4
*
*
* o
*
*
*

OOCKS
*eo0 e
teee e

*
*
*
*
*
*
*

*

Fritz Hohl, Joachim Baumann, Kurt Rothermel, Markus Schwehm,

Universitat Stuttgart
Fakultat Informatik

AIDA Il - Abschluf3bericht

Markus Stral3er, Wolfgang Theilmann

Email: Vorname.Nachname@informatik.uni-stuttgart.de

Institut fur Parallele undVerilee
Hdochstleistungsrechner (IPVR)
Fakultat Informatik
Universitat Stuttgart
Breitwiesenstr. 20 - 22
D-70565 Stuttgart

AIDA Il - Abschluf3bericht

Fritz Hohl, Joachim Baumann, Kurt Rothermel,
Markus Schwehm, Markus Stral3er,
Wolfgang Theilmann

Bericht Nr. 2000/04
Marz 2000

Abschlussbericht AIDA I 2

Kurzfassung

In diesem Bericht geht es um die Zusammenfassung der Erkenntnisse, die im Verlauf der zwei-
ten Phase des AIDA-Projektes von Mag@98 bis Fehrar 2000 gewonnen wurden. AIDA ist

ein Projekt, das von der Deutschen Forschungsgemeinschaft (DFG) finanziert wird. Das Thema
dieses Projektes sind Systemmechanismen zur Unterstitzung mobiler Agenten, also Einheiten,
die aus Code, Daten und Zustand bestehen und sich selbststandig in einem Netzwerk bewegen
kénnen. Die Ziele von AIDA Il waren die Erarbeitung des Themenbereichs Sicherheit in Mobi-
le-Agenten-Systemen mit Schwerpunkt auf der Sicherheit mobiler Agenten gegentber boswil-
ligen Hosts, die Implementierung von Terminierungsprotokollen und Waisenerkennungsmecha-
nismen, Abrechnungsechanismen und schlie3lich Mechanismen zur Strukturunterstitz-ung
fur Agentenanwendungen.

Inhaltsverzeichnis

1 EINFUNIUNG oo e e e e e e aas 3.

2 ZIEIE VON AIDA I .o et a e e e e e e e S

3 Implementierung von Terminierungsprotokollen ..o, 5
4 Entwurf und Implementierung von Sicherheitsprotokollencccooooviiiiiiiiiiineees 9
5 Abrechnung: Konzepte und ImplementiiBgcouuiieiiiiiiiiii e e eee e 21

6 Verarbeitungsmodelle fir Agentenanwendungenc.oooiuviiiiiiiieciii e 24
7 Weitere Ergebnisse VON AIDA Tl ... e e e 31
8 VErwandte AFDEITEN ...ttt e e e e e e e e e e e e ee e et e e e e 33
9 Aktivitaten der Gruppe auf dem Gebiet der mobilen Agenten im Berichtszeitraum 33
O I ¥ o] 11 =1 (o] 1= o PRSP PRPPPPP A.....

11 ZUSAMMENTASSUNG ..oiitiiiiiie it e e et e e e e e e e e e e e e aae s aan e e eeetaea e aeeaeeeatan e as 36
D N 1 (=T = 1 | PSSP 37.

Abschlussbericht AIDA I 3

1 Einfihrung

Mobile Agenten sind aktive und autonome Verarbeitungseinheiten, die in der Lage sind, Funk-
tionalitat fir eine Anwendung zu erbringen und selbstandig von Systemknoten zu Systemkno-
ten zu migrieren. Mobile Agenten stellen zum einen ein Programmiermodell dar, dessen
Einheiten, die mobilen Agenten, wie Softwareroboter in einer (kiinstlichen) Umgebung intera-
gieren kdnnen. Diese Interaktion schlie3t Kommunikation mit anderen Agenten und Rechnern
mit ein, ebenso wie Einwirkung auf diese Umwelt. Mobile Agenten stellen als Technologie
zum anderen jedoch auch eine Middleware dar. Als solche bietet sie eine Plattform fur Appli-
kationenund setzt dereAnforderungen in die Kommunikationsaufrufe und andere Dienstlei-
stungen der darunterliegenden Rechnersystemschicht um. Technisch gesehen schlief3lich sind
mobile Agenten Einheiten aus Programmcode und Zustandsdaten, die es einem Agenten erlau-
ben, Berechnungen, die auf einem Knoten angefangen wurden, auf einem anderen Knoten wei-
terzufihren. Mobile Agenten etablieren sich als eine Technik, die durch viele Vorteile
gegenuber der herkbmmlichen Client-Server-Technik immer starkedustrie und For-

schung wahrgenommen wird.

Das AIDA-Projekt versucht, auf der Ebene des Agentensystems Veratddviehanismen
zu entwickeln, die es Anwendungen erlauben, die Vorteile mobiler Agenten auszunutzen.

Das Ziel der ersten Projektphase, AIDA I, war es, auf der Grundlage eines allgemeinen Verar-
beitungsmodells flexible Systemmechanismen flr verteilte, agentenbasierte Systeme zu ent-
wickeln. Neben Mechanismen zur Agentenmigration und -kommunikation wurde ein
Gruppenkonzept erarbeitet und darauf aufbauend Terminierungsprotokolle entwickelt. Mit der
Einfihrung des Gruppenkonzeptes wurde das Ziel verfolgt, Abhangigkeiten zwischen Agenten
einfach zu modellieren und systemseitig effizient kontrollierekdomen. Um eineRahmen

fur die Implementierung dieser Verfahren benutzen zu kénnen, wurde ein Mobile-Agenten-
System, Mole, erstellt. Dieses System benutzte als eines der ersten die Programmiersprache
Java, die heute in den meisten derartigen Systemen zum Einsatz kommt. Da bereits damals der
Sicherheitsaspekt als kritisch fur die Akzeptanz einer solchen Technologie eingeschatzt wurde,
wurde der Bereich der Sicherheit analytisch erarbeitet.

Nachdem so in AIDA | die technologischen Grundlagen fiir ein derartiges System gelegt wur-
den, befasste sich die zweite Projektphase, AIDA I, zum einen mit der Sicherheit in Mobile-
Agenten-Systemen, da die Existenz von Mechanismen in diesem Bereich essenziell wichtig fur
den Einsatz der Technologie z.B. fir das Gebiet des Elektronischen Handels ist. Der andere
Schwerpunkt des Vorhabens beschaftigte sich mit der Fortfiihrung der Forschung auf dem
Gebiet der Systemmechanismen fir Agentensysteme. Diese Fortfihrung sollte es Anwendun-
gen ermdglichen, strukturelle Systemunterstitzung tber das blofR3e zur Verfigung stellen von
Diensten wie der Kommunikation zu erhalten.

2 Ziele von AIDAI

Die Ziele des beantragten Vorhabens waren zum einen Forschung auf dem Gebiet der Sicherheit
in Mobile-Agenten-Systemen, da die Existenz von Mechanismen in diesem Bereich essenziell
wichtig fr den Einsatz der Technologie z.B. fiir das Gebiet des Elektronischen Handels ist. Das
andere Ziel des Vorhabens beschaftigte sich mit der Fautigider Brschung auf dem Gebiet

der Systemmechanismen flr Agentensysteme. Diese Fortfiihrung sollte esddngen er-
maoglichen, strukturelle Systemunterstiitzung Uber das blof3e ziigdag stéen von Diensten

wie der Kommunikation zu bekommen. Das zweite Ziel lasst sich in die drei Teile Implemen-

Abschlussbericht AIDA I 4

tierung der Terminierungspuakolle und Waisen&ennungsmechanismen, Abrechnungsme-
chanismen, und Mechanismen zur Strukturunterstitzung fir Agentenanwendungen aufspalten.

Implementierung von Terminierungsprotokollen

Im Zusammenhang mit mobilen Agentensind Waisen Agenten, die fir die Applikation, der sie
zugeordnet sind, terminiert werden kdnnen, entweder weil die Applikation ihrer Mitarbeit nicht
mehr bedarf oder weil z.B. ein Abbruch derVerarbeitung durchgeftihrt wird. Die Terminierung
eines Agenten ist demzufolge das Entfernen eines arbeitenden Agenten durch das System oder
den Agent selbst. Dabei ist zu beriicksichtigen, dass Agenten migrieren kdnnen, eventuell vollig
asynchron zueinander operieren, und sich die Gruppe der Agenten, die zu einer Applikation ge-
hort, jederzeit dynamisch andern kann. In Client/Server-strukturierten Systemen wird die Been-
digung einer Ausfliihrung meist mittels hierarchisch organisierter Kontrollstrukturen festge-
stellt, die sich sicher nicht auf agentenbasierte Verarbeitungsmodelle Ubertragen lassen. In
AIDA | wurde durch einen aus eigenen Mitteln finanzierten Mitarbeiterein Verfahren [Bau97]
erarbeitet, das die Terminierung und Waisenerkennung von mobilen Agenten mittels der Ein-
fuhrung expliziter Gruppenbeziehungen erlaubt.

In diesem Teil des beantragten Vorhabens nun sollte dieses Verfahren fur das Mole-System im-
plementiert werden, um die Realisierbarkeit eines solchen Mechanismus zu demonstrieren, um
eine Basis fur weitere Forschung in dieser Richtung zu haben, und um eine Evaluation in Rich-
tung Skalierbarkeit, Aufwanand Parametrisieng durchftihren zu kénnen.

Entwurf und Implementierung von Sicherheitskonzepten

Das Ziel dieses Teilvorhabens war die Forschung auf dem Gebiet der Sicherheit von mobilen
Agenten imVergleich zu den bestehendenVerfahren auf dem Gebiet der Sicherheit in verteilten
Systemen und die Schaffung eines Rahmenwerks fir Sicherheit, in demVerfahren zur Authen-
tifikation, Verschliisseing usw. die Sicherherbn Agent und Agentensystemknoten garantie-

ren. Dazu wurden in der ersten Phase Anforderungen an ein solches Rahmenwerk gesammelt.
Aufbauend auf diesen Anforderungen sollten in der zweiten Phase diejenigen Gebiete bzw. Ver-
fahren identifiziert werden, die mit existierenden Methoden geldst wkiaeren. Danach soll-

ten existierendeVerfahren, so sie anwendbar sind, fur die Bedirfnisse eines Mobile-Agenten-
Systems angepasst und implementiert werden. Schliel3lich sollten Ansatze auf den Gebieten er-
arbeitet werden, die neu sind und daher mit bestehenden Verfahren nicht gelost werden kénnen.
In einer ersten Einschatzung zeigte sich, dass insbesondere das Gebiet des Schutzes von Agen-
ten gegeniber boswilligen Knoten bisher nur sehr unzureichend bearbeitetmdkdm An-

satz existierte, der einen technischen Schutz eines Agenten (im Wesentlichen ein Programm)
vor einem Knoten (im Wesentlichen dessen Interpreter) gewdahrleistet. Dies ist umso erstaunli-
cher, als dieser fehlende Schutz den Agenten, der im Programmiermodell eigentlich autonom
ist, vollig schutzlos nicht nur Modifikations-, sondern auch Leseattacken ausliefert. Damit aber
wurden den Daten, die ein Agent transportieren kann, sehr schwere Restriktionen auferlegt wer-
den, falls nicht vorher garantiert werden kann, dass ein Knoten vertrauenswirdig ist. Letzteres
ist in einemoffenenAgentensystem, in dem jede Institution Knoten anbieten kann, nicht von
vornherein zu garantieren. Innerhalb von AIDA | wurde eine Idee entwickelt, wie dieser tech-
nische Schutz gewahrleistet werden konnte. Ziel der zweiten Phase war es daher auch zu vali-
dieren, ob dieser Ansatz allgemein oder nur in einigen Adwegsfien anwendbar ist, und

welche InfrastrukturmalRnahmen dafir notwendig sind.

Abschlussbericht AIDA I 5

Abrechnung: Konzepte und Implementierung

Ohne die Moglichkeit der Abrechnung erbrachter Dienstiegdn konnen Netze auf kommer-
zieller Basis nicht betrieben werden. Es gibt im Bereich der Client/Server-Systeme schon ver-
schiedene Vorschlage zur Abrechnung von Leistungen in Netzen auf der Basis von elektroni-
schem Geld. Es ist zu erwarten, dass im Zuge der Etablierung “elektronischer Mérkte” dieses
Thema zukinftig noch starker an Bedeutung gewinnen wird.

Der Bereich der Sicherheit und der der Abrechnung beeinflussen sich gegenseitig sehr stark, das
eine kann nicht vollstandig betrachtet werden, ohne auch den anderen Bereich abzudecken. Da-
her musste auch das Gebiet der Abreog erarbeitet werden, wenn das Gebiet ddregieit

in Mobile-Agenten-Systemen als Schwerpunkt behandelt wird. Dabei sollten in diesem Bereich
keine neuenVerfahren entwickelt werden, sondern, wenn immer das maoglich war, bestehende
Ansatze evaluiert und verwendet werden.Was im Kontext der agentenbasierten Systeme zuséatz-
lich betrachtet werden sollte, war die Frage, ob Agenten Geld mit sich Kimaen,und falls

ja, inwelcher Form. In jedem Fall sollte sichergestellt werden, dass weder Agenten noch Dienst-
leister elektronisches Geld “drucken” kdnnen. Als Voraussetzung fur die Abrechnung sowie die
Benutzung von elektronischem Geld war es notwendig, allen beteiligten Parteien Garantien z.B.
Uber die Sicherheit der geldtransportierenden Agenten geben zu kdnnen.

Verarbeitungsmodelle fir Agentenanwendungen

Einer der Vorzuge des Client-Server-Modells ist es, dass sich die Anwendungsstruktur in der
Hierarchie der RPC-Aufrufe wiederfinden und sich diese implizite Struktur fr einige Aufgaben
wie z.B. die Terminierung und Waisenenkengvorteilhaft einsetzen lasst. Da die Mobile-
Agenten-Architektur wesentlich flexibler ist, und sich z.B. Kommunikationsbeziehungen nicht
ohne weitere Informationen als in Relation stehend identifizieren lassen, werden andere Verfah-
ren benoétigt, um die Anwendungsstruktur erheben zu kénnen. Die in AIDA Il in Betracht gezo-
gene Mdglichkeit war, dem Programmierer einfache Interaktionsmodele zur Verfiigung zu stel-
len, die einerseits viele Anwendungsfalle abdecken und andererseits Relationen zwischen
Agenteninteraktionen implizieren, die von Systemmechanismen ausgenutzt werden kdnnen.
Dazu sollten typische Verarbeitungsstrukturen identifiziert und in einem zv@steitt, durch
adaquate Interaktionsmodelle bzw. Kontrollstrukturen nachgebildet werden. Obwonhl diese vor-
gefertigten Interaktionsmodelle nicht die volle Flexibilitat des allgemeinen Agentenmodells
bieten kbnnen, sollten sie nicht nur das Systemmanagement erleichtern, sondern mit ihrem vor-
gefertigtem Funktionsumfang auch fur die Erstellung von Anwendungen, die auf mobilen
Agenten beruhen, arbeitserleichternd wirken.

3 Implementierung von Terminierungsprotokollen

Im Zusammenhang mit mobilen Agentensind Waisen Agenten, die fir die Applikation, der sie
zugeordnet sind, terminiert werden kénnen, entweder weil die Applikation deren Mitarbeit
nicht mehr bedarf oder weil z.B. der Abbruch der Verarbeitung durchgeftihrt wird. Die Termi-
nierung eines Agenten ist demzufolge das Entfernen eines arbeitenden Agenten durch das Sy-
stem oder den Agent selbst. In AIDA | wurde einVerfahren [Bau97] erarbeitet, das die Termi-
nierung und Waisenerkennung von mobilen Agenten mittels der Einfihrung expliziter
Gruppenbeziehungen erlaubt. In AIDA Il wurde dieses Verfahren implementiert und beziiglich
Nachrichtenkomplexitat und Fehlertoleranz evaluiert.

Abschlussbericht AIDA I 6

3.1 Konzepte zur Kontrolle mobiler Agenten

Zur Kontrolle mobiler Agenten, also zur Terminierung und Waisenerkennung, wurden u.a. zwei
Konzepte entwickelt: das Pfadkonzept und das Schattenkonzept. Da es flr beide Verfahren not-
wendig ist, einen mobilen Agenten im System zu finden, konnte die Fragestellung der Auffin-
dung mobiler Agenten in einem weitverteilten System mitbehandelt werden.

3.1.1 Das Pfadkonzept

Das Pfadkonzept unterstitzt das Finden und Teminieren von Agenten. Der Mechanismus bietet
keine Unterstutzung fur Waisenerkennung. BeimVerlassen eines Platzes hinterlal3t jeder Agent
seinen neuen Aufenthaltsort in einéroxy Hierdurch wird ein Pfad von Proxies erzeugt, der

vom Erzeugungsort des Agenten zu seinem momentanen Aufenthaltsort fihrt. Dieser Pfad kann
verfolgt werden, um den Agenten zu finden (siehe detaillierte Diskussion in [BR98] bzw.
[Bau00]). Die Hauptprobleme dieses Ansatzes sind die Ewitfigy Gberfllissiger Prees und

die Verfigbarkeit des Pfades bei einer hohen Anzahl von Proxies.

3.1.2 Das Schattenkonzept

Im Schattenkonzept erzeugt jede Anwendung ein Abhangigkeitsobjekt innerhalb des Agenten-
systems auf einem Platz. Das Abhangigkeitsobjekt wird Schatten genannt. Der fir den Schatten
gewahlte Platz muf3 nicht notwendigerweise auf dem gleichen Knoten wie die Anwendung pla-
ziert sein. Jeder Agent, der von der Anwendung erzeugt wird, ist von dem Schatten abhangig.
Der Agent ist damit nicht mehr von der Anwendung abh&ngig, die nun z.B. auf einem System
ohne standigen Netzwerkkontakt oder mit Unterbrechungen abgearbeitet werden kann.

In regelmaRigen Abstandeti, (time to live) genannt, wird flr jeden Agenten tberprift, ob der
zugehdrige Schatten noch existiert. Wahrend der Uberprifung befindet sich der Agent in der
Check-Phase. Diese dauert an, bis ein neues Zeitquantum empfangen wird. Ein Agent in der
Check-Phase darf nicht migrieren.

Falls der Schatten nicht mehr existiert, z.B. weil ihn die Anwendung entfernt hat, dann ist der
Agent definitionsgemal einWaise. Dies wird entdeckt, sobald das Zeitquantum des Agenten
aufgebraucht ist.

3.2 Implementierung der Konzepte

Die Implementierung dieser Verfahren erfolgt fir das Mobile-Agenten-System Mole. Details
der Implementierung sind in [BR98], [Bau00], [Bec97] uRdy98] zu findn.

3.3 Evaluierung der Kontrollalgorithmen

Beide Verfahren, Pfadkonzept und Schattenkonzept wurden beztglich ihrer Nachrichtenkom-
plexitat und Fehlertoleranz evaluiert. Die Evaluation wird im Folgenden nur kurz angerissen.
Sie ist im Detail ebenfalls in [Bau00] zu finden.

3.3.1 Pfadkonzept

In Bild 1 ist die VerfugbarkeitAy(t) in Abhangigkeit von deFehlerrateA und der Lange des
Pfades aufgetragen.

Das Erzeugen des Pfades kostet keine Nachrichten, das Finden erfordert allerdings Nach-
richten bei einer Pfadlange von

Abschlussbericht AIDA I 7

Ap(t) s
LA |

glizn |

g3/Am |
e—n)\ |

2N\ |
-3\ |

[¢)

[¢)

. : : : . Zeit t [Stunden]
1 2 3 4 5

Bild 1: Pfadkonzept Verfligbarkeit des Pfades in Abh&ngigkeit vomimd n

3.3.2 Das Schattenkonzept

Falls der Schatten nicht mehr existiert, z.B. weil ihn die Anwendung entfernt hat, dann ist der
Agent definitionsgemal einWaise. Dies wird entdeckt, sobald das Zeitquantum des Agenten
aufgebraucht ist. Wenn ein Platz, auf dem sich ein Schatten befindet, nicht erreichbar ist, dann
wird wiederholt versucht, den Kontakt aufzunehmen. Nach n nicht erfolgreichen Versuchen
wird angenommen, dafl? der Knoten auf dem sich der Schatten befindet, abgestirzt ist. Mit dieser
Annahme ist der Agent ein Waise und kann entfernt werden.

Dies Verhalten ist korrekt, wenn der Knoten tatsachlich abgesturzt ist. Falls aber nur der Kom-
munikationskanal nicht verfiigbar war, dann ist der Agent inkorrekterweise entfernt worden. Al-
lerdings weil3 der Schatten spatestens nach dettZei2(mit1)d d als der angenomme-

nen maximalen Nachrichtentibertragungszeit, dal3 der Agent terminiert ist, und korrigiert seine
Liste von abhangigen Agenten. Dies Verhalten garantiert korrekte Information beim Schatten
auch bei Netzwerkpartitionierungen. Der Vorteil ist, dafl3 auch bei Netzwerkpartitionierung eine
obere Schranke fiur die verbleibende Lebenszeit aller abhé&ngigen Agenten bei Entfernung des
Schatten gegeben werden kann. Diese Schranke ist auch wieder di¢ Z&itn + 1)d

In regelmafligen Abstanden kontaktiert der AgentStghatten und aktualisiert damit dessen In-
formation Uber seinen Aufenthaltsort. Dian tGberflissigen Pfadproxies kbnnen ohne weitere
Kommunikation entfernt werden. Um dies zu tun, wird die verbleib&hbdei den Proxies ge-
speichert, und der Proxy wird entfernt, sobald garantiert ist, dal3 der Pfad nicht mehr gebraucht
wird. Selbst wenn der Pfad nicht mehr verfligbar ist, ist die oberste Zeitschrarder, Agent

wieder erreichbar ist, das zugeordnete Zeitquantum, da nach dieser Zeit ein Kontakt mit dem
Schatten notwendig ist.

Durch die Verwendung detl zur regelmaligenVerkiung des Pfades kféigt das Schatten-
konzept effektiv Uber eine Reparaturfunktionalitat. Wir vergleichen zuerst den Einflufd der
auf die Verfugbarkeit des Pfades im Schattenkonzept. Die Ergebnisse sind in Bild 2 dargestellt.

Abschlussbericht AIDA I

Die Wichtigkeit derttl im Vergleich zur Verfligbarkeit der Pfadkomponenten ist deutlich zu er-
kennen (siehe VergréRerung in Bild 2b).

i
0.5
0.8
Al 0.7
0.6

0.5

vergrofert in (b)

ttI=1sec

ttI=6min

ttI=30 min

047

2 3
Time t [hours]

(@)

4

5

0,52
0,916
0.9163
0,914
0,912

0,514
00,9083

A 00

0,902 3

0.5
00, 508
08063
0,85
0,802

ttlI=1sec

Szenario 2

Szenario 1

089

0.2 04 06
Time t [hours]

(b)

Bild 2: Schattenkonzept: Vargbarkeit in Abhangigkeit von Eehlerate A und ttl (hohe

Verflugbarkeit=schwarz, niedrige Verfigbarkeit=grau, n=20)

Wir vergleichen nun das Schattenkonzept mit dem Pfadkonzept.

1
Schattenkonzept
0.84
Szenario 2 Differenz
0.6 Szenario 1
A(t)
0.4+
Szenario 1
0.24
Szenario Pfadkonzept
o I0.|2I o IO.I4 I IO.IGI o IO.IE.I S 1

Time t [hours]

Bild 3: Vergleich derVerfuigbarkeit von Schattenkonzept und Pfadkonzept

Wir wéahlen die vergleichsweise hotievon 6 min. Wir sehen in Bild 3, dal3 die Verflugbarkeit

des Schattenkonzepts durch die wechselndenVerfligbarkeiten der beiden Szenarios kaum be-
einflul3t wird, wahrend der Einflu3 auf das Pfadkonzept deutlich zu erkennen ist. Dies zeigt sich
ganz besonders in den Graphen, die die Differenz deiiyarkeit der beiden ¢hzepte dar-

stellen. Durch die Aktualisierung des Aufenthaltsortes des Agenten werden zwei Nachrichten
pro Agent prdtl bendtigt. Um Agenten zu finden, muf3 eine Nachricht entlang deg-Pfades
geschickt werden. Dies bedeutet 1 Nachrichten entlang des Pfades.

Abschlussbericht AIDA I 9

4 Entwurf und Implementierung von Sicherheitskonzepten

Aufbauend auf den Sicherheitsanforderungen, die bereits in AIDA | gesammelt wurden, sollten
in AIDA Il diejenigen Gebiete bzw. Verfahren im Bereich der Sicherheit in Mobile-Agenten-
Systemen identifiziert werden, die mit existierenden Mitteln gelost werden kénnen. Danach
sollten existierende Verfahren, so sie anwendbar sind, fir die Bedurfnisse eines Mobile-Agen-
ten-Systems angepasst und implementiert werden. Schlief3lich sollten Anséatze auf den Gebieten
erarbeitet werden, die neu sind und daher mit bestehenden Verfahren nicht geldst werden kon-
nen. Letzteres sollte vor allem das Gebiet des Schutzes mobiler Agenten vor Angriffen durch
boswillige Hosts betreffen, in dem es sehr wenig Ansatze gab und das sehr wichtig fir die Ak-
zeptanz dieser Technologie fur den Einsatz in offenen Systemen ist. Aufgrund des hohen For-
schungsbedarfs wurde daher der Schwerpunkt auf den Schutz mobiler Agenten vor dem ausfiih-
renden Host gelegt.

Zunéchst wurde ein Modell von Angriffen gegen mobile Agenten durch boswillige Hosts erar-
beitet, das die Problematik illustrieren kann und eine Grundlage fir die Entwicklung und Eva-
luation von mdglichen Schutzmechanismen bietet. Einige dieser Angriffe kbnnen durch Schutz-
mechanismen detektiert werden, die "Referenzausflihrungen" benutzen, d.h. Ausfiihrungen
eines Agenten auf einem sicheren Host, der als Referenz dazu dient, Ausfihrungen auf unsiche-
ren Hosts zu prifen. Daher wurden Ansétze, die solche Referenzausfiihrungen benutzen, evalu-
iert. Weiter wurde ein Framework fur Mole geschaffen, das es erlaubt, weitere Ansétze dieser
Art zu implementieren. Darauf aufbauend wurde ein neuer Ansatz erarbeitet und evaluiert, der
Vorteile gegentiber den bestehenden Ansatzen bietet. Aufbauend auf einer Idee aus AIDA | wur-
de dann ein neuer Schutzansatz entwickelt, der es erlaubt, die Anzahl der méglichen Angriffe
zu reduzieren, und die verbelibenden Angriffe dann auszuschliessen. Dieser Ansatz wurde
"Blackbox"-Schutz genannt. Er beruht auf einer dynamischen Umwagn#liebiger Agenten

in eine andere Form, die schwer zu analysieren und damit anzugreifen ist. Kann ein Agent durch
dieses Verfahren geschutzt werden, kbnnen andere Angriffe durch eine modifizierte Anwen-
dung existierenderVerfahren ausgeschlossen werden. Einer dieser Angriffe ist der Blackbox-
Test, fur den ein Protokoll entwickelt wurde, das solche Angriffe verhindert. Vervollstandigt
wurden die Arbeiten auf diesem Gebiet durch Erarbeitung des Themas Authentifizierung von
Agenten und Hosts, das auch fir einen anderen Aspekt der Sicherheit, nd&mlichSlteEhrutiess

von Hosts vor boswilligen Agenten, von Bedeutung ist.

4.1 Authentifizierung

Um die Identitdt von Agenten, Hosts und Benutzern sicherzustellen, missen diese Parteien au-
thentifiziert werden kénnen. Zu diesem Zweck sollte eine Komponente entworfen und imple-
mentiert werden, die eine solche Authentifizierung fur das Mole-System leistet. Dazu mussten
existierende Authentifikationsmechanismen auf ihre Eignung fir ein solches System geprift
werden. Weiterhin waren diejenigen Komponenten zu identifizieren, die ein Authentifizierungs-
verfahren bendétigt, etwa eine Schltisselverteilung. Dabei erwies es sich, dass symmetrische Au-
thentifikationsmechanismen wie Wide-Mouth-Frog, Yahalom und Kerberos aufgrund der Not-
wendigkeit eines Schlusselverteilzentrums flr ein Mobile-Agenten-System gegeniber
asymmetrischen Verfahren wie DASS, oder dem ISO Authentication Framework weniger gut
geeignet sind. Auch bei asymmetrischenVerfahren werden Mechanismen zur Schlusselvertei-
lung bendtigt, aber mit der Moglichkeit der Benutzung von Zertifikaten, die zum grof3en Tell
durch die Agenten selbst transportiert werden kénnen, kann dies dezentral geschehen, zumal die

Abschlussbericht AIDA I 10

Zertifikate von Agenten und Hosts durch die jeweiligen Eigentimer selbst ausgestellt werden
kbnnen.

Als praktisches Ergebnis entstand eine modifizierte Version von Mole 2.1.2, bei der alle Nach-
richten und Agenten authentifiziert werden. Zur Authentifizierung von Nachrichten wird das
Zweiwegeprotokoll aus X.509 benutzt, als Signaturalgorithmus wird DSA verwendet, der im
JDK 1.1 bereits vorhanden ist. ABchlisselverteilalgorithmus wird ein Verfahren vorausge-

setzt, das Zertifikate von Benutzern, Agenten und Hosts erzeugen kann. Die Parteien, die an der
Nachrichten-Authentifiziarng eilnehmen, sind die Hosts, die jeweils ein eigenes Zertifikat mit
einbringen missen. Agenten werden Uber ihre konstanten Teile, zu denen der Agentenname, die
Namen der verwendeten Klassen sowie andere Daten gehdren, authentifiziert, wobei sie vom
Benutzer zertifiziert (also mit seinem privaten Schlissel unterschrieben) werden. Details der
Konzeption und Realisiang derAuthentifizierungskomponente lassen sich in [Bau98] finden.

4.2 Ein Modell von Angriffen gegen mobile Agenten durch bdswillige
Hosts

Um die Problematik der Angriffe gegen mobile Agenten durch bdswillige Hosts zu illustrieren

und eine Grundlage fur die Entwicklung und Evaluation von mogliSichnotzmebanismen zu

bieten wurde ein Modell dieser Angriffe erarbeitet. Dazu wurde zuerst der Angreifer modelliert,

sowie Anforderungen an das Angriffsmodell gesammelt. Falls der Angreifer den Code des mo-

bilen Agenten, der zu ihm migriert, als einer dem Angreifer bekannten Klasse zugehdrig erken-

nen kann, muss der Angreifer den Agenten nicht mehr manuell analysieren, sondern kann ein

Angriffsprogramm schreiben, dass den Angriff schnell durchfihren kann. Daher wurde der An-

greifer als ein Programm identifiziert, das ein sehr begrenztes Ziel hat, z.B. die Kenntnis des In-

halts einer bestimmten Variablen. Als Anforderungen an das Modell sollten folgene Eigenschaf-

ten modellierbar sein:

» Der Angreifer kann den aktuellen Datenteil des mobilen Agenten lesen und verandern

» Der Angreifer kann den aktuellen Code des Agenten lesen und (temporar) verandern

» Der Angreifer kann den aktuellen Ausfiihrungszustand lesen und verdndern

» Der Angreifer kann die Ausfilhrungsweise des Agenten verandern

» Der Angreifer kann das Ergebnis von Aufrufen von Systemfunktionen kontrollieren

» Der Angreifer kann die Kommunikation des Agenten mit dritten Parteien lesen und veran-
dern

» Das Modell soll es dem Agenten erlauben, Code dynamisch modifizieren zu kdnnen

Als Grundelement des Angriffsmodells wurde auf ein existierendes Maschinenmodell zurtick-
gegriffen, die RASP (Random Access Stored Program). RASPs bestehen (nach [Har70]) aus
Speicherelementen, zu denen ein Akkumulator und ein Instruktionszahler sowie eine unbe-
grenzte Folge von Registern gehoéren, sowie einem begrenztem Instruktionssatz. Der Instrukti-
onssatz erlaubt Spriinge im Programm an beliebige Register, das Berechnen von Werten, sowie
das Speichern von Werten in Register. Ein Lesen des Instruktionsz&hlers ist nicht mdglich, eben-
sowenig wie ein direktes Schreiben desselben, aul3er tiber den Umweg des Sprungs. Daher wur-
de das RASP-Modell um diese Mdglichkeit sowie um einen Stack erweitert; das so entstandene
Maschinenmodell wurde RASPS (Random Access Stored Program plus Stack) genannt.

Abschlussbericht AIDA I 11

Aufbauend auf diesem Grundelement wurde das Angriffsmodell konzipiert. Die Architektur des
Angriffsmodells (siehe Bild 4) besteht aus zwei Hauptkomponenten: der Maschine, die den
Agenten ausfihrt und der Maschine, die das Angriffsprogramm ausfihrt.

Attacker

controls execution

Bild 4: Architektur des Angriffsmodells

Ein Agent kann seine Umgebung nicht selbst wahrnehmen, ebenso wenig, wie Bmgeer

hung der Laufzeitumgebung mit Kommunikationspartnern interagieren kann, er muss zu diesen
Zwecken immer Funktionen des Hosts benutzen. Im Modell liegen diese Funktionen in der Ma-
schine des Angreifersr. Um die Architekur konsistent zu halten, wurde die Angreifermaschi-

ne ebenfalls als RASPS ausgelegt, auch wenn der Aspekt der expliziten Programmausfihrung
fur die Angreifermaschine nicht wichtig ist. Dies erlaubt die Inanspruchnahme der Sydgtemf
tionen durch Aufrufe von Prozeduren auf der Angreifermaschine. Dadurch gibt es auch eine
einfache Moglichkeit fir den Angreifer, den Code dieser Systemfunktionen verandern zu kon-
nen. Der Befehlssatz der Agentenmaschine enthélt neben der Méglichkeit des Aufrufs von Pro-
zeduren die ublichen Kommandos fiur Stack-basierte Architekturen wie etwa mathematische
Funktionen, Kontrollinstruktionen, sowie Instruktionen zur Kontrolle des Stacks. Zusatzlich zu
den Instruktionen, die auch die Agentenmaschine kennt, besitzt die Angreifermaschine weitere
Befehle, die den Zugriff auf die Elemente der Agentenmaschine erlauben.

4.2.1 Generelle Funktionsweise des Angriffsmodells

Zu Beginn der Ausfiilhrung des Agenten, also direkt nach der Migration, wird die Agentenma-
schine mit dem Agentencode geladen. Die Angreifermaschine wird mit dem Angreiferpro-
gramm geladen. Dieses Programm wurde von der angreifenden Partei aus Parametern wie dem
Typ des Agenten, dem Agentencode, sowie den Angriffszielen (wie z.B. den Namen der Varia-
blen, derenWerte gesucht sind), erzeugt. Vor jeder Instruktion, die in der Agentenmaschine aus-
gefuhrt wird, lauft ein Algorithmus auf der Angreifermaschine ab, der es erlaubt, die n&chste
Instruktion der Agentenmaschine samt Parametern zu sehen und zu modifizieren, sowie belie-
bigen Code auf der Angreifermaschine auszufihren.

Die Diskussion dieses Angriffsmodells ergab, dass es detailliert genug ist, um Aussagen Uber
Angriffe und SchutzmalRnahmen machen zu kdénnen, und abstrakt genug, um dem Host alle
maoglichen Angriffe zu erlauben. Dartberhinaus erlaubt es dem Host alle Techniken zum An-
griff, die ihm in einen normalen Rechnersystem zumindest theoretisch zur Verfligung stehen,
und es erlaubt dem Agenten alle Schutzmechanismen, die in einem solchen Rechnersystem rea-
lisierbar sind. In diesem Sinne ist das Angriffsmodell “generisch”, d.h. auf alle mdglichen
Agentensysteme anwendbar. Der Nachteil dieser Generezitat ist aber auch, dass es in einigen
Agentensystemen einfacher ist, mobile Agenten anzugreifen, als es im Modell scheint. Das An-

Abschlussbericht AIDA I 12

griffsmodell in seiner jetzigen Fassung erlaubt nur ein Angriffsprogramm bzw. einen gleichzei-
tig ausgefiihrten Prozess. Dies stellt aber z.Zt. keinen grol3en Nachteil dar, da es noch keine Si-
cherheitsmechanismen gibt, die auf der Existenz von mehreren Agentenprozessen beruhen.

Weitere Details zu diesem Modell kénnen in [Hoh98b] gefunden werden.

4.3 Anséatze, die Referenzzustande benutzen

Einige Angriffe wirken sich auf den Zustand eines Agenten aus, der mit der Migration auf den

nachsten Host transportiert wird. Diese Zustande sind damit ein beobachtbares “Ergebnis” der
Ausfiihrung eines Agenten auf einem Host. Wenn man es nun schafft, eine “Referenzausftih-
rung” zu berechnen, also dieselbe Ausfiihrung eines Agenten auf einem “Referenzhost”, d.h. ei-
nem Host, der garantiert keinen Angriff startet, kann man den so entstehenden “Referenzzu-
stand” mit dem Ergebniszustand auf einem Host vergleichen und so einige Angriffe feststellen.

Das in diesen Ansétzen benutzte Ausfihrungsmodell sieht folgendermal3en aus:.

host 1

host 2 host 3 host 4

c c
<} <}
Il Il
o o
=) =)
£ £

v migration

agent

t agent
creation

termination

execution execution execution execution

initial stat resulting state

Bild 5: Ausfihrungsmodell

Ein mobiler Agent migriert entlang einer Sequenz von Hosts (siehe Bild 5). Der Host, auf dem
der Agent ankommt, nimmt den Anfangszustand des Agenten und beginnt eine Ausflihrungs-
sitzung. In dieser Sitzung fuhrt der Host den Agenten mithilfe des Codes und von Eingabedaten
aus und berechnet so einen Endzustand. Die Eingabe umfasst alle Daten, die “von aul3en” an
den Agenten geschickt werden, d.h. sie beinhaltet sowohl die Kommunikation mit Partnern auf
anderen Hosts als auch diejenige, die mit dem Ausflhrungshost selbst stattfindet, oder von die-
sem vermittelt wird. Insbesondere enthalt sie auch die Resultate des Aufrufs von Systemfunk-
tionen, wie z.B. Zufallszahlen oder die aktuelle Systemzeit. Sobald der Agent auf einen anderen
Host migriert oder beendet wird, ist die Ausfiihrungssitzung beendet, und der Endzustand des
Agenten auf dem Starthost wird zum Anfangszustand des Agenten auf dem Zielhost.

4.3.1 Referenzzustande

Wahrend es schwierig ist, das Verhalten eines Hosts gegen das eines Referenz-Hosts, also eines
Hosts, der keine Angriffe unternimmt, zu messen, gilt dies nicht fur die beobachtbaren Auswir-
kungen dieses Verhaltens. Diese Auswirkungen resultieren in den Endzustanden der Agenten
nach einer Ausfiihrungssitzung auf einem Host. Was man daher tun kann, ist, den Endzustand
eines Agenten auf einem zu prufenden Host mit dem eines Agenten auf einem Referenz-Host
zu vergleichen. Daher definieren wir:

Def: Ein Referenzzustanidt die Menge der variablen Teile eines mobilen Agenten nach
der Ausfiihrung (also der Endzustand) auf einem Referenz-Host.

Um zu einem verwertbarenVergleich des Referenzzustandes mit dem Endzustand auf dem zu
prifenden Host zu kommen, ist es notwendig, dass fur beide Ausfihrungen diesselbe Eingabe
benutzt wird. Diese Eingabe umfasst auch die Resultate des Aufrufs von Systemfunktionen wie
etwa Zufallszahlen, aber z.B. nicht die Resultate von Funktionen, die Teil des Agentencodes
sind, da diese als Teil der normalen Ausfiihrung eines Agenten berechnet werden kdnnen.

Abschlussbericht AIDA I 13

Wenn wir nun in der Lage sind, den Unterschied zwischen dem Referenzzustand und dem zu
prifenden Endzustand zu messen, kdnnen wir alle Angriffe feststellen, die sich auf den Endzu-
stand auswirken. Diese Angriffe umfassen Schreibe- bzw. Modifikationsangriffe gegen die va-
riablen Teile eines Agenten sowie einige Angriffe, bei denen der Code des Agenten nicht geman
der Spezifikation ausgefuhrt wird. Zwei Klassen von Angriffen kbnnen mit diesem Ansatz nicht
festgestellt werden: Leseangriffe und Angriffe, bei denen der Host, auf dem Eingaben entste-
hen, diese Eingaben modifiziert oder unterdrickt.

In [Hoh0Oa] bzw. [Hoh0Ob] werden vier existierende Ansatze beschrieben und analysiert, die
auf verschiedene Art und Weise Referenzzustdnde zur Prifung von Ausfihrungssitzungen mo-
biler Agenten auf unsicheren Hosts benutzen. Um die Grundlage flr ein neues Protokoll zu
schaffen, das die Vorteile dieser Ansétze vereint, wurde zunachst ein allgemeines Framework
fur Schutzmechanismen erarbeitet, die solche Referenzzustande benutzen.

4.4 Ein Framework fir Schutzmechanismen, die Referenzzustande benut-
zen

Das Framework beruht dabei auf der Unterstititzder Merkmale, die in der Analyse der exi-
stierenden Anséatze in [Hoh00a] bzw. [HohOOb] herausgearbeitet wurden. Die generelle Idee ist,
den Programmierer selbst den eigentlichen Prifalgorithmus implementieren zu lassen und die
grundlegenden Funktionalitdten wie das Signieren der Referenzdaten durch das Framework be-
reitzustellen. Obwonhl es fur das Mobile-Agenten-System Mole implementiert wurde, kann das
im Folgenden vorgestellte Schema fur beinahe jedes in Java implementierte Agentensystem ver-
wendet werden, das schwache Migration unterstitzt, und den Aufruf von Prozeduren durch den
Host im Rahmen der Ausfllimmg desAgenten zulassiSchwache Migradn bezeichnet dabei

eine Art der Migration, bei der der Ausfilhrungszustand des Agenten nicht automatische mit-
transportiert wird, und der daher auf dem nachsten Host wieder bei einer Startprozedur begin-
nen muss. Dies ist fur die meisten Systeme der Fall.

Das Framework unterstitzt dabei die folgenden Aspekte eines Schutzmechanismus:
* Prifzeitpunkt

Um die verschiedenen Mdoglichkeiten des Prifzeitpunkts (nach einer Aus§#sitzung

bzw. nach Beendigung der Gesamtausgabe) zu unterstlitzen, werden verschiedene Call-
backs bendtigt, die nach der Ankunft auf einem neuen Host bzw. nach Beendigung der Ge-
samtaufgabe bei Ankunft auf dem Heimathost aufgerufen werden.

* Benutzte Referenzdaten

Hier muss das Framework zwei Dinget Erstens muss sichergestellt werden, dass am
Ende einer Ausfiihrungssitzung die benétigten Daten in einer Form zur Verfigung stehen,
die es erlaubt, die Ausfiihrung eines Agenten mithilfe von Referenzzustanden zu prifen.
Zweitens muss sichergestellt werden, dass diese Daten zu den Hosts, auf denen die Prifung
stattfindet, transportiert werden. Letzteres ist in Mobile-Agenten-System &aul3erst einfach.
Alles, was wir tun mussen, ist, diese Daten im Datenteil des Agenten zu speichern, da dieser
automatisch bei der Migration auf den nachsten Host transportiert wird. Ersteres ist etwas
schwieriger. Der Anfangs- und der Endzustand stellen kein Problem dar, da diese sowieso
bei der Migration entstehen und transportiert werden. Um die Eingabe oder das Ausfih-
rungsprotokoll zu erstellen, gibt es zwei moégliche Wege. Entweder werden diese Informa-
tionen durch die Java Virtual Machine (JVM) gesammelt, die als Ausfihrungsumgebung
z.B. Zugriff auf die Zeilennummern der Anweisungen hat. Oder aber sie werden von in den

Abschlussbericht AIDA I 14

Agenten eingefligtem Code gesammelt, der entweder automatisch oder manuell erzeugt
wird. Manuell erzeugter Code hat den Vorteil, dass der Programmierer dann damit das ef-
fizienteste Datenformat erzeugen kann, wenn auch der Prifalgorithmus von inm manuell
erzeugt wird.

Schlief3lich muss noch eine Mdglichkeit vorgesehen werden, die Referenzdaten auszuwéh-
len, die zum Prufen benutzt werden sollen. Falls die Referenzdaten durch manuelles Instru-
mentieren des Codes erzeugt werden, wird auch die Auswahl durch den Programmierer in

den Code implementiert. Falls eine automatische Instrumentierung erfolgt, missen die be-

notigten Referenzdaten spezifiziert werden. Dies kann durch die Deklaration verschiedener
Interfaces geschehen.

* Prufalgorithmus

Da die Alternative, ein beliebiges Programm zur Prifung einer Ausiglsitzung zu be-
nutzen, sowohl die machtigste Variante ist als auch die anderen Alternativen enthalt, reicht
es, die Moglichkeit anzubieten, Code, den der Programmierer geschrieben hat, auszufiih-
ren, sobald eine Prifung stattfinden soll.

Die Unterstutzung fur das Nachrechnen kann auf mehreren Ebenen stattfinden. Das Pro-
blem ist die Frage, wie man vom Originalcode zum Nachrechnen kommt. Erstens muss der
Code ein zweites Mal ausgefuihrt werden, wobei die Eingaben aus den Referenzdaten kom-
men. Zweitens kdnnen Ausgaben unterdrickt werden, da sie fur die Prufung nicht benétigt
werden. Drittens muss der so erzeugte Endzustand mit den zu prifenden in einerWeise ver-
glichen werden, die es dem Programmierer erlaubt, diese selbst zu erstellen. Losungen die-
ses Problems umfassen eine modifizierte Ausfihrungsumgebung (z.B. JVM), die in der
Lage ist, statt der normalen Eingabeinteraktionen Referenzdaten zu verwenden, eine Kopie
des Originalcodes, die automatisch um die bendétigten Aktionen (zweite Ausfihrung, Aus-
gabeunterdriickung und Zustandsvergleich) erweitert wird, sowie eine Kopie des Original-
codes, die manuell vom Programmierer instrumentiert wird.

Weitere Informationen zu diesem Framework lassen sichah(Ba]finden.

4.5 Ein neues Protokoll zur Verinderung von Modifikationsangriffen

Die in [Hoh0Oa] bzw. [ldh00b]beschriebenen vier Ansatze stellen nur einige Moglichkei-
ten aus dem Spektrum an Ansétzen dar, die Referenzzustande benutzen kdnnen. Unterteilt
man diese wie in [Wil99], erhalt man folgende Tabelle:

Prufungs- Grad der
Ansatz 9 Prufungs-zeitpunkt entdeckbaren | Aufwand
anlaid)
Angriffe
State Appraisal in jedem Fall nach jeder Sitzung geringer gering
Server replication in jedem Fall nach jeder Sitzung hoher hoch
Execution traces bei Verdacht nach Gesamtausfiihrung hoher mittel
Proof verification in jedem Falll nach jeder Sitzung hoher hoch

Tabelle 1: Vergleich existierender Ansatze

Die Frage ist nun, ob es noch andere Anséatze gibt, die Vorteile gegeniber den bestehenden auf-
weisen. Will man einen Ansatz, der in den ersten drei Kategorien das Maximum bietet, und kei-
nen hohen Aufwand besitzt, muss ein neues Verfahren gefunden werden.

Abschlussbericht AIDA I 15

45.1 Der Ansatz

Die ldee des Ansatzes besteht darin, das Prifverfah-

ren des “Traces’-Ansatzes, d.h. das Nachrechpen Hostl

von Ausfuhrungssitzungen unter Benutzung @kfq ->computatiop> state
Eingaben wahrend dieser Sitzung zu nehmen, und es _ o
auf dem nachsten Host, der besucht wird, durchizu- NPUL | inpuy
fiihren (siehe Bild 6). Um das Ziel zu erreichen, jedeomputation [=
Ausfihrungssitzung auf dem nachsten Host zu pril- i

fen, wird d%bei nicﬁt darauf Ricksicht genommgéhld 6: Nachrechnen von Ausflihrungen
ob der nachste Host sicher ist oder nicht.

Host 2

statg -> check -> statg

inputy

45.2 Das Protokoll

Das Protokoll wird in [Hoh99] beschrieben. Dort werden zunachst die Protokollteile entwickelt,
die jeder Host in einer allgemeinen Konfiguration abzuwickeln hat. Diese Konfiguration besteht
aus einer Liste von Hosts, die ein mobiler Agent nacheinander besucht. Um generelle Aussagen
treffen zu kbnnen, wurde angenommen, dass bis auf den ersten und letzten Host alle Hosts un-
sicher sind. Nachdem so ein Protokoll entwickelt wurde, wurde dieses zu einer optimierten Va-
riante weiterentwickelt, das es erlaubt, beliebige Mischungen aus sicheren und unsicheren
Hosts nach dem ersten Host und vor dem letzten Host vorzufinden.

45.3 Diskussion des Protokolls

Das in [Hoh99] beschriebene Protokoll erfillt die Anforderungen, die eingangs an ein neues
Verfahren gestellt wurden (Prifung in jedem Fall, nach jeder Sithdhgrer Grad ddentdek-

kung von Angriffen, kein hoher Aufwand). Im Vergleich zum “Traces”-Ansatz ergaben sich
aber zwei Nachteile.

Ein Nachteil besteht darin, das eine Eingabe nicht vor dem Prifhost geheimgehalten werden
kann. Das kann vor allem dann ein Problem sein, wenn es keine zuséatzlichenVerfahren gibt,
Daten vor Leseangriffen durch Hosts zu schitzen, die diese Daten verarbeiten missen. Wenn
kein solches Verfahren eingesetzt werden kann, kbnnen allgemein alle Hosts alle Daten lesen,
die sie verarbeiten. In diesem Fall reduziert sich das Problem der lesbaren Eingabe auf solche
Daten, die nicht in jedem Fall zum nachsten Host transportiert werden (also auch ohne das Pruf-
protokoll). Wenn es jedoch solcheVerfahren gibt, kann eine “geschuitzte Form” der Eingabe ftr
die Prifung verwendet werden.

Der schwerwiegendere Nachteil ist das Problem, dass Angriffe von zwei oder mehr aufeinan-
derfolgenden Hosts, die zusammenarbeiten, nicht entdeckt werden kénnen (es reicht nicht aus,
dass zwei beliebige Hosts kollaborieren). Wenn der zweite Host einen resultierenden Zustand
signiert, der aus einem Angriff des ersten Hosts entsteht, kann der dritte Host diesen Angriff
nicht entdecken. Um diese Kollaborationsangriffe zu verhindern, kann das Protokoll aber erwei-
tert werden.

4.5.4 Erweiterung des Protokolls fur die Tolerierung von Kollaborationsangriffen

Wenn man mehr als einen Host fur die Prifung verwendet, kann das Protokoll so erweitert wer-
den, dasa boswillige, kollaborierende, aufeinanderfolgende Hosts toleriert werden kénnen. Zu
diesem Zweck werden zu jeder Ausfiuhrungssitzarytfungen auf anderen Hosts bendétigt.

Das Vorgehen folgt dabei dem Verfahren, das beim “Server replication”-Ansatz benutzt wird.
Der Unterschied liegt zum einen darin, dass nicht die Ausflhrung repliziert wird sondern die
Prifung, und darin, dass nicBtn Hosts pro Sitzung bendtigt werden sondern ntif.. Das

Abschlussbericht AIDA I 16

liegt daran, dass es zur Entdeckung eines Angriffs nicht wichtig ist zu wissen, welcher Zustand
der korrekte ist; solange auch nur ein Host zu einem anderen Ergebnis kommt, kann ein Angriff
entdeckt werden. Nach einer solchen Entdeckung kann dann der Agenteneigentiimer nachrech-
nen, welche Partei Recht hatte.

4,55 Messungen

Um die Kostenschatzungen zu evaluieren, wurde das Protokoll prototypisch fiir einen generi-
schen mobilen Agenten implementiert. Die Messungen wurden fur das Mobile-Agenten-Sy-
stem Mole [BHR98a, BHR98b] implementiert, das Java als Programmiersprache benutzt. Als
Sicherheitsbibliothek wurde IAIK-JCE 2.0 [IAI99] verwendet, die eine reine Java-Implemen-
tierung versctedener kryptographischer Algorithmen anbidbagjitale Signaturen wurden mit

dem DSA-Verfahren dieser Bibliothek erstellt, wobei eine Schltissellange von 512 Bits benutzt
wurde. Bei den Messungen ergab sich, dass die Gesamtlaufzeiten eines durch das Protokoll ge-
schitzten Agenten gegeniber einem ungeschiitzten etwa um die Faktoren 1,3 bis 2,2 auseinan-
derliegen. Da in den Messungen nur lokale Migrationen benutzt wurden (also solche innerhalb
eines Rechners), fiel kein Code-Transfer bei der Migration an. Falls ein solcher Transfer not-
wendig ist, wirden die Faktoren etwas sinken, da dieser fur geschuitzte und ungeschitzte Agen-
ten die gleiche Zeit bendtigt, falls der Code flir das Protokoll bereits beim Host vorliegt.

Weitere Details zu diesem Protokoll werden in [Hoh99] beschrieben.

4.6 Blackbox-Schutz

Neben den Ansétzen, die versuchen, bestimmte Angriffe zu verhindern, sind vor allem solche
attraktiv, die transparent fir den Programmierer sind. Das heil3t zum einen, dass diese Ansatze
in der Lage sein missen, im Wesentlichen alle Angriffe zu verhindern. Zum anderen bedeutet
dies, dass die Schutzmechanismen keine Restriktionen bedingen durfen, die der Programmierer
beachten muss. Es gibt zwei mdgliche Wege, einen solchen vollstdndigen, transparenten Schutz
zu gewahrleisten. Der eineWeg besteht darin, sichere Hardware zu benutzen, die auch der Be-
treiber nicht modifizieren kann (siehe [Hoh98a] flr eine Beschreibung entsprechender Ansatze
und anderer existierender Arbeiten auf diesem Gebiet). Der andere Weg zielt darauf ab, einen
solchen Schutz vollkommen durch Software zu erreichen. Im Rahmen des Piajektesge-

zeigt werden, welche Teilangriffe mindestens verhinderbar sein mussen, damit die Autonomie
des Agenten wieder soweit hergestellt werden kann, dass existierende Anséatze, z.B. zur Authen-
tifizierung verwendet wrden kénnen, um die anderen Angriffe zu verhindern. Fur einen Agen-
ten, bei dem diese Teilangriffe verhindert werden kénnen, wurde der Bgckboxgepragt.

4.6.1 Blackbox-Eigenshaft

Die grundlegende Idee des Blackbox-Ansatzes ist es, einen beliebigen Ursprungsagenten zu
nehmen, und durch eine Konvertierung einen aquivalenten Agenten zu erzeugen, dessen Struk-
tur nicht mehr dem Ursprungsagenten entspricht, der aber immer noch ausfthrbar ist. Die Kon-
vertierung wird dabei durch einen Parameter konfiguriert (siehe Bild 7), so dass ein Angreifer
nicht einfach alle méglichen Konvertierungen erzeugen, und so einen konvertierten Agenten,

Abschlussbericht AIDA I 17

die Blackbox, erkennen kann.

conversion
mechanism

original agent executable agent
(blackbox)
parameter
Bild 7: Idee
Als Blackboxwird ein Agent dann bezeichnet, wenn es nicpt Input

mdglich ist, dass die Datenelemente und Codeteile eines |Ur- _<IIININGGE
sprungsagenten als solche erkannt werden kdnnen. Damit |geérn
einher, dass der Angreifer die Werte der Datenelemente nichfRha
sen kann und es geht damit einher, dass er diese Datenelemente Output
und Codeteile nicht (temporér) modifizieren kann. Schlief!»lié'.lI :
. .. . ild 8: Blackbox
folgt daraus auch, dass der Code nicht in einer Weise, entgegen

der Spezifikation, ausgefuhrt werden kann, dass der Angreifer ei-
nen gewunschten Effekt erzielt.

Ist ein Agent eine Blackbox, so kann ein Angreifer im Wesentlichen nur noch Eingaben in und
Ausgaben aus der Blackbox beobachten (Bild 8). Er kann zwar noch Zustandsanderungen des
Agenten wahrnehmen, diese aber nicht mehr Anderungen einzelner Datenelemente des Ur-
sprungsagenten zuordnen.

Verhinderbare Angriffe

Ist ein Agent eine Blackbox, so besitzt er wieder genug Autonomie, um mithilfe existierender
Verfahren andere Angriffe abwehren zu kénnen. Diese Angriffe umfassen die Maskierung eines
Hosts (d.h. er gibt sich dem Agenten gegeniber als ein anderer Host aus), und Angriffe gegen
die Kommunikation des Agenten mit dritten Parteien.

Nicht verhinderbare Angriffe

Neben der Mdglichkeit eines Hosts, einen Agenten nach Belieben nicht auszufihren, gibt es ei-
nen Angriff, von dem im Moment nicht bekannt ist, wie er zu verhindern ist, selbst wenn der
Agent eine Blackbox ist. Dieser Angriff besteht darin, dass Hosts bei der Riickgabe von Resul-
taten von Systemfunktionen, die der Agent aufgerufen hat, falsche Werte zurtickgeben. Falls
auch andere Hosts in der Lage sind, die Systektibn auszufiihren, kénnte ein Agent diesen
Aufruf natirlich entfernt durchfiihren, aber dieses Vorgehen (wenn es denn maoglich ist), erhdht
die Kommunikationskosten.

4.6.2 Mobile Cryptography

Es gibt zur Zeiti.W. zwei Ansatze, die versuchen, Verfahren bereitzustellen, mit denen man eine
solche Blackbox eeugen kann. Der eine Ansatz nennt sich "Mobile Cryptography" und wird

in [ST98] beschrieben. Dabei werden zunachst nur Daten geschutzt, indem das Programm in
eine Form konvertiert wirdjie in der Lage ist, auf verschliisselten Daten zu arbeiten, ohne diese
dazu entschlisseln zu missen. Der grundséatzliche Nachteil dieses Ansatzes scheint es zu sein,
dass ein so geschitzter Agent keine Klartextausgaben auf einem unsicheren Host vornehmen
darf, da sonst die Entschlisselungsfunktion Teill des Agenten sein misste. Eine detailliertere
Diskussion dieses Ansatzes findet sich in [Hoh98a].

Abschlussbericht AIDA I 18

4.6.3 Zeitbeschranktes Blackbox-Verfahren

Ein weiterer Ansatz, die Blackbox-Eigenschaft zu realisieren, wurdeim Verlauf des AIDA II-
Projektes erarbeitet. Dieser Ansatz geht von der Idee aus, dass einem Angriff erst eine Analyse
des Agenten vorangehen muss. Wenn man nun jede Agenteninstanz in eine andere Form kon-
vertiert, bendtigt ein Angreifer Zeit zur Analyse. Bevor diese Analyse nicht abgeschlossen ist,
kann der Agent nicht angegriffen werden, d.h. es existiert ein Zeitintervall, in der der Agent vor
Angriffen sicher ist. Wenn es gelingt, dieses Intervall festzustellehdasEnde dieses Inter-

valls als "Verfallsdatum" am Agenten anzuheften, ist der Agent sicher, solange er noch nicht
verfallen ist. Nachdem er verfallen ist, darf er nicht mehr ausgefiihrt werden bzw. nicht mehr
mit dritten Parteien interagieren, da er dann als angreifbar gilt.

Wahrend zu Beginn des Projektes zunachst noch die Analyse durch menschliche Angreifer ver-
hindert werden sollte (z.B. durch die Mechanismen, die in [R6h97] erarbeitet wurden), stellte
sich dann heraus, dass die schwieriger zu verhindeumdamit wichtigren Angriffe durch
Angriffsprogrammeerfolgen, und damit verhindert werden missen. Damit stellte sich die For-
derung, dass die Konvertierg nicht durch@che Verfahren angreifbar sein darf, die von einem
Programm vorgenommen werden kénnen, bzw. beliebig beschleunigt werden kbnnen es muss
also "hart" gegen eine solche Analyse sein.

Beispiele fur Konvertierungsfunktionen, die"Verwutfiejsverfaren” genannt wurden, finden
sich in [Hoh98a] bzw. [R@O7]. Diese erheben allerdings nicht den Anspruch, hart gegen eine
automatische Analyse zu sein.

Weitere Informationen zum zeitbeschrankten Bladkbox-Verfahren finden sich in [Hoh98a].

Verhinderung statischer Analysen

Analyseverfahren von Programmen lassen sich in zwei Klassen teilen: statische Verfahren und
dynamischeVerfahren. Statische Verfahren finden vor der Programmaunfigtattdynami-

sche Verfahren benutzen Wissen aus einer konkreten Ausfilhrung. Da statische Verfahren nur
begrenzt Wissen lber das tatsachlicheVerhalten eines Programmes bei der Ausfiihrung ableiten
kénnen (dieses Verhalten kann ja von Parametern bestimmt werden, die erst zur Laufzeit fest-
stehen), ist es vergleichsweise einfach, statische Analysen abzuwehren. Eine Mdglichkeit, dies
zu tun, besteht darin, den Agenten in kleinen Teilen zu verschlisseln, und diese Teile erst zur
Laufzeit zu entschlusseln. Falls die verschiedenen Schlissel erst zur Laufzeit errechnet werden,
beschrankt sich eine statische Analyse auf die Teile des Agenten, die schon entschlisselt wur-
den.

Probleme des Verfahrens

Im Verlauf des Projektes gelang es nicht, Verwlrfelungsmechanismen zu finden, die hart genug
waren, um z.B. Leseangriffe zu verhindern. Dabei stellte sich die dynamische Analyse als ei-
gentliches Problem heraus. Solange der Prozessor die Elemente des Originalprogrammes ver-
arbeitet (selbst wenn dies auf Hochsprachenebene nicht mehr der Fall ist), kobnnen auf dieser
Ebene relativ leicht Angriffe stattfinden. Durch das Fehlen eines geeigneten Verwtrfelungsme-
chanismus konnte auch nicht abgeschéatzt werden, wie lange ein so behandelter Agent vor An-
griffen geschutzt wird, und ob diese Zeit fur einen Grol3teil der Anwendungen ausreicht.

Ausblick

Das generelle Problem des Schutzes mobiler Agenten vor Angriffen durch den ausfiihrenden
Host konnte imVerlauf des Projektes auf die Fragestellung reduziert werden, wie man verhin-
dern kann, dass ein Angreifer die Elemente des originalen Agentenprogramms auf der untersten

Abschlussbericht AIDA I 19

Ausfiihrungsebene sehen und damit modifizieren kann. Daher wurde ein Mechanismus ange-
dacht, der die Elemente des originalen Programms so aufspaltet, dass diese auch nicht mehr auf
der untersten Ebene als Ganzes verarbeitet werden sondern in verschiedenen Teilen (Subele-
mentkonversion). Diese ldee bedingt zum einen, dass eine solche Aufspaltung in groRerem Rah-
men zufallig erfolgen kdnnen muss (sonst kdnnte der Angreifer einfach alle Aufspaltungsmog-
lichkeiten berechnen und die erfolgte Aufspaltung aufheben). Zum anderen mussen alle
Operationen der Programmiersprache und der Bibliotheken durch solche Operationen ersetzt
werden, die statt der Originalelemente die Subelemente verarbeiten. Idealerweise sollten diese
Operationen aus derWahl der Aufspaltung heraus automatisch generiert werden. Leider konnte
das Gebiet der Subelementkonversion aus Zeitmangel nicht mehr im Verlauf des Projektes fort-
gefuhrt werden. Daher bleibt es zuklnftigen Arbeiten Uberlassen, diesen Ansatz weiterzuverfol-
gen.

4.7 Ein Protokoll zur Verhinderung von Blackbox-Tests

Wie wir gesehen haben, lassen sich, aufbauend auf der Blackbox-Eigenschaft, andere Angriffe
verhindern. Ein Angriff gegen Blackbox-geschitzte Agenten wurde bisher jedoch noch nicht
behandelt: Der Blddox-Test. Er verwendet kein Wisséber die innere Struktur von mobilen
Agenten und kann daher auch nicht durch die Blackbox-Eigenschaft verhindert werden.

4.7.1 Blackbox-Test-Angriffe

Ein Blackbox-Test ist ein Angriff gegen einen mobilen Agenten durch einen Host, bei dem der
Agent mehrere Male mit variierenden Eingabeparametern ausgeftihrt wird. Dies kann parallel
oder sequentiell geschehen. Nach jeder Ausfilhrung beobachtet der Angreifer den Effekt des
Tests. Diese Effekte konnen in expliziten Resultaten wie z.B. Ausgabedaten bestehen oder in
charakteristischen“Aktivitatsmustern”. Das Ziel eines Hbax-Tests ist es, diéingabepara-

meter zu finden, die zu einem bestimmten Effekt flihren, oder aber, bestimmte Eigenschaften
des Agenten zu erfahren.

4.7.2 Ausfihrungsmodell

Eine Ausfiihrungssitzung auf einem Host tberfiihrt eine initialen Zustand durch Einbeziehung
einer Liste von Eingabeereignissen in einen finalen Zustand, wobei eine Liste von Ausgabeer-
eignissen erzeugt wird (siehe Bild 9). Nachdem der finale Zustgng) @reicht wurde, ist die
Ausfiihrungssitzung beendet, und der Agent terminiert oder migriert auf den nachsten Host.

inputa inputb input ¢

Sual St Sz Se | Su Ss | Se Sv fime

Tele o s ols o o
Lsf

output o output p output g
Bild 9: Ausfihrungsmodell auf einem Host

Wahrend der Ausfllings#zung kann ein Eingabeereignis auftreten, durch das der Agent ei-
nen Eingabewert x als Parameter bekommt.Wann immer der Angreifer eine Aktion des Agenten
aulR3erhalb der Blackbox beobachten kann, stellt dies ein Ausgabeereignis dar, das manchmal mit
einem Wert y verknupft ist.

Abschlussbericht AIDA I 20

4.7.3 Die Protokollidee

Ein Weg, Blackbox-Tests zu verhindern, besteht darin, mehrere Ausfihrungen desselben Agen-
ten zwar zu erlauben, gleichzeitig aber zu verlangen, dass sie diesselbe Liste von Eingabeereig-
nissen benutzen. Damit verhalten sie sich auch vollkommen identisch, falls sie deterministisch
sind. Damit kann ein Angreifer keinen Informationsgewinn auskBlax-Tests bekommen, und

dieser Angriff ist sinnlos. Um sicherzustellen, dass zur Ausfuihrung einer Agenteninstanz auf ei-
nem Host diesselbe Liste von Eingabeereignissen benutzt wird, bendtigen wir eine sichere
Komponente. Diese Komponente, Riegistratuy muss daher auf einem sicheren Host platziert
werden. Das nun folgende Protokoll realisiert diese ldee.

4.7.4 Das Protokoll

Um die Protokollidee zu realisieren, registriert ein Agent Eingabeereignisse bei einer Registra-
tur. Die Registratur antwortet auf eine Registrierung genau dann mit einer positiven Antwort,
falls ein solches Ereignis in einer solchen Ausfiilgssitzing bisher noch nicht vorgekommen

ist, oder das Ereignis mit denselben Elmyaerten bereits registrievtirde. Ein Agent setzt sei-

ne Ausflihrung nur dann fort, wenn er eine positive Antwort auf einen Registrierungsversuch
bekommt. Es wird angenommen, dass ein Agent diesselbe Registratur wahrend einer Ausfih-
rungssitzung verwendet. Bild 10 stellt das Registrierungskobifir Eingabeereignisse dar:

GID
Agent \ Registry

/
REQ[Agentld, Exp, Locld, Hop, (i_stmt#, n, DataHash)]

ACK{GID,DataHash}* ze,
-

or

- NAK

Bild 10: Registrierungsprotokoll

Die Registrierungsanforderung, REQ, wird an die Registratur geschickt. Sie enthalt den globa-
len Eingabeereignis-ldentifikator (GID), sowie den Hash der EingabevizataHash . Der
Hash-Wert wird als eine Art spezialisierte Zufallszahl verwendet, die charakteristisch fur die
Eingabewerte ist. Daher darf es nicht viele verschiedene Eingabewerte geben, die im selben
Hash-Wert resultieren, zumindest sollten die anderen Eingabewerte schwierig zu berechnen
sein. Diese Anforderungen erflllt der Einsatz sicherer Hash-Verfahren wie MD4 oder MD5 zur
Errechnung des Hash-Wertes.

Nach Eingang der Anforderung entscheidet die Registratur, ob sie eine positive oder negative
Antwort schicken soll. Im ersten Fall wird eine positive Begtiitg (ACK) zulickgeschickt,

die dieselben Daten wie die Anforderung enthalt und durch die Registratur signiert wurde. Im
zweiten Fall wird eine einfache negative Antwort (NACK) zurtickgeschickt.

4.7.5 Protokollimplementierung und -messung

Das Protokoll wurde als reine Java-Anwendung implementiert (siehe [Fri98b] wegen einer ge-
naueren Beschreibung der Implementierung und der g¥sUnterVerwedung dieser Im-
plementierung wurde der Mehraufwand gemessen, der durch die Vewendung des Protokolls
entsteht.

Abschlussbericht AIDA I 21

Wenn wir die Sicherheit des Agenten nicht garantieren kdnnen, muss dieser von einem sicheren
Host aus arbeiten, ohne zu den unsicheren Interaktionspartnern migrieren zu kénnen. In diesem
Fall muss die Kommunikation mit diesen Partnern entfernt erfolgen, d.h. z.B. dass Eingabepa-
rameter an den Agenten und Ausgaben von Agenten serialisiert und verschickt werden mussen.
Falls diese Daten Uber ein unsicheres Netzwerk transportiert werden, missen diese Daten bis-
weilen verschlisselt, in jedem Fall aber signiert werden, um zumindest die Integritat dieser Da-
ten zu sichern.

Wenn man unter diesem Aspekt die Zeiten des Mehraufwands des Protokolls gegenlber der Zeit
betrachtet, die die Alternative nur fur die notwendige zusétzliche Kommunikation bendtigt, fallt
auf, dass der Unterschied zur Alternative gering ist, und bisweilen sogar negativ wird. Dies ist
leicht erklarbar, wenn man sich tberlegt, dass das Protokoll normalerweise weniger Daten Uber
das Netz bewegt als im alternativen Fall, da das Protokoll nur einen Hash fester Ldnge von den
Eingabedaten berechnet. Sobald die Zeit fur die Berechnung des Hash-Wertes plus einiger zu-
satzlicher Zeit geringer ist als die Zeit, die zum Transport der Daten mit Java RMI bendtigt wird,
ist der Gebrauch des durch das Protokoll geschitzten Agenten schneller als der alternative Fall.

Weitere Details sowie das genaue Protokoll finden sich in [HR99].

5 Abrechnung: Konzepte und Implementierung

Heutigen Mobile-Agenten-Systemen fehlt eine Komponente, die fir den kommerziellen Ein-
satz besonders im Bereich des elektronischen Hamaolglder elektwnischen Dienste zwingend
notwendig ist: die Abrechnung von erbrachten Dienstleistungen. Dabei handelt es sich sowohl
um Dienstleistungen, die vom System zur Verfigung gestellt werden, als auch um Dienste, die
von Agenten selbst angeboten werden. Dienste, die das System zur Verfligung stellt, sind haupt-
sachlich die Benutzung von Systemressourcen wie CPU-Zeit, Speicher oder Netzwerk. Die von
Agenten zur Verfiigung gestellten Dienste sind vielfaltig. Denkbar sind zum Beispiel Daten-
bankabfragen, naturwissenschaftliche Berechnungen, aber auch der Verkauf von Waren, die
nicht zwangslaufig auf dem elektronischen Weg zustellbar sein missen. Im kommerziellen Ein-
satz mussen die Dienste, die von Agenten geleistet und in Anspruch genommen werden, regi-
striert und zu einem spateren Zeitpunkt abgerechnet werden. Dabei bietet es sich an, die Ab-
rechnung ebenfalls auf dem elektronischen Weg durchzuflihren, zum Beispiel unter
Zuhilfenahme von elektronischen Zahlungssystemen. Das Ziel dieses Arbeitspakets war es da-
her, ein solches Abrechnungssystem flr ein MeBijenten-System zu konzipieren und proto-
typisch fir Mole zu implementieren. Die Inhalte dieses Kapitels wurden grof3tenteils [Tra99]
entnommen.

5.1 Erfassung abzurechnender Ressourcen und Dienstleistungen

Grundlage fur das Abrechnen von Dienstleistungen und Ressourcenverbrauch ist die Erfassung
bzw. Mitprotokollierung der Verbrauchsdaten (engl. accounting). Die Erfgster Daten dient

im Wesentlichen zwei Zielen. Zum einen bildet sie die Grundlage fir die Inrechnungstellung
(engl. billing) des Verbrauchs, zum anderen kbnnen mit den so gewonnenen Daten Systemeng-
passe durch Datenanalyse ausgemacht werden.dkunsheine Inrdmungstellung kann so ein
System adaquat erweitert werden.

Folgende Systemressourcen werden von der Erfassung betrachtet:

Abschlussbericht AIDA I 22

* Prozessorlaufzeit

Hierbei erfolgt die Erfassung Uber denVerbrauch an Zeitscheiben der Threads, die einem
Agenten zugeordnet sind. In Mole ist das deshalb besonders einfach, weil ein eigener
Thread-Scheduler verwendet wird, der fur diese Zwecke modifiziert werden konnte.

* Hauptspeicherverbrauch

Um das System nicht zu sehr zu belasten, wird der Speicherverbrauch eines Agenten in pe-
riodischen Abstdnden gemessen. Um keine Modifikation der Virtuellen Maschine vorzu-
nehmen, wird dazu die Grol3e des serialisierten Agentenobjekts gemessen.

* \erbrauch von externen Kommunikationsressourcen

Da ein Agentim Wesentlichen Uber das Agentensystem kommuniziert, konnte die Erfas-
sung der Verbrauchsdaten (gesendete und empfangene Bytes, Ziel der Kommunikation,
Anzahl der Zugriffe) ebenfalls tber eine Modifikation der entsprechenden Routinen im
Agentensystem erfolgen.

Nicht betrachtet wurden externe Speicher (z.B. Festplattenplatz) und interne Kommunikation
(d.h. innerhalb eines Rechners), da diese i.A. keine kritischen Ressourcen sind bzw. mit densel-
ben Verfahren abgerechnet werden kénnen.

Neben den Systemressourcen soll das System auch die Inanspruchnahme von Diensten, die von
anderen Agenten angeboten werden, abrechnen kénnen. Fir die Datenerfassung bedeutet das,
dass Dienstinanspruchnahmen aufgezeichnet werden mussen.

5.2 Inrechnungstellung

Die erfassten Daten missen demVerbraucher auch irgendwann in Rechnung gestellt werden,
wenn echtes Geld flie3en soll. Zu diesem Zweck berechnet die Inrechnungstellung (engl. bil-
ling) zu zahlende Betrage, die dann Uber ein Zahlungssystem beglichen werden (siehe nachster
Abschnitt). Dabei wird davon ausgegangen, dass eine verbrauchsabhangige Abrechnung erfol-
gen soll, da eine generell pauschale Abrechralmmg Erfassung deseYbrauchs auskommt.

Zuerst stellt sich die Frage, wie einzelne Leistungen in zu zahlende Betrage uberfiihrt werden
konnen. Dazu kann der Betreiber eines Hosts auswahlen, ob und wie der Verbrauch von Res-
sourcen Geld kostet. Er kann jeden Verbrauch entweder mit einer festen Gebihr belegen oder
aber gewisse Pauschalen vendeen. Fir Dienste bietet dieses feste Schema u.U. nicht genug
Machtigkeit. Daher kann der Betreiber auch statt der Benutzung des vorgegebenen Schemas
selbst Code erstellen, der die erfassten Daten in zu zahlende Betrage umrechnet.

Den generellen Modus der Abrechnung bestimmt das Abrechnungsmodell, das der Betreiber ei-
nes Hosts in gewissen Grenzen bestimmen kanrAldechnungszeitpunldgt fest, wann eine
Abrechnung der angefallenen Betrage erfolgen soll. Dieser Zeitpunkt kann entweder das Ende
einer Inanspruchnahme eines Dienstes oder einer Ressource sein, periodisch in bestimmten In-
tervallen erfolgen oder nach Ansammlung eines gewissen Betrages.

Um einem Agenten die Mdglichkeit zu geben, sich vor der Inanspruchnahme tiber mdgliche Ko-
sten zu informieren, kann sich ein Agent (auch entfernt) eine Preisliste geben lassen, in der die
AbrechnungsspezKationen festgehalten sind. Diese Methode ist allerdings nur fur solche In-
anspruchnahmen maoglich, bei denen keine speziellen Abrechnungsprozeduren verwendet wer-
den, da deren Effekte nicht in einer maschinenlesbaramAMVeiseautomatisch wiedergege-

ben werden konnen.

Abschlussbericht AIDA I 23

5.3 Zahlungskomponente

Im Zusammenhang mit mobilen Agenten birgt die Verwendung eines elektronischen Zahlungs-
systems dann Vorteile, wenn eine verbrauchsabhangigehxoeag gewahlt wirdind wenn der
Agent in der Lage ist, damit seine Verbrauchsrechnung gleich "an Ort und Stelle" zu begleichen.
In [Tra99] werden verschiedene elektronische Zahlungsverfahren vorgestellt. Fur den Einsatz
in einer Abrechnungskomponente soll ein entsprechendes Verfahren frei konvertibles Geld an-
bieten, also solches, das nicht nur in einem bestimmten 6konomischen Umfeld gultig ist, son-
dern auch Mikrozahlungen unterstutzt, um auch kleine Betrage effizient abrechnen zu kénnen,
und es soll die Aonymitéat des Zahlenden gewahrleisten. In einer ersten Evalsatiemt da-

her digitales Bargeld am geeignetsten fir dieses Umfeld zu sein.

Da flr dieses Arbeitspaket eine Einbindung eines existierenden Zahlungssystems zu umfang-
reich war, wurde statt dessen das dabksystem als "Blackbox" betrachtet und der Zugriff
Uber allgemeine Schnittstellen definiert. Zur Evaluierung des Ansatzes wurde diese Blackbox
dann mit einer kleinen lokalen Simulation eines solchen Zahlungssystems geftillt.

5.4 Messungen

In [Tr&99] wurde der Performanzverlust der Implementierung der vorgestellten Abrechnungs-

komponente gegeniber einem Mole-System ohne Abrechnungskomponenten anhand eines

Testagenten berechnet, der 100 entfernte Prozeduraufrufe und 100 Nachrichten abschickt. Das

Ziel der Prozeduraufrufe war der Testagent selbst, der daraufhin sehr grol3es Fakultaten berech-

nete. Dabei zeigte sich, dass

* auch eine sehr zeitnahe Abrechnung (jede Sekunde) bei moderater Nachrichtengrof3e den
Agenten maximal um 8% verlangsamte

» eine Abrechnung bei sehr grossen Nachrichten die Abrechnung stark verlangsamte (um ca.
200% bei ca. 10Mbyte Daten insgesamt), weil dann die Serialisierung viel Zeit bendétigt

» die Gebuhrenberechnung bei Verwendung systemeigener Methoden sehr schnell vonstatten
ging (ca. 20 ms)

* auch bei der Abrechnung bei Erreichen einer bestimmten Summe das System nur gering-
figig mehr (1%) belastet wurde

5.5 \Verwandte Arbeiten

Telescript [GM94] war 1994 das erste Mobile-Agenten-System. Es benutzte die gleichnamige
Sprache Telescript, wurde von der Firma General Magic betrieben und war dazu gedacht, ande-
ren Firmen die Mdglichkeit in die Hand zu geben, kostenpflichtige Dienste anzubieten, oder gar
solche Dienste zwischen zwei anderen Parteien zu vermitteln. Daher waren Abrechnungsme-
chanismen schon immer Teil des Systems. Allerdings sind genauere Informationen tber die Ab-
rechnungskomponenten heute schwer zu bekommen, da das Produkt Telescript ab etwa 1997
nicht mehr angeboten wird, und auch vor dieser Zeit genauere Informationen vor allem fir kom-
merzielle Lizenznehmer verfluigbar waren. Bekannt ist, dass die Inanspruchnahme von Ressour-
cen und Diensten soteleclickkosteten, die dann linear Uber echtes Geld abgerechnet wurden.

Zurzeit gibt es keine Installation eines Mobile-Agenten-Systems, das flr einen Benutzer kosten-
pflichtig ist, und es gibt auch nur vereinzelt Forschung auf diesem Gebiet. Schon langer bekannt
ist allerdings der Umstand, dass das Problem der Ressourcenkontrolle in Mobile-Agenten-Sy-
stemen dann gelost werden kann, wenn die Inanspruchnahme den Benutzer Geld kostet. Unter
diesem Aspekt wird die Problemstellung der Ressourcenkontrolle ("Wie kann ich verhindern,

Abschlussbericht AIDA I 24

dass ein Benutzer zu viele Ressourcen benutzt?") durch die Einsicht beantwortet, dass es voll-
kommen egal ist, wieviele Ressourcen von einem bestimmten Benutzer verbraucht werden, so-
lange er diese nur bezahlt.

Ein ahnliches Prinzip benutzt [GKC98], wo allerdings kein echtes Geld zur Kompensation des
Ressourcenverbrauchs verwendet wird, sondern eine kinstliche "Systemwahrung", von der je-
der Agent gleich viel (umsonst) bekommt. Da jeder Anbieter von Ressourcen diese an Agenten
"verkaufen" kann, soll sichergestellt werden, dass Ressourcen nicht von einem Agenten mono-
polisiert werden kénnen.

5.6 Zusammenfassung

Voraussetzung fur eine Abrechnung von Dienst- und Ressourceninanspruchnahmen, bei der
echtes Geld fliel3t, ist ein in jeder Hinsicht sicheres Agentensystem, d.h. eines, bei dem nicht nur
der Agent einem Host nicht schaden kann, sondern auch bei der Dienstinanspruchnahme nicht
betrogen werden kann, und schlief3lich ein Host einen Agenten nicht angreifen kann. Dieser
Aspekt war nicht Gegenstand dieses Arbeitspakets (er wurde bereits im letzten Kapitel disku-
tiert), und wurde daher flr die Abrechnung als gegeben angenommen.

Unter dieser Voraussetzung wurde in diesem Kapitel eine AbrechnungsktEnkonzipiert

und fur Mole prototypisch implementiert, die in der Lage ist, Verbrauchsdaten von Systemres-
sourcen und Dienstinanspruchnahmen zu erheben, diese Daten in zu zahlende Betrage auf eine
durch den Betreiber einstellbare Weise umzuwandeln, und die bestehende Zahlungssysteme
nutzen kann, um diese Betrage einzuziehen bzw. dem Dienstanbieter gutzuschreiben.

6 Verarbeitungsmodelle fir Agentenanwendungen

6.1 Einflhrung

Einer der Vorziige des Client-Server-Modells ist es, dal3 sich die rshumgsstrutur in der
Hierarchie der RPC-Aufrufe wiederfinden und sich diese implizite Struktur fr einige Aufgaben
wie z.B. die Terminierung und Waisenenkengvorteilhaft einsetzen lasst. Da die Mobile-
Agenten-Architektur wesentlich flexibler ist, und sich z.B. Kommunikationsbeziehungen nicht
ohne weitere Informationen als in Relation stehend identifizieren lassen, werden andere Verfah-
ren beno6tigt, um obige Daten erheben zu kénnen. Die im Antrag von AIDA Il in Betracht gezo-
gene Mdglichkeit war, dem Programmierer einfache Interaktionsmodele zur Verfiigung zu stel-
len, die einerseits viele Anwendungsfalle abdecken und andererseits Relationen zwischen
Agenteninteraktionen implizieren, die von Systemmechanismen ausgenutzt werden kdnnen.
Dazu sollten typische Verarbeitungsstrukturen identifiziert und in einem zv@steitt, durch
adaquate Interaktionsmodelle bzw. Kontrollstrukturen nachgebildet werden. Obwonhl diese vor-
gefertigten Interaktionsmodelle nicht die volle Flexibilitat des allgemeinen Agentenmodells
bieten kbnnen, sollten sie nicht nur das Systemmanagement erleichtern, sondern mit ihrem vor-
gefertigten Funktionsumfang auch fir die Erstellung von Anwendungen, die auf mobilen Agen-
ten beruhen, arbeitserleichternd wirken.

6.2 Vorbemerkung

Entgegen der Zielsetzung im Antrag konnte dieses Arbeitspaket nicht in der angedachten allge-
meinen Ausrichtung bearbeitet werden. Obwohl die Zielsetzung auch zum gegenwartigen Zeit-

Abschlussbericht AIDA I 25

punkt als untersuchenswert und relevant fiir einen spateren Einsatz von Mobile-Agenten-Syste-
men erscheint, entwickeln sich erst jetzt echte Anwendungen auf der Basis von mobilen
Agenten, nachdem die Basismechanismen dieser Technologie durch Forschungsprojekte wie
AIDA erarbeitet wurden. Daher konnte im Berichtszeitraum keine Analyse typischerVerarbei-
tungsstrukturen durchgefihrt werden. Da diese die Basis fiir eine lfrgtelh Verarbeitungs-
modellen dargestellt hatten, konnten die generellen Untersuchungen von Verarbeitungsmodel-
len, die beabsichtigt waren, nicht durchgefihrt werden.

Um aber den Boden fir eine eventuelle spatere Untersuchung dieses Themas zu einem Zeit-
punkt, da diese Daten védbar sein werden, zu bereiten, wurde die Aufgabenstellung exem-
plarisch auf ein Verarbeitungsmodell eingeschrankt, das in den Bereich der Sicherheit fallt. Die-
ses Vorgehen erwies sich als vorteilhaft, da hier durch das Arbeitspaket SYS.2 bereits Wissen
aus diesem Bereich, insbesondere den in der Literatur genannten Verarbeitungsstrukturen, vor-
lag. Diese Strukturen werden dabei nicht den Anforderungen oder existierenden Strukturen der
Anwendungen entnommen, sondern den Schutzmechanismen, die eine bestimmte Verarbei-
tungsstruktur, z.B. zum Schutz des mobilen Agenten vor Angriffe durch boswillige Hosts, be-
nutzen.

6.3 \erarbeitungsmodelle vs. Patterns

Auf den ersten Blick scheinen Verarbeitungsmodelle, wie sie in der Eimigilskizziert wur-
den, Emwurfsmustern ("Patterns") zu &hneln. Es ist daher zunachst notwendig, Verarbeitungs-
modelle von Patterns zu differenzieren.

6.3.1 Patterns

Patterns [GHJ95] sind Beschreibungen von miteinander kommunizierenden Objekten und Klas-
sen, die dazu entworfen wurden, ein generelles Designproblem in einem bestimmten Kontext
zu losen. Patterns bestehen aus vier wesentlichen Elementedaierdes Patterngentifi-

ziert das Pattern und gibt einen Hinweis auf das zu |l6sende Problémldambeschreibt die
Situation, in der das Pattern einzusetzen ist..dseingbeschreibt ein Entwurfsdesign, das das
Problem I6st, digonsequenzeschliellich beschreiben die Ergebnisse und Folgen, die sich aus
der Anwendung der L6sung ergeben.

Patterns tradieren also in schriftlicher Form haufig bendtigte Umwandlungen von einem Pro-
blem zu einem Entwurf. FUr die Implementierung ist der Programmierer zustandig, der sich
aber immerhin auf Code-Beispiele stlitzen kann. Patterns sind daher auf den Programmierer
ausgerichtet, das System (im Fall der Patterns die Anwendung) sieht die benutzten Patterns
nicht und kann daher auch keine Informationen aus der Bemgutier Patterns erdessen.

6.3.2 Verarbeitungsmodelle

Verarbeitungsmodelle beziehen sich aussschliesslich auf Mobile-Agenten-Systeme (auch wenn
sich das Prinzip auf jede Middleware anwenden lasst, die einen Bedarf nach Aussagen tber die
Beziehungen zwischen den Einheiten der Middleware haben). Middleware kann ganz allgemein
als Implementations-Framework einiger Patterns angesehen werden (dann sollte man sie aber
vielleicht nicht mehr als Patterns bezeichnen, sonst verwassert der eigentlich recht genau defi-
nierte Begriff). Ein Middlewaresystem unterstitzt die Anwendung, indem es Unterstitzung fur
einige Konzepte (wie RPC oder eben Agenten) bereitstellt. Diese Konzepte kdnnte man als Pat-
terns darstellen (in der Tat wird das in manchen Artikeln gemacht), aber das ist eigentlich nur
dann sinnvoll, wenn es keine Unterstitzung des Middlewaresystems fir diese Patterns gibt, weil

Abschlussbericht AIDA I 26

Patterns auf einen Entwurfsprozess verweisen, der weniger Unterstitzung anbietet als Middle-
waresysteme zu leisten in der Lage sind. Man konnte beispielsweise "Mobile Agenten” als Pat-
terns in Java-basierten Anwendungen benutzen, wenn es keine Mdglichkeit gibt, das Konzept
"Mobiler Agent" des zugrunde liegenden Systems zu benutzen.

Verarbeitungsmodelle haben zwei Ziele. Erstens sollen sie dem Systemmanagement Hinweise
auf die benutzteVerarbeiungsstriktur geben, also erkennen lassen, in welcher Beziehung
Agenten zueinander stehen und welche Interaktionsbeziehungen zwischen diesen existieren.
Dieses Wissen kann das Systemmanagement benutzen, um Anwendungen (die aus Agenten be-
stehen) Unterstitzung z.B. in den Bereichen Terminierung und Waisenerkennung zu geben.
Zweitens sollen sie, genau wie Patterns, Programmierer bei der Lésung ihrer Entwurfsprobleme
helfen. Da, wie wir gleich sehen werden, Verarbeitungsmodelle auf Systemebene angesiedelt
sind, kdbnnen sie den Programmierer jedoch auch zusétzlich bei der Implenmenéieer An-

wendung unterstitzen. Dies kann z.B. dadurch geschehen, dass das Agentensystem bereits
Klassen und Interfaces bereitstellt, die der Programmierer dann benutzen kann (bzw. muss).

Die Umsetzung vonVerarbeitungsmodellen erfolgt im ersten Schritt wie bei Patterns. Der Pro-
grammierer benutzt einen Satz von Verarbeitungspatterns zur Umsetzung von Problemen in
Entwirfe. Danach muss er jedoch nicht wie bei Patterns selbst vollstandig fur die Implementie-
rung sorgen, sondern benutzt Klassen und Interfaces, die ihm das System zuw Verfigung stellt,
und mittels der er sein spezielles Anwendungsproblem lost. Auch dabei muss er natlrlich pro-
grammieren, aber er ist nicht mehr frei in der Wahl z.B. der Programmiersprache, sondern kann
und muss die Umgebung benutzen, die ihm das Agentensystem anbietet.

Zusammenfassend kann man also Verarbeitungsmodelle als Patterns definieren, die systemsei-
tig unterstitzt werden, und die als semantische Einheiten flr das Systemmanagement nitzlich
sind. Falls letztere Notwendigkeit nicht gegeben ist, wollen wir die Patterns im Folgenden nicht
betrachten, weil dann eine generellere Frage angesprochen wird, ndmlich die der Konzepte, die
ein Mobile-Agenten-System anbieten sollte.

6.4 \Verwandte Arbeiten

Verwandte Arbeiten rangieren (bis auf eine Ausnahme) unter dem Stichwort "Patterns”, auch

wenn sie z.T. bereits in den Bereich Verarbeitungsmodelle fallen, weil es systemseitige Unter-

stitzung, wenn auch auf sehr simpler Ebene, daftir gibt. Bei Patterns, die in der Mobile-Agen-

ten-Literatur auftauchen kann man unterscheiden zwischen Intra-Agenten-Patterns und Inter-
Agenten-Patterns. Erstere beschreiben Konzepte, die typischerweise Teil eines Agenten sind
wie Reiseplane und Kommunikationskanale, letztere umfassen bereits den Bereich der Bezie-
hungen zwischen Agenten wie z®ontroller-Workerbzw. Master-Slave

In [AL98] wird ein Beispiel fur eine solche Arbeit vorgestellt, in der einige Patterns rund um

das Mobile-Agenten-System Aglets beschrieben werden. Ein Patieenar , ist dabei Intra-

Agent, zwei anderéMaster-SlaveindMeeting sind Inter-Agent. In [JJS97] werden sogar viele
Patterns einer ganzen auf dem System Tacoma beruhenden Anwendung beschrieben, darunter
ein Inter-Agent-Pattern "Controller-Worker". In [SD98] wird gar das Pattern "Mobile Agent"
beschrieben, wobei als Beschreibung ein ganzes Agentensystem dient.

In [FL99] wird ein Pattern beschrieben, das einen Mechanismus zum Schutz mobiler Agenten
vor Angriffen boswilliger Hosts beschreibt, in dem ein Hauptagent, der nur zu sicheren Hosts
migrieren kann, kleine Single-Hop-Agenten zu unsicheren Hosts schickt, um dort z.B. Preise zu
erfragen. Dieser Artikel beschreibt wirklich ein Pattern im strengen Sinn, d.h. es gibt keine Un-
terstitzung durch das System, das damit die Relationen zwischen den Agenten auch nicht er-

Abschlussbericht AIDA I 27

kennen kann. Dieses Pattern kann aber zu einem Verargemodell weiterentwickelt werden
(was wir im nachsten Unterkapitel auch machen).

Neben dem Gebiet danobilen Agenten tauchen Patterns auch im Gebiet der allgemeinen
Agenten auf, wobei Multi-Agenten-Systeme wegen dem Aspekt der Notwendigkeit der Koor-
dination mehrerer Agenten flr uns im Prinzip von Interesse sein kénnten. Auch dort finden wir
eine ganze Badbreitevon Intra- und Inter-Agenten-Patterns. Zum jetzigen Zeitpunkt erweisen
sich diese Patterns allerdings nicht als sehr ergiebig im Hinblick auf Veuasrgpgmodelle bei
mobilen Agenten, weil die Mdglichkeit der Migration andere Anforderungen an die Koordina-
tion stellt als bei stationdren Agenten.

In [KPK97] wird eine ganze Reihe von Patterns fiir stationdre Agenten diskutiert, die sich aller-
dings nur auf Inter-Agent-Pattern beschréanken bzw. auf solche, bei denen es genau einen Agen-
ten gibt. In [KSK98] wird darauf aufbauend ein Java-Framework vorgestellt, das diese Patterns
systemseitig unterstutzt.

6.5 Beispiel fur ein Verarbeitungsmodell

Um Verarbeitungsmodelle zu illustrieren, soll nun ein solches erarbeitet werden. Als Grundlage
dazu soll das Pattern "Supervisor-Worker" aus [FL99] dienen. Normalerweise misste man im
allgemeinen Fall erst eine Verarhgigsstruktur finden, die von allgemeinem Interesse ist, dann
diese Struktur in ein Entwurfsmuster umsetzen. Die Frage, ob dieses Pattenvallesi An-
wendungen auf der Basis mobiler Agenten flhrt, ist nicht Gegenstand dieses Beispiels.

6.5.1 Das "Supervisor-Worker"-Pattern

Im folgenden soll kurz das "Supervisor-Worker"-Pattern aus [FL99] vorgestellt werden, das ge-
genuber dem Artikel leicht verdndert und stark gekirzt wurde.

Absicht

Schutz eines mobilen Agenten vor Informationsverlust und Modifikationen durch einen boswil-
ligen Host.

Motivation

Wenn ein mobiler Agent benutzt wird, um einen billigen Flug zu suchen und zu buchen, kann
ein boswilliger Host entweder andere Angebote I6schen, oder einen Preis anbieten, der gering-
flgig besser ist als der beste Preis der anderen Anbieter, obwohl er tlber dem Normpreis dieses
Anbieters liegt.

Eine L6sung dieses Problems liegt darin, zu unbekannten Hosts Unteragenten zu schicken, die
nur Flugpreise einholen, und den Hauptagenten nur zu sicheren Hosts migrieren zu lassen. Die
Unteragenten bieten dann kein Angriffsziel mehr, weil ein Host tber sie nur in der intendierten
Art und Weise Einfluss auf die Preisfindung hat.

Teilnehmer

Das Pattern besteht daher aus eiSemervisorAgenten, der nur auf sicheren Hosts arbeitet
und einem oder mehreraiorke-Agenten, die einzelne Informationen auf unsicheren Hosts
holen.Supervisorsind Agenten, die fir den Verarbeitungsschritt, flir den das Pattern bendtigt
wird, nicht migrieren, und die Teilaufgaben durch Worker auf unsicheren Hosts erledigen las-
sen.Workersind Agenten, die von einem Supervisor mit einer Teilaufgabe auf einen Host ge-
schickt werden, diese dort abarbeiten und wieder zurtickmigrieren, schlief3lich ein Resultat zu-

Abschlussbericht AIDA I 28

riick an den Supervisor melden und sich dann beendenTd&laefgabdst das Programm eines
Worker-Agenten. EifResultatist eine Sammlung von Schltssel-Wert-Paaren.

Beziehungen

1. Der Benutzer erstellt den Supervisame die Worler-Agenten.

2. Der Supervisor beginnt seine Rolle imVerlauf seines Lebens.

3. Der Supervisor schickt einen oder mehrere Worker auf unsichere Hosts.

4. Jeder Worker migriert auf einen Host, arbeitet sein Programm ab, und migriert mit seinem
Resultat zurtick zum Supervisor.

5. Der Supervisor nimmt das Resultat entgegen.

6. Sobald alle Worker wieder mit Resultaten zurtickgekehrt sind, verarbeitet der Supervisor die
Resultate.

7. Danach beendet der Supervisor seine Rolle.

Konsequenzen

Vorteile

Worker sind nicht durch Angriffe durch den Host gefahrdet.

Seiteneffekte

Nebenlaufige Ausfihrung: Worker arbeiten parallel.

Folgen

* Wenn ein Worker ausfallt, wird die Verarbeitung nicht beendet.

» Auf dem Host, auf dem der Supervisor ist, finden mehr Berechnungen statt.

6.5.2 Realisierung im Agentensystem

Um die Alternativen bei der Realisierung eines Verarbeitungsmodells aufzuzeigen, beginnen
wir mit der Beschreibung der Implementiag des Pattes, figen dann Aufrufe hinzu, mit de-

nen die Beziehungen zwischen Agenten an das Agentensystem gemeldet werden, integrieren
das Verarbeitungsmodell in das Agentensystem und stellen schlief3lich noch eine alternative Im-
plementierung mithilfe von Agentengruppen vor.

6.5.3 Realisierung des Patterns

Wir benétigen Klassen flr das Resultat, sowie Interfaces fir den Worker und den Supervisor.
Auf die Resultatsklasse wird nicht ndher eingegangen. Das Interface fir den Supervisor ist fol-
gendermassen aufgebaut:

public interface Supervisor {
addResult(Result r);

}

Die einzige Methode, die bendtigt wird, addResult, dient den Workern dazu, ihr Resultat zu-
rickzugeben. Das Interface fur den Worker sieht wie folgt aus:

public interface Worker {
computeResultForAt(AgentName supervisor, Destination target);
Result subtask();

}

Abschlussbericht AIDA I 29

Die erste Methode beauftragt einen Worker, ein Teilresultat flir einen Supervisor zu errechnen.
Die zweite Methode enthalt den Code zur Errechnung des Teilresultats. Mehr ist nicht nétig, den
Rest macht der Programmierer selbst. Ein Beispiel fur eine solche Anwendung ist:

public class Supervisorl extends Agents implements Supervisor {
int numberOfReceivedResults = 0;

public void start() {

numberOfReceivedResults = 0;

System.createAgent((new Workerl()).computeResultForAt(myna-
me,locationl);

System.createAgent((new Workerl()).computeResultForAt(myna-
me,location2);

System.createAgent((new Workerl()).computeResultForAt(myna-
me,location3);

}

addResult(Result r) {

<merge result>

numberOfReceivedResults++;

if (numberOfReceivedResults == 3) doSomeThingElse();
M/ addResult

I SuperVisor

public class Workerl extends Agents implements Worker {
Result result;

Supervisor mySupervisor;

Destination home = myLocation();

computeResultForAt(AgentName supervisor, Destination target){
mySupervisor = supervisor;

go(target);

} // computeResultForAt

public void start() {

if (mylocation() != home) {

result = subtask();

go(home);

}

else {
mySupervisor.addResult(result);
die();

} llelse

} /] start

Result subtask() {
<some code>

}
} I/ Workerl

Da sich der Code iWorker bis aufsubtask Uber verschiedene Worker-Klassen nicht von-
einander unterscheidet, konnte man Worker auch zu einer Unterklassgardn machen und
dann von dieser Klasse erben mit dem Effekt, dass masubtask Uberladen misste.

Abschlussbericht AIDA I 30

6.5.4 Realisierung desVerarbeitungsmodells

Die Realisierung des Patterns erlaubt es zwar einem Programmierer, das Pattern zu verwenden,
aber wir wollen ja Systemunterstiitzung an die gefundenen Relationen zwischen den Agenten
knupfen. Wenn wir z.B. den Fehlerfall tolerieren lassen wollen, dass Worker auf transient aus-
fallenden Hosts verlorengehen, missen wir den Supervisor nur pro ausgeschicktem Worker ei-
nen Timer einsetzen lassen, nach dessen Ablauf ein Ersatz-Worker geschickt wird, falls der erste
noch nicht wieder zuriickmigriertist. Der entsprechende Code muss daher nur in die Klasse Su-
pervisor integriert werden. Auf dhnliche Weise lasst sich auch andere Funktionalitat in dieses
Pattern integrieren.

6.5.5 Realisierung mit Agentengruppen

Um die Mechanismen des Systemmanagements wie Terminierung usw. zu unterstttzen, kon-
nen, sofern vorhanden, u.U. generische Systemkonzepte des Agentensystems verwendet wer-
den. Ein solches Konzept ist das der Agentengruppen (siehe [BR97], [Bec97], und [Pau98]), das
es einem Programmierer erlaubt, explizite Beziehungen zwischen mobilen Agenten in Form
von hierarchischen Gruppen anzugeben (deren Mitgliedsdyaémisch gin kann), System-
mechanismen wie Terminierung an diese Beziehungen zu knipfen, Kontrollmechanismen zu
etablieren und Nachrichten an einige oder alle Mitglieder einer Gruppe zu schicken. Auf diesen
Aspekt soll hier nicht ndher eingegangen werden, es ist aber relativ einfach mdglich, mithilfe
der Implementierung in [Pau98], in Mole eine Gruppe zu definieren, die eine Supervisor-Wor-
ker-Beziehung etabliert, und dann diese zu verwenden um Worker zu terminieren, wenn der Su-
pervisor terminiert wird.

Man konnte Patterns nattrlich auch direkt mit solchen Gruppen realisieren, aber dann musste
sich der Programmierer der Anwendung um die Etablierung der Gruppenbeziehung kimmern,
sein Problem in das Gruppenkonzept einpassen und andere Verwaltungsarbeiten vorsehen.
Wenn man aber Gruppen benutzt, um Verarbeitungsmodelle zu erarbeiten, muss sich der An-
wendungsprogrammierer nicht um Gruppenkonzepte kimmern, sondern nur der Ersteller des
Verarbeitungsmodells.

6.5.6 Bewertung des Verarbeitungsmodells

Der Nutzen fur den Programmierer ist klar: durch de Vedagvon Verarb&iingsmodellen

spart er den Aufwand, sich selbst die entsprechenden Strukturen schaffen zu missen. Dabei un-
terstitzenVerarbeitungsmodelle den Programmierer nicht nur béwmiErsondern auch bei

der Implementierung. Der Preis, den der Programmierer daflr zahlt, ist, wie auch bei Patterns
und Bibliotheken, dass er einen gewissen Aufwand investieren muss, um die Sammlung der
Modelle kennenzulernen bzw. nach dem adéaquaten Modell zu suchen und es anzuwenden.

Der Nutzen fir das Systemmanagement besteht darin, dass mit denVerarbeitungsmodellen
Rahmen existieren, in die man unterstitzende Mechanismen einbauen kann. Bei unserem Bei-
spiel kdnnten das u.a. Mechanismen sein fir:

Terminierung

Da sich der Supervisor merken kénnte, welche Worker zu ihm gehoren, kénnte die vorzeitige
Terminierung der Anwendung auch alle Worker-Agenten erreichen und diese terminieren.
Waisenerkennung

Da die Worker vollstandig vom Supervisor abhangen, kénnten Worker, sobald sie feststellen,
dass ihr Supervisor nicht mehr existiert, sich selbst beenden.

Abschlussbericht AIDA I 31

Fehlertoleranz

Transiente Ausfalle der Worker-Hosts wurden bereits besprochen. Dauerhafte Ausfalle dersel-
ben kdnnte ein Mechanismus im Supervisor dadurch ausgleichen, dass Ersatz-Worker auf ande-
re Hosts geschickt werden.

Sicherheit

Da es sich bei dem Verarbeitungsmodell um ein durch Sicherheitsbedenken motiviertes Muster
handelt, kbnnte das System (falls es das nicht schon standardmalf3ig tut) die Worker mit dem 6f-
fentlichen Schlissel des Ziel-Hosts verschliisselt transportieren, damit diese nicht durch andere
Angreifer abgefangen werden kdnnen, ebenso wie der Worker verschlisselt zuriickmigrieren

konnte.

6.6 Zusammenfassung

Verarbeitungsmodelle sind Konstrukte, die dem Programmierer durch das Agentensystem an-
geboten werden. Sie erlauben es dem Programmierer, dem Agentensystem die Verarbeitungs-
struktur seiner Anwendung, v.a. die Beziehungen zwischen den einzelnen Agenten bekanntzu-
machen. Der unmittelbare Nutzen fir den Programmierer besteht darin, dass dieser
vorgefertigte Konstrukte benutzen kann, ohne sie selbst zu erstellen. Der mittelbare Nutzen fir
ihn bzw. der unmittelbare Nutzen flr das System besteht darin, dass das Agentensystem das
Wissen Uber die Interaktionsstrukturen fir das Systemmanagement nutzen kann, also z.B. flr
die Terminierung und Waisenerkennung, fur die Unterstiggzler Fehlertoleranz oder fir die
Sicherheitsunterstitzung.

Verarbeitungsmodelle unterscheiden sich von Patterns vor allem dadurch, dass sie nicht nur den
Entwurfsprozess des Programmierers unterstiitzen sondern auch Wissen aus dem Entwurf an
das System Ubermitteln.

Sobald es einige echte Anwendungen gibt, die mobile Agenten benutzen, wird es analog der
hier dargestellten Weise moglich sein, allgemeine Veranbggmodelle aug/pischen Verar-
beitungsstrukturen zu bilden, um so das Systemmanagement zu unterstitzen und den Program-
mierer zu entlasten.

7 Weitere Ergebnisse von AIDA I

Neben den durch den Antrag abgedeckten Themen konnten durch die Vorarbeiten in AIDA |
weitere Forschungsthemen angegangen werden, deren Ergebnisse als Eigenbeitrag ebenfalls als
Ergebnisse von AIDA gewertet werden kénnen.

Auf den in AIDA | und AIDA II erfolgten Arbeiten zum Thema Waisenerkennumg Termi-

nierung konnten weitere Untersuchungen aufbauen, die schliesslicrubD]Balndeten. Hier-

in wurden die Eigenschaften der entwickelten Kontrollalgorithmen im Detail analysiert und mit
alternativen existierenden Anséatzen verglichen. Im Bereich der verteilten Algorithmen gibt es
Ldsungen fur &hnliche Probleme wie im Bereich der Kontrollalgorithmen fiir mobile Agenten.
Diese kdonnen iden Teilbereichen der verteilten Terminierung und der verteilten Garbage-Col-
lection gefunden werden. Tehd Mdtern (1993) haben gezeigt, daf’ diese beiden Klassen von
Algorithmen ineinander tbergefihrt werden kénnen. Durch die Anwendung einer Transforma-
tion kann ein Algorithmus der einen in die andere Klasse transformiert werden. Eine ahnliche
Transformation, die eine dieser Klassen in Kontrollalgorithmen ftir mobile Agenten tGberftihren

Abschlussbericht AIDA I 32

kénnte, wirde den Zugriff auf eine grof3e Menge von Algorithmen flr die Kontrolle mobiler
Agenten ermdglichen. In der Arbeit wurden existierende Garbage-Collection-Algorithmen
transformiert, um zu zeigen, dal} alle Prinzipien der transformierten Algorithmen auch in den
existierenden Kontrollalgorithmen verwendet werden. Hierbei zeigt sich, dal3 diese Menge der
Transformationen eine echte Teilmenge der Kontrollalgorithmen fir mobile Agenten darstellt.

Ebenfalls auf den in AIDA | durchgeftihrten Arbeiten aufbauend konnten die folgenden Themen
erarbeitet werden:

* Genau-einmal-Ausfiihrung von mobilen Agenten

Das Programmiermodell impliziert, dass mobile Agenten fehlerfrei migrieren und ausge-
fuhrt werden kdnnen. Insbesondere besagt es, dass mobile Agenten von sich aus weder ver-
loren gehen noch dupliziert werden. Diese als selbstverstandlich getroffene Annahme ist
technisch schwierig zu realisieren und wird auch von fast allen existierenden Systemen
nicht sichergestellt. Daher wurden in [SR98], [SRM98], und [RS98] Verfahren vorgestellt,
die eine solche genau-einmal-Ausfihrung ("exactly-once execution") gewahrleisten.

* Framework fur die transparente Verteilung von Berechnungen

Einer der Vorteile mobiler Agenten ist die Moglichkeit, Code auf entfernten Knoten auszu-
fuhren. Diese Eigenschaft kann u.a. dazu benutzt werden, um parallelisierbare Berechnun-
gen mittels mobiler Agenten auf verschiedene Rechnersysteme zu verteilen. In [SBS99a]
und [SBS99b] wurde daher ein Framework vorgestellt, das es erlaubt, solche Berechnun-
gen, die in der Sprache Java erfolgen, einfach und fir den Programmierer transparent zu
verteilen.

» Partieller Rollback von Mobile-Agenten-Ausfihrungen

Um Agenten in einem transaktionalen Zusammenhang benutzen zu kénnen, ist es notwen-
dig, Verfahren zur Rickgéngigmachung von Aktionen anzubieten. Da die Ausfiihrung von
mobilen Agenten nicht als eine einzige Transaktion durchgefiihrt werden kann, sondern als
Abfolge von einzelnen Transaktionen, die jeweils die Ausfiihrung auf einem Rechner um-
fassen, kann zu diesem Zweck kein klassischer Rollback eingesetzt werden. Daher wurden
in [SRO0] bzw.[SR99] Mechanismen vorgestellt, die es erlauben, einen partiellen Rollback
einer Ausfuhrung in einer effizienten und skalierbaren Art und Weise vorzunehmen.

Neben diesen Eigenbeitragen wurde ein weiteres Thema im Kontext von AIDA durch einen

Graduierten-Kollegiaten, Dipl-Inf. Wolfgang Theilmann, erarbeitet. Bei diesem Thema handelt

es sich um das Projekt Hawk (HArvesting the Widely distributed Knowledge), das es sich zur

Aufgabe gemacht hat, neue Werkzeuge zur Informationssuche im Internet zu entwickeln, so

dass eine prazise und moglichst vollstandige Suche in einer skalieubdreffizienteArt und

Weise moglich wird. Das Projekt verfolgt drei Schwerpunkte:

» Die Erforschung spezialisierter Suchmaschinen, die auf ein Wissensgebiet beschrankt sind

» Die effiziente Aussendung von mobilen Agenten, um verteilt Informationen filtern zu kén-
nen

* Die effiziente Erstellung von Netzwerkkarten des Internets

Ergebnisse dieser Arbeiten wurden in [RT98], [TR98], [TR99a], [TR99b], [TR99c], und
[TROO] verdoffentlicht.

Abschlussbericht AIDA I 33

8 Verwandte Arbeiten

Im Zusammenhang mit AIDA Il wurden folgende Themen betrachtetet:

» Abrechnung in Mobile-Agenten-Systemen

* Genau-einmal-Ausfiihrung von mobilen Agenten

* Informationssuche mit mobilen Agenten

» Partieller Rollback von Mobile-Agenten-Ausfiihrungen

» Sicherheit in Mobile-Agenten-Systemen, speziell der Bereich der Sicherheit des Agenten
vor Angriffen bdswilliger Hosts

* Terminierung von mobilen Agenten

» Transparente Verteilung von Berechnungen mittels mobiler Agenten

* \erarbeitungsmodelle fir mobile Agenten

* Waisenerkennung in Mobile-Agenten-Systemen

Aufgrund der Vielzahl an abgedeckten Themen gibt es naturgemal3 auch viele verwandte Arbei-
ten. Da diese Arbeiten sowie die Abgrenzung zum Stand der Wissenschaft in den jeweiligen
Veroffentlichungen genannt werden, soll daher an dieser Stelle auf die entsprechenden Ab-
schnitte verwiesen werden.

9 Aktivitdten der Gruppe auf dem Gebiet der mobilen Agenten
im Berichtszeitraum

Die wahrend AIDA | aufgebaute Gruppe am IPVR, die sich mit mobilen Agenten beschaftigt,
konnte sich wahrend des Berichtszeitraums durch ihre Forschungsarbeit weiter international
etablieren. Die Gruppe besteht z.Zt. aus fiinf Forschern und einer ganzen Reihe von Studenten.
Die Gruppe wurde auf europaischer Ebene durch die aktive Teilnahme als Knoten im durch die
Européische Gemeinschaft geforderten Projekt AgentLink eingebunden.

So konnten etwa durch die Teilnahme an zahlreichen Workshops und Konferenzen (MOS’98,
MA98, ISSRE’'98, TREC’'98, Middleware’98, CIA’98, SRDS'98, CIA’99, ASA/MA'99,
KivVS'99, PDPTA99, Smartnet'99, ICDCS’99, ICDCS 2000) Forschtogsakte geknupft

und ausgebaut werden.

International etablieren konnte sich auch der internationale Workshop "Mobile Agents”, der von
der Mobile-Agenten-Gruppe am IPVR initiiert und mitorganisiert wurde. Nachdem bereits
1997 der erste Workshop mit grof3em Erfolg in Berlin abgehalten wurde, konnte die zweite Aus-
richtung (MA98) nach Stuttgart geholt werden, wo dieseVeranstaltung ni@@deilneh-

mern aus dem In- und Ausland vom 9. bis 11.9.1998 stattfand. Zu diesem Workshop wurden
auch Proceedings herausgegeben [RH98], die beim Springer-Velag in der Reihe LNCS erschie-
nen. Auch beim dritten Workshop, der unter dem Titel "Third International Symposium on Mo-
bile Agents" zusammen mit dem First International Symposium on Agent Systems and Appli-
cations als ASA/MA’99 vom 3. bis Geptember 1999 in Palm Springs abgehalten wurde, war
die Gruppe im Programm- und im Lenkungskommittee durch Prof. Rothermel vertreten, der
diese Rolle auch bei der ASA/MA 2000 innehat, die vom 13. bis 15. September 2000 in Zirich
abgehalten werden wird.

In der Lehre vertreten werden konnte das Thema durch eine Vorlesung tber mobile Agenten
(WS97/98, WS98/99, WS99/00) sowie durch die Betreuung von etwa 16 Softwarepraktika, Stu-
dien- und Diplomarbeiten (u.a. [Bad98], B8], [B0s98], [Bus99], [Fri98a], [FBDb],

[Tra99], [Mai97], [Meh98], [Mey97], [Mes99], [Pap99]).

Abschlussbericht AIDA I 34

Um das Gebiet der mobilen Agenten voranzubringen wurden zwei spezielle Ressourcensamm-
lungen erstellt und unterhalten, die flr jedermann Uber das WWW abfragbar sind. Die Biblio-
graphie von Arbeiten auf dem Gebiet "Sicherheit und Mobile Agenten" [SecBib] besteht derzeit
aus etwa 140 Referenzen, die zum Teil um Links zu elektronischen Versionen dieser Artikel und
\olltextkurzfassungen erweitert sind. Diese Seite wurde im Durchschnitt etwa 670 mal pro Mo-
nat aufgerufen. Die andere Sammlung, "The Mobile Agent List" [MAL] versammelt Eintrage

zu Mobile-Agenten-Systemen, die nach einem bestimmten Schema aufgebaut sind, und einen
groben Vergleich der Eigenschaften erlauben. Die Eintrdge werden dabei nicht von dritten Par-
teien erstellt und unterhalten, sondern direkt von den Gruppen, die diese Mobile-Agenten-Sy-
steme erstellen. Dadurch ist eine Pflege der Daten ohne die Notwendigkeit des manuellen Ein-
griffs durch einen Editor notwendig, zugleich stammen die Daten von Personen, die sich sehr
gut mit diesen Systemen auskennen. Zurzeit umfasst die Liste etwa 57 Eintrage. Im Vergleich
mit der Zahl der bekannten Systeme (71) ergibt sich damit eine sehr hohe Abdeckung an Syste-
men. Die MAL konnte auf der ASA/MA99 im September 1999 in Palm Springs zum ersten Mal
vorgestellt werdenind verzeichnet seitdeatwa 140 Zugriffe pro Monat.

Das Wissen, das durch die Forschung in AIDA und anderen Projekten auf dem Gebiet der mo-
bilen Agenten erarbeitet wurde, wurde durch zahlreiche Vortrage und Seminadastrie und
Wissenschatt transferiert.

10 Publikationen

Ergebnisse im Zusammenhang von AIDA Il wurden in folgenden Tagungsbanden, Biichern und
Zeitschriften vorgestellt:

» Joachim Baumann. Terminierung und Waisenerkennung bei mobilen Agenten. Dissertati-
on, Universitat Stuttgart, 2000

» Fritz Hohl. A Framework to Protect Mobile Agents by Using Reference States. In: Procee-
dings of the 20th International Conference on Distributed Computing Systems (ICDCS
2000). To appear.

» Markus Stral3er, Kurt Rothermel. System Mechanisms for Partial Rollback of Mobile Agent
Execution. In: Proceedings of the 20th International Conference on Distributed Computing
Systems (ICDCS 2000). To appear

* Wolfgang Theilmann, Kurt Rothermel. Dynamic Distance Maps of the Internet. In: Proc of
IEEE INFOCOM 2000. To appear.

* Fritz Hohl. Mobile Agents and Active Networks. In: Proceedings of Smartnet’99 - The
Fifth IFIP Conference on Intelligence in Networks, 1999

* Wolfgang Theilmann, Kurt Rothermel. Disseminating Mobile Agents for Distributed Infor-
mation Filtering. In: Proc. Joint Symposium ASA/MA99 of 1st Int. Symp. on Agent Sy-
stems and Applications (ASA’99) and 3rd Int. Symp. on Mobile Agents(MA’99), 1999

* Wolfgang Theilmann, Kurt Rothermel. Maintaining Specialized Search Engines through
Mobile Filter Agents. In: Proc. 3rd Int. Workshop on Cooperative Information Agents
(C1A99), 1999

» Markus Straf3er, Joachim Baumann, Markus Schwehm. An Agent-based Framework for the
Transparent Distribution of Computations. In: H. Arabnia (ed.), Proc. 1999 Int. Conf. on
Parallel and Distributed Processing Techniques and Applications (PDPTA’99), 1999

Abschlussbericht AIDA I 35

Wolfgang Theilmann, Kurt Rothermel. Efficient Dissemination of Mobile Agents. In: Proc.
19th Int. Conf. on Distributed Systems Workshop, 1999

Fritz Hohl, Kurt Rothermel. A Protocol Preventing Bdaox Tests of Mobile Agents. In:
Tagungsband der ITG/VDE Fachtagung Kommunikationin Verteilten Systemen
(KiVS’99), 1999

Markus Straf3er, Kurt Rothermel. Reliability Concepts for Mobile Agents, International
Journal of Cooperative Information Systems (1JCIS), Volume 7, Number 4, 1998

Markus StralRer, Kurt Rothermel, Christian Maihdfer. Providing Reliable Agents for Elec-
tronic Commerce. In: Proc. of Trends in Distributed Systems for Electronic Commerce
(TREC98), 1998

Fritz Hohl. Mobile Agent Security and Reliability. In: Proceedings ofNimth Internatio-
nal Symposium on Software Reliability Engineering (ISSRE '98), 1998

Kurt Rothermel, Markus Stral3er. A Fault-Tolerant Protocol for Providing the Exactly-Once
Property of Mobile Agents. In: Proc. 17th IEEE Symposium on Reliable Distributed Sy-
stems 1998 (SRDS’'98), 1998

Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Schwehm, Markus Straf3er. Mole
3.0: A Middleware for Java-Based Mobile Software Agents. In: Proc. Middleware’98, 1998

Wolfgang Theilmann, Kurt Rothermel. Domain Experts for Information Retrieval in the
World Wide Web. In: Proc. 2nd Int. Workshop on Cooperative Informative Agents
(CIA98), 1998

Joachim Baumann, Kurt Rothermel. The Shadow Approach: An Orphan Detection Proto-
col for Mobile Agents. In: Proceedings of the 2nd Int. Conf. Mobile Agents (MA’98), also
in: Personal Technologies, Vol. 2, Nr.3 1998

Fritz Hohl. A Model of Attacks of Malicious Hosts Against Mobile Agents. In: Proceedings
of the 4th ECOOP Workshop on Mobile Object Systems (MOS’98): Secure Internet Mobile
Computations, 1998

Fritz Hohl. Time Limited Blackbox Security: Protecting Mobile Agents From Malicious
Hosts. In: G. Vigna (Ed.): Mobile Agents and Security. 1998

Kurt Rothermel, Wolfgang Theilmann. Agentenbasierte Informationssuche und -filterung
in globalen Netzen. Industrie-Management vol 14 Nr. 1, 1998

Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Stral3er. Mole - Concepts of a Mo-
bile Agent System, World Wide Web, Vol. 1, Nr.3, 1998

Weitere Ergebnisse des Projekts wurden in folgenden technischen Berichten publiziert:

Fritz Hohl. A Framework to Protect Mobile Agents by Using Reference States. Universitat
Stuttgart, Fakultat Informatik, Fakultatsbericht Nr. 2000/03

Markus Stral3er, K. Rothermel. System Mechanisms for Partial Rollback of Mobile Agent
Execution. Technical Report TR 1999/10, Fakultat Informatik, Universitat Stuttgart

Fritz Hohl. A Protocol to Detect Malicious Hosts Attacks by Using Reference States. Uni-
versitat Stuttgart, Fakultat Informatik, Fakultatsbericht Nr. 1999/09

Markus Stral3er, Joachim Baumann, Markus Schwehm. An Agent-Based Framework for
the Transparent Distribution of Computations. Universitat Stuttgart, Fakultat Informatik,
Bericht Nr. 1999/06

Abschlussbericht AIDA I 36

* Joachim Baumann, Kurt Rothermel. The Shadow Approach: An Orphan Detection Proto-
col for Mobile Agents. Universitat StuttgaRakultatinformatik, Bericht Nr. 1998/08

* Ashraf Igbal, Joachim Baumann, Markus Stral3er. Efficient Algorithms to Find Optimal
Agent Migration Strategies. Universitat Stuttgart, Fakultat Informatik, Bericht Nr. 1998/05

» Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus Stral3er. Mole - Concepts of a Mo-
bile Agent System Universitat Stuttgart, Fakultat Informatik, Bericht Nr. 1997/15

» Joachim Baumann. A Protocol for Orphan Detection and Termination in Mobile Agent Sy-
stems. Universitat Stuttgart, Fakultat Informatik, Bericht Nr. 1997/09.

» Fritz Hohl, Peter Klar, Joachim Baumann. Efficient Code Migration for Modular Mobile
Agents. Universitat Stuttgart, Fakultat Informatik, Bericht Nr. 1997/06

11 Zusammenfassung

Zusammenfassend kann festgestellt werden, dass die gesteckten Ziele von AIDA Il erreicht
wurden. Es wurde das Problem der Terminierung und Waisenerkennung im Kontext mobiler
Agenten erarbeitet, sowie Verfahren entwickelt und implementiert, die dieses Problem l6sen.
Um ein Mobile-Agenten-System flir das Gebiet des elektronischen Handels geeigneter zu
machen, wurden weiter Verfahren entwickelt, die es erlauben, denVerbrauch von Systemres-
sourcen und die Inanspruchnahme von Diensten durch mobile Agenten zu erheben und abzu-
rechnen. Der auch in diesem Kontext wichtige Bereich der Sicherheit in Mobile-Agenten-
Systemen wurde erarbeitet. Speziell wurden Mechanismen entwickelt und implementiert, die
einen mobilen Agenten vor Angriffen durch den ausfiihrenden Host schitzen. Schlie3lich
wurde noch das Feld der Verarbeitungsmodelle fir mobile Agenten erarbeitet, also von Ent-
wurfsmustern, deren Struktur dem System bekanntingt,es diesem erlaubt, entsprechende
Anwendungen durch Systemmechanismen zu unterstiitzen. Dartber hinaus wurdenVerfahren
entwickelt, die eine genau-einmal-Ausfiihrung von mobilen Agenten ermoéglichen. Zu diesem
Zweck wurden Agenten in einen transaktionalen Kontext eingebunden, der sich tber eine Aus-
fuhrungssitzung erstreckt. Um solchen, auf eine Sitzung begrenzten Transaktionskontexten die
Mdoglichkeit des Rucksetzens zu geben, wurde weiterhin eine Methode entwickelt, Agenten
einen partiellen Rollback zu erlauben. Schlief3lich wurde ein Framework implementiert, das es
erlaubt, parallelisierbare Berechnungen mittels mobiler Agenten transparent Uber mehrere
Rechner zu verteilen.

Die Ergebnisse des Projektes wurden in 21 Artikeln auf 16 Konferenzen, in 4 Zeitschriften und
einem Buch, sowie in 9 technischen Berichten veroffentlicht. Sie mindeten bisher in einer Dis-
sertation, zwei weitere werden angestrebt.

Mit dem Abschluss von AIDA |l wurde das AIDA-Projekt abgeschlossen. Trotzdem enthélt
das Gebiet der mobilen Agenten auch weiterhin sehr interessante Fragestellungen, die wissen-
schaftlich von Interesse sind, und deren Beantwortung zum Teil Einfluss auch auf anderen For-
schungsgebiete wie etwa dem des mobilen Codes oder dem des Schutzes geistigen Eigentums
hatte. Weitere Grundlagenforschung auf dem Gebiet der mobilen Agenten erscheint daher
sinnvoll und notwendig.

Abschlussbericht AIDA I 37

Literatur

[AL98]

[Bad9g]

[B&UOS]

[Bau97]

[Bau0O0]

[Bec97]

[BHR98a]

[BHR98b]

[B6s98]

[BRI7]

[BROS]

[Bus99]

[FLO9]

[Fri98a]

Aridor, Yariv; Lange, Danny: Agent Design Patterns: Elements of Agent Appli-
cation Design. In: Proceedings of Autonomous Agents '98, ACM Press, pp. 108 -
115, 1998

Bader, Michael: Konzeption und Implementation eines zuverlassigen und skalier-
baren Agentenservers. Diplomarbeit 1624, Fakultat Informatik, Universitat Stutt-
gart, 1998

Baurle, Sven: Entwurf und Implementierung einer Authentifizierungskomponen-
te fur ein Mobile-Agenten-System. Studienarbeit 1695, Fakultat Informatik, Uni-
versitat Stuttgart, 1998

Baumann, Joachim: A Protocol for Orphan Detection and Termination in Mobile
Agent Systems. Universitat Stuttgart, Fakultat Informatik, Bericht Nr. 1997/09,
1997

Baumann, Joachim: Terminierung und Waisenerkennung bei mobilen Agenten.
Dissertation, Universitat Stuttgart, 2000

Beck, Bernhard: Terminierung und Waisenerkennung in einem System mobiler
Software-Agenten. Diplomarbeit 14 ®akultat Infomatik, Universitat Stuttgart,
1997

Baumann, Joachim: Hohl, Fritz; Rothermel, Kurt; StralRer, Markus: Mole - Con-
cepts of a Mobile Agent System, World Wide Web, Vol. 1, Nr. 3, pp. 123-137,
1998

Baumann, Joachim; Hohl, Fritz; Rothermel, Kurt; Schwehm, Markus; Stral3er,
Markus: Mole 3.0: A Middleware for Java-Based Mobile Software Agents. In:
Proc. Middleware’98, Springer Verlag, 1998

Bdser, Michael: Konzeption und Implementieg einegraphischen Werkzeugs
zum Verwalten eines Mobile-Agenten-Systems. Studienarbeit 1694, Fakultat In-
formatik, Universitat Stuttgart, 1998

Baumann, Joachim; Radouniklis, Nikolaos: Agent Groups in Mobile Agent Sy-
stems. In: H. Konig, K. Geihs and T. Preul3 (eds.) Distributed Applications and
Interoperable Systems (DAIS'97), Chapman & Hall, pp. 74-85, 1997

Baumann, Joachim; Rothermel, Kurt: The Shadow Approach: An Orphan Detec-
tion Protocol for Mobile Agents. In: K. Rothermel and F. Hohl (eds.), 2nd Int.
Conf. Mobile Agents (MA’98), LNCS 1477, Springer-Verlag, pp. 2-13., also in
Personal Technologies, Vol. 2, Nr. 3 (1998)

Buschle, Jurgen: Reiserouten-Konzepte flr Mobile Agenten. Studienarbeit 1754,
Fakultat Informatik, Universitat Stuttgart, 1999

Fischmeister, Sebastian; Lugmayr, Wolfgang: The Supervisor-Worker Pattern.
Technical Report TUV-1841-99-08, Technical University of Vienna, 1999.

Friedel, Klaus: Fehlertolerantes Protokoll zur Exactly-Once-Ausfiihrung von
Agenten. Diplomarbeit 165Fakultat Informatik, Universitat Stuttgart, 1998

Abschlussbericht AIDA I 38

[Fri98b] Fritz, Andreas: Realisiengeines vorgegebenen Mechanismus zur Verhinderung
von "Testing"-Angriffen gegen "Blackbox"- geschuitzte Agenten. Studienarbeit
Nr. 1696, Fakultat Informatik, Universitat Stuttgart, 1998

[GHJ95] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Design Patterns.
Addison-Wesley, 1995

[GKC98] Gray, Robert S.; Kotz, David; Cybenko, George; Rus, Daniela: D’Agents: Secu-
rity in a Multiple-Language, Mobile-Agent System, in: Giovanni Vigna (Ed.):
Mobile Agents and Security. pp 154-187. Springer-Verlag, 1998.

[GM94] General Magic. Telescript Technology: The Foundation for the Electronic Mar-
ketplace. General Magic White Paper, 1994

[Har70] Hartmanis, Juri: Computational Complexity offldam Access Storedrégram
Machines. Technical Report No. 70-70, Department of Computer Science, Cor-
nell University, August 1970

[Ho984a] Hohl, Fritz: Time Limited Blackbox Security: Protecting Mobile Agents From
Malicious Hosts. In: G. Vigna (Ed.): Mobile Agents and Security. Springer-Ver-
lag, pp. 92-113, 1998

[Ho98Db] Hohl, Fritz: A Model of Attacks of Malicious Hosts Against Mobile Agents. In:
4th ECOOP Workshop on Mobile Object Systems (MOS’98). Secure Internet
Mobile Computations, 1998

[Hoh99] Hohl, Fritz: A Protocol to Detect Malicious Hosts Attacks by Using Reference
States. Universitat Stuttgart, Fakultat Informatik, Fakultatsbericht Nr. 1999/09,
1999

[HoO0Oa] Hohl, Fritz: A Framework to Protect Mobile Agents by Using Reference States.
In: Proceedings of the 20th International Conference on Distributed Computing
Systems (ICDCS 2000). To appear 2000

[HoOODb] Hohl, Fritz: A Framework to Protect Mobile Agents by Using Reference States.
Universitat Stuttgart, Fakultat Informatik, Fakultatsbericht Nr. 2000/03, 2000

[HR99] Hohl, Fritz; Rothermel, Kurt: A Protocol Preventing Bdbox Tests of Mbile
Agents. In: Tagungsband der ITG/VDE Fachtagung Kommunikation in Verteilten
Systemen (KiVS’99). Springer-Verlag, 1999

[1AI199] The IAIK JCE project page. http://jcewww.iaik.tu-graz.ac.at/

[JJS97] Johansen, Dag; Jacobsen, Kjetil; Sudmann, Nils P.; Lauvset, Kaare J.; Birman,
Kenneth P.; Vogels, Werner: Using Software Design Patterns to build Distributed
Environmental Monitoring Applications. Technical Report TR97-1655, Depart-
ment of Computer Science, Cornell University, USA, December 1, 1997

[KPK97] Kendall, E. A.; Pathak, C. V. ; Krishna, P. V. Murali; Suresh,C. B.: "The Layered
Agent Pattern Language,” Proceedings of Pattern Languages of Programming
(PLOP’97), September, 1997

[KSK98] Kendall, E. A.; Suresh, C. B.; Krishna, P. V. Murali; Pathak, C. V.: "An Applica-
tion Framework for Intelligent and Mobile Agents". ACM Computing Surveys
Symposium on Application Frameworks, ed. M. Fayad, D. C. Schmidt, ACM,
1998

Abschlussbericht AIDA I 39

[Maio7]

[MAL]

[Mehos]

[Mes99]

[Mey97]

[Pap99]

[Pau9s]

[RHO8]

[R6h97]

[RS98]

[RT98]

[SBS99a]

[SBS99b]

[SD98]

[SecBib]

Maihdofer, Christian: Ein Prokoll zur Wahrung der Exactly-Once Eigenschaft
Mobiler Agenten. Diplomarbeit565,Fakultat Informatik, Universitat Stuttgart,
1997

The Mobile Agent List. Sammlung von Daten zu Mobile-Agenten-Systemen im

WWW. http://mole.informatik.uni-stuttgart.de/mal/mal.html

Mehler, Lars: Entwicklung und Leistungsvergleich verschiedener Service-Agen-
ten-Architekturen. Diplomarbeit 1615, Fakultat Informatik, Universitat Stuttgart,
1998

Messner, Albrecht: Erweiterte und optimierte Transaktionale Asynchrone Messa-
ge Queue zur fehlertoleranten Agentanausfiuhrung. Studienarbeit 1750, Fakultat
Informatik, Universitat Stuttgart, 1999

Meyer zu Uptrup, Jorn Frithard: Einsatz von mobilen Agenten in Intranet-Anwen-
dungen. Diplomarbeit 156Eakultat Informatik, Universitat Stuttgart, 1997

Papoulidis, Konstantinos: Fehlertoleranz in Mole. Diplomarbeit 1FaBultat
Informatik, Universitat Stuttgart, 1999

Paulus, Michael: Agentengruppen fur Mobile Agenten, Diplomarbeit 1664, Fa-
kultat Informatik, Universitat Stuttgart, 1998

Rothermel, Kurt; Hohl, Fritz (eds.): Mobile Agents. Proceedings dritidnter-
national Workshop on Mobile Agents (MA’98), LNCS 1477, Springer-Verlag,
1998

Ro6hrle, Klaus: Konzeption, Implementierung und Analyse Verwirféungs-
mechanismen fur Quellcode. Diplomarbeit 1541, Fakultat Informatik, Universitat
Stuttgart, 1997

Rothermel, Kurt; Stral3er, Markus:Fault-Tolerant Protocol for Providing the
Exactly-Once Property of Mobile Agents. In: Proc. 17th IEEE Symposium on Re-
liable Distributed Systems 1998 (SRDS’98), IEEE Computer Society, Los Alami-
tos, California, pp. 100-108, 1998

Rothermel, Kurt; Theilmann, Wolfgang: Agentenbasierte Informationssuche und
-filterung in globalen Netzenntlustre-Management vol 14 Nr. 1, pp. 61-63,
1998

Stral3er, Markus; Baumann, Joachim; Schwehm, Markus: An Agent-based Frame-
work for the Transparent Distribution of Computations. In: H. Arabnia (ed.), Proc.
1999 Int. Conf. on Parallel and Distributed Processing Techniques and Applicati-
ons (PDPTA’'99), Vol I, CSREA, 1999, pp. 376-3821, 999

Strasser, Markus; Baumann, Joachim; Schwehm, Markus: An Agent-based Fra-
mework for the Transparent Distribution of Computations. Universitat Stuttgart,
Fakultat Informatik, Bericht Nr. 1999/06, 1999

Silva, Alberto; Delgado, Jose: The Agent Pattern for Mobile Agent Systems. In:
Proceedings of EuroPLoP’98, 1998

Security in Mobile Agent Systems. Bibliographie im WWW.
http://mole.informatik.uni-stuttgart.de/security.html

Abschlussbericht AIDA I 40

[SR98]

[SR99]

[SROO]

[SRMO8]

[STO8]

[Tra99]

[TR98]

[TR99a]

[TR99D]

[TR99(]

[TROO]

[Wil99]

StralRer, Markus; Rothermel, Kurt: Reliability Concepts for Mobile Agents, Inter-
national Journal of Cooperative Information Systems (IJCIS), Volume 7, Number
4, 1998, pp. 355-382, 1998

StralRer, Markus; Rothermel, Kurt: System Mechanisms for Partial Rollback of
Mobile Agent Execution. Technical Report TR 1999/10, Fakultat Informatik,
Universitat Stuttgart, 1999

StralRer, Markus; Rothermel, Kurt: System Mechanisms for Partial Rollback of
Mobile Agent Execution. In: 20th International Conference on Distributed Com-
puting Systems (ICDC3000), to appar 2000

StralR3er, Markus; Rothermel, Kurt; Maihofer, Christian: Providing Reliable
Agents for Electronic Commerce. In: W. Lamersdorf, M. Merz (eds). Trends in
Distributed Systems for Electronic Commerce (TRE), LNCS1402, Springer-
Verlag, pp. 241-253, 1998

Sander, Tomas; Tschudin, Christian: Protecting Mobile Agents Against Malicious
Hosts. In: G. Vigna (Ed.): Mobile Agents and Security. Springer-Verlag, pp. 44-
60, 1998

Trankle, Sven: Abrémung erbrachteDienstleistungen in Mobile-Agenten-Sy-
stemen Diplomarbeit 1750, Fakultat Informatik, Universitat Stuttgart, 1999

Theilmann Wolfgang; Rothermel, Kurt: Domain Experts for Information Retrie-
val in the World Wide Web. In: Proc. 2nd Int. Workshop on Cooperative Informa-
tive Agents (CIA’98), M. Klusch, G. Weil3 (Eds.), LNAI 1435, Springer-Verlag,
pp. 216-227, 1998

Theilmann, Wolfgang; Rothermel, Kurt: Efficient Dissemination of Mobile
Agents. In: Proc. 2nd Int. Workshop on Cooperative Information Agents
(CIA’98), Paris, July 4-7, 1998, M. Klusch, G. Weil3 (Eds.), Lecture Notes in Ar-
tificial Intelligence 1435, Springer-Verlag, Berlin, Heidelberg, New York, 1998,
pp. 216-227, 1999

Theilmann, Wolfgang; Rothermel, Kurt: Maintaining Specialized Search Engines
through Mobile Filter Agents. In: Proc. 3rd Int. Workshop on Cooperative Infor-
mation Agents (CIA’99), Uppsala, Sweden, July 31 - August 2, 1999, M. Klusch,
O. Shehory, G. Weil3 (Eds.), Lecture Notes in Artificial Intelligence 1652, Sprin-
ger, July 1999, pp. 197-208, 1999

Theilmann, Wolfgang; Rothermel, Kurt: Disseminating Mobile Agents for Distri-
buted Information Filtering. In: Proc. Joint Symposium ASA/MA’99 of 1st Int.
Symp. on Agent Systems and Applications (ASA’99) and 3rd Int. Symp. on Mo-
bile Agents (MA’99), Palm Springs (CA), USA, October 3-6, 1999, IEEE Press,
1999, pp. 152-161, 1999

Theilmann, Wolfgang; Rothermel, Kurt: Dynamic Distance Maps of the Internet.
In: Proc. of IEEE INFOCOM 2000. To appear 2000

Wilhelm, Uwe: A Technical Approach to Privacy based on Mobile Agents Protec-
ted by Tamper-resistant Hardware. PhD Theses Nr. 1961. Departement D’Infor-
matique, Ecole Polytechnique Federale de Lausanne, 1999

