
AIDA II - Abschlußbericht

Fritz Hohl, Joachim Baumann, Kurt Rothermel, Markus Schwehm,
Markus Straßer, Wolfgang Theilmann

Email: Vorname.Nachname@informatik.uni-stuttgart.de

Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)

Fakultät Informatik
Universität Stuttgart

Breitwiesenstr. 20 - 22
D-70565 Stuttgart

Universität Stuttgart
Fakultät Informatik

AIDA II - Abschlußbericht

Fritz Hohl, Joachim Baumann, Kurt Rothermel,
Markus Schwehm, Markus Straßer,

Wolfgang Theilmann

Bericht Nr. 2000/04
März 2000

Abschlussbericht AIDA II 2

Kurzfassung

In diesem Bericht geht es um die Zusammenfassung der Erkenntnisse, die im Verlauf der zwei-
ten Phase des AIDA-Projektes von März 1998 bis Februar 2000 gewonnen wurden. AIDA ist
ein Projekt, das von der Deutschen Forschungsgemeinschaft (DFG) finanziert wird. Das Thema
dieses Projektes sind Systemmechanismen zur Unterstützung mobiler Agenten, also Einheiten,
die aus Code, Daten und Zustand bestehen und sich selbstständig in einem Netzwerk bewegen
können. Die Ziele von AIDA II waren die Erarbeitung des Themenbereichs Sicherheit in Mobi-
le-Agenten-Systemen mit Schwerpunkt auf der Sicherheit mobiler Agenten gegenüber böswil-
ligen Hosts, die Implementierung von Terminierungsprotokollen und Waisenerkennungsmecha-
nismen, Abrechnungsmechanismen und schließlich Mechanismen zur Strukturunterstütz-ung
für Agentenanwendungen.

Inhaltsverzeichnis

1 Einführung ... 3

2 Ziele von AIDA II ... 3

3 Implementierung von Terminierungsprotokollen ... 5

4 Entwurf und Implementierung von Sicherheitsprotokollen .. 9

5 Abrechnung: Konzepte und Implementierung .. 21

6 Verarbeitungsmodelle für Agentenanwendungen ... 24

7 Weitere Ergebnisse von AIDA II .. 31

8 Verwandte Arbeiten .. 33

9 Aktivitäten der Gruppe auf dem Gebiet der mobilen Agenten im Berichtszeitraum 33

10 Publikationen ... 34

11 Zusammenfassung .. 36

12 Literatur .. 37

Abschlussbericht AIDA II 3

1 Einführung

Mobile Agenten sind aktive und autonome Verarbeitungseinheiten, die in der Lage sind, Funk-
tionalität für eine Anwendung zu erbringen und selbständig von Systemknoten zu Systemkno-
ten zu migrieren. Mobile Agenten stellen zum einen ein Programmiermodell dar, dessen
Einheiten, die mobilen Agenten, wie Softwareroboter in einer (künstlichen) Umgebung intera-
gieren können. Diese Interaktion schließt Kommunikation mit anderen Agenten und Rechnern
mit ein, ebenso wie Einwirkung auf diese Umwelt. Mobile Agenten stellen als Technologie
zum anderen jedoch auch eine Middleware dar. Als solche bietet sie eine Plattform für Appli-
kationen und setzt deren Anforderungen in die Kommunikationsaufrufe und andere Dienstlei-
stungen der darunterliegenden Rechnersystemschicht um. Technisch gesehen schließlich sind
mobile Agenten Einheiten aus Programmcode und Zustandsdaten, die es einem Agenten erlau-
ben, Berechnungen, die auf einem Knoten angefangen wurden, auf einem anderen Knoten wei-
terzuführen. Mobile Agenten etablieren sich als eine Technik, die durch viele Vorteile
gegenüber der herkömmlichen Client-Server-Technik immer stärker in Industrie und For-
schung wahrgenommen wird.

Das AIDA-Projekt versucht, auf der Ebene des Agentensystems Verfahren und Mechanismen
zu entwickeln, die es Anwendungen erlauben, die Vorteile mobiler Agenten auszunutzen.

Das Ziel der ersten Projektphase, AIDA I, war es, auf der Grundlage eines allgemeinen Verar-
beitungsmodells flexible Systemmechanismen für verteilte, agentenbasierte Systeme zu ent-
wickeln. Neben Mechanismen zur Agentenmigration und -kommunikation wurde ein
Gruppenkonzept erarbeitet und darauf aufbauend Terminierungsprotokolle entwickelt. Mit der
Einführung des Gruppenkonzeptes wurde das Ziel verfolgt, Abhängigkeiten zwischen Agenten
einfach zu modellieren und systemseitig effizient kontrollieren zu können. Um einen Rahmen
für die Implementierung dieser Verfahren benutzen zu können, wurde ein Mobile-Agenten-
System, Mole, erstellt. Dieses System benutzte als eines der ersten die Programmiersprache
Java, die heute in den meisten derartigen Systemen zum Einsatz kommt. Da bereits damals der
Sicherheitsaspekt als kritisch für die Akzeptanz einer solchen Technologie eingeschätzt wurde,
wurde der Bereich der Sicherheit analytisch erarbeitet.

Nachdem so in AIDA I die technologischen Grundlagen für ein derartiges System gelegt wur-
den, befasste sich die zweite Projektphase, AIDA II, zum einen mit der Sicherheit in Mobile-
Agenten-Systemen, da die Existenz von Mechanismen in diesem Bereich essenziell wichtig für
den Einsatz der Technologie z.B. für das Gebiet des Elektronischen Handels ist. Der andere
Schwerpunkt des Vorhabens beschäftigte sich mit der Fortführung der Forschung auf dem
Gebiet der Systemmechanismen für Agentensysteme. Diese Fortführung sollte es Anwendun-
gen ermöglichen, strukturelle Systemunterstützung über das bloße zur Verfügung stellen von
Diensten wie der Kommunikation zu erhalten.

2 Ziele von AIDA II

Die Ziele des beantragten Vorhabens waren zum einen Forschung auf dem Gebiet der Sicherheit
in Mobile-Agenten-Systemen, da die Existenz von Mechanismen in diesem Bereich essenziell
wichtig für den Einsatz der Technologie z.B. für das Gebiet des Elektronischen Handels ist. Das
andere Ziel des Vorhabens beschäftigte sich mit der Fortführung der Forschung auf dem Gebiet
der Systemmechanismen für Agentensysteme. Diese Fortführung sollte es Anwendungen er-
möglichen, strukturelle Systemunterstützung über das bloße zur Verfügung stellen von Diensten
wie der Kommunikation zu bekommen. Das zweite Ziel lässt sich in die drei Teile Implemen-

Abschlussbericht AIDA II 4

tierung der Terminierungsprotokolle und Waisenerkennungsmechanismen, Abrechnungsme-
chanismen, und Mechanismen zur Strukturunterstützung für Agentenanwendungen aufspalten.

Implementierung von Terminierungsprotokollen

Im Zusammenhang mit mobilen Agenten sind Waisen Agenten, die für die Applikation, der sie
zugeordnet sind, terminiert werden können, entweder weil die Applikation ihrer Mitarbeit nicht
mehr bedarf oder weil z.B. ein Abbruch der Verarbeitung durchgeführt wird. Die Terminierung
eines Agenten ist demzufolge das Entfernen eines arbeitenden Agenten durch das System oder
den Agent selbst. Dabei ist zu berücksichtigen, dass Agenten migrieren können, eventuell völlig
asynchron zueinander operieren, und sich die Gruppe der Agenten, die zu einer Applikation ge-
hört, jederzeit dynamisch ändern kann. In Client/Server-strukturierten Systemen wird die Been-
digung einer Ausführung meist mittels hierarchisch organisierter Kontrollstrukturen festge-
stellt, die sich sicher nicht auf agentenbasierte Verarbeitungsmodelle übertragen lassen. In
AIDA I wurde durch einen aus eigenen Mitteln finanzierten Mitarbeiter ein Verfahren [Bau97]
erarbeitet, das die Terminierung und Waisenerkennung von mobilen Agenten mittels der Ein-
führung expliziter Gruppenbeziehungen erlaubt.

In diesem Teil des beantragten Vorhabens nun sollte dieses Verfahren für das Mole-System im-
plementiert werden, um die Realisierbarkeit eines solchen Mechanismus zu demonstrieren, um
eine Basis für weitere Forschung in dieser Richtung zu haben, und um eine Evaluation in Rich-
tung Skalierbarkeit, Aufwand und Parametrisierung durchführen zu können.

Entwurf und Implementierung von Sicherheitskonzepten

Das Ziel dieses Teilvorhabens war die Forschung auf dem Gebiet der Sicherheit von mobilen
Agenten im Vergleich zu den bestehenden Verfahren auf dem Gebiet der Sicherheit in verteilten
Systemen und die Schaffung eines Rahmenwerks für Sicherheit, in dem Verfahren zur Authen-
tifikation, Verschlüsselung usw. die Sicherheit von Agent und Agentensystemknoten garantie-
ren. Dazu wurden in der ersten Phase Anforderungen an ein solches Rahmenwerk gesammelt.
Aufbauend auf diesen Anforderungen sollten in der zweiten Phase diejenigen Gebiete bzw. Ver-
fahren identifiziert werden, die mit existierenden Methoden gelöst werden können. Danach soll-
ten existierende Verfahren, so sie anwendbar sind, für die Bedürfnisse eines Mobile-Agenten-
Systems angepasst und implementiert werden. Schließlich sollten Ansätze auf den Gebieten er-
arbeitet werden, die neu sind und daher mit bestehenden Verfahren nicht gelöst werden können.
In einer ersten Einschätzung zeigte sich, dass insbesondere das Gebiet des Schutzes von Agen-
ten gegenüber böswilligen Knoten bisher nur sehr unzureichend bearbeitet wurde und kein An-
satz existierte, der einen technischen Schutz eines Agenten (im Wesentlichen ein Programm)
vor einem Knoten (im Wesentlichen dessen Interpreter) gewährleistet. Dies ist umso erstaunli-
cher, als dieser fehlende Schutz den Agenten, der im Programmiermodell eigentlich autonom
ist, völlig schutzlos nicht nur Modifikations-, sondern auch Leseattacken ausliefert. Damit aber
würden den Daten, die ein Agent transportieren kann, sehr schwere Restriktionen auferlegt wer-
den, falls nicht vorher garantiert werden kann, dass ein Knoten vertrauenswürdig ist. Letzteres
ist in einem offenen Agentensystem, in dem jede Institution Knoten anbieten kann, nicht von
vornherein zu garantieren. Innerhalb von AIDA I wurde eine Idee entwickelt, wie dieser tech-
nische Schutz gewährleistet werden könnte. Ziel der zweiten Phase war es daher auch zu vali-
dieren, ob dieser Ansatz allgemein oder nur in einigen Anwendungsfällen anwendbar ist, und
welche Infrastrukturmaßnahmen dafür notwendig sind.

Abschlussbericht AIDA II 5

Abrechnung: Konzepte und Implementierung

Ohne die Möglichkeit der Abrechnung erbrachter Dienstleistungen können Netze auf kommer-
zieller Basis nicht betrieben werden. Es gibt im Bereich der Client/Server-Systeme schon ver-
schiedene Vorschläge zur Abrechnung von Leistungen in Netzen auf der Basis von elektroni-
schem Geld. Es ist zu erwarten, dass im Zuge der Etablierung “elektronischer Märkte” dieses
Thema zukünftig noch stärker an Bedeutung gewinnen wird.

Der Bereich der Sicherheit und der der Abrechnung beeinflussen sich gegenseitig sehr stark, das
eine kann nicht vollständig betrachtet werden, ohne auch den anderen Bereich abzudecken. Da-
her musste auch das Gebiet der Abrechnung erarbeitet werden, wenn das Gebiet der Sicherheit
in Mobile-Agenten-Systemen als Schwerpunkt behandelt wird. Dabei sollten in diesem Bereich
keine neuen Verfahren entwickelt werden, sondern, wenn immer das möglich war, bestehende
Ansätze evaluiert und verwendet werden. Was im Kontext der agentenbasierten Systeme zusätz-
lich betrachtet werden sollte, war die Frage, ob Agenten Geld mit sich führen können, und falls
ja, in welcher Form. In jedem Fall sollte sichergestellt werden, dass weder Agenten noch Dienst-
leister elektronisches Geld “drucken” können. Als Voraussetzung für die Abrechnung sowie die
Benutzung von elektronischem Geld war es notwendig, allen beteiligten Parteien Garantien z.B.
über die Sicherheit der geldtransportierenden Agenten geben zu können.

Verarbeitungsmodelle für Agentenanwendungen

Einer der Vorzüge des Client-Server-Modells ist es, dass sich die Anwendungsstruktur in der
Hierarchie der RPC-Aufrufe wiederfinden und sich diese implizite Struktur für einige Aufgaben
wie z.B. die Terminierung und Waisenerkennung vorteilhaft einsetzen lässt. Da die Mobile-
Agenten-Architektur wesentlich flexibler ist, und sich z.B. Kommunikationsbeziehungen nicht
ohne weitere Informationen als in Relation stehend identifizieren lassen, werden andere Verfah-
ren benötigt, um die Anwendungsstruktur erheben zu können. Die in AIDA II in Betracht gezo-
gene Möglichkeit war, dem Programmierer einfache Interaktionsmodelle zur Verfügung zu stel-
len, die einerseits viele Anwendungsfälle abdecken und andererseits Relationen zwischen
Agenteninteraktionen implizieren, die von Systemmechanismen ausgenutzt werden können.
Dazu sollten typische Verarbeitungsstrukturen identifiziert und in einem zweiten Schritt, durch
adäquate Interaktionsmodelle bzw. Kontrollstrukturen nachgebildet werden. Obwohl diese vor-
gefertigten Interaktionsmodelle nicht die volle Flexibilität des allgemeinen Agentenmodells
bieten können, sollten sie nicht nur das Systemmanagement erleichtern, sondern mit ihrem vor-
gefertigtem Funktionsumfang auch für die Erstellung von Anwendungen, die auf mobilen
Agenten beruhen, arbeitserleichternd wirken.

3 Implementierung von Terminierungsprotokollen

Im Zusammenhang mit mobilen Agenten sind Waisen Agenten, die für die Applikation, der sie
zugeordnet sind, terminiert werden können, entweder weil die Applikation deren Mitarbeit
nicht mehr bedarf oder weil z.B. der Abbruch der Verarbeitung durchgeführt wird. Die Termi-
nierung eines Agenten ist demzufolge das Entfernen eines arbeitenden Agenten durch das Sy-
stem oder den Agent selbst. In AIDA I wurde ein Verfahren [Bau97] erarbeitet, das die Termi-
nierung und Waisenerkennung von mobilen Agenten mittels der Einführung expliziter
Gruppenbeziehungen erlaubt. In AIDA II wurde dieses Verfahren implementiert und bezüglich
Nachrichtenkomplexität und Fehlertoleranz evaluiert.

Abschlussbericht AIDA II 6

3.1 Konzepte zur Kontrolle mobiler Agenten

Zur Kontrolle mobiler Agenten, also zur Terminierung und Waisenerkennung, wurden u.a. zwei
Konzepte entwickelt: das Pfadkonzept und das Schattenkonzept. Da es für beide Verfahren not-
wendig ist, einen mobilen Agenten im System zu finden, konnte die Fragestellung der Auffin-
dung mobiler Agenten in einem weitverteilten System mitbehandelt werden.

3.1.1 Das Pfadkonzept

Das Pfadkonzept unterstützt das Finden und Terminieren von Agenten. Der Mechanismus bietet
keine Unterstützung für Waisenerkennung. Beim Verlassen eines Platzes hinterläßt jeder Agent
seinen neuen Aufenthaltsort in einem Proxy. Hierdurch wird ein Pfad von Proxies erzeugt, der
vom Erzeugungsort des Agenten zu seinem momentanen Aufenthaltsort führt. Dieser Pfad kann
verfolgt werden, um den Agenten zu finden (siehe detaillierte Diskussion in [BR98] bzw.
[Bau00]). Die Hauptprobleme dieses Ansatzes sind die Entfernung überflüssiger Proxies und
die Verfügbarkeit des Pfades bei einer hohen Anzahl von Proxies.

3.1.2 Das Schattenkonzept

Im Schattenkonzept erzeugt jede Anwendung ein Abhängigkeitsobjekt innerhalb des Agenten-
systems auf einem Platz. Das Abhängigkeitsobjekt wird Schatten genannt. Der für den Schatten
gewählte Platz muß nicht notwendigerweise auf dem gleichen Knoten wie die Anwendung pla-
ziert sein. Jeder Agent, der von der Anwendung erzeugt wird, ist von dem Schatten abhängig.
Der Agent ist damit nicht mehr von der Anwendung abhängig, die nun z.B. auf einem System
ohne ständigen Netzwerkkontakt oder mit Unterbrechungen abgearbeitet werden kann.

In regelmäßigen Abständen, ttl (time to live) genannt, wird für jeden Agenten überprüft, ob der
zugehörige Schatten noch existiert. Während der Überprüfung befindet sich der Agent in der
Check-Phase. Diese dauert an, bis ein neues Zeitquantum empfangen wird. Ein Agent in der
Check-Phase darf nicht migrieren.

Falls der Schatten nicht mehr existiert, z.B. weil ihn die Anwendung entfernt hat, dann ist der
Agent definitionsgemäß ein Waise. Dies wird entdeckt, sobald das Zeitquantum des Agenten
aufgebraucht ist.

3.2 Implementierung der Konzepte

Die Implementierung dieser Verfahren erfolgt für das Mobile-Agenten-System Mole. Details
der Implementierung sind in [BR98], [Bau00], [Bec97] und [Pau98] zu finden.

3.3 Evaluierung der Kontrollalgorithmen

Beide Verfahren, Pfadkonzept und Schattenkonzept wurden bezüglich ihrer Nachrichtenkom-
plexität und Fehlertoleranz evaluiert. Die Evaluation wird im Folgenden nur kurz angerissen.
Sie ist im Detail ebenfalls in [Bau00] zu finden.

3.3.1 Pfadkonzept

In Bild 1 ist die Verfügbarkeit Ap(t) in Abhängigkeit von der Fehlerrate λ und der Länge des
Pfades n aufgetragen.

Das Erzeugen des Pfades kostet keine Nachrichten, das Finden erfordert allerdings Nach-
richten bei einer Pfadlänge von n.

n 1+

Abschlussbericht AIDA II 7

3.3.2 Das Schattenkonzept

Falls der Schatten nicht mehr existiert, z.B. weil ihn die Anwendung entfernt hat, dann ist der
Agent definitionsgemäß ein Waise. Dies wird entdeckt, sobald das Zeitquantum des Agenten
aufgebraucht ist. Wenn ein Platz, auf dem sich ein Schatten befindet, nicht erreichbar ist, dann
wird wiederholt versucht, den Kontakt aufzunehmen. Nach n nicht erfolgreichen Versuchen
wird angenommen, daß der Knoten auf dem sich der Schatten befindet, abgestürzt ist. Mit dieser
Annahme ist der Agent ein Waise und kann entfernt werden.

Dies Verhalten ist korrekt, wenn der Knoten tatsächlich abgestürzt ist. Falls aber nur der Kom-
munikationskanal nicht verfügbar war, dann ist der Agent inkorrekterweise entfernt worden. Al-
lerdings weiß der Schatten spätestens nach der Zeit , mit d als der angenomme-
nen maximalen Nachrichtenübertragungszeit, daß der Agent terminiert ist, und korrigiert seine
Liste von abhängigen Agenten. Dies Verhalten garantiert korrekte Information beim Schatten
auch bei Netzwerkpartitionierungen. Der Vorteil ist, daß auch bei Netzwerkpartitionierung eine
obere Schranke für die verbleibende Lebenszeit aller abhängigen Agenten bei Entfernung des
Schatten gegeben werden kann. Diese Schranke ist auch wieder die Zeit .

In regelmäßigen Abständen kontaktiert der Agent den Schatten und aktualisiert damit dessen In-
formation über seinen Aufenthaltsort. Die nun überflüssigen Pfadproxies können ohne weitere
Kommunikation entfernt werden. Um dies zu tun, wird die verbleibende ttl bei den Proxies ge-
speichert, und der Proxy wird entfernt, sobald garantiert ist, daß der Pfad nicht mehr gebraucht
wird. Selbst wenn der Pfad nicht mehr verfügbar ist, ist die oberste Zeitschranke, bis der Agent
wieder erreichbar ist, das zugeordnete Zeitquantum, da nach dieser Zeit ein Kontakt mit dem
Schatten notwendig ist.

Durch die Verwendung der ttl zur regelmäßigen Verkürzung des Pfades verfügt das Schatten-
konzept effektiv über eine Reparaturfunktionalität. Wir vergleichen zuerst den Einfluß der ttl
auf die Verfügbarkeit des Pfades im Schattenkonzept. Die Ergebnisse sind in Bild 2 dargestellt.

Bild 1: Pfadkonzept: Verfügbarkeit des Pfades in Abhängigkeit von t, λ und n

e-2nλ

e-nλ

e-3/4nλ

e-1/2nλ

e-1/4nλ

e0

e-3nλ

Ap(t)

tZeit t [Stunden]

ttl 2 n 1+()d+

ttl 2 n 1+()d+

Abschlussbericht AIDA II 8

Die Wichtigkeit der ttl im Vergleich zur Verfügbarkeit der Pfadkomponenten ist deutlich zu er-
kennen (siehe Vergrößerung in Bild 2b).

Wir vergleichen nun das Schattenkonzept mit dem Pfadkonzept.

Wir wählen die vergleichsweise hohe ttl von 6 min. Wir sehen in Bild 3, daß die Verfügbarkeit
des Schattenkonzepts durch die wechselnden Verfügbarkeiten der beiden Szenarios kaum be-
einflußt wird, während der Einfluß auf das Pfadkonzept deutlich zu erkennen ist. Dies zeigt sich
ganz besonders in den Graphen, die die Differenz der Verfügbarkeit der beiden Konzepte dar-
stellen. Durch die Aktualisierung des Aufenthaltsortes des Agenten werden zwei Nachrichten
pro Agent pro ttl benötigt. Um Agenten zu finden, muß eine Nachricht entlang des Proxy-Pfades
geschickt werden. Dies bedeutet Nachrichten entlang des Pfades.

 Bild 2: Schattenkonzept: Verfügbarkeit in Abhängigkeit von t, Fehlerrate λ und ttl (hohe
 Verfügbarkeit=schwarz, niedrige Verfügbarkeit=grau, n=20)

Bild 3: Vergleich der Verfügbarkeit von Schattenkonzept und Pfadkonzept

ttl=1sec

ttl=6min

ttl=30 min

vergrößert in (b)

(b)(a)

ttl=1sec

Szenario 2

Szenario 1

Schattenkonzept

Pfadkonzept

Differenz

Szenario 1

Szenario 2

Szenario 2

Szenario 1

n 1+

Abschlussbericht AIDA II 9

4 Entwurf und Implementierung von Sicherheitskonzepten

Aufbauend auf den Sicherheitsanforderungen, die bereits in AIDA I gesammelt wurden, sollten
in AIDA II diejenigen Gebiete bzw. Verfahren im Bereich der Sicherheit in Mobile-Agenten-
Systemen identifiziert werden, die mit existierenden Mitteln gelöst werden können. Danach
sollten existierende Verfahren, so sie anwendbar sind, für die Bedürfnisse eines Mobile-Agen-
ten-Systems angepasst und implementiert werden. Schließlich sollten Ansätze auf den Gebieten
erarbeitet werden, die neu sind und daher mit bestehenden Verfahren nicht gelöst werden kön-
nen. Letzteres sollte vor allem das Gebiet des Schutzes mobiler Agenten vor Angriffen durch
böswillige Hosts betreffen, in dem es sehr wenig Ansätze gab und das sehr wichtig für die Ak-
zeptanz dieser Technologie für den Einsatz in offenen Systemen ist. Aufgrund des hohen For-
schungsbedarfs wurde daher der Schwerpunkt auf den Schutz mobiler Agenten vor dem ausfüh-
renden Host gelegt.

Zunächst wurde ein Modell von Angriffen gegen mobile Agenten durch böswillige Hosts erar-
beitet, das die Problematik illustrieren kann und eine Grundlage für die Entwicklung und Eva-
luation von möglichen Schutzmechanismen bietet. Einige dieser Angriffe können durch Schutz-
mechanismen detektiert werden, die "Referenzausführungen" benutzen, d.h. Ausführungen
eines Agenten auf einem sicheren Host, der als Referenz dazu dient, Ausführungen auf unsiche-
ren Hosts zu prüfen. Daher wurden Ansätze, die solche Referenzausführungen benutzen, evalu-
iert. Weiter wurde ein Framework für Mole geschaffen, das es erlaubt, weitere Ansätze dieser
Art zu implementieren. Darauf aufbauend wurde ein neuer Ansatz erarbeitet und evaluiert, der
Vorteile gegenüber den bestehenden Ansätzen bietet. Aufbauend auf einer Idee aus AIDA I wur-
de dann ein neuer Schutzansatz entwickelt, der es erlaubt, die Anzahl der möglichen Angriffe
zu reduzieren, und die verbelibenden Angriffe dann auszuschliessen. Dieser Ansatz wurde
"Blackbox"-Schutz genannt. Er beruht auf einer dynamischen Umwandlung beliebiger Agenten
in eine andere Form, die schwer zu analysieren und damit anzugreifen ist. Kann ein Agent durch
dieses Verfahren geschützt werden, können andere Angriffe durch eine modifizierte Anwen-
dung existierender Verfahren ausgeschlossen werden. Einer dieser Angriffe ist der Blackbox-
Test, für den ein Protokoll entwickelt wurde, das solche Angriffe verhindert. Vervollständigt
wurden die Arbeiten auf diesem Gebiet durch Erarbeitung des Themas Authentifizierung von
Agenten und Hosts, das auch für einen anderen Aspekt der Sicherheit, nämlich den des Schutzes
von Hosts vor böswilligen Agenten, von Bedeutung ist.

4.1 Authentifizierung

Um die Identität von Agenten, Hosts und Benutzern sicherzustellen, müssen diese Parteien au-
thentifiziert werden können. Zu diesem Zweck sollte eine Komponente entworfen und imple-
mentiert werden, die eine solche Authentifizierung für das Mole-System leistet. Dazu mussten
existierende Authentifikationsmechanismen auf ihre Eignung für ein solches System geprüft
werden. Weiterhin waren diejenigen Komponenten zu identifizieren, die ein Authentifizierungs-
verfahren benötigt, etwa eine Schlüsselverteilung. Dabei erwies es sich, dass symmetrische Au-
thentifikationsmechanismen wie Wide-Mouth-Frog, Yahalom und Kerberos aufgrund der Not-
wendigkeit eines Schlüsselverteilzentrums für ein Mobile-Agenten-System gegenüber
asymmetrischen Verfahren wie DASS, oder dem ISO Authentication Framework weniger gut
geeignet sind. Auch bei asymmetrischen Verfahren werden Mechanismen zur Schlüsselvertei-
lung benötigt, aber mit der Möglichkeit der Benutzung von Zertifikaten, die zum großen Teil
durch die Agenten selbst transportiert werden können, kann dies dezentral geschehen, zumal die

Abschlussbericht AIDA II 10

Zertifikate von Agenten und Hosts durch die jeweiligen Eigentümer selbst ausgestellt werden
können.

Als praktisches Ergebnis entstand eine modifizierte Version von Mole 2.1.2, bei der alle Nach-
richten und Agenten authentifiziert werden. Zur Authentifizierung von Nachrichten wird das
Zweiwegeprotokoll aus X.509 benutzt, als Signaturalgorithmus wird DSA verwendet, der im
JDK 1.1 bereits vorhanden ist. Als Schlüsselverteilalgorithmus wird ein Verfahren vorausge-
setzt, das Zertifikate von Benutzern, Agenten und Hosts erzeugen kann. Die Parteien, die an der
Nachrichten-Authentifizierung teilnehmen, sind die Hosts, die jeweils ein eigenes Zertifikat mit
einbringen müssen. Agenten werden über ihre konstanten Teile, zu denen der Agentenname, die
Namen der verwendeten Klassen sowie andere Daten gehören, authentifiziert, wobei sie vom
Benutzer zertifiziert (also mit seinem privaten Schlüssel unterschrieben) werden. Details der
Konzeption und Realisierung der Authentifizierungskomponente lassen sich in [Bäu98] finden.

4.2 Ein Modell von Angriffen gegen mobile Agenten durch böswillige
Hosts

Um die Problematik der Angriffe gegen mobile Agenten durch böswillige Hosts zu illustrieren
und eine Grundlage für die Entwicklung und Evaluation von möglichen Schutzmechanismen zu
bieten wurde ein Modell dieser Angriffe erarbeitet. Dazu wurde zuerst der Angreifer modelliert,
sowie Anforderungen an das Angriffsmodell gesammelt. Falls der Angreifer den Code des mo-
bilen Agenten, der zu ihm migriert, als einer dem Angreifer bekannten Klasse zugehörig erken-
nen kann, muss der Angreifer den Agenten nicht mehr manuell analysieren, sondern kann ein
Angriffsprogramm schreiben, dass den Angriff schnell durchführen kann. Daher wurde der An-
greifer als ein Programm identifiziert, das ein sehr begrenztes Ziel hat, z.B. die Kenntnis des In-
halts einer bestimmten Variablen. Als Anforderungen an das Modell sollten folgene Eigenschaf-
ten modellierbar sein:
• Der Angreifer kann den aktuellen Datenteil des mobilen Agenten lesen und verändern
• Der Angreifer kann den aktuellen Code des Agenten lesen und (temporär) verändern
• Der Angreifer kann den aktuellen Ausführungszustand lesen und verändern
• Der Angreifer kann die Ausführungsweise des Agenten verändern
• Der Angreifer kann das Ergebnis von Aufrufen von Systemfunktionen kontrollieren
• Der Angreifer kann die Kommunikation des Agenten mit dritten Parteien lesen und verän-

dern
• Das Modell soll es dem Agenten erlauben, Code dynamisch modifizieren zu können

Als Grundelement des Angriffsmodells wurde auf ein existierendes Maschinenmodell zurück-
gegriffen, die RASP (Random Access Stored Program). RASPs bestehen (nach [Har70]) aus
Speicherelementen, zu denen ein Akkumulator und ein Instruktionszähler sowie eine unbe-
grenzte Folge von Registern gehören, sowie einem begrenztem Instruktionssatz. Der Instrukti-
onssatz erlaubt Sprünge im Programm an beliebige Register, das Berechnen von Werten, sowie
das Speichern von Werten in Register. Ein Lesen des Instruktionszählers ist nicht möglich, eben-
sowenig wie ein direktes Schreiben desselben, außer über den Umweg des Sprungs. Daher wur-
de das RASP-Modell um diese Möglichkeit sowie um einen Stack erweitert; das so entstandene
Maschinenmodell wurde RASPS (Random Access Stored Program plus Stack) genannt.

Abschlussbericht AIDA II 11

Aufbauend auf diesem Grundelement wurde das Angriffsmodell konzipiert. Die Architektur des
Angriffsmodells (siehe Bild 4) besteht aus zwei Hauptkomponenten: der Maschine, die den
Agenten ausführt und der Maschine, die das Angriffsprogramm ausführt.

Ein Agent kann seine Umgebung nicht selbst wahrnehmen, ebenso wenig, wie er unter Umge-
hung der Laufzeitumgebung mit Kommunikationspartnern interagieren kann, er muss zu diesen
Zwecken immer Funktionen des Hosts benutzen. Im Modell liegen diese Funktionen in der Ma-
schine des Angreifers vor. Um die Architektur konsistent zu halten, wurde die Angreifermaschi-
ne ebenfalls als RASPS ausgelegt, auch wenn der Aspekt der expliziten Programmausführung
für die Angreifermaschine nicht wichtig ist. Dies erlaubt die Inanspruchnahme der Systemfunk-
tionen durch Aufrufe von Prozeduren auf der Angreifermaschine. Dadurch gibt es auch eine
einfache Möglichkeit für den Angreifer, den Code dieser Systemfunktionen verändern zu kön-
nen. Der Befehlssatz der Agentenmaschine enthält neben der Möglichkeit des Aufrufs von Pro-
zeduren die üblichen Kommandos für Stack-basierte Architekturen wie etwa mathematische
Funktionen, Kontrollinstruktionen, sowie Instruktionen zur Kontrolle des Stacks. Zusätzlich zu
den Instruktionen, die auch die Agentenmaschine kennt, besitzt die Angreifermaschine weitere
Befehle, die den Zugriff auf die Elemente der Agentenmaschine erlauben.

4.2.1 Generelle Funktionsweise des Angriffsmodells

Zu Beginn der Ausführung des Agenten, also direkt nach der Migration, wird die Agentenma-
schine mit dem Agentencode geladen. Die Angreifermaschine wird mit dem Angreiferpro-
gramm geladen. Dieses Programm wurde von der angreifenden Partei aus Parametern wie dem
Typ des Agenten, dem Agentencode, sowie den Angriffszielen (wie z.B. den Namen der Varia-
blen, deren Werte gesucht sind), erzeugt. Vor jeder Instruktion, die in der Agentenmaschine aus-
geführt wird, läuft ein Algorithmus auf der Angreifermaschine ab, der es erlaubt, die nächste
Instruktion der Agentenmaschine samt Parametern zu sehen und zu modifizieren, sowie belie-
bigen Code auf der Angreifermaschine auszuführen.

Die Diskussion dieses Angriffsmodells ergab, dass es detailliert genug ist, um Aussagen über
Angriffe und Schutzmaßnahmen machen zu können, und abstrakt genug, um dem Host alle
möglichen Angriffe zu erlauben. Darüberhinaus erlaubt es dem Host alle Techniken zum An-
griff, die ihm in einen normalen Rechnersystem zumindest theoretisch zur Verfügung stehen,
und es erlaubt dem Agenten alle Schutzmechanismen, die in einem solchen Rechnersystem rea-
lisierbar sind. In diesem Sinne ist das Angriffsmodell “generisch”, d.h. auf alle möglichen
Agentensysteme anwendbar. Der Nachteil dieser Generezität ist aber auch, dass es in einigen
Agentensystemen einfacher ist, mobile Agenten anzugreifen, als es im Modell scheint. Das An-

Agent

RASPS

clock

calls system code

reads properties
manipulates prop.
controls execution

partner
agent

reads

environment

Attacker

RASPS

Bild 4: Architektur des Angriffsmodells

Abschlussbericht AIDA II 12

griffsmodell in seiner jetzigen Fassung erlaubt nur ein Angriffsprogramm bzw. einen gleichzei-
tig ausgeführten Prozess. Dies stellt aber z.Zt. keinen großen Nachteil dar, da es noch keine Si-
cherheitsmechanismen gibt, die auf der Existenz von mehreren Agentenprozessen beruhen.

Weitere Details zu diesem Modell können in [Hoh98b] gefunden werden.

4.3 Ansätze, die Referenzzustände benutzen

Einige Angriffe wirken sich auf den Zustand eines Agenten aus, der mit der Migration auf den
nächsten Host transportiert wird. Diese Zustände sind damit ein beobachtbares “Ergebnis” der
Ausführung eines Agenten auf einem Host. Wenn man es nun schafft, eine “Referenzausfüh-
rung” zu berechnen, also dieselbe Ausführung eines Agenten auf einem “Referenzhost”, d.h. ei-
nem Host, der garantiert keinen Angriff startet, kann man den so entstehenden “Referenzzu-
stand” mit dem Ergebniszustand auf einem Host vergleichen und so einige Angriffe feststellen.

Das in diesen Ansätzen benutzte Ausführungsmodell sieht folgendermaßen aus:.

Ein mobiler Agent migriert entlang einer Sequenz von Hosts (siehe Bild 5). Der Host, auf dem
der Agent ankommt, nimmt den Anfangszustand des Agenten und beginnt eine Ausführungs-
sitzung. In dieser Sitzung führt der Host den Agenten mithilfe des Codes und von Eingabedaten
aus und berechnet so einen Endzustand. Die Eingabe umfasst alle Daten, die “von außen” an
den Agenten geschickt werden, d.h. sie beinhaltet sowohl die Kommunikation mit Partnern auf
anderen Hosts als auch diejenige, die mit dem Ausführungshost selbst stattfindet, oder von die-
sem vermittelt wird. Insbesondere enthält sie auch die Resultate des Aufrufs von Systemfunk-
tionen, wie z.B. Zufallszahlen oder die aktuelle Systemzeit. Sobald der Agent auf einen anderen
Host migriert oder beendet wird, ist die Ausführungssitzung beendet, und der Endzustand des
Agenten auf dem Starthost wird zum Anfangszustand des Agenten auf dem Zielhost.

4.3.1 Referenzzustände

Während es schwierig ist, das Verhalten eines Hosts gegen das eines Referenz-Hosts, also eines
Hosts, der keine Angriffe unternimmt, zu messen, gilt dies nicht für die beobachtbaren Auswir-
kungen dieses Verhaltens. Diese Auswirkungen resultieren in den Endzuständen der Agenten
nach einer Ausführungssitzung auf einem Host. Was man daher tun kann, ist, den Endzustand
eines Agenten auf einem zu prüfenden Host mit dem eines Agenten auf einem Referenz-Host
zu vergleichen. Daher definieren wir:

Def: Ein Referenzzustand ist die Menge der variablen Teile eines mobilen Agenten nach
der Ausführung (also der Endzustand) auf einem Referenz-Host.

Um zu einem verwertbaren Vergleich des Referenzzustandes mit dem Endzustand auf dem zu
prüfenden Host zu kommen, ist es notwendig, dass für beide Ausführungen diesselbe Eingabe
benutzt wird. Diese Eingabe umfasst auch die Resultate des Aufrufs von Systemfunktionen wie
etwa Zufallszahlen, aber z.B. nicht die Resultate von Funktionen, die Teil des Agentencodes
sind, da diese als Teil der normalen Ausführung eines Agenten berechnet werden können.

agent
creation

input

execution

host 1

input

execution

host 2

input

execution

host 3

input

execution

host 4

agent
termination

m
ig

ra
tio

n

m
ig

ra
tio

n

m
ig

ra
tio

n

initial stat resulting state

Bild 5: Ausführungsmodell

Abschlussbericht AIDA II 13

Wenn wir nun in der Lage sind, den Unterschied zwischen dem Referenzzustand und dem zu
prüfenden Endzustand zu messen, können wir alle Angriffe feststellen, die sich auf den Endzu-
stand auswirken. Diese Angriffe umfassen Schreibe- bzw. Modifikationsangriffe gegen die va-
riablen Teile eines Agenten sowie einige Angriffe, bei denen der Code des Agenten nicht gemäß
der Spezifikation ausgeführt wird. Zwei Klassen von Angriffen können mit diesem Ansatz nicht
festgestellt werden: Leseangriffe und Angriffe, bei denen der Host, auf dem Eingaben entste-
hen, diese Eingaben modifiziert oder unterdrückt.

In [Hoh00a] bzw. [Hoh00b] werden vier existierende Ansätze beschrieben und analysiert, die
auf verschiedene Art und Weise Referenzzustände zur Prüfung von Ausführungssitzungen mo-
biler Agenten auf unsicheren Hosts benutzen. Um die Grundlage für ein neues Protokoll zu
schaffen, das die Vorteile dieser Ansätze vereint, wurde zunächst ein allgemeines Framework
für Schutzmechanismen erarbeitet, die solche Referenzzustände benutzen.

4.4 Ein Framework für Schutzmechanismen, die Referenzzustände benut-
zen

Das Framework beruht dabei auf der Unterstützung der Merkmale, die in der Analyse der exi-
stierenden Ansätze in [Hoh00a] bzw. [Hoh00b] herausgearbeitet wurden. Die generelle Idee ist,
den Programmierer selbst den eigentlichen Prüfalgorithmus implementieren zu lassen und die
grundlegenden Funktionalitäten wie das Signieren der Referenzdaten durch das Framework be-
reitzustellen. Obwohl es für das Mobile-Agenten-System Mole implementiert wurde, kann das
im Folgenden vorgestellte Schema für beinahe jedes in Java implementierte Agentensystem ver-
wendet werden, das schwache Migration unterstützt, und den Aufruf von Prozeduren durch den
Host im Rahmen der Ausführung des Agenten zulässt. Schwache Migration bezeichnet dabei
eine Art der Migration, bei der der Ausführungszustand des Agenten nicht automatische mit-
transportiert wird, und der daher auf dem nächsten Host wieder bei einer Startprozedur begin-
nen muss. Dies ist für die meisten Systeme der Fall.

Das Framework unterstützt dabei die folgenden Aspekte eines Schutzmechanismus:

• Prüfzeitpunkt

Um die verschiedenen Möglichkeiten des Prüfzeitpunkts (nach einer Ausführungssitzung
bzw. nach Beendigung der Gesamtausgabe) zu unterstützen, werden verschiedene Call-
backs benötigt, die nach der Ankunft auf einem neuen Host bzw. nach Beendigung der Ge-
samtaufgabe bei Ankunft auf dem Heimathost aufgerufen werden.

• Benutzte Referenzdaten

Hier muss das Framework zwei Dinge tun: Erstens muss sichergestellt werden, dass am
Ende einer Ausführungssitzung die benötigten Daten in einer Form zur Verfügung stehen,
die es erlaubt, die Ausführung eines Agenten mithilfe von Referenzzuständen zu prüfen.
Zweitens muss sichergestellt werden, dass diese Daten zu den Hosts, auf denen die Prüfung
stattfindet, transportiert werden. Letzteres ist in Mobile-Agenten-System äußerst einfach.
Alles, was wir tun müssen, ist, diese Daten im Datenteil des Agenten zu speichern, da dieser
automatisch bei der Migration auf den nächsten Host transportiert wird. Ersteres ist etwas
schwieriger. Der Anfangs- und der Endzustand stellen kein Problem dar, da diese sowieso
bei der Migration entstehen und transportiert werden. Um die Eingabe oder das Ausfüh-
rungsprotokoll zu erstellen, gibt es zwei mögliche Wege. Entweder werden diese Informa-
tionen durch die Java Virtual Machine (JVM) gesammelt, die als Ausführungsumgebung
z.B. Zugriff auf die Zeilennummern der Anweisungen hat. Oder aber sie werden von in den

Abschlussbericht AIDA II 14

Agenten eingefügtem Code gesammelt, der entweder automatisch oder manuell erzeugt
wird. Manuell erzeugter Code hat den Vorteil, dass der Programmierer dann damit das ef-
fizienteste Datenformat erzeugen kann, wenn auch der Prüfalgorithmus von ihm manuell
erzeugt wird.

Schließlich muss noch eine Möglichkeit vorgesehen werden, die Referenzdaten auszuwäh-
len, die zum Prüfen benutzt werden sollen. Falls die Referenzdaten durch manuelles Instru-
mentieren des Codes erzeugt werden, wird auch die Auswahl durch den Programmierer in
den Code implementiert. Falls eine automatische Instrumentierung erfolgt, müssen die be-
nötigten Referenzdaten spezifiziert werden. Dies kann durch die Deklaration verschiedener
Interfaces geschehen.

• Prüfalgorithmus

Da die Alternative, ein beliebiges Programm zur Prüfung einer Ausführungssitzung zu be-
nutzen, sowohl die mächtigste Variante ist als auch die anderen Alternativen enthält, reicht
es, die Möglichkeit anzubieten, Code, den der Programmierer geschrieben hat, auszufüh-
ren, sobald eine Prüfung stattfinden soll.

Die Unterstützung für das Nachrechnen kann auf mehreren Ebenen stattfinden. Das Pro-
blem ist die Frage, wie man vom Originalcode zum Nachrechnen kommt. Erstens muss der
Code ein zweites Mal ausgeführt werden, wobei die Eingaben aus den Referenzdaten kom-
men. Zweitens können Ausgaben unterdrückt werden, da sie für die Prüfung nicht benötigt
werden. Drittens muss der so erzeugte Endzustand mit den zu prüfenden in einer Weise ver-
glichen werden, die es dem Programmierer erlaubt, diese selbst zu erstellen. Lösungen die-
ses Problems umfassen eine modifizierte Ausführungsumgebung (z.B. JVM), die in der
Lage ist, statt der normalen Eingabeinteraktionen Referenzdaten zu verwenden, eine Kopie
des Originalcodes, die automatisch um die benötigten Aktionen (zweite Ausführung, Aus-
gabeunterdrückung und Zustandsvergleich) erweitert wird, sowie eine Kopie des Original-
codes, die manuell vom Programmierer instrumentiert wird.

Weitere Informationen zu diesem Framework lassen sich in [Hoh00a] finden.

4.5 Ein neues Protokoll zur Verhinderung von Modifikationsangriffen

Die in [Hoh00a] bzw. [Hoh00b] beschriebenen vier Ansätze stellen nur einige Möglichkei-
ten aus dem Spektrum an Ansätzen dar, die Referenzzustände benutzen können. Unterteilt
man diese wie in [Wil99], erhält man folgende Tabelle:

Die Frage ist nun, ob es noch andere Ansätze gibt, die Vorteile gegenüber den bestehenden auf-
weisen. Will man einen Ansatz, der in den ersten drei Kategorien das Maximum bietet, und kei-
nen hohen Aufwand besitzt, muss ein neues Verfahren gefunden werden.

Ansatz
Prüfungs-

anlaß
Prüfungs-zeitpunkt

Grad der
entdeckbaren

Angriffe
Aufwand

State Appraisal in jedem Fall nach jeder Sitzung geringer gering

Server replication in jedem Fall nach jeder Sitzung höher hoch

Execution traces bei Verdacht nach Gesamtausführung höher mittel

Proof verification in jedem Fall nach jeder Sitzung höher hoch

Tabelle 1: Vergleich existierender Ansätze

Abschlussbericht AIDA II 15

4.5.1 Der Ansatz

Die Idee des Ansatzes besteht darin, das Prüfverfah-
ren des “Traces”-Ansatzes, d.h. das Nachrechnen
von Ausführungssitzungen unter Benutzung der
Eingaben während dieser Sitzung zu nehmen, und es
auf dem nächsten Host, der besucht wird, durchzu-
führen (siehe Bild 6). Um das Ziel zu erreichen, jede
Ausführungssitzung auf dem nächsten Host zu prü-
fen, wird dabei nicht darauf Rücksicht genommen,
ob der nächste Host sicher ist oder nicht.

4.5.2 Das Protokoll

Das Protokoll wird in [Hoh99] beschrieben. Dort werden zunächst die Protokollteile entwickelt,
die jeder Host in einer allgemeinen Konfiguration abzuwickeln hat. Diese Konfiguration besteht
aus einer Liste von Hosts, die ein mobiler Agent nacheinander besucht. Um generelle Aussagen
treffen zu können, wurde angenommen, dass bis auf den ersten und letzten Host alle Hosts un-
sicher sind. Nachdem so ein Protokoll entwickelt wurde, wurde dieses zu einer optimierten Va-
riante weiterentwickelt, das es erlaubt, beliebige Mischungen aus sicheren und unsicheren
Hosts nach dem ersten Host und vor dem letzten Host vorzufinden.

4.5.3 Diskussion des Protokolls

Das in [Hoh99] beschriebene Protokoll erfüllt die Anforderungen, die eingangs an ein neues
Verfahren gestellt wurden (Prüfung in jedem Fall, nach jeder Sitzung, höherer Grad der Entdek-
kung von Angriffen, kein hoher Aufwand). Im Vergleich zum “Traces”-Ansatz ergaben sich
aber zwei Nachteile.

Ein Nachteil besteht darin, das eine Eingabe nicht vor dem Prüfhost geheimgehalten werden
kann. Das kann vor allem dann ein Problem sein, wenn es keine zusätzlichen Verfahren gibt,
Daten vor Leseangriffen durch Hosts zu schützen, die diese Daten verarbeiten müssen. Wenn
kein solches Verfahren eingesetzt werden kann, können allgemein alle Hosts alle Daten lesen,
die sie verarbeiten. In diesem Fall reduziert sich das Problem der lesbaren Eingabe auf solche
Daten, die nicht in jedem Fall zum nächsten Host transportiert werden (also auch ohne das Prüf-
protokoll). Wenn es jedoch solche Verfahren gibt, kann eine “geschützte Form” der Eingabe für
die Prüfung verwendet werden.

Der schwerwiegendere Nachteil ist das Problem, dass Angriffe von zwei oder mehr aufeinan-
derfolgenden Hosts, die zusammenarbeiten, nicht entdeckt werden können (es reicht nicht aus,
dass zwei beliebige Hosts kollaborieren). Wenn der zweite Host einen resultierenden Zustand
signiert, der aus einem Angriff des ersten Hosts entsteht, kann der dritte Host diesen Angriff
nicht entdecken. Um diese Kollaborationsangriffe zu verhindern, kann das Protokoll aber erwei-
tert werden.

4.5.4 Erweiterung des Protokolls für die Tolerierung von Kollaborationsangriffen

Wenn man mehr als einen Host für die Prüfung verwendet, kann das Protokoll so erweitert wer-
den, dass n böswillige, kollaborierende, aufeinanderfolgende Hosts toleriert werden können. Zu
diesem Zweck werden zu jeder Ausführungssitzung n Prüfungen auf anderen Hosts benötigt.
Das Vorgehen folgt dabei dem Verfahren, das beim “Server replication”-Ansatz benutzt wird.
Der Unterschied liegt zum einen darin, dass nicht die Ausführung repliziert wird sondern die
Prüfung, und darin, dass nicht 2*n Hosts pro Sitzung benötigt werden sondern nur n+1. Das

state1 -> computation2-> state2

input1

COMPUTATION

state1 -> check1 -> state2

input1
state1
input1
state2 CHECK

Host 1 Host 2

Bild 6: Nachrechnen von Ausführungen

Abschlussbericht AIDA II 16

liegt daran, dass es zur Entdeckung eines Angriffs nicht wichtig ist zu wissen, welcher Zustand
der korrekte ist; solange auch nur ein Host zu einem anderen Ergebnis kommt, kann ein Angriff
entdeckt werden. Nach einer solchen Entdeckung kann dann der Agenteneigentümer nachrech-
nen, welche Partei Recht hatte.

4.5.5 Messungen

Um die Kostenschätzungen zu evaluieren, wurde das Protokoll prototypisch für einen generi-
schen mobilen Agenten implementiert. Die Messungen wurden für das Mobile-Agenten-Sy-
stem Mole [BHR98a, BHR98b] implementiert, das Java als Programmiersprache benutzt. Als
Sicherheitsbibliothek wurde IAIK-JCE 2.0 [IAI99] verwendet, die eine reine Java-Implemen-
tierung verschiedener kryptographischer Algorithmen anbietet. Digitale Signaturen wurden mit
dem DSA-Verfahren dieser Bibliothek erstellt, wobei eine Schlüssellänge von 512 Bits benutzt
wurde. Bei den Messungen ergab sich, dass die Gesamtlaufzeiten eines durch das Protokoll ge-
schützten Agenten gegenüber einem ungeschützten etwa um die Faktoren 1,3 bis 2,2 auseinan-
derliegen. Da in den Messungen nur lokale Migrationen benutzt wurden (also solche innerhalb
eines Rechners), fiel kein Code-Transfer bei der Migration an. Falls ein solcher Transfer not-
wendig ist, würden die Faktoren etwas sinken, da dieser für geschützte und ungeschützte Agen-
ten die gleiche Zeit benötigt, falls der Code für das Protokoll bereits beim Host vorliegt.

Weitere Details zu diesem Protokoll werden in [Hoh99] beschrieben.

4.6 Blackbox-Schutz

Neben den Ansätzen, die versuchen, bestimmte Angriffe zu verhindern, sind vor allem solche
attraktiv, die transparent für den Programmierer sind. Das heißt zum einen, dass diese Ansätze
in der Lage sein müssen, im Wesentlichen alle Angriffe zu verhindern. Zum anderen bedeutet
dies, dass die Schutzmechanismen keine Restriktionen bedingen dürfen, die der Programmierer
beachten muss. Es gibt zwei mögliche Wege, einen solchen vollständigen, transparenten Schutz
zu gewährleisten. Der eine Weg besteht darin, sichere Hardware zu benutzen, die auch der Be-
treiber nicht modifizieren kann (siehe [Hoh98a] für eine Beschreibung entsprechender Ansätze
und anderer existierender Arbeiten auf diesem Gebiet). Der andere Weg zielt darauf ab, einen
solchen Schutz vollkommen durch Software zu erreichen. Im Rahmen des Projektes konnte ge-
zeigt werden, welche Teilangriffe mindestens verhinderbar sein müssen, damit die Autonomie
des Agenten wieder soweit hergestellt werden kann, dass existierende Ansätze, z.B. zur Authen-
tifizierung verwendet werden können, um die anderen Angriffe zu verhindern. Für einen Agen-
ten, bei dem diese Teilangriffe verhindert werden können, wurde der Begriff Blackbox geprägt.

4.6.1 Blackbox-Eigenschaft

Die grundlegende Idee des Blackbox-Ansatzes ist es, einen beliebigen Ursprungsagenten zu
nehmen, und durch eine Konvertierung einen äquivalenten Agenten zu erzeugen, dessen Struk-
tur nicht mehr dem Ursprungsagenten entspricht, der aber immer noch ausführbar ist. Die Kon-
vertierung wird dabei durch einen Parameter konfiguriert (siehe Bild 7), so dass ein Angreifer
nicht einfach alle möglichen Konvertierungen erzeugen, und so einen konvertierten Agenten,

Abschlussbericht AIDA II 17

die Blackbox, erkennen kann.

Als Blackbox wird ein Agent dann bezeichnet, wenn es nicht
möglich ist, dass die Datenelemente und Codeteile eines Ur-
sprungsagenten als solche erkannt werden können. Damit geht
einher, dass der Angreifer die Werte der Datenelemente nicht le-
sen kann und es geht damit einher, dass er diese Datenelemente
und Codeteile nicht (temporär) modifizieren kann. Schließlich
folgt daraus auch, dass der Code nicht in einer Weise, entgegen
der Spezifikation, ausgeführt werden kann, dass der Angreifer ei-
nen gewünschten Effekt erzielt.

Ist ein Agent eine Blackbox, so kann ein Angreifer im Wesentlichen nur noch Eingaben in und
Ausgaben aus der Blackbox beobachten (Bild 8). Er kann zwar noch Zustandsänderungen des
Agenten wahrnehmen, diese aber nicht mehr Änderungen einzelner Datenelemente des Ur-
sprungsagenten zuordnen.

Verhinderbare Angriffe

Ist ein Agent eine Blackbox, so besitzt er wieder genug Autonomie, um mithilfe existierender
Verfahren andere Angriffe abwehren zu können. Diese Angriffe umfassen die Maskierung eines
Hosts (d.h. er gibt sich dem Agenten gegenüber als ein anderer Host aus), und Angriffe gegen
die Kommunikation des Agenten mit dritten Parteien.

Nicht verhinderbare Angriffe

Neben der Möglichkeit eines Hosts, einen Agenten nach Belieben nicht auszuführen, gibt es ei-
nen Angriff, von dem im Moment nicht bekannt ist, wie er zu verhindern ist, selbst wenn der
Agent eine Blackbox ist. Dieser Angriff besteht darin, dass Hosts bei der Rückgabe von Resul-
taten von Systemfunktionen, die der Agent aufgerufen hat, falsche Werte zurückgeben. Falls
auch andere Hosts in der Lage sind, die Systemfunktion auszuführen, könnte ein Agent diesen
Aufruf natürlich entfernt durchführen, aber dieses Vorgehen (wenn es denn möglich ist), erhöht
die Kommunikationskosten.

4.6.2 Mobile Cryptography

Es gibt zur Zeit i.W. zwei Ansätze, die versuchen, Verfahren bereitzustellen, mit denen man eine
solche Blackbox erzeugen kann. Der eine Ansatz nennt sich "Mobile Cryptography" und wird
in [ST98] beschrieben. Dabei werden zunächst nur Daten geschützt, indem das Programm in
eine Form konvertiert wird, die in der Lage ist, auf verschlüsselten Daten zu arbeiten, ohne diese
dazu entschlüsseln zu müssen. Der grundsätzliche Nachteil dieses Ansatzes scheint es zu sein,
dass ein so geschützter Agent keine Klartextausgaben auf einem unsicheren Host vornehmen
darf, da sonst die Entschlüsselungsfunktion Teil des Agenten sein müsste. Eine detailliertere
Diskussion dieses Ansatzes findet sich in [Hoh98a].

��������������������
��������������������
��������������������

original agent

conversion

mechanism

executable agent

parameter
(blackbox)

Bild 7: Idee

Input

Output

agent
alpha

Bild 8: Blackbox

Abschlussbericht AIDA II 18

4.6.3 Zeitbeschränktes Blackbox-Verfahren

Ein weiterer Ansatz, die Blackbox-Eigenschaft zu realisieren, wurde im Verlauf des AIDA II-
Projektes erarbeitet. Dieser Ansatz geht von der Idee aus, dass einem Angriff erst eine Analyse
des Agenten vorangehen muss. Wenn man nun jede Agenteninstanz in eine andere Form kon-
vertiert, benötigt ein Angreifer Zeit zur Analyse. Bevor diese Analyse nicht abgeschlossen ist,
kann der Agent nicht angegriffen werden, d.h. es existiert ein Zeitintervall, in der der Agent vor
Angriffen sicher ist. Wenn es gelingt, dieses Intervall festzustellen, und das Ende dieses Inter-
valls als "Verfallsdatum" am Agenten anzuheften, ist der Agent sicher, solange er noch nicht
verfallen ist. Nachdem er verfallen ist, darf er nicht mehr ausgeführt werden bzw. nicht mehr
mit dritten Parteien interagieren, da er dann als angreifbar gilt.

Während zu Beginn des Projektes zunächst noch die Analyse durch menschliche Angreifer ver-
hindert werden sollte (z.B. durch die Mechanismen, die in [Röh97] erarbeitet wurden), stellte
sich dann heraus, dass die schwieriger zu verhindernden und damit wichtigeren Angriffe durch
Angriffsprogramme erfolgen, und damit verhindert werden müssen. Damit stellte sich die For-
derung, dass die Konvertierung nicht durch solche Verfahren angreifbar sein darf, die von einem
Programm vorgenommen werden können, bzw. beliebig beschleunigt werden können es muss
also "hart" gegen eine solche Analyse sein.

Beispiele für Konvertierungsfunktionen, die "Verwürfelungsverfahren" genannt wurden, finden
sich in [Hoh98a] bzw. [Röh97]. Diese erheben allerdings nicht den Anspruch, hart gegen eine
automatische Analyse zu sein.

Weitere Informationen zum zeitbeschränkten Blackbox-Verfahren finden sich in [Hoh98a].

Verhinderung statischer Analysen

Analyseverfahren von Programmen lassen sich in zwei Klassen teilen: statische Verfahren und
dynamische Verfahren. Statische Verfahren finden vor der Programmausführung statt, dynami-
sche Verfahren benutzen Wissen aus einer konkreten Ausführung. Da statische Verfahren nur
begrenzt Wissen über das tatsächliche Verhalten eines Programmes bei der Ausführung ableiten
können (dieses Verhalten kann ja von Parametern bestimmt werden, die erst zur Laufzeit fest-
stehen), ist es vergleichsweise einfach, statische Analysen abzuwehren. Eine Möglichkeit, dies
zu tun, besteht darin, den Agenten in kleinen Teilen zu verschlüsseln, und diese Teile erst zur
Laufzeit zu entschlüsseln. Falls die verschiedenen Schlüssel erst zur Laufzeit errechnet werden,
beschränkt sich eine statische Analyse auf die Teile des Agenten, die schon entschlüsselt wur-
den.

Probleme des Verfahrens

Im Verlauf des Projektes gelang es nicht, Verwürfelungsmechanismen zu finden, die hart genug
wären, um z.B. Leseangriffe zu verhindern. Dabei stellte sich die dynamische Analyse als ei-
gentliches Problem heraus. Solange der Prozessor die Elemente des Originalprogrammes ver-
arbeitet (selbst wenn dies auf Hochsprachenebene nicht mehr der Fall ist), können auf dieser
Ebene relativ leicht Angriffe stattfinden. Durch das Fehlen eines geeigneten Verwürfelungsme-
chanismus konnte auch nicht abgeschätzt werden, wie lange ein so behandelter Agent vor An-
griffen geschützt wird, und ob diese Zeit für einen Großteil der Anwendungen ausreicht.

Ausblick

Das generelle Problem des Schutzes mobiler Agenten vor Angriffen durch den ausführenden
Host konnte im Verlauf des Projektes auf die Fragestellung reduziert werden, wie man verhin-
dern kann, dass ein Angreifer die Elemente des originalen Agentenprogramms auf der untersten

Abschlussbericht AIDA II 19

Ausführungsebene sehen und damit modifizieren kann. Daher wurde ein Mechanismus ange-
dacht, der die Elemente des originalen Programms so aufspaltet, dass diese auch nicht mehr auf
der untersten Ebene als Ganzes verarbeitet werden sondern in verschiedenen Teilen (Subele-
mentkonversion). Diese Idee bedingt zum einen, dass eine solche Aufspaltung in größerem Rah-
men zufällig erfolgen können muss (sonst könnte der Angreifer einfach alle Aufspaltungsmög-
lichkeiten berechnen und die erfolgte Aufspaltung aufheben). Zum anderen müssen alle
Operationen der Programmiersprache und der Bibliotheken durch solche Operationen ersetzt
werden, die statt der Originalelemente die Subelemente verarbeiten. Idealerweise sollten diese
Operationen aus der Wahl der Aufspaltung heraus automatisch generiert werden. Leider konnte
das Gebiet der Subelementkonversion aus Zeitmangel nicht mehr im Verlauf des Projektes fort-
geführt werden. Daher bleibt es zukünftigen Arbeiten überlassen, diesen Ansatz weiterzuverfol-
gen.

4.7 Ein Protokoll zur Verhinderung von Blackbox-Tests

Wie wir gesehen haben, lassen sich, aufbauend auf der Blackbox-Eigenschaft, andere Angriffe
verhindern. Ein Angriff gegen Blackbox-geschützte Agenten wurde bisher jedoch noch nicht
behandelt: Der Blackbox-Test. Er verwendet kein Wissen über die innere Struktur von mobilen
Agenten und kann daher auch nicht durch die Blackbox-Eigenschaft verhindert werden.

4.7.1 Blackbox-Test-Angriffe

Ein Blackbox-Test ist ein Angriff gegen einen mobilen Agenten durch einen Host, bei dem der
Agent mehrere Male mit variierenden Eingabeparametern ausgeführt wird. Dies kann parallel
oder sequentiell geschehen. Nach jeder Ausführung beobachtet der Angreifer den Effekt des
Tests. Diese Effekte können in expliziten Resultaten wie z.B. Ausgabedaten bestehen oder in
charakteristischen “Aktivitätsmustern”. Das Ziel eines Blackbox-Tests ist es, die Eingabepara-
meter zu finden, die zu einem bestimmten Effekt führen, oder aber, bestimmte Eigenschaften
des Agenten zu erfahren.

4.7.2 Ausführungsmodell

Eine Ausführungssitzung auf einem Host überführt eine initialen Zustand durch Einbeziehung
einer Liste von Eingabeereignissen in einen finalen Zustand, wobei eine Liste von Ausgabeer-
eignissen erzeugt wird (siehe Bild 9). Nachdem der finale Zustand (Sfinal) erreicht wurde, ist die
Ausführungssitzung beendet, und der Agent terminiert oder migriert auf den nächsten Host.

Während der Ausführungssitzung kann ein Eingabeereignis auftreten, durch das der Agent ei-
nen Eingabewert x als Parameter bekommt. Wann immer der Angreifer eine Aktion des Agenten
außerhalb der Blackbox beobachten kann, stellt dies ein Ausgabeereignis dar, das manchmal mit
einem Wert y verknüpft ist.

time
Sinital SfinalSt1 St2 St3 St4 St5 St6 St7

input a input b

output o output qoutput p

input c

Bild 9: Ausführungsmodell auf einem Host

Abschlussbericht AIDA II 20

4.7.3 Die Protokollidee

Ein Weg, Blackbox-Tests zu verhindern, besteht darin, mehrere Ausführungen desselben Agen-
ten zwar zu erlauben, gleichzeitig aber zu verlangen, dass sie diesselbe Liste von Eingabeereig-
nissen benutzen. Damit verhalten sie sich auch vollkommen identisch, falls sie deterministisch
sind. Damit kann ein Angreifer keinen Informationsgewinn aus Blackbox-Tests bekommen, und
dieser Angriff ist sinnlos. Um sicherzustellen, dass zur Ausführung einer Agenteninstanz auf ei-
nem Host diesselbe Liste von Eingabeereignissen benutzt wird, benötigen wir eine sichere
Komponente. Diese Komponente, die Registratur, muss daher auf einem sicheren Host platziert
werden. Das nun folgende Protokoll realisiert diese Idee.

4.7.4 Das Protokoll

Um die Protokollidee zu realisieren, registriert ein Agent Eingabeereignisse bei einer Registra-
tur. Die Registratur antwortet auf eine Registrierung genau dann mit einer positiven Antwort,
falls ein solches Ereignis in einer solchen Ausführungssitzung bisher noch nicht vorgekommen
ist, oder das Ereignis mit denselben Eingabewerten bereits registriert wurde. Ein Agent setzt sei-
ne Ausführung nur dann fort, wenn er eine positive Antwort auf einen Registrierungsversuch
bekommt. Es wird angenommen, dass ein Agent diesselbe Registratur während einer Ausfüh-
rungssitzung verwendet. Bild 10 stellt das Registrierungsprotokoll für Eingabeereignisse dar:

Die Registrierungsanforderung, REQ, wird an die Registratur geschickt. Sie enthält den globa-
len Eingabeereignis-Identifikator (GID), sowie den Hash der Eingabewerte, DataHash . Der
Hash-Wert wird als eine Art spezialisierte Zufallszahl verwendet, die charakteristisch für die
Eingabewerte ist. Daher darf es nicht viele verschiedene Eingabewerte geben, die im selben
Hash-Wert resultieren, zumindest sollten die anderen Eingabewerte schwierig zu berechnen
sein. Diese Anforderungen erfüllt der Einsatz sicherer Hash-Verfahren wie MD4 oder MD5 zur
Errechnung des Hash-Wertes.

Nach Eingang der Anforderung entscheidet die Registratur, ob sie eine positive oder negative
Antwort schicken soll. Im ersten Fall wird eine positive Bestätigung (ACK) zurückgeschickt,
die dieselben Daten wie die Anforderung enthält und durch die Registratur signiert wurde. Im
zweiten Fall wird eine einfache negative Antwort (NACK) zurückgeschickt.

4.7.5 Protokollimplementierung und -messung

Das Protokoll wurde als reine Java-Anwendung implementiert (siehe [Fri98b] wegen einer ge-
naueren Beschreibung der Implementierung und der Messung). Unter Verwendung dieser Im-
plementierung wurde der Mehraufwand gemessen, der durch die Verwendung des Protokolls
entsteht.

Agent Registry

REQ[AgentId, Exp, LocId, Hop, (i_stmt#, n, DataHash)]

GID

ACK{GID,DataHash}SK
Reg

or

NAK

Bild 10: Registrierungsprotokoll

Abschlussbericht AIDA II 21

Wenn wir die Sicherheit des Agenten nicht garantieren können, muss dieser von einem sicheren
Host aus arbeiten, ohne zu den unsicheren Interaktionspartnern migrieren zu können. In diesem
Fall muss die Kommunikation mit diesen Partnern entfernt erfolgen, d.h. z.B. dass Eingabepa-
rameter an den Agenten und Ausgaben von Agenten serialisiert und verschickt werden müssen.
Falls diese Daten über ein unsicheres Netzwerk transportiert werden, müssen diese Daten bis-
weilen verschlüsselt, in jedem Fall aber signiert werden, um zumindest die Integrität dieser Da-
ten zu sichern.

Wenn man unter diesem Aspekt die Zeiten des Mehraufwands des Protokolls gegenüber der Zeit
betrachtet, die die Alternative nur für die notwendige zusätzliche Kommunikation benötigt, fällt
auf, dass der Unterschied zur Alternative gering ist, und bisweilen sogar negativ wird. Dies ist
leicht erklärbar, wenn man sich überlegt, dass das Protokoll normalerweise weniger Daten über
das Netz bewegt als im alternativen Fall, da das Protokoll nur einen Hash fester Länge von den
Eingabedaten berechnet. Sobald die Zeit für die Berechnung des Hash-Wertes plus einiger zu-
sätzlicher Zeit geringer ist als die Zeit, die zum Transport der Daten mit Java RMI benötigt wird,
ist der Gebrauch des durch das Protokoll geschützten Agenten schneller als der alternative Fall.

Weitere Details sowie das genaue Protokoll finden sich in [HR99].

5 Abrechnung: Konzepte und Implementierung

Heutigen Mobile-Agenten-Systemen fehlt eine Komponente, die für den kommerziellen Ein-
satz besonders im Bereich des elektronischen Handels und der elektronischen Dienste zwingend
notwendig ist: die Abrechnung von erbrachten Dienstleistungen. Dabei handelt es sich sowohl
um Dienstleistungen, die vom System zur Verfügung gestellt werden, als auch um Dienste, die
von Agenten selbst angeboten werden. Dienste, die das System zur Verfügung stellt, sind haupt-
sächlich die Benutzung von Systemressourcen wie CPU-Zeit, Speicher oder Netzwerk. Die von
Agenten zur Verfügung gestellten Dienste sind vielfältig. Denkbar sind zum Beispiel Daten-
bankabfragen, naturwissenschaftliche Berechnungen, aber auch der Verkauf von Waren, die
nicht zwangsläufig auf dem elektronischen Weg zustellbar sein müssen. Im kommerziellen Ein-
satz müssen die Dienste, die von Agenten geleistet und in Anspruch genommen werden, regi-
striert und zu einem späteren Zeitpunkt abgerechnet werden. Dabei bietet es sich an, die Ab-
rechnung ebenfalls auf dem elektronischen Weg durchzuführen, zum Beispiel unter
Zuhilfenahme von elektronischen Zahlungssystemen. Das Ziel dieses Arbeitspakets war es da-
her, ein solches Abrechnungssystem für ein Mobile-Agenten-System zu konzipieren und proto-
typisch für Mole zu implementieren. Die Inhalte dieses Kapitels wurden größtenteils [Trä99]
entnommen.

5.1 Erfassung abzurechnender Ressourcen und Dienstleistungen

Grundlage für das Abrechnen von Dienstleistungen und Ressourcenverbrauch ist die Erfassung
bzw. Mitprotokollierung der Verbrauchsdaten (engl. accounting). Die Erfassung der Daten dient
im Wesentlichen zwei Zielen. Zum einen bildet sie die Grundlage für die Inrechnungstellung
(engl. billing) des Verbrauchs, zum anderen können mit den so gewonnenen Daten Systemeng-
pässe durch Datenanalyse ausgemacht werden. Auch ohne eine Inrechnungstellung kann so ein
System adäquat erweitert werden.

Folgende Systemressourcen werden von der Erfassung betrachtet:

Abschlussbericht AIDA II 22

• Prozessorlaufzeit
Hierbei erfolgt die Erfassung über den Verbrauch an Zeitscheiben der Threads, die einem
Agenten zugeordnet sind. In Mole ist das deshalb besonders einfach, weil ein eigener
Thread-Scheduler verwendet wird, der für diese Zwecke modifiziert werden konnte.

• Hauptspeicherverbrauch
Um das System nicht zu sehr zu belasten, wird der Speicherverbrauch eines Agenten in pe-
riodischen Abständen gemessen. Um keine Modifikation der Virtuellen Maschine vorzu-
nehmen, wird dazu die Größe des serialisierten Agentenobjekts gemessen.

• Verbrauch von externen Kommunikationsressourcen
Da ein Agent im Wesentlichen über das Agentensystem kommuniziert, konnte die Erfas-
sung der Verbrauchsdaten (gesendete und empfangene Bytes, Ziel der Kommunikation,
Anzahl der Zugriffe) ebenfalls über eine Modifikation der entsprechenden Routinen im
Agentensystem erfolgen.

Nicht betrachtet wurden externe Speicher (z.B. Festplattenplatz) und interne Kommunikation
(d.h. innerhalb eines Rechners), da diese i.A. keine kritischen Ressourcen sind bzw. mit densel-
ben Verfahren abgerechnet werden können.

Neben den Systemressourcen soll das System auch die Inanspruchnahme von Diensten, die von
anderen Agenten angeboten werden, abrechnen können. Für die Datenerfassung bedeutet das,
dass Dienstinanspruchnahmen aufgezeichnet werden müssen.

5.2 Inrechnungstellung

Die erfassten Daten müssen dem Verbraucher auch irgendwann in Rechnung gestellt werden,
wenn echtes Geld fließen soll. Zu diesem Zweck berechnet die Inrechnungstellung (engl. bil-
ling) zu zahlende Beträge, die dann über ein Zahlungssystem beglichen werden (siehe nächster
Abschnitt). Dabei wird davon ausgegangen, dass eine verbrauchsabhängige Abrechnung erfol-
gen soll, da eine generell pauschale Abrechnung ohne Erfassung des Verbrauchs auskommt.

Zuerst stellt sich die Frage, wie einzelne Leistungen in zu zahlende Beträge überführt werden
können. Dazu kann der Betreiber eines Hosts auswählen, ob und wie der Verbrauch von Res-
sourcen Geld kostet. Er kann jeden Verbrauch entweder mit einer festen Gebühr belegen oder
aber gewisse Pauschalen verwenden. Für Dienste bietet dieses feste Schema u.U. nicht genug
Mächtigkeit. Daher kann der Betreiber auch statt der Benutzung des vorgegebenen Schemas
selbst Code erstellen, der die erfassten Daten in zu zahlende Beträge umrechnet.

Den generellen Modus der Abrechnung bestimmt das Abrechnungsmodell, das der Betreiber ei-
nes Hosts in gewissen Grenzen bestimmen kann. Der Abrechnungszeitpunkt legt fest, wann eine
Abrechnung der angefallenen Beträge erfolgen soll. Dieser Zeitpunkt kann entweder das Ende
einer Inanspruchnahme eines Dienstes oder einer Ressource sein, periodisch in bestimmten In-
tervallen erfolgen oder nach Ansammlung eines gewissen Betrages.

Um einem Agenten die Möglichkeit zu geben, sich vor der Inanspruchnahme über mögliche Ko-
sten zu informieren, kann sich ein Agent (auch entfernt) eine Preisliste geben lassen, in der die
Abrechnungsspezifikationen festgehalten sind. Diese Methode ist allerdings nur für solche In-
anspruchnahmen möglich, bei denen keine speziellen Abrechnungsprozeduren verwendet wer-
den, da deren Effekte nicht in einer maschinenlesbaren Art und Weise automatisch wiedergege-
ben werden können.

Abschlussbericht AIDA II 23

5.3 Zahlungskomponente

Im Zusammenhang mit mobilen Agenten birgt die Verwendung eines elektronischen Zahlungs-
systems dann Vorteile, wenn eine verbrauchsabhängige Abrechnung gewählt wird und wenn der
Agent in der Lage ist, damit seine Verbrauchsrechnung gleich "an Ort und Stelle" zu begleichen.
In [Trä99] werden verschiedene elektronische Zahlungsverfahren vorgestellt. Für den Einsatz
in einer Abrechnungskomponente soll ein entsprechendes Verfahren frei konvertibles Geld an-
bieten, also solches, das nicht nur in einem bestimmten ökonomischen Umfeld gültig ist, son-
dern auch Mikrozahlungen unterstützt, um auch kleine Beträge effizient abrechnen zu können,
und es soll die Anonymität des Zahlenden gewährleisten. In einer ersten Evaluation scheint da-
her digitales Bargeld am geeignetsten für dieses Umfeld zu sein.

Da für dieses Arbeitspaket eine Einbindung eines existierenden Zahlungssystems zu umfang-
reich war, wurde statt dessen das Zahlungssystem als "Blackbox" betrachtet und der Zugriff
über allgemeine Schnittstellen definiert. Zur Evaluierung des Ansatzes wurde diese Blackbox
dann mit einer kleinen lokalen Simulation eines solchen Zahlungssystems gefüllt.

5.4 Messungen

In [Trä99] wurde der Performanzverlust der Implementierung der vorgestellten Abrechnungs-
komponente gegenüber einem Mole-System ohne Abrechnungskomponenten anhand eines
Testagenten berechnet, der 100 entfernte Prozeduraufrufe und 100 Nachrichten abschickt. Das
Ziel der Prozeduraufrufe war der Testagent selbst, der daraufhin sehr großes Fakultäten berech-
nete. Dabei zeigte sich, dass
• auch eine sehr zeitnahe Abrechnung (jede Sekunde) bei moderater Nachrichtengröße den

Agenten maximal um 8% verlangsamte
• eine Abrechnung bei sehr grossen Nachrichten die Abrechnung stark verlangsamte (um ca.

200% bei ca. 10Mbyte Daten insgesamt), weil dann die Serialisierung viel Zeit benötigt
• die Gebührenberechnung bei Verwendung systemeigener Methoden sehr schnell vonstatten

ging (ca. 20 ms)
• auch bei der Abrechnung bei Erreichen einer bestimmten Summe das System nur gering-

fügig mehr (1%) belastet wurde

5.5 Verwandte Arbeiten

Telescript [GM94] war 1994 das erste Mobile-Agenten-System. Es benutzte die gleichnamige
Sprache Telescript, wurde von der Firma General Magic betrieben und war dazu gedacht, ande-
ren Firmen die Möglichkeit in die Hand zu geben, kostenpflichtige Dienste anzubieten, oder gar
solche Dienste zwischen zwei anderen Parteien zu vermitteln. Daher waren Abrechnungsme-
chanismen schon immer Teil des Systems. Allerdings sind genauere Informationen über die Ab-
rechnungskomponenten heute schwer zu bekommen, da das Produkt Telescript ab etwa 1997
nicht mehr angeboten wird, und auch vor dieser Zeit genauere Informationen vor allem für kom-
merzielle Lizenznehmer verfügbar waren. Bekannt ist, dass die Inanspruchnahme von Ressour-
cen und Diensten sog. Teleclicks kosteten, die dann linear über echtes Geld abgerechnet wurden.

Zurzeit gibt es keine Installation eines Mobile-Agenten-Systems, das für einen Benutzer kosten-
pflichtig ist, und es gibt auch nur vereinzelt Forschung auf diesem Gebiet. Schon länger bekannt
ist allerdings der Umstand, dass das Problem der Ressourcenkontrolle in Mobile-Agenten-Sy-
stemen dann gelöst werden kann, wenn die Inanspruchnahme den Benutzer Geld kostet. Unter
diesem Aspekt wird die Problemstellung der Ressourcenkontrolle ("Wie kann ich verhindern,

Abschlussbericht AIDA II 24

dass ein Benutzer zu viele Ressourcen benutzt?") durch die Einsicht beantwortet, dass es voll-
kommen egal ist, wieviele Ressourcen von einem bestimmten Benutzer verbraucht werden, so-
lange er diese nur bezahlt.

Ein ähnliches Prinzip benutzt [GKC98], wo allerdings kein echtes Geld zur Kompensation des
Ressourcenverbrauchs verwendet wird, sondern eine künstliche "Systemwährung", von der je-
der Agent gleich viel (umsonst) bekommt. Da jeder Anbieter von Ressourcen diese an Agenten
"verkaufen" kann, soll sichergestellt werden, dass Ressourcen nicht von einem Agenten mono-
polisiert werden können.

5.6 Zusammenfassung

Voraussetzung für eine Abrechnung von Dienst- und Ressourceninanspruchnahmen, bei der
echtes Geld fließt, ist ein in jeder Hinsicht sicheres Agentensystem, d.h. eines, bei dem nicht nur
der Agent einem Host nicht schaden kann, sondern auch bei der Dienstinanspruchnahme nicht
betrogen werden kann, und schließlich ein Host einen Agenten nicht angreifen kann. Dieser
Aspekt war nicht Gegenstand dieses Arbeitspakets (er wurde bereits im letzten Kapitel disku-
tiert), und wurde daher für die Abrechnung als gegeben angenommen.

Unter dieser Voraussetzung wurde in diesem Kapitel eine Abrechnungskomponte konzipiert
und für Mole prototypisch implementiert, die in der Lage ist, Verbrauchsdaten von Systemres-
sourcen und Dienstinanspruchnahmen zu erheben, diese Daten in zu zahlende Beträge auf eine
durch den Betreiber einstellbare Weise umzuwandeln, und die bestehende Zahlungssysteme
nutzen kann, um diese Beträge einzuziehen bzw. dem Dienstanbieter gutzuschreiben.

6 Verarbeitungsmodelle für Agentenanwendungen

6.1 Einführung

Einer der Vorzüge des Client-Server-Modells ist es, daß sich die Anwendungsstruktur in der
Hierarchie der RPC-Aufrufe wiederfinden und sich diese implizite Struktur für einige Aufgaben
wie z.B. die Terminierung und Waisenerkennung vorteilhaft einsetzen lässt. Da die Mobile-
Agenten-Architektur wesentlich flexibler ist, und sich z.B. Kommunikationsbeziehungen nicht
ohne weitere Informationen als in Relation stehend identifizieren lassen, werden andere Verfah-
ren benötigt, um obige Daten erheben zu können. Die im Antrag von AIDA II in Betracht gezo-
gene Möglichkeit war, dem Programmierer einfache Interaktionsmodelle zur Verfügung zu stel-
len, die einerseits viele Anwendungsfälle abdecken und andererseits Relationen zwischen
Agenteninteraktionen implizieren, die von Systemmechanismen ausgenutzt werden können.
Dazu sollten typische Verarbeitungsstrukturen identifiziert und in einem zweiten Schritt, durch
adäquate Interaktionsmodelle bzw. Kontrollstrukturen nachgebildet werden. Obwohl diese vor-
gefertigten Interaktionsmodelle nicht die volle Flexibilität des allgemeinen Agentenmodells
bieten können, sollten sie nicht nur das Systemmanagement erleichtern, sondern mit ihrem vor-
gefertigten Funktionsumfang auch für die Erstellung von Anwendungen, die auf mobilen Agen-
ten beruhen, arbeitserleichternd wirken.

6.2 Vorbemerkung

Entgegen der Zielsetzung im Antrag konnte dieses Arbeitspaket nicht in der angedachten allge-
meinen Ausrichtung bearbeitet werden. Obwohl die Zielsetzung auch zum gegenwärtigen Zeit-

Abschlussbericht AIDA II 25

punkt als untersuchenswert und relevant für einen späteren Einsatz von Mobile-Agenten-Syste-
men erscheint, entwickeln sich erst jetzt echte Anwendungen auf der Basis von mobilen
Agenten, nachdem die Basismechanismen dieser Technologie durch Forschungsprojekte wie
AIDA erarbeitet wurden. Daher konnte im Berichtszeitraum keine Analyse typischer Verarbei-
tungsstrukturen durchgeführt werden. Da diese die Basis für eine Erstellung von Verarbeitungs-
modellen dargestellt hätten, konnten die generellen Untersuchungen von Verarbeitungsmodel-
len, die beabsichtigt waren, nicht durchgeführt werden.

Um aber den Boden für eine eventuelle spätere Untersuchung dieses Themas zu einem Zeit-
punkt, da diese Daten verfügbar sein werden, zu bereiten, wurde die Aufgabenstellung exem-
plarisch auf ein Verarbeitungsmodell eingeschränkt, das in den Bereich der Sicherheit fällt. Die-
ses Vorgehen erwies sich als vorteilhaft, da hier durch das Arbeitspaket SYS.2 bereits Wissen
aus diesem Bereich, insbesondere den in der Literatur genannten Verarbeitungsstrukturen, vor-
lag. Diese Strukturen werden dabei nicht den Anforderungen oder existierenden Strukturen der
Anwendungen entnommen, sondern den Schutzmechanismen, die eine bestimmte Verarbei-
tungsstruktur, z.B. zum Schutz des mobilen Agenten vor Angriffe durch böswillige Hosts, be-
nutzen.

6.3 Verarbeitungsmodelle vs. Patterns

Auf den ersten Blick scheinen Verarbeitungsmodelle, wie sie in der Einführung skizziert wur-
den, Entwurfsmustern ("Patterns") zu ähneln. Es ist daher zunächst notwendig, Verarbeitungs-
modelle von Patterns zu differenzieren.

6.3.1 Patterns

Patterns [GHJ95] sind Beschreibungen von miteinander kommunizierenden Objekten und Klas-
sen, die dazu entworfen wurden, ein generelles Designproblem in einem bestimmten Kontext
zu lösen. Patterns bestehen aus vier wesentlichen Elementen. Der Name des Patterns identifi-
ziert das Pattern und gibt einen Hinweis auf das zu lösende Problem, das Problem beschreibt die
Situation, in der das Pattern einzusetzen ist, die Lösung beschreibt ein Entwurfsdesign, das das
Problem löst, die Konsequenzen schließlich beschreiben die Ergebnisse und Folgen, die sich aus
der Anwendung der Lösung ergeben.

Patterns tradieren also in schriftlicher Form häufig benötigte Umwandlungen von einem Pro-
blem zu einem Entwurf. Für die Implementierung ist der Programmierer zuständig, der sich
aber immerhin auf Code-Beispiele stützen kann. Patterns sind daher auf den Programmierer
ausgerichtet, das System (im Fall der Patterns die Anwendung) sieht die benutzten Patterns
nicht und kann daher auch keine Informationen aus der Benutzung der Patterns erschliessen.

6.3.2 Verarbeitungsmodelle

Verarbeitungsmodelle beziehen sich aussschliesslich auf Mobile-Agenten-Systeme (auch wenn
sich das Prinzip auf jede Middleware anwenden lässt, die einen Bedarf nach Aussagen über die
Beziehungen zwischen den Einheiten der Middleware haben). Middleware kann ganz allgemein
als Implementations-Framework einiger Patterns angesehen werden (dann sollte man sie aber
vielleicht nicht mehr als Patterns bezeichnen, sonst verwässert der eigentlich recht genau defi-
nierte Begriff). Ein Middlewaresystem unterstützt die Anwendung, indem es Unterstützung für
einige Konzepte (wie RPC oder eben Agenten) bereitstellt. Diese Konzepte könnte man als Pat-
terns darstellen (in der Tat wird das in manchen Artikeln gemacht), aber das ist eigentlich nur
dann sinnvoll, wenn es keine Unterstützung des Middlewaresystems für diese Patterns gibt, weil

Abschlussbericht AIDA II 26

Patterns auf einen Entwurfsprozess verweisen, der weniger Unterstützung anbietet als Middle-
waresysteme zu leisten in der Lage sind. Man könnte beispielsweise "Mobile Agenten" als Pat-
terns in Java-basierten Anwendungen benutzen, wenn es keine Möglichkeit gibt, das Konzept
"Mobiler Agent" des zugrunde liegenden Systems zu benutzen.

Verarbeitungsmodelle haben zwei Ziele. Erstens sollen sie dem Systemmanagement Hinweise
auf die benutzte Verarbeitungsstruktur geben, also erkennen lassen, in welcher Beziehung
Agenten zueinander stehen und welche Interaktionsbeziehungen zwischen diesen existieren.
Dieses Wissen kann das Systemmanagement benutzen, um Anwendungen (die aus Agenten be-
stehen) Unterstützung z.B. in den Bereichen Terminierung und Waisenerkennung zu geben.
Zweitens sollen sie, genau wie Patterns, Programmierer bei der Lösung ihrer Entwurfsprobleme
helfen. Da, wie wir gleich sehen werden, Verarbeitungsmodelle auf Systemebene angesiedelt
sind, können sie den Programmierer jedoch auch zusätzlich bei der Implementierung einer An-
wendung unterstützen. Dies kann z.B. dadurch geschehen, dass das Agentensystem bereits
Klassen und Interfaces bereitstellt, die der Programmierer dann benutzen kann (bzw. muss).

Die Umsetzung von Verarbeitungsmodellen erfolgt im ersten Schritt wie bei Patterns. Der Pro-
grammierer benutzt einen Satz von Verarbeitungspatterns zur Umsetzung von Problemen in
Entwürfe. Danach muss er jedoch nicht wie bei Patterns selbst vollständig für die Implementie-
rung sorgen, sondern benutzt Klassen und Interfaces, die ihm das System zur Verfügung stellt,
und mittels der er sein spezielles Anwendungsproblem löst. Auch dabei muss er natürlich pro-
grammieren, aber er ist nicht mehr frei in der Wahl z.B. der Programmiersprache, sondern kann
und muss die Umgebung benutzen, die ihm das Agentensystem anbietet.

Zusammenfassend kann man also Verarbeitungsmodelle als Patterns definieren, die systemsei-
tig unterstützt werden, und die als semantische Einheiten für das Systemmanagement nützlich
sind. Falls letztere Notwendigkeit nicht gegeben ist, wollen wir die Patterns im Folgenden nicht
betrachten, weil dann eine generellere Frage angesprochen wird, nämlich die der Konzepte, die
ein Mobile-Agenten-System anbieten sollte.

6.4 Verwandte Arbeiten

Verwandte Arbeiten rangieren (bis auf eine Ausnahme) unter dem Stichwort "Patterns", auch
wenn sie z.T. bereits in den Bereich Verarbeitungsmodelle fallen, weil es systemseitige Unter-
stützung, wenn auch auf sehr simpler Ebene, dafür gibt. Bei Patterns, die in der Mobile-Agen-
ten-Literatur auftauchen kann man unterscheiden zwischen Intra-Agenten-Patterns und Inter-
Agenten-Patterns. Erstere beschreiben Konzepte, die typischerweise Teil eines Agenten sind
wie Reisepläne und Kommunikationskanäle, letztere umfassen bereits den Bereich der Bezie-
hungen zwischen Agenten wie z.B. Controller-Worker bzw. Master-Slave.

In [AL98] wird ein Beispiel für eine solche Arbeit vorgestellt, in der einige Patterns rund um
das Mobile-Agenten-System Aglets beschrieben werden. Ein Pattern, Itinerar , ist dabei Intra-
Agent, zwei andere (Master-Slave und Meeting) sind Inter-Agent. In [JJS97] werden sogar viele
Patterns einer ganzen auf dem System Tacoma beruhenden Anwendung beschrieben, darunter
ein Inter-Agent-Pattern "Controller-Worker". In [SD98] wird gar das Pattern "Mobile Agent"
beschrieben, wobei als Beschreibung ein ganzes Agentensystem dient.

In [FL99] wird ein Pattern beschrieben, das einen Mechanismus zum Schutz mobiler Agenten
vor Angriffen böswilliger Hosts beschreibt, in dem ein Hauptagent, der nur zu sicheren Hosts
migrieren kann, kleine Single-Hop-Agenten zu unsicheren Hosts schickt, um dort z.B. Preise zu
erfragen. Dieser Artikel beschreibt wirklich ein Pattern im strengen Sinn, d.h. es gibt keine Un-
terstützung durch das System, das damit die Relationen zwischen den Agenten auch nicht er-

Abschlussbericht AIDA II 27

kennen kann. Dieses Pattern kann aber zu einem Verarbeitungsmodell weiterentwickelt werden
(was wir im nächsten Unterkapitel auch machen).

Neben dem Gebiet der mobilen Agenten tauchen Patterns auch im Gebiet der allgemeinen
Agenten auf, wobei Multi-Agenten-Systeme wegen dem Aspekt der Notwendigkeit der Koor-
dination mehrerer Agenten für uns im Prinzip von Interesse sein könnten. Auch dort finden wir
eine ganze Bandbreite von Intra- und Inter-Agenten-Patterns. Zum jetzigen Zeitpunkt erweisen
sich diese Patterns allerdings nicht als sehr ergiebig im Hinblick auf Verarbeitungsmodelle bei
mobilen Agenten, weil die Möglichkeit der Migration andere Anforderungen an die Koordina-
tion stellt als bei stationären Agenten.

In [KPK97] wird eine ganze Reihe von Patterns für stationäre Agenten diskutiert, die sich aller-
dings nur auf Inter-Agent-Pattern beschränken bzw. auf solche, bei denen es genau einen Agen-
ten gibt. In [KSK98] wird darauf aufbauend ein Java-Framework vorgestellt, das diese Patterns
systemseitig unterstützt.

6.5 Beispiel für ein Verarbeitungsmodell

Um Verarbeitungsmodelle zu illustrieren, soll nun ein solches erarbeitet werden. Als Grundlage
dazu soll das Pattern "Supervisor-Worker" aus [FL99] dienen. Normalerweise müsste man im
allgemeinen Fall erst eine Verarbeitungsstruktur finden, die von allgemeinem Interesse ist, dann
diese Struktur in ein Entwurfsmuster umsetzen. Die Frage, ob dieses Pattern zu sinnvollen An-
wendungen auf der Basis mobiler Agenten führt, ist nicht Gegenstand dieses Beispiels.

6.5.1 Das "Supervisor-Worker"-Pattern

Im folgenden soll kurz das "Supervisor-Worker"-Pattern aus [FL99] vorgestellt werden, das ge-
genüber dem Artikel leicht verändert und stark gekürzt wurde.

Absicht

Schutz eines mobilen Agenten vor Informationsverlust und Modifikationen durch einen böswil-
ligen Host.

Motivation

Wenn ein mobiler Agent benutzt wird, um einen billigen Flug zu suchen und zu buchen, kann
ein böswilliger Host entweder andere Angebote löschen, oder einen Preis anbieten, der gering-
fügig besser ist als der beste Preis der anderen Anbieter, obwohl er über dem Normpreis dieses
Anbieters liegt.

Eine Lösung dieses Problems liegt darin, zu unbekannten Hosts Unteragenten zu schicken, die
nur Flugpreise einholen, und den Hauptagenten nur zu sicheren Hosts migrieren zu lassen. Die
Unteragenten bieten dann kein Angriffsziel mehr, weil ein Host über sie nur in der intendierten
Art und Weise Einfluss auf die Preisfindung hat.

Teilnehmer

Das Pattern besteht daher aus einem Supervisor-Agenten, der nur auf sicheren Hosts arbeitet
und einem oder mehreren Worke-Agenten, die einzelne Informationen auf unsicheren Hosts
holen. Supervisors sind Agenten, die für den Verarbeitungsschritt, für den das Pattern benötigt
wird, nicht migrieren, und die Teilaufgaben durch Worker auf unsicheren Hosts erledigen las-
sen. Worker sind Agenten, die von einem Supervisor mit einer Teilaufgabe auf einen Host ge-
schickt werden, diese dort abarbeiten und wieder zurückmigrieren, schließlich ein Resultat zu-

Abschlussbericht AIDA II 28

rück an den Supervisor melden und sich dann beenden. Eine Teilaufgabe ist das Programm eines
Worker-Agenten. Ein Resultat ist eine Sammlung von Schlüssel-Wert-Paaren.

Beziehungen

1. Der Benutzer erstellt den Supervisor- und die Worker-Agenten.
2. Der Supervisor beginnt seine Rolle im Verlauf seines Lebens.
3. Der Supervisor schickt einen oder mehrere Worker auf unsichere Hosts.
4. Jeder Worker migriert auf einen Host, arbeitet sein Programm ab, und migriert mit seinem
Resultat zurück zum Supervisor.
5. Der Supervisor nimmt das Resultat entgegen.
6. Sobald alle Worker wieder mit Resultaten zurückgekehrt sind, verarbeitet der Supervisor die
Resultate.
7. Danach beendet der Supervisor seine Rolle.

Konsequenzen

Vorteile

Worker sind nicht durch Angriffe durch den Host gefährdet.

Seiteneffekte

Nebenläufige Ausführung: Worker arbeiten parallel.

Folgen

• Wenn ein Worker ausfällt, wird die Verarbeitung nicht beendet.

• Auf dem Host, auf dem der Supervisor ist, finden mehr Berechnungen statt.

6.5.2 Realisierung im Agentensystem

Um die Alternativen bei der Realisierung eines Verarbeitungsmodells aufzuzeigen, beginnen
wir mit der Beschreibung der Implementierung des Patterns, fügen dann Aufrufe hinzu, mit de-
nen die Beziehungen zwischen Agenten an das Agentensystem gemeldet werden, integrieren
das Verarbeitungsmodell in das Agentensystem und stellen schließlich noch eine alternative Im-
plementierung mithilfe von Agentengruppen vor.

6.5.3 Realisierung des Patterns

Wir benötigen Klassen für das Resultat, sowie Interfaces für den Worker und den Supervisor.
Auf die Resultatsklasse wird nicht näher eingegangen. Das Interface für den Supervisor ist fol-
gendermassen aufgebaut:

public interface Supervisor {
addResult(Result r);
}

Die einzige Methode, die benötigt wird, addResult, dient den Workern dazu, ihr Resultat zu-
rückzugeben. Das Interface für den Worker sieht wie folgt aus:

public interface Worker {
computeResultForAt(AgentName supervisor, Destination target);
Result subtask();
}

Abschlussbericht AIDA II 29

Die erste Methode beauftragt einen Worker, ein Teilresultat für einen Supervisor zu errechnen.
Die zweite Methode enthält den Code zur Errechnung des Teilresultats. Mehr ist nicht nötig, den
Rest macht der Programmierer selbst. Ein Beispiel für eine solche Anwendung ist:

public class Supervisor1 extends Agents implements Supervisor {
int numberOfReceivedResults = 0;

public void start() {
numberOfReceivedResults = 0;
System.createAgent((new Worker1()).computeResultForAt(myna-
me,location1);
System.createAgent((new Worker1()).computeResultForAt(myna-
me,location2);
System.createAgent((new Worker1()).computeResultForAt(myna-
me,location3);
}

addResult(Result r) {
<merge result>
numberOfReceivedResults++;
if (numberOfReceivedResults == 3) doSomeThingElse();
}// addResult
}// SuperVisor

public class Worker1 extends Agents implements Worker {
Result result;
Supervisor mySupervisor;
Destination home = myLocation();

computeResultForAt(AgentName supervisor, Destination target){
mySupervisor = supervisor;
go(target);
} // computeResultForAt

public void start() {
if (mylocation() != home) {
result = subtask();
go(home);
}
else {
mySupervisor.addResult(result);
die();
} //else
} // start

Result subtask() {
<some code>
}
} // Worker1

Da sich der Code in Worker bis auf subtask über verschiedene Worker-Klassen nicht von-
einander unterscheidet, könnte man Worker auch zu einer Unterklasse von Agent machen und
dann von dieser Klasse erben mit dem Effekt, dass man nur subtask überladen müsste.

Abschlussbericht AIDA II 30

6.5.4 Realisierung des Verarbeitungsmodells

Die Realisierung des Patterns erlaubt es zwar einem Programmierer, das Pattern zu verwenden,
aber wir wollen ja Systemunterstützung an die gefundenen Relationen zwischen den Agenten
knüpfen. Wenn wir z.B. den Fehlerfall tolerieren lassen wollen, dass Worker auf transient aus-
fallenden Hosts verlorengehen, müssen wir den Supervisor nur pro ausgeschicktem Worker ei-
nen Timer einsetzen lassen, nach dessen Ablauf ein Ersatz-Worker geschickt wird, falls der erste
noch nicht wieder zurückmigriert ist. Der entsprechende Code muss daher nur in die Klasse Su-
pervisor integriert werden. Auf ähnliche Weise lässt sich auch andere Funktionalität in dieses
Pattern integrieren.

6.5.5 Realisierung mit Agentengruppen

Um die Mechanismen des Systemmanagements wie Terminierung usw. zu unterstützen, kön-
nen, sofern vorhanden, u.U. generische Systemkonzepte des Agentensystems verwendet wer-
den. Ein solches Konzept ist das der Agentengruppen (siehe [BR97], [Bec97], und [Pau98]), das
es einem Programmierer erlaubt, explizite Beziehungen zwischen mobilen Agenten in Form
von hierarchischen Gruppen anzugeben (deren Mitgliedschaft dynamisch sein kann), System-
mechanismen wie Terminierung an diese Beziehungen zu knüpfen, Kontrollmechanismen zu
etablieren und Nachrichten an einige oder alle Mitglieder einer Gruppe zu schicken. Auf diesen
Aspekt soll hier nicht näher eingegangen werden, es ist aber relativ einfach möglich, mithilfe
der Implementierung in [Pau98], in Mole eine Gruppe zu definieren, die eine Supervisor-Wor-
ker-Beziehung etabliert, und dann diese zu verwenden um Worker zu terminieren, wenn der Su-
pervisor terminiert wird.

Man könnte Patterns natürlich auch direkt mit solchen Gruppen realisieren, aber dann müsste
sich der Programmierer der Anwendung um die Etablierung der Gruppenbeziehung kümmern,
sein Problem in das Gruppenkonzept einpassen und andere Verwaltungsarbeiten vorsehen.
Wenn man aber Gruppen benutzt, um Verarbeitungsmodelle zu erarbeiten, muss sich der An-
wendungsprogrammierer nicht um Gruppenkonzepte kümmern, sondern nur der Ersteller des
Verarbeitungsmodells.

6.5.6 Bewertung des Verarbeitungsmodells

Der Nutzen für den Programmierer ist klar: durch die Verwendung von Verarbeitungsmodellen
spart er den Aufwand, sich selbst die entsprechenden Strukturen schaffen zu müssen. Dabei un-
terstützen Verarbeitungsmodelle den Programmierer nicht nur beim Entwurf, sondern auch bei
der Implementierung. Der Preis, den der Programmierer dafür zahlt, ist, wie auch bei Patterns
und Bibliotheken, dass er einen gewissen Aufwand investieren muss, um die Sammlung der
Modelle kennenzulernen bzw. nach dem adäquaten Modell zu suchen und es anzuwenden.

Der Nutzen für das Systemmanagement besteht darin, dass mit den Verarbeitungsmodellen
Rahmen existieren, in die man unterstützende Mechanismen einbauen kann. Bei unserem Bei-
spiel könnten das u.a. Mechanismen sein für:

Terminierung

Da sich der Supervisor merken könnte, welche Worker zu ihm gehören, könnte die vorzeitige
Terminierung der Anwendung auch alle Worker-Agenten erreichen und diese terminieren.

Waisenerkennung

Da die Worker vollständig vom Supervisor abhängen, könnten Worker, sobald sie feststellen,
dass ihr Supervisor nicht mehr existiert, sich selbst beenden.

Abschlussbericht AIDA II 31

Fehlertoleranz

Transiente Ausfälle der Worker-Hosts wurden bereits besprochen. Dauerhafte Ausfälle dersel-
ben könnte ein Mechanismus im Supervisor dadurch ausgleichen, dass Ersatz-Worker auf ande-
re Hosts geschickt werden.

Sicherheit

Da es sich bei dem Verarbeitungsmodell um ein durch Sicherheitsbedenken motiviertes Muster
handelt, könnte das System (falls es das nicht schon standardmäßig tut) die Worker mit dem öf-
fentlichen Schlüssel des Ziel-Hosts verschlüsselt transportieren, damit diese nicht durch andere
Angreifer abgefangen werden können, ebenso wie der Worker verschlüsselt zurückmigrieren
könnte.

6.6 Zusammenfassung

Verarbeitungsmodelle sind Konstrukte, die dem Programmierer durch das Agentensystem an-
geboten werden. Sie erlauben es dem Programmierer, dem Agentensystem die Verarbeitungs-
struktur seiner Anwendung, v.a. die Beziehungen zwischen den einzelnen Agenten bekanntzu-
machen. Der unmittelbare Nutzen für den Programmierer besteht darin, dass dieser
vorgefertigte Konstrukte benutzen kann, ohne sie selbst zu erstellen. Der mittelbare Nutzen für
ihn bzw. der unmittelbare Nutzen für das System besteht darin, dass das Agentensystem das
Wissen über die Interaktionsstrukturen für das Systemmanagement nutzen kann, also z.B. für
die Terminierung und Waisenerkennung, für die Unterstützung der Fehlertoleranz oder für die
Sicherheitsunterstützung.

Verarbeitungsmodelle unterscheiden sich von Patterns vor allem dadurch, dass sie nicht nur den
Entwurfsprozess des Programmierers unterstützen sondern auch Wissen aus dem Entwurf an
das System übermitteln.

Sobald es einige echte Anwendungen gibt, die mobile Agenten benutzen, wird es analog der
hier dargestellten Weise möglich sein, allgemeine Verarbeitungsmodelle aus typischen Verar-
beitungsstrukturen zu bilden, um so das Systemmanagement zu unterstützen und den Program-
mierer zu entlasten.

7 Weitere Ergebnisse von AIDA II

Neben den durch den Antrag abgedeckten Themen konnten durch die Vorarbeiten in AIDA I
weitere Forschungsthemen angegangen werden, deren Ergebnisse als Eigenbeitrag ebenfalls als
Ergebnisse von AIDA gewertet werden können.

Auf den in AIDA I und AIDA II erfolgten Arbeiten zum Thema Waisenerkennung und Termi-
nierung konnten weitere Untersuchungen aufbauen, die schliesslich in [Bau00] mündeten. Hier-
in wurden die Eigenschaften der entwickelten Kontrollalgorithmen im Detail analysiert und mit
alternativen existierenden Ansätzen verglichen. Im Bereich der verteilten Algorithmen gibt es
Lösungen für ähnliche Probleme wie im Bereich der Kontrollalgorithmen für mobile Agenten.
Diese können in den Teilbereichen der verteilten Terminierung und der verteilten Garbage-Col-
lection gefunden werden. Tel und Mattern (1993) haben gezeigt, daß diese beiden Klassen von
Algorithmen ineinander übergeführt werden können. Durch die Anwendung einer Transforma-
tion kann ein Algorithmus der einen in die andere Klasse transformiert werden. Eine ähnliche
Transformation, die eine dieser Klassen in Kontrollalgorithmen für mobile Agenten überführen

Abschlussbericht AIDA II 32

könnte, würde den Zugriff auf eine große Menge von Algorithmen für die Kontrolle mobiler
Agenten ermöglichen. In der Arbeit wurden existierende Garbage-Collection-Algorithmen
transformiert, um zu zeigen, daß alle Prinzipien der transformierten Algorithmen auch in den
existierenden Kontrollalgorithmen verwendet werden. Hierbei zeigt sich, daß diese Menge der
Transformationen eine echte Teilmenge der Kontrollalgorithmen für mobile Agenten darstellt.

Ebenfalls auf den in AIDA I durchgeführten Arbeiten aufbauend konnten die folgenden Themen
erarbeitet werden:

• Genau-einmal-Ausführung von mobilen Agenten

Das Programmiermodell impliziert, dass mobile Agenten fehlerfrei migrieren und ausge-
führt werden können. Insbesondere besagt es, dass mobile Agenten von sich aus weder ver-
loren gehen noch dupliziert werden. Diese als selbstverständlich getroffene Annahme ist
technisch schwierig zu realisieren und wird auch von fast allen existierenden Systemen
nicht sichergestellt. Daher wurden in [SR98], [SRM98], und [RS98] Verfahren vorgestellt,
die eine solche genau-einmal-Ausführung ("exactly-once execution") gewährleisten.

• Framework für die transparente Verteilung von Berechnungen

Einer der Vorteile mobiler Agenten ist die Möglichkeit, Code auf entfernten Knoten auszu-
führen. Diese Eigenschaft kann u.a. dazu benutzt werden, um parallelisierbare Berechnun-
gen mittels mobiler Agenten auf verschiedene Rechnersysteme zu verteilen. In [SBS99a]
und [SBS99b] wurde daher ein Framework vorgestellt, das es erlaubt, solche Berechnun-
gen, die in der Sprache Java erfolgen, einfach und für den Programmierer transparent zu
verteilen.

• Partieller Rollback von Mobile-Agenten-Ausführungen

Um Agenten in einem transaktionalen Zusammenhang benutzen zu können, ist es notwen-
dig, Verfahren zur Rückgängigmachung von Aktionen anzubieten. Da die Ausführung von
mobilen Agenten nicht als eine einzige Transaktion durchgeführt werden kann, sondern als
Abfolge von einzelnen Transaktionen, die jeweils die Ausführung auf einem Rechner um-
fassen, kann zu diesem Zweck kein klassischer Rollback eingesetzt werden. Daher wurden
in [SR00] bzw. [SR99] Mechanismen vorgestellt, die es erlauben, einen partiellen Rollback
einer Ausführung in einer effizienten und skalierbaren Art und Weise vorzunehmen.

Neben diesen Eigenbeiträgen wurde ein weiteres Thema im Kontext von AIDA durch einen
Graduierten-Kollegiaten, Dipl-Inf. Wolfgang Theilmann, erarbeitet. Bei diesem Thema handelt
es sich um das Projekt Hawk (HArvesting the Widely distributed Knowledge), das es sich zur
Aufgabe gemacht hat, neue Werkzeuge zur Informationssuche im Internet zu entwickeln, so
dass eine präzise und möglichst vollständige Suche in einer skalierbaren und effiziente Art und
Weise möglich wird. Das Projekt verfolgt drei Schwerpunkte:
• Die Erforschung spezialisierter Suchmaschinen, die auf ein Wissensgebiet beschränkt sind
• Die effiziente Aussendung von mobilen Agenten, um verteilt Informationen filtern zu kön-

nen
• Die effiziente Erstellung von Netzwerkkarten des Internets

Ergebnisse dieser Arbeiten wurden in [RT98], [TR98], [TR99a], [TR99b], [TR99c], und
[TR00] veröffentlicht.

Abschlussbericht AIDA II 33

8 Verwandte Arbeiten

Im Zusammenhang mit AIDA II wurden folgende Themen betrachtetet:
• Abrechnung in Mobile-Agenten-Systemen
• Genau-einmal-Ausführung von mobilen Agenten
• Informationssuche mit mobilen Agenten
• Partieller Rollback von Mobile-Agenten-Ausführungen
• Sicherheit in Mobile-Agenten-Systemen, speziell der Bereich der Sicherheit des Agenten

vor Angriffen böswilliger Hosts
• Terminierung von mobilen Agenten
• Transparente Verteilung von Berechnungen mittels mobiler Agenten
• Verarbeitungsmodelle für mobile Agenten
• Waisenerkennung in Mobile-Agenten-Systemen

Aufgrund der Vielzahl an abgedeckten Themen gibt es naturgemäß auch viele verwandte Arbei-
ten. Da diese Arbeiten sowie die Abgrenzung zum Stand der Wissenschaft in den jeweiligen
Veröffentlichungen genannt werden, soll daher an dieser Stelle auf die entsprechenden Ab-
schnitte verwiesen werden.

9 Aktivitäten der Gruppe auf dem Gebiet der mobilen Agenten
im Berichtszeitraum

Die während AIDA I aufgebaute Gruppe am IPVR, die sich mit mobilen Agenten beschäftigt,
konnte sich während des Berichtszeitraums durch ihre Forschungsarbeit weiter international
etablieren. Die Gruppe besteht z.Zt. aus fünf Forschern und einer ganzen Reihe von Studenten.
Die Gruppe wurde auf europäischer Ebene durch die aktive Teilnahme als Knoten im durch die
Europäische Gemeinschaft geförderten Projekt AgentLink eingebunden.

So konnten etwa durch die Teilnahme an zahlreichen Workshops und Konferenzen (MOS’98,
MA’98, ISSRE’98, TREC’98, Middleware’98, CIA’98, SRDS’98, CIA’99, ASA/MA’99,
KiVS’99, PDPTA’99, Smartnet’99, ICDCS’99, ICDCS 2000) Forschungskontakte geknüpft
und ausgebaut werden.

International etablieren konnte sich auch der internationale Workshop "Mobile Agents", der von
der Mobile-Agenten-Gruppe am IPVR initiiert und mitorganisiert wurde. Nachdem bereits
1997 der erste Workshop mit großem Erfolg in Berlin abgehalten wurde, konnte die zweite Aus-
richtung (MA’98) nach Stuttgart geholt werden, wo diese Veranstaltung mit ca. 100 Teilneh-
mern aus dem In- und Ausland vom 9. bis 11.9.1998 stattfand. Zu diesem Workshop wurden
auch Proceedings herausgegeben [RH98], die beim Springer-Verlag in der Reihe LNCS erschie-
nen. Auch beim dritten Workshop, der unter dem Titel "Third International Symposium on Mo-
bile Agents" zusammen mit dem First International Symposium on Agent Systems and Appli-
cations als ASA/MA’99 vom 3. bis 6. September 1999 in Palm Springs abgehalten wurde, war
die Gruppe im Programm- und im Lenkungskommittee durch Prof. Rothermel vertreten, der
diese Rolle auch bei der ASA/MA 2000 innehat, die vom 13. bis 15. September 2000 in Zürich
abgehalten werden wird.

In der Lehre vertreten werden konnte das Thema durch eine Vorlesung über mobile Agenten
(WS97/98, WS98/99, WS99/00) sowie durch die Betreuung von etwa 16 Softwarepraktika, Stu-
dien- und Diplomarbeiten (u.a. [Bad98], [Bäu98], [Bös98], [Bus99], [Fri98a], [Fri98b],
[Trä99], [Mai97], [Meh98], [Mey97], [Mes99], [Pap99]).

Abschlussbericht AIDA II 34

Um das Gebiet der mobilen Agenten voranzubringen wurden zwei spezielle Ressourcensamm-
lungen erstellt und unterhalten, die für jedermann über das WWW abfragbar sind. Die Biblio-
graphie von Arbeiten auf dem Gebiet "Sicherheit und Mobile Agenten" [SecBib] besteht derzeit
aus etwa 140 Referenzen, die zum Teil um Links zu elektronischen Versionen dieser Artikel und
Volltextkurzfassungen erweitert sind. Diese Seite wurde im Durchschnitt etwa 670 mal pro Mo-
nat aufgerufen. Die andere Sammlung, "The Mobile Agent List" [MAL] versammelt Einträge
zu Mobile-Agenten-Systemen, die nach einem bestimmten Schema aufgebaut sind, und einen
groben Vergleich der Eigenschaften erlauben. Die Einträge werden dabei nicht von dritten Par-
teien erstellt und unterhalten, sondern direkt von den Gruppen, die diese Mobile-Agenten-Sy-
steme erstellen. Dadurch ist eine Pflege der Daten ohne die Notwendigkeit des manuellen Ein-
griffs durch einen Editor notwendig, zugleich stammen die Daten von Personen, die sich sehr
gut mit diesen Systemen auskennen. Zurzeit umfasst die Liste etwa 57 Einträge. Im Vergleich
mit der Zahl der bekannten Systeme (71) ergibt sich damit eine sehr hohe Abdeckung an Syste-
men. Die MAL konnte auf der ASA/MA’99 im September 1999 in Palm Springs zum ersten Mal
vorgestellt werden und verzeichnet seitdem etwa 140 Zugriffe pro Monat.

Das Wissen, das durch die Forschung in AIDA und anderen Projekten auf dem Gebiet der mo-
bilen Agenten erarbeitet wurde, wurde durch zahlreiche Vorträge und Seminare in Industrie und
Wissenschaft transferiert.

10 Publikationen

Ergebnisse im Zusammenhang von AIDA II wurden in folgenden Tagungsbänden, Büchern und
Zeitschriften vorgestellt:

• Joachim Baumann. Terminierung und Waisenerkennung bei mobilen Agenten. Dissertati-
on, Universität Stuttgart, 2000

• Fritz Hohl. A Framework to Protect Mobile Agents by Using Reference States. In: Procee-
dings of the 20th International Conference on Distributed Computing Systems (ICDCS
2000). To appear.

• Markus Straßer, Kurt Rothermel. System Mechanisms for Partial Rollback of Mobile Agent
Execution. In: Proceedings of the 20th International Conference on Distributed Computing
Systems (ICDCS 2000). To appear

• Wolfgang Theilmann, Kurt Rothermel. Dynamic Distance Maps of the Internet. In: Proc of
IEEE INFOCOM 2000. To appear.

• Fritz Hohl. Mobile Agents and Active Networks. In: Proceedings of Smartnet’99 - The
Fifth IFIP Conference on Intelligence in Networks, 1999

• Wolfgang Theilmann, Kurt Rothermel. Disseminating Mobile Agents for Distributed Infor-
mation Filtering. In: Proc. Joint Symposium ASA/MA’99 of 1st Int. Symp. on Agent Sy-
stems and Applications (ASA’99) and 3rd Int. Symp. on Mobile Agents (MA’99), 1999

• Wolfgang Theilmann, Kurt Rothermel. Maintaining Specialized Search Engines through
Mobile Filter Agents. In: Proc. 3rd Int. Workshop on Cooperative Information Agents
(CIA’99), 1999

• Markus Straßer, Joachim Baumann, Markus Schwehm. An Agent-based Framework for the
Transparent Distribution of Computations. In: H. Arabnia (ed.), Proc. 1999 Int. Conf. on
Parallel and Distributed Processing Techniques and Applications (PDPTA’99), 1999

Abschlussbericht AIDA II 35

• Wolfgang Theilmann, Kurt Rothermel. Efficient Dissemination of Mobile Agents. In: Proc.
19th Int. Conf. on Distributed Systems Workshop, 1999

• Fritz Hohl, Kurt Rothermel. A Protocol Preventing Blackbox Tests of Mobile Agents. In:
Tagungsband der ITG/VDE Fachtagung Kommunikation in Verteilten Systemen
(KiVS’99), 1999

• Markus Straßer, Kurt Rothermel. Reliability Concepts for Mobile Agents, International
Journal of Cooperative Information Systems (IJCIS), Volume 7, Number 4, 1998

• Markus Straßer, Kurt Rothermel, Christian Maihöfer. Providing Reliable Agents for Elec-
tronic Commerce. In: Proc. of Trends in Distributed Systems for Electronic Commerce
(TREC’98), 1998

• Fritz Hohl. Mobile Agent Security and Reliability. In: Proceedings of the Ninth Internatio-
nal Symposium on Software Reliability Engineering (ISSRE ’98), 1998

• Kurt Rothermel, Markus Straßer. A Fault-Tolerant Protocol for Providing the Exactly-Once
Property of Mobile Agents. In: Proc. 17th IEEE Symposium on Reliable Distributed Sy-
stems 1998 (SRDS’98), 1998

• Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Schwehm, Markus Straßer. Mole
3.0: A Middleware for Java-Based Mobile Software Agents. In: Proc. Middleware’98, 1998

• Wolfgang Theilmann, Kurt Rothermel. Domain Experts for Information Retrieval in the
World Wide Web. In: Proc. 2nd Int. Workshop on Cooperative Informative Agents
(CIA’98), 1998

• Joachim Baumann, Kurt Rothermel. The Shadow Approach: An Orphan Detection Proto-
col for Mobile Agents. In: Proceedings of the 2nd Int. Conf. Mobile Agents (MA’98), also
in: Personal Technologies, Vol. 2, Nr. 3 1998

• Fritz Hohl. A Model of Attacks of Malicious Hosts Against Mobile Agents. In: Proceedings
of the 4th ECOOP Workshop on Mobile Object Systems (MOS’98): Secure Internet Mobile
Computations, 1998

• Fritz Hohl. Time Limited Blackbox Security: Protecting Mobile Agents From Malicious
Hosts. In: G. Vigna (Ed.): Mobile Agents and Security. 1998

• Kurt Rothermel, Wolfgang Theilmann. Agentenbasierte Informationssuche und -filterung
in globalen Netzen. Industrie-Management vol 14 Nr. 1, 1998

• Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Straßer. Mole - Concepts of a Mo-
bile Agent System, World Wide Web, Vol. 1, Nr. 3, 1998

Weitere Ergebnisse des Projekts wurden in folgenden technischen Berichten publiziert:

• Fritz Hohl. A Framework to Protect Mobile Agents by Using Reference States. Universität
Stuttgart, Fakultät Informatik, Fakultätsbericht Nr. 2000/03

• Markus Straßer, K. Rothermel. System Mechanisms for Partial Rollback of Mobile Agent
Execution. Technical Report TR 1999/10, Fakultät Informatik, Universität Stuttgart

• Fritz Hohl. A Protocol to Detect Malicious Hosts Attacks by Using Reference States. Uni-
versität Stuttgart, Fakultät Informatik, Fakultätsbericht Nr. 1999/09

• Markus Straßer, Joachim Baumann, Markus Schwehm. An Agent-Based Framework for
the Transparent Distribution of Computations. Universität Stuttgart, Fakultät Informatik,
Bericht Nr. 1999/06

Abschlussbericht AIDA II 36

• Joachim Baumann, Kurt Rothermel. The Shadow Approach: An Orphan Detection Proto-
col for Mobile Agents. Universität Stuttgart, Fakultät Informatik, Bericht Nr. 1998/08

• Ashraf Iqbal, Joachim Baumann, Markus Straßer. Efficient Algorithms to Find Optimal
Agent Migration Strategies. Universität Stuttgart, Fakultät Informatik, Bericht Nr. 1998/05

• Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Straßer. Mole - Concepts of a Mo-
bile Agent System Universität Stuttgart, Fakultät Informatik, Bericht Nr. 1997/15

• Joachim Baumann. A Protocol for Orphan Detection and Termination in Mobile Agent Sy-
stems. Universität Stuttgart, Fakultät Informatik, Bericht Nr. 1997/09.

• Fritz Hohl, Peter Klar, Joachim Baumann. Efficient Code Migration for Modular Mobile
Agents. Universität Stuttgart, Fakultät Informatik, Bericht Nr. 1997/06

11 Zusammenfassung

Zusammenfassend kann festgestellt werden, dass die gesteckten Ziele von AIDA II erreicht
wurden. Es wurde das Problem der Terminierung und Waisenerkennung im Kontext mobiler
Agenten erarbeitet, sowie Verfahren entwickelt und implementiert, die dieses Problem lösen.
Um ein Mobile-Agenten-System für das Gebiet des elektronischen Handels geeigneter zu
machen, wurden weiter Verfahren entwickelt, die es erlauben, den Verbrauch von Systemres-
sourcen und die Inanspruchnahme von Diensten durch mobile Agenten zu erheben und abzu-
rechnen. Der auch in diesem Kontext wichtige Bereich der Sicherheit in Mobile-Agenten-
Systemen wurde erarbeitet. Speziell wurden Mechanismen entwickelt und implementiert, die
einen mobilen Agenten vor Angriffen durch den ausführenden Host schützen. Schließlich
wurde noch das Feld der Verarbeitungsmodelle für mobile Agenten erarbeitet, also von Ent-
wurfsmustern, deren Struktur dem System bekannt ist, und es diesem erlaubt, entsprechende
Anwendungen durch Systemmechanismen zu unterstützen. Darüber hinaus wurden Verfahren
entwickelt, die eine genau-einmal-Ausführung von mobilen Agenten ermöglichen. Zu diesem
Zweck wurden Agenten in einen transaktionalen Kontext eingebunden, der sich über eine Aus-
führungssitzung erstreckt. Um solchen, auf eine Sitzung begrenzten Transaktionskontexten die
Möglichkeit des Rücksetzens zu geben, wurde weiterhin eine Methode entwickelt, Agenten
einen partiellen Rollback zu erlauben. Schließlich wurde ein Framework implementiert, das es
erlaubt, parallelisierbare Berechnungen mittels mobiler Agenten transparent über mehrere
Rechner zu verteilen.

Die Ergebnisse des Projektes wurden in 21 Artikeln auf 16 Konferenzen, in 4 Zeitschriften und
einem Buch, sowie in 9 technischen Berichten veröffentlicht. Sie mündeten bisher in einer Dis-
sertation, zwei weitere werden angestrebt.

Mit dem Abschluss von AIDA II wurde das AIDA-Projekt abgeschlossen. Trotzdem enthält
das Gebiet der mobilen Agenten auch weiterhin sehr interessante Fragestellungen, die wissen-
schaftlich von Interesse sind, und deren Beantwortung zum Teil Einfluss auch auf anderen For-
schungsgebiete wie etwa dem des mobilen Codes oder dem des Schutzes geistigen Eigentums
hätte. Weitere Grundlagenforschung auf dem Gebiet der mobilen Agenten erscheint daher
sinnvoll und notwendig.

Abschlussbericht AIDA II 37

Literatur

[AL98] Aridor, Yariv; Lange, Danny: Agent Design Patterns: Elements of Agent Appli-
cation Design. In: Proceedings of Autonomous Agents ’98, ACM Press, pp. 108 -
115, 1998

[Bad98] Bader, Michael: Konzeption und Implementation eines zuverlässigen und skalier-
baren Agentenservers. Diplomarbeit 1624, Fakultät Informatik, Universität Stutt-
gart, 1998

[Bäu98] Bäurle, Sven: Entwurf und Implementierung einer Authentifizierungskomponen-
te für ein Mobile-Agenten-System. Studienarbeit 1695, Fakultät Informatik, Uni-
versität Stuttgart, 1998

[Bau97] Baumann, Joachim: A Protocol for Orphan Detection and Termination in Mobile
Agent Systems. Universität Stuttgart, Fakultät Informatik, Bericht Nr. 1997/09,
1997

[Bau00] Baumann, Joachim: Terminierung und Waisenerkennung bei mobilen Agenten.
Dissertation, Universität Stuttgart, 2000

[Bec97] Beck, Bernhard: Terminierung und Waisenerkennung in einem System mobiler
Software-Agenten. Diplomarbeit 1472, Fakultät Informatik, Universität Stuttgart,
1997

[BHR98a] Baumann, Joachim; Hohl, Fritz; Rothermel, Kurt; Straßer, Markus: Mole - Con-
cepts of a Mobile Agent System, World Wide Web, Vol. 1, Nr. 3, pp. 123-137,
1998

[BHR98b] Baumann, Joachim; Hohl, Fritz; Rothermel, Kurt; Schwehm, Markus; Straßer,
Markus: Mole 3.0: A Middleware for Java-Based Mobile Software Agents. In:
Proc. Middleware’98, Springer Verlag, 1998

[Bös98] Böser, Michael: Konzeption und Implementierung eines graphischen Werkzeugs
zum Verwalten eines Mobile-Agenten-Systems. Studienarbeit 1694, Fakultät In-
formatik, Universität Stuttgart, 1998

[BR97] Baumann, Joachim; Radouniklis, Nikolaos: Agent Groups in Mobile Agent Sy-
stems. In: H. König, K. Geihs and T. Preuß (eds.) Distributed Applications and
Interoperable Systems (DAIS’97), Chapman & Hall, pp. 74-85, 1997

[BR98] Baumann, Joachim; Rothermel, Kurt: The Shadow Approach: An Orphan Detec-
tion Protocol for Mobile Agents. In: K. Rothermel and F. Hohl (eds.), 2nd Int.
Conf. Mobile Agents (MA’98), LNCS 1477, Springer-Verlag, pp. 2-13., also in
Personal Technologies, Vol. 2, Nr. 3 (1998)

[Bus99] Buschle, Jürgen: Reiserouten-Konzepte für Mobile Agenten. Studienarbeit 1754,
Fakultät Informatik, Universität Stuttgart, 1999

[FL99] Fischmeister, Sebastian; Lugmayr, Wolfgang: The Supervisor-Worker Pattern.
Technical Report TUV-1841-99-08, Technical University of Vienna, 1999.

[Fri98a] Friedel, Klaus: Fehlertolerantes Protokoll zur Exactly-Once-Ausführung von
Agenten. Diplomarbeit 1651, Fakultät Informatik, Universität Stuttgart, 1998

Abschlussbericht AIDA II 38

[Fri98b] Fritz, Andreas: Realisierung eines vorgegebenen Mechanismus zur Verhinderung
von "Testing"-Angriffen gegen "Blackbox"- geschützte Agenten. Studienarbeit
Nr. 1696, Fakultät Informatik, Universität Stuttgart, 1998

[GHJ95] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Design Patterns.
Addison-Wesley, 1995

[GKC98] Gray, Robert S.; Kotz, David; Cybenko, George; Rus, Daniela: D’Agents: Secu-
rity in a Multiple-Language, Mobile-Agent System, in: Giovanni Vigna (Ed.):
Mobile Agents and Security. pp 154-187. Springer-Verlag, 1998.

[GM94] General Magic. Telescript Technology: The Foundation for the Electronic Mar-
ketplace. General Magic White Paper, 1994

[Har70] Hartmanis, Juri: Computational Complexity of Random Access Stored Program
Machines. Technical Report No. 70-70, Department of Computer Science, Cor-
nell University, August 1970

[Ho98a] Hohl, Fritz: Time Limited Blackbox Security: Protecting Mobile Agents From
Malicious Hosts. In: G. Vigna (Ed.): Mobile Agents and Security. Springer-Ver-
lag, pp. 92-113, 1998

[Ho98b] Hohl, Fritz: A Model of Attacks of Malicious Hosts Against Mobile Agents. In:
4th ECOOP Workshop on Mobile Object Systems (MOS’98): Secure Internet
Mobile Computations, 1998

[Hoh99] Hohl, Fritz: A Protocol to Detect Malicious Hosts Attacks by Using Reference
States. Universität Stuttgart, Fakultät Informatik, Fakultätsbericht Nr. 1999/09,
1999

[Ho00a] Hohl, Fritz: A Framework to Protect Mobile Agents by Using Reference States.
In: Proceedings of the 20th International Conference on Distributed Computing
Systems (ICDCS 2000). To appear 2000

[Ho00b] Hohl, Fritz: A Framework to Protect Mobile Agents by Using Reference States.
Universität Stuttgart, Fakultät Informatik, Fakultätsbericht Nr. 2000/03, 2000

[HR99] Hohl, Fritz; Rothermel, Kurt: A Protocol Preventing Blackbox Tests of Mobile
Agents. In: Tagungsband der ITG/VDE Fachtagung Kommunikation in Verteilten
Systemen (KiVS’99). Springer-Verlag, 1999

[IAI99] The IAIK JCE project page. http://jcewww.iaik.tu-graz.ac.at/

[JJS97] Johansen, Dag; Jacobsen, Kjetil; Sudmann, Nils P.; Lauvset, Kaare J.; Birman,
Kenneth P.; Vogels, Werner: Using Software Design Patterns to build Distributed
Environmental Monitoring Applications. Technical Report TR97-1655, Depart-
ment of Computer Science, Cornell University, USA, December 1, 1997

[KPK97] Kendall, E. A.; Pathak, C. V. ; Krishna, P. V. Murali; Suresh,C. B.: "The Layered
Agent Pattern Language," Proceedings of Pattern Languages of Programming
(PLOP’97), September, 1997

[KSK98] Kendall, E. A.; Suresh, C. B.; Krishna, P. V. Murali; Pathak, C. V.: "An Applica-
tion Framework for Intelligent and Mobile Agents". ACM Computing Surveys
Symposium on Application Frameworks, ed. M. Fayad, D. C. Schmidt, ACM,
1998

Abschlussbericht AIDA II 39

[Mai97] Maihöfer, Christian: Ein Protokoll zur Wahrung der Exactly-Once Eigenschaft
Mobiler Agenten. Diplomarbeit 1565, Fakultät Informatik, Universität Stuttgart,
1997

[MAL] The Mobile Agent List. Sammlung von Daten zu Mobile-Agenten-Systemen im
WWW. http://mole.informatik.uni-stuttgart.de/mal/mal.html

[Meh98] Mehler, Lars: Entwicklung und Leistungsvergleich verschiedener Service-Agen-
ten-Architekturen. Diplomarbeit 1615, Fakultät Informatik, Universität Stuttgart,
1998

[Mes99] Messner, Albrecht: Erweiterte und optimierte Transaktionale Asynchrone Messa-
ge Queue zur fehlertoleranten Agentanausführung. Studienarbeit 1750, Fakultät
Informatik, Universität Stuttgart, 1999

[Mey97] Meyer zu Uptrup, Jörn Frithard: Einsatz von mobilen Agenten in Intranet-Anwen-
dungen. Diplomarbeit 1562, Fakultät Informatik, Universität Stuttgart, 1997

[Pap99] Papoulidis, Konstantinos: Fehlertoleranz in Mole. Diplomarbeit 1770, Fakultät
Informatik, Universität Stuttgart, 1999

[Pau98] Paulus, Michael: Agentengruppen für Mobile Agenten, Diplomarbeit 1664, Fa-
kultät Informatik, Universität Stuttgart, 1998

[RH98] Rothermel, Kurt; Hohl, Fritz (eds.): Mobile Agents. Proceedings of the 2nd Inter-
national Workshop on Mobile Agents (MA’98), LNCS 1477, Springer-Verlag,
1998

[Röh97] Röhrle, Klaus: Konzeption, Implementierung und Analyse von Verwürfelungs-
mechanismen für Quellcode. Diplomarbeit 1541, Fakultät Informatik, Universität
Stuttgart, 1997

[RS98] Rothermel, Kurt; Straßer, Markus: A Fault-Tolerant Protocol for Providing the
Exactly-Once Property of Mobile Agents. In: Proc. 17th IEEE Symposium on Re-
liable Distributed Systems 1998 (SRDS’98), IEEE Computer Society, Los Alami-
tos, California, pp. 100-108, 1998

[RT98] Rothermel, Kurt; Theilmann, Wolfgang: Agentenbasierte Informationssuche und
-filterung in globalen Netzen. Industrie-Management vol 14 Nr. 1, pp. 61-63,
1998

[SBS99a] Straßer, Markus; Baumann, Joachim; Schwehm, Markus: An Agent-based Frame-
work for the Transparent Distribution of Computations. In: H. Arabnia (ed.), Proc.
1999 Int. Conf. on Parallel and Distributed Processing Techniques and Applicati-
ons (PDPTA’99), Vol I, CSREA, 1999, pp. 376-3821, 999

[SBS99b] Strasser, Markus; Baumann, Joachim; Schwehm, Markus: An Agent-based Fra-
mework for the Transparent Distribution of Computations. Universität Stuttgart,
Fakultät Informatik, Bericht Nr. 1999/06, 1999

[SD98] Silva, Alberto; Delgado, Jose: The Agent Pattern for Mobile Agent Systems. In:
Proceedings of EuroPLoP’98, 1998

[SecBib] Security in Mobile Agent Systems. Bibliographie im WWW.
http://mole.informatik.uni-stuttgart.de/security.html

Abschlussbericht AIDA II 40

[SR98] Straßer, Markus; Rothermel, Kurt: Reliability Concepts for Mobile Agents, Inter-
national Journal of Cooperative Information Systems (IJCIS), Volume 7, Number
4, 1998, pp. 355-382, 1998

[SR99] Straßer, Markus; Rothermel, Kurt: System Mechanisms for Partial Rollback of
Mobile Agent Execution. Technical Report TR 1999/10, Fakultät Informatik,
Universität Stuttgart, 1999

[SR00] Straßer, Markus; Rothermel, Kurt: System Mechanisms for Partial Rollback of
Mobile Agent Execution. In: 20th International Conference on Distributed Com-
puting Systems (ICDCS 2000), to appear 2000

[SRM98] Straßer, Markus; Rothermel, Kurt; Maihöfer, Christian: Providing Reliable
Agents for Electronic Commerce. In: W. Lamersdorf, M. Merz (eds). Trends in
Distributed Systems for Electronic Commerce (TREC’98), LNCS 1402, Springer-
Verlag, pp. 241-253, 1998

[ST98] Sander, Tomas; Tschudin, Christian: Protecting Mobile Agents Against Malicious
Hosts. In: G. Vigna (Ed.): Mobile Agents and Security. Springer-Verlag, pp. 44-
60, 1998

[Trä99] Tränkle, Sven: Abrechnung erbrachter Dienstleistungen in Mobile-Agenten-Sy-
stemen Diplomarbeit 1750, Fakultät Informatik, Universität Stuttgart, 1999

[TR98] Theilmann Wolfgang; Rothermel, Kurt: Domain Experts for Information Retrie-
val in the World Wide Web. In: Proc. 2nd Int. Workshop on Cooperative Informa-
tive Agents (CIA’98), M. Klusch, G. Weiß (Eds.), LNAI 1435, Springer-Verlag,
pp. 216-227, 1998

[TR99a] Theilmann, Wolfgang; Rothermel, Kurt: Efficient Dissemination of Mobile
Agents. In: Proc. 2nd Int. Workshop on Cooperative Information Agents
(CIA’98), Paris, July 4-7, 1998, M. Klusch, G. Weiß (Eds.), Lecture Notes in Ar-
tificial Intelligence 1435, Springer-Verlag, Berlin, Heidelberg, New York, 1998,
pp. 216-227, 1999

[TR99b] Theilmann, Wolfgang; Rothermel, Kurt: Maintaining Specialized Search Engines
through Mobile Filter Agents. In: Proc. 3rd Int. Workshop on Cooperative Infor-
mation Agents (CIA’99), Uppsala, Sweden, July 31 - August 2, 1999, M. Klusch,
O. Shehory, G. Weiß (Eds.), Lecture Notes in Artificial Intelligence 1652, Sprin-
ger, July 1999, pp. 197-208, 1999

[TR99c] Theilmann, Wolfgang; Rothermel, Kurt: Disseminating Mobile Agents for Distri-
buted Information Filtering. In: Proc. Joint Symposium ASA/MA’99 of 1st Int.
Symp. on Agent Systems and Applications (ASA’99) and 3rd Int. Symp. on Mo-
bile Agents (MA’99), Palm Springs (CA), USA, October 3-6, 1999, IEEE Press,
1999, pp. 152-161, 1999

[TR00] Theilmann, Wolfgang; Rothermel, Kurt: Dynamic Distance Maps of the Internet.
In: Proc. of IEEE INFOCOM 2000. To appear 2000

[Wil99] Wilhelm, Uwe: A Technical Approach to Privacy based on Mobile Agents Protec-
ted by Tamper-resistant Hardware. PhD Theses Nr. 1961. Departement D’Infor-
matique, Ecole Polytechnique Federale de Lausanne, 1999

