then, the agent that was executed cor-
rectly can be used to produce the (correct) checking output

sages sent to communication partners (such as “send
$100 to the host”). Even if the log contains such mes-
sages, it is not possible to check whether such a mes-
sage was sent by just looking at the logs.

It can be argued that it is impossible to restore the
conditions of the original executions for checking as

while using the manipulated agent in reality. Therefore, us-
ing a smaller time interval would not say anything, except
that the host ran one agent correctly.

used reference data

Depending on the moment of checking, the reference

data used by the algorithm might differ. If the execution is

checked after an execution session or after the agent ful-

filled its task, a combination of the initial state, the resulting

state, the input to the session, the execution log and the rep-

licated resources can be used.

used checking algorithm
Independent from the moment of checking, any of the
following checking algorithms can be used (note that the
presented algorithms mark only some points in the contin-
uous bandwidth of possible algorithms):
rules
This term subsumes simple (i.e. non turing complete)
rule mechanisms that allow to check e.g. postconditions
in form of first order logic (e.g. moneySpent + mon-
eyRest = moneylnitial). As has been argued in Section
3.1, such mechanisms may not detect all attacks, but
often rules are easy to state and to check. Rules may
use any of the presented reference data.
proofs
The term proofs denotes in this context representa-
tions of execution traces that are easier to check than
execution traces themselves. Proofs do not need refer-
ence data as parameters, as they include all relevant
data.
re-execution
Re-executions aims at executing an agent according

to the reference specification given the same set of con-

ditions (i.e. input) as the execution to check. As for
rules and proofs, the whole checking process can be

these conditions may include e.g. racing conditions in
case of parallel threads (this is no problem for agent
systems that allow only one thread per agent).

Imagine e.g. that an agent computes a list out of an
input, where the ordering of the elements depends on
the timing of two threads the agent uses. Then the list
cannot compared simply with the list of another execu-
tion as the other list may contain the same elements, but
in different order. To solve this problem and the prob-
lem that input should be authenticated, a more powerful
algorithm is needed.
arbitrary program

This is the most powerful algorithm as it includes the
presented ones and allows for more, e.g. a certain com-
pare method for resulting states or the possibility to ask
a communication partner about received messages.
Since this algorithm is not known in advance, the sys-
tem can offer only basic support, i.e. the possibility to
execute the program at the checking moments. There-
fore, any of the reference data may be used by this
checking mechanism.

The combination of these attributes opens a space of po-
tential mechanisms that is much larger than the four ap-
proaches we have seen in this section. If we want to allow
the programmer to choose a protection mechanism that is
appropriate for his/her specific application, we have to of-
fer him/her a framework instead of a single mechanism.

4. Strengths and Weaknesses of Mechanisms
Using Reference States

As mentioned before, mechanisms using reference
states cannot detect all possible attacks by malicious hosts.
In this section, we will analyse the bandwidth of the result-

automated, i.e. supported by system mechanisms. After ing protection, identify applications that cannot be protect-

having re-executed the specified amount of statements
(i.e. one, or a session, or a task), both executions are
compared. This can be done either by comparing the
“execution logs” that can contain e.g. changes in data

and execution state, or by comparing the resulting agent

states (without finding differences in the execution

ed and discuss possible extensions.

4.1 Resulting protection bandwidth

The protection bandwidth depends on the used at-
tributes. i.e. the moment of checking, the used reference da-

itself). Therefore, re-execution needs input, initial agent ta, and the checking algorithm. A mechanism at the lower
state, and execution log or resulting agent state as referend of the protection scale uses only the weakest attributes,
ence data. The power of the approach depends on the j.e. it checks after the execution task, uses only the resulting
level of detail of the execution log. In case of using agent state, and employs rules to check the execution. Since
only the resulting state, the host can lie about the mes- the check takes place after the agent fulfilled its task, a

compromised agent (i.e. one that has been attacked) continewner, but such a read attack may require more knowledge
ue to work on other hosts. Unwanted actions the agent mayabout the inner structure of the agent than one that just mis-
have done as a result of the attack in interactions with hon-uses an agent.

est partners can be blamed to the attacker, but it may be dif-

ficult to compensate them. Checking only the resulting 4.3 Possible extensions

states by using rules allows to detect only attacks that differ

in these states, and that are detectable by the rules. Ifarule 14 prevent the pretention of false input data, input can

e.g. checks w.hgther the initial money equals the spent sunye sed, that is signed by the party that produces the input,
plus the remaining amount, an attack that led to an unwant-and which can be verified by the checking party using cryp-
ed purchase cannot be uncovered. Although this mechaographic means. Another possibility is to use a trusted
nism can be performed very efficiently and does not delay thjrq party that is used as a relay for input to the agent, so
the execution on the different hosts, it is not very powerful the input data is no longer controlled by the host.
from a security point of view. _ If the attack that misuses the agent has to be prevented,
A mechanism at the higher end of the protection scale 4gain the idea of using a trusted third party can be used to
checks after every execution session, uses all possible refastaplish a kind of proxy object for the agent, situated on
erence data and allows for an arbitrary checking algorithm. gnother host. Parties wanting to interact with the agent have

If the next host checks the execution of the former host, it then to use this proxy object which is, therefore, able to log
can be sure to execute an uncompromised agent in case ahe interactions of the agent.

a successful check. Since the mechanism allows for re-ex-

ecuting t'he agent, the computatlon ofa}former hpst is com-5- A Checking Framework for Mobile-
prehensible. If the checking mechanism additionally al-
lows to ask the communication partners whether a certain Agents-Systems

input was issued by them, this aspect can be protected also.) .)

Obviously, this mechanism is more powerful than the sim- I this section, a framework is presented that supports
ple one above. But its disadvantage is its computational andhe implementation of a wide range of checking mecha-
communication overhead: first, the computation is roughly NiSMS using reference states. It provides functionality for

agent state plus the input at a host. The idea is to let the agent programmer decide about the

In case of the detection of a fraud, the question of the check mechanism a host has to execute and to offer basic

consequences remains. In a setting where an attacker caftinctionality like signing by the framework. Although it is
harm a party without consequences, just detecting attackdmplemented for the mobile agents system Mole, the pre-
is useless. Only if legal, organizational or social steps canSented scheme can be used for nearly every mobile agent
be taken, schemes like the presented one make sense. ARlatform implemented in Java that uses a weak migration
though these considerations affects the overall security,SCheme (i.e. that lets the programmer encode the execution

they are outside the scope of this paper. Nevertheless, theptate of an agent manually into variables that are transport-
deserve future examination. ed automatically, and that executes a start procedure after

every migration), and offers callback methods in agents
called by the host. This is the case for most systems (see [6]
for characteristics of most mobile agent systems). Since we

Attacks that do not result in a different agent state can- want to su.pport Fhe generic attpbutesf, we explain the
framework in relation to these attributes:

not be detected by using the presented protection scheme.

Especially read attacks, i.e. attacks that aim solely at themoment of checking

knowledge of agent data, lie outside the scope, as these at- Here we need callbacks for the different moments (see
tacks do not leave traces in the agent state. If the goal is toFig. 4), i.e. after an execution session on one host, and after
achieve an Comp|ete agent protection’ other mechanisméhe agent fulfilled its task. The callback for the check mo-
have to be developed for this purpose. Other attacks thatment after an execution session is calletieck-
cannot be detected are attacks where the executing host lieAfterSession . Itis called as the first action on the next
about the input an agent receives, and finally attacks, whereh0st, as it would be useless to check a session on the same
the host forces the agent to do something (like buying a host since then the host could also manipulate the check.
good)' and, Subsequenﬂy, migrates another, not Compro_The callback for the moment after the agent finishes its task
mised version of the agent. It can be argued that the latteriS calledcheckAfterTask . Itis called by the last host
attack is rather equal to a read attack, where the host learnéhat executes the agent, often the home host of the agent.
about some agent data, and then uses it to harm an agent

4.2 Applications that cannot be protected

used reference data
Here we have to do only two things: First, we have to make

the routines that create this data, but if we have automatic
support for creating reference data, this has to be pointed

sure that, at the end of an execution session, we have th@utto the framework. This can be done by declaring the im-

needed data in a form that allows to check the execution.
Second, we have to transport this data. For mobile agents
the latter is trivial. All we have to do is to include the data

plementation of interfaces namdditalStateRe-

quester , ResultingStateRequester , Input-
Requester , ExecutionLogRequester , and Re-
sourceRequester , similar to the usage atlonable

in the data part of the agent as this part is transported autoin Java.

matically. For the former, we have to do more. The initial
and resulting states are no problem since it is exactly this
portion of data that has to be transported to and from the ex-

ecuting host. Replicated resources are simply objects that
are appended to the agent (although this part may be large).

To create an input list or an execution log, two ways can be
followed. Either this information is collected by a modified
Virtual Machine (which has easy access e.g. to the line
numbers that may be included in the execution log), or
written to special containers by code that is instrumented
either automatically or manually. Using manually instru-
mented code has the advantage that the programmer ca
specify the type and format of the data, which can be more
efficient if the checking algorithm is also provided by him/
her.

Callbacks in the agent

checkAfterSession()
This method is called by the host as the first ac-
tion when arriving

checkAfterTask()
This method is called by the last host
Interfaces implemented by agent

InitalStateRequester
declares need for initial state

ResultingStateRequester
declares need for resulting state

InputRequester
declares need for input

ExecutionLogRequester
declares need for execution log

ResourceRequester
declares need for host resources

Fig. 4: Framework methods agent

Finally, we want to choose which reference data we will

Methods offered by host

Object getlnitalState()
returns the intial state

Object getResultingState()
returns the resulting state

Object getinput()
returns the input

Object getExecutionLog()
returns the execution log

Object getResource()

n returns the host resources

Fig. 5: Framework methods host

used checking algorithm

As the “arbitrary program” alternative is, on the one
hand, the most powerful approach and, on the other hand,
includes all other alternatives, it is enough to execute code
written by the agent programmer when we want to check an
execution. If we want support the other approaches, we can
either choose to let the programmer include supporting
code or we can offer this code in the system. Rules can be
supported either by using a rule mechanism evaluating the
desired formalism or we can encode the rules manually as
program statements. For supporting proofs, we have to
know the structure of the proof. If it consists of data, the
proof can be transported as a part of the agent. Then we
would have to include only the routines to check the proof.
If the proof consists also of code, it can be encoded as an
arbitrary program. Support for re-execution may happen on
different levels. The problem is the question of how the
original code can be used for re-execution. First, the code
has to be executed a second time using the input taken from
the reference input data. Second, output actions can be sup-
pressed as they are not needed for checking the execution.
Third, the resulting state has to be compared with the one
of the original execution in a manner that can be specified
by the agent programmer (due to the problems discussed in
the last section). Solutions to this problem include a modi-
fied execution environment (i.e. a Java Virtual Machine)

use for checking. In case of creating reference data by man+hat is able to use the reference input set instead (in this

ually instrumented code, this is done by the programmer in

case the unmodified code can be used), a copy of the orig-

inal code, automatically instrumented by statements thatdo5.2 Generic example agent
the needed actions (i.e. second execution, output suppres-
sion, and state comparison), and finally, a copy of the orig- To demonstrate the framework and the used checking
inal code that is instrumented manually by the programmer. mechanism, a generic agent was implemented. After that, a
To explore this aspect, the last solution was examined for second agent was created based on the first one, but protect-
the example application (see next section).An Example fored using the mechanism described in Section 6.1. This
Using the Framework agent migrates along a path of three hosts, where the first
To illustrate the framework we choose a mechanism thatand the last host are trusted, the second one is untrusted.
is powerful, and that is not covered by the existing ap- The agent can be parametrized by two values. The first pa-
proaches. Using this mechanism we protected a generic exrameter determines a “cycle” value, where every cycle
ample agent, and measured the overhead caused by usingieans an integer summation of 1000 values. This summa-
the protection mechanism. We used as a first step a comtion cycle emulates the computational parts of an agent. In
plete manual approach, i.e. one where the programmerthe measurement, a cycle value of either 1 or 10000 was
manually instruments the code to create the required refer-used. The second parameters determines the number of in-

ence data. put elements to the agent. Each input element consisted of
a 10 byte string. In the measurement, a value of either 1 or
5.1 Used checking mechanism 100 was used. Using these values, four different agent in-

stances were generated and measured: 1 very small one, 1

A new checking mechanism was chosen to demonstrateWith almost no input, but some computation, 1 with almost
that not only the existing approaches described in Sectionn0 computation, but 100 input elements and 1 agent that
3 can be based on the framework, but also other algorithmgdoth computed some time and received 100 input elements.
that are based on the idea of resulting states. The mechaThese four agents were executed two times: “plain”, with-
nism is described in detail in [4] and can be sketched hereout using the protocol (but being signed and verified as a
only roughly. whole) and “protected”, using the protocol.

The mechanism is based on the “Traces” approach by
Giovanni Vigna [10], but uses another moment of check- 5.3 Measurements
ing. In the Vigna approach, the owner needs a suspicion to
start checking. In contrast to that, we decided to check anThe measurement was implemented for the mobile agents
execution session in every case instead of the whole task ifsystem Mole [7], which uses Java as the agent program-
needed. For performance reasons, we decided to use theing language. As a security package, IAIK-JCE 2.0 [5]
next host to check the execution session of the current hostvas used, which offers a pure Java implementation of dif-
regardless of whether this next host is a trusted one (like theferent cryptographic algorithms. For signing purposes,
home host) or an untrusted one. This decision has the disDSA using a key length of 512 bits was chosen.
advantage that collaboration attacks of two and more con-
secutive hosts cannot be detected, but allows on the other Table 1: Measured times for plain agents in [ms]
hand to check the execution more timely and allows to pre-

vent attacks due to the fact that checking happens regardt Sigr_‘ & cycle | remainder| overall
less of whether the owner has a suspicion or not. As refer- verify
ence data, the initial and the resulting state of an execution 1t 209 2 93 304

session are used as well as the input to this session. The 1 cycle
mechanism uses digital signatures and secure hash algd
rithms to authenticate the data a host produces. To preven
an attack by the checking host, initial states have to be
signed by both the checking host and the checked host. The 1 input, 217 27158 93 27468
mechanism is optimized in the sense that execution sest 10000 cycles
sions on trusted hosts are not checked (trusted hosts wil
not attack by definition). Finally the mechanism is able to
present the complete state of an attacked agent instead af
only hashes of the state, so the owner is able to prove his/
her damage in case of a fraud. The checking mechanism
puts an overhead to the execution of the agent that can be
expected to roughly double the costs of the execution of the
unprotected agent (see [4] for a more detailed analysis).

¢ 100 inputs, 409 3 153 564
1 cycle

100 inputs, 400 27235 155 27789
10000 cycles

Table 2: Measured times for protected agents in Please note that the times were measured without using

[ms] a just-in-time compiler. By using such a compiler, the times
are reduced by a factor of 0.6 for the first two agents and by
sign & cycle | remainder| overall about 50 for the last two agents.
verify
1input, 237 3 345 584 6. Conclusion and future work
1 cycle (1.2) 1.7) (3.7) (1.9)
100 inputs, 560 4 670 1234 Security is an impo_rtant_aspect of using open mobile
1 cycle (1.4) (1.5) (4.4) 2.2) agent systt_'-:ms, especially in the area of electronic com-
merce. While other problems seems to be soluble today, the
Linput, 235 36353 341 36929 protection of mobile agents from attacks by their executing
10000 cycles| (1.1) | (1.3) @7 (1.3) environments is still not completely solved if only software
100 inputs, 472 36272 1983 38727 means can be used. One important area of protection mech-
10000 cycles| (1.2) (1.3) (12.8) (1.4) anisms employs “reference states”, i.e. agent states that

have been produced by non-attacking, or reference hosts.
Table 1 shows the measured times for the four plain agents,T© @llow the programmer to select a mechanism out of this

Table 2 shows the corresponding times for the protected,area that is a_dequate for his/her application, aframewc_)rk is
agents. The numbers in brackets in Table 2 denote the over'€€ded that is able to offer support for these mechanisms.
head factor compared to the values in Table 1. The last col-SUch @ framework has been presented in this paper after
umn shows the measured overall times, i.e. from starting having extracted the abstract attributes <_)f four existing ap-
the execution on the first host to the end of the execution onProaches that use reference states. To illustrate the frame-
the last one. The times in the “sign&verify” column denote WOk, @n example mechanism has been described that uses
the time needed to compute and verify the complete mes_an_approach different to thg existing ones._ Using th_|s mech-
sage signature. The “cycle” column denotes the time need-anism, the overhead of using the protecnon algorithm has
ed for the summation cycles. The “remainder” column been measured for a_generlc mobile agent. It showed that
finally determines the times for all actions that do not fall "€ €xample mechanism roughly doubles the costs of the
into the other two categories. e?ecunon”wgne (t)_ffermt? akgood level of protection in case
of non-collaborating attackers.

In the configuration used for the measurement, a plain g presented c?ass of mechanism is not able to prevent
agent executes its main routine three times, a protecteds,ory attack, but protects a mobile agent from modification
agent four times since one check is required. Therefore, the, 4 s that result in a state different from the reference

factors of the "WS'?" colurr'm"range about the value 1.3. 516 To complete the protection level, another mechanism
The values in the “sign&verify” column change only mod- 55 14 pe found that prevents read attacks, i.e. attacks that
erately when using the protocol since signing more data 5im 4t reading data values contained in the agent. If such a

needs not much more time compared to the time needed 1,0 chanism exists and if it can be combined with the frame-

start the signature. In the remainder column the protocol o introduced in this paper, the goal of protecting mobile
has to compare, sign and verify single states. Therefore,;gents from malicious hosts may be in range of practical
this value is much higher (by a factor of about 4) for a pro- usability.

tected agent.

For the overall values, the factors range from 1.3 and 1.4 References
for the two agents with an overwhelming portion of com-
putation (.I'e' cycle) of over 95%. to 1'9. and'2.2 for the two [1] Biehl, Ingrid; Meyer, Bernd; Wetzel, Susanne: Ensuring the
agents Wlthou't muph gomputatlon. Since in the measure- Integrity of Agent-Based Computations by Short Proofs,
ments only migration in one address space was used, N0 jn: Kurt Rothermel, Fritz Hohl (Eds.): Mobile Agents, Pro-
code transfer was needed. The code that may be transferred ceedings of the Second International Workshop, MA98. pp

can be divided in to parts: one part that includes the func- 183-194. Springer-Verlag, Germany, 1998

tionality of the plain agent and one part that contains the [2] Farmer, William; Guttmann, Joshua; Swarup, Vipin: Secu-
protection mechanism. The first part is the same for both rity for Mobile Agents: Authentication and State Appraisal,
agents as the protected agent offers the same functionality. in: Proceedings of the 4th European Symposium on Re-

For often used agent classes, this part may be already stored ~ Search in Computer Security (ESORICS), Springer Verlag,
in a cache of the host. The second part may be unique for pages 118-130, September 1996

Co Hohl, Fritz: Time Limited Blackbox Security: Protecting
an agent, i.e. it may have to be transported over the net. ; L N o
9 y P Mobile Agents From Malicious Hosts, in: Giovanni Vigna

(4]

(6]
(7]

(8]

(Ed.): Mobile Agents and Security. pp 92-113. Springer-
Verlag, 1998

Hohl, Fritz: A New Protocol Protecting Mobile Agents [9]

From Some Modification Attacks. Technical Report Nr. 09/
99, Faculty of Informatics, University of Stuttgart, Germa-
ny, 1999. http://www.informatik.uni-stuttgart.de/ipvr/vs/

projekte/mole/tr9909.ps [10]

The 1AIK JCE project
graz.ac.at/

page. http://jcewww.iaik.tu-

The Mobile Agents List. http://www.informatik.uni-stutt- [11]

gart.de/ipvr/vs/projekte/mole/mal/mal.html

Baumann, Joachim; Hohl, Fritz; Rothermel, Kurt; StraRer,
Markus: Mole - Concepts of a Mobile Agent System,

World Wide Web, Vol. 1, Nr. 3, pp. 123-137, 1998

Minsky, Yaron; van Renesse, Robbert; Schneider, Fred;

Stoller, Scott: Cryptographic support for fault-tolerant dis- [12]

tributed computing, in: Proceedings of the Seventh ACM
SIGOPS European Workshop, pages 109-114, Connemara,

Ireland, September 1996. http://www.tacoma.cs.uit.no/pa-
pers/SIGOPS.ft-agents.ps

Sander, Tomas; Tschudin, Christian F.: Protecting Mobile
Agents Against Malicious Hosts, in: Giovanni Vigna (Ed.):
Mobile Agents and Security. pp 44-60. Springer-Verlag,
1998

Vigna, Giovanni: Cryptographic Traces for Mobile Agents,
in: Giovanni Vigna (Ed.): Mobile Agents and Security, pag-
es 137-153. Springer-Verlag, 1998

Wilhelm, U.G.; Staamann, S.; Buttyan, L.: Introducing
trusted third parties to the mobile agent paradigm, in: J.
Vitek and C. Jensen, editors, Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, Lecture
Notes in Computer Science, pages 471-491. Springer-Ver-
lag, 1999.

Yee, Bennet:A Sanctuary for Mobile Agents. Technical Re-
port CS97-537. Computer Science Department, University
of California in San Diego, USA, 1997

